
Expressive Rule-based Stream
Reasoning

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Harald Beck
Matrikelnummer 00303187

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter
Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistant Prof. Dr. Ezio Bartocci

Diese Dissertation haben begutachtet:

Fredrik Heintz Sebastian Rudolph

Wien, 1. Oktober 2018
Harald Beck

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Harald Beck
Preßgasse 1-3/10
1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2018
Harald Beck

iii

Meinem Vater gewidmet

Danksagung

Kurz nach Abschluss der Diplomarbeit bei Thomas Eiter hatte ich das Glück, von ihm
eine Dissertantenstelle im eben bewilligten FWF-Projekt zum Thema „Distributed Hete-
rogeneous Stream Reasoning“ angeboten zu bekommen. Nach der intensiven, lehrreichen
Betreuung, die ich schon als Diplomand genießen durfte, gab es für mich keinen Grund,
dieses Angebot nicht anzunehmen. Die Zusammenarbeit mit Thomas in diesem Projekt
war für mich sehr bereichernd. Neben seiner beeindruckenden fachlichen Expertise konnte
ich viel von seiner Arbeitsweise und seiner professionellen Einstellung lernen; besonders
seine persönlichen Qualitäten, wie Einsatzbereitschaft, Strukturiertheit, Zuverlässigkeit
und nicht zuletzt seine Hilfsbereitschaft, waren vorbildhaft. Es war ein Privileg, diese
Arbeit unter seiner Betreuung verfassen zu dürfen. Ich bedanke mich auch herzlich bei
meinen Co-Betreuern Stefan Woltran und Ezio Bartocci, die jederzeit verfügbar waren,
sowie bei meinen externen Gutachtern Fredrik Heintz und Sebastian Rudolph. Sie alle
haben mir für den Feinschliff der Arbeit noch wertvolle Anregungen gegeben.

Diese Dissertation gäbe es auch nicht ohne Minh Dao-Tran, der das zugrundeliegende
Forschungsprojekt initiiert hat. Als Post-Doc hat er mit viel Fleiß und Energie für den
kontinuierlichen Fortschritt des Projekts gesorgt. Was mich an unserer Zusammenarbeit
am meisten fasziniert hat, war die Selbstverständlichkeit, mit der wir uns jederzeit
auf die Sicht des anderen eingelassen haben, auch wenn es oft einfacher gewesen wäre,
gedanklich entlang der Bahnen der eigenen Ideen zu gleiten. Ein Durchsetzen-Wollen
oder Gewinnen-Wollen gab es für uns nicht, stattdessen die ständige Aufmerksamkeit für
die Überlegungen des anderen. So konnten wir durch geduldiges Drehen und Wenden
unserer unterschiedlichen Ansätze gemeinsame gedankliche Modelle entwickeln. Das war
lehrreich, produktiv und eine Freude zugleich.

Im ersten Jahr des Projekts hat auch Michael Fink das Team verstärkt. Besonders
eindrucksvoll waren für mich die gemeinsamen Besprechungen zu viert, in denen Michaels
ruhige und achtsame Kommunikation zu einer sehr entspannten Arbeitsatmosphäre sowie
zu einer geordneten gemeinsamen Herangehensweise beigetragen hat. Dies war von großem
Wert für die Entwicklung von LARS, dem zentralen Formalismus dieser Arbeit. Michael
hat durch seine beständige, umsichtige Arbeit viel dazu beigetragen, dass das Projekt gut
in die Gänge gekommen ist, und dass ich einen guten Start im Forschungsumfeld hatte.

Mein weiterer Dank gilt Juliane Auerböck, Beatrix Buhl und Eva Nedoma für ihre stets
freundliche und verlässliche Hilfe in der Organisation. Besonders möchte ich mich bei Eva
bedanken, die mich über viele Jahre in allen möglichen und unmöglichen administrativen
Belangen perfekt unterstützt hat; zunächst als ich Tutor war, dann Praktikant, Diplomand,

vii

und zuletzt Dissertant. Für ihre Zuverlässigkeit und Hilfsbereitschaft möchte ich mich
ebenso herzlich bei den IT-Administratoren Matthias Schlögel und Toni Pisjak bedanken.

Es war mir eine besondere Freude, dass unsere Arbeit auch an anderen Orten An-
klang gefunden hat. Die erste Zusammenarbeit hat sich schon Ende des ersten Jahres
ergeben, nämlich nach der Vorstellung des ersten Konferenz-Artikels im Jänner 2015,
als Konstantin Schekotihin die Nützlichkeit von LARS für ein in Klagenfurt laufendes
Forschungsprojekt erkannte. Aus seiner Initiative heraus ist eine produktive Kollabora-
tion entstanden, die wir gemeinsam mit Hermann Hellwagner und Bruno Bierbaumer
durchgeführt haben. Hervorheben möchte ich besonders Brunos enormen Einsatz für
die Entwicklung der Simulationssoftware, ohne die die Experimente und damit unsere
gemeinsamen Publikationen nicht möglich gewesen wären.

Die zweite Kollaboration hat sich auf Initiative von Hamid Bazoobandi ergeben, der
im Zuge seines Doktoratsstudiums in Amsterdam zur Entwicklung eines Programms
für Datenstromanalysen (stream reasoning) mit mir in Kontakt getreten ist. Dank der
Einladung zu einem Forschungsaufenthalt durch Jacopo Urbani, seinen Co-Betreuer,
konnten wir die ersten Ideen in kurzer Zeit konkretisieren und während Hamids Besuch
bei uns in Wien sowie in regelmäßigen Videokonferenzen weiterentwickeln und schließ-
lich auch publizieren. Ich habe den Austausch mit Hamid und Jacopo als besonders
wertschätzend erlebt. Darüber hinaus war es für mich sehr erfreulich, dass mit der von
Hamid implementierten Software Laser noch während der Projektlaufzeit eine zweite
Anwendung auf Basis von LARS erarbeitet werden konnte.

Große Freude hat mir auch die Co-Betreuung unterschiedlicher studentischer Arbeiten
bereitet, vor allem weil ich das Glück hatte, mit sehr talentierten Studenten arbeiten zu
können, die neben dem fachlichen Interesse auch die notwendige Geduld mitbrachten.
Dies waren zunächst – branchenüblich nach Nachnamen gereiht – Andreas Humenberger,
Andreas Moßburger und Edward Toth. Weiters hat sich eine für mich sehr motivierende
Kollaboration mit Christian Folie ergeben, der im Rahmen seines zweiten Masterstudiums
auf unser Projekt aufmerksam geworden war. Gemeinsam haben wir Ticker entwickelt,
eine weitere Software zur Datenstromanalyse, die in der vorliegenden Arbeit genauer
präsentiert wird und die es ohne Christian in dieser Form nicht gäbe. In vielen Bespre-
chungen konnten wir die im Vorfeld nur freischwebenden algorithmischen Ideen zur Reife
und zur Umsetzung bringen.

Auch außerhalb der eigentlichen Projekttätigkeit war es wichtig, den eigenen Blick-
winkel immer wieder zu hinterfragen. Forschung impliziert, dass man sich ständig an
Grenzen bewegt, nicht zuletzt an jenen der eigenen Leistungsfähigkeit. Gerade in der
theoretischen Arbeit, in der Ergebnisse ausschließlich im Kopf und oft nur über Umwege
entstehen, ist wiederkehrender Selbstzweifel gewissermaßen systemimmanent. Ich schätze
mich glücklich, dass mir gute Freunde immer wieder dabei geholfen haben, eine neue
Perspektive einzunehmen. Insbesondere möchte ich Friedrich Slivovsky danken, der bei
unzähligen Mittags- und Kaffeepausen immer ein offenes Ohr für mich hatte, und nicht
zuletzt einen wirksamen Humor.

Meinen Eltern, Stephanie und Franz Beck, danke ich für den Rückhalt und das
Vertrauen, das sie mir immer geschenkt haben. Besonders dankbar bin ich ihnen dafür,

dass sie mir die ganze Kindheit und Jugend hindurch die Möglichkeit gegeben haben, ver-
schiedensten eigenen Interessen nachzugehen, und so meine Selbstbestimmtheit gefördert
haben. Ohne die von ihnen vermittelte Sicherheit, mich an meinen eigenen Sichtweisen
orientieren zu können, wäre es mir wahrscheinlich weder möglich gewesen, den Wunsch
einer wissenschaftlichen Vertiefung zu entwickeln noch diesem nachzugehen; zu laut wären
sonst die Störgeräusche gesellschaftlicher Trampelpfade gewesen.

Was die spezifische fachliche Ausrichtung betrifft, sehe ich den Ausgangspunkt auch
in der Kindheit; nämlich in der Prägung durch meinen Vater, dem ich diese Dissertation
widme. Ich erinnere mich – wenn auch nur skizzenhaft – daran, dass er viele meiner Fragen
nicht direkt beantwortet hat, sondern stattdessen oft etwas Allgemeineres erklärt hat, so
dass ich mir die Antwort selbst geben konnte. Zusätzlich habe ich dadurch auch Freude
am Verstehen selbst entwickelt und gelernt, gedanklich zurückzusteigen, Erklärungen zu
suchen, zu analysieren, zu abstrahieren, Analogien zu erkennen und letztlich die Form
geistiger Inhalte zum Gegenstand der Betrachtung zu machen; insbesondere die Form
folgerichtigen Denkens, also die Logik.

Abschließend gilt mein größter Dank Mirjam Moser. Gerade für die ereignisreichen
letzten Jahre, in denen diese Arbeit entstanden ist, würden ein paar Zeilen nicht ausreichen.
So sehr ich auch Freude am Ringen um treffende Formulierungen entwickelt habe; hier
muss ich mir ein weiteres Mal meine Grenzen eingestehen.

Kurzfassung

Die zunehmende Verfügbarkeit und Bedeutung von Datenströmen hat zu zahlreichen Ent-
wicklungen in der Informationsverarbeitung geführt, die über klassiche Datenbanksysteme
hinausgehen. Moderne Werkzeuge zur Datenstromverarbeitung bieten verschiedenartige
Lösungen zur Evaluierung kontinuierlich strömender Informationen an, üblicherweise mit
einem Fokus auf fehlertolerante, verteilte Architekturen für hochperformante Auswertun-
gen. Diese Systeme stellen typischerweise Abfragesprachen oder Programmierschnittstellen
bereit, die jene für statische Daten erweitern. Allerdings fehlt es weitgehend an expliziten,
Modell-basierten Semantiken, was den Vergleich verschiedener Ansätze bzw. deren formale
Analyse erschwert. Aufgrund mangelnder theoretischer Grundlagen kommen diese auch
weniger als Problemelösetechniken in der Künstlichen Intelligenz infrage.

Logisches Schließen auf Basis deklarativer Spezifikationen ist ein zentrales Forschungs-
gebiet innerhalb der Wissensrepräsentation. Dem Umgang mit strömenden Daten widmen
sich in diesem Bereich bisher aber noch relativ wenige Arbeiten. Insbesondere wurden
Datenströme in regelbasierten Systemen wie der Antwortmengenprogrammierung (ans-
wer set programming, ASP) erst kürzlich in Betracht gezogen. Im speziellen fehlt es
hier noch an expliziten Steuerungselementen wie etwa window Mechanismen, die in der
Datenstromverarbeitung eine zentrale Rolle spielen.

Anknüpfend an den Mangel formaler Grundlagen für das logische Schließen in der
Datenstromverarbeitung wird das LARS Framework vorgestellt. LARS ist ein Akronym
für Logic-based Framework for Analytic Reasoning over Streams, also ein logik-basiertes
Framework für analytisches (logisches) Schließen über Datenströme. LARS Formeln
erweitern aussagenlogische Formeln mit generischen window Operatoren zur Auswahl
aktueller Daten, sowie mit Modalitäten um die zeitliche Dimension in Schlussfolgerungen
zu steuern. Darauf aufbauend werden LARS Programme definiert, die als Erweiterung
von ASP für Datenströme betrachtet werden können. Daraus ergibt sich eine theoretische
Grundlage für stream reasoning, also das logische Schließen über Datenströme, die
sich zur formalen Analyse eignet. Weiters ist LARS selbst eine ausdrucksstarke, regel-
basierte Sprache für stream reasoning. Der neue Formalismus wird untersucht und mit
ausgewählten Methoden unterschiedlicher Forschungszweige verglichen. Im Hinblick auf
die Optimierung von LARS Programmen werden dann Äquivalenzbegriffe vorgestellt und
charakterisiert, die sich an jenen der ASP Forschung anlehnen.

Danach widmet sich die Arbeit dem Zielkonflikt zwischen Datendurchsatz und Aus-
drucksstärke durch die Entwicklung von Techniken zur inkrementellen Auswertung für
das praktische plain LARS Fragment. Dazu wird werden Truth Maintenance Systeme

xi

formalisiert und erweitert, mittels derer Modelle logischer Programme aktualisiert werden
können. Es wird eine Kodierung von plain LARS in ASP entwickelt, die inkrementell
aktualisiert wird wenn neue Daten einströmen, bzw. nach Ablauf einzelner Zeitpunkte.
Dadurch ergibt sich eine inkrementelle Auswertungsmethode für plain LARS (mit sliding
windows). Die statische wie die inkrementelle Kodierung ist jeweils in einem Evaluie-
rungsmodus in Ticker implementiert, einer prototypischen Software für stream reasoning,
die hier samt einer empirischen Evaluierung vorgestellt wird.

Zusammenfassend präsentiert diese Arbeit Beiträge zur Theorie und Praxis logik-
orientierter Verarbeitung von Datenströmen mittels einer ausdrucksstarken, regelbasierten
Sprache. Das vorgestellte LARS Framework wird untersucht und verwendet um neue Me-
thoden und Systeme bereitzustellen, die sich für Problemlösetechniken in der Künstlichen
Intelligenz eignen.

Abstract

The increasing availability and importance of streaming data has led to many technical
advancements in information processing beyond classical databases. Modern stream
processing tools offer various solutions for evaluating continuously streaming data with a
focus on fault-tolerant, distributed architectures for high-performance computing. These
systems typically come with query languages or programming interfaces that extend those
for static data. However, model-based semantics are rarely given, which complicates
the comparison and formal analysis of different approaches. The lack of theoretical
underpinning makes them also less suitable for problem solving in Artificial Intelligence.

Logical reasoning based on declarative specifications is a core research theme in
Knowledge Representation and Reasoning, yet streams have attracted little attention so
far. In particular, streams have been considered in rule-based approaches like Answer
Set Programming (ASP) only recently. So far, they do not provide explicit controls for
streams such as window mechanisms, which play a central role in stream processing.

To address the lack of formal grounds for reasoning in stream processing, we develop
LARS, a Logic-based Framework for Analytic Reasoning over Streams. LARS formulas
extend propositional logic with generic window operators to select recent data, and with
modalities to control the temporal dimension of reasoning. On top of this, we define
LARS programs which can be seen as an extension of ASP for streams. We thus obtain
a theoretical stream reasoning framework suitable for formal analysis, as well as an
expressive rule-based stream reasoning language by LARS itself. We study this formalism
and relate it to selected methods from different lines of research. Towards optimizations
of LARS programs, we introduce and characterize notions of equivalence that are in
line with previous research for ASP. Furthermore, we tackle the trade-off between data
throughput and expressiveness by developing incremental reasoning techniques for the
practical plain LARS fragment. We formalize and extend Truth Maintenance Systems
for updating models of logic programs and give an encoding from plain LARS to ASP
that can be incrementally adjusted in response to changing data or passage of time. In
this way, we obtain an incremental model update procedure for plain LARS with sliding
windows. The static and incremental encodings are implemented in two reasoning modes
of the Ticker engine, a prototypical stream reasoning system that we present along with
an empirical evaluation.

In summary, this work contributes to the theory and practice of expressive rule-based
stream reasoning. The proposed LARS framework is studied and utilized as basis for
developing techniques and systems geared for problem solving in Artificial Intelligence.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Background . 2
1.2 Problem Statement . 6
1.3 Contributions and Thesis Structure . 7

2 State of the Art 11
2.1 Rule-based Programming . 11

2.1.1 Declarative Programming with Rules 11
2.1.2 Answer Set Programming . 14

2.2 Stream Processing and Reasoning . 18
2.2.1 Temporal Reasoning and Verification 18
2.2.2 Stream Processing and Data Management 23
2.2.3 Complex Event Processing . 26
2.2.4 Semantic Web . 28
2.2.5 Knowledge Representation and Reasoning 30

3 LARS: A Logic-based Framework for Analytic Reasoning over Streams 35
3.1 Streams and Windows . 36

3.1.1 Streaming Data . 36
3.1.2 Windows . 39
3.1.3 Time-based Window . 40
3.1.4 Tuple-based Window . 42
3.1.5 Partition-based Window . 44
3.1.6 Filter Window . 47
3.1.7 Windows with Access to the Future 48

3.2 The LARS Framework . 50
3.2.1 LARS Formulas . 51
3.2.2 LARS Programs . 56

xv

3.2.3 Semantic Properties of LARS Programs 61
3.2.4 Case Study: LARS as Specification Language 64

3.3 Computational Complexity of Reasoning in LARS 65
3.3.1 Problem Statements and Overview of Results 66
3.3.2 Derivation of the Complexity Results 67
3.3.3 Bounded Window Nesting . 69
3.3.4 Semantic Restriction: Sparse Window Functions 71

3.4 Summary . 79

4 Relating LARS to other Formalisms 81
4.1 Answer Set Programming (ASP): Plain LARS 82
4.2 Linear Temporal Logic (LTL) . 83
4.3 Continuous Query Language (CQL) . 86
4.4 Complex Event Processing: ETALIS . 91
4.5 Semantic Web: C-SPARQL, CQELS . 93
4.6 Discussion . 94

5 Semantic Characterizations of Equivalent LARS Programs 99
5.1 Equivalence Notions . 100
5.2 Bi-Structural LARS Evaluation . 101
5.3 Characterizing Answer Streams . 105
5.4 Characterizing Equivalence Notions . 109
5.5 LARS Here-and-There and Monotone Windows 113
5.6 Computational Complexity of Deciding Equivalences 116
5.7 Discussion and Related Work . 118

6 Incremental Reasoning for Plain LARS Programs 121
6.1 Core Idea . 122
6.2 Formalizing Justification-based Truth Maintenance Systems (JTMS) . . . 126

6.2.1 Truth Maintenance Networks . 127
6.2.2 The Truth Maintenance Algorithm 130
6.2.3 Extending JTMS: Removing Rules 132
6.2.4 Analysis of JTMS . 133

6.3 Static Encoding: Plain LARS to ASP . 136
6.3.1 Tick Streams . 136
6.3.2 Translation . 139

6.4 Incremental Encoding: Program and Model Update 145
6.4.1 Incremental Translation . 145
6.4.2 Incremental Evaluation . 148

6.5 Further Work . 151
6.5.1 Truth Maintenance for Answer Streams 151
6.5.2 The Laser Stream Reasoning Engine 154

6.6 Discussion and Related Work . 158

7 The Ticker Engine 163
7.1 Introduction . 164

7.1.1 Ticker Programs . 164
7.1.2 Configuration: Runtime Options 168

7.2 Incremental Encoding Revisited . 170
7.2.1 Pre-grounding . 170
7.2.2 Incremental Translation . 171
7.2.3 Incremental Evaluation . 179

7.3 Implementation . 181
7.3.1 Architecture . 181
7.3.2 ASP Reasoner . 183
7.3.3 Incremental Reasoner . 184

7.4 Empirical Evaluation . 185
7.4.1 Setup . 186
7.4.2 Benchmark Programs . 189
7.4.3 Results . 194

7.5 Discussion . 202

8 Conclusion 207
8.1 Summary . 207
8.2 Outlook . 209

A Proofs 211
A.1 LARS: A Logic-based Framework for Analytic Reasoning over Streams . . 211
A.2 Relating LARS to other Formalisms . 214

A.2.1 Continuous Query Language (CQL) 214
A.2.2 Complex Event Processing: ETALIS 217

B Ticker 229
B.1 Detailled Evaluation Results . 229

Bibliography 243

CHAPTER 1
Introduction

The increasing amount and availability of data streams from sensors, networks, mobile
devices, etc., has led to a shift in information processing. Querying a traditional database
can be seen as manually pulling information from records of data that do not change,
unless explicit update operations are performed. By contrast, in many applications with
streaming data, that emerged during the last two decades, information is continuously
changing and often pushed automatically to the user. Smart phones, for instance,
immediately indicate when a new text message was received, when a system update
becomes available for installation, or when the battery level becomes too low. As further
examples, consider server logs that document the interactions of users with a web service,
temperature signals from weather stations, or transactions of financial institutions.

Processing continuously streaming information usually requires techniques in addition
to preexisting tools for databases. If storing data is necessary at all, the question arises
which data to keep in the first place, and for how long. Simply recording data fast enough
can be challenging when it is arriving at very high frequency. On the semantic side,
it is not always clear what the desired result of a query should be if data is changing
while being processed. Next, due to the inherent association of data tuples with time,
new kinds of queries emerge conceptually, and query languages and processing tools
need to take this into account. Many computational tasks that involve streams need
evaluation combined with static data, which further complicates software architectures
and processing pipelines. Furthermore, data streams impose new demands on algorithms,
in particular for query evaluation. If computation takes too long, the obtained results
may be already outdated once delivered, and thus irrelevant or even wrong in the light of
new, unprocessed data. Moreover, in case of large volumes of data and high frequency
updates, low-level processing techniques must ensure sufficient throughput to ensure
that further computation is not delayed or distorted by input bottlenecks. In particular,
immediate notifications are important in many real-time monitoring use cases.

1

1. Introduction

`3

`1

(a) `2

Beethoven Sq. (b)

Gulda Lane (g)

Haydn St. (h)

Mozart C.
(m)

Webern Park (w)

Strauß Ave. (s)

Figure 1.1: Transportation map

Example 1 Consider a public transport domain, where the current location of trams
and buses shall be visualized to a user, together with a list of expected arrival times at
any selected station. Figure 1.1 illustrates a small map with stops (red dots) along three
transportation lines (routes) `1, `2 and `3. Consider Karl travelling with his baby on
line `3. He is currently at Haydn Street (h) and wants to go to Strauß Avenue (s), so he
has different options to continue at Mozart Circus (m). Depending on which tram comes
first, he might take either line `1 or `2. Assuming that trams from different lines depart
from physically separated locations, he needs to make a decision where to go, so knowing
expected arrivals upfront is advantageous. �

During the last three decades, a lot of effort has been put into the development of
techniques for dealing with continuously changing information. We now give an overview;
a more detailled account of the state of the art will be given in Section 2.2.

1.1 Background
In data management, increasing demand for dealing with streaming data during the
1980s has lead to extensions of classical databases, leading to active databases [Day88],
continuous queries [TGNO92, BW01] and then a research focus on stream processing
[Ste97, CDTW00, BW01, CÇC+02, CCD+03, ABB+03, AAB+05, ABW06]. Two com-
mon themes can be identified in this area. One is the often seen approach of extending
SQL or other query languages with streaming capabilities. Towards a uniform treatment
of static and dynamic data, many systems employ so-called window mechanisms that
select only recent portions of the data stream, drop the rest, and view the obtained data
as relations. Different selection criteria have been proposed, usually based on time or
counting tuples. These windows can move in different ways, e.g., in a sliding fashion, or
tumbling, partitioning the timeline into intervals of equal lengths.

Example 2 (cont’d) Consider a monitoring system for vehicle appearances in the
scenario of Example 1. When a tram or a bus reaches a station, the system is notified
by a continuous stream of events. Using a discrete, linear timeline, we may assume,
for instance, a tram with identifier a1 arriving at Beethoven Square (b) at time (e.g.
minute) 36. The tram sends a notification in the form of predicate tram(a1, b). Assume

2

1.1. Background

now that we observe at time 44 the event tram(a1,m). Then, for planning purposes the
former event may be outdated and irrelevant. One way to select recent events is to use
a time-based window, e.g., a sliding window covering a fixed amount of previous time
points, e.g., the last 5 minutes. More suitable in this scenario is to select always the last
appearance of each vehicle, which amounts to selecting tuples by counting. �

A second research theme in stream processing concerns evaluation techniques. When
data is continuously changing, computing query answers or database views repeatedly
from scratch is not practical. Accordingly, algorithms and systems have been developed
that incrementally update previous results, e.g. [Doy79, dK86, CW91, GMS93, GHM+07,
VSM05, GUW09, BBC+10b, MNPH15, HMH18]. Since the early works in stream pro-
cessing, which typically extended databases with capabilities for handling streams, more
and more special purpose streaming tools have been developed, often as extensions of
batch-processing systems. Modern stream processing systems such as those maintained
by the Apache Software Foundation (e.g. Apache Spark [ZCF+10, ZXW+16] and Apache
Flink [CKE+15]) provide robust, distributed, high-performance architectures for flexible
processing of huge volumes of data; they also provide window mechanisms.

Another approach to tackle streaming data is offered by Complex Event Processing
(CEP) systems [Luc01], which are event-based by design. The general task of a CEP
is to efficiently derive complex (or composite) events based on input events by means
of pattern matching. In contrast to developments in the database area, CEP systems
directly target the continuous processing rather than extending querying techniques
for stored and streaming information. Nevertheless, also extensions for SQL have been
proposed; e.g. in [BDG+07, DGP+07]. Since a duration is the natural extent of a complex
event, expressions of temporal intervals are often provided [BGAH07, CM10]. A notable
such system is ETALIS [AFR+10, ARFS12], in which the composition of intervals can
be declaratively specified in form of rules.

In the Semantic Web area, multiple works extend the SPARQL query language
[HSP13] for streaming in a similar way as CQL, the continuous query language [ABW03],
extends SQL. C-SPARQL [BBC+09, BBC+10a], CQELS [PDPH11] and SPARQLStream
[CCG10] all provide access to streaming data with window operators. Although their
syntax is similar, the semantics of these languages differ, as well as their architectures and
modes of operation. A different solution is offered by EP-SPARQL, which adds interval
expressions from ETALIS to SPARQL querying. Some works consider reasoning based on
ontological entailments, such as STARQL [ÖMN15] and the truth-maintenance techniques
in [RP11] for ontology-based data access (OBDA). Many Semantic Web approaches seem
to be driven by ad-hoc extensions and prototypes. While the expected behaviour of
available systems and the intended meaning of query languages is often intuitively clear,
their exact semantics and differences often are not. Accordingly, attempts to unify different
SPARQL extensions on formal grounds have been presented in [DVCC14, DDC+16].

Incorporating the temporal dimension in logical reasoning is considered in the study
of temporal logics such as Linear Time Logic (LTL) [Pnu77], Computational Tree Logic
(CTL) [CE81], Metric Temporal Logic (MTL) [Koy90, AH93], or Signal Temporal Logic
(STL) [MN04]. Since Pnueli’s seminal work [Pnu77], which introduced LTL for verification,

3

1. Introduction

a multitude of temporal logics and techniques have been developed, in particular for model
checking [CGP99] and more recently, runtime verification [LS09, BFFR18]. Common to
most of these logics is a focus on the evaluation of infinite sequences of states that need
to satisfy a property expressed as formula. A variant of MTL based on the Temporal
Action Logic (TAL) [DK08] was introduced for execution monitoring in the DyKnow
architecture [HD04, HKD10a] that deals with abstracting heterogeneous low-level sensor
input towards high-level conceptual entities for reasoning over streaming data in real-time.

Stream Reasoning

In the cross-section of the developments sketched above, stream reasoning emerged
as research field to address high-level reasoning over streaming data [Hei09, HKD10c,
DCvF09, MDEF17, DDvB17]. The variety of perspectives and approaches yields a
landscape of different aspects of logic-oriented stream processing and various systems
that usually have an informal or an operational semantics; model-based semantics, as
e.g. in most temporal logics, are typically not provided. Standard temporal logics, on
the other hand, do not provide explicit window mechanisms, which play a central role in
stream processing. In other words, a formal underpinning for the study and comparison
of different stream reasoning approaches seems to be missing, and a language to express
their declarative semantics. In fact, a lack of theoretical foundations for stream reasoning
has been observed earlier [DCvF09, Zan12].

Reasoning on formal grounds is the core research theme in the area of Knowledge
Representation and Reasoning (KR&R); yet only few works so far have considered
streaming data. Besides work in OBDA [RP11, BKK+17, AKK+17], rule-based systems
have increasingly been attracting attention. Streamlog [Zan12] considers an explicit time
dimension in a fragment of Datalog with stratified negation, and the recent Temporal
Datalog [RKG+18] is defined as a formal language for the study of reasoning tasks on
streaming data. Both languages are explicitly proposed as formal foundations for stream
reasoning; however, window mechanisms are not included. Multiple works study the use
of Answer Set Programming (ASP) [EIK09, BET11] for streaming data. Besides Datalog,
ASP is arguably the most studied rule-based language in KR&R. It provides a natural
specification language that is easily readable and equipped with a model-based semantics
[GL88]. Thus, it is a useful tool for both theoretical and practical work that deals with
tasks involving logical reasoning [BET11]. We will review ASP in Section 2.1.2.

Example 3 (cont’d) Assume for the public transport domain that streaming events
are reflected as predicates with a timestamp as last argument. Appearance of tram a1
at station b at time 36 can then be stated by the predicate tram-ev(a1, b, 36). Assume
further that we have background knowledge for linking a vehicle’s Id to its transportation
line L in form of predicates line(Id, L), and relations of the form plan(L,X, Y,D) that
reflect planned travel durations D between consecutive stations X and Y . We can then
infer expected arrival times at later stations using the following rule:

exp(Id, Y, T ′) ← tram-ev(Id, X, T), line(Id, L), plan(L,X, Y,D), T ′ = T +D (1.1)

4

1.1. Background

This rule expresses the following: if there is a tram event (tram-ev) for station X at
time T such that the tram identifier Id is associated with line L where D is the planned
travel time from X to the next station Y , then we expect this tram at station Y at
time T ′ = T +D. Assuming database entries line(a1, `1) and plan(`1, b,m, 8), we derive
exp(a1,m, 44), i.e., that tram a1 can be expected at station m at time point 44. Given
additional expected arrival times for line `2 before arriving at m via line `3, Karl can
make the decision how to continue his journey. Of course, his decision can be automated
by further rules. �

Towards using ASP on streaming data, a prototype solution was presented in [DLL11]
that made used of the dlvhex solver [EIST06]. Next, StreamRule [MAPH13] offers a
hybrid architecture using CQELS for stream processing and ASP for reasoning. In recent
years, the state-of-the-art ASP solver Clingo [GKKS14] has been gradually extended
towards stream reasoning capabilities by means of language extensions and controls for the
solving process [GKK+08, GGKS11, GGK+12]. In particular, to avoid unnecessary re-
evaluations, Clingo offers multi-shot solving capabilities [GKOS15, GKKS17]. In contrast
to most works in stream processing and based on SQL or SPARQL, which typically offer
window operators but lack model-based semantics, emerging KR&R methods are formally
defined but lack explicit window mechanisms.

Example 4 (cont’d) In Example 3, we considered tram events in form of predicates
tram-ev(Id, X, T), where T is the arrival time of tram Id at station X. If we do not delete
historic events, Rule (1.1) will continue to infer expected arrival times for all past tram
appearances. The naive rule formalization implicitly assumes that only currently relevant
events are fed as input to the engine carrying out the rule-based reasoning process. This
selection amounts to a window obtained in a pre-processing step. �

Example 4 indicates some problems that arise when no explicit streaming controls are
available in the reasoning language. While it is technically possible to express most
relevant window operators with rules, the resulting encoding is less readable; yet the ability
to write concise, understandable specifications is a major reason for using rule-based
systems in practice. Even assuming a semantically sufficient encoding, an implementation
must be able to drop irrelevant historic data due to storage limitations, respectively for
efficiency reasons. Not being able to directly express which data is relevant undermines not
only the declarative nature of rule-based systems but also the possibility to automatically
handle expiration of historic events. Furthermore, a strict separation of processing and
reasoning by first obtaining data snapshots from streams and then reasoning over selected
data limits expressiveness. In particular, it excludes windows over inferred information
and prohibits the reasoning process itself from controlling window application.

In light of the above considerations it seems natural to extend established KR&R
techniques with explicit controls for streams. We use ASP as the formalism of choice
due to its rich semantic features and its suitability for both theoretical and practical
use [BET11]. This gives us a concrete entry point to add reasoning features to stream
processing on formal grounds.

5

1. Introduction

1.2 Problem Statement

The developments sketched above yield a landscape of different approaches to stream
reasoning. While they often share conceptual ideas, their exact commonalities and
differences remain unclear without a common theoretical underpinning, in which their
declarative semantics may be expressed, analyzed, and compared. The lack of theory
for stream reasoning has been observed already in [DCvF09]. In particular, the authors
propose that a theoretical framework for stream reasoning must combine two aspects:
first, it has to serve as a basis for explicit formal semantics, and second, it must account
for high throughput, i.e., frequency and volume of data.

From a theoretical perspective, the trade-off between expressiveness and scalability
is evident. In particular, some portions of the data might have a higher frequency and
volume than others, and the potential difficulty of reasoning does not imply that all
operations are highly complex. A theoretical foundation for stream reasoning should
thus aim at covering the entire spectrum, i.e., provide flexible means to express both
semantically trivial real-time computations as well as complex reasoning tasks that are
necessarily slower; possibly within the same query or program. This can be achieved by
a modular system, where the mechanisms to handle streams (like window operators for
deliberate information loss) can be used in a generic and compositional way.

Regarding the expressiveness, a rich framework should encompass advanced reasoning
features as available in KR&R. In particular, this includes intensional data definitions
and thus the ability to abstract from (extensional) input data. To this end, rule-based
approaches as Datalog [CGT90] are a natural approach for fully declarative, logic-oriented
and logic-based data access. Moreover, nonmonotonicity is of special relevance in stream
reasoning, i.e., the property that previous conclusions might have to be withdrawn due
to later arrival of previously missing information (e.g., in case of defaults) or contrary
evidence (in case of contradictions). Next, model generation as in SAT solving and
Answer Set Programming (ASP) are useful when tackling domains which permit multiple
solutions. Such features and according techniques have been studied rarely for streams.

Towards practical applicability of stream reasoning systems, another important issue
arises. While the continuous development of query results may be viewed as sequence
of models over consecutive time points, repeatedly computing models from scratch at
every time point is often impractical. Instead, there is an obvious demand to investigate
incremental reasoning, i.e., incremental adaptation of previous results in response to
changing information. In particular, information changes when windows contain new
data, but also when historic data expires. Notably, incremental reasoning is non-trivial
when dealing with nonmonotonicity, which may not only come from expressive rule-based
semantics, but also from window operators, as we will investigate.

The final yardstick of envisaged studies is a practical realization that proves the
usefulness of the developed methods. To this end, central concepts and techniques should
result in a prototypical software for expressive rule-based stream reasoning.

6

1.3. Contributions and Thesis Structure

Querying AI Problem Solving
Database SQL ASP
Streams CQL ?

Table 1.1: Gap the thesis aims to fill

Objectives of the Thesis

Table 1.1 summarizes the aim of this thesis at the highest level: to fill a gap in stream
reasoning in the spirit of ASP. Many modern stream processing systems follow the
conceptual approach of CQL [ABW03] to extend existing tools for static data (like SQL)
by means of additional access to recent data from streams. This influential idea has
proven to be useful not only as a means for coping with data volumes but also for
expressing practical use cases. However, streams and window mechanisms have been
considered less in declarative reasoning systems, which are a suitable choice to express
formal semantics. In turn, fully declarative semantics are often lacking in state-of-the-art
stream processing/reasoning systems and languages.

Due to these observations, the thesis aims at providing:

(i) a theoretical framework for expressive stream reasoning with window mechanisms;
(ii) techniques for incremental reasoning within that framework; and based on that
(iii) a prototypical rule-based stream reasoning engine.

The central challenge lies in the inherent trade-off between throughput, i.e., data volume
and frequency, and semantic expressiveness. That is to say, a conflict arises when rich
reasoning features are needed on large quantities of data per time unit. Traditionally,
stream processing focuses on high throughput, targetting low-level processing such as
filtering and aggregation. On the other hand, reasoning techniques on static data in
KR&R tend to emphasize high-level, complex semantics which typically come at a higher
computational cost. When data is continuously changing, new means are needed to
address the issue of scalability of complex reasoning.

1.3 Contributions and Thesis Structure
We now summarize the main contributions, addressing the research objectives above.

(i) Towards a theoretical foundation for expressive stream reasoning, we present LARS,
a Logic-based framework for Analytical Reasoning over Streams. It builds on a
simple stream formalization and specific controls for dealing with streams, i.e.,
generic window operators to obtain substreams, and modalities for handling the
temporal dimension of data. Reasoning in LARS is relative to a stream at a time
point, and either based on formulas or programs: in addition to propositional
connectives, LARS formulas provide the mentioned stream controls, and LARS
programs employ these formulas to extend ASP for streams.

7

1. Introduction

We examine semantic properties and the complexity of reasoning in LARS, as
well as its relation to LTL, CQL, and ETALIS. We also explore the use of LARS
as specification language, respectively as analytical framework. Furthermore, we
present characterizations of different notions of program equivalence.

(ii) Towards incremental evaluation of programs, we present an encoding from LARS
to ASP and then show how this encoding can be updated incrementally with the
development of an input stream. We extend Truth Maintenance Systems as specific
procedure to obtain an updated ASP model due to an updated ASP program and
thus obtain an incremental reasoning procedure for LARS with sliding windows;
more specifically for the practical plain LARS fragment. We also summarize two
further incremental reasoning techniques developed in the course of this work.

(iii) Furthermore, we present Ticker, a prototypical rule-based stream reasoning en-
gine for evaluating plain LARS programs with sliding windows. Ticker provides
two reasoning modes: one repeatedly calls the ASP solver Clingo on the static
ASP encoding, and the other one is based on the developed incremental evalua-
tion technique. We assess Ticker empirically, showing in particular under which
circumstances incremental reasoning is beneficial.

We are now going to give a more detailled overview of these contributions in the course
of presenting the structure of the thesis. We also briefly mention the publications on
which the following chapters are based; references to relevant publications will also be
stated explicitly at the beginnings of Chapters 3-7.
Chapter 2 - State of the Art. Section 1.1 already sketched the state of the art
in stream processing and reasoning. We will expand on this and also give a short
introduction to rule-based programming, followed by a review of ASP, which serves as a
building block for this work.

Chapter 3 - LARS: A Logic-based Framework for Analytic Reasoning over
Streams. In Section 3.1, we start by formalizing streams and generic windows functions
to obtain substreams, i.e., typically recent portions of data. As specific instances, we then
introduce generalizations of prominent time-based and tuple-based window functions, as
well as partition-based windows and filter windows. The LARS framework, presented in
Section 3.2, then extends propositional formulas which are evaluated on streams at time
points. To handle streams explicitly and in a compositional way, window operators �w

are the central syntactic ingredient, which may employ any window function w to limit
subsequent reasoning on returned substreams. Dually, a reset operator . serves to re-
access the original input stream. Within any considered stream, modalities are available
to control the temporal dimension of atoms and formulas, i.e., whether something holds at
some time point (3), always (2), or at a specific time point t (@t). On top of this, LARS
programs present an extension of Answer Set Programming (ASP) for streams, where in
the usual rule syntax α← β1, . . . , βn arbitrary LARS formulas (α and all βi) are allowed.
By extending ASP, we obtain the desired semantic features. These are, in particular,
availability of intensional data, nonmonotonic inference, and generation of supported,

8

1.3. Contributions and Thesis Structure

minimal models. The use of LARS as specification language is then exemplified in a case
study that deals with research on future internet architectures, which we summarize.
In Section 3.3 we then analyze the complexity of model checking and satisfiability in
LARS, obtaining PSpace-completeness in general. We then show how practically relevant
syntactic and semantic restrictions, i.e., bounded window nesting and so-called sparse
windows, yield fragments that are not harder than ASP w.r.t. the worst-case complexity.

LARS was developed incrementally and presented in two workshop papers [BDTEF14b,
BDTEF14a], followed by a conference paper [BDEF15], a technical report [BDTE17] and
a journal version [BDTE18]. The case study in Section 3.2.4 is a summary of [BBD+16]
and [BBD+17].

Chapter 4 - Relating LARS to other Formalisms. While Chapter 2 sets up the
wider context of related work, this chapter selects representative formalisms from different
research fields and studies their relation to LARS in more detail. After having shown
in Chapter 3 that LARS programs extend ASP, we introduce in Section 4.1 a practical
fragment called plain LARS, which will be considered in subsequent chapters. Plain
LARS can be seen as a lightweight extension of normal logic programs for streams using
the novel language elements. Section 4.2 investigates the relationship between stream
reasoning (in terms of LARS) and temporal reasoning in terms of LTL. We show that
LARS with sliding time-based windows can be encoded into LTL, which has no explicit
window mechanisms. Next, we show in Section 4.3 how the core of CQL can be captured
in LARS; in particular, the abstraction step from streams to relations. Section 4.4
investigates the possibility to express intervals in LARS, as used in the complex event
processing language ETALIS, which is also rule-based. Next, Section 4.5 notes that
LARS, used as analytic framework, may also serve to capture the semantic difference that
arises from pull- vs. push-based querying, as exemplified by Semantic Web reasoning with
C-SPARQL and CQELS, respectively. Finally, the discussion in Section 4.6 highlights
specific semantic features of LARS relevant for practical applications.

Plain LARS was first introduced in [BDE16]; the results on LTL and the final
discussion are from [BDTE18]. The results on ETALIS were stated in [BDEF15], which
also investigated CQL, albeit in less detail than in [BDTE18]. The comparison of
C-SPARQL and CQELS is a summary of work published in [DBE15b] and [DBE15a].

Chapter 5 - Semantic Characterizations of Equivalent LARS Programs. To-
wards optimizations of LARS programs, we study notions of equivalence between LARS
programs. In Section 5.1 we extend notions of strong equivalence (SE) [LPV01], uni-
form equivalence (UE) [EF03] and relativized uniform equivalence (RUE) [Wol04] from
research in ASP. We then define in Section 5.2 a logic called bi-LARS that will serve to
characterize answer streams (which define the LARS semantics) for a large fragment of
LARS in Section 5.3, and based on that the considered equivalence notions in Section 5.4.
We do so by lifting the model-theoretic characterizations of SE/UE/RUE from the ASP
literature, which, however, cannot be done in a straightforward way due to expressivity
provided by the generic window operators. Restricting them allows us to obtain another
characterization in Section 5.5 based on a variant of bi-LARS that extends the logic of

9

1. Introduction

Here-and-There [Hey30], thus establishing a link to equilibrium logic [Pea06, LPV01]. We
then give in Section 5.6 the complexity for the considered equivalence relations that are
typically not worse than for ordinary ASP. Finally, we discuss the results in Section 5.7.

The work of this chapter is based on the publication [BDE16].

Chapter 6 - Incremental Reasoning for Plain LARS Programs. In this chapter
we develop incremental reasoning techniques within the LARS framework. After present-
ing the high-level idea in Section 6.1, we review Justification-based Truth Maintenance
Systems (JTMS) [Doy79] in Section 6.2. In contrast to previous accounts, we formalize
the core of JTMS in terms of logic programs and thus obtain a procedure for updating an
answer set of a logic program after the addition of a new rule; we extend this procedure
for rule removal. We then present in Section 6.3 an encoding from plain LARS to ASP
that allows us to compute the answer streams at a given time point by the answer sets of
the encoding. In Section 6.4, we show how a slight adaptation of this translation leads to
an incremental encoding that can be updated when new data is streaming in or when
time passes by. With the extended JTMS in place, this yields an incremental update
procedure for plain LARS, where we consider sliding time-based and sliding tuple-based
windows. In Section 6.5 we then review further incremental reasoning techniques based
on extending JTMS directly for plain LARS (in Section 6.5.1), respectively by incorpo-
rating the temporal dimension in semi-naive evaluation as in Datalog for fragments of
plain LARS that ensure unique models (in Section 6.5.2). In Section 6.6 we discuss the
presented techniques and mention related work.

Section 6.2 is for the largest part based on the technical report [Bec17], which was
released as supplementary material to the publication [BEF17]. The latter is the basis
of Sections 6.3-6.4. Section 6.5.1 summarizes the work in [BDE15] and Section 6.5.2
presents the key ideas of [BBU17], which introduces the Laser engine.

Chapter 7 - The Ticker Engine. The encodings of Sections 6.3-6.4 form the basis
for algorithms to evaluate plain LARS programs with sliding windows. We provide a
prototypical stream reasoning engine called Ticker that implements these algorithms
in form of two reasoning modes. In Section 7.1 we introduce Ticker programs, which
assign time units to LARS time points, and runtime options of the engine. We then
adapt and improve in Section 7.2 the incremental encoding of Section 6.4 towards a
feasible realization. Implementation details are then given in Section 7.3, which centers
around the architecture of the two reasoning modes for solving based on repeated
one-shot solving with Clingo, and the developed incremental technique, respectively.
Section 7.4 then presents a detailled empirical evaluation, where we see in particular
when incremental reasoning is beneficial. Finally, Section 7.5 discusses some technical
details of the presented implementation and points towards future research issues.

This chapter is a significant extension of the practical part in [BEF17]. Ticker was
also highlighted in the brief note in [BDEF18] (as well as Laser).

Chapter 8 - Conclusion. To conclude, we give in Section 8.1 a summary of this thesis
from the perspective of the above problem statement. Finally, we mention in Section 8.2
some ideas for future research.

10

CHAPTER 2
State of the Art

In this chapter, we review the technical background available prior to this work, and
some recent developments. Parts of this literature review have appeared in publications
that we mention explicitly at the beginnings of forthcoming chapters. In particular,
Section 2.2 extends the discussion of related work in [BDTE18].

2.1 Rule-based Programming

We give a brief, informal introduction to rule-based programming for readers that are
familiar with stream processing but not with rule languages. Then, we formally introduce
Answer Set Programming (ASP), a central formalism for this work.

2.1.1 Declarative Programming with Rules

One way of distinguishing programming languages is in the way they direct computation.
Algorithms, for instance, are typically specified in an imperative way, i.e., by a step-
by-step instruction on how to manipulate data structures, using variables, assignments,
etc. By contrast, declarative approaches seek to abstract away from such instructions
how computation shall be carried out in detail and instead provide terms for higher-
level specifications. For instance, SQL, arguably the most prominent query language
for (relational) databases, provides constructs such as SELECT, FROM, WHERE, GROUP BY,
etc., that name predefined data transformations. The query language then allows one
to combine these transformations at a more conceptual level to specify what shall be
computed, but not the details of how the evaluation is carried out to obtain the results.
The operational aspect is delegated to the database itself, not the user writing the query.
Similarly, functional programming aims at providing higher-level constructs to transform
(typically immutable) data structures from one to another and moreover allows one to
introduce hierarchies of abstractions.

11

2. State of the Art

Rule-based languages such as Prolog [CM94] or Datalog [CGT89] offer approaches
to declarative programming that focus particularly on concise descriptions of logical
relations. Datalog, for instance, is not even concerned with transforming data structures,
it only provides means for describing the logical dependencies between relations. One
way to think about a Datalog program is as a logic-based view definition of database
relations, where a table p with n columns is schematically represented by a predicate
p(X1, . . . , Xn); we use upper case letters to denote variables. A join is then expressed by
a conjunction of two (or more) predicates, written with a comma. This conjunction forms
the body B of a rule of form H ← B, which can then express a selection in its head H.

For instance, consider in a public transport domain the task of selecting line (route)
identifiers that are associated with trams. A corresponding SQL statement could be
the following, where line.L is the identifier of the line and line.ID an identifier of an
associated tram.

SELECT line.L
FROM tram, line
WHERE tram.ID=line.ID

Assuming tables tram and line both have two columns, where the respective first holds
the tram identifier, we can establish the same query with the following Datalog rule r:

q(L)← tram(Id, X), line(Id, L) (2.1)

The above rule can be read as follows: if for some values i, x, `, replacing variables
Id, X and L, respectively, there are facts of the form tram(i, x) and line(i, `), then we
conclude q(`). A rule without variables is called ground. For instance, let us assume the
facts {tram(t1, x1), tram(t2, x2), line(t2, `2), line(b1, `3)}. The join over variable Id is only
possible for the pair of facts tram(t2, x2) and line(t2, `2). This way, we get the ground
rule

q(`2)← tram(t2, x2), line(t2, `2). (2.2)

The body of this rule holds due to the assumed data, and we derive q(`2), reflecting that
line `2 is associated with some tram. Note that we could alternatively consider a naive
grounding by replacing all variables in Rule (2.1) with all combinations of available values.
This grounding would include, for instance, also rule q(`3) ← tram(t1, x1), line(t1, `3).
However, among the rules obtained this way, only Rule (2.2) would fire, and we obtain
the same result, i.e., q(`2).

Next, we are interested in lines that are associated with buses but not with trams.
This can established by adding following rule:

q′(L)← bus(Id, Y), line(Id, L), not q(L) (2.3)

Here, “not q(L)” is a condition that holds if q(L) cannot be derived. Using in addition to
the facts above predicate bus(b1, y) (corresponding to a row in a table bus), we obtain
the following additional ground instance:

q′(`3)← bus(b1, y), line(b1, `3),not q(`3) (2.4)

12

2.1. Rule-based Programming

Note that the instantiation of variable L in predicate q under negation has to be carried
out due to the positive occurrence in predicate line. We reason that, having facts
bus(b1, y) and line(b1, `3), but no way of deriving q(`3), the body of the latter ground
rule holds, so we derive q′(`3). That is to say, line `3 is associated with some bus, but
with no tram according to our data.

The examples so far illustrated already two semantic features of rule-based program-
ming in the spirit of Datalog. First, there is no notion of processing order; in particular,
the order of rules does not matter. Second, we can easily compose a chain of derivations
by introducing names for intermediate results, such as q in the context of our second
example. We note that this is also possible in SQL in principle by means of nesting;
however, this way queries quickly become hard to read.

Now consider the following rules, expressing a choice between the mode of transport
at a station s; the third rule has an empty body and thus expresses a fact.

takeTram(s)← station(s),not takeBus(s) (2.5)
takeBus(s)← station(s),not takeTram(s) (2.6)
station(s)← (2.7)

What is the result of this set of rules? Looking at the first rule, we observe that station(s)
holds due to Fact (2.7) but takeBus(s) does not hold, so we infer takeTram(s). Now the
body of the second rule does not hold, since “not takeTram(s)” is false, so we do not
conclude takeBus(s). That is to say, we infer (only) takeTram(s). On the other hand,
we could have started with the second rule, and thus obtained instead the derivation
takeBus(s). Apparently, there is no obvious solution to a query expressed in this form.

The difficulty arises from the cyclic dependency between the predicates takeTram
and takeBus, which involves negation. There are different ways of dealing with the
ambiguity that arises. A naive approach would be to produce a random result as we did
in this discussion. Another strategy is to impose an order of processing, e.g., from top
to bottom. Next, one could argue that neither takeTram(s) nor takeBus(s) should be
inferred because these conclusions are not well-founded [VGRS91]. Yet another approach
is to consider multiple solutions at the same time, i.e., reflecting that takeTram(s) and
takeBus(s) are equally reasonable solutions.

The above observation motivates the formal definition of the syntax, and in particular
the semantics of a rule-based language. Considering multiple solutions is the most
expressive approach, since we can always explicitly exclude solutions by adding further
constraints, and a random choice to naively select a random option can always be
established by post-processing. We argue that a logic-oriented specification should be
fully declarative, hence a definition of models that takes into account an implicit order of
rules is not desirable. We thus select logic programming under the answer set semantics,
which we formally review next.

13

2. State of the Art

Name Property
extended ¬ allowed
disjunctive k ≥ 0
positive n = m
normal k ≤ 1
Horn k ≤ 1, n = m
fact k = 1, n = m = 0
constraint k = 0

Table 2.1: Different classes of rules/programs

2.1.2 Answer Set Programming

We now present a formalization of Answer Set Programming (ASP), slightly adapting
the one given in [Bec13]. As usual, we first present the syntax, and then the semantics of
the language.

Syntax

We distinguish three disjoint sets of symbols: predicates P , constants C, and variables V .
For our purposes, we may assume they are all finite. An atom with arity k is an expression
of form p(t1, . . . , tk), where p is a predicate and t1, . . . , tk are terms, given by C ∪ V.
Atoms are called propositions if k = 0 and ground if they do not contain variables. A
literal ` is an atom a or a (classically) negated atom ¬a, and a negation as failure (NAF)
literal is either a literal `, or a default negated literal “not `,” which evaluates to true if
the truth of ` cannot be derived.

An rule r is an expression of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn , (2.8)

where k,m, n ≥ 0, and all ai and bj are literals. By H (r) = {a1, . . . , ak} we denote the
head of r, and the body B(r) = B+(r) ∪ B−(r) is given by the positive body B+(r) =
{b1, . . . , bm} and the negative body B−(r) = {bm+1, . . . , bn}. Using this notation, we can
write a rule of form (2.8) abstractly as

H(r) ← B+(r), notB−(r). (2.9)

An (extended disjunctive) program P is a finite set of rules. By restricting the rule form,
as shown in Table 2.1, we obtain different classes of rules. If all rules of the same program
fall into one class, we define that also the program belongs to this class. Most notably,
extended (normal) rules disallow the use of disjunctive rule heads, and in normal rules
moreover prohibit classical negation. Furthermore, facts are non-disjunctive ground rules
with empty bodies. We sometimes omit the symbol ← in this case. A rule is ground if all
literals in H (r) ∪B(r) are ground, and a program is ground if all its rules are ground.

14

2.1. Rule-based Programming

Example 5 Rules (2.1)-(2.7) are all normal rules. Rule (2.7) is a fact. Moreover,
Rule r from (2.5) has the positive body B+(r) = {station(s)}, the negative body
B−(r) = {takeBus(s)} and the head H (r) = {takeTram(s)}. The only term appearing
in r is constant s, i.e., r is ground. �

Semantics

We define the answer set semantics of a logic program P by first considering its ground
instantiation. We use the set HUP of constant symbols appearing in P , called the
Herbrand universe; in case this set is empty we use an arbitrary symbol from C. Next, the
set of all ground literals constructible from predicate symbols in P and constant symbols
from HUP defines the Herbrand base HBP . The set ground(r) of ground instances of
a rule r ∈ P is obtained by replacing all variables of r with constants from HUP . The
grounding of P is then defined by ground(P) =

⋃
r∈P ground(P).

Let P be a ground program. An interpretation I ⊆ HBP is consistent if for every
atom a ∈ HBP it holds that {a,¬a} 6⊆ I. An interpretation I satisfies a rule r ∈ P ,
denoted

I |= r, (2.10)

if B+(r) ⊆ I and B−(r) ∩ I = ∅ implies H(r) ⊆ I. That is, if all literals of the positive
body are in I, and no default negated literals is in I, then a literal of the head as to be
in I. Furthermore, an interpretation is a model of P , denoted

I |= P, (2.11)

if I |= r for all r ∈ P . We call model I minimal, if every smaller interpretation J ⊂ I is
not a model of P . Notably, every positive normal program has a unique minimal model.

The Gelfond-Lifschitz reduct [GL88] of P relative to I, denoted P I , is the positive
program obtained when each rule H(r)← B+(r), notB−(r) in P

(i) is deleted, if B−(r) ∩ I 6= ∅, and

(ii) replaced by H(r)← B+(r), otherwise.

The first step discards those rules where I contradicts a default negated literal, and the
second one removes the negative body from the remaining rules. With this, we define
that I is an answer set of P , if it is a minimal model of the reduct P I . We point out that
the unique minimal model of a positive normal program P is also its (unique) answer set.

Example 6 (cont’d) We recall the program P given by the rules (2.5)-(2.7), which
is ground. To satisfy the Fact (2.7), every model must include station(s). We first
consider the reduct P I for the interpretation I = {station(s), takeTram(s)}, which looks
as follows:

takeTram(s)← station(s) (2.12)
station(s)← (2.13)

15

2. State of the Art

The first rule is obtained by removing “not takeBus(s)” from Rule (2.5), i.e., step (ii).
Rule (2.6) was deleted due to step (i). Clearly, I satisfies both rules and thus is a model
of P I . It is also apparent that it is a minimal model of P I , i.e., an answer set. The
second answer set I ′ = {station(s), takeBus(s)} is similarly obtained.

We now show that P has no further answer sets. The empty interpretation can be
excluded since it does not satisfy the fact station(s)←. Thus, consider the interpretation
S = {station(s)}. This yields the reduct PS with the following rules:

takeTram(s)← station(s) (2.14)
takeBus(s)← station(s) (2.15)
station(s)← (2.16)

We observe that S is only satisfies the last rule and thus cannot be an answer set. Finally,
we consider M = {station(s), takeTram(s), takeBus(s)}, which is a model of the reduct
PM = {station(s)←}, but it is not a minimal model: also {station(s)} |= PM holds. �

The answer set semantics (or stable model semantics) is related to other KR-formalisms.
In particular, it can be seen as fragment of Reiter’s default logic [Rei80], respectively
of a disjunctive extension thereof [GPLT91]. While the Gelfond-Lifschitz reduct is
arguably the standard definition for stable models, others have been proposed in the
literature [Lif08].

An elegant alternative was presented in [FLP04], based on a different definition of
the reduct. Consider first for a rule r of form (2.8) the conjunction β(r) = b1 ∧ · · · ∧ bm ∧
¬bm+1 ∧ · · · ∧ ¬bn. Given an interpretation I for a program P , the FLP-reduct is then
defined as the program

P I = {r ∈ P | I |= β(r)}, (2.17)

i.e., the subset of rules whose body is satisfied classically by I. Again, an interpretation
is called an answer set, if it is a minimal model of the (FLP-)reduct. Importantly, for
the class of extended disjunctive programs, the answer sets according to both definitions
coincide.

Stratified Negation

We now introduce an important class of programs that permits efficient evaluation,
i.e., stratified programs. Intuitively, they restrict the use of negation such that no cyclic
dependencies through negation occur. We focus here on normal programs. The underlying
concept for their definition is the dependency graph D(P) = (V,E+∪E−) of a program P
that is constructed as follows. The nodes V are the predicates occurring in P . For every
predicate p occurring in the head H (r) of a rule r, we employ an directed edge

(i) (p, q) ∈ E+, if q ∈ B+(r), and

(ii) (p, q) ∈ E−, if q ∈ B−(r).

16

2.1. Rule-based Programming

Based on this, we define a stratification Σ of P as a set partitioning Σ1, . . . ,Σk of
predicates in P , such that for each p ∈ Σi and q ∈ Σj ,

(i) (p, q) ∈ E+ implies i ≥ j, and

(ii) (p, q) ∈ E− implies i > j.

If such a stratification Σ exists, we call P a stratified program. By the subsets Σi, we
obtain the strata Pi of P by those with head atoms in Σi. Given a stratification, one
can evaluate the program bottom-up, using an iterative minimal model computation
along strata, where at each stratum the intermediate result is obtained by a fixed-point
computation as for positive programs. In the absence of constraints, stratified disjunctive
programs always have an answer set, and stratified normal programs have a unique
answer set.

Computational Complexity

Finally, we recall central complexity results for ground Answer Set Programming.

Theorem 1 ([MT91]) Let P be a ground (extended) normal program. Then, deciding
whether P has an answer set is NP-complete.

The intuition of this result is that we can first guess a model M and then verify in
polynomial time that it is an answer set: the reduct PM is computed in polynomial time;
it is a positive program and we need to check that M is the least model of PM . The
least model is efficiently obtained by the least fixed-point of an immediate consequence
operator that will collect at each evaluation step the head h of any currently firing rule
h← B+(r), i.e., where B+(r) already holds (cf. [EIK09]).

No guess is needed when there are no loops through negation. We argued above that
stratified programs can be evaluated efficiently.

Theorem 2 Let P be a ground normal program. If P is stratified, then answer set
existence can be decided in linear time.

On the other hand, allowing disjunctive rule heads increases the complexity.

Theorem 3 ([EG95]) Let P be a ground (extended) disjunctive program. Then, decid-
ing whether P has an answer set is ΣP

2 -complete.

For the membership in Σp
2, one observes that after guessing a modelM for the reduct PM ,

verification that M is minimal is in co-NP (cf. [Cad92]). To show the hardness part, one
can reduce the validity of a quantified Boolean formula (QBF) of the form ∃X∀YE to
answer set existence of a program P , where E is formula over variables from lists X
and Y. For details, we refer to [EG95].

This concludes our brief review of ASP. A longer introduction can be found in [EIK09],
which incrementally develops ASP bottom-up by considering fragments of increasing

17

2. State of the Art

complexity; it provides many examples and also investigates the practical aspect of
ASP as implementation language, including a discussion of solving techniques. A more
informal survey on the ASP problem solving paradigm is given in [BET11]. Most recently,
a special issue on ASP was presented in [SW18].

2.2 Stream Processing and Reasoning

In this section, we will review the state of the art in stream processing and reasoning
approaches, i.e., theoretical and practical contributions from various communities and
research areas. Due to the wide spectrum of related approaches relevant to this work,
the following overview is necessarily selective.

2.2.1 Temporal Reasoning and Verification

Starting with Pnueli’s seminal work [Pnu77], which introduced Linear Temporal Logic
(LTL), temporal logics have been studied extensively for formal verification of software
and hardware. Model checking [CGP99] considers whether a desired property ϕ is implied
by a system description M ; formally this is the decision problem M |= ϕ. A system
M is typically considered to be a finite state machine, which can be formalized as a
Kripke structure, i.e., a tripleM = 〈S,R,L〉, where S is a (finite) set of states, R ⊆ S × S
a transition relation, and L : S → 2A an evaluation function that assigns each state
s ∈ S a set L(s) ⊆ A of propositional atoms. A temporal logic formula then specifies
potential paths σ = s0, s1, . . . in M , where at each state si ∈ S a property ϕ can be
evaluated. These paths correspond to runs of the system, and M |= ϕ can be decided
by an exhaustive search in the specified state space. Thus, naive model checking is
computationally expensive, since the transition system grows exponentially with the size
of the system description. This so-called state explosion problem is the main disadvantage
of this verification technique and has been tackled by a wide range of research efforts
[CHVB18].

During the last decade, runtime verification [LS09, BFFR18] has been gaining consid-
erable popularity as a more efficient verification technique where the aim is not to verify
an entire system description with respect to a property, but only the execution (trace) of
a single run, i.e., a finite subsequence (prefix) of a (possibly infinite) sequence of states.
Importantly, verification shall take place during the execution in order to react when
violations are detected. Accordingly, a monitor assesses an execution with respect to a
correctness property ϕ, i.e., whether it is a valid trace. Typically, a monitor is generated
automatically from ϕ.

Noting their importance for formal verification, we now turn our attention to specific
temporal logics. Many of the logic-based verification techniques are based on a variant
of LTL, which was specifically introduced as a means for program verification and
thus targeted the formalization of two concepts: invariance and eventuality [Pnu77].
Invariance describes the continuity of a property throughout the execution of a program
as described by a formula. Eventuality, also called temporal implication, describes the

18

2.2. Stream Processing and Reasoning

temporal dependence between two properties, i.e., that a property ϕ is followed by some
other property ψ. The latter concept particularly addresses, in contrast to earlier work in
verification, non-terminating cyclic programs like operating systems that do not naturally
end in a halting state. LTL extends the syntax of propositional formulas by the unary
operators X (next), F (finally), G (globally) and binary operators U (until), R (release),
W (weak until), and M (strong release). Evaluated at a given position in a path, i.e., a
sequence of positions, they intuitively express the following conditions, given formulas ϕ
and ψ:

• Xϕ holds if ϕ holds in the next position,

• Fϕ holds if ϕ holds eventually, i.e., in some future position (including the current
position),

• Gϕ holds if ϕ holds always, i.e., now and in all future positions,

• ϕUψ holds if ϕ holds at least until ψ holds, and ψ has to hold now or in a future
position,

• ϕRψ holds if ϕ holds exactly until the position where ψ holds (or infinitely if ψ
will never hold),

• ϕWψ holds if ϕ holds at least until ψ, or forever in case that ψ never becomes
true, and

• ϕMψ holds if ϕ holds exactly until ψ holds, which has to hold in a future position.

The semantics is defined over infinite sequences σ = σ(0), σ(1), . . . of positions, relative to
a given position i. Given an evaluation function ν that assigns sets of atoms to positions,

σ, i |= a :⇔ a ∈ ν(σ(i)), where a is an atom. (2.18)

The definition of propositional connectives is then inductively defined as usual, and
moreover,

σ, i |= Xϕ :⇔ σ, i+ 1 |= ϕ (2.19)
σ, i |= ϕUψ :⇔ σ, j |= ψ for some j ≥ i s.t. σ, k |= ϕ for all i ≤ k < j. (2.20)

The other operators can then be defined based on until: ϕRψ :⇔ ¬(¬ϕU¬ψ), Fϕ :⇔
>Uϕ, Gϕ :⇔ ¬F¬ϕ, ϕWψ :⇔ ψ R (ψ ∨ ϕ), and ϕMψ :⇔ ¬(¬ϕW¬ψ); in some cases
other characterizations are possible. These operators allow one to express invariances
by formulas of the form ϕ → Gψ, including system properties such as safety, partial
correctness, mutual exclusion, and deadlock freedom; dually, eventualities such as liveness
and total correctness correspond to the form ϕ→ Fψ [GPSS80]. Notable variants of LTL
include PLTL [LPZ85, LS95], which includes past versions of LTL operators (to look
back), and NLTL [LMS02] which further adds unary operator N; it intuitively reads “now”
or “from now on.” Its effect is that past moments are forgotten, allowing one limit the

19

2. State of the Art

horizon of past events prior to specified properties. While sentences in these languages
can be rewritten to LTL, NLTL can be exponentially more succinct than PLTL, which
in turn can be exponentially more succinct than LTL.

In contrast to LTL and the mentioned variants, Computation Tree Logic (CTL) [CE81]
evaluates formulas on a tree-structure of evaluation paths. Accordingly, one explicitly
quantifies existentially (E) or universally (A) with respect to these paths, followed by
an LTL operator. For instance, A Xϕ requires that ϕ holds in the next step on all
branching possibilities, and E Gϕ holds if ϕ holds globally in some path. LTL and CTL
are incomparable with respect to expressive power: although some formulas can be
expressed in both languages, each logic has formulas not expressible by the other. The
different version of a branching temporal logic is CTL∗ [EH86], which subsumes both LTL
and CTL; it combines quantifiers from LTL in a more flexible way with path quantifiers as
used in CTL. Notably, model checking for LTL, CTL and also CTL∗ is PSpace-complete;
the complexities of satisfiability testing are PSpace-complete, ExpTime-complete and
2ExpTime-complete, respectively.

An extension of LTL is timed propositional temporal logic (TPTL) [AH89] that is
evaluated over timed state sequences ρ = (σ, τ), i.e., where successive states σi in σ are
associated with monotonically increasing time values τ(σi). TPTL considers time variables
x with so-called freeze quantifiers, denoted by x., i.e., an appended dot. Given a formula
ϕ(x) in which x occurs free, satisfaction is defined by ρ, i |= x.ϕ(x) :⇔ ρ, i |= ϕ(τ(i)),
where ϕ(τ(i)) is obtained by replacing free occurrences of x in ϕ by the time constant τ(i)
associated with the i-th state [AH93]. The freeze quantifier allows one to explicitly refer
to time, and thus also express constraints on timing. Using the natural numbers as time
domain yields ExpSpace-completeness for both model checking and satisfiability, whereas
a dense time ontology (the real numbers respectively the rational numbers) or allowing
addition over time results in undecidability. Unlike for LTL, considering past operators
in TPTL increases the complexity, making the validity problem non-elementary [AH93].

Metric Temporal Logic (MTL) [Koy90, AH93] considers expressions with time bounds.
The notation 3≤c ϕ (corresponding to F≤c ϕ in our notation) intuitively states that ϕ
holds “eventually within time c,” which is observed to be a notational variant of (a
subset) of TPTL [AH93]. Unlike the latter, MTL can be augmented with past temporal
operators without an increase in complexity: deciding validity in both MTL and the
resulting logic MTLP is ExpSpace-complete.

A fragment of MTL was proposed in [AFH96] that considers a finite but arbitrary
precision in the temporal bound to achieve decidability. Their Metric Interval Temporal
Logic (MITL) also uses a dense time ontology and allows one to express truth of statements
over a non-singular time interval I with integer end-points; single time points are
disregarded. The definitions are based on a refined (bounded) until operator: ϕUI ψ
holds if for some time t ∈ I, ψ holds at t and ϕ holds at all times t′ < t. (A next-time
operator X is not considered due to the dense time domain.) Based on this, adopting
our notation, FI ϕ for time-constraint eventuality and GI ϕ for time-constrained always
are defined as in LTL, i.e., by >UIϕ and ¬FI ¬ϕ, respectively. As in MTL with dense
time ontology, satisfiability and model checking in MITL are undecidable in general, but

20

2.2. Stream Processing and Reasoning

ExpSpace-complete if point intervals excluded.
Recently, a Horn fragment of MITL called Metric Time Datalog (datalogMTL) was

considered in [BKK+17]. The datalogMTL programs in [BKK+17] contain rules of the
form A+ ← A1 ∧ · · · ∧ Ak where each Ai is either (i) an inequality or (ii) a formula
Op1

I1 · · ·OpnIn
Bi, n ≥ 0, where each Opi is either the always operator (denoted by �

instead of G), the eventual operator (| instead of F), or their past versions (� and x,
respectively); furthermore, each Ii is an interval over rational numbers, and Bi is an atom,
and A+ is a formula in without | and x. A canonical model property for query answering
is worked out, which is akin to the least model property of Horn logic programs. Based
on it, query answering is shown to be ExpSpace-complete already in the propositional
case. Notably, allowing | and x in rule head leads to undecidability. The canonical
model property is then exploited to develop a first-order rewriting for non-recursive
(acyclic) Horn rules, referred to as datalognrMTL. For this fragment, query answering is
PSpace-complete. We further note the recent P-MTL [TH16], a probabilistic extension of
MTL, developed for stream reasoning in uncertain environments, that considers stochastic
states at/between time points and stochastic predictions of future and past states.

Another extension of LTL is Signal Temporal Logic (STL) [MN04], which targets
applications that require monitoring of continuous signals. A signal s is formalized as
partial function from the non-negative real numbers to a specified domain; a value s[t]
(at time t) in this domain is based on an interval I = [0, r), where r is a non-negative
rational number. The definition of STL builds on MITL[a,b], a restriction of MITL where
all intervals in temporal modalities have the form [a, b] such that 0 ≤ a < b; a Boolean
domain is considered. STL then uses real-valued signals, i.e., the domain Rm, m ≥ 1.
To obtain a logic, static abstractions of the form µ : Rm → {0, 1} are employed that
partition the continuous state-space based on inequalities on real variables. That is, only
the constant µ(s[t]) is of interest in the logic, not the exact value s[t]. Viewing state
abstractions µ1, . . . , µn as predicates, STL formulas are obtained by MITL[a,b] formulas
over atomic propositions µ1(x), . . . , µn(x). The evaluation of real-valued signals is then
reduced to MITL[a,b] using the functions µi, i.e., STL amounts to a real-valued fragment
of MITL[a,b]. It is a particularly useful logic for the description of Cyber-Physical Systems
(CPS) [BDD+18] which connect changes in the physical world (represented as real values)
with discrete events in digital systems. This hybrid nature of CPS is well reflected by
STL. Accordingly, multiple works consider the monitoring problem directly for STL.

Offline monitoring assumes that an entire execution is available for analysis. Then,
the monitoring algorithm should produce a qualitative satisfaction value (Boolean) or a
quantitative satisfaction value (robust satisfaction). The robustness degree is a measure
indicating how far a signal is from satisfaction or violation of a formula. For instance,
given a predicate x < c, where c is a constant and x variable for a real number, the
robustness degree of a concrete value x of x is the relative distance of x to c. An efficient
(linear) algorithm to compute the robustness degree was presented in [DFM13]. It utilizes
a streaming algorithm which computes the minimum and maximum of a sequence of
numbers in a sliding window [Lem06] and reduces the bounded until operator to multiple
simpler operations. A monitoring tool for boolean evaluation was given in [NM07].

21

2. State of the Art

In practice, offline monitoring is not always useful or feasible. In particular, when the
behaviour of a real-time system shall be corrected while it is running, online monitoring is
required, which should provide satisfaction estimates based on partial signals and be highly
efficient with respect to memory consumption and evaluation time. Often, a three-valued
semantics is used to cope with situations where the available finite trace is inconclusive
[BLS06]. There are two main kinds of qualitative online monitoring techniques, i.e.,
algorithms for deciding satisfaction/violation of a property based on the available prefix
of an execution. The first method is incremental marking [MN13], which computes
satisfaction of a formula bottom-up in the subformula-tree, separately maintaining signal
values that have been propagated and those whose super-formula evaluation still depends
on them. The second method [HOW14] is based on MTL formulas which are rewritten
into LTL and evaluated with automata. Quantitative online monitoring algorithms
return a quantitative measure for robust satisfaction. Three different approaches based
on different fragments of STL are summarized in [BDD+18], which also presents further
details on the works mentioned above. Furthermore, it surveys techniques for extensions
of STL and a discussion of recent applications of monitoring in CPS.

Execution monitoring by means of temporal logic is also considered in [KHD08,
DKH09] to detect system violations based on declarative specifications. To this end, the
Temporal Action Logic (TAL) [DK08] is employed which builds on a macro language
L(ND). A monitor formula in L(ND) builds on MTL and additionally considers features
with specific value domains. Accordingly, elementary fluent formulas, i.e., expressions of
the form f =̂ω, state that a feature or fluent f has value ω. This atemporal formula can
be prefixed with (open or closed) intervals to state its temporal validity. Furthermore, the
syntactic form ω = ω′ is available to express equality of values, and also and (in)equalities
between temporal terms are provided. The semantics of L(ND) formulas is then defined
by translations into first- and second-order logical theories in a logical language L(FL)
that defines fluents, their values, actions and the time domain but does not contain
the tense operators from MTL. Towards online monitoring, a progression algorithm pr
as in [BK98] is used such that a formula ϕ holds in a sequence s0, s1, . . . , sn of states
iff pr(ϕ, s0) holds in the sequence s1, . . . , sn. The algorithm ensures that violation at
state s0 can be detected, and otherwise returns a new formula to be checked at the next
state, which enables incremental monitoring. Notably, the same logical formalism is
used both for planning and monitoring, simplifying the generation of monitor formulas
from execution plans. These temporal reasoning features have been extended towards
spatio-temporal reasoning in [HdL14] with a focus on incomplete spatial information.
Spatial reasoning there is based on the Region Connection Calculus RCC-8 [RN01] that
considers spatial relations such as externally connected, equals, disconnected, etc. More
recently, MTL and RCC-8 have been combined in the Metric Spatio-Temporal Logic
(MSTL) [dLH16], which directly equips MTL with spatial relations from RCC-8.

These and other methods have been implemented in DyKnow [HD04, HKD10c,
HKD10a, HKD10b], an architecture for stream reasoning developed in the context
of cognitive robotics, and in particular, autonomous unmanned aerial vehicle (UAV)
development. DyKnow offers a systematic middleware solution for combining low-level

22

2.2. Stream Processing and Reasoning

sensing with high-level cognitive functions such as planning and goal-directed acting in an
uncertain environment, specifically targeting real-time scenarios. Of particular importance
is the need to filter data and abstract higher level abstractions from heterogeneous sensors
(such as a GPS location and visual input from a camera) efficiently in order to reason over
relevant conceptual entities in real-time. A traffic monitoring use case is given (e.g. in
[HKD10a]), dealing with the automated navigation of a helicopter for surveillance tasks
such as tracking specific cars or detecting accidents. Such events are declaratively specified,
e.g., by spatial relations such as close(car1,car2), and are recognized due to hierarchical
descriptions that link lower-level signals to high-level symbols. In DyKnow, incremental
processing of streams, identified with labels, is carried out by various knowledge processes
(at different levels of granularity) that publish information by means of stream generators
for further processes to subscribe. Knowledge processes can also access static data such
as road systems. A declarative knowledge processing language is proposed, making it
possible to compose a processing network based on knowledge processes and streams. A
stream has to satisfy certain requirements as described by declarative policies, which
can state conditions and constraints (e.g. regarding order or delay, or specific values). A
policy can also influence the stream generation and thus serves to hierarchically abstract
low-level sensor information to high-level descriptions such as representations of objects
or their geographical locations. Notably, the satisfaction of policies is defined based on a
formal entailment relation.

To the best of our knowledge, DyKnow is the first work explicitly considering con-
tinuous logical reasoning on streaming data and can thus be seen as pioneering work
in stream reasoning.1 With the idea to compose low-level input features hierarchi-
cally into more complex features, DyKnow was also shown to be suitable for chronicle
recognition [Gha96] (cf. [HD04, HKD10b]), i.e., it includes capabilities of complex event
processing (cf. Section 2.2.3). Towards automatic configuration and on-demand semantic
processing, DyKnow has been extended in [dLH14] with event processing functionalities
of the C-SPARQL stream processing language (cf. Section 2.2.4). We further note that
multiple developments for DyKnow have been integrated in the Robot Operating System
(ROS) [QCG+09], including the works on semantic integration [HD12, HdL13].

2.2.2 Stream Processing and Data Management

Prior to the late 1980s, databases have predominantly been passive tools for managing
data, in the sense that queries or update commands were typically carried out explicitly
by a program or a user. Emerging real-time and monitoring use cases then led to
the development of active databases [Day88] that use event-condition-action rules to
automatically modify the database: an event triggers the test of a condition, and when it
holds, a certain action is performed, e.g., inserts of additional rows, enforcing integrity
constraints, view updates, or information collection for optimizing queries. An overview
of the rapid initial development of active databases can be found in [WC96, PD99];
trigger mechanisms can now be found in most modern databases. Among the early works

1A different path towards the term stream reasoning is found in the Semantic Web area, cf. Sec. 2.2.4.

23

2. State of the Art

in this area was the Alert system [SPAM91] which introduced active queries on append-
only tables, i.e., expressions of triggers in SQL that could be mixed with static queries.
Similarly, continuous queries over append-only databases were proposed in [TGNO92],
which introduced the Tapestry system; it considered incremental evaluation of new tuples
in a database. This system was designed for filtering new text messages such as mails,
but was developed in general terms. In particular, the authors defined a continuous
semantics whose results correspond to the returned data when a query is issued at every
instant in time.

An explicit shift towards streaming data has been proposed in [CÇC+02, ACÇ+03],
which analyzed that some assumptions of then state-of-the-art database management
systems (DBMS) were not suitable for monitoring streams. The resulting Aurora system
sought to improve previous efforts regarding triggering mechanisms, the handling of
incomplete or filtered data, and the need for real-time responses. It provided means
to create a network of streaming operators, including sliding and tumbling windows,
i.e., recent selections of data that progresses gradually, respectively without overlaps.
Furthermore, a Latch window could maintain state of multiple window operations, thereby
allowed one to potentially evaluate the entire history of the stream. Its query model com-
bined these operators to a global, procedural query execution plan. Borealis [AAB+05],
the distributed successor of Aurora, tackled technical challenges regarding the dynamic
behaviour of the system, including the revision of query results or query modification,
e.g., as response to system overloads. Also TelegraphCQ [CCD+03] addressed the need
for adaptive query processing, building on the PostgreSQL database. Among the first
stream systems to particularly deal with scaling issues for the web was NiagaraCQ
[CDTW00] which proposed an incremental grouping method to speed up queries based
on the similarity of underlying data.

Another notable contribution in the early development of stream processing systems
from the database area was the Stanford Stream Data Manager (STREAM) [ABB+03],
which employed the influential Continuous Query Language (CQL) [BW01, ABW06].
The latter is an extension of SQL that provides streams as data sources in addition to
tables. In contrast to other SQL-based approaches, CQL provides an explicit operational
semantics based on three operators: stream-to-relation (S2R), relation-to-relation (R2R),
and relation-to-stream (R2S). The first, S2R, creates a common view on streams and
tables in order to make SQL features uniformly accessible in the R2R-part; and R2S then
creates an output stream for a continuous query. Importantly, S2R serves as abstraction
for various window operators with the central idea to view snapshots of recent data
essentially as relations. CQL considered three kinds of concrete window operators. Time-
based windows select recent data due to a fixed temporal range, e.g., the last 10 seconds,
or the last 60 seconds, updated every 15 seconds. Dually, tuple-based windows select a
fixed number of the most recent tuples, regardless of when they appeared. Partitioned
windows extend the latter by allowing the user to define virtual substreams that are
separately counted. The approach to tackle streaming data by repeated or incremental
evaluations of recent snapshots has been adopted by many follow-up works, in particular
in the Semantic Web area (cf. Section 2.2.4). A language similar to CQL was also used in

24

2.2. Stream Processing and Reasoning

[LMT+05] which studied efficient evaluation techniques for different window mechanisms
based on explicit semantic definitions that are independent from implementations. Later,
the Spade system [GAW+08] provided a declarative language for the composition of
data-flow graphs in the distributed stream processing middleware System S [WYG+07].
As such, it was designed as intermediate language for rapid prototyping in System S, not
as stream processing query language. Another line of research within the database area
that is connected with stream processing and reasoning concerns incremental update of
database views. Work from this area will be reviewed in Section 6.6.

In recent years, a number of new tools have been developed for distributed stream
processing with a focus on high-throughput, scalability, fault-tolerance and programming
APIs in different languages to create or connect stream processing pipelines. The Apache
Software Foundation maintains a notable collection of open source tools that are now
widely used. Apache Kafka2 is a platform for managing publish/subscribe models for
streams similarly as for message queues; it can store streaming records itself. Apache
Spark,3 a batch processing framework [ZCF+10, ZXW+16], quickly gained momentum
in the area of so-called Big Data analytics, outperforming the popular Apache Hadoop4

framework for cluster computing. Among its core libraries is Spark Streaming [ZDL+13],
a module in which complex algorithms on streams can be expressed (in Scala, Java or
Python) with declarative constructs similarly as in the MapReduce approach [DG08]. In
addition, a time-based window can select recent data chunks. Apache Flink,5 a system
explicitly designed for highly efficient stream processing [CKE+15], offers APIs to access
data at different levels of abstraction. In addition to time driven windows (similarly as
in Spark), Flink provides count driven windows that select a recent number of tuples.
Moreover, windows progress can be defined as sliding or tumbling, or in form of session
windows which group data tuples by periods of activity due to the static or dynamic
definition of gaps. Flink distinguishes unbounded streams that need to be continuously
and immediately processed, and bounded streams that can first be consumed as a whole
before evaluation needs to start; the latter kind amounts to batch processing. Apache
Apex6 also unifies batch processing and stream processing and provides different window
mechanisms. By contrast, Apache Storm7 and Apache Samza8 focus exclusively on stream
processing. Compared to Spark and Flink, Storm focuses on the topology of streaming
architectures and low-level processing. Storm, Flink and Spark Streaming have been
compared in [CDE+16], which provides a benchmark for real-world production scenarios;
among the results was that Spark could handle higher throughput, while Storm and Flink
processed streams with lower latencies.

In summary, these frameworks provide similar solutions for distributed, fault-tolerant,
robust, secure processing of streams in heterogeneous environments. Building on general

2https://kafka.apache.org
3https://spark.apache.org
4https://hadoop.apache.org
5https://flink.apache.org
6https://apex.apache.org
7https://storm.apache.org
8https://samza.apache.org

25

https://kafka.apache.org
https://spark.apache.org
https://hadoop.apache.org
https://flink.apache.org
https://apex.apache.org
https://storm.apache.org
https://samza.apache.org

2. State of the Art

purpose languages, they offer means to structure streaming pipelines in larger software
architectures; some of them include high-level constructs for data transformations. While
these works do not build on model-theoretic query semantics, some of them emphasize
the importance of declarative APIs. In particular, the structured streaming [ADT+18]
approach in Spark provides a high-level, functional API that extends the previous Spark
SQL interface [AXL+15]. Kafka and Flink also provide implementations for querying
streams with SQL. Various tools now refer to SQL-based extensions for SQL by the
umbrella terms StreamSQL or Streaming SQL [JMS+08].

In addition to the above tools, stream processing systems are nowadays also available
as managed cloud services; among them are Google Cloud Dataflow9 [ABC+15], Microsoft
Azure Stream Analytics,10 and Amazon Kinesis;11 they integrate with batch processing
and other forms of large-scale data processing.

2.2.3 Complex Event Processing

Complex Event Processing (CEP) [Luc01] can be seen as special form of stream processing
where data signals are explicitly viewed as notifications of events. The generic task is
to derive composite events (or situations) due to complex patterns in the event stream.
In contrast to evolved DBMS (cf. Section 2.2.2), which center around querying stored
information, CEP system architectures are directly designed for the streaming behaviour:
a CEP engine observes external low-level events via sources, processes them immediately
to compute high-level events, and sends them to output sinks, i.e., event consumers. For
instance, consider a composite event marking the outbreak of fire, which is recognized
by multiple rapid increases of sensed temperatures in a given area. In contrast to most
stream processing approaches, CEP systems typically offer declarative languages at higher
abstraction levels than SQL. In particular, expressions of temporal intervals to capture
and combine the duration of events, or sequences thereof, are common.

Among the first CEP developments was Rapide [LV95, Luc96], an event-language for
concurrent and distributed system architecture simulations. The execution of a Rapide
model makes the timings between events and their causal relation explicit, respectively
their independence. The CEDR system [BGAH07] addressed multiple technical challenges
of CEP with the aim of providing an expressive declarative query language. First, its
temporal stream model for interval-based events refined the notions application time
and system time [SW04]. More specifically, the application time was separated into a
valid time, that can be altered, and an occurrence time, which stores which valid time
was used when. This distinction paved the way for different consistency guarantees;
in particular, CEDR showed how retractions of previous output can be used to tackle
out-of-order events without blocking. Notably, the query language of CEDR was given a
formal (operational) semantics, and included event sequences and negation to express
conditions based on the non-occurrence of events.

9https://cloud.google.com/dataflow
10https://azure.microsoft.com/en-us/services/stream-analytics
11https://aws.amazon.com/kinesis

26

https://cloud.google.com/dataflow
https://azure.microsoft.com/en-us/services/stream-analytics
https://aws.amazon.com/kinesis

2.2. Stream Processing and Reasoning

The event monitoring system Cayuga [BDG+07, DGP+07] provides a query language
close to SQL, where the FROM-clause defines a stream expression, i.e., an event pattern, and
the keyword PUBLISH precedes the definition of an output stream. The semantics of the
Cayuga query language is formally defined based on the Cayuga algebra [DGH+06] but
in contrast to CQL it offers no window mechanisms. The resulting system was designed
with an emphasis on efficiency and large-scale scenarios, but distributed computation
was not supported.

Also the Sase system [WDR06] targeted efficient solutions for large-scale event
processing, focusing on RFID readings. Queries in Sase are composed of (at most)
three constructs: an EVENT pattern that has to be matched, a WHERE-clause that specifies
additional conditions, and a WITHIN-clause that expresses a sliding time-based window.
The Sase language comes with a formal semantics, based on which optimizations were
presented. The implementation of the Sase system creates a query plan based on a
proposed dataflow paradigm that composes a pipeline of operators which transforms
the input stream to an output stream in six steps. These steps include the creation of
sequences and handling negation. A performance analysis showed superior performance
compared to TelegraphCQ [CCD+03]. Sase was later extended towards the Sase+
[GADI08] event language which was able to detect Kleene closure patterns, i.e., an
unbounded number of events with the same property. Building in particular on Sase+,
efficient pattern matching was the subject of study in [ADGI08], where previous work on
automata-based evaluation [WDR06] was further developed and analyzed. In particular,
sharing techniques led to significant performance gains.

A notable rule-based event processing system is ETALIS [AFR+10, ARFS12], which
has a model-based semantics and is thus well-suited for stream reasoning. ETALIS
combines CEP techniques, i.e., event pattern matching and derivation of complex events,
with logic-programming, and is thus of particular interest in this work. Thus, we will
review its capabilities in more detail in Section 4.4.

A complex event processing language with high expressiveness is Tesla [CM10], whose
semantics is formally defined in a metric temporal logic. A Tesla rule is composed of four
parts. The define part creates a complex event due to attributes of simpler events from
the from part. Dependencies on these attributes can be specified with functions in the
where part. Optionally, a consuming part can invalidate events for repeated rule firing.
The simplest form of event pattern is the occurrence of single event; complex events
can then be composed based on operators that relate them temporally. Furthermore,
timers in the from part can be used to explicitly trigger rule firing periodically, and a
not operator allows one to reason over events that did not occur. Furthermore, Tesla
supports aggregations (such as computing averages), hierarchies of events, and iterations
of patterns (Kleene closures). The authors also show how event detection with this
language can be realized using automata.

A concrete CEP system implementing the Tesla language is T-Rex [CM12], which
has been shown to outperform the commercial CEP system Esper12 (Version 4.0.0) in
a detailed comparison. The latter provides a query language that extends SQL, e.g.,

12http://www.espertech.com/esper

27

http://www.espertech.com/esper

2. State of the Art

by event pattern matching constructs and window mechanisms, tailored for streams
and events in combination with static data. Other commercial systems include Oracle
CEP,13 which builds on CQL, and Streaming Analytics from Tibco,14 formerly known
as StreamBase. As the websites of many commercial vendors suggest, the term complex
event processing is nowadays less used; extensions of SQL for streams and other event-
based systems are typically found under keywords such as event (stream) processing, Big
Data/real-time/stream analytics, etc. Naturally, the lines between information systems
that process events and other streaming data are inherently blurry and evolve over time.
Many modern systems, in particular cloud services, blend or combine different large-scale
data processing methods for static and streaming data, and CEP is often subsumed in
their functionality. For instance, Apache Flink supports CEP as library,15 and Oracle
CEP has now evolved to Oracle Stream Analytics16 which delegates the event stream
handling to Apache Spark.

For further details on the historic development of stream processing and complex
event processing, we refer the interested reader to the survey in [MC11]. Furthermore,
we note that a proposal for a common foundation of various complex event processing
approaches based on denotational semantics was recently presented in [GRU17].

2.2.4 Semantic Web

Data management in the Semantic Web area builds on the Resource Description Frame-
work (RDF),17 a graph-based data model that stores data in form of triples (S, P,O),
comprising a subject S, a predicate P , and an object O. The standard query language is
SPARQL [HSP13, PAG09],18 which is similar to SQL, using constructs like SELECT, FROM,
WHERE, etc. Following the extension of CQL for SQL, multiple works have considered a
similar extension of SPARQL to include streaming data as additional data sources. This
has led to research efforts on RDF Stream Processing (RSP);19 we will briefly review
some highlights of this line of research.

C-SPARQL [BBC+09, BBC+10a] extends the SPARQL sytax with time-based and
tuple-based (triple-based) windows similarly as CQL. It assumes that streaming RDF
triples are annotated with a timestamp which can be accessed via a timestamp function
in the WHERE-clauses of queries. The execution environment of C-SPARQL, discussed in
[BBCG10], makes use of existing tools for data stream processing. This is in contrast
to CQELS [PDPH11], which similarly extends the syntax of SPARQL for streams, but
provides a native implementation towards higher throughput. To this end, CQELS is
equipped with an adaptive query processing technique which is able to react to changes
in the input data, i.e., internal operators in the execution pipeline can be reordered

13https://docs.oracle.com/cd/E17904_01/doc.1111/e14476/toc.htm
14https://www.tibco.com/streaming-analytics
15https://flink.apache.org/news/2016/04/06/cep-monitoring.html
16http://www.oracle.com/technetwork/middleware/complex-event-processing/documentation/
17https://www.w3.org/RDF
18https://www.w3.org/TR/rdf-sparql-query/
19https://www.w3.org/community/rsp/

28

https://docs.oracle.com/cd/E17904_01/doc.1111/e14476/toc.htm
https://www.tibco.com/streaming-analytics
https://flink.apache.org/news/2016/04/06/cep-monitoring.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/documentation/
https://www.w3.org/RDF
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/community/rsp/

2.2. Stream Processing and Reasoning

automatically based on heuristics to speed up query evaluation. Second, caching, indexing
and data encoding techniques serve to achieve a significantly better performance than
C-SPARQL and ETALIS in an empirical comparison on five selected queries. However,
despite the similar syntax of C-SPARQL and CQELS and their conceptual similarities,
their effective semantics (in terms of their system outputs) differ due to different execution
modes. We will discuss this further in Section 4.5. Another SPARQL extension that
conceptually draws from CQL is SPARQLStream [CCG10], which allows one to query
streams with time-based windows only; triple-windows and access to static data are not
available in their prototype, hence it was not included in the evaluation of CQELS.

EP-SPARQL [AFRS11] builds conceptually on ETALIS [ARFS12] (cf. Section 4.4).
It adds to the SPARQL syntax binary operators seq, equals, optionalseq and
equalsoptional to combine query expressions (i.e., so-called graph patterns) similarly
as union and optional in SPARQL. These constructs introduce joins that depend on
temporal information. For instance, given patterns P1 and P2, P1 seq P2 results in a join
of P1 and P2 if they occur in a seq relation as in ETALIS, i.e., the instantiation of P1
must occur strictly before that of P2. Moreover, functions are provided for expressing
conditions on the timestamps of the start time and the end time, and the duration
of triples in the FILTER clause. The execution model exploits event-driven backward
chaining rules as in ETALIS, realized in a Prolog implementation.

As observed in [DTM+13] (for stream prcessing), conceptually identical queries may
produce different results on different engines. This may be due to differences that either
arise from potential flaws in implementations, but also due to (correctly implemented)
different semantics. Without formal semantics, different approaches are confined to
experimental analysis [PDP+12] or informal examination on specific examples. For the
user it is important to know the exact capabilities and semantic behaviors of given
methods for systematic analysis and comparison. An attempt to unify different RSP
approaches has been presented with RSP-QL [DVCC14], a formal model to provide a
common evaluation semantics. It builds on the formal semantics of SPARQL [PAG09],
CQL [ABW06], and SECRET [DTM+13]. Based on this model, the authors explained
in particular the differences between C-SPARQL, CQELS and SPARQLStream. More
recently, RSP-QL was extended with Complex Event Processing features, resulting in the
query language RSEP-QL [DDC+16]. In addition to RSP-QL, the extension also covers
the sequence operator (seq) from EP-SPARQL, respectively the sequences constructible
in C-SPARQL due to its timestamp function. Furthermore, RSEP-QL formalizes event
consumption policies that define the invalidation of events for later evaluation steps. A
different approach to extend SPARQL was considered for the STARQL language [ÖMN15]
for ontology-based data access on sensor data. On top of queries over streaming and
static data as in other approaches, the semantics of STARQL query answering includes
ontological reasoning. To this end, queries are compiled to relational data in order to use
exisiting tools for evaluation. STARQL provides sliding time-based windows and event
pattern matching features, and was implemented in the ExaStream system [KBJ+16].

Event-driven processing principles, that influenced works like Apache Spark and
Apache Storm (cf. Section 2.2.2) were explicitly adressed in [CA15], which presented a

29

2. State of the Art

reactive model of computation for RSP engines. It argued for asynchronous message
passing based on the Actor model [Agh90] as an alternative to current tightly coupled
designs of RSP engines to better address runtime and maintenance issues such as
responsiveness, scalability and fault tolerance.

The recent StriderR system [RCN+17] offers a solution for scalable stream reasoning
on RDF graphs. In addition to processing queries in a SPARQL extension similar to
those of C-SPARQL, reasoning in form of RDFS entailments (plus owl:sameAs) is offered.
The architecture of StriderR builds on top of Apache Kafka and Apache Spark (cf.
Section 2.2.2).

Furthermore, [MCCD18] presents a system to combine ontological reasoning and
temporal reasoning for streaming data, using Datalog for the former and Tesla [CM10]
for latter. Using time-annotated triples as most Semantic Web approaches, it applies
ontological reasoning at every time point, taking into account background knowledge.
Temporal patterns are then used in a separate reasoning step. The presented DOTR
system - abbreviating Decoupled Ontological and Temporal Reasoning is empirically
evaluated, it clearly outperforms C-SPARQL and CQELS, and may also be faster than
Esper in high throughput scenarios. Notably, it provides more flexibility regarding
expressive reasoning than these tools; yet explicit window mechanisms are lacking. The
authors explicitly exclude them (in particular sliding windows) to avoid three technical
issues. The first concerns multiple matching of the same interval that is covered by
consecutive windows and then may lead to duplicate results. This may be considered as
problematic from an operational view point when focusing on temporal pattern detection.
Second, intervals may never cover intervals, either because they are too small or partially
selecting them in a tumbling movement. In this case, windows may lead to information
loss. Third, using windows may lead to inconcistency during the reasoning process, for
instance when a person is inferred to be at multiple positions concurrently. However, the
authors explain that such inference problems stem due to the lack of explicit temporal
operators, and that no efficient state-of-the-art system provides them as realization of a
formal framework.

We observe that issues like flexible data models, high throughput and simultaneous
querying of static and streaming data have been adressed by Semantic Web systems.
However, a combination of generic window mechanisms with temporal control features
seem to be lacking, as well as more expressive reasoning features as typically studied
in Knowledge Representation and Reasoning like nonmonotonicity, default reasoning,
or multiple possible solutions. Such features are important to deal with missing or
incomplete data, respectively to enumerate alternative solutions and choices.

2.2.5 Knowledge Representation and Reasoning

Methods in Knowledge Representation and Reasoning (KR&R) typically provide rea-
soning methods for declaratively encoded knowledge using logic-based formalisms. Most
literature in KR&R deals with static knowledge bases, e.g., databases, ontological schemas
and assertions, rule bases, or theories in different logics, ranging from propositional logic,
to modal logics and nonmonotonic logics. However, methods that deal with continu-

30

2.2. Stream Processing and Reasoning

ously changing information, event-based or reactive systems have been considered less.
In particular, formal foundations for stream reasoning that offer window operators as
used in stream processing tools (cf. Section 2.2.2) seemed to be missing. Nevertheless,
first attempts towards expressive stream reasoning have been recently carried out, and
we mention here some highlights, with a focus on rule-based systems and Answer Set
Programming.

An early proposal for ASP for stream reasoning was given in [DLL11], which presents
an architecture, a formal model of streams and a prototype implemetation using the
dlvhex solver [EIST06]. Streams are viewed as sensor data items that are totally ordered
by their (unique) timestamps. Two kinds of sliding windows are considered, based on
counting time or tuples. A data window stream is then the sequence of windows obtained
at consecutive time points, and forms the basis for periodic evaluation. Each such window
is then fed to an ASP-based system as a set of facts by an interface to external data via
so-called external atoms in dlvhex. Consequently, this approach amounts to repeated ASP
solving based on the proposed formalization of streams. However, no specific streaming
semantics or operators for streaming are provided.

The lack of logic-based foundations for Data Stream Management Systems (DSMS),
similar to those for relational databases, was observed in [Zan12]. This led to Streamlog,
a system for streaming data based on Datalog. Every predicate has a timestamp as
first argument; based on this sequential programs are defined that allow one to obtain a
stratification and efficient computation of a (unique) model. Notably, Streamlog presents
the notion of a progressive closed-world assumption (CWA) which essentially equates
a predicate’s negation with non-derivability until the current time point. This paves
the way for evaluation of queries that otherwise would be blocking, i.e., depending on
the availability of all data. By simply imposing restrictions on Datalog, Streamlog thus
carries over an elegant formalism for static data to streaming scenarios. However, explicit
treatment of streaming information beyond the timestamp arguments are not provided;
in particular, no window mechanisms.

Reasoning over streams has also been considered in ontology-based data access
(OBDA) [XCK+18]. Ontology Stream Management Systems (OSMS), as introduced
in [RP11], consider the use of Truth Maintenance Systems to deal with large volumes
of data in EL++ reasoning. Truth Maintenance Systems deal with the incremental
update of a model due to changing justifications of possible entailments; we will review in
particular Justification-based Truth Maintenance Systems [Doy79] in detail in Section 6.2.
Neither Streamlog nor OSMS employ window mechanism. Streams of ontologies are also
considered in the query language STARQL [ÖMN15] for query answering over streams; its
features include time-based windows (cf. Section 2.2.4). A survey of recent developments
in OBDA, more specifically on ontology-mediated query answer over temporal data, is
given in [AKK+17].

Multiple works on the ASP solver Clingo have addressed the issue of data or program
change. Incremental ASP [GKK+08] introduced new techniques for incremental grounding
and solving based on the module theory in [OJ06] which allows for composing programs
with explicit (distinct) input and output atoms. An incremental program is a triple

31

2. State of the Art

(B,P,Q) consisting of three program parts: B describes static knowledge; P and Q are
slices that depend on a parameter t. At each step t, the program grows by a new set P [t],
while Q[t] is considered only temporarily at t. Relying on according composition of
modules, model computation can then be carried out incrementally. The work resulted in
the solver iClingo, which uses declarations #base, #cumulative t, and #volatile t to
delineate program parts B, P , and Q from above, respectively. In a step k, the parameter
(variable) t in a rule of program part P or Q is then instantiated with k. All other
variables can be grounded only once, i.e., these instantiations must be derivable from
static knowledge. While incremental ASP focuses on stepwise computation of models,
reactive ASP [GGKS11] targets real-time systems by providing additional means to add
new data online. On top of incremental programs and its update mechanism, reactive
programs support an asynchronous control via so-called online progressions of external
events and inquiries which themselves are programs. In essence, at each step, external
information can be incorporated in order to ground new rules dynamically. The resulting
solver oClingo uses the additional declaration #external to introduce atoms that can
be fed into the system in a streaming fashion. However, while reactive ASP provides
incremental solving features for streaming data, it lacks a window mechanism. More
precisely, the dynamic program parts P (which is cumulative) and Q (which concerns
only the current step) do not fit the conceptual approach of windows which express the
relevance of information relative to an interval of steps.

With the aim of providing such a window mechanism for stream reasoning, time-
decaying logic programs [GGK+12] were defined as triples (B,P, {Q1, . . . , Qm}), where
the instantiation of each program part Qi expires after a specified life span of ni steps
(ni ∈ N ∪ {∞}). Thus, each program part Qi resembles functionality of a sliding window
of length ni. To incorporate this facility, oClingo’s additional declaration of form
#volatile t:n states that subsequent rules that are parameterized with variable t are
discarded after n steps.

Ideas from incremental ASP, reactive ASP and time-decaying logic programs have been
improved continuously and are now subsumed in the current version 5 of Clingo [GKKS17].
Its multi-shot solving capabilities to evaluate changing programs were presented earlier
in [GKOS15] which gave an introduction to multi-shot solving by modeling the board
game Ricochet Robots. These works all provide additional control for grounding and
solving via additional parameters that can be accessed by an external script. Such
mechanisms can be used, e.g., to simulate the progress of time and to encode certain
window operators. While Clingo’s multi-shot features target the incremental and reactive
control of the ASP solving process, no explicit streaming semantics or operators are
offered.

Another proposal for nonmonotonic stream reasoning is StreamRule [MAPH13],
which emphasizes the potential of ASP-based reasoning for the Semantic Web. The
proposed architecture combines the Linked Sensor Middleware (LSM) [PNPH12], CQELS
[PDPH11] for query processing and pattern matching, and oClingo for subsequent rule-
based reasoning. In a similar way, the PrASP system [NM15] for probabilistic Answer Set
Programming is used as component of a probabilistic stream reasoning system architecture

32

2.2. Stream Processing and Reasoning

in [NM14]. StreamRule was recently extended in [PMA17] to support parallelism by
partitioning the input based on a syntactic analysis of the program.

Stream reasoning in Temporal Datalog has recently been studied in [RKG+18]. It
distinguishes rigid predicates and temporal predicates; the latter have a time point as
last argument. Programs are sets of rules as usual; they do not employ negation. The
language is used to define four decision problems that capture different aspects in stream
reasoning arising from possibility to refer to historic and future data and inferences.
The definitive time point (DTP) problem addresses the question whether an output at
a given time point might be invalidated by later input, and the forgetting problem is
to determine which part of historic data is certainly irrelevant for future evaluations.
The delay problem and the window size problem are data-independent variants thereof,
respectively. The computational complexity of these problems is then studied, resulting
in PSpace-completeness in data complexity for DTP and undecidability for the remaining
tasks. Restricting to a class of non-recursive queries yields tractability for the first two
tasks and co-NExpTime-completeness for the two data-independent problems. Temporal
Datalog was explicitly proposed as foundational work for rule-based stream reasoning,
and similarly as Streamlog [Zan12] did not provide explicit window mechanisms.

33

CHAPTER 3
LARS: A Logic-based Framework

for Analytic Reasoning over
Streams

This chapter introduces LARS, a logic-based framework for analytic reasoning over
streams; it is a formalism for expressing the model-based semantics of stream reasoning
systems and shall provide a theoretical underpinning for the study, development and
analysis of stream reasoning methods. All subsequent chapters of this thesis build on top
of this framework.

Outline

We start in Section 3.1 by presenting our formalization of streams and windows, followed
by specific window functions to obtain them. We define in respective Sections 3.1.3-3.1.5
time-based, tuple-based and partition-based windows in our setting; i.e., the usual window
functions selecting recent parts of historic data. After introducing filter windows in
Section 3.1.6, we present in Section 3.1.7 generalizations of the standard windows that
also can access future time points. After these building blocks, we introduce the LARS
framework in Section 3.2. Based on LARS formulas (Section 3.2.1), that are evaluated
on streams, LARS programs (Section 3.2.2) present a rule language for more expressive
reasoning. We discuss the semantic properties of the proposed language in Section 3.2.3,
followed by a complexity analysis in Section 3.3, where we study model checking and
satisfiability for formulas and programs. In particular, we show how the generic framework
yields more practical fragments under relevant restrictions, i.e., bounded window nesting
(Section 3.3.3) and sparse window functions (Section 3.3.4).

35

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Publications

This chapter presents a part of the journal paper [BDTE18]; further parts will be
presented in Chapter 4. A draft of this publication was first released as technical
report [BDTE17] that extended the earlier conference paper [BDEF15]. The latter
was developed incrementally, incorporating feedback from two workshops [BDTEF14b,
BDTEF14a].

3.1 Streams and Windows
This section introduces two central notions: streams and windows. From a conceptual
perspective, we can view streams in contrast to relational databases, which are by and
large time-agnostic, compound entities; they are typically large and change only due to
explicit updates. Streams, on the other hand, can be seen as unbounded sequences of
small, individual entities with an inherent notion of temporal appearance. Records in
usual databases can be deleted, whereas streaming data can only be ignored or forgotten.
Recent portions of a stream’s entire history that are retained in memory are called
windows, which can be selected in different ways due to window functions. Notably, the
result of applying a window function to a stream is another (sub)stream; this allows for
nesting of windows and thus to express complex data selections.

In Section 3.1.1 we give the intuitive idea of streams and our formalization, followed
by the general notions of windows and window functions in Section 3.1.2. We then
introduce in Sections 3.1.3-3.1.7 specific instances as used in practice.

3.1.1 Streaming Data

Streaming data can be viewed from different perspectives. Practically, streams can
be seen as data objects that incrementally become available to be read and processed.
We are interested here in a domain independent approach, i.e., we do not differentiate
whether data signals are chunks of video streams, social media posts, server log entries,
values from sensors, etc. A common conceptual abstraction is provided by the notion
of an event, which is typically formalized as a tuple with a timestamp. In line with the
setting of many practical systems for stream processing, we adopt a discrete, linear time
ontology; streaming signals are reflected as atoms which are associated with time points.

Example 7 Fig. 3.1 shows the development of a stream. In addition to the data up to
time point 43, the later record, shown in Fig. 3.1b, places tram(a1,m) and bus(b2,m) at
time points 44 and 45, respectively. �

Due to our focus on the declarative semantics of stream reasoning, we will not elaborate
on system aspects, such as update frequency of the stream, memory bottlenecks, system
outages or out-of-order events [ABW06, DTM+13]. Instead, the aim here is to provide a
starting point for formalizing an ideal semantics, from which a running system may have
to diverge in practice, e.g., under heavy data load. We thus focus on the model-based
aspect of stream reasoning, not architectures of potential systems.

36

3.1. Streams and Windows

(a) t
36 40 43

bus(b1, b)
tram(a1, b)

bus(b1, s)
tram(a3, h) tram(a3,m)

(b) t
36 40 43 44 45

bus(b1, b)
tram(a1, b)

bus(b1, s)
tram(a3, h) tram(a3,m)

tram(a1,m)
bus(b2,m)

Figure 3.1: Two snapshots of a stream

Formalizing Streams

We use mutually disjoint finite sets of predicates P, constants C, variables V and time
variables U . The set T of terms is given by C ∪ V and the set A of atoms is defined as
{p(t1, . . . , tn) | p ∈ P, t1, . . . , tn ∈ T }. The set G of ground atoms contains all atoms
p(t1, . . . , tn) ∈ A such that {t1, . . . , tn} ⊆ C. We also say a term is ground if it is a
constant.

We divide P into two disjoint subsets, namely the extensional predicates PE and the
intensional predicates PI . Accordingly, we distinguish extensional atoms AE and inten-
sional atoms AI . Intensional predicates/atoms are used to express inferred information.
On the other hand, extensional predicates (respectively atoms) are further partitioned
into PEB (respectively AEB) for background data and PES (respectively AES) for data streams.
The mentioned partitions are analogously defined for ground atoms GI , GEB and GES .
Unless stated otherwise, we use (with slight abuse of notation) the symbol G to refer to
GI ∪ GES , i.e., ground atoms that are not reserved for background data.

Additionally, we assume basic arithmetic operations (+, −, ×, ÷) and comparisons (=,
6=, <, >, ≤, ≥) are predefined by designated atoms B ⊆ AEB , and written in infix notation.
For instance, “+” can be realized by a set of atoms of form p+(X,Y, Z), where p+ is a
designated predicate symbol for “+” and X, Y and Z are integers such that X + Y = Z;
the latter expression is then used in rules but viewed as syntactic sugar for p+(X,Y, Z).
Whether an arithmetic expression holds is then determined by the existence of the
according atom in the background data. Such built-in atoms are also used by practical
ASP solvers such as dlv [LPF+06, ACD+17].

We now present our formalization of streams, which we base on the linear time
ontology 〈N,≤〉; informally, the increase by 1 is the passing of time in terms of a tick by
a global system clock.

Definition 1 (Stream) Let T be a closed nonempty interval in N and υ : N→ 2G an
evaluation function such that υ(t) = ∅ for all t ∈ N \ T . Then, the pair S = (T, υ) is
called a stream, T is the timeline of S, and the elements of T are time points.

We also write evaluation functions as sets of nonempty mappings. For instance, {17 7→
{a, b}} assigns {a, b} to time point 17, and ∅ else.

37

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Note that our stream definition remains agnostic about the specific meaning of time
points. For instance, [SW04] and [DTM+13] distinguish the inherent time of a signal
(that might be provided by the data source), called the application time, from the instant
where a signal becomes available for processing, called the system time. DyKnow [HD04]
and the recent Apache Flink framework [CKE+15] distinguish three notions of time: the
event time refers to the creation of the signal at its producer, the ingestion time is the
timestamp that Flink creates when it receives the signal, and the processing time is the
local time at an internal operator when the signal is actually processed.

These distinctions are useful for the study and improvement of execution models in
stream processing, which are the concern of those works. Our focus, however, shifts to
the pure declarative semantics of stream reasoning, which we view in full separation from
different possibilities of their computation. In that regard, issues about wrong output
due to lags between event time and processing time, delays during computation, etc., are
out of our scope. We regard the result of undesired semantic effects of system specifics
as deviations from an ideal semantics; we aim here to formalize only the latter.

In formal analysis, time points might refer to all conceptual notions of time men-
tioned above. In an implemented system, time points will naturally reflect system time,
respectively ingestion time (in the granularity of the system). Nevertheless, an explicit
distinction between application time and system time can be obtained by means of
explicit timestamps as usual.

Example 8 Consider the stream from Fig. 3.1 with the data up to time point 40. We
can model the input as the data stream D = (T, υ), with a timeline T that covers the
interval [36, 40]; we take T = [0, 50], and the evaluation

υ(36) = {tram(a1, b), bus(b1, b)},
υ(40) = {tram(a3, h)}, and
υ(t) = ∅ for all t ∈ T \ {36, 40}.

With the mapping notation, we simply write {36 7→ {tram(a1, b), bus(b1, b)}, 40 7→
{tram(a3, h)}}. In our use case, 40 7→ {tram(a3, h)} can mean that the tram with
identifier a3 actually appeared at station h at time point 40, or that the processing
system received the information about this appearance at time point 40. Assuming the
latter, we can still distinguish the two, if the application time is sent explicitly. For
instance, the case that the tram appeared one minute (time point) earlier than recognized
in the system would be reflected by the mapping 40 7→ tram(a3, h, 39). �

Keeping the entire history of a stream is rarely practical, and often not useful: hard-
ware restrictions and storage capabilities aside, many use cases on streaming data are
intrinsically only concerned about recent snapshots of data. This leads to the notion of
windows.

38

3.1. Streams and Windows

t

35 36 37 38 39 40 41 42 43 44 45

bus(b1, b) bus(b1, s)

•

Figure 3.2: A window of the stream in Fig. 3.1. It is obtained at t = 43 (bullet), covers
time points 36 to 42 (rectangle) and contains the bus signals at 36 and 40.

3.1.2 Windows

Central to the view on stream reasoning adopted in this work is the notion of a window,
which typically is a recent, small selection of continuously streaming data. Restricting
access to streams in form of windows may be a practical necessity due to limitations
in computational resources, i.e., storage capacity or evaluation times of posed queries.
Windows define which data has to be retained, respectively what can be deleted or
forgotten. In that regard, a window separates data into a relevant part used as input for
reasoning, and an irrelevant part that is ignored. Many stream processing use cases need
this distinction already at the semantic level, in particular when only recent information is
of interest. For instance, for the purpose of route planning only current (and predictable)
traffic jams are of relevance, not those in the past.

Since our formalization of streams uses finite timelines, we can view windows simply
as substreams., i.e., a window is a stream that is contained in another one.

Definition 2 (Window) Let S = (T, υ) and S′ = (T ′, υ′) be two streams such that
T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for all t′ ∈ T ′. We then say that S′ is a substream or window
of S, denoted by S′ ⊆ S.

Furthermore, the count |S| of stream S = (T, υ) is defined by #{(a, t) | t ∈ T, a ∈ υ(t)}
(where # stands for set cardinality), i.e., the total number of atom occurrences. In
addition, we define the size of S by |S|+ #{t ∈ T | υ(t) = ∅}, which also accounts for
empty time points. The restriction S|T ′ of S to T ′ ⊆ T is the stream (T ′, υ|T ′), where υ|T ′
restricts the domain of υ to T ′, i.e., υ|T ′(t) = υ(t) for all t ∈ T ′, else υ|T ′(t) = ∅. A data
stream contains only extensional atoms, which we refer to as signals, i.e., the set GES .

Example 9 (cont’d) Fig. 3.2 shows a window of stream D which selects at time
t = 43 (indicated by the bullet) the timeline T ′ = [36, 42] (rectangle) and only the bus
appearances in this interval. Consequently, the window is given by D′ = (T ′, υ′), where
υ′ = {36 7→ {bus(b1, b)}, 40 7→ {bus(b1, s)}}. Note further that the stream Fig. 3.1a is a
window of Fig. 3.1b, assuming a shared timeline (e.g. [0, 50]). �

Towards a generic framework we need an abstract mechanism for the selection of windows,
given a stream and a time point.

Definition 3 (Window function) Any (computable) function w that returns, given a
stream S = (T, υ), and a time point t ∈ N, a window S′ of S, is called a window function.

39

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

0 1 2 3 4 5 6 7 8 9
•

•
•

•
•

•
•

•
•

•

Figure 3.3: Progression for τ3: sliding time-based window of size 3. Bullets indicate the
reference time points at which the function is applied to obtain the window (rectangle).

0 1 2 3 4 5 6 7 8 9
•

•
•

•
•

•
•

•
•

•

Figure 3.4: Progression for τ3(2): hopping time-based window of size 3 and hop size 2.

We call the time point t at which a window function is applied the reference time point.
The most common types of windows in practice include time-, tuple-, and partition-based
windows, cf. [SW04, ABW06, DTM+13]; they will be presented in Sections 3.1.3-3.1.5.
We associate them with three window functions symbols τ , #, and p, respectively.
Traditionally [ABW06], these window functions take a fixed size ranging back in time
from a reference time point t; we will consider in Section 3.1.7 generalized variants which
allow for looking back and forth from t. Moreover, we introduce in Section 3.1.6 a filter
window function f which only drops data but retains the current timeline.

3.1.3 Time-based Window

Window functions which select recent data based on a fixed amount of time are presumably
the most widely used in practice. We formalize such time-based windows as follows.

Definition 4 (Time-based window) Let S = (T, υ) be a stream, T = [tmin, tmax] and
t ∈ N. Furthermore, let n ∈ N ∪ {∞} and d ∈ N such that 1 ≤ d ≤ n. If t ∈ T , the
time-based window function of size n and hop size d of S at time t is defined by

τn(d)(S, t) = (T ′, υ|T ′) ,

where T ′= [t`, tu], t` = max{tmin, tu−n} and tu = b tdc·d. If t 6∈ T , we define τ
n(d)(S, t) =S.

40

3.1. Streams and Windows

0 1 2 3 4 5 6 7 8 9
•

•
•

•
•

•
•

•
•

•

Figure 3.5: Progression for τ3(3): tumbling time-based window of size 3.

t

35 36 37 38 39 40 41 42 43 44 45

bus(b1, s)
tram(a3, h)

•

Figure 3.6: Sliding time-based window of size 4 at t = 42

Intuitively, a time-based window function selects, at time point t, a pivot point tu ≤ t
that is the closest time point to t such that the distance to the left end of the timeline
is a multiple of d. From this time point tu, the window reaches back (at most) n time
points and selects all atoms in that interval. Note that the case for t 6∈ T is given only for
formal reasons, i.e., compliance with Definition 3. Conceptually, the time-based window
is only applicable if t ∈ T . The general approach is useful for a compositional approach
as discussed later.

We call a time-based window function τn(d) sliding, if d = 1, and tumbling if d > 1 and
d = n, else hopping. The sliding window function τn(1) is abbreviated by τn. Figures 3.3-
3.5 illustrate these different modes of window movement. First, Fig. 3.3 depicts a sliding
window of size n = 3, where from the reference time t (indicated by a bullet), always
window [t− n, t] is selected, unless the left end t` has to be cut when it reaches the global
limit t` = 0. For other progressions, the right end of the window does not necessarily equal
the reference time. If the window shifts in bigger intervals (1 < d < n), we get a hopping
window as shown in Fig. 3.4. Here, the hop size is 2, i.e., the window shifts to the right
every 2 time points. If the hop size equals the window size, we get a tumbling window
as shown in Fig. 3.5. Sliding windows can be seen as a means for a fully continuous
evaluation of recent events. Hopping windows additionally allow one to specify a certain
interval after which a re-evaluation is needed. This is of interest when we want to control
the time when a result shall be refreshed, e.g., a condition over the last 60 seconds which
shall be recomputed only every 15 seconds. Finally, the tumbling window is suitable
when we want to partition the timeline, e.g., to evaluate something in fixed intervals of
60 seconds.

41

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Example 10 (cont’d) On the data stream D of Example 8, consider a monitoring
use case where we want to know only bus and tram appearances reported within the
last 4 minutes, at every minute. To this end, we can use a sliding time-based win-
dow function τ4. Applying it on D at t = 42 gives τ4(D, 42) = ([38, 42], υ′), where
υ′ = {40 7→ {tram(a3, h), bus(b1, s)}}, as shown in Fig. 3.6. Using a hop size of d = 2
or d = 3 would result in the same window (at t = 42); the tumbling window function
(n = d = 4) would select timeline [36, 40]. Note that the time-based window does not
drop any data in the selected interval. �

Arguably, time-based windows are the most important ones in practice. The second most
important class is dual: as one can limit resources typically by time or space, counting
tuples (atoms) is the second natural approach for selecting recent chunks of data. We
shall look at this tuple-based window next.

3.1.4 Tuple-based Window

Complementary to time-based windows, tuple-based windows define recency of data not
in terms of time, but in terms of tuple count. Accordingly, they are also called count
windows [GÖ10, CKE+15]. A tuple-based window of size n simply returns the most
recent n atoms, regardless of their temporal appearance. Practically, one can view it as
a buffer that always contains the n most recent atoms.

There are different reasons for using tuple-based windows. First, when reasoning
about as much of historic data as possible, tuple-based windows may serve to define a
threshold to address memory limits. Secondly, many use cases are intrinsically counting-
based, where tuple-based windows can then select the relevant number of atoms. Typical
examples in stream processing would be aggregations of recent signals that are received
aperiodically from some sensor; for instance to decide the likelihood of a traffic jam by
computing the average velocity of the last 50 cars. Another frequent use of tuple-based
windows concerns selecting only the most recent atom of a stream, e.g., the current value
of a car’s temperature sensor to control the air conditioning. We now formally define
tuple-based windows.

Definition 5 (Tuple-based window) Let S = (T, υ) be a stream, T = [tmin, tmax],
n ∈ N ∪ {∞} and t ∈ N. Furthermore, let T ′ = [t`, t], where

t` = max({tmin} ∪ {t′ | tmin ≤ t′ ≤ t ∧ |S|[t′,t]| ≥ n})

is called the left point. If t ∈ T , a multi-valued tuple-based window of size n of S at
time t is defined by

#n(S, t) = (T ′, υ′|T ′),

where
v′(t′) =

{
v(t′) if t′ ∈ T ′ \ {t`}
X if t′ = t`,

and X ⊆ υ(t`) such that |(T ′, υ′|T ′)| = n. If t 6∈ T , we define #n(S, t) = S.

42

3.1. Streams and Windows

t

35 36 37 38 39 40 41 42 43 44 45

bus(b1, s) tram(a3,m)
tram(a1,m)

•

Figure 3.7: Tuple-based window of size 3 at t = 44 (one of two possibilities)

Intuitively, a tuple-based window of size n is obtained by searching back from current
time point t until a time point t` is reached such that the total number of atoms counted
in the interval [t`, t] is at least n. Then, in general, only a portion X ⊆ υ(t`) of the atoms
at the left point t` can be retained to achieve the exact tuple count n. Note that, in case
the selection X = υ(t`) can be guaranteed (as e.g. for streams with at most one atom per
time point), the window definition simplifies to (T ′, υ|T ′) as for time-based windows; then
only the left point t` needs to be computed to determine T ′ = [t`, t]. In general, however,
multiple options exist for set X, making the tuple-based window function multi-valued.
Practically, tuple-based windows can be assumed to be deterministic due to the specific
implementation. In the sequel, when using a tuple-based window function, we always
assume some single-valued refinement.

Example 11 To illustrate tuple-based windows, we use the stream from Fig. 3.1b,
formalized by D = (T, υ) where T = [0, 50] and

υ =

36 7→ {tram(a1, b), bus(b1, b)},
40 7→ {tram(a3, h), bus(b1, s)},
43 7→ {tram(a3,m)},
44 7→ {tram(a1,m)},
45 7→ {bus(b2,m)}

.

To get the last three vehicle appearances w.r.t. reference time point t = 44, we can
use the tuple-based window function #3, which formally gives two possible windows
at t: S1 = (T1, υ1) and S2 = (T2, υ2), where for both j ∈ {1, 2}, Tj = [40, 44],

υj(43) = {tram(a3,m)},
υj(44) = {tram(a1,m)};

υ1(40) = {bus(b1, s)} and υ2(40) = {tram(a3, h)}. That is to say, the two windows
differ in the evaluation at time point 40, where a nondeterministic choice is made to pick
exactly three atoms from the input stream from time point 44 back to 40. Window S1 is
shown in Fig. 3.7. �

There are two natural possibilities to enforce the uniqueness of a tuple-based window
in practice. First, if there is a total order over all atoms, one can give a deterministic
definition of the set X in Definition 5. Second, one may omit the requirement that
exactly n atoms are contained in the window, but instead demand the substream obtained
by the smallest interval [t`, t] containing at least n atoms.

43

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

t

35 36 37 38 39 40 41 42 43 44 45

tram(a3, h) tram(a3,m)
tram(a1,m)

•

Figure 3.8: Partition-based window for the last 3 trams at t = 44

Note that our definition of tuple-based windows leads to a sliding progression in the
sense that the right end of the resulting window’s timeline always is the reference time
point. An extension with a hop size (analogous to that of the time-based window) is
possible, yet less used in practice. Another refinement is more important; it concerns
more fine-grained control of the counting mechanism, as we will introduce next.

3.1.5 Partition-based Window

The previous section presented tuple-based windows which select a given number of the
most recent atoms. We now introduce a refinement which allows one to select different
numbers of different atoms at the same time. The partitioned-based window function first
separates virtual substreams and then obtains tuple-based windows (with different sizes)
on them. Finally, their union is the resulting window. The prototypical application uses
only two partitions: relevant atoms to be counted, and irrelevant atoms that shall be
ignored.

Example 12 (cont’d) Example 11 used a tuple-based window for the last three vehicle
signals. Assume now that we are only interested in trams. This would amount to
partitioning the data stream D into a virtual substream D1 that contains only tram
appearances (i.e., all atoms with predicate tram) and another one, D2, for bus appearances.
Assuming access to these substreams, we can apply a tuple-based window of size 3 on D1,
another one of size 0 on D2,1 and then merge the result. At t = 44 this would result
in the window as depicted in Fig. 3.8, i.e., the alternate tuple-based window S2 from
before. �

Partition-based windows also provide a useful link between physical data streams and
our formalization in Definition 1. In contrast to the latter, streaming applications usually
combine multiple input sources. For instance, it is likely that tram signals and bus
signals stem from different streams, or even that each vehicle sends its position in its
own stream. Our focus, however, is not on processing the interplay of different streams
but logic-oriented reasoning on top of their cumulative information. We therefore employ
a single stream S which abstracts away different physical origins of data. Nevertheless,
we can study different input streams in the formalism by selecting virtual substreams of
S; partition-based windows are one possibility to obtain them.

1Note that for t ∈ T and n = 0 the tuple-based window is ([t, t], ∅).

44

3.1. Streams and Windows

To define partition-based windows, we make use of a finite index set I ⊂ N to
tag atoms: we use an index function idx : G → I for I which associates each ground
atom a ∈ G with an index idx(a). Thus, given a stream S = (T, υ), each index i ∈ I
induces a substream Si = (T, υi), where υi(t) = {a ∈ υ(t) | idx(a) = i}. Moreover, we
utilize a tuple size function n : I → N for I that defines the size n(i) for the tuple-
based window on substream Si. Naturally, we define the union υ = υ1 ∪ υ2 of two
evaluation functions υ1 and υ2 by a ∈ υ(t) iff a ∈ υ1(t) ∪ υ2(t) for all a ∈ G and t ∈ N;
the union of two streams S1 = ([`1, u1], υ1) and S2 = ([`2, u2], υ2) is then defined by
S1 ∪ S2 = ([min{`1, `2},max{u1, u2}], υ1 ∪ υ2).

Definition 6 (Partition-based window) Let S = (T, υ) be a stream and t ∈ N. More-
over, let idx be an index function and n be a tuple size function for an index set I. If
t ∈ T , the partition-based window of S at time t (relative to idx, n) is defined by

pidx,n(S, t) =
⋃
i∈I

#n(i)(Si, t).

If t 6∈ T , we define pidx,n(S, t) = S.

With this definition in place, we continue with the details for the previous example.

Example 13 (cont’d) To define a window that selects the last three trams, we use an
index set I = {1, 2}, where index 1 is used for trams and 2 for buses. Accordingly, we let
X = {tram(c1, c2) | c1, c2 ∈ C} be the set of possible ground atoms with predicate tram,
and define for all atoms a ∈ G

idx(a) =
{

1 if a ∈ X,
2 else.

This induces the substreams D1 = (T, υ1) and D2 = (T, υ2), where

υ1 = {36 7→ {tram(a1, b)}, 40 7→ {tram(a3, h)}, 43 7→ {tram(a3,m)}, 44 7→ {tram(a1,m)}};
υ2 = {36 7→ {bus(b1, b)}, 40 7→ {bus(b1, s)}, 45 7→ {bus(b2,m)}}.

We employ a tuple size function n such that n(1) = 3 and n(2) = 0, i.e., we will se-
lect three atoms from D1 and none from D2. At t = 44, this yields the windows
D′ := #n(1)(D, t) = ([40, 44], υ′1), where

υ′1 = {40 7→ {tram(a3, h)}, 43 7→ {tram(a3,m)}, 44 7→ {tram(a1,m)}},

and #n(2)(D, t) = ([43, 43], ∅), respectively. Their union equalsD′, i.e., pidx,n(D, t) = D′. �

We present another example, which concerns the tracking of each individual vehicle.

Example 14 (cont’d) We are now interested in selecting the last appearance for each
individual tram and bus. Consequently, we need a substream for each vehicle, then we
can select the last atom on each of these substreams. We assume that all potential tram

45

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

instances can have identifiers a1 to a10, likewise buses b1 to b50, and there might be
signals with predicates other than tram and bus. For the latter, we reserve index 0 by
defining simply

idx(g) = 0 for all g ∈ G \ {tram(c1, c2), bus(c1, c2) | c1, c2 ∈ C}.

Next we assign i = 1, . . . , 10 to tram identifiers and i = 101, . . . , 150 to buses:

idx(tram(ai, c)) = i for all c ∈ C
idx(bus(bi, c)) = i+ 100 for all c ∈ C

This gives us four non-empty induced substreams for D at 45:

D1 = ([36, 45], {36 7→ {tram(a1, b)}, 44 7→ {tram(a1,m)}})
D3 = ([40, 45], {40 7→ {tram(a3, h)}, 43 7→ {tram(a3,m)}})

D101 = ([36, 45], {36 7→ {bus(b1, b)}, 40 7→ {bus(b1, s)}})
D102 = ([45, 45], {45 7→ {bus(b2,m)}})

We use the tuple size function n such that n(0) = 0 and n(i) = 1 for all i ∈ I \ {0} and
thus obtain the following respective tuple-based windows (of size 1):

D′1 = ([44, 45], {44 7→ {tram(a1,m)}})
D′3 = ([43, 45], {43 7→ {tram(a3,m)}})

D′101 = ([40, 45], {40 7→ {bus(b1, s)}})
D′102 = ([45, 45], {45 7→ {bus(b2,m)}})

The union of these windows gives us the result of the partition-based window:

pidx,n(D, 45) = ([40, 45], υ′),

where

υ′= {40 7→ {bus(b1, s)}, 43 7→ {tram(a3,m)}, 44 7→ {tram(a1,m)}, 45 7→ {bus(b2,m)}} . �

The previous example indicates the power of partitioned-based windows that arises from
its flexible selection mechanism. Applications may define more narrow variants which
can then be uniformly represented by index functions. For formal analysis, however, a
more compositional approach is desirable that does not hide multiple computation steps
in a single function. For the use case illustrated in Examples 12 and 13 we suggest an
alternative approach, where the tuple-based window follows an initial projection step.
To this end, we now introduce filter windows.

46

3.1. Streams and Windows

t

35 36 37 38 39 40 41 42 43 44 45

tram(a1, b) tram(a3, h) tram(a3,m)
tram(a1,m)

Figure 3.9: Filter window for the set A of tram occurrences

3.1.6 Filter Window

Time-based windows and tuple-based windows shrink the timeline and thus drop data
outside their defined scope. Dually, filter windows leave the timeline as it is and drop all
but a specified set of atoms. Accordingly, given a stream S = (T, υ), we define for a set
A ⊆ G of ground atoms, the projection of υ to A by υ|A(t) = υ(t) ∩A for all t ∈ N, and
the projection of S to A by S|A = (T, υ|A). This already yields the filter window.

Definition 7 (Filter window) Let S = (T, υ) be a stream, t ∈ N, and A ⊆ G be a set
of atoms. The filter window function for A (at time t) is defined by

fA(S, t) = S|A.

Note that the filter window function works in a time-independent manner, i.e., it always
retains the timeline and returns the same result for all t ∈ N, in particular, for t 6∈ T .
This is dual to the time-based window, where all atoms in the selected timeline can
remain, and this timeline is selected independently from atoms.

Filter windows are particularly useful as preprocessing step before applying tuple-
based windows which then only count a defined subset of atoms.

Example 15 (cont’d) In Examples 12 and 13 we selected the last three trams by
means of a partition-based window. Alternatively, we can use the set A of atoms with
predicate tram, where we obtain the stream D1 above, shown in Fig. 3.9, by fA(D, t)
(for any t ∈ N). Consequently, this specific partition-based window is equally obtained
by consecutive applications of fA and #3; i.e., using idx, n from Example 13 we get
pidx,n(D, t) = #3(fA(D, t′), t) (for all t, t′ ∈ N).

Finally, we revisit Fig. 3.1. Using a set B of atoms with predicate bus, we obtain
the depicted window by τ6(2)(fB(D, t), 43), or equivalently, by fB(τ6(2)(D, 43), t) (for any
t ∈ N); the hopping time-based window selects, at t = 43, the timeline [36, 42], and the
filter window retains only bus signals. Due to the logical independence between these
functions, we can apply them in arbitrary order. �

In contrast to the windows studied above filtering also affects atoms appearing after the
time point t where function fA is applied. We will now introduce generalizations of the
other window functions that may also access future time points.

47

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

0 1 2 3 4 5 6 7 8 9

×
×
×
•

•
•

×
×
×
•

•
•

×
×
×
•

•
•

` = d u

• : reference times t × : pivot points t′

Figure 3.10: Progression for τ3,1(3): generalized (hopping) time-based window

3.1.7 Windows with Access to the Future

Standard window functions select substreams that contain recent data from the past.
Time-based windows select an interval [t1, t2], where t2 is close or equal to reference
time t, tuple-based windows and partition-based windows determine an interval [t1, t] by
counting atoms. We will now consider generalizations where the timeline can also extend
to time points after t. One motivation for such future windows concerns predictions, i.e.,
inferred information about future events. Windows accessing later time points can then
restrict access to intensional atoms assigned to them.

Example 16 (cont’d) When Bob is approaching Mozart Circus (station m) on line `3
at time t = 42, he wants to know whether there will be a connecting tram. For this, he
is only interested in expected arrival times of trams within the next 5 minutes. These
predictions could be reflected by intensional atoms of form exp(Id,St), where Id is the
tram identifier and St is the station where the tram is expected. We thus would like to
have a time-based window that drops all such atoms relating to time points after t+ 5. �

Having access to time points after the reference time point is also useful when we navigate
within a timeline. Our forthcoming framework will introduce temporal modalities, which
open up the possibility to apply windows at multiple time points within the same
evaluation. This shifts the conceptual perspective from “past” and “future” to “before”
and “after” relative to a reference time point that can be controlled. In that regard, it is
natural to lift the time-based window accordingly.

Definition 8 (Generalized time-based window) Let S = (T, υ) be a stream, T =
[tmin, tmax] and let t ∈ N. Furthermore, let `, u ∈ N ∪ {∞} and d ∈ N such that d ≤ `+ u.
If t ∈ T , the generalized time-based window function with range (`, u) and hop size d
of S at time t is defined by

τ `,u(d)(S, t) = (T ′, υ|T ′) ,

where T ′ = [t`, tu], t` = max{tmin, t′−`} with pivot point t′ = b tdc·d, tu = min{t′+u, tmax}.
If t 6∈ T , we define τ `,u(d)(S, t) = S.

48

3.1. Streams and Windows

The generalized time-based window replaces in Definition 4 the size n by a range (`, u):
in addition to selecting the ` time points left of the pivot point, it also selects u time
points right of it. Accordingly, the size of the generalized time-based window (function)
τ `,u(d) is given by `+ u. When we use time-based windows with future time points (after
t) in the sequel, we will implicitly refer to the one of Definition 8.

As before, a time-based window function τ `,u(d) is called sliding, if d = 1, and tumbling
if d > 1 and d = ` + u, else hopping. We abbreviate τ `,u(1) by τ `,u, τ `,0(1) by τ ` and
τ0,u(1) by τ+u.

Example 17 Fig. 3.10 shows the selection mechanism of a hopping (generalized) time-
based window with range (3, 1) and hop size 3. Consider for instance reference time
point t = 7. Function τ3,1(3) selects pivot time t′ = b7

3c · 3 = 6, from which it reaches
by t′ − ` time point 3 for the lower end, and by t′ + u time point 7 for the upper end.
Consequently, the resulting window has the timeline [3, 7]. �

The case for tuple-based windows is analogous: we want to be able to select a certain
number of tuples before and after a reference time point, where the window is applied.
Accordingly, we generalize the tuple-based window as follows.

Definition 9 (Generalized tuple-based window) Let S = (T, υ) be a stream, T =
[tmin, tmax] and t, `, u ∈ N. We define the left point t` and right point tu by

t` = max({tmin} ∪ {t′ | tmin ≤ t′ ≤ t ∧ |S|[t′,t]|≥`}), and
tu = min ({tmax}∪ {t′ | t ≤ t′ ≤ tmax ∧ |S|[t+1,t′]|≥u}),

respectively. Let T` = [t`, t] and Tu = [t+ 1, tu]. If t ∈ T , a multi-valued generalized
tuple-based window with range (`, u) of S at time t is defined by

#`,u(S, t) = (T ′, υ′|T ′),

where T ′ = [t`, tu],

v′(t′) =

v(t′) if t′ ∈ T ′ \ {t`, tu}
X` if t′ = t`
Xu if t′ = tu,

and Xq ⊆ υ(tq), q ∈ {`, u}, such that |(Tq, υ′|Tq)| = q. If t 6∈ T , we define #`,u(S, t) = S.

This generalization of Definition 5 is straightforward: it adds to the selection of ` (n in
Definition 5) atoms left of reference time t the selection of further u atoms right of t. We
thus define the size of the generalized tuple-based window (function) #`,u by `+ u. As
before, we abbreviate #0,u by #+u.

We immediately get the definition of generalized partition-based windows, by allowing
extended tuple-based windows in Definition 6 (using tuple size functions that range over
N× N).

49

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Time-based: �`,u(d) := �τ`,u(d)
�` := �τ`

�+u := �τ+u

Tuple-based: �#`,u := �#`,u
�#` := �#`

Partition-based: �idx,n := �pidx,n

Filter: �A := �fA

Figure 3.11: Overview of window operator shortcuts

Example 18 (cont’d) We now can determine the best connection at Mozart Circus.
To this end, we use an index function idx that assigns index 1 to expected arrivals
of trams at station m, i.e., the set A of atoms of form exp(Id,m), and index 0 for all
other atoms. Next, we define the tuple size function n such that n(1) = (0, 1) (i.e., the
parameters ` = 0 and u = 1 for the generalized tuple-based window on substream S1)
and n(0) = (0, 0). This results in a window that contains only the next tram at m.
Alternatively, we get the same result by employing fA followed by #+1. �

After having introduced streams, windows and different window functions, we are now
prepared to propose a logic-based framework for stream reasoning.

3.2 The LARS Framework

We now present an improved version of LARS [BDEF15], a Logic for Analytic Reasoning
over Streams. LARS extends propositional logic for streaming data by employing any
window function w (Definition 3) in a window operator �w. Within the resulting
substream, one can then control the temporal modality of formulas, respectively access
temporal information. Based on such formulas, LARS then provides a rule-based language
with a model-based, nonmonotonic semantics, which can be seen as an extension of Answer
Set Programming for streaming data.

Before defining syntax and semantics of LARS below, we first present the central
concepts informally.

Window Operators & Stream Reset

If w is a window function, we call �w a window operator. Given a formula α, the
expression �wα has the effect that α will be evaluated on the window obtained by
applying w in the current stream S at the current time t. Dually, the reset operator .
serves to re-access the original stream. For specific window operators we use syntactic
shortcuts as listed in Fig. 3.11. We use the letter W to denote a set of window functions.

Temporal Modalities

Regardless if formula evaluation is on the entire input stream or a window thereof, we
provide explicit means to deal with the temporal information. Let S = (T, υ) be a stream,

50

3.2. The LARS Framework

i.e., the input stream or a window, and t ∈ T be a time point. There are different ways
to evaluate a formula α in S at t. First, we express by @t′α, where t′ ∈ N ∪ U , that α
has to hold when changing the evaluation time to t′. We call t′ in @t′α a time pin; which
is ground if t′ ∈ N, else non-ground. Next, time might be abstracted away. That is to
require that α holds at some time point t′ ∈ T , denoted by 3α. Dually, 2α shall hold iff
α holds at all time points in T . Based on these modalities, we define our language.

3.2.1 LARS Formulas

Definition 10 (Formulas) Let a ∈ A be an atom, t ∈ N ∪ U and w be a window
function. The set F of formulas is defined by the following grammar:

α ::= a | ¬α | α ∧ α | α ∨ α | α→ α | 3α | 2α | @tα | �wα | .α (3.1)

The set FG of ground formulas contains all formulas where each term and each time
pin is ground. In addition to streams, we consider background knowledge in form of
static data, i.e., a set B ⊆ GEB of ground atoms which does not change over time. From
a semantic perspective, the difference to streams is that static data is always available,
regardless of window applications.

The following definitions concern the semantics of ground formulas.

Definition 11 (Structure) Let S = (T, υ) be a stream, W a set of window functions
and B ⊆ GEB a set of facts. Then, we call M = 〈S,W,B〉 a structure, S the interpretation
stream and B the background data of M .

We now define when a ground formula holds in a structure.

Definition 12 (Entailment) Let M = 〈S?,W,B〉 be a structure, S? = (T ?, υ?) and let
S = (T, υ) be a substream of S?. Moreover, let t ∈ T ?. The entailment relation between
(M,S, t) and formulas is defined as follows. Let a ∈ G be an atom, let α, β ∈ FG be ground
formulas and w ∈W . Then,

M,S, t a :⇔ a ∈ υ(t) or a ∈ B,
M,S, t ¬α :⇔ M,S, t 1 α,
M,S, t α ∧ β :⇔ M,S, t α and M,S, t β,
M, S, t α ∨ β :⇔ M,S, t α or M,S, t β,
M, S, t α→ β :⇔ M,S, t 1 α or M,S, t β,
M, S, t 3α :⇔ M,S, t′ α for some t′∈ T,
M, S, t 2α :⇔ M,S, t′ α for all t′∈ T,
M, S, t @t′α :⇔ M,S, t′ α and t′ ∈ T,
M, S, t �wα :⇔ M,S′, t α,where S′ = w(S, t),
M, S, t .α :⇔ M,S?, t α.

If M,S, t α holds, we say that (M,S, t) entails α. Moreover, we say that M satisfies α
at time t, if (M,S?, t) entails α. In this case we write M, t |= α and call M a model of α

51

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

at time t. Satisfaction and the notion of a model are extended to sets of formulas as
usual. Moreover, we define that for the special atoms > and ⊥, M,S, t > always and
M,S, t ⊥ never holds.

Example 19 (cont’d) Let D = (T, υ) be the data stream of Example 10 and S? =
(T ?, υ?) ⊇ D be a stream such that T ? = T and

υ?=
{

36 7→ {tram(a1, b)}, 40 7→ {tram(a3, h),
43 7→ {exp(a3,m)}, 44 7→ {exp(a1,m)}

}
.

Let M = 〈S?,W,B〉, where W = {τ+5}, and B is an empty set of facts. Then
M,S?, 42 �+53exp(a3,m) holds: the window operator �+5 selects S′ = (T ′, υ′), with
timeline T ′ = [42, 47] and υ′ = {43 7→ {exp(a3,m)}, 44 7→ {exp(a1,m)}}, i.e., there is
some t′ ∈ T ′ (t′ = 43) such that M,S′, t′ exp(a3,m). �

We note that the original presentation of LARS [BDEF15] employed a so-called stream
choice in window operators that allowed to direct the window function to be applied
on the original stream S? (stream choice 1) or the current stream S (stream choice 2).
Definition 12 presents a cleaner approach, where a window operator is always applied
on the current stream. In case the original stream needs to be re-accessed in nested
windows, this can be done by an explicit reset step ., followed by a window operator �w.
We define this combination as input window operator �w := .�w.

Example 20 Consider a monitoring use case where a signal s must always appear within
5 minutes. Testing whether this condition holds for the last hour amounts to the formula
�602�53s: we first select by a sliding time-based window the last 60 minutes. At every
time point in this window, it must hold that if we consider the last 5 minutes there,
signal s holds at some time point. Notably, by using �5 instead of �5 we ensure that
this inner window reaches beyond the limits of the first. For instance, consider a stream
S = ([0, 500], υ). First, at t = 500, �60 selects S′ = (T ′, υ|T ′), where T ′ = [440, 500].
During evaluation of 2 at t′ = 440, �5 now selects S|[435,440], while �5 would select
S′|[440,440], since the timeline in S′ only starts at 440. �

Another subtle improvement over the previous version [BDEF15] concerns the fact that
a window operator �w may return a substream that does not contain the evaluation
time point, i.e., w(S, t) = (T ′, υ′) does not imply t ∈ T ′. However, given a (sub)formula
�wϕ, one typically wants to evaluate ϕ in the obtained window regardless of the specific
evaluation time and its position relative to the window. While this could be technically
handled for relevant cases, we now consider time points t ∈ T ?, and not t ∈ T . That is
to say, the evaluation time point t needs to be contained only in the global timeline T ?,
not in the timeline T of the current substream S.

Example 21 Consider again Fig. 3.5, which illustrates the progress of a tumbling time-
based window of size 3, i.e., the function τ3(3). Assume further we are interested whether
an atom x occurs in this window when evaluated at time 8. Accordingly, we evaluate

52

3.2. The LARS Framework

M,S, 8 �3(3)3x and the substream returned by τ3(3) has timeline [3, 6]. We still expect
that the entailment holds iff x appears within [3, 6], regardless of the fact that 8 6∈ [3, 6]. �

Notably, allowing any t ∈ T ? in the formula evaluation not only serves the applicability of
windows such as hopping or tumbling windows. It also allows one to inspect whether the
evaluation time is contained in the current timeline T . This possibility stems from the
requirement that t′ is contained in T for @t′α to hold: the standard tautology > := a ∨ ¬a
holds (in all structures) at every time point t ∈ T ?, where entailment is defined; how-
ever, @t′> holds if and only if t′ ∈ T . Since also time points t ∈ T ? \ T can be evaluated,
formulas can express conditions based on T . For instance, M,S, t �w(@t> ∧ ϕ) holds
only if t is contained in the timeline of w(S, t).

Queries & Non-ground Formulas

We now consider the use of variables, leading to open formulas and queries.

Definition 13 (Query) Let M = 〈S,W,B〉 be a structure, α ∈ F be a formula and let
u ∈ N ∪ U . Then, the tuple Q = 〈M,u, α〉 is called a query. We say Q is ground if α
and u are ground, else non-ground.

Given a ground query Q = 〈M, t, α〉, where M = 〈S,W,B〉, we define the answer ?Q to
Q as yes, if M,S, t α holds, else no.

To define the semantics of non-ground queries, we need the notions of a substitution σ,
defined as mapping V ∪ U → C ∪ N that assigns (i) each variable V ∈ V a constant
σ(V) ∈ C, and (ii) each time variable U ∈ U a natural number σ(U) ∈ N. The grounding
σ(α) (respectively σ(u)) of formula α (respectively time pin u) due to σ is obtained by
applying the substitutions on variables/time variables as usual. Given a timeline T , we
say a substitution σ is over (C, T), if the image of σ is contained in C ∪ T ; we denote by
σ(C, T) the set of all such substitutions. With this, we define the following.

Definition 14 (Answer) The answer ?Q to a non-ground query Q = 〈M,u, α〉 is
defined by

?Q = {σ ∈ σ(C, T) |M,S, σ(u) σ(α)}. (3.2)

This definition gives a general semantics to two important subclasses of non-ground
queries Q = 〈M,u, α〉. First, if α is ground and u ∈ U is a time variable, then the answer
to Q amounts to the time points when α holds. Dually, if u ∈ N and α is non-ground,
we obtain a semantics for non-ground formula evaluation at a fixed time point.

For queries, the set of window functions W in a stated structure M = 〈S,W,B〉 is
implicitly given by the window operators used in α. In case we make use of background
knowledge (beyond implicit auxiliary atoms for arithmetic) the set B is defined explicitly.

Example 22 Consider again the stream from Fig. 3.1b, which we now formalize by
S = (T, υ), where T = [30, 50]. We ask:

53

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Q1 At t = 45, which trams arrived at which stations in the last 5 minutes?

Q2 At t = 45, at which times and which stations did tram a3 arrive in the last 5
minutes?

Q3 At which times did we record a tram arrival at a station, where a bus arrived within
the next 3 minutes?

We formalize these queries as Q1 = 〈M, 45, α1〉, Q2 = 〈M, 45, α2〉, and Q3 = 〈M,U, α3〉,
where

α1 = �53tram(A,St),
α2 = �5@U tram(a3, St), and
α3 = tram(A,St) ∧�+33bus(B,St).

We obtain the following answers:

?Q1 = { {A 7→ a3, St 7→ h}, {A 7→ a3, St 7→ m}, {A 7→ a1, St 7→ m} }
?Q2 = { {St 7→ h, U 7→ 40}, {St 7→ m,U 7→ 43} }
?Q3 = { {A 7→ a1, St 7→ b, U 7→ 36, B 7→ b1}, {A 7→ a3, St 7→ m,U 7→ 43, B 7→ b2},

{A 7→ a1, St 7→ m,U 7→ 44, B 7→ b2} } �

We observe that the operator @ allows for reconsidering a historic query. At any
time t′ > t, we can ask 〈M, t′,@tα〉 to simulate a previous query 〈M, t, α〉. In fact, this
applies for any t′ ∈ N.

Example 23 (cont’d) Consider again Q1 from Example 22, where α1 is evaluated at
t = 45, and let σ ∈ ?Q1 be an answer. Then, for any time point t′ ∈ N, σ is also an
answer of 〈M, t′,@45α1〉, since by definition, M,S, 45 σ(α1) iff M,S, t′ @45σ(α1) and
45 ∈ T . �

Nested Windows

Typically, window functions are used exclusively to restrict the processing of streams to
a recent subset of the input. In our view, window functions provide a flexible means to
discard data.

Example 24 (cont’d) Recall that we can select the last appearance of tram a1 by first
using a filter window function fA for tram atoms A = {tram(a1, c) | c ∈ C} followed by
a tuple-based window. We now also ask at which time U the tram was last recorded.
The according LARS query Q = 〈M, 45, α〉 is given by M = 〈D, {fA,#1}, ∅〉 and α =
�A �#1 @U tram(a1, St), which has the single answer σ = {St 7→ m,U 7→ 44}. That is,
tram a1 last appeared at station m at time 44. �

LARS formulas provide a powerful, flexible language to query streaming data. However,
the formalism presented so far has no means of expressing auxiliary information, i.e.,
intensional atoms, and thus comes with limitations.

54

3.2. The LARS Framework

Example 25 Dual to query Q3 in Example 22, we now want to ask for which tram
appearances no bus arrived within 3 minutes at the same station. The intended answer
to this query should only contain tram a3 at station h at time 40. A naive translation
simply adds negation to α3, i.e., α′3 = tram(A,St) ∧ ¬�+3 3bus(B,St). However, the
resulting query Q′3 = 〈M,U, α′3〉 expresses the following: at which time points U did
some tram appear at station St, where within the next 3 minutes there was no bus
arriving at St for any B, i.e., for any constant that can be substituted for B. Thus,
whenever a tram ai is at station st at time t, we hypothetically consider any atom
bus(x, St), where x ∈ C, at time points n = t, t+ 1, t+ 2, t+ 3, and get an answer of
form {A 7→ ai, St 7→ st, B 7→ x, U 7→ t}, whenever bus(x, st) is not in the evaluations
from υ(t) to υ(t+ 3) in D. That results in answers like the following:

{A 7→ a1, St 7→ b, B 7→ a1, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ a3, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ b2, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ s, U 7→ 36}
{A 7→ a1, St 7→ b, B 7→ h, U 7→ 36}

...
{A 7→ a3, St 7→ h, B 7→ b1, U 7→ 40}

...

Clearly, we can limit the scope of B by considering only constants that have been observed
as bus identifiers so far, using α′′3 = tram(A,St) ∧ ¬ �+3 3bus(B,St) ∧ 3bus(B,St′).
The additional subformula 3bus(B,St′) now matches all bus appearances throughout
the stream and will thus be joined with every tram appearance tram(A,St) (at time U).
Semantically, this cross product yields potential answers of form {A 7→ ai, St 7→ st, B 7→
x, St′ = st′, U 7→ t}, which are reduced by those entries for which bus(x, st) appeared
between t and t + 3. For instance, {A 7→ a1, St 7→ b, B 7→ b1, St 7→ y, U 7→ 36}, where
y ∈ {b, s,m}, is not returned since bus(b1, b) appeared at 36. We get, among others, the
following answers:

{A 7→ a1, St 7→ b, B 7→ b2, St
′ 7→ b, U 7→ 36}

{A 7→ a1, St 7→ b, B 7→ b2, St
′ 7→ s, U 7→ 36}

{A 7→ a1, St 7→ b, B 7→ b2, St
′ 7→ m, U 7→ 36}

{A 7→ a3, St 7→ h, B 7→ b1, St
′ 7→ b, U 7→ 40}

{A 7→ a3, St 7→ h, B 7→ b1, St
′ 7→ s, U 7→ 40}

{A 7→ a3, St 7→ h, B 7→ b1, St
′ 7→ m, U 7→ 40}

{A 7→ a3, St 7→ h, B 7→ b2, St
′ 7→ b, U 7→ 40}

{A 7→ a3, St 7→ h, B 7→ b2, St
′ 7→ s, U 7→ 40}

{A 7→ a3, St 7→ h, B 7→ b2, St
′ 7→ m, U 7→ 40}

...

The first question is how the result shall be interpreted. The non-essential St′ does not
capture anything of the conceptual query, which does not talk about stations of arbitrary

55

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

bus stations. To remedy this, a simple post-processing may filter out such bindings and
reduce resulting duplicates accordingly. However, this still leaves wrong results. For
instance, the first three answers would reduce to {A 7→ a1, St 7→ b, B 7→ b2, U 7→ 36}.
What this answer says is that bus b2 did not arrive at station b within 3 minutes, but we
intended to query for tram appearances after which no bus arrived. �

The fundamental problem in Example 25 is that we query for substitutions of a bus
identifier B when we are interested in cases where none exists. That is, we have to
abstract away from specific bus existences which can only be expressed by auxiliary atoms,
i.e., intensional atoms. Thus, towards more expressive reasoning over data streams, we
now introduce LARS programs.

3.2.2 LARS Programs

We now define a rule language for stream reasoning with semantics similar to ASP.

Definition 15 (Rule, Program) A program P is a set of rules, i.e., given formu-
las α, β1, . . . , βn ∈ F , expressions of the form

α← β1, . . . , βn. (3.3)

Given a rule r of form (3.3), H (r) denotes the head α, and β(r) = β1 ∧ . . . ∧ βn the body
of r; the commas in (3.3) are a syntactic variant of ∧ as usual. We can thus write a rule
alternatively as material implication

β(r)→ H (r). (3.4)

To evaluate a program on a data stream, we first need interpretations.

Definition 16 (Interpretation) Let D = (T, υD) be a data stream and I = (T, υ) be a
stream such that D ⊆ I. If for all t ∈ T it holds that υ(t) \ υD(t) ⊆ AI , then I is called an
interpretation stream (for D), and a structure M = 〈I,W,B〉 is called an interpretation
(for D).

Intuitively, interpretations are structures whose streams extend the data stream exlusively
with intensional atoms.

Definition 17 (Model) Let M = 〈I,W,B〉, where I = (T, υ), be an interpretation for
data stream D = (T, υD). Furthermore, let P be a ground program. We then say

• M is a model of rule r ∈ P forD at time t, denotedM, t |= r, ifM, t |= β(r)→ H (r);

• M is a model of P for D at time t, denoted M, t |= P , if M, t |= r for all rules
r ∈ P ;

• M is a minimal model, if no model M ′ = 〈S′,W,B〉 of P for D at time t exists
such that S′ = (T, υ′) and S′ ⊂ S.

56

3.2. The LARS Framework

Note that minimality is defined with respect to the same timeline T . We often omit
“for D” and/or “at t” if this is clear from the context. The reduct of a program P with
respect to M at time t is defined by

PM,t = {r ∈ P |M, t |= β(r)}, (3.5)

i.e., the subset of rules whose bodies are satisfied.

Definition 18 (Answer Stream) Let M = 〈I,W,B〉 be a structure, where I = (T, υ)
is an interpretation stream for a data stream D, let P be a program and t ∈ T . Then, I is
called an answer stream of P for D at time t (relative to W and B), if M is a ⊆-minimal
model of the reduct PM,t for D at time t.

Intuitively, the reduct PM,t serves to disregard irrelevant rules with respect to an
interpretation, i.e., those that do not fire. The remaining ones need to be satisfied in
order for M to be a model. By demanding in addition that M is minimal, we ensure
that all conclusions are supported, i.e., each intensional atom in an answer stream can
be justified by derivations from (chains of) firing rules based on extensional atoms, i.e.,
atoms from the stream or background data. Anything not derivable this way is assumed
to be false, i.e., we adopt default negation.

For ASP fragments of LARS, answer streams correspond to answer sets as defined
by the FLP-reduct [FLP04], which we formulated for LARS programs above. More
precisely, consider an interpretation stream I = ({t}, υ′) for a data stream D = ({t}, υ)
and let PASP be a program where in each rule of form (3.3) all body formulas βi are
literals, i.e., atoms or negated atoms, and the head α is a disjunction of atoms. Then, we
have:

Proposition 1 For I and PASP as described, I is an answer stream of P for D at t
relative to arbitrary W and B iff υ′(t) is an answer set of PASP ∪ υ(t) ∪B.

That is, ordinary answer set programs are subsumed by LARS programs. In other words,
the rich semantic properties of ASP carry over to LARS. We thus obtain a nonmonotonic
semantics that comes with possibly multiple, supported minimal models. Section 3.2.3
below further explores the semantic properties of LARS.

Non-ground programs

As for formulas, we consider non-ground programs as schematic versions of ground
programs with variables of two sorts, namely constant variables V and time variables U .
The semantics of these non-ground programs is given by the answer streams of according
groundings, obtained by replacing variables with constants from C, respectively time
points from T , in all possible ways.

Example 26 (cont’d) We now solve the problem of Example 25 as follows: the intention
of formula α′3 is formalized as rule r1 which uses the intensional atom aBus, derived by

57

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

rule r2:

r1 : q(U,A, St)← @U tram(A,St),@U¬�+33aBus(St);
r2 : @UaBus(St)← @Ubus(B,St).

Here, q is the output relation which may be used for post processing and aBus is the
intended abstraction for the appearance of any bus at the given station St. Rule r2
assigns to any time point U an (intensional) atom aBus(St) whenever there is an atom
bus(B,St) at U .

Apart from the expressiveness issue, intensional atoms may also be used to enhance
readability. For instance, the complex formula @U¬�+33aBus(St) in r1 may be simplified,
giving the subformula �+33aBus(St) a name on its own. This leads to the following
approach:

r′1 : q(U,A, St)← @U tram(A,St),@U¬busSoon(St),
r′2 : @UbusSoon(St)← @U �+3 3bus(B,St).

Note further that rule r′2 may be written without the use of a window as

@UbusSoon(St)← @U ′bus(B,St), U ′ > U, U ′ − U ≤ 3.

Using the program P = {r′1, r′2}, we now get the intended result in the single answer
stream I = (T, υI) at t = 45: the evaluation function υI assigns intensional atoms as
follows (grouping shared time points):

33, 34, 35, 36 7→ {busSoon(b)}
37, 38, 39, 40 7→ {busSoon(s)}
42, 43, 44, 45 7→ {busSoon(m)}

45 7→ {q(40, a3, h)}

That is, busSoon(b) is assigned to time points 33, 34, 35, and 36, busSoon(s) holds
throughout the interval from 37 to 40, busSoon(m) from 42 until 45; and the evaluation
of time point 45 additionally contains q(40, a3, h). The latter derivation correctly reflects
that only at station h no bus appeared within 5 minutes after a tram appearance (tram
a3 at minute 40). �

Particular semantic assets for LARS programs are inherited from Answer Set Program-
ming, i.e., a multiple-model semantics permitting nonmonotonic reasoning.

Example 27 (cont’d) Consider now a scenario where Karl wants to travel only with
modern trams, since old trams are inconvenient with baby strollers. We calculate expected
arrival times based on tram appearences at stations where we have no recent report of
a traffic jam. Then, we consider the change from tram Id1 to a modern tram Id2 as a

58

3.2. The LARS Framework

good connection, if it is expected at the same station X within the next 5 minutes. This
is expressed by the following two rules.

@T exp(Id, Y) ← �idx,n @T1tram(Id, X), line(Id, L),¬�20 3jam(X),
plan(L,X, Y,D), T = T1 +D. (3.6)

gc(Id1, Id2, X) ← @T exp(Id1, X),@T �+5 3exp(Id2, X),
Id1 6= Id2,¬old(Id2). (3.7)

Rule (3.6) encodes when a tram is expected at later stops. Similarly as in Example 14,
we use for the partition-based window operator �idx,n the index function idx such that
idx(g) = i for an atom g ∈ G of form tram(ai, X) and idx(g) = 0 else. By the tuple-based
windows of sizes n(i) = 1 for i > 0 and n(0) = 0 we get for each tram ai only its most
recent appearance at some stop X. Usually, the expected arrival time on the next stop
can be computed by the travelling duration according to the table plan. For the case of
traffic jams within the last 20 minutes, we block such conclusions by means of default
negation.

Next, Rule (3.7) builds on the expected arrival times of Rule (3.6) to identify good
connections where the targeted tram is not an old make and the expected waiting time is
at most 5 minutes. It uses a time-based window that looks 5 minutes ahead from the
time when exp(Id1, X) is concluded and checks the existence (operator 3) of an expected
(different) tram Id2.

Assuming background data B including the facts

plan(`1, b,m, 8), plan(`2, g,m, 7), plan(`3, h,m, 3), . . . ,
line(a1, `1), line(a2, `2), line(a3, `3), . . . ,
old(a1), . . . ,

we observe that the interpretation stream of the structure M of Example 19 is an answer
stream of P for D at time t. Note that gc(a3, a1,m) is not derived. Tram a1 appears
one minute after a3 at Mozart Circus, but it is old. �

The next example demonstrates another advantage of our rule-based approach, namely
the possibility to obtain different models for nondeterministic choices.

Example 28 (cont’d) Consider an extended scenario where a tram with identifier a2
of line `2 is reported at Gulda Lane (g) at time point 38. This updates the data
stream D = (T, υ) in Example 8 to D′ = (T, υ′), where υ′ is the evaluation υ ∪ {38 7→
{tram(a2, g)}}. By the entries line(a2, `2) and plan(`2, g,m, 7) in B, Rule (3.6) derives
that tram a2 is expected to arrive at Mozart Circus at t = 45. Furthermore, we now
assume that tram a1 is not old, i.e., old(a1) 6∈ B. This gives Karl three good connections
at stop m, when leaving tram a3 at time 43:

G = {gc(a3, a1,m), gc(a1, a2,m), gc(a3, a2,m)}

59

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Karl is not interested in the connection from a1 to a2, since he is currently travelling
with a3. His smart phone streams an according tuple on(a3) at query time. This leaves
him two options: he can either change to line `1 (and take tram a1 after 1 minute at
time point 44), or to line `2 (and take tram a2 after 2 minutes at 45). The following two
rules formalize the possibility to either change trams or skip a good connection:

change(Id1, Id2, X)← on(Id1), gc(Id1, Id2, X),¬skip(Id1, Id2, X). (3.8)
skip(Id1, Id2, X)← gc(Id1, Id2, X), change(Id1, Id3, X), Id2 6= Id3. (3.9)

Consider the program P consisting of rules (3.6)-(3.9). Moreover, let D′′ = (T, υ′′) be
the data stream obtained from D′ by adding {42 7→ {on(a3)}} to the evaluation and let
I0 = (T, υ0), I1 = (T, υ1) and I2 = (T, υ2) be the following interpretation streams for D′′:
we take

υ0 = υ ∪
{

42 7→ G, 43 7→ {exp(a3,m)}
44 7→ {exp(a1,m)}, 45 7→ {exp(a2,m)}

}
,

and for i ∈ {1, 2}, let υi = υ0 ∪ {42 7→ choicei}, where

choice1 = {change(a3, a1,m), skip(a3, a2,m)}, and
choice2 = {change(a3, a2,m), skip(a3, a1,m)}.

Then, I1 and I2 are (the only) two answer streams for P at time 42 relative toW = {τ ,p}
and B, i.e., we get the user choices as separate models. �

Note that in this example we did not constrain good connections by the actual destination
Karl wants to reach. By means of the presented formalism, such reachability relations
can be expressed elegantly through recursion as in Datalog.

Another benefit of our approach for advanced stream reasoning is the possibility to
retract previous conclusions due to new input data. Combined with (minimal) model
generation, i.e., alternatives that may be enumerated, compared under preference etc.,
such nonmonotonic reasoning allows for sophisticated AI applications in data stream
settings.

Example 29 (cont’d) If the lines `1 and `2 have the same travelling time from Mozart
Circus to Strauß Avenue, Karl will pick choice1 (answer stream I1), since at t = 42
tram a1 is expected to arrive one minute earlier than tram a2.

Suppose a few seconds later (still at t = 42) a traffic jam is reported for Beethoven
Square. Thus, we now consider the data stream Dj = (T, υj), where υj = υ ∪ {42 7→
{on(a3), jam(b)}}. Thus, we have no expectation anymore when tram a1 will arrive at
Mozart Circus. Now exp(a1,m) cannot be concluded for t = 44, and as a consequence,
gc(a3, a1,m) will not hold anymore. Thus, the previous two answer streams are discarded
and only change(a3, a2,m) remains recommended in the resulting unique answer stream. �

60

3.2. The LARS Framework

3.2.3 Semantic Properties of LARS Programs

In this subsection, we show that some basic properties of the answer semantics of logic
programs carry over to the notion of answer stream defined above. These are minimality
of answer streams, supportedness by rules and consistency, i.e., existence of an answer
stream in the absence of negation provided that the windows functions involved are
monotonic, i.e., return growing substreams if the stream data increases.

Let P be a program, D be a data stream and t ∈ N. By AS(P,D, t) we denote the
set of answer streams of P for D at time t. The letter M always stands for the structure
M = 〈I,W,B〉, where I is the considered answer stream, and W and B are implicit and
fixed. By Definition 18, the structure M (due to answer stream I) is a minimal model
of the reduct PM,t for D at time t. Importantly, this implies that M is a model of the
original program P , and in fact a minimal model.

Theorem 4 (Minimality of answer streams) Let P be a LARS program, D be a
data stream, t be a time point and I ∈ AS(P,D, t). Then, M = 〈I,W,B〉 is a minimal
model of P for D at time t.

Proof. Consider the structureM = 〈I,W,B〉, where I ∈ AS(P,D, t). We first show that
M is a model of P at time t, i.e., that M, t |= r for all rules r ∈ P . There are two cases.
If r ∈ PM,t, satisfaction at t holds by definition. Else, let r = α← β1, . . . , βn. We have
M, t 6|= β(r) and thus M, t |= β(r)→ α.

As for minimality, suppose that M ′ = 〈I,W,B〉 where M ′ ⊂M is a model of P for
D at time t. Then, M ′, t |= r for each rule r ∈ P , and hence M ′, t |= r for each rule
r ∈ PM,t ⊆ P . This means M ′ is a model of PM,t at time t; hence M is not a minimal
model of PM,t at time t, which contradicts I ∈ AS(P,D, t). 2

Thus, answer streams warrant the property of minimality that answer sets enjoy, in the
spirit of logic programming semantics. A simple consequence of minimality of models is
the following.

Corollary 1 (Incomparability) Answer streams are incomparable w.r.t. ⊆. That is,
if I, I ′ ∈ AS(P,D, t), then I 6= I ′ implies I 6⊆ I ′ and I ′ 6⊆ I.

Our definition of answer streams follows the approach in [FLP04], which requires a
supporting rule for every derived atom. In other words, dropping any atom from an
answer set would invalidate some rule. In our case, dropping an intensional atom a from an
answer stream would lead to an unsatisfied rule that supports its derivation for some time
point t′. To simplify notation, we consider I = (T, υ) also as set {t′ 7→ a | a ∈ υ(t′), t′ ∈ T}.
Accordingly, I \ {t′ 7→ a} amounts to removing in I atom a from υ(t′), etc.

Theorem 5 (Supportedness) Let I ∈ AS(P,D, t). Then, for every t′ 7→ a ∈ I \D
there exists a rule r ∈ P such that

(i) M, t |= β(r), and

61

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

(ii) M ′, t 6|= r, where M ′ = 〈I \ {t′ 7→ a},W,B〉.

Proof. Let I ∈ AS(P,D, t) and t′ 7→ a ∈ I \D. By Definition 18, M = 〈I,W,B〉 is a
minimal model of PM,t for D at t. Towards a contradiction, assume that for all r ∈ P it
holds that (i) M, t 6|= β(r) or (ii) M ′, t |= r, where M ′ = 〈I \ {t′ 7→ a},W,B〉. We first
observe that item (i) cannot hold for all rules, as this would imply that PM,t = ∅, which
has the single minimal model 〈D,W,B〉 at t; this would imply I = D and thus t′ 7→ a ∈ I
would be impossible, contradiction.

We now only consider those rules r ∈ P where M, t |= β(r), i.e., the reduct PM,t 6= ∅.
Since for all r ∈ PM,t we have that M ′, t |= r, where M ′ = 〈I \ {t′ 7→ a},W,B〉, we con-
clude that M is not a minimal model of PM,t. This yields the contradiction. 2

Note that the conditions (i) and (ii) in Theorem 5 amount for ordinary logic programs
to the usual notion of supportedness of answer sets; if the rule head α = a1 ∨ · · · ∨ ak in
(ii) is a disjunction of atoms, then M must satisfy a single atom ai in α, and ai = a.

Finally, let us consider LARS programs in which α and each formula βi are positive,
i.e., each atom occurs in the formula tree only under an even number of negations; we
call such programs positive. As for windows, we naturally call a window function w
monotonic, if for any streams S and S′ such that S ⊆ S′ and for any time t′ it holds that
w(S, t′) ⊆ w(S′, t′). Then we obtain

Theorem 6 (Consistency) Let P be a positive LARS program such that all heads α of
rules in P are satisfiable and all window operator �w occurring in P have monotonic win-
dow functions w. Then for any D and t, (i) AS(P,D, t) 6= ∅ and (ii) any M = 〈I,W,B〉
is a minimal model of PM,t at t iff I ∈ AS(P,D, t).

Proof. Under the asserted properties, clearly some model M = 〈I,W,B〉 of P exists for
D at t; simply let in I all intensional atoms be true. Furthermore, any model M ′ ⊂M of
PM,t for D at t satisfies M ′, t |= P , as under the monotonicity assertions M ′, t 6|= β(r) for
each (grounded) rule r in P \PM,t. By repeating this argument for M ′ etc., we can build
a maximal, strictly decreasing chain of models M0 = M,M1,M2, . . . of P for D at t. The
intersection N of all these models is another model of P for D at t, and hence no model
N ′ ⊂ N of P for D at t can exist. Consequently, N is also a minimal model of PN,t for
D at t; in other words, N is an answer stream of P for D at t. This proves part (i). As
for part (ii), by Theorem 4 each I ∈ AS(P,D, t) is such that M = 〈I,W,B〉 is a minimal
model of PM,t at t; conversely, the chain construction in part (i) starting with any
minimal model M = 〈I,W,B〉 of P for D at t yields N = M , and thus I ∈ AS(P,D, t)
holds. 2

For example, sliding time-based windows are monotonic and likewise the other time-based
windows considered above; furthermore, also filter windows are monotonic. Tuple-based
windows (thus also partition-based windows) are not monotonic, and the statement in
the theorem does not hold, even for very restricted rule syntax.

62

3.2. The LARS Framework

Example 30 Consider the program P consisting of the rules

r0 : c.

r1 : d ← �#13c.

r2 : a ∧ b ← d.

r3 : b ← �#13a.

r4 : a ← �#13b.

and assume that the tie-break in the tuple selection is by lexicographic ordering, i.e., a
before b before c before d. Informally, �#13x expresses that the single selected tuple
is x. Then M = 〈I,W,B〉 where (in abuse of notation) I = {a, b, c} is a model of P for
the data stream D = ([0, 0], ∅) at t = 0. Moreover, it is the single minimal model for
D at t: for any other model M ′ = 〈I ′,W,B〉, we have that d ∈ I ′ implies I ′ = {a, b, c, d}
(by r0 and r2), which is not minimal. Furthermore, {a, b} ∩ I ′ = ∅ would lead by r1 and
r2 to {a, b} ⊆ I ′, which is contradictory; similarly I ′ = {c, a} (respectively I ′ = {c, b})
would lead by r3 to b ∈ I ′ (respectively by r4 to a ∈ I ′), which is again a contradiction.
Thus, M is the only answer stream candidate. However, the reduct PM,t = {r0; r3}
has a model M ′ = 〈I ′,W,B〉 for D at t where I ′ = {c, b}. Thus, M is not an answer
stream of P for D at t = 0 and AS(P,D, t) = ∅ follows. (The same holds if we replace
r2 with rules a← d and b← d; the resulting program is in the plain LARS fragment; cf.
Section 4.1.) �

However, refined versions of tuple-based windows, which e.g. count only extensional
data (as occurs often in practice), are monotonic and thus admissible in Theorem 6;
furthermore, monotone windows can be nested as monotonicity is preserved. We remark
that the consistency result (part (i) of the theorem) can be extended to classes of programs
with layered (stratified) negation and recursion through non-monotonic windows.

We note that Definition 15 is liberal in the sense that it permits extensional atoms
also in rule heads. This is convenient in some scenarios with complex rule heads. Notably,
any answer stream for a data stream D may only add intensional atoms to D. Thus,
satisfaction of extensional atoms in rule heads anyway hinges on the input D; it is not
possible to infer input data. If desired, one may rewrite a program in order to exclude
extensional atoms from rule heads. To this end, one replaces every extensional predicate
p (that is mentioned in a rule head) by a fresh intensional predicate p′ and adds the
rules @T p

′ ← @T p, @T ¬p′ ← @T ¬p (or for the latter rule, alternatively the constraint
⊥ ← 3(p′ ∧ ¬p)). In case a ground program is required that works for all inputs, one
may alternatively use the following set of rules, where p′′ is another fresh predicate:

2(p′ ∨ p′′) ← .
⊥ ← 3(p ∧ p′′).
⊥ ← 3(p′ ∧ p′′).

Clearly, using these encodings, the answer streams of the original program P and of
the rewritten program P ′ are in one-to-one correspondence. Moreover, we note that

63

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

for programs that do not use extensional predicates in rule heads, data streams can be
reduced to programs without extensional data, by replacing any input atom p ∈ υ(t) in a
data stream D = (T, υ) by the fact @t p←.

In conclusion, we find that LARS programs have the basic semantic properties
comparable to those of ordinary answer set programs under the FLP-reduct. They can
thus be seen as an extension of ASP for use cases in streaming with flexible window
functions.

3.2.4 Case Study: LARS as Specification Language

LARS was used as specification language in a research project on internet architectures,
which we now briefly review.

Modern internet usage is no longer characterized by sending and retrieving text
messages as in its beginning, but by rapid distribution of media content, in particular
videos. The underlying architecture was suitable for the initial research network of a few
nodes, but does no longer fit today’s demands of fast global delivery of large data volumes.
Various so-called Future Internet research activities address this problem. In particular,
Content-Centric Networking (CCN) [JST+09] proposes a replacement of location-based
addressing with a name/content-based one, i.e., centering around what the user requests,
not from where data packets can be retrieved. To this end, a CCN router can cache
recently transmitted content such as chunks of video data. This way, user requests can
be satisfied more quickly and at lower costs than by repeated retrieval from other sources.
Clearly, routers can only store a limited portion of all requested content. Consequently,
they need to implement a caching strategy that decides which content is cached and for
how long it is maintained, before memory is used for other content items.

Following up on previous studies on the influence of caching strategies on the perfor-
mance of CCN routers, we presented in [BBD+16] and [BBD+17] a dynamic approach
that changes the caching strategy based on the usage pattern. Our intelligent caching
agent (ICA) adds to a typical CCN architecture a control unit for each router that
switches strategies in response to a parameter α (of a Zipf distribution) that indicates
the level of distribution of content interest. Intuitively, a high value indicates a strong
concentration towards a smaller number of items. This may be observed, e.g., shortly
after a new episode of a highly popular show becomes available online.

We ran simulations to measure the influence of four different caching strategies, and
we could show in particular that performance gains can be expected when strategies are
adapted dynamically based on the request pattern, as abstracted in the α-parameter.
The decision unit of the developed simulation architecture was based on LARS: the
knowledge base, when to use which strategy, was written in a customized rule language
with LARS semantics. More specifically, the employed fragment was plain LARS (cf.
Section 4.1).

64

3.3. Computational Complexity of Reasoning in LARS

formula class program class
Problem α α− P P−

Model Checking (MC) PSpace P PSpace co-NP
Satisfiability (SAT) PSpace NP PSpace Σp

2

Table 3.1: Complexity of reasoning in ground LARS (completeness results)

Example 31 Consider the following two rules from such a knowledge base:

@T high ← �30@T α(V), V ≥ 18 (3.10)
lfu ← �302high (3.11)

The first rules states that any time point T within the last 30 time points (seconds) will
be associated with atom high if the α-value at T was at least 1.8 (written as integer 18).
Then, if the α-value has always been high in this interval, caching strategy lfu (i.e., least
frequently used) shall be adopted; it dismisses the content item with the least number of
cache hits (accesses) when space for new content is required. �

The reasoning module, materializing this logic, was implemented using DLVHEX 2.5
[EMRS15]. We made use of a single window operator that selects all tuples in a given
timeline; this function could be conveniently implemented using external atoms, i.e.,
interfaces to data outside the rule set. The reasoning system was periodically triggered,
and the simulated router then continued with the caching strategy derived for the current
evaluation data.

The simulation architecture for this study was the first show case for reasoning with
LARS, where the possibility to write declarative rules as such was particularly useful.
Moreover, a specific advantage in the CCN context is the possibility to change rules
without taking the router offline. Notably, the proposed method is also applicable for
explorative or experimental scenarios, since different decision criteria can be immediately
tested while the overall system keeps running.

In Chapter 7, that introduces the standalone stream reasoning system Ticker, we will
return to this use case. In particular, we will use two benchmark programs from this
context for the empirical evaluation of Ticker.

3.3 Computational Complexity of Reasoning in LARS
In this section, we analyze the computational complexity of LARS, where we consider
model checking and the satisfiability problem, for both LARS formulas and programs. In
our analysis, we concentrate on the general case but pay attention to the effect of nested
windows and particular classes of windows; a comprehensive study of the computational
complexity for a rich taxonomy of classes of LARS formulas and LARS programs remains
however for further study.

65

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

3.3.1 Problem Statements and Overview of Results

We say that a stream S = (T, υ) is over a subset A′ ⊆ A of atoms A, if v(t) \ A′ = ∅
for all t ∈ T . We study the complexity of the following reasoning tasks, where in the
following W is a set of window functions that are evaluable in polynomial time, B ⊆ A
is a set of background atoms, and where α is a ground LARS formula and P a ground
LARS program.

(1) Model Checking (MC). Given M = 〈S?,W,B〉, S? = (T, υ), and t ∈ T , check whether

• for a given stream S ⊆ S? and formula α it holds that M,S, t α; respectively
• I = (T, v) is an answer stream of a given program P for a data stream D ⊆ I

at t.

(2) Satisfiability (SAT). For decidability, we assume that relevant atoms are confined to
a subset A′ ⊆ A of polynomial size in the input. The reasoning tasks are:

• Given W , B, a timeline T , a time point t ∈ T , and a formula α, does some
stream S = (T, υ) over A′ exist such that M,S, t α, where M = 〈S,W,B〉?
• Given W , B, a data stream D with timeline T , a time point t ∈ T , and a
program P , does P have some answer stream for D at t that is over A′?

Table 3.1 shows the computational complexity of reasoning in ground LARS, where α−
and P− denotes the class of formulas respectively programs where the nesting depth of
window operators in formulas and rules is bounded by a constant.

As we can see from Table 3.1, in the general case model checking and satisfiability
checking are both PSpace-complete, and thus beyond the Polynomial Hierarchy. In-
formally, the recursive evaluation of a formula creates an exponential size tree, but at
each point in time, only a polynomial size portion of this tree needs to be in memory.
The PSpace-hardness arises from the temporal operators 2 and 3 in combination with
window operators. This allows for encoding quantified Boolean formulas (QBFs), whose
evaluation is a canonical PSpace-complete problem.

The picture changes if we bound the window nesting depth in formulas and programs.
Under a constant bound, the evaluation tree that is built has only polynomially many
nodes (i.e., substreams). This allows us to solve the model checking problem for ground
α− formulas in polynomial time by using labeling techniques. The remaining results for
satisfiability testing and for ground LARS programs are obtained from guess and check
algorithms. The lower bounds (the hardness results) are in essence inherited from the
complexity of answer set programs, except for model checking of LARS formulas. The
P-hardness of the latter problem is due to the generic form of windows whose associated
functions can be P-hard.

Note that from the results on Model Checking in Table 3.1, we immediately obtain
complexity results for answering ground queries Q = 〈M, t, α〉: the problem is PSpace-
complete in general, but polynomial for bounded window-nesting; and as the discussion
in Section 3.3.4 shows, this generalizes to a richer class of queries.

66

3.3. Computational Complexity of Reasoning in LARS

�10

2

∧

�#3

3

a

→

�4

3

b

�5

2

∧

¬

c

d

Figure 3.12: Tree representation of formula �102(�#33a ∧ (�43b→ �52(¬c ∧ d)))

3.3.2 Derivation of the Complexity Results

LARS Formulas

The complexity results for LARS formulas in the general case are based on the following
result for model checking.

Theorem 7 Given a structure M = 〈S?,W,B〉, a stream S = (T, υ) such that S ⊆ S?, a
time point t, and an arbitrary ground formula α, deciding M,S, t α is PSpace-complete,
where the PSpace-hardness holds for S = S?.

Intuitively, PSpace-membership is shown by a depth-first-search evaluation of the input
formula α along its tree representation. An example for the formula tree is shown in
Fig. 3.12.

At each node of the tree, we need to store the content according to the window
operators that are applied as in the path from the root. This requires only polynomial
space for that node and all nodes on the path to it as well.

To show PSpace-hardness, we reduce the evaluation of QBFs ∃x1∀x2 · · ·Qnxnφ(x)
to model checking. A LARS formula α = 3�set:x1 2�set:x2 · · ·φ(x) on the timeline
T = [0, 1] is constructed where the window operator �set:xi effects the possible truth
assignments to xi at the time points 0 or 1. To this end, the initial stream S? has all
atoms x1, . . . , xn at both 0 and 1. When �set:xi is evaluated at time point 0 (respectively
1), it removes xi from (respectively keeps xi in) the stream. By branching to 0 or 1,
all truth assignments to x1, . . . , xn are generated in an evaluation tree. On top, 3, 2
naturally encode the quantifiers ∃ and ∀. Fig. 3.13 shows an example evaluation tree:

67

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

x1
x2
x3

x2
x3

x1
x2
x3

x3
x2
x3

x1
x3

x1
x2
x3

∅ x3 x2
x2
x3

x1
x1
x3

x1
x2

x1
x2
x3

0-branch 1-branch

Figure 3.13: Evaluation tree for the formula 3�set:x1 2�set:x2 3�set:x3 (¬x1 ∧ (x2 ∨x3)),
encoding the QBF ∃x1∀x2∃x3(¬x1 ∧ (x2 ∨ x3)). Nodes x1 x2 x3, x2 x3, etc. represent the
streams with timeline [0, 1] and interpretation υ(0) = υ(1) = {x1, x2, x3}, υ(0) = υ(1) =
{x2, x3}, etc., as obtained by window operators �set:xi .

the bold lines mark subtrees for which, given the assignment to x1, . . . , xi by the path,
the subformula Qi+1xi+1 . . . Qnxnφ(x) evaluates to true. (More details are given in the
Appendix.)

For the satisfiability problem of LARS formulas, we obtain a similar result.

Theorem 8 Problem SAT for LARS formulas, i.e., given W , B, T , and t, is there
a stream S = (T, υ) is over A′ such that M,S, t α, where M = 〈S,W,B〉, is PSpace-
complete.

Informally, a suitable evaluation function can be guessed and checked in polynomial
space, and from NPSpace=PSpace we obtain membership in PSpace. On the other hand,
LARS model checking can be easily reduced to satisfiability testing (see Appendix).

LARS Programs

Based on Theorem 7, we show that model checking for ground LARS programs has the
same complexity as for LARS formulas in general.

Theorem 9 Problem MC for LARS programs, i.e., given a structure M = 〈I,W,B〉,
a data stream D, a program P , and a time point t, deciding whether I = (T, υ) is an
answer stream of P for D at time t, is PSpace-complete.

Proof. To decide the problem, we can (a) check that I is an interpretation stream
for D, (b) compute PM,t, and (c) check that M is a minimal model of PM,t, i.e., that
(c.1)M, t |= PM,t and (c.2) noM ′ = 〈I ′,W,B〉, with I ′ = (T, υ′) ⊂ (T, υ) exists such that
M ′, t |= PM,t. Now,

68

3.3. Computational Complexity of Reasoning in LARS

1. step (a) is trivially polynomial;

2. steps (b) and (c.1) are feasible in polynomial time using a PSpace oracle; and

3. step (c.2) is feasible in nondeterministic polynomial time using a PSpace oracle
(guess (T ′, v′) and check M ′, t |= PM,t).

Overall, the computation is feasible in NPSpace, thus in PSpace (as NPSpace = PSpace).
The PSpace-hardness of the problem is easily obtained from Theorem 7: for given

ground formula α and M = 〈S,W,B〉, let P = {α← >}, where > is an arbitrary tautol-
ogy. Note that no intensional data occur in α, and thus no interpretation M ′ that is
smaller than M is possible, and thus M = 〈S,W,B〉 is an answer stream for P for D at
t iff M,S, t P holds. 2

For checking satisfiability of LARS programs, we obtain based on the previous theorem
also PSpace-completeness.

Theorem 10 Deciding SAT for LARS programs, i.e., given W,B,D and some LARS
program P , does P have some answer stream I over A′ for D at t, is PSpace-complete.

Proof. To show satisfiability of a ground LARS program P , we can guess a stream
I = (T, v) and check that I is an answer stream of P for D at t; the guess is polynomial
in the size of A′ and the check feasible in PSpace by Theorem 9; overall, the computation
is feasible in NPSpace, thus in PSpace.

The PSpace-hardness of SAT for LARS programs P follows from the reduction of
MC for LARS formulas to MC for LARS programs in the proof of Theorem 9. 2

3.3.3 Bounded Window Nesting

Revisiting Fig. 3.13, we see that an exponential size evaluation tree results from the
evaluation of nested window operators �set:xi , where each of them is evaluated at both
time points 0 and 1. In this way, exponentially many different substreams are produced
in the evaluation. Such an exponential explosion is avoided, if we bound the nesting of
window operators in LARS formulas.

Definition 19 (Window nesting depth wnd(α)) The window nesting depth of a
LARS formula α, denoted wnd(α), is the maximal number of window operators encoun-
tered on any path from the root to a leaf in the formula tree of α.2 Formally, wnd(a) = 0
for every atom a and inductively wnd(¬α) = wnd(2α) = wnd(3α) = wnd(.α) = wnd(α);
wnd(α ∧ β) = wnd(α ∨ β) = wnd(α → β) = max(wnd(α),wnd(β)); and wnd(�α) =
1 + wnd(α).

2For simplicity, we omit a more fine-grained definition of wnd that respects ., for which “encountered”
is replaced by “encountered subsequently . . . with no . in between.” The tractability result carries over
to the larger class of formulas.

69

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Note in particular that wnd(α) = 0 means no window operators occur in α, and that
wnd(α) = 1 means that window operators occur but unnested.

If #w(α) is the number of window operators occurring in a LARS formula α, then
at most (#w(α) · |T |)wnd(α) many substreams of a stream S = (T, υ) (respectively
S? = (T ?, υ?)) are created in a recursive evaluation of M,S, t α. If wnd(α) is bounded
by a constant, then this number is polynomial in the size of S and α. We can thus use a
labeling technique to evaluate formulas bottom up (from subformulas) over the possible
substreams in polynomial time.

Theorem 11 Problem MC for LARS formulas α is in P, if wnd(α) is bounded by some
constant k ≥ 0, and is P-complete for arbitrary window operators.

The P membership part follows from a more general result in the next subsection
(Theorem 13). We also have matching P-hardness (and thus P-completeness) in general
due to the fact that evaluating window functions can be P-complete in general.

As a consequence of Theorem 11, also satisfiability of LARS formulas becomes easier
to decide when the nesting depth is bounded.

Corollary 2 Problem SAT for LARS formulas α is NP-complete, if wnd(α) is bounded
by some constant k ≥ 0.

The membership is via a simple guess and check argument. Since LARS subsumes
propositional logic, the problem is clearly also NP-hard.

Turning to LARS programs, let us define the window nesting depth for a program P
naturally as follows.

Definition 20 (Window nesting depth wnd(P)) Given a LARS program P , its
window nesting depth is defined as wnd(P) = max{wnd(β(r)→ α) | α← β(r) ∈ P}.

Our focus is here on finite LARS programs P , for which the nesting depth is always
well-defined and finite. For model checking such programs, we obtain the following result.

Theorem 12 Problem MC for LARS programs P is co-NP-complete, if wnd(P) is
bounded by some constant k ≥ 0.

Proof. Membership in co-NP can be seen as follows: the PSpace oracle in the algorithm
considered in the proof of Theorem 9 can by Theorem 11 be replaced by a polynomial-time
computation. It follows that we can refute nondeterministically in polynomial time that I
is an answer stream of P for D at t. Consequently, problem MC is for LARS programs P−
in co-NP. On the other hand, co-NP-hardness is inherited from the co-NP-completeness
of answer set checking for (disjunctive) propositional logic programs, cf. [EG95], which is
subsumed by model checking for LARS programs. 2

From Theorem 12, the following corollary is not difficult to obtain.

Corollary 3 Problem SAT for LARS programs P is Σp
2-complete, if wnd(P) is bounded

by some constant k ≥ 0.

70

3.3. Computational Complexity of Reasoning in LARS

The membership in Σp
2 follows from Theorem 12, as a candidate answer stream for P

w.r.t. a data stream D and time point t can be guessed and checked in polynomial time
with an NP oracle. The Σp

2-hardness is inherited from propositional disjunctive logic
programs, for which deciding answer set existence is Σp

2-complete [EG95].

3.3.4 Semantic Restriction: Sparse Window Functions

Bounding the nesting depth of windows serves as a restriction that allows us to obtain
tractability of model checking for LARS formulas. In addition to this syntactic criterion,
we can obtain other important cases for which solving this problem is feasible in polynomial
time due to semantic properties of the window operators that occur in a LARS formula.

An important such property is that a window operator �w and a nested window
operator �w1�w2 , applied to a stream S from a small (polynomial size) set of streams,
will always return a stream from that set. By sharing nodes in the substream evaluation
tree, the resulting evaluation graph has polynomial size and the relevant subformula
labeling for deciding satisfiability can be produced in polynomial time. Following the
intuition that such window operators/functions can produce only few substreams in total,
we call them sparse.3

A prototypical example of sparse window functions/operators (or sparse windows,
for short) are (generalized) sliding time-based windows �`,u (short for �`,u(1), i.e., hop
size d = 1) that cover the previous ` and the next u time points.4 Applied on a stream
S = (T, υ), the resulting window at time point t is the substream S|T ′ , which restricts
the timeline to T ′ = T ∩ [t − `, t + u]. Notably, the result of evaluating nested sliding
time-based windows �`1,u1 · · ·�`k,uk also is a substream S′ obtained by simply restricting
the timeline; overall, there are O(|T |2) many such S′.

We next describe evaluation graphs and results for sparse windows in more detail, and
then discuss concrete classes of window operators that ensure the sparse window property.
All time-based, tuple-based and filter windows considered in Section 3.1.3, 3.1.4, and
3.1.6, respectively, are among them, as well as a large class of partition-based windows in
Section 3.1.5; furthermore, windows from these classes can be mixed arbitrarily.

For uniformity, we regard in the sequel the reset operator . in abuse of the notion as
a window operator that yields, in the context of a structure M = 〈S?,W,B〉, the original
stream; i.e., . is viewed as �wS?

. where wS?
. (S, t) = S? (for all t ∈ N).

Window graph

For any formula ϕ, we refer to the sequences of window operators �w1 → �w2 → · · · →
�wk of ϕ along the branches of the formula tree of ϕ, where k = 1, 2, . . . , as the window-
paths of ϕ. Consider now a structure M = 〈S?,W,B〉 and a substream S ⊆ S?. We call
a set S of streams an evaluation base of (M,S, ϕ) and write SB(M,S, ϕ) or simply SB,
if it contains S and each stream Sk+1 that results if we apply the window operators

3Note that the condition is about large gaps in the space of potential substreams produced by a
window operator; the property does not concern the number of atoms in the input stream.

4Subsequent results carry over for windows �`,u(d) where d > 1, we confine here to d = 1 for simplicity.

71

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

�wk , starting from S0 = S, at each time point of the current stream Sk recursively along
a window-path of ϕ. An evaluation base includes all streams that can be encountered
in the recursive evaluation of M,S, t ϕ according to Definition 12, but it in general
it includes further streams as well (we shall discuss this aspect later in this section).
Given such a base SB, the window graph for (M,S, ϕ), denoted WGSB

(M,S, ϕ) or simply
WGSB

is the graph WGSB
= (N,E) with nodes N = SB and edges E that are obtained

inductively along window-paths as follows: add from the node Sk−1 for each time point t
in Sk−1 an edge labeled (�wk , t) to Sk = wk(Sk−1, t), where S0 = S. Informally, paths in
WGSB

starting at S allow us to navigate between substreams of S as obtained by window
operators as they occur in ϕ.

Example 32 Consider a structureM = 〈S?,W,B〉, where S? = ([0, 8], υ) and υ = {5 7→
{a}, 7 7→ {b}, 8 7→ {c}}, and the formula ϕ = �#2(�33b ∧�#13c). We take S = S?.
The window-paths of maximal length are p1 = �#2 → �3 and p2 = �#2 → �#1, i.e., on
the initial stream S we can apply �#2 (at potentially every time point), and in the
resulting streams one can apply �3, respectively �#1. We now establish an evaluation
base SB for (M,S, ϕ). The initial window operator �#2 yields potential windows
#2(S, 0), . . . ,#2(S, 8), i.e., by abbreviating the restriction S|T ′ to timeline T ′ = [a, b] by
Sab, the streams S00, S01, S02, . . . , S06, S57, S78. For path p1, we may now apply on any
of these streams at their respective time points the window function τ3, similarly for p2
function #1. This results in an evaluation base SB. Note that some of these additional
applications return their input stream, e.g., τ3(S78, 8) = S78, since the timeline [7, 8] has
size 1 and is not shrunk further by a time-based window of size 3.

As for the edges of the window graph WGSB
, we add in the first step an edge S → S00

with label (�#2, 0), an edge S → S01 with label (�#2, 1), . . . , and an edge S → S78 with
label (�#2, 8). Then, in the second step for p1, we add an edge (S00 → S00, 0) with label
(�3, 0), S01 → S00 with (�3, 0), S01 → S01 with (�3, 1), . . . , S06 → S52 with (�3, 5),
S06 → S36 with (�3, 6), . . . , S78 → S77 with (�3, 7), and S78 → S78 with (�3, 8); and
similarly with �#1 for p2. �

For our purposes, the following lemma is useful.

Lemma 1 Given a structure M = 〈S?,W,B〉, a substream S ⊆ S?, a formula ϕ and an
evaluation base SB for (M,S, ϕ), the window graph WGSB

for (M,S, ϕ) is computable
in polynomial time.

Proof. Indeed, by traversing the recursive Definition 12, we can add the edges of
WGSB

= (N,E) as described, by calculating each wk(Sk−1, t), which takes polynomial
time; there are |T ?| many such calculations to make, and in total thus at most #w(ϕ)∗|T ?|
many, where #w(ϕ) is the total number of window occurrences in ϕ. In order to find
wk(Sk−1, t) in SB, i.e., the stream S′ ∈ SB such that S′ = wk(Sk−1, t) one can use hashing
or, if the stream is to large, use a trie structure which makes this feasible in O(‖S′‖)
time, where ‖S′‖ is the size of S′ (which is O(|A| ∗ |T |)).

Thus in total the time to compute WGSB
for (M,S, ϕ) is

O(#w(ϕ) ∗ |SB| ∗ |T ?| ∗ (Cw + ‖S?‖) + |ϕ|) = O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k), (3.12)

72

3.3. Computational Complexity of Reasoning in LARS

where Cw = O(‖S?‖k) = O(|T ?|k ∗ |A|k) is a polynomial in ‖S?‖ that bounds the
evaluation time of any window. Indeed, there are at most #w(ϕ) ∗ |SB| ∗ |T ?| many edges
to consider, and computing plus matching a window S′ against SB takes O(Cw + ‖S?‖)
time. Overall, this is polynomial in the size of M , SB, and ϕ. 2

Stream Labeling

Given a structure M = 〈S?,W,B〉, a substream S ⊆ S? and a window graph WGSB
=

(N,E) for (M,S, ϕ), we label each pair (S, t) such that S ∈ N and t ∈ T ?, where
S = (T, υ), with relevant formulas that hold in stream S at time t due to the eval-
uation base SB. We define the label set LSB

(S, t) by the following steps:

1. take a subformula �wkαk in ϕ such that �w1 → �w2 → · · · → �wk is a maximal
window-path in the formula tree of ϕ that has not yet been considered. We label
each pair (S, t), such that S = Sk, with all subformulas of αk that evaluate in the
stream S at time t to true.
More precisely, we add a subformula α′ of αk to LSB

(S, t), where S = (T, υ), by a
case distinction on the form of α′ due to Definition 12 as follows. We add:

− atom a, if a ∈ υk(t);
− ¬α, if α is not in LSB

(S, t);
− α ∧ β, if α and β are in LSB

(S, t); similarly for ∨ and →;
− 3α/2α, if α ∈ LSB

(S, u) for some/all u ∈ T ;
− @uα, if α ∈ LSB

(S, u) and u ∈ T .

This labeling can be carried out bottom up along the formula tree. Note that in
the first application of Step 1 αk does not contain any window operator.

2. We label (S, t), where S = Sk−1, with �wkαk if (Sk, t) was labeled with αk in
Step 1.

3. Inductively, the window path �w1 → �w2 → · · · → �wi is considered in Step 1 for
i < k, i.e., one considers subformula �wiαi, after all window operators that occur
in αi have been considered. Any subformula �wjα of αi starting with a window
operator is like an atom, and presence of �wjα in LSB

(Si, t) reflects the entailment
result for this subformula in Si at t.

Example 33 (cont’d) Consider the window graph WGSB
of Example 32. We are

interested whether M,S, 8 ϕ holds (S = S?) and start illustrating the bottom up
evaluation by considering window-path p2 at t = 8, i.e., edges S → S78 and S78 → S88
with window graph labels (�#2, 8) and (�#1, 8), respectively. The (maximal) window-
path p2 ends before subformula 3c which, in Step 1, is evaluated in Sk = S88 =
([8, 8], {8 7→ {c}}). Thus, we obtain formula labels LSB

(Sk, 8) = {c,3c}. In Step 2, we
thus get LSB

(Sk−1, 8) = {�#13c}, where Sk−1 = S78 = ([7, 8], {7 7→ {b}, 8 7→ {c}}), i.e.,
the previous stream in the considered path.

73

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

Likewise, we evaluate subformula 3b for path p1 at t = 8, i.e., the edges S → S78 and
S78 → S78 with window graph labels (�#2, 8) and (�3, 8), respectively. In Step 1, we add
label 3b to LSB

(S78, 8). Note that b does not hold at time 8 in S78 but b ∈ LSB
(S78, 7)

(and 7 ∈ [7, 8]) from similar evaluation, e.g., along path S → S78 → S77 with window
graph labels (�#2, 8) and (�3, 7), respectively. Thus, we add in Step 2 to the formula
�33b to LSB

(S78, 8) (note that in this path Sk = Sk−1).
Step 3 recognizes that all window operators of the conjunction ϕ′ = �33b ∧�#13c

have been considered. Hence, we go to Step 1 and find that for the formula αk = ϕ′ both
conjuncts �33b and �#13c are in LSB

(S78, 8), i.e., ϕ′ holds and is added. In the next
Step 2, we consider Sk−1 = S, i.e., the original stream before evaluating �#2. (That is,
we navigate back the first edge S → S78 with label (�#2, 8) for either path.) Since ϕ′
has been added to (S78, 8) in Step 1, we now assign LSB

(S, 8) = {�#2ϕ′}. Finally, we
recognize in Step 3 that no window operator remains to be considered along paths p1 and
p2 at t = 8. We skip the stream labeling of further pairs (S, t), as we already obtained
that ϕ ∈ LSB

(S, 8) which means that M,S, 8 ϕ holds. �

Proposition 2 Let SB be an evaluation base for (M,S, ϕ), where M = 〈S?,W,B〉 and
S ⊆ S?, and let t ∈ T ?. Then, it holds that M,S, t ϕ iff ϕ ∈ LSB

(S, t).

Proof. The statement is proved by induction on the structure of the formula ϕ. In the
base case, ϕ is a single atom a, and by construction the windows graph WGSB

has no
edges. The node (S, t), t ∈ T ? is labeled with a iff a ∈ υ(t), where S = (T, υ), and thus
M,S, t ϕ iff ϕ ∈ LSB

(S, t) holds. In the induction step, assume that the statement
holds for all subformulas of ϕ, and consider the different cases of the root connective op
of ϕ. From the induction hypothesis that or each M,S, t and subformula α of ϕ, the
entailment M,S, t α is correctly reflected by α ∈ LSB

(S, t), it is not hard to verify that
in each case, ϕ is added to the label of (S, t) if and only if M,S, t ϕ holds. Note in this
context that for op = �w and op = ., the window graph WGSB

for ϕ contains the one
for M,S′, t α respectively M,S, t′ α or M,S?, t α in the recursive Definition 12 as
a subgraph. 2

We thus obtain an algorithm to decide M,S, t ϕ as follows:

1. given an evaluation base SB for (M,S, ϕ), compute the window graph WGSB
;

2. compute the labeling LSB
for ϕ;

3. return “yes” iff ϕ ∈ LSB
(S, t).

The correctness of this algorithm follows from Proposition 2. Regarding its time com-
plexity, it is not hard to see that the algorithm runs in time polynomial in the size of SB ,
M and ϕ (see Appendix). In particular, if the evaluation base SB is small, we obtain
tractability.

Theorem 13 LetM = 〈S?,W,B〉 be a structure, S ⊆ S? and let ϕ be a formula. Suppose
that (M,S, ϕ) has some evaluation base SB of size polynomial in the size of M and ϕ.
Then M,S, t ϕ is decidable in polynomial time.

74

3.3. Computational Complexity of Reasoning in LARS

Proof. From a window graph WGSB
= (N,E) for (M,S, ϕ), where M = 〈S?,W,B〉, we

can drop each node S′ 6= S from SB that does not occur in E; the remaining graph
WGS?

B
= (N ′, E) is the smallest window graph possible, i.e., N ′ ⊆ N holds for each

window graph WGS′B = (N,E) for (M,S, ϕ). Notably we can build S?B on the fly by
initially setting S?B = {S} and by then adding any S′ = wk(Sk−1, t) along the window path
that is not yet member of S?B. Following the analysis in Lemma 1, as inserting a stream S
into SB is like searching feasible in O(‖S‖) time, building WGS?

B
take also time bounded

by (3.12), i.e., by O(#w(ϕ)∗|SB|∗ |T ?|∗(Cw+‖S?‖)+ |ϕ|) = O(|ϕ|∗ |SB|∗ |T ?|k+1 ∗|A|k).
The time to construct the bottom labeling is bounded by O(|T ?| ∗ |S?B| ∗ |ϕ|): for

each subformula ϕ′ of ϕ and pair (S′, t′), where S ∈ S?B and t′ ∈ T ∗ we have to decide
whether ϕ′ is put in LSB

(S′, t′). This can be decided by constantly many lookups of
already constructed labels for subformulas of ϕ′; for 3α, we can use a flag that is set
true if (S′, t′) is labeled with α, where t′ ∈ T . For 2α, we can proceed similarly.

The total runtime of the algorithm is thus bounded by
O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k + |T ?| ∗ |S?B| ∗ |ϕ|) = O(|ϕ| ∗ |SB| ∗ |T ?|k+1 ∗ |A|k),

Given that the size of SB is polynomial in the size ofM and ϕ, it follows that the runtime
is polynomial in the size of M and ϕ. 2

As already mentioned, the presented stream labeling LSB
for ϕ will in general contain

more streams than necessary for the evaluation of M,S, t ϕ. We considered in
Example 33 the entailment relation M,S, 8 ϕ, where S has the timeline [0, 8]. All pairs
(S′, t′) with a proper substream S′ of S that has a timeline overlapping with [0, 6] are
irrelevant, as the first window operator �#2 already restricts the relevant timeline to [7, 8]
and any further consideration affects only substreams of S78. This would be different if
a temporal modality ◦ ∈ {3,2,@t′} was in front of ϕ. More generally, if we consider a
formula ◦ψ such that ψ does not start with a temporal modality at some time point t,
we observe that ◦ changes which time points have to be considered (i.e., all or some t′),
while only a window operator in ψ will change the timeline. Moreover, given a sequence
◦1 · · · ◦n of modalities, we observe that the first n− 1 are irrelevant. Accordingly, we can
restrict both the evaluation base SB and the window graph WGSB

by considering the
last modality ◦ for the current stream Sk−1 to first determine the relevant time points t′
based on which we step to Sk = (Sk−1, t

′). Following this intuition, we in fact skipped
the discussion of most pairs (S′, t′) in Example 33, by directly starting with the paths for
t = 8 and focusing on the relevant streams in SB and the relevant edges of the stream
graph WGSB

. It is feasible to obtain these relevant subsets in polynomial time as well.
While one can expect a significant speedup in a practical realization of this improvement,
the worst case polynomial complexity of the stream labeling procedure does not change.
In a more fine-grained view of the formula ϕ that looks besides window operators also
at the occurrence of temporal operators, further tractable fragments of LARS formulas
could be identified; we leave this for future work.

On the other hand, from the theoretical perspective, we note that an even more ab-
stract approach is possible: we may alternatively define an evaluation base independently
of a formula, i.e., purely based on a structure M = 〈S?,W,B〉: any (potentially infinite)

75

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

sequence of window operators �w with w ∈W will eventually not produce new streams.
A given formula ϕ that only uses window functions from W only represents a subset of
these sequences. Sparse windows ensure that, even in this high-level approach, the size
of the evaluation base remains polynomial in the size of of the structure.

Classes of Sparse Window Functions

From Theorem 13 we immediately obtain the P-membership of model checking for LARS
formulas with bounded window nesting in Theorem 11. Furthermore, we can conclude
that model checking for LARS formulas with unbounded nesting is tractable for a broad
class of window operators.

Concerning time-based window operators �`,u(d), as already observed above, evalu-
ating the window function τ `,u(d)(S, t) on the stream S at time point t always yields a
substream S′ = (T ′, υ′) = (T ′, υ|T ′), i.e., S′ restricts S to the timeline T ′. If we apply a
further time-based window on S′, we obtain another stream of this form. Overall, there
are O(|T |2) many such S′; if we take possible occurrence of the reset operator . into
account, there are O(|T ?|2) many such streams. Thus, Theorem 13 holds for all LARS
formulas that use only time-based window operators.

A similar consideration establishes the same result for tuple-based windows �#`,u:
evaluating a tuple-based window function #`,u(S, t) on the stream S at time point t yields
a substream S′ = (T ′, υ′) of S = (T, υ) that diverges from S = (T ′, υ|T ′) at most on the
stream boundaries t` and tu, where T ′ = [t`, tu]. In any case, S′ is uniquely identified by
the triple (`, u, t). If we apply a further tuple-based window on S′, we again obtain a
substream of S of this form; overall, there are O(|T ?| · A2) many such streams, where
A =

∑
t∈T ? |υ?(t)| is the total number of atoms in the stream S?, thus polynomially

many.
Each tuple-based window �#`,u trivially amounts to a partition-based window

�idxA,nA where all atoms are in one partition. The question is thus whether also
partition-based windows are sparse. Unfortunately, the answer is negative.

Theorem 14 Problem MC for LARS formulas in which only partition-based windows
occur is PSpace-complete.

Proof. By Theorem 7, it remains to show PSpace-hardness. For this, we reconsider the
reduction from evaluating a QBF Φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn) as in (A.1) to
model checking for a LARS formula (A.2), and adapt the reduction as follows.

For each atom xi, we introduce a fresh atom wi, and we change the content of stream
S? = ([0, 1], υ?) to υ?(0) = {x1, . . . , xn}, υ?(1) = {w1, x1, . . . , wn, xn}. Furthermore,
we replace the window �set:x1 with the partition-based window �idx(i),n(i) , where idx(i)

creates two partitions idx−1(1) = {wi, xi} and idx−1(2) = A \ {wi, xi}, with the counts
n(i)(1) = (1, 2) and n(i)(2) = (∞,∞), where ∞ can be replaced by any number ≥
2 ∗ (n− 1). For making the selection deterministic, we assume any total order ≤ (e.g.,
lexicographic order) such that wi ≤ xi for all i = 1, . . . n.

Informally, these changes have the following effects:

76

3.3. Computational Complexity of Reasoning in LARS

• evaluated at time point 0, the partition based window function pidx(i),n(i) will for
the partition {wi, xi} remove at time0 one atom (`(i) = 1); as wi is not in υ?(0), it
will remove x1; at 1, it will remove two atoms (u(i) = 2), and thus both wi and xi.

• evaluated at time point 1, pidx(i),n(i) will for the partition {wi, xi} remove at time 1
one atom (as `(i) = 1), and as wi < xi, it will remove wi; the count u(i) = 2 has no
effect as 1 is the maximal time point in T ? = [0, 1].

Thus, the stream pidx(i),n(i)(S?, 0) has neither xi nor wi at t = 0, 1, and pidx(i),n(i)(S?, 0)
has xi at t = 0, 1 and wi not at t = 0, 1. Thus, the evaluation of the formula

α′ = W1 �
idx(1),n(1)

W2 �
idx(2),n(2) · · ·Wn �

idx(n),n(n)
φ(x1, x2, . . . , xn),

on the modified S? generates at the innermost evaluation level the same streams

pidx(n),n(n)(pidx(n−1),n(n−1)(· · · pidx(1),n(1)(S?, t1), · · ·), tn−1), tn),

where t1, . . . , tn ∈ {0, 1}, as the evaluation of the formula α in (A.2) on the original S?
at the innermost level, which are given by setxn(setxn−1(· · · setx1(S?, t1), · · ·), tn−1), tn).

Consequently, α′ is entailed at an arbitrary t ∈ {0, 1} on the modified S? iff α is
entailed at an arbitrary t ∈ {0, 1} on the original S?. This proves PSpace-hardness.

We note that the reduction proves the result where each partition-based window
creates only two (individual) partitions, but all such windows use the same tuple counts
n(i) = (1, 2). The reduction above can be easily adjusted to partition-based windows
that use all the same partitioning but different tuple counts: just let idx(i′) = idx, where
idx(j) = {wj , xj} and n(i′)(j) = (`ij , uij), for i, j = 1, . . . , n, such that `ij = uij = ∞ if
j 6= i, and `ij = 1 and uij = 2 if j = i; then each associated partition-based window
function pidx(i′),n(i′) clearly coincides with pidx(i),n(i) , which implies PSpace-hardness for
this setting. 2

An analysis of the proof shows that the result even holds if each partition-based window
creates only two partitions (which is the minimum in order not to collapse with a tuple-
based window); it is recursive nesting and the use of either changing partitions, or of
changing tuple counts (or both) which leads to intractability.

The result for tuple-based windows generalizes to partition-based windows, provided
that the index functions idx of the window operators �idx,n that occur in the formula
partition the ground atoms G into groups that are formed from constantly many base
groups Bi. That is, each group idx−1(i) is of the form idx−1(i) =

⋃
B, where B ⊆

{B1, . . . , Bk} and G =
⋃k
i=1Bi, where k is constant. Let us call such partitions meager.

In this case, each (nested) result of evaluating a window function can be uniquely identified
by a tuple (`1, u1, . . . , `k, uk, t), and there are polynomially many such tuples.

Finally, let us consider filter windows as introduced in Section 3.1.6. Recall that the
function fA associated with �A projects the input stream to the atoms in A. We can
extend the description for partition-based windows results above by adding a concrete filter

77

3. LARS: A Logic-based Framework for Analytic Reasoning over Streams

A that is applied prior to the partition-based selection. While in general, semantically
an exponential number of filters A are possible, for the concrete evaluation of a LARS
formula ϕ only filters A that syntactically result from the formula matter, and there
are only linearly many of them. Thus, the number of relevant substream descriptions
(`1, u1, . . . , `k, uk, t, A) is still polynomially bounded.

Clearly, the meager-partition representations include all tuple-based representations,
which in turn include all time-based representations. Thus, we obtain the following result.

Theorem 15 For LARS formulas α (respectively LARS programs P), problem MC is
in P (respectively co-NP-complete), if only time-based, tuple-based, meager partition-based,
and filter windows occur in α (respectively in P).

Proof. To begin with, each reset operator . that occurs in the formula α returns the
stream S?, and thus we need to deal with substreams of S and S? in the evaluation of α.
It is sufficient to consider just S (and substreams of it), as S = S? is covered and the
result then clearly follows.

As argued in the discussion, each result of a time-based window function τ `,u(d)(S, t)
can be expressed as the result of a tuple-based window function #`′,u′(S, t′), where the
counts `′ and u′ are set such that exactly the atoms in τ `,u(d)(S, t′) will be selected.
Furthermore, each result of a tuple-based window function #`,u(S, t) can be viewed as the
result of a dummy partition-based window function pidxA,nA(S, t) where idxA : A → {1}
and nA(1) = (`, u), i.e., only one partition exists that contains all tuples; clearly, this
trivial partition is always the union B1 ∪ · · · ∪ Bk of all base groups Bi for meager
partitionings. Thus, it is sufficient to consider the latter case.

Consider a stream S = (T, υ), T = [t`, tu], and some time point t ∈ T . We can
describe with a tuple di = (`1, u1, . . . , `k, uk, t) stream S, where `i states how many
atoms in S from [t`, t] that are in partition Bi should be included, and ui similarly how
many atoms in S from [t+ 1, tu] are in Bi. Now if pidx,n(S, t′) is applied on S, we can
single out, for each partition idx−1(j) =

⋃
{Bi | Bi ⊆ idx−1(j)}, how many atoms back

(respectively forward) from t′ have to be included, depending on n(j) = (`idx
j , uidx

j) and
we can break this down to counts `′i, u′i for all base groups Bi, i = 1, . . . , k. Thus we
obtain a description d′i = (`′1, u′1, . . . , `′k, u′k, t′) that describes pidx,n(S, t′). Overall, there
are polynomially many such descriptions in the size of the input.

Finally, we extend the description di for a substream with a filter A to sd = (`1, u1, . . . ,
`k, uk, t, A), where for describing the initial stream S we can use A = A (i.e., no atom is
filtered). Clearly, if we apply a meager partition-based window function on S at t′, the
description sd′ = (`1, u1, . . . , `k, uk, t, A) of S can be adjusted to represent pidx,n(S, t′)
by a description sd = (`′1, u′1, . . . , `′k, u′k, t′, A);5 in case of a filter window application, we
can represent fA′(S, t′) by sd′ = (`′1, u′1, . . . , `′k, u′k, t′, A ∩A′). Consequently, the possible
descriptions that result are of the form sd = (`1, u1, . . . , `k, uk, t, A1∩A1∩· · ·∩Ai) where
�A1 ,�A2 , . . . ,�Ai are the filter windows encountered on some path from the root of the
formula tree of ϕ; overall, the number of paths (and thus such sequences) is bounded

5We tacitly assume here that the order of atoms that is used to resolve non-deterministic selection is
static and does not depend on the time point t.

78

3.4. Summary

by the size of ϕ. Hence, overall the number of extended descriptions is polynomially
bounded in the size of the input. 2

This result can be further generalized by allowing in addition restricted occurrence of
arbitrary windows in formulas. In particular, this holds if the nesting depth of such
additional window operators in a formula is bounded by a constant. This is because if
on a root-path in the formula tree the encountered such windows are �w1 , . . . ,�w` , then
the resulting substream S can be described by a sequence

sd0,�w1 , sd1, . . . , sd`−1,�w` , sd`,

where each sdi = (`(i)1 , u
(i)
1 , . . . , `

(i)
k , u

(i)
k , t

(i), A(i)) is an extended partition-based window
description. In total, only polynomially many such descriptions will matter.

Thus in conclusion, for a wide range of formulas that occur in practice the Model
Checking problem for LARS formulas is solvable in polynomial time. Furthermore, in
frequent use cases with time-based and tuple-based windows it will have low complexity
inside P. Finally, based on the tractability of model checking, for satisfiability the same
results as for α− and P− in Table 3.1 can be established using analog arguments.

3.4 Summary
In this chapter we presented and studied the LARS framework, which aims at filling
a previous gap in theoretical stream reasoning research. It provides the possibility to
express model-based semantics for queries or programs over streams using generic window
operators and different temporal modalities. We formalized streams, windows, window
functions and then introduced a framework that extends ASP for streams on top of a
monotonic core, i.e., LARS formulas. The framework is generic and very expressive;
various concrete logics can be obtained by fixing (i) a suitable fragment for the task at
hand, and (ii) the set of employed window functions.

The remainder of this thesis makes use of LARS in several ways. First, we will
compare LARS with other formalisms in Chapter 4 and also use it to clarify other
informally specified semantics there. The possibility to formally define the output of a
query or program is also a prerequisite for optimizations of processing tools. We examine
in Chapter 5 notions of equivalence between LARS programs and how they can be
characterized in model-based terms. We will then investigate in Chapter 6 approaches for
incremental reasoning, addressing the issue of frequently updating results. There, LARS
serves as a means to specify precisely a method for updating a model due to an incremental
program change that reflects the changes of the stream. Moreover, it is also employed as
stream reasoning language itself. We mention in Section 6.5.2 the new streaming tool
Laser that aims at efficiently updating the unique answer stream in stratified fragments
of LARS. Ticker, another stream reasoning engine, will be presented in more detail in
Chapter 7. It implements the developed incremental reasoning techniques for plain LARS
programs, i.e., the core fragment of the framework that has emerged in the course of this
thesis (cf. Section 4.1).

79

CHAPTER 4
Relating LARS to other

Formalisms

After having introduced the LARS framework in Chapter 3, we are now going to relate it
to the larger context of stream processing and reasoning, as well as temporal reasoning.
We will study the relation to selected approaches from different research areas and also
indicate its use as tool for formal analysis.

Outline

Section 4.1 introduces plain LARS, the central fragment that will be used in subsequent
chapters; it naturally extends of normal logic programs with the new operators. Section 4.2
provides a translation from LARS to LTL with past time operators. Section 4.3 then
studies the Continuous Query Language (CQL) and how LARS can provide a model-
based semantics in addition to its operational one. In Section 4.4 we investigate the
possibility to express temporal intervals in LARS, comparing it with the rule-based
language ETALIS for complex event processing. We then compare in Section 4.5 two
Semantic Web approaches for stream processing, i.e., C-SPARQL and CQELS, where
LARS serves to clarify a central semantic difference on formal grounds. Finally, we
discuss Section 4.6 distinctive semantic features of LARS.

Publications

As in Chapter 3, we build on the publication [BDTE18] and its predecessors [BDTE17,
BDEF15, BDTEF14b, BDTEF14a]. In particular, Sections 4.3 (CQL), 4.2 (LTL) and 4.5
(C-SPARQL and CQELS) are from there; the latter is a summary of two further papers,
i.e., the workshop paper [DBE15b] and the conference version [DBE15a]. The discus-
sion from Section 4.6 is also from [BDTE18]. Section 4.4 on ETALIS presents results

81

4. Relating LARS to other Formalisms

from [BDEF15]; technical details are given in the Appendix. Plain LARS was first defined
in [BDE16].

4.1 Answer Set Programming (ASP): Plain LARS
We already observed in Proposition 1 (page 57) that LARS programs extend logic
programs under the answer set semantics. In addition to this, we define here a practical
fragment of LARS, called plain LARS, as lightweight extension of normal logic programs
for streams as follows.

Given an atom a ∈ A and a time point t ∈ N, a formula of form

• @ta is called an @-atom, and

• �w ? a, where ? ∈ {3,2,@t}, a window atom.

Finally, a formula α is an extended atom, if it is an atom, an @-atom, or a window atom,
i.e., from the grammar

a | @ta | �@ta | �3a | �2a . (4.1)
We use A+(P) to denote the set of extended atoms occurring in a program P . Plain
LARS is then defined by allowing in normal logic programs @-atoms in rule heads, and
extended atoms in rule bodies.

Definition 21 (Plain LARS) A plain LARS rule is of form

α← β1, . . . , βn,notβn+1, . . . ,notβm ; (4.2)

where α is an atom or an @-atom, and each βi (1 ≤ i ≤ m) is an extended atom. A
plain LARS program is a set of Plain LARS rules.

As for ASP, the body of a rule r of the above form can now be separated into the positive
body B+(r) = {β1, . . . , βn} and the negative body B−(r) = {βn+1, . . . , βm}. We use the
negation “not” in (4.2) as a notational variant of ¬ (as defined in LARS). In that respect,
the body B(r) (as defined earlier) equals {β1, . . . , βn,¬βn+1, . . . ,¬βm}.

Plain LARS emerged as guiding fragment for many studies in the course of this
thesis. In particular, it is the targeted formalism for the work on incremental reasoning
(Chapter 6). We will give in Section 6.3 an encoding of plain LARS to ASP. Elaborating
on how this encoding can be updated dynamically then leads to the incremental reasoning
algorithm in Section 6.4. This algorithm is implemented in the Ticker engine (Chapter 7),
which is also based on plain LARS.

Plain LARS is also the employed fragment in further work on incremental reasoning,
as mentioned in Section 6.5.1, summarizing [BDE15], where it was first considered, and in
Section 6.5.2; the latter uses a slight variation where negation is considered only directly
in front of atoms. Plain LARS was also used in the work on Content-Centric Networking
that we mentioned in Section 3.2.4. Apart from that, we give in Section 5.5 additional
results for this fragment, when considering semantic characterizations of different notions
of equivalence.

82

4.2. Linear Temporal Logic (LTL)

4.2 Linear Temporal Logic (LTL)
In this section, we compare LARS to temporal logic, where we naturally focus on Linear
Temporal Logic (LTL) [Pnu77] extended with past time operators (PLTL) [Mar03].
Syntactically, these logics extend propositional logic with temporal operators, according
to the following syntax

φ ::= ⊥ | a | ¬α | α ∧ β | α ∨ β | α→ β | Xα | αUβ | X−1 α | αU−1 β;

where a ∈ G. The informal meaning of Xα is that α is true at the next point in time,
and αUβ means that α is from now on true until β is true at some point; X−1 α and
αU−1 β are the counterparts for the past (not available in LTL),1 i.e., that α is true
at the previous point of time respectively that α has always been true after some time
point at which β was true. Important derived operators are Fα and Gα which are
shorthand for >Uα, where > = ¬⊥, and ¬(>U¬α) and state that α is true now or
at some respectively now and at every time point in the future; F−1 α = >U−1 α and
G−1 α = ¬(>U−1 ¬α) express the counterparts for the past.

Semantically, PLTL-formulas are evaluated over paths, which are infinite sequences
π = π(0), π(1), π(2), . . . of positions with an associated interpretation ν(π(i)) of
propositional atoms A, for each i ≥ 0; the latter is often tacitly omitted. The satisfaction
relation π, i |= α is inductively defined as follows:

π, i |= a :⇔ a ∈ ν(π(i)), for a ∈ A,
π, i |= ¬α :⇔ π, i 6|= α,
π, i |= α ∧ β :⇔ π, i |= α and π, i |= β,
π, i |= α ∨ β :⇔ π, i |= α or π, i |= β,
π, i |= α→ β :⇔ π, i 6|= α or π, i |= β,
π, i |= Xα :⇔ π, i+ 1 |= α,
π, i |= αUβ :⇔ π, j |= β for some j ≥ i such that π, k |= α for all i ≤ k < j,
π, i |= X−1 α :⇔ i > 0 and π, i− 1 |= α,
π, i |= αU−1 β :⇔ π, j |= β for some j ≤ i such that π, k |= α for all j < k ≤ j.

Note in particular that ¬X−1> allows us to recognize that we are at the beginning of
the path, as π, i |= ¬X−1> holds iff i = 0. Two PLTL formulas α and β are equivalent,
if for every path π and integer i ≥ 0, it holds that π, i |= α iff π, i |= β, and initially
equivalent, if for every path π it holds that π, 0 |= α iff π, 0 |= β.

It is well-known that PLTL is not more expressive than LTL in the sense that every
PLTL formula is initially equivalent to some LTL-formula [Gab87], but the smallest such
formula can be exponentially larger [Mar03].
Comparison to LARS. Comparing LARS to LTL, we see that the temporal operators
are clearly different. The temporal operators 2 and 3 in LARS have as counterparts the
pairs G,G−1 and F,F−1 respectively, which allow one to address all positions in a path;
the past time operators are indispensable for evaluation inside the path. The window

1To stress symmetry, we write U−1 instead of the usual S.

83

4. Relating LARS to other Formalisms

operators in LARS have no counterpart in LTL and PLTL, and similarly the @t′ operator
which is known as nominal in hybrid logic and can be traced back to Prior’s work [Pri67].
On the other hand, LARS has no next-time X nor until U or any of their past time
counterparts.

The presence of temporal operators in LTL formulas affects the computational
complexity of model checking and satisfiability testing in general (cf. [DS02]). In the
general case, for both LTL and PLTL these problems are PSpace-complete, cf. [SC85],
where satisfiability of a formula α means existence of a path π such that π, 0 |= α, and
model checking that π, 0 |= α for every path π in a given Kripke structure. Thus, at the
surface LARS and LTL have the same computational complexity.

However, in LARS we consider only single path Kripke structures of a given length,
for both satisfiability and model checking at some given time point t. For both LTL
and PLTL, model checking single paths is feasible in polynomial time,2 and satisfiability
is thus easily seen to be NP-complete in this setting. Thus, there is a considerable
complexity gap between LARS and LTL.

Nonetheless, it is possible to express (propositional) LARS in LTL, if we confine to
particular window operators. We show in the next section that this is possible for sliding
time-based windows; that is, we can view this instance of LARS as a fragment of LTL.

Translation of LARS to Linear Temporal Logic

Formally, we represent any LARS structure M = 〈S,W, ∅〉, where S = (T, υ), as a PLTL
interpretation π(M) = π(0), π(1), . . . where for each integer i ≥ 0, ν(π(i)) = {u} if i /∈ T ,
and ν(π(i)) = υ(i) otherwise, where u is a special atom which expresses that the position
i is not in the stream.

Our translation of LARS formulas to PLTL-formulas for evaluation at a time point t
in a stream S = (T, υ), where T = [`′, u′], is shown in Algorithm 4.1. The parameters
`, u mark the interval [`, u] of the substream that is currently considered, while `′, u′
marks the original interval. The translation proceeds recursively, where the temporal
modalities 2, 3 and @t′ are effected using the X operator, where we use here Xk α as
a shorthand for the k-fold iteration of X on α; that is, X0 α = α, for k > 0 we have
Xk α = X Xk−1 α, and for k < 0 we have Xk α = X−1 Xk+1 α. For window operators �i,j

the current interval has to be adjusted to at most i steps before resp. j steps after t,
while for the reset operator . the original interval is selected.

Example 34 Consider the formula ϕ = @1q ∨ p ∧�1,33r, and let [`′, u′] = [`, u] = [2, 4]
and t = 3. Then we have

pltl(2, 2, 4, 4, 3, ϕ) = ⊥ ∨ p ∧ X−1 r ∧ r ∧ X r.

The ⊥ disjunct is due to the fact that position 1 is not in the timeline T = [2, 4]. The
conjunction X−1 r ∧ r ∧ X r stems from the translation of the window �1,3. Note that
X2 r and X3 r are missing since t = 3 is in distance 1 to the end of the bound u = 4. �

2It is known that the problem is NLogSpace-hard but unknown whether it is in NLogSpace or P-hard
in this setting, for both LTL and PLTL [LMS02].

84

4.2. Linear Temporal Logic (LTL)

Algorithm 4.1: LARS to PLTL translation
1 Input: integers `′, `, u, u′ such that 0 ≤ `′ ≤ ` ≤ u ≤ u′, t ∈ [`′, u′], ground LARS
formula ϕ

2 Output: PLTL formula
function pltl(`′, `, u, u′, t, ϕ)
match ϕ

case atom a =⇒ a

case ¬α =⇒ ¬pltl(`′, `, u, u′, t, α)
case α ∧ β =⇒ pltl(`′, `, u, u′, t, α) ∧ pltl(`′, `, u, u′, t, β)
case α ∨ β =⇒ pltl(`′, `, u, u′, t, α) ∨ pltl(`′, `, u, u′, t, β)
case α→ β =⇒ pltl(`′, `, u, u′, t, α)→ pltl(`′, `, u, u′, t, β)
case 2α =⇒

∧u−t
k=`−t Xk pltl(`′, `, u, u′, t+ k, α)

case 3α =⇒
∨u−t
k=`−t Xk pltl(`′, `, u, u′, t+ k, α)

case @t′ α =⇒ if ` ≤ t′ ≤ u then Xt′−t pltl(`′, `, u, u′, t′, α) else ⊥
case �i,jα =⇒ pltl(`′,max(`, t− i),min(t+ j, u), u′, t, α)
case .α =⇒ pltl(`′, `′, u′, u′, t, α)

end function

We then can show that the transformation in Algorithm 4.1 works properly.

Theorem 16 Let M = 〈S,W, ∅〉, where S = (T, υ) and T = [t`, tu], and let t ∈ T and ϕ
be a LARS formula. Then

M,S, t ϕ iff π(M), t |= pltl(t`, t`, tu, tu, t, ϕ) iff π(M), 0 |= Xt pltl(t`, t`, tu, tu, t, ϕ).

Proof. The first equivalence is shown by induction on the structure of the formula; the
second follows trivially. The base case of an atom is trivial; the other cases follow easily
from the induction hypothesis. Indeed, the cases where ϕ is a Boolean combination are
immediate; likewise, for 2α and 3α simple quantifier elimination works, and for @t′α
moving to the respective position. For the case of �i,jα, the window around t is properly
calculated, where T ′ = [`′, u′] and `′ = max(`, t − i) and u′ = min(t + j, u); note that
t ∈ T ′ holds. Finally, for .α, as time-based windows do not remove content, all what
needs to be done is to reset the bounds of the interval considered. 2

By this theorem, we can reduce model checking of a LARS formula ϕ on an input stream
S = (T, υ), to model checking an ad-hoc PLTL formula constructed from ϕ, M and
the specific time point t ∈ T , on a single path π(M). In particular, we can do this for
T = [0, t], i.e., at the end of the input stream. Furthermore, we can transform the PLTL
formula easily to an LTL formula that is initially equivalent.

In [BDTE18], two more results are given for LARS with sliding time-based windows.
First, LARS formulas yield a strict fragment of PLTL, and thus of regular languages.
This is shown by a more involved encoding that does not depend on the input stream.
Furthermore, using intensional atoms and LARS programs, all regular languages can be
expressed.

85

4. Relating LARS to other Formalisms

4.3 Continuous Query Language (CQL)
A particularly influential work in stream processing has been the Stanford Stream Data
Manager (STREAM) [ABB+03] and its Continuous Query Language (CQL) [ABW03,
ABW06]. The central idea is to reuse existing features from SQL and extend it with
streams as additional data sources. To this end, different window operators are used to
obtain recent snapshots of data, which are then essentially viewed as database relations.

Example 35 Following up on our running example from Chapter 3, we state a CQL
query for expected arrival times of trams where no traffic jam has been reported at their
last station within the last 20 minutes. Recall that the relation plan(L,X, Y,D) records
for line L the scheduled travel time D between station X and Y .

SELECT TRAM.ID, PLAN.Y, TY
FROM TRAM[PARTITION BY ID ROWS 1], LINE, PLAN
WHERE TRAM.ID=LINE.ID AND LINE.L=PLAN.L AND

TRAM.ST=PLAN.X AND TY=TRAM.T+PLAN.D AND
NOT EXISTS
(SELECT * FROM JAM[RANGE 20]
WHERE JAM.ST=TRAM.ST)

Note that streams TRAM and JAM have designated timestamp fields “T”, i.e., explicit
attributes that state the time when the tuple occurred in the stream. �

In CQL, a stream is viewed as bag of elements of the form 〈c, t〉, where c is a tuple (which
we can view as vector of constants) and t a timestamp; a relation maps timestamps to
bags of tuples. To translate between these concepts, the operational semantics of CQL
builds on three operators:

• Stream-to-relation (S2R) operators apply window functions to the input stream to
create a relation for recent tuples, i.e., those in the selected window.

• Relation-to-relation (R2R) operators can manipulate relations similarly as in rela-
tional algebra, respectively SQL.

• Relation-to-stream (R2S) translates back a relation into a stream for the output of
continuous queries.

Our focus here is on the first two operators, the R2S operator only concerns how output
is generated but does not influence the query semantics as such. The S2R operator
allows us to consider streaming tuples as sets of atoms. The semantics of CQL thus
essentially reduces to the R2R operator, once recent snapshots of streaming data have
been selected by S2R. Due to this, we show that LARS programs capture CQL by
exploiting two well-known translations: from SQL to relational algebra [DS90] and from
relational algebra to Datalog [GUW09]. Let us call the former translation RelAlg and
the latter Dat.

The idea is to have a 3-step process to obtain a Datalog program for a CQL query q:

86

4.3. Continuous Query Language (CQL)

(1) replace in FROM clauses the input sources (i.e., streams with window expressions) by
virtual table names due to the renaming function rel as defined in Table 4.1. By
replacing in CQL query q each occurrence of an input stream s by a relation rel(s),
we obtain a SQL query rel(q).

(2) Apply RelAlg on this query to obtain a relational algebra expression.

(3) Apply Dat on the expression to obtain a Datalog program with a designated predicate
q̂ that reflects the resulting tuples.

More formally, we get for a CQL query q a Datalog program ∆D(q) = Dat(RelAlg(rel(q))).
Any static relation (table) B can be naturally encoded as

∆(B) := {b(c) | c is a tuple in B}, (4.3)

where the lower case b version of relation name B serves as predicate name for atoms;
tuples c can be seen as vectors of constants.

We observe that LARS allows us to model the S2R operator. A snapshot of a stream S
amounts to (i) applying an according window operator and then (ii) abstracting away
time. The second step amounts to existential quantification over time, i.e., formulas of
form �w3ϕ. Table 4.1 lists the LARS window functions corresponding to those in CQL.
We thus can derive each snapshot relation rel(s) for a CQL input source s (as listed in
the table) using a snapshot rule of form

∆L(s) := rel(s)(V)← �w(s)3s(V), (4.4)

where the lower case s version of stream name S serves as predicate name, and V is the
list of variables corresponding to the attributes of tuples in S. We refer to static relations
and input streams (with window expressions) uniformly as input sources. We thus obtain
a LARS program

∆L(q) = ∆D(q) ∪ {∆L(s) | s is an input source in q }.

For a set Q of queries, we simply take respective unions, i.e., ∆x(Q) =
⋃
q∈Q ∆x(q),

x ∈ {L,D}.3

Example 36 We give a Datalog translation ∆D(q) of the CQL query q in Example 35.
(Note that due to the exact translation from SQL and potential optimizations the
intermediate relational algebra representation might vary and thus the specific set of
derived Datalog rules. The employed translation is detailed in the Appendix.) Let
T = Id1, ST1, T1; L = Id2, L2; P = L3, X3, Y3, D3; J = ST4, T4 (subscripts for variables

3Note that LARS formulas of form �w3ϕ could by themselves be viewed as relation names and
interpreted as Datalog programs.

87

4. Relating LARS to other Formalisms

Input source s in FROM clause Relation rel(s) w(s)

S[RANGE L] s_range_L τL

S[RANGE L SLIDE D] s_range_L_slide_D τL(D)

S[RANGE UNBOUNDED] s_range_unb τ∞

S[NOW] s_range_0 τ0

S[ROWS N] s_rows_N #N

S[PARTITION BY X1,...,Xk ROWS N] s_part_X1_ . . ._Xk_rows_N pidx,n

Table 4.1: Translation function rel and LARS window function w(s)

serve to reflect their origin in the same schema in a readable way).

q0(T,L,P) ← tram_part_ID_rows_1 (T), line(L), plan(P).
q1(T,L,P) ← q0(T,L,P), ST1 = X3, Id1 = Id2, L2 = L3.

q2(T,J) ← tram_part_ID_rows_1 (T), jam_range_20 (J).
q12(T,L,P,J) ← q1(T,L,P), q2(T,J).
q′12(T,L,P) ← q12(T,L,P,J).

q(Id1, Y3, TY) ← q1(T,L,P),¬q′12(T,L,P), TY = T1 +D3.

Informally, q0 captures the cross product of relations LINE and PLAN as given in the
FROM-clause, and the relation corresponding to the window on stream TRAM. The selection
based on the statement TRAM.ID=LINE.ID AND LINE.L=PLAN.L in the WHERE-clause is
captured in predicate q1. The cross product of recent tram appearances at stations and
traffic jams is then reflected in q2 and the join with q1 yields q12, which thus captures
tram appearances that shall not be considered. In order to remove these, jam information
is projected away to obtain predicate q′12. Finally, those variable groundings for q1 are
reported that are not groundings for q′12, and in addition the calculated arrival time TY
which adds the planned travel time D3 to occurrence time T1 of the last station. (Note
that we explicitly model arrival times in tuples. Thus, they remain accessible after S2R,
resp. in the Datalog and LARS encodings.)

Using snapshot rules of form (4.4), we obtain a LARS program ∆L(q) by adding the
following rules (idx, n are from Example 27):

tram_part_ID_rows_1 (T) ← �idx,n3tram(T).
jam_range_20 (J) ← �203jam(J). �

To establish the correspondence between the result of a set Q of CQL queries and its
LARS translation ∆L(Q), we first build a conversion of the input streams in Q to a
LARS data stream. (Recall that LARS considers only a single stream which can be

88

4.3. Continuous Query Language (CQL)

virtually split, e.g., by partition-based windows.) Without loss of generality, we assume
that Q is evaluated on static relations B1, . . . , Bm and input streams S1, . . . , Sn, and that
any stream is only used in one place in the FROM clause in a single query (we can always
duplicate streams and rename them). We consider the union of these input streams,
given by

S = {〈cij , tij〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ mi},

where the element 〈cij , tij〉 represents the tuple cij that occurs at the jth position at time
tij in stream Si (with mi elements). We use the (lower case) name si of CQL stream Si
as predicate symbol of according atoms and thus obtain the LARS data stream by

∆(S) = (T, υ) such that
T = [min{tij},max{tij}] and

υ(t) = {si(cij) | tij = t} for all t ∈ T ;

where 1 ≤ i ≤ n and 1 ≤ j ≤ mi. Similarly, we define for B = B1, . . . , Bm the atom set
∆(B) =

⋃m
i=1{bi(c) | c ∈ Bi}. Let res(q, t) denote the set of resulting tuples of CQL

query q at time t and let res(Q, t) =
⋃
q∈Q res(q, t). The following theorem shows that

the translation ∆L faithfully captures CQL. For a set A of atoms and a set Q of CQL
queries let A|Q denote the set of all tuples c such that q̂(c) ∈ A for some query q ∈ Q
(recall that q̂ is the “output” predicate of the Datalog transformation of q).

Theorem 17 Let Q be a set of CQL queries to be evaluated on input streams S = S1, . . . , Sn
and background relations B = B1, . . . , Bm, P = ∆L(Q), and t a time point. Moreover, let
M = 〈I,W,∆(B)〉 such that W is implicit by Table 4.1 and windows mentioned in Q.
Then,

(i) If I = (T, υ) is an answer stream of P for ∆(S) at t, then υ(t)|Q = res(Q, t).
(ii) There exists an answer stream I = (T, υ) of P for ∆(S) at t s.t. υ(t)|Q = res(Q, t).

Intuitively, (i) establishes the soundness and (ii) the completeness of the translation ∆L.
The idea of the proof is as follows. Consider a set Q of CQL queries and its

translations ∆D(Q) to Datalog and ∆L(Q) to LARS, and moreover the data stream
∆(S) corresponding to CQL input stream S. First, we observe that the Datalog program
∆D(Q) is an acyclic program and thus has as well-known a single answer set. Using
the snapshot of the streaming data (i.e., the result of the S2R operator) as input, we
thus get by the correctness from RelAlg and Dat that the result of Q is captured by
the answer set of ∆D(Q). As noted above, the result of the S2R operator on an input
source s amounts to abstracting away the temporal information. This step is carried
out in LARS by existential temporal quantification with 3 in the according window as
listed in Table 4.1. We observe that snapshot rules, i.e. ∆L(Q) \∆D(Q), add a stratified
layer to ∆D(Q) and faithfully derive the relations rel(s) as follows. Provided encoding
∆(S) (and background data ∆(B) for static relations B), rel(s)(c) will be derived iff c
is a tuple in the snapshot of input source s in Q: any ground snapshot rule of form
rel(s)(c)← �w(s)3s(c) must be satisfied when the formula �w(s)3s(c) is satisfied, thus

89

4. Relating LARS to other Formalisms

the rule head rel(s)(c) is concluded if the tuple c is contained in the snapshot; the only-if
part is ensured by minimality of answer streams and the fact that relation names do
not occur elsewhere as rule heads in the translation. From this also follows that the
interpretation of these predicates must coincide in ∆D(Q) and ∆L(Q); the latter contains
no further rules not contained in ∆D(Q). It thus follows that the answer set of ∆D(Q)
corresponds to the answer stream of ∆L(Q). That is to say, given the answer stream
I = (T, υ) of ∆L(Q) for ∆(S) at time t, q̂(c) ∈ υ(t) iff c ∈ res(Q, t). More details can be
found in the Appendix. We conclude this section by contrasting CQL and LARS.

Differences between CQL and LARS

The continuous query language extends SQL in a similar way as LARS extends ASP. As
a consequence, the semantic differences between SQL and ASP naturally carry over to
CQL and LARS. The first difference in this regard is a conceptual one in their respective
definitions: CQL has an operational semantics, while the LARS semantics is model-based;
CQL specifies how streaming tuples are evaluated in stepwise processing of a query, while
LARS merely formalizes what a program entails, given a stream and a time point. CQL
works on multisets (bags) of tuples per time point, while LARS uses sets. Expressivity
features of ASP carry over to LARS, in particular those that SQL (respectively CQL) has
not. LARS is a paradigm for expressive reasoning, while CQL targets query processing.
One way to think about this distinction is that SQL-like querying usually centers around
filtering, joining and aggregating data in a deterministic way (in the sense that the set of
returned tuples is unique) while reasoning typically involves abstractions, constraints,
complex negation (potentially in a cyclic way) and non-determinism.

More specifically, core reasoning features of ASP (respectively LARS) that are not
directly available in SQL (respectively CQL) include supported minimal model by means
of the stable model semantics, the possibility to enumerate multiple solutions for use
cases with choices, nonmonotonic negation with defaults, loops through negation, and
constraints. The answer set semantics (respectively answer stream semantics) is fully
declarative in the sense that the order of rules does not influence the output, and
the possibility to express combinatorial problems makes it applicable for constraint
satisfaction problems. For further discussion on the semantic features of ASP we refer
the interested reader to [EIK09, BET11, BET16].

On top of the properties that LARS inherits from ASP, generic window functions are
the central mechanism for handling streams. The stream-to-relation mechanism of CQL
serves as an elegant abstraction over specific window functions. However, as explained
above, viewing streams as relations implicitly comes with existential quantification with
respect to time. By dropping temporal information, any window function w in CQL is
captured in LARS by a window operator �w, followed by 3.

Further differences between CQL and LARS concern the additional temporal modal-
ities (2 and @), and in particular, their combination with generic windows. We will
explore this further in Section 4.6, when we highlight LARS-specific features from an
application oriented perspective.

90

4.4. Complex Event Processing: ETALIS

4.4 Complex Event Processing: ETALIS

Related to stream processing is complex event processing (CEP), where one deals with
the derivation of complex events, that typically span over temporal intervals, based
on (atomic) events, that occur at time points. We briefly study the relation between
LARS and the CEP language ETALIS [AFR+10, ARFS12]. This allows us to draw a
line between stream reasoning and CEP by means of LARS. We present here the main
ideas and the results from a conceptual perspective; formal details can be found in the
Appendix.

In ETALIS, an event stream ε associates atomic events (represented as ground atoms)
with time points, i.e., non-negative rational numbers. For comparability with LARS,
we consider here only natural numbers. Complex events can be described by rules due
to so-called event patterns, which resemble interval relations of Allen’s interval algebra
[All83]. For instance the pattern x SEQ y matches interval 〈t1, t4〉, if there are intervals
〈t1, t2〉 and 〈t3, t4〉 assigned to events x and y, respectively, such that t2 < t3. The pattern
x AND y selects the temporal overlaps, x EQUALS y selects intervals assigned to both x
and y, etc. These interval expressions can then be composed by rules of the form a← pt,
where a is an atom and pt is an event pattern. Intuitively, every interval that matches
the rule body (pt) must be assigned to the head (a).

To formalize this intuition, an ETALIS interpretation I is a function that maps atoms
(events) to sets of pairs 〈t1, t2〉 ∈ N× N representing intervals [t1, t2]. An intepretation I
satisfies a rule r = a← pt, if I(pt) ⊆ I(a). Furthermore, given an event stream ε and a
rule base R, an interpretation I is a model for ε,R, if it

(i) maps each atomic event a to the interval 〈t, t〉 if a occurs in ε at time point t, and

(ii) satisfies each rule r ∈ R.

The semantics of ETALIS is then defined in terms of minimal models, which require that
only those intervals are assigned to atoms that can be derived by rules based on the
event stream. The defined minimal model is unique and can be efficiently constructed
bottom up from the event stream, repeatedly adding the intervals matching a rule’s body
to the assignment of its head until a fixed point is reached.
Intervals in LARS. In contrast to ETALIS, the semantics of LARS is based on time
points. Nevertheless, we can represent intervals in LARS and thus capture the ETALIS
event patterns under some restrictions. Consider a window function w[`,u] that selects the
(maximal) substream of the interval [`, u]. Given a formula α, we define the abbreviations

J`, uKα := �w[`,u]2α ,

〈〈`, u〉〉α := J`, uKα ∧ @`−1¬α ∧ @u+1¬α .

That is to say, formula J`, uKα holds iff α holds at every time point in the interval [`, u],
regardless of the query time. Similarly, 〈〈`, u〉〉α holds iff [`, u] is a maximal interval in
which α always holds.

91

4. Relating LARS to other Formalisms

Example 37 Consider two events, x and y, which hold in the intervals 〈t1, t2〉 and
〈t3, t4〉, respectively, and assume t2 < t3. An ETALIS rule r = z ← x SEQ y thus assigns
the interval 〈t1, t4〉 to z. With the above syntactic abbreviations, we may express r in
LARS as

Jt1, t4Kz ← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y, t2 < t3.

That is, if [t1, t2] is a maximal interval in which x holds, and [t3, t4], where t2 < t3, is a
maximal interval in which y holds, then z must hold at every time point in [t1, t4]. �

However, this straightforward encoding does not suffice to express ETALIS in LARS.
The essential problem arises from overlapping intervals (for the same event/formula).
LARS assigns atoms to a single timeline by an evaluation function υ : T → 2A. Unless
an encoding makes use of time points in atoms, we can encode intervals only by assigning
atoms to consecutive time points. Adjacent or overlapping intervals for the same atom
cannot be distinguished, they all amount to a merged view of them. For instance, consider
an event e that is assigned to 〈1, 4〉 and 〈3, 5〉 in ETALIS. By naively constructing a
LARS interpretation υ, we would assign υ(t) = {e}, for t = 1, . . . , 4 and t = 3, . . . , 5, and
then only be able to read off the merged interval [1, 5] for e. Using the temporal controls
of the LARS framework, one could not distinguish the intervals [1, 4] and [3, 5] for the
same atom (or formula) e.

For the sake of illustrating the capabilities of LARS regarding intervals, we thus
consider separable ETALIS interpretations, i.e., where such overlaps do not occur. If
the minimal model of an event stream ε and a rule base R is separable, we also call
the pair (ε,R) separable. We point out that the notion of minimality in LARS is based
on set inclusion, whereas ETALIS defines minimality in terms of minimal length and
the supportedness of inferred intervals. Notably, ETALIS defines a form of negation
(i.e., the NOT-pattern) which is compatible with a bottom-up fixed-point evaluation.
A direct translation to LARS would in this case give rise to multiple LARS models in
general. When confining to positive ETALIS programs with separable minimal models, a
straightforward translation as indicated in Example 37 captures the ETALIS semantics.

Theorem 18 Let ε be an event stream, let R be a positive rule base (i.e., without
negation) and let I be a separable interpretation for ε,R. Then one can construct a
LARS input stream ∆ε, a program ∆R, and an interpretation stream ∆I = (T, υ) such
that for each t ∈ T , I is the minimal model for ε,R iff ∆I is the (unique) answer stream
of ∆R for ∆ε at time t relative to W = {w[`,u] | `, u ∈ N, ` ≤ u} and B = ∅.

Taking LARS and ETALIS as reference languages, we can view separability as the dividing
line between stream reasoning and complex event processing. If we view ETALIS from
a natural logic-oriented point of view, where a formula can only hold or not hold at a
given time point (given an underlying set semantics), we obtain correspondence.

Corollary 4 Let ε,R be an event stream, R be a positive rule base such that the minimal
model I of ε,R is separable and let ∆I = (T, υ), i.e., the answer stream of ∆R. Then,

92

4.5. Semantic Web: C-SPARQL, CQELS

for all atoms a ∈ A and for all t ∈ T , a ∈ υ(t) iff there exists an interval 〈t1, t2〉 ∈ I(a)
such that t ∈ [t1, t2].

We point out that these correspondence results are of more theoretical interest, since
separability is a very limiting condition in practice, and it is also a data dependent one.
The presented investigation on ETALIS allowed us to study the formal capabilities of
LARS regarding intervals by means of straightforward interval windows. The suggested
intuitive translation is, regarding intervals, less expressive than ETALIS, where an atom
can be assigned to overlapping intervals. Conceptually, this would amount to parallel
timelines in LARS.

Apart from the presented natural encoding, another way to reflect intervals is due
to additional arguments in atoms. For instance, we can reflect that an atom a holds
during the interval [7, 19] by using a fresh atom a′(7, 19). Clearly, this allows one to
access also overlapping intervals for the same (original) atom. We only need a rule of
the form a′(T, T)← @T a for every atom in a program, and then translate the ETALIS
pattern definitions into normal logic programs. This way, ETALIS is subsumed already
by ASP, and thus LARS: the unique model of ETALIS is obtained by a fixed-point
computation, and a standard bottom-up evaluation can be emulated in ASP, including
the NOT pattern.

4.5 Semantic Web: C-SPARQL, CQELS

Among research initiatives for the Semantic Web, RDF Stream Processing (RSP) emerged
to address the question of querying heterogeneous streams. The RSP community is
interested in extending SPARQL for streams in a similar way as CQL builds on SQL. In
particular, C-SPARQL [BBC+09, BBC+10a, BBCG10] and CQELS [PDPH11] employ
an operational semantics that is based on the CQL approach of reducing stream reasoning
to relational processing between a pre-processing of input streams and a post-processing
towards output streams.

In [DBE15a, DBE15b] we investigated these two query languages for RDF data. We
studied their differences which arises mainly due to the different execution modes. While
C-SPARQL is pull-based, i.e., repeatedly returns a query result after a fixed temporal
interval, CQELS is push-based, i.e., reports results after every new input. We presented
the comparative analysis by first formalizing these execution modes semantically for
LARS programs; we then gave translations for the two RSP languages to LARS in a
similar way as for CQL.

One difference between CQL and the SPARQL extensions are due to the fact that
RDF graphs (i.e., sets of triples) do not come with a schema. While for CQL the
integration of multiple input sources (tables and streams) is clear, there are different
ways to integrate different input streams that arrive in RDF format. While C-SPARQL
merges the relational snapshots into one graph (by stating them in the FROM-part of
the query), CQELS provides explicit access to each input stream (in the WHERE clause
of the query).

93

4. Relating LARS to other Formalisms

The central idea of capturing the push- and pull-based execution modes in LARS is
to introduce an auxiliary atom c to rule bodies in order to control potential rule firing.
The push-based mode will infer c whenever any atom holds in window �0 that contains
only the current time point. On the other hand, the encoding of pull-based execution
amounts to testing for �0@T> whether current time T is a multiple of the query interval;
only in this case, c shall hold.

Furthermore, window expressions of C-SPARQL and CQELS can easily be encoded
as window operators in LARS. Note that LARS allows for using any kind of computable
window function that does not need further information than the input stream and the
query time point. In fact, the time-based and tuple-based window functions as presented
in Sections 3.1.3 and 3.1.4 correspond to those used in considered RSP languages.

Finally, the translation from RSP queries to LARS is based on an existing reduction
from SPARQL to Datalog rules [Pol07]. For C-SPARQL, it suffices to use a uniform
representation of triples t(s, p, o) that are available as input i(s, p, o, x) in stream source x
at some time point in the considered snapshot. Thus, the encoding essentially takes the
form t(s, p, o) ← �w3i(s, p, o, x), where �w is the according window translation. For
CQELS, we additionally have to disambiguate the stream source due to the so-called
stream graph pattern as stated in the original WHERE clause.

Based on these translations, questions on the semantics of C-SPARQL and CQELS
can then be made precise; in particular, when syntactically similar queries indeed produce
the same results. In [DBE15a] we formalized a notion of agreement and gave sufficient
conditions for agreement for sliding time-based windows (under some restrictions). Our
results formally reflect the drastic effect of execution modes on the query results from a
semantic perspective.

4.6 Discussion

We conclude this chapter by discussing implications for using LARS in practice, and in
particular, its distinguishing semantic features.

Sections 4.2-4.4 explored the formal relationship between LARS and related formalisms,
and we discussed further related work in the previous section. We now elaborate
on practical implications of such differences, in particular, which kind of features in
applications can be targeted with LARS but not with other approaches, or where LARS
is easier to apply. In doing so, we leave aside the theoretical framework side of LARS
to formalize the semantics of other languages and concentrate on its potential use as
genuine reasoning language.

Regarding temporal reasoning in the spirit of LTL or MTL, the biggest difference
regarding applications is that LARS formulas and programs center around the idea
of dropping data, whereas temporal reasoning is usually concerned with specifications
of guarantees over infinite timelines. That is to say, languages for temporal reasoning
are more geared towards monitoring and verification rather than computations that
involve abstractions or auxiliary information (as in ASP/LARS rule heads). Disregarding
discussed encoding potentials (cf. Section 4.2), we imagine that from an application

94

4.6. Discussion

perspective the choice between temporal reasoning and stream reasoning with windows
is determined by these aspects. On the other hand, combinations of their respective
features point at intriguing future research issues, i.e., augmenting temporal reasoning
languages like LTL or MTL with generic window functions, respectively considering
infinite timelines in variants of LARS.

Example 27 (page 58) illustrated some of the benefits that come with LARS-based
reasoning. We compute expected arrival times of trams in rule (3.6) and then reason in
rule (3.7) which pairs of expected arrivals yield good connections. First to mention here
is the abstraction which takes place: by introducing rule (3.6) the condition of the body
gets a name that can be reused in other rules. Clearly, standard stream query languages
such as those building on CQL can similarly introduce abstraction by means of nested
queries. However, this way, according translations of more involved programs (i.e., with
many rules) quickly become unreadable. On the technical side, it is possible to chain
such query nesting but it is not possible to impose mutual conditions on their respective
evaluations, i.e., cycles. This is related to a commitment to single models in most stream
processing approaches, as we shall further discuss below.

The ability to compute transitive closures is among the semantic assets inherited from
ASP. We may assume that the background facts plan for travelling times are specified
only for consecutive stations. Nevertheless, we can then compute expected arrival times
at further stations by adding the following rule:

@TY
exp(Id, Y)← @TX

exp(Id, X), line(Id, L), plan(L,X, Y,D), TY = TX +D. (4.5)

The rule expresses the following: We expect a tram Id at station Y at time TY if it is
already expected D minutes before at the previous station X at time TX , where D is
the planned time it takes the tram to get from X to Y . Importantly, the same rule then
applies for station Y and its subsequent station Z, and so forth. In other words, we can
compute expected arrival times for all remaining stations of that line. Given in addition
similar rules for connecting lines, all potential future trajectories can be reasoned about
in principle. Such recursive reasoning is typical for ASP but rarely available in stream
query languages; LARS makes it available in flexible combination with streaming data.
Note in particular that predicate exp depends (in rule (3.6)) on the current inexistence
of traffic jams. Thus, any path of pairwise reachable stations that depends on station X
(in terms of the predicate exp) will be dismissed as soon as a traffic jam is reported
at X. This nonmonotonic effect of negation that additional information may lead to the
retraction of previous conclusions is an important feature if one wants to reason with
defaults such as the normal flow of traffic.

The possibility to express loops through predicates also in the presence of negation
makes LARS suitable for combinatorial problems and dynamic constraint satisfaction
problems. We illustrated this in Example 28, where we used the information on pre-
selected good connections (due to rules (3.6) and (3.7)) to specify a choice between
changing trams or skipping a good connection. This was established by the predicate
change which is in a cyclic dependency with predicate skip. Using query languages in
the spirit of CQL, we could specify some conditions for changing trams in one query and

95

4. Relating LARS to other Formalisms

for skipping connections in another, but it would not be feasible to write a query that
outputs both options as a result of the same query due to the mutual dependence and
the inherent determinism. Apart from the limitations regarding cyclic dependencies, the
only way to express multiple options in such deterministic languages would be to encode
their enumeration as such in the query result. This however may lead to large outputs, if
an exponential number of options exists. In contrast, a nondeterministic language allows
one to produce the options declaratively one by one, in an enumerative fashion, where
one may stop at any time; this would in a deterministic language require operational
elements, as e.g. in Prolog.

Limitation to single solutions is also a shortcoming of ETALIS. It can express
combinations of intervals that go beyond the temporal capabilities of LARS but it has a
rudimentary form of negation and no other means that could serve to express multiple
solutions. When using time points as additional arguments in atoms, LARS can emulate
ETALIS. On the other hand, it is not feasible to encode the rich semantic properties of
LARS in ETALIS.

Languages like CQL that adopt the snapshot semantics (which drop the temporal
information of obtained windows) cannot express temporal reasoning (beyond what can
be encoded with explicit timestamps in tuples). By contrast, LARS provides fine-grained
control. This not only allows one to reason about the contents of windows as such (as in
CQL) but also about temporal occurrence. In other words, LARS can not only express
whether something holds but also that something always holds or when something is
true. Consider, for instance, the modality @T in the head of rule (3.6). This places
the inference explicitly to a time point that is defined in the rule body. In that regard
the @-operator not only serves to match or select time points from streaming data, but
to reason also about the temporal information of inferred data. An example of such
reasoning is realized by the formula

@T �+5 3exp(Id2, X) (4.6)

in rule (3.7): based on the specific time T of the expected arrival of the other tram Id1
in that rule, the formula is satisfied if there is an expected tram at a station within the
next 5 minutes relative to T . That is to say, we control at which time T the window
�+5 is selected, where T itself is inferred information. Note further that this window is
non-standard in that it selects future time points. LARS itself is agnostic about which
window functions to employ; everything that computes substreams is applicable. We
emphasize that such windows may include also inferred data, as do for instance our
time-based windows. As a consequence, the full power of LARS operator combinations
extends to inferred information. Beyond semantic properties inherited from ASP, it is
exactly this compositionality of generic windows and temporal modalities (3, 2 and @)
that sets LARS apart from existing streaming languages.

In the works on Content-Centric Networking mentioned above (cf. Section 3.2.4)
we made use of the compositional nature of LARS operators, staying even within the
plain LARS fragment. In combination with nested window operators (and reset), the
possibility to navigate along the timeline with temporal modalities leads to highly

96

4.6. Discussion

expressive reasoning capabilities, as examined in the complexity analysis. Example 20
(page 52) illustrated the use of window nesting in combination with temporal modalities,
where we formalized

ϕ = �602 .�53s (4.7)

to check whether a signal s appeared always within 5 minutes during the last 60 minutes.
While nested queries are often available in other approaches, specifications of temporal
conditions on their evaluation are not. Note that ϕ can be seen as reasoning over a
sequence of nested reasoning steps, thus yielding a formal counterpart to evaluating
re-runs (�602ψ) of the same query (ψ = �53s, after stepping out with reset .). This
way LARS can express evaluations of evaluations (in arbitrary depth) and in this way
serve for hierarchical reasoning.

97

CHAPTER 5
Semantic Characterizations of
Equivalent LARS Programs

In Chapter 1, we stressed the trade-off between throughput and expressiveness as a
central challenge in stream reasoning. In practice, given a fixed reasoning task, one may
exploit domain specific properties to gain performance by means of specific algorithms.
To some degree, optimizing or tailoring a program for a specific use case is also possible
in rule-based or other declarative approaches.

However, highly tailored queries, programs or encodings come with costs. First, the
development effort increases for the programmer who has to invest time in understanding
the structure of the problem and the data. Second, maintaining optimized code bases is
difficult and error-prone since they are typically less readable and less generic. Third,
the idea of a low-level management towards controlling the solving process for better
performance undermines the conceptual idea of declarative languages, which should
simplify the query task by providing a more intuitive, high-level representation. After
all, the essence of declarative programming lies in abstracting away the specifics of how
the evaluation is carried out. It is the task of solvers or preprocessing tools to translate
human readable representations (that may be computationally expensive if processed
exactly as stated) into equivalent ones that can be computed more efficiently, i.e., by
means of equivalence preserving transformations. However, this presupposes the ability
for checking when two programs are equivalent in the first place.

Example 38 Consider the rule r = a ← �#103b ∧ �#103c, which will conclude a if
among the last 10 atoms both b and c occur. Clearly, it is equivalent to rule r′ =
a← �#10(3b ∧3c). Depending on how the specific formula structure is operationally
handled, one of the two rules might be preferable. For instance, conjunctions are a
natural point to parallelize evaluation into two nodes. In r, the conjunction is outside
windows, requiring window evaluation at both nodes, while in r′ the parallelization can
be carried out within the same physical representation of a single window. We further

99

5. Semantic Characterizations of Equivalent LARS Programs

note that rule r′′ = a ← �#103(b ∧ c) is not equivalent, since it enforces b and c to
appear at the same time point. �

As a first step towards optimizing LARS programs for improving the efficiency of
evaluation, we are thus interested in suitable notions of equivalence, i.e., to obtain
criteria when two programs will produce the same results. In particular, the aim is
to provide semantic characterizations of different notions of equivalence similar as for
Answer Set Programming [LPV01, EF03, EFW07]. Characterizing equivalence between
LARS programs in purely logical terms is challenging due to a non-structural definition
of the FLP-semantics [FLP04] defined for them, which imposes some limitations. Yet
another difficulty arises from the generic definition of window operators.

Outline

This chapter is structured as follows. Section 5.1 introduces practically relevant notions
of equivalence for LARS programs that extend well-known equivalence relations for logic
programs, i.e., ordinary, strong and uniform equivalence. Moreover, we introduce data
equivalence for streams. In Section 5.2 we define a novel logic called bi-LARS which
we employ in Section 5.3 to capture the FLP-based semantics of a large fragment of
LARS programs, including plain LARS (cf. Section 4.1). In Section 5.4 we lift model-
theoretic characterizations of strong/uniform/relativized uniform equivalence from the
ASP literature to the stream setting to characterize the defined equivalence relations.
Data equivalence is then obtained as a special case of relativized uniform equivalence.
In Section 5.5 we show how a monotone variant of bi-LARS leads to an extension of
the logic of Here-and-There [Hey30] for our setting. We thus get a link to equilibrium
logic [LPV01] for a class of programs. Section 5.6 summarizes complexity results for the
developed equivalence notions. The results give a first entry point towards optimizing
LARS programs at the semantic level.

Publications

This chapter is based on [BDE16], which did not include proofs. In addition, we formally
present the characterization result for relativized uniform equivalence. Complexity results
from [BDE16], established by co-authors, are summarized in Section 5.6.

5.1 Equivalence Notions
We now introduce equivalence notions for stream reasoning within the LARS framework.
Given a timeline T , we say a set A of @-atoms, i.e., formulas of form @ta where a ∈ A,
has time references in T , if {t | @ta ∈ A} ⊆ T . This notion carries over naturally for
programs, i.e., a program P has time references in T if {t | @ta occurs in P} ⊆ T . Recall
that by AS(P,D, t) we denote the set of answer streams of P for D at time t.

Inspired by the rich literature on equivalence notions for Answer Set Programming,
we define the following for LARS programs.

100

5.2. Bi-Structural LARS Evaluation

Definition 22 (Equivalence Notions) Let T be a timeline, D = (T, υ) be a data
stream, and let t ∈ T be a time point. We say two LARS programs P and Q are

(i) (ordinary) equivalent (for D at t), denoted by P ≡ Q, if

AS(P,D, t) = AS(Q,D, t) ; (5.1)

(ii) strongly equivalent (for D at t), denoted by P ≡s Q, if

AS(P ∪R,D, t) = AS(Q ∪R,D, t) (5.2)

for all LARS programs R with time references in T ;
(iii) uniformly equivalent (for D at t), denoted by P ≡u Q, if

AS(P ∪ F,D, t) = AS(Q ∪ F,D, t) (5.3)

for sets F of @-atoms with time references in T ;
(iv) data equivalent (for D at t), denoted by P ≡d Q, if

AS(P,D ∪ S, t) = AS(Q,D ∪ S, t) (5.4)

for all data streams S with timeline T .

Intuitively, (i)-(iii) can be seen as extensions of corresponding notions in ASP [LPV01,
EFW07] to the LARS setting: two ordinary logic programs P and Q are said to be
(ordinary) equivalent if they possess the same answer sets, and strongly (respectively
uniformly) equivalent, if the answer sets of P ∪R and Q ∪R coincide for every program
(respectively set of facts) R. Thus, when considering LARS programs, these notions
emerge when we restrict to the fragment of ordinary logic programs (i.e., using neither
windows nor temporal operators), and considering a void data stream D = ([0, 0], ∅) at
time point 0. On the other hand, data equivalence is well-known in the database area and
plays an important role in stream reasoning, as the possibility to drop data is crucial to
gain performance. The consideration of all rules respectively facts for addition accounts
for the nonmonotonic nature of answer streams, since replacing ordinary equivalent
programs P and Q within the context of other rules R might lead to different answer
streams.

5.2 Bi-Structural LARS Evaluation
We now define an extended variant of LARS semantics, where formulas (respectively
programs) are evaluated on a pair of streams (SL, SR) at the same time. We will later
consider a substream relation SL ⊆ SR on according models similar to the logic of Here-
and-There [Hey30] which was extensively studied in relation to equivalence notions for
Answer Set Programming.

101

5. Semantic Characterizations of Equivalent LARS Programs

In the sequel, we use the following notation. Given streams SL = (T, υL) and SR =
(T, υR), we call S = (SL, SR) a bi-stream and M = 〈S,W,B〉 a bi-structure, where W are
window functions and B is background data as in LARS. We call SL the left-stream
and SR the right-stream. Moreover, ML = 〈SL,W,B〉 and MR = 〈SR,W,B〉 denote the
underlying LARS structures of M; the left-structure and the right-structure, respectively.

In this chapter, we confine to ground LARS, hence A denotes ground atoms and F
ground formulas.

Definition 23 (bi-LARS Entailment) Let M = 〈S,W,B〉 be as above and let t ∈ N.
The bi-LARS-entailment relation between (M, t,w) for worlds w ∈ {L,R} and formulas
is defined as follows (where α, β ∈ F are formulas):

M, t,w a :⇔ a ∈ υw(t) or a ∈ B, for a ∈ A,
M, t,w α ∧ β :⇔ M, t,w α and M, t,w β,
M, t,w 3α :⇔ M, t′,w α for some t′∈ T,
M, t,w 2α :⇔ M, t′,w α for all t′∈ T,
M, t,w @t′α :⇔ M, t′,w α and t′∈ T,
M, t,L α→ β :⇔ M, t,L 1 α or M, t,L β, and M, t,R α→ β
M, t,R α→ β :⇔ M, t,R 1 α or M, t,R β,
For • ∈ {¬,�w} :
M, t,L •α :⇔ ML, t •α and MR, t •α ,
M, t,R •α :⇔ MR, t •α.

Moreover, we define M, t α :⇔ M, t,L α.

Similarly as for LARS, we define for the special atoms > and ⊥ that M, t >/⊥
always/never holds. If M, t α holds, we say that M entails α at time t and we then
call M a bi-model of α at time t. Entailment and the notion of a model are extended to
sets of formulas as usual.

We point out that the lack of a reset operator . definition in bi-LARS entailment is for
ease of presentation. Reset plays a minor role and introducing it leads to a more involved
notation (requiring to additionally retain a current bi-stream S left of). However, the
results in the sequel carry over for a straightforward definition of .. We discuss this
further in Section 5.7.

We draw here on the ideas from [Pea06], which introduced Equilibrium Logic as a
characterization of the stable model semantics in form of a minimal model reasoning
for the logic Here-and-There [Hey30]. The latter evaluates formulas in two worlds of a
Kripke structure: everything that holds in the Here-world H (left) has to hold in the
There-world T (right). Viewed as interpretations, i.e., sets of atoms, these worlds have
the property H ⊆ T , and implication (→) connects the two: In order for α→ β to be
true Here, it also has to be true There, by definition. The same principle is reflected in the
definition of connective → of bi-LARS entailment (Definition 23). Since Here-and-There
is a monotone logic, and LARS in general is not, we need further adjustments. In contrast
to LARS, Here-and-There defines negation as ¬α := α → ⊥. Using the negation of

102

5.2. Bi-Structural LARS Evaluation

LARS also for bi-LARS in general breaks the connection from left to right, as well as
some window operators: when employing straightforward recursive definitions (as for
∧, 3, 2, @t′ and →) for ¬ and �w, an initial initial inclusion of the left-stream in the
right-stream, as will be considered later, may not be retained. Hence, we branch into
separate evaluation in the underlying LARS structures. We will examine later when a
recursive definition is possible also for �w.

Example 39 Let S = ([0, 3], {0 7→ {a}, 1 7→ {a}, 3 7→ {b, x}}) be a stream and let
ϕ = �23a ∧ ¬y → x be a LARS formula. Consider the structure M = 〈S, {τ2}, ∅〉. We
have that M, 3 �23a ∧ ¬y. Indeed, since y /∈ υ(3), it follows that M, 3 ¬y. Fur-
thermore, M, 3 �23a since M ′, 1 a, where M ′ is obtained by replacing S with
S′ = ([1, 3], {1 7→ {a}, 3 7→ {b, x}}), i.e., the result of applying the time-based window of
size 2 on S at time point 3. Furthermore, M, 3 x as x ∈ υ(3); thus M, 3 ϕ holds.

Next, let

SL = ([0, 3], {0 7→ {a}, 1 7→ {a}, 3 7→ {b, x}}), and
SR = ([0, 3], {0 7→ {a}, 1 7→ {a}, 3 7→ {b, y}}).

Formula ϕ holds in both LARS-structures ML and MR, and in the bi-LARS-structure
M = 〈S,W,B〉 at time 3: We observe that (i) ML, 3 ϕ, since ML, 3 x, from which
also (?) M, 3,L x follows. Further, we get (ii) MR, 3 ϕ, since (??) MR, 3 1 ¬y and
thus MR, 3 1 �23a ∧ ¬y. By definition, M, 3,R �23a ∧ ¬y → x iff M, 3,R x or
M, 3,R 1 �23a ∧ ¬y, and the latter iff M, 3,R 1 �23a or M, 3,R 1 ¬y. We have the
last condition by (??), so we obtain (???) M, 3,R ϕ. Finally, we get (iii) M, 3 ϕ by (?)
and (???) which is defined as (M, 3,L 1 �23a ∧ ¬y or M, 3,L x) and M, 3,R ϕ. �

We note that in general, entailment in both LARS structures does not imply entailment
in the bi-structure.

Example 40 Consider the bi-stream S = (SL, SR), where SL = ([0, 0], {0 7→ {a}}) and
SR = ([0, 0], {0 7→ ∅}), and take α = a→ β, where β = (a→ a)→ a. We haveML, 0 α
andMR, 0 α. For M, 0 α, we need M, 0,L 1 a or M, 0,L β. However, M, 0,L a,
as a ∈ υL(0) and M, 0,L 1 β as M, 0,L (a→ a)→ a only if M, 0,R (a→ a)→ a,
but M, 0,R (a→ a) and M, 0,R 1 a. We thus have ML, 0 α and MR, 0 α, but
M, 0 1 α. �

The following lemma, which is easily shown by induction on the structure of α, intuitively
states that evaluation for the right-stream is independent of the left-stream.

Lemma 2 M, t,R α iff MR, t α.

We call a bi-stream (SL, SR) total, if SL = SR. Restricting the study to total interpreta-
tions, bi-LARS-satisfaction collapses to LARS-satisfaction.

Proposition 3 Let M = 〈S,W,B〉 be a structure, where S = (T, υ) and M = 〈S,W,B〉,
with S = (S, S), and let t ∈ N and α be a formula. Then, M, t α iff M, t α.

103

5. Semantic Characterizations of Equivalent LARS Programs

Proof. The equivalence clearly holds if in every step in the evaluation of the recursive
definitions, the left-structure ML remains identical to the right-structure MR. This
may change only by the application of a window operator. However, in these cases,
the evaluation branches into evaluation in the underlying LARS structures, and the
equivalence follows. 2

bi-LARS Semantics for LARS Programs

Entailment in bi-LARS is extended from formulas to programs analogously as for LARS.
Recall the definition β(r) = β1 ∧ . . . ∧ βn for a rule r with body formulas β1, . . . , βn.

Definition 24 (bi-LARS Program Semantics) Let D = (T, υ) be a data stream, t ∈ T
and let P be a program. We say a bi-structure M satisfies a rule r of form α← β1, . . . , βn
at t, denoted by

M, t |= r ,

if M, t β(r)→ α. In this case, M is a (bi-)model of r (for D at t). Furthermore, we
define

M, t |= P,

if M, t |= r for all r ∈ P . We then call M a (bi-)model of P (for D at t).

Example 41 (cont’d) Consider the bi-stream S = (SL, SR) from Example 39 and the
program P containing only the rule r = x← �23a,¬y. We have β(r) = �23a ∧ ¬y and
H (r) = x, i.e., β(r)→ H (r) is formula ϕ from above. Since M, 3 �23a ∧ ¬y → x
holds, we have M, 3 |= r and M, 3 |= P . �

We will consider the following fragment of LARS. For a rule r (of form α← β1, . . . , βn) we
define F(r) = {α, β1, . . . , βn}, i.e., the set of its formulas, and for a program P naturally
F(P) =

⋃
r∈P F(r).

Definition 25 (Fbi, LARSbi) By Fbi we denote the class of LARS formulas without
→, where 3 only occurs in the scope of ¬ or �w. Moreover, LARSbi is the class of LARS
programs P where all formulas in F(P) are in Fbi.

Class Fbi does not cover formulas of form 3α, which requires an evaluation of formula α
over the entire history of the stream. However, existential quantification is typically of
interest within the bounds of window. This corresponds to the form �w3α, which is a
formula in Fbi (for any window function w). Moreover, Fbi permits arbitrary nesting of
all connectives and operators, and in particular, window operators. Thus, it not only
includes window atoms (from plain LARS), i.e., formulas of the form �w ◦ α, where
◦ ∈ {@t,3,2} and α is an atom, but also their immediate generalization �w1 · · ·�wn ◦α,
where α is any LARS formula; moreover ¬ can be inserted at any position. Using formulas
from Fbi as building blocks yields a class of LARS programs. In particular, our guiding
fragment plain LARS is subsumed by LARSbi.

Unless stated otherwise, programs are now tacitly assumed to be in LARSbi.

104

5.3. Characterizing Answer Streams

5.3 Characterizing Answer Streams

We now study properties which arise when considering bi-structures M = 〈S,W,B〉,
where the left-stream SL = (T, υL) is a substream of the right-stream SR = (T, υR), i.e.,
given S = (SL, SR), the condition

SL ⊆ SR .

The first observation is that under this assumption bi-entailment implies LARS entailment
for the right-structure.

Lemma 3 (Persistence) Let M = 〈S,W,B〉 s.t. SL ⊆ SRand let α ∈ Fbi. If M, t α,
then MR, t α.

Proof. Assume M, t α holds, i.e., M, t,L α. We show that MR, t α holds by a
case distinction of the structure of α. For atoms a, we have a ∈ B or a ∈ υL(t). This is
clear if a ∈ B, as B is also the background data of MR. If a ∈ υL(t), then a ∈ υR(t), as
SL ⊆ SR. Thus, MR, t a. The cases for ¬, �w and→ follow by definition and Lemma 2.
Consider α of form ϕ ∧ ψ. We have by definition M, t ϕ and M, t ψ. By induction
follows MR, t ϕ and MR, t ψ and thus MR, t ϕ ∧ ψ. Next, suppose α is of form
2ϕ, i.e., M, t′,L ϕ for all t′ ∈ T . By induction, we get MR, t

′ α for all t′ ∈ T and
thus MR, t 2ϕ. For α of form @t′ϕ we observe M, t′,L ϕ, and thus again MR, t ϕ
inductively. Finally, consider α of form 3ϕ. By definition, there exists a time point
t′ ∈ T s.t. M, t′,L ϕ. By induction, MR, t

′ ϕ, and thus MR, t 3ϕ. 2

The analogous case for the left-structure does not hold, as the following example shows.

Example 42 To see that M, t α and SL ⊆ SR does not imply ML, t α, consider the
streams SL = ([0, 0], {0 7→ ∅}) and SR = ([0, 0], {0 7→ {a}}). Let α = ¬a→ b. We have

(i) ML, 0 ¬a and ML, 0 1 b, thus
(ii) ML, 0 1 ¬a→ b;
(iii) MR, 0 1 ¬a, thus
(iv) MR, 0 ¬a→ b; however
(v) M, 0 1 ¬a by (iii) and
(vi) M, 0 ¬a→ b by (iv) and (v). �

Let F6→ be the class of LARS formulas without implication. For such formulas, entailment
in the bi-structure carries over to the left-structure as well.

Lemma 4 Let M = 〈S,W,B〉 s.t. SL ⊆ SR let α ∈ F6→. If M, t α, then ML, t α.

The lemma is shown by induction on the structure of α.

105

5. Semantic Characterizations of Equivalent LARS Programs

Proof. Assume α ∈ F6→ and M, t α holds, i.e., M, t,L α. We show that ML, t α
holds by a case distinction of the structure of α. The case is clear for atoms a, where have
a ∈ B (and ML = 〈SL,W,B〉, where SL = (T, υL)) or a ∈ υL(t). The cases for ¬ and �w

follow by definition. Consider α of form ϕ ∧ ψ. We have by definition M, t ϕ and
M, t ψ. By induction follows ML, t ϕ and ML, t ψ and thus ML, t ϕ ∧ ψ. Next,
suppose α is of form 2ϕ, i.e., M, t′,L ϕ for all t′ ∈ T . By induction, we get ML, t

′ α
for all t′ ∈ T and thus ML, t 2ϕ. For α of form @t′ϕ, we observe M, t′,L ϕ, and thus
again ML, t ϕ inductively. Finally, consider α of form 3ϕ. By definition, there exists a
time point t′ ∈ T s.t. M, t′,L ϕ. By induction, ML, t

′ ϕ, and thus ML, t 3ϕ. 2

Lemmas 3 and 4 together yield that M, t α implies ML, t α and MR, t α, given
that SL ⊆ SR and α ∈ F6→. The next example shows that the opposite direction needs
further restrictions.

Example 43 Assume at evaluation time point t, the current stream contains the set A of
atoms. We consider a window function wε (and a corresponding window operator �ε) that
returns the substream ([t, t], t 7→ ∅), if ε ∈ A, and ([t, t], t 7→ A) else. Let SL = ([0, 1], υL)
and SR = ([0, 1], υR) be two streams with respective LARS structures MJ ∈ {ML,MR},
as follows, where M ′J ∈ {M ′L,M ′R} denote the resulting structures after applying the
window was applied at time points 0 and 1, respectively:

MJ υJ(0) υJ(1) M ′J υ′J(0) υ′J(1)
ML {a} ∅ M ′L {a} ∅
MR {a, ε} {a} M ′R ∅ {a}

Consider the LARS formula ϕ = 3�ε3a and the bi-structure M = 〈(SL, SR), {wε}, ∅〉.
We observe:

(i) ML, 1 ϕ, as there exists a time point t′ = 0 s.t. ML, t
′ �ε3a: after the window

operator, we evaluate in M ′L = 〈S′L, {wε}, ∅〉, where S′L = ([0, 0], 0 7→ {a}), and have
M ′L, 0 3a because M ′L, 0 a.

(ii) MR, 1 ϕ: Similarly for t′ = 1 we have MR, 1 �ε3a, since M ′R, 1 3a.

(iii) However, M, 1 1 ϕ, as intuitively, the first 3 breaks the connection between left
and right. There is no time point t′ such that M, t′ �ε3a: the formula evaluates
positively on the left only at t′ = 0, and on the right only at t′ = 1.

Note that the same problem occurs for ϕ′ = 3�εa. �

For formula class Fbi we can show the desired relationship, i.e., that bi-LARS entailment
follows from entailment in both LARS structures.

Lemma 5 Let M = 〈S,W,B〉 s.t. SL ⊆ SR and let α ∈ Fbi. IfML, t α andMR, t α,
then M, t α.

106

5.3. Characterizing Answer Streams

Proof. We again prove this by a case distinction on the structure of α. In case α is
an atom, we get the result by definition, and similarly for formulas of form ¬ϕ and
�ϕ. Consider α of form ϕ ∧ ψ. For both MJ ∈ {ML,MR} and γ ∈ {ϕ,ψ}, we have
MJ, t γ. We get M, t ϕ inductively from ML, t ϕ and MR, t ϕ, and likewise
M, t ψ. Consequently, M, t ϕ ∧ ψ. Next, consider α of form 2ϕ. We have for both
MJ ∈ {ML,MR}, MJ, t

′ ϕ for all t′ ∈ T . That is, for each t′ ∈ T , we have M, t′ ϕ by
induction, and thus M, t 2ϕ by definition. For α of form @t′ϕ we similarly observe
that having MJ, t

′ α for both MJ ∈ {ML,MR} inductively gives M, t′ ϕ and hence
M, t @′tϕ. Finally, since α ∈ Fbi it cannot be of form 3ϕ, but for the inductive
argument, consider a subformula α′ of this form. By assumption, it appears in the scope
of some • ∈ {¬,�}. We thus consider the subformula •α′, which is evaluated in both
the left-structure and the right-structure. Consequently, if for both MJ ∈ {ML,MR} we
have MJ, t •α′, we get M, t •α′ by definition. 2

Remark. As illustrated in Example 43, restricting the use of 3 is crucial, for which the
inductive argument (outside the scope of ¬ or �w) does not work: suppose we have for
both MJ ∈ {ML,MR} that MJ, t 3ϕ. This implies that ML, tL ϕ and MR, tR ϕ
for some time points tL and tR, but not that tL = tR. Consequently, the induction step
to M, t′ ϕ does not work, because in general, a common time point t′ where ϕ holds
does not exist. The problem does not occur for 2, which ensures entailment at all time
points, and @t′ , since it directly specifies the same time point for both LARS structures.

Note that the FLP-semantics of answer streams (Definition 18) is defined non-
recursively. Still, we can capture it by branching in bi-LARS evaluation of ¬ and �w

into separate LARS evaluations for left and right, due to the following central property,
which follows from Lemmas 3-5 (recall that Fbi ⊆ F6→).

Proposition 4 Let M = 〈S,W,B〉 be a bi-structure such that SL ⊆ SR and let α ∈ Fbi.
Then, M, t α iff ML, t α and MR, t α.

The stipulated relation SL ⊆ SR naturally arises with minimality checking of models,
where intuitively SR is a model M of a program P at time t and SL is a candidate model
of the reduct PM,t. It establishes a semantic connection between left and right, which
can be exploited to conclude that M, t α implies SL, t α.

The following result now captures the essence of the reduct-based semantics: the
left-structure must satisfy each rule whose body is true in the model given by the
right-structure. The proof is based on [LPV01].

Theorem 19 For any M = 〈S,W,B〉 such that SL ⊆ SR, time t and program P , we
have M, t |= P iff MR, t |= P and ML, t |= PMR,t.

Proof. (⇒) Let M, t |= P , i.e., M, t |= r for all rules r ∈ P . By Definition 23, we have
that, if M, t |= r, then M, t,R β(r)→ α, where α is the head of r. By Lemma 2, we
get MR, t r, and thus MR, t |= P .

It remains to show ML, t |= PMR,t. Towards a contradiction, assume this is not the
case, i.e., ML, t 1 β(r)→ α for some r ∈ PMR,t, i.e., some r ∈ P whereMR, t β(r). We

107

5. Semantic Characterizations of Equivalent LARS Programs

have ML, t β(r) and ML, t 1 α. Since α ∈ F6→ (Fbi ⊆ F6→), we get by Lemma 4 that
M, t 1 α holds. Since for both MJ ∈ {ML,MR} we have MJ, t βi for all body formulas
βi we get by Lemma 5 that M, t βi (for all βi). Hence M, t β(r) and M, t 1 α, i.e.,
M, t 1 β(r)→ α, which contradicts that M entails all rules in P at t.

(⇐) Indirectly, suppose M, t 6|= P , i.e., that there exists some rule r ∈ P such that
M, t 1 β(r)→ α. That is, either

(i) M, t,L β(r) and M, t,L 1 α, or
(ii) M, t,R 1 β(r)→ α.

Case (ii) is by definition equal to M, t,R β(r) and M, t,R 1 α, which givesMR, t β(r)
and MR, t 1 α by Lemma 2 and thus MR, t 1 β(r)→ α. Hence, we get MR, t 1 P .

Thus, we assume M, t,R β(r)→ α (resp. MR, t r) and analyze Case (i), where
we get from M, t β(r) (a) by Lemma 3 that MR, t β(r), and (b) by Lemma 4 that
ML, t β(r). From the assumption and Lemma 2 follows MR, t β(r)→ α, which,
together with (a) yields MR, t α. This, given M, t 1 α (by the assumption in Case (i))
allows us to conclude by Lemma 5 that ML, t 1 α, and hence ML, t 1 β(r)→ α. It also
follows from (a) that r ∈ PMR,t, and since ML, t 1 r, we conclude ML, t 6|= PMR,t. 2

We are now going to characterize answer streams similarly as in [LPV01] and [Tur01],
by capturing the minimality condition in terms of bi-equilibrium models. Intuitively, a
bi-equilibrium model is a bi-model with a total bi-stream (SR, SR) such that no smaller
bi-stream (SL, SR) where SL ⊂ SR is a bi-model.

Definition 26 (bi-Equilibrium Model) Let M = 〈I,W,B〉 be a structure. We say
M = 〈(I, I),W,B〉 is a bi-equilibrium model of a program P for data stream D at time t,
if

(i) M, t |= P , and
(ii) M′, t 6|= P , for each M′ = 〈(I ′, I),W,B〉 such that D ⊆ I ′ ⊂ I and I ′ = (T, υ′).

We obtain the next theorem from Definition 18, Proposition 3 and Theorem 19.

Theorem 20 Let M = 〈I,W,B〉 be a structure such that I is an interpretation stream
for D at t. Then, I ∈ AS(P,D, t) iff M = 〈(I, I),W,B〉 is a bi-equilibrium model.

Proof. (⇒) Let I ∈ AS(P,D, t), i.e., M = 〈I,W,B〉 is a minimal model of PM,t for
D at t. Since, M, t |= P , we have M, t |= P by Proposition 3. For Condition (ii),
assume towards a contradiction, that some interpretation stream I ′ = (T, υ′) ⊂ I exists
s.t. M′, t |= P , where M′ = 〈(I ′, I),W,B〉. By Theorem 19, we then have M ′, t |= PM,t,
where M ′ = 〈I ′,W,B〉 (i.e., the left-structure). This means M ′ is a smaller model for
the reduct PM,t than M , i.e., I cannot be an answer stream.

(⇐) Indirectly, suppose I 6∈ AS(P,D, t) and let M = 〈I,W,B〉. If M, t 6|= P , then
by Proposition 3, M, t 6|= P , violating Condition (i) for M to be a bi-equilibrium model.
If M, t |= P , as I 6∈ AS(P,D, t), there must exist a proper substream I ′ ⊂ I such that

108

5.4. Characterizing Equivalence Notions

M ′ = 〈I ′,W,B〉 is a smaller model of PM,t, i.e., M ′, t |= PM,t. Then, by Theorem 19,
M′, t |= P , violating Condition (ii). 2

As explained above, the obtained results do not generalize to arbitrary LARS programs.
Example 43 illustrated why we consider 3 only in the scope of ¬ or �w, and why we
branch into LARS evaluation for these operators. This allows us to characterize program
equivalences which include non-trivial window operators.

5.4 Characterizing Equivalence Notions
We now characterize equivalence notions by means of bi-models. To this end, from
now we tacitly restrict to bi-structures M = 〈S,W,B〉 such that SL ⊆ SR. Unless stated
otherwise, programs are from class LARSbi. Moreover, we let MLR = 〈(SL, SR),W,B〉
and MRR = 〈(SR, SR),W,B〉. By bi(P), we denote the set of all respective bi-models of
a program P (where data stream D and time point t are implicit).

The following lemma is immediate from the definition of bi-models.

Lemma 6 Let P and X be two programs. Then, bi(P ∪X) = bi(P) ∩ bi(X).

Proof. First, we observe that for a structure M and a time point t, (M, t |= P and
M, t |= X) iff M, t |= P ∪X. Furthermore, PM,t ∪XM,t = (P ∪X)M,t. Now, consider a
bi-structure M with underlying LARS structures ML and MR as usual. By Theorem 19,
M, t |= P ∪X iff (MR, t |= P ∪X and ML, t |= (P ∪X)MR,t) which in turn holds iff
((MR, t |= P andMR, t |= X) and (ML, t |= PMR,t andML, t |= XMR,t)) iff M, t |= P and
M, t |= X. 2

The first equivalence characterization result states that two programs are strongly
equivalent iff they possess the same bi-models.

Theorem 21 (Strong Equivalence) Let D = (T, υ) be a data stream, t ∈ T , and let
P and Q be LARSbi programs. Then, P ≡s Q (for D at t) iff bi(P) = bi(Q) (for D at t).

For the following proofs we define, given a stream S = (T, υ),

Γ(S) = {@ta | a ∈ υ(t) ∩ AI , t ∈ T}, (5.5)

i.e., a translation of the intensional part into a set of @-atoms. We also view Γ(S) as
conjunction. Observe that M, t |= Γ(S) for all t ∈ T , where M = 〈S,W,B〉.

Proof. (⇒) Indirectly, assume bi(P) 6= bi(Q), and w.l.o.g., let MLR = 〈(SL, SR),W,B〉
be a bi-structure s.t. MLR, t |= P and MLR, t 6|= Q. To show that P and Q are not
strongly equivalent, we construct a program X such that P ∪X and Q ∪X do not have
the same bi-equilibrium models, i.e., by Theorem 20, that they do not have the same
answer streams. Let MRR = 〈(SR, SR),W,B〉. We distinguish two cases:

Case MRR, t 6|= Q: by MLR, t |= P and Lemma 3, we get MR, t |= P , and by Proposi-
tion 3, MRR, t |= P . Now, let X = Γ(SR). Since MRR, t |= X, we have MRR, t |= P ∪X

109

5. Semantic Characterizations of Equivalent LARS Programs

and furthermore, by construction of X, MRR is a bi-equilibrium model of P ∪X. On
the other hand, MRR, t 6|= Q and therefore MRR, t 6|= Q ∪X.

Case MRR, t |= Q: let

X = Γ(SL) ∪ {@zb← @ya | a ∈ υR(y) \ υL(y), b ∈ υR(z) \ υL(z), y, z ∈ T}.

We have MRR, t |= X and therefore MRR, t |= Q ∪X. We now show that MRR is a
bi-equilibrium model of (i) Q ∪X, but (ii) not of P ∪X.

(i) Consider any bi-model M = 〈(S, SR),W,B〉 of Q ∪X, where S = (T, υ) ⊂ SR.
Since Γ(SL) ⊆ X, SL must be a substream of S. Furthermore, we have S 6= SL, since
MLR, t 6|= Q. Thus, SL ⊂ S ⊂ SR. Now, let a ∈ υ(y) \ υL(y) and b ∈ υR(z) \ υ(z) for
some y, z ∈ T . Clearly, @zb← @ya belongs to X, but M, t 6|= @zb← @ya. Hence,
M, t 6|= Q ∪X.

(ii) Consider the initial assumption MLR, t |= P . Clearly, MLR, t |= Γ(SL). Moreover,
for every rule r = @zb← @ya ∈ X, MLR, t |= r. Hence, MLR, t |= P ∪X and MRR is
not a bi-equilibrium model of P ∪X.

(⇐) Assume bi(P) = bi(Q). We then have for all programs X that bi(P) ∩ bi(X) =
bi(Q) ∩ bi(X) and hence by Lemma 6 that bi(P ∪X) = bi(Q∪X). Consequently, P ∪X
and Q ∪X have the same answer sets, i.e., P and Q are strongly equivalent. 2

Furthermore, we also characterize uniform equivalence in terms of bi-entailment.

Theorem 22 (Uniform Equivalence) Let D = (T, υ) be a data stream, t ∈ T , and
let P and Q be LARSbi programs. Then, P ≡u Q iff

(i) for each MRR, MRR ∈ bi(P) iff MRR ∈ bi(Q), and
(ii) for each MLR, where SL ⊂ SR, MLR ∈ bi(P) (resp. MLR ∈ bi(Q)) iff M ∈ bi(Q)

(resp. M ∈ bi(P)) for some M = 〈(S, SR),W,B〉 s.t. SL ⊆ S ⊂ SR.

Proof. (⇒) Let P ≡u Q. Towards a contradiction, assume (i) does not hold and
assume w.l.o.g. that MRR, t |= P but MRR, t 6|= Q. Then, by construction of Γ(SR),
MRR, t |= P ∪ Γ(SR) and there exists no SL ⊂ SR such that MLR, t |= P ∪ Γ(SR), i.e.,
MRR is a bi-equilibrium model of P ∪ Γ(SR). On the other hand, MRR, t 6|= Q ∪ Γ(SR),
since MRR, t 6|= Q. Hence, MRR is not a bi-equilibrium model of Q ∪ Γ(SR). In sum-
mary, we obtain that the answer streams for P ∪ Γ(SR) and Q ∪ Γ(SR) do not coincide,
contradicting the fact that P ≡u Q.

To show (ii), again suppose the contrary towards a contradiction. W.l.o.g., assume
MLR, t |= P and M, t 6|= Q for all M = 〈(S, SR),W,B〉 such that SL ⊆ S ⊂ SR. Since
MLR, t |= P , also MRR, t |= P and therefore, by (i), MRR, t |= Q. Furthermore, by
construction of Γ(SL), MRR, t |= Q ∪ Γ(SL). From M, t 6|= Q we get M, t 6|= Q ∪ Γ(SL)
(for all considered M with S ⊂ SR). Consequently, MRR is a bi-equilibrium model of
Q ∪ Γ(SL). Furthermore, we have MLR, t |= P ∪ Γ(SL) and thus, MRR cannot be a
bi-equilibrium model of P ∪ Γ(SL). In conclusion, MRR is a bi-equilibrium model of
Q ∪ Γ(SL) but not of P ∪ Γ(SL), i.e., they have different answer streams, contradicting
the initial assumption that P ≡u Q.

110

5.4. Characterizing Equivalence Notions

(⇐) Assume that (i) and (ii) hold. Towards a contradiction, suppose P and Q
are not uniformly equivalent. Then, some set X consisting of @-atoms exists such
that, w.l.o.g. P ∪X has some bi-equilibrium model MRR which is not a bi-equilibrium
model of Q ∪X. Since MRR, t |= P and MRR, t |= X, and by (i) MRR, t |= Q, we have
also MRR, t |= Q ∪X. Thus, some SL ⊂ SR exists s.t. MLR, t |= Q ∪X, which implies
MLR, t |= Q. Since (ii) holds, some M = 〈(S, SR),W,B〉 exists, where SL ⊆ S ⊂ SR, s.t.
M, t |= P . We have MLR, t |= X and thus by construction of S also M, t |= X. Hence,
we obtain M, t |= P ∪X. This implies that MRR is not a bi-equilibrium model of P ∪X,
contradicting the assumption; we conclude that P and Q are uniformly equivalent. 2

We now characterize data equivalence using relativized uniform equivalence [Wol04], given
a fixed initial data stream.

Definition 27 Let A be a set of @-atoms. We say two LARS programs P and Q are
uniformly equivalent relative to A (for D at t), denoted by P ≡Au Q, iff AS(P ∪ F,D, t) =
AS(Q ∪ F,D, t) for all F ⊆ A.

Given S = (T, υ) and a set A of @-atoms, the restriction S|A of S to A is the stream
(T, υ′) such that υ′(t) = {a | a ∈ υ(t) and @ta ∈ A} for all t ∈ T .

Consider two streams SL = (T, υL) and SR = (T, υR) where D ⊆ SL. We call MLR
an A-bi-interpretation, if either SL = SR or SL ⊂ SR|A. Moreover, MLR is a (relativized)
A-bi-model of a LARS program P for data stream D at time point t ∈ T if

(a) MRR, t |= P ,
(b) M ′, t 6|= PMR,t, for all structures M ′ = 〈S′,W,B〉 s.t. D ⊆ S′ ⊂ SR and S′|A = SR|A,

and
(c) SL ⊂ SR implies thatM ′′, t |= PMR,t holds for someM ′′ = 〈S′′,W,B〉 s.t.D ⊆ S′′ ⊆ SR

and S′′|A = SL.

The set of all A-bi-models of P (relative to a data stream D and a time point t) is
denoted by biA(P). In line with [EFW07], we present the following Lemma.

Lemma 7 P ≡Au Q iff for every A-bi-interpretation MLR which is an A-bi-model of
exactly one of the programs P and Q, it holds that

(i) MRR ∈ biA(P) ∩ biA(Q), and

(ii) there exists an A-bi-model M′ = 〈(S′, SR),W,B〉 of the other program such that
SL ⊂ S′ ⊂ SR.

Proof. (⇒) Let P ≡Au Q. We first show Condition (i) holds by first assuming the
contrary; w.l.o.g., that MRR ∈ biA(P) and MRR 6∈ biA(Q). Moreover, we let F = SR|A.
We have MRR, t |= P and thus MRR, t |= P ∪ Γ(F). Next, MRR ∈ biA(P) implies that
for each M ′ = 〈(S′, SR),W,B〉, where S′ ⊂ SR and S′|A = SR|A, that M ′, t 6|= PMR,t

(we also omit t in the notation of the reduct). That is, for each such M ′ we get

111

5. Semantic Characterizations of Equivalent LARS Programs

M ′, t 6|= (P ∪ Γ(F))MR,t. Furthermore, for each SL ⊂ SR with SL|A ⊂ SR|A, we have
MLR, t 6|= Γ(F) and thus MLR, t 6|= PMR,t ∪ Γ(F). Thus, MRR is a bi-equilibrium model
of P ∪ Γ(F). However, we observe the following for Q ∪ Γ(F): since MRR 6∈ biA(Q) we
have MRR, t 6|= Q or M ′, t 6|= QMR,t for some structure M ′ = 〈S′,W,B〉 s.t. D ⊆ S′ ⊂ SR
and S′|A = SR|A. We then have M ′, t |= (Q ∪ Γ(F))MR,t. That is, MRR is not a
bi-equilibrium model of Q ∪ Γ(F). Since MRR is an bi-equilibrium model of P ∪ Γ(F)
we conclude that P ≡Au Q cannot hold, which gives the contradiction.

For Condition (ii), we assume w.l.o.g. that MLR ∈ biA(P) and MLR 6∈ biA(Q). From
(i) follows that SL ⊂ SR; and then SL = SL|A. Towards a contradiction, suppose now
that no bi-structure M′ = 〈(S′, SR),W,B〉, where SL ⊂ S′ ⊂ SR, is in biA(Q). Since for
every M ′′ = 〈S′′,W,B〉 s.t. D ⊆ S′′ ⊂ SL we have that M ′′, t 6|= QMR ∪ Γ(SL), MRR is
the only A-bi-model of Q ∪ Γ(SL) with MR as the right-stream. Consequently, MRR is a
bi-equilibrium model of Q∪Γ(SL). However, we observe the following for P ∪Γ(SL): from
MLR ∈ biA(P) follows that M ′, t |= PMR,t for some M ′ = 〈S′,W,B〉 s.t. D ⊆ S′ ⊆ Y
and S′|A = SL|A. Moreover, M ′, t |= (P ∪ Γ(S′))MR,t. It follows that MRR is not a
bi-equilibrium model of P ∪ Γ(SL), which contradicts the assumption that P ≡Au Q. We
obtain that for some stream S′ s.t. SL ⊂ S′ ⊂ SR the bi-structure M′ = 〈(S′, SR),W,B〉
in an A-bi-model of Q.

(⇐) We assume Conditions (i) and (ii) hold for every A-bi-interpretation MLR which
is an A-bi-model of exactly one of the programs P and Q. Suppose there exists a subset
F ⊆ A and a structure M = 〈Z,W,B〉 such that M = 〈(Z,Z),W,B〉 is, w.l.o.g., (1)
a bi-equilibrium model of P ∪ F and (2) not of Q ∪ F . From (1) we get F ⊆ Γ(Z),
M, t |= P and M ′, t 6|= PM,t for each M ′ = 〈Z ′,W,B〉 such that Z ′ ⊂ Z and Z ′|A = Z|A.
Consequently, M ∈ biA(P). From (2) we derive that either M, t 6|= Q ∪ F or there is
some structure M ′ = 〈Z ′,W,B〉, where Z ′ ⊂ Z, such that M ′, t |= (Q ∪ F)M,t.

We first assume that M, t 6|= Q ∪ F . From F ⊆ Γ(Z) we obtain M, t 6|= Q and thus
M 6∈ biA(Q) which is in conflict with Condition (i). We conclude that M, t |= Q∪F must
hold and there exists some M ′ = 〈Z ′,W,B〉, where Z ′ ⊂ Z, such that M ′, t |= (Q∪F)M,t,
i.e., M ′, t |= QM,t ∪ F . We can exclude the case that Z ′|A = Z|A since this would imply
that M 6∈ biA(Q). That is, we have the following relations: M, t |= Q; M ′, t 6|= QM,t for
each M ′ = 〈Z ′,W,B〉 s.t. Z ′|A = Z|A; and there exists some M ′′ = 〈Z ′′,W,B〉, where
Z ′′|A ⊂ Z|A, s.t. M ′′, t |= QM,t. We obtain that M′′

A = 〈(Z ′′|A, Z),W,B〉 ∈ biA(Q) and
M′′ = 〈(Z ′′, Z),W,B〉 6∈ biA(P). We also get that M′′

A 6∈ biA(P) since assuming the
contrary would imply M′′

A ∈ biA(P ∪ F), contradicting that M is a bi-equilibrium model
of P ∪ F . That is, M′′

A is an A-bi-model only of Q. Due to Condition (ii) we obtain that
M ′ = 〈(S′, Z),W,B〉 ∈ biA(P) for some Z ′′ ⊂ S′ ⊂ Z. Since F ⊆ Γ(Z),M ′ ∈ biA(P ∪F),
which contradicts the assumption that M is a bi-equilibrium model of P ∪ F .

In conclusion, we obtain that by assuming (i) and (ii) for every MLR that is an
A-bi-model of exactly one of the programs P and Q, there is no set F ⊆ A of @-atoms
and stream Z such that Z is an answer stream of exactly one of P ∪ F and Q ∪ F , i.e.,
P ≡Au Q holds. 2

The following result based on Lemma 7 characterizes relativized uniform equivalence, and
resembles the one for uniform equivalence, where bi-models are replaced by A-bi-models.

112

5.5. LARS Here-and-There and Monotone Windows

Theorem 23 (Relativized Uniform Equivalence) P ≡Au Q iff

(i) for each MRR,MRR ∈ biA(P) iff MRR ∈ biA(Q), and
(ii) for each MLR, where SL ⊂ SR, MLR ∈ biA(P) (resp. MLR ∈ biA(Q)) iff M ∈ biA(Q)

(resp. M ∈ biA(P)), for some M = 〈(S, SR),W,B〉 s.t. SL ⊆ S ⊂ SR.

The proofs of Theorems 21-23 are similar to those for answer set programs (cf. [LPV01],
[EF03], [EFW07]) and exploit the following key properties:

(1) the reduct of the union of two programs P and Q is the union of their reducts, i.e.,
(P ∪Q)M,t = PM,t ∪QM,t,

(2) the reduct of a set of atoms (facts) F is F itself, i.e., FM,t = F ,

(3) an atom evaluates to true iff it is in the interpretation stream,

(4) a structure is a model of the union of two programs iff it is a model of both programs,
i.e., M, t |= P ∪Q iff M, t |= P and M, t |= Q.

We now obtain data equivalence as special case of relativized uniform equivalence.

Corollary 5 Let D = (T, υ) be a data stream and A = {@ta | a ∈ AE and t ∈ T}. Then,
P ≡d Q iff P ≡Au Q.

Recall that plain LARS permits only intensional atoms and @-atoms with intensional
atoms in rule heads. Since A only refers to extensional atoms, Condition (c) of an
A-bi-model holds for every SL such that D ⊆ SL ⊂ SR|A.

5.5 LARS Here-and-There and Monotone Windows
In Definition 23, the semantics of the window operator �w was defined in bi-LARS by
straight branching into separate evaluation of the left and the right stream. Consider the
following alternative �w semantics.

Definition 28 (Recursive �w) We define the following alternative �w semantics for
bi-LARS. Let w ∈ {L,R}.

M, t,w �wα :⇔ M′, t,w α ,

where M′ = 〈(S′L, S′R),W,B〉 and S′w = w(Sw, t).

This recursive variant may in general break the connection between left and right, i.e.,
the relation SL ⊆ SR.

Example 44 Consider streams SL = ([0, 4], υL) and SR = ([0, 4], υR) as depicted in
Figure 5.1, where SL ⊂ SR. Applying a tuple-based window operator with size 3 at t = 4
returns S′L = ([1, 4], {1 7→ {a}, 3 7→ {b}, 4 7→ {a}}) as substream of SL, and S′R =
([3, 4], {3 7→ {b}, 4 7→ {a, c}} for SR. We observe that S′L 6⊆ S′R, i.e. the substream relation
breaks. �

113

5. Semantic Characterizations of Equivalent LARS Programs

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

Figure 5.1: Tuple-based windows of size 3 at t = 4.

In Example 44, the window is nonmonotonic in the sense that by increasing the input
stream, atoms may disappear from the output. When excluding such nonmonotonic
windows, the recursive version for �w semantics may be equally used.

Definition 29 We call a window function w monotone, if for every pair of streams
S1 = (T1, υ1) and S2 = (T2, υ2) it holds that

S1 ⊆ S2 implies w(S1, t) ⊆ w(S2, t) for all t ∈ T1,

i.e., w preserves substreams, and

T1 = T2 implies T ′1 = T ′2 for all t ∈ T1,

where w(Si, t) = (T ′i , υ′i) (for i = 1, 2).

Likewise, we call a window operator �w monotone if the underlying window function w
is monotone. For instance, time-based window operators have this property. Using
Definition 28 for a variant of bi-LARS on monotone windows can be seen as an extension
of Here-and-There [Hey30] underlying Equilibrium Logic [Pea06].

Definition 30 (HT-entailment) HT-entailment is defined as variant of bi-LARS en-
tailment (Definition 23), using instead Definition 28 for the semantics of �w and
¬α := α→ ⊥ for negation.

Based on HT-entailment, we obtain a conservative extension of Pearce’s Equilibrium
Logic for LARS with monotone windows, that treats nested implications intuitionistically,
and is thus different from FLP-based semantics. Under limited nesting of negation, the
two semantics actually coincide; e.g., for the following class of formulas/programs:

Definition 31 (FHT, LARSHT) By FHT we denote the class of LARS formulas where

(i) each �w is monotone,

(ii) each subformula ϕ→ ψ expresses negation (i.e., ψ = ⊥), and

(iii) no negation occurs within the scope of 3 or another negation.

By LARSHT we denote the class of LARS programs P where all formulas in F(P) are
in FHT.

114

5.5. LARS Here-and-There and Monotone Windows

Note that nested negation must be excluded, as e.g. the rule a← ¬¬a has the equilibrium
models (∅, ∅) and ({a}, {a}). Only the first one amounts to an FLP-answer set.

If we drop → (i.e., negation) from HT-formulas, we get complete independence of the
left-structure from the right-structure. Recall that we always consider the same timeline
for the left-stream SL = (T, υL) and the right-stream SR = (T, υR) (cf. Section 5.2).

Lemma 8 Let M = 〈S,W,B〉 s.t. SL ⊆ SR and let α ∈ FHT be a formula in which
→ does not occur, i.e., without negation. Then, under HT-entailment, M, t α iff
ML, t α.

Proof. Intuitively, the lemma holds since → is the only connective establishing a con-
nection from left to right. We argue formally by the structure of α.

(⇒) We have shown this part already in Lemma 4, with exception of the alterna-
tive �w semantics considered here. We defined M, t,L �wϕ iff M′, t,L ϕ in the
bi-structure M′ resulting from window application. For the latter we get M ′L, t ϕ
inductively, hence ML, t �wϕ by definition.

(⇐) Let ML, t α. If α is an atom a, then a ∈ υL(t) or a ∈ B, as accessed both
from the structure ML and the bi-structure M, i.e., we get the base case M, t,L a by
definition. For α of the form ϕ ∧ ψ, we get by definition that ML, t ϕ and ML, t ψ,
hence M, t,L ϕ and M, t,L ψ inductively, and then M, t,L ϕ ∧ ψ by definition.
The cases for 3, 2, @t′ and �w are shown with the same straightforward argument. 2

With an inductive argument, one can show that the central property of Proposition 4
carries over to formulas in FHT under HT-entailment.

Proposition 5 Let M = 〈S,W,B〉 s.t. SL ⊆ SR and let α ∈ FHT. Then, under HT-
entailment, M, t α iff ML, t α and MR, t α.

Proof. We consider M = 〈(SL, SR),W,B〉 such that SL ⊆ SR; ML = 〈SL,W,B〉 and
MR = 〈SR,W,B〉. The proposition is again shown by induction on the structure of α.
The arguments given for Lemmas 3-5 carry over for the base case where α is an atom,
and the cases for connectives ∧, 2, and @t′ . It remains to argue the cases �w, 3 and →.

(⇒) Let M, t α. We first consider α = �wϕ and observe that Lemma 2 carries
over for HT-entailment, in particular for the window operator; this is immediate from
the new definition. Thus, we obtain MR, t �wϕ, and ML, t �wϕ is given directly
by the definition of �w. Next, consider the form α = ϕ→ ⊥. By definition, we have
M, t,L 1 ϕ (or M, t,L ⊥, which is false) and M, t,R ϕ→ ⊥, i.e., M, t,R 1 ϕ. Since
Lemma 2 carries over we obtain that MR, t 1 ϕ and consequently MR, t ϕ→ ⊥. Since
the considered formula class guarantees that ϕ does not contain →, it follows from
Lemma 8 that ML, t 1 ϕ and we obtain ML, t ϕ→ ⊥. Finally, let α be of the form 3ϕ.
By definition, M, t′,L ϕ for some t′ ∈ T and thus by induction ML, t

′ ϕ. The
considered HT-fragment excludes any occurrence of negation within ϕ. Together with the
property that SL ⊆ SR we thus obtain MR, t

′ ϕ, and in conclusion that ML, t 3ϕ
and MR, t 3ϕ.

115

5. Semantic Characterizations of Equivalent LARS Programs

(⇐) Let ML, t α and MR, t α. We get the cases for �w and 3 by Lemma 8, thus
we consider α = ϕ→ ⊥. That is, we have ML, t 1 ϕ and MR, t 1 ϕ. Since ϕ does not
contain →, we obtain again by Lemma 8 that M, t,L 1 ϕ, and thus M, t ϕ→ ⊥. 2

This allows one to establish the characterization in Theorem 19 for this setting. Thus,
for LARSHT programs, FLP-based answers streams and HT-equilibrium models coincide,
and the equivalence notions can equally be characterized by HT-entailment.

Theorem 24 (LARS Here-and-There) Theorems 19-23 also hold for LARSHT pro-
grams under HT-entailment.

Proof. With Proposition 5 at hand, the proof of Theorem 24 consists in just following
the steps of the proofs of Theorems 19-23 using LARSHT programs under HT-entailment
instead of LARSbi programs under bi-entailment. 2

We note that LARSHT includes plain LARS programs with monotone windows such as
time-based windows, hence we obtain the following.

Corollary 6 For plain LARS with monotone windows, the window semantics of Defini-
tion 23 and Definition 28 coincide.

In summary, we showed how major equivalence notions from Answer Set Programming
carry over to a large class of LARS programs. We characterized strong equivalence,
uniform equivalence, and relativized uniform equivalence. The introduced data equivalence
was obtained as special case of the latter. All results depend on the property that the
left-stream is included in the right-stream; where this property might fail to hold, bi-
LARS has to branch into separate evaluation in the underlying LARS structures. For
the considered fragment LARSHT, which does not break the connection SL ⊆ SR, a more
elegant, recursive definition of the central window operator is possible.

Next, we summarize the complexity results for the obtained characterizations.

5.6 Computational Complexity of Deciding Equivalences
We now give an overview of the results from [BDE16] regarding the complexity of deciding
P ≡e Q for equivalence notions e = o, s, u, d. In line with the definition of the considered
notions of equivalence, i.e., ordinary/strong/uniform/data equivalence, we assume that
the data stream D, programs P and Q as well as the time point t are given. We
recall the result from Section 3.3 that, given a window nesting depth bounded by some
constant k ≥ 0, model checking for LARS formulas is feasible in polynomial time and
satisfiability is NP-complete; for LARS programs we obtained co-NP-completeness and
Σp

2-completeness, respectively. We consider plain LARS as guiding fragment, which falls
into this category since it precludes nested windows (i.e., k = 0); and a stratified fragment
(as in Section 6.5.1). Moreover, we distinguish monotone and non-monotone windows.
The results are shown in Table 5.1; we now briefly summarize how they are obtained.

116

5.6. Computational Complexity of Deciding Equivalences

�w cons. ≡o ≡s ≡u ≡d
plain LARS non-mon. Σp

2 Πp
2 co-NP Πp

2 Πp
2

monotone NP co-NP co-NP co-NP co-NP
stratified LARS (both) P P co-NP co-NP co-NP

Table 5.1: Complexity results (completeness) for consistency and equivalence checking

Based on the complexity of decidingM, t α (resp. satisfiability), most upper bounds
are derived directly from the characterizations above. Deciding strong equivalence is
in co-NP, while uniform and data equivalence is in Πp

2, since refutation is possible in
nondeterministic polynomial time, given an NP oracle to verify a guess for a counter
example to equivalence. When considering stratified programs, the answer stream is
unique and can be computed by a fixed-point computation in polynomial time as usual.
In this case, answer set existence is also feasible in polynomial time, as well as checking
ordinary equivalence. We note that in case of monotone windows in plain LARS, negative
literals can be deleted from the FLP-reduct. Thus, when restricting to monotone windows,
the minimality check for a model can also be carried out by a fixed-point computation
on the reduct. As a consequence, answer set existence and ordinary equivalence drop
from Σp

2 and Πp
2 to NP and co-NP, respectively.

By restricting all formulas in plain LARS to atoms, the class of normal logic program
is obtained (cf. Section 4.1). This subsumption allows us to infer lower bounds from
the analogous equivalence notions in ASP [EFW07], where answer set existence is NP-
complete, and deciding strong/uniform equivalence are co-NP-complete. Regarding
uniform and data equivalence, we observe the following relation in the context of ordinary
logic programs P and Q.

Proposition 6 Let A be a set of atoms, A′ be a copy of A and let P ′ = P ∪R′ and
Q′ = Q ∪R′, where R′ = {a ← a′ | a ∈ A}. Then, P ≡u Q (w.r.t. A) iff P ′ ≡d Q′
(w.r.t. A′).

Using rules of the form @ta← @ta
′, this approach extends to LARS. Consequently, it

suffices to consider uniform equivalence, i.e., the Πp
2-hardness result (for plain LARS with

non-monotone windows).
Furthermore, it remains to argue the hardness results for ordinary equivalence (Πp

2)
and answer stream existence (Σp

2). All of these results can be shown with techniques
from [EG95] and [EF03], where they are applied for disjunctive logic programs. In
particular, the proofs carry over for plain programs without negations; however, negation
can be emulated using non-monotone windows. For instance, consider a stream S = (T, υ)
with auxiliary atoms a′ at every time point. Now, consider a window operator �¬a based
on a window function w¬a that will delete, when applied at time point t, atom a′ from
υ(t) if a ∈ υ(t). If a′ appears as fact in a program P we obtain for every model M
that M, t �¬a@t a

′ iff M, t ¬a, i.e., we effectively provide negation in form of a
(non-monotone) window operator.

117

5. Semantic Characterizations of Equivalent LARS Programs

In conclusion, the complexity of deciding the considered equivalence is, for plain
LARS with non-monotone windows, not harder than for disjunctive logic programs, and
for most cases easier when restricting to monotone windows or a stratified fragment that
permits fixed-point evaluation.

5.7 Discussion and Related Work
In contrast to bi-LARS, LARS includes also a reset operator . by which one jumps back to
the original stream during evaluation. We skipped an explicit study of . in this chapter for
multiple reasons. First, . is relevant only for nested windows; the application of . outside
the scope of any window operator has no effect. Nevertheless, . might be of practical
interest, but we observe the following: bi-LARS entailment (Definition 23) branches for
window operators into separate evaluation in the underlying LARS structures, hence the
obtained results remain when using . inside the scope of a window. On the other hand,
introducing . formally in bi-LARS makes notation more involved as we would have to
carry the current stream left of as in the LARS entailment definition. That is, we
could define the bi-LARS entailment for reset by

M,S, t,w .α :⇔ M,S?, t,w α , (5.6)

where S? = (S?L, S?R) is the original bi-stream and S = (SL, SR) contains substreams com-
ponentwise. We then require re-definitions like M, t α :⇔ M,S?, t,L α, etc. Note
that the definition due to (5.6) is analogous to the recursive window in Definition 28. As it
cannot break the ⊆-relation between left-stream and right-stream (but only reintroduces
the original streams which are in this relation), the results for the monotone variant of
Section 5.5 extend also for reset.

Related Work

Lifschitz et al. [LPV01] introduced strong equivalence of logic programs under ASP
semantics and showed that it coincides with equivalence in the logic of Here-and-There.
Inspired by this, Eiter et al. [EFW07] characterized uniform and relativized notions of
equivalence in ASP in terms of HT-interpretations (H,T). We generalize this to the
LARS framework with bi-structures (SL, SR) containing pairs of streams.

As regards optimization in stream reasoning, to our knowledge not much foundational
work exists. Typically, the interest is concentrated on dealing with evolving data, and to
develop incremental evaluation techniques, e.g., [MNPH15]; [RP11]; [GSS11]; [BBC+10b];
[BDE15]. In the context of data processing, [ABW06] studied query equivalence for
the Continuous Query Language (CQL), but at a very elementary level. Since CQL
can essentially be captured by LARS programs (cf. [BDEF15] respectively Section 4.3),
results on LARS equivalence may be fruitfully applied in this context as well.

Naturally, stream reasoning relates to temporal reasoning; in [CV07], nonmonotonic
Linear Temporal Equilibrium Logic (TEL) was presented as an extension of Pearce’s
Equilibrium Logic [Pea06] to Linear Temporal Logic (LTL), defining temporal stable

118

5.7. Discussion and Related Work

models over infinite structures. More recently, a complexity analysis of TEL was given
in [BP15]. Notably, strong equivalence for TEL theories amounts to equivalence in the
underlying Temporal Here-and-There logic [ACPV08, CD14]. However, TEL differs from
LARS in several respects. LARS aims primarily at finite (single-path) structures, and
the notion of window, which requires to go beyond the HT setting, has no counterpart in
TEL. Furthermore, the temporal operators in LARS are more geared to access of data in
windows in practice.

Outlook

We have characterized FLP-based answer streams of LARS programs in logical terms
by means of bi-LARS, as well as several notions of equivalence for LARS programs,
as a basis for optimization. Furthermore, we have shown that a monotone variant of
bi-LARS leads to an extension of the logic of Here-and-There for a large fragment of
LARS including plain LARS.

In future work, our studies can be extended in several directions. Besides other
notions of equivalence, specific program classes are of practical relevance. In particular,
by confining to widely used time-based and tuple-based window operators one might
exploit more specific properties than by the distinction of monotone vs. non-monotone
ones. Related to this is identifying maximal fragments (relative to some criteria) where
Here-and-There semantics coincides with bi-LARS, which is tailored for FLP. Furthermore,
one might introduce window operators to the more expressive temporal equilibrium logic.
Apart from potential extensions of bi-LARS to capture according semantics, combining
nonmonotonic temporal reasoning with features to drop data is an intriguing issue.

119

CHAPTER 6
Incremental Reasoning for Plain

LARS Programs

Reasoning over streaming data suggests a reconsideration of the concept of a solution to
a problem, and how to obtain it. In contrast to static data, streams change continuously,
and so may their evaluations: conclusions based on expired data must be retracted,
additional information might arrive and yield additional derivations, even undermine
previous ones, and so forth. In Chapter 3 we developed a model-based semantics which
allows us to view the evolution of solutions as a sequence of models (resp. answer streams
or sets thereof) over time. Assuming an algorithm that computes the answer streams
at a given time point, we thus get an algorithm for stream reasoning (in our terms)
by repeatedly computing models over time. However, such a naive method would also
recompute those parts that can remain. That is to say, repeatedly computing models
from scratch is hardly a practical solution.

Just like the data stream changes continuously, so might the solution to a formalized
problem. Consequently, the idea of incremental reasoning is to efficiently update the
previous solution instead of rederiving everything from scratch. The model computation
task then gets replaced by the model update task, in which we have to find out which
atoms of the previous model are still guaranteed to hold and which ones might change
due to the update of the stream. If we are able to quickly determine large portions of
the previous model that remains valid we can update solutions more efficiently.

In this chapter we explore the idea of incremental reasoning in terms of incremental
model update for plain LARS programs (as defined in Section 4.1), a fragment that
is a natural starting point for practical applications. Chapter 7 will then present an
implementation and evaluation of the resulting algorithmic techniques.

121

6. Incremental Reasoning for Plain LARS Programs

Outline

Section 6.1 introduces the conceptual idea of the central algorithms developed in this
chapter. In Section 6.2 we start by reviewing Doyle’s Justification-based Truth Main-
tenance System (JTMS) [Doy79], which will serve as a building block. We present in
Section 6.3 an encoding of plain LARS programs to ASP such that answer streams
naturally correspond to answer sets. In Section 6.4 we show how a similar encoding
can be updated incrementally when the stream progresses, i.e., when time passes by or
when new atoms stream in. Given a model update technique that works by updating
a program (such as JTMS), we thus obtain an incremental model update mechanism
for plain LARS. The techniques of Sections 6.3 and 6.4 underlie the Ticker engine, as
presented in Chapter 7. Briefly mentioning further work, we present in Section 6.5.1 an
alternative approach which extends truth maintenance techniques directly for plain LARS.
Furthermore, Section 6.5.2 outlines an efficient algorithm for incrementally grounding
positive and stratified plain LARS programs.

Publications

Section 6.2 is for the largest part a copy of the technical report [Bec17], which was
released as supplementary material to publication [BEF17]. The latter is the basis of
Sections 6.3-6.4. Section 6.5 summarizes [BDE15] and Section 6.5.2 presents the central
ideas of [BBU17].

6.1 Core Idea

We will now introduce the central motivation and idea behind the incremental reasoning
technique for (plain) LARS programs as developed in this chapter.

Model Update Tick by Tick

Recall the model-based semantics of LARS programs, as defined in Chapter 3 (Sec-
tion 3.2.2), which is based on the notion of answer streams: given a program P , a data
stream D = (T, υ) and a time point t ∈ T , an answer stream S minimally adds intensional
atoms to D such that S is a model of P at t. We denote by AS(P,D, t) all answer
streams. In this formal model, we assume that the timeline T is a closed interval (in N)
but in practice a stream can rather be seen as a sequence of atoms assigned with time
points without an explicit timeline. When we evaluate a stream at time t, we implicitly
take T = [t0, t], where t0 may either be the first evaluation time or the oldest time point
where data is available. (Over time, the exact t0 will not play a role, as long as no window
expresses an interval that goes beyond it; we will discuss this.)

Thus, assume an evaluation of D at t from the formal point of view using T = [t0, t].
Receiving an additional atom a at time t then amounts to augmenting the evaluation
υ(t) := υ(t) ∪ {a}. On the other hand, proceeding to the next time point t+ 1 amounts
to considering the augmented timeline T = [t0, t+ 1] (where initially υ(t+ 1) = ∅). We

122

6.1. Core Idea

thus can consider an incremental change of the stream D towards a stream D′ due to
such a tick, i.e., (i) a single new atom or (ii) a single time point passing by. A tick thus is
the minimal granularity for incremental reasoning, where we ask: given an answer stream
S ∈ AS(P,D, t), how can we update S to a model S′ for the next tick, i.e., such that (i)
S′ ∈ AS(P,D′, t), respectively (ii) S′ ∈ AS(P,D′, t′) holds?

Example 45 Consider the data stream D7 = ([0, 7], υ), where υ = {7 7→ a(x)}, and the
program P comprising the single rule

r : b(X)← �23a(X) .

Evaluating at t = 7, we get AS(P,D7, t) = {(T, υ′)}, where υ′(7) = {a(x), b(x)}. That is
to say, P has a single answer stream which infers b(x) to hold at evaluation time.

If we now proceed to time point t′ = 8, where we formally consider the stream D8 =
([0, 8], {7 7→ {a(x)}}), we obtain the unique answer stream S8 = ([0, 8], {7 7→ {a(x)}, 8 7→
{b(x)}}. Data streams D7 and D8 can be seen as formalizations of intermediate states
of an input stream D, and the timeline can be viewed implicitly, ranging from 0 to the
evaluation time point. In that regard, we know that b(x) will be in the model at t in all
evaluation time points t ∈ {7, 8, 9} due to the length of the sliding time-based window.
In other words, there is no need to recompute b(x) for time points 8 and 9; we can keep
it in the model (relative to the evaluation time point), regardless of the data that might
appear at these time points. �

Example 45 illustrated how parts of a model might be retained or carried over for the
next tick. Recall that the pattern �w3a deserves special attention, as it formalized the
prominent snapshot semantics, as discussed e.g. in Section 4.3. As instances for the
window function w we shall consider time-based and tuple-based windows which are
frequently used kinds of windows. More specifically, focusing on sliding versions of these
windows, we hope to exploit their fully incremental nature during incremental model
update.

Static Encoding to ASP

Towards our incremental reasoning technique, we first consider a natural encoding to
Answer Set Programming.

Example 46 Rule r of Example 45 can be naturally translated into the following
ASP rules, where we assume an additional predicate now(t) to model the query time t.
Moreover, a@(x, t) means that a(x) holds at time t.

rb : b(X) ← ω(X)
r1 : ω(X) ← now(N), a@(X,N)
r2 : ω(X) ← now(N), a@(X,N − 1)
r3 : ω(X) ← now(N), a@(X,N − 2)

Base rule rb corresponds to the original LARS rule and replaces the window atom
�23a(X) by an encoding atom ω(X) which shall be derived (for a substitution of X) iff

123

6. Incremental Reasoning for Plain LARS Programs

the window atom itself holds. To this end, rules r1-r2 derive ω(X) in case a(X) holds at
the current time point N , or at one of the two time points before. Clearly, given a@(x, 7)
(of the data stream from Example 45), we obtain b(x) for query times t = 7, 8, 9, which
are reflected by providing the additional atom now(7), now(8), now(9), respectively.

For instance, the answer stream ([0, 8], {7 7→ {a(x)}, 8 7→ {b(x)}} of P at 8 corresponds
to the answer set {a@(x, 7), ω(x), b(x)} (where ω(x) is auxiliary) of the program

b(X) ← ω(X)
ω(X) ← now(N), a@(X,N)
ω(X) ← now(N), a@(X,N − 1)
ω(X) ← now(N), a@(X,N − 2)

now(8) ←
a@(x, 7) ← ;

i.e., the ground program

b(x) ← ω(x)
ω(x) ← now(8), a@(x, 8)
ω(x) ← now(8), a@(x, 7)
ω(x) ← now(8), a@(x, 6)

now(8) ←
a@(x, 7) ← .

Note that b(x) (to hold at time 8) could be also represented as b@(x, 8), but using the
convention that for any predicate p, p(x) equals p@(x, t) for the current evaluation time
point t, we can keep the first rule (corresponding to groundings of rb). We later use
explicit rules for this equivalence. �

The idea of this encoding essentially carries over for tuple-based windows and other
temporal modalities; some cases however are more subtle. For the sake of motivation, we
stick here to this simple case.

Incremental Encoding

We now illustrate the central idea for incremental update mechanism, which is based
on the observation that a slight variation of the given ASP encoding can be adjusted
incrementally from tick to tick.

Example 47 (cont’d) Assuming that we remove the auxiliary predicate now and di-
rectly deal with partial groundings, we get at time t = 7 the following rules.

rb : b(X) ← ω(X)
r′1 : ω(X) ← a@(X, 7)
r′2 : ω(X) ← a@(X, 6)
r′3 : ω(X) ← a@(X, 5)

124

6.1. Core Idea

We observe that the rules r′1, r′2, r′3 cover the window timeline [5, 7]. If we move to time 8,
i.e. the timeline [6, 8], we can keep any groundings for time points 6 and 7 as well as for
the base rule rb; only groundings for rule r′3 need to be removed, and groundings for time
8 have to be added. This adjustment can be illustrated as follows:

rb : b(x) ← ω(x)
+ r8 : ω(x) ← a@(x, 8)

r7 : ω(x) ← a@(x, 7)
r6 : ω(x) ← a@(x, 6)

− r5 : ω(x) ← a@(x, 5)

In other words, ground rule r8 is new, rb, r7 and r6 remain, and r5 will be deleted. �

We see that a new tick (in Example 47 an increase in time) is reflected in the incremental
encoding by (i) generating a new template rule, (ii) grounding it, and (iii) removing
expired rules. The latter can be done efficiently since it depends on syntactic information
from the rules themselves. In the case of the example, ground rules stemming from
template ω(X)← a@(X,N) are removed after three time points due to the window length
2 of the time-based window.

Exploiting Truth Maintenance

With respect to model maintenance, a benefit of this incremental program update arises
if we exploit the part of the program that does not change.

Example 48 (cont’d) Analyzing the incremental grounding at time 7, we observe that
b(x) is in the answer set due to the following rules (the last one being the fact from the
data stream):

b(x) ← ω(x)
ω(x) ← a@(x, 7)

a@(x, 7) ←

We note that for time points 8 and 9 atom b(x) is still concluded due to the same rules.
In fact, the answer set {a@(x, 7), ω(x), b(x)} as obtained for the incremental encodings
at time t = 7, 8, 9 is always based on these three rules; the other rules are irrelevant (i.e.,
their body is false):

t = 7 : t = 8 : t = 9 :
b(x) ← ω(x)
ω(x) ← a@(x, 7)
ω(x) ← a@(x, 6)
ω(x) ← a@(x, 5)

a@(x, 7) ←

b(x) ← ω(x)
ω(x) ← a@(x, 8)
ω(x) ← a@(x, 7)
ω(x) ← a@(x, 6)

a@(x, 7) ←

b(x) ← ω(x)
ω(x) ← a@(x, 9)
ω(x) ← a@(x, 8)
ω(x) ← a@(x, 7)

a@(x, 7) ←

In principle, the model can thus be retained from time 7 to time 9. Moreover, even if
we had an appearance of a(x) at time 8 or 9 (corresponding to additional input atoms

125

6. Incremental Reasoning for Plain LARS Programs

a@(x, 8) and a@(x, 9), respectively), we could still maintain the truth of b(x) until time 9
due to the rules displayed in black. �

Our considerations so far reduce plain LARS reasoning to ASP based on an encoding
which can be updated incrementally: when new data is streaming in or time passes by,
we add some new rules and remove expired rules. We are thus interested in a model
maintenance technique that is able to update models (answer sets) based on updating
the program.

In fact, Doyle’s Justification-based Truth Maintenance System (JTMS) [Doy79] serves
this purpose (with restrictions that will be discussed). The core of this system deals with
updating justifications of propositions; these justifications syntactically correspond to
rules of normal logic programs. Moreover, the semantics of JTMS is defined in terms of
so-called admissible models, which correspond to answer sets (under some restrictions).

Overall, we thus obtain recipes for two reasoning strategies for plain LARS programs.

1. Repeated one-shot solving based on a static encoding to ASP where the query
time t is specified by now(t).

2. Incremental model update based on the dynamic encoding to ASP, where after
every tick, the previous model is updated by JTMS due to the addition of new
rules and the removal of expired ones.

These two reasoning strategies are implemented in the Ticker engine, which we shall
present in the next chapter.

The static encoding is explained in detail in Section 6.3, followed by the incremental
encoding in Section 6.4. Before that, we review and formalize the core JTMS and extend
it for rule removal, which has not been considered in the original presentation. Notably,
our technique does not depend on JTMS as such. Any mechanism that is able to maintain
an answer set of a normal logic program in light of new and deleted rules qualifies as a
submodule in our conceptual architecture and its implementation.

6.2 Formalizing Justification-based Truth Maintenance
Systems (JTMS)

Justification-based Truth Maintenance Systems (JTMS) trace back to Doyle’s seminal
paper [Doy79] which introduced techniques for maintaining consistent beliefs and their
well-foundedness based on justifications. The central concern of JTMS is the incremental
model update due to new information which may lead to the retraction of previous
conclusions, i.e., nonmonotonic reasoning.

The motivation for this review is that truth maintenance is a classic technique in
the area of Knowledge Representation and Reasoning (KR&R); yet a clear, modular
formalization of Doyle’s informal algorithm description seems to be lacking, as well an
implementation in a state-of-the-art programming language.

126

6.2. Formalizing Justification-based Truth Maintenance Systems (JTMS)

Doyle’s original algorithm is more involved and allows for modelling constraints by
means of contradiction nodes. However, the backtracking procedure to resolve them
can introduce auxiliary rules which may then lead to models that do not reflect the
semantics of the original program. Since our specific interest here is the relationship to
Answer Set Programming (ASP), we focus on the core of JTMS that employs no notion
of constraints and thus always computes an admissible model, resp. answer set. (For
introductions to ASP we refer to [BET11, EIK09].) Throughout, we often depart from
(resp. add to) Doyle’s original terminology. Used terminology either stems from [BK14],
from logic programming, or was chosen to reflect the conceptual meaning (e.g. algorithm
and function names).

6.2.1 Truth Maintenance Networks

We start by introducing key notions similarly as in [BK14]. A truth maintenance network
(TMN) T is a pair (N,J), where N is a set of nodes and J is a set of justifications, i.e.,
expressions of form

J = 〈I|O → c〉 ,

where I,O ⊆ N and c ∈ N . We call I the in-list, O the out-list and c the consequent
of J . Nodes may be viewed as proposition. The intention of a justification is that the
consequent c holds iff all nodes in the in-list hold and no node in the out-list holds. What
holds is determined by a model M ⊆ N , i.e., a subset of the network’s nodes. Then,

JM = {〈I|O → c〉 | I ⊆M and O ∩M = ∅} ,

is the set of justifications that are valid in M . We say a model M is

(i) founded, if there exists a total order n1 < · · · < nk of all elements in M s.t. each
nj ∈ M has a supporting justification, i.e., some 〈I|O → nj〉 ∈ JM such that
I ⊆ {n1, . . . , nj−1};

(ii) closed, if n ∈M for all 〈I|O → n〉 ∈ JM ; and

(iii) admissible, if it is founded and closed.

Example 49 As a first example, we illustrate an application of modus ponens. Consider
the truth maintenance network T = (N,J), where N = {x, y} and J consists of the
following two justifications.

(J1) 〈∅|∅ → x〉
(J2) 〈{x}|∅ → y〉

Justification J1 is called a premise (or fact), since both I and O are empty. A premise is
valid in every model. Consequently, every model not containing its consequent is not
closed. Justification J2 reflects the material implication x ⊃ y. Assuming we have x
in the model, J2 is valid, so y must be concluded. Thus, we get the admissible model
M = {x, y}. �

127

6. Incremental Reasoning for Plain LARS Programs

In general, admissible models are not unique, as the next example shows.

Example 50 Consider the network T = (N,J), where N = {a, b, c} and J consists of
the following three justifications (we omit set braces for I and O):

(J1) 〈b|∅ → a〉
(J2) 〈∅|c→ b〉
(J3) 〈∅|a→ c〉

First consider the empty model. We observe that J ∅ = {J2, J3}, since in-lists of these
justifications are empty. Consequently, this model is not closed, since J2 would require b
and J3 would require c to be concluded. Thus, consider next the model {b, c}. In this case,
the valid justifications are J {b,c} = {J1, J3}. The consequent of justification J1, node a,
is not included in the model, so it is also not closed. Hence, consider model {a, b, c}, for
which we get J {a,b,c} = {J1}. In other words, this model is not founded: there are no
valid justifications for nodes b and c, and J1 is also not a supporting justification for a.

By removing c from the model, we get the admissible model M1 = {a, b}, for which
both J1 and J2 are valid. The absence of c suffices to conclude b via J2, based on which a
is founded via J1. Notably, the network has another admissible model: M2 = {c}. From
the absence of node a alone, c is concluded by J3, which is the only valid justification
in M2. �

Logic Programming Perspective

Truth maintenance networks resemble normal logic programs in the following way. Let
J = 〈I|O → h〉 be a justification such that I = {i1, . . . , in} and O = {o1, . . . , om}, and
let

rJ = h← i1, . . . , in, not o1, . . . ,not om (6.1)

be the corresponding rule. Moreover, let PT = {rJ | J ∈ J } be the logic program obtained
by this translation. The following theorem by Elkan [Elk90] allows for identifying
admissible models with answer sets.

Theorem 25 (cf. [Elk90]) Let T = (N,J) be a TMN and M ⊆ N . Then, (i) M is
an admissible model of T iff it is an answer set of PT . (ii) Deciding whether T has an
admissible model is NP-complete.

Notably, the maintenance algorithm can ensure admissibility of computed models only
in the absence of odd loops (noted in [Elk90]), and in particular, constraints. We will
discuss this in more detail below.

Elkan points out that also incremental reasoning is NP-complete, i.e., given an
admissible modelM for P , deciding for a rule r whether P ∪ {r} has an admissible model.

128

6.2. Formalizing Justification-based Truth Maintenance Systems (JTMS)

Example 51 (cont’d) Consider again the network T = (N,J) of Example 50. We
obtain the following translated program PT :

(r1) a ← b
(r2) b ← not c
(r3) c ← not a

This program has two answer sets, {a, b} and {c}, corresponding to the admissible models
of T . �

In the sequel, we discuss truth maintenance techniques in terms of logic programs:

• a program P (i.e. a set of rules) replaces justifications, and

• atoms AP occurring in P replace nodes.

For a rule of form (6.1), with atoms {h, i1, . . . , in, o1, . . . , om}, H(r) = h is called the
head, B+(r) = {i1, . . . , in} is the positive body, B−(r) = {o1, . . . , om} is the negative body,
and

B(r) = B+(r) ∪B−(r)

is called the body of r. For a given rule r, we also write H, B, B+, and B−, respectively.
We may also denote a rule by h← B, etc.

JTMS Data Structures

By JTMS we will refer to the following data structures based on a program P .
Labels. Each atom a ∈ AP is assigned a unique label. A model corresponds to the set
of atoms with label in, all others are (labeled with) out. During the algorithm, a third
label unknown is assigned to atoms that are not yet determined.
Justifications, consequences. The justifications J(a) = {r ∈ P | H(r) = a} of an
atom a are the rules with head a. Consequences of an atom b are heads of rules where b
appears in the body, i.e.,

cons(b) = {H (r) | r ∈ P, b ∈ B(r)}.

Rule validity. Due to a given labeling label, a rule r is

• valid, if the body holds, i.e., if label(a) = in for all a ∈ B+ and label(a) = out for
all a ∈ B−;

• invalid if some a ∈ B+ is out or some a ∈ B− is in; we will call any such atom a
spoiler for r;

• posValid if all atoms in B+ are in and no atom in B− is in, however, B− may
contain unknown atoms.

129

6. Incremental Reasoning for Plain LARS Programs

Note that every valid rule is also posValid.
Support. The support of an atom a specifies the reason why the current label is
assigned.

• If label(a) = in, then supp(a) is the body of some supporting justification, denoted
by suppJ (a), i.e., a valid rule r ∈ P with head a. If a appears as fact, we set
supp(a) = ∅ since it then needs no further support.

• If label(a) = out, then supp(a) contains a spoiler for each justification. Notably,
the algorithm might fail to find a spoiler for a given rule. Then it can also use
an unknown atom a (from B+) assuming that a will be labeled out later. We will
explore this below. If a appears only in rule bodies, then we again set supp(a) = ∅.

• If label(a) = unknown, then the conceptual intuition of support does not apply; we
technically set supp(a) = ∅.

Repercussions. If atom a supports rule head h, a label change for a might entail one
for h. Thus, h is said to be affected by a. Formally,

affected(a) = {h ∈ AP | a ∈ supp(h)}.

The repercussions denote the transitive closure of this relation, i.e., the set of atoms
which might change their label directly or indirectly due the label change of a given atom.

6.2.2 The Truth Maintenance Algorithm

Algorithm 6.1 presents the outline of Doyle’s procedure for adding to a program P with
model M a rule r. The goal is to update the data structures such that the model M ′
obtained by atoms with label in is an answer set of P ∪ {r}.

Example 52 Consider the following rules.

r1 = a← b. r2 = b← not c. r3 = a← d. r4 = d← c.
r5 = c← d. r6 = c← not e. r7 = e← .

Algorithm 6.1. We start with add(r1). For both atoms x ∈ {a, b}, the call register(r1)
(Algorithm 6.2) assigns label(x) := out, supp(x) := ∅ and suppJ (x) := nil. Moreover,
cons(b) = {a}. Head a is not in but rule r1 is invalid, so we reassign supp(a) := {b} in
Line 4 of Algorithm 6.1 and halt with model ∅, since no atom has label in. Next, we
call add(r2), where r2 = b← not c. Rule head b is not in but r2 is valid. Due to r1, a is
affected by b, so update (Algorithm 6.4) is called for A = {a, b}. �

Algorithm 6.5. After setUnknown in Algorithm 6.4, we try to deterministically assign
each atom label in (resp. out) due to a valid justification (resp. by invalidity of all
justifications).

130

6.2. Formalizing Justification-based Truth Maintenance Systems (JTMS)

Algorithm 6.1: JTMS Algorithm: add(r : rule)
Input: A rule r with head h

1 register(r)
2 if label(h) = in : return
3 if invalid(r) :
4 supp(h) := supp(h) ∪ {spoiler(r)}
5 return
6 A := repercussions(h) ∪ {h}
7 update(A)

Algorithm 6.2: register(r : rule)
Input: A rule r 6∈ P with atoms Ar, head h, and body atoms B

1 foreach a ∈ Ar \AP //new atoms
2 label(a) := out
3 cons(a) := ∅ //consequences: heads of rules with a in the body
4 supp(a) := ∅ //sufficient atoms supporting the current label of a
5 suppJ (a) := nil //in case a is in, a valid rule with head a
6 foreach b ∈ B
7 cons(b) := cons(b) ∪ {h}
8 P := P ∪ {r}

Algorithm 6.3: spoiler(r : rule)
Input: A rule r ∈ P with atoms Ar, pos./neg. body B+/B−
Output: If r is invalid, an atom a ∈ Ar supporting the invalidity, else nil

1 if randomBoolean()
2 if ∃ a ∈ B+ : label(a) = out return a
3 else if ∃ a ∈ B− : label(a) = in return a
4 else return nil
5 else
6 if ∃ a ∈ B− : label(a) = in return a
7 else if ∃ a ∈ B+ : label(a) = out return a
8 else return nil

Example 53 (cont’d) Assume findLabel is first called for a. The justification set is
J(a) = {r1}, and r1 is neither valid nor invalid. For findLabel(b), we have J(b) = {r2}
and as label(c) = out, r2 is valid and we call setIn(r2). This assigns label(b) := in,
supp(b) := {c} and suppJ (b) := r2. As labelSet is true, cons(b) = {a} and a is unknown,
we recursively call findLabel(a) for propagation; now r1 is valid. In setIn(r1) we set
label(a) := in, supp(a) := {b} and suppJ (a) := r1. We have the model {a, b} which stays
after adding rules r3, r4 and r5; adding r6 leads to {a, c, d}. We now call add(r7), where

131

6. Incremental Reasoning for Plain LARS Programs

Algorithm 6.4: update(A : set of atoms)
1 foreach a ∈ A : setUnknown(a)
2 foreach a ∈ A : findLabel(a) //try to determine first
3 foreach a ∈ A : chooseLabel(a) //else make choices

r7 = e←. After findLabel, only e is assigned (in), and a, b, c, d remain unknown. �

Algorithm 6.6. Procedure chooseLabel will similarly assign label(x) := out if all justifica-
tions are not posValid. Otherwise, if a posValid justification is found for atom x, we check
whether assigning label(x) := in is safe by ensuring that nothing is affected by x so far.
This may happen only if x is already used as a spoiler and thus assumed to eventually be
labeled out. Then, Lines 14-16 reset x and affected atoms to unknown and recursively
calls the subprocedure.

Example 54 (cont’d) We call chooseLabel(d) and r4 ∈ J(d) is not posValid since c is
unknown. We call setOut(d) and a, c are unknown consequences of d; chooseLabel(a) leads
to setOut(a) and chooseLabel(c) leads to setOut(c). Now b is an unknown consequence
of c and chooseLabel(b) finds posValid(r2). However, the previous call setOut(a) set
supp(a) := {b, d}, thus affected(b) = {a} 6= ∅. Hence, we call setUnknown for b, a. We
enter chooseLabel(b), then setIn(b); finally chooseLabel(a), then setIn(a) and get model
{a, b, e}. �

6.2.3 Extending JTMS: Removing Rules

Doyle provided no explicit means to remove rules. However, we can simulate removal:
we can store a rule r = h← B internally as h← B, not rmr, where rmr is a fresh atom.
Then, removing r amounts to adding the fact rmr ←. However, reactivating the rule
can then only be done by adding a modified copy of form h← B, not rm′r, where rm′r is
another fresh atom. Consequently, this approach will lead to an inflation of the knowledge
base.

A better solution is presented in Algorithm 6.7, which allows for removing a rule
in analogy to Algorithm 6.1. First, we potentially remove in deregister (Algorithm 6.8)
obsolete entries in the TMS data structures. This involves removal of atoms that are
no longer in the program and updating consequences of the remaining ones. Procedure
remove then halts without updates if rule head h no longer occurs in the program, h has
label out, or if r was not the supporting justification of h.

Example 55 (cont’d) Suppose we delete r3 = a← d, i.e., we call remove(r3). Both a
and d remain in the program, so in deregister(r3) we only remove a from cons(d). We
then halt in Line 3 (of Algorithm 6.7) since suppJ (a) = r1. Consequently, the model
{a, b, e} is maintained. �

If no exit criterion applies, we determine repercussions as in Algorithm 6.1 (add) and
call the same update procedure.

132

6.2. Formalizing Justification-based Truth Maintenance Systems (JTMS)

Algorithm 6.5: findLabel(a : atom)

1 if label(a) 6= unknown : return

2 labelSet := false
3 J(a) := {r ∈ P | H (r) = a} //H(r) is the head of r

4 if ∃ r ∈ J(a) : valid(r)
5 setIn(r)
6 labelSet := true
7 else if ∀ r ∈ J(a) : invalid(r)
8 setOut(a)
9 labelSet := true

10 if labelSet
11 foreach u ∈ unknownCons(a) : findLabel(u)

12 defn unknownCons(a) = {c ∈ cons(a) | label(c) = unknown}

13 def setIn(r) :
14 h := H (r)
15 label(h) := in
16 supp(h) := B(r)
17 suppJ (h) := r

18 def setOut(a) :
19 label(a) := out
20 supp(a) := { spoiler(r) | r ∈ P and H (r) = a }
21 suppJ (a) := nil

22 def setUnknown(a) :
23 label(a) := unknown
24 supp(a) := ∅
25 suppJ (a) := nil

6.2.4 Analysis of JTMS

Doyle’s algorithm faces some problem on its own, and some with respect to the (partial)
correspondence with Answer Set Programming.

Algorithm Design

In [Doy79], Doyle described his algorithm only informally. Our formal presentation uses
new vocabulary and is modularized into subprocedures. A design issue is the 2-step
approach to deterministic and non-deterministic label assignment in Algorithm 6.4. Doyle
points out that findLabel (in our terms) is subsumed by chooseLabel and only introduced

133

6. Incremental Reasoning for Plain LARS Programs

Algorithm 6.6: chooseLabel(a : atom)

1 if label(a) 6= unknown : return

2 labelSet := false
3 J(a) := {r ∈ P | H (r) = a}

4 if ∃ r ∈ J(a) : posValid(r)
5 if affected(a) = ∅
6 setIn(r)
7 labelSet := true
8 else
9 setOut(a) //for support: view unknown as out

10 labelSet := true

11 if labelSet
12 foreach u ∈ unknownCons(a) : chooseLabel(u)
13 else
14 C := affected(a) ∪ {a}
15 foreach c ∈ C : setUnknown(c)
16 foreach c ∈ C : chooseLabel(c)

Algorithm 6.7: JTMS Extension: remove(r : rule with head h)
1 deregister(r)
2 if h 6∈ AP\{r} or label(h) = out or suppJ (h) 6= r

3 return
4 A := repercussions(h) ∪ {h}
5 update(A)

for efficiency. However, from this perspective, it is unclear why in Algorithm 6.6, Line 4,
one would not first look for valid rules, then for posValid ones, etc. To first compute the
deterministic effects after a single choice is natural, as this reduces the probability that
retraction steps of Lines 14-16 will be needed.

Example 56 In Ex. 54, assume a deterministic step after the initial call chooseLabel(d),
with the same order as before: By contrast, a is now examined in findLabel and remains
unknown. Next, findLabel(c) will call setOut(c), leading label in for b and then a due to
recursive calls of findLabel. �

Odd Loops

As pointed out in [McD91], the update may lead to inadmissible models. JTMS cannot
handle odd loops, i.e., an odd number of negations due to which an atom’s support
(necessarily) depends on itself. The minimal case is shown in the next example.

134

6.2. Formalizing Justification-based Truth Maintenance Systems (JTMS)

Algorithm 6.8: deregister(r : rule)
Input: A rule r with atoms Ar, head h, and body atoms B(r)

1 if r 6∈ P return

2 P := P \ {r}
3 foreach a ∈ Ar \AP //deprecated rule atoms
4 remove key a in maps label, cons, supp, suppJ

5 foreach b ∈ B(r) ∩AP //body atoms that are still in use
6 if {r′ ∈ P | H (r′) = h and b ∈ B(r′)} = ∅
7 cons(b) := cons(b) \ {h}

Example 57 Consider the rule r=x← notx, where x is a fresh atom; r is valid and
findLabel(x) calls setIn(r1) which assigns supp(x) := {x}, i.e., x supports itself. We get
the inadmissible model {x} instead of none. �

Note that for odd loops as in Example 57, simple ad-hoc tests (e.g. for self-support)
would suffice. In general, however, odd loops cannot be solved that easily and require a
different kind of maintenance technique.

Odd loops may not only result in inadmissible models, they may also cause non-
termination.

Example 58 Consider an empty program, then add(r1) for r1 = a← not b and add(r2)
for r2 = b← a, which is valid. Since b is out, we call update({a, b}); atom a will be
assigned in since r1 is posValid; supp(a) := {b}. For atom b we have posValid(r2) but
affected(b) 6= ∅. Thus, a and b are reset to unknown, which also occurs when starting
with b. �

Constraints and Inconsistency

More abstractly, JTMS cannot deal with inconsistency. In particular, a constraint
⊥ ← i1, . . . , in,not o1, . . . ,not om cannot be modelled by

x← i1, . . . , in, not o1, . . . ,not om,notx , (6.2)

as usual as this rule introduces a (minimal) odd loop. Doyle presented a workaround:
when a special contradiction node (atom) c is derived, a dependency-directed backtracking
procedure will add new rules R to the program P to prevent the derivation of c. However,
the admissible models of P ∪ R are not necessarily admissible for P . We thus skip a
discussion of this procedure.

Non-termination

Another issue concerns the unsystematic backtracking in Algorithm 6.6, where the
recursive call in Line 16 may lead to an infinite loop.

135

6. Incremental Reasoning for Plain LARS Programs

Example 59 Consider again the program from Example 52 and let the truth maintenance
network be in the same state (in terms of contents of all data structures) as in Example 54
where b is the last remaining unknown atom. Let us call this specific state Ub. There,
we found posValid(r2) (Line 4), but affected(b) = {a} (Line 5), hence we reset a and b to
unknown (Line 15). Let this state be denoted by Uab. In Example 54 we assumed that
in Line 16 we will first pick atom b. Let us now assume in state Uab, the implementation
first picks a, i.e., the call chooseLabel(a). Now, neither of the justifications r1 = a← b
nor r3 = a← d are posValid (label(b) = unknown, label(d) = out). Consequently, a is set
to out and we again enter state Ub, leading to state Uab, and so forth. �

In practice, such infinite loops can be avoided by shuffling the order of atoms for which
the recursive call to chooseLabel is made.

Example 60 (cont’d) Assume set C of Line 14 is represented as list and randomly
shuffled after initialization. Then, eventually we will first call chooseLabel(b) in state Uab
as in Example 54, where the algorithm terminates with the correct model {a, b, e}. �

6.3 Static Encoding: Plain LARS to ASP
In this section we will first give a translation of LARS programs P to an ASP program P̂ .
Toward incremental evaluation of P , we will then show (in Section 6.4) how P̂ can be
adjusted to accommodate new input signals and account for expiring information as
specified by window operators.

6.3.1 Tick Streams

Central to our approach of fully incremental reasoning is the notion of a tick.

Definition 32 (Tick) A pair k = (t, c), where t, c ∈ N, is called a tick; t is the (tick)
time and c the (tick) count. Moreover, (t+ 1, c) is called the time increment and (t, c+ 1)
the count increment of k. A sequence K = 〈k1, . . . , km〉, m ≥ 1, of ticks is a tick pattern,
if every tick ki+1 is either a time increment or a count increment of ki.

Intuitively, a tick pattern captures the incremental development of a stream in terms of
time and tuple count, where at each step exactly one dimension increases by 1. For a
set of ticks, at most one linear ordering yields a tick pattern. Thus, we can view a tick
pattern K also as a set.

Definition 33 (Tick Stream) A tick stream is a pair Ṡ = (K, v) of a tick pattern K
and an evaluation function v such that v(ki+1) = {a} for some a ∈ A, if ki+1 is a count
increment of ki, else v(ki+1) = ∅.

We say that a tick stream Ṡ = (K, v) with K = 〈(t1, c1), . . . , (tm, cm)〉 is at tick (tm, cm).
By default, we assume (t1, c1) = (0, 0) and thus cm is the total number of atoms. We
also write v(t, c) instead of v((t, c)). Naturally, a (tick) substream Ṡ′ ⊆ Ṡ is a tick stream

136

6.3. Static Encoding: Plain LARS to ASP

(K ′, v′), where K ′ is a subsequence of K and v′ is the restriction v|K′ of v to K ′, i.e.,
v′(t, c) = v(t, c) if (t, c) ∈ K ′, else v′(t, c) = ∅.

Example 61 The sequence K = 〈(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (3, 2), (4, 2)〉 is a “cano-
nical” tick pattern starting at (0, 0), where (3, 1) and (3, 2) are the only count increments.
Employing an evaluation v(3, 1) = {a} and v(3, 2) = {b}, we get a tick stream Ṡ = (K, v)
which is at tick (4, 2). �

Definition 34 (Ordering) Let Ṡ = (K, v) be a tick stream and let S = (T, υ) be a
stream such that K = 〈(t1, c1), . . . , (tm, cm)〉, T = [t1, tm] and υ(t) =

⋃
{v(t, c) | (t, c) ∈ K}

for all t ∈ T . Then, we say Ṡ is an ordering of S, and S underlies Ṡ.

Note that in general, a stream S has multiple orderings, but every tick stream Ṡ has a
unique underlying stream. All orderings of a stream have the same tick pattern.

Example 62 (cont’d) Stream S = ([0, 4], υ), where υ = {3 7→ {a, b}}, is the under-
lying stream of Ṡ of Example 61. A further ordering of S is Ṡ′ = (K, v′), where
v′ = {(3, 1) 7→ {b}, (3, 2) 7→ {a}}. �

Recall the nature of sliding windows, which are purely incremental: a (standard) time-
based window of size n always selects the last n time points (and all atoms there), and a
tuple-based window of size n always selects the minimal recent window that contains the
last n atoms. These definitions can essentially be carried over for tick streams. There
are two formal differences. First, ticks replace time points as positions in a stream, and
thus as second argument of the window functions. Second, tuple-based windows are now
always unique, which also simplifies their definition.

Definition 35 (Sliding Windows over Tick Streams) Consider a tick stream Ṡ =
(K, v) such that K = 〈(t1, c1), . . . , (tm, cm)〉 and (t, c) ∈ K. Then, the

(i) time window function τn, n ≥ 0, is defined by τn(Ṡ, (t, c)) = (K ′, v|K′), where
K ′ = {(t′, c′) ∈ K | max{t1, t− n} ≤ t′ ≤ t}, and the

(ii) tuple window function #n, n ≥ 1, is defined by #n(Ṡ, (t, c)) = (K ′, v|K′), where
K ′ = {(t′, c′) ∈ K | max{c1, c− n+ 1} ≤ c′ ≤ c}.

Note the analogy that arises due to the generalization to ticks. Time windows are
determined by taking the most recent ticks such that the last n time points are covered,
and tuple windows cover the last n atoms. Time windows are allowed to select only
the current time point (n ≥ 0), whereas tuple windows have to select at least one atom
(n ≥ 1). More precisely, our definition states that a time window of size n selects the
current time point plus n time points of the past. This explains why there is no +1 in
max{t1, t− n} as in the case for the tuple window.
Restricting tuple windows to extensional atoms. For practical reasons, we
consider tuple windows only on extensional data. Their intended use is counting input
data, not inferences. Using them on intensional data is conceptually questionable.

137

6. Incremental Reasoning for Plain LARS Programs

Example 63 Consider the tick stream D = (〈(0, 0), (0, 1), (1, 0)〉, {(0, 1) 7→ {a}}) and
the rule r = b ← �#13a. The rule fires at tick (1, 0) and we must infer b for (1, 0).
However, in this interpretation, �#13a does not hold anymore, if we also take into
account the inference b, which then is the latest atom to be selected by �#1. Thus, the
interpretation would not be minimal. Moreover, further inferences would not be founded.
Hence, program {r} has no answer stream. �

In contrast to tuple windows, time windows are useful and allowed on arbitrary data,
as long as no cyclic positive dependencies through time window atoms �n2a occur. In
Example 31 (page 64) we gave a use case that applied a time window on inferred data:
the first rule associated atom high with every recent time point where a value exceeded a
threshold. The time window of the second rule then accessed this derived information.

We consider windows over tick streams also implicitly at the end of the timeline and
thus might drop the tick as argument in the respective functions.

Lemma 9 If stream S underlies tick stream Ṡ, then τn(S) underlies τn(Ṡ).

Proof. Let S = (T, υ) be a stream that underlies tick stream Ṡ = (K, v), such that K =
〈(t1, c1), . . . , (tm, cm)〉. By definition, T = [t1, tm] and υ(t) =

⋃
{v(t, c) | (t, c) ∈ K} for

all t ∈ T . We recall that τn(S) (resp. τn(Ṡ)) abbreviates τn(S, tm) (resp. τn(Ṡ, (tm, cm)).
Thus, by definition, τn(Ṡ) = (K ′, v|K′), whereK ′ = {(t′, c′) ∈ K | max{t1, t−n} ≤ t′ ≤ t},
and τn(S) = (T ′, υ|T ′), where T ′ = [t′, tm] and t′ = max{t1, t − n}. We observe that t′
is the minimal time point selected also in K ′, i.e., K ′ = 〈(tk, ck), . . . , (tm, cm)〉 implies
tk = t′. It remains to show that (υ|T ′)(t) =

⋃
{(v|K′)(t, c) | (t, c) ∈ K ′} for all t ∈ T ′.

This is seen from the fact that neither τn(S) nor τn(Ṡ) drops any data within T ′. We
conclude that τn(S) underlies τn(Ṡ). 2

Example 64 (cont’d) Given Ṡ and S from Example 62, we have

τ1(Ṡ, 4) = (〈(3, 0), (3, 1), (3, 2), (4, 2)〉, v)

with underlying stream τ1(S, 4) = ([3, 4], υ). �

Correspondence for tuple windows is more subtle due to the different options to realize
them. That is to say, if a sliding tuple-based window (for a LARS stream) of size n will
select the interval T = [t1, t] and there are more than n atoms in T , a choice needs to be
made which atoms to drop at time t1. No such ambiguity arises for tick streams.

Lemma 10 Let stream S underlie tick stream Ṡ and assume the tuple window #n(S) is
based on the order in which atoms appeared in S. Then, #n(S) underlies #n(Ṡ).

Proof. The argument is similar as for Lemma 9. The central observation is that a tick
stream provides a more fine-grained control over the information available in streams by
introducing an order on tuples in addition to the temporal order. Each time point in a
stream is assigned a set of atoms, whereas each tick in a tick stream is assigned at most

138

6.3. Static Encoding: Plain LARS to ASP

one atom. The tuple-based window function #n always counts atoms backwards (from
right end to left) and then selects the timeline [t1, t] with the latest possible left time
point t1 required to capture n atoms. While for tick streams, the order is unique, but
multiple options exist for streams in general. If the tuple window #n(S) is based on the
order in which atoms appeared in S, then it selects the same atoms as #n(Ṡ), and thus
the same timeline. Consequently, #n(S) underlies #n(Ṡ). 2

Example 65 (cont’d) Stream S has two tuple windows of size 1: Sa = ([3, 4], {3 7→
{a}}) and Sb = ([3, 4], {3 7→ {b}}). We observe that Sb underlies #1(Ṡ), given by
(〈(3, 2), (4, 2)〉, (3, 2) 7→ {b}). �

We can represent a stream S = (T, υ) alternatively by T and a set of time-pinned atoms,
i.e., the set

{a@(x, t) | a(x) ∈ υ(t), t ∈ T}.

Similarly, we can represent a tick stream Ṡ = (K, v) by tick-pinned atoms of the form
a#(x, t, c), where c increases by 1 for every incoming signal, i.e., by the set

{a#(x, t, c) | a(x) ∈ v(t, c), (t, c) ∈ K}.

Tick-pinned atoms provide the necessary information for expressing tuple-windows, i.e.,
the relation between the time t an atom occurred and its relative position to other atoms
regardless of time (i.e., its count c). Since tuple windows will be realized based on
time-pinned atoms, we chose to use symbol # for both of them.

Example 66 (cont’d) Given extra knowledge about the current time t = 4, stream S
is fully represented by {a@(3), b@(3)}, whereas tick stream Ṡ can be encoded by the set
{a#(3, 1), b#(3, 2)}. �

The notions of data/interpretation stream readily carry over to their tick analogues.
Moreover, we say a tick interpretation stream I is an answer stream of program P (for
tick data stream D at t), if the underlying stream I ′ of I is an answer stream of P (for
the underlying data stream D′ at t).

6.3.2 Translation

Plain LARS programs extend normal logic programs by allowing extended atoms in rule
bodies, and also @-atoms in rule heads. Thus, if we restrict α and βi in rule syntax (4.2)
(page 82) to atoms, we obtain a normal rule. This observation is used for the translation
of LARS to ASP as shown in Algorithm 6.9. The encoding has to take care of two central
aspects. First, each extended atoms e is encoded by an (ordinary) atom a that holds iff e
holds. Second, entailment in LARS is defined with respect to some data stream D and
background data B at some time t. Stream signals and background data are encoded
as facts, and temporal information by adding a time argument to atoms. Example 46
already illustrated the central ideas of the encoding.

139

6. Incremental Reasoning for Plain LARS Programs

Algorithm 6.9: LarsToAsp(P, t)
Input: Plain LARS program P (potentially non-ground), evaluation time point t
Output: ASP encoding P̂ , i.e., a set of normal logic rules

1 Q := {a(X)← now(Ṅ), a@(X, Ṅ); a@(X, Ṅ)← now(Ṅ), a(X) |predicate a is in P}
2 R :=

⋃
r∈P aspRules(r)

3 return Q ∪R ∪ {now(t)}

4 defn aspRules(r) = {baseRule(r)} ∪
⋃
e∈B(r) windowRules(e)

5 defn baseRule(h← e1, . . . , en, not en+1, . . . ,not em) =
6 atm(h)← atm(e1), . . . , atm(en),not atm(en+1), . . . ,not atm(em)

7 defn atm(e) = match e
8 case a(X) =⇒ a(X)
9 case @Ta(X) =⇒ a@(X, T)

10 case �w@Ta(X) =⇒ ωe(X, T) //ωe is a fresh predicate associated with e
11 case �w3a(X) =⇒ ωe(X)
12 case �w2a(X) =⇒ ωe(X)

13 defn windowRules(e) = match e
14 case �n@Ta(X) =⇒

{ωe(X, T)← now(Ṅ), a@(X, T), T = Ṅ − i | i = 0, . . . , n }
15 case �n3a(X) =⇒ {ωe(X)← now(Ṅ), a@(X, T), T = Ṅ − i | i = 0, . . . , n }
16 case �n2a(X) =⇒ {ωe(X)← a(X),not spoile(X) }∪
17 {spoile(X)← a(X),now(Ṅ), not a@(X, T), T = Ṅ − i | i = 1, . . . , n}
18 case �#m@Ta(X) =⇒

{ωe(X, T)← cnt(Ċ), a#(X, T,D), D = Ċ − j | j = 0, . . . ,m− 1 }
19 case �#m3a(X) =⇒

{ωe(X)← cnt(Ċ), a#(X, T,D), D = Ċ − j | j = 0, . . . ,m− 1 }
20 case �#m2a(X) =⇒ {ωe(X)← a(X), not spoile(X) }∪
21 {spoile(X)← a(X), cnt(Ċ), tick(T,D), Ċ −m+ 1 ≤ D ≤ Ċ, not a@(X, T)}∪
22 {spoile(X)← a(X), cnt(Ċ), tick(T,D), D = Ċ−m+1, a#(X, T,D′), D′<D}
23 else ∅

The ASP encoding P̂ for (plain) LARS program P at time t is obtained by providing
the query time via fact now(t) (where now is an auxiliary predicate) and two rule sets: Q
serves to equate two representations for atoms that hold at t, and R contains the actual
rule encodings as determined by function aspRules. A tick data stream D is then easily
encoded by time-pinned and tick-pinned atoms. The final encoding D̂ additionally
includes an auxiliary atom cnt(c) to explicitly represent the current tick count c, as well
as representations for each tick. We will then obtain that an answer stream of P for D
at t corresponds to an answer set of P̂ ∪ D̂. We now discuss the details.

140

6.3. Static Encoding: Plain LARS to ASP

Program Encoding P̂ : Algorithm 6.9 (LarsToAsp)

Given a LARS program P , its ASP encoding P̂ at time t is computed by the function
LarsToAsp(P, t), as defined in Algorithm 6.9. It computes two sets of rules, Q in Line 1
and R in Line 2, as follows.
Q: Identity of @ta(x) and a(x) at t. In addition to the input facts modelling the
stream, an answer set A of P̂ contains two kinds of atoms: ordinary atoms of form a(x)
and time-pinned atoms of form a@(x, t′). (Auxiliary atoms with predicates ωe can be
considered as ordinary atoms in this regard, albeit with a special meaning.) An atom
a(x) ∈ A is an alternative representation for a@(x, t), which then is also included in A.
That is to say, what is contained in A holds now (i.e., at t); in particular for time-pinned
atoms a@(x, t′) ∈ A this means that the mapping t′ 7→ a(x) in the corresponding answer
stream holds now (i.e., more precisely, the inclusion a(x) ∈ υ(t′)). This corresponds to
the @-atom @t′a(x) which in this case holds now.

It will later turn out to be benefitial to have atoms a(x) ∈ υ(t) represented both as
a(x) and a@(x, t) in A. To this end, we state their equivalence by the rules Q in Line 1.
R: Rule encodings (aspRules). To encode a LARS rule r of form (4.2) we replace
it with a normal rule due to function baseRule, which in turn replaces every extended
atom e by an (ordinary) auxiliary atom atm(e) (Lines 8-12). Accordingly, for e of form
@Ta(X), we use a@(X, T) (where T and X can be non-ground). For a window atom e, we
use a new predicate ωe for its encoding. If e has the form �w ? a(X), where ? ∈ {3,2},
we use a new atom ωe(X), while for e of form �w@Ta(X), we use ωe(X, T) with the
additional time argument.

For window atoms e we need to make sure that e holds now iff atm(e) is contained in
a corresponding answer set of the encoding. Thus, aspRules adds a set of windowRules(e)
to derive them. To this end, Lines 14-23 carry out a case distinction based on the form
of window atom e. (For uniformity, all extended atoms are considered, but for atoms
and @-atoms, no rules are returned.)

In case e = �n@Ta(X), we have to test whether a@(X, T) holds for some time T
within the last n time points. For �n3a(X), we omit T in the rule head. Dually, if
�n2a(X) holds for the same substitution x of X for all previous n time points, then in
particular it holds now. So we derive ωe(x) by the rule in Line 16 if a(x) holds now and
there is no spoiler i.e., a time point among t − 1, . . . , t − n where a(x) does not hold.
This is established by the rule in Line 17. (We assume the window does not exceed the
timeline and thus do not check T − i ≥ 0.) Adding a(X) to the body ensures safety of X
in a@(X, T).

For �#m@Ta(X), we match every atom a(x) with the time it occurs in the window
of the last m tuples. Accordingly, we track the relation between arguments x, the time t
of occurrence in the stream, and the count c. To this end, we assume any input signal
a(x) is provided as {a@(x, t), a#(x, t, c)}. Furthermore, the rules in Line 18 employ a
predicate cnt that specifies the current tick count (as does now for the time tick). Based
on this, the window is created analogously to a time window but counting back m− 1
tuples instead of n time points. The case �#m3a(X) is again analogous, but the

141

6. Incremental Reasoning for Plain LARS Programs

variable T is not included in the head.
For �#m2a(X), Line 20 is as in the time-based analogue (Line 16); a(X) must hold

now and there must not exist a spoiler. First, Line 21 ensures that a(X) holds at every
time point T in the window’s range, determined by reaching back m− 1 tick counts to
count D. To do so, we add to the input stream an auxiliary atom of form tick(t, c) for
every tick (t, c) of the stream. Second, Line 22 accounts for the cut-off position within a
time point, ensuring a is within the selected range of counts. Finally, windowRules(e) = ∅
if e is an atom or an @-atom, as they do not need extra rules for their derivation.

Example 67 Consider a stream Ṡ′, which adds to Ṡ from Example 61 tick (4, 3) with
evaluation v(4, 3) = {a}. We evaluate �#22a. The tick-pinned atoms are a#(3, 1),
b#(3, 2) and a#(4, 3); the window selects the last two, i.e., atoms with counts D ≥ 2. It
thus covers time points 3 and 4. While atom a occurs at time 3, it is not included in the
window anymore, since its count is 1 < D. �

Tick Stream Encodings D̂

Let O = (K, v) be a tick stream at tick (tm, cm). We define its encoding Ô as

Ô = {a@(x, t) | a(x) ∈ v(t, c), (t, c) ∈ K} ∪
{a#(x, t, c) | a(x) ∈ v(t, c), (t, c) ∈ K, a(x) ∈ AE} ∪
{cnt(cm)} ∪ {tick(t, c) | (t, c) ∈ K}.

Note that a tick data streams D only contain extensional atoms. The presented encoding
also applies to interpretation streams, where we will not include tick-pinned atoms for
intensional atoms. (We will consider tuple windows only over extensional atoms, i.e.,
counting data and not inferences.)

We may assume that rules access background data B only by atoms (and not with
@-atoms or window atoms). Viewing B as facts in the program, we skip further discussion.

Correspondence

The following correspondence result implicitly disregards auxiliary atoms in the encoding.

Theorem 26 Let P be a plain LARS program, D = (K, v) be a tick data stream at tick
(t, c) and let P̂ = LarsToAsp(P, t). Then, S is an answer stream of P for D at t iff Ŝ is
an answer set of P̂ ∪ D̂.

Proof. The desired correspondence is based on two translations: a LARS program P
(at a time t) into a logic program P̂ = LarsToAsp(P, t) (due to Algorithm 6.9), and the
encoding of a stream S as set Ŝ of atoms. Given a fixed timeline T , we may view a
stream S = (T, υ) as a set of pairs {(a(x), t) | a(x) ∈ υ(t), t ∈ T}. This is the essence of a
stream encoding Ŝ for the tick stream Ṡ = (K, v); Ŝ includes the analogous time-pinned
atoms: {a@(x, t) | a(x) ∈ v(t, c), (t, c) ∈ K}. With respect to the correspondence, atoms
of form a#(x, t, c), cnt(c) and tick(t, c) in Ŝ can be considered auxiliary, as well as the

142

6.3. Static Encoding: Plain LARS to ASP

specific counts used in the tick pattern K to obtain time-pinned atoms a@(x, t). Counts
play a role only for the specific selection of tuple-based windows, which are assumed to
reflect the order of the tick stream. Thus, we may view a stream encoding Ŝ essentially
as a different representation of stream S; additional atoms can be abstracted away as
they have no correspondence in the original LARS stream or program. We thus consider
only the time-pinned atoms in an encoded stream to read off a LARS stream.

Thus, it remains to argue the soundness of the transformation LarsToAsp, which
returns a program of form Q∪R∪{now(t)}, where now(t) is auxiliary. The set Q simply
identifies time-pinned atoms a@(X, Ṅ) with a(X) in case Ṅ is the current time point.
This is the information provided by predicate now for which a unique atom exists. Thus,
Q ensures that a time-pinned atom a@(x, t) is available if a(x, t) is derived, and vice
versa; Q thereby only accounts for redundant representations of atoms that currently
hold.

Towards R, we get the translation by the function aspRules which returns a set of
encoded rules for every LARS rule r. First, the baseRule is the corresponding ASP rule,
which introduces a new symbol atm(e) for every extended atom in the rule that is not
an ordinary atom. In order to ensure that the base rule r̂ fires in an interpretation just
if the original rule r fires in the corresponding interpretation of program P , for each
body element atm(e) in r̂ the set of rules to derive atm(e) in lines (14)-(21) is provided;
the correspondence between @Ta(X) and a@(X, T) is already given by construction.
Thus, each interpretation stream I ⊇ D for P has a corresponding interpretation Î for
LarsToAsp(P) in which besides the time-pinned atoms the atoms atm(e) and spoile(X)
occur depending on support from (i.e., firing) of the rules in (14)-(21), such that they
correctly reflect the value of the window atoms e in I.

As each atom in an answer of an ordinary ASP program must derived by a rule, it
is not hard to see that every answer set of P̂ = LarsToAsp(P, t) ∪ D̂ is of the form Î,
where I ⊇ D is an interpretation stream for D. We thus need to show the following:
I ∈ AS(P,D, t) holds iff Î is an answer set of P̂ . We do this for ground P (the extension
to non-ground P is straightforward).

(⇒) For the only-if direction, we show that if I ∈ AS(P,D, t), that is, I is a minimal
model for the reduct PM,t where M = 〈I,W,B〉, then (i) Î is a model of the reduct
P̂ Î , and (ii) no interpretation J ′ ⊂ Î is a model of P̂ Î . As for (i), we can concentrate
by construction of Î on the base rules r̂ = baseRule(r) in P̂ Î (all other rules will be
satisfied). If Î satisfies B(r̂), then by construction I satisfies B(r); as I is a model of
PM,t, it follows that I satisfies H (r); but then, by construction, Î satisfies H (r̂). As for
(ii), we assume towards a contradiction that some J ′ ⊂ Î satisfies P̂ Î . We then consider
the stream J ⊇ D that is induced by J ′, and any rule r in the reduct PM,t. If J does not
satisfy B(r), then J satisfies r; otherwise, if J satisfies B(r), then as r̂ is in the reduct
P̂ Î , we have that Î falsifies each atom atm(e) in B−(r̂), and as J ′ ⊂ Î, also J ′ falsifies
each such atm(e). Furthermore, as J satisfies each atom e ∈ B+(r), from the rules for
atm(e) among (14)-(21) in the reduct P̂ Î we obtain that J ′ satisfies each atom atm(e) in
B+(r̂). That is, J ′ satisfies B(r̂). As J ′ satisfies r̂, we then obtain that J ′ satisfies H (r̂).
The latter means that J satisfies H (r), and thus J satisfies r. As r was arbitrary from

143

6. Incremental Reasoning for Plain LARS Programs

the reduct PM,t, we obtain that J ⊂ I is a model of PM,t; this however contradicts that
I is a minimal model of PM,t, and thus (ii) holds.

(⇐) For the if direction, we argue similarly. Consider an answer set Î of P̂ . To show
that I ∈ AS(P,D, t), we establish that (i) I is a model of PM,t and (ii) no model J ⊂ I
of PM,t exists. As for (i), since in Î the atoms atm(e) correctly reflect the value of the
window atoms e in I, for each r in PM,t the rule r̂ = baseRule(r) is in P̂ Î ; as Î satisfies
r̂, we conclude that I satisfies r. As for (ii), we show that every model J of PM,t must
contain I, which then proves the result.

To establish this, we use the fact that Î can be generated by a sequence ρ =
r1, r2, r3 . . . , rk of rules from P̂ Î with distinct heads such that (a) Î = {H (r1), . . .H (rk)} =:
Îk and (b) Îi−1 = {H (r1), . . . ,H (ri−1)} satisfies B+(ri), for every i = 1, . . . , k.

In that, we use the assertion that no cyclic positive dependencies through time-based
window atoms �n2a occur. Formally, positive dependency is defined as follows: an
atom @t1b positively depends on an atom @t2a in a ground program P at t, if some
rule r ∈ P exists with H (r) = @t1b and such that either (a) @t2a ∈ B+(r), or (b)
�n@t2a ∈ B+(r) or (c) �n ? a ∈ B+(r), ? ∈ {2,3}, where in (b) and (c) t2 ∈ [t− n, t]
holds. As in LarsToAsp(P, t), all ordinary atoms a are here viewed as @ta. A cyclic
positive dependency through �n2a is then a sequence @t0a0, @t1a1, . . . , @tkak, k ≥ 1,
such that @tiai positively depends on @t(i+1) mod k

a(i+1) mod k, for all i = 0, . . . , k and
a0 = b and a1 = a for case (c) with ? = 2.

Given that no positive cyclic dependencies through atoms �n2a occur in P at t, and
thus in PM,t, we can w.l.o.g. assume that whenever ri in ρ has a head ωe for a window
atom e = �n2a, each rule rj in ρ with a head a@(t′), where t′ ∈ [t− n, t], precedes ri,
i.e., j < i holds.

By induction on i ≥ 1, we can now show that if H (ri) = atm(e), then every model J
of PM,t must satisfy e; consequently, at i = k, J must contain I. From the form of the
rules baseRule(r) and windowRules(e), the correspondence between P̂ Î and PM,t, and
the fact that the external data are facts, only the case e = �n2a(X) needs a further
argument. Now if ri is the rule ωe ← a(X),not spoile(X) on line (16), then Î must
satisfy a and falsify spoile(X); in turn, every a@(t′,X) must be true in Î, for t′ ∈ [t−n, t].
From the induction hypothesis, we obtain that @t′a(X) is true in every model J of PM,t,
t′ ∈ [t−n, t], and thus e = �n2a(X) is true as well. This proves the claim and concludes
the proof of the if-case, which in turn establishes the claimed correspondence between
AS(P,D, t) and the answer sets of P̂ = LarsToAsp(P, t) ∪ D̂.

Remark. The condition on cyclic positive dependencies excludes that rules b← �n2a
and a← b occur jointly in a program. A stricter notion of dependency that allows for
co-occurrence is to request in (c) for ? = 2 in addition t2 < t; then e.g. any LARS
program where the rule heads are ordinary atoms is allowed, and Theorem 26 remains
valid. 2

Example 68 We consider again program P = {r : b(X)← �23a(X)} of Example 45.
We indicated the translation already in Example 46, which we now present in full for
time point t = 8. The translation P̂ = LarsToAsp(P, 8) is given by the following rules,

144

6.4. Incremental Encoding: Program and Model Update

where ω abbreviates ω�23a(X):

r0 : b(X) ← ω(X)
r1 : ω(X) ← now(Ṅ), a@(X,T), T = Ṅ − 0
r2 : ω(X) ← now(Ṅ), a@(X,T), T = Ṅ − 1
r3 : ω(X) ← now(Ṅ), a@(X,T), T = Ṅ − 2
rn : now(8) ←

q1 : a(X) ← now(Ṅ), a@(X, Ṅ)
q2 : a@(X, Ṅ) ← now(Ṅ), a(X)
q3 : b(X) ← now(Ṅ), b@(X, Ṅ)
q4 : b@(X, Ṅ) ← now(Ṅ), b(X)

Stream D8 above (respectively the corresponding tick stream) has the encoding D̂8 =
{a@(x, 7), a#(x, 7, 1), cnt(1), tick(0, 0), tick(1, 0), . . . , tick(7, 0), tick(7, 1), tick(8, 1)}. The
unique answer stream S8 = ([0, 8], {7 7→ {a(x)}, 8 7→ {b(x)}}) corresponds to the set
{a@(x, 7), b@(x, 8), b(x)}. In addition, the answer set Ŝ of P̂ ∪ D̂ contains auxiliary atoms
from D̂, now(8) and ω(x) for the window atom. �

6.4 Incremental Encoding: Program and Model Update
In this section, we present an incremental evaluation technique by adjusting an incremental
variant of the given ASP encoding.

6.4.1 Incremental Translation

We illustrate the central ideas by expanding on Example 47.

Example 69 (cont’d) Consider the following rules Π similar to P̂ of Example 68 where
predicate now is removed. Furthermore, we instantiate the tick time variable Ṅ with 8
to obtain so-called pinned rules. (Later, pinning also includes grounding the tick count
variable Ċ with the tick count.)

r′0 : b(X) ← ω(X) q′1 : a(X) ← a@(X, 8)
r′1 : ω(X) ← a@(X, 8) q′2 : a@(X, 8) ← a(X)
r′2 : ω(X) ← a@(X, 7) q′3 : b(X) ← b@(X, 8)
r′3 : ω(X) ← a@(X, 6) q′4 : b@(X, 8) ← b(X)

Due to stream encoding D̂8 = {a@(x, 7), a#(x, 7, 1), cnt(1), tick(0, 0), . . . , tick(8, 1)} we
obtain a ground program P̂D̂8

from Π by replacing variable X with constant x. The
resulting answer set is D̂8 ∪ {ω(x), b(x), b@(x, 8)}.

Assume now that time moves on to t′ = 9, i.e., a (tick) stream D9 at tick (9, 1). We
observe that rules q′1, . . . , q′4 must be replaced by q′′1 , . . . , q′′4 , which replace time pin 8
by 9. Rule r′0 can be maintained since it does not contain values from ticks. The time
window now covers time points 7, 8, 9. This is reflected by removing r′3 and instead
adding ω(X)← a@(X, 9).

That is, based on the time increment from (8, 1) to (9, 1) rules E− = {q′1, . . . , q′4, r′3}
and their groundings G− (with X 7→ y) expire, and new rules E+ = {q′′1 , . . . , q′′4 , ω(X)←
a@(X, 9)} have to be grounded based on the remaining rules (and the data stream),
yielding new ground rules G+. We thus incrementally obtain a ground program P̂D̂9

=
(P̂D̂8

\G−) ∪G+, which encodes the program P for evaluation at tick (9, 1). �

145

6. Incremental Reasoning for Plain LARS Programs

Algorithm 6.10: IncrementalRules(t, c,Sig)
Input: Tick time t, tick count c, signal set Sig with at most one input signal,

which is empty iff (t, c) is a time increment. (Global: LARS program P)
Output: Pinned incremental rules annotated with duration until expiration

1 F := {〈(∞,∞), tick(t, c)←〉}∪
2 {〈(∞,∞), a@(x, t)←〉, 〈(∞,∞), a#(x, t, c)←〉 | a(x) ∈ Sig}
3 Q := { 〈(1,∞), a(X)← a@(X, t)〉, 〈(1,∞), a@(X, t)← a(X)〉 | predicate a is in P }
4 R :=

⋃
r∈P incrAspRules(r)

5 return F ∪Q ∪R

6 defn incrAspRules(r) = {〈(∞,∞), baseRule(r)〉} ∪
⋃
e∈B(r) incrWindowRules(e)

7 defn incrWindowRules(e, t, c) = match e
8 case �n@Ta(X) =⇒ {〈(n+ 1,∞), ωe(X, t)← a@(X, t)〉 }
9 case �n3a(X) =⇒ {〈(n+ 1,∞), ωe(X)← a@(X, t)〉 }

10 case �n2a(X) =⇒ {〈(∞,∞), ωe(X)← a(X), not spoile(X)〉 }∪
11 { 〈(n,∞), spoile(X)← a(X), not a@(X, t− 1)〉 } //only if n ≥ 1
12 case �#m@Ta(X) =⇒ {〈(∞,m), ωe(X, t)← a#(X, t, c)〉 }
13 case �#m3a(X) =⇒ {〈(∞,m), ωe(X)← a#(X, t, c)〉 }
14 case �#m2a(X) =⇒ {〈(∞,∞), ωe(X)← a(X),not spoile(X)〉 }∪
15 { 〈(∞,∞), spoile(X)← a(X), tick(t, c), coversτe(t), not a@(X, t)〉 }∪
16 { 〈(∞,∞), spoile(X)← a#(X, t, c), coversτe(t), not covers#

e (c)〉 }∪
17 { 〈(∞,m), coversτe(t)← tick(t, c)〉, 〈(∞,m), covers#

e (c)← tick(t, c)〉 }
18 else ∅

//Practically, non-expiring rules will also be deleted when they become irrelevant.
//See Section 7.2.2 for according refinements.

Before we formalize the illustrated incremental evaluation, we present its ingredients, i.e.,
the incremental analogue of the program encoding of Algorithm 6.9.

Incremental Encoding: Algorithm 6.10 (IncrementalRules)

Algorithm 6.10 shows the procedure IncrementalRules that obtains incremental rules
based on a tick time t, a tick count c, and the signal set Sig = v(t, c), where Sig = ∅,
if (t, c) is a time increment of k. The resulting rules of are annotated with a tick that
indicates how long the ground instances of these rules are applicable before they expire.

Definition 36 (Annotated rule) Let (t, c) be a tick, where t, c ∈ N∪ {∞}, and r be a
rule. Then, the pair 〈(t, c), r〉 is called an annotated rule, and (t, c) the annotation of r.

Annotations are used in two ways. First, in Algorithm 6.10, they express a duration how
long a generated rule is applicable. Then, in Algorithm 6.11 below this duration will be
added to the current tick to obtain the expiration tick (annotation) of a rule. If a rule

146

6.4. Incremental Encoding: Program and Model Update

expires at tick (t, c), i.e., if its expiration tick (t′, c′) fulfills t′ ≥ t or c′ ≥ c, then it has to
be deleted.

Example 70 (cont’d) Each rule q′i, 1 ≤ i ≤ 4, has duration (1,∞). That is, after 1
time point, these rules will expire, regardless of how many atoms appear at the current
time point. Hence, the time duration is 1, and the count duration is infinite, since these
rules cannot expire based on arrival of atoms. Similarly, rules r′i, 1 ≤ i ≤ 3, have duration
(2,∞) due to the time window length 2. �

We will discuss expiration ticks based on these durations below. Algorithm 6.10 is
concerned with generating the incremental rules and their durations.
Mandatory expiration vs. optional deletion. We emphasize that annotations
determine when encoded rules must be deleted. That is to say, annotations serve only
a semantic purpose. In addition to expiring rules, rules with annotation (∞,∞) may
additionally be deleted at some point for optimization purposes, i.e., to limit memory
usage. The algorithm description is only concerned with correctness. However, our
implementation will delete further rules when they become redundant to avoid an
inflation of the incremental encoding. These additional deletions will be described in
Section 7.2.2, as well as other optimizations that are mentioned in the following algorithm
description.
F : Streaming data. On the first two lines we add the fresh tick information
(corresponding to the incremental change in the data stream) to a fresh set F . We note
that facts tick(t, c)← (Line 1) are only required if the program P contains tuple windows
with all-quantification, i.e., window atoms of form �#m2a(X). Window rules for the
other cases do not need them (see function incrWindowRules). Thus, due to an initial
static analysis, we can use ∅ in Line 1 in case the form �#m2a(X) does not occur in P .
Similarly, we can also spare the inclusion of the tick-pinned atoms (a#(x, t, c)) in Line 2,
if no tuple window occurs in the program. All of these facts can remain in the encoding
and thus have the infinite expiration duration (annotation) (∞,∞), i.e., they expire
neither based on time nor count. Practically, however, we will delete them as soon as no
window in P can reach them anymore.
Q: Identity of @ta(x) and a(x) at t. These rules are similar as in the static encoding,
dropping only the now predicate in the bodies. As illustrated in Example 70, rules of
set Q expire after 1 time point, hence the annotation (1,∞). Recall the intuition: we
can specify an atom a(x) that holds now at time t equivalently by the time-pinned atom
a@(x, t), which represents an @-atom; if the latter is derived for t it also expresses that
a(x) holds now, and in this case we also want to be able to access it as such.
R: Incremental rule encodings (incrAspRules). In analogy to the set R in Algo-
rithm 6.9, we also obtain a set of incremental rule encodings for earch rule r in the
program. First, we also replace r by baseRule(r), which gets annotation (∞,∞): since
we only need to make sure that the body is faithfully derived, the base rule as such can
remain in the program. Secondly, we traverse the body to obtain incremental window

147

6. Incremental Reasoning for Plain LARS Programs

Algorithm 6.11: IncrementTick(Π, G, t, c,Sig)

Input: Set of annotated, cumulative incremental rules Π ⊇ D̂ collected until
previous tick; its annotated groundings G =

⋃
〈(t′,c′),r〉∈Π ground(Π, r), tick

time t, tick count c and signal set Sig
Result: Updated Π and G

1 I := IncrementalRules(t, c,Sig)
2 E+ := {〈(t+ t∆, c+ c∆), r〉 | 〈(t∆, c∆), r〉 ∈ I} //determine expiration for new rules
3 E− := {〈(t′, c′), r〉 ∈ Π | t′ ≤ t or c′ ≤ c} //expired incremental rules
4 Π′ := (Π \ E−) ∪ E+

5 G+ := {〈(t′, c′), r′〉 | 〈(t′, c′), r〉 ∈ E+, r′ ∈ ground(Π′, r)} //new ground rules;
6 G− := {〈(t′, c′), r〉 ∈ G | t′ ≤ t or c′ ≤ c} //expired ground rules with exp. annotation
7 G′ := (G \G−) ∪G+

8 return 〈Π′, G′〉

rules for deriving the encoded window atoms in function incrWindowRules, analogously
as for the static case.

We already gave the intuition for atoms �n3a(X). The case for �n@Ta(X) is similar.
Like in the static translation, we additionally have to use the time information in the head.
Similarly, �#m3a(X) and �#m@Ta(X) expire after m new incoming atoms, instead
of n time points. For �n2a(X), we add a spoiler rule for the previous time point t− 1,
which will be considered for the next n time points.

For e = �#m2a(X) we maintain two spoiler rules as in the static case that ensure a(X)
occurs at all time points in the coverage of the window, and the occurrence of a(X) at the
leftmost time point is also covered by the tick count. At tick (t, c), we have a guarantee for
the nextm atoms that the tick time t will be covered within the window. This is expressed
by a rule coversτe(t)← tick(t, c) with duration (∞,m). Likewise, covers#

e (c)← tick(t, c)
will select tick count c within duration (∞,m). Notably, coverage for time increments
(t + k, c) may extend the tuple window arbitrarily long if no atoms appear. Since the
spoiler rules are based on these cover atoms they do not expire. Practically, however,
they may be deleted after the next m new atoms as well. Finally, IncrementalRules
returns the F ∪Q ∪R, where R contains all base rules and incremental window rules.

6.4.2 Incremental Evaluation

Algorithm 6.11 gives the high-level procedure IncrementTick to incrementally adjust a
program encoding. We assume a function ground(Π, r) that returns all possible ground
instances of a rule r ∈ Π (due to constants in Π). In fact, IncrementTick maintains a
program Π that contains the encoded data stream D̂ and non-expired incremental rules
as obtained by consecutive calls to IncrementalRules, tick by tick. Moreover, it maintains
a grounding G of Π, i.e., the incremental encoding for the previous tick plus expiration
annotations.

The procedure starts by generating the new incremental rules I based on Algo-

148

6.4. Incremental Encoding: Program and Model Update

rithm 6.10 described above. Next, we add for each rule the current tick (t, c) to its
duration (t∆, c∆) (componentwise). This way, we obtain new incremental rules E+ with
expiration tick annotations. Dually, we collect in E− previous incremental rules that
expire now, i.e., when the current tick reaches the expiration tick time t′ or count c′. The
new cumulative program Π results by removing E− from Π and adding E+. Based on
Π′, we obtain in Line 5 the new (annotated) ground rules G+ based on E+. As in Line 3,
we determine in Line 6 the set G− of expired (annotated) ground rules. After assigning
G′ the updated annotated grounding in Line 7, we return the new incremental evaluation
state 〈Π′, G′〉, from which the current incremental program is derived as follows.

Definition 37 (Incremental Program) Let P be a LARS program and D = (K, v)
be a tick stream, where K = 〈(t1, c1), . . . , (tm, cm)〉. The incremental program P̂D,k of P
for D at tick (tk, ck), 1 ≤ k ≤ m, is defined by P̂D,k = {r | 〈(t′, c′), r〉 ∈ Gk}, where

〈Πk, Gk〉 =
{

IncrementTick(∅, ∅, t1, c1, ∅) if k = 1,
IncrementTick(Πk−1, Gk−1, tk, ck, v(tk, ck)) else.

In the remainder of this chapter, body occurrences of form @ta(X) are viewed as
shortcuts for window atoms of form �∞@ta(X). Moreover, subsequent results will
implicitly disregard auxiliary atoms like tick(t, c), coversτe(t), etc.

The following proposition states the correspondence between the static and the
incremental encoding.

Proposition 7 Let P be a LARS program and D be a tick data stream at tick m = (t, c).
Furthermore, let P̂ = LarsToAsp(P, t) and P̂D,m be the incremental program at tick m.
Then S ∪ {now(t), cnt(c)} is an answer set of P̂ ∪ D̂ iff there exists an answer set S′ of
P̂D,m that coincides with S on non-auxiliary atoms.

Proof. We argue based on the commonalities and differences of the static encoding
P̂ ∪ D̂ and the incremental encoding P̂D,m. Instead of body predicates now(Ṅ) and
cnt(Ċ), that are instantiated in P̂ ∪ D̂ due to the predicates now(t) and cnt(c), P̂D,m
directly uses the instantiations of tick variables. In both encodings, the window atom is
associated with a set of rules that needs to model the temporal quantifier (3,2,@t) in
the correct range of ticks as expressed by the LARS window atom. This window always
includes the last tick. While P̂ ∪ D̂ is based on a complete definition how far the window
extends, P̂D,m updates this definition tick by tick. In particular, the oldest tick that is
not covered by the window anymore corresponds to the expiration annotation in P̂D,m.

The case �n3a(X) is as follows: in the static rule encoding,

ωe(X)← now(Ṅ), a@(X, T) ,

given now(t), time variable T will be grounded with t− n, . . . , t− 0. That is, we get a
set of rules

(r0) ωe(X) ← now(t), a@(X, t)
...

(rn) ωe(X) ← now(t), a@(X, t− n) ,

149

6. Incremental Reasoning for Plain LARS Programs

where arguments X will be grounded due to data and inferences. We observe that (r0)
is the rule that is inserted to the incremental program P̂D,m at time t (minus predicate
now(t), since in P̂D,m variable T is instantiated directly with t to obtain a@(X, t)), and
all rules up to rn remain from previous calls to IncrementalRules. Rule rn will expire at
t+ 1, i.e., the exact time when it will not be included in P̂ ∪ D̂ anymore. The cases for
�n@Ta(X),�n2a(X),�#m3a(X) and �#m@Ta(X) are analogous; the remaining case
�#m2a(X) has been argued earlier.

Finally, P̂D,m includes a stream encoding, which is also incrementally maintained: at
each tick (t, c) the tick atom tick(t, c) is added, and in case of a count increment, the
time-pinned atom a@(X, t) and the tick-pinned atoms a#(X, t, c) are added to P̂D,m as
in D̂. This way, we have a full correspondence with the static stream encoding D̂.

Thus, at every tick (t, c), P̂ ∪ D̂ and P̂D,m have the same data and express the same
evaluations. Disregarding auxiliary atoms, we conclude that their answer sets coincide.2

In conclusion, we obtain from Theorem 26 and Proposition 7 the desired correctness of
the incremental encoding.

Theorem 27 Let P be a LARS program and D = (K, v) be a tick data stream at tick
m = (t, c). Then, S is an answer stream of P for D at t iff Ŝ is an answer set of P̂D,m
(modulo aux. atoms).

Proof. Given a LARS program P , a tick data stream D = (K, v) at tick (t, c) by
Theorem 26 S is an answer stream of P for D at t iff Ŝ is an answer set of P̂ ∪ D̂, where
P̂ = LarsToAsp(P, t). By Prop. 7, for any set X we have that X ∪ {now(t), cnt(c)} is
an answer set of P̂ ∪ D̂ iff X is an answer set of P̂D,m (modulo auxiliary atoms). In
particular this holds for X = Ŝ. As {now(t), cnt(c)} ⊆ Ŝ, we obtain that S is an answer
stream of P for D at t iff Ŝ is an answer set of P̂D,m, which is the result. 2

The next theorem states that to faithfully compute an incremental program from scratch,
it suffices to start iterating IncrementTick from the oldest tick that is covered from any
window in the considered program. Let ASI(P̂) denote the answer sets of P̂ , projected
to intensional atoms.

Theorem 28 Let D = (K, v) and D′ = (K ′, v′) be two data streams such that (i) D′ ⊆ D,
(ii) K = 〈(t1, c1), . . . , (tm, cm)〉 and (iii) K ′ = 〈(tk, ck), . . . , (tm, cm)〉, 1 ≤ k ≤ m. More-
over, let P be a LARS program and n∗ (resp. m∗) be the maximal window length for all
time (resp. tuple) windows; or ∞ if none exists. If tk ≤ tm − n∗ and ck ≤ cm −m∗ + 1,
then ASI(P̂D,m) = ASI(P̂D′,m).

Proof. Assume a LARS program P and two tick data streams D = (K, v) and D′ =
(K ′, v′) at tick (tm, cm) such that D′ ⊆ D and K ′ = 〈(tk, ck), . . . , (tm, cm)〉. Furthermore,
assume that (*) all atoms/time points accessible from any window in P are included in
D′. We want to show ASI(P̂D,m) = ASI(P̂D′,m). The central observation is that rules
need to fire in order for intensional atoms to be included in the answer set, and that no
rules can fire based on outdated ticks. Thus, these ticks can also be dropped.

150

6.5. Further Work

In more detail, we assume ASI(P̂D,m) 6= ASI(P̂D′,m) towards a contradiction. That
is to say, a difference in evaluation arises based on data in D \D′, i.e., atoms appearing
before tick (tk, ck). Consider any extended atom e of a (LARS) rule r ∈ P , where the
body holds only for one of the two encodings (in the same partial interpretation). Due
to the assumption (*), we can exclude a difference arising from a window atom of form
�w ? a, ? ∈ {3,2,@T }.

If e is an atom a, it holds in P̂D,m iff it holds in P̂D′,m since an ordinary atom in the
answer set of the encoding corresponds to an atom holding at the current time point,
and both D and D′ include the current time point.

The last option is e = @Ta, which may reach back beyond (tk, ck) but is viewed in
the incremental encoding as syntactic shortcut for �∞@Ta. That is, in this case we have
D′ = D and thus the encodings coincide.

We conclude that assuming ASI(P̂D,m) 6= ASI(P̂D′,m) is contradictory due to these
observations. Spelling out the details fully involves essentially a case distinction on the
incremental window encodings and arguing about the relationship between (tk, ck), the
respective expiration annotations, and the fact that rules accessing atoms at ticks before
(tk, ck) are have already expired. 2

The result is due to the fact that in the incremental program P̂D,m, no rule can fire based
on outdated information, i.e., atoms that are not covered by any window anymore. In
order to obtain an equivalence between P̂D,m and P̂D′,m on extensional atoms, we would
have to drop all atoms of the stream encoding D̂ during IncrementTick, as soon as no
window can access them anymore. This observation is the basis for an optimization in
the implementation which also deletes non-expiring rules (i.e., those with annotation
(∞,∞)) to limit the size of the encoding. We will discuss this further in Section 7.2.2.

We now interleave notes on other approaches to incremental reasoning for plain LARS.

6.5 Further Work

In the next two sections, we give summaries of two further works on incremental reasoning.
Section 6.5.1 presents the main ideas of [BDE15], which extends JTMS directly for plain
LARS. Section 6.5.2 then reviews [BBU17] which developed an algorithm for efficient
model update for plain LARS program with unique models.

6.5.1 Truth Maintenance for Answer Streams

In previous sections, we laid out an incremental mapping from plain LARS to ASP such
that answer stream update can be carried out utilizing JTMS as update procedure. The
plain LARS fragment was first considered in [BDE15], where we presented an alternative
approach for incremental reasoning. There, the JTMS algorithm was extended directly for
the LARS semantics, yielding an algorithm called answer update. The aim of the answer
update is to adapt at time t a given answer stream I of a previous time point t′ to account
for the new data that has streamed in (and the elapsed time) since t′. A central concept is

151

6. Incremental Reasoning for Plain LARS Programs

the introduced window-stratification,1 which, analogously to the usual stratification based
on negation, partitions the program into strata based on occurrences of window operators
such that the model computation can be carried out stratum by stratum. This requires
an according definition of a window dependency graph2 and an underlying extension of
JTMS that takes into account the temporal validities of labels. We now give a summary
of the technical ingredients and the obtained results, where we deviate slightly from the
original presentation in order to align with concepts and vocabulary from above; this
concerns in particular the JTMS formalization from Section 6.2.

Window-stratified Programs

The idea of window-stratification is to split a (plain) LARS program P into strata
P0, . . . , Pn such that an answer stream of P = P0 ∪ · · · ∪ Pn can equally be obtained by
computing consecutive answer streams for each stratum Pi (1 ≤ i ≤ n), where the answer
stream for Pi−1 serves as input stream; P0 starts with the data stream as input as usual.
Strata are obtained in analogy to the usual stratified programs, using essentially window
operators as splitting points rather than negation; all rules that have a cyclic dependency
involving a window operator then belong to the same stratum. More specifically, the
underlying window dependency graph of program P is built using as nodes the set A∗(P)
consisting of all (possibly nested) occurrences of extended atoms, i.e., all syntactic
elements of the forms a, where a is an atom, @ta, and �w ◦ a, where ◦ ∈ {@t,3,2}. To
express dependencies between extended atoms from A∗(P), we then use the following
labelled edges E of form→�, where � indicates the eventual relation of associated strata:

• �w ◦ a→> a,
• @ta→= a and a→= @ta, and
• α→≥ β whenever α is the head of a rule with body element β.

Intuitively, the edge �w ◦ a →> a expresses that the window atom of �w ◦ a can (in
general) be evaluated only after a. Similarly @ta and a in its scope are given at the
same time (given a the relation of t to the current time), and α→≥ β expresses for rules
that rule heads cannot be computed before their bodies. A window-stratification for P
is then a mapping µ from A∗(P) to some set {0, . . . , n} such that α→� β ∈ E implies
µ(α) � µ(β) (� ∈ {>,=,≥}). Any stratum stratum Pi is then defined by the set of rules
in P such that the head is mapped to i by µ. Then, an answer stream of P (for a data
stream D at a time point t) can be evaluated stratum by stratum as explained above.

Extension of JTMS for Plain LARS

To extend JTMS for (plain) LARS, we maintain labels {in, out, unknown} now for
extended atoms. In addition, each labelling is associated with a set of intervals that

1The original term was stream-stratification; we use here instead window-stratification to emphasize
that strata are obtained by static analysis of window operator occurrences in the program, independently
from streaming data.

2Original term: stream-dependency graph.

152

6.5. Further Work

express for which time points they hold. Concepts of valid, invalid and posValid rules
(cf. Section 6.2.1) carry over; the evaluation is always relative to a time point. Other
JTMS data structures are briefly extended for the LARS syntax as follows.

In addition to the structural dependency between body and head elements, con-
sequences also relate atoms a to window atoms �w ◦ a, and @-atoms @ta to window
atoms �w@ta; and @ta to a. We call the latter the @-consequences of @ta. The support
contains, in addition to the standard definition that carries over, the @-support of any
atom a where label(a) 6= out, defined as those @-atoms @ta such that label(@ta) = in.
The extended atoms affected by an extended atom α again hold the rule heads that are
supported by α, plus the @-consequences (which are static). The repercussions are again
given by the transitive closure of this relation. Moreover, some additional data structures
are needed to track the transitive dependencies starting with atoms and @-atoms along
the chain of rule heads. In sequel, we assume access to the described concepts and
methods via an extended JTMS data structureM as described.

Answer Update Algorithm

We now consider a program P with strata P0, . . . , Pn, a data stream D, and an answer
stream I of P for D at a previous time point t′, as reflect in the model of a JTMS
data structureM, i.e., by the atoms inM with label in. The answer update algorithm
adaptsM such that it reflects an answer stream at the current time point t > t′. It does
so by a loop over strata i = 0, . . . , n, where at each iteration the labels (and intervals)
for all atoms are updated. This is done in the following steps:

1. Expiration & Firing: We determine based on the current time, the window content
and firing atoms (see below) expiring window atoms ω, i.e., those that will change
their label to out and update labels and intervals accordingly. The time of expiration
depends on auxiliary functions that model the specific semantics of employed window
operators; we consider them here from a generic point of view. Similarly, the firing
part collects window atoms ω of the current stratum that now hold due to new
atoms available from t′ + 1 to t in the stream (for i = 0) or from the output of the
previous stratum (for i > 0).

2. Update timestamps: Based on the window atoms processed in the previous step
that did not change their label, rules can be identified that remain (in)applicable.
For these, the temporal intervals for labels of respective rule heads are extended.

3. Find & Choose: We now continue similarly like in the original JTMS. First, we
reset the label of atoms and @-atoms affected by incoming and expiring atoms to
unknown. Then, we assign labels similarly as in procedures findLabel (Algorithm 6.5)
and chooseLabel (Algorithm 6.6) discussed earlier. We explicitly handle the case
for update failures, i.e., when the label of an atom shall be set to in/out but was
already set to out/in, the algorithm halts and returns fail. (Recall that Doyle’s
original JTMS also might fail after these two steps; in this case a backtracking
procedure is started which, however, does not guarantee to return a stable model
of the considered program.)

153

6. Incremental Reasoning for Plain LARS Programs

4. Push Up: Rule heads from the current stratum that now have status in are selected
as input for the next iteration, i.e., for rules of stratum i+ 1.

The correctness of the generic procedure relies on functions that correctly handle the
expiration semantics of the window functions in use. Under this assertion, an answer
stream can be read off the resulting labels of the updated JTMS data structure. In the
absence of cyclic negation, the algorithm is also complete. In general, it may not be able
to update the model and return fail due to the limitation inherited from JTMS, i.e., in
the presence of (odd) loops through negation. Hence, developing a suitable backtracking
algorithm to ensure completeness would be a natural next step. Furthermore, other
techniques for model update deserve attention. We present one such approach next.

6.5.2 The Laser Stream Reasoning Engine

Chapter 7 will present Ticker, the implementation of the evaluation techniques presented
in Sections 6.4 and 6.3 above. We now briefly describe the core ideas of another prototype
reasoning engine called Laser, presented in [BBU17].

In contrast to Ticker, which provides a solution where multiple models can be
considered, Laser explicitly restricts to positive plain LARS programs and stratified
programs, which ensure a unique model, and thus can be computed more efficiently. It
also focuses on sliding time-based and tuple-based windows. Instead of working with
encodings to ASP, we extend semi-naive evaluation techniques as in Datalog [AHV95],
taking into account intervals in which formulas are guaranteed to hold due to employed
window operators and temporal modalities. In essence, the aim is to efficiently compute
variable substitutions based on streaming data and derivations as specified by the program,
and to avoid redundant recomputations, exploiting the temporal information. Thereby,
we obtain a mechanism that performs both rule grounding and model computation. More
precisely, the set of ground atoms returned by the algorithm corresponds to the answer
stream at the respective time point and since these atoms are maintained incrementally,
we obtain an incremental answer stream update mechanism.

Recall that the incremental encoding technique (Algorithm 6.10) expires rules after a
duration that follows from the length of the window. Here, we determine in a similar
way how long a substitution formula will hold. More specifically, we consider annotated
ground formulas (AGFs), i.e., expressions of form

ϕσ[c,h] ,

where ϕ is a formula, σ a substitution (written postfix), and [c, h] an annotation, i.e., an
interval from a consideration time c to a horizon time h in which the ground formula ϕσ
necessarily holds. (We first consider only sliding time-based windows; tuple-based
windows are discussed later.)

Incremental Evaluation

We first explain the main steps of the incremental model update by means of an example.

154

6.5. Further Work

Example 71 Consider the following rule r, adapted from 3.6 of Example 27.

@T ′exp(Id, Y)︸ ︷︷ ︸
α

← �5@T tram(Id, X)︸ ︷︷ ︸
β1

, plan(X,Y,D)︸ ︷︷ ︸
β2

, T ′ = T +D︸ ︷︷ ︸
β3

Assume we have a signal tram(i, x) at t = 36 in the data stream. We thus can instantiate
tram(Id, X) in β1 with the substitution σ1 = {Id 7→ i,X 7→ x}. The ground atom
tram(i, x) (= tram(Id, X)σ1) only holds at time 36, hence the AGF tram(Id, X)σ1[36,36].
On the other hand, background data does not expire. Assume a background fact
plan(x, y, 5) specifying that it takes 5 minutes for a tram to get from station x to
station y. We thus get AGF plan(X,Y,D)σ2[0,∞], where σ2 = {X 7→ x, Y 7→ y,D 7→ 5},
i.e., the horizon time of plan(x, y, 5) is infinite.

Consider now the window atom β1. The tram signal at time 36 matches the time
variable T in the @-operator, we thus extend the substitution to σ′1 = σ ∪ {T 7→ 36}. We
observe that β1σ

′
1 will hold until time point 41 due to he window length, so we obtain

AGF β1σ
′
1[36,41].

Next, β1σ
′
1 and β2σ2 can be joined since the shared variable X is uniformly mapped

to constant x. We thus get a joint substitution σ12 = σ′1 ∪ σ2 for the formula β1 ∧ β2
as usual. Clearly, this conjunction holds whenever both conjuncts hold, i.e., we have
to calculate the intersection of the annotations ([36, 41] ∩ [0,∞]); this again is [36, 41].
Finally, the substitution for β3 is created directly when joining with β1 ∧ β2, where
T ′ 7→ 41 is determined.

In total, we obtain for the entire body the AGF β1 ∧ β2 ∧ β3 σ[36,41], where σ = {Id 7→
i,X 7→ x, Y 7→ y, T 7→ 36, D 7→ 5, T ′ 7→ 41}. (For uniformity, we view β3 as a logical
predicate.) This expresses in particular a grounding for variables Id, Y and T ′ of the
rule head that holds during the interval [36, 41]. Thus, we create another AGF ασ′[36,41]
for the rule head, where σ′ is obtained from σ by a projection to head variables. At time
42, all ground atoms with horizon time 41 are deleted; only plan(x, y, 5) will remain. �

Example 71 illustrated how atoms from data streams and background knowledge are used
to compute a model of the program in a way that may avoid recomputation: assuming
no data arrives within interval [37, 41], no further computations are needed during that
period, and derived conclusions remain valid. More generally, the algorithm for positive
programs and sliding time-based windows works in the following steps at the turn from
time point t− 1 to t. (We skip some details, which will be discussed below.)

1. Expiration: delete all AGFs ϕσ[c,h] where h < t.

2. Input: for every input atom a(x) in the data stream at t, create an AGF a(x)σ[t,t],
where σ is empty.

3. Base σ from input: for every such AGF and a non-ground atom a(X) (of the same
predicate) occurring in a rule body create further AGFs a(X)σ[t,t], where σ replaces
variables in a(X) by constants in a(x) as usual.

155

6. Incremental Reasoning for Plain LARS Programs

4. Adapting σ by window atoms: based on temporal modality ? ∈ {3,2,@t′} of any
window atom ϕ = �n ? a(X), we create an AGF for ϕ based on σ of a(X)σ[t,t] as
follows:

(i) Case 3: ϕσ[t,t+n]; i.e., the horizon time is extended by the window length.
(ii) Case 2: ϕσ[t,t]; no extension is possible.
(iii) Case @T : ϕ′σ[t,t+n], where σ′ = σ ∪ {T 7→ t}; i.e., in addition to extending

the horizon time as for 3, the time variable is replaced by the current time t.3

5. Body join: for every new AGF of a body element βi in a rule, we try to obtain
a joint substitution σ for the entire body β = β1 ∧ · · · ∧ βn as usual. If such σ
is created from AGFs with respective annotations [c1, h1], . . . , [cn, hn], we use the
annotation [c, h] obtained by their intersection. In case [c, h] is non-empty, we
obtain the AGF βσ[c,h].

6. Head derivation: for the newly derived body AGF βσ[c,h], we get for the rule
head α a substitution σ′ by dropping in σ all variables that do not occur in α and
store ασ′[c,h].

7. Propagation: Derived AGFs for rule heads are treated like input atoms’ AGFs in
further rules; i.e., Step 3 is applied uniformly for input atoms and head atoms. This
procedure continues until a fixed-point is reached, i.e., when no new body AGF
can be obtained and thus no new AGF for any rule head.

Thus, we essentially create substitutions from the data stream and from derived rule
heads, using window lengths to (potentially) extend the horizon time, and calculating the
intersection of body annotations to obtain the temporal guarantee when the rule fires.
The evaluation is incremental in the sense that it will not recompute entailments that
have been obtained already; only the horizon times might be updated in this case. By
repeating the procedure iteratively we get an algorithm to update the model over time;
assuming that at time t we have the set S of AGFs after the fixed-point computation,
we obtain the answer stream I = ([0, t], υ) as follows. Let a(X)σ[c,h] ∈ S. If σ does not
contain a time variable (from an @-atom), then a(X)σ ∈ υ(t), else a(X)σ ∈ υ(t′), where
t′ is the substitution for the time variable in σ.

Note that static data can be uniformly processed by initially assigning an AGF
a(x)∅[0,∞] for every provided fact a(x) (corresponding to Step 2); an according substitution
σ for every matching occurrence a(X) in a rule then results in an AGF a(X)σ[0,∞]
(corresponding to Step 3). Background facts are practically not considered to be used
within the scope of windows but cases 4 (i)-(iii) could be adapted easily.

Extension for Stratified Plain LARS Programs

The presented incremental evaluation procedure works for positive programs which permit
a fixed-point computation as described. The algorithm can also be applied for stratified

3The case @t′ , where t′ is ground, is only of theoretical interest. In this case we have to use ϕσ[t,t+n]
if t = t′, else no AGF is created for ϕ.

156

6.5. Further Work

plain LARS programs, using the following adaptions. We first recall that plain LARS
programs may additionally have negation in front of window atoms. Notably, we can
equivalently consider negation to occur directly in front of atoms: ¬�n3a(x) equals
�n2¬a(x) and ¬�n2a(x) equals �n3¬a(x). In case the timeline contains t (which we
can assume since the timeline is implicit) we also have that ¬�n@ta(x) equals �n@t¬a(x).
Thus, we can use literals instead of atoms as unit elements of the evaluation algorithm,
and consider in case of negated atoms ¬a(X) all substitutions σ such that a(X)σ does
not hold. The base set of possible substitutions to form the according complement set
is given by the remainder of the rule; i.e., we can adopt the usual safety assumption
that every variable occurring under negation needs to occur positively in the same rule.
Restricting to stratified programs retains the uniqueness of models.

Extension for Tuple-based Windows

For ease of presentation, we focused on time-based windows, but (sliding) tuple-based
window can be realized analogously. To this end, we consider for every formula in addition
to the time-based annotation [c, h] a tuple-based annotation [#c,#h] with an analogous
consideration count #c and a horizon count #h. An AGF ϕσ[c,h],[#c,#h] then expresses
that the grounding ϕσ holds if the current time is in [c, h] and the global tuple count is in
[#c,#h]. Consequently, we delete before processing the nth atom any AGF ϕσ[c,h],[#c,#h]
where #h < n. The aim of the typical tuple-based window is to count input data, not
inferences. Thus, as for Ticker, we restrict the use of tuple-based windows to extensional
atoms. This allows us to use the presented update methods of time-based windows (which
may range also over intensional data) for tuple-based windows.

Evaluation

The resulting implementation Laser4 was evaluated empirically for a set of small bench-
mark programs, where we examined the processing time per triple for Laser and competing
engines. For the evaluation of the prominent snapshot semantics (featuring only modality
3 in window atoms), we evaluated the update of a single rule (with one, resp. two window
atoms with join) in Laser, and the analogous queries in C-SPARQL and CQELS. For
operators not available in these languages, we compared Laser with Ticker in one-shot
solving mode. (The incremental mode of Ticker was developed at the same time when
Laser was evaluated.) Laser and Ticker were also compared on a small benchmark
program with multiple rules, requiring some propagation (Step 7). For all evaluations, a
tailored data generator made sure that the different input handling of respective engines
did not lead to unfair comparisons. In all of our evaluations, which used different stream
rates and window sizes, Laser was orders of magnitude faster than C-SPARQL, CQELS,
and Ticker. While these evaluations indicate the desired efficiency, we shall note, however,
that the obtained empirical results are not conclusive. For more robust results, a larger
and more diverse set of benchmark programs is required. In particular, the evaluation of
programs with negation and tuple-based windows remain for future work.

4Code, written by co-author Hamid R. Bazoobandi: https://github.com/karmaresearch/Laser

157

https://github.com/karmaresearch/Laser

6. Incremental Reasoning for Plain LARS Programs

6.6 Discussion and Related Work

In this chapter, we presented a formalization of Doyle’s core JTMS algorithm and
how it can be used to update the answer stream of a plain LARS program based on
an incremental encoding to ASP; the latter is derived from a complete encoding for
evaluating a program once at a given time point. These specific techniques come with
some limitations and point towards future research issues, i.e., the chosen LARS fragment,
the grounding procedure and JTMS as specific model update algorithm. We discuss
them and finally mention some related work.

LARS Fragment

Given the very generic LARS framework as presented in Section 3, the restriction to
plain LARS is natural as it can be seen as straightforward extension of normal ASP
for streams: it simply replaces atoms in normal rules by extended atoms in rule bodies,
and also considers @-atoms in rule heads. With a focus on incremental reasoning, we
deliberately restricted further to sliding time windows and sliding tuple windows. For
single tumbling windows, we cannot expect performance gains, since they do not share
data from step to step. However, the combination of multiple tumbling windows (within
or across rules) might also provide potential for incremental reasoning, when different
window sizes are combined. Moreover, adding further window functions and allowing
for nested use is of interest; in particular filter windows before tuple windows. In many
use cases one does not want to count all tuples but only a specific subset. In fact, the
presented encodings can be adapted in a straightforward way.

Example 72 Consider the rule @T lastBus ← �bus �#1 @T bus(Id, X), which first filters
atoms with predicate bus and then uses a tuple window of size 1 to select to most
recent appearance. Without the filter window (and window nesting), we can only write
@T lastBus ← �#1@T bus(Id, X), which is applicable to select the time T of the last bus
appearance only if the stream exclusively contains bus signals. �

Incorporating the filter window is more a matter of adapting the developed ideas above
rather than requiring genuine new techniques; it basically boils down to generalizing the
generation of incremental rules in Algorithm 6.10. Once the program is fixed, we can
use for a formula of the form �f �#m ◦ a(X), where ◦ ∈ {@T ,3,2}, a fresh predicate
af#, similarly like the tick-pinned predicate a# for the tuple windows as used above.
In analogy to the global counter c in ticks (t, c), we would then require in addition to
a#(X, t, c) the tailored one of the form af#(X, t, cf#), where cf# is a counter restricted
to predicate af#. Similarly, we would have to adapt the generation of incremental rules,
i.e., duplicate the cases for tuple windows for every such pre-filtering.

A different issue of more theoretical interest would be to provide encoding mechanisms
for classes of window functions based on abstract properties. For instance, the tuple
window encoding as used only works due to the restriction to extensional atoms. In a
similar way, it should be possible to incorporate new windows functions (employed in the

158

6.6. Discussion and Related Work

plain LARS fragment in unnested window operators) by simply adding new auxiliary
atoms and new incremental rules. On the other hand, as soon as windows also access
intensional atoms, they interfere with the LARS semantics in a more complex way.
Thus, one could try to single out properties that permit (respectively prohibit) modular
extensions of the existing algorithm.

Grounding

The heart of the incremental model update is Algorithm 6.11, which adapts the encoding
tick by tick. Due to our focus on the composition of rules as such, we simply assume
a grounding function in Line 5 that takes schematic rules from Algorithm 6.10 and
produces a grounding, which then serves as input for the JTMS. Clearly, developing
algorithms for suitable grounding on-the-fly is a major research issue itself; with great
importance for further development of rule-based stream reasoning. In particular, such a
grounding mechanism must be highly efficient and thus should also work incrementally.
In order to provide a research prototype based on the ideas presented in this chapter, we
developed Ticker (cf. Chapter 7) using a (partial) pre-grounding; all remaining variables
in the incremental processing then correspond to tick variables (time or count) and can
be grounded in constant time by a replacement with values from the current tick. For
further development grounding techniques such as in [LN09], [PDPR09], [DEF+12] and
[Wei17] might be considered.

Model Update

The choice of JTMS for carrying out model update was a pragmatic one due to the known
(partial) correspondence with ASP, as described earlier. However, the JTMS algorithm is
not applicable for programs with odd loops and also by far less efficient than modern
ASP solving techniques; in particular when a model needs to be computed from scratch.
It is also limited to ground programs. Consequently, providing other incremental model
update techniques based on changing programs would be not only of interest for stream
reasoning with LARS, but also for ASP without an explicit timeline. Some related works
were mentioned in Section 2.2.5.

Beyond the issue of runtime/performance gains due to incremental evaluation would
be studies on criteria or guarantees regarding the semantics of model update, which we
did not consider in this work. Arguably, notions of maintainability of models, or degrees
thereof, would pave the way for intriguing future research issues on the theoretical side.
In particular, in applications with a multitude of alternatives one would like to stick with
the same solutions or small deviations over time, rather than jumping between various
different solutions from one time point to the next. In fact, also JTMS may retract
derivations even when it does not have to.

Example 73 Consider the rules c←; a← c; a← not b; and b← not a; to be inserted in
this order to the JTMS network. It will hold the model {a, c}, where c supports a. When
we now remove fact c ←, atom a is marked as unknown since it is a repercussion of c.

159

6. Incremental Reasoning for Plain LARS Programs

The choice between a and b due to the last two rules now may also pick b, although a
can be maintained. In other words, there is no preference for model {a} over {b}. �

Example 73 suggests a specific model maintenance criterion: to prefer {a} over {b} after
{a, c}, with the intuition that a can be maintained. However, this is a specific criterion
which cannot easily be argued for: in general, multiple (mutually exclusive) subsets of
a previous model may be maintainable, so one would need a further criterion to argue
which. Such a criterion can realistically only come from encoding domain knowledge; we
speculate that usefuly such criteria are not expressible in generic terms at a low level of
counting atoms or with similar uniform metrics. Depending on specific meanings of the
propositions, {b} could in fact be the natural update to {a, c} after removal of c; e.g.,
when it is more likely to have {b} rather than {a} without c in the specific domain.

The most basic requirement for an update procedure is that it maintains the same
model over time if possible. As a basic example, consider the two rules a← not b; and
b← not a; where the output should not flip a and b arbitrarily without further changes.
The same criterion naturally applies for projections which are important in practice. For
instance, if only a and b in Example 73 above are atoms relevant to the user, and c is
auxiliary, then {a, c} practically amounts to {a}, and the output should remain (identical)
after c was removed.

As we see already in this brief discussion, developing criteria how models shall be
maintained opens up a large field for future research. With few exceptions such as
the simple ones above, most criteria will require specific use cases for their assessment
or even their definition. In other words, rather than exploring immediately available
relations (such as naive model differences at the abstract level), going backwards from
application demands seems a better strategy to find suitable model maintenance criteria
(and methods) for practice.

Related Work

We finally point to some literature on incremental reasoning. In particular, we mention
some work from database research, where the closely related problem of view updates
has been studied extensively. Views on relational tables are typically specified with
SQL select statements, or in case of deductive databases, by means of logical rules;
most prominently Datalog. The general task is to update the materialized view (i.e.,
intensional predicates) in response to a change in the base relation (i.e., extensional
predicates). The incremental variant of this task then needs to identify for the previous
materialization R the new tuples R+ to add, and potentially old tuples R− to delete,
and process the update R′ := (R \R−) ∪R+ efficiently.

In [CW91], the aim is to maintain a view materialization by a set of production rules
that are generated automatically in order to ensure their correctness. The authors provide
a mechanism that takes an SQL-based view definition and outputs view maintenance
rules that are triggered by changes in the base relations, i.e., insert, delete and update
commands. The maintenance itself also works with changes, i.e., incrementally. Notably,
the production rules work operationally, and serve more or less as a declarative variant for

160

6.6. Discussion and Related Work

procedural code. In contrast to stating by incremental rules new commands how to update
a previous materialization, our work uses incremental rules to update the declarative
definition of a view, in that sense, where the JTMS is responsible to incrementally update
the materialization in terms of a model.

A classic approach for updating (potentially recursive) views on a base relation is
semi-naive evaluation [GUW09]. It is sufficient to derive tuples that have to be inserted
to the view. We used this technique as basis for our work on Laser (cf. Section 6.5.2).
However, straightforward semi-naive evaluation does not work for tuple deletions; a
derived tuple of a deleted tuple from the base relation would always be deleted, even if it
can still be derived by another one. The DRed (Delete and Rederive) algorithm [GMS93]
refines the overestimate of potential deletions by taking into account the alternative
derivations of removal candidates; deletes them and rederives them in case they still hold.

A variant of the DRed algorithm in declarative form was presented in [SJ96], where a
maintenance program is obtained from the original program (i.e., the view definition)
by a rewriting technique that classifies different kinds of rules: for the original view
definition p (i.e., the head of a rule), pdel captures possible deletions of relation p; pred

captures the subset that has alternative derivations (and thus must not be deleted); and
pins reflects the insertions. The incremental update of rules to be added and deleted then
is expressed by the rules p+ ← pins,¬p; and p− ← pdel ,¬pins,¬pred ; respectively. With
the aim to separate the view generation from its materialization at the same storage
location, the authors then present an algorithm to adapt an external materialization
incrementally based on updates on demand. This work was extended in [VSM05] for
maintenance of ontological entailments; it considers ontologies expressible in Datalog
with stratified negation. Accordingly, when the ontology is updated, not only ground
facts but rules need to be updated, for which the previous rewriting techniques have
been extended. Algorithms are presented to maintain the rewritten rules in response to
a change of rules encoding the ontology.

Building on works mentioned above, [BBC+10b] presents a reasoning method that
incrementally maintains materializations of ontological entailments that depend on
streaming data. Similarly like in [VSM05], ontological schemas (such as the RDFS) are
assumed to be axiomatized in Datalog. Streaming RDF triples that are inserted to the
materialization are annotated with timestamps that serve to expire them once they are
no longer valid.

An improvement of the DRed algorithm was addressed by the Backward/Forward
(B/F) algorithm [MNPH15], which avoids the costly overdeletion phase. Instead, it
determines by a combination of backward and forward chaining which of the facts that
may have to be removed have alternate proofs from remaining facts. The algorithm
was shown to be significantly faster than DRed in some ontology query answering
benchmarks. However, it is not applicable to programs with negation. Recently, both
DRed and B/F have been advanced further in [HMH18], which presents hybrid solutions
in combination with the Counting algorithm [GMS93]. The latter maintains a counter
for distinct derivations of a fact, deletes a fact once the counter is zero and thus avoids
the backward evaluation. However, it is not applicable to recursive rules. DRed and B/F

161

6. Incremental Reasoning for Plain LARS Programs

are combined with Counting in two variants, one tracks derivation counts recursive and
non-recursive rules separetly, and another tracks only non-recursive ones. Both variants
achieve significant performance benefits, as shown in different evaluations.

Incremental data stream evaluation of queries with explicit time-based sliding windows
has previously been studied in [GHM+07], which compared two relational processing
approaches with respect to efficiency. In the input-triggered approach (ITA) only the new
tuples are processed and query operators use their timestamps to expire them. The price
of ITA is a potentially significant output delay of the query answer. Second, the negative
tuples approach (NTA) aims to reduce these delays. The conceptual idea is to model
expiration of a tuple t with an explicit expiration tuple t′ that is processed at the intended
expiration time and then triggers the retraction of the effect of t. In the query pipeline,
which consists of incremental relational operators, this doubles the number of tuples to
be processed and causes an overhead in processing. To tackle these two issues, the paper
presents two optimization techniques: time-messaging avoids unnecessary processing in
incremental operators (mainly in joins), and piggybacking reduces the number of negative
tuples by dynamically selecting either ITA or NTA execution modes based on incoming
tuples. The first technique was shown to improve NTA by a factor of two, whereas
piggybacking yields the respective performance benefits of ITA and NTA.

All of the above works share the principle of maintaining a unique view. This is in
contrast with our work that aims at updating one view (model) among potentially many.
In other words, the main semantic difference to works on view materialization updates
lies in our need to select from potentially multiple solutions. To this end, we used JTMS,
which is preferable over assumption-based truth-maintenance systems [dK86] for our
task: they maintain multiple models and are less suitable for applications where only a
single model is required at a time. TMS techniques have also been studied in [RP11]
to deal with ontology streams; their work however departs from our setting since it is
monotonic and features neither windows nor time references. Further related work in
the area of Knowledge Representation was mentioned in Section 2.2.5, including the
incremental features [GKKS17] of the ASP solver Clingo [GKKS14]. In Chapter 7, we
will make use of Clingo only in its standard solving mode (by means of repeated one-shot
solving), since multi-shot solving features did not match the demands of our encoding
(cf. Section 7.5). Due to the increasing demand of streaming solutions, we can expect
further developments of incremental evaluation techniques in research areas targeting
expressive reasoning.

162

CHAPTER 7
The Ticker Engine

This chapter presents Ticker, a prototypical stream reasoning engine based on the
techniques developed in Chapter 6.

Outline

We present in Section 7.1 Ticker programs and how they are translated to LARS programs.
We then discuss the Ticker engine’s different modes of operation explaining its runtime
options. In Section 7.2 we describe the pre-grounding mechanism that is used as a
pre-processing step of the incremental reasoning mode. We present more fine-grained
incremental algorithms based on those of Chapter 6, taking into account practical space
limits and the pre-grounding procedure. Section 7.3 then gives an overview of the
implementation architecture, centered around the reasoner abstraction. We give some
details how the reasoners are realized, i.e., utilizing either repeated one-shot solving
with Clingo or incremental reasoning with an implementation of Doyle’s justification-
based truth maintenance system (JTMS). These two reasoning modes are then evaluated
empirically in Section 7.4. We formulate research questions, followed by a setup and
benchmark programs towards their examination. We also present and discuss the obtained
results. Finally, we add some remarks in Section 7.5, including ideas for future research
directions.

Publications

This chapter extends the practical and empirical part of publication [BEF17], the technical
core of which has been presented in the previous chapter. We give here a description of
the developed software and the implementation of the presented algorithms that could
not be included in [BEF17] due to space constraints. One of the benchmark programs is
derived from our work in [BBD+16] and [BBD+17].

163

7. The Ticker Engine

7.1 Introduction

Ticker is a stream reasoning engine for the command line. It is written in Scala and
is available at https://github.com/hbeck/ticker, published under the MIT license. We
give a brief overview of Ticker’s functionality, which is reflected in the runtime options,
all of which are fixed once the engine starts.

Among the start-up parameters is the program to be evaluated, which amounts to
a plain LARS program. The engine can read input atoms from standard input and/or
sockets and may write its result likewise to standard out and/or sockets. Notably, the
results are not answer streams (or sets thereof). Instead, we define the answer of Ticker
at time t as the set of facts that currently hold in a randomly selected answer stream.
More formally, if I = (T, υ) is the currently computed answer stream at time t, then
the answer (at t) is defined as υ(t). The actual output is then a subset of an answer
as specified by the given filter, i.e., a set of atoms to which the resulting predicates are
projected. For instance, one may restrict the output to intensional atoms (i.e., inferences)
or to an explicitly declared set of predicates.

In contrast to LARS, Ticker has an explicit notion of time. We therefore introduce
the following concept.

Definition 38 (Clock time) The clock time c ∈ N \ {0} defines the time that passes
from one time point to the next. It is specified in a time unit uc ∈ {ms, s,min, h}.

The clock time is the time associated with a single time point (in LARS) and a single
time tick during the run of the engine. It also serves as factor to translate the temporally
specified time windows in Ticker to those in LARS (see below). For seconds (unit s),
also unit symbol sec is allowed as alternative.

Independent from the clock time one can specify when output shall be written to
the selected sinks. This output timing has three modes: reporting the output when it
changed (after filtering), when a fixed amount of time passed, or after a fixed number of
input signals.

Finally, Ticker reasoning can be controlled by a parameter, where one selects either
repeated one-shot solving with Clingo [GKKS14] (based on techniques of Section 6.3) or
incremental model update (as developed in Section 6.4). The implementation of these
techniques will be studied in Section 7.3. Before that, we are now going to formally
introduce Ticker programs (Section 7.1.1) and its runtime options (Section 7.1.2) where
we explain the mentioned configuration variants in more detail.

7.1.1 Ticker Programs

We now present the syntax of Ticker programs, which amount to plain LARS programs
with sliding time windows and tuple windows. We use type writer font to distinguish
the Ticker syntax from its formalization in LARS. We thus write p, p(x), p(x,y), etc.
for atoms (using upper case for variables, e.g., p(X), p(X,Y), etc). Moreover, we write
@T p for an @-atom @T p. Next, we write [n #] for a tuple window that selects the last n

164

https://github.com/hbeck/ticker

7.1. Introduction

Ticker LARS
p p
p(X,Y) p(X,Y)
@T p @T p
a :- b, not c. a← b,not c
a(X) :- b(X,Y), not c(Y). a(X)← b(X,Y),not c(Y)
[n u] �nc , where
− n ∈ N − nc = n/cu and
− u ∈ {ms, s, sec, min, h} − cu is the clock time in unit u

[m #], where m ∈ N \ {0} �#m

p [...] �...3 p
always p [...] �...2 p
@T p [...] �... @T p
=, !=, <, <=, >, >= =, 6=, <, ≤, >, ≥
+, -, *, /, ^, % +, -, ·, /, ,̂ %

Table 7.1: Syntax overview of Ticker programs

atoms (n ∈ N \ {0}), and [n u] for a time window that selects the temporal duration
n ∈ N in unit u, i.e., ms (milliseconds), s or sec (seconds), min (minutes) or h (hours). For
instance, [1 s] and [1000 ms] denote time windows the select the last second. While
[n #] can be directly translated to �#n, the conversion of Ticker time windows to LARS
time windows requires conversion based on the clock time. It is set when the engine is
started. We say time window [n u] is compatible with clock time c (in unit uc), if size n
is a multiple of c. More formally, let nc be the window size n converted to unit uc. Then,
it must hold that nc ∈ N and nc = k · c for some k ∈ N. We call nc the corresponding
time points. Consequently, in case time windows are used, the translation of a Ticker
program to a LARS program depends on the clock time. We thus obtain the Ticker
window operators (Ticker windows for short) and write

• [n #] for �#n, and
• [n u] for �nc , where nc are the corresponding time points.

Example 74 Consider a time window [3 s] that selects the last 3 seconds. It is
compatible with a clock time of c = 1s (one second, uc = s). In this case, it corresponds
to the LARS window �3. Using clock time 500ms would give a LARS window �6. The
time window [3 s] is not compatible with clock times 400ms, 2s or 4s. �

It remains to specify the syntax of window atoms. Given a schematic Ticker window
[win] that corresponds to a LARS window operator �w, we write

• p [win] for �w3p,
• always p [win] for �w2p, and
• @T p [win] for �w@T p.

165

7. The Ticker Engine

where p is an atom and @T p is an @-atom.1 Naturally, we say a variable is in the scope
of a window (or window atom), if it appears in one of these expressions.

Example 75 Let c = 100ms. Then, a(X) [1 s] expresses �103a(X), always p [42 #]
stands for �#422p, and @T rel(x,y) [5 s] translates to �50@T rel(x, y). Variable X
occurs in the scope of [1 s]. �

As for plain LARS, we define extended atoms by atoms, @-atoms and window atoms.

Definition 39 (Ticker program) A Ticker rule r is an expression of the form

h :- b1, ..., bn, not bn+1, ..., not bm.,

where head h is an atom or an @-atom, and each body element bi (1 ≤ i ≤ m) is an
extended atom. A Ticker program is a set of Ticker rules.

As usual, the separator :- in a fact h :- . can be omitted. In this chapter, we sometimes
omit the final dot (.) for better readability. Notably, with the exception of time windows,
which involve a conversion from a temporal duration to a number of time points, Ticker
programs are merely a syntactic variant of plain LARS programs with (sliding) time and
tuple windows. Table 7.1 summarizes the syntax.

Example 76 Table 7.2 shows four exemplary Ticker rules and their translations to
LARS relative to the given clock time c. For instance, the expression p(X) [5 s] in the
body of Rule (1) corresponds to the window atom �53p(X), using clock time c = 1s, i.e.,
5 seconds correspond to 5 time points. For Rule (2), where c = 15s, @T p(X,Y) [4 min]
amounts to �163p(X,Y). For tuple windows, the clock time is irrelevant. As specific
example, consider window atom always q(Y) [7 #] appearing under negation in Rule (2).
It corresponds to �#72q(Y). �

Conventions and Restrictions

We now present restrictions and conventions that describe the subclass of programs
accepted by the Ticker engine. In case any criterion mentioned above is not met, the
engine terminates immediately after printing an according error message.
Implicit definition of signals. No declaration of extensional atoms and intensional
atoms are needed. Stream signals are extensional by definition, and implicitly given by
those predicates appearing in the scope of windows which are not used as rule heads.
The latter are viewed as intentional predicates. We assume that background data is not
used in the scope of windows. (This is in line with the entailment definition; windows
cannot drop background data and using them nevertheless may be useful only in more
complex formulas, which are beyond the plain LARS fragment). Accordingly, predicates

1Towards analogy with the case for 2, the case for 3 should arguably read some p [win]; however,
we choose the shorter p [win] since 3 is by far the most frequently used variant in practice.

166

7.1. Introduction

(1) h(X,Y) :- g(X,Y), p(X) [5 s], always q(Y) [7 #].

c = 1s h(X,Y) ← g(X,Y), �53p(X), �#72q(Y)

(2) @T h(X,Y) :- f(X), g(Y), @T p(X,Y) [4 min], not always q(Y) [2 #].

c = 15s @T h(X,Y) ← f(X), g(Y), �16@T p(X,Y), not�#22q(Y)

(3) h(Z) :- g(X,Y), p(X) [2 #], q(Y) [2 #], Z=X+Y, up(U), Z <= U.

(c = 1s) h(Z) ← g(X,Y), �#23p(X), �#23q(Y), Z=X+Y, up(U), Z ≤ U

(4) @T h(X,Y) :- g(X), g(Y), @T q(X) [200 ms], not @T q(Y) [200 ms].

c = 10ms @T h(X,Y) ← g(X), g(Y), �20@T q(X), not�20@T q(Y)

Table 7.2: Example Ticker rules and their translations to LARS

which appear neither as rule heads nor within the scope of windows are assumed to be
background data.
Tuple windows: only on signals. Tuple windows in Ticker count and limit the
signals of the stream, not inferences made by the program. As in Chapter 6, we thus
restrict the use of tuple windows on extensional atoms. In other words, no predicate can
occur both in a rule head and in the scope of a tuple window.
Safe negation. We use the usual safety of variables under negation. That is, every
variable that occurs in the scope of negation must also occur outside the scope of negation
(in the same body, to be explicit; variables are always local to rules). For instance, in
rule a :- g(X,Y), not b(X) [1 s], not c(Z) (only) variable Z is not safe.
Guards. When the incremental reasoner is used, all variables, except time variables T
within the form @T , that occur in the scope of a window atom must occur outside the
scope of a window (and outside negation). We call according atoms guards. They can
be predicates of background facts but also rule heads, i.e., intensional. For instance, in
Rule (1) of Table 7.2, g(X,Y) is a guard, as are f(X) and g(X) in Rule (2). Guards are
required for a pre-grounding of all variables that do not stem from tick information (cf.
Section 7.2.1).
Head variables. Every variable mentioned in the head must occur in the body. For
instance, this rule is violated for variable Z in rule a(X,Z) :- g(X,Y), b(X) [1 s].
Unique time variable per rule. Due to the pre-grounding procedure (cf. Section 7.2.1)
employed for incremental reasoning, a rule can mention only a single time variable (which,
however, can occur multiple times in the rule). For instances, Rules (2) and (4) could
not be extended by any expression involving an @-atom with a variable different from T.
Arithmetic and relations. Variables in arithmetic expressions must also be guarded
(as variables in the scope of windows). Since time variables are not guarded, they cannot
be used within arithmetic operators and relations.
Clock time. All time windows must be compatible with the specified clock time (see
runtime option --clock below).

167

7. The Ticker Engine

-p --program <file>,<file>,... (mandatory)

-r --reasoner [incremental | clingo]

-f --filter [none | inferences | <predicate>,<predicate>,...]

-c --clock <int><timeunit>

<timeunit> = ms | s | sec | min | h

-e --outputEvery [change | signal | time | <int>signals | <int><timeunit>]

specify when output is written:

change: filtered model changed

signal: new signal streamed in (push-based)

time: a time point passed by (pull-based)

<int>signals: given number signals streamed in (generalized push-based)

<int><timeunit>: specified time passed by (pull-based)

-i --input <source>,<source>,...

<source>: stdin | socket:<int>

-o --output <sink>,<sink>,...

<sink>: stdout | socket:<int>

default: -r incremental -f none -c 1s -e change -i stdin -o stdout

Table 7.3: Overview of Ticker’s runtime options. Each parameter can be alternatively
specified with a short (-) or a long (--) descriptor.

Odd loops. Programs with odd loops are handled correctly only when one-shot solving
with Clingo is used (see option --reasoner clingo below). There is no explicit syntax
for constraints, i.e., all rules must have a non-empty head. As usual, a constraint of form
:- body can be stated as x :- body, not x, using a fresh atom x, i.e., an odd loop of
minimal length.

7.1.2 Configuration: Runtime Options

Table 7.3 enumerates all start-up parameters for Ticker. Each parameter can be spec-
ified following a short selector or its long version. Only the program parameter (-p,
respectively --program) is mandatory; the others have default values.

Program: -p --program <file>,<file>,.... A LARS program can be loaded from
multiple files, following the selector -p or, alternatively, --program. (Note that input files
are separated only by a comma, no spaces are allowed.)

Example: -p core.lars,domain.lars starts Ticker for the program obtained by the
set of rules found in files core.lars and domain.lars.

Reasoning strategy: -r --reasoner [incremental | clingo]. This parameter
specifies one of the two available reasoning strategies. With option clingo Ticker uses
Clingo in one-shot solving mode on the static ASP encoding (cf. Section 6.3). With
configuration incremental Ticker uses JTMS (cf. Section 6.2) based on to the incremental

168

7.1. Introduction

encoding (cf. Section 6.4). The implementations of both variants will be discussed further
in Sections 7.3.2 and 7.3.3, respectively.

• Default: -r incremental.

Filter: -f --filter [none | inferences | <predicate>,<predicate>,...]. This
parameters specifies the output, i.e., which predicates from the answer will be sent to the
sinks. Filter none includes the entire answer, including current input signals. Limiting the
output to intensional atoms is done with option inferences. Alternatively, the answer
can be projected to a set of specific output predicates. For instance, -f a,x includes only
atoms with predicates a and x in the output.

• Default: -f none.

Clock time: -c --clock <int><timeunit>. The argument specifies the clock time
(Definition 38), i.e., the length of a time point. The default is one second (i.e., 1s or
1sec). Alternatively, a (positive natural) number of milliseconds (ms), minutes (min) or
hours (h) can be specified as time unit, i.e., <timeunit> = ms | s | sec | min | h. For
instance, -c 250ms specifies that a time point corresponds to 250 milliseconds.

• Default: -c 1s.

Note that any time window in the program implicitly specifies a number of time points,
which is determined by this parameter. As a consequence, any size of a time window in
the program must be a multiple of this parameter (when converted to the same unit).
Otherwise, the engine will not be started.

Example: time window sizes [1 s] and [3 s] are compatible with -c 500ms and
-c 1s, but not with -c 2s, respectively.
Output timing: -e --outputEvery <timing>. This parameter controls the timing of
the output. The following options exist for <timing>:

• change will write an output whenever it changes (relative to the specified filter).
• signal returns a model after every new input. This amounts to a push-based

evaluation.
• time returns a model every time a single time point passes, i.e., a unit of time due
to the clock parameter -c. This amounts to periodic querying as in pull-based
evaluation.

• <int>signals generalizes option signal; the latter amounts to 1signals.
• <int><timeunit> likewise generalizes option time which amounts to 1U, where U is
the selected clock time. For instance, -e 500ms will write the output every 500
milliseconds. The specified length must be a multiple of the clock time.

• Default: -e change.

169

7. The Ticker Engine

Input source: -i --input <source>,<source>,.... Multiple input sources can be
specified, including standard input stdin and sockets (socket:<int>).

• Default: -i stdin.

Output sink: -o --output <sink>,<sink>,.... Likewise, standard out (stdout) and
sockets (socket:<int>) can be used as output sinks.

• Default: -o stdout.

7.2 Incremental Encoding Revisited
We now describe the realization of Ticker’s incremental reasoning mode and how it
deviates from the presentation in Chapter 6. We recall the the main ideas of the
incremental evaluation (cf. Section 6.4): at each tick (t, c) we obtain by Algorithm 6.10
(IncrementalRules) new rules that we have to add to the truth maintenance system
(JTMS). Each rule is annotated with a tick (t∆, c∆), expressing the duration after which
it has to be removed from the JTMS. Algorithm 6.11 (IncrementTick) then describes
the expiration process. It first retrieves new incremental rules from Algorithm 6.10, then
determines the expiration tick by adding for each rule the respective duration (t∆, c∆) to
the current tick (t, c), and retrieves expiring rules from memory. Notably, IncrementTick
assumes a grounding mechanism to obtain according ground instances.

Ticker realizes these algorithms with the following deviations. First, we use a pre-
grounding step (cf. Section 7.2.1) that grounds all variables but tick variables and
time variables, i.e., all variables that remain after the pre-grounding are reserved for
a tick time t or a tick count c. The actual creation of incremental rules (based on
IncrementalRules; Algorithm 6.10) uses pre-grounded rules and grounds the remaining
tick variables. This step is called pinning and can be done efficiently. We present in
Section 7.2.2 a variant of IncrementalRules that avoids an inflation of the incremental
encoding. The resulting procedure IncrementalRulesImpl additionally expires rules that
do not have to be deleted for semantic reasons. Moreover, it introduces some optimizations
and already calculates the expiration tick (instead of returning annotation expressing the
duration until expiration).

Section 7.2.3 then explains how the tick increment (from Algorithm 6.11) is realized,
using ground rules from IncrementalRulesImpl.

7.2.1 Pre-grounding

In Algorithm 6.11, Line 5, we assume a grounder that instantiates pinned rules from
Algorithm 6.10.2 To provide according efficient techniques is a topic on its own. Thus, we
restrict dynamic grounding to the pinning process in Algorithm 6.10, i.e., the replacement
of tick variables by respective integers.

2When a rule is pinned it has no tick variables left. In Algorithm 6.11, pinned rules are non-ground
in general. By contrast, due to pre-grounding, pinned rules in the implementation are ground.

170

7.2. Incremental Encoding Revisited

To enable pre-grounding, we demand in each rule for every variable X in the scope
of a window atom an additional guard atom that includes X. The guard is either
background data or intensional. Based on this, the incremental rules in Algorithm 6.10
can be grounded upfront, apart from the tick variables Ṅ and Ċ and time variables in
@-atoms. We call such programs pre-grounded. A LARS program P is first translated
into an encoding P̂ with several data structures that differentiate Q, base rules R, and
window rules W . During the initialization process, pre-groundings are prepared, where
arithmetic expressions are represented by auxiliary atoms. During grounding, they are
removed if they hold, otherwise the entire ground rule is removed.

Example 77 For rule r = @T high ← value(V),�30@Tα(V), V ≥ 18 of Example 31
(page 64), where value(V) was added as guard, we get a base rule

r̂ = high@(T)← value(V), ωe(V, T),Geq(V, 18) ,

where e = �30@Tα(V). Given facts {value(0), . . . , value(25)} (from background data or
potential derivations), we obtain as pre-grounding the set of rules of form

high@(T)← value(x), ωe(x, T) ,

where x is replaced by values from 18 to 25. �

We then use the pre-grounded program as replacement for the original input program,
when considering the creation of incremental rules.

The employed technique comes with a limitation, however. Pre-grounding still leaves
variables, i.e., time variables T from @-atoms of the form @Ta. For efficiency, the
pinning process simply will replace any such T with the current time point, to obtain
incremental rules as described in Algorithm 6.10, that are fully ground. This implies
that we cannot use two (or more) distinct time variables per rule. For instance, consider
rule r = h← �3@Ta,�4@Ub, which is already pre-grounded. Its (incremental) encoding
has a base rule of form h ← ωa(T), ωb(U). For time 42, function incrWindowRules
of Algorithm 6.10 will produce rule ωa(42) ← a@(42) for deriving ωa, and likewise
ωb(42) ← a@(42) for ωb. However, we get no pinning for other values T and U , in
particular, where T 6= U . We similarly only get h← ωa(42), ωb(42) as pinned instance of
the base rule. Using the pinning mechanism, we consequently can use only a single time
variable per rule, and no arithmetic operations/relations over time variables. Fixing this
issue would be the first step towards incremental grounding on-the-fly, which is left for
future work.

7.2.2 Incremental Translation

We now review Algorithm 6.10 (IncrementalRules) and develop an improved version as
foundation for the implementation. The creation of incremental rules can be optimized
in two ways. First, not all classes of programs require all auxiliary facts. Second, more
importantly, we want to avoid an inflation of the encoding due to non-expiring rules (i.e.,

171

7. The Ticker Engine

those with annotation (∞,∞)), which can also be deleted when they become irrelevant:
we observed in Theorem 28 that we can drop facts (that encode the tick stream) as soon
as they are outside the reach of any window of the program. Moreover, rules that rely on
such facts can be discarded as well.

Disjunctive and Conjunctive Annotations

We will analyze Algorithm 6.10 and derive a variant IncrementalRulesImpl that makes
use of a conceptual reframing of duration and expiration annotations. In Algorithms 6.10
and 6.11, an annotation (t′, c′) expresses when a rule must be deleted to ensure the
semantic correctness of the incremental encoding.3 Accordingly, we made use of infinite
annotations (∞,∞) for rules that never expire in this sense. We now use annotations in
a pragmatic view to state when a rule will be deleted; this way, optional removals can
be captured as well. Moreover, we distinguish two classes of duration and expiration
annotations: We call the ones from before disjunctive, since a rule annotated with
expiration tick (t′, c′) will be deleted at tick (t, c) when t ≥ t′ or c ≥ c′ holds. Dually, we
introduce conjunctive expiration annotations, denoted [t′, c′], which state that the rule
is deleted as soon as t ≥ t′ and c ≥ c′ hold. (The distinction between disjunctive and
conjunctive annotations is likewise used for duration ticks.)

We now revisit procedure IncrementalRules, analyzing the potential for optimization.

Algorithm 6.10 Revisited

Line 1. As mentioned earlier, facts tick(t, c)← need to be included only when window
atoms of the form �#m2a(X) occur in the program. If m∗2 is the maximal size of such
a window, then we can delete tick(t, c)← after m∗2 additional atoms have streamed in.
Thus, we can use the existing deletion mechanism for expiration, taking the annotated
rule 〈(∞,m∗2), tick(t, c)←〉 instead.

Line 2. This line addresses the encoding of the data stream at a count increment. We
distinguish three cases.

(a) Consider first time-pinned atoms (of form a@(x, t)) and assume that only time
windows occur in the program, with a maximal size n∗. The maximal duration annotated
in any incremental window rule is then (n∗+1,∞). Consequently, after n∗+1 time points,
no incremental window rule can access the fact anymore, unless the fact is mentioned as
@-atom outside the scope of any window.

Example 78 Consider the rule r = a← �3@T b,@T c, where atoms b and c are stream-
ing in. Window atom e = �3@T b gets the incremental window rule 〈(4,∞), ωe(t) ←
b@(t)〉. This means that r has to be deleted 4 time points after creation. For instance,
assuming atom b appears at t = 20, window atom �3@20 b (respectively encoded atom
ωe(20)) holds only until t = 23, i.e., at t = 24 the rule ωe(20)← b@(20) must be deleted.
Assuming no further rules access b we conclude that we can also delete fact b@(20)← at

3Procedure IncrementalRules (Alg. 6.10) uses duration annotations, which are transformed to expira-
tion annotations in IncrementTick (Alg. 6.11).

172

7.2. Incremental Encoding Revisited

any time t ≥ 24. (Formally speaking, the mapping 20 7→ b has to be contained in the
answer stream as long as we consider a timeline that contains time point 20; but from a
practical point of view, we will not be interested in displaying historic data that does not
lead to any derivations.) For body element @T c, however, the case is different. Since
access to T is not bounded by a window, we in general need to store all auxiliary facts of
form c@(t)←. �

Envisaged applications will likely target only recent information and thus will usually use
some upper bound for the history of data. Nevertheless, we allow “unbounded” @-atoms
in rule bodies (as @T c in the above example). Any such occurrence @Ta(X) in a rule
body will be viewed as abbreviation for �∞@T (X).

If no tuple windows occur in the program, we thus conclude that using instead
〈(n∗ + 1,∞), a@(x, t)←〉 in Line 2 would work for the time-pinned atom, where n∗ is
the maximal window length used on predicate a (including the convention n∗ =∞ for
unbounded @-atoms).

(b) Let us now dually consider the case that only tuple windows occur in the program.
Tick-pinned atoms of the form a#(x, t, c) are easier to analyze since they do not appear as
rule heads. Intuitively, ifm∗ is the maximal size of any tuple window, it should be possible
to delete auxiliary fact a#(x, t, c)← after m∗ new atoms, i.e., the annotation (∞,m∗).
However, in case the program contains the tuple-box combination (i.e., a tuple window
followed by 2), we need to ensure that tick-pinned atoms remain at least until the next
time point, yielding the conjunctive duration annotation [1,m∗]. We will explain this
later (cf. Example 81).

Notably, for the tuple-box combination we also need the time-pinned atom a@(x, t).
Since tuple windows are used only on extensional data, the (negated) body element
a@(x, t) (in the first spoiler rule, Line 15) relies on a fact from Line 2. Any such
fact must be present when it is still in the range of the last m atoms (as specified in
e = �#m2a(X)). That is to say, when we add an auxiliary fact a@(x, t) then we need
to keep it for the next m∗2 atoms. Without the presence of time windows, only this
tuple-box combination needs it, hence it suffices to keep it for m∗2 more signals. We thus
use the annotation (∞,m∗2).4

(c) A subtle case arises for tuple windows with 2 when also time windows are present.
In this case, the time-pinned atom a@(x, t) must also be available for the next n∗ time
points. Crucially, we cannot simply revise the annotation for facts a@(x, t) to (n∗,m∗2):
at current tick (t, c), a rule r with expiration tick (t′, c′) will be expired (and deleted) if
t ≥ t′ or c ≥ c′. By contrast, we require here that a@(x, t) is deleted at (t, c) if and only
if t ≥ t′ and c ≥ c′. Thus, we need a conjunctive duration annotation [n∗,m∗2].

Line 6. The base rule (which encodes the original LARS rule) also has the annotation
(∞,∞). In principle, we can also delete it as soon as we have a guarantee that the body
cannot hold anymore. In light of our pre-grounding, it makes sense to keep those base

4For simplicity, we spare a further separation of maximal tuple window sizes for different predicates
used in their scope. In that regard, using m∗ instead of m∗2 would also suffice to ensure that tick stream
facts are eventually deleted.

173

7. The Ticker Engine

rules which do not contain time arguments: optimizing the total number of stored base
rules is only relevant when they can grow indefinitely. This is the case when the LARS
rule r contains an @-atom, then the base rule r̂ will have a time parameter.

Example 79 Consider the LARS rule r = x← �3@T y,�#2@T z, which is translated
to a base rule of form r̂ = x ← ωy(T), ωz(T). The instantiations ωx(t) and ωy(t) at a
tick (t, c) (derived by incremental window rules of Lines 8 and 12, resp.) will expire after
durations (3 + 1,∞) and (∞, 2), respectively. Thus, using an “joint” annotation (4, 2)
for r̂ would work in this case: r̂ cannot fire as soon as the time or count expires in which
the respective window atom necessarily fails to hold. �

In fact, for window atoms of the forms �n@T a(X) and �#m@T a(X), respectively, and
respective maximal values n∗@ and m∗@ occurring in the positive body of rule r, we can
employ the annotation (n∗@ + 1,m∗@) for the base rule r̂; where not applicable, we use ∞.
Note that the disjunctive semantics of expiration (i.e., time or count) applies: as soon
as the current tick surpasses any of the two tick dimensions, the entire (positive) body
cannot hold anymore.

Example 80 Consider rule r = @T1x ← �7@T1 y1, �9@T2 y2, �133y3, not�#5@T1z.
We annotate base rule r̂ = x@(T1)← ω1(T1), ω2(T2), ω3, notω4(T1) with duration (10,∞)
since 9 is the maximal size of a time window (in the positive body), and no tuple window
with an @-atom occurs positively. �

Note that we do not explicitly cover the case where all window atoms with @-atoms
are negated. If they contain variables, these variables must occur (for safety reasons, cf.
Section 7.1.1) also in the positive body, which then determines the expiration. Using in
rules @-atoms of the form @ta(X), where t is ground, could be solved easily in addition;
however, these cases are only of theoretical interest (where (∞,∞) suffices), so we refrain
from further elaboration.

Lines 10 and 14. We observe that these rules do not contain a tick parameter. Apart
from tick numbers, we consider a finite universe from which we obtain the pre-grounding.
Consequently, the ground rules based on these lines are fully determined by the pre-
grounding and can thus remain, i.e., we keep annotation (∞,∞).

Lines 15 and 16. For the first spoiler rule (Line 15) we observe that coversτe(t) does not
hold after m more atoms have streamed in due to the expiration duration (∞,m) of the
rule that derives it. Consequently, we can explicitly expire also this spoiler rule. The
case for the second spoiler rule, which deals with more than m tuples at a single time
point, is more subtle.

Example 81 Consider the tick stream where the first signals are b, c, d at time 5 (in
that order), and the single rule h← �#22b. The tuple window selects the timeline [5, 5]
and, due to the order of appearance, only atoms c and d. Hence �#22b is false, and h is

174

7.2. Incremental Encoding Revisited

not derived. In addition to the base rule of form h← ωb,5 the relevant incremental rules
at tick (5, 3) are the following:

(r1) ωb ← b, not spoilb
(r2) spoilb ← b#(5, 1), coversτb (5),not covers#

b (1)
(r3) coversτb (5) ← tick(5, 2)
(r4) coversτb (5) ← tick(5, 3)

At tick (5, 3), Rule (r1) must not fire. Since b holds (at all ticks for time point 5), spoilb
must be derived, namely due to the spoiler rule that covers the case where the atom
in the evaluation of at the single time point that is returned by the window, but not
within reach with respect to counting. Accordingly, Rule (r2) needs to fire, i.e., b#(5, 1)
must still be available, coversτb (5) still derivable, and covers#

b (1) not. The derivation of
the cover for time point 5 is ensured by Rules (r3) and (r4) (which are added to the
JTMS along with signals c and d, respectively); and the rule covers#

b (1) ← tick(5, 1),
inserted with signal b, expires after a duration (∞, 2), hence, it is no longer present in the
encoding. However, Rule (r2) must still be present as well as the auxiliary fact b#(5, 1).
That is, during the time point at which they are inserted, they must not expire; after
the first time increase they can be expired, as soon as m = 2 new signals streamed in.
Consequently, we need the conjunctive duration annotation [1,m]. �

Example 81 illustrated the extremal case for the tuple-box encoding where more than m
atoms (where m is the size of the window) stream in at a single time point. In essence,
we can expire auxiliary tick-pinned facts as well as instances of the second spoiler rule
(Line 16) as soon as there was a time increase and the next m∗ signals streamed in,
yielding the conjunctive annotation [1,m∗]. If the tuple-box combination does not occur
in the program, we can use (∞,m∗) for the tick-pinned atoms.
Conclusion of the algorithm review. The above considerations allow us to revise
procedure IncrementalRules in a way that does not lead to an inflation of the incremental
encoding over time. Assuming a program that does not access the entire history (i.e.,
by a window of infinite size, or some @Ta(X) that is not in the scope of a window), all
encoded rules that are added during incremental evaluation can be deleted at some point
(as opposed to static ones where pre-grounding is fully ground); and in particular the
facts for the tick stream encoding. Any stream signal that cannot be reached anymore
can as well be deleted, and likewise any rule whose body will remain false. Towards an
improved version of IncrementalRules we present two algorithms. First, Algorithm 7.1
gives a more involved tick stream encoding that replaces Lines 1-2 in IncrementalRules.
Following the above analysis, we only use those auxiliary facts that are needed for the
given program, and we do not keep these facts in memory longer than necessary.

The new tick stream encoding is then used in Algorithm 7.2 (IncrementalRulesImpl),
i.e., the revision of the incremental rule generation. It defines additional expiration ticks
when rules become redundant.

5We abbreviate subscript e = �#22b (e.g. for the window atom encoding ωe) by b.

175

7. The Ticker Engine

Algorithm 7.1: TickStreamEncoding(t, c,Sig)
Global: Pre-grounded LARS program P , maximal size n∗ (resp. m∗) in a time
(resp. tuple) window, maximal size m∗2 in a tuple window followed by 2.
Input: Tick time t, tick count c, signal set Sig with at most one signal; empty iff

(t, c) is a time increment
Output: Taylored tick stream encoding as required by the program

1 F := ∅
2 if �#m2 occurs in P
3 F := F ∪ {〈(∞,m∗2), tick(t, c)←〉}
4 if Sig 6= ∅
5 let a(x) ∈ Sig
6 F := {〈(1,∞), a(x)←〉}
7 if �#m occurs in P
8 if �#m2 occurs in P
9 F := F ∪ {〈[1,m∗], a#(x, t, c)←〉} //conjunctive annotation

10 if �n occurs in P
11 F := F ∪ {〈[n∗+1,m∗2], a@(x, t)←〉} //conjunctive annotation
12 else
13 F := F ∪ {〈(∞,m∗2), a@(x, t)←〉}
14 else
15 F := F ∪ {〈(∞,m∗), a#(x, t, c)←〉}
16 if �n occurs in P
17 F := F ∪ {〈(n∗+1,∞), a@(x, t)←〉}

18 else if �n occurs in P
19 F := F ∪ {〈(n∗+1,∞), a@(x, t)←〉}

Improving the Tick Stream Encoding: Algorithm 7.1 (TickStreamEncoding)

Procedure TickStreamEncoding, shown in Algorithm 7.1, uses some information available
from static program analysis, i.e., the maximum sizes n∗ and m∗ of time and tuple
windows, respectively. Moreover, we provide in value m∗2 the maximal size of a tuple
window that is followed by modality 2.

We initialize the set F of tick stream facts in Line 1 and add in Line 3 the tick
information (fact tick(t, c)←) only if needed, i.e., when there is a tuple window in the
program P , followed by 2. The duration annotation states that the fact can be deleted
after m∗2 new signals have streamed in. The remaining lines deal with encoding the
signal in case of a count increment, i.e., where |Sig| = 1. The fact a(x) ← must be
included in the encoding for the duration of one time point (Line 6), as in Algorithm 6.10.
For time-pinned and tick-pinned facts we introduce new case distinctions. In the block
starting with the condition of Line 7 we consider the case that a tuple window exists.
We then further distinguish whether any tuple window is followed by modality 2 or not

176

7.2. Incremental Encoding Revisited

in Lines 8 and 14, respectively. Within each block we then distinguish further whether
their exists a time-based window or not, and we also test the latter condition in Line 18
for the case that there is no tuple window. All these cases differ in the set of required
auxiliary facts (for time-pinned atoms and tick-pinned atoms) and according duration
annotations as discussed above. Notably, conjunctive annotations are only required for
the tuple-box case.

Remark. We note that for each disjunctive duration annotation of form (t,∞), we
could equivalently use the conjunctive annotation [t, 0] to express the irrelevance of the
count dimension. Here, 0 expresses that the rule can expire immediately with respect to
count increments, and thus will expire after t time increments. The case is analogous
for (∞, c) and [0, c]. The chosen representation is closer to the implementation, where
disjunctive annotations are easier to manage since both dimensions can be dealt with
independently (also when both dimensions are finite): we maintain two lookup maps, one
for time and one for counts, where we collect rules expiring at the same time (resp. count)
increment. Thus, the notation for the conjunctive annotation in Line 11 indicates that
an additional mechanism is needed, as will be discussed below.

Improving Incremental Rule Generation: Algorithm 7.2 (IncrementalRulesImpl)

With the revised tick stream encoding in place, we proceed by discussing Algorithm 7.2
(IncrementalRulesImpl) that further improves the incremental rule generation.

After retrieving in the first line the stream facts from TickStreamEncoding, we collect
in set Q rules that express the equivalence between atoms a(x), holding now, and time-
pinned atoms a@(x, t), if t is the current time. We need such rules only for predicates that
are in the scope of some � or @ (Line 4). (The presentation with the loop is conceptual;
the implementation will compute static information such as the considered subset of Q
only once.)

Next, we collect in Line 5 all incremental rules R by a refined function incrAspRules′.
It differs from the original one in two aspects. First, we calculate for the given LARS
rule r a duration annotation (n∗r + 1,m∗r) for the base rule (Lines 9-12) by the maximum
size n∗r in a time window of the positive body of r, and likewise the maximal size m∗r in a
tuple window. (Note that this is the only place where we use a disjunctive annotation
where both dimension are finite.) We keep the generation of incremental window rules
from Algorithm 6.10, with the exception of the tuple-box case, where we now also expire
the spoiler rules in Lines 16 and 17. The first spoiler rule (Line 16) can always be safely
deleted after m new input signals, whereas the second one cannot be deleted at the same
time where it was added; we discussed this corner case in Example 81. Consequently,
the spoiler rules get annotated with (∞,m) and [1,m], respectively. Notably, we keep
annotation (∞,∞) for the rule in Line 15 since this rule is fully ground after the pre-
grounding step; likewise for the dual time-box combination in Line 10 of Algorithm 6.10.

Finally, we call (directly before returning) in Line 6 the function dur2exp on the
obtained annotated rules F ∪Q ∪R that converts duration annotations to expiration
annotations. To this end, the current tick is added componentwise to the given duration.
The case distinction between the standard disjunctive annotations (Line 23) and the

177

7. The Ticker Engine

Algorithm 7.2: IncrementalRulesImpl(t, c,Sig)
Global: Pre-grounded LARS program P
Input: Tick time t, tick count c, signal set Sig with at most one signal; empty iff

(t, c) is a time increment
Output: Pinned incremental rules annotated with expiration tick

1 F := TickStreamEncoding(t, c,Sig)
2 Q := ∅
3 foreach predicate a in P in the scope of @ or �
4 Q := Q ∪ { 〈(1,∞), a(x)← a@(x, t)〉, 〈(1,∞), a@(x, t)← a(x)〉}
5 R :=

⋃
r∈P incrAspRules′(r)

6 return dur2exp(F ∪Q ∪R)

7 defn incrAspRules′(r)
8 n∗r := ∞; m∗r := ∞
9 N := {n | �n@Ta(x) occurs in B+(r)}

10 M := {m | �#m@Ta(x) occurs in B+(r)}
11 if N 6= ∅ then n∗r := max(N)
12 if M 6= ∅ then m∗r := max(M)
13 return {〈(n∗r+1,m∗r), baseRule(r)〉} ∪

⋃
e∈B(r) incrWindowRules′(e)

14 defn incrWindowRules′(e, t, c) = match e
15 case �#m2a(x) =⇒ {〈(∞,∞), ωe(x)← a(x),not spoile(x)〉 }∪
16 { 〈(∞,m), spoile(x)← a(x), tick(t, c), coversτe(t), not a@(x, t)〉 }∪
17 { 〈[1,m], spoile(x)← a#(x, t, c), coversτe(t), not covers#

e (c)〉 }∪
18 { 〈(∞,m), coversτe(t)← tick(t, c)〉, 〈(∞,m), covers#

e (c)← tick(t, c)〉 }
19 //other cases as in incrWindowRules (in Alg. 6.10)

20 defn dur2exp(R)
21 R′ := ∅
22 foreach 〈d, r〉 ∈ R
23 if d = (t′, c′) then R′ := R′ ∪ {〈(t+ t′, c+ c′), r〉}
24 else if d = [t′, c′] then R′ := R′ ∪ {〈[t+ t′, c+ c′], r〉}
25 return R′

178

7.2. Incremental Encoding Revisited

conjunctive ones (Line 24) is only for notational reasons; conceptually it is the same
operation.

We emphasize that it is essentially the tuple-box combination that complicates
the presented refinements TickStreamEncoding and IncrementalRulesImpl. Excluding
window atoms of form �#m2a(x) would lead to a much simpler encoding; conjunctive
annotations and some case distinctions are only needed for them. While probably of less
importance in practice, they shed some light on the limitation of the presented approach
regarding dependencies between counting time and atoms on the mere technical side.
Tuple windows followed by 2 are not only conceptually the most involved case, they are
also the most expensive computationally (when reasoning incrementally); this will be
shown in the empirical evaluation below (cf. Section 7.4).

7.2.3 Incremental Evaluation

Algorithm 6.11 (IncrementTick) presented a fully incremental procedure to update the
ASP encoding tick by tick. With ground incremental rules available from Algorithm 7.2
(IncrementalRulesImpl), we can revise the procedure and directly update the JTMS. The
resulting method IncrementTickImpl is shown in Algorithm 7.3 and works as follows.

We assume as a precondition that the tick stream is now at tick (t, c) and that the
JTMS reflects the state of the previous tick, when procedure IncrementTickImpl is called.
At the end of the procedure, the state of the JTMS reflects tick (t, c).

The algorithm has two parts: Lines 1-16 are concerned with deleting expired rules,
and Lines 17-25 add new incremental rules to the JTMS. We control expiration by maps
that associate with time points t, respectively tick counts c, the set of rules which must
(respectively can) expire due a disjunctive annotation (t, c) (respectively conjunctive
annotation [t, c]). That is, a rule r expires at tick (t, c), if it is contained in Xτ (t) or
X#(c) (disjunctive case), or if it is in X ′τ (t) and in X ′#(c′) for a previous count c′ < c
or vice versa, i.e., in X ′#(c) and in X ′τ (t′) for an earlier time point t < t′. To track the
respective second condition, we use a set Y of rules that maintains candidates of rules
that can be released due to exactly one dimension of a conjunctive annotation.

The algorithm then works as follows. To determine rules expiring at current tick (t, c),
we first initialize in Line 1 an empty set G− of rules to be removed and a placeholder
X ′ for a map from which (potential) expiring rules from conjunctive annotations will
be retrieved. As before, the condition “Sig = ∅” in Line 2 tests whether (t, c) is a time
increment. In this case, we retrieve in Line 3 rules from Xτ (t), i.e., the rules expiring
at time t (independently from the tick count c). The key t is then deleted from Xτ .
For further expirations based on conjunctive information below, we already select the
time-based map X ′τ (Line 5). In case of a count increment, we similarly retrieve rules to
be expired at count c from map X# (in Line 7), followed by removing the entry from the
map, and the selection of the count-based map X ′#.

We then iterate in Lines 10-14 over rules that expire if both time and count exceed
their respective thresholds, as specified in a conjunctive expiration annotation. We
observe that at each tick, we can only expire due to a change in time or a change in
count (but not both). Accordingly, we already selected the map X ′ which will retrieve

179

7. The Ticker Engine

Algorithm 7.3: IncrementTickImpl(Sig)
State: current tick (t, c), JTMS reflecting previous tick, maps Xτ/X#
(resp. X ′τ/X ′#) holding expiring rules per time point/count due to disjunctive
(resp. conjunctive) expiration annotations; set Y of rules ready for removal due to a
single tick dimension
Input: signal set Sig with at most one signal; empty iff (t, c) is a time increment
Result: JTMS holds model at (t, c); Xτ , X# are updated

1 G− := ∅; X ′ := nil
2 if Sig = ∅
3 G− := Xτ (t)
4 Xτ (t) := nil //delete key t in map
5 X ′ := X ′τ
6 else
7 G− := X#(c)
8 X#(c) := nil //delete key c in map
9 X ′ := X ′#

10 foreach r ∈ X ′(r)
11 if r ∈ Y
12 G− := G− ∪ {r}
13 Y := Y \ {r}
14 else Y := Y ∪ {r}
15 foreach r ∈ G−
16 remove(r) //JTMS (Alg. 6.7)

17 G+ := IncrementalRulesImpl(t, c,Sig)
18 foreach 〈e, r〉 ∈ G+

19 add(r) //JTMS (Alg. 6.1)
20 if e = (t′, c′)
21 if t′ <∞ then Xτ (t′) := Xτ (t′) ∪ {r}
22 if c′ <∞ then X#(c′) := X#(c′) ∪ {r}
23 else if e = [t′, c′]
24 X ′τ (t′) := X ′τ (t′) ∪ {r}
25 X ′#(c′) := X ′#(c′) ∪ {r}

rules that can expire due to the time dimension (i.e., from X ′τ in case (t, c) is a time
increment) or due to the count dimension (i.e., from X ′# in case of a count increment).
Consequently, if a rule r can expire now due the currently considered dimension (Line 10)
and it is already contained in Y (Line 11), then the criterion t ≥ t′ and c ≥ c′ holds,
and we put r to G− (Line 12), i.e., the set of rules to be removed. We then also delete
it from Y (Line 13). Otherwise, we now encountered the first dimension that permits
expiration of r, so we store this information by putting r to Y (Line 14). Finally, we

180

7.3. Implementation

remove in Line 16 all rules of G− from the JTMS, calling Algorithm 6.7.
The second part for new incremental rules starts in Line 17, where we retrieve (fully)

ground incremental rules with expiration annotations from IncrementalRulesImpl. In the
loop of Lines 18-25 we first add each obtained rule r to the JTMS, using Algorithm 6.1.
We then prepare the later expiration of r due to a case distinction on the kind of the
expiration annotation e. The usual case, covered in Lines 21-22, deals with disjunctive
annotations (t′, c′). We put the rule r in maps Xτ or X# to register it for disjunctive
expiration for finite values of according tick dimensions. Dually, we put r in the maps
for conjunctive expiration in case of a conjunctive annotation in Lines 24 and 25.

Since r has to be deleted when for the current tick (t, c) it holds that t ≥ t′ or c ≥ c′,
we use two maps that associate integers with sets of rules: Xτ stores r as expiring rule for
time point t′ and X# likewise for count c′. (In either case we do so only if the respective
expiration dimension is finite.) Dually, if the annotation is conjunctive (i.e., of form
[t′, c′]), we similarly put them in maps X ′τ and X ′# (in Lines 24 and 25). The case is only
used (and meaningful) when both t′ and c′ are finite, hence we spare according checks.

As observed for Algorithm 7.2, IncrementTickImpl would be considerably easier when
disregarding the tuple-box combination. In this case, the algorithm would be about half
the size, sparing all expiration control for conjunctive annotations, i.e., Lines 5, 9-14, 20,
and 23-25.

The tick increment is the core of the incremental evaluation mode of the Ticker engine.
We now proceed to a discussion of its implementation.

7.3 Implementation

We are now going to describe central components of the Ticker engine’s implementation.
In Section 7.3.1, we start with an overview of the reasoner architecture. We then explain
in more detail the implementation of ASP-based reasoning in Section 7.3.2 and the
incremental reasoning mode in Section 7.3.3.

7.3.1 Architecture

The core concept of the implementation is the reasoner entity, as shown in Figure 7.1.
Classes not shown in this diagram serve to set up the specific reasoner instance, preparing
the utilized LARS program encoding, receiving input from (at least one) sink, repeatedly
invoking the reasoner, and sending the result to the output sinks.

When Ticker is started, the main procedure reads the input arguments (cf. Sec-
tion 7.1.2), parses the specified Ticker program, creates an according LARS program
representation and a configuration object for the remaining arguments. It then starts
the engine, which handles the processing of input and output due to the given clock
time and output timing. It initializes the logical time point with 0 and increases it by 1
every time the duration of the clock time passes. The engine is the runtime environment
whose single job is to send new signals to selected reasoning method and retrieve the
computed model based on the output timing. From the view point of the execution, all

181

7. The Ticker Engine

Reasoner

+ append(TimePoint,Atom*)
+ evaluate(TimePoint): Result

 AspPushReasoner AspPullReasoner

IncrementalReasoner
- IncrementalRuleMaker
- JTMS

- incrementTick(Option[Atom])

AspReasoner
ClingoEvaluation

IncrementalRuleMaker
- LarsProgramEncoding
- Pregrounder

+ incrementalRules(Tick,Option[Atom]): Seq[AnnotatedNormalRule]

 LarsProgramEncoding
+ Seq[LarsRuleEncoding]
 ...

LarsRuleEncoding
+ LarsRule
+ NormalRule (base rule)
+ Set[WindowAtomEncoder]

1..*

1..1

JTMS

+ add(NormalRule)
+ remove(NormalRule)
+ getModel(): Option[Model]

1..1

1..1

Figure 7.1: Ticker’s core reasoning architecture

algorithmic details (and differences) are abstracted away in the Reasoner trait,6 as shown
in Figure 7.1.

trait Reasoner {
def append(timepoint: TimePoint, signals: Atom*)
def evaluate(timepoint: TimePoint): Result

}

Method append, which has no return type,7 takes a TimePoint and stream signals in form
of Atom objects. The notation Atom* indicates a sequence of Atom objects of arbitrary
length (including zero). A TimePoint is essentially an integer (as in LARS) but represented
explicitly as specific kind of numeric argument class, since time points also occur in
@-atoms. The second method, evaluate, serves to return the output at the given time
point. Its return type is Result which encapsulates an optional Model; the latter is a type
alias for Set[Atom], i.e., a set of objects of type Atom.8

6Scala traits are interfaces that may include (partial) implementations and can be used in well-defined
multiple inheritance.

7More precisely, the return type is Unit, which can be omitted.
8Recall that using Clingo we can use programs with odd loops that may not have any answer stream.

Such a case is then reflected in a Result object with no model. Scala has an explicit representation
Option[T] for optional values of type T. If they are present, they materialize as Some[T], else as None.
This way, the often seen implicit, error-prone representation in form of a null value can be avoided.

182

7.3. Implementation

Different classes of reasoners are provided, i.e., for repeated one-shot solving with
Clingo and for incremental reasoning. Each reasoner can be wrapped by an instance
of class ReasonerWithFilter that creates an output due to the specified filter in a post-
processing step.

7.3.2 ASP Reasoner

Using repeated one-shot solving, Ticker repeatedly invokes the state-of-the-art ASP solver
Clingo [GKKS14] on the static encoding (cf. Section 6.3). Reasoning with Clingo is a
practical choice when the program is guaranteed to have a single model where from a
purely semantic perspective the question of model update does not arise. Moreover,
programs with odd loops can be handled only with Clingo, since the JTMS update
procedure employed for the incremental reasoning mode cannot guarantee the stable
semantics in this case (cf. Section 6.2.4). When Clingo reports multiple models, we simple
take the first one.9

• AspReasoner is the trait that serves as abstraction for reasoning with Clingo. It
extends Reasoner and requires only the following evaluation component.

• ClingoEvaluation is a class that contains a representation for the static ASP
program (cf. Algorithm 6.9) that can be translated to Clingo input syntax. Moreover,
it has a method that invokes Clingo (given the tick stream encoding; cf. page 142)
and returns its Result.

Depending on the output timing, one of two classes, implementing the AspReasoner trait,
is instantiated. They implement different policies when model computation with Clingo is
invoked (using ClingoEvaluation). We recall that push-based processing typically refers
to the behaviour of an engine that immediately reacts to incoming data, while pull-based
reasoning is characterized by computing solutions in certain intervals of fixed length.

• AspPushReasoner is the class to that realizes push-based evaluation. It is used when
output timing is change or signal (or 1signals). This reasoner computes the model
after every append call, which is then stored and replaced by another call to append,
respectively returned by a call to evaluate.

• AspPullReasoner implements pull-based evaluation, which is employed for remaining
output timings (i.e., time, <int>time and Nsignals, where N is greater than 1). In
this case, model computation is carried out when evaluate is called by the engine.
Method append only collects received data (with timestamps) in a buffer.

Pull-based evaluation saves unnecessary model computations for time points where the
model is not needed, i.e., where no output is written anyway. For instance, consider
a clock time of 100 milliseconds (--clock 100ms) and an output timing of 1 second

9Note that we do not employ the multi-shot features of Clingo, which are not applicable due to
limitations regarding grounding and rule removal (see Section 7.5 for further discussion).

183

7. The Ticker Engine

(--outputEvery 1s) and a stream that sends 5 signals per time point (100ms). A push-
based evaluation mode would result in 50 model computations, among which 49 are
irrelevant. Thus, we can save the computation time using pull-based evaluation. In some
cases, this may give a practical solution if model computation is fast enough to fit in the
intervals of the output timing but too slow to be computed at every tick. The model can
then be written to the output sinks with some delay but still fast enough in terms of
providing a correct sequence of results.

7.3.3 Incremental Reasoner

Our incremental approach naturally falls into the category of push-based processing,
since every change in terms of time or data (i.e., new signals or expiring signals) may
result in a changed model. Due to the fully incremental nature of the computation it is
not possible to skip processing of any change and there is no advantage in delaying. We
consequently provide a single reasoner implementation for this evaluation mode, realizing
the algorithms of Section 7.2.

The resulting IncrementalReasoner is initialized with an IncrementalRuleMaker and
a JTMS instance, i.e., an implementation of the extended justification-based truth mainte-
nance system.

• IncrementalRuleMaker. This object has a method called incrementalRules, which
realizes Algorithm 7.2 (IncrementalRulesImpl). The IncrementalRuleMaker is ini-
tialized with a LarsProgramEncoding and a Pregrounder; the latter substitutes all
variables in the encoding that are not tick variables by potential constants available
from background facts and intensional atoms. Pre-grounding is a pre-processing
step run once during the start-up of the engine, after the input program has been
parsed. The LarsProgramEncoding contains a representation of the LARS program
and the mechanisms to create incremental rules. More specifically, it contains
a sequence of LarsRuleEncoding objects, each of which contains (i) the original
LARS rule, (ii) the corresponding normal ASP rule (the base rule), and (iii) a set
of WindowAtomEncoder objects; they have methods to create incremental rules as
described in function incrWindowRules′ of Algorithm 7.2.

• JTMS. This is the realization of the truth maintenance system as described in
Section 6.2, i.e., it has a method add to include a new rule in the network (Algo-
rithm 6.1) and remove for dual rule removal (Algorithm 6.7). Moreover, a method
getModel is available that returns the current model, i.e., the atoms with label in.

When the IncrementalReasoner object is created, static rules (which are also available
from the IncrementalRuleMaker) are added to the JTMS. The internal tick counter variable
currentTick is initially set to (0,0), i.e., tick time 0 and tick count 0.

184

7.4. Empirical Evaluation

Incrementing Ticks

The central method of IncrementalReasoner is incrementTick, which realizes Algo-
rithm 7.3 (IncrementTickImpl). It is called by the reasoner internally either by a method
for a time increment or another for a count increment. A time increment first updates the
currentTick of form (time,count) to (time+1,count) and then calls incrementTick with
no argument (corresponding to an empty set Sig in Algorithm 7.3). Dually, the method
for count increments, which takes as argument an atom a (corresponding to Sig = {a}),
updates the currentTick to (time,count+1) and then calls incrementTick with a.

The incrementTick method itself first retrieves new annotated rules for the current
tick from method incrementalRules of the IncrementalRuleMaker and registers them for
expiration, i.e., they are put in maps for fast lookup (i.e., the maps Xτ , X#, X ′τ and X ′#
in Algorithm 7.3). The rules are then added to the JTMS network. Next, expiring rules at
the current tick are looked up from the expiration maps and removed in JTMS.

Incremental Evaluation

With the above procedures, the methods inherited from the Reasoner trait are imple-
mented as follows. Assuming the engine calls append for time point t and atoms A, where
the time of the currentTick is t′ ≤ t, we first call t− t′ time increments in a sub-procedure
updateToTimePoint. This is followed by a count increment for each a ∈ A.10 The evaluate
method similarly first calls updateToTimePoint and then simply getModel in JTMS.

This concludes our overview of the Ticker’s implementation. We refer the interested
reader to the source code for further details.11

7.4 Empirical Evaluation

We will now proceed with the empirical evaluation of the presented algorithms. Since
Ticker presents novel reasoning features for streaming data, a comparison with other
stream reasoning approaches is of less interest, since they focus on different semantics.
The aim of Chapter 6 has been to present incremental reasoning techniques for plain
LARS, not engineering techniques towards a high-performance tool with previously
existing stream processing semantics. In that regard, the overall aim is to assess the
potential benefits of the presented incremental reasoning approach and to shed some
light on limitations towards future research issues.

The presented prototypical implementation has some optimizations in place that
avoid redundant recomputations. With further engineering efforts, absolute numbers
(such as potential atoms per second) could be reduced further. However, we are interested
here not in tuning the efficiency of the algorithm’s implementation, but the effect of the
algorithms in principle. In that spirit, the empirical assessment is geared towards relative
performance measures. More specifically, we are interested in the following two questions.

10Note that these atoms are given as sequence which determines the result of tuple windows.
11https://github.com/hbeck/ticker

185

https://github.com/hbeck/ticker

7. The Ticker Engine

(Q1) What is the relative performance of the six different window atom forms, i.e., given
an atom a, the instantiations of window atom

�w ◦ a , (7.1)

where w is a time window function or a tuple window function, and ◦ ∈ {@t,3,2}.

(Q2) When is incremental reasoning faster than repeated one-shot solving with Clingo?

With respect to the first question, we observe that all window atoms are easy to compute,
with the exception of the tuple-box combination, i.e., form �#m2a. It requires more
auxiliary atoms and more rules to be computed and thus should intuitively be slower
than the other five forms.

Regarding the second question, we recall the motivation of incremental reasoning,
i.e., the aim to avoid recomputing derived information that can be maintained. The
employed truth maintenance technique does not recompute the label of atoms (i.e., their
containment in the model) when they are guaranteed not to change due to the network’s
data structures. Accordingly, when the update in the data stream does not lead to
necessary changes, performance benefits should result.

This effect should be amplified with an increase of data volume and higher update
frequency. For instance, given rules r1 = h← �n3b or r2 = h← �#m3b, the evaluation
of h is agnostic about the number of appearances of b within respective windows; after
the first appearance every further such signal is redundant. Such cases that integrate the
typical snapshot semantics in LARS deserve special attention.

We should be able to observe further reduction of computation time the larger these
windows become: for instance, if involved partial computation depends on the absence of
(the derivability of) atom h, we can spare this computation for the next n time points,
respectively the next m− 1 signals once atom b streams in. This guarantee extends for
further occurrences of b within these windows. In scenarios with probabilistic appearance
of streaming signals, the likelihood for the need of re-evaluation then decreases with
larger windows. (This not only holds for window atoms of form “�w3a,” which captures
the standard snapshot semantics, but also for “�w@Ta” and dually “not�w2a.”)

Towards the empirical assessment of these considerations, we present the following
evaluation setup.

7.4.1 Setup

We are now going to analyze the requirements for the study the above questions and
derive an according setup design.

Engine vs. Reasoning Algorithms

First, we make a distinction between the Ticker engine as such, and its algorithmic core.
Recall that Ticker programs are parsed and translated to LARS programs, using a clock
time that converts actual temporal durations to logical time points. Depending on the

186

7.4. Empirical Evaluation

reasoning mode (incremental or clingo) and the output configuration, we obtain a wide
range of possibilities to assess the engine.

For instance, assume we want to determine the number of atoms that can be processed
in one second in various scenarios.12 We can use a clock time of 1 sec, Clingo mode
and output after every second. This leads then to the internal pull-based ASP mode,
where Ticker only collects received atoms in a buffer and trivially always has 1 second to
compute the model. In this mode, we essentially evaluate Clingo (plus a small overhead
introduced by invocation by Ticker). Towards a comparison between the reasoning
modes, we would then have to measure the actual computation time of Clingo with
the computation time of the incremental mode for the same set of new atoms since the
last evaluation. This suggests to consider Clingo only in push-based mode, where each
tick triggers model computation as in the incremental mode. This way, we can directly
evaluate potential benefits on incremental reasoning.

Next, we observe that the LARS program representation has no notion of clock
time. Since both reasoning modes work on time points, we can circumvent any overhead
(such as losses in input/output handling) and directly compare the ASP push-based
reasoner with the incremental reasoner. By purely processing each tick as fast as possible,
we indirectly get a measure for the maximal performance in either mode. Instead of
fixing a clock time and then testing how many atoms can be processed per time point,
respectively how small the clock time may be set for a given throughput, we get these
limits implicitly. We thus do not invoke the Ticker engine in its various configurations,
but directly compare the speed of its internal reasoners. Further performance tuning
and engineering efforts to reduce overheads are beyond the scope of this study, which
focuses on clarifying the potential algorithmic benefit of incremental reasoning using the
presented techniques.

Measurements and Environment

To evaluate Ticker’s reasoning modes, we will use different benchmark programs: two
analytic benchmarks specifically tailored for question (Q1), and two more application
oriented programs for potentially obtaining additional insights regarding question (Q2).

We define a benchmark program as instantiation from a schematic program that
leaves some parameters such as employed window sizes open. We then get a (benchmark)
instance by considering a specific stream for a benchmark program. Throughout, we
always consider a single definition of a stream that provides some randomization. We
then consider 5 instances for the same benchmark program and measure the average
performance of their processing, i.e., each evaluation metric is an average of 5 runs. To
ensure that potential optimizations by the Java-Virtual-Machine (JVM) do not distort
the measurements, we always warm up the environment with a number of pre-runs that
we vary in incremental mode based on the instance size to ensure that computation
does continue not speed up during the 5 evaluation runs; in Clingo mode, we always

12Note that there is a broad spectrum of pure processing speed for trivial cases to actual reasoning
speed in involved programs, provided relevant atoms that trigger complex computation.

187

7. The Ticker Engine

use a single pre-run since the model computation process (with Clingo) is not subject
to JVM optimizations. The index of each run (iteration 1 to 5) is used to initialize the
random seed to ensure that randomized input varies over iterations and that they are
also reproducible. In particular, when comparing incremental and Clingo-based reasoning
modes, we thus ensure that they evaluate the same streams (during the 5 runs that are
evaluated).

Following the considerations above, we use as central performance metric the number
of processed time points per second, since this allows us to compare the maximal speed of
processing. We also measure the time to initialize the engine before the first time point
can be processed (which includes time for pre-grounding in the incremental mode), and
the resulting total time. In the evaluation tables we also show, as alternative to time
points per second, the average processing time per time point.

All evaluations are executed on a Lenovo Thinkpad T440s with 12 GB DDR-3 RAM,
1.60GHz x4 i5-4200U CPU on ubuntu 16.04, using Scala 2.12.5 and the JVM version
1.8.0_112. We provide an initial memory (heap size) of 4 GB and limit it to 10 GB.
The employed Clingo version is 5.1.0. All evaluations can be run via class DissEvalMain,
which executes a given number of pre-runs and runs on a specific benchmark program.
The realization of an instance adds to a program a procedure that generates input signals
on the fly for each time point. Due to the controlled random seed (which is fixed per
iteration) and the time point, the input at each time point is deterministic (but varies
over different iterations). By generating input on demand, we do not have to store the
entire stream in memory. Clearly, the time it takes to generate the stream should not
influence the measurements. Thus, we measure only the time spent in the reasoner’s
append and evaluate methods to obtain the reasoning time after initialization; the latter
is the time used to create the reasoner object itself. In addition to the generation of the
encodings, this includes the pre-grounding step in case of the incremental reasoner.

All evaluations below were obtained with bash scripts that invoke the main program
with different lists ARGS of arguments via calls of form

scala -J-Xms4g -J-Xmx10g -cp target/scala-2.12/classes evaluation.diss.DissEvalMain ARGS.

The standard arguments are

• inst to specify the instance,
• reasoner to specify the reasoning mode (i.e., incremental or clingo),
• pre and runs to declare the number of pre-runs and runs, respectively,
• timepoints to fix the length of the timeline of the processed stream,
• scale, a number to control the size of the program, and
• winsize, the window size.

For instance, replacing ARGS above with

reasoner incremental pre 10 runs 5 timepoints 2000 scale 32 winsize 50 inst INST

188

7.4. Empirical Evaluation

yields a complete call for a single evaluation of instance INST; potential values for INST
will be presented in Section 7.4.2. In fact, additional parameters depend on the specific
programs and are given as part of the instance name. All parameters and all benchmark
programs can be found in class evaluation.diss.Config. The Ticker version used for
this evaluation is annotated with Tag v0.8.3.13

7.4.2 Benchmark Programs

We present two categories of benchmarks: two analytic benchmarks are tailored for
fine-grained investigations of the different window atom forms, whereas the other two are
concerned with contrasting incremental reasoning with repeated one-shot solving with a
focus on practically relevant reasoning features.

We use the following parameters in all benchmarks, corresponding to respective
arguments scale and winsize from above:

• n - program size: controls the number of ground facts (and thus the size of the
ground program); and

• k - window size: number of time points.

We uniformly use timepoints 2000 in this evaluation, i.e., all instances process a timeline
with 2000 time points.

Analytic Benchmarks

The first two programs are deliberately small and designed towards a fine-grained analysis
of question (Q1) regarding the relative performance of window atom forms, but also
allows us to study the relative performance of both reasoning modes. Both analytic
benchmarks make use of the following additional parameters.

• a window atom form that replaces the schematic window atom �w ◦ a, where ◦ is
a placeholder for a specific modality @T , 3 or 2. Table 7.4 gives all six forms a
name. The first character specifies the window (t stands for time and # for tuple
windows), the second one for the modality.
• p - signal probability: at each time point, each signal sig(j) (1 ≤ j ≤ n) streams in
with probability p, where we use values 0, 0.1, 0.5, 0.9 and 1.0.

Note that our evaluation setup requests model computations (respectively retrieval) after
every tick; i.e., after each new signal and each change of a time point. Thus, with respect
to considered performance metrics, it is of no additional interest to stream in multiple
signals per time point: the switch from one time point to the next itself amounts to an
update. (The picture would be different when evaluating a pull-based mode, where all
streaming signals within one or even multiple time points can be consumed without a
necessity for immediate model computation.)

13Direct link: https://github.com/hbeck/ticker/releases/tag/v0.8.3

189

https://github.com/hbeck/ticker/releases/tag/v0.8.3

7. The Ticker Engine

Name Window atom form
t@ �k@T a
t3 �k3 a
t2 �k2 a
#@ �#k@T a
#3 �#k3 a
#2 �#k2 a

Table 7.4: Window atom forms as used in analytic benchmarks

a(X)← g(X), �w ◦ sig(X) (7.2)
g(1)← (7.3)

...
g(n)← , (7.4)

Figure 7.2: Program Basic

Program Basic. The first program provides a minimum to evaluate window atoms. It
is specified schematically14 in Figure 7.2, where n is the program size parameter from
above. Thus, n = 1 yields a schematic ground program with the fact g(1) and the rule
a(1)← g(1),�w ◦ sig(1).

The specific benchmark programs are then obtained by varying parameters n, k and p.
In particular, program size n = 1 is of interest to obtain micro-benchmarks in order to
evaluate the performance difference of the six window atom forms (as building blocks).
We increase n up to 32 to study the effect of mere program size; no reasoning (apart
from trivial rule firing) occurs in this program. Window size k, a central comparison
parameter between the incremental mode and the Clingo mode, shall already be studied
at this low level, which concerns mere input processing.

An instance is then obtained by a stream that adds at each time point each of the
signals sig(1), . . . , sig(n) with probability p, e.g., with n = 32 this translates to 32 signals
per time point when using p = 1 and 16 signals on average with p = 0.5.

Program Reach. The second analytic program, shown in Figure 7.3, carries out the
computation of a transitive closure on top of received signals, i.e., a reachability relation
as often seen in ASP. Due to the construction of background facts (predicate edge), the
inequality relations in the bodies of the first two rules are redundant but help to reduce
the size of the pre-grounding in the incremental mode. As before, we obtain a benchmark
program from this schematic form by varying program size n and window size k. Like

14Since we directly evaluate Ticker’s internal reasoning components (which are based on logical time
points), we write programs in the formal LARS notation.

190

7.4. Empirical Evaluation

reach(X,Y)← edge(X,Y), �w ◦ sig(X,Y), X < Y (7.5)
reach(X,Z)← reach(X,Y), reach(Y,Z), X < Y, Y < Z (7.6)

edge(0, 1)← (7.7)
...

edge(n− 1, n)← (7.8)

Figure 7.3: Program Reach

for Basic, we stream each signal sig(j − 1, j) (1 ≤ j ≤ n) at each time point with the
defined insert probability p and thus obtain the Reach instances.

Application Benchmarks

The second pair of programs shifts the focus from the examination of window atom
forms to a combination of different forms of reasoning aspects in a single program. Both
programs draw from our work in [BBD+16] and [BBD+17], which is concerned with
research in the area of Content-centric Networking (CCN). Towards future internet
architectures that better address modern usage demands, CCN is a particular approach
where routers can store data locally, e.g., segments of video data that is currently highly
popular. Program Strategy sketches the core idea from the simulation architecture of
the aforementioned works and is concerned with selecting a suitable caching strategy at
a given router, i.e., the order in which stored items are dismissed. The objective is to
serve frequently requested data items directly from the cache of the router to the end
user, instead of retrieving it repeatedly from the network, thereby increasing delay and
operator costs. Program Content, similar to that in [BEF17], then selects target nodes
for items which are not cached based on the quality of service. In contrast to the other
programs, it has multiple models in general.

We now go into the specifics of the application programs.

Program Strategy. Figure 7.4 shows the third evaluation program. Its purpose is
to select a caching strategy lfu, lru, fifo or random, based on the recent history of the
so-called α-value which represents the distribution of interest over all requested data
items. For the purpose of our evaluation, we abstract here from the original numbers (of
[BBD+16] and [BBD+17]) and partition a scalable range of values value(1), . . . , value(n)
into an upper, middle, and lower third. If during the last k time points the reported value
is consistently within one of these sub-ranges, an specific strategy is selected, otherwise
random.

In contrast to the analytic programs before, Strategy is not schematic with respect
to window atom forms. It employs time windows with modalities @ and 2. However,
it is scalable due to program size parameter n as before and also has window size k as
parameter.

191

7. The Ticker Engine

nMax(V) ← value(V), value(V ′), V ′ > V (7.9)
max(V) ← value(V), notnMax(V) (7.10)
third(V) ← value(V), max(M), V = M/3 (7.11)

upper(V) ← value(V), third(X), value(Y), Y = 2 ∗X, Y < V (7.12)
lower(V) ← value(V), third(X), V ≤ X (7.13)

middle(V) ← value(V), not upper(V), not lower(V) (7.14)
@T high ← �k@T alpha(V), upper(V) (7.15)
@T mid ← �k@T alpha(V), middle(V) (7.16)
@T low ← �k@T alpha(V), lower(V) (7.17)

lfu ← �k2 high (7.18)
lru ← �k2mid (7.19)
fifo ← �k2 low (7.20)

specific ← lfu (7.21)
specific ← lru (7.22)
specific ← fifo (7.23)
random ← not specific (7.24)
value(1) ← (7.25)

...
value(n) ← (7.26)

Figure 7.4: Program Strategy

Rules (7.9)-(7.14) compute the partition of values into three buckets, by determining
a third of the maximum value, and then assigning either predicate upper , lower , or
middle to each value. While this computation is trivial, it gives a good example of a basic
use for incremental reasoning: there is no point in recomputing this static information;
nevertheless, one may want to express it within the query/program itself.

Based on this static information, the next three rules – (7.15) to (7.17) – assign to the
last k time points atom high, mid, or low with the time point of the respective streaming
α-value. This way, we abstract away the specific number and can then universally quantify
in Rules (7.18)-(7.20): in case of a consistent high, middle, or low value throughout the
considered time span a specific strategy can be selected, otherwise random in Rule (7.24).

To obtain specific instances, we provide again a probability p. We always stream
exactly one signal of the form alpha(v) per time point. Initially, value v is randomly picked
from {1, . . . , n} and then changes from one time point to the next with probability p. In
this case, it decreases either to v − 1 or it increases to v + 1 (with equal chance); if v = 1

192

7.4. Empirical Evaluation

need(I,N) ← item(I), node(N), �k3req(I,N) (7.27)
avail(I,N) ← item(I), node(N), �k3cache(I,N) (7.28)

src(I,N,M) ← need(I,N), not avail(I,N), avail(I,M), N 6= M (7.29)
getFrom(I,N,M) ← src(I,N,M), not dism(I,N,M) (7.30)

dism(I,N,M) ← node(M), getFrom(I,N,M ′), M 6= M ′ (7.31)
dism(I,N,M) ← src(I,N,M), src(I,N,M ′), worseThan(M,M ′) (7.32)

worseThan(N,N ′) ← minQ(N,Q), minQ(N ′, Q′), N 6= N ′, Q < Q′ (7.33)
minQ(N,Q) ← node(N), qLev(Q), �k3qual(N,Q), not nMinQ(N,Q) (7.34)

nMinQ(N,Q) ← node(N), qLev(Q), qLev(Q′),
�k3qual(N,Q), �k3qual(N,Q′), Q′ < Q (7.35)

node(1) ← (7.36)
...

node(n) ← (7.37)
item(1) ← (7.38)

...
item(i) ← (7.39)
qLev(1) ← (7.40)

...
qLev(q) ← (7.41)

Figure 7.5: Program Content

or v = n it changes to v = 2, respectively v = n− 1 to stay within the boundaries from 1
to n.

Program Content. The program to select sources for items is shown in Figure 7.5. This
program builds from two kinds of static background data: n nodes and i items that can
be requested and cached at each node. Once an item I is requested at a node N , we
infer a need for the pair (I,N); which is trivially satisfied when I is available at N , i.e.,
when it is still cached there. For both requests and caches (Rules (7.27) and (7.28)) we
consider any occurrence during the last k time points. If I is not available at N , but at
a different node M , then M is a source for request (I,N), from which I can be retrieved
(Rule (7.29)). Whether this choice is made (or a different source is selected) is captured
in predicate getFrom (Rule (7.30)), which selects a source unless it is dismissed. For
the latter, there are two reasons. First, we dismiss in Rule (7.31) a node in case some
other is picked, to ensure a unique target node for the specific request of I at N . Second,

193

7. The Ticker Engine

Program Class Instance Pattern
Basic ScalableRandomizedBasicInstance srbasic_ww_nn_pp

Reach ReachSigInstance rs_ww_nn_pp

Strategy StrategyInstance strat_nn_pp

Content ContentInstance content_nn_ii_qq_pcpc_pqpq

Table 7.5: Implementations and instance names for invocation; w is a window atom form
ta, td, tb, ca, cd, or cb, encoding t@, t3, t2, #@, #3 and #2, respectively.

we dismiss in Rule (7.32) source M , if its quality of service is worse than some other
source M ′. The quality of service is characterized by the lowest quality level Q recently
reported for the node. (Such a quality level might reflect, e.g., the download speed or
general availability of the node.) To this end, we maintain in Rule (7.34) the recent
minimal quality level Q reported for any node N , which is given by a signal qual(N,Q)
such that we cannot infer nMinQ(N,Q), i.e., evidence that Q is not the recent minimal
value at N . The latter may stem from Rule (7.35), where we compare recent quality level
signals for each node.

To instantiate the program, we always use 5 quality levels. The streaming behaviour
depends on two probabilities: similarly like for Strategy, we initially assign to each
node a random quality level from {1, . . . , 5} and change this value at each time point
(for each node) with a probability pq. We stream according predicates qual only in case
of such a value change. Moreover, at each time point each node caches a random item
with probability pc. For both probabilities pc and pq we use the fixed value 0.5. Finally,
we issue a random request at every time point, i.e., a random item at a random node.

7.4.3 Results

We are now going through the results of evaluating various instantiations of the benchmark
programs described above. Table 7.5 gives an overview of the class names implementing
them (they can be found in package evaluation.diss.instances), along with the instance
name pattern as used in the invocation. (The dispatch is handled in the Config class.) For
instance, when invoking program Basic for window atom form w = t3, size n = 32 and
signal insert probability p = 0.5 the value for the inst argument in the aforementioned
Scala invocation is srbasic_wtd_n32_p0.5.

All evaluation results are given in Tables B.1-B.13 in the Appendix, where we present
the averages over all runs for the total runtime, the initialization time, and processing
time per logical time point in seconds, and dually also the average number of time points
processed per second. We take the latter as a uniform performance measure for the
following charts which visualizes these tables’ results.

In the following, we refer to the reasoning modes by their command line names, i.e.,
incremental and clingo.

194

7.4. Empirical Evaluation

0 0.1 0.5 0.9 1
0

5000

10000

15000

20000

25000

30000

35000

Basic: incremental (n=1, k=50)

t@
t◊
t□
#@
#◊
#□

0 0.1 0.5 0.9 1
0

200

400

600

800

1000

1200

Basic: incremental (n=32, k=50)

t@
t◊
t□
#@
#◊
#□

(a) (b)

0 0.1 0.5 0.9 1
0

50

100

150

200

250

300

Basic: clingo (n=1, k=50)

t@
t◊
t□
#@
#◊
#□

0 0.1 0.5 0.9 1
0

50

100

150

200

250

Basic: clingo (n=32, k=50)

t@
t◊
t□
#@
#◊
#□

(c) (d)

Figure 7.6: Program Basic. Difference in performance, measured in processed time
points per second (y-axis), over different signal insert probabilities p = 0, . . . , 1 (x-axis)
for different window atom forms. Sources: Tables B.1 and B.2.

Program Basic

Figure 7.6 shows the effect of different signal insert probabilities on the performance of
different window atom forms, where we fix window size k = 50. In Charts (a) and (b),
results for incremental are shown for program sizes n = 1 and n = 32, respectively.
Likewise, Charts (c) and (d) show respective results for clingo. We observe in Chart (a)
that case #2 is the slowest, i.e., it has the least number of time points processed per
second. This reflects the more involved encoding. Naturally, performance decreases
with increasing throughput (from left to right) for the remaining five cases. We see in
Chart (b) that all time-based cases (t@, t3, t2) are faster (unless no data is streaming
in). This is due to an increased number of incremental rules stemming from additional
auxiliary atoms. Figure (c) reveals that there is little difference between window atom
forms for the minimal case (n = 1) using clingo. Interestingly, Chart (d) indicates that
clingo tends to be faster for the tuple-based cases (#@, #3, #3).

We now fix insert probability p = 0.5 and investigate the same programs (with n = 1
and n = 32, respectively) for both reasoning modes in Figure 7.7, where we vary the
window size k from 1 to 500. Charts (a) and (b), depicting results for incremental,
again show that #2 is the slowest window atom form, and all forms become slower with

195

7. The Ticker Engine

1 5 10 50 100 500
0

2000

4000

6000

8000

10000

12000

14000

Basic: incremental (n=1, p=0.5)

t@
t◊
t□
#@
#◊
#□

1 5 10 50 100 500
0

50
100
150
200
250
300
350
400
450
500

Basic: incremental (n=32, p=0.5)

t@
t◊
t□
#@
#◊
#□

(a) (b)

1 5 10 50 100 500
0

50

100

150

200

250

300

Basic: clingo (n=1, p=0.5)

t@
t◊
t□
#@
#◊
#□

1 5 10 50 100 500
0

20
40
60
80

100
120
140
160
180
200

Basic: clingo (n=32, p=0.5)

t@
t◊
t□
#@
#◊
#□

(c) (d)

Figure 7.7: Program Basic. Effect of varying window size k = 1, . . . , 500. Sources:
Tables B.3 and B.4.

increasing window size due to the increased total volume of data that is being processed.
The same holds for clingo, as shown in Charts (c) and (d), where we again see less
difference between window atom forms than for incremental.

We discussed earlier that the practically most relevant modality is 3, formalizing
the prominent snapshot semantics. We thus single out the respective time-based and
tuple-based cases for both reasoning modes in Figure 7.8 to study the relative performance
of resulting window atoms forms, when the window size is increased. We see in Chart (a)
for program Basic with n = 32 that clingo is faster for #3 when window sizes are small,
but when the window size is sufficiently big, incremental is faster, as for all entries of
the time-based case (t3). Chart (b) depicts a variant where at every time point, every
signal sig(1), . . . , sig(32) is streaming in with a probability of only 0.01. We find that
incremental is consistently faster than clingo. Notably, this shows that incremental
may be beneficial not only when data is streaming in with high frequency. The difference
is best is explained by the overhead of having to repeatedly invoke clingo. In our setup,
which focuses on immediate model evaluation, moving from one time point to the next
has a similar effect than processing a signal.

Next, Figure 7.9 shows the effect of varying the program size, using the cases for
modality 3 from before. We see here a clear indication that the program size has a huge
effect on the performance of incremental. It is orders of magnitude faster than clingo

196

7.4. Empirical Evaluation

1 5 10 50 100 500
0

50
100
150
200
250
300
350
400
450
500

Basic: incremental vs. clingo (k=32, p=0.5)

incr. t◊
incr. #◊
clingo t◊
clingo #◊

1 5 10 50 100 500
0

100
200
300
400
500
600
700
800
900

Basic: incremental vs. clingo (k=32, p=0.01)

incr. t◊
incr. #◊
clingo t◊
clingo #◊

(a) (b)

Figure 7.8: Program Basic. Relative effect of window size k = 1, . . . , 500 for snapshot
semantics in both reasoning modes. Sources: Tables B.4 and B.5.

1 2 4 8 16 32 64
0

2000

4000

6000

8000

10000

12000

Basic: incremental vs. clingo (k=50, p=0.5)

incr. t◊
incr. #◊
clingo t◊
clingo #◊

Figure 7.9: Program Basic. Effect of program sizes n = 1, . . . , 64. Source: Table B.6.

when the program is small, and yields a similar performance when the program gets
bigger. Eventually, clingo becomes faster (relative to a fixed window size, here k = 50)
when the program gets large enough. (This can be seen in Table B.6, page 234.)

Program Reach

We observe similar results for program Reach that involves some computation beyond
simple rule firing. Figure 7.10 shows, in analogy to Figure 7.6, the effect of varying signal
insert probabilities, focusing on program size n = 8 and window size k = 50. Again,
we observe that for incremental the time-based cases are faster than the tuple-based
ones (consistently so for p ≥ 0.5, and for clingo vice versa.) This is also observed in
Figure 7.11, which shows the window atoms’ influence over varying window sizes.

In Figure 7.12, we again study the relative performance of snapshot semantics using
different window sizes. We use insert probability p = 0.5 and compare a program size
n = 8 in Chart (a) with n = 32 in Chart (b). For the small program, we observe that
incremental is faster when sufficiently large windows are in use. We also can observe the
impact of the window size on the relative performance of window modes in Chart (b).
There, however, clingo is significantly faster for small windows. We observe that for

197

7. The Ticker Engine

0 0.1 0.5 0.9 1
0

100

200

300

400

500

600

Reach: incremental (n=8, k=50)

t@
t◊
t□
#@
#◊
#□

0 0.1 0.5 0.9 1
0

50

100

150

200

250

Reach: clingo (n=8, k=50)

t@
t◊
t□
#@
#◊
#□

(a) (b)

Figure 7.10: Program Reach. Effect of varying signal insert probability p = 0, . . . , 1.
Source: Table B.7.

1 5 10 50 100 500
0

50

100

150

200

250

300

350

400

Reach: incremental (n=8, p=0.5)

t@
t◊
t□
#@
#◊
#□

1 5 10 50 100 500
0

50

100

150

200

250

Reach: clingo (n=8, p=0.5)

t@
t◊
t□
#@
#◊
#□

(a) (b)

Figure 7.11: Program Reach. Effect of varying window size k = 1, . . . , 500. Source:
Table B.8.

small windows, incremental reasoning is closer to repeated one-shot solving. It is then no
surprise that Clingo, the state-of-the-art ASP solver, has to be significantly faster than
Doyle’s reasoning algorithms, given that program Reach adds actual reasoning on top
of the input processing of program Basic. However, as window size increases the benefit
of model maintenance kicks in and the relative benefit of clingo decreases.

Figure 7.13 shows a chart for program Reach similarly as Figure 7.9 before, with
the above finding that smaller programs favour incremental.

Program Strategy

Observations for the above micro-benchmarks carry over to program Strategy, which
involves only window atom forms t@ and t2.

Figure 7.14 again shows the effect of window sizes, and directly compares reasoning
modes for four (respectively two) different program sizes. In Chart (a), we see the
evaluations for program sizes n = 3, 9, 30, 90, where incremental is significantly faster for
smaller sizes. We zoom in on the competitive cases n = 30, 90 in Chart (b), where we again

198

7.4. Empirical Evaluation

1 5 10 50 100 500
0

50

100

150

200

250

300

Reach: incremental vs. clingo (n=8, p=0.5)

incr. t◊
incr. #◊
clingo t◊
clingo #◊

1 5 10 50 100 500
0

20
40
60
80

100
120
140
160
180

Reach: incremental vs. clingo (n=32, p=0.5)

incr. t◊
incr. #◊
clingo t◊
clingo #◊

(a) (b)

Figure 7.12: Program Reach. Effect of varying window size k = 1, . . . , 500. Sources:
Tables B.8 and B.9.

1 2 4 8 16 32 64
0

2000

4000

6000

8000

10000

12000

Reach: incremental vs. clingo (k=50, p=0.5)

incr. t◊
incr. #◊
clingo t◊
clingo #◊

Figure 7.13: Program Reach. Effect of program size n = 1, . . . , 64. Source: Table B.10.

observe a finding from above, i.e., that increasing window sizes tends to favour incremental
reasoning. In particular, the largest instance (n = 90) is solved more efficiently with
clingo for small windows, but the incremental is advantageous at window sizes k ≥ 100.

Figure 7.15 presents a different view, where the x-axis varies the program size. Again,
we see that incremental is significantly faster for small instances, and that the program
size has less influence on the relative performances using clingo.

Program Content

The final evaluation benchmarks based on program Content, we make use of the same
charts as for Strategy.

We show in Figure 7.16 a comparison of reasoning modes, where we parameterise the
program size in two dimensions. We fix in Chart (a) (respectively Chart (b)) the number n
of 10 (respectively 20) nodes, and then show the influence of handling i = 4, . . . , 64 items
in the resulting network. A similar finding reoccurs, showing superior performance of
clingo for small window sizes, and increasingly beneficial behaviour of incremental when
windows become larger. We observed before that clingo is more robust with respect to
instance sizes. This is now visible in two ways. First, within each chart, the distance

199

7. The Ticker Engine

0 1 5 10 50 100 500
0

200

400

600

800

1000

1200

1400

Strategy: incremental vs. clingo

incr. n=3
incr. n=9
incr. n=30
incr. n=90
clingo n=3
clingo n=9
clingo n=30
clingo n=90

0 1 5 10 50 100 500
0

50

100

150

200

250

Strategy: incremental vs. clingo

incr. n=30
incr. n=90
clingo n=30
clingo n=90

(a) (b)

Figure 7.14: Program Strategy. Window sizes k = 1, . . . , 500. Source: Table B.11.

3 9 30 90
0

200

400

600

800

1000

1200

Strategy: incremental vs. clingo

incr. k=5
incr. k=50
incr. k=500
clingo k=5
clingo k=50
clingo k=500

Figure 7.15: Program Strategy. Program sizes n = 3, . . . , 90. Source: Table B.11.

between the red lines is smaller. Second, both charts show almost the same performance
for clingo. Reasoner incremental behaves differently, showing bigger differences in both
ways, i.e., when increasing parameters i and n.

Finally, Figure 7.17 again shows findings from above based on varying the number of
items: clingo is faster the smaller the window is, and robust with respect to the program
size. By contrast, incremental is less efficient the bigger the program becomes, but may
perform better with large windows in place.

Summary of Results

Reviewing the above evaluation results, we can identify some robust patterns.

(i) High throughput / fast update. When the task involves a lot of low-level processing
or fast updates, the overhead of repeatedly invoking the Clingo solver is too costly.
As a consequence, incremental reasoning is significantly faster in such cases.

(ii) Involved reasoning. On the other hand, the more a task is concerned about repeatedly
computing fresh models involving complex reasoning, mode clingo tends to be
faster.

200

7.4. Empirical Evaluation

0 1 5 10 50 100 500
0

20
40
60
80

100
120
140
160
180

Content: incremental vs. clingo (n=10)

incr. i=4
incr. i=8
incr. i=16
incr. i=32
incr. i=64
clingo i=4
clingo i=8
clingo i=16
clingo i=32
clingo i=64

0 1 5 10 50 100 500
0

20

40

60

80

100

120

140

160

Content: incremental vs. clingo (n=20)

incr. i=4
incr. i=8
incr. i=16
incr. i=32
incr. i=64
clingo i=4
clingo i=8
clingo i=16
clingo i=32
clingo i=64

(a) (b)

Figure 7.16: Program Content. Window sizes k = 1, . . . , 500. Source: Tables B.12
and B.13.

4 8 16 32 64
0

20

40

60

80

100

120

140

Content: incremental vs. clingo (n=10)

incr. k=5
incr. k=50
incr. k=500
clingo k=5
clingo k=50
clingo k=500

4 8 16 32 64
0

10
20
30
40
50
60
70
80
90

100

Content: incremental vs. clingo (n=20)

incr. k=5
incr. k=50
incr. k=500
clingo k=5
clingo k=50
clingo k=500

(a) (b)

Figure 7.17: Program Content. Number of items i = 4, . . . , 64. Source: Tables B.12
and B.13.

(iii) Window size. Throughout, the relative performance between repeated one-shot
solving and incremental reasoning tends to favour the latter with increasing window
sizes. Also this result is natural: regardless of the quality of the incremental
procedure as such, its potential benefit is limited with small window sizes. The
larger the considered history gets, the smaller the relative difference in a data (or
time) update, and thus the higher the potential for relative performance. In other
words, the potential for model maintenance increases (in particular for snapshot
semantics) with the size of the window, as corroborated in this study.15

15We note that the evaluations of the effect of varying window sizes could be more fine tuned: given
size k, at any time point t of the first k − 1 points in the timeline we evaluate (for time windows) a
program with a window of size |t| < k due to the cut-off position at time point 0. Since we always use
2000 time points, this means that for k = 500 we use the full window size only for three quarters of the
timeline. A more fine-grained study of the influence of sliding windows could instead use a timeline of
2500 time points and start to record the evaluation time (for append plus evaluate) at t = 500, where
the window extends to its full size. In light of the above findings, we infer however, that the key finding
would not change, only the relative performance benefit of incremental reasoning would increase slightly.

201

7. The Ticker Engine

(iv) Program size. By contrast, the mode using Clingo is very robust with respect to
the program size and thus tends to be favourable for large programs, unless the
window size becomes very large.

In conclusion, we studied the performance of reasoning incrementally, using Doyle’s
truth-maintenance update technique on an incremental encoding, and repeated one-shot
solving using Clingo on a static encoding. With respect to our first question (Q1)
regarding relative performance of window operators, we found that in the incremental
mode the time-based cases are typically faster than the tuple-based ones, and that the
tuple-box combination is the slowest. Using Clingo, the relative performance of all cases
is closer, where tuple-based cases tend to be faster than time-based ones. Regarding
question (Q2) on comparing reasoning modes, we found that small programs, high update
frequency and large windows favour incremental reasoning, whereas scenarios with larger
programs, more involved reasoning and small windows are more efficiently solved with
Clingo. The results are intuitive: the size of a window can be seen as a yardstick in the
spectrum from static reasoning to highly dynamic stream reasoning, and the smaller the
window, the closer the setup is to reasoning with static data, where a state-of-the-art
solver must be beneficial. Nevertheless, incremental reasoning can also be considered in
terms of model maintenance as such, from one tick to the next, regardless of windows.
For cases with small or minimal window sizes (where the incremental reasoning mode was
faster) we did not examine to which degree performance benefits can be attributed to
model maintenance, and to which degree they stem from the overhead of their competing
mode (i.e., the repeated calls to Clingo). In fact, the definition of suitable metrics of
maintainability of models is a separate research issue.

7.5 Discussion
We conclude this chapter by remarks on the relation between time and time points,
multi-shot solving features of Clingo, and potential research directions.

Time vs. Time Points

We discussed in Section 7.2.1 a limitation regarding the expressivity with respect to
temporal conditions due to the employed pre-grounding mechanism. However, even if
we assume a fully incremental grounding procedure (for grounding on-the-fly), another
difficulty remains: the semantics of Ticker is fully expressed in LARS which has no notion
of time per se; thus temporal values or durations still have to be matched to time points.

Current implementation details aside, consider from a purely semantic perspective
a scenario where we want to query at which during the last 10 seconds we received a
warning signal. We naturally use a clock time c = 1s and a rule r:

q(T) :- @T warn [10 s].

However, time variable T does not refer to seconds of the computer clock but to full
seconds since the start of the engine. The first instant is associated with time point 0,

202

7.5. Discussion

regardless of the computer time. That is to say, there is no way of referring explicitly
to a specific time. In essence, even if a more sophisticated grounding algorithm were in
place, temporal expressions would be limited to those expressible in terms of time points.

Now suppose we use rule r in an application that requires a clock time c = 100ms,
i.e., each time point corresponds to a tenth of a second. Accordingly, time variable T
does not refer to seconds anymore. However, we can virtually group signals appearing
within chunks of 10 time points by integer division.

q_ms(S) :- q(T), int(S), S=T/10.

One problem with this solution is that the rule needs to replaced when a different clock
time is used; there is no means to access the clock time in rules.

In summary, one has to keep in mind that any time variable T (as in @T) in Ticker
refers to time points which have the duration due to the specified clock time. Future
extensions, capable of handling relations and arithmetic over time variables in the first
place, might consider the use of time units in expressions like D = T + 10s such that D is
assigned a time point that is 10 seconds after T, regardless of the employed (compatible)
clock time.

Notes on the Use of Clingo

We add two remarks regarding the ASP solver Clingo [GKKS14] used in this work;
commenting on its multi-shot features and on the issue of model update.
Multi-shot features. For non-incremental reasoning, we use Clingo by repeated
one-shot solving. That is, for each tick we call Clingo with a static schematic program,
augmented by the stream representation and further auxiliary facts. We also consid-
ered using Clingo’s reactive/multi-shot facilities16 which are based on [GGKS11], have
since evolved [GGK+12, GKKS14], and were successfully applied: e.g. see [GKOS15].
Unfortunately, for our purposes, control features in Clingo are not applicable.

First, the control features in Clingo allow addition of new rules, but not removal of
existing ones. Technically, removing might be simulated by setting a designated switch
atom to false. However, this approach would imply that the program keeps growing
over time. Second, we considered using reactive features as illustrated for rule r of
Example 77, using a program part that is parameterised for stream variables, including
that of tick (t, c).

#program tick(t, c, v).
#external now(t).
#external cnt(c).
#external alpha_at(v,t).
high_at(t) :- w_time_2_alpha(v,t), t >= 18.
w_time_2_alpha(v,t) :- now(t), alpha_at(v,t).
w_time_2_alpha(v,t) :- now(t), alpha_at(v,t-1).
w_time_2_alpha(v,t) :- now(t), alpha_at(v,t-2).

16Clingo 5.1.0. API: https://potassco.org/clingo/python-api/current/clingo.html

203

https://potassco.org/clingo/python-api/current/clingo.html

7. The Ticker Engine

However, this encoding is not applicable, since atoms in rule heads cannot be redefined,
i.e., they cannot be grounded more than once.

Notably, it was not the goal of this work to explore various encodings to increase
the range of applicability of Clingo’s specific features, but to provide a second mode of
reasoning that (i) reduces to ASP, and (ii) could be used as base line for empirically
comparing the incremental reasoning mode.
Model update. For stratified programs (which have a unique model), repeatedly
calling Clingo (by standard one-shot solving) on the encoded program is a practical
solution. However, when a program has multiple models, we then have no link between
the output of successive ticks, i.e., the model may change arbitrarily. For instance,
consider the following program:

a :- not b, not c. b :- not a, not c. c :- not a, not b.

Using Clingo 5.1.0, the answer set of the program that is returned first is {a}, which
remains an answer set if we add rule a :- not c. However, the first reported answer set
now is {c}.

Future Research Issues

As a research prototype, Ticker indicates potential benefits of reasoning incrementally for
ASP-like languages like LARS. Based on its architecture and the empirical evaluation,
the following components stand out as entry points for future improvement.

The first module to be discussed concerns the pre-grounding, which was a pragmatic
choice for the sake of establishing a research prototype. Practically, however, pre-
grounding is limiting since providing according guards is less intuitive (when writing
rules), comes with additional cost (to load according facts) and is sometimes not possible
in the first place: in case incoming signals are not known upfront, the only way to
define guards is to specify a naive set of all potential signals which then leads to an
impractically large grounding. This may be the case even if potential input signals are
known in principle. Essentially, pre-grounding also undermines the idea of forgetting
as conceptualized by windows. In that regard, techniques for incremental grounding
on-the-fly would by a practically important next research direction, which, due to the
non-monotonicity of the language, is also technically challenging when an inflation of the
incremental encoding shall be avoided. Full grounding on-the-fly would also solve the
limitations on the use of time variables as discussed.

The second issue in the incremental reasoning mode concerns the use of JTMS, which
cannot compete with modern ASP solving techniques in terms of efficiency; this was
clearly confirmed in the empirical evaluation. Furthermore, JTMS guarantees correct
model update only in the absence of constraints (and more generally, odd loops). In ASP,
constraint satisfaction problems are often modelled with the guess-and-check paradigm,
where the guess is a subprogram that declares a hypothetical space of solutions from which
undesirable combinations are excluded via constrains in the check part. This modelling
technique is currently is not available in the incremental mode due to Ticker’s utilization

204

7.5. Discussion

of JTMS, which nevertheless offered a first good show case algorithm for programs
reducible to normal ASP without odd loops. Thus, as a second research direction, the
development of other model maintenance techniques are of interest that likewise update
a model based on an adaptation of its program. Notably, the presented incremental
encoding is agnostic about the specific model update procedure; it only assumes the
possibility to add and delete rules to express the evolution of an ASP program.

The third dimension for improving Ticker concerns the specific instantiation of LARS,
i.e., the plain LARS fragment with sliding time and tuple windows. Here, one may first
consider to incorporate additional window functions, i.e., different movement patterns
(hopping and tumbling in addition to sliding) and other selection mechanisms such as
the filter window. Another aspect is to improve the relation between time (temporal
durations) in Ticker and logical time points as used in the underlying LARS semantics.
For instance, one might enhance the input syntax for more convenience; e.g. in way such
that time points in @-atoms have time units. Considering larger fragments beyond plain
LARS as underlying formal language would be another starting point for research with a
focus on theoretical boundaries. Towards improved usability of the employed fragment,
including aggregation functions or extensions for handling multiple input streams would
be of practical importance.

205

CHAPTER 8
Conclusion

We conclude with a recapitulation of the LARS framework and some of the established
results based on it. We review the incremental evaluation techniques and the resulting
stream reasoning tool Ticker. Finally, we point towards future research issues.

8.1 Summary

We now summarize the above work from the perspective of the initial problem statement
(cf. Section 1.2) by discussing the three main research objectives.
A framework for expressive stream reasoning with window mechanisms. We
discussed the previous lack of a common formal underpinning for advanced stream
reasoning beyond low-level stream processing approaches. The latter typically employ
window mechanisms that select recent data based on time or counting tuples. For
advanced reasoning techniques and solvers as for Answer Set Programming or SAT, no
such mechanisms were available as first class citizens of the respective languages. We
observed a trade-off between low-level processing, focusing on tasks that are also typical
for querying databases, and high-level reasoning that targets expressiveness, i.e., model
generation, abstraction, nonmonotonicity, and the like. A formal framework for stream
reasoning thus needs to cover a broad spectrum in terms of semantic features and thus
must be modular and flexible. Towards analytic utility, it should be fully declarative and
model-based, rather than operationally defined.

To tackle these objectives, we presented the LARS framework in Chapter 3 that comes
in two incarnations. In its monotonic core, it allows one to evaluate formulas on streams;
the latter are viewed as discrete timelines where time points are mapped to sets of atoms.
LARS formulas extend propositional logic by generic window operators that select recent
substreams, and different modalities for controlling the evaluation with respect to the
temporal dimension. On top of this, LARS programs essentially extend Answer Set
Programming by means of these formulas and evaluation mechanisms; the notion of an

207

8. Conclusion

answer set is lifted to an answer stream which intuitively adds inferred data to the input
stream to minimally satisfy a given program. Due to this design choice, LARS programs
inherit semantic features of ASP, such as full declarativity, nonmonotonicity, multiple
models, or the possibility to express transitive relations.

There are two main dimensions which makes the LARS framework very flexible. The
first one concerns the possibility to restrict to a fragment. Specifically, we defined the
plain LARS fragment (cf. Section 4.1) as a straightforward extension of ASP, replacing
body atoms by so-called window atoms and also considering @-atoms in heads; it served
as guiding fragment and was used in multiple publications. The second dimension of
flexibility lies in the generic definition of window operators. In fact, only by fixing
a specific set of window functions, a concrete logic is obtained. While formula and
program evaluation are PSpace-complete in general, complexities drop significantly when
considering practically relevant syntactic or semantic restrictions on window operators,
as we explored in Section 3.3; resulting fragments are then not harder than ASP.

We explored the analytic capabilities of LARS by studying the relationship to other
formalisms in Chapter 4, where we covered continuous querying in the spirit of databases
(CQL) and the semantic web (C-SPARQL, CQELS), reasoning as typical in runtime
verification (LTL) and rule-based complex event processing (ETALIS). Towards optimizing
programs, e.g. by rewriting for more efficient evaluation, we give a first study in Chapter 5.
Building on according literature for ASP, we defined different notions of equivalence
between LARS programs, i.e., ordinary, strong and uniform equivalence; and moreover a
notion of data equivalence that reduces to relativized uniform equivalence. We provided
semantic characterizations of these equivalence relations based on a logic called bi-
LARS that evaluates two streams at the same time. Restricting the considered LARS
fragment enabled an alternative definition that is closer to previous work in ASP, likewise
establishing a connection to Heyting’s logic of Here-and-There. We noted that deciding
the defined equivalence notions for plain LARS is not harder than for ASP.

Techniques for incremental reasoning. When the evaluation of a query or program
is subject to changing data, incremental computation is required to reduce output
delays. Incremental algorithms that update previous results are especially important
for expressive reasoning tasks, where computing solutions from scratch comes with even
higher cost in general.

Towards incremental evaluation of plain LARS programs, we developed in Chapter 6
algorithms for updating a previous answer stream. We first reviewed Justification-based
Truth Maintenance Systems (JTMS) that can update a program’s answer set after the
addition of a new rule. Unlike the original work, we specified JTMS unambiguously by
means of formal definitions and precise algorithms and then extended it for rule removal.
To compute the answer streams at a single time point, we then gave an encoding from
plain LARS (with sliding time windows and sliding tuple windows) to ASP. Next, we
showed how a slight adjustment leads to an incremental encoding, i.e., a set of rules
that can be maintained stepwise by rules that are deleted and added at each tick; the
latter conceptualizes a minimal change after which re-evaluation can be considered. We
then obtain an incremental model update procedure by feeding these difference sets to

208

8.2. Outlook

the JTMS. We concluded the chapter by mentioning two further works on incremental
reasoning for plain LARS: the first directly extends JTMS for the LARS semantics, the
second extends semi-naive evaluation techniques for programs with unique models.

A prototypical rule-based reasoning engine. Most available stream processing
frameworks focus on low-level computation and high-performance. Naturally, providing
reasoning features with more expressiveness is more difficult and provided by fewer tools.
In particular, no system with rule-based stream reasoning in the spirit of ASP with
explicit window mechanisms was available prior to this thesis.

In Chapter 7, we presented Ticker, a prototypical stream reasoning tool that can
process streams in different push-based and pull-based evaluation modes. A Ticker
program can be seen as a plain LARS program that (i) may use sliding time windows
and sliding tuple windows, and (ii) has an explicit notion of time. That is, to obtain the
semantics of a Ticker program, the temporal durations used in time windows of Ticker
are translated to LARS time points based on the given configuration of the engine. To
compute results, Ticker uses the techniques presented in Chapter 6, i.e., either the static
encoding for repeated one-shot solving (using the ASP solver Clingo), or the incremental
encoding and our own extended JTMS implementation for incremental model update.
The Clingo mode is required for programs with odd loops, and tends to be superior when
the use case can be viewed as repeated evaluation of a complex reasoning task after
certain intervals. The higher the throughput (i.e., mere processing demand), or the bigger
the employed window sizes, the bigger the relative benefit of incremental reasoning.

8.2 Outlook

During the development of this thesis, LARS has already been used as modelling language
and framework. We mentioned in Section 3.2.4 its first application as controller language
for a simulation software in Content-Centric Networking research. In our works on Ticker
and Laser it has been successfully used as independent reasoning language, providing
a formal semantics for new streaming engines. These research prototypes implement
novel algorithms for incremental high-level reasoning based on fully declarative rule-
based programs. With these first developments based on LARS in place, new research
opportunities open up, which we already partially mentioned in concluding remarks of
previous chapters.

On the purely theoretical side, LARS as framework provides many opportunities
for further studies. Apart from natural investigations of fragments within the defined
framework, a particular interest lies in deviations from some of the assumptions made by
LARS. For instance, one may alternatively consider continuous timelines, interval-based
semantics, or multiple input streams as part of the language. Due to our focus on
model-based semantics, we did not discuss operational aspects that could be part of the
formal framework as well. In particular, LARS has as a single notion of time and is thus
less suitable for dealing with delays, outages, or out-of-order events. It is also not geared
for studying the semantics or performance effects of distributed computation.

209

8. Conclusion

Another issue of theoretical interest, with potentially more immediate practical
relevance, are further algorithms for incremental reasoning. It is clear that in the worst
case full recomputation cannot be avoided. However, the output of many stream reasoning
use cases show some continuity over time, in particular at a higher semantic level. While
low-level and fine-granular data (such as GPS positions of cars) might change extremely
fast, derived high-level information (such as existence of a traffic jam) is typically more
robust. With the plain LARS fragment we essentially proposed a dividing line between
the low-level processing part and the high-level reasoning part by means of window
atoms; incremental reasoning then exploits the continuity at the higher levels. Improving
incremental reasoning at the higher levels as such translates in our terms to incremental
grounding and solving techniques for ASP, but other languages and formalisms are of
interest as well. For languages with multiple models, the question of model maintenance
arises also from a semantic perspective, i.e., which model to pick as successor of a previous
one. Practical definitions of according criteria along with incremental algorithms to
compute them with suitable heuristics seem to be lines of research of potentially high
impact.

210

APPENDIX A
Proofs

A.1 LARS: A Logic-based Framework for Analytic
Reasoning over Streams

In this section, we provide proofs of the complexity results and further details on
computation.

LARS Formulas

Proof of Theorem 7. Let M = 〈S?,W,B〉, S = (T ?, υ?), be a structure, let S ⊆ S? be
a substream of S? and let α be a ground formula. Let N denote the size of M plus S.

PSpace membership. We show that the space used to determine M,S, t α is bounded
by O(|α| ∗N +Nk), where |α| is the size (length) of formula α and k ≥ 1 is some constant.

Indeed, a ground formula α can be represented as a tree whose leaf nodes are atoms
from A and whose intermediate nodes are operators from {¬,∧,∨,→,3,2,@t,�w, .},
where t ∈ T . For example, the formula �102(�#33a ∧ (�43b→ �52(¬c ∧ d))) can be
represented by the tree in Figure 3.12.

The following strategy guarantees that evaluating a ground formula α remains in
O(|α| ∗N +Nk) space. We travel the tree in a depth-first-search manner.

(1) When encountering a logical connective: evaluate the truth value of its sub-tree(s)
and then combine the result using the semantics of the corresponding connective.

(2) When encountering a window operator �w: extract a substream S′ = w(S, t) of
the current stream S and store S′ in a new place for evaluating the sub-tree of this
operator.

(3) When encountering a 2 or 3 operator: iterate over the timeline T of the current
window to determine the truth value of the sub-tree for each t ∈ T .

211

A. Proofs

(4) When encountering an @t operator where t is a time point (and t ∈ T where
S = (T, υ)): evaluate the sub-tree with reference to this time point.

(5) When encountering a leaf node: check the occurrence of the atom in the evaluation
function at the current reference time point.

case (2) extends the space for setting up the environment for further checking of the
sub-tree. The space for storing computed window S′ = w(S, t) is bounded by N , as a
window is a substream of S. Furthermore, the computation of S′ itself can be done in
space Nk, for some constant k ≥ 1, as it takes polynomial time in the size of S.

Furthermore, when visiting a node in the tree, we only need to consider the windows
constructed by the window operators appearing on the path from the root to the current
node. For other already visited branches, the space allocated for storing windows can
be released. In case (3), we loop over all time points t ∈ T and need only an iteration
counter.

Therefore, at any time, the space used is bounded by the depth of the tree times N ,
plus the space for window evaluation; this yields O(|α| ∗N +Nk).
PSpace hardness. Given a QBF of the form

Φ = Q1x1Q2x2 · · ·Qnxnφ(x1, x2, . . . , xn), (A.1)

where Qi ∈ {∃, ∀}, we translate it into a LARS formula

α = W1 �
set:x1 W2 �

set:x2 · · ·Wn �
set:xn φ(x1, x2, . . . , xn), (A.2)

where for 1 ≤ i ≤ n,Wi = 3 if Qi = ∃,Wi = 2 if Qi = ∀, and �set:xi is a window operator
with an associated window function setxi defined as follows. Given a stream S = (T, υ)
and a time point t ∈ {0, 1}:

setxi(S, t) = (T ′, υ′),

where T ′ = T and for all j ∈ T :

υ′(j) =
{
υ(j) \ {xi} if t = 0,
υ(j) if t = 1.

That is, setxi removes xi from the input stream S, if it is called at time t = 0, and it
leaves S unchanged if it is called at t = 1; informally, this amounts to setting xi to false
(=0) and to true (=1), respectively.

Let now S? = (T ?, υ?), where T ? = [0, 1] and υ?(0) = υ?(1) = {x1, x2, . . . , xn} and
let M = 〈S?,W, ∅〉, where W = {�set:x1 , . . . ,�set:xn}.

Informally, 3�set:x1 α′ is entailed at t= 0 (likewise, at t= 1), if either at t= 0 or t= 1,
after applying the window function setxi(S, t), the formula α′ evaluates to true (=1) at t;
that is, after either setting x1 false (0) or to true (1), respectively. Dually, 2�set:x1 α′ is
entailed at t= 0 (likewise, at t= 1) iff α′ evaluates to true for both setting x1 to false and
to true. The nesting of the formula (A.2) thus mimics the QBF Φ in (A.1), as follows:

(i) the two time points 0 and 1 encode the truth values false and true, respectively.

212

A.1. LARS: A Logic-based Framework for Analytic Reasoning over Streams

(ii) By starting with the function υ? as the set {x1, x2, . . . , xn} and by removing in
�set:xi the atom xi on the 0 branch and keeping xi on the 1-branch, the evaluation
of α can be seen as traversing a binary evaluation tree where the substream at each
leaf node represents a complete truth assignment to x1, . . . , xn. Figure 3.13 shows
the tree with three variables.

(iii) The operator 3 (resp. 2) in front of �set:xi simulates the quantifier ∃ (resp., ∀):
some (resp. every) of the subtrees, rooted at the 0 or 1 child, must evaluate to true.

A subtree of the tree starting at the root that fulfills the condition (iii) each satisfies the
formula φ(x1, . . . , xn) at each leaf witnesses then that Φ evaluates to true.

More formally, we show by induction on i = 0, . . . , n that if Sn−i = (T ?, υn−i) is
a substream of S? such that υn−i(0) = υn−i(1) ⊇ {xn−i+1, . . . , xn}, then for the truth
assignment σ to x1, . . . , xn−i such that σ(xj)⇔ xj ∈ υn−i(0), it holds that

M,Sn−i, t Wn−i+1 �
set:xn−i+1 · · ·Wn �

set:xn φ(x1, x2, . . . , xn) (A.3)

for any t ∈ {0, 1} iff

Qn−i+1xn−i+1 · · ·Qnxnφ(σ(x1), . . . , σ(xn−i), xn−i+1, . . . , xn), (A.4)

evaluates to true; here S0 = S?.
For i = 0, the stream Sn is a complete truth assignment to x1, . . . , xn and by

construction the claim holds. For the inductive step, suppose the statement holds for i
and consider i+ 1. By applying setxn−i on Sn−(i+1)+1 = Sn−i at t = 0, a stream of form
Sn−i+1 results, where xn−i is set to false; thus by the induction hypothesis

M,Sn−i, 0 �set:xn−iWn−i+1 �
set:xn−i+1 · · ·Wn �

set:xn φ(x1, x2, . . . , xn)
iff M,Sn−i+1, 0 Wn−i+1 �

set:xn−i+1 · · ·Wn �
set:xn φ(x1, x2, . . . , xn)

iff Qn−i+1xn−i+1 · · ·Qnxnφ(σ(x1), . . . , σ(xn−i), xn−i+1, . . . , xn) evaluates to true,

where σ(xn−i) = 0; for t= 1 the argument is analogous, where “0” is replaced by “1”.
Hence by definition of 3 resp. 2, we obtain that (A.3) holds iff (A.4) holds. This proves
the claim.

For n= 0, as S0 =S? we then obtain that M,S?, t α for α in (A.2) and t ∈ {0, 1}
iff Φ in (A.1) evaluates to true. As M,S?, α and t are computable in polynomial time
from Φ, it follows that deciding M,S, t α, i.e., model checking for LARS formulas, is
PSpace-hard.

Proof of Theorem 8. PSpace membership follows from the fact that we can guess an
evaluation function v on T and then perform a model check M,S, t α where S = (T, υ);
relative to the set A′ of atoms, the guess for υ has polynomial size, and thus the combined
guess and check algorithm can run in NPSpace; as NPSpace = PSpace by Savitch’s result
[Sav70], it is thus in PSpace.

213

A. Proofs

The PSpace-hardness follows from a simple reduction of model checking M,S, t α,
where from the proof of Theorem 7 w.l.o.g. S = S? = (T ?, υ?): we construct

αS = α ∧
∧

t∈T ?,p∈v(t)
@tp ∧

∧
t∈T ?,p∈A′\v(t)

@t¬p

i.e., fix the possible valuation to υ, and ask for an evaluation function υ′ on T ? s.t.
M, (T ?, υ′), t αS .

A.2 Relating LARS to other Formalisms

A.2.1 Continuous Query Language (CQL)

In this section, we give additional details on the translation from CQL to Datalog, resp.
LARS, and the presented CQL query q of Example 35. First, applying rel on q gives us
the following SQL query:

SELECT ID, plan.Y, TY
FROM tram_part_ID_rows_1, line, plan
WHERE tram_part_ID_rows_1.ID=line.ID AND

line.L=plan.L AND
tram_part_ID_rows_1.ST=plan.X AND
TY=tram_part_ID_rows_1.T+plan.D AND
NOT EXISTS
(SELECT * FROM jam_range_20
WHERE jam_range_20.ST=tram_part_ID_rows_1.ST)

Translating this CQL query to relational algebra according to [DS90], we get the following
relational algebra expression RelAlg(rel(q)), where tram abbreviates the relation name
tram_part_ID_rows_1 , and jam abbreviates jam_range_20 :

q = πtram.Id, plan.Y, tram.T+plan.D→TY (q1 − q′12),
where

q1 = σtram.ST=plan.X ∧ tram.Id=line.Id ∧ line.L=plan.L q0 ,

q0 = tram × line × plan ,
q′12 = πtram.Id,tram.ST,tram.T,line.Id,line.L,plan.L,plan.X,plan.Y,plan.D q12 ,

q12 = q1 ./ q2 ,

q2 = tram × jam .

Figure A.1 shows the syntactic expression tree. Note that different such translations
might be considered, e.g., by considering other orders in cross products, or joining earlier,
etc. However, no semantic differences arise from such optimizations and thus no further
discussion is needed for our purposes.

214

A.2. Relating LARS to other Formalisms

πtram.Id, plan.Y, tram.T+plan.D→TY (q)

−

(q1) πx (q′12)

./ (q12)

(q1) × (q2)

tram jam
(a) Main tree

σtram.ST=plan.X ∧ tram.Id=line.Id ∧ line.L=plan.L (q1)

× (q0)

tram ×

line plan

(b) Sub tree for (q1)

Figure A.1: Relational algebra expression in tree representation. In projection node (q′12)
x is tram.Id, tram.ST, tram.T, line.Id, line.L, plan.L, plan.X, plan.Y, plan.D.

Using the translation in [GUW09] the translated Datalog program

∆D(q) = Dat(RelAlg(rel(q)))

is the one in Example 36.
Without loss of generality, i.e., due to possible renamings, we assume in the sequel

that relation names Bi and stream names Si are pairwise distinct.

Proof of Theorem 17. Before going into the details, let us note that the relational
algebra expression is tree-shaped and thus ∆D(Q) is an acyclic program (i.e., there is
not cyclic recursion through rules). Furthermore, Dat only creates atomic rule heads;
therefore ∆D(Q) is also definite (i.e., each rule head consists of an atom). The translation

215

A. Proofs

∆L(Q) only adds a stratified layer to ∆D(Q), i.e., the snapshot rules. Thus, both
translations ∆D(Q) and ∆L(Q) amount to stratified theories and have a unique answer
set resp. answer stream relative to given input data.

A correspondence between the CQL results res(Q, t) and the answer set of ∆L(Q) at
time t obtained by the following steps.

(1) First, we construct the input for the translated Datalog program, i.e., the atoms
reflecting the static relations and those obtained from snapshots. Correctness and
completeness of the (compound) translation – from SQL to Relational Algebra and
from the latter to Datalog – establishes a correspondence between the unique answer
set of the Datalog program and the results of the CQL queries (Lemma 11).

(2) Lemma 12 shows that these atoms need not be provided as such, but can be derived
by snapshot rules in LARS itself.

(3) Lemma 13 guarantees that the unique answer set of the Datalog encoding ∆D(Q),
given snapshot relations as input, corresponds with the unique answer stream of the
LARS encoding ∆L(Q), given the stream as input.

(4) By combining these lemmas, we obtain the desired correspondence between the
results of CQL queries and the answer stream of respective LARS programs.

More formally, let Q be a set of CQL queries evaluated on static relations B = B1, . . . , Bm
and input streams S = S1, . . . , Sn at a time point t. Without loss of generality, assume
that to each input stream Si only one of the CQL window functions in the first column of
Table 4.1 (with window parameters replaced by values) is applied. We denote by WINDOWi
the CQL window function applied on stream Si and by WINDOWi(Si, t) the snapshot
obtained for Si at time t after the S2R operator. That is, WINDOWi(Si, t) contains the
selected tuples. (In case there is the need to apply two different windows on the same
input stream, one can equivalently take a renamed copy of the stream.) The following
defines an according set of input facts for the Datalog program ∆D(Q) at t:

F (B, S, t) = ∆(B) ∪ {rel(Si)(c) | c ∈ WINDOWi(Si, t)}

where ∆(B) = {bi(c) | c ∈ Bi} as before. That is, rel(Si)(c) is an atom corresponding
to tuple c from the (snapshot of) stream Si. For any query q ∈ Q, let q̂ denote the
head predicate of the rule in ∆D(q) corresponding to the root of the relational algebra
expression for q. The following lemma establishes the correspondence between the answer
set of ∆D(Q) and CQL results res(Q, t) for Q at t; it follows from the correctness and
completeness of RelAlg and Dat.

Lemma 11 Let A be the unique answer set of ∆D(Q) ∪ F (B, S, t), i.e., the translated
Datalog program plus input facts as obtained from static relations and snapshot relations
at time t. Then, for every query q ∈ Q, q̂(c) ∈ A iff c ∈ res(Q, t).

The next lemma states that the snapshot semantics of CQL’s S2R operator is faithfully
captured by LARS formulas as given in Table 4.1.

216

A.2. Relating LARS to other Formalisms

Lemma 12 Assume static relations B = B1, . . . , Bm and streams S = S1, . . . , Sn, LARS
window functions W corresponding to those in CQL queries Q, and let M = 〈S,W,∆(B)〉
be a structure such that ∆(S) ⊆ S. Moreover, let wi be the LARS window function corre-
sponding to WINDOWi due to Table 4.1. Then, c ∈ WINDOWi(Si, t) iffM,∆(S), t �wi3s(c).

Proof. Consider an element 〈c, t′〉 in stream Si which corresponds to the inclusion
s(c) ∈ υ(t′) in ∆(Si) = (T, υ). That is, we can view LARS streams as notational variant
of CQL streams, and vice versa. It follows directly from their definitions that window
functions WINDOWi and wi (due to Table 4.1) select the same elements. Thus, 〈c, t′〉 is
in the CQL window iff it is in the LARS window. The appearance time t′ is abstracted
away in CQL by the S2R operator, which amounts to existential quantification with 3

in LARS. Thus, c ∈ WINDOWi(Si, t) iff �wi3s(c). 2

We now establish correspondence between the encodings ∆D(Q) and ∆L(Q) at a time
point t.

Lemma 13 Let Q be a set of CQL queries, B = B1, . . . , Bm static relations, S = S1, . . . , Sn
be input streams, and let t be a time point. Moreover, let A be the unique answer set
of ∆D(Q) ∪ F (B, S, t) and I = (T, υ) the unique answer stream of ∆L(Q) for ∆(S) at t
(using structure M = 〈I,W,∆(B)〉). Then, for all q ∈ Q, q̂(c) ∈ A iff q̂(c) ∈ υ(t).

Proof. From Lemma 12 we obtain that snapshot relations rel(s) can be derived directly
from the input stream ∆(S), using snapshot rules of form (4.4), instead of providing
them explicitly. That is, the LARS subprogram ∆L(Q) \∆D(Q) essentially computes
F (B, S, t) and associates these snapshot atoms of form rel(s)(c) with time point t in the
answer stream I = (T, υ): if an atom s(c) is contained in the window, �wi3s(c) holds
and in order for the snapshot rule to be satisfied, rel(s)(c) must be contained in υ(t).
Due to the minimality and supportedness of I, rel(s)(c) is contained in υ(t) only in this
case. Moreover, no time point t′ 6= t will be assigned with any snapshot atom rel(s)(c)
(due to the form of snapshot rules). The snapshot atoms occur as rule heads only in
snapshot rules and no rules other than snapshot rules distinguish ∆D(Q) and ∆L(Q).
We thus conclude for any element 〈c, t〉 that will be selected by WINDOWi, c ∈ F (S, B, t)
by definition, and si(c) ∈ υ(t) as argued. As the semantics after the S2R operator is
captured by ∆D(Q), we obtain the desired correspondence; in particular for output
predicate q̂ that q̂(c) is in the answer set of the Datalog encoding iff it is in υ(t) of the
answer stream of the LARS encoding. 2

A.2.2 Complex Event Processing: ETALIS

We now develop the results of Section 4.4. We start by formal definitions for expressing
temporal intervals in LARS, give a review of ETALIS, and then present the translation
form ETALIS to LARS.

217

A. Proofs

Intervals in LARS

The formal definition of the interval window used in �[`,u] (i.e., �w[`,u]) follows.

Definition 40 (Interval window) Let S = (T, υ) be a stream, where T = [tmin, tmax],
t ∈ T and let ` ≤ u ∈ N∪{∞}. The interval window for [`, u] (at time t) is defined by

w[`,u](S, t) = (T ′, υ|T ′), (A.5)

where T ′= [t`, tu] such that t` = max{tmin, `} and tu = min{u, tmax}.

Based on this, we introduce a syntactic shortcut J`, uK to test whether a formula α holds
throughout an interval, and 〈〈`, u〉〉 that ensures that α does not hold in a bigger interval.

Definition 41 Let α be a formula and `, u ∈ N ∪ {∞}. Then, we define

J`, uKα := �w[`,u]2α , (A.6)

and
〈〈`, u〉〉α := J`, uKα ∧ @`−1¬α ∧ @u+1¬α (A.7)

That is, to test whether the formula α always holds in the window of the timeline [`, u],
we can evaluate J`, uKα. Similarly, if 〈〈`, u〉〉α holds, then [`, u] is the largest window
containing [`, u] in which α always holds.

We observe that for the evaluation of a formula J`, uKα or 〈〈`, u〉〉α, the current reference
time point t is irrelevant. In the sequel, we assume W = {w[`,u] | `, u ∈ N, l ≤ u}.

Lemma 14 Let M = 〈S,W, ∅〉 be a structure, S = (T, υ), and α be a formula. Moreover,
let φ ∈ {J`, uKα, 〈〈`, u〉〉α}, where ` ≤ u ∈ N ∪ {∞} and let t ∈ T . If M,S, t φ holds,
then M,S, t′ φ holds for all t′ ∈ T .

Thus, we can arbitrarily choose any time point t ∈ T for the evaluation of a formula of
form J`, uKα, respectively 〈〈`, u〉〉α.

Review: ETALIS

We recall ETALIS definitions from [AFR+10], restricting to the essential ground case
and natural numbers for time points.

An ETALIS event stream ε maps atomic events (i.e., atoms) to sets of time points,
i.e., non-negative natural numbers. Based on atomic events, rules can make use of event
patterns to express interval relations similar to those in [All83]. For instance the pattern
x SEQ y matches interval 〈t1, t4〉, if there are intervals 〈t1, t2〉 and 〈t3, t4〉 assigned to
events x and y, respectively, such that t2 < t3. The pattern x AND y selects the temporal
overlaps, x EQUALS y selects intervals assigned to both x and y, etc. We formalize these
patterns later (cf. Table A.1). Notably, a complex event is an atom that is associated
with (closed) intervals [t1, t2], which are represented as pairs 〈t1, t2〉 of integers (time

218

A.2. Relating LARS to other Formalisms

points). We deliberately use two kinds of notations for intervals, as we will elaborate on
different possibilities to employ them. An interpretation I is a function that maps atoms
to sets of pairs 〈t1, t2〉 ∈ N× N representing intervals [t1, t2]. Let r = a← pt be a rule,
where a is an atom and pt an event pattern. Then, interpretation I satisfies r, denoted
by I |=r ε, if all intervals assigned to pt are also assigned to a. Moreover, given a rule
base R (i.e., a set of rules), I is a model of ε,R, denoted by I |=ε R, if for all ground
atoms a ∈ A

(C1) 〈t, t〉 ∈ I(a) for all t ∈ ε(a), and

(C2) I(pt) ⊆ I(a) for every rule a← pt ∈ R.1

That is, by (C1), an atomic event a appearing at time point t must be captured by an
interval 〈t, t〉. Condition (C2) says that the intervals that match a rule body must be
assigned to the rule head.

For the definition of minimal models, we recall the notation I|n from [AFR+10],
where n ∈ N: for an atom a ∈ A, I|n(a) = I(a) ∩ {〈t1, t2〉 | t2 − t1 ≤ n}, i.e., the subset
of the intervals assigned to a that have a length of at most n. A model J is preferred to
model I, if there exists a time point n ∈ N such that J |n ⊂ I|n; more formally,

∃n ∈ N (∀ a∈A (J |n(a) ⊆ I|n(a)) ∧ ∃ a∈A (J |n(a) ⊂ I|n(a))) .

Throughout, we will only be interested in minimal models I, i.e., where there does not
exist a preferred model J . Assuming that every rule a← pt has a unique head atom a,
this means that the intervals of a are exactly those of pt.

Example 82 Consider the rule a← x SEQ y and the event stream ε, where ε(x) = {2}
and ε(y) = {5, 6}. The minimal model I is given as follows: I(x) = {〈2, 2〉}, I(y) =
{〈5, 5〉, 〈6, 6〉}. This covers (C1). For (C2), we have I(a) = {〈2, 5〉, 〈2, 6〉}. Note that
for a model I ′ which assigns for a only I ′(a) = {〈2, 6〉} we get I ′|3 = ∅ ⊂ I|3 = {〈2, 5〉}.
That is, I ′ is a smaller interpretation. However, I ′ is not a model of ε,R, since the
interval 〈2, 5〉 matches the pattern x SEQ y and thus must be assigned to a. �

Notably, the minimal model according to the above definition is computable by a fixed-
point iteration.

Lemma 15 Let R be a program without negation and let I be the minimal model of
ε,R and I ′ be an arbitrary model of ε,R. Then, for each a ∈ A, I(a) ⊆ I ′(a), i.e., the
minimal model is contained in every model.

The original set of event patterns (such as SEQ) can be found in [AFR+10]. We use a
ground version of these, as shown in Table A.1 along with their LARS translation. We
will discuss this later. Comments on the NOT pattern, which we exclude, will follow in
the final discussion (cf. Section A.2.2).

1In [AFR+10] and in other papers on ETALIS, the containment is (as confirmed by an author)
mistakenly stated in the other direction.

219

A. Proofs

r a ← n (n ∈ N)
I(a) {〈n, n〉}

∆r Jt, tKa ← 〈〈t, t〉〉µn. (aux. atom µn ∈ υ(t) if t = n)

r a ← (x).n
I(a) I(x) ∩ {〈t1, t2〉 | t2 − t1 ≤ n}

∆r Jt1, t2Ka ← 〈〈t1, t2〉〉x, t2 − t1 ≤ n.

r a ← x SEQ y
I(a) {〈t1, t4〉 | 〈t1, t2〉 ∈ I(x), 〈t3, t4〉 ∈ I(y), t2 < t3}

∆r Jt1, t4Ka ← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y, t2 < t3.

r a ← x AND y
I(a) {〈`, u〉 | 〈t1, t2〉 ∈ I(x), 〈t3, t4〉 ∈ I(y),

` = min{t1, t3}, u = max{t2, t4}}
∆r J`, uKa ← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y,

` = min{t1, t3}, u = max{t2, t4}.

r a ← x PAR y
I(a) {〈`, u〉 | 〈t1, t2〉 ∈ I(x), 〈t3, t4〉 ∈ I(y),

` = min{t1, t3}, u = max{t2, t4}
s = max{t1, t3}, e = min{t2, t4}, s < e}

∆r J`, uKa ← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y,
` = min{t1, t3}, u = max{t2, t4}
s = max{t1, t3}, e = min{t2, t4}, s < e.

r a ← x OR y
I(a) I(x) ∪ I(y)

∆r Jt1, t2Ka ← 〈〈t1, t2〉〉x.
Jt1, t2Ka ← 〈〈t1, t2〉〉y.

r a ← x EQUALS y
I(a) I(x) ∩ I(y)

∆r Jt1, t2Ka ← 〈〈t1, t2〉〉x, 〈〈t1, t2〉〉y.

r a ← x MEETS y
I(a) {〈t1, t3〉 | 〈t1, t2〉 ∈ I(x), 〈t2, t3〉 ∈ I(y)}

∆r Jt1, t3Ka ← 〈〈t1, t2〉〉x, 〈〈t2, t3〉〉y.

r a ← x DURING y
I(a) {〈t3, t4〉 | 〈t1, t2〉 ∈ I(x), 〈t3, t4〉 ∈ I(y),

t3 < t1 < t2 < t4}
∆r Jt3, t4Ka ← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y,

t3 < t1, t1 < t2, t2 < t4.

r a ← x STARTS y
I(a) {〈t1, t3〉 | 〈t1, t2〉 ∈ I(x), 〈t1, t3〉 ∈ I(y), t2 < t3}

∆r Jt1, t3Ka ← 〈〈t1, t2〉〉x, 〈〈t1, t3〉〉y, t2 < t3.

r a ← x FINISHES y
I(a) {〈t1, t3〉 | 〈t2, t3〉 ∈ I(x), 〈t1, t3〉 ∈ I(y), t1 < t2}

∆r Jt1, t3Ka ← 〈〈t2, t3〉〉x, 〈〈t1, t3〉〉y, t1 < t2.

r a ← x WHERE b
I(a) I(x), if b = true; else ∅

∆r Jt1, t2Ka ← 〈〈t1, t2〉〉x, if b = true; else void

Table A.1: Definitions for ground, unnested ETALIS rules r, rule head interpretations
I(a), and their LARS translations ∆r.

220

A.2. Relating LARS to other Formalisms

Definition 42 (Unnested rules) A rule r is called unnested, if its form is listed in
Table A.1. A rule base R is called unnested, if each rule r ∈ R is unnested.

This restriction serves to ease technical presentation but imposes no semantic limitations.
For an interpretation I and a rule base R, let I|R be the interpretation defined as

I|R(a) =
{
I(a) if a appears in R
∅ else ,

for every atom a ∈ A, i.e., I|R limits the interpretation of I to atoms appearing in R.

Lemma 16 Let ε be an event stream. For every rule base R, there exists an unnested
rule base R′ such that I ′ is a minimal model of ε,R′ iff I ′|R is a minimal model of ε,R.

Intuitively, one can make use of a fresh atom for each nested appearance of an ETALIS
pattern, and create a new rule for this. In a model, these atoms will be assigned the
same set of intervals as an according pattern within a different rule (appearing there as
sub-pattern). Consequently, when filtering out these auxiliary atoms, we arrive at the
same minimal model.

Example 83 Consider the rule base R containing the single nested rule

r : a← x PAR (y SEQ z).

Instead, we can use a rule base R′ containing the following unnested rules r1 and r2,
employing an auxiliary atom h:

r1 : a ← x PAR h
r2 : h ← y SEQ z

For any event stream ε, a minimal model of R′ will assign exactly the matching intervals
for y SEQ z to h, if h is not the head of another rule and not appearing in ε. Given these
assumptions, h can thus be alternatively used to describe the pattern y SEQ z. �

Moreover, the following concept will be useful.

Definition 43 (Head unique) An ETALIS rule base R is called head unique, if for
every pair of rules a← pt and a′ ← pt′ in R, pt 6= pt′ implies a 6= a′.

By assuming head uniqueness, we have for a rule a← pt in the minimal model I the
identity I(pt) = I(a). The following lemma states that confining to head unique rules
bases also comes without semantic restrictions.

Lemma 17 Let ε be an event stream. For every rule base R, there exists a head unique
rule base R′ such that I ′ a minimal model of ε,R′ iff I ′|R is a minimal model of ε,R.

221

A. Proofs

Proof (Sketch). We can replace every set of rules

a← pt1 . . . a← ptn

in R with a common head atom a by a set of rules

a1 ← pt1 . . . an ← ptn

in R′ with fresh, distinct atoms a1, . . . , an and introduce another rule

a← a1 OR . . . OR an.

If I and I ′ are minimal models of R and R′, respectively, then we have 〈t1, t2〉 ∈ I(a) iff
〈t1, t2〉 ∈ I ′(a). 2

We define the following class of rule bases.

Definition 44 By R we denote the class of ETALIS rule bases that are (i) unnested
and (ii) head unique.

Due to Lemmas 16 and 17 we get the following result.

Proposition 8 For every rule base R there exists a corresponding rule base R′ ∈ R
such that for any event stream ε, I ′ is a minimal model of ε,R′ iff I ′|R is a minimal
model of ε,R.

For simplicity, we will thus confine to class R in the sequel. We shall note that ETALIS
does not distinguish between extensional predicates (of the input stream) and intensional
predicates (of the rules’ heads), as we do. For strict compliance with our framework, we
can always map any atom a to a designated intensional atom a′ and use a′ instead of a
in the according rule translations. Given an ETALIS event stream ε, we assume that all
rule heads do not make use of atoms appearing in the event stream ε.

Translation from ETALIS to LARS

Given an ETALIS event stream ε, respectively an interpretation I, we use the following
translations to obtain a LARS stream ∆ε, respectively LARS interpretation ∆I .
Translation of stream: ε 7→ ∆ε. Let τ(ε) = {t ∈ N | a ∈ A, t ∈ ε(a)}, i.e., the time
points at which atomic events occur in ε. For an event stream ε : A → 2N, we define a
data stream ∆ε = (T ε, υε), where

T ε = [min τ(ε),max τ(ε)], and
υε = {t 7→ a | a ∈ A, t ∈ ε(a)}.

Translation of interpretation: I 7→ ∆I. In the translation of an ETALIS interpreta-
tion I : A → 2N×N, we use a representation which maps time points to according sets of

222

A.2. Relating LARS to other Formalisms

atoms. We use τ(I) = {t1, t2 | a ∈ A, 〈t1, t2〉 ∈ I(a)} and define the LARS interpretation
stream ∆I = (T, υ), where

T = [min τ(I),max τ(I)], and
υ = {t 7→ a | a ∈ A, 〈t1, t2〉 ∈ I(a), t ∈ [t1, t2]}.

We observe that ε and ∆ε equivalently formalize streams.

Lemma 18 The mapping from ε to ∆ε is bijective.

The translation for interpretations defines a pointwise correspondence. The next lemma
also follows directly from the definition of the translation. Furthermore, we let

tps(I, a) :=
⋃

〈t1,t2〉∈I(a)
[t1, t2]

= {t ∈ N | 〈t1, t2〉 ∈ I(a), t ∈ [t1, t2]} .

Lemma 19 Let I be an ETALIS interpretation, and let ∆I = (T, υ) be the translated
LARS interpretation stream. Then, t ∈ tps(I, a) iff a ∈ υ(t).

This lemma serves to establish the correspondence between LARS and a stream reasoning
view on ETALIS, where only single time points are considered instead of intervals (cf.
Corollary 4, page 92). Using the presented intuitive translation, ETALIS can be captured
fully only when for each atom a the assigned intervals I(a) are disjoint and have at least
one time point between them. This is the intuition behind the following notion.

Definition 45 (Separability) We say two (ETALIS) intervals 〈t1, t2〉 and 〈t3, t4〉 are
separable, if t2 + 1 < t3 or t4 + 1 < t1. An interpretation I is said to be separable, if
for all intensional atoms a ∈ A, all intervals in I(a) are pairwise separable.

Interpretations with overlapping or adjacent intervals (for the same atom) cannot be
distinguished in LARS, where they are implicitly merged. If intervals are separable, no
ambiguity arises.

Lemma 20 Let I be a separable interpretation. Then, the mapping from I to ∆I is
bijective.

Proof. Given a LARS interpretation stream I = (T I , υI), we define the following. First,
we let

mxi(I, a) = {[t1, t2]⊆T I | a ∈ υI(t) for all t ∈ [t1, t2],
a 6∈ υI(t1−1), a 6∈ υI(t2+1)},

i.e., the set of maximal intervals [t1, t2] in T I where a always holds. Then, we define an
ETALIS interpretation et(I) by

et(I) = {a 7→ 〈t1, t2〉 | [t1, t2] ∈ mxi(I, a)}.

223

A. Proofs

ETALIS LARS
event stream ε data stream ∆ε = (T ε, υε)
interpretation I interpretation stream ∆I = (T, υ)

interpretation M = 〈∆I ,W, ∅〉,
where W = {w[`,u] | `, u ∈ N, ` ≤ u}

rule base R program ∆R

Table A.2: Mapping notation from ETALIS to LARS and back.

Let I be a separable interpretation, ∆I = (T, υ) be the translated LARS interpretation
stream, and let J = et(∆I). We show that I = J , where we confine to intensional atoms.
Bijection on the extensional part is covered by Lemma 18.

We first show I ⊆ J . Let 〈t1, t2〉 ∈ I(a) such that a is intensional. By definition of
the translation from I to ∆I = (T, υ), a ∈ υ(t) for all t ∈ [t1, t2]. Since I is separable,
all other intervals 〈t3, t4〉 ∈ I(a) are separable w.r.t. 〈t1, t2〉. As a consequence, a 6∈ υ(t′)
for t′ ∈ {t1 − 1, t2 + 1} and thus [t1, t2] ∈ mxi(∆I , a). That is to say, [t1, t2] is a maximal
interval in T where a always holds, and thus a 7→ 〈t1, t2〉 ∈ et(∆I), i.e., 〈t1, t2〉 ∈ J (a).
Thus, I(a) ⊆ J (a) holds for all atoms a ∈ A.

We now show that J ⊆ I holds. For the sake of contradiction, assume there exists
an intensional atom a ∈ A and a pair 〈t1, t2〉 ∈ J (a) such that 〈t1, t2〉 6∈ I(a). Since
〈t1, t2〉 ∈ J (a), 〈t1, t2〉 is a maximal interval in T where a holds (by construction of
function et). Thus, in ∆I , a is assigned to all time points in [t1, t2]. Translation ∆I does
not assign atoms to time points that are not covered in intervals in I. That is to say,
since 〈t1, t2〉 6∈ I(a) there must be at least two intervals assigning (at least) interval [t1, t2]
to a. More formally, we have that set of intervals 〈t11, t12〉 . . . 〈tn1 , tn2 〉 in I(a), where n ≥ 2,
such that [t1, t2] ⊆

⋃n
k=1[tk1, tk2]. This means that the assignment of [t1, t2] to a is due to

an overlap of intervals for a, i.e., I(a) is not separable. This gives the contradiction, and
we conclude that J (a) ⊆ I(a) for all atoms a ∈ A, and in conclusion that I = J . 2

Similarly as for ETALIS event streams and interpretations, we define a translation to
obtain LARS programs for ETALIS programs R ∈ R.
Translation of rule base R 7→ ∆R. Table A.1 defines ground ETALIS rules r of
form a← pt, where the atom a is the head of the rule. The symbols x, y, z in the body
patterns pt also denote atoms, n ∈ N and b is a boolean value. The ETALIS semantics
defines that the atom a must be assigned at least to the declared intervals I(a).

Finally, the table gives translations to according LARS rules ∆r. The atoms of
the original rules are used there as well. In addition, time variables ti encode the
interpretation function of ETALIS. With this, we define ∆R =

⋃
r∈R∆r.

The following lemma notes a link between programs and their reducts. Recall that
β(r) is the conjunction representing the body of rule r.

Lemma 21 An interpretation M = 〈∆I ,W, ∅〉 is a model of ∆R at t ∈ T iff M is a
model of the reduct of ∆R w.r.t. M at t.

224

A.2. Relating LARS to other Formalisms

Proof. The reduct of ∆R w.r.t. M = 〈∆I ,W, ∅〉 at time t is the program

R = {∆r ∈ ∆R |M,∆I , t β(∆r)}.

The only-if-part is straightforward, since R ⊆ ∆R. For the if-part, consider a rule
∆r ∈ ∆R \R with head h. Since M,∆I , t 1 β(∆r), we get M,∆I , t β(∆r)→ h by the
entailment definition for implication (→). 2

Lemma 22 (I sep. model ⇒ ∆I model) Let ε be an event stream, R ∈ R and let
I be a model of ε,R. Moreover, let M = 〈∆I ,W, ∅〉, where ∆I = (T, υ), and t ∈ T . If I
is separable, then M is a model of ∆R for ∆ε at t.

Proof. Let ε be an event stream, R ∈ R, I be a model of ε,R, M = 〈∆I ,W, ∅〉, where
∆I = (T, υ), and let t ∈ T . Assume that I is separable. We have to show that M is a
model of ∆R for ∆ε at t, i.e., (i) ∆ε ⊆ ∆I , and (ii) M, t |= ∆r for each ∆r ∈ ∆R.

For (i), we recall that, for t′ ∈ N, a ∈ υ(t′) if there exists some interval 〈t1, t2〉 ∈ I(a)
where t1 ≤ t′ ≤ t2. Let ∆ε = (T ε, υε). Since I is a model of ε,R, t′ ∈ ε(a) implies
〈t′, t′〉 ∈ I(a). Consequently, we have by definition of ∆I that a ∈ υε(t′) implies a ∈ υ(t′),
i.e., ∆ε ⊆ ∆I .

To show (ii), let ∆r ∈ ∆R. We show that M, t |= ∆r holds by a case distinction on
the form of rule r.

• a← x SEQ y. We have, by definition,

I(a) = {〈t1, t4〉 | 〈t1, t2〉 ∈ I(x), 〈t3, t4〉 ∈ I(y), t2<t3}.

Hence, the ETALIS semantics assigns to atom a the set of intervals 〈t1, t4〉, where
x holds in the interval from 〈t1, t2〉, and y holds in a later interval 〈t3, t4〉. Since
I is separable, we know that for x, there is no interval 〈t, t′〉 in I(x), such that
[t1 − 1, t2 + 1] ∩ [t, t′] 6= ∅. Thus, 〈t1, t2〉 encodes a definite interval in which x holds,
in the sense that for any d1, d2 ∈ N where d1 + d2 > 0,

– 〈t1 − d1, t2 + d2〉 6∈ I(a), and
– 〈t1 + d1, t2 − d2〉 6∈ I(a).

That is, under our assumptions, 〈t1, t2〉 ∈ I(x) means there is no greater or smaller
〈`, u〉 ∈ I(x) with a common time point n ∈ [min{t1, `},max{t2, u}]. Similarly,
〈t3, t4〉 is a definite interval for y. Consequently, we can encode each tuple
〈`, u〉 ∈ I(a) for an atom a ∈ A by associating a with each time point in [`, u],
i.e., a ∈ υ(t′) for all t′ ∈ [`, u]. This is established by the mapping from I to ∆I .
For the rule, we defined the translation

∆r = Jt1, t4Ka← 〈〈t1, t2〉〉x, 〈〈t3, t4〉〉y, t2 < t3.

This LARS rule says: if [t1, t2] is a maximal interval in which x holds at every time
point, and [t3, t4] is a maximal later interval where y holds at every time point,
then a must hold at every time point in the interval [t1, t4].

225

A. Proofs

The translation ∆I for 〈t1, t2〉 ∈ I(x) will define x ∈ υ(t′) for every t′ ∈ [t1, t2].
Since no greater interval 〈t1 − d1, t2 + d2〉 is in I(x), the time points t1 − 1 and
t2 + 1 are not labelled with x, i.e., x 6∈ υ(t′) for t′ ∈ {t1 − 1, t2 + 1}. Consequently,
〈〈t1, t2〉〉x holds, and likewise, 〈〈t3, t4〉〉y. Since the rule body holds, Jt1, t4Ka must
hold. This is the case, since 〈t1, t4〉 ∈ I, which is encoded as a ∈ υ(t′) for all
t′ ∈ [t1, t4]. Consequently, M, t |= ∆r.
Note that by separability of I, [t1, t4] is also a maximal interval in which a holds,
and thus also in ∆I . Consequently, any translation ∆r′ of a rule r′ with a in the
body correctly captures the intervals assigned to a.

• By the same argumentation, we get the result for the rule patterns a← (x).n and
a← x BIN y, where

BIN ∈ { AND, PAR, OR, EQUALS, MEETS,
DURING, STARTS, FINISHES }.

Note that we could alternatively use the single, simple rule a← x ∨ y for OR and
a← x, y for EQUALS. We presented the other definitions for the sake of uniformity.

• a← n, where n ∈ N. LARS distinguishes atoms and time points. However, we can
encode each time point n ∈ N by an auxiliary (fresh) atom µn and always add to the
interpretation µt ∈ υ(n) if t = n. Since I is a model of r, 〈n, n〉 ∈ I(a), and by the
translation, a ∈ υ(n). Consider the translated rule ∆r = Jt, tKa← 〈〈t, t〉〉µn. The
body 〈〈t, t〉〉µn will hold exactly for t = n, thus a must hold everywhere in the interval
[t, t], i.e., at time point n, which is the case, since a ∈ υ(n). Consequently, ∆r is
satisfied. Note that the specific translation is again for uniformity. Alternatively,
we could use the more direct translation @ta← @tµ

n.

• a← x WHERE b. Similarly like for SEQ, the translated rule ∆r will assign a to
the interval [t1, t2], if [t1, t2] is a maximal interval in which x holds. To account for
the WHERE condition, ∆r will be included in ∆R only if b = true. 2

Lemma 23 (I sep., ∆I model ⇒ I model) Let ε,R and I be separable, R ∈ R,
and let M = 〈∆I ,W,B〉, where ∆I = (T, υ), and t ∈ T . If M is a model of ∆R for ∆ε

at t, then I is a model of ε,R.

Proof. Indirectly, we show that ∆I is not a model (of ∆R for ∆ε at t), assuming that I
is not a model of ε,R, which implies that one of the following conditions is violated:

(i) 〈t′, t′〉 ∈ I(a) for all t′ ∈ ε(a), and

(ii) I(pt) ⊆ I(a) for every rule a← pt ∈ R.

Let us first assume a violation of (i), i.e., 〈t′, t′〉 6∈ I(a) for some t′ ∈ ε(a). Event atoms
do not appear as rule heads. Consequently, our definitions imply that ∆ε 6⊆ ∆I , i.e., ∆I

226

A.2. Relating LARS to other Formalisms

is not an interpretation stream for ∆ε, hence structure M is not an interpretation for
stream ∆ε, and thus not a model.

For (ii) we assume that I(pt) 6⊆ I(a) for some rule a ← pt in R. By an analogous
case distinction on the specific rule form ∆r ∈ ∆R as in Lemma 22 we find that this
implies M, t 6|= ∆r: the essential property is again that the intervals matching the LARS
rule bodies correspond to the ETALIS patterns; they can be reflected in both languages
due to separability of I (Lemma 20). 2

With the above lemmas in place we can formalize the correspondence of considered
ETALIS programs with LARS, given separability.

Proof of Theorem 18

We restate the theorem as follows. Let ε,R be separable and R ∈ R. Then, I is a
minimal model of ε,R iff ∆I = (T, υ) is an answer stream of ∆R for ∆ε at t for all t ∈ T .

Proof. We first observe that, based on our translation ∆R (cf. Table A.1) and Lemma 14,
it suffices to consider an arbitrary time point t ∈ T for the evaluation of ∆R.

(⇒) Let I be the separable, minimal model of ε,R, ∆I = (T, υ) and t ∈ T . We show
that ∆I is an answer stream of ∆R for ∆ε at t. By Lemma 22 we have that ∆I is a
model of ∆R for ∆ε at t. By Lemma 21, we obtain that it is also a model of the reduct
R (of ∆R for ∆ε at t) and it remains to show that ∆I is a minimal model of R.

For the sake of contradiction, assume that ∆J ⊂ ∆I is a smaller model of R. Then,
by Lemma 21, ∆J is also a model of ∆R. By Lemma 23, we get that J is a model of
ε,R. Since ∆J = (T, υ′) ⊂ ∆I = (T, υ) there exists some t′ ∈ T and some atom a ∈ A
such that a ∈ υ(t′) and a 6∈ υ′(t′). Let [t1, t2] be the maximal closed interval such that
a ∈ υ(ti) for all ti ∈ [t1, t2]. By construction, 〈t1, t2〉 ∈ I(a) but 〈t1, t2〉 6∈ J (a). This
contradicts minimality of I and we conclude that ∆I is an answer stream of ∆R.

(⇐) Let ∆I = (T, υ) be an answer stream (of ∆R for ∆ε at t ∈ T). We have to show
that I is a minimal model of ε,R, which is assumed to be separable. Interpretation ∆I
is a minimal model of the reduct R of ∆R, and by Lemma 21, a model of ∆R. Thus,
by Lemma 23, we get that I is a model of ε,R. It remains to show that I is a minimal
model of ε,R.

For the sake of contradiction, assume that there is a model J of ε,R that is preferred
to I. That is to say, there exists an n ∈ N such that J |n ⊂ I|n, i.e.,

∀ a∈A : (J |n(a) ⊆ I|n(a)) ∧ ∃ a∈A : (J |n(a) ⊂ I|n(a)).

Without loss of generality, let a ∈ A such that 〈t1, t2〉 ∈ I(a) \ J (a) and t2 − t1 = n.
Model I is separable and since J assigns fewer intervals, J is also separable. Since J is
a model of ε,R, we have by Lemma 22 that ∆J = (T, υJ) is a model of ∆R for ∆ε at t.
We observe that model ∆J does not assign atom a to any of the time points in [t1, t2],
i.e., a 6∈ υJ (t′) for all t′ ∈ [t1, t2]. We obtain ∆J ⊂ ∆I which contradicts the minimality
of model ∆I of ∆R for ∆ε and we conclude that I is a minimal model for ε,R. 2

227

A. Proofs

Given Theorem 18 and Lemma 19 we immediately obtain the pointwise correspondence,
as stated in Corollary 4 (page 92).

Discussion

We gave an intuitive translation from positive ETALIS rule bases R to LARS programs
∆R that produce the same results for any event stream ε if R, ε is separable; i.e., the
condition that for all atom a the assigned intervals I(a) do not overlap or meet in the
minimal (ETALIS) model I. We now comment on the restrictions to positive programs
and non-overlapping interpretations, respectively.
The NOT-pattern. ETALIS employs negation by means of expression of the form
NOT(p1).[p2, p3], where all pi are patterns [AFR+10]. Intuitively, the NOT-pattern
selects every interval p2 SEQ p3 where p1 does not occur in between. There is no general
mechanism to condition the derivation of new intervals due to the absence of another,
as one might expect. The advantage of this limited form of negation is that it enables
the monotonic growth of derived intervals over time: the pattern p1 that may prevent
the derivation of p2 SEQ p3 necessarily stems from the past. Using a straightforward
translation of the NOT-pattern in LARS would yield multiple models in general. A
tailored encoding that maps the semantics of the NOT-pattern is possible but beyond
the interest of this study. The focus here is on the possibilities to express intervals in
LARS naturally, beyond its capabilities inherited from ASP. This leads to the next point.
Overlapping intervals. The presented translation from ETALIS to LARS made use
of intuitive interval windows �w[`,u] that always select the (maximal) substream of the
specified timeline [`, u]. This is a natural way to restrict the evaluation of formulas to
fixed temporal intervals but comes with the limitation that overlapping (or adjacent)
intervals for the same atoms cannot be represented.

Another way to represent intervals would be by directly encoding their limits within
atoms. For instance, if an atom a holds during the interval [7, 19], this can be reflected
by a fresh atom a′(7, 19). Following up on Example 37, we then express the ETALIS rule
r = z ← x SEQ y, where x, y, and z are propositions, as follows.

z′(T1, T4) ← x′(T1, T2), y′(T3, T4), T2 < T3

Clearly, intervals as viewed in ETALIS (i.e., pairs of integers) can be encoded this way,
which also permits the expression of overlaps. For instance, the above rule can fire
both for x′(1, 4) and x′(3, 5). Given also y′(6, 8), we obtain z′(1, 8) and z′(3, 8). To
bootstrap the process, one then simply needs a rule of the form a′(T, T)← @T a for every
atom a occurring in the original program. We thus obtain in essence an encoding in
Datalog, respectively ASP if also the NOT-pattern is used; and ASP (and thus Datalog)
is subsumed by LARS.

Finally, we note that more expressive complex event processing, in particular with
nonmonotonic semantics and multiple models, would result by equipping an extended
version of LARS with an interval-based evaluation function υ : T × T → 2A.

228

APPENDIX B
Ticker

B.1 Detailled Evaluation Results
We present here the detailled results for the empirical evaluation of Ticker’s reasoning
modes, underlying the charts in Section 7.4.

Each table shows performance metrics of a single benchmark program, where some
parameters are fixed as indicated in the header of the table, and some vary. The latter
are indicated in the left-most column, where we indicate two dimensions of instantiated
parameters. For instance, Table B.1 iterates the window atom forms t@, t3, t2, #@,
#3 and #2, and within each block, each row holds the results for a specific insert
probability p. All tables show the results for the incremental reasoning mode on the
left side, and those for Clingo mode on the right. Each reasoning mode’s performance
measure is detailled in the columns total, init, tp, and tp/s, all of which give the average
of 5 runs. The entries are specified as follows.

• total: Total runtime in seconds for the given parameterization. It is essentially the
sum of init and 2000 times tp,1 or more precisely, init plus 2000 divided by the
entry in tp/s. (Typically, total once adds to this sum a small overhead to finish
processing the entire chain of calls.)

• init: Initialization time (in seconds) before the processing of the first time point
starts. This includes the time for pre-grounding in the incremental mode.

• tp: Average time (in seconds) needed to process a single timepoint; we use ε for
entries below 0.001s.

• tp/s: Processed time points per second. This is the main performance metric and
used in the charts in Section 7.4. For each value v here, the previous column tp
dually holds 1/v.

1Recall that all instances run over 2000 time points.

229

B. Ticker

Basic: n = 1, k = 50
incremental clingo

p total init tp tp/s total init tp tp/s

t@

0.0 0.127 0.003 ε 16260.16 15.107 0.018 0.007 132.55
0.1 0.169 0.003 ε 12121.21 15.837 0.015 0.007 126.41
0.5 0.259 0.004 ε 7843.14 16.366 0.016 0.008 122.33
0.9 0.348 0.003 ε 5813.95 18.193 0.015 0.009 110.03
1.0 0.345 0.003 ε 5865.10 18.378 0.014 0.009 108.91

t3

0.0 0.150 0.004 ε 13698.63 13.581 0.015 0.006 147.43
0.1 0.139 0.004 ε 14814.81 14.233 0.014 0.007 140.66
0.5 0.181 0.003 ε 11299.44 18.880 0.017 0.009 106.03
0.9 0.206 0.003 ε 9900.99 18.381 0.017 0.009 108.91
1.0 0.226 0.003 ε 9009.01 18.114 0.016 0.009 110.52

t2

0.0 0.126 0.004 ε 16528.93 15.944 0.016 0.007 125.57
0.1 0.184 0.004 ε 11173.18 15.940 0.016 0.007 125.60
0.5 0.302 0.003 ε 6711.41 17.469 0.019 0.008 114.62
0.9 0.453 0.004 ε 4454.34 17.204 0.016 0.008 116.37
1.0 0.512 0.004 ε 3937.01 16.859 0.016 0.008 118.74

#@

0.0 0.072 0.004 ε 29850.75 16.341 0.015 0.008 122.50
0.1 0.169 0.004 ε 12121.21 21.041 0.014 0.010 95.12
0.5 0.309 0.003 ε 6557.38 20.423 0.013 0.010 97.99
0.9 0.386 0.004 ε 5249.34 20.913 0.016 0.010 95.71
1.0 0.390 0.003 ε 5167.96 21.425 0.013 0.010 93.41

#3

0.0 0.088 0.004 ε 24096.39 13.983 0.016 0.006 143.19
0.1 0.157 0.003 ε 13071.90 19.901 0.016 0.009 100.58
0.5 0.189 0.003 ε 10752.69 21.046 0.015 0.010 95.10
0.9 0.222 0.003 ε 9174.31 19.872 0.014 0.009 100.72
1.0 0.252 0.003 ε 8064.52 20.145 0.016 0.010 99.36

#2

0.0 2.071 0.004 0.001 968.05 8.379 0.008 0.004 238.92
0.1 2.269 0.004 0.001 883.00 14.279 0.008 0.007 140.14
0.5 1.534 0.004 ε 1308.04 14.748 0.008 0.007 135.69
0.9 1.912 0.004 ε 1048.22 15.840 0.008 0.007 126.33
1.0 3.104 0.004 0.001 645.16 16.137 0.008 0.008 124.00

Table B.1: Program Basic (n = 1). Effect of varying insert probability p.

Only one evaluation did not finish; it had to be stopped manually after a single run
exceeded 4 hours (see Table B.10). According entries are marked with a minus (−). This
is was caused by a garbage collection overhead, where 10 GB of heap space did not suffice.

230

B.1. Detailled Evaluation Results

Basic: n = 32, k = 50
incremental clingo

p total init tp tp/s total init tp tp/s

t@

0.0 5.322 0.014 0.002 376.79 13.764 0.013 0.006 145.44
0.1 6.230 0.011 0.003 321.65 26.279 0.014 0.013 76.15
0.5 9.665 0.012 0.004 207.19 66.742 0.015 0.033 29.97
0.9 12.772 0.012 0.006 156.74 107.251 0.016 0.053 18.65
1.0 13.488 0.011 0.006 148.40 117.496 0.013 0.058 17.02

t3

0.0 3.329 0.013 0.001 603.14 13.517 0.014 0.006 148.12
0.1 3.940 0.011 0.001 509.16 24.027 0.015 0.012 83.30
0.5 5.902 0.011 0.002 339.56 55.221 0.013 0.027 36.23
0.9 7.971 0.012 0.003 251.29 85.693 0.014 0.042 23.34
1.0 8.550 0.012 0.004 234.27 92.215 0.014 0.046 21.69

t2

0.0 3.675 0.016 0.001 546.75 15.343 0.016 0.007 130.49
0.1 5.349 0.016 0.002 375.02 21.794 0.018 0.010 91.84
0.5 10.227 0.015 0.005 195.87 45.652 0.016 0.022 43.83
0.9 16.288 0.018 0.008 122.93 69.706 0.015 0.034 28.70
1.0 19.424 0.014 0.009 103.04 75.150 0.016 0.037 26.62

#@

0.0 1.774 0.012 ε 1135.72 15.556 0.013 0.007 128.68
0.1 9.913 0.012 0.004 202.00 20.759 0.012 0.010 96.40
0.5 34.045 0.011 0.017 58.77 22.319 0.014 0.011 89.67
0.9 58.902 0.012 0.029 33.96 23.306 0.012 0.011 85.86
1.0 65.023 0.010 0.032 30.76 24.641 0.012 0.012 81.21

#3

0.0 1.831 0.014 ε 1100.72 13.726 0.013 0.006 145.85
0.1 6.963 0.009 0.003 287.65 20.700 0.016 0.010 96.70
0.5 24.620 0.010 0.012 81.27 23.350 0.014 0.011 85.71
0.9 41.278 0.011 0.020 48.47 24.575 0.013 0.012 81.43
1.0 44.257 0.009 0.022 45.20 25.642 0.017 0.012 78.05

#2

0.0 8.507 0.016 0.004 235.54 8.648 0.009 0.004 231.51
0.1 47.794 0.015 0.023 41.86 15.022 0.010 0.007 133.24
0.5 159.234 0.015 0.079 12.56 18.089 0.008 0.009 110.62
0.9 292.849 0.013 0.146 6.83 20.040 0.008 0.010 99.84
1.0 345.484 0.015 0.172 5.79 20.800 0.008 0.010 96.19

Table B.2: Program Basic (n = 32). Effect of varying insert probability p.

231

B. Ticker

Basic: n = 1, p = 0.5
incremental clingo

k total init tp tp/s total init tp tp/s

t@

1 0.191 0.002 ε 10638.30 8.058 0.006 0.004 248.42
5 0.186 0.003 ε 10989.01 8.615 0.008 0.004 232.37
10 0.215 0.003 ε 9433.96 10.782 0.014 0.005 185.74
50 0.248 0.003 ε 8163.27 17.026 0.018 0.008 117.59
100 0.298 0.003 ε 6779.66 26.966 0.018 0.013 74.22
500 0.641 0.004 ε 3139.72 136.447 0.022 0.068 14.66

t3

1 0.172 0.004 ε 11904.76 7.892 0.006 0.003 253.65
5 0.197 0.004 ε 10362.69 8.502 0.007 0.004 235.46
10 0.176 0.003 ε 11560.69 9.203 0.007 0.004 217.51
50 0.182 0.003 ε 11173.18 15.267 0.014 0.007 131.13
100 0.186 0.003 ε 10928.96 23.733 0.016 0.011 84.33
500 0.355 0.003 ε 5681.82 118.916 0.018 0.059 16.82

t2

1 0.195 0.003 ε 10416.67 7.708 0.006 0.003 259.67
5 0.217 0.004 ε 9389.67 8.369 0.009 0.004 239.23
10 0.234 0.004 ε 8695.65 9.171 0.010 0.004 218.32
50 0.284 0.003 ε 7117.44 16.286 0.018 0.008 122.94
100 0.362 0.004 ε 5586.59 23.061 0.017 0.011 86.79
500 0.798 0.004 ε 2518.89 84.407 0.029 0.042 23.70

#@

1 0.199 0.003 ε 10256.41 8.148 0.007 0.004 245.67
5 0.182 0.004 ε 11235.96 9.343 0.008 0.004 214.27
10 0.242 0.003 ε 8403.36 10.532 0.009 0.005 190.06
50 0.270 0.003 ε 7490.64 19.657 0.013 0.009 101.81
100 0.333 0.002 ε 6060.61 30.696 0.015 0.015 65.19
500 0.906 0.002 ε 2214.84 110.238 0.023 0.055 18.15

#3

1 0.197 0.003 ε 10362.69 10.457 0.009 0.005 191.44
5 0.193 0.004 ε 10582.01 10.233 0.010 0.005 195.64
10 0.196 0.003 ε 10362.69 10.765 0.008 0.005 185.93
50 0.198 0.003 ε 10309.28 19.121 0.013 0.009 104.67
100 0.226 0.003 ε 8968.61 31.763 0.015 0.015 63.00
500 0.478 0.003 ε 4219.41 183.837 0.023 0.091 10.88

#2

1 0.219 0.002 ε 9259.26 9.194 0.006 0.004 217.68
5 0.716 0.003 ε 2808.99 9.671 0.007 0.004 206.95
10 0.806 0.004 ε 2493.77 10.200 0.009 0.005 196.27
50 1.616 0.004 ε 1241.46 14.834 0.008 0.007 134.91
100 2.983 0.003 0.001 671.37 20.396 0.009 0.010 98.10
500 9.354 0.004 0.004 2139.0 50.492 0.007 0.025 39.62

Table B.3: Program Basic (n = 1). Effect of varying window size k.

232

B.1. Detailled Evaluation Results

Basic: n = 32, p = 0.5
incremental clingo

k total init tp tp/s total init tp tp/s

t@

1 5.814 0.012 0.002 344.71 11.333 0.010 0.005 176.63
5 6.076 0.011 0.003 329.82 15.516 0.009 0.007 128.97
10 6.582 0.012 0.003 304.41 20.918 0.009 0.010 95.66
50 9.552 0.010 0.004 209.62 66.409 0.015 0.033 30.12
100 12.453 0.012 0.006 160.77 142.691 0.016 0.071 14.02
500 37.457 0.017 0.018 53.42 1392.870 0.025 0.696 1.44

t3

1 4.664 0.011 0.002 429.83 11.201 0.008 0.005 178.70
5 4.560 0.011 0.002 439.75 14.431 0.009 0.007 138.68
10 4.662 0.010 0.002 429.92 18.679 0.009 0.009 107.12
50 5.838 0.012 0.002 343.29 55.595 0.011 0.027 35.98
100 7.522 0.011 0.003 266.31 113.645 0.015 0.056 17.60
500 21.149 0.018 0.010 94.65 1210.333 0.02 0.605 1.65

t2

1 6.044 0.016 0.003 331.79 10.963 0.008 0.005 182.58
5 6.876 0.016 0.003 291.59 13.236 0.010 0.006 151.22
10 7.207 0.014 0.003 278.05 16.652 0.011 0.008 120.19
50 10.241 0.015 0.005 195.60 45.924 0.015 0.022 43.56
100 14.340 0.016 0.007 139.64 74.545 0.017 0.037 26.84
500 40.070 0.021 0.020 49.94 356.312 0.030 0.178 5.61

#@

1 36.659 0.011 0.018 54.57 11.510 0.008 0.005 173.90
5 27.829 0.010 0.013 71.89 11.971 0.008 0.005 167.20
10 29.887 0.010 0.014 66.94 12.898 0.010 0.006 155.18
50 33.996 0.010 0.016 58.85 22.418 0.013 0.011 89.27
100 36.056 0.009 0.018 55.48 33.964 0.016 0.016 58.91
500 48.470 0.015 0.024 41.28 119.903 0.025 0.059 16.68

#3

1 18.734 0.012 0.009 106.83 11.296 0.009 0.005 177.21
5 20.215 0.011 0.010 99.00 11.908 0.007 0.005 168.07
10 21.525 0.011 0.010 92.96 12.841 0.009 0.006 155.87
50 24.447 0.010 0.012 81.84 23.351 0.014 0.011 85.70
100 26.183 0.010 0.013 76.42 37.079 0.016 0.018 53.96
500 40.743 0.013 0.020 49.10 224.333 0.022 0.112 8.92

#2

1 4.986 0.012 0.002 402.09 13.061 0.008 0.006 153.22
5 82.605 0.015 0.041 24.22 13.200 0.010 0.006 151.64
10 89.567 0.015 0.044 22.33 13.359 0.009 0.006 149.81
50 161.691 0.015 0.080 12.37 18.497 0.009 0.009 108.18
100 255.304 0.018 0.127 7.83 23.845 0.008 0.011 83.91
500 1059.166 0.022 0.529 1.89 64.331 0.012 0.032 31.10

Table B.4: Program Basic (n = 32). Effect of varying window size k.

233

B. Ticker

Basic: n = 32, p = 0.01
incremental clingo

k total init tp tp/s total init tp tp/s

t3

1 2.963 0.014 0.001 678.20 8.784 0.008 0.004 227.92
5 3.102 0.012 0.001 647.46 9.671 0.010 0.004 207.02
10 3.220 0.013 0.001 623.64 10.160 0.011 0.005 197.06
50 3.653 0.012 0.001 549.45 16.387 0.016 0.008 122.17
100 3.869 0.014 0.001 518.94 23.534 0.018 0.011 85.05
500 4.478 0.015 0.002 448.13 98.607 0.019 0.049 20.29

#3

1 2.444 0.014 0.001 823.38 9.300 0.011 0.004 215.33
5 2.635 0.015 0.001 763.36 10.492 0.008 0.005 190.79
10 2.756 0.015 0.001 729.93 11.636 0.011 0.005 172.04
50 3.117 0.014 0.001 644.54 20.687 0.014 0.010 96.74
100 3.252 0.014 0.001 617.67 33.027 0.017 0.016 60.59
500 3.663 0.014 0.001 548.10 157.552 0.019 0.078 12.70

Table B.5: Program Basic (n = 32). Effect of varying window size k. (Snapshot
semantics, little data.)

Basic: k = 50, p = 0.5
incremental clingo

n total init tp tp/s total init tp tp/s

t3

1 0.214 0.004 ε 9523.81 15.076 0.014 0.007 132.78
2 0.318 0.003 ε 6349.21 16.672 0.014 0.008 120.07
4 0.640 0.004 ε 3149.61 20.414 0.013 0.010 98.03
8 1.395 0.005 ε 1438.85 30.311 0.016 0.015 66.02
16 2.743 0.004 0.001 730.46 37.865 0.021 0.018 52.85
32 6.248 0.007 0.003 320.46 58.106 0.014 0.029 34.43
64 14.278 0.008 0.007 140.15 106.983 0.016 0.053 18.70

#3

1 0.181 0.003 ε 11235.96 19.899 0.015 0.009 100.59
2 0.403 0.003 ε 5000.00 19.549 0.014 0.009 102.38
4 1.041 0.004 ε 1930.50 19.370 0.014 0.009 103.33
8 2.188 0.004 0.001 916.17 20.156 0.016 0.010 99.30
16 6.951 0.005 0.003 287.94 20.853 0.015 0.010 95.98
32 24.390 0.005 0.012 82.02 24.242 0.016 0.012 82.56
64 104.043 0.012 0.052 19.23 27.497 0.016 0.013 72.78

Table B.6: Program Basic. Effect of varying program size n.

234

B.1. Detailled Evaluation Results

Reach: n = 8, k = 50
incremental clingo

p total init tp tp/s total init tp tp/s

t@

0.0 11.298 0.013 0.005 177.23 14.978 0.015 0.007 133.66
0.1 11.750 0.013 0.005 170.40 20.160 0.016 0.010 99.29
0.5 12.815 0.013 0.006 156.23 31.841 0.016 0.015 62.85
0.9 14.134 0.014 0.007 141.64 43.090 0.015 0.021 46.43
1.0 14.069 0.014 0.007 142.31 45.073 0.014 0.022 44.39

t3

0.0 7.025 0.011 0.003 285.14 14.469 0.015 0.007 138.37
0.1 8.342 0.014 0.004 240.15 17.993 0.014 0.008 111.24
0.5 8.987 0.013 0.004 222.89 26.645 0.013 0.013 75.10
0.9 9.321 0.012 0.004 214.85 35.660 0.015 0.017 56.11
1.0 9.166 0.011 0.004 218.48 36.346 0.012 0.018 55.05

t2

0.0 8.431 0.017 0.004 237.73 15.973 0.015 0.007 125.33
0.1 9.952 0.017 0.004 201.31 17.695 0.017 0.008 113.14
0.5 11.986 0.015 0.005 167.08 24.762 0.017 0.012 80.83
0.9 15.456 0.017 0.007 129.55 31.521 0.017 0.015 63.48
1.0 17.761 0.015 0.008 112.70 33.217 0.018 0.016 60.24

#@

0.0 3.852 0.011 0.001 520.83 16.585 0.012 0.008 120.69
0.1 9.838 0.011 0.004 203.54 22.702 0.016 0.011 88.16
0.5 25.368 0.012 0.012 78.88 23.543 0.015 0.011 85.01
0.9 34.795 0.013 0.017 57.50 23.685 0.016 0.011 84.50
1.0 36.749 0.011 0.018 54.44 23.935 0.014 0.011 83.61

#3

0.0 3.869 0.013 0.001 518.67 14.841 0.015 0.007 134.90
0.1 7.845 0.011 0.003 255.30 22.008 0.015 0.010 90.94
0.5 16.988 0.011 0.008 117.81 22.244 0.013 0.011 89.96
0.9 26.738 0.011 0.013 74.83 22.492 0.014 0.011 88.98
1.0 29.134 0.013 0.014 68.68 22.463 0.013 0.011 89.09

#2

0.0 19.269 0.020 0.009 103.90 8.657 0.007 0.004 231.24
0.1 72.536 0.018 0.036 27.58 16.03 0.011 0.008 124.85
0.5 133.368 0.018 0.066 15.00 16.315 0.010 0.008 122.66
0.9 206.648 0.033 0.103 9.68 16.977 0.009 0.008 117.88
1.0 243.625 0.033 0.121 8.21 17.517 0.008 0.008 114.23

Table B.7: Program Reach (n = 8). Effect of varying insert probability p.

235

B. Ticker

Reach: n = 8, p = 0.5
incremental clingo

k total init tp tp/s total init tp tp/s

t@

1 9.468 0.012 0.004 211.51 9.322 0.007 0.004 214.73
5 10.462 0.013 0.005 191.42 11.253 0.009 0.005 177.87
10 10.582 0.013 0.005 189.23 13.118 0.011 0.006 152.59
50 12.734 0.013 0.006 157.22 30.804 0.015 0.015 64.96
100 15.484 0.014 0.007 129.29 56.243 0.015 0.028 35.57
500 26.107 0.011 0.013 76.64 437.628 0.023 0.218 4.57

t3

1 7.211 0.011 0.003 277.78 9.290 0.007 0.004 215.47
5 7.504 0.012 0.003 266.99 10.744 0.007 0.005 186.27
10 7.694 0.012 0.003 260.35 12.566 0.008 0.006 159.26
50 8.506 0.010 0.004 235.40 26.224 0.015 0.013 76.31
100 9.858 0.013 0.004 203.15 48.090 0.018 0.024 41.61
500 13.970 0.013 0.006 143.31 404.440 0.020 0.202 4.95

t2

1 9.319 0.014 0.004 214.96 8.850 0.007 0.004 226.19
5 10.133 0.013 0.005 197.63 10.300 0.009 0.005 194.36
10 10.675 0.012 0.005 187.56 11.735 0.010 0.005 170.58
50 12.425 0.015 0.006 161.17 23.844 0.015 0.011 83.93
100 14.030 0.013 0.007 142.69 38.411 0.017 0.019 52.09
500 22.344 0.013 0.011 89.57 149.124 0.029 0.074 13.41

#@

1 21.451 0.009 0.010 93.28 9.314 0.008 0.004 214.92
5 20.732 0.009 0.010 96.52 10.432 0.009 0.005 191.90
10 21.578 0.012 0.010 92.74 12.055 0.009 0.006 166.03
50 24.155 0.012 0.012 82.84 22.154 0.014 0.011 90.33
100 26.310 0.013 0.013 76.05 34.522 0.017 0.017 57.96
500 35.635 0.014 0.017 56.15 130.945 0.022 0.065 15.28

#3

1 14.746 0.010 0.007 135.72 9.239 0.007 0.004 216.64
5 15.689 0.011 0.007 127.57 10.260 0.008 0.005 195.10
10 15.272 0.010 0.007 131.05 11.648 0.009 0.005 171.84
50 16.883 0.011 0.008 118.55 21.548 0.015 0.010 92.88
100 17.966 0.010 0.008 111.39 35.869 0.014 0.017 55.78
500 25.274 0.012 0.012 79.17 221.984 0.022 0.110 9.01

#2

1 5.899 0.011 0.002 339.67 9.909 0.008 0.004 202.02
5 52.163 0.020 0.026 38.36 10.393 0.008 0.005 192.60
10 62.335 0.020 0.031 32.10 10.940 0.008 0.005 182.95
50 123.081 0.019 0.061 16.25 15.630 0.008 0.007 128.03
100 212.413 0.017 0.106 9.42 21.427 0.009 0.010 93.38
500 716.654 0.017 0.358 2.79 63.169 0.008 0.031 31.67

Table B.8: Program Reach (n = 8). Effect of varying window size k.

236

B.1. Detailled Evaluation Results

Reach: n = 32, p = 0.5
incremental clingo

k total init tp tp/s total init tp tp/s

t3

1 211.677 0.244 0.105 9.46 13.007 0.010 0.006 153.88
5 250.470 0.271 0.125 7.99 23.977 0.012 0.011 83.46
10 233.356 0.237 0.116 8.58 30.005 0.012 0.014 66.68
50 223.631 0.259 0.111 8.95 67.786 0.020 0.033 29.51
100 259.301 0.239 0.129 7.72 129.050 0.025 0.064 15.50
500 491.682 0.296 0.245 4.07 1251.249 0.033 0.625 1.60

#3

1 1071.230 0.237 0.535 1.87 12.155 0.010 0.006 164.68
5 1129.816 0.336 0.564 1.77 12.935 0.011 0.006 154.75
10 1212.501 0.289 0.606 1.65 13.858 0.013 0.006 144.46
50 1432.245 0.271 0.715 1.40 27.440 0.021 0.013 72.94
100 1706.193 0.303 0.852 1.17 46.774 0.025 0.023 42.78
500 3857.366 0.342 1.928 0.52 248.795 0.033 0.124 8.04

Table B.9: Program Reach (n = 32). Effect of varying window size k.

Reach: k = 50, p = 0.5
incremental clingo

n total init tp tp/s total init tp tp/s

t3

1 0.190 0.004 ε 10810.81 17.212 0.016 0.008 116.31
2 0.537 0.005 ε 3759.40 18.579 0.013 0.009 107.73
4 2.035 0.008 0.001 987.17 21.674 0.013 0.010 92.34
8 8.847 0.012 0.004 226.37 27.339 0.015 0.013 73.20
16 41.184 0.034 0.020 48.60 41.122 0.017 0.020 48.66
32 242.725 0.261 0.121 8.25 68.427 0.017 0.034 29.24
64 1807.202 1.485 0.902 1.11 159.319 0.016 0.079 12.55

#3

1 0.202 0.004 ε 10101.01 21.736 0.019 0.010 92.09
2 0.602 0.005 ε 3355.70 21.514 0.016 0.010 93.04
4 2.729 0.006 0.001 734.48 21.603 0.015 0.010 92.64
8 18.021 0.011 0.009 111.05 22.540 0.017 0.011 88.80
16 155.265 0.045 0.077 12.88 24.605 0.016 0.012 81.34
32 1567.877 0.323 0.783 1.28 29.052 0.018 0.014 68.89
64 - - - - 31.323 0.023 0.015 63.90

Table B.10: Program Reach. Effect of varying program size n.

237

B. Ticker

Strategy
incremental clingo

k total init tp tp/s total init tp tp/s

n = 3

0 1.707 0.014 ε 1181.33 9.544 0.012 0.004 209.82
1 1.942 0.013 ε 1037.34 10.095 0.015 0.005 198.41
5 2.059 0.015 0.001 978.47 12.195 0.016 0.006 164.22
10 2.185 0.014 0.001 921.23 14.522 0.019 0.007 137.91
50 2.635 0.014 0.001 763.36 34.270 0.026 0.017 58.40
100 3.223 0.012 0.001 622.86 59.838 0.032 0.029 33.44
500 8.653 0.014 0.004 231.54 357.822 0.081 0.178 5.59

n = 9

0 3.069 0.018 0.001 655.52 9.833 0.011 0.004 203.62
1 3.397 0.019 0.001 592.24 10.396 0.015 0.005 192.68
5 3.718 0.019 0.001 540.69 12.381 0.018 0.006 161.77
10 3.873 0.017 0.001 518.81 15.102 0.018 0.007 132.60
50 4.557 0.020 0.002 440.92 34.619 0.025 0.017 57.81
100 5.256 0.018 0.002 381.83 60.228 0.029 0.030 33.22
500 11.571 0.017 0.005 173.12 358.06 0.068 0.178 5.59

n = 30

0 8.781 0.083 0.004 229.94 11.282 0.012 0.005 177.48
1 9.658 0.095 0.004 209.14 11.843 0.015 0.005 169.09
5 10.046 0.099 0.004 201.09 13.934 0.014 0.006 143.69
10 10.512 0.088 0.005 191.86 16.424 0.019 0.008 121.91
50 12.551 0.094 0.006 160.57 35.760 0.025 0.017 55.97
100 13.892 0.095 0.006 144.96 61.594 0.034 0.030 32.49
500 22.335 0.092 0.011 89.92 359.552 0.071 0.179 5.56

n = 90

0 31.659 1.624 0.015 66.59 16.592 0.013 0.008 120.64
1 32.421 1.484 0.015 64.65 17.121 0.014 0.008 116.91
5 34.058 1.503 0.016 61.44 18.960 0.017 0.009 105.58
10 36.113 1.516 0.017 57.81 21.695 0.017 0.010 92.26
50 39.904 1.605 0.019 52.22 40.857 0.025 0.020 48.98
100 44.989 1.575 0.021 46.07 66.629 0.037 0.033 30.03
500 66.906 1.579 0.032 30.62 363.250 0.083 0.181 5.51

Table B.11: Program Strategy. Effect of program size n and window size k.

238

B.1. Detailled Evaluation Results

Content: n = 10
incremental clingo

k total init tp tp/s total init tp tp/s

i = 4

0 20.294 0.226 0.010 99.67 11.805 0.010 0.005 169.56
1 20.690 0.199 0.010 97.60 12.994 0.012 0.006 154.06
5 20.697 0.213 0.010 97.64 17.342 0.014 0.008 115.42
10 21.418 0.217 0.010 94.34 23.098 0.016 0.011 86.65
50 23.316 0.209 0.011 86.55 67.700 0.018 0.033 29.55
100 26.512 0.223 0.013 76.08 138.462 0.022 0.069 14.45
500 39.299 0.256 0.019 51.23 1258.050 0.046 0.629 1.59

i = 8

0 32.285 0.356 0.015 62.64 11.983 0.010 0.005 167.06
1 33.159 0.357 0.016 60.97 12.974 0.012 0.006 154.30
5 34.518 0.383 0.017 58.59 17.384 0.013 0.008 115.13
10 34.679 0.380 0.017 58.31 23.113 0.016 0.011 86.60
50 38.842 0.379 0.019 52.00 68.458 0.020 0.034 29.22
100 42.977 0.363 0.021 46.93 139.683 0.022 0.069 14.32
500 61.890 0.395 0.030 32.52 1265.964 0.052 0.632 1.58

i = 16

0 60.110 0.707 0.029 33.67 12.245 0.010 0.006 163.47
1 63.041 0.699 0.031 32.08 13.337 0.012 0.006 150.09
5 65.711 0.730 0.032 30.78 17.944 0.014 0.008 111.54
10 65.995 0.747 0.032 30.65 23.341 0.015 0.011 85.74
50 76.718 0.728 0.037 26.32 70.333 0.020 0.035 28.44
100 84.346 0.721 0.041 23.92 141.280 0.022 0.070 14.16
500 123.229 0.704 0.061 16.32 1264.973 0.060 0.632 1.58

i = 32

0 126.470 1.430 0.062 15.99 12.467 0.011 0.006 160.57
1 124.617 1.393 0.061 16.23 13.630 0.013 0.006 146.89
5 131.001 1.380 0.064 15.43 18.200 0.015 0.009 109.99
10 135.500 1.414 0.067 14.92 24.098 0.016 0.012 83.05
50 161.189 1.457 0.079 12.52 70.437 0.021 0.035 28.40
100 188.337 1.405 0.093 10.70 142.674 0.022 0.071 14.02
500 291.593 1.485 0.145 6.89 1342.446 0.073 0.671 1.49

i = 64

0 277.638 2.922 0.137 7.28 13.429 0.012 0.006 149.08
1 282.700 2.967 0.139 7.15 14.599 0.013 0.007 137.12
5 289.352 2.950 0.143 6.98 19.074 0.016 0.009 104.94
10 304.602 2.988 0.150 6.63 24.946 0.015 0.012 80.22
50 380.437 2.951 0.188 5.30 72.416 0.019 0.036 27.63
100 430.986 3.135 0.213 4.67 147.587 0.023 0.073 13.55
500 840.437 2.981 0.418 2.39 1340.007 0.074 0.669 1.49

Table B.12: Program Content (n = 10). Effect of number of items i and window size k.

239

B. Ticker

Content: n = 20
incremental clingo

k total init tp tp/s total init tp tp/s

i = 4

0 47.582 1.372 0.023 43.28 13.693 0.014 0.006 146.21
1 48.879 1.394 0.023 42.12 15.572 0.018 0.007 128.59
5 50.256 1.405 0.024 40.94 22.055 0.020 0.011 90.76
10 51.508 1.412 0.025 39.92 30.088 0.020 0.015 66.52
50 56.157 1.310 0.027 36.47 98.679 0.031 0.049 20.27
100 63.276 1.366 0.030 32.31 217.596 0.026 0.108 9.19
500 102.524 1.588 0.050 19.81 2115.053 0.090 1.057 0.95

i = 8

0 81.415 2.680 0.039 25.40 13.680 0.014 0.006 146.35
1 80.367 2.631 0.038 25.73 15.342 0.015 0.007 130.50
5 86.638 2.673 0.041 23.82 25.386 0.024 0.012 78.86
10 86.352 2.739 0.041 23.92 31.359 0.021 0.015 63.82
50 98.936 2.693 0.048 20.78 99.370 0.027 0.049 20.13
100 113.889 2.859 0.055 18.01 221.187 0.054 0.110 9.04
500 174.454 2.886 0.085 11.66 2115.357 0.082 1.057 0.95

i = 16

0 163.155 5.499 0.078 12.69 13.986 0.014 0.006 143.15
1 161.433 5.550 0.077 12.83 15.450 0.014 0.007 129.57
5 168.092 5.797 0.081 12.32 23.240 0.021 0.011 86.14
10 170.579 5.613 0.082 12.12 30.581 0.020 0.015 65.45
50 198.099 5.624 0.096 10.39 100.103 0.028 0.050 19.99
100 223.663 5.645 0.109 9.17 223.530 0.033 0.111 8.95
500 371.251 7.047 0.182 5.49 2122.224 0.064 1.061 0.94

i = 32

0 355.356 11.679 0.171 5.82 14.498 0.016 0.007 138.10
1 358.126 11.694 0.173 5.77 16.155 0.017 0.008 123.93
5 364.459 11.680 0.176 5.67 24.417 0.020 0.012 81.98
10 378.060 11.761 0.183 5.46 30.896 0.023 0.015 64.78
50 461.341 12.183 0.224 4.45 106.255 0.028 0.053 18.83
100 521.474 11.965 0.254 3.93 221.297 0.033 0.110 9.04
500 1020.162 12.421 0.503 1.98 2124.759 0.079 1.062 0.94

i = 64

0 892.615 25.514 0.433 2.31 14.911 0.021 0.007 134.32
1 894.315 26.183 0.434 2.30 16.702 0.014 0.008 119.85
5 929.521 27.040 0.451 2.22 23.606 0.021 0.011 84.80
10 974.860 26.961 0.473 2.11 31.493 0.022 0.015 63.55
50 1215.322 26.041 0.594 1.68 104.139 0.030 0.052 19.21
100 1452.145 25.840 0.713 1.40 219.451 0.034 0.109 9.12
500 3231.036 25.693 1.602 0.62 2124.738 0.084 1.062 0.94

Table B.13: Program Content (n = 20). Effect of number of items i and window size k.

240

241

Bibliography

[AAB+05] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel,
Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey,
Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B.
Zdonik. The Design of the Borealis Stream Processing Engine. In CIDR
2005, Second Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2005, Online Proceedings, pages 277–289,
2005.

[ABB+03] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas,
Rohit Varma, and Jennifer Widom. STREAM: The Stanford Stream Data
Manager. IEEE Data Engineering Bulletin, 26(1):19–26, 2003.

[ABC+15] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances
Perry, Eric Schmidt, and Sam Whittle. The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing. Proceedings of the VLDB
Endowment, 8(12):1792–1803, 2015.

[ABW03] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A Language for
Continuous Queries over Streams and Relations. In Database Programming
Languages - 9th International Workshop, DBPL 2003, Potsdam, Germany,
September 6-8, 2003, Revised Papers, volume 2921 of Lecture Notes in
Computer Science, pages 1–19. Springer, 2003.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous
Query Language: Semantic Foundations and Query Execution. The VLDB
Journal, 15(2):121–142, 2006.

[ACÇ+03] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stanley B. Zdonik. Aurora: a new Model and Architecture for Data Stream
Management. The VLDB Journal, 12(2):120–139, 2003.

243

[ACD+17] Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Nicola
Leone, Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica
Zangari. The ASP System DLV2. In Logic Programming and Nonmonotonic
Reasoning - 14th International Conference, LPNMR 2017, Espoo, Finland,
July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes in Computer
Science, pages 215–221. Springer, 2017.

[ACPV08] Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vidal.
Strongly equivalent temporal logic programs. In Steffen Hölldobler, Carsten
Lutz, and Heinrich Wansing, editors, Logics in Artificial Intelligence, 11th
European Conference, JELIA 2008, Dresden, Germany, September 28 -
October 1, 2008. Proceedings, volume 5293 of Lecture Notes in Computer
Science, pages 8–20. Springer, 2008.

[ADGI08] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman.
Efficient pattern matching over event streams. In Wang [Wan08], pages
147–160.

[ADT+18] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong
Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. Structured
Streaming: A Declarative API for Real-Time Applications in Apache Spark.
In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein, editors,
Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
601–613. ACM, 2018.

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The Benefits of
Relaxing Punctuality. Journal of the ACM, 43(1):116–146, 1996.

[AFR+10] Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad
Stojanovic, and Rudi Studer. A Rule-Based Language for Complex Event
Processing and Reasoning. In Web Reasoning and Rule Systems - 4th
International Conference, RR 2010, Bressanone/Brixen, Italy, September
22-24, 2010. Proceedings, volume 6333 of Lecture Notes in Computer
Science, pages 42–57. Springer, 2010.

[AFRS11] Darko Anicic, Paul Fodor, Sebastian Rudolph, and Nenad Stojanovic. EP-
SPARQL: a unified language for event processing and stream reasoning.
In Proceedings of the 20th International Conference on World Wide Web,
WWW 2011, Hyderabad, India, March 28-April 1, 2011, pages 635–644.
ACM, 2011.

[Agh90] Gul A. Agha. ACTORS - a model of concurrent computation in distributed
systems. MIT Press Series in Artificial Intelligence. MIT Press, 1990.

244

[AH89] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In 30th
Annual Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages 164–169.
IEEE Computer Society, 1989.

[AH93] Rajeev Alur and Thomas A. Henzinger. Real-Time Logics: Complexity
and Expressiveness. Information and Computation, 104(1):35–77, 1993.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases,
volume 8. Addison-Wesley, Reading, 1995.

[AKK+17] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav
Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Ontology-Mediated
Query Answering over Temporal Data: A Survey (Invited Talk). In Sven
Schewe, Thomas Schneider, and Jef Wijsen, editors, 24th International
Symposium on Temporal Representation and Reasoning, TIME 2017, Oc-
tober 16-18, 2017, Mons, Belgium, volume 90 of LIPIcs, pages 1:1–1:37.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[All83] James F. Allen. Maintaining Knowledge about Temporal Intervals. Com-
munications of the ACM, 26(11):832–843, 1983.

[ARFS12] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.
Stream reasoning and complex event processing in ETALIS. Semantic Web,
3(4):397–407, 2012.

[AXL+15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. Spark SQL: Relational Data Processing
in Spark. In Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives,
editors, Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015, pages 1383–1394. ACM, 2015.

[BBC+09] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, and Michael Grossniklaus. C-SPARQL: SPARQL for continuous
querying. In Juan Quemada, Gonzalo León, Yoëlle S. Maarek, and Wolfgang
Nejdl, editors, Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009, pages 1061–1062.
ACM, 2009.

[BBC+10a] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, and Michael Grossniklaus. C-SPARQL: a Continuous Query Lan-
guage for RDF Data Streams. International Journal of Semantic Comput-
ing, 4(1):3–25, 2010.

245

[BBC+10b] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, and Michael Grossniklaus. Incremental Reasoning on Streams and
Rich Background Knowledge. In Lora Aroyo, Grigoris Antoniou, Eero
Hyvönen, Annette ten Teije, Heiner Stuckenschmidt, Liliana Cabral, and
Tania Tudorache, editors, The Semantic Web: Research and Applications,
7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete,
Greece, May 30 - June 3, 2010, Proceedings, Part I, volume 6088 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2010.

[BBCG10] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, and Michael
Grossniklaus. An execution environment for C-SPARQL queries. In Ioana
Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru Kitsuregawa, Alain
Léger, Felix Naumann, Anastasia Ailamaki, and Fatma Özcan, editors,
EDBT 2010, 13th International Conference on Extending Database Tech-
nology, Lausanne, Switzerland, March 22-26, 2010, Proceedings, volume
426 of ACM International Conference Proceeding Series, pages 441–452.
ACM, 2010.

[BBD+16] Harald Beck, Bruno Bierbaumer, Minh Dao-Tran, Thomas Eiter, Hermann
Hellwagner, and Konstantin Schekotihin. Rule-based Stream Reasoning
for Intelligent Administration of Content-Centric Networks. In Loizos
Michael and Antonis C. Kakas, editors, Logics in Artificial Intelligence -
15th European Conference, JELIA 2016, Larnaca, Cyprus, November 9-11,
2016, Proceedings, volume 10021 of Lecture Notes in Computer Science,
pages 522–528, 2016.

[BBD+17] Harald Beck, Bruno Bierbaumer, Minh Dao-Tran, Thomas Eiter, Hermann
Hellwagner, and Konstantin Schekotihin. Stream Reasoning-based Control
of Caching Strategies in CCN Routers. In IEEE International Conference
on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages
1–6. IEEE, 2017.

[BBU17] Hamid R. Bazoobandi, Harald Beck, and Jacopo Urbani. Expressive Stream
Reasoning with Laser. In Claudia d’Amato, Miriam Fernández, Valentina
A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda,
Christoph Lange, and Jeff Heflin, editors, The Semantic Web - ISWC
2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes
in Computer Science, pages 87–103. Springer, 2017.

[BDD+18] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E.
Fainekos, Oded Maler, Dejan Nickovic, and Sriram Sankaranarayanan.
Specification-Based Monitoring of Cyber-Physical Systems: A Survey on
Theory, tools and applications. In Bartocci and Falcone [BF18], pages
135–175.

246

[BDE15] Harald Beck, Minh Dao-Tran, and Thomas Eiter. Answer Update for
Rule-Based Stream Reasoning. In Qiang Yang and Michael Wooldridge,
editors, Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 2741–2747. AAAI Press, 2015.

[BDE16] Harald Beck, Minh Dao-Tran, and Thomas Eiter. Equivalent Stream
Reasoning Programs. In Subbarao Kambhampati, editor, Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 929–935.
IJCAI/AAAI Press, 2016.

[BDEF15] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. LARS: A
Logic-Based Framework for Analyzing Reasoning over Streams. In Bonet
and Koenig [BK15], pages 1431–1438.

[BDEF18] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Christian Folie. Stream
Reasoning with LARS. KI, 32(2-3):193–195, 2018.

[BDG+07] Lars Brenna, Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Joel
Ossher, Biswanath Panda, Mirek Riedewald, Mohit Thatte, and Walker M.
White. Cayuga: a high-performance event processing engine. In Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the
ACM SIGMOD International Conference on Management of Data, Beijing,
China, June 12-14, 2007, pages 1100–1102. ACM, 2007.

[BDTE17] Harald Beck, Minh Dao-Tran, and Thomas Eiter. LARS: A Logic-Based
Framework for Analytic Reasoning over Streams. Technical Report INFSYS
RR-1843-17-03, Institute of Information Systems, TU Vienna, October
2017.

[BDTE18] Harald Beck, Minh Dao-Tran, and Thomas Eiter. LARS: A Logic-based
framework for Analytic Reasoning over Streams. Artificial Intelligence,
261:16–70, 2018.

[BDTEF14a] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. Towards a
Logic-Based Framework for Analyzing Stream Reasoning. In Irene Celino,
Óscar Corcho, Daniele Dell’Aglio, Emanuele Della Valle, Markus Krötzsch,
and Stefan Schlobach, editors, Proceedings of the 3rd International Work-
shop on Ordering and Reasoning Co-located with the 13th International
Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, October
20th, 2014., volume 1303 of CEUR Workshop Proceedings, pages 11–22.
CEUR-WS.org, 2014.

[BDTEF14b] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink. Towards
Ideal Semantics for Analyzing Stream Reasoning. In International Work-

247

shop on Reactive Concepts in Knowledge Representation, August 19, 2014,
Prague, Czech Republic, 2014.

[Bec13] Harald Beck. Inconsistency Management for Traffic Regulations. Master’s
thesis, TU Wien, Institut für Informationssysteme, TU Wien, Favoriten-
straße 9-11, A-1040 Vienna, Austria, 10 2013.

[Bec17] Harald Beck. Reviewing Justification-based Truth Maintenance Systems
from a Logic Programming Perspective. Technical Report INFSYS RR-
1843-17-02, Institute of Information Systems, TU Vienna, July 2017.

[BEF17] Harald Beck, Thomas Eiter, and Christian Folie. Ticker: A System for
Incremental ASP-based Stream Reasoning. Theory and Practice of Logic
Programming, 17(5-6):744–763, 2017.

[BET11] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer Set
Programming at a Glance. Communications of the ACM, 54(12):92–103,
2011.

[BET16] Gerd Brewka, Thomas Eiter, and Miroslaw Truszczyński, editors. AI
Magazine: Special Issue on Answer Set Programming. AAAI Press, 2016.
Volume 37, number 3 (Fall issue).

[BF18] Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification
- Introductory and Advanced Topics, volume 10457 of Lecture Notes in
Computer Science. Springer, 2018.

[BFFR18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Intro-
duction to Runtime Verification. In Bartocci and Falcone [BF18], pages
1–33.

[BGAH07] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng
Hong. Consistent Streaming Through Time: A Vision for Event Stream
Processing. In CIDR 2007, Third Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 7-10, 2007, Online
Proceedings, pages 363–374, 2007.

[BK98] Fahiem Bacchus and Froduald Kabanza. Planning for Temporally Extended
Goals. Annals of Mathematics and Artificial Intelligence, 22(1-2):5–27,
1998.

[BK14] Christoph Beierle and Gabriele Kern-Isberner. Methoden wissensbasierter
Systeme - Grundlagen, Algorithmen, Anwendungen (5. Aufl.). Computa-
tional intelligence. SpringerVieweg, 2014.

[BK15] Blai Bonet and Sven Koenig, editors. Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA. AAAI Press, 2015.

248

[BKK+17] Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav
Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. Ontology-Based Data
Access with a Horn Fragment of Metric Temporal Logic. In Satinder P.
Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA., pages 1070–1076. AAAI Press, 2017.

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring
of Real-Time Properties. In S. Arun-Kumar and Naveen Garg, editors,
FSTTCS 2006: Foundations of Software Technology and Theoretical Com-
puter Science, 26th International Conference, Kolkata, India, December
13-15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer Sci-
ence, pages 260–272. Springer, 2006.

[BP15] Laura Bozzelli and David Pearce. On the Complexity of Temporal Equilib-
rium Logic. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 645–656. IEEE
Computer Society, 2015.

[BW01] Shivnath Babu and Jennifer Widom. Continuous Queries over Data Streams.
SIGMOD Record, 30(3):109–120, 2001.

[CA15] Jean-Paul Calbimonte and Karl Aberer. Reactive Processing of RDF
Streams of Events. In Fabien Gandon, Christophe Guéret, Serena Vil-
lata, John G. Breslin, Catherine Faron-Zucker, and Antoine Zimmermann,
editors, The Semantic Web: ESWC 2015 Satellite Events - ESWC 2015
Satellite Events Portorož, Slovenia, May 31 - June 4, 2015, Revised Se-
lected Papers, volume 9341 of Lecture Notes in Computer Science, pages
457–468. Springer, 2015.

[Cad92] Marco Cadoli. The Complexity of Model Checking for Circumscriptive
Formulae. Information Processing Letters, 44(3):113–118, 1992.

[CÇC+02] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Sangdon Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and
Stanley B. Zdonik. Monitoring Streams - A New Class of Data Management
Applications. In VLDB 2002, Proceedings of 28th International Conference
on Very Large Data Bases, August 20-23, 2002, Hong Kong, China, pages
215–226. Morgan Kaufmann, 2002.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel
Madden, Vijayshankar Raman, Frederick Reiss, and Mehul A. Shah.
TelegraphCQ: Continuous Dataflow Processing for an Uncertain World.
In CIDR 2003, First Biennial Conference on Innovative Data Systems

249

Research, Asilomar, CA, USA, January 5-8, 2003, Online Proceedings.
www.cidrdb.org, 2003.

[CCG10] Jean-Paul Calbimonte, Óscar Corcho, and Alasdair J. G. Gray. Enabling
Ontology-Based Access to Streaming Data Sources. In 9th International
Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11,
2010, Revised Selected Papers, Part I, volume 6496 of Lecture Notes in
Computer Science, pages 96–111. Springer, 2010.

[CD14] Pedro Cabalar and Martín Diéguez. Strong equivalence of non-monotonic
temporal theories. In Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna,
Austria, July 20-24, 2014. AAAI Press, 2014.

[CDE+16] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil,
Boyang Jerry Peng, et al. Benchmarking streaming computation engines:
Storm, Flink and Spark Streaming. In Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International, pages 1789–1792. IEEE,
2016.

[CDTW00] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ:
A Scalable Continuous Query System for Internet Databases. In Weidong
Chen, Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceedings
of the 2000 ACM SIGMOD International Conference on Management of
Data, May 16-18, 2000, Dallas, Texas, USA., pages 379–390. ACM, 2000.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic. In
Dexter Kozen, editor, Logics of Programs, Workshop, Yorktown Heights,
New York, USA, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you Always Wanted
to Know About Datalog (And Never Dared to Ask). IEEE Transactions
on Knowledge and Data Engineering, 1(1):146–166, 1989.

[CGT90] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and
Databases. Surveys in computer science. Springer, 1990.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer, 2018.

250

[CKE+15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache FlinkTM: Stream and Batch Pro-
cessing in a Single Engine. IEEE Data Engineering Bulletin, 38(4):28–38,
2015.

[CM94] William F. Clocksin and Christopher S. Mellish. Programming in Prolog
(4. ed.). Springer, 1994.

[CM10] Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined
event specification language. In Jean Bacon, Peter R. Pietzuch, Joe Sventek,
and Ugur Çetintemel, editors, Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, DEBS 2010, Cambridge,
United Kingdom, July 12-15, 2010, pages 50–61. ACM, 2010.

[CM12] Gianpaolo Cugola and Alessandro Margara. Complex Event Processing
with T-REX. Journal of Systems and Software, 85(8):1709–1728, 2012.

[CV07] Pedro Cabalar and Gilberto Pérez Vega. Temporal equilibrium logic: A first
approach. In Roberto Moreno-Díaz, Franz Pichler, and Alexis Quesada-
Arencibia, editors, Computer Aided Systems Theory - EUROCAST 2007,
11th International Conference on Computer Aided Systems Theory, Las
Palmas de Gran Canaria, Spain, February 12-16, 2007, Revised Selected
Papers, volume 4739 of Lecture Notes in Computer Science, pages 241–248.
Springer, 2007.

[CW91] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incre-
mental View Maintenance. In Lohman et al. [LSC91], pages 577–589.

[Day88] Umeshwar Dayal. Active Database Management Systems. In Catriel Beeri,
Joachim W. Schmidt, and Umeshwar Dayal, editors, Proceedings of the
Third International Conference on Data and Knowledge Bases: Improving
Usability and Responsiveness, June 28-30, 1988, Jerusalem, Israel. Morgan
Kaufmann, 1988, pages 150–169, 1988.

[DBE15a] Minh Dao-Tran, Harald Beck, and Thomas Eiter. Contrasting RDF Stream
Processing Semantics. In Guilin Qi, Kouji Kozaki, Jeff Z. Pan, and Siwei Yu,
editors, Semantic Technology - 5th Joint International Conference, JIST
2015, Yichang, China, November 11-13, 2015, Revised Selected Papers,
volume 9544 of Lecture Notes in Computer Science, pages 289–298. Springer,
2015.

[DBE15b] Minh Dao-Tran, Harald Beck, and Thomas Eiter. Towards Comparing
RDF Stream Processing Semantics. In Daniela Nicklas and Özgür Lütfü
Özçep, editors, Proceedings of the 1st Workshop on High-Level Declarative
Stream Processing co-located with the 38th German AI conference (KI
2015), Dresden, Germany, September 22, 2015., volume 1447 of CEUR
Workshop Proceedings, pages 15–27. CEUR-WS.org, 2015.

251

[DCvF09] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel.
It’s a Streaming World! Reasoning upon Rapidly Changing Information.
IEEE Intelligent Systems, 24:83–89, 2009.

[DDC+16] Daniele Dell’Aglio, Minh Dao-Tran, Jean-Paul Calbimonte, Danh Le Phuoc,
and Emanuele Della Valle. A Query Model to Capture Event Pattern
Matching in RDF Stream Processing Query Languages. In Eva Blomqvist,
Paolo Ciancarini, Francesco Poggi, and Fabio Vitali, editors, Knowledge
Engineering and Knowledge Management - 20th International Conference,
EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings, volume
10024 of Lecture Notes in Computer Science, pages 145–162, 2016.

[DDvB17] Daniele Dell’Aglio, Emanuele Della Valle, Frank van Harmelen, and Abra-
ham Bernstein. Stream Reasoning: A Survey and Outlook. Data Science,
1(1-2):59–83, 2017.

[DEF+12] Minh Dao-Tran, Thomas Eiter, Michael Fink, Gerald Weidinger, and
Antonius Weinzierl. OMiGA : An Open Minded Grounding On-The-Fly
Answer Set Solver. In Luis Fariñas del Cerro, Andreas Herzig, and Jérôme
Mengin, editors, Logics in Artificial Intelligence - 13th European Conference,
JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings, volume
7519 of Lecture Notes in Computer Science, pages 480–483. Springer, 2012.

[DFM13] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient Robust
Monitoring for STL. In Natasha Sharygina and Helmut Veith, editors,
Computer Aided Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of
Lecture Notes in Computer Science, pages 264–279. Springer, 2013.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the ACM, 51(1):107–113,
January 2008.

[DGH+06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald,
and Walker M. White. Towards Expressive Publish/Subscribe Systems. In
Yannis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes,
Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten Grust, and
Christian Böhm, editors, Advances in Database Technology - EDBT 2006,
10th International Conference on Extending Database Technology, Munich,
Germany, March 26-31, 2006, Proceedings, volume 3896 of Lecture Notes
in Computer Science, pages 627–644. Springer, 2006.

[DGP+07] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald,
Varun Sharma, and Walker M. White. Cayuga: A General Purpose
Event Monitoring System. In CIDR 2007, Third Biennial Conference on

252

Innovative Data Systems Research, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings, pages 412–422, 2007.

[dK86] Johan de Kleer. An Assumption-Based TMS. Artificial Intelligence,
28(2):127–162, 1986.

[DK08] Patrick Doherty and Jonas Kvarnström. Temporal Action Logics. In Frank
van Harmelen, Vladimir Lifschitz, and Bruce W. Porter, editors, Hand-
book of Knowledge Representation, volume 3 of Foundations of Artificial
Intelligence, pages 709–757. Elsevier, 2008.

[DKH09] Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A Temporal
Logic-based Planning and Execution Monitoring Framework for Unmanned
Aircraft Systems. Autonomous Agents and Multi-Agent Systems, 19(3):332–
377, 2009.

[dlBP08] Maria Garcia de la Banda and Enrico Pontelli, editors. Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, December 9-13
2008, Proceedings, volume 5366 of Lecture Notes in Computer Science.
Springer, 2008.

[dLH14] Daniel de Leng and Fredrik Heintz. Towards on-demand semantic event
processing for stream reasoning. In 17th International Conference on
Information Fusion, FUSION 2014, Salamanca, Spain, July 7-10, 2014,
pages 1–8. IEEE, 2014.

[dLH16] Daniel de Leng and Fredrik Heintz. Qualitative Spatio-Temporal Stream
Reasoning with Unobservable Intertemporal Spatial Relations Using Land-
marks. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings
of the 30th AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, pages 957–963. AAAI Press, 2016.

[DLL11] Thang M. Do, Seng Wai Loke, and Fei Liu. Answer Set Programming for
Stream Reasoning. In Advances in Artificial Intelligence - 24th Canadian
Conference on Artificial Intelligence, St. John’s, Canada, May 25-27, 2011.
Proceedings, volume 6657 of Lecture Notes in Computer Science, pages
104–109. Springer, 2011.

[Doy79] Jon Doyle. A Truth Maintenance System. Artificial Intelligence, 12(3):231–
272, 1979.

[DS90] Mohammad Dadashzadeh and David W. Stemple. Converting SQL queries
into relational algebra. Information & Management, 19(5):307–323, 1990.

[DS02] Stéphane Demri and Philippe Schnoebelen. The Complexity of Proposi-
tional Linear Temporal Logics in Simple Cases. Information and Compu-
tation, 174(1):84–103, 2002.

253

[DTM+13] Nihal Dindar, Nesime Tatbul, Renée J. Miller, Laura M. Haas, and Irina
Botan. Modeling the execution semantics of stream processing engines
with SECRET. The VLDB Journal, 22(4):421–446, 2013.

[DVCC14] Daniele Dell’Aglio, Emanuele Della Valle, Jean-Paul Calbimonte, and
Óscar Corcho. RSP-QL Semantics: A Unifying Query Model to Explain
Heterogeneity of RDF Stream Processing Systems. International Journal
on Semantic Web and Information Systems, 10(4):17–44, 2014.

[EF03] Thomas Eiter and Michael Fink. Uniform equivalence of logic programs
under the stable model semantics. In Catuscia Palamidessi, editor, Logic
Programming, 19th International Conference, ICLP 2003, Mumbai, In-
dia, December 9-13, 2003, Proceedings, volume 2916 of Lecture Notes in
Computer Science, pages 224–238. Springer, 2003.

[EFW07] Thomas Eiter, Michael Fink, and Stefan Woltran. Semantical Characteriza-
tions and Complexity of Equivalences in Answer Set Programming. ACM
Transactions on Computational Logic, 8(3), July 2007.

[EG95] Thomas Eiter and Georg Gottlob. On the Computational Cost of Disjunc-
tive Logic Programming: Propositional Case. Annals of Mathematics and
Artificial Intelligence, 15(3-4):289–323, 1995.

[EH86] E. Allen Emerson and Joseph Y. Halpern. "Sometimes" and "Not Never"
revisited: on branching versus linear time temporal logic. Journal of the
ACM, 33(1):151–178, 1986.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
Set Programming: A Primer. In Reasoning Web. Semantic Technologies
for Information Systems - 5th International Summer School 2009, Brixen-
Bressanone, Italy, August 30-September 4, 2009, Tutorial Lectures, volume
5689 of Lecture Notes in Computer Science, pages 40–110. Springer, 2009.

[EIST06] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tom-
pits. dlvhex: A Prover for Semantic-Web Reasoning under the Answer-Set
Semantics. In IEEE / WIC / ACM International Conference on Web
Intelligence, 18-22 December 2006, Hong Kong, China, pages 1073–1074.
IEEE Computer Society, 2006.

[Elk90] Charles Elkan. A Rational Reconstruction of Nonmonotonic Truth Main-
tenance Systems. Artificial Intelligence, 43(2):219–234, 1990.

[EMRS15] Thomas Eiter, Mustafa Mehuljic, Christoph Redl, and Peter Schüller. User
Guide: dlvhex 2.X. Technical Report INFSYS RR-1843-15-05, Institute of
Information Systems, TU Vienna, September 2015.

254

[FLP04] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive Aggregates
in Disjunctive Logic Programs: Semantics and Complexity. In José Júlio
Alferes and João Alexandre Leite, editors, Logics in Artificial Intelligence -
9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30,
2004, Proceedings, volume 3229 of Lecture Notes in Computer Science,
pages 200–212. Springer, 2004.

[Gab87] Dov M. Gabbay. The declarative past and imperative future: Executable
temporal logic for interactive systems. In Behnam Banieqbal, Howard
Barringer, and Amir Pnueli, editors, Temporal Logic in Specification, Al-
trincham, UK, April 8-10, 1987, Proceedings, volume 398 of Lecture Notes
in Computer Science, pages 409–448. Springer, 1987.

[GADI08] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman.
On Supporting Kleene Closure over Event Streams. In Gustavo Alonso,
José A. Blakeley, and Arbee L. P. Chen, editors, Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, April 7-12,
2008, Cancún, Mexico, pages 1391–1393. IEEE Computer Society, 2008.

[GAW+08] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
Myungcheol Doo. SPADE: the System S Declarative Stream Process-
ing Engine. In Wang [Wan08], pages 1123–1134.

[GGK+12] Martin Gebser, Torsten Grote, Roland Kaminski, Philipp Obermeier,
Orkunt Sabuncu, and Torsten Schaub. Stream reasoning with answer set
programming: Preliminary report. In Gerhard Brewka, Thomas Eiter, and
Sheila A. McIlraith, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR
2012, Rome, Italy, June 10-14, 2012. AAAI Press, 2012.

[GGKS11] Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub.
Reactive answer set programming. In James P. Delgrande and Wolfgang
Faber, editors, Logic Programming and Nonmonotonic Reasoning - 11th
International Conference, LPNMR 2011, Vancouver, Canada, May 16-19,
2011. Proceedings, volume 6645 of Lecture Notes in Computer Science,
pages 54–66. Springer, 2011.

[Gha96] Malik Ghallab. On chronicles: Representation, on-line recognition and
learning. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C. Shapiro,
editors, Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (KR’96), Cambridge, Mas-
sachusetts, USA, November 5-8, 1996., pages 597–606. Morgan Kaufmann,
1996.

[GHM+07] Thanaa M. Ghanem, Moustafa A. Hammad, Mohamed F. Mokbel, Walid G.
Aref, and Ahmed K. Elmagarmid. Incremental Evaluation of Sliding-

255

Window Queries over Data Streams. IEEE Transactions on Knowledge
and Data Engineering, 19(1):57–72, 2007.

[GKK+08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele. Engineering an Incremental ASP Solver.
In de la Banda and Pontelli [dlBP08], pages 190–205.

[GKKS14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Clingo = ASP + Control: Preliminary Report. CoRR,
abs/1405.3694, 2014. Theory and Practice of Logic Programming, Online
Supplement.

[GKKS17] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Multi-shot ASP solving with clingo. CoRR, abs/1705.09811,
2017.

[GKOS15] Martin Gebser, Roland Kaminski, Philipp Obermeier, and Torsten Schaub.
Ricochet Robots Reloaded: A Case-Study in Multi-shot ASP Solving. In
Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran,
editors, Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the
Occasion of His 60th Birthday, volume 9060 of Lecture Notes in Computer
Science, pages 17–32. Springer, 2015.

[GL88] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Robert A. Kowalski and Kenneth A. Bowen, editors,
Logic Programming, Proceedings of the Fifth International Conference and
Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes),
pages 1070–1080. MIT Press, 1988.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-
taining Views Incrementally. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, Washington, D.C., May 26-28, 1993, pages 157–166.
ACM Press, 1993.

[GÖ10] Lukasz Golab and M. Tamer Özsu. Data Stream Management. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2010.

[GPLT91] Michael Gelfond, Halina Przymusinska, Vladimir Lifschitz, and Miroslaw
Truszczynski. Disjunctive Defaults. In James F. Allen, Richard Fikes, and
Erik Sandewall, editors, Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning (KR’91). Cam-
bridge, MA, USA, April 22-25, 1991., pages 230–237. Morgan Kaufmann,
1991.

256

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
Temporal Analysis of Fairness. In Paul W. Abrahams, Richard J. Lipton,
and Stephen R. Bourne, editors, Conference Record of the Seventh Annual
ACM Symposium on Principles of Programming Languages, Las Vegas,
Nevada, USA, January 1980, pages 163–173. ACM Press, 1980.

[GRU17] Alejandro Grez, Cristian Riveros, and Martín Ugarte. Foundations of
Complex Event Processing. CoRR, abs/1709.05369, 2017.

[GSS11] Martin Gebser, Orkunt Sabuncu, and Torsten Schaub. An Incremental
Answer Set Programming Based System for Finite Model Computation.
AI Communications, 24(2):195–212, 2011.

[GUW09] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
Systems - The Complete Book (2. ed.). Pearson Education, 2009.

[HD04] Fredrik Heintz and Patrick Doherty. DyKnow: An Approach to Middleware
for Knowledge Processing. Journal of Intelligent and Fuzzy Systems, 15(1):3–
13, 2004.

[HD12] Fredrik Heintz and Zlatan Dragisic. Semantic information integration for
stream reasoning. In 15th International Conference on Information Fusion,
FUSION 2012, Singapore, July 9-12, 2012, pages 1454–1461. IEEE, 2012.

[HdL13] Fredrik Heintz and Daniel de Leng. Semantic information integration
with transformations for stream reasoning. In Proceedings of the 16th
International Conference on Information Fusion, FUSION 2013, Istanbul,
Turkey, July 9-12, 2013, pages 445–452. IEEE, 2013.

[HdL14] Fredrik Heintz and Daniel de Leng. Spatio-Temporal Stream Reasoning
with Incomplete Spatial Information. In Torsten Schaub, Gerhard Friedrich,
and Barry O’Sullivan, editors, ECAI 2014 - 21st European Conference
on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic -
Including Prestigious Applications of Intelligent Systems (PAIS 2014),
volume 263 of Frontiers in Artificial Intelligence and Applications, pages
429–434. IOS Press, 2014.

[Hei09] Fredrik Heintz. DyKnow : A Stream-Based Knowledge Processing Middle-
ware Framework. PhD thesis, Linköping University, Sweden, 2009.

[Hey30] Arend Heyting. Die formalen Regeln der intuitionistischen Logik. In
Sitzungsberichte der preußischen Akademie der Wissenschaften. phys.-math.
Klasse, pages 42–65, 57–71, 158–169, 1930.

[HKD10a] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Bridging the
sense-reasoning gap: DyKnow - Stream-based middleware for knowledge
processing. Advanced Engineering Informatics, 24(1):14–26, 2010.

257

[HKD10b] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Stream-Based
Reasoning in DyKnow. In Gerhard Lakemeyer, Hector J. Levesque, and
Fiora Pirri, editors, Cognitive Robotics, 21.02. - 26.02.2010, volume 10081
of Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany, 2010.

[HKD10c] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Stream-Based Rea-
soning Support for Autonomous Systems. In Helder Coelho, Rudi Studer,
and Michael Wooldridge, editors, ECAI 2010 - 19th European Conference
on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceed-
ings, volume 215 of Frontiers in Artificial Intelligence and Applications,
pages 183–188. IOS Press, 2010.

[HMH18] Pan Hu, Boris Motik, and Ian Horrocks. Optimised Maintenance of Datalog
Materialisations. In McIlraith and Weinberger [MW18].

[HOW14] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. Online Monitoring of
Metric Temporal Logic. In Borzoo Bonakdarpour and Scott A. Smolka,
editors, Runtime Verification - 5th International Conference, RV 2014,
Toronto, ON, Canada, September 22-25, 2014. Proceedings, volume 8734
of Lecture Notes in Computer Science, pages 178–192. Springer, 2014.

[HSP13] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1
query language. W3C recommendation, 21(10), 2013.

[JMS+08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jen-
nifer Widom, Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack,
Richard Tibbetts, and Stanley B. Zdonik. Towards a Streaming SQL
Standard. Proceedings of the VLDB Endowment, 1(2):1379–1390, 2008.

[JST+09] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca Braynard. Networking Named Content. In
Jörg Liebeherr, Giorgio Ventre, Ernst W. Biersack, and Srinivasan Keshav,
editors, Proceedings of the 2009 ACM Conference on Emerging Networking
Experiments and Technology, CoNEXT 2009, Rome, Italy, December 1-4,
2009, pages 1–12. ACM, 2009.

[KBJ+16] Evgeny Kharlamov, Sebastian Brandt, Ernesto Jiménez-Ruiz, Yannis Ko-
tidis, Steffen Lamparter, Theofilos Mailis, Christian Neuenstadt, Özgür L.
Özçep, Christoph Pinkel, Christoforos Svingos, Dmitriy Zheleznyakov, Ian
Horrocks, Yannis E. Ioannidis, and Ralf Möller. Ontology-Based Integra-
tion of Streaming and Static Relational Data with Optique. In Fatma
Özcan, Georgia Koutrika, and Sam Madden, editors, Proceedings of the
2016 International Conference on Management of Data, SIGMOD Con-
ference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
2109–2112. ACM, 2016.

258

[KHD08] Jonas Kvarnström, Fredrik Heintz, and Patrick Doherty. A Temporal Logic-
Based Planning and Execution Monitoring System. In Jussi Rintanen,
Bernhard Nebel, J. Christopher Beck, and Eric A. Hansen, editors, Proceed-
ings of the Eighteenth International Conference on Automated Planning
and Scheduling, ICAPS 2008, Sydney, Australia, September 14-18, 2008,
pages 198–205. AAAI, 2008.

[Koy90] Ron Koymans. Specifying Real-Time Properties with Metric Temporal
Logic. Real-Time Systems, 2(4):255–299, 1990.

[Lem06] Daniel Lemire. Streaming Maximum-Minimum Filter Using No More
than Three Comparisons per Element. Nordic Journal of Computing,
13(4):328–339, 2006.

[Lif08] Vladimir Lifschitz. Twelve Definitions of a Stable Model. In de la Banda
and Pontelli [dlBP08], pages 37–51.

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Tempo-
ral Logic with Forgettable Past. In 17th IEEE Symposium on Logic in
Computer Science, LICS 2002, 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 383–392. IEEE Computer Society, 2002.

[LMT+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. Semantics and Evaluation Techniques for Window Aggregates in
Data Streams. In Fatma Özcan, editor, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Baltimore, Maryland,
USA, June 14-16, 2005, pages 311–322. ACM, 2005.

[LN09] Claire Lefèvre and Pascal Nicolas. The First Version of a New ASP Solver :
ASPeRiX. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic
Programming and Nonmonotonic Reasoning, 10th International Conference,
LPNMR 2009, Potsdam, Germany, September 14-18, 2009. Proceedings,
volume 5753 of Lecture Notes in Computer Science, pages 522–527. Springer,
2009.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-
lob, Simona Perri, and Francesco Scarcello. The DLV system for knowledge
representation and reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

[LPV01] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly Equiva-
lent Logic Programs. ACM Transactions on Computational Logic, 2(4):526–
541, 2001.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The Glory of the
Past. In Rohit Parikh, editor, Logics of Programs, Conference, Brooklyn

259

College, New York, NY, USA, June 17-19, 1985, Proceedings, volume 193
of Lecture Notes in Computer Science, pages 196–218. Springer, 1985.

[LS95] François Laroussinie and Philippe Schnoebelen. A Hierarchy of Temporal
Logics with Past. Theoretical Computer Science, 148(2):303–324, 1995.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. The Journal of Logic and Algebraic Programming, 78(5):293–
303, 2009.

[LSC91] Guy M. Lohman, Amílcar Sernadas, and Rafael Camps, editors. 17th
International Conference on Very Large Data Bases, September 3-6, 1991,
Barcelona, Catalonia, Spain, Proceedings. Morgan Kaufmann, 1991.

[Luc96] David C. Luckham. Rapide: A Language and Toolset for Simulation
of Distributed Systems by Partial Orderings of Events. In Doron A.
Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors, Partial Order
Methods in Verification, Proceedings of a DIMACS Workshop, Princeton,
New Jersey, USA, July 24-26, 1996, volume 29 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, pages 329–358.
DIMACS/AMS, 1996.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[LV95] David C. Luckham and James Vera. An Event-Based Architecture Defini-
tion Language. IEEE Transactions on Software Engineering, 21(9):717–734,
1995.

[MAPH13] Alessandra Mileo, Ahmed Abdelrahman, Sean Policarpio, and Manfred
Hauswirth. StreamRule: A Nonmonotonic Stream Reasoning System for
the Semantic Web. In Web Reasoning and Rule Systems - 7th International
Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings,
volume 7994 of Lecture Notes in Computer Science, pages 247–252. Springer,
2013.

[Mar03] Nicolas Markey. Temporal logic with past is exponentially more succinct,
Concurrency Column. Bulletin of the EATCS, 79:122–128, 2003.

[MC11] Alessandro Margara and Gianpaolo Cugola. Processing flows of informa-
tion: from data stream to complex event processing. In David M. Eyers,
Opher Etzion, Avigdor Gal, Stanley B. Zdonik, and Paul Vincent, editors,
Proceedings of the Fifth ACM International Conference on Distributed
Event-Based Systems, DEBS 2011, New York, NY, USA, July 11-15, 2011,
pages 359–360. ACM, 2011.

260

[MCCD18] Alessandro Margara, Gianpaolo Cugola, Dario Collavini, and Daniele
Dell’Aglio. Efficient Temporal Reasoning on Streams of Events with
DOTR. In Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal
Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and Mehwish Alam,
editors, The Semantic Web - 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3-7, 2018, Proceedings, volume 10843 of
Lecture Notes in Computer Science, pages 384–399. Springer, 2018.

[McD91] Drew V. McDermott. A General Framework for Reason Maintenance.
Artificial Intelligence, 50(3):289–329, 1991.

[MDEF17] Alessandra Mileo, Minh Dao-Tran, Thomas Eiter, and Michael Fink.
Stream Reasoning. In Encyclopedia of Database Systems, 2nd edition,
page 7 pp. Springer Science+Business Media, 2017.

[MN04] Oded Maler and Dejan Nickovic. Monitoring Temporal Properties of
Continuous Signals. In Yassine Lakhnech and Sergio Yovine, editors,
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal Modelling and Analysis
of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time
and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September
22-24, 2004, Proceedings, volume 3253 of Lecture Notes in Computer
Science, pages 152–166. Springer, 2004.

[MN13] Oded Maler and Dejan Nickovic. Monitoring properties of analog and mixed-
signal circuits. International Journal on Software Tools for Technology
Transfer, 15(3):247–268, 2013.

[MNPH15] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks.
Incremental update of datalog materialisation: the backward/forward
algorithm. In Bonet and Koenig [BK15], pages 1560–1568.

[MT91] V. Wiktor Marek and Miroslaw Truszczynski. Autoepistemic Logic. Journal
of the ACM, 38(3):588–619, 1991.

[MW18] Sheila A. McIlraith and Kilian Q. Weinberger, editors. Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA, February 2-7, 2018. AAAI Press, 2018.

[NM07] Dejan Nickovic and Oded Maler. AMT: A Property-Based Monitoring
Tool for Analog Systems. In Jean-François Raskin and P. S. Thiagarajan,
editors, Formal Modeling and Analysis of Timed Systems, 5th Interna-
tional Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007,
Proceedings, volume 4763 of Lecture Notes in Computer Science, pages
304–319. Springer, 2007.

261

[NM14] Matthias Nickles and Alessandra Mileo. Web Stream Reasoning Using Prob-
abilistic Answer Set Programming. In Web Reasoning and Rule Systems -
8th International Conference, RR 2014, Athens, Greece, September 15-17,
2014. Proceedings, volume 8741 of Lecture Notes in Computer Science,
pages 197–205. Springer, 2014.

[NM15] Matthias Nickles and Alessandra Mileo. A Hybrid Approach to Inference
in Probabilistic Non-Monotonic Logic Programming. In Proceedings of
the 2nd International Workshop on Probabilistic Logic Programming co-
located with 31st International Conference on Logic Programming, ICLP
2015, Cork, Ireland, August 31st, 2015, volume 1413 of CEUR Workshop
Proceedings, pages 57–68. CEUR-WS.org, 2015.

[OJ06] Emilia Oikarinen and Tomi Janhunen. Modular Equivalence for Normal
Logic Programs. In Gerhard Brewka, Silvia Coradeschi, Anna Perini, and
Paolo Traverso, editors, 17th European Conference on Artificial Intelligence,
ECAI 2006, August 29-September 1, 2006, Riva del Garda, Italy, Including
Prestigious Applications of Intelligent Systems, PAIS 2006, Proceedings,
volume 141 of Frontiers in Artificial Intelligence and Applications, pages
412–416. IOS Press, 2006.

[ÖMN15] Özgür Lütfü Özçep, Ralf Möller, and Christian Neuenstadt. Stream-
Query Compilation with Ontologies. In Bernhard Pfahringer and Jochen
Renz, editors, Advances in Artificial Intelligence - 28th Australasian Joint
Conference, AI 2015, Canberra, ACT, Australia, November 30 - December
4, 2015, Proceedings, volume 9457 of Lecture Notes in Computer Science,
pages 457–463. Springer, 2015.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and Com-
plexity of SPARQL. ACM Transactions on Database Systems, 34(3):16:1–
16:45, 2009.

[PD99] Norman W. Paton and Oscar Díaz. Active Database Systems. ACM
Computing Surveys, 31(1):63–103, 1999.

[PDP+12] Danh Le Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter A. Boncz, Thomas
Eiter, and Michael Fink. Linked Stream Data Processing Engines: Facts
and Figures. In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania
Tudorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira,
Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist,
editors, The Semantic Web - ISWC 2012 - 11th International Semantic
Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings,
Part II, volume 7650 of Lecture Notes in Computer Science, pages 300–312.
Springer, 2012.

262

[PDPH11] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A Native and Adaptive Approach for Unified Processing of
Linked Streams and Linked Data. In Lora Aroyo, Chris Welty, Harith
Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman
Noy, and Eva Blomqvist, editors, The Semantic Web - ISWC 2011 - 10th
International Semantic Web Conference, Bonn, Germany, October 23-27,
2011, Proceedings, Part I, volume 7031 of Lecture Notes in Computer
Science, pages 370–388. Springer, 2011.

[PDPR09] Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco
Rossi. Answer Set Programming with Constraints Using Lazy Grounding.
In Patricia M. Hill and David Scott Warren, editors, Logic Programming,
25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-
17, 2009. Proceedings, volume 5649 of Lecture Notes in Computer Science,
pages 115–129. Springer, 2009.

[Pea06] David Pearce. Equilibrium logic. Annals of Mathematics and Artificial
Intelligence, 47(1-2):3–41, 2006.

[PMA17] Thu-Le Pham, Alessandra Mileo, and Muhammad Intizar Ali. Towards
Scalable Non-Monotonic Stream Reasoning via Input Dependency Analysis.
In 33rd IEEE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, April 19-22, 2017, pages 1553–1558. IEEE Computer
Society, 2017.

[PNPH12] Danh Le Phuoc, Hoan Quoc Nguyen-Mau, Josiane Xavier Parreira, and
Manfred Hauswirth. A Middleware Framework for Scalable Management
of Linked Streams. Journal of Web Semantics, 16:42–51, 2012.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, FOCS 1977, Providence, Rhode
Island, USA, 31 October-1 November 1977, pages 46–57. IEEE Computer
Society, 1977.

[Pol07] Axel Polleres. From SPARQL to rules (and back). In Carey L. Williamson,
Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy,
editors, Proceedings of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages 787–796.
ACM, 2007.

[Pri67] Arthur Prior. Past, Present and Future. Oxford University Press, 1967.

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot
operating system. In ICRA Workshop on Open Source Software, 2009.

263

[RCN+17] Xiangnan Ren, Olivier Curé, Hubert Naacke, Jérémy Lhez, and Li Ke.
Striderr: Massive and distributed RDF graph stream reasoning. In Jian-
Yun Nie, Zoran Obradovic, Toyotaro Suzumura, Rumi Ghosh, Raghunath
Nambiar, Chonggang Wang, Hui Zang, Ricardo A. Baeza-Yates, Xiaohua
Hu, Jeremy Kepner, Alfredo Cuzzocrea, Jian Tang, and Masashi Toyoda,
editors, 2017 IEEE International Conference on Big Data, BigData 2017,
Boston, MA, USA, December 11-14, 2017, pages 3358–3367. IEEE, 2017.

[Rei80] Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence,
13(1-2):81–132, 1980.

[RKG+18] Alessandro Ronca, Mark Kaminski, Bernardo Cuenca Grau, Boris Motik,
and Ian Horrocks. Stream Reasoning in Temporal Datalog. In McIlraith
and Weinberger [MW18].

[RN01] Jochen Renz and Bernhard Nebel. Efficient Methods for Qualitative Spatial
Reasoning. Journal of Artificial Intelligence Research, 15:289–318, 2001.

[RP11] Yuan Ren and Jeff Z. Pan. Optimising Ontology Stream Reasoning with
Truth Maintenance System. In Proceedings of the 20th ACM Conference on
Information and Knowledge Management, CIKM 2011, Glasgow, United
Kingdom, October 24-28, 2011, pages 831–836. ACM, 2011.

[Sav70] Walter J. Savitch. Relationships Between Nondeterministic and Deter-
ministic Tape Complexities. Journal of Computer and System Sciences,
4(2):177–192, 1970.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The Complexity of Propositional
Linear Temporal Logics. Journal of the ACM, 32(3):733–749, 1985.

[SJ96] Martin Staudt and Matthias Jarke. Incremental Maintenance of Externally
Materialized Views. In T. M. Vijayaraman, Alejandro P. Buchmann,
C. Mohan, and Nandlal L. Sarda, editors, VLDB’96, Proceedings of 22th
International Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, pages 75–86. Morgan Kaufmann, 1996.

[SPAM91] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An
Architecture for Transforming a Passive DBMS into an Active DBMS. In
Lohman et al. [LSC91], pages 469–478.

[Ste97] Robert Stephens. A Survey of Stream Processing. Acta Informatica,
34(7):491–541, 1997.

[SW04] Utkarsh Srivastava and Jennifer Widom. Flexible Time Management in
Data Stream Systems. In Proceedings of the 23rd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 14-16, 2004,
Paris, France, pages 263–274. ACM, 2004.

264

[SW18] Torsten Schaub and Stefan Woltran. Special Issue on Answer Set Program-
ming. KI, 32(2-3):101–103, 2018.

[TGNO92] Douglas B. Terry, David Goldberg, David A. Nichols, and Brian M. Oki.
Continuous Queries over Append-Only Databases. In Michael Stonebraker,
editor, Proceedings of the 1992 ACM SIGMOD International Conference
on Management of Data, San Diego, California, USA, June 2-5, 1992.,
pages 321–330. ACM Press, 1992.

[TH16] Mattias Tiger and Fredrik Heintz. Stream Reasoning Using Temporal Logic
and Predictive Probabilistic State Models. In Curtis E. Dyreson, Michael R.
Hansen, and Luke Hunsberger, editors, 23rd International Symposium on
Temporal Representation and Reasoning, TIME 2016, Kongens Lyngby,
Denmark, October 17-19, 2016, pages 196–205. IEEE Computer Society,
2016.

[Tur01] Hudson Turner. Strong Equivalence for Logic Programs and Default
Theories (Made Easy). In Thomas Eiter, Wolfgang Faber, and Miroslaw
Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning,
6th International Conference, LPNMR 2001, Vienna, Austria, September
17-19, 2001, Proceedings, volume 2173 of Lecture Notes in Computer
Science, pages 81–92. Springer, 2001.

[VGRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The Well-founded
Semantics for General Logic Programs. Journal of the ACM, 38(3):619–649,
July 1991.

[VSM05] Raphael Volz, Steffen Staab, and Boris Motik. Incrementally Maintaining
Materializations of Ontologies Stored in Logic Databases. Journal on Data
Semantics, 2:1–34, 2005.

[Wan08] Jason Tsong-Li Wang, editor. Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008. ACM, 2008.

[WC96] Jennifer Widom and Stefano Ceri, editors. Active Database Systems:
Triggers and Rules For Advanced Database Processing. Morgan Kaufmann,
1996.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance Complex
Event Processing over Streams. In Surajit Chaudhuri, Vagelis Hristidis, and
Neoklis Polyzotis, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, USA, June 27-29,
2006, pages 407–418. ACM, 2006.

[Wei17] Antonius Weinzierl. Blending Lazy-Grounding and CDNL Search for
Answer-Set Solving. In Marcello Balduccini and Tomi Janhunen, editors,

265

Logic Programming and Nonmonotonic Reasoning - 14th International Con-
ference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume
10377 of Lecture Notes in Computer Science, pages 191–204. Springer, 2017.

[Wol04] Stefan Woltran. Characterizations for relativized notions of equivalence in
answer set programming. In José Júlio Alferes and João Alexandre Leite,
editors, Logics in Artificial Intelligence, 9th European Conference, JELIA
2004, Lisbon, Portugal, September 27-30, 2004, Proceedings, volume 3229
of Lecture Notes in Computer Science, pages 161–173. Springer, 2004.

[WYG+07] Kun-Lung Wu, Philip S. Yu, Bugra Gedik, Kirsten Hildrum, Charu C. Ag-
garwal, Eric Bouillet, Wei Fan, David George, Xiaohui Gu, Gang Luo, and
Haixun Wang. Challenges and Experience in Prototyping a Multi-Modal
Stream Analytic and Monitoring Application on System S. In Christoph
Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl
Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh
Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,
Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, September 23-27, 2007, pages 1185–1196.
ACM, 2007.

[XCK+18] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo,
Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev. Ontology-
Based Data Access: A Survey. In Jérôme Lang, editor, Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 5511–5519.
ijcai.org, 2018.

[Zan12] Carlo Zaniolo. Logical Foundations of Continuous Query Languages for
Data Streams. In Datalog in Academia and Industry - 2nd International
Workshop, Datalog 2.0, Vienna, Austria, September 11-13, 2012. Proceed-
ings, volume 7494 of Lecture Notes in Computer Science, pages 177–189.
Springer, 2012.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster Computing with Working Sets. In Erich M.
Nahum and Dongyan Xu, editors, 2nd USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud’10, Boston, MA, USA, June 22, 2010.
USENIX Association, 2010.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized Streams: Fault-tolerant Streaming Computation
at Scale. In Michael Kaminsky and Mike Dahlin, editors, ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013, pages 423–438. ACM, 2013.

266

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-
man, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache Spark: a Unified Engine for Big Data Processing.
Communications of the ACM, 59(11):56–65, 2016.

267

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Problem Statement
	Contributions and Thesis Structure

	State of the Art
	Rule-based Programming
	Declarative Programming with Rules
	Answer Set Programming

	Stream Processing and Reasoning
	Temporal Reasoning and Verification
	Stream Processing and Data Management
	Complex Event Processing
	Semantic Web
	Knowledge Representation and Reasoning

	LARS: A Logic-based Framework for Analytic Reasoning over Streams
	Streams and Windows
	Streaming Data
	Windows
	Time-based Window
	Tuple-based Window
	Partition-based Window
	Filter Window
	Windows with Access to the Future

	The LARS Framework
	LARS Formulas
	LARS Programs
	Semantic Properties of LARS Programs
	Case Study: LARS as Specification Language

	Computational Complexity of Reasoning in LARS
	Problem Statements and Overview of Results
	Derivation of the Complexity Results
	Bounded Window Nesting
	Semantic Restriction: Sparse Window Functions

	Summary

	Relating LARS to other Formalisms
	Answer Set Programming (ASP): Plain LARS
	Linear Temporal Logic (LTL)
	Continuous Query Language (CQL)
	Complex Event Processing: ETALIS
	Semantic Web: C-SPARQL, CQELS
	Discussion

	Semantic Characterizations of Equivalent LARS Programs
	Equivalence Notions
	Bi-Structural LARS Evaluation
	Characterizing Answer Streams
	Characterizing Equivalence Notions
	LARS Here-and-There and Monotone Windows
	Computational Complexity of Deciding Equivalences
	Discussion and Related Work

	Incremental Reasoning for Plain LARS Programs
	Core Idea
	Formalizing Justification-based Truth Maintenance Systems (JTMS)
	Truth Maintenance Networks
	The Truth Maintenance Algorithm
	Extending JTMS: Removing Rules
	Analysis of JTMS

	Static Encoding: Plain LARS to ASP
	Tick Streams
	Translation

	Incremental Encoding: Program and Model Update
	Incremental Translation
	Incremental Evaluation

	Further Work
	Truth Maintenance for Answer Streams
	The Laser Stream Reasoning Engine

	Discussion and Related Work

	The Ticker Engine
	Introduction
	Ticker Programs
	Configuration: Runtime Options

	Incremental Encoding Revisited
	Pre-grounding
	Incremental Translation
	Incremental Evaluation

	Implementation
	Architecture
	ASP Reasoner
	Incremental Reasoner

	Empirical Evaluation
	Setup
	Benchmark Programs
	Results

	Discussion

	Conclusion
	Summary
	Outlook

	Proofs
	LARS: A Logic-based Framework for Analytic Reasoning over Streams
	Relating LARS to other Formalisms
	Continuous Query Language (CQL)
	Complex Event Processing: ETALIS

	Ticker
	Detailled Evaluation Results

	Bibliography

