
Public Wi-Fi Hotspots in the Wild
Revealing vulnerabilities and restrictions for

ordinary hotspot users

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Stefanie Plieschnegger, BSc
Matrikelnummer 0926102

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Adrian Dabrowski, BSc

Wien, 10. Oktober 2018
Stefanie Plieschnegger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Public Wi-Fi Hotspots in the Wild
Revealing vulnerabilities and restrictions for

ordinary hotspot users

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Stefanie Plieschnegger, BSc
Registration Number 0926102

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Adrian Dabrowski, BSc

Vienna, 10th October, 2018
Stefanie Plieschnegger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Stefanie Plieschnegger, BSc
Artholdgasse 2/3/42, 1100 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Oktober 2018
Stefanie Plieschnegger

v

Kurzfassung

Diese Arbeit evaluiert welchen Gefahren Nutzern von offenen Wi-Fi Hotspots in der
Realität ausgesetzt sind. Es ist allgemein bekannt, dass unverschlüsselte Netzwerke
abgehört und gesendete Daten in weiterer Folge missbraucht werden können. Im Zuge
einer Feldstudie untersuchten wir offene Wi-Fi Hotspots aus dem echten Leben. Dabei
wurden Zugangsdaten im Netzwerk gestreut, die als Köder dienen sollten.

Mithilfe eine Android App wurde die Studie umgesetzt. Diese konnte sich selbstständig zu
offenen Wi-Fi Hotspots verbinden, gegebenenfalls mit Captive Portals interagieren, und
Daten über das Netzwerk senden. Dabei wurden User Sessions über HTTP, FTP, SMTP
und IMAP simuliert. Diese Protokolle sind vor Natur aus unverschlüsselt. Wir achteten
darauf, dass für jeden Login andere und eindeutig indentifizierbare Zugangsdaten
verwendet wurden. Außerdem waren wir unter Kontrolle des Servers, der diese Services
verwaltete. Das ermöglichte uns Angreifer zu entdecken, da die Logindaten ein weiteres
Mal verwendet worden wären.
Darüberhinaus, evaluierten wir generelle Einschränkungen, die in Verbindung mit dem
jeweiligen Hotspot standen, wie z.B. Content Filter.
Während dem Zeitraum von über vier Monaten, testeten wir zahlreiche offene Wi-Fi
Hotspots in sieben Ländern und initiierten dabei tausende Logindaten. Die Server mit
den laufenden Services blieb noch einige Monate aktiv, aber wir konnten keine wiederver-
wendeten Login Daten identifizieren. Jedoch fanden wir heraus, dass einige Hotspots
Daten über SMTP abfangen. Außerdem konnten wir feststellen, dass jeder vierte Captive
Portal geschützte Hotspot, HTTPS Verbindungen manipulierte, solange der Nutzer
sich noch nicht authentiziert hatte. Das führte folglich zu Zertifikatsfehlermeldungen.
Außerdem konnten wir unterschiedlichen Content Filter Strategien aufdecken. Die am
öftesten blockierten Inhalte betrafen Streamingseiten mit potenziellen Raubkopien, sowie
pornographische Webseiten.

Wir konnten keine Netzwerkangreifer identifizieren, die unsere gestreuten Logindaten wie-
derverwendeten. Allerdings zeigt diese Feldstudie nur einen kleinen Ausschnitt der realen
Welt. Nichtsdestotrotz konnten wir einige bedenkliche Abfangmechanismen feststellen.
Darüberhinaus erhielten wir Einblick über aktuelle Wi-Fi Netzwerkkonfigurationen, vor
allem in Hinsicht auf Content Filter Strategien.

vii

Abstract

This thesis evaluates vulnerabilities that hotspot users face when using real-world public
Wi-Fi hotspots. It is well-known that network traffic in unencrypted networks can be
sniffed and intercepted. In a field study we assessed such Wi-Fi networks in the wild.

We designed an Android app that automatically connects to public Wi-Fi hotspots,
interacts with captive portals, and sends bait credentials over the network. Those
credentials are part of simulated user sessions for unencrypted protocols over HTTP,
FTP, SMTP, and IMAP. We controlled the server offering those services and ensured
that for every simulated session, unique credentials were used. Thus, in case someone
sniffed the data, and tried to use this login credentials, we would have been able to
identify this attack. Moreover, we evaluated some general configurations of the hotspots
like content filtering.
Within over four month, we tested various public Wi-Fi hotspots in seven countries,
sending thousands of bait credentials. The services on the bait server kept running for a
few more months, but were not able to reveal any network sniffing attacks.
However, we revealed that a minority of public Wi-Fi hotspots intercepted SMTP traffic.
We also found that every fourth captive-portal-protected Wi-Fi network tampered with
HTTPS connections before a successful authentication and thereby triggered certificate
errors. Moreover, we experienced various content filtering techniques and found that
streaming services with potentially pirated content, and pornographic websites were
blocked most frequently.

During our field study we could not detect any network sniffing attack, however, we
only provided a snapshot of public Wi-Fi hotspots in the wild. We identified some
alarming interception techniques. Moreover, we gained some insights about current
network configuration decisions, especially regarding trends of blocking certain website
content.

ix

Contents

1 Introduction 1

2 Motivation 3

3 Background 5
3.1 Wi-Fi Hotspots and Captive Portals 5
3.2 Honey Traffic . 8
3.3 Protocols . 8
3.4 SSL Stripping . 10
3.5 Port Testing . 11
3.6 Tunneling Techniques . 12
3.7 IPv4 vs. IPv6 . 16

4 Related Work 17

5 Analyzing Public Wi-Fi Hotspots 21
5.1 Threats and Attackers . 21
5.2 Overview of Procedure and Testing . 23
5.3 The Measurement Procedure in a Nutshell 26

6 Design and Implementation 29
6.1 Measurement Server . 29
6.2 Android Client Application . 34
6.3 Pre-Authentication Tests . 43
6.4 Post-Authentication Tests . 45

7 Field Study 51
7.1 Preparation . 51
7.2 Timeline . 51
7.3 Test Devices and Volunteers . 52
7.4 Locations . 52
7.5 Updates of Testing Scenarios and App Updates 53
7.6 Interruptions . 53

xi

8 Results 55
8.1 Data Cleansing . 55
8.2 General Data Collection . 58
8.3 Captive Portals . 60
8.4 Pre-Authentication Test Results . 62
8.5 Post-Authentication Test Results . 66
8.6 Other Observations . 76

9 Discussion 79

10 Conclusion 83

List of Figures 85

List of Tables 87

Acronyms 89

Bibliography 91

CHAPTER 1
Introduction

Public Wi-Fi hotspots have become an integral part of most cities, providing people
free access to the internet. Nowadays, it is kind of an expected service in restaurants,
bars, airports, hotels etc. The provided hotspots are usually open, meaning there is no
encryption in place between client and access point. A recent study [117] (2017) reveals
that access to public Wi-Fi is a strong deciding factor for people when choosing an
accommodation (71%), or even when eating out (43%). Nearly half of the respondents
name being able to navigate as one of the most important reasons to Wi-Fi access.
Similar figures can be witnessed in a Kaspersky study [62], focusing on people traveling
abroad either for leisure or work, which shows that three in four traveler connect to
public Wi-Fi.
This high numbers of Wi-Fi users may not be surprising considering the digital age we
are living in and the shift towards carrying a smartphone everywhere one goes. Despite
the wide distribution and availability of mobile data, the high costs and limited data
allowance explain the popularity of public Wi-Fi hotspots, especially when being abroad.

However, many users are not aware of the downside when accessing public Wi-Fi hotspots:
unencrypted traffic can easily be eavesdropped and misused. Thus users are responsible
to ensure their traffic is secure and cannot be sniffed. Users failing to do so will face
various security and privacy risks, understandably depending on their individual habits
of using the Wi-Fi network. Moreover, one may not consider traffic that is not initiated
manually by the user but rather sent in the background automatically, potentially using
unsecured protocols. This could be an email program synchronizing, or an app pushing
or pulling data from a server and sending confidential data or login credentials in plain text.

While it is not a secret that traffic sniffing is possible in theory, people seem to feel it
is unlikely to happen in real life. One good example may be the Wall of Sheep [91],

1

1. Introduction

a project started at the security conference Defcon1, with the goal of revealing any
sensitive data that is sent in plain text through the public network. Although the hosted
audience could be considered as being tech-savvy and security aware a lot of people
ended up on that wall, exposing usernames and passwords.

Considering that exploitation of sniffed data may happen at a later point and could even
be unnoticed, public Wi-Fi users may have a wrong feeling of security. The Norton Wi-Fi
risk report [117] outlines that 60% of respondents claimed to feel at least "somewhat
safe" when using public Wi-Fi. 25% stated that they use a Virtual Private Network
(VPN) connection. However, the study does not provide any data regarding the use of
HTTPS. Another study [73] conducted in Australia, revealed that about 27% of active
Wi-Fi users perceive public Wi-Fi as secure and 12% claimed being unsure about the
security. Nevertheless there still seems to be an educational need regarding security.

Wi-Fi users face various threats when connecting and using public hotspots. This thesis
aims to evaluate vulnerabilities that could endanger genuine users in the real world when
connecting to public Wi-Fi hotspots. We address active and passive attack scenarios. In
a field study we use an Android app that connects to public Wi-Fi hotspots nearby and
analyzes the networks. In order to identify network sniffers, honey traffic is created and
sent over the network. Therefore, user sessions are simulated over FTP, IMAP, SMTP
and HTTP. These commonly used protocols are unencrypted by default and thus an
attacker could intercept the login credentials and reuse those by accessing the honey
services on our server.
Besides the honey traffic distribution we also verify expected banners, a greeting text
returned upon successful connection to FTP, IMAP and SMTP services. Other tested
active attack scenarios include redirection, and modified website content.
In addition, we assess general restrictions dictated by the network. This includes denied
access to certain website categories, and port restrictions. Moreover, we check the Wi-Fi
hotspots for captive portals and test common authentication circumvention techniques.

Due to the requirement of testing real public Wi-Fi networks, which require physical
presence, the field study is mainly focusing on hotspots around Vienna.
Naturally, the outcome of this study will only give a limited snapshot of the real world.

1https://www.defcon.org

2

https://www.defcon.org

CHAPTER 2
Motivation

Recent numbers suggest that web pages loaded over HTTPS are rising and make up over
60% [52], [40]. However, those figures only count websites and therefore just represents
a subset of protocols used in daily online communication. Email clients, for example,
usually synchronize automatically in the background and for most users it will not be
that obvious if the used protocol uses encryption or not.
The main concerns of public Wi-Fi hotspots may be the trustworthiness of providers,
and unencrypted traffic. A Wi-Fi hotspot provider controls the traffic that is going
in and out of the network, and this consequently allows the provider to monitor,
analyze, block, interfere, and eavesdrop the content that is going through the access
point. Assuming you fully trust the hotspot provided by your favorite coffee shop
in terms that your data will not be processed, analyzed, or misused. Even in that
case, there are two scenarios to keep in mind: first, anyone who connects to this
public Wi-Fi hotspot could sniff all packets that are sent and routed through the
network, without leaving any traces. Second, you may be connected with a rogue
hotspot: a Wi-Fi network with the sole purpose of intercepting, or eavesdropping
data. In order to gain trust, they could assign the network a name you already trust
(also known as evil twin attack [84]), or use a very common one like "Free guest wifi".
Such Wi-Fi hotspots can be setup easily, with low costs but potentially high impact.

Another consideration point regarding public Wi-Fi hotspots are the terms and
regulations that are forced onto users, by the provider. First of all, most public networks
nowadays are using a captive portal, e.g., a landing page the user will be redirected to.
Depending on the setup and requirements the user have to acknowledge conditions for
use, or even provide detailed personal information [64].
Moreover, the provider may restrict what kind of services or websites the user can
access. Some providers may decide to block SMTP traffic entirely to prevent any
potential misuse by spammers. Others may block content that could be considered as

3

2. Motivation

inappropriate or even illegal, for example file sharing websites, pornography, or certain
blogs. In order to limit the consumed data volume even popular legal streaming services
could be cut off.

To the best of our knowledge there have been no prior similar studies on public Wi-Fi
networks in the wild that included testing vulnerabilities and restrictions for genuine
users.

4

CHAPTER 3
Background

3.1 Wi-Fi Hotspots and Captive Portals
Public (or open) Wi-Fi hotspots are wireless access points which are not using any
encryption and are accessible for everyone.
While pure connection to the hotspot does not require a password, most of these hotspots,
however, present the user a captive portal. This is a common approach where the user
is facing a website (the captive portal landing page) that the browser will be redirected
to. The user will then have to actively interact with the captive portal, before internet
access is granted [64]. We refer to this procedure as authentication or login.
Usually any outgoing network traffic will be blocked before successful authentication.
Figure 3.1 shows a simplified example of how this may work:

Step 1: The user has already connected to the public Wi-Fi hotspot, and tries to
access the website example.com over a web browser.

Step 2: The hotspot answers with a redirect to the captive portal landing page. In
this example, the redirect is going to captive-portal-login.html. As
a result the user’s browser will automatically follow to the redirected website.

Step 3: Now the user has to interact with the captive portal, e.g., by accepting terms,
clicking a button, providing personal information or the like. Normally the
user will then be notified if the authentication was successful.

Step 4: The user is authenticated and the Wi-Fi hotspot will allow outgoing connec-
tion and accessing the internet. Consequently the user is now able to request
example.com.

Normally a user would have to confirm some terms and conditions for legal reasons.
Some captive portals even require login via social media accounts, or ask for detailed

5

3. Background

Figure 3.1: Captive portal authentication

information via a form [48]. Other captive portals may restrict the use to authorized
users only, and ask for additional login credentials, or a token in order to log in. Providers
could also request payment in turn for using the Wi-Fi.

Depending on the actual hotspot, the provided internet services may be restricted, even
after successful authentication. Further restrictions could include a limited data or time
usage, and blocked or filtered services or websites, etc.

Considering the process of interaction with the captive portal, we are distinguishing three
stages:

• Pre-Authentication The user is connected to the Wi-Fi access point.

• Captive Portal Login It is tested whether a captive portal can be detected and
if so, the authentication procedure is conducted. Depending on the captive portal
this may involve various steps.

• Post-Authentication The authentication (if any) was successful and internet
access has been granted. Note that if the authentication was unsuccessful, this

6

3.1. Wi-Fi Hotspots and Captive Portals

stage will not be reached.

3.1.1 Captive Portal Redirection Methods

In order to present the user with this captive portal screen when connecting to the Wi-Fi,
the traffic of the user is intercepted and altered to force a redirection to the captive
portal. This usually happens within the web browser. When redirecting HTTP requests,
the captive portal could sends a HTTP response code 3xx indicating a redirect, that the
browser will follow [48], [16]. However, the HTTP response may also be 511 Network
Authentication Required, which is a new proposed response code, that is recommended in
order to identify a captive portal [87]. Other techniques for redirection include Domain
Name System (DNS) [102] and Internet Control Message Protocol (ICMP) [96]. Devices
that do not support web browsers are potentially cut off by these approaches by design [48].

This behavior of altering and modifying responses classifies as a Man-in-the-Middle
(MitM) attack and therefore raises concerns. Especially handling of HTTPS requests
(before the user is authenticated) are an important issue. Some captive portals may try
to redirect those ones as well, resulting in certificate errors [104] and forcing users to
ignore such warnings. This is not only bad practice, but also trains the user to dismiss
any security warnings in order to make it work [10]. Suggested ways of handling HTTPS
requests would simply be allowing or blocking all HTTPS traffic instead of redirecting
[104].

3.1.2 Captive Portal Detection

To prevent those kind of errors, many clients have a built-in captive portal detection,
which notifies the whenever a network requires a sign-in. The check is conducted by
the Operating System (OS) directly or by a web browser. Usually the captive portal is
detected by testing a reserved website (note that the request will be over HTTP) and
comparing the expected response with the actual one. On Android for example, the OS
will test automatically if unrestricted Wi-Fi is available once a connection to a Wi-Fi
network has been established. For this check, Android calls a website which is expected to
return an empty body and response code 204 [2]. If the result is different than expected,
the user will be notified and prompted with the sign-in screen of the captive portal.
Microsoft Windows has a documented captive portal detection, which will automatically
start a browser presenting the user the redirected website [76]. Apple provides an
automatic detection on OSX and iOS as well [1]. In addition, some browsers have similar
functionality like Firefox, which is also testing for a specific website, expecting success as
response [3].

7

3. Background

3.2 Honey Traffic

Honey traffic relates to the commonly known term honeypot. A honeypot is a mechanism
deployed in a network (either physical or virtual) to attract attackers while being closely
monitored and analyzed in order to identify any unusual behavior in the network [101].
In this thesis, honey traffic is used to describe unencrypted traffic that is spread over a
public Wi-Fi network. This decoy content contains login credentials for different services
about which we assume the attacker is potentially interested in gaining access to. As
neither the network nor the traffic is encrypted, a person with malicious intent could
simply eavesdrop the network traffic and extract the relevant login credentials.

3.3 Protocols

In the following some widespread protocols are explained. Although, secure extensions
are available, it is not unusual to find those unencrypted protocols in practice. It is also
possible that secure connection attempts are intercepted and stripped off. This attack
that will be explained in more detail in section 3.4.

3.3.1 HTTP

Hypertext Text Transfer Protocol (HTTP) is the standard protocol for browsing the web,
and is normally running over port 80 [44]. Sending sensitive data over HTTP (including
forms using GET and POST requests) transmits the data in plain text.

Hypertext Transfer Protocol Secure (HTTPS) is the encrypted version with the default
port 443 [44]. According recent statistics by Let’s Encrypt [40] and Google [52], the
encrypted web pages sum up to 60-80% of current traffic, which still leaves 20-40%
unencrypted.
Encrypted web sites should prevent eavesdropping and manipulation of the traffic.
However, also encrypted web sites may be vulnerable to attacks, depending on the actual
encryption standard used [106]. The current standard and proposed protocol is Transfer
Layer Security (TLS) 1.2, but older versions are still in use for backwards compatibility
reasons with clients. Its predecessor Secure Socket Layer (SSL) has been deprecated in
2011 (version 2.0) [123] respectively in 2015 (version 3.0) [5] because of various security
reasons. Nevertheless, even the unsecure SSL protocol is still in use, as the monthly scan
of SSL- and TLS-enabled websites on ssllabs.com is revealing [63]. As in January
2018, there are still 3.5% using SSL 2.0 respectively 13% SSL 3.0.

3.3.2 FTP

File Transfer Protocol (FTP) is used for transferring files over the internet [99], [103].
The connection is established over Transmission Control Protocol (TCP) on standard
port 21, which is reserved for the control port and as the name suggests, is used for
receiving commands. There are two different modes that enable the actual file transfer:

8

3.3. Protocols

active and passive. Normally port 20 is occupied for the active data transmission (the
data port), where the client will issue a command telling the server which port it should
connect to for transferring data. If the client is behind a Network Address Resolution
(NAT) or a firewall, however, the active mode will not work. In such a case, the client
will have a different internal IP address respectively the incoming connection may be
blocked. Therefore a passive mode can be used to transfer data (passive data port). In
the passive mode the server tells the client which port the client needs to connect to for
starting the data transfer. Either way, the entire communication (control and data port)
is in clear text.

A proposed extension is defined in RFC 4217 [45], commonly known as File Transfer
Protocol over TLS (FTPS), using the TLS protocol for a secure communication. The
client can use AUTH TLS to initiate a secure connection. Depending on the server’s
policy, only TLS sessions may be accepted.

3.3.3 IMAP

The Internet Message Access Protocol (IMAP) allows to retrieve and manipulate emails
from a server to a client application [21]. It provides a variety of functionalities including
creating, renaming and deleting of mailboxes, checking new messages, or searching for
content. Mails that have been fetched by a client are preserved on the server. The default
port for IMAP is 143.
In contrast, Post Office Protocol, Version 3 (POP3), another protocol for retrieving
emails, has only limited functionality (list, fetch, delete emails) [83]. Also, POP3 normally
removes mails from the server once they have been fetched by a client.

For IMAP two secure adaptions exist. One is the STARTTLS command, that can be
issued by the client after connecting to the server in order to request a TLS secured
connection [85], [74]. The second one is IMAP over TLS (IMAPS), which is already
connecting via a secure channel (on standard port 993), but its use is discouraged as it
may gives a wrong feeling of security [85]. For example the encryption used could be
weak or it may lead to the assumption that the connection over the default port 143 is
always unencrypted, which may not be the case.

Most email service provider are using the same credentials for IMAP and SMTP meaning
that not only stored emails or email addresses may be of interest, but the attacker could
try to abuse those login data for sending emails as well.

3.3.4 SMTP

Simple Mail Transfer Protocol (SMTP) provides capabilities to send emails. The client
connects to the server usually on port 25 and sends commands [61]. The client has to
authenticate before emails can be sent.
A newer standard, [49], proposes using port 25 only for relaying messages between Mail
Transferring Agents (MTA), and relying on port 587 for email message submission. This

9

3. Background

standard was introduced to split message relay and transfer from message submission,
making it easier to divide specific security aspects and policies [49].

There is an extension for SMTP which enables encryption of the traffic, by sending the
command STARTTLS after a connection has already been established [55], [74]. This
command initiates a TLS session. However, this method is not encrypting the traffic
from sender to recipient, but only from sender to the SMTP server.

3.4 SSL Stripping

SSL stripping is a MitM attack that prevents the upgrade to a HTTPS connection
[69], [68], [106]. We assume that an attacker is able to intercept the traffic between the
victim’s client and the server. This is not an usual assumption and in fact Marlinspike
explains how this could be done in a public Wi-Fi network by using the tool arpspoof 1

[67].
Most websites automatically redirect the user to HTTPS, e.g., by sending a response
301 Moved Permanently if an HTTP connection was initiated. As a result, most
users are requesting websites without specifying the protocol by explicitly typing the
https:// part, instead they are relying on the redirection or are not aware that the
site should be encrypted in the first place.

In such a scenario, when the user is relying on the automatic redirection, the attacker
can easily cut off the SSL part, e.g., by not telling the user’s client (e.g., the web browser)
about the redirection to HTTPS. While the attacker keeps communicating with the server
over HTTPS, the user will be facing a plain text connection over HTTP. A simplified

Figure 3.2: Example SSL stripping attack

attack is pictured in figure 3.2.
1https://linux.die.net/man/8/arpspoof

10

https://linux.die.net/man/8/arpspoof

3.5. Port Testing

Step 1: The user is requesting the website example.com, which will automatically
be sent over HTTP. As the attacker is in the middle of the connection, he or
she will just forward it to the server.

Step 2: The server will answer with a redirect to https://example.com, which
the attacker will follow to.

Step 3: Now the attacker has an encrypted communication channel with the server,
and for the server everything looks fine.

Step 4: Note that only now the user will receive a 200 OK by the attacker and
therefore never know about the intercepted HTTPS upgrade.

Step 5: For any further request by the user, the attacker will keep modifying re-
sponses from the server, e.g., stripping HTTPS (including embedded links
of the requested website etc.), so that the user is forced to continue the
communication in clear text.

Marlinspike has presented the lightweight tool sslstrip [67] at BlackHat DC in 2009 [69].
The tool is written in Python and can be setup easily to run SSL stripping attacks on
any traffic within the network [67], therefore providing an out-of-the-box functionality,
which makes this kind of attack even more likely.

Similarly to this SSL stripping attack, the STARTTLS command could be attacked, e.g.,
by intercepting and preventing the upgrade to a secure connection [106]. A proof of
concept implementation, striptls [121], capable of attacking various protocols including
SMTP, POP3, IMAP, FTP and more has been proposed as well.
An empirical analysis about email delivery security [37], conducted in 2015, revealed that
over 20% of mails sent over Gmail were affected by MitM attacks. The country with the
most identified attacks was Tunisia, with over 96%, followed by Iraq with over 25%. This
type of attack may be prevented by using strict policies on server and client side [55].

3.5 Port Testing
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two
protocols used for transmitting packets over a network. Both have distinct attributes,
described in the following. As the packet transmission works in a different way, it is
possible to bind listening sockets for both protocols to the same port.

3.5.1 TCP

TCP is known as a highly reliable internet protocol and it guarantees ordered, and error-
checked transmission of packets [97]. To establish a connection between two end points, a
handshake is used. During the connection certain status information is maintained that

11

3. Background

is required to check the right order of received packets. Typical examples for protocols
that are using TCP include HTTP [44], SMTP [61], FTP [99] and IMAP [21].

3.5.2 UDP

UDP is relying on the internet protocol as well, but in contrast to TCP the delivery
and protection of duplicate packets is not guaranteed [94]. Instead, this protocol is
transaction-oriented. The connection-less communication does not require a handshake
and avoids overheads. However, this also means that packets may be lost without
indication. Due to its lightweight characteristic, UDP is commonly used for the DNS
protocol [78].

3.6 Tunneling Techniques

Using a tunnel is a preferred technique in order to circumvent a captive portal, e.g.,
when requiring passwords, tokens, or even payment. Depending on the setup of the
captive portal, outgoing traffic may only be partially blocked. Usually HTTP requests
are intercepted as already stated in 3.1.2. However, some captive portals may allow
pinging external Internet Protocol (IP) addresses before authentication, indicating that
ICMP is not blocked [50].
Furthermore, it may be possible to translate host names to IP addresses, revealing
that DNS requests are allowed [64]. DNS cannot be blocked entirely, as somehow the
redirection to the captive portal needs to be triggered by calling some arbitrary host
name, that the DNS will have to respond to. The network could however spoof responses
for DNS requests or run its own DNS server, resolving all host names to the captive
portal’s IP address before the user is authenticated [102].
Thus, testing if external ICMP and DNS requests are possible is rather easy. If those
protocols can be accessed despite the captive portal, it may be possible to create a tunnel,
where all traffic can be routed through, without the need for authentication and therefore
completely bypassing the captive portal [50], [42].
However, besides captive portal or firewall circumvention, tunneling is also used by
malware for remote Command and Control (C&C) channels, and is well known as a way
for data exfiltration in general as it provides a stealthy way of communication [108], [92],
[79], [35], [107].

3.6.1 ICMP Tunnel

ICMP is generally used for diagnostic reasons, or to indicate errors in IP operations
(for example if a destination is unreachable) [96]. ICMP may be used by a gateway to
redirect a host that could use a shorter route [11]. On most systems, the program ping is
integrated as a standard tool for sending ICMP echo request and reply in order to probe
the distance, and test availability of a host [82].

12

3.6. Tunneling Techniques

Using ICMP for a covert channel allows transferring data by sending echo request and
reply packets [57], [108]. This works by encapsulating the actual content in the ICMP data
payload. The approach may help to bypass firewall rules, or captive portals. Additionally
the traffic could be encrypted as well. To make the tunnel work, a proxy is required
that will receive the ICMP packets, and decode the requests. The proxy will process the
actual request and send the response back to the client, again encapsulated in ICMP
packets.
As this method is known for over twenty years [92], there are already various tools
available, that could be used for tunneling the traffic like LOKI2 [93], ICMPTX [50],
icmptunnel [57], or ptunnel [115].

Defense and Detection

Known defense strategies against ICMP tunnels, as outlined by Singh et al., include
[108]:

• Disabling all ICMP traffic. This also blocks any traffic that may be necessary
to check the network status and is therefore not a suitable option for most networks.

• Partially disabling ICMP traffic. This method may be error prone, and require
thoughtful analysis as covert channels could trick those rules anyhow.

• Limiting the packet size. Naturally, the spoofed ICMP packets used in a
tunneling scenario will have a larger size than genuine ICMP requests and replies.
However, it will be hard to distinguish those packets from legitimate ones that are
for example used to determine the capability of the network to transport large
packets.

• Preserving the packet’s state. With this approach, the firewall is modifying
the outgoing packets, by changing the sequence number, time to live, payload and
checksum. The reply is then checked and only forwarded to the client if it matches
the expected preserved values. As this method requires high computing power, it
may not be a suitable solution for every use case.

Singh et al. propose an ICMP filtering technique that involves a kernel modification and
monitors all ICMP traffic. Data fields of suspicious packets are zeroed out before they
are delivered to the outgoing interface. This method is recommended for end hosts by
the authors [108].

3.6.2 DNS Tunnel

DNS is generally used to translate domain names to IP addresses (forward lookup) [77],
[78]. DNS name servers store Resource Records (RR) for a domain and are responsible
for answering queries respectively for forwarding the query to other name servers. The
domain name system consists of a hierarchical tree structure, and domain names are

13

3. Background

resolved (recursively or iteratively) beginning at the top level domain. The server that
is able to resolve the query (e.g., has the corresponding RR) is called the authoritative
server.

Some types of records include: A for IPv4 addresses (resp. AAAA for IPv6 [120]),
CNAME representing the canonical name for an alias, and TXT for text strings that can
hold a description. TXT is commonly used for Sender Policy Framework (SPF) records
that contain information about authorized hosts that are permitted to be the sender
for a specific domain name [60] and therefore used to identify spoofed emails and spam.
The DNS protocol is usually transmitted over UDP on port 25, but could also be sent
over TCP.

There are different ways of implementation and encoding techniques for DNS tunneling,
one method explained by Farnham and Atlasis is to hide the data within the subdomain
name, using BASE 32 encoding.
Similar to ICMP tunnels, the DNS protocol can be used to create a covert channel for a
stealthy communication [42].

In figure 3.3 an example of a DNS tunnel is illustrated.

Step 1: The data that should be tunneled is BASE 32 encoded and part of the
subdomain. The client is initiating the DNS request. Usually for each
request, the local cache will be checked first, in order to speed up the process.
However, caching will rather be undesired when using a DNS tunnel, and
prevented by setting the time-to-live of records to a minimum.
Therefore, the DNS query will be forwarded to an internal DNS server that
will most likely be present when being connected to a public Wi-Fi network.
Even if this is not the case, the client will have a DNS server defined where
the query will be sent to, thus the following steps would be the same.

Step 2: As the internal DNS server is not able to resolve the query, it will be forwarded
to a root DNS server. This root DNS server in turn is resolving the last part
.com of the query.

Step 3: Next, the top level domain DNS for .com receives the query and is able to
resolve the next part example.com, and the query will be forwarded.

Step 4: The authoritative nameserver for example.com is capable of resolv-
ing the query. Note that this server is appropriately configured to
handle the encoded DNS data. In this example, the encoded part ON-
SWG4TFOQQG2ZLTONQWOZJO translates to the text secret message. when
decoding the BASE 32 string. The server will then send a response, here it
is a CNAME response containing
ORUGS4ZANFZSAYJAMRXHGIDUOVXG4ZLM.example.com again with the
data being hidden in the subdomain.

14

3.6. Tunneling Techniques

Step 5: Finally, the client receives the response to the issued query. The client will
be able to decode the message this is a dns tunnel.

Figure 3.3: DNS tunnel example, adapted graphical version of [124]

This example shows how it would be possible to exchange arbitrary data between client
and proxy server. Another possibility would be encoding the payload in a TXT response.
As the server cannot contact the client directly (e.g., without responding to a request),
the client may send queries periodically to poll the server [42].

One thing that needs to be kept in mind, when using DNS for tunneling is the limitation
of the length: one request can have up to 253 characters with a maximum length of
63 for each label (subdomain). Only a subset of 63 characters is valid according to
the RFC 1034 standard [77], namely the 52 alphabetic letters a-z and A-Z; digits 0-9;
and the hyphen symbol -. Although upper- and lowercase letters are accepted, DNS is
case-insensitive [77], [78]. However, DNS may not only be used for host lookup, but could
serve as a hierarchical database in general [39]. For this RFC 2181 [39] and RFC 4343
[38] clarify that any binary string may be used as label, and that there is no limitation
to ASCII characters. This means, that in theory various encoding techniques could be
used, however, in practice applications using DNS may have restrictions on acceptable
input and could drop those packets.

15

3. Background

There are many DNS tunneling tools available for end users that use different techniques
to tunnel the traffic. The strategies vary regarding the used encoding techniques, and
the type of records used for hiding the data [42].

Defense and Detection

DNS traffic may not be monitored in every environment. Depending on the technique
or tool used, however, the generated traffic may be easily detectable [42]. Moreover, as
tools are freely available, it is possible to analyze them and identify patterns to reveal
suspicious requests. Some techniques of recognition include:

• Restriction of resolving external names. In order to prevent bypassing of a
captive portal, a provider could block all outgoing DNS requests until the client is
authenticated [64].

• Analyzing DNS payload. Suggested methods include filtering for uncommon
records like TXT or attributes of the payload like length of domain or byte size.
Another indicator could be the host name requested, as usually names are somehow
meaningful and maybe found in dictionaries, while encoded names may have a
higher entropy of the character set used [42].

• Traffic analysis. This approach tries to detect tunneling by examination of
multiple requests and responses. Indicators for DNS tunnel may include amount of
packets, number of host names for a distinct domain, geographic location of the DNS
server, or the domain history (recently added domains may be more suspicious).
Another method is identifying orphan requests, e.g., normally every DNS request
would belong to some previous issued command like a HTTP request [42].

3.7 IPv4 vs. IPv6
The internet protocol is the standard protocol that all prior described protocols rely on
and that is required to communicate between devices. The original version was proposed
in 1981 [95]. As Internet Protocol Version 4 (IPv4) only provides about 4 billion (232) IP
addresses, the new standard Internet Protocol Version 6 (IPv6) has been introduced in
1998 [23], which can provide 2128 addresses [24]. Officially, the IPv6 launch started on
June 8, 2011 [126]. Measurements show a continuous deployment of the IPv6 protocol
[112]. Google, for example, creates statistics about IPv6 adoption, by considering users
that access Google over IPv6. They revealed that about 20% of traffic is using the new
protocol (as in the beginning of 2018) [51].

16

CHAPTER 4
Related Work

The topic of this underlying thesis has been inspired by the work of Winter et al. who
analyzed the Tor network using two exit relay scanners with the goal to identify malicious
exit nodes [125]. While one scanner (exitmap) focused on detection of active MitM
attacks, the other one, HoneyConnector, was sending bait credentials over FTP and
IMAP in order to identify exit relays that are sniffing and actively exploiting login data.
After monitoring the Tor exit nodes for several months, 40 malicious exit relays had
been identified by exitmap, out of around 950 exit nodes that were active in the network
at that time. Some of those 40 exit relays, however, could rather be classified as
misconfigured: 2 of the relays were running anti virus software that tampered with
IMAPS; 4 more exit nodes had a OpenDNS policy that would censor websites in the
category pornography.
The remaining identified exit relays showed at least one form of MitM attacks including
running sslstrip [67], or tampering with HTTPS, SSH or XMPP.
HoneyConnector was active for four months and imitated around 27,000 connections for
each of the both protocols IMAP and FTP. All in all Winter et al. counted 255 login
attempts using 128 different credentials, revealing that 27 exit nodes intercepted data.
However, Winter et al. also point out that the attacker may not necessarily be
the exit relay provider, although they assume it is likely. In fact, it may be pos-
sible that the connection is intercepted after leaving the exit relay, e.g., by the
internet service provider, or the network backbone. Overall, 65 malicious or miscon-
figured exit relays were detected. Two relays were identified as malicious by both scanners.

A report on Wi-Fi security by F-Secure published in 2014, included two short experiments
with Wi-Fi hotspots that had been placed prominently in public places around London
[41]. In one part of the experiment the user had been presented terms and conditions
that needed to be confirmed before granting access to free Wi-Fi. Those included an
unusual term stating the user’s first born child would be assigned to the provider in turn

17

4. Related Work

for free Wi-Fi, which six people had agreed to during a time frame of about 1.5 hours.
For the other experiment a public Wi-Fi hotspot was running for about 30 minutes.
Within this time 250 contacts that had been counted. The devices already leaked
information about previous connected hotspots. Furthermore 33 devices used the Wi-Fi
actively for different services, even revealing sensitive login credentials.
Although these short trials show only a limited snapshot of the real world, it gives some
ideas about the popularity of public hotspots and how the user’s privacy and data could
be exploited.
Sombatruang et al. had a similar research question for their study [114] in 2016, by asking
"Why do people use unsecure public Wi-Fi?". To answer this question, they conducted
a study, where they first set up a free Wi-Fi hotspot at 14 different public locations in
London to monitor and collect traffic. Although no login credentials were revealed, some
apps and websites were identified that leaked information and could have been exploited
to extract private data. Next Sombatruang et al. interviewed 14 participants in person to
discover the people’s motivation of using public Wi-Fi. Even though 90% stated they had
concerns about public Wi-Fi security, over 50% admitted using it anyhow, with the main
reason that it is free. An online survey with 102 participants followed. Those were asked
if they connected to public Wi-Fi in various scenarios, which included different locations,
urgency, financial and non-financial transactions. For each situation the participants
were asked if they chose to use public Wi-Fi when having 25%, 50%, 75% or 100% left on
their mobile data plan or roaming. The survey revealed that the decision of connecting
to public Wi-Fi is not consistent with the authors’ calculated prediction.

Generally detection of eavesdroppers in Wi-Fi networks is challenging and in order to
reveal attackers they need to leave some traces. The idea of Bowen et al. is to "confuse,
deceive, and detect attackers by leveraging uncertainty" [9]. This is achieved by injecting
believable decoy traffic into the network that will eventually trigger an action by the
attacker as it is "trap-based". They propose an API that can automatically generate
a large amount of bait traffic by analyzing an input. For this, they are using either
TCP session samples of a template, or real recording of network traffic. By modifying
attributes and content of the input, new and yet authentic data is created. The attacker
will be identified if the decoy data is used, e.g., sniffed credentials are exploited. In order
to verify that the generated bait traffic is indistinguishable from real traffic in a network
Bowen et al. recruited experienced human judges. They were only able to classify about
50% of data correct [9].

Another way of accessing Wi-Fi security has been proposed by O’Connor and Sangster,
who presented honeyM, a framework that allows to simulate mobile devices [88]. In
contrast to the prior discussed methods, this approach is trying to identify malicious
activities that are actively attacking mobile clients, exploiting known and even
unknown vulnerabilities, and is not limited to Wi-Fi. The honey clients are imitating
communication protocols and traffic, including Wi-Fi, Bluetooth, or Global Positioning

18

System (GPS). The system is monitoring and logging the wireless spectrum of relevant
protocols in order to detect any suspicious activities.

In addition to attacks and sniffing within public Wi-Fi networks, privacy plays another
important role. Cheng et al. analyzed how travelers may leak private information when
using the free Wi-Fi on airports [19]. They collected data at airports, resulting in 20
datasets including over 150,000 sessions from four countries. From 2000 unique identified
devices, it was possible to reveal 625 user names in total. Most of them were revealed due
to the device sending multicast messages to resolve domain name queries. The names
were leaked as the device name is sent along, and those is often directly related to the
owner (e.g., Alice’s iphone). 38 of the names were exposed because websites leaked
information.
A recent research about browser history stealing [22] revealed that captive portal providers
may expose websites that the user’s client visited before. For HTTP this simply works by
including image references within the landing page, referencing to the site of interest. If
the browser has visited this website before, it will automatically attach the stored cookie,
and it will be sent to the captive portal that in turn can evaluate this information. But
also websites, that are using HTTP Strict Transport Security (HSTS) can be identified
with this approach. Generally, HSTS should tell the browser to only connect over HTTPS.
However, as the HSTS information will be cached after the first visit, the captive portal
will be able to determine if the client has visited a certain website before.
Another privacy issue comes with mobile devices that are sending Wi-Fi probe requests
and thereby leaking information about past visited access point identifiers. An experiment
by Freudiger revealed that the probe requests could be exploited by attackers to gain
knowledge about the whereabouts of mobile devices [47]. Freudiger also showed that the
number of probe requests are depending on the underlying operating system and the
amount of known networks .

19

CHAPTER 5
Analyzing Public Wi-Fi Hotspots

This chapter gives an overview about the most important concepts and structure of the
study. First, we discuss how and by whom a user could be threatened when accessing a
public Wi-Fi network. Next, we will outline the general idea of the field study and how
different attack scenarios and general limitations could be measured.

5.1 Threats and Attackers

When we talk about security risks within a public Wi-Fi networks, we need to distinguish
different type of threats respectively attackers. It is important to define those types and
their (assumed) intention in order to understand the impact on public Wi-Fi users.

5.1.1 Hotspot Provider

By definition the operator of a Wi-Fi hotspot has access to all data that is sent over the
network, for all in- and outgoing connections. It is the providers responsibility to make
the service available, e.g., pay for the the infrastructure and the internet access. Thus we
can assume it is in the providers interest to benefit from the service as well, in one way
or another. One motivation could be to attract more customers, or to enhance their stay
(and therefore their consumption) in a bar or restaurant that offers free Wi-Fi. Another
interest may be to collect (and monetize) information about the user, e.g., personal data,
or surfing habits for advertising or marketing reasons. In our perception, these kind of
providers are legitimate, meaning that hotspots are offered permanently by a public
authority or a company primarily to serve residents, tourists, or customers.

However, people with malicious intent could also set up hotspots with a genuine-looking
name like "Free Wifi". Their intention include collecting and exploiting sensitive data,

21

5. Analyzing Public Wi-Fi Hotspots

executing MitM attacks and so forth.

There are different legal regulations regarding data protection, illegal activities of Wi-Fi
users, and copyright infringement that hotspot providers have to comply with [43], [111],
[46]. This may be one reason why many public hotspots are using captive portals. First
of all, it asks the user to confirm some terms and conditions of use. Second, the captive
portal often collects personal information like names, or email addresses. Sometimes even
a social media account is required for login. This in turn reveals the user’s identity and
assigns the activities during the hotspot use to a person.
In 2016 the Court of Justice of the European Union has ruled that "The operator of a
shop who offers a Wi-Fi network free of charge to the public is not liable for copyright in-
fringements committed by users of that network" [89]. However, a provider is responsible
to limit such activities for example by protecting the network with a password.
In Austria, the law states that a Wi-Fi operator is liable in case the illegal activity was
known but no steps have been taken to stop it [4].
Consequently, providers may decide to block or monitor any traffic that could be consid-
ered harmful, and may use content filter to deny access to blacklisted websites.

5.1.2 Evil Twin

An evil twin describes a malicious access point that tricks a client into connecting to it,
by behaving like a genuine and trusted hotspot nearby. To achieve this, the evil twin will
use the same Service Set Identfier (SSID) than a well-known provider nearby. If the evil
twin is physically closer to a client, the stronger signal is chosen. Therefore the client
connects to the evil twin without realizing the attack [18].
It is important to note that this approach is somehow different than just setting up a
rogue access point with a common and innocent-looking name as described above in 5.1.1.
The key difference is that the client has already connected to the trusted network before,
meaning that the SSID is saved. Consequently, the client will automatically connect
to this SSID, without any user interaction. Furthermore, the connection will not look
suspicious to the user, as he or she expects to be connected with a network having that
SSID.
Once the attacker manages to lure users in, he or she will have the power to monitor and
alter the network traffic.
Detection of evil twin attacks is challenging and out of scope of this field study. However,
as the attacker’s motivation is to collect data, it is likely that the login credentials used
for the honey traffic will be used by the attacker.

5.1.3 Network Sniffer

Sniffing the traffic in a network is a passive form of attack. The network sniffer is
connected with the same public Wi-Fi as the victim and can just monitor and collect all
over-the-air traffic. While the pure collection of data is stealthy and hard to detect, the

22

5.2. Overview of Procedure and Testing

attacker will usually try to exploit the data he or she gained, for example by using or
selling login credentials. Besides the passive sniffing, the attacker could also threaten the
user as a MitM and actively modifying content, e.g., by SSL stripping. Thus being able
to reveal sensitive information about the user.

5.2 Overview of Procedure and Testing
The goal of this field study is to assess public Wi-Fi hotspots in the wild by means of data
interception. Additionally, we test for restrictions of accessible services. A measurement
server is setup and acts as a key component by providing two main functionalities: First,
it will receive and store all test results. Second it is hosting the honey services, e.g.,
mock-up services for FTP, IMAP, SMTP and HTTP.
For the Wi-Fi assessment we need to be in physical vicinity of the hotspot. We have
chosen Android smartphones as a medium to analyze the Wi-Fi networks. An app,
installed on the smartphone device, is able to automatically detect and connect to
open Wi-Fi networks nearby. It also identifies captive portals and tries to authenticate
automatically. We will explain this procedure in more detail in section 6.2.1. Once the
app has connected to an hotspot, various tests are executed. The results will then be
sent to our measurement server where we collect all information. In the following we
will give a short overview of the different testing scenarios used to assess public Wi-Fi
networks and explain why these tests are relevant. Figure 5.1 gives a general overview
about the procedure.

5.2.1 Testing Scenarios for Pre-Authentication

Right after the device has connected to a Wi-Fi hotspot we start with the first tests. At
this stage it has not been verified yet, whether the internet is accessible. Rather this will
be done after these tests have finished. Note that if the hotspot does not have a captive
portal in place, all outgoing traffic should be allowed and thus the pre-authentication
tests are expected to succeed.
Consequently, these testing scenarios will reveal how captive portals handle different
use cases. We expect that a captive portal blocks any content before a successful
authentication. However, it still may be configured to accept some harmless-looking
traffic, like ICMP or DNS. Therefore, the pre-authentication tests include simple requests
using those protocols. Tunneling traffic over ICMP or DNS is a common trick to
circumvent captive portals. Consequently, the provider may choose to block those traffic.
Furthermore, it is verified how captive portals are handling HTTPS connections before
authentication. This may reveal improper redirection attempts of the captive portal,
resulting in SSL certificate errors.

5.2.2 Testing Scenarios for Post-Authentication

After successful authentication with the captive portal, traffic should be routed to and
from the internet.

23

5. Analyzing Public Wi-Fi Hotspots

One part of these tests includes the spreading of honey traffic. Furthermore, we try to
reveal MitM attacks. The other part focuses on restrictions that are dictated by the
network including blocked websites and services.

Revealing Attackers and Sniffers

Different user sessions are simulated over FTP, HTTP, IMAP and SMTP. Those services
have been chosen as the traffic is sent unencrypted by default and we assume the login
credentials are interesting for an attacker. For each session and each service a unique
username and password is used. This way, it will be possible to identify attackers later
on, once they are trying to reuse the intercepted credentials.
Every user session should look authentic, so after successful login some actions will be
executed. For example: sending an email over SMTP or downloading a file using FTP,
before the simulated session is terminated.
In addition, it is tested whether the greeting banners of the FTP, IMAP and SMTP
services are as expected. Each of those ones should send a custom greeting banner once
a connection has been established. In case the traffic is intercepted or routed through a
proxy, this banner may change and indicate that we are not directly connected with the
service.

Moreover, we identify SSL stripping attacks by requesting a website, that should auto-
matically redirect to HTTPS. As we are aware of the expected redirect to HTTPS and
the expected content of the website, we are able to reveal any irregularities.

Blocked Content

In order to determine whether public Wi-Fi hotspot filter specific content, we simply try
to access certain websites. We selected representational sites for the following categories:
gambling, pornography, news, blogs, social media, streaming, and file sharing.

Social network websites have been known to be banned in some countries like China, Iran
or North Korea [86], [122]. Also Turkey blocked the access to Twitter in March 2014,
but the constitutional court ruled that the ban was illegal a few days later [6]. Turkey is
facing reoccurring reports of blocked or throttled access of social media websites, e.g., in
2016 [8]. Thus blocking social media sites including Twitter and Facebook is not unusual
and could be political motivated. On the other hand it is also a common strategy to
block those websites for productivity reasons at the workplace. Public Wi-Fi hotspots
may have similar content filter in place or providers may have other reasons of blocking
the use of social media.

File sharing is another hot topic as the content provided and shared may violate
copyright laws. One very popular website, with high media coverage is The Pirate
Bay. The European court ruled in 2017 that websites redirecting and linking to content

24

5.2. Overview of Procedure and Testing

that is violating copyright may be held liable as well [110]. Regulations regarding
downloading copyright protected material have become stricter, e.g., in the UK the
maximum sentence has been raised from 2 to 10 years in prison [14]. It is not unusual
for users to receive warnings, action for an injunction and penalties, and has for example
become practice in Germany [36]. The UK started an educational program in 2017 by
sending out warnings [109]. Consequently, websites that are known to violate copyright
regulations are likely to get blocked by public Wi-Fi hotspots or even Internet Service
Provider (ISP).
Another website used in this category is mp3skulls. It was a popular site for sharing
music, but has been shut down in 2016 as it lost a legal battle against the music
industry [72]. However, other versions of the website popped up, some of them claiming
to use only legal content. We used mp3skulls.top for our tests and as this domain
name ran out, replaced it with mp3skulls.to.

The streaming services category includes legal as well as potentially illegal websites.
For the legal services we are focusing on popular ones including YouTube, Netflix, and
Hulu. Those sites may be blocked by providers as they could use a large band width
or result in a prolonged stay at the spot, which may not be in the interest of every
public Wi-Fi provider (e.g., public service, bank etc.). The websites kinox.tv and
movie.to have been chosen to represent streaming services that are known to infringe
copyright laws. The question if streaming of copyright protected material was illegal is
still a debated question in some countries. While Austrian’s minister of justice claimed
in 2016 that streaming was not illegal [12], the European court ruled that devices which
are sold with build-in functionalities to stream copyright-protected content are illegal
in 2017 [90]. This was also the first time that streaming was considered as copying,
which could have implications for consumers of other streaming services as well [113].
Nevertheless, the Austrian supreme court obliged ISPs to block certain websites that
are known to infringe copyright starting in 2014 [26] and keeps doing so since then [56], [25].

With the category blogs we are including websites that may have been considered
as controversial or have been subject to censorship. For example, in Turkey in 2016,
WikiLeaks has been blocked after government emails have been published on the platform
[127]. Medium, a website hosting blogs and publications, has been banned by China [53]
and Malaysia [20]. The other websites selected for this category may have witnessed
similar situations or could in the future.

Additionally, websites that are reporting news have been blacklisted before, e.g., the New
York Times was blocked in China in 2012 [13], and The Guardian was unreachable some
time in 2014 [80]. Besides those two big news sites, we also included TorrentFreak for
the tests, a website that is focusing on news about copyright, privacy and file sharing.

Online gambling have different regulations in each country. It may be legal in some

25

5. Analyzing Public Wi-Fi Hotspots

countries, or requires a license. Furthermore, gambling may be blocked for other reasons
such as protection of minors.
Content filter may also be the main reason why pornography could be blocked from public
Wi-Fi.

Besides websites, we are interested in blocked ports. In this scenario we check if TCP or
UDP traffic can be routed to some pre-selected ports. Those include for example the
standard ports for Session Initiation Protocol (SIP), or common VPN connections. We
discuss the selected ports in detail in section 6.4.4.

Additionally, we test whether IPv6 is supported by the network. As the use of this IP
protocol is rising it may be of interest to see whether free public Wi-Fi hotspot have the
capability to resolve and use IPv6 addresses.

5.3 The Measurement Procedure in a Nutshell
In figure 5.1 the communication between the measurement server and the Honey Client
app (running on an Android device) is pictured. It outlines when an unencrypted or
encrypted channel is used. Furthermore, it shows the data flow between the components
in a typical scenario.
Details about the server and client app will follow in the next section.

Step 1: The Honey Client app has established a connection to a public Wi-Fi hotspot.
The pre-authentication tests (see also section 6.3) are performed. We do not
know yet whether a captive portal is in place, and if it may block outgoing
requests.

Step 2: It is tested whether a captive portal is blocking request and if so, the login
procedure (see also section 6.2.2) is executed. Note: in this pictured scenario
the authentication is successful and so we can continue with the testing
procedure.

Step 3: We need to check whether login credentials are available. Those will be used
for the honey services. Credentials are requested and sent over a secure
channel and stored on the device locally.

Step 4: The post-authentication tests (see also section 6.4) are performed.

(a) The honey traffic is initiated by simulating user sessions. Note that the
login credentials for all services are sent over an unencrypted channel.

(b) In order to test for SSL stripping attack, a website is requested over
HTTP that should reply with a redirect to HTTPS.

(c) The app requests each of the pre-selected websites in order to identify
blocked content.

26

5.3. The Measurement Procedure in a Nutshell

(d) A simple message is sent to the server using the ports we want to test.
If the app receives the expected reply, we can assume that the port is
open.

(e) The app calls an IPv6 address. Only if the address can be resolved, this
test is marked as successful.

Step 5: Finally, the results are reported to the server.

27

5. Analyzing Public Wi-Fi Hotspots

Figure 5.1: The measurement procedure
28

CHAPTER 6
Design and Implementation

In this chapter we discuss the overall design of the components. We start with describing
the implementation and functions of the measurement server and the Android app (also
referred to as client), and how those components interact with each other. We discuss
details of the measurements and tests, and outline how we examined the capabilities,
limitations and vulnerabilities of a network. Note that we use the term test result to
describe the data that has been collected by one testing device during one test run (e.g.,
executing all testing scenarios described in the following).

6.1 Measurement Server

The measurement server component plays a the central role as it has some major
responsibilities including:

• Creation and distribution of user credentials for the honey traffic.

• Providing services for IMAP, SMTP, FTP, HTTP.

• Logging access and login attempts.

• Communication with clients over a secure channel.

• Storing test results.

We use a virtual root server hosted on IPAX1, running Ubuntu 16.04, that can be accessed
over Secure Shell (SSH).

1https://www.ipax.at

29

https://www.ipax.at

6. Design and Implementation

Figure 6.1: Main services running on the server

In figure 6.1 an overview of the server is given. For the webserver, we use Lighttpd, which
runs two FastCGI applications: one for the webservice, that is required for the HTTP
honey traffic; the other one is a RESTful service, which is used for the communication
with the client, e.g., for the distribution of credentials, and receiving test reports. Note
that the RESTful service is only accessed over HTTPS.
The IMAP service is provided by Dovecot, an open-source mail server. The other services
required for the honey traffic (SMTP and FTP server), run in a standalone Python
application.
All data, e.g., valid user credentials, login attempts, test results etc., is stored into a single
PostgreSQL database. This database runs on the measurement server and is accessed
by all services in order to verify login credentials, and store successful or failed login
attempts.
In the following we will explain the main functionalities of the measurement server in
more detail.

6.1.1 HTTPS configuration

We use Let’s encrypt2 as certificate authority, and tested the measurement server’s
configuration with SSL Labs3 to ensure it meets the standard requirements. Lighttpd
is configured to redirect some URLs automatically to HTTPS. This includes the
RESTful service. Note however, that the client will not rely on the redirection for this
service, but rather use HTTPS with a pinned certificate to ensure a secure communication.

2https://letsencrypt.org
3https://www.ssllabs.com/

30

https://letsencrypt.org
https://www.ssllabs.com/

6.1. Measurement Server

Communication with the Client

The measurement server is responsible to create login credentials for the honey services.
Thus, it is also a requirement to distribute those credentials in a secure way to the client
applications. Therefore, a RESTful interface has been designed, that the clients will
only access over HTTPS. It allows the clients to bulk-load new credentials for the honey
services. Furthermore, it is used to upload test results and files. The RESTful service
runs as a FastCGI application on Lighttpd with the Python microframework Flask4.

SSL stripping

We use the capability of automatically redirecting for evaluating SSL stripping attacks.
The measurement server will redirect any URL that is accessbile under .../home/.*
to HTTPS. For the test, a simple website index.html is requested. This site contains
an HTTPS link that could be stripped off by attackers.

6.1.2 Credentials and Accounts

The login credentials that are used to access the service are unique, e.g., no username or
password exists more than once. This allows to track unauthorized accessed: we can
assume that every successive login using the same credentials, could only be conducted
by an attacker who has sniffed the data sent over Wi-Fi.
To ensure the login credentials for the provided services are indeed unique, one central
authority needs to verify this condition. It is within the responsibility of the measurement
server, as there are potentially countless Android devices in use for the field study, which
actually spread the honey traffic using the app.

As the user credentials need to be unique and look authentic, we use real world
names as input with random pre- or suffixes. For this, we extracted lists of names
from a census in 1990 published by the United States Census Bureau [15]. So
we end up with one list for surnames, and one combined list for male and female
first names, derived by Meranda [75]. This sums up to lists with 5,163 distinct first
names, respectively 88,799 surnames. Those lists serve as input for the username creation.

Each username has a type, e.g., is only valid for one of the four honey services.
The process of creating new credentials is the following: First, we select random names
from the provided lists. Then, in order to expand the range of possible usernames, we
are adding some characters to it. For FTP users we select a random prefix: web_, ftp_,
usr_, user_, or the empty string (e.g., no prefix is prepended). This is a similar strategy
to the one used by Winter et al. [125]. Then, for all types of users, we create a random
suffix containing zero to four characters from lowercase letters and digits. For HTTP,
SMTP and IMAP users we also select a separator (point ., underscore _, hyphen -, or

4http://flask.pocoo.org

31

http://flask.pocoo.org

6. Design and Implementation

empty string) that would be appended to the selected username before the chosen suffix.
The password for the user is created from random characters, using ASCII letters and
digits, with a length of 6 to 15 characters. In order to ensure the credentials are unique,
we set a database constraints for the username and password, so only unique values are
inserted and consequently distributed to the clients for use.
We pre-populated the database with credentials, so that the Android testing devices can
receive data immediately after requesting those over the RESTful service. The Android
client will receive a bulk of credentials for each request that are stored locally on the
device, in order to speed up the process. Every time new data is requested by a testing
device, we also trigger the process of creating new credentials. This way, we ensure that
sufficient data should be available all the time.

Besides the creation of usernames, we generate the corresponding accounts and fill those
with plausible data. Thus, for each FTP and IMAP user we pre-populate the accounts
with random files respectively emails.

6.1.3 Honey Services

The honey services are not fully functional, and only serve for the honey traffic distribution
and as a honey pot. Each service is configured to directly access the database in order to
validate the provided user credentials. All successful and unsuccessful login attempts are
logged and stored into the database. We only count unsuccessful logins that are using
an username and a password, excluding any attempt of only connecting to the service
without providing credentials.

IMAP

Dovecot is configured to serve as an IMAP email server, that only allows plain text login.
For each account, we are populating a mailbox with a random amount of emails. We
prepared a small subset of subjects, and senders that we randomly assign to the emails.
Moreover, we set different flags, which may be: seen, draft, flagged, passed, replied,
trashed.
The Dovecot server does only support retrieving of emails and typical related functions
like searching, deleting, creation of subfolders, etc.
The measurement server logs any login attempt in a file. Therefore, we run a script every
night that parses the log file and stores all successful and unsuccessful logins into the
database.
Dovecot runs on the standard port 143.

SMTP

The SMTP server is implemented with Python, using the smtpd module from the standard
library, and has only limited functionality. The server responds to EHLO requests, supports
login with PLAIN and LOGIN command, and allows logged in users to send emails. Those

32

6.1. Measurement Server

emails, however, are not delivered to recipients but just logged into a file.
The SMTP service is configured to accept credentials that are valid for IMAP as well.
This way we can identify attackers that are assuming IMAP credentials could be valid
for the SMTP server as well.
The SMTP server is bound to 2255, so that there are no root privileges required. However,
a iptable rule is used to forward all requests from the standard port 25.

FTP

For the FTP server we are using the library pyftpd5. We also use a iptable rule to
forward traffic from port 21 to 2121, where the FTP service listens for incoming requests.
Each account can only access it’s corresponding home directory, which is populated
with random files. Those files should attract attackers by pretending to hold sensitive
data like credit card information, login data, or contract details. We included different
extensions and file types, e.g TXT, DOC, PNG, containing random data and having
different file sizes. As some file names will be listed during the honey traffic test, we
include some very promising names like creditcard_company.txt, master_card.txt or
gmail_login.txt. Some users also have a directory www that may give the impression to
hold the data for the webserver.
Each user has only read access to the home directory, but any attempt to write data will
be logged as well.

HTTP

We constructed a simple website, using Python and Flask, that is deployed as a FastCGI
application on the webserver Lighttpd. The site looks like it has been configured improperly,
as it actually has an active HTTPS module, but does not redirect the user. So the service
will be accessed over HTTP only.

The website imitates a service for employees and even outlines in the header not being fully
responsive and still under construction (figure 6.2a). However, it has a login functionality
and promises one can access personal files in the restricted area. After login, three
additional functionalities are displayed, trying to attract attackers: Contract Details,
Download Files, and Upload Files (figure 6.2b). We think that the part with uploading
files may be the most attracting one. The linked sites do not exist though.

6.1.4 Responding to UDP and TCP Scans

Th measurement server also responds to the blocked port tests. Therefore, we provide
services that send a simple string as response to any incoming requests on the ports of
interest. Those ports are listed and discussed in detail in section 6.3.
For the TCP port testing, we use xinetd, a super-server daemon that is capable of

5https://pypi.python.org/pypi/pyftpdlib/

33

https://pypi.python.org/pypi/pyftpdlib/

6. Design and Implementation

(a) Login (b) Restricted area, displayed after login

Figure 6.2: Screenshots of website appearance

listening on ports and launching a service for this request. It can be simply configured to
respond with a string, by using the echo command.
The UDP protocol requires a different approach as xinetd only supports TCP. Therefore,
we construct a simple UDP server facilitating the standard socket library of Python.
We use iptable rules to forward incoming requests to the same UDP server instance.

6.2 Android Client Application

The client application is responsible for executing the actual tests in public Wi-Fi
networks and reporting the results to the measurement server. We have chosen an
Android implementation as we already had experience with developing apps. The
Android API provides the functionalities required, such as detection of and connection
to hotspots. Devices running the Android OS are in general small and portable, which
makes carrying it around easy and accessible. Moreover, we counted on having a set of
devices available as we already were in possession of some Android devices.
We designed the Honey Client app, which is capable of automatically connecting to public
Wi-Fi hotspots nearby, authenticating to captive portals, running tests, and uploading
results. All of these steps require little to none user action, as the app runs in the
background, while the device’s display is turned off. Implementation details are discussed
in the following sections.

34

6.2. Android Client Application

6.2.1 The Honey Client App

Figure 6.3: Main components of the Honey Client

Figure 6.3 gives an overview of the main components of the Honey Client app. Contrary
to most apps, the User Interface (UI) of Honey Client does not contain the main function-
ality. The UI allows the user to access some features such as the history of tested Wi-Fi
networks. However, the main tasks are executed in a service, an Android component
that can run in the background. This HoneyTrafficService can be started and stopped
by clicking a button on the app’s start screen (see figure 6.4a).
We use broadcasts that are sent by the system to get notified about available Wi-Fi
networks. The broadcast receiver is represented as WifiFoundReceiver in figure 6.3. The
HoneyTrafficService chooses a Wi-Fi SSID and initiates a connection request to this
network. Another broadcast receiver, WifiStatusChangedReceiver, notifies the HoneyTraf-
ficService about network state changes, e.g., about any connection or disconnection from
a Wi-Fi network.
Once the device is connected to the chosen network, the HoneyTrafficService performs
the pre-authentication tests (see section 6.3). Next, it is evaluated whether a captive
portal is in place. Therefore, the StaticLoginTask tests the connection and if it detects a
captive portal, the authentication procedure is started. This process will be explained in
more detail in section 6.2.2. Depending on the type and complexity of the captive portal,
the DynamicLoginService and ManualLoginActivity may be started consequently.
Once we ensured that the network is not blocked by a captive portal anymore, the
post-authentication tests (see section 6.4) are executed. The test results are uploaded
and finally the network is removed.
Note that only the ManualLoginActivity will require user interaction.

35

6. Design and Implementation

Hotspot Selection

The WifiFoundReceiver will receive a list of all networks that have been detected nearby
including encrypted ones. As we are only interested in public hotspots, we ignore any
network that has an encryption capability listed. We also exclude any network that is
likely to be an ad-hoc network by filtering for common names like hp-print, setup or
chromecast. This way we can save precious time that would otherwise be wasted by
trying to connect to an ad-hoc network, which would have failed eventually.
Furthermore, we only consider hotspots with a certain signal level, as we assume that
the connection to a low signal network will be lost soon anyhow. The remaining list
of available networks is sorted by the signal level, so that we choose networks with a
stronger signal first. In addition, we only try to connect to networks, that have not been
tested recently, e.g., within the last ten minutes. For this exclusion we are relying on the
results stored in the database. In case a test device is located on the same place for
some hours, the tests and consequently spreading of honey traffic will only run every few
minutes on the same network.

Special Remarks to Testing Scenarios

In order to run tests in parallel and to speed up the process we make use of RxJava 2 6.
The library allows to zip tasks which can run in parallel and notifies once all tasks are
finished.
The ICMP test is executed with the Android system tool ping, while for the DNS tunnel
test we utilize the library dnsjava7. For communication with the services over IMAP,
SMTP and FTP, the Apache Commons Net8 library is used. For the FTP traffic we ap-
ply the passive mode to download files, which is required when the client is behind a NAT.

All communication with the measurement server involving HTTPS is initiated with a
pinned certificate. For this, we use the public chain certificate for Let’s encrypt, following
the approach suggested by Android [28]. Pinning the certificate is necessary for two
reasons: first, older devices may not have up-to-date trust chains; second it ensures that
we are indeed talking to our measurement server.

For the honey traffic and the corresponding credentials, we use a fail safe approach: the
selected username and password is marked as used, before the test begins. This way, we
can be sure that no credentials are accidentally reused. The Wi-Fi connection can be
lost any time and the tests may not have been fully executed.

6https://github.com/ReactiveX/RxJava
7http://www.dnsjava.org
8https://commons.apache.org/proper/commons-net/

36

https://github.com/ReactiveX/RxJava
http://www.dnsjava.org
https://commons.apache.org/proper/commons-net/

6.2. Android Client Application

UI Features

Although, the credentials for the honey services, are automatically requested if required
and stored locally into a database, the UI provides an additional functionality to load
credentials manually. However, a manual request is only necessary in case a network
blocks any HTTPS connection, as this will also prevent requesting credentials over a
secure channel. An overview of the amount of unused credentials is available within
the app, as well as the amount of already used ones. Furthermore, the UI has a setting
fragment, that allows the user to opt-out of categories for the blocked website tests (see
section 6.4.3).
In general test results are uploaded automatically. In case the internet connection was
lost or HTTPS is blocked, the results are sent to the measurement server during the next
evaluation. Additionally, the upload can be triggered manually within the history view
of the app.
The history also provides details for the blocked ports and blocked websites tests. More-
over, the history can be searched for SSIDs.

Compatibility

The app is backward compatible until Android API level 15 (Android 4.0.3 Ice Cream
Sandwich) and has been extensively tested on different devices and versions up to Android
API 23 (Android 7.0 Nougat). With this range of supported versions, we are targeting
over 90% of devices running Android, as the latest statistics of platform versions revealed
(February 2018) [33]. We also had a quick opportunity to test the app successfully on
Android version API 27 (Android 8.1 Oreo).

6.2.2 Captive Portal Authentication

The requirement of automated interaction with captive portals is challenging. While
some captive portals only require to click a button or check a box, others have more
complex websites in place that may have been designed to prevent automating this
process. Figure 6.5 shows some samples of captive portal landing pages that require the
user to accept terms and conditions. The app should be able to automatically login to a
fair amount of Wi-Fi hotspots. We collected samples from captive portals in the real
world, analyzed those and tried building a solution that would be able to manage the
sign-in process.

The automated login approach consists of three strategies that are run consecutively. In
order to check that the access to the internet has been granted, we call a landing page
on our measurement server (http://37.252.185.26) and test if the content returned is as
expected. Once we can verify that the captive portal does not block requests anymore,
the procedure is stopped. The automated approaches try to provide randomized dummy
data for what we think is acceptable input, e.g., name and email. We will further try to
naively fill forms with a static phone number and room number if asked, although these
input fields will probably have constraints defined and could reject the input. However,

37

6. Design and Implementation

(a) Start screen (b) Menu

Figure 6.4: Screenshots of the Honey Client app

we do not target networks that require extensive information, e.g., passwords, token, or
identity verification in order to authenticate. In figure 6.6 screenshots picture some of
those captive portals.
In case we could not login automatically, we send the captive portal responses to the
measurement server. This will help identifying problems and improving the algorithm in
future.

Static Login

This method is part of every test run, as it checks whether there actually is a captive
portal in place. In figure 6.3 it is represented as StaticLoginTask and runs as an
AsyncTask9. It has been named static login as it is simply crawls the website that the
captive portal is redirecting to, and stores it locally. The stored file is then statically
examined and semantically interpreted, e.g., scanned for links, forms, and keywords.
Next, we try to fill those identified forms, follow redirects or click on links. Each of those
interactions will trigger another request and the response will again be stored locally
in a file, and then processed. After each step we are checking whether the internet
access is still blocked. The login procedure is stopped in case we managed to authenticate.

We are using the OkHttp library to crawl websites, as it allows intercepting network
9an Android specific class that executes in the background

38

6.2. Android Client Application

Figure 6.5: Samples of captive portals

Figure 6.6: Captive portals requiring additional information

39

6. Design and Implementation

requests (important for debugging and logging reasons). Furthermore it is capable
to follow redirects from HTTPS to HTTP and vice-versa automatically. This is bad
practice in general but acceptable for the captive portal login and speeds up the login
process. In addition, we check the response for any meta refresh tags and follow such
redirects immediately. This tag is an HTML element telling the browser to reload, and is
sometimes used to force a redirect.

The following steps are conducted recursively. E.g., for every request made that will
load a new website, the response is stored locally and we continue examining this new
response first. After 40 different websites have been loaded, we stop the process as we
can assume that this approach will not be successful.

• Find form on the website. First, we check if the website contains any form.
Forms are usually used to ask for confirmation or additional data to access the
internet, for example a checkbox could be required to acknowledge terms and
conditions, or it may be required to fill a name. If a form is identified, we fill it
with dummy data. As the approach is static, we actually construct the GET or
POST request that the form would trigger if a real user was interacting with the
website. If the form requires a password input, the static login process is stopped
and we carry on with the next procedure.
Note, that we do not stop entirely. We have experienced some websites that fill
out password fields running JavaScript. This may be an approach to prevent such
static processing and automated handling of captive portals.

• Extract promising links. Next, we identify links that can be followed. Therefore
URLs are extracted from the website, that are part of link tags (<a>). We have a
list of keywords defined (see table 6.1), that is used for ranking and ordering the
list of extracted hyperlinks. Those keywords are a mix of English and German
words, and result from the collection of captive portal responses that we have
analyzed. In addition we try to match patterns on the website that may contain
hyperlinks as well, e.g., redirects that would be interpreted by a browser making
use of the location attribute and append it to the list of identified links.

Furthermore, we try to construct links that are used for Cisco Meraki 10 hosted
solutions. We witnessed some captive portals making use of Meraki that built the
link with a JavaScript function. An online documentation [118] revealed how links
are constructed in general and we follow this approach. Although this will not work
for all Meraki networks, it promises a faster login success for some captive portals.

10https://meraki.cisco.com

40

https://meraki.cisco.com

6.2. Android Client Application

connect verbinden accept akzeptieren login continue
log in logon einloggen internet surf fortfahren
agree access zustimmen register registrieren bestätige
anmelden free wifi get online signup wlan

Table 6.1: Keywords used for ranking

The static approach is simple and straight forward as it does not require a browser
and can run in the background. However, it is useless for captive portals that rely on
JavaScript to display content, or to interact with the website.

Dynamic Login

In order to interpret JavaScript on a website, we came up with a solution that uses
a WebView11. We use it within a service, DynamicLoginService (figure. 6.3), so
that it is able to run in the background as well. In general, a WebView requires
to be visible in order to load content (e.g., the screen of the device is turned on,
displaying the WebView). However, we could use a system application overlay with
zero height and width, making the WebView believe that it is the foreground while it is not.

The website is then loaded into the WebView which will automatically follow redirects,
just like a browser would do. Once the page loading has loaded, we check whether the
internet can be accessed. If so, we can stop the process. Else, we execute a JavaScript,
that will extract the Document Object Model (DOM) of the website and store it locally
into a file.
The following steps are essentially the same as with the static login attempt:

• Find form or links within the DOM. If we find a form, we build a script that
can be executed on the WebView and will fill input fields, check boxes, perform
clicks, etc.

• Execute JavaScript. The prepared script is then executed on the WebView.
Normally, running a script will trigger the site to load new content, and we can
then check the next DOM. However, it may happen that executing JavaScript
does not have any side effects. In that case the same DOM will be analyzed again,
searching for other possibilities, e.g., links to follow, and create a new script that
will be executed.

• Check previous site. In case we run out of options (i.e., we already covered all
possibilities to interact with the site), we will try to reload the previous site (if any)
and continue with the process.

11a standard and browser-like view on Android, capable of displaying websites

41

6. Design and Implementation

Note that this form of interaction with the website is not reliable and in general hard to
test and verify as using a WebView within a Service class is not an intended use case for
Android.

Manual Login

As a last resort, when previous approaches failed, we ask the user for help. The user
will be notified that a manual authentication is required. However, he or she is free to
ignore this request. At the time the network is out of reach, it will be removed and the
process will simply continue. In case the user is willing to help, the captive portal will be
displayed in a common WebView, and the user can interact with it normally, like in a
webbrowser. Once the app could verify that an internet connection has been established,
the tests will start automatically.

6.2.3 Collecting Data

We also collect information about the Wi-Fi networks that Android provides. This
includes for example Basic Service Set Identifier (BSSID), IP, gateway, DNS addresses.
Furthermore, we extract details about the test device itself like OS version, brand, etc.
This information may be helpful to identify problems with specific OS versions. We also
create a Universally Unique Identifier (UUID) for each installation of the app. Note that
this is not a unique identifier of the device. Rather this UUID will change if the app
is reinstalled or data is deleted. This UUID is sent along with test results as well. It
has been introduced so that we could match uploaded files, which will also include the
UUID, with the test results. This may be helpful when analyzing failed automated login
procedures, as results may vary depending on OS version and hardware capabilities.
In addition, Android’s LocationManager [34] is used to store an estimated location along
with the test result. It requests the last known location of the device. It relies on
information from the network location provider for cell tower and Wi-Fi based estimation.
Thus, all devices that do not have an active SIM, will only receive updates from Wi-Fi
location. As a result, the position is not very accurate. It may happen that the location
is out-of-date for example when the device was turned off and moved to another city.

6.2.4 Obstacles

Before actually building the app, we had to collect samples of real-world captive portals
in order to find strategies to automate the process of authentication. Implementing the
Android client required a lot of manual testing, as devices would show different results
for the automatic captive portal login and especially the testing speed. This may be due
to different hardware capabilities or OS versions. Moreover, mobile devices may lose the
Wi-Fi connection at any time, and we had to make sure that the app could handle this
without losing any data.

42

6.3. Pre-Authentication Tests

The app was constantly adapted as we collected feedback from users and tried to improve
the testing performance and usability.

Android SDK Changes

Android publishes new SDK versions regularly, however, updates are generally not
available for all devices [33]. Consequently, we faced some challenges, which we briefly
discuss in the following.
Starting from Android 4.4 (API 19) the WebView relies on Chromium [31]. We witnessed
different behavior using the dynamic login functionality on devices that are running lower
API versions, e.g., scripts were not executed reliably or showed different results. However,
this may also be related to the hardware components, as these were all low-budget
devices.
With Android 6.0 (API 23) the behavior for Wi-Fi networks was changed [32]. Prior
the change, any Wi-Fi connection was used as the main network, regardless whether the
network actually had internet access. However, starting with API 23 the behavior differs:
in case Android detects a Wi-Fi connection that is not allowing access to the internet
(yet), it chooses other available networks over the Wi-Fi network. This means when the
device is connected to a public Wi-Fi hotspot with a captive portal in place, it would
still make use of cellular data if it is available. Thus we would not be able to detect the
captive portal. In order to prevent this, the process must be explicitly bound to the
Wi-Fi network. This works fine for almost all cases. However, we experienced problems
when binding the network and using the ping command, which still seems to run over
cellular data. For this reason, we exclude the ICMP tunnel test if we detect an active
mobile data connection (see also section 6.3.1).
Furthermore, changes with the doze and standby mode were introduced with Android 6.0
[27]. These changes affect the app as it restricts background tasks and stops scanning for
Wi-Fi networks. We used a few tricks to workaround the restrictions such as whitelist
the app (i.e., so that it can run in the background), hold a partial wake lock that allows
accessing the network while in stand-by, and used a JobScheduler to request a new scan
for Wi-Fi every few minutes.

6.3 Pre-Authentication Tests
The following describes the tests that are conducted, once the Honey Client app managed
to connect to a Wi-Fi hotspot. Those tests are executed in every case, e.g., regardless of
captive portals and internet access.

6.3.1 ICMP Tunnel Test

For this test, we use the system tool ping on Android, and try to send and receive five
packets by executing /system/bin/ping -c 5 37.252.185.26. The IP address
is the one of our measurement server. If five packets could be received, the test is marked
as successful (if at least one packet was received, we mark the test as partially successful).

43

6. Design and Implementation

DNS Query Request Type Response
Ctunnel21356sdfasd234123480-
gsdfgnl324280
tgsdfgd012345678901.atrox.org

CNAME C2tunnel324230870t353214ndfsv
082340123456789012.atrox.org

Ttunnel21356sdfasd234123480-
gsdfgnl324280
tgsdfgd012345678901.atrox.org

TXT "this is a dns tunnel test,
21356sdfasd234123480-
gsdfgnl324280tgsdfgd"

Table 6.2: DNS tunnel test: resource records

Note that this only tests whether hosts can be reached that are not within the same
network. There may be strategies in place to filter uncommon packets, as discussed in
section 3.6.1.

6.3.2 DNS Tunnel Test

We send two DNS queries, that should be answered by a DNS server that we have
configured. The first query, should be answered with a CNAME record, while the second
one expects a TXT response. Only if both responses match the expected ones as shown
in table 6.2, the test will be marked as successful. The time to live for each entry is set
to 30 seconds, so that the cache will not keep the entry for long and we can rely on the
results.

6.3.3 HTTPS Interception of Captive Portal

Captive portals may have different strategies for handling HTTPS requests before the
user has authenticated and those should be revealed with this test. For the first tests,
we used https://google.com (until mid of December), but continued testing with
https://www.microsoft.com in a new version. The reason for changing the tested
website was a suspected white-listing for popular websites within some captive portals,
including the Google search. To evaluate the result of this test, we are collecting the
following properties:

• Response code for the request
• URL of the final website loaded
• Protocol of the connection (which should be HTTPS)
• Title of the website we have been finally redirected to

If the requested site could not have been reached (e.g., an exception has been thrown) we
report the details for this exception. This may include timeouts in case the connection to
the Wi-Fi hotspot was lost, but also SSL related exceptions. These results need a deeper
inspection after collection.

44

6.4. Post-Authentication Tests

6.4 Post-Authentication Tests

Once we could verify that the access to the internet is granted, the post-authentication
tests are executed.

6.4.1 Honey Traffic

In order to create authentic-looking honey traffic, we simulate user sessions. In the
following it is described how the simulated session are constructed. Generally, these tests
are considered as executed, once the login was successful, as this means that the login
credentials have been sent over the network.
Differing banner, and any other unexpected event or response will be logged in a file as
well and reported to the measurement server for debugging reasons and deeper inspection.

IMAP

Once the connection via IMAP has been established, the banner will be verified. It is
expected to be:
* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS ID
ENABLE IDLE AUTH=PLAIN] Welcome to the IMAP service. Ready.

Then the app will simulate some typical tasks over IMAP:

• Login
• Select the inbox and try to fetch unread mail, if any
• Search for mails with subject contract
• Logout

SMTP

We only consider port 25 for this field study because of simplicity. The decoy data sent
is not routed to any other MTA and the SMTP server does not deliver the decoy emails
to a recipient. After the client has been able to connect via SMTP the expected banner
is checked. The SMTP server is greeting with:
220 localhost Welcome to the SMTPServer. Have fun using this service!
Furthermore, it is also tested whether the EHLO response is as expected: 250-
mail.asdf.com 250 AUTH LOGIN PLAIN.
The app will:

• Send an EHLO command to the measurement server
• Login
• Send an email
• Logout

45

6. Design and Implementation

The email sent by the client will be logged by the SMTP server, but not delivered. For
simplicity, we use the same recipient and the same message for every session. The sender
will be adapted to the corresponding username.

FTP

Also for the FTP service, we compare the greeting banner first. The measurement server
should greet with:
220-Welcome to our FTP Service. Be careful what you are doing and keep your
credentials save. 220 (sic!)

Subsequently, the client application will:

• Login
• List files, and iterate directories
• Download the first file found
• Logout

HTTP

For the HTTP test, there is a simple web service configured.

The client will:

• Request login.html and compare if login site looks as expected
• Send login credentials
• Check if response is redirecting to the expected site home.html
• Follow the redirect and check if the username is part of the greeting on the website
• Logout

6.4.2 SSL Stripping

For the SSL stripping test, we test typical scenarios. First, the client requests a website,
that should redirect to HTTPS. It is then verified that the content has not changed, e.g.,
links have been stripped.

The steps include:

• Request home/index.html
• Mark the HTTPS redirect as successful if it responded with a response 301 to
https://[...]/home/index.html

• Follow the redirect (if any), and for HTTPS pin the chain certificate
• Compare the actual content with the expected one

46

6.4. Post-Authentication Tests

Category Websites
Social Network http://facebook.com

http://twitter.com
File Sharing http://thepiratebay.org

http://mp3skulls.top*
Streaming Service http://youtube.com

http://netflix.com
http://hulu.com
http://kinox.tv
http://movie.to

Blogs http://wikileaks.com
http://medium.com
http://wikipedia.com
http://groups.google.com
http://wordpress.com
http://imgur.com

News http://torrentfreak.com
http://theguardian.com
http://nytimes.com

Gambling http://888holdingsplc.com
http://bet-at-home.com

Pornography http://pornhub.com
*replaced by http://mp3skulls.to as domain ran out

Table 6.3: Categories of tested websites

6.4.3 Blocked Websites

To test content that may be blocked by a network, we defined seven categories, and for
each we test at least one representative website. These sites may be blocked for different
reasons. While some may be marked as inappropriate (which is likely for pornography
and gambling), others may be blocked as they are using too much bandwidth (for example
streaming services). Some sites may be blocked for political or regulatory reasons, such
as presumed illegal activities (e.g., file sharing).
If content filters are used to block the access, we can assume that websites with similar
content will likely be blocked as well. The categories and websites are listed in table 6.3.
Note that the category is a rough description for the general website content.

For the tests, each of the listed websites (table 6.3) is retrieved, and the following
information is stored:

• Title of the website
• HTTP response code
• Website URL (or the URL we have been redirected to)

47

6. Design and Implementation

• IP address of the server the connection went to

These details are sent to the measurement server for a later inspection. We requested
the websites using different countries of origin using VPN connections beforehand, and
extracted a string or regular expression that would represent an expected title. For a
first evaluation, we compare the actual title with the expected one and store a boolean
indicating the website was reachable. In case of a positive match, we are sure the website
was reachable. However, some titles of websites changed during the tests, or where
localized. Thus, we need to further check all results that indicated that the website was
not reachable or blocked, to eliminate false positives.

6.4.4 Blocking of Standard Ports

In order to identify ports that have been blocked by the network, we connect to selected
ports over TCP and UDP. The complete listing of tested can be found in table 6.4.
We only test a selected subset of ports. These ports are mostly standard ports for
services that users may require to fulfill ordinary tasks. Some of those have already
been explained in section 3.2. Furthermore, we also included the standard ports for the
following protocols:

• Telnet [100] and remote user Telnet service [98]
• Simple File Transfer Protocol (SFTP) [66], a file transfer protocol that is simpler

compared to FTP
• Internet Key Exchange (IKE) [58], provides functionalities to perform authentication

and set up security associations
• SOCKS [65], a protocol used to exchange packets between a client and a server

over a proxy server
• Internet Protocol Security (IPSec) [59], a protocol that provides security services

for the IP layer
• Layer 2 Tunneling Protocol (L2TP) [71], a tunneling protocol
• Point-to-Point Tunneling Protocol (PPTP) [54], another tunneling protocol that is

not defined as a standard, but has been developed by vendors
• Session Initiation Protocol (SIP) [105], commonly used for voice-over-IP

Additionally, we added ports that are traditionally used by BitTorrent for file sharing [7],
and a list of ports that are suggested by the VPN provider Mullvad [81]. Furthermore,
the test include one port that has been used by the remote access tool Cerberus, which
is known as a hacking tool [70].

The test sends a message to the measurement server where a service replies with a
predefined string: Hello. Nice to meet you..
For each port and protocol tested, the result is marked as successful if we received the
response as expected.
Additionally, we test if a TCP connection is accepted, for some ports that are already
preoccupied on the measurement server. These ports include 21 (FTP), 22 (SSH), 25

48

6.4. Post-Authentication Tests

(SMTP), and 143 (IMAP).

However, when interpreting the results we have to keep in mind that UDP is an unreliable
protocol and packets may be lost. Therefore we can only be sure that the port is
reachable, if we get a response. However, the opposite is not true, e.g., it is not possible
to assume that the port is blocked, if we do not get a response due to the protocol’s nature.

6.4.5 Support of IPv6

In order to test the capabilities and supported protocols of the networks, we try to access
the URL http://ipv6.google.com. It is a website provided by Google that is only
accessible over IPv6. If the website response is as expected, and we can verify that the
address is indeed a IPv6 address, this test is marked as successful.

49

6. Design and Implementation

Port Protocol used for Tests Standard Service, Description
20 TCP FTP
23 TCP Telnet
25 UDP SMTP
53 TCP, UDP DNS
80 UDP HTTP
107 TCP Remote Telnet
110 TCP POP3
115 TCP SFTP
143 UDP IMAP
220 TCP, UDP IMAP version 3
443 UDP HTTPS
465 TCP SMTP over TLS
500 TCP, UDP IKE
587 TCP SMTP
989 TCP, UDP FTPS
990 TCP, UDP FTPS
993 TCP, UDP POP3 over TLS
1080 TCP, UDP SOCKS
1300 UDP Suggested for VPN Mullvad
1301 UDP Suggested for VPN Mullvad
1302 UDP Suggested for VPN Mullvad
1194 TCP OpenVPN
1195 UDP Suggested for VPN Mullvad
1196 UDP Suggested for VPN Mullvad
1197 UDP Suggested for VPN Mullvad
1293 TCP IPSec
1701 UDP L2TP
1723 TCP, UDP PPTP
5060 TCP, UDP SIP
5061 TCP, UDP SIP over TLS
5150 TCP Cerberus RAT (malware)
6881 TCP, UDP BitTorrent
6887 TCP, UDP BitTorrent

Table 6.4: UDP and TCP ports tested

50

CHAPTER 7
Field Study

7.1 Preparation
Before we started the field study, we experimented and tested the app and services of
the measurement server in small testing environments. For this we used other Android
devices to create portable public Wi-Fi hotspots.
We also used such portal Wi-Fi hotspots to test whether the services of the measurement
server are up and running as expected during the field study.

Furthermore, we tested automatic login functionality of the Honey Client app on real
captive portals before we started the actual field study.

7.2 Timeline
On November 3, 2017 we started the first evaluation in the wild, in a supermarket. Not
all tests had already been implemented. We continued introducing and adapting test
cases along with the process of testing real world hotspots. Nevertheless, when we started
with the first measurements we already spread honey traffic over IMAP and HTTP,
tested blocked websites and ICMP tunneling capabilities.

On November 21, 2017 the server configuration was ready, and all honey services ran
permanently. From this point on, we deployed the app onto several devices and started
the measurements from public Wi-Fi networks in the real world.

For this thesis, we include testing results until March 24, 2018. E.g., we include all
results that has been recorded by or sent to the measurement server until March 24. The
services on the measurement server, however, kept running until mid of August 2018.
This ensures to catch any attacker that has sniffed login credentials and tries to exploit
those weeks or months later.

51

7. Field Study

Name SDK Android OS Brand Model Manufacturer
Sony Xperia tipo 15 4.0.3 (Ice Cream Sandwich MR1) Sony ST21i Sony
LG P700 Optimus L7 15 4.0.3 (Ice Cream Sandwich MR1) lge LG-P700 LGE
Google Nexus 4 17 4.2 (Jelly Bean MR1) Google Nexus 4 LGE
Samsung Galaxy S4 Mini 19 4.4 (Kitkat) Samsung GT-I9195 Samsung
Google Nexus 4 21 5.0 (Lollipop) Google Nexus 4 LGE
Sony Xperia Z2 22 5.1 (Lollipop MR1) Sony D6503 Sony
Google Nexus 4 22 5.1 (Lollipop MR1) Google Nexus 4 LGE
OnePlus 2 23 6.0 (Marshmallow) OnePlus ONE A2003 OnePlus
Yotaphone 2 23 6.0 (Marshmallow) YotaPhone YD201 Yota Devices Limited
Samsung Galaxy S7 edge 24 7.0 (Nougat) Samsung SM-G935F Samsung
Google Nexus 5X 25 7.1 (Nougat MR1) Google Nexus 5X LGE
Google Nexus 6P 27 8.1 (Oreo MR1) Google Nexus 6P Huawei

Table 7.1: Android test devices

7.3 Test Devices and Volunteers
Some volunteers participated in the field study and took devices on their daily routes or
when traveling.
The users were only instructed to take the device along and to activate the app. It was
up to the volunteers to decide whether they respond to manual login requests that may
pop up.

We were in possession of several Android devices that we could use for the field study
and we also provided those to the volunteers. Furthermore, some of the testers used their
own devices for the measurements. We provided the app over the testing distribution
tool Beta by Crashlytics1. This way we were able to push any updates of the app right
away to the users.
Figure 7.1 contains a list devices that have been used for testing and measuring public
Wi-Fi hotspots.

7.4 Locations
As the Wi-Fi hotspot testing requires physical presence, we mainly examined networks
in and nearby Vienna. Thus, we visited shopping centers, train stations, airports,
restaurants, etc.
However, we also had some volunteers that run the measurements during their trips to
other cities and countries.

In the beginning of December we were able to run some tests on Wi-Fi networks around
Florida, USA.

1|http://try.crashlytics.com/beta/

52

|http://try.crashlytics.com/beta/

7.5. Updates of Testing Scenarios and App Updates

At the end of December, three test devices measured hotspots during the 34th Chaos
Communication Congress (34C3) [17] in Leipzig, Germany. The congress, organized by
the Chaos Computer Club, is hosting a diverse audience including hackers and security
specialists.
In January, we tested some Wi-Fi hotspots around London, mainly in various shops
nearby Piccadilly Circus.
In addition, some devices collected data in other areas of Austria and other nearby
European countries such as Germany, Slovakia, Czechia, Ukraine, and Italy.

7.5 Updates of Testing Scenarios and App Updates
The test for DNS tunneling was not properly implemented as we started the tests, so we
only consider results starting from November 29, 2017.

Although, we constantly adapted and pushed new versions of the Android app to the
users, other testing results will not be affected by those changes. The main improvements
were concerned about usability and circumvention of the doze and stand-by mode.

7.6 Interruptions
Except for short-time maintenance windows, the server was up and running during the
testing period. There were only two exceptions, when the database connection was
interrupted.
Once on February 2, 2018, where we had to renew the server certificate. Restarting the
services resulted in a lost database connection, that we only discovered some time later
that day.
The second outage was on March 7, 2018. We are not aware of any special circumstances
that caused this malfunctioning, we only know that the services could not access the
database for about two hours. A restart of the services could fix the issue.
We could, however, recover the data that was transmitted to the server and were also
able to relate most of the login attempts during these short interruptions, except for one.
Details will be discussed in section 8.1.1.

53

CHAPTER 8
Results

The results discussed in the following include all data that have been received by the
measurement server between November 3, 2017 (18:00 GMT+01:00) and March 24, 2018
(03:00 GMT+01:00). Note that testing devices may not have reported all data collected
to the measurement server.
There are two conceivable scenarios: one, the internet connection was lost before
uploading all results; and two, the app data on the device was deleted by the user.

When interpreting the results, we distinguish the tested networks by their SSID. This
decision may be arguable as the network name can be freely selected and could also be
used by people with malicious intend (e.g., for an evil twin attack). However, we think
that it is a tangible approach and differences in collected data and measurements will
reveal irregularities anyhow.
The internet connection for Wi-Fi networks in unreliable in general and may have been
interrupted at any time. For the discussion of the results, we therefore only consider
those Wi-Fi networks that were able to run the corresponding test.

The services on the measurement server kept running until mid of August, 2018.

8.1 Data Cleansing
For the evaluation we used a database dump from the original data on the measurement
server that we imported into a local database for running queries. It contains all data
that have been recorded until March 24, 2018 03:00 GMT+01:00.
As we used the measurement server and its services for testing various scenarios before
the field study started, we only consider test results and access logs from November 3,
2017 18:00 GMT+01:00 onward.

55

8. Results

In order to clean the data we filter SSID names that we have used to test whether the
services of the measurement server are well functioning during the evaluation phase.

Furthermore, we insert missing data that was lost due to database interruptions but
could be recovered from log files (see also section 8.1.1).

In addition, the GPS data requires some adaptions as the Wi-Fi based location tracking
may deliver false or no results. We will discuss the related issues and cleaning approaches
in more detail in section 8.1.2.

Moreover, we have to deal with test results that have been sent multiple times. The testing
devices may send data more than once in case the connection had been lost before the data
retrieval was acknowledged by the measurement server. However, each test result includes
a time stamp of the test execution and a unique identifier for the device. As one device is
only able to execute one test at a time, those attributes are sufficient to identify duplicates.

8.1.1 Database Interruptions

We had to deal with two database interruptions during the testing period. The RESTful
service was not accepting data uploads for about 20 minutes on February 2, 2018. We
could, however, reconstruct the two test results, which were sent to the measurement
server during that time as we included verbose logging for any unexpected behavior.
Moreover, there was a problem with the standalone Python app, running the FTP and
SMTP service, which was not able to communicate with the database for about 7 hours.
Consequently, any login attempt was denied. We identified seven login requests during
that time, but lost the details about the used credentials the measurement server site.
Nevertheless, as we logged details on the Android test devices, we were able match
the missing pieces and could verify that all login attempts were initiated by testing devices.

The other outage on March 7, 2018, lasted for about two hours. During that time,
only one test result was transported to the measurement server. Furthermore, we
identified one failed login attempt over FTP at 8:51 GMT+01:00. The username used
was anonymous. The entered password could not be recovered. However, this user does
not exist and so we conclude that this relates to a scanning attack over the internet.
There was only one login attempt we could not clarify. This attempt was over SMTP at
9:34 GMT+01:00 and we were not able to recover the used credentials.

As we could verify most of the missing data using the log files from the measurement
server and from the Android testing devices, we created a script that inserts the lost
data, e.g., the testing results and access attempts.

56

8.1. Data Cleansing

8.1.2 Location Mapping and Cleaning

As described in section 6.2.3 the Android testing devices rely on the LocationManager to
request the last known location that is then stored along with the test result. The Wi-Fi
based location estimation is not accurate, but delivers acceptable results in most cases.

However, we experienced two unexpected behaviors during the tests. Sometimes devices
did not return any location and in other cases the reported GPS position was obviously
wrong.

For all unavailable locations we assume that the LocationManager or the Google services
were not working properly on the device. Furthermore, there are two explanations for
the wrong GPS locations: One, the device was moved to a new location and has not
received an update for the new position yet (i.e., still using the last known location).
Second the BSSID of the network used had been mapped to another location before.
This may happen when the physical location of a hotspot changes. For example think
of a company that rents access points for large events to provide Wi-Fi hotspots. We
experienced this behavior for the network 34c3-insecure, which was the SSID of hotspots
used for a conference in Germany. We assume that the access points used for this
conference had been used in another area before and that Google mapped the BSSID of
the devices to that other location. Also, the documentation of the Google Geolocation
API describes that the Wi-Fi based location lookup requires only MAC addresses in
order to determine an estimated position of a Wi-Fi network [29]. We can only assume
that Android’s LocationManager is using the same approach.

For test results with unknown locations, we checked if there was already an existing
entry, reported by another device. We checked for results with the same BSSID and
SSID combination and mapped the reported location. For the missing entries we used
the Google Geolocation API to query for a location based on other Wi-Fi networks
detected by the device. The API requires at least two MAC addresses of Wi-Fi nodes to
estimate the location. As we collected data about any public Wi-Fi nearby, we were able
to use the BSSID of other networks nearby the access point of interest. However, we
only used the returned location if the estimated accuracy, returned by the API, was
under 1,000 meters.

To interpret some of the test results we need to group the data by country. Therefore,
we used Google’s Reverse Geocoding API [30], which returns the country information
for given GPS coordinates. Two locations did not return any result over the API.
However, we manually searched for the GPS location over Google Maps to find the
corresponding country. Those coordinates were 49.0825068,15.7586303 (Czechia), and
51.4716133,-0.4582375 (United Kingdom).

57

8. Results

In order to eliminate known wrong locations, we sorted the test results by device
(UUID) and time stamp tested, and then manually checked every entry that reported a
different country before or after that test result. Considering the time stamp correlation,
we identified 13 networks with a wrong location mapping and adapted the country
information accordingly. Details about those corrected locations can be found in
table 8.1.
The results may still contain wrong location information, but we were not able to reveal
more, obvious mislabeled, networks.

For some other networks with multiple locations reported, we could not reveal a correct
location either for various reasons. One example is the Wi-Fi network FlixBus that is
provided on board by a bus travel company which operates between different countries.
However, this example can be considered as special because the hotspot indeed physically
moves between countries. Nevertheless, we did not alter any other locations.

8.2 General Data Collection

As already outlined in section 7.4, we mainly collected data within Austria and some
European countries. The only location outside of Europe, was in Florida (USA).
Figure 8.1 depicts all European geographic locations that were reported by the devices.
Note that this figure already contains corrected GPS data for the above mentioned
networks.

Figure 8.1: Locations of reported Wi-Fi tests

On the measurement server we received 7,574 scan results from 755 Wi-Fi networks
(e.g., counting only distinct network names). Those figures suggest that we were able to
connect to the Wi-Fi hotspots. However, the Wi-Fi connection is unstable in general.

58

8.2. General Data Collection

Network Reported Corrected Explanation
Air-VinziRast
e4:8d:8c:22:bf:98

Austria,
France

Austria Timeline shows that only
Austria can be correct

_Heathrow Wi-Fi
6c:f3:7f:61:a8:23

Austria United
Kingdom

Airport, we assume that last
known location was reported

*Donau Zentrum -
Gratis WLAN
28:6f:7f:40:2d:5e

Austria,
United
Kingdom

Austria We assume that the last
known location was reported

Lets Take a Walk
2c:5d:93:91:90:8e

Austria,
United
Kingdom

United
Kingdom

Probably wrong cached by
LocationManager

WirelessViennaAirport
0c:85:25:c6:48:2f

Germany Austria Airport, we assume that last
known location was reported

Airport Free Wi-Fi
00:3a:9a:32:af:35

Germany,
Slovakia

Slovakia Airport, we assume that last
known location was reported

34c3-insecure,
-Promenaden Haupt-
bahnhof,
Leipziger,
ShareBox - Share freely,
Freifunk,
Ratskeller-FreeWiFi,
Pixel

United
Kingdom,
Poland,
France,
Nether-
lands,
Ireland,
Germany

Germany LocationManager returned
wrong location for 34c3-
insecure.
Consequently, other networks
had a wrong last known
location.
All devices that tested those
networks, were only in Ger-
many at that time.

Table 8.1: Corrected Locations

59

8. Results

Consequently we counted 484 networks where at least the captive portal detection
procedure started, which is the very first test case.

8.3 Captive Portals
We identified 390 distinct networks (i.e., unique SSID) that are using some form of captive
portal. Furthermore, we counted 94 distinct networks that are accessible without the
need for authentication. In other words they do not require a captive portal interaction
and we can directly use the internet after connecting to the hotspot.
Out of the 390 distinct networks that are using a captive portal, we managed to authen-
ticate to 126 using the automated or manual login methods. For another 140 networks
out of the 390, the connection was lost before the login procedure could finish.
The remaining networks either asked for manual login or faced other issues during the
login procedure (e.g., errors while loading web page, executing scripts, or the app was
stopped by the user).

Captive Portal

80%

Freely Accessible

20%

Figure 8.2: Wi-Fi hotspots and captive portals

When the field study started we also tried identifying captive portals that make use
of password protection. In that case we intended to abort the testing procedure in an
early stage. However, as we checked captive portals in the wild, we experienced some
networks wrong classifications of password protected. Consequently, we stopped the login
procedure because of the suspected password protection. To avoid those false positives
and to expand the potential networks tested, we removed this constraint by the end of
November.

8.3.1 Automated Captive Portal Login

The static login worked for 86 distinct networks, while the dynamic login succeeded for
another 48 captive portals. Note that the SSID for static and dynamic login partially
overlap as we revealed 14 networks that were at least once successful for the static and
dynamic login procedure. This sums up to 120 successfully automated login interactions
with distinct networks.
Although users were briefed regarding the use of the app, one tester reported that a login

60

8.3. Captive Portals

was counted as static login as the tester accidentally used the built-in captive portal
detection of Android to login to the captive portal FreeWiFi@LeMeridien. The above
mentioned number have been corrected correspondingly. However, there may have been
similar cases that have not been reported by the users.
Considering the 390 networks with detected captive portals, we managed to automatically
connect to 31%. For another 36% we lost the connection to the Wi-Fi hotspot before the
captive portal login attempt was completed.

Static

60%

Dynamic

28% Static and Dynamic

12%

Figure 8.3: Automated and successful captive portal logins

The static login procedure makes up the majority of successful automated logins
(figure 8.3). Furthermore, we managed to raise the number of successful authentication
by interpreting JavaScript on captive portal landing pages, with the dynamic approach.

In addition, users successfully logged in to the captive portal manually for 11 distinct
networks. Note that we discovered that 5 out of those have been also successfully
connected with the static or dynamic approach at least once.

There may be some explanations why some networks worked with different login methods:
For one, the connection could have been temporarily lost while trying one login method
but reestablished when testing the next strategy. It is also possible that an updated app
version caused this differences, or that the captive portal itself changed.

61

8. Results

Device Identification

Moreover, we observed 79 networks (i.e., 63%) that remembered the devices at least
for a short period of time. For those networks, we discovered a captive portal at least
once. However, when testing the same hotspot subsequently, there was no captive portal
interaction required. Note that we use a new instance of the CookieManager whenever
we connect to Wi-Fi hotspot. Therefore, cookies will have no effect. Consequently, it
seems like those captive portals store some information about the device (e.g., the MAC
address) and keep them on a white list, at least for a predefined amount of time.

8.4 Pre-Authentication Test Results

8.4.1 ICMP Tunneling

We only considered test results that identified a captive portal, i.e., were not able to
access the internet right away (390 networks). The results revealed that 95 distinct
networks allowed pings to our measurement server before interaction with the captive
portal. For 42 out of those we were not able to authenticate with the automated login
methods. The manual login request was triggered for 10 of those.

The remaining 32 either lost the connection before the authentication procedure could
finish, or experienced other errors.

The results show, that roughly 24% of the tested Wi-Fi networks with captive portals
are likely to allow any ICMP traffic before authentication. Therefore, ICMP tunneling
would be an option to circumvent the authentication, especially if the captive portal
requires extensive personal information, tokens, passwords, or payment for login.
Note that we can only assume that a tunnel will work, as we did only check if an IP
address outside of the network can be pinged. There may be additional checks in place
to identify and block ICMP tunnels.

8.4.2 DNS Tunneling

We only consider DNS tunneling results starting from November 29, 2017 (see also
section 7.5). Thus, we have 386 captive portal protected networks within this time frame.
The tests revealed that 196 networks allowed DNS tunneling, meaning that the
communication with our DNS server was initiated. For 111 out of these, we were not
able to successfully authenticate to the captive portal during the login procedure.
52 out of the 111 triggered a manual login, but the request was either ignored or
unsuccessful. For the remaining networks we experienced connection problems that
eventually caused an interruption of the login procedure.

62

8.4. Pre-Authentication Test Results

Consequently, we found that a higher number of captive portal protected networks is
vulnerable for DNS tunneling techniques than for ICMP tunneling. In our field study,
about 51% of the tested networks allowed communication to outside DNS servers before
any interaction with the captive portal.

We further investigated the Dynamic Host Configuration Protocol (DHCP) info we
collected from those 196 networks that were vulnerable for DNS tunneling. We found that
for 74 networks at least one public DNS server was assigned. In addition, we identified
133 cases where the primary DNS server assigned had a private IP address.

ICMP DNS
0%

20%

40%

60%

80%

100%

24%

51%

Figure 8.4: Recorded tunneling vulnerabilities for ICMP and DNS

8.4.3 HTTPS Handling

For the HTTPS redirection test before a successful authentication with a captive portal,
we tested 384 networks.
We identified 31 captive portal protected networks that allowed the requested HTTPS
connection before the login procedure. We changed the tested site starting from mid of
December (see also section 6.3.3). Note that we did not have the opportunity to test all
of the networks with both websites.
For those that we have though, we had some interesting findings: Two networks
(GUEST@VAPIANO and Matiki Free) allowed the HTTPS connection to both of the
tested websites, before the interaction with the captive portal. As we tested rather
popular websites, we cannot assume that any HTTPS traffic is allowed. However, we
know that at least some websites are white listed.
In addition, we identified three networks (AKH-Hotspot, hhonors, and attwifi)
that accepted a secure connection to google.com, but refused connecting to
www.microsoft.com over HTTPS: First two mentioned networks (AKH-Hotspot
and attwifi) reported a SSLHandshakeException, complaining that the certificate

63

8. Results

path could not be validated. This validation error indicates that the trust chain for
the certificate cannot be build and that the keystore does not know anything about
the certificate presented. Consequently, we assume that those networks used their own
certificate and interfered the request probably by redirecting to the captive portal. The
other network, hhonors, refused the connection due to a hostname verification problem.
This means, that the certificate itself could be verified, but the hostname did not match
the expected one (www.microsoft.com). Again, we assume that consequences from a
redirection attempt to the captive portal.

48 more networks responded with a hostname not verified exception. Android devices
running SKD version 22 also revealed more detailed information about the certificate. In
table 8.3 some of those details are depicted. We selected certificate errors from networks
we were able to connect to later on.
Moreover, there were 54 networks (excluding AKH-Hotspot and attwifi) iden-
tified that were causing an exception as the trust chain could not be verified
(CertPathValidatorException). In addition, we even spotted three networks that
caused an exception as the certificate presented was expired (see also table 8.2). This
means that the network did not only interfere the connection, but also failed to renew
their certificate.

Guest Wifi VE120 Certificate expired at Sun Dec 18 21:31:50 GMT+01:00 2016
(compared to Thu Feb 01 16:01:35 GMT+01:00 2018)

MPS - Cairoli Certificate expired at Thu Dec 01 00:59:59 GMT+01:00 2016
(compared to Wed Jan 24 16:34:55 GMT+01:00 2018)

OEBB-GAST Certificate expired at Fri Aug 11 06:40:59 GMT+02:00 2017
(compared to Tue Jan 23 11:35:58 GMT+01:00 2018)

Table 8.2: Samples of expired certificates

For the remaining HTTPS before login tests we were not able to successfully connect
to the requested websites, but experienced various exceptions. Some of those may
be fine, e.g. ,when the connection is refused. However, it is hard to distinguish
which exceptions are caused by the captive portal (e.g., any HTTPS request is
blocked before authentication), and which ones result from general connection er-
rors. Consequently, we only discuss exceptions that are clearly related to certificate errors.

Figure 8.5 summarizes the witnessed behavior. Over a quarter of the tested networks
interfered in some way with the HTTPS connection and consequently raised a certificate
related exception. 8% of the tested networks allowed the HTTPS connection, so we
conclude that those hotspots have at least some white listed websites configured. For
the remaining 65% we were not able to establish a connection. However, we cannot
distinguish connections that have been blocked by the captive portal from those ones
that failed due to network problems.

64

8.4. Pre-Authentication Test Results

BIKBOK_guest

sha1/tiKCXP4+woYxWKFB0yyGUuve964=
DN: CN=*.netnordic.net,OU=PremiumSSL Wildcard,OU=IT,O=NETNORDIC
BEDRIFTSKOMMUNIKASJON AS,2.5.4.18=
#130430313032,STREET=Postboks 143 Sentrum,L=OSLO,ST=NO,2.5.4.17=
#130430313032,C=NO
subjectAltNames: [*.netnordic.net, netnordic.net]

BTOpenzone

sha1/YCYp9PgdoRNTskxXBbJOjKB8FUk=
DN: CN=www.btwifi.com,OU=BT Wi-fi,O=British Telecommunications
plc,L=London,ST=London,C=GB,2.5.4.5=
#13083031383030303030,2.5.4.15=
#131450726976617465204f7267616e697a6174696f6e,1.3.6.1.4.1.311.60.2.1.3=
#13024742
subjectAltNames: [my.btopenzone.com, info.btopenzone.com, btopenzone.com,
www.btopenzone.com, btwifi.co.uk, www.btwifi.co.uk, reg.btwifi.com, btwifi.com,
info.btwifi.com, cdn.btwifi.com, my.btwifi.com, www.btwifi.com]

ESPRIT_free_WiFi
sha1/t4mmzVWCQdnnZ1qOjmTUaenfqeE=
DN: CN=secured.esprit.com
subjectAltNames: [secured.esprit.com]

FreeWiFi@LeMeridien
sha1/QvX+0o8Guxv/mYX1DWkpcKzbzTU=
DN: CN=*.quadriga.com,OU=COMODO SSL Wildcard,OU=Hosted by Century
web Design Ltd,OU=Domain Control Validated
subjectAltNames: [*.quadriga.com, quadriga.com]

HSBC - Wifi

sha1/YCYp9PgdoRNTskxXBbJOjKB8FUk=
DN: CN=www.btwifi.com,OU=BT Wi-fi,O=British Telecommunications
plc,L=London,ST=London,C=GB,2.5.4.5=
#13083031383030303030,2.5.4.15=
#131450726976617465204f7267616e697a6174696f6e,1.3.6.1.4.1.311.60.2.1.3=
#13024742
subjectAltNames: [my.btopenzone.com, info.btopenzone.com, btopenzone.com,
www.btopenzone.com, btwifi.co.uk, www.btwifi.co.uk, reg.btwifi.com, btwifi.com,
info.btwifi.com, cdn.btwifi.com, my.btwifi.com, www.btwifi.com]

MCO Internet
sha1/80y1XxWWNZG09quk4nKsnc5sp2I=
DN: CN=*.goaa.org,O=Greater Orlando Aviation Author-
ity,L=Orlando,ST=Florida,C=US
subjectAltNames: [*.goaa.org, goaa.org]

TOWERFREEWIFI
sha1/MeCsgVxXpYALJTblKUND/FmO288=
DN: CN=*.virginwifi.io
subjectAltNames: [*.virginwifi.io, virginwifi.io]

VOR-Regio
sha1/44q1ycjcCfo0OnF7Hw8k7Df8n94=
DN: CN=captive-portal.peplink.com,OU=PositiveSSL,OU=Domain Control Vali-
dated
subjectAltNames: [captive-portal.peplink.com, www.captive-portal.peplink.com]

WIFIonICE
sha1/9unpOquGfLsoHnvvvcgL+a5nc/8=
DN: CN=www.ombord.info,OU=Domain Control Validated
subjectAltNames: [www.ombord.info]

_Free Airport WiFi

sha1/L+NSDDyfsJamUl8hSlFTNlRn9WA=
DN: CN=*.berlin-airport.de,OU=Flughafen Berlin Brandenburg GmbH - Abt.
FI,O=Flughafen Berlin Brandenburg GmbH,STREET=Flughafen Berlin Branden-
burg,L=Berlin,ST=Berlin,2.5.4.17=
#13053132353231,C=DE
subjectAltNames: [*.berlin-airport.de, berlin-airport.de]

_Heathrow Wi-Fi
sha1/MeCsgVxXpYALJTblKUND/FmO288=
DN: CN=*.virginwifi.io
subjectAltNames: [*.virginwifi.io, virginwifi.io]

_InLinkUK Free Wi-Fi from BT

sha1/YCYp9PgdoRNTskxXBbJOjKB8FUk=
DN: CN=www.btwifi.com,OU=BT Wi-fi,O=British Telecommunications
plc,L=London,ST=London,C=GB,2.5.4.5=
#13083031383030303030,2.5.4.15=
#131450726976617465204f7267616e697a6174696f6e,1.3.6.1.4.1.311.60.2.1.3=
#13024742
subjectAltNames: [my.btopenzone.com, info.btopenzone.com, btopenzone.com,
www.btopenzone.com, btwifi.co.uk, www.btwifi.co.uk, reg.btwifi.com, btwifi.com,
info.btwifi.com, cdn.btwifi.com, my.btwifi.com, www.btwifi.com]

stp-public
sha1/fQ8EQFocbZG2BgaWMY2zgI7IN3c=
DN: CN=*.loop21.net
subjectAltNames: [*.loop21.net, loop21.net]

viennasightseeing
sha1/fQ8EQFocbZG2BgaWMY2zgI7IN3c=
DN: CN=*.loop21.net
subjectAltNames: [*.loop21.net, loop21.net]

Table 8.3: Samples of HTTPS certificate errors

65

8. Results

8%

27%

65%

HTTPS allowed (at least for white listed sites)
Certificate errors
Others (connection could not be established)

Figure 8.5: HTTPS handling of captive portals before successful authentication

8.5 Post-Authentication Test Results

8.5.1 Honey Traffic Spreading

To receive the amount of honey traffic spread, we counted the successful access logs on
the measurement server side. This way we are able to include logins that have not been
counted as successful by the Android device (e.g, if the response that the login was
successful could not be received anymore as the connection was interrupted). There are
even more situations, that explain why the data on the measurement server and the
Android clients differ: Data collected within the app may not have been synchronized
with the measurement server yet. Additionally, data may also be lost in case the app
data had been deleted before all results were synchronized with the measurement server.
Nevertheless, this credentials had been transmitted over the network.
We verified that all of these counted successful logins were indeed initiated by authorized
devices. The access logs showed some login credentials that we could not match to any
received test result. As we keep track of the UUID that requested login credentials, we
were able to confirm that known test devices had been in possession of those login data.
On the measurement server we counted 2,726 logins over FTP, 2,870 over IMAP, 2,673
over SMTP and 2,898 for the HTTP service. Note that the numbers are not equal for all
services as some may have been blocked, and also the internet connection may have been
lost at any time.

The logs did not indicate any repeated logins for the same login data. As the honey
services kept running, we checked all records on the measurement server up to August
15, 2018. Therefore, we could not detect any evidence that an attacker has sniffed data
as no user credentials were reused, even months after spreading the honey traffic.

66

8.5. Post-Authentication Test Results

8.5.2 Intercepted Services

We identified several Wi-Fi networks that reported a modified banner.
For the FTP traffic, we revealed two networks (AirDigital and AirFree Unsecured) that re-
turned a modified FTP banner: 220 Zscaler/6.0: USER expected (Unix syn-
tax).
Both networks were tested on 2018-01-19 with only a few minutes in between. The login
was unsuccessful in both cases. Zscaler is the name of an information security company
which also provides a service for controlling FTP traffic1. Thus, it is likely that those
networks are using this service.

Moreover, we discovered 9 distinct networks that intercepted the SMTP traffic, as the
returned banner was different. The network myhive Twin Towers Welcome, Telekom,
BVG Wi-Fi, HSBC - Wifi, BTOpenzone, and WirelessHartlauer all returned the same
response: 220 followed by 65 star symbols *.
For all those networks, the SMTP test was at least once completed successfully. The
most interesting networks of those ones may be BVG Wi-Fi as it is provided by the
public transport service in Berlin2.

Furthermore, we witnessed three networks that also returned a different response for the
EHLO request. The login attempts for these network over SMTP were not successful,
however. The tests that run within those networks were only a few minutes apart and
located in London. Except for the timestamp and the IP address the following responses
were identical for FreeWiFi@LeMeridien, OmniAccess, GuestRoom@LeMeridien:

[Banner]
220 hsia.quadriga.com ESMTP Exim 4.80.1 Thu, 01 Feb 2018 11:58:01 +0000

[EHLO]
250-hsia.quadriga.com Hello mail.asdf.com [192.168.54.205]
250-SIZE 52428800
250-8BITMIME
250-PIPELINING
250 HELP

These responses and the fact that the login was unsuccessful suggests that the SMTP
traffic was redirected to an internal SMTP server within the connected network. We
guess that these networks are managed by the service provider Quadriga3.

8.5.3 SSL Stripping

The tests did not reveal any SSL stripping attempts.
1https://help.zscaler.com/zia/about-ftp-control
2https://www.bvg.de/de/Aktuell/BVG-Wi-Fi
3http://www.quadriga.com/solutions/iq-internet/

67

https://help.zscaler.com/zia/about-ftp-control
https://www.bvg.de/de/Aktuell/BVG-Wi-Fi
http://www.quadriga.com/solutions/iq-internet/

8. Results

ADMIN Access Blocked
Blocked URL Check Point UserCheck
Content Blocked Diese Seite wurde gesperrt!
Filtered LIST OF COURT ORDERS
Message Netzsperre - T-Mobile
Norton ConnectSafe Requested Site Blocked
STOP! Seite gesperrt
Seite kann nicht angezeigt werden Sorry you can’t access this page here
Sorry! Access Denied UPC Kundeninfo
Web Page Blocked! Website blocked
Website gesperrt dm - Nutzungsbedingungen

Table 8.4: Titles used to indicate blocked content

8.5.4 Blocked Websites

For the categories of blocked websites, we experienced that Wi-Fi hotspots have different
strategies for blocking unwanted content. We identified several networks that responded
with a HTTP code 200 OK and returned a static website explaining that the content is
filtered. However, for the tests we only stored the returned title of the website.
Table 8.4 list such titles that we categorized as blocked content messages.

Consequently, we are able to interpret all responses that responded with a blocked content
message, or with a response code 403 FORBIDDEN as blocked. We counted 98 distinct
networks that blocked at least one of the tested websites. In total numbers we experienced
3,141 denied requests.

We also registered various response codes within the 5xx range. In general those response
codes indicate a server error. Table 8.5 lists the response codes for the tested websites
that responded with such an error code. Some of those response codes are not standard,
but are used by individual enterprises such as CloudFlare4.

Response Message Counted Networks Individual Responses
500 Internal Server Error 1 2
502 Bad Gateway 13 30
503 Service Unavailable 47 936
504 Gateway Timeout 4 12
520 Unknown Error* 7 91
521 Web Server is down* 1 1
522 Connection timed out* 8 27
523 Origin is unreachable* 1 1

*Cloudflare specific [116]

Table 8.5: 5xx response codes

4https://cloudflare.com

68

https://cloudflare.com

8.5. Post-Authentication Test Results

Especially the response code for Service Unavailable could may be used to indicate
that the website is blocked. The amount of networks returning that code supports this
suspicion. Therefore, we further investigate all those responses. To eliminate any obvious
connection errors, we exclude all responses where we could match to a positive result.
E.g., in case a network already tested this website successfully, meaning the website was
reachable at least once, we ignored any 5xx response.
For the remaining responses we grouped the results by network, website and response
code, and then counted the amount of times we faced the same response. We discovered
one network that returned the response code 503 in 223 test scenarios for the website
pornhub.com. Consequently, the likelihood that this website was blocked is high.
Therefore, we introduce another category with potentially blocked websites. We also
identified some responses, which responded with 200 and an empty title. In the end we
only considered networks that returned the same response at least twice. This way we
found another 45 potentially blocked website requests.
Note that we excluded two networks (Vodafone Homespot, ShareBox - Share freely) as
the responses indicate that the internet was not accessible.
Table 8.6 gives an overview about the used HTTP response codes and the amount of
networks that used those to indicate a blocked (or likely blocked) websites.

Number of Networks
Response Message Blocked Likely Blocked
200 OK 81 6
403 Forbidden 19 -
502 Bad Gateway - 1
503 Service Unavailable - 16
504 Gateway Timeout - 1
520 Unknown Error - 4

Table 8.6: Number of networks and used response codes to indicate blocked content

Content Blocking Strategies

In addition, we searched for pattern regarding the blocking strategy. We stored the IP
address of the server that responded to the website requests along with the result for
the blocked website tests. Therefore, we can analyze those addresses. We used a reverse
lookup API provided by ipinfo.io5 to resolve the IP addresses to hostnames.
One content blocking strategy we discovered, is using a DNS service that denies
access to blacklisted websites. We identified four networks that used OpenDNS6

to block requests to movie.to and pornhub.com. Furthermore, another network
used SafeDNS7, which denied access to 888holdingsplc.com, bet-at-home.com,
movie.to, pornhub.com, thepiratebay.org, and wikileaks.com. Both DNS

5https://ipinfo.io
6https://www.opendns.com
7https://www.safedns.com

69

https://ipinfo.io
https://www.opendns.com
https://www.safedns.com

8. Results

services responded with a response code 403 for each request.
Moreover, we experienced some ISP that actively denied access to some requested websites.
Those include for example: A1 Telekom Austria, British Telecommunications, T-Systems
Austria, or Tele2 Telecommunication. All of those responded with the code 200.
We also found some networks that actively redirected to a static website announcing that
the requested site was blocked, e.g., unwirednetworks.net/content-blocked.
We identified some ISP which used this strategy as well, e.g., redirected to www.t-
mobile.at/netzsperre and www.upc.at/upc-kundeninfo/.
In addition, one Wi-Fi hotspot used Norton ConnectSafe8. This allows the provider
to configure different protection policies directly on the router. All requests that are
handled by this router will be scanned and only be forwarded if the policy allows the
request. We also found hints for a similar security gateway policy, provided by Check
Point UserCheck [119].
Some networks seem to have various blocking strategies in place. This may indicate
that the Wi-Fi hotspot provider uses a service that already blocks some content, but
additionally denied access to some more websites. One example is the network OEBB-
station, provided by the Austrian railway at some major stations in Austria. It blocked
access to pornhub.com with a response code 403, and denied access to kinox.tv and
movie.to with a response code 200 and the message Website gesperrt.
For the remaining records we can only assume that service providers block sites by
filtering specific content. We could experience some responses that contained the correct
resolved IP address for the requested website, however, the content was not accessible
anyhow.

Categories and filtered Content

The categories of websites were introduced to test whether networks filter for specific
content. However, we experienced strong differences for single websites in some of the
categories. This is likely due to our rather broad chosen classification. Table 8.7 provides
more details about the specific websites and how many networks blocked the access to
each one.

8https://connectsafe.norton.com

70

https://connectsafe.norton.com

8.5. Post-Authentication Test Results

Number of Networks
Website Category Blocked Likely Blocked Total
movie.to Streaming (other) 73 9 * 81
kinox.tv Streaming (other) 57 6 63
pornhub.com Pornography 45 10 55
thepiratebay.org File Sharing 49 5 54
bet-at-home.com Gambling 16 7 23
888holdingsplc.com Gambling 15 2 17
torrentfreak.com News 8 2 10
netflix.com Streaming (legal) 7 - 7
hulu.com Streaming (legal) 6 - 6
mp3skulls.top File Sharing 5 - 5
youtube.com Streaming (legal) 4 1 5
imgur.com Blogs 4 - 4
wikileaks.com Blogs 1 3 4
facebook.com Social Media 2 - 2
twitter.com Social Media 2 - 2
medium.com Blogs 1 - 1
wikipedia.com Blogs 1 - 1
wordpress.com Blogs 1 - 1
groups.google.com Blogs - - 0
nytimes.com News - - 0
theguardian.com News - - 0
*One network (Moebelix Free Wifi) showed up for both categories

Table 8.7: Websites blocked by Wi-Fi hotspots

It can be observed, that two of the websites from the category streaming are leading the
list of most blocked websites. As already discussed in section 5.2.2, those sites are known
to include copyright protected material. Furthermore, we witness that perfectly legal
streaming services are occasionally filtered as well. Consequently, we will introduce a
new category to highlight the differences between those: For the following results, we use
the category legal streaming to describe the services of YouTube, Netflix, and Hulu.
Furthermore, the table shows that only one website of category news has been blocked.
However, we keep the other categories as defined in the beginning as we do not have
enough data to identify other outliers.

Networks and Content Filter

For the following interpretations we take the total number into account, e.g., using the
sum of blocked and likely blocked websites.
As the internet connection may have been lost during the tests at any time, the number
of test results for each website differ. However, we counted 216 networks, that tested
at least one website positively or negatively (e.g., we could verify that the website was
filtered or allowed). Having a look at the positive results, we registered 215 networks

71

8. Results

that successfully requested at least one of the tested websites. Out of those, 54 networks
allowed access to all of the tested websites.

Figure 8.6 highlights the amount of networks that blocked or allowed categories of the
tested websites. Note that the filtered and accessible networks may overlap, as we tested
several websites for each category. We also experienced some networks that changed their
filtering rules during our testing period, and we will discuss this in more detail later on.
The figure indicate that the Wi-Fi hotspots tested only block a subset of websites in
general. The categories with the most restrictions include streaming services, followed by
pornography and file sharing.

Other Streaming

Legal Streaming

Social Network

Pornography

News

Gambling

File Sharing

Blogs

127

204

208

141

214

188

204

211

85

8

2

55

10

25

54

10
Blocked
Accessible

Figure 8.6: Absolute numbers of networks with content filter vs. accessible website
categories

Differences between Countries

The blocked website tests were executed in seven different countries. Naturally, we
tested the most individual networks (149) in Austria (AUT). Furthermore, we tested 30
networks in Great Britain (GBR), 24 in Germany (DEU), 13 within the United States
of America (USA), and 9 in Ukraine (UKR). For Slovakia and Czechia we only have 3
respectively 2 networks tested and therefore exclude those from the comparison between
countries. Note that we included the total amount of clearly and potentially blocked
websites. Please keep in mind that although, we cleaned the data for known wrong
locations beforehand (see section 8.1.2), this data may still contain some other wrong

72

8.5. Post-Authentication Test Results

location mappings.

Due to the small number of tested networks, the results in figure 8.7 should be interpreted
with care. However, we can make some interesting observations. In Great Britain more
than half of the tested networks blocked the access to pornographic websites. Moreover,
the networks tested in the United States blocked legal streaming services more often than
Other Streaming Services. However, we should keep the absolute numbers in mind (2
blocked legal streaming vs. 1 blocked other streaming). Nevertheless, the selected websites
for the category Other Streaming may be more popular in Europe and therefore not
part of standard content filter within the US. Interestingly, Wi-Fi hotspots in Germany
allowed access to those streaming sites more often than other European countries.
For Ukraine we only found blocked websites in the categories Gambling and Other
Streaming.

In addition, we identified some networks with the same SSID that operated in different
countries. Three of those were identified Wi-Fi hotspots provided by public transport
services that operate between different countries (OEBB, OEBB-station, and FlixBus).
For another three SSIDs we recorded two countries of origin: Austria and Great
Britain. Those three (DESIGUAL_HAPPY_WIFI, H&M Free WiFi, WEEKDAY Free
WiFi) are provided by different fashion store chains. We only could detect differences
within one of those networks: the hotspot provided by Desigual did not allow the con-
nection to movie.to in Great Britain, while in Austria we were able to reach this website.

Deviations of Responses of Hotspots with the same SSID

We are interested whether the responses of networks regarding blocked or accessible
networks changed over time. Table 8.8 gives an overview about collected responses
from networks that revealed differences. We found some networks that denied access to
websites that were ordered to be blocked by court [56], [26], [25]. Moreover, we witnessed
that chain stores may have different filter strategies in place. In addition, we recognized
that the website TorrentFreak was blocked by one network (Wiener Linien Free WiFi,
provided by public transport service in Vienna), that later on allowed the access. We
assume that the content filter for TorrentFreak was added accidentally, as there are no
court orders or obvious reasons why this website would be blocked in Austria.
Furthermore, we experienced that Freewave9, a hotspot service provider popular in
Austria, returned different responses for the blocked website tests. Therefore, we assume
that their customers are able to set individual content filters. We even witnessed different
blocking strategies: some returned a response code 200 OK with the message Diese
Seite wurde gesperrt!, while we also found responses with 503 Service Unavailable.

9https://www.freewave.at

73

https://www.freewave.at

8. Results

0% 20% 40% 60% 80% 100%

Other Streaming

Legal Streaming

Social Network

Pornography

News

Gambling

File Sharing

Blogs

44%

0%

0%

0%

0%

44%

0%

0%

8%

15%

8%

23%

0%

31%

15%

8%

43%

7%

0%

57%

7%

17%

37%

10%

17%

4%

0%

38%

13%

8%

21%

13%

43%

3%

1%

21%

4%

9%

27%

3%

AUT (n=149)
DEU (n=24)
GBR (n=30)
USA (n=13)
UKR (n=9)

Figure 8.7: Networks that blocked categories of websites (in percent), grouped by countries74

8.5. Post-Authentication Test Results

Another interesting finding are the tests recorded by the network _Free Airport WiFi,
likely a hotspot name for airports. We could run tests on this network two times in
different locations in Berlin, Germany. The first run was on January 1, 2018 and the
tests showed that several websites were blocked. The second one, on February 8, 2018
allowed access to all of the prior blocked websites. Moreover, we detected that the DNS
tunnel test was successful on the second date as well, when it was not for the first run.
Although this behavior raises some suspicion, we do not have any evidence that we were
connected to a rogue hotspot the second time. The location data for this second run
suggests that the device was at the airport Berlin-Tegel.
Furthermore, we found that chain stores even within the same country may have different
content filter in place. We found two more hotspots, one provided by a supermarket
chain (FreeWifi@Interspar), the other one by a furniture store chain (Moebelix Free Wifi),
that each showed deviations for some of the tested websites.

SSID Website Accessible Blocked Remarks
BIKBOK_guest thepiratebay.org 2018-01-24 2018-02-02

FreeWifi@Interspar mp3skulls.top - - Two different stores: one allowed
access, one blocked

Freewave movie.to
kinox.tv - -

Freewave is a hotspot provider in
Austria; results indicate that con-
tent filter can be set individually

LAN1 movie.to
kinox.tv 2017-11-28 2017-12-12

Moebelix Free Wifi kinox.tv
thepiratebay.org - - Two different stores; one allowed

access, one blocked
OEBB-station thepiratebay.org 2018-01-18 2018-01-19

Telekom pornhub.com - - Likely different operators: par-
tially blocked

WLAN@Hofer thepiratebay.org 2018-01-17 2018-01-22
Wiener Linien Free WiFi kinox.tv 2017-12-10 2017-12-12

Wiener Linien Free WiFi torrentfreak.com 2017-12-12 2017-12-10
TorrentFreak was blocked on this
network for some time, but later
on accessible.

_Free Airport WiFi

movie.to
kinox.tv
medium.com
mp3skulls.top
thepiratebay.org
torrentfreak.com

2018-02-08 2018-01-01
Measurements on two days: first
time websites were blocked; sec-
ond time accessible

gateway thepiratebay.org 2018-01-15 2018-02-27

Table 8.8: Changes in received responses regarding blocked websites

8.5.5 Open and Blocked Ports

In order to determine the open respectively ports we group the networks by names (i.e.,
SSID). This way we count a successful connection only once per network. Although there
may be some networks with the same name but different configurations, the potential

75

8. Results

error rate should be low. In the previous section, we have already outlined the networks
that had the same SSID but showed different configurations.
The port tests take the most time and devices lost the connection to some networks before
all tests could finish. Therefore, we calculate the percentage for each port individually
depending on the amount of responses we recorded. Note, that the device sometimes
could take some time to realize that the connection was already lost, while the tests were
still running. Thus, there may be false negatives in the results, e.g., the port was wrongly
classified as being blocked.
As already outlined, the UDP results could additionally contain some false negatives due
to the unreliable nature of the protocol.
Consequently, we focus on the successful connections we recorded for each port. Figure 8.8
gives an overview about the amount of networks that were able to connect to the tested
ports over TCP respectively UDP. Note that not all ports have been tested for both
protocols. There is one noticable port: port 53 (standard port for DNS) showed less
response and could only be reached in 70% over TCP and 60% over UDP. This may be
an attempt to block DNS tunneling (see also section 8.4.2). However, we were not able to
find any correlation between the observations of potentially blocked DNS ports and the
results found for DNS tunneling. Overall, there are no additional particular outliers. For
the TCP protocol we only observe that the standard ports for SMTP (port 25), and SIP
(port 5060) are slightly less available. SMTP traffic could be entirely blocked, assumingly
to prevent spam misuse. Similar reasons could explain the blocked SIP port.

8.5.6 IPv6 Support

We only identified 5 networks (out of 256 that we successfully connected to) that support
IPv6. This makes about 2% of the tested networks. This low number may be explained as
we tested free Wi-Fi hotspots that likely want to keep the operating costs low. Therefore
the support of IPv6 protocol along with IPv4 may not have a high priority.

8.6 Other Observations

8.6.1 False Positive SSL Stripping Records

As state in section 8.5.3 we did not reveal any SSL stripping attempt. However, in our
database we found two networks that were marked as (false) positive. One of those
Vodafone Homespot was sending a response code 302 when requesting the tested website.
We did not follow the redirect but recorded the same response code when requesting the
HTTP service, where no redirection to HTTPS was expected. Therefore, we conclude
that the hotspot lost the information about the authenticated device and it was an
attempt to redirect to the captive portal landing page.
The other one, ShareBox - Share freely, was a hotspot we tested during the Chaos
Communication Congress in Leipzig, Germany. The hotspot was designed for "file-sharing
and chatting", as stated on the landing page. For every request we sent, we received a
response code 200, containing a meta refresh redirect to the aforementioned landing

76

8.6. Other Observations

0% 50% 100%

20
21
22
23
25
53

107
110
115
143
220
443
465
500
587
989
990
993
1080
1194
1293
1723
5060
5061
5150
6881
6887

88%

90%

88%

87%

81%

70%

84%

88%

85%

94%

85%

96%

86%

86%

86%

85%

86%

90%

86%

86%

86%

83%

79%

84%

84%

84%

85%

successful TCP responses

T
C
P

po
rt

0% 50% 100%

25
53
80

143
220
443
500
989
990
993
1080
1194
1195
1196
1197
1293
1300
1301
1302
1701
1723
5060
5061
5150
6881
6887

88%

60%

88%

89%

86%

87%

81%

86%

87%

89%

89%

89%

89%

87%

90%

89%

88%

89%

89%

88%

89%

84%

89%

88%

89%

89%

successful UDP responses

U
D
P

po
rt

Figure 8.8: Amount of networks that successfully responded to tested ports

page. However, the hotspot also stated that it was not providing access to the internet.
We are not sure whether this was true, as our captive portal detection had reported a
successful connection to the internet.

8.6.2 Recorded Login Attempts

Naturally, the honey services deployed also attracted attackers that are generally scanning
for open ports on any server that is reachable over the internet.
During the time frame of the active honey spreading we counted over 18,800 unsuccessful
login attempts for the SMTP service. Moreover, we had over 330 attempts over FTP
that failed as well. These figures increased sharply when we checked the unsuccessful
logins later in August 2018 again. We counted over 256,900 failed logins for the SMTP
service and 1,500 for FTP. There were even two unsuccessful login attempts for the

77

8. Results

HTTP service. We assume those ones were conducted manually. Both times the same
login credentials were used: username admin, password admin.
Note that the unsuccessful logins only consider attempts that provided credentials, and
used supported methods. Our logs also showed various attempts of using unsupported
commands, like AUTH TLS.
The UDP server logs also revealed that SIP commands were sent regularly to the
measurement server.

78

CHAPTER 9
Discussion

In the field study we collected information about 755 Wi-Fi networks. However, due to
connection issues not all tests ran on each network. We identified 484 networks that at
least started the captive portal detection. Consequently, we group the results by test
case and only consider networks that executed the particular scenario.

We found that 80% of tested networks (= 390 hotspots) redirected to a captive portal
landing page and required some user input. The automated login procedure was
successful for 31%. Moreover, the login was interrupted for 36% of the captive portal
protected networks meaning the connection to the hotspot was lost.

For the pre-authentication tests we only consider captive portal protected networks. We
revealed that 24% were vulnerable to ICMP tunneling. For 51% we successfully created
a DNS tunnel. The number of networks that allowed tunneling is even higher than the
networks we were able to authenticate to later on. We identified 52 networks that could
not automatically login to the captive portal, but successfully sent data over a DNS
tunnel. In addition, we had the same finding for 10 networks with ICMP tunnels.
Therefore, using a tunnel may also be another way to circumvent revealing personal
information in order to login when a captive portal is in place. Note, that we did not
further assess which of the vulnerable networks require a secret token, or even payment
in order to access the internet.

Furthermore, the tests revealed that 27% of networks interfered the HTTPS connection
before successfully authenticating to the captive portal. We even spotted three expired
certificates. This MitM scenario is worrisome and results into browser errors. This in
turn forces users to accept an untrusted certificate in order to use the Wi-Fi hotspot.
We assume that those networks heavily rely on built-in captive portal detection, and

79

9. Discussion

thus do not feel the necessity for appropriate HTTPS handling.
In addition we found that 8% of tested hotspots allowed a secure connection before login.
The remaining networks did refuse the HTTPS connection, which is also an acceptable
strategy.

The major part of the field study was concerned about data interception in public Wi-Fi
networks. We simulated approximately 2,700 user sessions over each of the selected,
unencrypted protocols (FTP, SMTP, IMAP, and HTTP). Even though, the measurement
server and its services kept responsive for months after the field study, we were not
able to detect any login attempts by sniffers. Therefore, we have no evidence of passive
network attacks within the tested Wi-Fi hotspots.
However, we could reveal some hotspots, that intercepted services over FTP and SMTP.
As we checked for banner modifications returned by the services, we found that 9
hotspots intercepted the SMTP traffic. Their intention may be scanning for spam that is
sent over the network. Nevertheless, we can assume that the content of the emails is
examined by those providers. Moreover, we identified two hotspots that intercepted FTP
traffic, and another three for SMTP for which all login requests failed. Consequently, it
seems like the connections were redirected to and handled by an internal network server,
even though it is unclear why.
Those interceptions were, however, the only ones identified, and we did not encounter
any SSL stripping attack.

Another research question of the field study was about access restriction to certain
websites or services. All in all, we counted 98 networks that at least denied access to one
of the tested websites. While some responded with a HTTP code 200 OK and a short
message stating the content is blocked, others used the response code 403 FORBIDDEN,
and some even made use of a 5xx response.
Furthermore, we experienced different content filtering strategies. We revealed five
networks that used OpenDNS or SafeDNS. In addition, some ISP redirected to a static
website stating that the access to the requested website was denied.
The most frequent blocked category was Streaming, with the sites movie.to and
kinox.to, followed by Pornography and File Sharing.
When assessing the blocked websites separately for each country, we found that Great
Britain peaked in blocking pornographic websites: 57% of tested networks denied the
access. We also witnessed that the top category of potentially illegal streaming services
was rarely blocked in the USA (8%). This may be explained as the selected websites are
particularly popular in Europe. Although, Germany filtered this category less (17%)
than other European categories (4̃3%).
In addition, we collected different responses for some Wi-Fi hotspots with the same SSID
in different test runs, e.g., requested websites were blocked and accessible. While some
networks simply adapted the content filter over time, others showed different responses
timeline independent. We witnessed this behavior for some store chains. This could

80

indicate that the stores independently manage the Wi-Fi hotspots. We also have reason
to believe that the hotspot provider Freewave allows customers to set individual content
filter. Moreover, we recorded measurements from two different airports in Berlin, sharing
the same SSID. The first one revealed several blocked websites, but the second one
allowed access to all prior blocked sites. Although, this behavior sounds suspicious, we
could not find any evidence that the second Wi-Fi hotspot was spoofed.
The results for blocked TCP and UDP ports indicate that the standard port for DNS
(port 53) is the most restricted one. Interestingly, we could not find any correlation
between the blocked port and DNS tunnel vulnerabilities.

The results show only a snapshot of the real world, as we only tested a limited amount of
networks. We have no evidence that any sniffer was monitoring one of the tested Wi-Fi
hotspots. However, it is also possible that the simulated user sessions were not authentic
enough. E.g., we used different user credentials every ten minutes when spreading honey
traffic within the same network. In addition, all services were hosted by the same server,
which may also raised suspicion to traffic sniffers.
Future research could focus on spreading more believable honey traffic, and inclusion of
other protocols, e.g., SIP. Furthermore, spreading the services onto different servers would
make the honey traffic services more stealthy. In addition, popular services could be
added, that attract more attention like Gmail credentials. A longer and more widespread
study could include countries worldwide.

81

CHAPTER 10
Conclusion

In our field study we assessed real-life public Wi-Fi hotspot vulnerabilities, such as traffic
sniffing, interception, and tampering, utilizing an Android app.
We designed the app in a way that it would run tests on public hotspots without any
user input required. Thus, when the app is active, it would automatically search for and
connect to public Wi-Fi access points, spread honey traffic, run additional tests, and then
send the results to the measurement server, before disconnecting from the Wi-Fi hotspot.
The biggest challenge was the automated interaction with captive-portal-protected
hotspots, as landing pages are not standardized. Therefore, we included two different
automated methods: one that analyzed the landing page statically, e.g., sending forms
with dummy data, or following redirects and links. The other one was a dynamic
approach, basically with the same capabilities. However, it additionally interpreted and
executed JavaScript to interact with the captive portal landing page. If none of those
methods succeeded, the app would trigger a notification asking the user to manually
perform the login, which was an optional choice.
We found that 80% of tested networks used a captive portal landing page and at least
required some confirmation regarding the terms of Wi-Fi usage. The automatic login
procedure succeeded for nearly every third captive-portal-protected Wi-Fi hotspot.

Our measurement server also provided the honey services for SMTP, IMAP, FTP, and
HTTP. On the server we created unique user credentials for those services. Additionally,
we populated the user accounts with random emails or files, in order to generate
believable content for the simulated user sessions. The valid user credentials were
distributed to the app over an encrypted connection so that the app could use those to
login to the services, and to create the honey traffic.

During the time period of over four months, we run tests on public Wi-Fi hotspots within
seven countries. We spread about 2,700 different credentials for each of the selected

83

10. Conclusion

services over the Wi-Fi networks. The honey services on the bait server were accessible
for about another five months, but we were not able to reveal any network sniffer. This
does not necessarily conclude that there are no passive attacks, as our test set may have
been too small, or the generated honey traffic was not authentic enough and classifiable
as bait. Regarding active attack scenarios, we identified nine public Wi-Fi hotspots that
intercepted SMTP traffic. Those networks may actively scan for spam misuse. However,
we have no information about how the data is processed, or whether it is even stored for
additional analysis. Further five networks redirected FTP or SMTP traffic to an internal
service, but the request was not forwarded to our bait server, which may indicate a
misconfiguration. No other active attacks were observed during the field study.

Apart from attacks, we addressed specific network restrictions. Over a quarter of the
captive-portal-protected networks triggered certificate errors when requesting a secure
website connection, before a successful authentication to the captive portal. This
interception of HTTPS may endanger genuine users, as it trains to accept unknown
certificates. Especially, if there is no built-in captive portal detection on the user’s OS or
browser.
Additionally, we tested captive portal circumvention techniques and discovered that
about a quarter of networks were vulnerable regarding ICMP tunneling, and about 50%
for DNS tunneling. These methods may not only be used to bypass payments, but also
to avoid providing detailed personal data.
Moreover, we revealed different content blocking strategies of public Wi-Fi hotspots. We
found that the most filtered website categories include streaming services with potentially
pirated content, and pornography. There were no consistent blocking strategies across
countries, e.g., we did not reveal one country that consistently blocked the same website.
Therefore, we assume that content filter are mainly depending on the Wi-Fi provider
itself. Further studies could continue the assessment of filtered content within public
Wi-Fi hotspots all around the world.

The field study provides a glimpse of the real world. Even though we did not reveal
network sniffers, we could observe some worrisome behavior of network providers, including
interception of HTTPS connections and SMTP traffic, and various content blocking
strategies.

84

List of Figures

3.1 Captive portal authentication . 6
3.2 Example SSL stripping attack . 10
3.3 DNS tunnel example, adapted graphical version of [124] 15

5.1 The measurement procedure . 28

6.1 Main services running on the server . 30
6.2 Screenshots of website appearance . 34
6.3 Main components of the Honey Client . 35
6.4 Screenshots of the Honey Client app . 38
6.5 Samples of captive portals . 39
6.6 Captive portals requiring additional information 39

8.1 Locations of reported Wi-Fi tests . 58
8.2 Wi-Fi hotspots and captive portals . 60
8.3 Automated and successful captive portal logins 61
8.4 Recorded tunneling vulnerabilities for ICMP and DNS 63
8.5 HTTPS handling of captive portals before successful authentication . . . 66
8.6 Absolute numbers of networks with content filter vs. accessible website

categories . 72
8.7 Networks that blocked categories of websites (in percent), grouped by countries 74
8.8 Amount of networks that successfully responded to tested ports 77

85

List of Tables

6.1 Keywords used for ranking . 41
6.2 DNS tunnel test: resource records . 44
6.3 Categories of tested websites . 47
6.4 UDP and TCP ports tested . 50

7.1 Android test devices . 52

8.1 Corrected Locations . 59
8.2 Samples of expired certificates . 64
8.3 Samples of HTTPS certificate errors . 65
8.4 Titles used to indicate blocked content 68
8.5 5xx response codes . 68
8.6 Number of networks and used response codes to indicate blocked content 69
8.7 Websites blocked by Wi-Fi hotspots . 71
8.8 Changes in received responses regarding blocked websites 75

87

Acronyms

C&C Command and Control. 12

DNS Domain Name System. 7, 12, 13, 45

DOM Document Object Model. 37

FTP File Transfer Protocol. 2, 8, 11, 17, 23, 24, 45

FTPS File Transfer Protocol over TLS. 9, 45

GPS Global Positioning System. 19

HSTS HTTP Strict Transport Security. 19

HTTP Hypertext Text Transfer Protocol. 2, 7, 8, 10, 11, 16, 23, 24, 45

HTTPS Hypertext Transfer Protocol Secure. 2, 7, 8, 10, 17, 23, 45

ICMP Internet Control Message Protocol. 7, 12

IKE Internet Key Exchange. 44, 45

IMAP Internet Message Access Protocol. 2, 9, 11, 17, 23, 24, 45

IMAPS Internet Message Access Protocol over TLS. 9, 17

IP Internet Protocol. 12, 16

IPSec Internet Protocol Security. 44, 45

IPv4 Internet Protocol Version 4. 13, 16

IPv6 Internet Protocol Version 6. 13, 16, 24, 46

ISP Internet Service Provider. 42

L2TP Layer 2 Tunneling Protocol. 44, 45

89

MitM Man-in-the-Middle. 2, 7, 10, 11, 17, 22–24

MTA Mail Transferring Agents. 9

NAT Network Address Resolution. 9, 34

OS Operating System. 7, 32

POP3 Post Office Protocol, Version 3. 9, 11, 45

PPTP Point-to-Point Tunneling Protocol. 44, 45

RAT Remote Access Tool. 45

RR Resource Records. 13

SFTP Simple File Transfer Protocol. 44, 45

SIP Session Initiation Protocol. 24, 44, 45

SMTP Simple Mail Transfer Protocol. 2, 3, 9, 11, 23, 24, 45

SPF Sender Policy Framework. 14

SSH Secure Shell. 17, 24, 27, 44

SSID Service Set Identfier. 22

SSL Secure Socket Layer. 8

TCP Transmission Control Protocol. 8, 11, 12, 14, 18, 24

TLS Transfer Layer Security. 8–10

UDP User Datagram Protocol. 11, 12, 14, 24

UI User Interface. 33

VPN Virtual Private Network. 2, 24

XMPP Extensible Messaging and Presence Protocol. 17

90

Bibliography

[1] How to automatically login to captive portals on OS X?, 2012. URL
https://apple.stackexchange.com/questions/45418/how-to-
automatically-login-to-captive-portals-on-os-x. Accessed:
2018-01-03.

[2] How does WiFi in android detect if the device has to sign in or not?, 2015. URL
https://android.stackexchange.com/questions/123129/how-does-
wifi-in-android-detect-if-the-device-has-to-sign-in-or-not.
Accessed: 2017-12-14.

[3] Turn off captive portal, 2017. URL https://support.mozilla.org/en-US/
questions/1157121. Accessed: 2018-01-03.

[4] European Consumer Centre Austria. Liablity for unsecured Wi-Fi, 2016. URL http:
//europakonsument.at/en/page/liability-unsecured-wi-fi. Ac-
cessed: 2018-02-21.

[5] R. Barnes, M. Thomson, A. Pironti, and A. Langley. Deprecating Secure Sockets
Layer Version 3.0. RFC 7568 (Proposed Standard), June 2015. ISSN 2070-1721.
URL https://www.rfc-editor.org/rfc/rfc7568.txt.

[6] BBC. Turkey Twitter ban: Constitutional court rules illegal, 2014. URL http:
//www.bbc.com/news/world-europe-26849941. Accessed: 2018-02-27.

[7] BitTorrent.org. The BitTorrent Protocol Specification. URL http://
www.bittorrent.org/beps/bep_0003.html. Accessed: 2018-03-03.

[8] Turkey Blocks. Facebook, Twitter, YouTube and WhatsApp shutdown in
Turkey, 2016. URL https://turkeyblocks.org/2016/11/04/social-
media-shutdown-turkey/. Accessed: 2018-02-27.

[9] Brian M Bowen, Vasileios P Kemerlis, Pratap Prabhu, Angelos D Keromytis,
and Salvatore J Stolfo. Automating the Injection of Believable Decoys to Detect
Snooping. In Proceedings of the third ACM conference on Wireless network security,
pages 81–86. ACM, 2010.

91

https://apple.stackexchange.com/questions/45418/how-to-automatically-login-to-captive-portals-on-os-x
https://apple.stackexchange.com/questions/45418/how-to-automatically-login-to-captive-portals-on-os-x
https://android.stackexchange.com/questions/123129/how-does-wifi-in-android-detect-if-the-device-has-to-sign-in-or-not
https://android.stackexchange.com/questions/123129/how-does-wifi-in-android-detect-if-the-device-has-to-sign-in-or-not
https://support.mozilla.org/en-US/questions/1157121
https://support.mozilla.org/en-US/questions/1157121
http://europakonsument.at/en/page/liability-unsecured-wi-fi
http://europakonsument.at/en/page/liability-unsecured-wi-fi
https://www.rfc-editor.org/rfc/rfc7568.txt
http://www.bbc.com/news/world-europe-26849941
http://www.bbc.com/news/world-europe-26849941
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
https://turkeyblocks.org/2016/11/04/social-media-shutdown-turkey/
https://turkeyblocks.org/2016/11/04/social-media-shutdown-turkey/

[10] Danny Bradbury. Why do people ignore security warnings when browsing the
web?, 2015. URL https://www.theguardian.com/technology/2015/feb/
24/people-ignore-security-warnings-browsing-web. Accessed: 2017-
12-14.

[11] R. Braden (Ed.). Requirements for Internet Hosts - Communication Lay-
ers. RFC 1122 (Internet Standard), October 1989. ISSN 2070-1721. URL
https://www.rfc-editor.org/rfc/rfc1122.txt. Updated by RFCs 1349,
4379, 5884, 6093, 6298, 6633, 6864, 8029.

[12] Wolfgang Brandstetter. Anfragebeantwortung klärung hinsichtlich netzsperren,
2016. URL https://www.parlament.gv.at/PAKT/VHG/XXV/AB/AB_07061/
imfname_502976.pdf. "7061/AB vom 04.02.2016 zu 7304/J (XXV.GP)", Ac-
cessed: 2018-03-03.

[13] Tania Branigan. New York Times blocked by China after report on wealth of Wen
Jiabao’s family, 2012. URL https://www.theguardian.com/world/2012/
oct/26/new-york-times-china-wen-jiabao. Accessed: 2018-03-03.

[14] Aaron Brown. Pirate Bay proxy users caught downloading could get 10 YEARS
in JAIL, 2017. URL https://www.express.co.uk/life-style/science-
technology/801317/Pirate-Bay-Proxy-TorrentFreak-Torrent-
Download-Jail. Accessed: 2018-03-02.

[15] United States Census Bureau. Frequently Occurring Surnames from Census
1990 – Names Files. URL https://www.census.gov/topics/population/
genealogy/data/1990_census/1990_census_namefiles.html. Ac-
cessed: 2018-03-06.

[16] Hanno Böck. Captive Portals, Ein Workaround, der bald nicht mehr funktion-
ieren wird, 2016. URL https://www.golem.de/news/captive-portals-
ein-workaround-der-bald-nicht-mehr-funktionieren-wird-1602-
118963.html. Accessed: 2017-12-12.

[17] Chaos Computer Club CCC. 34. Chaos Communication Congress. URL https:
//events.ccc.de/congress/2017/wiki/Main_Page. Accessed: 2018-03-19.

[18] Shashwat Chaudhary. Evil Twin Tutorial, 2014. URL http://
www.kalitutorials.net/2014/07/evil-twin-tutorial.html. Accessed:
2018-02-21.

[19] Ningning Cheng, Xinlei Oscar Wang, Wei Cheng, Prasant Mohapatra, and Aruna
Seneviratne. Characterizing Privacy Leakage of Public WiFi Networks for Users
on Travel. In INFOCOM, 2013 Proceedings IEEE, pages 2769–2777. IEEE, 2013.

[20] Jonathan Chew. Medium Has Been Blocked In Malaysia, 2016. URL http:
//fortune.com/2016/01/27/medium-malaysia-block/.

92

https://www.theguardian.com/technology/2015/feb/24/people-ignore-security-warnings-browsing-web
https://www.theguardian.com/technology/2015/feb/24/people-ignore-security-warnings-browsing-web
https://www.rfc-editor.org/rfc/rfc1122.txt
https://www.parlament.gv.at/PAKT/VHG/XXV/AB/AB_07061/imfname_502976.pdf
https://www.parlament.gv.at/PAKT/VHG/XXV/AB/AB_07061/imfname_502976.pdf
https://www.theguardian.com/world/2012/oct/26/new-york-times-china-wen-jiabao
https://www.theguardian.com/world/2012/oct/26/new-york-times-china-wen-jiabao
https://www.express.co.uk/life-style/science-technology/801317/Pirate-Bay-Proxy-TorrentFreak-Torrent-Download-Jail
https://www.express.co.uk/life-style/science-technology/801317/Pirate-Bay-Proxy-TorrentFreak-Torrent-Download-Jail
https://www.express.co.uk/life-style/science-technology/801317/Pirate-Bay-Proxy-TorrentFreak-Torrent-Download-Jail
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
https://www.golem.de/news/captive-portals-ein-workaround-der-bald-nicht-mehr-funktionieren-wird-1602-118963.html
https://www.golem.de/news/captive-portals-ein-workaround-der-bald-nicht-mehr-funktionieren-wird-1602-118963.html
https://www.golem.de/news/captive-portals-ein-workaround-der-bald-nicht-mehr-funktionieren-wird-1602-118963.html
https://events.ccc.de/congress/2017/wiki/Main_Page
https://events.ccc.de/congress/2017/wiki/Main_Page
http://www.kalitutorials.net/2014/07/evil-twin-tutorial.html
http://www.kalitutorials.net/2014/07/evil-twin-tutorial.html
http://fortune.com/2016/01/27/medium-malaysia-block/
http://fortune.com/2016/01/27/medium-malaysia-block/

[21] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1.
RFC 3501 (Proposed Standard), March 2003. ISSN 2070-1721. URL https:
//www.rfc-editor.org/rfc/rfc3501.txt. Updated by RFCs 4466, 4469,
4551, 5032, 5182, 5738, 6186, 6858, 7817, 8314.

[22] Adrian Dabrowski, Georg Merzdovnik, Nikolaus Kommenda, and Edgar Weippl.
Browser History Stealing with Captive Wi-Fi Portals. In Security and Privacy
Workshops (SPW), 2016 IEEE, pages 234–240. IEEE, 2016.

[23] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460 (Draft Standard), December 1998. ISSN 2070-1721. URL https:
//www.rfc-editor.org/rfc/rfc2460.txt. Obsoleted by RFC 8200, updated
by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112.

[24] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
8200 (Internet Standard), July 2017. ISSN 2070-1721. URL https://www.rfc-
editor.org/rfc/rfc8200.txt.

[25] RIS Rechtsinformationssystem des Bundes. Entscheidungs-
text, Bit Torrent, 2017. URL https://www.ris.bka.gv.at/
Dokument.wxe?Abfrage=Justiz&Dokumentnummer=
JJT_20171024_OGH0002_0040OB00121_17Y0000_000. Geschäftszahl
RIS - 4Ob121/17y, Accessed: 2018-03-03.

[26] RIS Rechtsinformationssystem des Bundes. Entscheidung-
stext, UPC Telekabel II/kino.to, 2017. URL https://
www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=
JJT_20140624_OGH0002_0040OB00071_14S0000_000. Geschäftszahl RIS -
4Ob71/14s, Accessed: 2018-03-03.

[27] Google Developers. Optimizing for Doze and App Standby, . URL
https://developer.android.com/training/monitoring-device-
state/doze-standby.html. Accessed: 2018-03-18.

[28] Google Developers. Security with HTTPS and SSL, . URL
https://developer.android.com/training/articles/security-
ssl.html#UnknownCa. Accessed: 2018-03-15.

[29] Google Developers. Geolocation API - WiFi access point objects,
. URL https://developers.google.com/maps/documentation/
geolocation/intro#wifi_access_point_object. Accessed: 2018-05-06.

[30] Google Developers. Reverse Geocoding (Address Lookup), . URL
https://developers.google.com/maps/documentation/javascript/
geocoding?hl=en#ReverseGeocoding. Accessed: 2018-05-06.

93

https://www.rfc-editor.org/rfc/rfc3501.txt
https://www.rfc-editor.org/rfc/rfc3501.txt
https://www.rfc-editor.org/rfc/rfc2460.txt
https://www.rfc-editor.org/rfc/rfc2460.txt
https://www.rfc-editor.org/rfc/rfc8200.txt
https://www.rfc-editor.org/rfc/rfc8200.txt
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJT_20171024_OGH0002_0040OB00121_17Y0000_000
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJT_20171024_OGH0002_0040OB00121_17Y0000_000
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJT_20171024_OGH0002_0040OB00121_17Y0000_000
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJT_20140624_OGH0002_0040OB00071_14S0000_000
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJT_20140624_OGH0002_0040OB00071_14S0000_000
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJT_20140624_OGH0002_0040OB00071_14S0000_000
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/monitoring-device-state/doze-standby.html
https://developer.android.com/training/articles/security-ssl.html#UnknownCa
https://developer.android.com/training/articles/security-ssl.html#UnknownCa
https://developers.google.com/maps/documentation/geolocation/intro#wifi_access_point_object
https://developers.google.com/maps/documentation/geolocation/intro#wifi_access_point_object
https://developers.google.com/maps/documentation/javascript/geocoding?hl=en#ReverseGeocoding
https://developers.google.com/maps/documentation/javascript/geocoding?hl=en#ReverseGeocoding

[31] Google Developers. Android 4.4 APIs, . URL https:
//developer.android.com/about/versions/android-
4.4.html#Behaviors. Accessed: 2018-03-18.

[32] Google Developers. Android 6.0 Changes, . URL https://
developer.android.com/about/versions/marshmallow/android-
6.0-changes.html#behavior-network. Accessed: 2018-03-18.

[33] Google Developers. Dashboards, . URL https://developer.android.com/
about/dashboards/index.html. Accessed: 2018-03-09.

[34] Google Developers. Location Strategies, . URL https:
//developer.android.com/guide/topics/location/
strategies.html#Updates. Accessed: 2018-03-18.

[35] Christian J Dietrich, Christian Rossow, Felix C Freiling, Herbert Bos, Maarten
Van Steen, and Norbert Pohlmann. On Botnets that use DNS for Command
and Control. In Computer Network Defense (EC2ND), 2011 Seventh European
Conference on, pages 9–16. IEEE, 2011.

[36] Felix Disselhoff. Massenabmahnungen nach Porno-Streaming, 2013. URL
http://meedia.de/2013/12/09/massenabmahnungen-nach-porno-
streaming/. Accessed: 2018-03-03.

[37] Zakir Durumeric, David Adrian, Ariana Mirian, James Kasten, Elie Bursztein, Nico-
las Lidzborski, Kurt Thomas, Vijay Eranti, Michael Bailey, and J Alex Halderman.
Neither Snow Nor Rain Nor MITM... An Empirical Analysis of Email Delivery
Security. In Proceedings of the 2015 ACM Conference on Internet Measurement
Conference, pages 27–39. ACM, 2015.

[38] D. Eastlake 3rd. Domain Name System (DNS) Case Insensitivity Clarification.
RFC 4343 (Proposed Standard), January 2006. ISSN 2070-1721. URL https:
//www.rfc-editor.org/rfc/rfc4343.txt.

[39] R. Elz and R. Bush. Clarifications to the DNS Specification. RFC 2181 (Proposed
Standard), July 1997. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc2181.txt. Updated by RFCs 4035, 2535, 4343, 4033, 4034, 5452.

[40] Let’s Encrypt. Let’s Encrypt Stats. URL https://letsencrypt.org/stats/
/#percent-pageloads. Accessed: 2017-12-04.

[41] F-Secure. Tainted love: how WiFi betrays us, 2014. URL
https://fsecureconsumer.files.wordpress.com/2014/09/wi-
fi_report_2014_f-secure.pdf. Accessed: 2017-06-21.

[42] Greg Farnham and Antonios Atlasis. Detecting DNS Tunneling. SANS Institute
InfoSec Reading Room, pages 1–32, 2013.

94

https://developer.android.com/about/versions/android-4.4.html#Behaviors
https://developer.android.com/about/versions/android-4.4.html#Behaviors
https://developer.android.com/about/versions/android-4.4.html#Behaviors
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-network
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-network
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-network
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/location/strategies.html#Updates
https://developer.android.com/guide/topics/location/strategies.html#Updates
https://developer.android.com/guide/topics/location/strategies.html#Updates
http://meedia.de/2013/12/09/massenabmahnungen-nach-porno-streaming/
http://meedia.de/2013/12/09/massenabmahnungen-nach-porno-streaming/
https://www.rfc-editor.org/rfc/rfc4343.txt
https://www.rfc-editor.org/rfc/rfc4343.txt
https://www.rfc-editor.org/rfc/rfc2181.txt
https://www.rfc-editor.org/rfc/rfc2181.txt
https://letsencrypt.org/stats//#percent-pageloads
https://letsencrypt.org/stats//#percent-pageloads
https://fsecureconsumer.files.wordpress.com/2014/09/wi-fi_report_2014_f-secure.pdf
https://fsecureconsumer.files.wordpress.com/2014/09/wi-fi_report_2014_f-secure.pdf

[43] Monica Ferrari. Top 3 liabilities for Wi-Fi hotspot providers offering free Wi-Fi,
2017. URL https://www.tanaza.com/blog/top-3-liabilities-wi-fi-
hotspot-providers-offering-free-wi-fi/. Accessed: 2018-02-21.

[44] R. Fielding (Ed.) and J. Reschke (Ed.). Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230 (Proposed Standard), June 2014. ISSN
2070-1721. URL https://www.rfc-editor.org/rfc/rfc7230.txt.

[45] P. Ford-Hutchinson. Securing FTP with TLS. RFC 4217 (Proposed Standard),
October 2005. ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/
rfc4217.txt.

[46] Electronic Frontier Foundation. Open Wi-Fi and Copyright: A Primer for Network
Operators, 2014. URL https://www.eff.org/files/2014/06/03/open-
wifi-copyright.pdf. Accessed: 2018-02-21.

[47] Julien Freudiger. How talkative is your mobile device?: an experimental study of
Wi-Fi probe requests. In WISEC, 2015.

[48] Gennie Gebhart and Jacob Hoffman-Andrews. How Captive Portals
Interfere With Wireless Security and Privacy, 2017. URL https:
//www.eff.org/de/deeplinks/2017/08/how-captive-portals-
interfere-wireless-security-and-privacy. Accessed: 2017-12-12.

[49] R. Gellens and J. Klensin. Message Submission for Mail. RFC 6409 (Internet Stan-
dard), November 2011. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc6409.txt. Updated by RFC 8314.

[50] Thomer M. Gil. ICMPTX (IP-over-ICMP) HOWTO. URL http://thomer.com/
icmptx/. Accessed: 2018-01-09.

[51] Google. Google IPv6, Statistics. URL https://www.google.com/intl/en/
ipv6/statistics.html. Accessed: 2018-01-19.

[52] Google. Transparency Report: Percentage of pages loaded over HTTPS,
2017. URL https://www.google.com/transparencyreport/https/
metrics/?hl=en. Accessed: 2017-06-21.

[53] The Guardian. Publishing platform Medium may be blocked in China, re-
ports say, 2016. URL https://www.theguardian.com/media/2016/apr/
15/medium-blocked-china-internet-censorship. Accessed: 2018-03-
03.

[54] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn. Point-to-Point
Tunneling Protocol (PPTP). RFC 2637 (Informational), July 1999. ISSN 2070-1721.
URL https://www.rfc-editor.org/rfc/rfc2637.txt.

95

https://www.tanaza.com/blog/top-3-liabilities-wi-fi-hotspot-providers-offering-free-wi-fi/
https://www.tanaza.com/blog/top-3-liabilities-wi-fi-hotspot-providers-offering-free-wi-fi/
https://www.rfc-editor.org/rfc/rfc7230.txt
https://www.rfc-editor.org/rfc/rfc4217.txt
https://www.rfc-editor.org/rfc/rfc4217.txt
https://www.eff.org/files/2014/06/03/open-wifi-copyright.pdf
https://www.eff.org/files/2014/06/03/open-wifi-copyright.pdf
https://www.eff.org/de/deeplinks/2017/08/how-captive-portals-interfere-wireless-security-and-privacy
https://www.eff.org/de/deeplinks/2017/08/how-captive-portals-interfere-wireless-security-and-privacy
https://www.eff.org/de/deeplinks/2017/08/how-captive-portals-interfere-wireless-security-and-privacy
https://www.rfc-editor.org/rfc/rfc6409.txt
https://www.rfc-editor.org/rfc/rfc6409.txt
http://thomer.com/icmptx/
http://thomer.com/icmptx/
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/transparencyreport/https/metrics/?hl=en
https://www.google.com/transparencyreport/https/metrics/?hl=en
https://www.theguardian.com/media/2016/apr/15/medium-blocked-china-internet-censorship
https://www.theguardian.com/media/2016/apr/15/medium-blocked-china-internet-censorship
https://www.rfc-editor.org/rfc/rfc2637.txt

[55] P. Hoffman. SMTP Service Extension for Secure SMTP over Transport Layer
Security. RFC 3207 (Proposed Standard), February 2002. ISSN 2070-1721. URL
https://www.rfc-editor.org/rfc/rfc3207.txt. Updated by RFC 7817.

[56] Barbara Holzbauer. Diese Seite ist gesperrt. URL https://blog.t-mobile.at/
2015/12/18/netzsperre/. Accessed: 2018-03-03.

[57] Dhaval Kapil. icmptunnel. URL https://dhavalkapil.com/icmptunnel/.
Accessed: 2018-01-10.

[58] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 7296 (Internet Standard), October 2014. ISSN
2070-1721. URL https://www.rfc-editor.org/rfc/rfc7296.txt. Updated
by RFCs 7427, 7670, 8247.

[59] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301
(Proposed Standard), December 2005. ISSN 2070-1721. URL https://www.rfc-
editor.org/rfc/rfc4301.txt. Updated by RFCs 6040, 7619.

[60] S. Kitterman. Sender Policy Framework (SPF) for Authorizing Use of Domains in
Email, Version 1. RFC 7208 (Proposed Standard), April 2014. ISSN 2070-1721.
URL https://www.rfc-editor.org/rfc/rfc7208.txt. Updated by RFC
7372.

[61] J. Klensin. Simple Mail Transfer Protocol. RFC 5321 (Draft Standard), Oc-
tober 2008. ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/
rfc5321.txt. Updated by RFC 7504.

[62] Kaspersky Lab. Kaspersky Lab International Travel Report: the
urge to connect at any cost is putting international travelers’ data
at risk, 2016. URL https://blog.kaspersky.com/kaspersky-lab-
international-travel-report/12429/. Accessed: 2017-11-22.

[63] SSL Labs. SSL Pulse, Monthly Scan: January 03, 2018, 2018. URL https:
//www.ssllabs.com/ssl-pulse/. Accessed: 2018-01-08.

[64] Marc Laliberte. Lessons from DEFCON 2016 – Bypassing Captive Por-
tals. URL https://www.secplicity.org/2016/08/26/lessons-defcon-
2016-bypassing-captive-portals/. Accessed: 2018-01-09.

[65] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS Protocol
Version 5. RFC 1928 (Proposed Standard), March 1996. ISSN 2070-1721. URL
https://www.rfc-editor.org/rfc/rfc1928.txt.

[66] M. Lottor. Simple File Transfer Protocol. RFC 913 (Historic), September 1984.
ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/rfc913.txt.

96

https://www.rfc-editor.org/rfc/rfc3207.txt
https://blog.t-mobile.at/2015/12/18/netzsperre/
https://blog.t-mobile.at/2015/12/18/netzsperre/
https://dhavalkapil.com/icmptunnel/
https://www.rfc-editor.org/rfc/rfc7296.txt
https://www.rfc-editor.org/rfc/rfc4301.txt
https://www.rfc-editor.org/rfc/rfc4301.txt
https://www.rfc-editor.org/rfc/rfc7208.txt
https://www.rfc-editor.org/rfc/rfc5321.txt
https://www.rfc-editor.org/rfc/rfc5321.txt
https://blog.kaspersky.com/kaspersky-lab-international-travel-report/12429/
https://blog.kaspersky.com/kaspersky-lab-international-travel-report/12429/
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://www.secplicity.org/2016/08/26/lessons-defcon-2016-bypassing-captive-portals/
https://www.secplicity.org/2016/08/26/lessons-defcon-2016-bypassing-captive-portals/
https://www.rfc-editor.org/rfc/rfc1928.txt
https://www.rfc-editor.org/rfc/rfc913.txt

[67] Moxie Marlinspike. sslstrip. URL https://moxie.org/software/sslstrip/.
Accessed: 2018-01-29.

[68] Moxie Marlinspike. More Tricks For Defeating SSL In Practice. Black Hat
USA, 2009. URL http://www.blackhat.com/presentations/bh-usa-09/
MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf. Accessed:
2018-04-30.

[69] Moxie Marlinspike. New Tricks For Defeating SSL In Practice. Black Hat
DC, 2009. URL http://www.blackhat.com/presentations/bh-dc-09/
Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf. Ac-
cessed: 2018-04-30.

[70] Mohan The Mass. Hack Computer, hack Facebook / Twitter Password using
Cerberus RAT, 2015. URL https://mohanthemass.blogspot.co.at/2015/
04/hack-computer-hack-facebook-twitter.html. Accessed: 2018-03-03.

[71] N. McGill and C. Pignataro. Layer 2 Tunneling Protocol Version 3 (L2TPv3)
Extended Circuit Status Values. RFC 5641 (Proposed Standard), August 2009.
ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/rfc5641.txt.

[72] Hugh McIntyre. Illegal Download Site MP3Skull Is Closing For Good, 2016.
URL https://www.forbes.com/sites/hughmcintyre/2016/02/26/
illegal-download-site-mp3skull-owes-the-music-industry-22-
million/#68db580c1c57. Accessed: 2018-03-03.

[73] Ian McShane, Mark A Gregory, and Christopher Wilson. Practicing Safe Public
Wi-Fi: Assessing and Managing Data-Security Risks. Centre for Urban Research
(CUR) RMIT University, 2016. ISBN 978-0-9941890-9-7.

[74] A. Melnikov. Updated Transport Layer Security (TLS) Server Identity Check Pro-
cedure for Email-Related Protocols. RFC 7817 (Proposed Standard), March 2016.
ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/rfc7817.txt.

[75] Deron Meranda. Deron’s Data Pages, All first names. URL http:
//deron.meranda.us/data/census-derived-all-first.txt. Accessed:
2018-03-06.

[76] Microsoft. Captive portal, 2017. URL https://docs.microsoft.com/en-us/
windows-hardware/drivers/mobilebroadband/captive-portals. Ac-
cessed: 2018-01-03.

[77] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Internet Stan-
dard), November 1987. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc1034.txt. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181,
2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936, 8020.

97

https://moxie.org/software/sslstrip/
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf
https://mohanthemass.blogspot.co.at/2015/04/hack-computer-hack-facebook-twitter.html
https://mohanthemass.blogspot.co.at/2015/04/hack-computer-hack-facebook-twitter.html
https://www.rfc-editor.org/rfc/rfc5641.txt
https://www.forbes.com/sites/hughmcintyre/2016/02/26/illegal-download-site-mp3skull-owes-the-music-industry-22-million/#68db580c1c57
https://www.forbes.com/sites/hughmcintyre/2016/02/26/illegal-download-site-mp3skull-owes-the-music-industry-22-million/#68db580c1c57
https://www.forbes.com/sites/hughmcintyre/2016/02/26/illegal-download-site-mp3skull-owes-the-music-industry-22-million/#68db580c1c57
https://www.rfc-editor.org/rfc/rfc7817.txt
http://deron.meranda.us/data/census-derived-all-first.txt
http://deron.meranda.us/data/census-derived-all-first.txt
https://docs.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/captive-portals
https://docs.microsoft.com/en-us/windows-hardware/drivers/mobilebroadband/captive-portals
https://www.rfc-editor.org/rfc/rfc1034.txt
https://www.rfc-editor.org/rfc/rfc1034.txt

[78] P.V. Mockapetris. Domain names - implementation and specification. RFC 1035
(Internet Standard), November 1987. ISSN 2070-1721. URL https://www.rfc-
editor.org/rfc/rfc1035.txt. Updated by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425, 3658, 4033, 4034,
4035, 4343, 5936, 5966, 6604, 7766.

[79] C. Mullaney. Symantec Official Blog: Morto worm sets a (DNS) record,
2011. URL https://www.symantec.com/connect/blogs/morto-worm-
sets-dns-record. Accessed: 2018-01-17.

[80] Gerry Mullany. Guardian Website Blocked in China, Then Restored, 2014.
URL https://sinosphere.blogs.nytimes.com/2014/01/08/guardian-
website-blocked-in-china/. Accessed: 2018-03-03.

[81] Mullvad. Mullvad client - Advanced options. URL https://mullvad.net/en/
guides/mullvad-client-advanced-options/. Accessed: 2018-03-18.

[82] Mike Muuss. The Story of the PING Program. Archived from
http://ftp.arl.mil/ mike/ping.html on 2010-09-08. URL https:
//www.webcitation.org/5saCKBpgH. Accessed: 2018-01-17.

[83] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Internet
Standard), May 1996. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc1939.txt. Updated by RFCs 1957, 2449, 6186, 8314.

[84] Omar Nakhila and Cliff Zou. User-Side Wi-Fi Evil Twin Attack Detection Using
Random Wireless Channel Monitoring. In Military Communications Conference,
MILCOM 2016-2016 IEEE, pages 1243–1248. IEEE, 2016.

[85] C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595 (Proposed
Standard), June 1999. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc2595.txt. Updated by RFCs 4616, 7817, 8314.

[86] Red Newswire. 10 Countries where Facebook, Twitter, and Youtube has
been banned, 2016. URL https://www.rednewswire.com/10-countries-
where-facebook-twitter-and-youtube-has-been-banned/. Accessed:
2018-02-27.

[87] M. Nottingham and R. Fielding. Additional HTTP Status Codes. RFC 6585
(Proposed Standard), April 2012. ISSN 2070-1721. URL https://www.rfc-
editor.org/rfc/rfc6585.txt.

[88] TJ O’Connor and Ben Sangster. honeyM: A Framework for Implementing Virtual
Honeyclients for Mobile Devices. In Proceedings of the third ACM conference on
Wireless network security, pages 129–138. ACM, 2010.

98

https://www.rfc-editor.org/rfc/rfc1035.txt
https://www.rfc-editor.org/rfc/rfc1035.txt
https://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
https://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
https://sinosphere.blogs.nytimes.com/2014/01/08/guardian-website-blocked-in-china/
https://sinosphere.blogs.nytimes.com/2014/01/08/guardian-website-blocked-in-china/
https://mullvad.net/en/guides/mullvad-client-advanced-options/
https://mullvad.net/en/guides/mullvad-client-advanced-options/
https://www.webcitation.org/5saCKBpgH
https://www.webcitation.org/5saCKBpgH
https://www.rfc-editor.org/rfc/rfc1939.txt
https://www.rfc-editor.org/rfc/rfc1939.txt
https://www.rfc-editor.org/rfc/rfc2595.txt
https://www.rfc-editor.org/rfc/rfc2595.txt
https://www.rednewswire.com/10-countries-where-facebook-twitter-and-youtube-has-been-banned/
https://www.rednewswire.com/10-countries-where-facebook-twitter-and-youtube-has-been-banned/
https://www.rfc-editor.org/rfc/rfc6585.txt
https://www.rfc-editor.org/rfc/rfc6585.txt

[89] Court of Justice of the European Union. Judgment in Case C-484/14, To-
bias Mc Fadden v Sony Music Entertainment Germany GmbH, 2016. URL
https://curia.europa.eu/jcms/upload/docs/application/pdf/
2016-09/cp160099en.pdf. Press Release No 99/16, Accessed: 2018-02-21.

[90] Court of Justice of the European Union. Judgment in Case C-527/15, Sticht-
ing Brein, 2017. URL https://curia.europa.eu/jcms/upload/docs/
application/pdf/2017-04/cp170040en.pdf. Press Release No 40/17, Ac-
cessed: 2018-03-03.

[91] Wall of Sheep. WHAT IS THE WALL OF SHEEP? URL https://
www.wallofsheep.com/pages/wall-of-sheep. Accessed: 2017-11-23.

[92] Phrack. Project Loki, 1996. URL http://phrack.org/issues/49/6.html.
Volume Seven, Issue Forty-Nine File 06 of 16, Accessed: 2018-01-10.

[93] Phrack. LOKI2 (the implementation), 1997. URL http://phrack.org/issues/
51/6.html. Volume Seven, Issue 51 September 01, 1997, article 06 of 17, Accessed:
2018-01-10.

[94] J. Postel. User Datagram Protocol. RFC 768 (Internet Standard), August 1980.
ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/rfc768.txt.

[95] J. Postel. Internet Protocol. RFC 791 (Internet Standard), September 1981. ISSN
2070-1721. URL https://www.rfc-editor.org/rfc/rfc791.txt. Updated
by RFCs 1349, 2474, 6864.

[96] J. Postel. Internet Control Message Protocol. RFC 792 (Internet Standard),
September 1981. ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/
rfc792.txt. Updated by RFCs 950, 4884, 6633, 6918.

[97] J. Postel. Transmission Control Protocol. RFC 793 (Internet Standard),
September 1981. ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/
rfc793.txt. Updated by RFCs 1122, 3168, 6093, 6528.

[98] J. Postel. Remote User Telnet service. RFC 818 (Historic), November 1982. ISSN
2070-1721. URL https://www.rfc-editor.org/rfc/rfc818.txt.

[99] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Internet Standard),
October 1985. ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/
rfc959.txt. Updated by RFCs 2228, 2640, 2773, 3659, 5797, 7151.

[100] J. Postel and J.K. Reynolds. Telnet Protocol Specification. RFC 854 (Internet
Standard), May 1983. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc854.txt. Updated by RFC 5198.

[101] Niels Provos. A Virtual Honeypot Framework. In USENIX Security Symposium,
volume 173, pages 1–14, 2004.

99

https://curia.europa.eu/jcms/upload/docs/application/pdf/2016-09/cp160099en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2016-09/cp160099en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2017-04/cp170040en.pdf
https://curia.europa.eu/jcms/upload/docs/application/pdf/2017-04/cp170040en.pdf
https://www.wallofsheep.com/pages/wall-of-sheep
https://www.wallofsheep.com/pages/wall-of-sheep
http://phrack.org/issues/49/6.html
http://phrack.org/issues/51/6.html
http://phrack.org/issues/51/6.html
https://www.rfc-editor.org/rfc/rfc768.txt
https://www.rfc-editor.org/rfc/rfc791.txt
https://www.rfc-editor.org/rfc/rfc792.txt
https://www.rfc-editor.org/rfc/rfc792.txt
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc818.txt
https://www.rfc-editor.org/rfc/rfc959.txt
https://www.rfc-editor.org/rfc/rfc959.txt
https://www.rfc-editor.org/rfc/rfc854.txt
https://www.rfc-editor.org/rfc/rfc854.txt

[102] DNS Redirector. Captive Portal. URL http://www.dnsredirector.com/
portal/. Accessed: 2017-12-12.

[103] Jay Ribak. Active FTP vs. Passive FTP, a Definitive Explanation. URL http:
//slacksite.com/other/ftp.html. Accessed: 2017-12-11.

[104] Herman Robers. Captive Portal, why do I get those certificate warnings?, 2016.
URL http://community.arubanetworks.com/t5/Technology-Blog/
Captive-Portal-why-do-I-get-those-certificate-warnings/ba-
p/268921. Accessed: 2017-12-14.

[105] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard), June 2002. ISSN 2070-1721. URL https://www.rfc-editor.org/
rfc/rfc3261.txt. Updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626,
5630, 5922, 5954, 6026, 6141, 6665, 6878, 7462, 7463, 8217.

[106] Y. Sheffer, R. Holz, and P. Saint-Andre. Summarizing Known Attacks on Transport
Layer Security (TLS) and Datagram TLS (DTLS). RFC 7457 (Informational),
February 2015. ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/
rfc7457.txt.

[107] A. Shulmin and S. Yunakovsky. Use of DNS Tunneling for C&C Communications,
2017. URL https://securelist.com/use-of-dns-tunneling-for-cc-
communications/78203/. Accessed: 2018-01-17.

[108] Abhishek Singh, Ola Nordström, Chenghuai Lu, and Andre dos Santos. Malicious
ICMP Tunneling: Defense against the Vulnerability. In Information Security and
Privacy, pages 217–217. Springer, 2003.

[109] David Snelling. Use The Pirate Bay? This warning could stop you visiting
torrents sites again, 2017. URL https://www.express.co.uk/life-style/
science-technology/754113/The-Pirate-Bay-KickAss-torrents-
warning-government. Accessed: 2018-03-03.

[110] David Snelling. EU court issues illegal download warning as it rules Pirate Bay
can be blocked, 2017. URL https://www.telegraph.co.uk/technology/
2017/06/14/eu-court-rules-pirate-bay-can-banned-landmark-
illegal-download/. Accessed: 2018-03-02.

[111] Wireless Social. Legal Compliance. https://www.wireless-social.com/
how-it-works/legal-compliance/. Accessed: 2018-02-21.

[112] Internet Society. State of IPv6 Deployment 2017, 2017. URL
https://cdn.prod.internetsociety.org/wp-content/uploads/2017/
08/IPv6_report_2017-0606.pdf. Accessed: 2018-01-19.

100

http://www.dnsredirector.com/portal/
http://www.dnsredirector.com/portal/
http://slacksite.com/other/ftp.html
http://slacksite.com/other/ftp.html
http://community.arubanetworks.com/t5/Technology-Blog/Captive-Portal-why-do-I-get-those-certificate-warnings/ba-p/268921
http://community.arubanetworks.com/t5/Technology-Blog/Captive-Portal-why-do-I-get-those-certificate-warnings/ba-p/268921
http://community.arubanetworks.com/t5/Technology-Blog/Captive-Portal-why-do-I-get-those-certificate-warnings/ba-p/268921
https://www.rfc-editor.org/rfc/rfc3261.txt
https://www.rfc-editor.org/rfc/rfc3261.txt
https://www.rfc-editor.org/rfc/rfc7457.txt
https://www.rfc-editor.org/rfc/rfc7457.txt
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://www.express.co.uk/life-style/science-technology/754113/The-Pirate-Bay-KickAss-torrents-warning-government
https://www.express.co.uk/life-style/science-technology/754113/The-Pirate-Bay-KickAss-torrents-warning-government
https://www.express.co.uk/life-style/science-technology/754113/The-Pirate-Bay-KickAss-torrents-warning-government
https://www.telegraph.co.uk/technology/2017/06/14/eu-court-rules-pirate-bay-can-banned-landmark-illegal-download/
https://www.telegraph.co.uk/technology/2017/06/14/eu-court-rules-pirate-bay-can-banned-landmark-illegal-download/
https://www.telegraph.co.uk/technology/2017/06/14/eu-court-rules-pirate-bay-can-banned-landmark-illegal-download/
https://www.wireless-social.com/how-it-works/legal-compliance/
https://www.wireless-social.com/how-it-works/legal-compliance/
https://cdn.prod.internetsociety.org/wp-content/uploads/2017/08/IPv6_report_2017-0606.pdf
https://cdn.prod.internetsociety.org/wp-content/uploads/2017/08/IPv6_report_2017-0606.pdf

[113] Christian Solmecke. EuGH – Streaming von illegal verbreiteten Kinofilmen
ist eine Urheberrechtsverletzung – eine Abmahnwelle ist dennoch nicht zu er-
warten, 2017. URL https://www.wbs-law.de/urheberrecht/eugh-zu-
streaming-72808/. Accessed: 2018-03-03.

[114] Nissy Sombatruang, M. Angela Sasse, and Michelle Baddeley. Why do people use
unsecure public Wi-Fi? An investigation of behaviour and factors driving decisions.
In STAST ’16 Proceedings of the 6th Workshop on Socio-Technical Aspects in
Security and Trust, pages 61–72. ACM, 2016.

[115] D. Stødle. Ping Tunnel, 2011. URL http://www.cs.uit.no/~daniels/
PingTunnel/. Accessed: 2018-01-10.

[116] CloudFlare Support. 5xx Server Errors. URL https://
support.cloudflare.com/hc/en-us/articles/115003011431/. Ac-
cessed: 2018-06-24.

[117] Symantec. NORTON WI-FI RISK REPORT Report of Online Survey Results in
15 Global Markets, 2017. URL https://www.symantec.com/content/dam/
symantec/docs/reports/2017-norton-wifi-risk-report-global-
results-summary-en.pdf. Accessed: 2017-11-22.

[118] Cisco Systems. Configuring a Custom-Hosted Splash Page.
URL https://documentation.meraki.com/MR/Splash_Page/
Configuring_a_Custom-Hosted_Splash_Page. Accessed: 2018-03-09.

[119] Check Point Software Technologies. Configuring UserCheck. URL https://
sc1.checkpoint.com/documents/R76/CP_R76_AppControl_WebAdmin/
83287.htm. Accessed: 2018-09-16.

[120] S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. DNS Extensions to Support
IP Version 6. RFC 3596 (Internet Standard), October 2003. ISSN 2070-1721. URL
https://www.rfc-editor.org/rfc/rfc3596.txt.

[121] tintinweb. striptls 0.5, poc implementation of STARTTLS stripping attacks. URL
https://pypi.python.org/pypi/striptls/0.5. Accessed: 2018-01-24.

[122] TorGuard. Six countries that block Social Networks, 2015. URL https://
torguard.net/blog/six-countries-that-block-social-networks/.
Accessed: 2018-02-27.

[123] S. Turner and T. Polk. Prohibiting Secure Sockets Layer (SSL) Version 2.0.
RFC 6176 (Proposed Standard), March 2011. ISSN 2070-1721. URL https:
//www.rfc-editor.org/rfc/rfc6176.txt.

[124] Cisco Umbrella. What Is the Difference between Authoritative and Recursive DNS
Nameservers? URL https://umbrella.cisco.com/blog/2014/07/16/

101

https://www.wbs-law.de/urheberrecht/eugh-zu-streaming-72808/
https://www.wbs-law.de/urheberrecht/eugh-zu-streaming-72808/
http://www.cs.uit.no/~daniels/PingTunnel/
http://www.cs.uit.no/~daniels/PingTunnel/
https://support.cloudflare.com/hc/en-us/articles/115003011431/
https://support.cloudflare.com/hc/en-us/articles/115003011431/
https://www.symantec.com/content/dam/symantec/docs/reports/2017-norton-wifi-risk-report-global-results-summary-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/2017-norton-wifi-risk-report-global-results-summary-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/2017-norton-wifi-risk-report-global-results-summary-en.pdf
https://documentation.meraki.com/MR/Splash_Page/Configuring_a_Custom-Hosted_Splash_Page
https://documentation.meraki.com/MR/Splash_Page/Configuring_a_Custom-Hosted_Splash_Page
https://sc1.checkpoint.com/documents/R76/CP_R76_AppControl_WebAdmin/83287.htm
https://sc1.checkpoint.com/documents/R76/CP_R76_AppControl_WebAdmin/83287.htm
https://sc1.checkpoint.com/documents/R76/CP_R76_AppControl_WebAdmin/83287.htm
https://www.rfc-editor.org/rfc/rfc3596.txt
https://pypi.python.org/pypi/striptls/0.5
https://torguard.net/blog/six-countries-that-block-social-networks/
https://torguard.net/blog/six-countries-that-block-social-networks/
https://www.rfc-editor.org/rfc/rfc6176.txt
https://www.rfc-editor.org/rfc/rfc6176.txt
https://umbrella.cisco.com/blog/2014/07/16/difference-authoritative-recursive-dns-nameservers/
https://umbrella.cisco.com/blog/2014/07/16/difference-authoritative-recursive-dns-nameservers/

difference-authoritative-recursive-dns-nameservers/. Accessed:
2018-02-16.

[125] Philipp Winter, Richard Köwer, Martin Mulazzani, Markus Huber, Sebastian
Schrittwieser, Stefan Lindskog, and Edgar Weippl. Spoiled Onions: Exposing
Malicious Tor Exit Relays. In International Symposium on Privacy Enhancing
Technologies Symposium, pages 304–331. Springer, 2014.

[126] Internet Society World IPv6 Launch. World IPv6 Launch. URL http://
www.worldipv6launch.org. Accessed: 2018-01-19.

[127] Peter Yeung. Erdogan emails: Turkey blocks access to WikiLeaks af-
ter release of 300,000 secret government emails, 2016. URL http:
//www.independent.co.uk/news/world/europe/wikileaks-emails-
release-government-turkey-erdogan-block-a7145671.html. Ac-
cessed: 2018-03-03.

102

https://umbrella.cisco.com/blog/2014/07/16/difference-authoritative-recursive-dns-nameservers/
https://umbrella.cisco.com/blog/2014/07/16/difference-authoritative-recursive-dns-nameservers/
http://www.worldipv6launch.org
http://www.worldipv6launch.org
http://www.independent.co.uk/news/world/europe/wikileaks-emails-release-government-turkey-erdogan-block-a7145671.html
http://www.independent.co.uk/news/world/europe/wikileaks-emails-release-government-turkey-erdogan-block-a7145671.html
http://www.independent.co.uk/news/world/europe/wikileaks-emails-release-government-turkey-erdogan-block-a7145671.html

	Introduction
	Motivation
	Background
	Wi-Fi Hotspots and Captive Portals
	Honey Traffic
	Protocols
	SSL Stripping
	Port Testing
	Tunneling Techniques
	IPv4 vs. IPv6

	Related Work
	Analyzing Public Wi-Fi Hotspots
	Threats and Attackers
	Overview of Procedure and Testing
	The Measurement Procedure in a Nutshell

	Design and Implementation
	Measurement Server
	Android Client Application
	Pre-Authentication Tests
	Post-Authentication Tests

	Field Study
	Preparation
	Timeline
	Test Devices and Volunteers
	Locations
	Updates of Testing Scenarios and App Updates
	Interruptions

	Results
	Data Cleansing
	General Data Collection
	Captive Portals
	Pre-Authentication Test Results
	Post-Authentication Test Results
	Other Observations

	Discussion
	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

