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Abstract

Using Henriques’ and Kamnitzer’s cactus groups, Schützenberger’s promotion and
evacuation operators on standard Young tableaux can be generalised in a very natural
way to operators acting on highest weight words in tensor products of crystals.

For the crystals corresponding to the vector representations of the symplectic
groups, we show that Sundaram’s map to perfect matchings intertwines promotion
and rotation of the associated chord diagrams, and evacuation and reversal. We also
exhibit a map with similar features for the crystals corresponding to the adjoint repre-
sentations of the general linear groups.

We prove these results by applying van Leeuwen’s generalisation of Fomin’s local
rules for jeu de taquin, connected to the action of the cactus groups by Lenart, and
variants of Fomin’s growth diagrams for the Robinson-Schensted correspondence.

This work is based on a joint research project with Martin Rubey and Bruce W. West-
bury. In chapter 1 we give a general introduction and state related work. Chapter 2
connects the algebraic world of representations with combinatorics and we present our
findings in chapter 3. In chapter 4 we define promotion and evacuation as actions of
certain elements of a cactus group and state local rules for algorithmically calculating
these actions. The local rules are strongly related to the rules of our growth diagram
bijections from chapter 5. The last chapter 6 is meant for proofs only. Chapters 1, 3, 4,
5 and 6 are also published separately as a joint paper [21].
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Chapter 1

Introduction

Our journey begins with the discovery that Sundaram’s map from oscillating tableaux
to perfect matchings, regarded as chord diagrams (as in Figure 3.1), intertwines pro-
motion and rotation, see Theorem 3.4. Oscillating tableaux are highest weight words
in a tensor power of the crystal of the vector representation of the symplectic group
Sp(2n), and promotion is a natural generalisation of Schützenberger’s promotion map
on standard Young tableaux.

We also exhibit a map from Stembridge’s alternating tableaux, the highest weight
words in the r-th tensor power of the crystal for the adjoint representation of the gen-
eral linear group GL(n), to permutations. It turns out that this map intertwines pro-
motion and rotation provided that n ≥ r, see Theorem 3.8.

A convenient setting for these variants of promotion are the cactus groups, intro-
duced by Devadoss [4, def 6.1.2] and placed into our context by Henriques and Kam-
nitzer [10]. These are infinite groups related to coboundary categories in a similar way
as the braid groups are related to braided categories. Essentially, our goal is to make
the effect of the cactus groups in the coboundary category of crystals of a complex re-
ductive Lie algebra g transparent. To do so, we use the local rules discovered by van
Leeuwen [16], generalising the classical local rule for jeu de taquin by Fomin [28, app 1]
to all minuscule representations of Lie groups. The relation between these local rules
and the action of the cactus groups was established by Lenart [17] and was made more
explicit in terms of certain growth diagrams by Westbury [31].

Let C = C1 ⊗ · · · ⊗ Cr be an r-fold tensor product of crystals. Then the generators
sp,q, for 1 ≤ p < q ≤ r, of the cactus group map highest weight words of C bijectively
to highest weight words of C1 ⊗ · · · ⊗ Cp−1 ⊗ Cq ⊗ Cq−1 ⊗ · · · ⊗ Cp ⊗ Cq+1 ⊗ · · · ⊗ Cr.

For example, when g is the Lie algebra of the special linear group SL(n), and
C1 = · · · = Cr is the crystal of its vector representation, the highest weight words
of C are standard Young tableaux of size r with at most n columns. Then, the gen-
erator s1,r of the cactus group is precisely Schützenberger’s evacuation, and s1,r s2,r is
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Schützenberger’s promotion. As an aside, we remark that in this case the generators
si,i+2 encode Assaf’s dual equivalence graph.

More generally, when Ci is the crystal of the µi-th exterior power of the vector rep-
resentation then the highest weight words of C are semistandard Young tableaux of
weight µ, with at most n columns: the weight of the i-th letter specifies the columns in
which the number i appears. Again, s1,r acts as evacuation and s1,r s2,r as promotion.
Using evacuation as a building block, the action of the cactus groups on semistandard
Young tableaux was studied by Chmutov, Glick and Pylyavskyy [2].

By analogy we call ev w = s1,r w the evacuation of a highest weight word w, and
pr w = s1,r s2,r w its promotion.

The promotion operator has been studied in connection with the cyclic sieving phe-
nomenon. Rhoades [22] established a cyclic sieving phenomenon for the promotion
operator acting on rectangular standard tableaux. This was generalised to promotion
on invariant words in the crystal of a minuscule representation by Fontaine and Kam-
nitzer [7], using the geometric Satake correspondence. A cyclic sieving phenomenon
for the promotion operator acting on invariant words in any crystal was given by West-
bury [32], exploiting the fact that Lusztig’s canonical basis for invariant tensors is pre-
served by promotion.

Cyclic sieving phenomena for perfect matchings and permutations together with
rotation were established by Rubey and Westbury [25, 26]. There, a basis of the space of
invariant tensors in tensor powers of the vector representation of the symplectic group
Sp(2n) was given, whose elements correspond in a natural way to (n + 1)-noncrossing
perfect matchings. In particular, this basis is invariant under rotation. Similarly, a
basis of the invariant space in tensor powers of the adjoint representation of the general
linear group GL(n) was given, whose elements correspond to permutations. This basis
is invariant under rotation provided that n is large enough.

The promotion and rotation operators on invariant tensors were shown to agree by
Westbury [32], in the following sense. It is true in general that, given a vector space
with a linear operator of finite order and two bases each preserved by the operator
then there is a bijection between the two bases which intertwines the two actions of
the operator. This implies for our setting that there exists a bijection between chord
diagrams and invariant words which intertwines rotation and promotion. However
constructing such a bijection explicitly remained an open problem, which we solve here
for the vector representation of the symplectic groups and the adjoint representation
of the general linear groups.

Let us remark that the polynomials encoding the orbit structure of the promotion
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operator, as required in the context of cyclic sieving phenomena, can be extracted from
the Frobenius character of the symmetric group action on the space of invariant ten-
sors which permutes tensor positions. This Frobenius character was determined by
Sundaram [30] for the vector representation of the symplectic groups. For the adjoint
representation of the general linear groups it can be computed using Schur-Weyl du-
ality, see [25]. A closely related project to the one discussed here is to describe the
Frobenius character using the structure of the crystal graph. So far, this was accom-
plished only in the case of the vector representation of the symplectic groups by Rubey,
Sagan and Westbury [24], and the vector representation of the odd orthogonal groups
by Jagenteufel [13]. For the vector representations of the even orthogonal groups and
G2 there are conjectural descriptions.

For Lie algebras of rank 2, there is another family of bases for the space of invariant
tensors, the web bases introduced by Kuperberg [15]. By definition, rotation of an
invariant tensor corresponds to the rotation of the associated web. It was shown by
Petersen, Pylyavskyy and Rhoades [20] that promotion of rectangular standard Young
tableaux with three rows corresponds to rotation of the associated SL(3) webs. This
result was recently translated by Patrias [19] to establish that rotation of SL(3) webs
corresponds to promotion of the associated invariant highest weight words. However,
web bases for Lie algebras of larger rank are still poorly understood, if known at all.
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Chapter 2

Preliminaries

In this chapter we introduce root systems and weight lattices of complex Lie algebras
and weights of their representations. The root systems are the main ingredient for
the classification of simple Lie algebras. So called dominant weights will identify the
finite dimensional irreducible representations. The weights and roots will also specify
crystal graphs, which can be seen as combinatorial models of representations.

Our aim is to introduce highest weight words of tensor products of crystals. These
are the combinatorial objects we are interested in. We will focus on highest weight
words of tensor powers of crystals corresponding to the vector representation of gl(n)
and crystals corresponding to the adjoint representation of sp(2n).

Note that in this chapter we present the results for Lie algebras. They directly trans-
late into the world of Lie groups. In our cases it does not matter if we speak of crystals
corresponding to representations of a Lie group G or the crystals corresponding repre-
sentations of the Lie algebra g corresponding to G.

2.1 Roots and weights

The purpose of this section is to fix notation. It is based on definitions and results in
the textbooks [8, 9] and [12]. For basic definitions of Lie algebras we also refer to [5].

Recall that a Cartan subalgebra h of a complex Lie algebra g is a maximal abelian
Lie subalgebra such that every element H ∈ h is semisimple. A Cartan subalgebra is
unique up to an automorphism of g and always exists for semisimple Lie algebras. By
definition

adH : g→ g

x 7→ [H, X],

is diagonalisable for every H ∈ h and since h is abelian all its elements and therefore all
elements of ad h := {adH : H ∈ h} commute. Thus there exists a basis of g of common
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eigenvectors for the elements of ad h. For such an eigenvector X the eigenvalues are
given by the roots. These are elements of the dual space α ∈ h∗, such that the root space
gα := {X ∈ g : adH(X) = α(H)X} is not the zero vector space. We denote the set of all
roots by R.

The Killing form is a symmetric bilinear form g× g→ C defined by

(X, Y) := tr(adX ◦ adY).

Note that the Killing form is nondegenerate for semisimple Lie algebras and induces
an isomorphism α 7→ Hα between h∗ and h given by: Hα is the unique element in h,
such that

α(H) = (H, Hα) for all H ∈ h.

Lemma 2.1 ([8, thm. 14.22]). The Killing form is positive definite on the real subspace of h
spanned by the vectors {Hα : α ∈ R}.

This Lemma also allows us to define an inner product 〈α, β〉 := (Hα, Hβ) on the
real vector space spanned by the set of roots R. For each root α ∈ R we denote the
coroot with α∨ = 2α

〈α,α〉 and define a linear map sα : h∗ → h∗ as the reflection about the
hyperplane orthogonal to α by

sα(H) := H − 2〈H, α〉
〈α, α〉 α = H − 〈H, α∨〉α.

Definition 2.2 ([9, def. 7.25]). We call the group W generated by all maps sα the Weyl group
of R.

The root systems and their Weyl group satisfy several important properties.

Theorem 2.3 ([9, thm. 7.30]). Let R denote the set of roots.

R1 R is a finite subset of a real vector space E with an inner product. It does not contain the
zero vector and it spans E.

R2 If α ∈ R, then also −α ∈ R. There are no other scalar multiples of α in R.

R3 If α ∈ R, then sα permutes the roots.

R4 If α, β ∈ R, then 〈α, β∨〉 ∈ Z.

In general we denote a set R of vectors together with a real inner product space E
satisfying the properties R1-R4 an (abstract) root system. We call the dimension of E the
rank of the root system.
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Definition 2.4 ([9, prop. 8.12]). We define a subset ∆ ⊂ R to be a base of the root system
(R, E) if

• ∆ is linearly independent set spanning E,

• each root α ∈ R can be expressed as a linear combination of elements of ∆ with integer
coefficients. All non-zero coefficients have the same sign.

We call those roots with non-negative coefficients the positive roots and the elements
of ∆ the simple roots.

Remark 2.5 ([9, prop. 8.28]). Note that such a base always exists and that for any two bases
∆1 and ∆2 there exists a unique w ∈ W such that w · ∆1 = ∆2. Thus, the following results
and constructions are independent of the choice of a certain base ∆ = {α1, . . . , αr}.

Definition 2.6 ([9, def. 8.34]). We fix a root system (R, E) and a set of simple roots ∆ =

{α1, . . . , αr} and define:

• An element µ ∈ E is called an integral element or weight, if for all α ∈ R

〈µ, α∨〉 ∈ Z.

• A weight µ is dominant relative to ∆, if

〈µ, α〉 ≥ 0

for all α ∈ ∆. We call the set of all weights the weight lattice denoted by Λ and denote
the set of all dominant weights by Λ+.

• Moreover for two weights λ and µ we say µ is higher than λ, if µ− λ can be expressed as
linear combination of ∆ with non-negative integer coefficients. We denote this by µ � λ.

• For each weight µ the Weyl group orbit W · µ contains a unique dominant weight ν, the
dominant representative. It is the highest weight in W · µ.

• Finally we call a set v1, . . . , vr ∈ Λ fundamental weights relative to ∆ if

〈vi, α∨j 〉 =

1 if i = j

0 if i 6= j

for all i, j ∈ {1 . . . , r}.
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We finish this section by some results for the classification of root systems. Fix a
root system and a set of simple roots ∆ = {α1, . . . , αr}. For two simple roots α, β

dαβ := 〈α, β∨〉〈β, α∨〉

is an integer in {0, 1, 2, 3}. We define the Dynkin diagram [9, def. 8.31] as a graph with
vertices v1, . . . , vr and place exactly dαiαj edges between different vertices vi and vj. If
αi and αj differ in their lengths and are not orthogonal, we draw an arrow pointing
form the longer root to the shorter one. Note that a semisimple Lie algebra is simple if
and only if its Dynkin diagram is connected.

There are only certain types of connected graphs, that are Dynkin diagrams of (ab-
stract) root systems. The types are the Cartan types An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥
2), Dn(n ≥ 4), E6, E7, E8, F4, G2. For each graph of these classes exists up to isomor-
phism a unique root system and a unique simple Lie algebra having that graph as its
Dynkin diagram. The Cartan types An, Bn, Cn and Dn correspond to the classical Lie
algebras. A summary of all Cartan types, their Dynkin diagrams and a standard choice
of root systems and weights for the classical types can be found in Figure 2.1.

2.2 Weights of a representation

Similar to the definition of roots, we can generally define eigenvalues (elements of h∗)
of representations (π, V) of the Lie algebra g with a fixed Cartan subalgebra h. They
are called weight of the representation. The roots are exactly the weights of the adjoint
representation.

Definition 2.7 ([9, def. 9.1]). An element λ ∈ h∗ is a weight of the representation π, if the
weight space

Vλ := {v ∈ V : π(H)v = λ(H)v for all H ∈ h∗}

is not the zero vector space.

There is an important relation between fundamental weights and irreducible finite-
dimensional representations: The theorem of the highest weight for representations.

Theorem 2.8 ([9, thm. 9.4 and 9.5]). Fix g and a set of simple weights.

1. Every irreducible finite-dimensional representation of g has a highest weight.

2. Two irreducible finite-dimensional representations of g with the same highest weight are
isomorphic.
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Cartan
Type Dynkin Diagram Lie algebra g Roots R Simple

Roots ∆ Weight Lattice Λ

An

gl(n + 1)
ei − ej ei − ei+1

Zn+1

sl(n + 1) Zn+1/ span{∑ ei}

Bn so(2n + 1)
± ei ± ej

± ei

ei − ei+1

en
Zn

Cn sp(2n)
± ei ± ej

± 2ei

ei − ei+1

2en
Zn

Dn so(2n) ei ± ej
ei − ei+1

en−1 + en
Zn

E6

For further details on the so called exceptional Lie algebras
refer to [5, sec. 13.2]

E7

E8

F4

G2

FIGURE 2.1: The Cartan types, their Dynkin diagrams and the root sys-
tems for the classical Lie algebras. Note that gl(n + 1) is not a simple Lie

algebra, but an important Lie algebra for our work.

3. If µ ∈ Λ is the highest weight of an irreducible finite-dimensional representations of g,
then µ is a dominant weight.

4. If µ ∈ Λ+ is a dominant weight, then there exists irreducible finite-dimensional repre-
sentations of g with highest weight µ denoted by V(µ).

To illustrate the definitions and terms of this chapter, we now consider the general
linear Lie algebra gl(n + 1, C) and the symplectic Lie algebra sp(2n, C) and analyse
their vector representations.

Example 2.9 (General linear Lie algebra). Consider g = gl(n + 1, C). This is the Lie
algebra of the linear maps Cn+1 → Cn+1 , or equivalently, the Lie algebra of complex
(n + 1)× (n + 1) matrices. Note that this Lie algebra is not semisimple but reductive
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(its adjoint representation is completely reducible), nevertheless we can calculate its
roots and the highest weight of the vector representation (its defining representation).

A Cartan subalgebra is given by the set of diagonal matrices d. Let eij ∈ g be the ma-
trix with a one in row i and column j and zeros elsewhere. For D = diag(d1, . . . , dn+1)

we obtain adD(eij) = D · eij − eij · D = (di − dj)eij.
Thus the maps diag(d1, . . . , dn) 7→ di − dj are roots, which we will identify with

ei − ej, where ek denotes the kth standard basis vector of Rn+1. It turns out, that the
inner product on the real vector space spanned by the roots defined via the Killing form
is compatible with the usual inner product on Rn+1 under this identification. (They
only differ by a positive factor.) A basis of the root system is given by αi := ei − ei+1

for 1 ≤ i ≤ n. The coroots and roots are coincident. The fundamental weights are
vi = e1 + e2 + · · ·+ ei for 1 ≤ i ≤ n. A weight (λ1, . . . , λn+1) is dominant if and only
if λ1 ≥ λ2 ≥ · · · ≥ λn+1.

The Weyl group is given by the symmetric group Sn+1 and therefore the dominant
representative of a weight is obtained by sorting its components into weakly decreas-
ing order.

Next we calculate the weights of the vector representation π(X) = (v 7→ Xv).
For D = diag(d1, . . . , dn+1) ∈ h we get Dei = di · ei for i = 1, . . . , n + 1. With the
identification above we get the weights e1, . . . , en+1. We observe ei+1 = ei − αi and
obtain an order on the weights, which we represent in the following diagram:

e1
−α1� e2

−α2� · · ·
−αn−1
� en

−αn� ēn+1. (2.1)

The highest weight is e1, which is also the first fundamental weight.

Example 2.10 (Symplectic Lie algebra). For an integer n we denote by En the n × n

identity matrix and define the block matrix J =

(
0 En

−En 0

)
. Then the symplectic Lie

algebra is g = sp(2n, C) := {X ∈ gl(2n, C) : Xt J + JX = 0}.
A Cartan subalgebra is given by the subalgebra h of diagonal matrices in g, that

are the diagonal matrices of the form D = diag(d1, . . . , dn, dn+1, . . . , d2n) that satisfy
di + di+n = 0 for all 1 ≤ i ≤ n.

As before we obtain adD(eij) = (di − dj)eij and depending on the cases max(i, j) ≤
n, i ≤ n < j, j ≤ n < i and n < min(i, j) and using the property di + di+n = 0 we
get the roots D 7→ ±di ± dj with i and j both running from 1 up to n. Again we can
identify them with linear combinations of the standard basis vectors of Rn and use the
usual inner product as inner product on the roots.
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Thus R = {±ei ± ej : i 6= j} ∪ {±2ei} and we choose positive roots R+ = {ei ± ej :
i < j} ∪ {2ei}. A basis ∆ of simple roots is given by αi = ei − ei+1 for 1 ≤ i < n

and αn = 2en. The coroots are α∨i =

αi i < n

αi/2 i = n
and the fundamental weights are

vi = e1 + e2 + · · ·+ ei for 1 ≤ i ≤ n. A weight (λ1, . . . , λn) is dominant if and only if
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

The Weyl group is the hyperoctahedral group, also known as the group of signed
permutations of {±1, . . . ,±n}. Therefore, the dominant representative of a vector is
obtained by sorting the absolute values of its components into weakly decreasing or-
der.

Again we consider the vector representation π(X) = (v 7→ Xv) and calculate its
weights. For D = diag(d1, . . . , dn,−d1, . . . ,−dn) ∈ h we get Dei = di · ei and Dei+n =

−di · ei+n for 1 ≤ i ≤ n. Thus, using the identification from above, we get the weights
±e1, . . . ,±en. We write ēi in place of −ei. Moreover we observe ei+1 = ei − αi, ēn =

en − αn and ēi = ēi+1 − αi for 1 ≤ i < n, which is visualised in the diagram

e1
−α1� e2

−α2� · · ·
−αn−1
� en

−αn� ēn
−αn−1
� ēn−1

−αn−2
� · · ·

−α1� ē1. (2.2)

The highest weight of the representation is e1, it is also the first fundamental weight
of the Lie algebra.

2.3 Crystals

For the rest of the chapter let g be a reductive complex Lie algebra with a fixed set of
simple roots {αi}i∈I , its corresponding weight lattice Λ and set of dominant weights
Λ+. A crystal can be seen as a combinatorial model for a representation stripped of
its linear structure. Crystal bases were first developed as certain limits of quantum
groups by Kashiwara [14]. We will follow an axiomatic approach for defining crystals
similar to [17, sec. 2.1] and [10, sec. 2].

Definition 2.11. A g-crystal is a finite set B not containing 0 together with maps

wt : B 7→ Λ

εi, ϕi : B→ Z

ẽi, f̃i : B→ B t {0}
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for each i ∈ I satisfying:

1. If b, b′ ∈ B then ẽi(b) = b′ if and only if b = f̃i(b′).

2. If ẽi(b) 6= 0 then wt(ẽi(b)) = wt(b) + αi and similarly if f̃i(b) 6= 0 then wt( f̃i(b)) =
wt(b)− αi.

3. For all b ∈ B and i ∈ I we have

εi = max{n ≥ 0 : ẽn
i (b) 6= 0} and

ϕi = max{n ≥ 0 : f̃ n
i (b) 6= 0}.

4. For all b ∈ B and i ∈ I we have

ϕi(b)− εi(b) = 〈wt(b), α∨i 〉. (2.3)

The functions ẽi and f̃i are called the Kashiwara operators.

Remark 2.12. Note that parts of the definition of a crystal are redundant. The minimal ingre-
dients for a crystal are the set B and the functions ẽi.

With a crystal B we associate a certain directed coloured graph with vertices B and
we draw edges from b to b′ with colour (label) i, if f̃i(b) = b′. There some are vertices,
with no incoming edge or equivalently εi(b) = 0 for all i. We call such elements of B the
highest weight elements or highest weight words. We call their weights the highest weights
of the crystals B. By equation (2.3) we obtain that all highest weights of a crystal are
dominant weights in Λ+.

For each crystal we define its dual by, roughly speaking, interchanging ϕi with εi

and ẽi with f̃i.

Definition 2.13 ([1, def. 2.20]). Let B be a crystal. Let B∨ be a set that is in bijection with B
and bijection b 7→ b∨. Then we define the dual crystal of B to be the crystal with elements B∨,

wt(b∨) := wt(b)

εi(b∨) := ϕi(b)

ϕi(b∨) := εi(b)

and ẽi(b∨) := f̃i(b)∨

f̃i(b∨) := ẽi(b)∨.

We now give some examples for crystal graphs.
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Example 2.14. The following crystals consist of elements of the form i , i and 0
with weights

wt i = ei, wt i = −ei and wt 0 = 0.

We will present a standard crystal graph for each classical Cartan type.

Type An The standard crystal is given by the graph

1 2 · · · n n + 1
1 2 n− 1 n

.

Its highest weight element is 1 with weight e1. We also denote this as the
crystal corresponding to the vector representation of gl(n + 1). Compare this
graph to the diagram (2.1) in example 2.9. For later use we also present the dual

crystal graph and for better readability we are using i instead of i
∨

.

n + 1 n · · · 2 1
n n− 1 2 1

It corresponds to the dual of the vector representation.

Type Bn The standard crystal graph is

1 2 · · · n 0 n · · · 1
1 2 n− 1 n n n− 1 1

.

Type Cn As in type An we can see in example 2.10 and diagram (2.2) how the standard
crystal

1 2 · · · n n · · · 1
1 2 n− 1 n n− 1 1

relates to the vector representation.
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Type Dn The standard crystal graph is

1 2 · · · n− 1

n

n

n− 1 · · · 1
1 2 n− 2

n− 1 n

n n− 1

n− 2 1

.

The standard crystals for the types Bn, Cn, Dn are self dual.

Crystals have a direct sum, given by their disjoint union and a tensor product, which
we define now.

Definition 2.15 ([14, sec. 4.3]). Let B1, B2 be crystals, then the tensor product B1 ⊗ B2 is
defined by:

• The underlying set is B1 × B2. Instead of pairs (b1, b2) we also write b1 ⊗ b2.

• The weight is given by wt(b1 ⊗ b2) := wt(b1) + wt(b2).

• The Kashiwara operators are

ẽi(b1 ⊗ b2) =

ẽi(b1)⊗ b2 if ϕi(b1) ≥ εi(b2)

b1 ⊗ ẽi(b2) if ϕi(b1) < εi(b2)

f̃i(b1 ⊗ b2) =

 f̃i(b1)⊗ b2 if ϕi(b1) > εi(b2)

b1 ⊗ f̃i(b2) if ϕi(b1) ≤ εi(b2).

This implies

εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− 〈wt(b1), α∨i 〉)

and therefore b1 ⊗ b2 is a highest weight word in B1 ⊗ B2 if and only if εi(b1) = 0 and
εi(b2)− 〈wt(b1), α∨i 〉 ≤ 0 for all i ∈ I.

We are in particular interested in the highest weight words and their weights in
tensor products of more parts. By iterating the construction of tensor products, we
obtain for the crystal B1 ⊗ B2 ⊗ · · · ⊗ Br the results:

• The underlying set is B1 × B2 × · · · × Br.
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• The weight is given by the sum of the weights of the letters bi.

wt(b1 ⊗ b2 ⊗ · · · ⊗ br) = wt(b1) + wt(b2) + · · ·+ wt(br))

• b := b1 ⊗ b2 ⊗ · · · ⊗ br is a highest weight word, if and only if

εi(b) := max
1≤j≤n

(εi(bj)− 〈wt(b1), α∨i 〉 − 〈wt(b2), α∨i 〉 − · · · − 〈wt(bj−1), α∨i 〉) = 0.

• Note that it also possible to describe the Kashiwara operators, but for obtaining
highest weight words this is not needed.

Remark 2.16. It is convenient to define a function ε : B → Λ satisfying εi(b) = 〈ε(b), α∨i 〉.
One can obtain such a function using the fundamental weights. For the word b1⊗ b2⊗ · · ·⊗ br

we define a finite sequence of weights by µ0 := 0 and µi := µi−1 + wt(bi) for i = 1, . . . , r.
Then the condition for highest weight words reads as follows.

Lemma 2.17. The word b1 ⊗ b2 ⊗ · · · ⊗ br is a highest weight word in B1 ⊗ B2 ⊗ · · · ⊗ Br if
and only if

µj−1 − ε(bj) ∈ Λ+ for all j = 1, . . . , r. (2.4)

We denote the set of all b1⊗ b2⊗ · · · ⊗ br satisfying this condition as max B1⊗ B2⊗ · · · ⊗
Br.

A direct consequence of this is, that for a highest weight word all weights µi in the
sequence above are dominant.

We now follow Lenart’s approach [17, sec. 2.1] and axiomatically introduce the cat-
egory of g-crystals, which is according to a result of Joseph, uniquely defined.

A1 For each dominant weight λ ∈ Λ+, the category contains a crystal Bλ with a
unique highest weight element with weight λ.

A2 The category consists of all crystals isomorphic to a direct sum of Bλ. We denote
isomorphism of crystals by ∼=.

A3 The category is closed under tensor products. For all dominant weights λ, µ there
exists an inclusion of crystals ιλ,µ : Bλ+µ ↪→ Bλ ⊗ Bµ.

By axiom A3 we obtain a decomposition of the tensor product of crystals into con-
nected components

Bλ1 ⊗ Bλ2 ⊗ · · · ⊗ Bλr
∼=

⊕
(b1⊗b2⊗···⊗br)∈max Bλ1

⊗Bλ2⊗···⊗Bλr

Bwt(b1)+wt(b2)+···+wt(br). (2.5)
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Example 2.18. To illustrate, consider the standard crystal for C2 denoted by C as shown
in Example 2.14. In figure 2.2 we see the crystal C⊗3. It consists of six components:

• one component with highest weight 3e1,

• three isomorphic components with highest weight e1 and

• two isomorphic components with highest weight 2e1 + e2.

The decomposition (2.5) is closely related to the decomposition of tensor products
of highest weight modules, which follows from [11, thm. 5.2.1].

Lemma 2.19. For dominant weights λ, µ ∈ Λ+ denote V(λ) and V(µ) the corresponding
irreducible highest weight representations and Bλ and Bµ corresponding crystals. Then the
crystal Bλ ⊗ Bµ corresponds to the representation V(λ)⊗V(µ). That is,

• the connected components of Bλ ⊗ Bµ are precisely the crystals of the irreducible repre-
sentations in the decomposition of V(λ)⊗V(µ)

• for ν ∈ max Bλ⊗ Bµ we get as many copies of Bν as the multiplicity of V(λ) in V(λ)⊗
V(µ).

For a crystal B we may write the decomposition (2.5) as isomorphism of crystals

⊗rB ∼=
⊕

λ

Bλ ×Uλ

where Bλ is a connected crystal and Uλ is the set of highest weight words of weight
λ. (Compare to [31, sec. 5.2].) When B is the crystal of the vector representation of
gl(n), an explicit isomorphism is given by the well known Robinson-Schensted corre-
spondence. In this case Uλ is the set of standard tableaux of shape λ and Bλ can be
identified with the set of semistandard tableaux of shape λ and largest entry n.

As final results of this section we continue the examples 2.9 and 2.10 and make
the highest weight words of the tensor powers of the crystals explicit. We already
know that for a highest weight word b1 ⊗ b2 ⊗ · · · ⊗ br all the weights µi defined as
in Remark 2.16 are dominant. We prove in two cases that we already get all highest
words from this weaker condition.

Example 2.20. Let g = gl(n + 1), Λ = Zn+1 and Λ+ the corresponding dominant
weights. Moreover denote A the crystal of the vector representation V and A∨ the
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FIGURE 2.2: The crystal C⊗3, where C denotes the standard crystal for C2.
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crystal of the dual of the vector representation V∗. A is the standard An crystal and
A∨ its dual (compare to Example 2.14). Consider a sequence (0 = µ0, µ1, . . . , µr) of
dominant weights, such that two consecutive weights differ exactly by a unit vector.
We define a word b1 ⊗ b2 ⊗ · · · ⊗ br and a crystal B := B1 ⊗ B2 ⊗ · · · ⊗ Br by

bi :=

 ` if µi − µi−1 = e`

` if µi − µi−1 = −e`
and Bi :=

A if µi − µi−1 = e`

A∨ if µi − µi−1 = −e`
.

Then the word is a highest weight word in B.

Proof. We show that the condition (2.4) for highest weight words in Lemma 2.17 is
satisfied. For b ∈ A t A∨ we obtain

ε(b) =
n

∑
i=1

εivi =


0 if b = 1 or b = n + 1

v`−1 if b = ` , ` 6= 1

v` if b = ` , ` 6= n

where vi = e1 + · · ·+ ei denotes the fundamental weights. Now we consider different
cases.

1. Let µi − µi−1 = e1 or µi − µi−1 = −en+1, then ε(bi) = 0 and thus µi−1 − ε(bi) =

µi−1 ∈ Λ+.

2. Let µi − µi−1 = e` with ` 6= 1. As µi, µi−1 ∈ Λ+ we have

µi−1
`−1 = µi

`−1 ≥ µi
` = µi−1

` + 1

and get µi−1
`−1 − 1 ≥ µi−1

` . This yields

µi−1
1 − 1 ≥ µi−1

2 − 1 ≥ · · · ≥ µi−1
`−1 − 1 ≥ µi−1

` ≥ µi−1
`+1 ≥ · · · ≥ µi−1

n+1

and thus µi−1 −v`−1 = µi−1 − ε(bi) ∈ Λ+.

3. Let µi − µi−1 = −e` with ` 6= n + 1. Similar to the case above we have

µi−1
` − 1 = µi

` ≥ µi
`+1 = µi−1

`+1.

As before this yields

µi−1
1 − 1 ≥ µi−1

2 − 1 ≥ · · · ≥ µi−1
` − 1 ≥ µi−1

`+1 ≥ µi−1
`+2 ≥ · · · ≥ µi−1

n+1



2.3. Crystals 19

and thus µi−1 −v` = µi−1 − ε(bi) ∈ Λ+.

Later we focus on those sequences of weights (0 = µ0, µ1, . . . , µ2r) that correspond
to highest weights in⊗r(A⊗ A∨) and call them alternating tableaux. These are precisely
the highest weight words corresponding to tensor powers of the crystal corresponding
to the adjoint representation regarded as V ⊗V∗.

Finally we consider the symplectic case again. As the standard Cn crystal differs
from A t A∨ from the former example only by an additional edge n n−→ n we
expect to get a similar result and a similar proof.

Example 2.21. Let g = sp(2n), Λ = Zn and Λ+ the corresponding dominant weights.
Moreover denote C the crystal of the vector representation V. C is the standard Cn

crystal (compare to Example 2.14). Consider a sequence (0 = µ0, µ1, . . . , µr) of dom-
inant weights, such that two consecutive weights differ exactly by a unit vector. We
define a word b1 ⊗ b2 ⊗ · · · ⊗ br ∈ ⊗rC by

bi :=

 ` if µi − µi−1 = e`

` if µi − µi−1 = −e`
.

Then the word is a highest weight word in C.

Proof. Again we show that the highest weight word condition (2.4) is satisfied and this
time we obtain

ε(b) =


0 if b = 1

v`−1 if b = ` , ` 6= 1

v` if b = `

.

Note that the dominant weights also have the condition that all its components are
non-negative. We consider similar cases as before, the first three are solved exactly as
before.

1. Let µi − µi−1 = e1. Solve this exactly as case 1. from before.

2. Let µi − µi−1 = e` with ` 6= 1. Solve this exactly as case 2. from before.

3. Let µi − µi−1 = −e` with ` 6= n. Solve this exactly as case 3. from before.
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4. Let µi − µi−1 = −en, then we obtain µi−1
n − 1 = µi

n ≥ 0. This gives

µi−1
1 − 1 ≥ µi−1

2 − 1 ≥ · · · ≥ µi−1
n − 1 ≥ 0

and thus µi−1 −vn = µi−1 − ε(bi) ∈ Λ+.

We call sequences of dominant weights corresponding to highest weight words in
⊗rC oscillating tableaux.



21

Chapter 3

Results

We aim at making the action of the cactus group on the highest weight words of a ten-
sor power of certain representations transparent. Our approach works best for tensor
products of minuscule representations of a Lie group. A representation is minuscule
if the Weyl group W of the Lie group acts transitively on the weights of the represen-
tation: the set of weights forms a single orbit under the action of W. The non-trivial
minuscule representations are:

Type An All exterior powers of the vector representation.

Type Bn The spin representation.

Type Cn The vector representation.

Type Dn The vector representation and the two half-spin representations.

Type E6 The two fundamental representations of dimension 27.

Type E7 The fundamental representation of dimension 56.

There are no nontrivial minuscule representations in types G2, F4 or E8. For all other
types, any crystal can be embedded into a tensor product of minuscule crystals.

For tensor products of exterior powers of the vector representation of GL(n), the
action of the cactus group is known, as already mentioned in the introduction.

12

3

4

5 6

7

8

1

2

3 4

5

FIGURE 3.1: A 3-noncrossing perfect matching and a permutation as
chord diagrams.
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Highest weight words of weight zero of ⊗rS, where S is the the spin representation
of the spin group Spin(2n + 1) can be identified directly with fans of n Dyck paths of
length r. One can show that ev acts on these as reversal.

The vector representation of the odd orthogonal group SO(2n+ 1) is not minuscule,
but appears as a direct summand in S ⊗ S. In particular, highest weight words of
weight zero of a tensor power of the vector representation of SO(3) can be identified
with noncrossing set partitions without singletons, and pr acts on these as rotation.
Because the vector representation of the Lie algebras of SO(3) coincides with the the
adjoint representation of the Lie algebra of SL(2), this description can also be deduced
from the results in Section 3.2 below.

However, our main contributions concern the vector representation of Sp(2n) and
the adjoint representation of GL(n) - regarded as the tensor product of the vector rep-
resentation and its dual.

3.1 The vector representation of the symplectic groups

Definition 3.1 (Sundaram [30]). An n-symplectic oscillating tableau of length r and (fi-
nal) shape µ is a sequences of partitions

∅=µ0, µ1, . . . , µr =µ

such that the Ferrers diagrams of two consecutive partitions differ by exactly one box, and each
partition µi has at most n non-zero parts.

Proposition 3.2. Let C be the crystal corresponding to ⊗rV, where V is the vector represen-
tation of the symplectic group Sp(2n). Then the highest weight words of C are obtained from
n-symplectic oscillating tableaux by considering each partition as a vector in Zn and taking
successive differences. Explicitly, the highest weight word corresponding to O is

µ1 − µ0, µ2 − µ1, . . . , µr − µr−1.

A now classic bijection due to Sundaram [30] maps an oscillating tableau O of
length r to a pair

(
M(O),MT(O)

)
, consisting of a matching of a subset of {1, . . . , r}

and a partial standard Young tableau on the complementary subset. We describe this
bijection in Section 5.
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Theorem 3.3. Let O be an n-symplectic oscillating tableau of length r, not necessarily of
empty shape. ThenM(evO) is the reversal ofM(O) andMT(evO) is the Schützenberger
evacuation ofMT(O).

There is a remarkable geometric description of perfect matchings corresponding to
n-symplectic oscillating tableaux of empty shape under Sundaram’s bijection: visualise
a perfect matching by drawing its pairs as (straight) diagonals connecting the vertices
of a labelled regular r-gon. Then a perfect matching is (n + 1)-noncrossing, and the
image of an n-symplectic oscillating tableau, if it contains at most n pairs that mutually
cross in this picture.

Theorem 3.4. The bijectionM between n-symplectic oscillating tableaux of empty shape and
(n + 1)-noncrossing perfect matchings intertwines promotion and rotation, and evacuation
and reversal:

rotM(O) =M(prO) and revM(O) =M(evO).

3.2 The adjoint representation of the general linear

groups

Definition 3.5 (Stembridge [29]). A vector in Zn with weakly decreasing entries is called a
staircase.

A GL(n)-alternating tableau of length r and weight µ is a sequence of staircases

∅=µ0, µ1, . . . , µ2r =µ

such that

for even i, µi+1 is obtained from µi by adding 1 to an entry, and

for odd i, µi+1 is obtained from µi by subtracting 1 from an entry.

When µ is the zero weight, slightly abusing language, we say that the alternating tableau
is of empty shape.

Proposition 3.6. Let C be the crystal corresponding to ⊗rGL(n), where GL(n) is the adjoint
representation of the general linear group GL(n). Then the highest weight words of C are ob-
tained from GL(n)-alternating tableaux by taking successive differences. Explicitly, the highest
weight word corresponding to A is the sequence of r pairs

(µ1 − µ0, µ2 − µ1), . . . , (µ2r−1 − µ2r−2, µ2r − µ2r−1).
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It is tempting to regard each vector in an alternating tableau as a pair of partitions
by separating the positive and negative terms. Indeed, this is what we will do below.
However, for n > 2 promotion does not preserve the maximal number of non-zero
entries in a vector of an alternating tableau. In fact, it is not clear whether there is
an embedding ι of the set of GL(n)-alternating tableaux for into the set of GL(n + 1)-
alternating tableaux such that pr ι(A) = prA. In spite of this, we prove a stability
phenomenon for promotion of alternating tableaux in Section 6.4.

In Section 5, we introduce a bijection similar in spirit to Sundaram’s, that maps an
alternating tableau A of length r to a triple

(
P(A),PP(A),PQ(A)

)
, consisting of a bi-

jection between two subsets, R and S, of {1, . . . , r}, and two partial standard Young
tableaux. The shapes of these tableaux are obtained by separating the positive and
negative terms in the weight of the alternating tableaux. The entries of the first tableau
then form the complementary subset of R, the entries of the second form the comple-
mentary subset of S.

Theorem 3.7. Let A be a GL(n)-alternating tableau of length r ≤ bn+1
2 c, not necessarily of

empty shape. Then P(evA) is the reversal of the complement of P(A) and

(
PP(evA),PQ(evA)

)
=
(

evPP(A), evPQ(A)
)
.

Theorem 3.8. For n ≥ r− 1 and also for n ≤ 2 the bijection P between GL(n)-alternating
tableaux of empty shape and permutations intertwines promotion and rotation:

rotP(A) = P(prA).

For even n ≥ r and for odd n ≥ r− 1, it intertwines evacuation and reverse-complement:

rcP(A) = P(evA).

For n ≤ 2 it intertwines evacuation and inverse-reverse-complement:

rcP(A)−1 = P(evA).

We remark that the case n ≤ 2 is special, because our bijection identifies GL(2)-
alternating tableaux of empty weight in a natural way with noncrossing partitions,
which form an invariant set under rotation. In fact, this set coincides with the web
basis for GL(2). Moreover, in this case the evacuation of an alternating tableau is its
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reversal. In terms of noncrossing partitions, the inverse-reverse-complement of the
corresponding permutation is the mirror image of the partition.

As indicated in the introduction, Patrias [19] demonstrated that the growth algo-
rithm of Khovanov and Kuperperg also intertwines promotion of GL(3)-alternating
tableaux of empty shape and rotation of webs.
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Chapter 4

The cactus groups, local rules,
promotion and evacuation

4.1 Promotion and evacuation

In this section, following Henriques and Kamnitzer [10], we define promotion and
evacuation of highest weight words as an action of certain elements of the cactus group
on r-fold tensor products of crystals. Then, following van Leeuwen [16] and Lenart [17]
we encode the action of the cactus group by certain local rules, generalising Fomin’s.

Definition 4.1. The r-fruit cactus group, Cr, has generators sp,q for 1 ≤ p < q ≤ r and
defining relations

• s2
p,q = 1

• sp,q sk,l = sk,l sp,q if q < k or l < p

• sp,q sk,l = sp+q−l,p+q−k sp,q if p ≤ k < l ≤ q

For convenience we additionally define sp,p = 1.

The following lemma shows that it is sufficient to define the action of the compos-
ites s1,q s2,q for 2 ≤ q ≤ r. The first relation was observed by White [33, lem. 2.3], the
second is in analogy to Schützenberger’s original definition of evacuation of standard
Young tableaux in [27, sec. 5].

Lemma 4.2. We have

sp,q = s1,q s1,q−p+1 s1,q and s1,q = s1,2 s2,2 s1,3 s2,3 . . . s1,q s2,q .

Proof. The first equality is obtained from the third defining relation by replacing p, q, k
and ` with 1, q, p and q respectively. The second equality follows from s1,` s2,` =

s1,`−1 s1,`, which is also an instance of the third defining relation.
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Henriques and Kamnitzer [10] defined an action of the cactus group on r-fold tensor
products of crystals in terms of the commutor, which in turn is defined using Lusztig’s
involution. Let us first briefly recall the latter, as introduced in [18]:

Definition 4.3. Let B be any highest weight crystal. Lusztig’s involution η maps the highest
weight element of B to its lowest weight element, and the Kashiwara operator fi to ei∗ , where
i 7→ i∗ is the Dynkin diagram automorphism specified by αi∗ = −w0(αi), and w0 is the
longest element of the Weyl group. This definition is extended to arbitrary crystals by applying
the involution to each component separately.

Note that Lusztig’s involution is not a morphism of crystals. For a crystal of semis-
tandard Young tableaux, Lusztig’s involution is precisely Schützenberger’s evacuation
of semistandard Young tableaux, not to be confused with the same operation on stan-
dard Young tableaux.

Definition 4.4. For two crystals A and B, the commutor is the crystal morphism

σA,B : A⊗ B→ B⊗ A

(a, b) 7→ η
(
η(b), η(a)

)
.

We can now define the action of the cactus group.

Definition 4.5. The action of Cr on words in C1 ⊗ · · · ⊗ Cr is defined inductively by letting
sp,p+1 act as 1⊗ σCp,Cp+1 ⊗ 1 and sp,q as 1⊗ σCp,Cp+1⊗···⊗Cq ⊗ 1 ◦ sp+1,q.

The action can be expressed more explicitly in terms of Lusztig’s involution:

Proposition 4.6.

sp,q w1 . . . wr = w1 . . . wp−1η
(
η(wq)η(wq−1) . . . η(wp)

)
wq+1 . . . wr.

Proof. Induction on q− p.

Definition 4.7. The promotion pr w of w is s1,r s2,r w, and the evacuation ev w of w is
s1,r w.

Proposition 4.8. s1,q s2,q(w) = σC1,C2⊗···⊗Cq(w).

Proof. Immediate from the definition of the action of s1,q and the fact that s2
2,q = 1.
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4.2 Local rules

We now follow Lenart’s approach [17] and realise the action of the cactus group using
van Leeuwen’s local rules [16, Rule 4.1.1], which generalise Fomin’s [28, A 1.2.7].

Definition 4.9. Let λ be a weight of a minuscule representation of a Lie group with Weyl group
W. Then domW(λ) is the dominant representative of the W-orbit Wλ.

Let A be a crystal and B and C be crystals of minuscule representations. Then the local
rule

τA
B,C : A⊗ B⊗ C → A⊗ C⊗ B

is a weight preserving bijection defined for highest weight words a⊗ b⊗ c as follows: let κ be
the weight of a, let λ be the weight of a⊗ b and let ν be the weight of a⊗ b⊗ c. Then

τA
B,C(a⊗ b⊗ c) = a⊗ ĉ⊗ b̂,

where, regarding κ, λ, µ and ν as vectors,

µ = domW(κ + ν− λ), ĉ = µ− κ and b̂ = ν− µ.

We represent this by the following diagram:

κ

λ ν

µ
b b̂

c

ĉ

(4.1)

From now on we omit the labels on the edges, because they are determined by the weights.
Since any isomorphism between crystals is determined by specifying a bijection between the

corresponding highest weight words, the definition of the local rule can now be extended to the
whole crystal by applying the lowering operators.

For example, the Weyl group of Sp(2n) is the hyperoctahedral group of signed per-
mutations of {±1, . . . ,±n}. Therefore, the dominant representative of a vector is ob-
tained by sorting the absolute values of its components into weakly decreasing order.

Remark 4.10. As in the classical case the local rule is symmetric in the sense that µ =

domW(κ + ν− λ) if and only if λ = domW(κ + ν− µ).

Theorem 4.11 ([17, thm. 4.4]). Let A and B be crystals, embedded into tensor products A1⊗
· · · ⊗ Ak and B1⊗ · · · ⊗ B` of crystals of minuscule representations. Let w be a highest weight
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word in A⊗ B. Then σA,B(w) can be computed as follows. Create a k× ` grid of squares as
in (4.1), labelling the edges along the left border with w1, . . . , wk and the edges along the top
border with wk+1, . . . , wk+`:

0
w1

wk

ŵ1+`

ŵk+`

wk+1 wk+`

ŵ1 ŵ` (4.2)

For each square whose left and top edges are already labelled use the local rule to compute the
labels on the square’s bottom and right edges. The labels ŵ1 . . . ŵk+` of the edges along the
bottom and the right border of the grid then form σA,B(w).

Example 4.12. Let C1 = C2 = C4 be the crystal corresponding to the exterior square
of SL(3) and C3 = C5 the crystal corresponding to its vector representation. Then
w = 110 ⊗ 101 ⊗ 100 ⊗ 110 ⊗ 010 is the highest weight word corresponding to the
semistandard tableau

1 1 2
2 4
3 5
4 .

The promotion pr w can now be computed by writing down the sequence of cumula-
tive weights in one line, writing the zero weight just below the second element of this
line, and then successively applying the local rule (4.1). Finally, append the weight of
w to the second line.

Because the Weyl group of SL(n) is the symmetric group Sn, domSn is just return-
ing its argument sorted into weakly decreasing order:

000 110 211 311 421 431
000 110 210 320 330 431.
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Thus, the promotion of the semistandard tableau above is

1 1 5
2 3
3 4
5 .

As mentioned in the introduction, this definition of promotion coincides with the
classical definition of promotion in terms of Bender-Knuth moves on tableaux when
the crystals correspond to exterior powers of the vector representation of SL(n).

Moreover, we obtain a formulation of the commutor, and therefore also of promo-
tion of highest weight words in crystals of minuscule representations, analogous to the
definition in terms of slides in tableaux:

Corollary 4.13. Let A and B be crystals, embedded into tensor products of crystals of minus-
cule representations. Let a ∈ A and b ∈ B such that ab is a highest weight word in A⊗ B, and
let b̂â = σA,B(ab) with b̂ ∈ B and â ∈ A.

Then

b̂ is the highest weight element in the same component of B as b, and

â is an element of A such that the weight of b̂â equals the weight of ab.

In particular, when A is a crystal of a minuscule representation, â is determined uniquely
by its weight.

Proof. Let Bλ be the component of B containing b. Because of the naturality of the
commutor in B (see property (C1) in [17]), σA,B(ab) equals σA,Bλ

(ab).
Since ab is a highest weight element and the commutor is an isomorphism of crys-

tals, σA,Bλ
(ab) = b̂â is also a highest weight element. It follows that b̂ is of highest

weight, and therefore equals the highest weight element of Bλ.

Let us now make promotion and evacuation of GL(n)-alternating tableaux explicit.
We regard the adjoint representation as the tensor product V ⊗ V∗, where V is the
vector representation of GL(n) and V∗ is its dual. Both of these are minuscule, so we
can apply Theorem 4.11.

As before, we begin by writing down the sequence of cumulative weights in the first
line. Following Theorem 4.11, we begin the second line just below the third element
of the first with the second element of the word. Below this we begin a third line with



32 Chapter 4. The cactus groups, local rules, promotion and evacuation

the zero weight. We then successively apply the local rule (4.1). Finally, we append the
final element of the second line and the weight of the original word to the third line.
We call the resulting diagram the promotion diagram of an alternating tableau:

µ0=∅ µ1=1 µ2 . . . . . . µ2r

µ̌1=µ1 . . . . . . µ̌2r−1

ˇ̌µ0=µ0 . . . . . . ˇ̌µ2r−2 ˇ̌µ2r−1=µ̌2r−1 ˇ̌µ2r=µ2r

(4.3)

Example 4.14. To illustrate, let us compute the promotion of the GL(3)-alternating
tableau (e1, e3), (e1, e2), (e2, e2), (e2, e1), (e3, e1), where ei is the i-th unit vector. The Weyl
group of GL(n) is the symmetric group Sn, so domSn is just returning its argument
sorted into decreasing order. The first row is the original alternating tableau. For better
readability we write 1̄ in place of −1.

000 100 101̄ 201̄ 21̄1̄ 201̄ 21̄1̄ 201̄ 101̄ 100 000
100 200 201̄ 211̄ 201̄ 211̄ 111̄ 110 100
000 100 101̄ 111̄ 101̄ 111̄ 101̄ 100 101̄ 100 000

(4.4)

The six vectors in the rectangle demonstrate that the naive embedding of GL(n)-alter-
nating tableaux into the set of GL(n + 1)-alternating tableaux is not compatible with
promotion, as already mentioned in Section 3.2: padding the vectors of the original
word with zeros, and applying the local rules, we obtain the rectangle

2001̄ 201̄1̄
2101̄ 211̄1̄
1101̄ 111̄1̄,

with bottom right vector 111̄1̄, rather than 1001̄ as one might expect.

To obtain the evacuation of an alternating tableau we use the second identity of
Lemma 4.2. We start by computing the promotion of the initial alternating tableau
as above, except that we do not append anything to the third line. We then repeat
this process a total of r times, creating a (roughly) triangular array of weights, which
we call the evacuation diagram of an alternating tableau. The sequence of cumulative
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weights of the evacuation can then be read off the vertical line on the right hand side,
from bottom to top. An example can be found in Figure 4.1. The symbols⊕,	 and
⊗ occurring in the figure should be ignored for the moment.

A = 000 100 101̄ 201̄ 202̄ 201̄ 21̄1̄ 31̄1̄ 21̄1̄ 201̄ 202̄ 302̄ 303̄ 313̄ 213̄

100 200 201̄ 200 201̄ 301̄ 201̄ 211̄ 212̄ 312̄ 313̄ 323̄ 223̄

000 100 101̄ 100 101̄ 201̄ 101̄ 111̄ 112̄ 212̄ 213̄ 223̄ 213̄

100 110 111̄ 211̄ 111̄ 211̄ 212̄ 312̄ 313̄ 323̄ 313̄

000 100 101̄ 201̄ 101̄ 201̄ 202̄ 302̄ 303̄ 313̄ 303̄

100 200 100 200 201̄ 301̄ 302̄ 312̄ 302̄

000 100 000 100 101̄ 201̄ 202̄ 212̄ 202̄

100 200 201̄ 301̄ 302̄ 312̄ 302̄

000 100 101̄ 201̄ 202̄ 212̄ 202̄

100 200 201̄ 211̄ 201̄

000 100 101̄ 111̄ 101̄

100 110 100

000 100 101̄

100

000

ev
A

=

	

	

⊕

⊗

FIGURE 4.1: The evacuation of an alternating tableau.

Finally, we would like to point out that for alternating tableaux of empty shape
there is a second way to compute the promotion, exploiting the fact that the next-to-
last element is forced to be 10 . . . 0. Let w = w1 . . . wr be the highest weight word
corresponding to the alternating tableau. We consider w as an element of A ⊗ A∗ ⊗
Bλ, where A is the crystal corresponding to V, A∗ is the crystal corresponding to V∗

and, similar to what was done in the proof of Corollary 4.13, Bλ is the component of
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⊗r−1(A⊗ A∗) containing w3 . . . wr. Then we first compute ŵ = σA,A∗⊗Bλ
(w), followed

by computing ˆ̂w = σA∗,Bλ⊗A(ŵ):

000 100 101̄ 201̄ 21̄1̄ 201̄ 21̄1̄ 201̄ 101̄ 100 000
000 001̄ 101̄ 11̄1̄ 101̄ 11̄1̄ 101̄ 001̄ 000 001̄ 000

000 100 101̄ 111̄ 101̄ 111̄ 101̄ 100 101̄ 100 000

(4.5)

Because the initial segment of ˆ̂w is an element of Bλ and is of highest weight, it must
coincide with the initial segment of the promotion of w.

This variant of the local rules for promotion was recently rediscovered, in slightly
different form, by Patrias [19]. Note, however, that for an alternating tableau of non-
empty shape, this procedure yields a tableau which, in general, is different from the
result of promotion.



35

Chapter 5

Growth diagram bijections

In this chapter we recall Sundaram’s bijection (using Roby’s description [23] based on
Fomin’s growth diagrams [6]) between oscillating tableaux and matchings. We also
present a new bijection, in the same spirit, between alternating tableaux and partial
permutations. In both cases, the action of the cactus group on highest weight words
becomes particularly transparent when using Fomin’s growth diagrams and local rules
for the Robinson-Schensted correspondence.

We give a slightly non-standard presentation with the benefit that these local rules
can be regarded as a variation of the classical case of Definition 4.9.

c =

κ

λ ν

µ

or c =

λ

λ λ

µ

×

µ′ = sort(κ′ + ν′ − λ′) µ = λ + e1

λ′ = sort(κ′ + ν′ − µ′) λ = µ− e1

FIGURE 5.1: Cells of a growth diagram and corresponding local rules.

In general, a growth diagram is a finite collection of cells (as in Figure 5.1, where
a prime denotes the conjugate partition and e1 is the first unit vector), arranged in
the form of a Ferrers diagram using the French convention. Thus, for each cell in the
diagram all cells below and to the left are also present. The four corners of each cell c
are labelled with partitions as indicated.

A difference to Definition 4.9 is that two adjacent partitions (as for example λ and
κ in Figure 5.1) either coincide or the one at the head of the arrow is obtained from the
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FIGURE 5.2: A pair of growth diagrams G(O) and G(s1,9O) illustrating
Theorem 3.3. The dotted line indicates the axis of reflection for the match-

ingsM(O) andM(s1,9O).

other by adding a single box. In the latter case, we write λ l κ and, if κ is obtained by
adding one to the i-th part, κ = λ + ei.

The two rules in Figure 5.1 determining µ are called forward rules, the two rules in
Figure 5.1 determining λ are called backward rules.

5.1 Roby’s description of Sundaram’s correspondence

Definition 5.1. Let O = (µ0, µ1, . . . , µr) be an oscillating tableau. The associated (trian-
gular) growth diagram G(O) consists of r left-justified rows, with i − 1 cells in row i for
i ∈ {1, . . . , r}, where row 1 is the top row. Label the cells according to the following specifica-
tion:

R1 Label the corners of the cells along the diagonal from top-left to bottom-right with the
partitions in O.

R2 Label the corners of the subdiagonal with the smaller of the two partitions labelling the
two adjacent corners on the diagonal.

R3 Use the backward rules to determine which cells contain a cross.
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LetM(O) be the matching containing a pair {i, j} for every cross in column i and row j
of the G(O). Furthermore, letMT(O) be the partial standard Young tableau corresponding to
the sequence of partitions along the top border of G(O).

Example 5.2. An example for this procedure, which also illustrates Theorem 3.3, can
be found in Figure 5.2. Let w be the highest weight word 1, 2, 1,−2, 2,−1, 1, 3,−3. The
partitions in the corresponding 3-symplectic oscillating tableau O label the corners of
the diagonal of the first growth diagram. Applying the backward rules, we obtain the
matching and the partial standard Young tableau

M(O) =
{
{1, 4}, {2, 9}, {3, 6}

}
andMT(O) = 5 7

8
.

Using Lemma 4.2 and the local rule in Definition 4.9 one can compute that s1,9 w is
the highest weight word 1, 2, 3, 1, 2, 1,−2,−3,−1 corresponding to the 3-symplectic os-
cillating tableau labelling the corners of the diagonal of the second growth diagram.
Applying the backward rules again, we obtain the matching and the partial standard
Young tableau predicted by Theorem 3.3:

M(s1,9O) =
{
{1, 8}, {4, 7}, {6, 9}

}
andMT(s1,9O) = 2 5

3
.

5.2 A new variant for Stembridge’s alternating tableaux

Recall that a staircase is a vector with weakly decreasing integer entries. The positive
part of the staircase is the partition obtained by removing all entries less than or equal
to zero. The negative part of the staircase is the partition obtained by removing all
entries greater than or equal to zero, removing the signs of the remaining entries and
reversing the sequence.

Definition 5.3. Let A = (µ0, µ1, . . . , µ2r) be an alternating tableau. The associated growth
diagram G(A) is an r× r square of cells, obtained as follows:

P1 Label the corners of the cells along the diagonal from north-west to south-east with the
staircases in A.

P2 Apply the backward rules on the positive parts of the staircases to determine which cells
below the diagonal contain a cross.

P3 Use the backward rules (rotated by 180◦) on the negative parts of the staircases to deter-
mine which cells above the diagonal contain a cross.
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Let P(A) be the partial permutation mapping i to j for every cross in column i and row j of
G(A), and let

(
PP(A),PQ(A)

)
be the pair of partial standard Young tableau corresponding

to the sequence of partitions along the bottom and the right border of G(A), respectively.

An example for this procedure, which also illustrates Theorem 3.7, can be found in
Figure 5.3. We render fixed points as⊗, other crosses below the diagonal as⊕ and
crosses above the diagonal as	. The reason for doing so is given by Corollary 6.16 in
Section 6.3, where we show that the growth diagram of an alternating tableau and its
evacuation diagram are very closely related.

Example 5.4. Let w be the GL(13) highest weight word

(e1,−e13), (e1,−e13), (e13,−e12), (e1,−e1), (e12,−e13), (e1,−e13), (e2,−e1)

where ei is the i-th unit vector. The staircases in the corresponding alternating tableau
A label the corners of the diagonal of the first growth diagram, where we write the
negative partitions with bars. Applying the backward rules we obtain the partial per-
mutation and the partial standard Young tableaux

P(A) =
{
(3, 2), (4, 4), (5, 1), (6, 5)

}
,PP(A) = 3 5 6 , and PQ(A) = 1 2

7
.

On the right hand side of the figure the growth diagram obtained by applying the same
procedure to s1,7 w, which yields

P(A) =
{
(2, 1), (3, 7), (4, 4), (5, 6)

}
,PP(A) = 2 3 5 , and PQ(A) = 1 7

6
.

as predicted by Theorem 3.7.

In the example above, we could have obtained the same sequence of staircases from
a GL(3) highest weight word. As it turns out, applying s1,7 to this word yields the
same result, although for r = 7 Theorem 3.7 applies only when n is at least 13. The
computation of the evacuated alternating tableau is carried out in Figure 4.1.

The GL(2) highest weight word (e1,−e2), (e2,−e2) illustrates the necessity of the
hypothesis in Theorem 3.7. On the one hand, it is fixed by s1,2, on the other hand, the
corresponding filling of the 2× 2 square has a single cross at (2, 1), which is incompat-
ible with the conclusion of the theorem.

Similarly, to justify the necessity of the hypothesis in Theorem 3.8, consider the
GL(3)-alternating tableau in the first row of Diagram (4.4), which corresponds to the
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FIGURE 5.3: A pair of growth diagrams G(A) and G(s1,7A) illustrating
Theorem 3.7.

permutation depicted in Figure 3.1. Its promotion, as computed in the last row of
Diagram (4.4), corresponds to the permutation 23514, which differs from the rotated
permutation.
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Proofs

Our strategy is as follows. We first consider only GL(n)-alternating tableaux of empty
shape and length r with n ≥ r, and show that the bijection P presented in Section 5.2
intertwines rotation and promotion. To do so, we demonstrate that the middle row
of the promotion diagram (4.3) of an alternating tableau A can be interpreted as corre-
sponding to a single-step rotation of the rows of the growth diagram G(A). Then, using
a very similar argument, we find that the promotion of A corresponds to a single-step
rotation of the columns of the growth diagram just obtained.

To prove the statements concerning evacuation, we show that the permutation
P(A) can actually be read off directly from the evacuation diagram. In particular,
this makes the effect of evacuation on P(A) completely transparent. The effect of the
evacuation of an arbitrary alternating tableau A on the triple

(
P(A),PP(A),PQ(A)

)
is deduced from the special case of alternating tableaux of empty shape by extending
A to an alternating tableau of empty shape.

In order to determine the exact range of validity of Theorem 3.8 we use a stability
phenomenon proved in Section 6.1. The case n = 2 is treated completely separately in
Section 6.4.

Finally, in Section 6.5, we deduce the statements for oscillating tableaux and the
vector representation of the symplectic groups, Theorem 3.3 and 3.4, from the state-
ments for alternating tableaux.

6.1 Stability

In this section we prove a stability phenomenon needed for establishing the exact
bounds in Theorem 3.8, but may be interesting in its own right.

Theorem 6.1. Let A be a GL(n)-alternating tableau, not necessarily of empty shape, and
suppose that each staircase in A and prA contains at most m nonzero parts.
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Then pr Ã = p̃rA, where Ã and p̃rA are the GL(m)-alternating tableaux obtained from
A and prA by removing n−m zeros from each staircase.

Before proceeding to the proof, let us remark that this is not a trivial statement:
it may well be that some staircases in the intermediate row p̌rA have more than m
nonzero parts.

Proof. It suffices to consider the case m = n− 1. We show inductively that the state-
ment is true for every square of staircases in Diagram (4.3)

λ = µ2i−2 + α = µ2i−1 − ν = µ2i

− − −

β = µ̌2i−3 + ε = µ̌2i−2 − γ = µ̌2i−1

+ + +

κ = ˇ̌µ2i−4 + δ = ˇ̌µ2i−3 − µ = ˇ̌µ2i−2

(6.1)

Thus, we assume that all staircases in the top and bottom line contain at least one zero
entry. For such a staircase ρ ∈ Zn, let ρ̃ ∈ Zn−1 be the staircase obtained from ρ by
removing a zero entry. If ρ does not contain a zero, it must contain an entry 1 (say, at
position i), followed by a negative entry. In this case, ρ̃ ∈ Zn−1 is obtained from ρ by
removing ρi and adding 1 to ρi+1.

With this notation, we have to show the following four equalities:

1. ε̃ = domSn−1(β̃ + α̃− λ̃),

2. γ̃ = domSn−1(ε̃ + ν̃− α̃),

3. δ̃ = domSn−1(κ̃ + ε̃− β̃), and

4. µ̃ = domSn−1(δ̃ + γ̃− ε̃).

Let us first reduce to the case where at least one of the staircases involved does not
contain a zero. Consider a square of staircases

β = α± ei δ = α± ei ± ej

α γ = domSn(α± ej)
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where all of α, β, γ and δ contain a zero. We first show that there is an index k 6∈ {i, j}
such that αk = βk = δk = 0. Suppose on the contrary that αk 6= 0 for all k 6∈ {i, j}.
Then, since β contains a zero, we have i 6= j. Furthermore, we have

αi = 0 or αj = 0
αi = ∓1 or αj = 0
αi = ∓1 or αj = ∓1
αi = 0 or αj = ∓1

because α, β, γ and δ contain a zero, respectively. However, this set of equations admits
no solution. Thus, there must be a further zero in α and therefore also in β, γ and δ.
From this it follows that γ̃ = domSn−1(α̃ + δ̃− β̃).

Returning to the square in (6.1) we show that ε contains a zero entry if β or γ do.
Suppose on the contrary that ε does not contain a zero entry. Then ε = β + ei, where i
is the position of the (only) zero in β. Moreover, we have α = β, because there is only
one way to obtain a zero entry in α by subtracting a unit vector. Thus,

λ = domSn(β + α− ε) = domSn(β− ei) = β− ei,

which implies that λ does not contain a zero entry, contradicting our assumption.
Similarly, if γ contains a zero at position i, we have ε = γ + ei, γ = δ and µ =

domSn(γ− ei), a contradiction.
There remain three different cases:

β contains a zero, but γ does not.
We have to show Equations (2) and (4). Let α = ε − ei and ν = ε − ei − ej. Then

γ = domSn(ε− ej). Since, by the foregoing, ε contains a zero, we have ε j = 0. Since α

also has a zero we have i 6= j. Since ν has a zero, εi = 1. Because γ has no zero, µ = ν.
Together with the fact that δ has a zero implies that δ = ε− ei. The equations can now
be checked directly.
β contains no zero, but γ does.

We have to show Equations (1) and (3). Let λ = β− ei and α = β− ei + ej. Then
ε = domSn(β + ej). Since β has no zero, but, by the foregoing, ε does, we have β j = 1̄.
Since λ has a zero, βi = 1, and thus i 6= j. Because β has no zero, κ = λ. Again, the
equations can now be checked directly.
none of β, ε and γ contain a zero.

In this case, κ = λ, δ = α and µ = ν. Let λ = β − ei, α = β − ei + ej. Then
ε = domSn(β + ej). Thus β j 6= 1̄, βi = 1, βi+1 ≤ 1̄ and, because α 6= β, we have i 6= j.
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Because α and β are staircases, β + ej has in fact decreasing entries and ε = β + ej.
Thus, α = ε− ei, ν = ε− ei − ek and γ = domSn(ε− ek). Again, because ε and ν are
staircases, ε− ek has decreasing entries and γ = ε− ek. Thus, the equations can now be
checked directly.

6.2 Growth diagrams for staircase tableaux

It will be convenient to slightly modify and generalise the definition of G(A) as fol-
lows.

Definition 6.2. For a pair of partitions µ = (µ+, µ−), the partition µ+ is the positive and the
partition µ− is the negative part. Given an integer n not smaller than the sum of the lengths
of the two partitions, [µ+, µ−]n is the staircase

(µ0
+, µ1

+, . . . , 0, . . . , 0, . . . ,−µ1
−,−µ0

−).

Using this equivalence, a staircase tableau is a sequence of staircasesA = (µ0, µ1, . . . , µr)

such that µi and µi+1 differ by a unit vector for 0 ≤ i < r. When µ0 = ∅, the tableau is
straight, otherwise skew. Unless specified otherwise, a staircase tableau is straight.

The extent1 E(µ) of a staircase µ = [µ+, µ−]n is the number of nonzero entries in µ. Put
differently, the extent is the sum of the lengths of the partitions µ+ and µ−. The extent of a
staircase tableau is the maximal extent of its staircases.

Definition 6.3. The growth diagram G(A) corresponding to a (straight) staircase tableau A
is obtained in analogy to Definition 5.3: label the top left corner with the staircase µ0. If µi+1

is obtained from µi by adding (respectively subtracting) a unit vector, µi+1 labels the corner to
the right of (respectively below) the corner labelled µi. All the remaining corners of G(A) are
then labelled with staircases as follows. The positive parts on the corners to the left and below
the path defined by the staircase tableau are obtained by applying the backward rule, whereas
the forward rule determines the positive parts on the remaining corners. The negative parts are
computed similarly.
G+ (respectively G−) denotes the (classical) growth diagrams obtained by ignoring the neg-

ative (respectively positive) parts of the staircases labelling the corners of a growth diagram
G.

1It would be more logical to use ‘height’ for the extent of a staircase, and ‘length’ for the number n.
However, Stembridge defines the height of a staircase as the number n. We therefore avoid the words
‘length’ and ‘height’ in the context of staircases altogether.
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A (partial) filling φ is a rectangular array of cells, where every row and every column
contains at most one cell with a cross.

Let φ be a partial filling having crosses in all rows except R (counted from the top), and in
all columns except C (counted from the left). Let P and Q be partial standard Young tableaux
having entries R and C respectively. Then the growth diagram G(φ, P, Q) is obtained as fol-
lows. The sequence of partitions corresponding to Q (respectively P) determines the positive
(respectively negative) parts of the staircases on the bottom (respectively right) border. The
remaining positive and negative parts are computed using the forward rule.

If φ contains precisely one cross in every row and every column, we abbreviate G(φ, ∅, ∅)

to G(φ).

Remark 6.4. The classical growth diagram associated to a (partial) filling φ is precisely
G+(φ, Q).

Remark 6.5. Two horizontally adjacent shapes in G+(φ, Q) differ if and only if there is no
cross above in this column. Two horizontally adjacent shapes in G−(φ, Q) differ if and only if
there is a cross above in this column.

Remark 6.6. Transposing a filling φ is equivalent to interchanging G+(φ) and G−(φ).

Finally, we introduce the operations on fillings we want to relate to promotion.

Definition 6.7. Let φ be a filling of a square grid. The column rotation crot φ (respectively,
row rotation rrot φ) of the filling φ is obtained from φ by removing the first column (respec-
tively, row) and appending it at the right (respectively, bottom).

The rotation rot φ of a filling φ is crot rrot φ.

6.3 Promotion and evacuation of alternating tableaux

Let us first recall a classical fact concerning the effect of removing the first column of a
filling on the growth diagram.

Proposition 6.8. Consider the classical growth diagrams G and Ǧ for the partial fillings φ and
φ̌, where φ̌ is obtained from φ by deleting its first column. Let Q and Q̌ be the partial standard
Young tableaux corresponding to the sequence of partitions on the top borders of the growth
diagrams G and Ǧ. Then jdt Q = Q̌

The following central result connects the local rule for the symmetric group with
column rotation, the operation of moving the first letter of a permutation to the end.
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Theorem 6.9. Let φ be a filling of an r× r square grid having exactly one cross in every row
and in every column. Let λ and ν be two adjacent staircases in G(φ), λ being to the left or
above ν. Finally, let κ and µ be the two corresponding staircases in G(crot φ). Then, provided
that n ≥ max(E(κ), E(λ), E(µ), E(ν)), we have µ = domSn(κ + ν− λ).

Conversely, suppose that the staircases in A = (1 = µ1, . . . , µ2r = ∅) label a sequence
of adjacent corners from the corner just to the right of the top left corner to the bottom right
corner of G(φ), and suppose that the staircases Ǎ = (∅ = µ̌0, . . . , µ̌2r = ∅) satisfy µ̌i =

domSn(µ̌
i−1 + µi+1 − µi) for i ≤ 2r− 1. Then, provided that n ≥ max(E(A), E(Ǎ)), the

filling of G(Ǎ) is crot φ.

We remark that Proposition 6.8, restricted to permutations, is a special case of
this result. More precisely, it is obtained by considering the staircase tableau (1 =

µ1, . . . , µ2r = ∅) consisting of the partitions labelling the corners along the top and the
right border of a classical growth diagram, with the empty shape in the top left corner
removed.

It is not hard to extend the theorem to partial fillings, the statement is completely
analogous. Its proof proceeds by extending the partial filling to a permutation. How-
ever, it turns out to be more convenient to deduce the statements for staircase tableaux
of non-empty shape from the corresponding statements for staircase tableaux of empty
shape directly.

Proof. It is sufficient to prove the first statement, because the filling and the staircases
of a growth diagram determine each other uniquely. Let us first determine certain local
rules satisfied separately by the positive and negative parts of the staircases κ, λ, µ and
ν. A summary of the various cases is displayed in Figure 6.1. In the following, addition
and subtraction of integer partitions is defined by interpreting them as vectors in Zn.
First case, λ left of ν:

Let Q = (∅ = µ0, µ1, . . . , µs−1 = λ+, µs = ν+) be the partial standard Young
tableau corresponding to the sequence of partitions in G+(φ) on the same line as λ and
ν, beginning at the left border. Let Q̌ = (∅ = µ̌0, µ̌1, . . . , µ̌s−2 = κ+, µ̌s−1 = µ+) be the
corresponding partial standard Young tableau in G+(crot φ).

Suppose there is a cross in φ in the first column in a row below ν, as in Figure 6.1.a.
Then, by Proposition 6.8, Q̌ = jdt Q, which implies that the partitions µs−1, µs, µ̌s−2 and
µ̌s−1 satisfy the local (growth diagram) rule µ̌s−1 = sort(µ̌s−2 + µs − µs−1). Moreover
κ− = λ− and ν− = µ− because the growth for the negative parts of the staircases is
from the top right to the bottom left.
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a. φ :
λ ν

× crot φ :
κ µ

×
λ+ = κ+ +�
E(κ+ + ν+ − λ+) ≤ E(ν+)
E(κ− + ν− − λ−) = E(ν−)

µ+ = sort(κ+ + ν+ − λ+), λ− = κ−, ν− = µ−

b. φ :

λ ν

× crot φ :
κ µ

× µ− = ν− +�
E(κ− + ν− − µ−) ≤ E(κ−)
E(κ+ + ν+ − µ+) = E(κ+)

λ− = sort(κ− + ν− − µ−), λ+ = κ+, ν+ = µ+

c. φ :
λ

ν× crot φ :
κ

µ ×
λ+ = κ+ +�
E(κ+ + ν+ − λ+) ≤ E(ν+)
E(κ− + ν− − λ−) = E(ν−)

µ+ = sort(κ+ + ν+ − λ+), λ− = κ−, ν− = µ−

d. φ : λ

ν

× crot φ : κ

µ

× µ− = ν− +�
E(κ− + ν− − µ−) ≤ E(κ−)
E(κ+ + ν+ − µ+) = E(κ+)

λ− = sort(κ− + ν− − µ−), λ+ = κ+, ν+ = µ+

e. φ : λ

ν× crot φ : κ

µ ×
λ′+ − e1 = ν′+ = κ′+ = µ′+, λ′− = ν′− = κ′− = µ′− − e1

FIGURE 6.1: The cases considered in the proof of Theorem 6.9.
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If there is a cross in the first column in a row above ν, as in Figure 6.1.b, we reason
in a very similar way. In this case κ+ = λ+ and ν+ = µ+. For the negative parts of
the staircases we consider the partial standard Young tableaux Q and Q̌ corresponding
to the sequences of partitions beginning at the right border of G−(φ) and G−(crot φ)

respectively. We then have Q = jdt Q̌ and conclude as before, using the symmetry of
the local rule, see Remark 4.10.
Second case, λ above ν:

Depending on the position of the cross in the first column there are three slightly
different cases, as illustrated in Figure 6.1.c, d and e.

Recall that the partitions on the right border of a (classical) growth diagram cor-
responding to the right to left reversal of a filling ψ are obtained by transposing the
partitions on the right border of the (classical) growth diagram corresponding to ψ.
Consider now the filling ψ below and to the left of λ, and let ψ̌ be the filling to the left
and below κ. Note that the reversal of ψ is obtained from the reversal of ψ̌ by append-
ing the first column of ψ to the right. We thus obtain that the transposes of the positive
parts of the staircases κ, µ, λ and ν satisfy the local (growth diagram) rule.

The relation between the negative parts of the staircases κ, µ, λ and ν is obtained in
a very similar way by considering the fillings above and to the right of ν and µ.

We now show µ = domSn(κ + ν− λ), provided n ≥ max(E(κ), E(λ), E(µ), E(ν)).
To do so, we extend the notion of extent to arbitrary vectors with non-negative integer
entries: for such a vector α ∈ Zn

≥0, the extent E(α) is n minus the number of trailing
zeros.

The case illustrated in Figure 6.1.e follows by direct inspection. We thus only con-
sider the remaining four cases, in which κ+ + ν+ − λ+ and κ− + ν− − λ− have all
entries non-negative, because µ+ and µ− are obtained by sorting these vectors. Simi-
larly, also κ+ + ν+ − µ+ and κ− + ν− − µ− have all entries non-negative, because λ+

and λ− are obtained by sorting these vectors, by the symmetry of the local rule, see
Remark 4.10.

Suppose first that n ≥ max(E(κ), E(λ), E(ν)). Then

domSn(κ + ν− λ) = domSn([κ+, κ−]n + [ν+, ν−]n − [λ+, λ−]n) = domSn(α+ + α−),

where α+ = [κ+, ∅]n + [ν+, ∅]n − [λ+, ∅]n and α− = [∅, κ−]n + [∅, ν−]n − [∅, λ−]n. It
remains to show that

E(α+) + E(α−) = E
(
κ+ + ν+ − λ+

)
+ E

(
κ− + ν− − λ−

)
≤ n,
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because then

domSn(α+ + α−) = [sort(α+), sort(α−)]n

= [sort(κ+ + ν+ − λ+), sort(κ− + ν− − λ−)]n = [µ+, µ−]n = µ.

Similarly, suppose that n ≥ max(E(κ), E(µ), E(ν)). In this case, reasoning as above,
we have to show that E

(
κ+ + ν+ − µ+

)
+ E

(
κ− + ν− − µ−

)
≤ n.

The first inequality is verified by inspection of Figure 6.1.a and c, whereas the sec-
ond concerns Figure 6.1.b and d. Here we write, for example, λ+ = κ+ +� to indicate
that the partition λ+ is obtained from the partition κ+ by adding a single cell, which
implies the inequality for the extent.

Definition 6.10. Let A = (∅ = µ0, µ1, . . . , µ2r−1, µ2r = µ) be an alternating tableau. Then
p̌rA = (∅ = µ̌0, µ̌1, . . . , µ̌2r−1, µ̌2r = µ) is the staircase tableau obtained from A by setting
µ̌1 = µ1 = 1, and then applying the local rule (4.1) successively to µi, µi+1, and µ̌i−1 to obtain
µ̌i for i ≤ 2r− 1. Additionally, we set µ̌2r = µ.

In other words, p̌rA can be read off from the diagram for promotion as illustrated in
Diagram (4.3) beginning with the empty shape in the lower left corner, then following
the second row, and terminating with the shape µ in the upper right corner.

Lemma 6.11. Let A be a staircase tableau of empty shape and length r. Then the extent of A
is at most r.

Restricting to alternating tableaux, there is a single alternating tableau A0 of empty shape,
length r and extent r. The filling φ0 of its growth diagram G(A0) is invariant under rotation:
rot φ0 = φ0.

Restricting further to alternating tableaux of even length, the only tableauA such that p̌rA
has extent r is A0.

Proof. For r = 2s + 1 odd, the only r × r filling with associated alternating tableau of
extent r corresponds to the permutation s + 1, s + 2, . . . , r, 1, . . . , s, which is invariant
under rotation.

Suppose that r = 2s is even. The only r × r filling φ with associated alternating
tableau of extent r corresponds to the permutation s + 1, s + 2, . . . , r, 1, . . . , s, which
again is invariant under rotation.

Similarly, a staircase tableau p̌rA with extent r must have filling corresponding to
the permutation s, s + 1, . . . , r, 1, . . . , s − 1, which is the filling rrot φ, and thus A =

A0.
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The first statement of Theorem 3.8, with the exception of the case n = 2 and the
case n = r − 1, is a direct consequence of the following result. The special case of
GL(2)-alternating tableaux and GL(r − 1)-alternating tableaux will be considered in
Section 6.4 below.

Theorem 6.12. Let A be a GL(n)-alternating tableau of length r and empty shape. Let φ be
the filling of the growth diagram G(A). Let φ̌ and ˇ̌φ be the fillings of the growth diagrams
G(p̌rA) respectively G(prA).

Then, for n ≥ r, rrot φ = φ̌ and crot φ̌ = ˇ̌φ.

Proof. Let

p̌rA = (∅ = µ̌0, µ̌1, . . . , µ̌2r−1 = 1, µ̌2r = ∅)

and let

prA = (∅ = ˇ̌µ0, ˇ̌µ1, . . . , ˇ̌µ2r−1 = 1, ˇ̌µ2r = ∅).

Furthermore, let

Ã = (∅ = µ̃0, µ̃1, . . . , µ̃2r−1 = 1̄, µ̃2r = ∅)

be the staircase tableau obtained by setting µ̃0 = ∅ and then successively applying the
local rule (4.1) to µ̌i, µ̌i+1, and µ̃i−1 to obtain µ̃i for i ≤ 2r− 1. Because of Lemma 6.11
and the assumption n ≥ r, Theorem 6.9 is applicable and implies that the filling φ̃ of
the growth diagram G(Ã) is crot φ̌.

All staircases in Ã except µ̃2r−1 coincide with those of prA. Because µ̌2r−1 = 1,
µ̌2r = ∅ and µ̃2r−2 is either ∅ or 11̄, we have µ̃2r−1 = 1̄. However, since φ̃ and ˇ̌φ
correspond to permutations and the first r − 1 columns of these fillings are the same,
we conclude that φ̃ equals ˇ̌φ.

Because of the symmetry of the local rules pointed out in Remark 4.10 and because
µ̌2r−1 = 1 we can apply the same reasoning replacing p̌rA and prA with the reversal
of p̌rA and the reversal of A. Clearly, the filling corresponding to the reversal of a
tableaux is obtained by flipping the original filling over the diagonal from the bottom-
left to the top-right. In the process, column rotation is replaced by row rotation, which
implies that rrot(φ) = φ̌.

Corollary 6.13. In the setting of Theorem 6.12 if n is odd it is sufficient to require n ≥ r− 1.
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Proof. Let A be a GL(n)-alternating tableau of length r = 2s, with n ≥ r. Let φ be the
filling of G(A). Then, combining Lemma 6.11 and Theorem 6.12 we obtain

E(A) = r ⇔ E(p̌rA) = r ⇔ E(prA) = r.

By contraposition, E(A) < r ⇔ E(p̌rA) < r ⇔ E(prA) < r. Thus, the claim
follows using the proof of Theorem 6.12, taking into account that Theorem 6.9 is now
applicable even with n ≥ r− 1.

Finally, we can conclude one part of Theorem 3.8. Note that the case of odd n is also
covered by the previous corollary.

Corollary 6.14. Let A be a GL(n)-alternating tableau of length r and empty shape. Then, for
n ≥ r− 1, rotP(A) = P(prA).

Proof. This is a consequence of Lemma 6.11 and Theorem 6.1.

We now introduce a different way to obtain the filling of G(A). Moreover, this
construction sheds some additional light on the relationship between the local rule (4.1)
and those in Figure 5.1. Consider the evacuation diagram for obtaining the evacuation
as illustrated in Figure 4.1. We construct a filling of the cells surrounded by three or
four staircases using the symbols	,⊕ and⊗ as follows:

(α, τ)

(α, σ) (α, τ)

(β, τ)

	 or

(α, τ)

(β, τ) (α, τ)

(α, σ)

⊕ or

1 0

1

⊗ ,

where β (respectively σ) is obtained from α (respectively τ) by adding a cell to the first
column.

The following lemma is the main building block in establishing the connection be-
tween the filling of G(A) and the decorated evacuation diagram.

Lemma 6.15. Let A = (∅ = µ0, . . . , µ2r = ∅) be an alternating tableau of empty shape.
Let p̌rA = (∅ = µ̌0, µ̌1, . . . , µ̌2r−1, µ̌2r = ∅) be as in Definition 6.10 and let prA = (∅ =
ˇ̌µ0, . . . , ˇ̌µ2r = ∅) be the promotion ofA. Suppose that the filling of G(A) has a cross in column
` > 1 of the first row and in row k > 1 of the first column. Then, for even n ≥ r and for odd
n ≥ r− 1, we have

• µ
j
+ = µ̌

j−1
+ for 2 ≤ j ≤ 2`− 2,
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• µ
j
− = µ̌

j−1
− for j > 2`− 2,

• µ2`−2
+ = µ2`−1

+ = µ̌2`−3
+ , and µ̌2`−2

+ is obtained from these by adding a cell to the first
column. The cell labelled with these four staircases contains a	.

Similarly,

• µ̌
j
− = ˇ̌µj−1

− for 1 ≤ j ≤ 2k− 2

• µ̌
j
+ = ˇ̌µj−1

+ for j > 2k− 2

• µ̌2k−1
+ = ˇ̌µ2k−2

+ = ˇ̌µ2k−3
+ , and µ̌2k−2

+ is obtained from these by adding a cell to the first
column. The cell labelled with these four staircases contains a⊕.

Finally suppose that there is a cross in the cell in the top left cell, that is k = ` = 1. Then

• µ1 = 1, µ2 = ∅ and µ̌1 = 1. The cell labelled with these four staircases contains a⊗.

• µj = µ̌j−1 − e1 = ˇ̌µj−2 for all 2 ≤ j ≤ 2r.

Proof. Consider a square of four adjacent staircases in the diagram for computing the
promotion of an an alternating tableau below:

µ2 . . . µ2`−2 µ2`−1 . . . . . . . . . . . . . . . . . . . . . µ2r = ∅

µ̌1 . . . µ̌2`−3 µ̌2`−2 . . . µ̌2k−2 µ̌2k−1 . . . µ̌2r−1

∅ = ˇ̌µ0 . . . . . . . . . . . . . . . . . . . . . ˇ̌µ2k−3 ˇ̌µ2k−2 . . . ˇ̌µ2r−2

	

⊕
(6.2)

By definition, these satisfy the local rule, as required by Theorem 3.4. By Corollary 6.13,
Theorem 6.9 is applicable with the given bounds for n. The equalities for the staircases
in the second and third row are precisely the equalities listed below the illustrations
in Figure 6.1: cases a and c describe the situation to the left of⊕, case e describes the
situation at⊕ and cases b and d describe the situation to the right of⊕.

The equalities for the staircases in the first and second row can be obtained as in the
last paragraph of the proof of Theorem 6.12.

By successively applying this Lemma 6.15 we obtain the following result for the
evacuation diagram:
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Corollary 6.16. LetA be a GL(n)-alternating tableau of empty shape and length r with corre-
sponding growth diagram G(A) and filling φ. Suppose that n ≥ r if n is even and n ≥ r− 1 if
n is odd. Consider the evacuation diagram with filling obtained as above. A	 appears only in
odd columns and odd rows, a⊕ appears only in even columns and even rows and a⊗ appears
only in even columns and odd rows. Moreover (i, j) is the position of a cell with a cross in φ if
and only if one of the following cases holds.

• i < j and there is a	 in row 2i− 1 and column 2j− 1 in the evacuation diagram.

• i > j and there is a⊕ in row 2j and column 2i.

• There is a⊗ in row 2i− 1 and column 2j. Then we also obtain i = j.

By the symmetry of the local rules the evacuation diagram for evA is obtained from
the evacuation diagram forA by mirroring it along the diagonal and interchanging⊕
and	. The cell (i, j) is interchanged with the cell (2r + 1− j, 2r + 1− i).

1 2 . . . 2r-1 2r

1

2

...

2r-1

2r

A =

ev
A

=

	
⊕

⊗

1 2 . . . 2r-1 2r

1

2

...

2r-1

2r

evA =

A
=

⊕

	

⊗

This yields the part of Theorem 3.8 concerning evacuation:

Theorem 6.17. Let A = (∅ = µ0, µ1, . . . , µ2r−1, µ2r = ∅) be an alternating tableau. Sup-
pose that n ≥ r if n is even and n ≥ r− 1 if n is odd. Let φ be the filling of the growth diagram
G(A). Then the filling of G(evA) is obtained by rotating φ by 180◦.

Proof. Let φA = φ respectively φevA be the fillings of the growth diagrams G(A) re-
spectively G(evA). Let (i, j) be the position of cell with a cross in the filling φA. Then,
according to Corollary 6.16:

1. if i < j, there is a 	 in the evacuation diagram of A in (2i − 1, 2j − 1). Thus
there is a⊕ in the evacuation diagram of evA in (2r − 2j + 2, 2r − 2i + 2) and
therefore there is a cross in (r + 1− i, r + 1− j) in φevA.



54 Chapter 6. Proofs

2. if j < i, there is a⊕ in the evacuation diagram of A in (2j, 2i). Thus there is a	
in the evacuation diagram of evA in (2r + 1− 2i, 2r + 1− 2j) and therefore there
is a cross in (r + 1− i, r + 1− j) in φevA.

3. if i = j, then there is a⊗ in the evacuation diagram of A in (2i − 1, 2i). Thus
there is a⊗ in the evacuation diagram of evA in (2r + 1− 2i, 2r + 2− 2i) and
therefore there is a cross in (r + 1− i, r + 1− j) in φevA.

Proposition 6.18. Consider the classical growth diagrams G and G̃ for the partial fillings φ

and rc φ, where rc φ is obtained by rotating φ by 180◦. Let Q and Q̃ (respectively P and P̃)
be the partial standard Young tableaux corresponding to the sequence of partitions on the top
borders (respectively right borders) of the growth diagrams G and G̃. Then Q̃ = ev Q and
P̃ = ev P.

We are now in the position to prove Theorem 3.7, which we reformulate as follows:

Theorem 6.19. LetA = (∅ = µ0, µ1, . . . , µ2r−1, µ2r = µ) be an alternating tableau of length
r ≤ bn+1

2 c. Let φ be the filling of the growth diagram G(A).
Then the sequence of partitions on the bottom (respectively right) border of G+(evA) (re-

spectively G−(evA)) is obtained by evacuating the sequence of partitions on the bottom (re-
spectively right) border of G+(A) (respectively G−(A)).

Moreover, the filling of G(evA) is obtained by rotating φ by 180◦.

Proof. We begin by extending A to an alternating tableau of empty shape Ã = (∅ =

µ̃0, . . . , µ̃2(r+r) = ∅), such that µ̃i = µi for i ≤ r, by appending the reversal of A. Let
φ̃ be the filling of G(Ã), which we divide into four parts, as illustrated in the left-most
diagram below. Filling A is the filling corresponding to A, filling B is the part below
and to the left of µ2r, filling C is the part above and to the right of µ2r and filling D is
the part below and to the right of µ2r.

By the symmetry of the local rules and the evacuation diagram as illustrated in
Figure 4.1 we see that evA coincides with the first 2r + 1 staircases of pr(r)(ev Ã),
where pr(r) denotes pr ◦pr ◦ · · · ◦ pr︸ ︷︷ ︸

r times

.

Let Q be the sequence of partitions on the bottom border of G+(A). This sequence
is also the sequence of partitions on the top border of the classical growth diagram
with filling B.
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11̄ 1

11̄ 21̄

22̄ 32̄

33̄ 32̄

22̄ 21̄

22̄ 21̄

11̄ 1

∅

FIGURE 6.2: A noncrossing set partition corresponding to a GL(2)-
alternating tableau.

The inequality r ≤ bn+1
2 c implies that n ≥ 2r if n is even and n ≥ 2r− 1 if n is odd.

Applying Theorem 6.17 and Theorem 6.12 we obtain the following picture:

A

B

C

D

µ2r
ev−→

A

B

C

D

pr(r)−→

A

B

C

D

Thus the sequence of partitions on the bottom border of G+(evA) is the same as
the sequence of partitions on the top border of the regular growth diagram with filling
rc B. By Proposition 6.18 we obtain the statement for the sequence of partitions on the
bottom border.

The result for the right border follows using the same argument, replacing the fill-
ing A with the filling C.

6.4 GL(2)-alternating tableaux

To finish the proof of Theorem 3.8, it remains to consider the case n = 2.
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Lemma 6.20. The map P restricts to a bijection between GL(n)-alternating tableaux of empty
shape and length r, such that every staircase has at most two nonzero parts, and noncrossing
set partitions on {1, . . . , r}.

Proof. For simplicity, suppose that A is a GL(2)-alternating tableau. Let π be the per-
mutation corresponding to the filling associated with A. We show that, when drawn
as a chord diagram as in Figure 6.2, it is obtained from a noncrossing set partition by
orienting the arcs delimiting the blocks clockwise, when the corners of the polygon are
labelled counterclockwise.

We say that two arcs (i, πi) and (j, πj) in the chord diagram, with i < k, cross, if and
only if the indices involved satisfy one of the following two inequalities:

i < j ≤ πi < πj or πi < πj < i < j.

Let us remark that this is precisely Corteel’s [3] notion of crossing in permutations.
It follows by direct inspection that the chord diagram corresponds to a noncrossing

partition in the sense above if and only if no two arcs cross.
Moreover, a crossing of the first kind is the same as a pair of crosses in the rectangle

below and to the left of the cell in row and column j of G(A), such that one cross is
above and to the left of the other. Similarly, a crossing of the second kind is the same as
a pair of crosses in the rectangle above and to the right of the cell in row and column i
of G(A), such that one cross is above and to the left of the other.

By construction, a GL(2)-alternating tableau cannot contain a vector with both en-
tries strictly positive or both entries strictly negative. Thus, such pairs of crosses may
not occur.

We can now prove another part of Theorem 3.8.

Theorem 6.21. Let n ≤ 2 and let A be a GL(n)-alternating tableau of empty shape. Then
rotP(A) = P(prA).

Proof. Let r be the length of A and let Â be the GL(r)-alternating tableau obtained
from A by inserting r− n zeros into each staircase. Then, by Theorem 6.12, P(pr Â) =
rotP(Â). By Lemma 6.20, the staircases in the alternating tableau corresponding to
rotP(Â) have at most two nonzero parts. Thus, the claim follows from Theorem 6.1.

To finish the proof of Theorem 3.8, we show that the evacuation of a GL(2)-alter-
nating tableaux of empty shape is just its reversal.
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Theorem 6.22. Let A be a GL(2)-alternating tableau of empty shape. Then evA is the rever-
sal of A.

Proof. Let A = (∅ = µ0, . . . , µ2r = ∅) and let evA = A = (∅ = µ̃0, . . . , µ̃2r = ∅).
Note that µ̃2i is the 2i-th (counting from zero) staircase in pr(r−i)A. Thus, its negative
part is the same as the negation of the positive part of µ2(r−i), because the fillings in
the respective regions of the corresponding growth diagrams coincide. Because the
negative part and the positive part of the even labelled staircases of a GL(2)-alternating
tableau are equal, we conclude that µ2(r−i) = µ̃2i.

It remains to show that µ2(r−i)−1 = µ̃2i+1. If µ̃2i 6= µ̃2(i+1), the staircase µ̃2i+1 is
uniquely determined. Otherwise, if µ̃2i = µ̃2(i+1), it is obtained from µ̃2i by adding the
unit vector e1 if and only if i is a fixed point ofP(Ã). Equivalently, this is the case if and
only if r + 1− i is a fixed point of P(A), as can be seen by inspecting the evacuation
diagram.

6.5 Promotion and evacuation of oscillating tableaux

We now deduce Theorem 3.3 and Theorem 3.4 from the results in the preceding sec-
tion, by demonstrating that oscillating tableaux can be regarded as special alternating
tableaux.

For two partitions λ, µ we define

λ ∨ µ := max(λ, µ)

λ ∧ µ := min(λ, µ)

where max and min are defined componentwise.
Consider an oscillating tableau O = (µ0, µ1, . . . , µr). Then

AO = [µ0, µ0], [µ0 ∨ µ1, µ0 ∧ µ1], [µ1, µ1], . . . , [µr−1 ∨ µr, µr−1 ∧ µr], [µr, µr]

is an alternating tableau. Note that [µi ∨ µi+1, µi ∧ µi+1] is obtained by taking the larger
partition as positive part and the smaller partition as negative part, because µi and µi+1

differ by a unit vector.
If O is an oscillating tableau, the filling of G(AO) is symmetric with respect to the

diagonal from the top left to the bottom right. In particular, if O has empty shape, the
filling is precisely the permutation obtained by interpreting the perfect matching as a
fixed point free involution.
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Conversely, suppose that A is an alternating tableau, such that the filling of G(A)
is symmetric with respect to the diagonal from the top left to the bottom right, and has
no crosses on this diagonal. Then taking the positive part of every second staircase in
A, we obtain an oscillating tableau OA. The filling of G(OA) is precisely the part of
G(A) below and to the left of the diagonal.

It is easy to see that the rotation of a fixed point free involution corresponds to
the rotation of the associated perfect matching. Also, the reversal of the complement
of a symmetric filling corresponds to the reversal of the associated perfect matching.
Thus, it remains to show that this correspondence between oscillating tableaux and
certain alternating tableaux intertwines promotion of oscillating tableaux and alternat-
ing tableaux: OprA = prOA.

Lemma 6.23. The promotion of an oscillating tableau equals the oscillating tableau correspond-
ing to the promotion of the associated alternating tableau: OprA = prOA.

Proof. Let O = (∅ = µ0, . . . , µr = ∅) be an oscillating tableau. By Theorem 4.11 its
promotion prO = (∅ = µ̌0, . . . , µ̌r = ∅) can be computed using the local rule from
Definition 4.9:

µ̌i = domW(µ̌i−1 + µi − µi+1), (6.3)

where W, the Weyl group of the symplectic group, is the hyperoctahedral group. Thus,
the dominant representative of a vector is obtained by sorting the absolute values of
its components into weakly decreasing order.

Let A = (∅ = µ0, . . . , µ2r = ∅) be the alternating tableau associated with the oscil-
lating tableau O. Let p̌rA = (∅ = µ̌0, µ̌1, . . . , µ̌2r−1, µ̌2r = ∅) be as in Definition 6.10
and let prA = (∅ = ˇ̌µ0, . . . , ˇ̌µ2r = ∅) be the promotion of A.

We have to show that for every square in Diagram (6.2)

µ2i−2 µ2i−1 µ2i

µ̌2i−3 µ̌2i−2 µ̌2i−1

ˇ̌µ2i−4 ˇ̌µ2i−3 ˇ̌µ2i−2

(6.4)

the positive parts of the four corners µi−1 = µ2i−2
+ , µi = µ2i

+, µ̌i−2 = ˇ̌µ2i−4
+ and µ̌i−1 =

ˇ̌µ2i−2
+ satisfy Equation (6.3). Note that the positive parts and the negative parts of these
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staircases coincide. To avoid superscripts, we set µ2i−2 = [λ, λ], µ2i = [ν, ν], ˇ̌µ2i−4 =

[κ, κ] and ˇ̌µ2i−2 = [µ, µ].
Because the filling of G(A) is symmetric, we have ` = k in Lemma 6.15. Let us

consider the case i 6= ` first. We assume that i < `, the case of i > ` is very similar. If
i < `, the positive parts of the staircases in the first two lines of Diagram (6.4) coincide
by Lemma 6.15, and so do the negative parts of the second two lines.

Moreover, by construction of AO, the staircase in the middle of the first line either
equals [λ, ν] or [ν, λ]. Let us assume the latter, the former case is dealt with similarly.
For the staircase in the middle we then obtain, applying the local rule to the staircases
on the top left,

µ̌2i−2 = domSn

(
[λ, κ] + [ν, λ]− [λ, λ]

)
= [ν, κ].

Similarly, applying the local rule to the staircases on the bottom right, we find

[µ, µ] = domSn

(
[ ˇ̌µ2i−3

+ , κ] + [ν, µ]− [ν, κ]
)
= [ ˇ̌µ2i−3

+ , µ].

Therefore, the square of staircases in Diagram (6.4) has the following form:

[λ, λ] [ν, λ] [ν, ν]

[λ, κ] [ν, κ] [ν, µ]

[κ, κ] [µ, κ] [µ, µ]

(6.5)

Because the negative parts of the four staircases in the lower left corner are all the same,
the positive parts satisfy µ = domSn(κ + ν− λ), and therefore also Equation (6.3).

It remains to show that Equation (6.3) also holds for i = `. By Lemma 6.15 the
positive part α of the staircase in the middle is obtained by adding a cell to the first
column of λ, but also by adding a cell to the first column of µ. Thus, λ = µ. Taking
into account the other equalities predicted by Lemma 6.15 we see that the square of
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staircases in Diagram (6.4) has the form

[λ, λ] [λ, ν] [ν, ν]

[λ, ν] [α, ν] [λ, ν]

[ν, ν] [λ, ν] [λ, λ]

(6.6)

Considering the growth diagram G(A) we additionally find that λ is obtained from
ν by adding a cell to the first column, essentially because ` = k. Thus, the vector
ν + ν− λ is obtained from ν by subtracting 1 from the entry at position `(λ), which is 0
in ν. Taking the absolute values of the entries of the vector ν + ν− λ then yields λ.
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