
D I P L O M A R B E I T

Reinforcement Learning in Agent
based Modelling

ausgeführt am Institut für
Analysis & Scientific Computing
der Technischen Universität Wien

unter der Anleitung von
Ao.Univ.Prof.i.R. Dipl.-Ing. Dr.techn.

Felix Breitenecker
und

Projektass. Dipl.-Ing. Dr.techn.
Nikolas Popper

durch
Sebastian von der Thannen

Matrikel-Nr. 01226852

Wien, 25.10.2018
(Unterschrift Verfasser) (Unterschrift Betreuer)

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Danksagung

Als erstes möchte ich meinen herzlichsten Dank an meine beiden Betreuer, Prof.
Breitenecker und Dr. Popper, ausrichten, die mir die Möglichkeit gegeben haben,
in diesem spannenden Forschungsbereich eine Diplomarbeit zu schreiben. Zusätz-
lich bedanke ich mich bei DI Dominik Brunmeir, der mich ebenfalls während der
gesamten Arbeit unterstützt und betreut hat.

Weiters bedanke ich mich bei all meinen Studienfreunden für die zahlreichen in-
teressanten, manchmal auch sinnfreien, vor allem aber unterhaltsamen Gespräche.
Ohne ihre Unterstützung wäre das Studium wohl deutlich steiniger und farbloser
verlaufen.

Ebenso danke ich meinen Freunden abseits des Studiums für die etlichen späten
gemeinsamen Stunden, welche mich immer auf andere Gedanken bringen konnten.
Ihre Ohren standen immer offen für jedweden Kummer.

Zu guter Letzt gebührt mein Dank natürlich meiner Familie und speziell meinen
Eltern, die mich vor allem finanziell und psychisch bedingungslos unterstützt
haben. Ohne sie wäre das Studium nicht möglich gewesen.





Kurzfassung

In den letzten Jahren konnte die Forschung im Bereich des maschinellen Lernens in
Verbindung mit künstlichen neuronalen Netzen enorme Fortschritte erzielen. Ins-
besondere im Bereich des bestärkenden Lernens wurden viele Durchbrüche erzielt
(z. B. das Spielen von Atari-Spielen und AlphaGo von Google Deep Mind). Die
meisten dieser behandelten Probleme umfassen einen einzigen Agenten, der sich
in einer Umgebung befindet, mit welcher er interagieren kann. Ziel des Agenten
ist es dabei, mit Hilfe einer Belohnungsfunktion herauszufinden, welche Aktionen
ihn zur maximalen Belohnung führen.

Mit den selben Techniken versucht diese Arbeit einen generellen Rahmen zu
schaffen, um bestärkendes Lernen in der agentenbasierten Modellierung einzuset-
zen. Anschließend wird dieses Konzept an einem agentenbasierten Räuber-Beute
Modell angewendet und evaluiert.

Da einige Modelle es erlauben, die Agenten in Gruppen einzuteilen, wie es zum
Beispiel für das Räuber-Beute Modell der Fall ist, muss für jede dieser Gruppen
eine eigene Belohnungsfunktion definiert werden. Dadurch kann jede Gruppe ihr
optimales Verhalten erlernen. Diese daraus resultierende Verhaltensfunktion, die
durch ein neuronales Netz approximiert wird, führt den Agenten zu einer opti-
malen Verhaltensweise, um die erwartete zukünftige Gesamtbelohnung, basierend
auf seinem aktuellen Zustand, zu maximieren. Im Vergleich zu herkömmlichen
agentenbasierten Modellen kann dieser Ansatz den Modellierungsprozess verein-
fachen und gleichzeitig die Verzerrung des Modells verringern, da die vom Model-
lierer festgelegten Verhaltensregeln durch eine Belohnungsfunktion ersetzt werden.

Diese Arbeit versucht verschiedene Ansätze aufzuzeigen, um sowohl eine sin-
nvolle Belohnungsfunktion, als auch gute Parameterwerte zu finden. Damit soll
eine globale Konvergenz bei der Modellierung komplexer Interaktionen zwischen
Agenten in einer Umgebung gewährleistet werden.





Abstract

In recent years, huge progress has been made in machine learning using neural net-
works as function approximators. Especially in reinforcement learning, extensive
research is ongoing and a lot of breakthroughs were achieved (e.g. playing atari
games and AlphaGo by Google Deep Mind). Most of these problems involve a
single agent thrown into an environment where it has to figure out how to perform
optimally based on given rewards for each action.

Using these techniques, the thesis aims to develop a general framework for
agent based modelling using reinforcement learning and evaluate the results on a
pred-ator-prey model using usual approaches such as the Lotka-Volterra equations
or rule based models.

As some models require a classification of agents in groups, as it is for the
predator-prey model, each group of agents demand their own reward function in
order to find its optimal policy. This policy function, which will be approximated
by a neural network, gives the agent advice for the best action to take with focus on
maximising the agent’s expected total future rewards based on their current state.
Compared to usual agent based models, this approach can simplify the modelling
process while decreasing the bias of the model since hard coded behavioural rules
are replaced by a reward function.

This thesis tries to explore different approaches to find both, a meaningful
reward function and good parameters to assure global convergence when modelling
complex interactions between agents in an environment.
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1. Introduction

Evolving intelligence occurs naturally in our world. From small cyto-creatures to
animals including humans, all living beings have some kind of intelligence that
evolves in lifetime through environmental changing interactions plus experiencing
some kind of feedback. Therefore using reinforcement learning can be seen as a
natural approach in biological or social agent based models. For instance, Wang
et al. used reinforcement learning to characterise cell movement of C. elegans [27],
Yang et al. studied population dynamics in an thousands of agents predator prey
model [29] and Google DeepMind studied cooperation and defection in multi-agent
social dilemmas [12]. In settings where agents suffer a lack of information such
as a partially observable environment or unawareness of opponent’s policies, game
theory and policy optimisations intertwine [9].

In order to make things simpler, one can assume that a creature’s life is noth-
ing more than a time-discrete, stochastic control process, i.e. a Markov decision
process (MDP). Everything that can be observed by the senses of the creature
forms the state space. All possible actions that can be taken form the action
space. These spaces are often discretised as well as the time. Now living in an
environment the creature has a state, determined by it’s senses. Taking an action
may cause a change in the environment and therefore may trigger a change in it’s
state. This state transition can be a stochastic process, such that two identical
state-action pairs don’t have to lead to the same state transition. Now in order
to measure the quality of the actions one assumes a third observable quantity
called the reward. This is a real valued feedback from the environment to the
creature after each action that rates the quality of the new state. In real world,
this feedback corresponds to punishment or achieving a goal, e.g. pain, death or
satisfying needs and positive emotions. Each individual seeks to learn a behaviour
that maximises it’s cumulative rewards. Such an optimal behaviour is the solution
to this MDP.

The process of interacting with the environment leads to time series, called
trajectories

τ = (s0, a0, r1, s1, a1, ..., rT , sT ) ,

1
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Figure 1.1: Environment with State-Action-Reward-State setting.

which may be finite in case of a goal achievement, or fail. The creature’s policy π
is often modelled by a probability distribution

π(s) = P (a | s),

but also may be deterministic.
In the following we classify different kind of creatures, i.e. creatures that show

the same behaviour, in groups and call creatures of the same group agents. Fig-
ure 1.1 shows the simplified life process of groups of agents interacting with an
environment, where each agent produces it’s own trajectory.

Following these trajectories, the value of each state can be defined as

Vπ(s) = E

[
T−1∑
t=0

γtrt+1 | s0 = s

]
.

Whereby the problem formulation gets precise by adjusting the policy in order to
maximise the expected total future rewards Vπ(s) for each state. Furthermore we
take another simplification. Since agents of the same group share the same reward
function, we can solve the MDP only once for each group, instead of solving
the MDP for each agent, and collect all trajectories of the agents as sampled
trajectories for estimations.

Figure 1.2 shows the group control framework, where the group’s policy and
value function are approximated. We will use neural networks as function ap-
proximators since their flexibility makes them powerful. Also it can be seen as a
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Figure 1.2: Unfold group control.

natural approach since neural networks are a model for a biological neural network
such as the animal’s brain [14]. Further details are given in section 5.

The optimisation targets Li, that are to be minimised, are defined as

L1(θ) =
∑
t

(Rt − Vπ(st))
2

L2(θ) = −E [Vπ(s)] ,

where Rt is the sampled cumulative reward

Rt := rt + γRt+1, RT = Vπ(sT ).

This optimisation problem is highly nonlinear but can be solved using gradient
descent methods, described in section 4 and 5.
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2. Motivation

The combination of agent based modelling with reinforcement learning is the goal
of this thesis. This means that the classical ABM is given a new perception, i.e.
the definition of rules gets replaced by a reinforcement learning framework which
is controlled by a reward function only. However the question remains, why and
when it makes sense to apply reinforcement learning to agent based modelling and
if this new approach gives any benefit over the classical one. This chapter tries
to give a motivation and an overview, that explains the differences of these two
approaches.

Therefore it is necessary to know how a classical agent based model is imple-
mented and how it works. Chapter 3 tries to give a definition of classical ABMs
and indicate their limits, advantages and disadvantages. Essentially, ABMs can be
applied whenever multiple agents interact with each other and the environment,
based on some predefined rules. Together they generate a collective complex dy-
namic system. Especially in areas like social science, economics and biology agent
based modelling can be found.

In order to understand the advantages of reinforcement learning in agent based
modelling one has to grasp the purpose that RL tries to pursue in general. Chapter
4 gives a theoretical insight of this special type of machine learning paradigm.
Basically it is about optimising the behaviour of an agent, that is trying to reach
a goal, while acting in an environment. The only information that he receives is
the actual state, that he is in, and a valuation of this state, called the reward.
Such settings often occur in game theory, economics and optimal control, thus
reinforcement learning is mostly applied in these fields.

In addition, chapter 5 gives a theoretical background about neural networks as
function approximators. They are used in this thesis in connection with reinforce-
ment learning. One can get an idea of their structure, functionality and how they
can be used as approximators.

As a roundup, chapter 6 combines these three concepts and presents a practical
approach of the implementation of reinforcement learning in agent based modelling
using neural networks as function approximator. Also this combination is applied
to a predator prey model as a validation.

5
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Beforehand, we try to motivate this combination.
The essential part in classical agent based modelling is the definition of behavi-

oural rules. Especially it is necessary to define breakpoints, i.e. when agents should
act in the defined manner. In most cases, these breakpoints and behavioural rules
are extracted from real world data and observations, that one intends to repro-
duce. This strategy however, may hold the danger that wrong assumptions and
implications are made by the modeller. Particularly this can happen more likely
if the data, that is obtained from real world observations, doesn’t reveal a clear
pattern or structure, that would allow logical implications. In these situations,
the bias of the modeller flows into the model and thus the simulation. Dependent
on the application and the purpose of the model, this may have a negative effect.
Usually there are two scenarios in which ABMs are used.

On the one hand, there is the classical problem where the interest lies in the
dynamic of the system, that emerges during simulations. In this case it is clear
which rules need to be defined. It is rather the emergent behaviour of the total
system that is unknown previously. For this classical scenarios it doesn’t make
much sense to use reinforcement learning. The main problem is the definition of
the reward function and just that would be unreasonable by the nature of this
problem. How should it be feasible to determine a meaningful reward function on
the outcome, if it is not known, while at the same time, the policies of the agents
are already evident. Thus it will be the second scenario, where the implementation
of reinforcement learning may have a beneficial effect.

This scenario can be seen as the inverse problem, where the dynamic of a system
is observed, but it is unclear how the agents behave such that this emergence
occurs. This makes it necessary to reverse engineer the system. Trying to find the
breakpoints and behavioural rules for the agents, that lead to the desired system
dynamics, can be a hard and expensive task, with lots of trail and errors. Thus,
the use of reinforcement learning can help to solve this task. The definition of a
reward function, that gives positive rewards on the desired outcome and negative
else, can help finding behavioural rules and breakpoints automatically such that
the desired system dynamic is generated.

Though, it is important that the reward function is independent of the agent’s
actions. It should only be defined on the states, which are also generated by the
dynamic of the system. Otherwise it would mislead the purpose of using rein-
forcement learning in this context, because agents would start to draw rewarded
actions. Then this behaviour could have been replaced by the definition of be-
havioural rules in the first place. This also shows that reinforcement learning in
agent based modelling can accomplish the same as using the classical rule based
approach, yet with a long way round. The same doesn’t apply in reverse.

In some cases, the problem meets somewhere in between these two mentioned
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scenarios. This holds, for example, for the predator prey model, which was used
as a validation in chapter 6. On the one hand, the behaviour of the predator and
the preys is well studied and can be defined on a common sense. Predators try
to hunt down preys by pursuing them and preys try to escape the predators. On
the other hand, the only thing we can say for sure is that the predators need to
hunt, so as not to starve, and the preys need to avoid the contact with predators
in order to survive. But we don’t know exactly how they achieve this.

The possibility to approach this problem in these two ways, makes it reason-
able as a validation. If the reinforcement learning implementation leads to the
same results as in the classical scenario, based on real world observations, both
approaches would be legitimate. Indeed, this is shown in chapter 6.

Now, we could simply implement the behavioural rules as proposed by the
classical agent based models. Or we could use reinforcement learning by defining
a reward function for these groups. The latter approach is now in our interest.

The reward function should represent the desired system dynamic, where preys
get a negative reward if they got in contact with a predator and predators get a
positive reward when they attack preys. This is exactly what is done in chapter 6.
The result of this implementation indicates the exciting potential of reinforcement
learning in agent based modelling. Not only that the agents learned the same
behaviour as it is proposed by classical ABMs. Beyond that, the predators learned
a cooperative behaviour without any communication. They found an optimal
policy that made them more successful in hunting down preys.

In a classical basic predator prey ABM it would be hard to determine the
optimal breakpoints on which a predator should stop pursuing a prey and join
a group of other predators for cooperative hunting. In the reinforcement imple-
mentation these breakpoints and behavioural rules where found automatically by
the algorithm. However things look more promising as they actually are. It can
be hard to find optimal hyperparameters for the RL framework that lead to a
successful learning process. This always depends on the complexity of the model
and system. Nevertheless, if these parameters are found, the ABM can become
more realistic in a natural way.

This should give an idea about the possibilities and limits that arise when using
reinforcement learning combined with agent based modelling in general.
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3. Agent Based Modelling

Agent based modelling is an individual based modelling technique that can be ap-
plied to analyse complex dynamic systems. The dynamic of this system is gener-
ated by interactions of several individuals, the so called agents, in an environment.
Such systems often occur in social science, biology, economics, which makes agent
based modelling popular in these fields. One advantage of this modelling technique
is it’s simplicity of defining intelligible rules on a microscopic level that lead to a
complex dynamic on a macroscopic view. This concept is a typical bottom-up
modelling approach. The base elements are described in great detail first, followed
by linking together available information to form a bigger top-level system. Where,
on the other hand, a top-down approach would start on an abstract macroscopic
level and subsequently breaking down the problem into smaller sub-systems.

Different from equation based modelling techniques, this rules are insightful and
easy to define, especially for researches that don’t have a technical background.
Also it is easy to involve targeted stochastic parameters. Thereby the model gets
an additional dynamic and may seems more realistic. Though, finding stationary
solutions or analyse the stability and convergence of ABMs is hard.

Since ABM was developed by mathematicians, computer scientists, economists
and even political scientists (Conway, Schelling, Axelrod et al.), various types and
definitions of ABMs exist, reaching from cellular automata to complex adaptive
systems. However the following section will attempt an own approach of a basic
formulation of ABM.

3.1 Principle Components

In general, a scientific model always aims to represent features of the real world by
simplifying its complexity and reducing the problem to its main components but
at the same time reproduce the real world observations in a realistic, if not exact,
manner. Thus, disassembling a complex system, by focusing on some carefully
selected aspects, into an agent based model is in our interest. Basically ABMs
have two main components. The agents and the environment.

9
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Environment

The environment can be seen as a pot, metaphorically speaking. It forms a neces-
sary limit for the agents in which they are able to experience, move and interact
with each other. Still it can be as manifold as a pot divided into base and side
face as space and time.

The most common and straight forward choice for the space is a bounded d-
dimensional discrete or continuous subset of Rn. This includes manifolds like the
torus, that makes it possible to simulate an unbounded domain.

For time, less choices are available, since it has only one dimension. It can be
modelled continuously but, typically one chooses a discrete axis with some step
size.

Supplementary, an environment holds some other variable and constant phys-
ical properties that can or cannot be observed by the agents. A variable physical
property could be a morphing space like flora and fauna or available food spread
over the domain, but also climate or catastrophes. Constants could be for example
the space capacity or forces, e.g. gravity. The design of those properties can have
a significant impact on the stability of the whole model. Preserving stability may
be an essential task for the environment.

In addition, the environment controls the agent’s access to information. Spatial
such as nearest neighbour, distance, collision but also time dependent information
like velocity or maybe even forecast or review. Also the environment could provide
and manage communication among agents. At some point this certainly interferes
with properties of individual agents.

Furthermore, in a different perception, it is also possible to understand the
environment as a special type of agent, with whom other agents can interact.

Agents

The most substantial part in ABMs are the agents. They are responsible for the
system’s dynamic and animate the whole model. Primarily agents are divided
into different groups. These groups represent different behaviour in the first place.
Secondly they can obtain different kinds of physical properties such as life span,
birth rate or robustness but also maximum speed or agility.

In order to obtain an individual behaviour among group members, agents usu-
ally have individual physical properties like age, health and of course environmental
based properties like position and velocity.

Based on all these properties and cognition, obtained from the environment,
group and individual, one can now specify behavioural rules. These rules should
be chosen carefully to keep them irreducible and as simple as possible for a smooth
evaluation - calibration loop (see figure 3.1) of the model. As for properties, agent’s
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Modelling

- Environment definition
- Agent/Group definition
- Parameter setting
- Rule definition

Simulation

Agents

Environment

action,
communication

cognition,
information

Evaluation

- Objective achievement
- Behaviour validation

Calibration

- Parameter adjustment
- Rule adjustment

Figure 3.1: MSEC - loop

behavioural rules don’t have to be static. Agents could change their behaviour over
time (e.g. learn, adapt, defect to other groups, etc.).

In general there there are no restrictions to the level of detail of the model.
This suggests that ABMs are rather a general concept than a concrete modelling
instruction.

3.2 Characterisation
As Bonabeau [2] proposed, ABM has three main characteristics.

Capturing emergent behaviour

This feature becomes clear if one thinks about a flock of birds. That is a typical
system that can be modelled by agents. While their group behaviour as a whole
is captivating, the behaviour of a single bird is quite unexciting: Simply avoid
collisions and track neighbouring birds. Though, if one of these rules gets omitted,
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the flock either implodes or drifts apart. So even few and simple rules can result
in an impressive and even counterintuitive emergent behaviour.

Natural description of a systems

There are a lot of problems, like population dynamic in a predator prey scenario or
flocking behaviour, that can be modelled in various ways. Though, if we compare
the Lotka-Volterra equations to a basic predator prey ABM, where the population
size gets extracted, it is clear that the ABM gives a more natural description.

First of all, differential equations tend to smooth out solutions. In real world
dynamic systems however, often discontinuous fluctuations or perturbations occur,
that can’t be reproduced with DEs. In fact these fluctuations come naturally with
ABMs. This not only makes them a natural description but also makes them seem
more realistic.

Flexibility

As indicated in section 3.1, this third characteristic should not surprise. Not only
is it possible to scale the model in detail and extent during the modelling process,
but also adding features or agents even during the simulation is feasible. Anyway
it is often better to start with a simple and more transparent model, and increase
complexity with the validation - calibration loop later.

Advantages

One big advantage of ABMs compared to other modelling techniques is for sure,
as already mentioned, its transparent and simple design, yet the ability to model
complex systems. In addition, the flexibility and scalability in space and inter-
action rules of ABMs makes them unrivalled. As it was suggested in section 3.1,
there are virtually no limits. Compared to other modelling techniques, it doesn’t
take much of an effort to extend the model.

Along with that comes the possibility to naturally describe a system with
rules that don’t need a mathematical or physical formulation or structure. This
makes it an attractive modelling technique to people that don’t have a technical
background and makes it easy for them to adapt parameters and rules according to
their experience and knowledge of real world data without the need of a modelling
expert.

Disadvantages

If we recall the flock example of emergent behaviour, we saw that small changes in
behavioural rules can result in a totally different outcome. This means that these
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systems are quite unstable and rules, that fundamentally determine the wanted
emergence, sometimes have to be identified first. Missing data or knowledge of
agent behaviour can lead to a time consuming and exhausting calibration pro-
cess. Due to the flexibility of ABMs, the implementation is more work than other
modelling techniques. A general framework can only be built for some basic prob-
lems. With an increasing complexity and size of a model, the simulation process
requires powerful computational resources and runtime. A mathematical analysis
of convergence, stability and correctness is nearly impossible.
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4. Reinforcement Learning

Reinforcement learning is part of machine learning, that mainly differs from other
machine learning methods by the lack of a priori known data in terms of experience
or samples. In supervised learning, a major counterpart of reinforcement learning,
labeled samples are used, on which the machine is trained. For instance take a set
of pictures of handwritten digits that are labeled with the corresponding number
that is shown in the picture. The machine takes these labeled pictures and tries to
find underlying patterns in order to predict the correct digits on new, previously
unknown pictures independent of the training set. Another paradigm of machine
learning is unsupervised learning where it suffices to have unlabelled raw samples.
While feeding the machine with samples it is generating labels on the fly and
trying to find an underlying structure. In reinforcement learning one does not
assume any a priori data samples of the system, but rather a given environment
where the machine explores the space of data by its own and labels the data with
the help of the corresponding received rewards (e.g. hot or cold) following his
actions. The goal of the exploration is to maximise the rewards received. The idea
of reinforcement learning arose from psychology and tries to model the process
how creatures, such as humans, learn. Thus it plays a major role in research of
artificial intelligence.

‘When an infant plays, waves its arms, or looks about, it has no
explicit teacher, but it does have a direct sensorimotor connection to
its environment. Exercising this connection produces a wealth of in-
formation about cause and effect, about the consequences of actions,
and about what to do in order to achieve goals. Throughout our lives,
such interactions are undoubtedly a major source of knowledge about
our environment and ourselves. Whether we are learning to drive a car
or to hold a conversation, we are acutely aware of how our environ-
ment responds to what we do, and we seek to influence what happens
through our behavior. Learning from interaction is a foundational idea
underlying nearly all theories of learning and intelligence.’ [24, p. 1]

This environment can be formulated as a Markov decision process (MDP).

15
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4.1 Formulation of a Markov Decision Process
Most of the following definitions, proofs and concepts can be found in [24]. This
section should summarise the most important insights and give a general overview
of the setting. First it is necessary to formalise the framework of reinforcement
learning in a mathematical context.

Definition 4.1.1 (Markov decision process). A Markov decision process (MDP)
is a tuple (S,A,R, T, γ), consisting of the space of states S, the space of actions A
and a reward function R : S × A × S → R. T gives a state transition probability
distribution T : S ×A× S → [0, 1] : T (s, a, s′) ∼ P (s′ | s, a), the probability to end
in state s′ when taking action a while beeing in state s. And γ a decay parameter.

A Markov decision process is thus a time discrete stochastic process that de-
mands a decision maker who takes the actions. This decision maker is called agent.
The strategy of the decision maker is called policy.

Definition 4.1.2 (Policy). A policy π in general is a conditional probability dis-
tribution π(a | s) on the action space A, dependent on state s. A policy is called
soft, if ∃ ϵ > 0 : π(a | s) ≥ ϵ > 0, ∀a ∈ A, s ∈ S. Let Π denote the set of
all policies. In case of a deterministic policy, π often gets replaced by a mapping
π̂ : S → A instead of writing π(a | s) = 1{π̂(s)=a}.

While acting in this environment, the agent, equipped with a policy π, now
produces stochastic trajectories

τ = (s0, a0, r1, s1, a1, ..., rT , sT ) ,

that may be infinite or eventually end after T steps in a final state sT . For example
when a goal is achieved or failed.

Definition 4.1.3. The value function under a fixed policy π is defined as

V π(s) := E

[
T−1−t∑
k=0

γkrt+k+1 | st = s

]
, s ∈ S, (4.1)

i.e. the expected total accumulated future reward under the policy π. Further-
more one can define the Q-function, also known as action-value function.

Definition 4.1.4. The action-value function under a fixed policy π is defined as

Qπ(s, a) := E

[
T−1−t∑
k=0

γkrt+k+1 | st = s, at = a

]
, s ∈ S, a ∈ A (4.2)
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that, in addition to V , takes the first action into account. The connection
between the value and the Q-function is evident

V π(s) = E [Qπ(st, at) | st = s] .

Often, in addition, the advantage function is considered.
Definition 4.1.5. The advantage function under a fixed policy π is defined as

Aπ(s, a) := Qπ(s, a)− V π(s). (4.3)

It gives the advantage of taking action a in state s over taking an action
according to the policy π.

The value function V π and the Q-function Qπ fulfil a recursion, called the
Bellman equation. For the value function the Bellman equation reads

V π(s) = E

[
T−1−t∑
k=0

γkrt+k+1 | st = s

]

= E

[
rt+1 + γ

T−1−t∑
k=0

γtrt+k+2 | st = s

]
= E [rt+1 + γV π(st+1) | st = s] (4.4)

and similar for Qπ.
Definition 4.1.6. A policy π′ is said to improve π, i.e.

π′ ≥ π ⇔ V π′ ≥ V π ⇔ V π′
(s) ≥ V π(s) ∀s ∈ S.

Lemma 4.1.1. Let π′, π be two policies, then
∀s ∈ S : E [Qπ(s, a) | a ∼ π′(s)] ≥ V π(s) ⇒ V π′ ≥ V π.

Proof.

V π(s) ≤ E [Qπ(s, a) | a ∼ π′(s)] =
∑
a∈A

π′(a | s)Qπ(s, a)

= E [rt+1 + γV π(st+1) | st = s, at ∼ π′(s)]

≤ E [rt+1 + γ E [Qπ(st+1, at+1) | at+1 ∼ π′(st+1)] | st = s, at ∼ π′(s)]

= E [rt+1 + γ E [rt+2 + γV π(st+2) | st+1, at+1 ∼ π′(st+1)] | st = s, at ∼ π′(s)]

= E
[
rt+1 + γrt+2 + γ2V π(st+2) | st = s, at ∼ π′(s), at+1 ∼ π′(st+1)

]
...

≤ E
[
rt+1 + γrt+2 + γ2rt+3 + . . . | st = s, at ∼ π′(s), at+1 ∼ π′(st+1), . . .

]
= V π′

(s)
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The same holds for the strict inequalities. That is useful for convergence ana-
lysis of policy iteration. For that purpose we introduce a specific type of policy.

Definition 4.1.7 (ϵ-greedy policy). A policy πϵ is called an ϵ-greedy policy if

πϵ ∈ Π, ∃ π̂ : S → A : πϵ(a | s) = 1{π̂(s)=a}(1− ϵ) + 1{π̂(s)̸=a}
ϵ

l
, ϵ > 0,

with l := |A| − 1.

Every ϵ-greedy policy is soft.

Theorem 4.1.1 (Policy improvement theorem). Let π be an arbitrary policy but
soft, Qπ the corresponding action value function. Now the ϵ-greedy policy im-
provement πϵ is defined by choosing ϵ such that mina,s π(a | s) ≥ ϵ

l
> 0, and

π̂(s) := arg maxa∈AQ
π(s, a) then πϵ improves π:

πϵ ≥ π.

Proof. Let s be arbitrary and a∗ = arg maxa∈AQ
π(s, a), we can rewrite V π

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a)

= π(a∗ | s)Qπ(s, a∗) +
∑

a∈A\{a∗}

π(a | s)Qπ(s, a).

Expanding the sum and using Qπ(s, a∗) ≥ Qπ(s, a) and that π(a | s)− ϵ
l
≥ 0 gives

the estimate∑
a∈A\{a∗}

π(a | s)Qπ(s, a) =
∑

a∈A\{a∗}

(
π(a | s)− ϵ

l

)
Qπ(s, a) +

∑
a∈A\{a∗}

ϵ

l
Qπ(s, a)

≤ Qπ(s, a∗)
∑

a∈A\{a∗}

(
π(a | s)− ϵ

l

)
+

∑
a∈A\{a∗}

ϵ

l
Qπ(s, a)

= Qπ(s, a∗)(1− π (a∗ | s)− ϵ) +
∑

a∈A\{a∗}

ϵ

l
Qπ(s, a).
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Now by definition of πϵ

V π(s) = π(a∗ | s)Qπ(s, a∗) +
∑

a∈A\{a∗}

π(a | s)Qπ(s, a)

≤ π(a∗ | s)Qπ(s, a∗) +Qπ(s, a∗)(1− π (a∗ | s)− ϵ) +
∑

a∈A\{a∗}

ϵ

l
Qπ(s, a)

= (1− ϵ)Qπ(s, a∗) +
∑

a∈A\{a∗}

ϵ

l
Qπ(s, a) =

∑
a∈A

πϵ(a | s)Qπ(s, a)

= E [Qπ(s, a) | a ∼ πϵ(s)]

and finally with lemma 4.1.1

V πϵ(s) ≥ V π(s) ∀s ∈ S.

Assume we iteratively do the policy improvement and set ϵk+1 < ϵk then, in
particular there holds

V πϵk (s) = (1− ϵk)Q
πϵk (s, a∗) +

∑
a∈A\{a∗}

ϵk
l
Qπϵk (s, a)

< (1− ϵk+1)Q
πϵk (s, a∗) +

∑
a∈A\{a∗}

ϵk+1

l
Qπϵk (s, a)

= E
[
Qπϵk (s, a) | a ∼ πϵk+1

(s)
]

for all s ∈ S where Qπϵk+1 (s, ·) is not constant in a. Thus with lemma 4.1.1

V πϵk (s) < V πϵk+1 (s)

Definition 4.1.8. A solution for an MDP is called an optimal policy π∗ ∈ Π that
maximises V π.

π∗ := argmax
π∈Π

V π

Maximising the value function V π with respect to the policy π gives the optimal
value function V ∗

V ∗ := sup
π∈Π

V π.

The same holds for the optimal action-value function Q∗ with the correspondences

Q∗ = sup
π∈Π

Qπ

V ∗(s) = sup
a∈A

Q∗(s, a).
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The optimal value function V ∗ fulfils the Bellman optimality equation

V ∗(s) = sup
a∈A

E [rt+1 + γV ∗(st+1) | st = s, at = a] . (4.5)

To show that V ∗ exists, we introduce the Bellman optimality operator.

Definition 4.1.9. The Bellman optimality operator B : V → V, with V = B(S,R)
the space of all bounded V π for all policies π, is defined as

(BV π)(s) := sup
a∈A

E [rt+1 + γ V π(st+1) | st = s, at = a] . (4.6)

Theorem 4.1.2. The Bellman optimality operator B is a contraction with the
fixed point V ∗

BV ∗ = V ∗.

Proof. By definition 4.1.3 and 4.1.9 and equation 4.5 the optimal value function V ∗

is a fixed point ofB, if it exists. Defining the metric d(V π1 , V π2) := sups∈S |V π1(s)−
V π2(s)| makes (V , d), complete. It follows that

d(BV π1 , BV π2) = sup
s∈S

|BV π1(s)−BV π2(s)|

=sup
s∈S

∣∣∣∣sup
a∈A

E [rt+1 + γ V π1(st+1) | st = s, at = a]

− sup
a∈A

E [rt+1 + γ V π2(st+1) | st = s, at = a]

∣∣∣∣
≤ sup

s,a
|E [γ (V π1(st+1)− V π2(st+1)) | st = s, at = a]|

=sup
s,a

∣∣∣∣∣∑
s′

P (s′ | s, a) γ (V π1(s′)− V π2(s′))

∣∣∣∣∣
≤γ sup

s′
|(V π1(s′)− V π2(s′))|

=γ d(V π1 , V π2),

since
| sup

x
f(x)− sup

x
g(x)| ≤ sup

x
|f(x)− g(x)|,

the linearity of E and
∀s, a :

∑
s′

P (s′ | s, a) = 1.
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Therefore the Bellman operator B is a contraction as γ < 1. By the contraction
mapping principle there exists a unique fixed point V ′. Thus V ∗ = V ′ and an
optimal π∗ exists.

In theory, this gives also a constructive approach how V ∗ can be found (called
value iteration). Starting with an arbitrary V , BnV → V ∗.

d(BnV π1 , BnV π2) ≤ γ d(Bn−1V π1 , Bn−1V π2) ≤ γn d(V π1 , V π2) → 0

and in particular

d(BnV, V ∗) = d(BnV,BnV ∗) ≤ γn d(V, V ∗) → 0.

The convergence towards V ∗ is independent of a policy π. In contrast to the
ordinary Bellman operator

(BV π)(s) := E [rt+1 + γ V π(st+1) | st = s] , (4.7)

which has fixed point V π, dependent on the policy π used in the expectation value.
The proof follows the same lines as above.

If we get back to ϵ-greedy policies, it is clear that the optimal policy π∗ will
barely lie in Πϵ and not even be soft. Still we can approximate π∗ by policies in
Πϵ arbitrarily exact. To see this we show the following theorem.

Theorem 4.1.3. If the optimal policy is non deterministic, then there always
exists an optimal deterministic policy.

Proof. Let π∗ be the non deterministic optimal policy and V ∗, Q∗ the correspond-
ing value, action value function. By the Bellman equation, V ∗ reads

V ∗(s) =
∑

s′∈S,a∈A

π∗(a | s)P (s′ | s, a)(R(s, a, s′) + γV ∗(s′)).

Using the Bellman optimality equation, we can also write V ∗ as

V ∗(s) = sup
a∈A

∑
s′∈S

P (s′ | s, a)(R(s, a, s′) + γV ∗(s′)) = sup
a∈A

Q∗(s, a)

If A is compact we can define a deterministic policy π̂∗(s) = argmaxa∈AQ
∗(s, a).

Now

V ∗(s) =
∑

s′∈S,a∈A

π∗(a | s)P (s′ | s, a)(R(s, a, s′) + γV ∗(s′))

= max
a∈A

∑
s′∈S

P (s′ | s, a)(R(s, a, s′) + γV ∗(s′))

=
∑
s′∈S

P (s′ | s, π̂∗(s))(R(s, π̂∗(s), s′) + γV ∗(s′))
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Doing the same by iteratively inserting the recursion for V ∗(s′) in every step gives
us

V ∗(s) =
∑
s′∈S

P (s′ | s, π̂∗(s))(R(s, π̂∗(s), s′) + γV π̂∗
(s′)) = V π̂∗(s)

Thus π̂∗ is optimal as well.

So let π̂∗ be the deterministic optimal policy, then if we define πϵ as the ϵ-greedy
policy on the actions of π̂∗, obviously limϵ→0 πϵ = π̂∗.

In the following sections we are going to discuss practical approaches for finding
an optimal value/Q-function. Tabular methods such as dynamic programming,
Monte Carlo methods and temporal differences (TD) can be efficient for problems
where the state and action spaces are discrete and small enough. Then the value
function V and action-value function Q can be represented by an array of size |S|
and |S| × |A| respectively.

For problems with large, possibly infinite, state/action spaces finding an accur-
ate solution may be impossible. Thus function approximators like neural networks
will be our approach.

It is to say that there are other methods such as genetic algorithms [23], genetic
programming, simulated annealing that have been used to solve RL problems.
They basically observe non learning agents with different policies and then choose
the one that obtained the most reward. It can be seen as the evolutionary approach
[24, p. 9]. However in this thesis, we will stick to methods that rely on estimating
the value function.

4.2 Solving a Markov Decision Process

4.2.1 Dynamic Programming
Since the value function V π and the policy π are in strong correspondence, natur-
ally two different approaches arise: value and policy iteration. These two methods
come from dynamic programming. They can be very efficient if the model of the
environment is known and the problem is not too large. Also they are guaranteed
to find the optimal policy in polynomial time [13].

Value iteration

Value iteration is based on (4.5) using that the Bellman optimality operator (see
definition 4.1.9) is a contraction with fixed point V ∗. Thus applying B iteratively
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on a randomly initialised V ∗
0

V ∗
n+1(s) = (BV ∗

n )(s) = max
a∈A

(∑
s′∈S

P (s′ | s, a)(R(s, a, s′) + γV ∗
n (s

′))

)
,

converges to V ∗. And in matrix notation

V ∗
n+1 = max

j
[(P (R + γV ∗

n ))·,j] .

An error estimate and terminating condition is given by the following theorem.

Theorem 4.2.1 (Value iteration error estimate). Using the metric from (V , d),
e.g. ∥V0−V1∥ := d(V0, V1) from theorem 4.1.2 or the euclidean metric (V is finite-
dimensional) the following estimate hold.

∀ϵ > 0 : ∥V ∗
n+1 − V ∗

n ∥ ≤ ϵ
1− γ

γ
⇒ ∥V ∗ − V ∗

n+1∥ ≤ ϵ. (4.8)

Proof. Straight forward using the properties of the contraction of the Bellman
operator. Let ϵ > 0 arbitrarily chosen and n large enough that ∥V ∗

n+1−V ∗
n ∥ ≤ ϵ1−γ

γ

then

∥V ∗ − V ∗
n+1∥ = ∥BV ∗ −BV ∗

n ∥ ≤ ∥BV ∗ −BV ∗
n+1∥+ ∥BV ∗

n+1 −BV ∗
n ∥

≤ γ∥V ∗ − V ∗
n+1∥+ γ∥V ∗

n+1 − V ∗
n ∥

⇔ ∥V ∗ − V ∗
n+1∥ ≤ γ

1− γ
∥V ∗

n+1 − V ∗
n ∥ ≤ ϵ.

Once the iteration terminates, i.e. ∥V ∗
n+1 − V ∗

n ∥ ≤ ϵ1−γ
γ

, we can get our policy
πϵ from V ∗

n+1 by doing one step of policy iteration. The policy πϵ is ϵ-optimal,
which means the corresponding value function V ϵ is ϵ-close to V ∗: ∥V ∗ −V ϵ∥ ≤ ϵ.

Policy iteration

Till now we only talked about finding V ∗ and Q∗ without practically talking about
π∗, although the policy is essential for the agent. Policy iteration provides a way
to compute πk+1 as an improvement of πk iteratively from V πk starting with a
policy π0. The value function V πk again can be computed from πk by solving a
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linear system given by the Bellman equation 4.4.

V πk(s) = E [rt+1 + γV πk(st+1) | st = s]

=
∑
s′∈S

P (s′ | s)(rt+1 + γV πk(s′))

=
∑

s′∈S,a∈A

P (s′ | s, a)πk(a | s)(R(s, a, s′) + γV πk(s′)),

since
P (s′ | s) =

∑
a∈A

P (s′, a | s) =
∑
a∈A

P (s′ | a, s)P (a | s),

where P (a | s) is just our policy πk(a | s) and P (s′ | a, s) the known transition
probability of the MDP. Written in matrix notation with the according probability
matrix Πk and reward matrix R gives

V πk = ΠkR + γΠkV
πk (4.9)

⇔ (I − γΠk)V
πk = ΠkR. (4.10)

This is solvable as the eigenvalues of γΠk are in the interior of the unit disc (see
Perron-Frobenius theorem).

Knowing V πk , one can derive a policy πk+1 that improves V πk , using the action-
value function Qπk that is obtained from V πk

Qπk(s, a) = E [rt+1 + γV πk(st+1) | st = s, at = a]

=
∑
s′∈S

P (s′ | s, a)(R(s, a, s′) + γV πk(s′)).

Then we use the greedy policy update (theorem 4.1.1 with ϵ = 0)

πk+1(a | s) =

{
1 if a = arg maxa∈AQ

πk(s, a)

0 else
.

Theorem 4.2.2 (Convergence of policy iteration). The policy upgrade πk+1 im-
proves V πk

πk+1 ⇒ V πk ≤ V πk+1
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Proof. The policy update leads to

V πk(s) =
∑
a∈A

πk(a | s)Qπk(s, a) ≤
∑
a∈A

πk+1(a | s)Qπk(s, a)

⇔
∑

a∈A,s′∈S

πk(a | s)P (s′ | s, a)(R(s, a, s′) + γV πk(s′))

≤
∑

a∈A,s′∈S

πk+1(a | s)P (s′ | s, a)(R(s, a, s′) + γV πk(s′))

by construction of πk+1, which reads in matrix notation

V πk = ΠkR + γΠkV
πk ≤ Πk+1R + γΠk+1V

πk

⇔ (I − γΠk+1)V
πk ≤ Πk+1R

⇔ V πk ≤ (I − γΠk+1)
−1Πk+1R = V πk+1 .

4.2.2 Monte Carlo methods
In the previous chapter we required full knowledge of the environment’s dynamic
P (st+1 | st, at). This is a strong assumption that made value and policy iteration
an efficient tool to find an optimal policy, but also less practicable in most cases.

From now on we resign the knowledge of P (st+1 | st, at) and start sampling tra-
jectories τ . In addition we assume that these trajectories are finite, and call them
episodes. In these sampling based methods one distinguishes between on-policy
and off-policy. On-policy means that the episodes are sampled based on a policy π
and the corresponding value function V π is approximated. The new thing comes
with off-policy (see section 4.2.2), where the approximated value function V πϵ cor-
responds to a different policy πϵ, than the one π used for sampling. This gives the
possibility to continue exploring the environment, while finding the optimal policy
in parallel. It is trivial that off-policy is less prone to get stuck in local minima.

Another slight distinction that is made in the following prediction methods
should be mentioned here beforehand. Namely first visit and every visit. Since it
is possible to hit the same state st multiple times in the same episode τ it is to
decide whether to use the cumulative rewards only on the first visit or on every
visit of st for the estimation of V π(st). Although they are very similar, different
theoretical properties arise.

The general idea of Monte Carlo methods appears in this context by generating
independent samples from an unknown probability distribution, i.e. the environ-
ment’s dynamic. By the law of large numbers, the estimated means, that are
based on the samples, converge towards the real mean, that are determined by the
unknown distribution.
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Value prediction

Again we iteratively calculate our V π for a policy π. After sampling a few episodes
τi, 1 ≤ i ≤ n with π, one calculates the actual cumulative return for every state
that occurs in any of these episodes. We assume that every episode either starts
in an initial state s∗, or in a randomly chosen state s. Anyway, every τi should be
independent.

τi = (s0, a0, r1, s1, a1, . . . , sT−1, aT−1, rT , sT )

Gτi(st) =
T−1−t∑
k=0

γkrt+k+1

V π
n (st) =

1

n

n∑
i=1

Gτi(st)

By the law of large numbers V π
n (s) → V π(s) converges. It is worth mentioning

that the value estimates for each state s are independent. They don’t rely on other
state values as it is in dynamic programming, where bootstrapping is used. By
the assumption that the episodes τi are independent, the error falls pointwise as

Var [V π
n (s)] =

Var [Gτi(s)]

n
∀s ∈ S.

The pointwise convergence of V π
n doesn’t give us any benefit, if the policy π isn’t

able to generate samples for every s. To assure global convergence, one has to
stick to policies π with π(a | s) > 0 ∀a ∈ A, s ∈ S. This also makes sense for the
ϵ-greedy policy improvement theorem 4.1.1.

Value prediction gives a very basic algorithm to find the value function for a
given policy π. In practice, one still has to do a policy improvement and that gets
expensive if the model is not known, because one has to look one step ahead to
choose the action with the best next state value. Then it’s much more efficient to
predict the action value itself.

Action value prediction

Of course the same can be done for the Q-function.

τi = (s0, a0, r1, s1, a1, . . . , sT−1, aT−1, rT , sT )

Hτi(st, at) =
T−1−t∑
k=0

γkrt+k+1

Qπk
n (st, at) =

1

n

n∑
i=1

Hτi(st, at)
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The convergence Qπk
n (st, at) → Qπk(st, at) holds as for the value prediction. Again,

if Qπk
n is known for n large enough, we can improve the policy by the ϵ-greedy policy

πϵ from theorem 4.1.1.
Starting over again to find Qπk+1 . The policy improvement is converging πk+1 ≥

πk by theorem 4.1.1.

Off-Policy MC

Off-Policy Monte Carlo provides a method to obtain the value function for a policy
π from episodes τi, that were generated by a different policy π′. It is only required
that π′(a | s) > 0 holds, for every s ∈ S and a ∈ A where π(a | s) > 0. Let s
be a state that is visited in the episodes τi, Gτi(s) the accumulated return in the
episode τi following the policy π′ from state s, Pi(s) and P ′

i (s) the probability of
that sequence τi to happen after s was visited by following the policy π and π′

respectively, i.e.
Pi(s) =

∏
τi

π(at | st)P (st+1 | st, at).

Then, an estimator for V π can be obtained by importance sampling

V π
n (s) =

∑n
i=1

Pi(s)
P ′
i (s)

Gτi(s)∑n
i=1

Pi(s)
P ′
i (s)

.

Again the benefit of Monte Carlo methods, that the environment’s dynamics
doesn’t have to be known, arises from

Pi(s)

P ′
i (s)

=

∏
τi
π(at | st)P (st+1 | st, at)∏

τi
π′(at | st)P (st+1 | st, at)

=

∏
τi
π(at | st)∏

τi
π′(at | st)

.

4.2.3 Temporal Difference Learning
Short, TD methods combine DP and MC. Like MC methods they update the value
function from sampled episodes without knowing the environment’s dynamics and
at the same time, they don’t have to wait for the final outcome of the episode,
they bootstrap like DP methods. This means that temporal difference method
estimates the value of a state or action by using the values of other states or
actions.

Assume we have a policy π and we want to find V π. Again we start with a V π
0

and iteratively calculate V π. This time, the update of V π
k is based on the sampled

error of the current estimator V π
k with a step size α. But instead of updating the

estimate of the value function after the end of each episode τi by

V π
n+1(st) = V π

n (st) + α(Gτi(st)− V π
n (st)),
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the simplest TD method updates the value function after each return rt, based on
the temporal tuple

τ ti = (st, at, rt+1, st+1)

V π
n+1(st) = V π

n (st) + α(rt+1 + γV π
n (st+1)− V π

n (st)).

Here, the state values (also state-action values) of terminal states V π(sT ) are
defined as zero for the update rule to make sense.

This method is called TD(0). The zero comes from the extension with eligibility
traces, that will be described later, which makes this method a special case.

As already mentioned, TD methods combine the three main advantages from
DP and MC: Bootstrapping, that the knowledge of the transition probabilities is
not required and the usage of immediate updates after each return. Especially
problems with very long or even infinite episodes make TD methods more applic-
able than MC. In addition, TD methods fortunately converge almost surely, as
they can be seen as a linear stochastic approximation algorithm [26].

SARSA

The TD method can also be formulated for the action-value function. This method
is called SARSA. The name SARSA comes from the information that is used in
order to update the action-value function

τ ti = (st, at, rt+1, st+1, at+1)

Qπ
n+1(st, at) = Qπ

n(st, at) + α(rt+1 + γQπ
n(st+1, at+1)−Qπ

n(st, at)).

Q-learning

It is important to mention that until now, the methods presented were all on-
policy. Q-learning gives an off-policy method to estimate the value function of the
greedy policy, while sampling with a corresponding soft policy (e.g. the ϵ-greedy
policy).

τ ti = (st, at, rt+1, st+1) (4.11)
Qπ

n+1(st, at) = Qπ
n(st, at) + α(rt+1 + γmax

a∈A
Qπ

n(st+1, a)−Qπ
n(st, at)). (4.12)

The policy improvement is implicitly done, since π = arg maxa∈AQ
π(s, a) already

gives the new policy after every update. The off-policy property gives the advant-
age that all states and values can be explored by a soft policy, thus approximating
the global optimum, while computing the optimal policy at the same time.
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Actor-Critic

In the actor-critic approach, the process of finding the value function and the
policy are separated. The value function acts as a critic that guides the actor (i.e.
the policy). First a normal TD(0) step is done

τ ti = (st, at, rt+1, st+1)

δt = rt+1 + γV π
n (st+1)− V π

n (st)

V π
n+1(st) = V π

n (st) + αδt,

followed by the policy update

pn+1(a, s) = pn(a, s) + βδt

πn+1(a | s) = epn+1(a,s)∑
a′∈A e

pn+1(a′,s)
,

with another step size parameter β. There are many other versions of actor-critic
algorithms but the main idea stays the same. Actor-critic methods are able to
find explicit stochastic policies that are useful in competitive and non-Markovian
environments [22]. Another benefit is that they can be formulated to find policies
in continuous action spaces.

Eligibility traces - λ-extensions

Eligibility traces are an extension for TD methods that aims for better convergence.
It can be seen as an interpolation between the TD methods presented earlier and
the Monte Carlo methods. Thus we shortly describe eligibility traces. Let’s define
the accumulated and bootstrapped n-step return Gτi

n (st) from state st in an episode
τi

Gτi
n (st) = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnV π(st+n).

Then, the main idea is to use a weighted average

Ĝτi
λ (st) = (1− λ)

T−t+1∑
n=1

λn−1Gτi
n (st) + λT−t+1Gτi(st)

of the accumulated returns Gτi
n (st) for the TD update. The TD(λ) update is

defined as

τ ti = (st, at, rt+1, st+1)

V π
n+1(st) = V π

n (st) + α(Ĝτi
λ (st)− V π

n (st)).
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Now it is clear that for λ = 0 one obtains TD(0)

Ĝτi
0 (st) = Gτi

1 (st) = rt+1 + γV π(st+1)

and for λ = 1 the Monte Carlo update

Ĝτi
1 (st) = Gτi(st).

The problem that arises with this algorithm is that we lose the ability to make
immediate updates. We have to wait until the end of an episode for the final return.
So we lost the advantage of TD over Monte Carlo methods wich is discouraging
at first glance. However this can be fixed by changing the view from forward
to backwards by simply keeping track of the visited states. Before an update is
performed, initialise a vector e0(s) = 0, ∀s ∈ S called the eligibility trace. Then,
in each step reaching st, the error

δt = rt+1 + γV π
n (st+1)− V π

n (st)

is computed and et and V π are updated for every state.

et(s) =

{
γλet−1(s) + 1 if s = st

γλet−1(s) else
∀s ∈ S

V π
n+1(s) = V π

n (s) + αδtet(s) ∀s ∈ S

Of course this extension can be done analogously for other TD methods such
as SARSA and Q-learning.

4.2.4 Approximate Solution
Until now we always assumed that the state space S and the action space A
are finit and small enough such that we can store the values of V π and Qπ in a
table where we could simply overwrite the values. Unfortunately this extensively
limits the number of problems that are solvable with this methods. Let’s say
we have board of the size of a chessboard 8 × 8, where each cell can either hold
a prey or be empty. If there is only one predator, the size of possible states is
8 · 8 · 264 = 270 ≈ 1.18 · 1021. Even if a state value would only take 1 byte to
store, a total memory of one billion terabytes is necessary to store V π. Another
simple example, where tabular methods fail would be a continuous state space that
consists of position and velocity. Therefore other methods are required that not
only take much less memory, but also update the values in a local sense. By the
huge size of states, it is rather unlikely that every state gets visited multiple times
such that the Monte Carlo or TD methods apply. States that only differ slightly
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won’t be completely different in it’s values. Therefore the value function can be
modelled as a continuous function. This immediately reminds of methods that
are used in supervised learning where a generalisation of the problem’s solution is
sought by using the information of few samples; function approximators.

Instead of updating the value function V π
k , a parametrised function V π

θ with
parameter vector θ is used where θ gets changed such that V π

θ approaches V π. The
number of parameters θ(i) is usually far less than the number of possible states
and a parameter update adapts multiple state value estimations simultaneously.

Value prediction

In general, in order to qualify parameter settings, it is necessary to define a meas-
ure, called cost or loss function J , that gives the distance from the approximate
V π
θ to the exact V π. One example would be the mean squared error

MSE(θk) = J(θk) = E
[
(V π

θk
(s)− V π(s))2

]
.

Then, by the gradient descent algorithm, the parameter update can be defined as

θk+1 = θk − α∇θkJ(θk),

with α such that
MSE(θk+1) < MSE(θk).

The mean squared error is motivated by the environment’s dynamic. The para-
meter update focuses more on value errors of states, that are more likely to occur
while sampling. In practice the real value of V π is not known, though it can be re-
placed by any similar target. Most of them were already introduced in the previous
section. Basically ever approximate target used for TD methods is appropriate.

The simplest and most common function approximators, besides neural net-
works (see chapter 5), are linear ones

V π
θ (s) =

∑
i

θ(i)ϕ(i)
s .

Here, ϕs is the vector of state features, that contains feature information of the
states. The choice and number of the state features is dependent on the problem
and affects the performance of linear approximation significantly. Sometimes also
feature combinations are necessary. For instance, let’s have velocity and position
as features. If a high velocity can either indicate a good state value but also a
bad one, dependent on the position, an additional feature that represents their
combination is necessary.

Finding an optimal parameter set θ∗ = arg minθMSE(θ) is dependent on the
complexity of the function approximator. Using linear function approximators
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may make it easier to find θ∗. Still V π
θ∗ could be a bad approximation for V π by

the lack of complexity. Nonlinear function approximators like neural networks in
contrast, are more flexible, but finding θ∗ may be impossible. They rather tend to
get stuck in local optima [24].

In the following we will take a look at some methods and how they are applied
in combination with function approximators. They are mainly characterised by
different loss functions on which the gradients are computed. For simplicity we
stick to basic algorithms and omit the use of eligibility traces.

Q-learning

We already introduced Q-learning in the TD section and the main idea doesn’t
change. Rather than looking for V π, the off-policy action-value function Qπ̂ is
computed. Starting with a randomly initialised parameter setting θ0 and using

Qπ̂ ≈ rt + γmax
a
Qπ̂

θk
(st+1, a)

as the approximation target. The cost function J , we want to minimise is then
defined as

J(θk) = E
[
(rt + γmax

a
Qπ̂

θk
(st+1, a)−Qπ̂

θk
(st, at))

2
]
.

The expectation value is computed over a batch of uniformly chosen samples τ ti =
(st, at, rt, st+1) that were once generated by a soft policy πϵ and kept in the so
called experience replay memory. At the same time πϵ is taken from π̂ which is

π̂(s) = arg max
a∈A

Qπ̂
θk
(s, a),

to ensure exploration.
Q-learning is mostly applied when the action space is discrete and small enough.

Then, it is useful to model Qπ̂ as S → R
|A|, instead of S × A → R. That means

that a single forward pass of a state gives the Q values for every action at once.
That makes it cheaper to get the targets and effective to get π̂(s).

Actor-Critic and the policy gradient theorem

This method in contrast to Q-learning can be applied to problems with huge action
spaces or even a multidimensional continuous action space. As we’ve seen before,
the actor-critic method demands two function approximators; one for the critic
V π and one for the actor π. This in turn demands two cost functions, one for
each approximation. Let’s recall the n-step discounted return Gτi

n that we used for
eligibility traces

τ ti = (st, at, rt+1, st+1, . . . , rt+n, st+n)

Gτi
n (st) = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV π(st+n).
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Then let JV be defined as before

JV (θV ) = E
[
(Gτi

n (st)− V π
θV (st))

2
]
.

In addition we need a cost function for the update of θπ. The goal of the policy
improvement is to increase the estimated future rewards. Therefore let

Jπ(θπ) = −E [V πθ(st)] = −
∑
s∈S

P (s)
∑
a∈A

πθπ(a | s)Qπθ(s, a)

be the cost function, that is to be minimised, i.e. maximise E [V πθ(st)]. Both are
estimated on samples τ ti generated by π. We assume that P (s) doesn’t depend on
πθ like an initial start distribution (e.g. uniformly). Note that V πθ ̸= V π

θV , but by
definition of JV (θV ) and V πθ(st) = E [Gτi

n (st)], we seek V π
θV → V πθ . Different from

Q-learning, this method is on-policy. V π corresponds to the behaviour policy π.
At first glance it is not clear, how to compute the gradient ∇θπJ

π(θπ) since V πθ

explicitly (in πθπ) and implicitly (in Qπθ) depends on πθ. Fortunately there exists
an theorem that the derivative of Qπθ can be omitted.

Theorem 4.2.3 (Policy gradient theorem). Let πθ be a parametrised policy with
parameter θ and V πθ its value function. Then it holds

∇θV
πθ(s) ∝

∑
s′∈S

dπ(s, s′)
∑
a∈A

Qπθ(s′, a)∇θπθ(a | s′),

where dπ(s, s′) is a probability distribution for a fixed s.

Proof. First we expand V πθ .

V πθ(s) =
∑
a∈A

πθ(a | s)Qπθ(s, a)

Then the gradient gives

∇θV
πθ(s) =

∑
a∈A

∇θπθ(a | s)Qπθ(s, a) + πθ(a | s)∇θQ
πθ(s, a).
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For simplicity we write H(s) =
∑

a∈AQ
πθ(s, a)∇θπθ(a | s). Now

∇θV
πθ(s) = H(s) +

∑
a∈A

πθ(a | s)∇θQ
πθ(s, a)

= H(s) +
∑
a∈A

πθ(a | s)∇θ

∑
s′∈S

P (s′ | s, a) (R(s, a, s′) + γV πθ(s′))

= H(s) +
∑
a∈A

πθ(a | s)
∑
s′∈S

P (s′ | s, a)γ∇θV
πθ(s′)

= H(s) +
∑
s′∈S

(∑
a∈A

πθ(a | s)P (s′ | s, a)

)
γ∇θV

πθ(s′)

= H(s) +
∑
s′∈S

Pπ(s, s
′, 1)γ∇θV

πθ(s′),

where Pπ(s, s
′, k) gives the probability to reach state s′ from state s in k steps with

Pπ(s, s
′, 0) = δs,s′ We got an expression for ∇θV

πθ in a recursive form. Iteratively
expanding the recursion leads to

∇θV
πθ(s) = H(s) +

∑
s′∈S

Pπ(s, s
′, 1)γ∇θV

πθ(s′)

= H(s) +
∑
s′∈S

Pπ(s, s
′, 1)γ

(
H(s′) +

∑
s′′∈S

Pπ(s
′, s′′, 1)γ∇θV

πθ(s′′)

)
= H(s) +

∑
s′∈S

Pπ(s, s
′, 1)γH(s′)

+ γ
∑
s′′∈S

(∑
s′∈S

Pπ(s, s
′, 1)Pπ(s

′, s′′, 1)

)
γ∇θV

πθ(s′′)

= H(s) +
∑
s′∈S

Pπ(s, s
′, 1)γH(s′) +

∑
s′′∈S

Pπ(s, s
′′, 2)γ2∇θV

πθ(s′′)

...

=
∑
s′∈S

∑
k≥0

Pπ(s, s
′, k)γkH(s′)
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If we write ηπ(s, s′) =
∑

k≥0 Pπ(s, s
′, k)γk then

∇θV
πθ(s) =

∑
s′∈S

ηπ(s, s
′)H(s′) =

(∑
s′′∈S

ηπ(s, s
′′)

)∑
s′∈S

ηπ(s, s
′)∑

s′′∈S ηπ(s, s
′′)
H(s′)

=

(∑
s′′∈S

ηπ(s, s
′′)

)∑
s′∈S

dπ(s, s′)
∑
a∈A

Qπθ(s′, a)∇θπθ(a | s′)

∝
∑
s′∈S

dπ(s, s′)
∑
a∈A

Qπθ(s′, a)∇θπθ(a | s′)

The proportion factor
∑

s′′∈S ηπ(s, s
′′) gives the mean remaining episode length

when state s is reached in a episodic MDP and is 1 for an infinite MDP [24,
25].

Most of the gradient based methods build on this theorem. For the actor-critic
method we can use this theorem to get a practicable estimate for the gradient.

Jπ(θπ) = −E [V π
θV (s)] = −

∑
s∈S

P (s)V π
θV (s)

∇θπJ
π(θπ) = −

∑
s∈S

P (s)∇θV
πθ(s)

∝ −
∑
s∈S

P (s)
∑
s′∈S

dπ(s, s′)
∑
a∈A

Qπθ(s′, a)∇θπθ(a | s′)

= −
∑
s∈S

P (s)
∑
s′∈S

dπ(s, s′)
∑
a∈A

Qπθ(s′, a)πθ(a | s′)∇θ log (πθ(a | s′))

= −E [∇θ log (πθ(a | s))Qπθ(s, a)]

In addition, the policy gradient theorem allows adding a so called baseline. Let
b(s) be any function or random variable that is independent of actions a, then

−E [∇θ log (πθ(a | s)) b(s)] = −
∑
s∈S

P (s)
∑
s′∈S

dπ(s, s′)
∑
a∈A

b(s)∇θπθ(a | s′)

= −
∑
s∈S

P (s)
∑
s′∈S

dπ(s, s′)b(s)∇θ

(∑
a∈A

πθ(a | s′)

)
= −

∑
s∈S

P (s)
∑
s′∈S

dπ(s, s′)b(s)∇θ (1)

= 0
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This gives the possibility to choose a baseline b(s) that leaves the expected value
unchanged

∇θπJ
π(θπ) = −E [∇θ log (πθ(a | s))Qπθ(s, a)]

= −E [∇θ log (πθ(a | s)) (Qπθ(s, a)− b(s))] ,

but reduces its variance. A popular choice for b(s) is the value function V πθ(s)
such that the advantage function Aπθ(s, a) = Qπθ(s, a)− V πθ(s) replaces Qπθ

∇θπJ
π(θπ) = −E [∇θ log (πθ(a | s))Aπθ(s, a)] .

To solve this optimisation problem we start with some random initialised para-
meters θV and θπ. Sample trajectories τi of given length n and estimate the
gradients

∇θV J
V (θV ) = ∇θV E

[
(Gτi

n (st)− V π
θV (st))

2
]

≈ − 1

n

∑
st∈τi

(Gτi
n (st)− V π

θV (st))∇θV V
π
θV (st)

∇θπJ
π(θπ) = −E [∇θ log (πθ(at | st))Aπθ(st, at)]

≈ − 1

n

∑
st,at∈τi

∇θπ log (πθ(at | st)) (Gτi
n (st)− V π

θV (st)).

Now, the parameters θV and θπ can be updated by these estimated gradients, using
gradient decent methods that were presented in section 5.2.1.



5. Artificial Neural Networks1

An artificial neural network is a branch of machine learning, that is deployed in
research of artificial intelligence. Whereas other AI paradigms apply to problems
which are hard for humans to solve, but sill have a mathematical model that
describes the problem, neural networks usually apply to problems where it is hard
to find a generalising model, such as speech and handwriting recognition, language
translation or even car driving.

The first concepts about neurons and neural networks came up in the 1940s.
Inspired by the human brain, researchers created hypothesis of learning and tried
to build algorithms that where able to compute (e.g. Turing’s B-type machines,
Perceptrons). In the beginning things looked promising until it was shown that
single layer perceptrons are unable to reproduce the XOR function which demon-
strated the limits in computation. In addition, the second big issue was the lack
of computational power to process larger networks. Though, in 1975 the back-
propagation algorithm solved the problem regarding fast training of multi-layer
networks. Especially since processing power (using GPUs and distributed com-
puting) and digitalisation are growing exponentially (see Moore’s Law), the use of
neural networks have recently increased tremendously.

Figure 5.1 shows a typical topology of a neural network. It basically consists
of an input layer, an arbitrary but fixed number of hidden layers and an output
layer. Each layer has some neurons which have connections to every neuron in the
subsequent layer.

As shown in figure 5.2 every connection has a weight and every neuron has an
activation function and a bias such that the output of a neuron can be computed
by applying the activation function on the sum over the weighted inputs of the
neurons of the previous layer plus the bias.

output = σ(w · x+ b)

1This chapter was written earlier in 2017 in the course of a seminar in scientific computing,
supervised by Prof. Dr. Clemens Heitzinger. For the sake of completeness of the thesis and
profound understanding of neural networks, as far as possible, I decided to include this chapter.

37



38 CHAPTER 5. ARTIFICIAL NEURAL NETWORKS

A biological Inspiration for Computation
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Output

Hidden layers Output layerInput layer

Figure 5.1: Topology of a neural network
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Figure 5.2: Single neuron
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5.1 Perceptrons and Universality

5.1.1 Perceptron

The activation function of the first neurons like perceptrons had the Heaviside step
function as activation function

output =
{

0 if w · x+ b ≤ 0
1 if w · x+ b > 0.

Perceptrons are based on binary input and produce binary output as well.
Furthermore they can be used to compute logical operations especially the NAND-
Gate (Figure 5.3). These NAND-Gates are universal for computation which means
that they can compute any logical function, if properly arranged.

x1

x2
3 Output

−2

−2

Figure 5.3: NAND - Gate

The property of neural networks being a universal function approximator is also
called Turing complete. This is a great property, since it ensures that theoretically
any function can be approximated by a sufficiently large network, that only con-
sists of perceptrons. For example we can now use perceptron networks to classify
data, but there is still a big problem that remains. Let’s say we have some data we
want to classify. Our network already performs well on some data A but still we
want to do better. So we try to change weights and biases in order to increase the
number of correctly classified data while keeping A correctly classified. This won’t
be possible without losing control over A because of the discontinuous activation
function of a perceptron. Correctly calculated output from before could now flip
in uncontrollable manner. The solution for this would be the use of continuous
activation functions. However, this may cause the loss of universality, since these
continuous perceptrons don’t necessarily have to build NAND-Gates anymore. For-
tunately we don’t lose Turing completeness if our smooth activation functions are
chosen accordingly, as shown in section 5.1.3.
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Figure 5.5: Sigmoid activation function σ(Z) = 1
1+e−Z

5.1.2 Smooth activation functions

Output +∆Output

w +∆w

Figure 5.4: Continuous feed forward

In order to control the behaviour of the networks better, we want our network to
result in small changes in the output when only small changes are made on some
parameters (figure 5.4). This can be achieved by using smooth activation functions
such as the sigmoid function (figure 5.5):

σ(x) =
1

1 + e−x
.

Of course there are many others such as tanh, softmax, each one having its own
advantages. Sigmoid function for example has a very simple form in its derivative.

σ′(x) = σ(x)(1− σ(x))

However how can we know, that we are still able to approximate any function
when using this activation function? In 1989 Cybenko showed that single hidden
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layer networks with sigmoidal (smoothed Heaviside) activation functions can ap-
proximate any continuous mapping on a compact subset of Rn [4]. In the same
year Hornik et al. showed that multilayer feedforward networks are universal ap-
proximators [8]. These proofs are quite technical so I will just sketch the proof
why single layer networks are universal.

5.1.3 Universality
Assume we have a continuous mapping f : In := [0, 1]n 7→ [0, 1] and a network
with n inputs, one hidden layer with N neurons and one output. We want our
network to approximate f :

σ

(
N∑
i=1

wi,out σ (win,i · x+ bi) + bout

)
≈ f(x), (5.1)

with win,i · x =
∑n

j=1wj,ixj. Since σ : R 7→ [0, 1] is a homoeomorphism we can
rewrite (5.1):

G(x) :=
N∑
i=1

wi,out σ(win,i · x+ bi) ≈ σ−1(f(x))− bout, (5.2)

with G(x) ∈ C(In). We need to show that finite sums of the form like G(x) are
dense in C(In).

Proof. Let S ⊆ C(In) be the set of functions of the form G(x). Clearly S is a
linear subspace of C(In). Assume that the closure of S is not all of C(In), then
R := S is a closed proper subspace of C(In). By Hahn-Banach Theorem there is
a bounded linear functional F ̸= 0 on C(In) with F (R) = F (S) = 0. By Riesz
Representation Theorem, F is of the form

F (G) =

∫
In

N∑
i=1

wi,out σ(win,i · x+ bi) dµ(x) = 0

⇒ F (G) =

∫
In

σ(w · x+ b) dµ(x) = 0 ∀w, b

Now one can show that µ ≡ 0 which leads to a contradiction to F ̸= 0. This follows
by extending F on L∞, defining a sequence of sigmoid functions that converges to
translated Heaviside functions Hθ where still F (Hθ) = 0, furthermore by linearity
for all simple functions which are dense in L∞.
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Similar G(x) could be rewritten as a simple function by sharpening σ to the
Heaviside function with steps si at − bi

win,i
with element wise division.

G(x) =
N∑
i=1

wi,out σ(win,i · x+ bi) ≈
N
2∑

i=1

hi · χ[s1i ,s
2
i ]
≈ σ−1(f(x))− bout,

when hi = w2i−1,out = −w2i,out

s1i = − b2i−1

win,2i−1

s2i = − b2i
win,2i

.

Thus G(x) can approximate simple functions and they can approximate any con-
tinuous mapping on a compact subset. So we obtain that our network with only
one hidden layer can approximate any continuous mapping on a compact subset,
when activation functions are used which can approximate the Heaviside function.
Of course this class of smooth activation functions is not the only one to make
neural networks universal. This property was also shown with other activation
functions such as the rectified linear unit (ReLU(x) = max(0, x)), however the
proof is different [17].

Using only smooth activation functions leads to a smooth neural network as
a whole, in the sense of a function approximator. Now we want to make use
of the property that our network became robust. This gives us the ability to
make small changes on parameters such as weights and biases in order to improve
the network. The algorithm how parameters need to be changed to increase the
number of correct outputs is called backpropagation.

5.2 Backpropagation, Problems and
Improvements

5.2.1 Backpropagation and Gradient Descent

Backpropagation was first introduced in 1960. About 20 years later people started
to apply it to neural networks, which worked far faster than earlier approaches to
learning. It’s based on an optimisation problem using gradient descent in order to
solve it.
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Figure 5.6: Visualisation of gradient decent

Gradient Descent

We want our network f ∗
θ (x) to learn a given mapping f(x) based on a finite set D of

data (x, f(x)). Rather than increasing the number of samples where f ∗
θ (x) = f(x)

we decrease the error of a predefined error function (cost function). Minimising
that cost function is done with gradient descent. For example using the mean
squared error as cost function

C(θ) =
1

2n

∑
x

∥f(x)− f ∗
θ (x)∥2 → min,

gradient decent is applied simply by updating the parameters

θ′ = θ − η∇θC(θ),

with so called learning rate η giving the amount of update. Iteratively comput-
ing the gradient ∇θC(θ) with respect to the parameters and then moving to the
opposite direction, can be visualised as walking down the slope of a valley (figure
5.6).

This update, seen as the learning, is slow when training set is large since it takes
the sum over all samples. Therefore an adaptation by estimating the gradient on
randomly drawn samples leads to the method called min-batch stochastic gradient
decent.

Improved Methods for GD

The Mini-batch Stochastic Gradient Descent reduces costs for computing the gradi-
ent drastically. Set a number of epochs N and a mini-batch size n.
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Figure 5.7: SGD without momentum Figure 5.8: SGD with momentum

For every epoch shuffle all samples and update parameters for mini-batch of n
randomly chosen training examples.

θ′ = θ − η∇θC(θ;x
(i:i+n); y(i:i+n))

y(i:i+n) = f(x(i:i+n)),

where x(i:i+n) denotes the n dimensional subvector (xi, xi+1, ..., xn−1) of the vector
x. This gives a very efficient approximation of the gradient, but still there are a
lot of ways to improve learning. For example all parameters in each epoch use the
same learning rate η, which is apparently not reasonable. Some parameters could
already be near to the optimal value, while others still need bigger adjustments, or
maybe we want to have a bigger learning rate in the beginning but throughout time,
when the error got decreased, we want to take smaller steps to prevent jumping
around the minimum. There is also the fact that SGD likely gets trapped in local
minima for highly non-convex error functions and basically oscillates across the
slopes, which slows down optimisation. There are methods like adding momentum
to the gradient to reduce these oscillations.

vt = γvt−1 + η∇θC(θ;x
(i:i+n); y(i:i+n))

θ′ = θ − vt

Momentum dampens oscillation and helps SGD to accelerate into the relevant
direction (figure 5.7 and 5.8). This is done by adding a fraction γ of previous
update vector vt−1 to the current update vector [20].

There are a lot of improved methods like Nesterov accelerated gradient, Ad-
agrad, Adadelta, RMSprop and Adam [20]. In figure 5.9 and 5.10 convergence
of these methods are compared. Nesterov approximates the next step and thus
corrects the momentum step for better convergence. Adagrad adapts the learning
rate for each parameter based on the past gradients. Adadelta and RMSprop are
extended versions of Adagrad also based on adaptive leaning rate. Adam (Adapt-
ive Moment Estimation) also computes adaptive learning rates for each parameter,
but in addition to storing exponentially decaying average of past squared gradi-
ents, it also keeps an exponentially decaying average of past gradients, similar to
momentum. In each update they divide the learning rate by the average of past
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Figure 5.9: Method comparison on
saddle point problem [20]

Figure 5.10: Method comparison on
loss surface contours [20]

squared gradients and use the average of gradients for gradient update. According
to [20] Adam might be the best overall choice, while Adadelta and RMSprop have
similar good convergence.

Backpropagation

We now know a lot of possible optimisation methods, but we still don’t know how
to compute the gradients. The backpropagation algorithm provides an efficient
method for computing gradients for each parameter. First we need to make some
definitions for simplicity reasons.

Let C be an arbitrary cost function, σ an arbitrary activation function. Let wl
jk

denote the weight from node j of layer l − 1 to node k in layer l. W l ∈ R|l−1|×|l|,
where |l| denotes the size of the l-th layer, be the matrix of the weights from layer
l − 1 to layer l. Let blj be the bias in j-th node of l-th layer and bl the vector
of the biases of l-th layer. Then the input vector of the l-th layer can be written
as zl = (W l)T al−1 + bl. With al = σ(zl) as the output vector of the l-th layer,
applying the activation function σ element wise. Finally we define the error vector
of layer l as δl = ∇zlC.

Now we can compute the derivatives of the cost function with respect to each
parameter by applying the chain rule, such that we obtain four fundamental equa-
tions of the backpropagation algorithm:

For the last layer L we get

δL = ∇zLC = ∇aLC ⊙∇zL ⊙ aL = ∇aLC ⊙∇zL ⊙ σ(zL) = ∇aLC ⊙ σ′(zL),

where ⊙ denotes the Hadamard product (element wise multiplication).
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For any other layer l we get

δl = ∇zlC = (∇zl · (zl+1)T )∇zl+1C = (∇zl · ((al)T W l+1 + (bl+1)T )δl+1

= (∇zl · σ(zl)T )W l+1δl+1 = diag(σ′(zl))(W l+1δl+1) = (W l+1δl+1)⊙ σ′(zl).

Note that after applying the chain rule we get the matrix ∇zl · (zl+1)T since each
input in layer l + 1 is dependent on every input of the previous layer l.

Now we get simple expressions for the derivatives:

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

= δlj

∂C

∂wl
jk

=
∂C

∂zlk

∂zlk
∂wl

jk

= δlka
l−1
j

Depending on the GD-Method, parameter updates are performed averaging the
gradient over a batch of samples x.

blj → blj −
η

N

∑
x

δlj(x)

wl
jk → wl

jk −
η

N

∑
x

(δlka
l−1
j )(x)

We see that the error vector for each layer can be computed recursively beginning
with the last layer. So while doing the feedforward for a sample, all input vectors
zl and output vectors al are stored for every layer l. When arrived at the last layer
L we can start backpropagating the error in the network for the sample x [17].

5.2.2 Problems and Improvements
Vanishing and exploding gradient

A big problem that comes up with backpropagation is the vanishing or exploding
gradient. For each error vector δl of layer l you get an additional factor of the
derivative of the activation function. So the deeper the network the higher the
exponents of the derivatives.

δL = ∇aLC ⊙ σ′(zL)

δl = (W l+1δl+1)⊙ σ′(zl)

Now if derivatives are big, the gradient can explode, if derivatives are small the
gradient can vanish. The exploding gradient problem can be prevent by just
clipping the gradient if above threshold and is easier to detect. The vanishing
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gradient problem however needs more sophisticated solutions and is also much
harder to detect, because slow learning can have many reasons (close to local
minimum, overfitting). One thing that can help preventing the vanishing gradient
is to use special cost functions such as the cross entropy

C = − 1

n

∑
x

∑
j

[yj ln(a
L
j ) + (1− yj) ln(1− aLj )], with aLj = σ(zLj )

∂C

∂wL
jk

=
1

n

∑
x

aL−1
k (aLj − yj).

The derivatives of the activation function σ′(zLj ) got cancelled out for the derivat-
ives of the cost function with respect to the parameters in the last layer.

Another thing that helps is using different activation functions. For example
the ReLU (rectified linear unit)

σ(z) = max(0, z).

This activation function is quite different from the one we saw before but still, it
can be shown, that they can compute any function [17]. It is piecewise linear such
that its derivative is piecewise constant and nonzero on one part. To understand
why this helps preventing a vanishing gradient, let’s recall that the derivative
of the sigmoid function approaches zero on both parts, i.e. lim|z|→∞ σ′(z) = 0.
Especially a saturated sigmoid function, i.e. weights w ≫ 1, meaning that it is
close to the heaviside step function, results in a zero derivative for even small
inputs |z| > ϵ. The derivative of the ReLU, in contrast, is always nonzero for
z > 0. Now while backpropagating the error through the network, the gradients
stop attenuating. For further details see [6]. In addition to that, these neurons can
also help to prevent overfitting, since their zero part results in a sparse network,
which simulates dropout layers. More details are given in the next section.

Overfitting

When training a neural network we actually want it to solve a general problem, like
recognising and classifying all handwritten digits. But instead, we only have a finite
number of noisy samples, where we can train our network on. Now if the network
starts to even fit the noise on the data, such that it significantly performs better
on the training data than on independent general data, this is called overfitting.
Especially models with too many free parameters are very prone to overfitting.
This makes it essential to estimate the optimal number of neurons in a neural
network, called it’s capacity, to a given problem.
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Figure 5.11: Cost function on test
data [17]

Figure 5.12: Comparison of accuracy
of test data and training data [17]

Before starting the training, the set of samples is split into training data, test
data and validation data. The test data is used as an independent set of samples to
monitor the networks learning progress. It can be used to detect overfitting. The
use of the validation data is described in the next section. Detecting overfitting can
be done by either evaluating the cost function or calculating the accuracy of the
trained network on the test data and compare those values to one on the training
data. While the cost function on the training data is continuously minimised
during the training, overfitting is indicated when the cost function on the test
data stops decreasing (figure 5.11). On the other hand, overfitting can be detected
if the accuracy of the network on the test data saturates on low level, while the
accuracy on the training data is still increasing (figure 5.12). An ad-hoc method,
called early stopping, to avoid overfitting is to stop the training as soon as it is
detected. However this is not a satisfying solution, since we want our network
to exploit the whole training data until a generalising solution is found. Another
cutting method would be to reduce the size of the network. As mentioned before,
the less parameters a model has, the less prone it is to overfitting. Nonetheless
large networks have the potential to be more powerful than small networks.

Obviously the more training data available the better the networks ability
for generalisation, unfortunately in most cases it is hard to gain more samples.
Though, sometimes they can be generated by slightly transforming the available
data in a natural way.

A very common and more sophisticated method is regularisation. The idea
is to punish large weights when minimising the cost function. Small weights are
somehow regularising the network. A smooth activation function, which approx-
imates step functions, gets sharpened if the input has large weights. This makes
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the network more rough. L2 or L1 regularisation is done by adding a penalty term
(the L2 or L1 norm of the weights) to cost function C(θ) and using C̃(θ) as the
new cost function.

C̃(θ) = C(θ) +
λ

pn

∑
i,j,k

∥wi
j,k∥Lp ,

where small values of λ prefer minimise the original cost function C(θ) and large
values prefer small weights.

Another very common regularisation method is using dropout layers. It is
radically different from L2, L1 regularisation. Rather than modifying the cost
function, the network itself gets the ability to randomly and temporarily switch
off some hidden neurons, then doing the feed forward before backpropagating the
error. Thus, in each backpropagation, only a part of the network is trained from
a mini-batch [17]. An heuristic idea why this might help is to see the dropout as
training different networks in each step. Training different networks with mini-
batch SGD and comparing their output gives more confidence about the possible
correct output, since only a minority of the networks should produce an incorrect
output.

Parameter Initialisation and Optimisation

When creating a neural network, parameters such as weights and biases have to
be set. A first attempt would be a random initialisation with gaussian normal
distribution with mean zero and a variance of one, but if we assume wj,k, bi ∼
N (0, 1) it follows that the input of each neuron zk =

∑n
j=1 wj,kaj + bk has normal

distribution with a variance of n + 1. This leads to the problem of slow learning
in the beginning, because, assuming an activation functions with flat ends, the
derivative is close to zero at large input values. Thus this initialisation can be
improved by setting the parameters wj,k, bi ∼ N (0, 1

n+1
).

Optimisation of hyper parameters such as the structure of the network, learning
rate η, regularisation parameter λ and so on can be estimated on the validation
data. The reason why they should be estimated on an independent set of samples
is simply to hinder overfitting these parameters on the training data [17].

5.3 Convolutional Neural Networks
A convolutional neural network (CNN) is a special type of neural network, that
is designed to preserve local information. Again, these networks were inspired by
biological processes like the receptive field. Especially in problems where audio,
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Figure 5.13: Example for a 2D convolution

images or even 3D data is processed, CNNs are extensively applied. In this section
however, we will stick to CNNs that are used for image processing.

Typically CNNs consist of some convolutional layers followed by ordinary fully
connected layers. The fully connected layers were already described in the previous
sections. A convolutional layer consists of feature maps that are computed by a
kernel. This kernel itself is a two dimensional matrix that holds the weights of
the layer. The kernel is applied on the input or previous feature maps as a local
convolution. Assume we have a 2D Matrix of size 5 × 7 as input, e.g. a small
grey scaled image, then the convolution with a kernel of size 3 × 3 is computed
(see figure 5.13). The fact that the same weights are used in the kernel in each
step for this convolution is called parameter sharing. It would be possible to use
different weights in the kernel for each convolution step, but that would blow up
the number of parameters. After the convolution a bias is added and an activation
function is applied as usual.

Additionally to the kernel, it is necessary to define the step size, called the
stride, for the convolutional step. It gives the amount by which the filter is shifted
in each step. Together with the kernel size, the stride determines the size of each
resulting feature map.

Figure 5.14: Example of a 16@3×5 convolutional layer with a 3×3 kernel applied
on the inputs
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Figure 5.14 shows a convolutional layer with 16 feature maps and a 3×3 kernel
resulting in feature maps of size 3 × 5, if a stride of 1 is applied on the inputs of
size 5× 7.

In figure 5.14 an image with 3 channels is processed by the convolutional layer.
Then the resulting feature maps are flattened into a one dimensional array which
is taken as the input for the subsequent fully connected layers.

A convolutional layer can be summarised as proposed by [10]:

• Accepts a volume of size H1 ×W1 × C1

• Requires four hyperparameters:

– Number of feature maps N
– Size of the kernel K ×K

– Stride S

• Produces a volume of size H2 ×W2 × C2

– H2 =
H1−K

S
+ 1

– W2 =
W1−K

S
+ 1

– C2 = N

• This gives K ·K · C1 parameters for each feature map and (K ·K · C1) ·N
parameters for the whole layer plus N parameters for the bias.

• Each feature map of size H2 ×W2 is the result of a convolution with stride
S. The kernel of size K ·K ·C1 is multiplied by a kernel-sized window of the
input that has total size H1 ×W1 × C1.
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6. Many Agent Reinforcement
Learning in Agent Based
Modelling

In the previous chapter we discussed some techniques how MDPs for a single
agent can be solved. However, in ABM we have typically many agents that may
be divided into groups of similar behaving agents. This chapter will combine the
idea of reinforcement learning with agent based modelling and present a method
how this can be accomplished in the example of a predator prey model.

In ABM one can model a single agent and its evolution as a partially observable
Markov decision process (POMDP) [28]. POMDPs are a generalisation of ordinary
MDPs, where the agent has to determine its action without having all informations
about its state. This lack of information is modelled by a probability distribution
over the state space. Though, we will only deal with a natural deterministic partial
information of the world’s state, that is observed by the agent, so we can use the
same concepts presented in chapter 4.

For the classical approach the agent would act after a fixed policy, that was
previously defined by the user, to generate trajectories. In this new approach we
exploit the natural design of ABMs as POMDPs and introduce a reward function
that is more or less equivalent to the classical policy definition, but with some
fundamental advantages. When ABMs are used to imitate a complex emergent
group behaviour, it often ends in an infinite trial and error loop where one tries to
find the right agent’s policy or parameters that lead to the desired group behaviour.
This can be avoided in the RL approach by defining positive rewards one the
desired outcomes, such that in the optimal case, the RL algorithm finds by design
the wanted policy. Another problem, that is closely related to the previous one, is
the user’s bias, which affects the quality of the model in particular while defining
the policies. Of course the reward function is biased as well but since it has a
simpler structure than a policy the total model bias can be reduced.

Additionally we make use of the group structure in ABM. That means that
agents with similar behaviour don’t have to explore the state space individually.

53
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Environment

Group1

Agent1 . . . Agentm

Group2

Agent1 . . . Agentn

action action

new state reward

learn learn

Figure 6.1: Environment with State-Action-Reward-State setting.

They share their experience in order to learn faster.

6.1 Reinforcement Learning in Agent Based
Modelling

The first step, for a combination of agent based modelling and reinforcement learn-
ing, is to formulate the structure of ABM as a MDP, such that we can apply the
technique of reinforcement learning.

As described in chapter 3, ABM has two principle components: the environ-
ment and the agents. Usually a MDP is formulated for a single agent. Now we
have multiple agents that live in a common environment. Each agent in ABM nat-
urally forms a MDP (see ‘Case Studies for a Markov Chain Approach to Analyze
Agent-Based Models’ [11], where a Markov chain can be extended to a Markov
decision process by considering actions). Therefore it is necessary to specify the
state and the action space first. These spaces generally depend on the problem
that needs to be modelled. In a classical ABM, where the agents are driven by
rules, the specification of the action space is generated on the fly, containing all
possible actions that a agent can take. The state space, for example, can contain
possible environment features, i.e. position, velocity, set of neighbouring agents,
or can be image like, representing the local view of an agent extracted from the
environment. This gets more concrete in the next section. Another substantial
part of a MDP is the reward function, but we will get to that later in more detail.

After the formal definition of the agents as MDPs, the environment comes into
play. The environment takes the performed actions in each step and handles the
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Figure 6.2: Unfold group control.

individual state transitions. It serves as a connection between these MDPs, since
a agent’s state is dependent on other agent’s actions.

In this setting, assuming we have the reward functions, it is possible to solve
all MDPs given by the agents. Since this can be an expensive task, we will exploit
the agent’s group structure for reasons of simplicity. In agent based modelling one
usually deals with only few different groups of agents, where the agent of a group
are characterised by a similar behaviour. We can use this logic to significantly
reduce the number of MDPs that need to be solved. Instead of seeking the optimal
policy for each agent individually, we only solve one MDP for each group. As a
result we only have to formulate one reward function for each group. Figure 6.1
shows the general framework used for this RL-ABM approach.

The reward function should be independent of the agent’s action and rather be
defined on states only. Otherwise the agent would simply learn to favour rewarded
actions and one would miss the purpose of using reinforcement learning in ABM.
It would be just a long way round for the classical rule based approach. So in
order to properly apply RL, it is necessary to define states of success and failure
that correspond to the wanted behaviour for each group and its agents. Thereby
finding the optimal actions, depending on the current state, so as to reach the
states of success and avoid the states of failure. Generally speaking one has to
define a real valued measure on the state space, the so called reward function, that
gives the quality of success for a given state.

If the model was defined in this context, a pre-simulation, called the learning
process, is needed. The learning process is a controlled simulation, in terms of
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stability, that is run before the actual simulation can start. Most models require
adjustments for a successful learning process (see section 6.2 for details).

For the learning process one has to choose a suitable reinforcement learning
algorithm that finds the optimal policy. In theory any of chapter 4 could be
used, depending on the complexity of the model, environment or reward function.
State transition probabilities for the agents could be calculated if environmental
states are determined by the agents action (i.e. policy) only, such that dynamic
programming could be used. Else, if the state or action space is large, approximate
solutions are in favour. For this thesis, an actor critic algorithm with neural
network as function approximator is used, as it gives an efficient and highly flexible
tool. Figure 6.2 shows the group control obtained by the reinforcement learning
paradigm.

The following pseudo code shows the general algorithm for this framework.

1 // Initialise the environment and
2 // Actor Critic Neural Network for each group
3 environment.init()
4 for group in agents:
5 ActorCritic[group] = Init_ActorCritic_Network(parameters)
6

7 // Start the learning process
8 for ep in range(MAX_EP):
9 // Clear environment (e.g. delete dead agents)

10 environment.clear()
11 // Get agents' states for each group to select actions
12 // and reset all buffers
13 for group in agents:
14 state[group] = environment.get_states_of(group)
15 buffer[group] = {'s': [], 'a': [], 'r': [], 'd': []}
16

17 // Create batch-like data (Action - State - Reward)
18 // for the learning (backpropagation)
19 for k in range(batchSize):
20 for group in agents:
21 actions = ActorCritic[group].choose_actions(state[group])
22 new_states, rewards, done = environment.step(group, actions)
23 state[group] = new_states
24 buffer[group].append({'s': new_states, 'a': actions,
25 'r': rewards, 'd': done})
26 // Learn from batch-like data
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Figure 6.3: Actor Critic Network for group control

27 for group in agents:
28 buffer[group]['r'] = getDiscountedRewards(buffer[group]['r'])
29 ActorCritic[group].update(buffer[group])

In each step of the simulation, agents take their actions sequentially in groups.
Based on the current states, that are fed into the corresponding network, the prob-
abilities for each action (actor) and the value of these states (critic) are returned.
In case of a discrete action space, as it is shown in figure 6.3, a multinomial dis-
tribution is used. When dealing with n-dimensional continuous action spaces, the
actor has to return the mean and standard deviation for each dimension of the
action space. This gives a set of normal distributions where actions are drawn in
each dimension at the same time.

Their new states, drawn actions and rewards are collected groupwise in buffers.
After a certain time, determined by the batch size, the experience τi is used to
estimate the state values by Gτi

n (st) (discounted rewards). The update method
calculates the gradients of the loss functions

∇θV J
V (θV ) ≈ 1

n

∑
st∈τi

(V π
θV (st)−Gτi

n (st))∇θV V
π
θV (st) (6.1)

∇θπJ
π(θπ) ≈ 1

n

∑
st,at∈τi

(Gτi
n (st)− V π

θV (st))∇θπ log (πθ(at | st)) (6.2)

and updates the parameters of the neural network accordingly. To encourage
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exploration for the policy, an entropy term

H(πθ(a | s)) = −E [log (πθ(at | st))]

∇θπH(πθ(at | st)) ≈ − 1

n

∑
st,at∈τi

(1 + log (πθ(at | st)))∇θππθ(at | st)

is added as proposed in [15]. Therefore, the discounted rewards Gτi
n (st), the net-

work’s state value V π
θV (st) and the action probability πθ(at | st) for the correspond-

ing taken action a are needed. V π
θV (st) and πθ(at | st) are obtained by feeding the

network with the states st from the buffer.
Figure 6.3 shows the network used for this purpose. It consists of a convo-

lutional part, that is shared between the actor and the critic, and some fully
connected layers.

The states are given as an image from the local view of an agent. It is seg-
mented into different channels, one for each group and one for the environment
(obstacles, geometry information). Therefore convolutional layers are used, since
they preserve local informations in images (see section 5.3 and [10]).

The parameters of the total network are updated by the combined gradients

δ = ∇θJ
π(πθ) + α∇θJ

V (Vθ) + β∇θH(πθ) (6.3)

with weighting parameters α and β. Parameter α is used to balance the import-
ance of ∇θJ

π(πθ) and ∇θJ
V (Vθ) for the parameter update and β gives the amount

of exploration.
As an application and validation for this framework, a predator prey agent

based model using reinforcement learning is implemented.

6.2 Reinforcement Learning on Predator Prey
Besides the well known Lotka-Volterra equations, it is possible to model a predator
prey ecosystem with ABM. A basic predator prey ABM consists of only two groups.
The preys that seek to survive and the predators that have to hunt. Preys can’t
starve but get hunted down, predators can starve but aren’t hunted.

The environment for the model is a simple toroidal continuous [0, 128]× [0, 128]
space. For visualisation purposes, the continuous space is projected onto a 512×512
pixel grid.

The initial number of preys is set to prey.init_n = 80 and for the predators
it is predators.init_n = 30. The agents are represented by a circle of radius
2. Groups are distinguished by individual colours. In this example, preys are
coloured yellow and predators are magenta.
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The state space is a 32× 32× 3 discrete space. Therefore a local detail of size
[0, 32]× [0, 32] is extracted from the environment at the agents position. Instead of
using colours in the state space, groups are segmented into separate monochrome
channels as in figure 6.3, resulting in 32 × 32 × 2 for the groups and 32 × 32 × 1
for the environment.

Figure 6.4: Action space
of an agent

Both, the predators and the preys have the same
discrete action space of size 8. Agents only navigate
through the environment taking one of these 8 direc-
tions in each step, as showed in figure 6.4. The only dif-
ference between these two groups is the velocity. Preys
are designed to be 10% faster than predators, to make
the problem more interesting.

In order for the predators to attack, they only have
to get close enough to a prey. This action is taken auto-
matically, as soon as they overlap with each other, in-
stead of adding it to the action space.

In the classical approach, behavioural rules are defined. The simplest rules
would be that the predators seek for their closest prey and head for its direction.
The prey in turn, tries to escape as soon as a predator approaches.

However, for this new approach, these rules should be found by the agents
themselves with the help of a reward function. The reward function for the prey
and the predators is defined as follows.

1 // Reward function for preys
2 def reward(prey):
3 // get all predators that are within the agent's state
4 near_predators = env.get_predators(prey.pos, prey.view_radius)
5 reward = 0, overlapping = False
6

7 // if prey is too close to a predator, give negative rewards
8 // and decrease life points
9 for pred in near_predators:

10 if prey.overlapping(pred):
11 reward -= 1.0
12 prey.lp -= 5
13

14 // if prey is dead, punish harder
15 if prey.lp <= 0: reward -= 5
16 return reward
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1 // Reward function for predators
2 def reward(predator):
3 // get all preys that are within the agent's state
4 near_preys = env.get_preys(predator.pos, predator.view_radius)
5 reward = 0, overlapping = False
6

7 // if a prey is in attack range, give positive rewards,
8 // else decrease the agent's life points
9 for prey in near_preys:

10 if predator.overlapping(prey):
11 reward += 1.0
12 predator.lp = max(predator.max_lp, predator.lp+3)
13 overlapping = True
14 break
15 if not overlapping: predator.lp -= 1
16

17 // if predator is starved, punish harder
18 if predator.lp <= 0: reward -= 5
19 return reward

Here, prey.view_radius = predator.view_radius = 16, is the maximum
distance at which an opponent agent is recognised, as indicated previously in the
size of the states.

Furthermore, preys have initial life points of prey.lp = 20, predators have
predator.lp = 90. If agents die, i.e. life points less then or equal to 0, they are
handled by environment.clear() et the end of this episode. There are two differ-
ent approaches for handling dead agents. Whether they respawn again somewhere
in the environment, or they just get deleted. In this example, both approaches
were implemented. To switch between these two scenarios, the environment holds
a property environment.static = True, that can be changed to False. A static
environment means that groups keep their initial number of agents throughout
the simulation, i.e. agents get respawned. Thus agents can’t die off. Otherwise
if environment.static = False, they get deleted. In this case it is necessary
to implement an ability for the agents to breed, to prevent them from dying off
too fast. So as long as they are alive, they have a counter self.breed_counter
that gets decreased by one after each step. Each group has a different breed
interval prey.breed_interval = 90 and predator.breed_interval = 130. If
the counter becomes zero for a specific agent, a new agent of the same group is
created and placed at the parent agent’s position.

For the simulation process, we set environment.static = False, since the
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population dynamic is the purpose of this model. Though, this switch is needed
for the learning process. As indicated in the previous section, the model sometimes
needs to be adjusted for a successful learning.

Imagine we would set environment.static = False and start with the policy
iteration, the population of a specific group could decrease dramatically or even
die off. On the other hand a population could explode. Let’s recall that every
agent contributes their trajectories to the experience of the whole group. This
happens when the buffer gets filled with the new states, rewards etc. in each
step. If a population explodes, then so the buffer does and backpropagating all
the experience from the buffer takes too long. While at the same time, the other
group is typically close to extinction. Thus the buffer is kept small for this group
and therefore the learning is slow. If a group dies off, the learning terminates. That
is even for the other group, since they learn from interactions. This comes from the
definition of the reward function. The reward of an agent only changes significantly
on interactions with the other group. A stable learning process requires a stable
simulation.

Development of the Learning Process

Before implementing the actor-critic method with neural networks, a simpler ap-
proach has been made. Q-learning in combination with a feature based linear
function approximator (LFA) was used as it is proposed in [19]. Therefore basic-
ally the same parameter setting was applied as for the actor-critic model in the
next section. The parameters that had to be changed are explained here.

A linear approximated Q-value function is written as

Qπ̂
θk
(st, at) = θk · ψ(st, at),

where θk are the weights and ψ(st, at) is the feature vector of the state-action pair
(st, at). The feature vector is discussed in detail later. For now, as we want to
approximate the optimal Q-value function, that fulfils the recursion

Qπ̂(st, at) ≈ rt + γmax
a
Qπ̂(st+1, a),

the loss function and the gradients become

J(θk) =
1

2
(rt + γmax

a
Qπ̂(st+1, a)− θk · ψ(st, at))2

∇θkJ(θk) = −(rt + γmax
a
Qπ̂

θk
(st+1, a)− θk · ψ(st, at))ψ(st, at).

Note that we use our approximative Qπ̂
θk

as an estimator for Qπ̂ after the gradients
were applied.
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Figure 6.5: Monitoring learning progress for LFA using Tensorboard

Then the total parameter update becomes

θk+1 = θk + η(rt + γmax
a
Qπ̂

θk
(st+1, a)− θk · ψ(st, at))ψ(st, at),

with the learning rate η = 0.001 and decay γ = 0.95 set as for the actor-critic
method. The sign changes since we use gradient decent.

Q-learning is an off-policy method. To encourage exploration, a soft ϵ-greedy
policy πϵ is used, where ϵ > 0 is reduced over time. See figure 6.5 for the learning
statistics.

The feature vector ψ(st, at) is designed to provide enough information to the
agent about the effect of taking action at while being in state st. It should be
possible to evaluate the consequences of the action. The need to make choices
about the design of state-action features hides a major weakness of linear function
approximators, as we will see later.

For the predator prey model, the feature vector ψ(st, at) has to provide inform-
ations about the environment that evolves if the agent takes action at, i.e. move in
a specific direction, starting from his current position. Therefore it was necessary
to discretise the state space that was described previously.

The 32×32 visibility field of the agents was divided into two grids of size 3×3,
one for each group. These two grids also form the feature vector. Hence the grid
was converted to a vector, where each entry contains the number of agents, that
are located in that cell. After that, the vector gets normalised by the total number
of agents in the grid. Now the feature vector is the concatenation of these two grid
vectors. This means that we had 18 features in total.
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Figure 6.6: Scene of a predator prey simulation with Q-learning and LFA.

The problem that arose was that the grid was too coarse. This became a
problem when the predator arrived in a cell, where a prey was located. The
features of the 3×3 grid didn’t give enough information to the predator about the
exact location of the prey, that would have been needed to attack it. Thus, the
grid had to be refined into a 5× 5 sized grid.

As mentioned in [19], if the number of features increases the learning gets
hindered when a linear function approximator is used. In our case, the number of
features increases exponentially with the size of the grid.

Another problem that these features have is that they can’t give a correct
prediction about the effect of taking action at in state st. This comes naturally with
the stochastic dynamic of the system. These features can’t provide information
about other agents behaviour, that would also be needed.

Despite these problems and after fixing the grid size, the agents successfully
learned a predator prey behaviour by means of classical agent based modelling
rules. After 2000 time steps, the prey had a mean life time of 125 time steps. The
predators survived 219 time steps on average.

Interestingly the agents tend to gather in groups in only small areas. This can
be observed in figure 6.6. All 30 predators and 80 preys are gathered on this scene.
The agents on the one hand learned, that they are more successful in groups, but
on the other hand they are not capable of evaluating the importance between
grouping and hunting at the same time. This happens due to the simplicity of
linear function approximators. More details about the weakness of feature vectors
and linear function approximators can be read in [5, p. 414].

Nevertheless, this thesis aimed for a more flexible but complex reinforcement
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learning framework that would even allow continuous action spaces and unbiased
state representation (the definition of features can introduce additional bias).

Learning using Actor-Critic

Up to this point, a lot of debugging and parameter calibration was required for a
successful learning process.

Things like proper array representation, segmentation of the states and input
normalisation for the network turned out to be quite buggy. As well as finding
optimal hyperparameters such as the learning rate and the right structure and size
of the network.

However the following set of hyperparameters finally led to success. For dis-
counting the reward, a decay factor of γ = 0.95 was used. The weights in the loss
function 6.1 were set to α = 0.5 and β = 0.01.

The neural network, showed in figure 6.3, is used for this model. It has 60, 289
parameters in total. A more detailed break down of the number of parameters in
the layers is given below.

1 __________________________________________________________________________________________________
2 Layer (type) Output Shape Param # Connected to
3 ==================================================================================================
4 Input (InputLayer) (None, 32, 32, 3) 0
5 __________________________________________________________________________________________________
6 Conv2D-1 (Conv2D) (None, 15, 15, 8) 392 Input[0][0]
7 __________________________________________________________________________________________________
8 Conv2D-2 (Conv2D) (None, 7, 7, 16) 1168 Conv2D-1[0][0]
9 __________________________________________________________________________________________________

10 Conv2D-3 (Conv2D) (None, 3, 3, 32) 4640 Conv2D-2[0][0]
11 __________________________________________________________________________________________________
12 Flatten (Flatten) (None, 288) 0 Conv2D-3[0][0]
13 __________________________________________________________________________________________________
14 Dense-Flatten (Dense) (None, 128) 36992 Flatten[0][0]
15 __________________________________________________________________________________________________
16 Policy-Dense (Dense) (None, 64) 8256 Dense-Flatten[0][0]
17 __________________________________________________________________________________________________
18 Value-Dense (Dense) (None, 64) 8256 Dense-Flatten[0][0]
19 __________________________________________________________________________________________________
20 Policy-Output (Dense) (None, 8) 520 Policy-Dense[0][0]
21 __________________________________________________________________________________________________
22 Value-Output (Dense) (None, 1) 65 Value-Dense[0][0]
23 ==================================================================================================
24 Total params: 60,289
25 Trainable params: 60,289
26 Non-trainable params: 0
27 __________________________________________________________________________________________________

We used an Adam optimiser with default initial parameters to adjust the
weights as proposed in chapter 5 and [20]. Both, predator and prey, have the
same learning rate η = 0.001. The networks were trained for 500 episodes, each
episode consists of a batch of 16 steps for each agent. It took 14 minutes to train
both networks on a dual-core CPU 2, 9 GHz Intel Core i5 processor and 16GB ram
with Tensorflow 1.7.0 built from source with SSE and AVX support without GPU.
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Figure 6.7: Monitoring learning progress with Tensorboard
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Tensorboard is used for monitoring the training. Parameters such as total loss,
mean episode reward and maximum probabilities provide enough information to
check the learning progress and convergence. Figure 6.7 shows a typical training
with these parameters.

The maximum probabilities, that are plotted for each batch, indicate the policy
convergence. The more the maximum probability for the actions approaches one,
the less randomly an agent behaves. Although predators and prey have the same
learning rate, the preys’ policy converges slower and less confident. A reason for
this could be that preys are only forced to learn if they got attacked by predators,
i.e. when predators already improved their policy. Generally speaking, the rivalry
of groups adds a perturbation that avoids local minima such that the algorithm
tends to converge towards global minima. Interestingly, in the first half of the
training, before the mean reward of the predators reaches a peak, the maximum
probability gets shortly reduced. That is observed at episode 60, 200 and 250.

Also it is distinctive that the mean episode rewards of predators and the preys
are opposing. This comes naturally with the rivalry of the two groups.

During this pre-calibration loop, also problems with the model itself arose. As
mentioned earlier the model parameter is set to environment.static = True for
the training, such that dead agents respawn at a random new position in the en-
vironment at the end of each episode. Thereby the predators became lazy. Instead
of exploring the environment for some preys, they didn’t move until a previously
killed prey respawned in their direct surrounding. Only now they started to pursue
the preys. To encourage the predator’s exploration, I restricted the area, in which
they can respawn. More precisely, they respawn randomly in a 5 × 5-sized area
around their previous position where they died.

Simulation and results

After a successful training, the environment parameter environment.static is
switched to False, leading to a classical predator prey agent based model. The
simulation is run over 1000 episodes. Figure 6.8 shows the population changing
over 1000 episodes, starting with 30 predators and 80 preys with the same prop-
erties and parameters as in 6.2. The mean life time of the predators and the preys
were approximately 165 and 180 time steps respectively. Naturally the popula-
tion behaves similar to the solutions of the Lotka-Volterra equations, which proves
consistency. The environment has a limit of 200 agents for each group, so that
the computation time, especially the feed forward process of the neural network,
is limited.

Figure 6.9 shows a detail of this simulation. To illustrate the dynamic, 5
sequential frames were stacked. The top most frame shows temporally the last
one.
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Figure 6.8: Population of predators and preys over 1000 episodes

Figure 6.9: Detail of 5 sequential frames
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The results were quite exciting. Not only that the predators and preys have
learned the rules that would have been implemented in a classical agent based
model. The predators also learned, that they can be more successful if they hunt
together in groups. Due to the fact that the preys are 10% faster, a single predator
won’t be successful in hunting down a prey. This behaviour can be observed in
figure 6.9, looking at the furthermost top right predator. Predators are represented
by magenta coloured circles, preys are yellow. On the first frame, i.e. the bottom
most frame, the predator of interest is hunting a single prey heading towards the
right edge. Throughout these 5 frames one can see, that this predator loses interest
of this prey as soon as one of the predators, which is hunting a group of preys along
with two other predators, appears in his visual field. He joins the group in the
hope of being more successful.



7. Conclusion and Prospects

The application of reinforcement learning in agent based modelling looks promising
at first glance. With more computational power, it is possible to set up neural
networks for each individual agent instead of using group control. Agents could
evolve into individuals, which communicate with each other for planned actions
and have a memory, e.g. using LSTMs [18]. Even with a simple setup like in section
6.2, it is possible to achieve remarkable results. Though, it always depends on the
purpose of using agent based models. If an emergent behaviour is to be reproduced
without knowing the agents individual behaviour, reinforcement learning can be a
more straight forward approach than rule guessing and calibration.

It is not only about reducing the bias in the definition of rules, but also that
the algorithm can find rules that were not even thought of. The definition of
if-else conditions in the policy can be assumed by the algorithm. Let’s recall the
predator prey model of section 6.2, where the predators started to join other groups
of predators instead of hunting on their own. If we had to define these behavioural
rules in the classical approach, it could have been hard to determine some if-else
conditions at some point. For example how and when should predators join the
group without getting too close to the others. Overlapping predators wouldn’t use
the group’s size at it’s full capacity. These kind of behaviour is found automatically
by the reinforcement learning algorithms.

A disadvantage of RL in ABM is the number of hyperparameters that have to
be set for a successful learning process. Decisions concerning which RL paradigm or
function approximator to choose, aren’t obvious. There is not even a unique right
decision, still there are multiple that don’t lead to success. This can be a frustrating
part. Another limitation is that this pre-simulation can take a lot of resources such
as time or computational power, that isn’t available in some situations. Especially
if complex models require a complex reward function. The problem of defining a
meaningful reward function is that there is only one dimension, i.e. it’s codomain,
in which the reward has to be expressed. If there are several instances of positive
or negative rated states, it can be hard to correctly weight the rewards for a
meaningful feedback. Reward functions always have to be designed in a way that
the agents uniquely can find out which behaviour is desired and which isn’t. The

69
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more complex the model problem, the harder it is to find a meaningful reward
function and the harder it will be to find functional hyperparameters.

Apart from these difficulties, reinforcement learning in agent based modelling
can provide a new perspective on difficult problems, that makes it easier to solve
them.

Especially on models that are dependent on data, that is only partially avail-
able. In this case, the sparse data could be just enough to extract a reward function
that could help to find the rest of the data through reinforcement learning. This
extraction of a reward function could be accomplished with inverse reinforcement
learning (see [16] for details).

One concrete model, where this could be applied is the development of nevi and
melanoma. This is still an open problem. While data about the cell movement of
melanocytes and already developed nevi and melanoma is available, the question
how and from which cell nevi develop remains [7].

Furthermore Wang et al. present a new model for the cell movement in the
early phase of C. elegans, using Q-learning with neural networks [27].
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