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Abstract

In this diploma thesis the optimal dividend payment strategy problem is analysed. It is assumed
that there are two collaborating insurance companies aiming to maximize their joint dividends
to satisfy their shareholders. The surplus processes of both insurances are modelled as diffusions.
The companies are allowed to transfer money freely without any costs. In the considered model
a collaboration contract obligates both to cover losses the other one eventually experiences. As
a consequence only simultaneous ruin is possible. In this work the optimal value function for the
corresponding stochastic control problem is computed and an optimal strategy is constructed.
Finally, a simulation study is implemented to compare the performance of this optimal strategy
with other strategies.

Zusammenfassung

In dieser Diplomarbeit wird das optimale Dividendenproblem analysiert. Im betrachteten Modell
maximieren zwei zusammenarbeitende Versicherungsunternehmen ihre gemeinsame Dividende,
um ihre Aktionäre zufriedenzustellen. Der Überschussprozesse beider Versicherungen werden
als Diffusion Prozesse modelliert. Beide Unternehmen können Gelder ohne Transaktionskosten
an den jeweils anderen transferieren. Der Kooperationsvertrag beeinhaltet die Verpflichtung
eventuelle Verluste des jeweils anderen auszugleichen. Als Konzequenz ist nur gemeinsamer
Ruin möglich. In dieser Arbeit wird die optimale Wertfunktion des zugehörigen stochastischen
Kontrollproblem hergeleitet und eine optimale Strategie konstruiert. Abschließend wird eine
Simulationsstudie durchgeführt, um diese optimalen Strategie mit anderen Strategien zu vergle-
ichen.
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1 INTRODUCTION

1 Introduction

This diploma thesis is concerned with optimal dividend payout, an optimization problem of
control theory, which has been discussed from different aspects in the past. The question of
interest is always the same: How to maximize dividend payments of a company to be paid to
shareholders?

The classical optimal dividend problem goes back to Bruno De Finetti (1957) [8], who argued
that calculating and minimizing the ruin probability is not sufficient. It is not realistic to assume
that the surplus will grow indefinitely if ruin doesn’t occur. Instead, a company should seek
to maximize the expected present value of all dividends before ruin. The motivation for an
insurance company is the following. Apart from the policyholders, who pay premiums to receive
insurance coverage, shareholders are especially interested in a high dividend. As shareholders are
inpatient, i.e. they prefer immediate payments over payments in the future, dividends shouldn’t
be held back longer than necessary. On the other hand high payments could result in a fast ruin
and no dividends can be paid out at all. Thus, the insurance company has to find a compromise
to optimize its dividend policy. Finetti showed, under the assumption that the surplus process
follows a very simple model, that transferring all surplus above a certain barrier is optimal in
this sense.

In 1969, Gerber [9] argued that the free surplus process of an insurance company can be modelled
by a compound Poisson process. Asmussen and Taksar (1997) [3] modified the problem and
computed the optimal dividend strategy in a diffusion approximation model. They considered
two cases: First, when the dividend rate is restricted and the second, when the dividend rate is
unrestricted. Gerber and Shiu (2006) [10] examined the analogous questions in the compound
Poisson model. The book of Azcue and Muler (2014) [4] provides a summary of these stochastic
control problems.

The above mentioned literature studied optimal dividend strategies only in the one-dimensional
case, i.e. only one insurance company is involved and operates on its own. In 2017, Albrecher,
Azcue and Muler [1] extended the one-dimensional problem to a two-dimensional setup of two
collaborating companies under a compound Poisson model framework. Here, both aim to maxi-
mize their joint dividend and the collaboration involves balancing out the losses of the partner
company with the own surplus.

Gu, Steffensen and Zheng (2017) [11] considered the two-dimensional model, when surplus pro-
cesses are modelled as diffusion processes. The collaboration of two companies allows transferring
money freely between the partners without transaction costs. If the surplus process of one com-
pany becomes negative, the other one is obligated to help and transfer money to cover the loss.
In comparison to the two-dimensional compound Poisson model, here only simultaneous ruin
is possible. In the Poisson model it can happen that one company cannot afford helping the
other one, but continues alone while the other one goes ruin. As the Brownian motion model is
continuous, this cannot happen here.

7



1 INTRODUCTION

This diploma thesis mainly analyses the two-dimensional model in a diffusion framework as
introduced by [11]. The structure is as follows. First, the Cramér Lundberg model is presented
and the diffusion approximation is motivated. Second, an overview about control theory is given
and some verification theorems are stated. The one-dimensional problem of [3] is explained
for restricted as well as for unrestricted dividends. Then, the two-dimensional problem [11] is
analysed in more detail. A short introduction in local time of Brownian motion and the reflected
Brownian motion, which is related with the optimal dividend problem, is given. Finally, a
simulation study is implemented to compare the optimal barrier strategy of the two-dimensional
model with alternative strategies in numerical examples. Especially, it is analysed how the
collaboration model performs in comparison to the case when both companies operate separately
or if the present value of all dividends could be increased if a company decides to terminate
collaboration.
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2 RUIN THEORY

2 Ruin theory

In this chapter the risk model, as described for example in Asmussen and Albrecher (2010) [2]
or Azcue and Muler (2014) [4], is introduced and general properties are derived.

2.1 The Cramér Lundberg model

The free surplus process (or risk reserve process) (Xt)t≥0 models the time evolution of the reserve
of an insurance company. It is assumed that the portfolio of clients is fixed and that premiums
are received at a constant rate p. The surplus is used to pay claims, which are of random sizes
and occur at random times. The time and size of the ith claim is denoted by (τi, Ui) and Nt is
defined as the number of claims up to time t, which is

Nt = max{i : τi ≤ t}.

With x denoting the initial reserve, the risk process or surplus process of the insurance company
at time t is defined as

Xt = x+ pt−
Nt∑
i=1

Ui.

The ruin time is the time when the surplus of the company drops below zero the first time, which
is

τ = inf{t : Xt < 0}.

The probability that ruin occurs given an initial surplus of x is the total ruin probability

ψ(x) = P (τ <∞|X0 = x).

Then, the survival probability is

δ(x) = 1− ψ(x) = P (τ =∞|X0 = x).

The following assumptions for the claim size distributions and the claim arrival times are made:

1. The first claim cannot occur at time zero, two claims cannot occur at the same time and
the number of claims in any finite time interval is also finite.

2. The claim sizes are positive, mutually independent and identically distributed. They are
also independent of the claim-arrival times and the number of claims Nt.

3. For the number of claims holds

P (Nt+h −Nt = k) = P (Ns+h −Ns = k) for any t, s ≥ 0.

9



2 RUIN THEORY

4. The number of claims in disjoint intervals are independent.

A model, which fulfils these assumptions, is called Cramér-Lundberg model or classical collective
risk model. By Bühlmann (1970) [5, theorem 2] the last two assumptions imply that Nt is a
Poisson process with intensity β = E[N1]. This means that

P (Nt+h −Nt = k) =
(βh)k

k!
e−βh.

This implies that the arrival times τn can be expressed as a sum of exponentially distributed
random variables Yi with parameter β, i.e. τn =

∑n
i=1 Yi. The process

∑Nt
i=1 Ui is a compound

Poisson process and describes the total amount of claims up to time t. This model was introduced
and developed by Lundberg (1903) [12] and Cramér (1930) [7]. It can be fully described by the
premium rate p, the intensity β and the claim size distribution function F (x) = P (Ui ≤ x).
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Figure 1: Free surplus process

The graph illustrates the free surplus process. At times τi claims occur and the surplus jumps
down. These claim arrival times and the claim size (height of the jump) are random. If there is
no claim the free surplus increases as premium is earned. After the 5th claim the surplus process
drops below zero and therefore τ5 is the ruin time.
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2 RUIN THEORY

2.2 Diffusion approximation of the Cramér Lundberg model

Under the assumption that a big portfolio is considered, the claim sizes are relatively small and
arrive at high frequency. In this case the surplus process can be approximated with a Brownian
motion with drift. The following plot gives a visual motivation of this idea. Here, a Cramér
Lundberg risk model with relatively small claims arriving at high frequency is contrasted with
a Brownian motion trajectory. One notices that both look very similar and that distinction is
hardly possible.
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Figure 2: Cramér Lundberg versus Brownian motion

This approximation can be done by matching the first two moments, as shown in the book of
Asmussen and Albrecher (2010) [2].
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2 RUIN THEORY

The approximation is based on Donsker’s theorem (related to the classical central limit theorem)
for a random walk (S∗n)n=0,1,... in discrete time. If the drift µ = E[S∗1 ] and variance σ2 = Var[S∗1 ],
then (

1

σ
√
c
(S∗btcc − tcµ)

)
t≥0

D−→ (W0(t))t≥0 , c→∞, (1)

where (Wζ(t)) describes a Brownian motion with drift ζ and variance 1 and D−→ means weak
convergence.

Definition 2.1. A sequence X1, X2, . . . of real-valued random variables converge weakly (de-
noted by Xn

D−→ X) if

lim
n→∞

Fn(x) = F (x),

for every number x ∈ R at which F is continuous. Here Fn and F are the cumulative distribution
functions of random variables Xn and X, respectively.

A compound Poisson model is of the form

Xt = x+ pt−
Nt∑
i=1

Ui

with the claim surplus process

S
(p)
t =

Nt∑
i=1

Ui − pt,

where p is the premium rate is considered. In the following ρ > 0 is the premium rate without
safety loading (critical premium rate)

ρt = E

[
Nt∑
i=1

Ui

]
= βtE[U1].

Theorem 2.1. As p→ ρ, (
|µ|
σ2
S

(p)
tσ2/µ2

)
t≥0

D−→ (W−1(t))t≥0

where µ = µp = ρ− p, σ2 = βE[U2
1 ].

12



2 RUIN THEORY

Proof. First one notes

(
1

σ
√
c
(S

(p)
tc − tcµp)

)
t≥0

=

(
1

σ
√
c
(

Ntc∑
i=1

Ui − ptc− tc(ρ− p))

)
t≥0

(2)

=

(
1

σ
√
c
(

Ntc∑
i=1

Ui − tcρ)

)
t≥0

(3)

=

(
1

σ
√
c
S

(ρ)
tc

)
t≥0

D−→ (W0(t))t≥0 (4)

for c = cp →∞ for p→ ρ.

This is a consequence of (1) with S∗n = S
(ρ)
n and the inequalities [2, IV Lemma 1.3]

S
(ρ)
n/c − ρ/c ≤ S

(ρ)
t ≤ S(ρ)

(n+1)/c + ρ/c, n/c ≤ t ≤ (n+ 1)/c.

Defining c = σ2/µ2
p = σ2/(ρ− p)2, then

(
|µ|
σ2
S

(ρ)
tσ2/µ2

+ t

)
t≥0

=

(
|µ|
σ2

(
S

(ρ)
tσ2/µ2

+
σ2

|µ|
t
))

t≥0

=

 1

σ
√

σ2

|µ|2

(
S

(p)
tσ2/µ2

− tσ
2

µ2
(ρ− p)

)
t≥0

D−→
(
W0(t)

)
t≥0

by (2).

Therefore, (
|µ|
σ2
S

(ρ)
tσ2/µ2

)
t≥0

D−→
(
W0(t)− t

)
t≥0

=
(
W−1(t)

)
t≥0

It was shown that there is a relation of the Cramér Lundberg model and a Brownian motion
with drift for a downwards scaling (decreasing claim sizes) and long time horizon (more claims).
Next, moments have to be matched to approximate the model appropriately.

Define the process Bt = x + µt + σWt, where W is a standard Brownian motion. In the next
step the parameter µ and σ of Bt are determined, such that its moments match the moments of
the original process Xt = x+ pt−

∑Nt
i=1 Ui.

E[Xt] = E

[
x+ pt−

Nt∑
i=1

Ui

]
= x+ pt− βtE[U1],

E[Bt] = E [x+ µt+ σWt] = x+ µt.

Setting E[Xt] = E[Bt], leads to

µ = p− βE[U1].

13



2 RUIN THEORY

The variances are

V [Xt] = βtE[U2
1 ],

V [Bt] = σ2t.

Matching them, gives

σ2 = βE[U2
1 ].

In the following chapters this approximation is used for the free surplus process. For this repre-
sentation control methods are introduced and optimal dividend problems are solved.

14



3 CONTROL THEORY

3 Control theory

In the following chapter the general theory of stochastic control is introduced based on [14].

3.1 Stochastic control problem

Let (Ω,F , P ) be a probability space, T > 0 the maturity, F a filtration satisfying the usual
conditions (completeness and right-continuity) and (Wt)t∈[0,T ] am-dimensional Brownian motion
w.r.t F .

Wt =


W 1
t
...

Wm
t

 .

• The control process (the action) is a F-progressively measurable process u = (ut)t∈[0,T ]

with values in a set U ∈ Rp.

• The controlled process (state of the system) is a n-dimensional process (Xt)t∈[0,T ] described
by

dXt = b(t,Xt, ut) dt+ σ(t,Xt, ut) dWt, X0 = x0, (5)

where the coefficients

b : [0, T ]× Rn × U −→ Rn, σ : [0, T ]× Rn × U −→ Rn×m

are measurable. To guarantee the existence of X further conditions have to be imposed.
Sometimes the state process Xt is denoted by Xu

t as it is dependent on u.

• The optimization/performance criterion is

J(t, x, u) = E
[ ∫ T

t
ψ(s,Xu

s , us) ds+ Ψ(T,Xu
T )
∣∣∣Xu

t = x
]
.

• An admissible control is a control (us)s∈[t,T ] for which a unique strong solution of (5) exists
on [t, T ] for Xt = x and for which the performance measure is well defined. The set of all
admissible controls is denoted by A(t, x).

• The value function of the control problem is

V (t, x) = sup
u∈A(t,x)

J(t, x, u).

The goal is to find the value function V and an optimal control strategy u∗ for which the
maximum is attained, i.e. V (0, x0) = J(0, x0, u

∗).

15



3 CONTROL THEORY

3.2 Dynamic programming

The aim of this chapter is to find a partial differential equation for the value function V . There-
fore, the dynamic programming principle has to be introduced.

3.2.1 Itô diffusions and their generators

Again, the n-dimensional SDE

dXt = b(t,Xt, ut) dt+ σ(t,Xt, ut) dWt

where W is a m-dimensional Brownian motion is considered and the measurable drift and diffu-
sion coefficients

b : [0, T ]× Rn × U −→ Rn, σ : [0, T ]× Rn × U −→ Rn×m

satisfy for K > 0, for all x, y ∈ Rn, s, t ≥ 0 the Lipschitz and linear growth conditions

||b(s, x)− b(t, y)||+ ||σ(s, x)− σ(t, y)|| ≤ K(||y − x||+ |t− s|),

||b(t, x)||2 + ||σ(t, x)||2 ≤ K2(1 + ||x||2).

These conditions imply that there is a unique and strong solution X which is called Itô diffusion.
The matrix

a(t, x) := σ(t, x)σ(t, x)t

is called the diffusion matrix of X. For a random variable Y the notation

Et,x[Y ] = E[Y |Xt = x],

Ex[Y |X0 = x]

is used.

Theorem 3.1. Suppose that X is a time-homogeneous Itô diffusion and f : Rn → R bounded
and measurable.

1. (Markov property): For all ω ∈ Ω

Ex[f(Xt+s)|Ft] = EXt [f(Xs)], t, s ≥ 0

2. (Strong Markov property): If τ is a stopping time with τ <∞, then

Ex[f(Xτ+s)|Ft] = EXτ [f(Xs)], s ≥ 0

16



3 CONTROL THEORY

Definition 3.1. The infinitesimal generator L of X is defined as

Lf(s, x) = lim
s→t

Es,x[f(t,Xt)]− f(s, x)

t− s

for all s ≥ 0, x ∈ Rn and f in the domain DL of L which is the class of functions f : [0,∞)×Rn →
R for which the limit exists for all s, x.

Definition 3.2. The partial differential operator L is defined as

L :=
∂

∂t
+

n∑
i=1

bi
∂

∂xi
+

1

2

n∑
i,j=1

aij
∂2

∂xi∂xj
.

The partial differential operator can by applied to functions f in

C1,2 := {g(t, x) : [0,∞)× Rn → R, g cont. diff. in t and twice cont. diff. in x}

which leads to

Lf(t, x) = ft(t, x) +

n∑
i=1

fxi(t, x)tbi(t, x) +
1

2

n∑
i,j=1

aij(t, x)fxi,xj (t, x)

= ft(t, x) + (Dxf(t, x))tb(t, x) +
1

2
tr((Dxxf(t, x))a(t, x))

where Dxf is the gradient of f , Dxxf the Hessian of f (i.e. (Dxxf)ij = fxi,xj ) and tr(A) the
trace of a matrix A, which is the sum of the diagonal elements of A.

Theorem 3.2. Suppose that f ∈ C1,2 and for all t ≥ s ≥ 0, x ∈ R

Es,x

[ ∫ t

s
|Lf(u,Xu)| du

]
<∞, Et,x

[ ∫ t

s
|(Dxf(u,Xu))tσ(u,Xu)2| du

]
<∞.

Then f ∈ DL and Lf(s, x) = Lf(s, x), t ≥ 0, x ∈ Rn.

Proof. Using Itô’s formula for f(t,Xt) yields

Lf(s, x) = lim
t↘s

Es,x[f(t,Xt)]− f(s, x)

t− s

= lim
t↘s

Es,x[f(s, x) +
∫ t
s Lf(u,Xu) du+

∫ t
s (Dxf(u,Xu))tσ(u,Xu) dWu]− f(s, x)

t− s

= lim
t↘s

Es,x[
∫ t
s Lf(u,Xu) du] + E[

∫ t
s (Dxf(u,Xu))tσ(u,Xu) dWu]

t− s
.

The stochastic integralMt :=
∫ t
s (Dxf(u,Xu))tσ(u,Xu) dWu is a local martingale and as it holds

Es,x

[ ∫ t
s |(Dxf(u,Xu))tσ(u,Xu)|2 ds

]
<∞ it is a true martingale. Therefore,

E[Mt|Fs] = Ms = 0.
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3 CONTROL THEORY

Moreover, as Es,x
[ ∫ t

s |Lf(u,Xu)| du
]
< ∞ one can interchange the limit and the expectation.

This leads to

Lf(s, x) = Es,x

[
lim
t↘s

∫ t
s Lf(u,Xu) du

t− s

]
= Es,x[Lf(s, x)] = Lf(s, x).

The operator L is also called the generator of X. The conditions of this theorem are met for
f ∈ C1,2 with compact support, because in this case the appearing derivatives are bounded. This
motivates to the following theorem.

Theorem 3.3 (Dynkin’s Formula). Let f ∈ C1,2 be a function with compact support and τ a
stopping time with Ex[τ ] <∞. Then

Ex[f(τ,Xτ )] = f(0, x) + Ex
[ ∫ τ

0
Lf(s,Xs) ds

]
.

3.2.2 The idea of dynamic programming

To solve the control problem the Hamilton-Jacobi-Bellman equation is derived. It is proceeded
as follows.

1. The Bellman Principle is used

V (t, x) = sup
u∈A(t,x)

Et,x

[ ∫ t1

t
ψ(s,Xu

s , us) ds+ V (t1, X
u
t1)
]
.

The principle states that an optimal control on [t, t1] and being optimal on [t1, T ] afterwards
leads to a global optima, i.e. an optimal control on [t, T ].

2. After applying the Bellman Principle one uses the Itô formula for V (t1, X
u
t1) under the

assumption that V is smooth enough.

V (t, x) = sup
u∈A(t,x)

Et,x

[ ∫ t1

t
ψ(s,Xu

s , us) ds+ V (t1, X
u
t1)
]

= sup
u∈A(t,x)

Et,x

[ ∫ t1

t
ψ(s,Xu

s , us) ds+ V (t,Xu
t )

+

∫ t1

t
Vt(s, x) + (DxV (s,Xu

s ))tb(s,Xu
s , us) ds

+
1

2

∫ t1

t
tr((DxxV (s,Xu

s ))a(s,Xu
s , us)) ds

+

∫ t1

t
(DxV (s,Xu

s ))tσ(s,Xu
s , us) dWs

]
,

where a(s,Xs, us) = σ(s,Xs, us)σ(s,Xs, us)
t is the diffusion matrix.

18



3 CONTROL THEORY

Assuming that
∫ t1
t (DxV (s,Xu

s ))tσ(s,Xu
s , us) dWs, t1 > t is a martingale, its expectation

is zero and one gets

V (t, x) = sup
u∈A(t,x)

Et,x

[ ∫ t1

t
ψ(s,Xu

s , us) ds+ V (t,Xu
t )

+

∫ t1

t
Vt(s, x) + (DxV (s,Xu

s ))tb(s,Xu
s , us) ds

+
1

2

∫ t1

t
tr((DxxV (s,Xu

s ))a(s,Xu
s , us)) ds

]
.

3. Note that because of the conditional expectation one can set Xu
t = x. Subtracting V (t, x)

on both sides, dividing by t1 − t and taking the limit t1 ↘ t yields

0 = lim
t1↘t

sup
u∈A(t,x)

Et,x

[∫ t1
t ψ(s,Xu

s , us) ds

t1 − t

+

∫ t
t1

(
Vt(s,X

u
s ) + (DxV (s,Xu

s ))tb(s,Xu
s , us)

)
ds

t1 − t

+

∫ t1
t

1
2 tr
(
(DxxV (s,Xu

s ))a(s,Xu
s , us)

)
ds

t1 − t

]
Under the assumption that ’sup’ and ’lim’ and expectation and ’lim’ can be interchanged
it follows

0 = sup
u∈A(t,x)

Et,x

[
lim
t1↘t

∫ t1
t ψ(s,Xu

s , us) ds

t1 − t

+ lim
t1↘t

∫ t
t1

(
Vt(s,X

u
s ) + (DxV (s,Xu

s ))tb(s,Xu
s , us)

)
ds

t1 − t

+ lim
t1↘t

∫ t1
t

1
2 tr
(
(DxxV (s,Xu

s ))a(s,Xu
s , us)

)
ds

t1 − t

]
In the limit case t1 ↘ t finding the optimal control on the interval [t, t1] is reduced to
finding the optima at time t, i.e. ut = u ∈ U . Using that Xu

t = x yields

0 = sup
u∈U

{
ψ(t, x, u) + Vt(t, x) + (DxV (t, x))tb(t, x, u) +

1

2
tr
(
(DxxV (t, x))a(t, x, u)

)}
(6)

The equation can be written as

0 = sup
u∈U

{
ψ(t, x, u) + LuV (t, x)

}
(7)

where the on the optimal control u dependent operator Lu is defined as

Luf(t, x) := ft(t, x) + (Dxf(t, x))tb(t, x, u) +
1

2
tr
(
(Dxxf(t, x))a(t, x, u)

)
.

The equation (6) resp. (7) is called Hamilton Jacobi Bellman equation or HJB equation. As seen

19



3 CONTROL THEORY

above, under certain conditions the optimal value function V solves the HJB equation. This
means it provides a necessary condition. On the other hand the question arises if a solution
of the HJB equation is the value function of the corresponding problem. Therefore, sufficient
conditions are needed to solve the optimal control problem. The so-called verification theorems
are used.

3.3 Verification theorems

Definition 3.3. A control strategy u is admissible, i.e. u ∈ A(t, x) if

1. u = (us)s∈[t,T ] is progressively measurable, has values in U , and E
[ ∫ T

t ||us||
2 ds

]
<∞

2. The SDE (5) has a strong solution (Xs)s∈[t,T ] with Xt = x and Et,x
[

sup lim
t≤s≤T

||Xs||2
]
<∞

3. J(t, x, u) is well defined.

Condition (3.) is guaranteed by (1.) and the assumptions of Theorem 3.4 below.

3.3.1 Finite time horizon

In this section verification theorems for the stochastic control problem of section 3.1, which
guarantee that a solution to the HJB equation (7) is the optimal value function, are presented.

Theorem 3.4 (Verification Theorem). Suppose that ||σ(t, x, u)||2 < Cσ(1 + ||x||2 + ||u||2) and
that ψ is continuous with ||ψ(t, x, u)||2 ≤ Cψ(1 + ||x||2 + ||u||2) for some Cσ, Cψ > 0 and all
t ≥ 0, x ∈ Rn, u ∈ U .

1. Suppose that Φ lies in C1,2([0, T ) × Rn), is continuous on [0, T ] × Rn with ||Φ(t, x)|| ≤
CΦ(1 + ||x||2), and satisfies the HJB equation and the boundary condition, i.e.

sup
u∈U

{
ψ(t, x, u) + LuΦ(t, x)

}
= 0, t ∈ [0, T ), x ∈ Rn (8)

Φ(T, x) = Ψ(T, x), x ∈ Rn.

Then for all t ∈ [0, T ], x ∈ Rn

Φ(t, x) ≥ V (t, x).

2. If a maximizer û(t, x) of u 7→ ψ(t, x, u) + LuΦ(t, x) exists such that u∗ = (u∗t )t∈[0,T ], u
∗
t =

û(t,X∗t ) is admissible, then Φ(t, x) = V (t, x) for all t ∈ [0, T ], x ∈ Rn and u∗ is an optimal
control strategy, i.e. V (t, x) = J(t, x, ut,x) where ut,x = (u∗s)s∈[t,T ] ∈ A(t, x). Here X∗t is
the solution of (5) using control u∗s on [0, t).

Proof. Let t ∈ [0, T ], x ∈ Rn be fixed and define the stopping time

τn = T ∧ inf{s > t : ||Xs −Xt|| ≥ n}
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Using Itôs formula for Xt = x and an admissible u gives

Φ(τn, Xτn) = Φ(t, x) +

∫ τn

t
LusΦ(s,Xs) ds+

∫ τn

t
Φx(s,Xs)

tσ(s,Xs, us) dWs.

A stochastic integral w.r.t. Brownian motionW is a local martingale. A stopped local martingale
is again a local martingale. The function Φ is continuous and X bounded on [t, τn] due to the
construction of the stopping time τn with

||Xs|| = ||Xt +Xs −Xt|| ≤ ||Xt||+ ||Xs −Xt|| ≤ ||x||+ n, s ∈ [t, τn].

By assumption one has ||σ(t, x, u)||2 < Cσ(1+||x||2+||u||2) and E
[ ∫ T

t ||us||
2 ds

]
<∞. Therefore,

it holds

Et,x

[ ∫ τn

t
||Φx(s,Xs)

tσ(Xs, us)||2 ds
]
<∞

and thus the stochastic integral w.r.t. Brownian motion is a true martingale. As τn is bounded
it follows with Doobs optimal stopping theorem that

E
[ ∫ τn

t
Φx(s,Xs)

tσ(s,Xs, us) dWs

]
= 0.

Therefore,

Et,x

[ ∫ τn

t
ψ(s,Xs, us) ds+ Φ(τn, Xτn)

]
= Et,x

[ ∫ τn

t
ψ(s,Xs, us) ds+ Φ(t, x) +

∫ τn

t
LusΦ(s,Xs) ds

]
= Φ(t, x) + Et,x

[ ∫ τn

t
ψ(s,Xs, us) + LusΦ(s,Xs)︸ ︷︷ ︸

≤0 (because (8))

ds
]

≤ Φ(t, x)

It is left to show that

lim
n→∞

Et,x

[ ∫ τn

t
ψ(s,Xs, us) ds+ Φ(τn, Xτn)

]
= J(t, x, u).
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As ∣∣∣ ∫ τn

t
ψ(s,Xs, us) ds+ Φ(τn, Xτn)

∣∣∣ ≤ ∫ τn

t
||ψ(s,Xs, us)|| ds+ ||Φ(τn, Xτn)||

≤
∫ τn

t
Cψ(1 + ||Xs||2 + ||us||2) ds+ CΦ(1 + ||Xτn ||2)

≤ Cψ
∫ T

t
(1 + ||Xs||2 + ||us||2) ds+ CΦ(1 + ||Xτn ||2)

≤ Cψ
(

(T − t) +

∫ T

t
sup
t≤s≤T

||Xs||2 ds+

∫ T

t
||us||2 ds

)
+ CΦ(1 + sup

t≤s≤T
||Xs||2)

and with u ∈ A(t, x)

Et,x

[
Cψ

(
(T − t) +

∫ T

t
sup
t≤s≤T

||Xs||2 ds+

∫ T

t
||us||2 ds

)
+ CΦ(1 + sup

t≤s≤T
||Xs||2)

]
<∞

the dominated convergence theorem allows to interchange ’lim’ and expectation

lim
n→∞

Et,x

[ ∫ τn

t
ψ(s,Xs, us) ds+ Φ(τn, Xτn)

]
= Et,x

[
lim
n→∞

∫ τn

t
ψ(s,Xs, us) ds+ Φ(τn, Xτn)

]
.

Furthermore, lim
n→∞

τn = T because ∀ω ∈ Ω ∃ñ > 0 : ||Xt − Xs|| < ñ. Such a ñ exists by

assumption Et,x

[
sup
t<s≤T

||Xs||2
]
< ∞ which implies sup

t<s≤T
||Xs|| < ∞. With continuity of Φ it

follows

lim
n→∞

Et,x

[ ∫ τn

t
ψ(s,Xs, us) ds+ Φ(τn, Xτn)

]
= Et,x

[ ∫ T

t
ψ(s,Xs, us) ds+ Φ(T,XT )

]
= Et,x

[ ∫ T

t
ψ(s,Xs, us) ds+ Ψ(T,XT )

]
= J(t, x, u).

Now, claim (1.) is proven with

V (t, x) = sup
u∈A(t,x)

J(t, x, u) ≤ Φ(t, x).

For claim (2.) one uses that

ψ(s,Xs, u
∗
s) + Lu∗sΦ(s,Xs) = 0

and the same limit arguments as before to get

Et,x

[ ∫ T

t
ψ(s,Xs, u

∗
s) ds+ Ψ(T,XT )

]
=J(t, x, u∗) = Φ(t, x)

Claim (1.)
=⇒ V (t, x) = Φ(t, x).
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3.3.2 Infinite time horizon

In this section a verification theorem for a more specific stochastic control problem with T =∞
is given. Here, it is assumed that neither the coefficients b(x, u) and σ(x, u) nor ψ(x, u) depend
explicitly on time t. Therefore,

dXt = b(Xt, ut) dt+ σ(Xt, ut) dWt, X0 = x0, (9)

with the corresponding differential operator

Luf(x) := (Dxf(x))tb(x, u) +
1

2
tr
(
(Dxxf(x))a(x, u)

)
. (10)

The performance criterion is

J(x, u) = Ex

[ ∫ ∞
0

e−βsψ(Xs, us) ds
]

with discount factor β > 0. The value function is

V (x) = sup
u∈A(x)

J(x, u).

Theorem 3.5 (Verification Theorem). Suppose that ||σ(x, u)||2 < Cσ(1 + ||x||2 + ||u||2) and
that ψ is continuous with ||ψ(x, u)||2 ≤ Cψ(1 + ||x||2 + ||u||2) for some Cσ, Cψ > 0 and all
x ∈ Rn, u ∈ U .

1. Suppose that Φ lies in C2(Rn) with ||Φ(t, x)|| ≤ CΦ(1+||x||2), and satisfies the HJB equation

sup
u∈U

{
ψ(x, u) + LuΦ(x)− βΦ(x)

}
= 0, x ∈ Rn (11)

Then for all x ∈ Rn

Φ(x) ≥ V (x).

2. If a maximizer û(x) of u 7→ ψ(x, u) +LuΦ(x)− βΦ(x) exists such that u∗ = (u∗t )t≥0, u
∗
t =

û(X∗t ) is admissible, then Φ(x) = V (x) for all x ∈ Rn and u∗ is an optimal control strategy,
i.e. V (x) = J(x, u∗). Here X∗t is the solution of (9) using control u∗s on [0, t).

The idea of this proof is to use Theorem 3.4 for the case of a finite T and then use limit arguments
for T →∞ to get the result.

3.3.3 Stopped state process

If the free surplus process of an insurance company is considered as the state process and the
expected discounted dividends as performance measure, it makes sense to consider the stochastic
control problem only until the ruin time, i.e. when the free surplus process is negative the first
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time. Therefore, the time horizon is not necessarily infinity because it is stopped when the
insurance company goes ruin. The following verification theorem is for the case of a finite time
horizon. Together with the theorem for the infinite time horizon case of the last section one gets
a verification theorem for a stopped state process with a infinite time horizon.

Let u and X be the control and state process considered in section 3.1. Now, the state process
should be constrained to a certain set. Let Q be an open set in [0, T ]×Rn and ∂Q the boundary
of Q. The process should be stopped when leaving the set Q. This is described by the stopping
time

τ := inf{t > 0 : (t,Xt) /∈ Q}.

The set ({T} × Rn) ∩ Q̄, where Q̄ = Q ∪ ∂Q, is part of the boundary, so Pt,x(τ ≤ T ) = 1 for all
(t, x) ∈ Q. Let ∂∗Q be a subset of the boundary which satisfies

Pt,x((τ,Xτ ) ∈ ∂∗Q) = 1 for all (t, x) ∈ Q.

The considered performance criterion is

J(t, x, u) = Et,x

[ ∫ τ

t
ψ(s,Xs, us) ds+ Ψ(τ,Xτ )

]
and the value function is

V (t, x) = sup
u∈A(t,x)

J(t, x, u).

Theorem 3.6 (Verfication Theorem). Suppose that ||σ(t, x, u)||2 < Cσ(1 + ||x||2 + ||u||2) and
that ψ is continuous with ||ψ(t, x, u)||2 ≤ Cψ(1 + ||x||2 + ||u||2) for some Cσ, Cψ > 0 and all
t ≥ 0, x ∈ Rn, u ∈ U .

1. Suppose that Φ ∈ C1,2(Q) ∩ C(Q̄), with ||Φ(t, x)|| ≤ CΦ(1 + ||x||2), and satisfies the HJB
equation and the boundary condition, i.e.

sup
u∈U

{
ψ(t, x, u) + LuΦ(t, x)

}
= 0, (t, x) ∈ Q (12)

Φ(t, x) = Ψ(t, x), (t, x) ∈ ∂∗Q.

Then for all (t, x) ∈ Q

Φ(t, x) ≥ V (t, x).

2. If a maximizer û(t, x) of u 7→ ψ(t, x, u)+LuΦ(t, x) exists on Q such that u∗ = (u∗t )t∈[0,T ], u
∗
t =

û(t,X∗t ) is admissible, then Φ(t, x) = V (t, x) for all (t, x) ∈ Q and u∗ is an optimal control
strategy, i.e. V (t, x) = J(t, x, ut,x) where ut,x = (u∗s)s∈[t,T ] ∈ A(t, x).

The proof is analogous to the proof of Theorem 3.4. Instead of τn the stopping times τn ∧ τ are
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used.

3.4 HJB algorithm

With the above results it is possible to find a solution of the stochastic control problem by
proceeding according to the following algorithm.

1. Find an optimal u = û(t, x) in (6).

2. If such an û exists, then it depends on the derivatives Vt, DxV,DxxV , i.e.

û(t, x) = ũ
(
t, x, Vt(t, x), DxV (t, x), DxxV (t, x)

)
.

Substituting û in (6) gives a partial differential equation for V which has to be solved
with boundary condition Φ(T, x) = Ψ(T, x) to find a candidate V ∗ for the optimal value
function.

3. If V ∗ satisfies the conditions of a verification theorem and u∗t = û(t,X∗t ), t ∈ [0, T ] is an
admissible control strategy, then V ∗ is indeed the value function and u∗t defines an optimal
control strategy. Here, X∗t is the solution of (5) using the optimal control strategy u∗ in
[0, t).

Example: Optimal dividend problem in the Cramér Lundberg model

The considered insurance company is assumed to pay out dividends. As defined by Azcue and
Muler (2014) [4], the corresponding dividend strategy is a process L̄ = (Lt)t≥0 where Lt is the
cumulative dividends paid out until time t. The associated controlled surplus process XL

t is
defined as

XL
T = x+ pt−

Nt∑
i=1

Ui − Lt

and the corresponding ruin time is

τL = inf{t ≥ 0 : XL
t < 0}.

The dividend strategy L is called admissible if it is

• non-decreasing, as dividends cannot be negative,

• cáglád (left continuous with right limits) and predictable with respect to the filtration
(Ft)t≥0,

• L0 = 0 and Lt ≤ Xt = x + pt −
∑Nt

i=1 Ui for 0 ≤ t < τL, which means that the company
cannot pay dividends exceeding the current surplus.
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For t ≥ τ L̄ the admissible dividend process is Lt = LτL and ΠL
x denotes the set of all admissible

dividend strategies with initial surplus x. Given a L ∈ ΠL
x it follows that XL

t is adapted and
τL is a stopping time with respect to the filtration (Ft)t≥0. An upwards jump of the cumulative
dividend process Lt at time s means that the company pays out a dividend of Ls+ − Ls. As a
compound Poisson process is of finite variation, the controlled risk process XL̄

t is also of finite
variation. It holds that XL

t− ≥ XL
t ≥ XL

t+, where

XL
t− > XL

t , only when a claim arrives,

XL
t > XL

t+, only when dividends are paid out.

Given an initial surplus x ≥ 0 and a L ∈ ΠL
x , the performance measure (cumulative expected

discounted dividends) J(x, L) is defined as

J(x, L) = Ex

[∫ τL

0
e−βs dLs

]
.

The parameter β > 0 can be interpreted as the impatience rate of the shareholders. As L is a
finite variation process the integral can be interpreted pathwise as a Riemann-Stieltjes integral.
The optimal value function (optimal dividend function) is defined as

V (x) = sup
L∈ΠLx

J(x, L) for x ≥ 0.

The goal is to look for an optimal control L∗ ∈ ΠL
x , such that V (x) = J(x, L∗).
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4 1-dimensional optimal dividend problem

In this section the problem dealing with the optimal pay-out of dividends in a framework of
controlled diffusion models solved by Asmussen and Taksar (1997) [3] is introduced. Here,
optimal strategies exist and have a simple structure - they are barrier strategies.

4.1 Restricted dividends

The free surplus process without dividend is assumed to evolve like a Brownian motion with drift
µ and variance σ2.

dX̃t = µ dt+ σ dWt,

where W = (Wt)t≥0 is a standard Brownian motion. The controlled process Xt is constructed
by a dynamical choice of the dividend rate u = (ut)t≥0, by allowing it to be depended on
the past up to time t. In mathematical terms this is expressed by a filtration (Ft)t≥0 with
Ft = σ{Ws : 0 ≤ s ≤ t} on a probability space (Ω,F , P ).

The controlled surplus process is defined as

dXt = (µ− ut) dt+ σ dWt, X0 = x. (13)

The stopping time τ denotes the ruin time τ = inf{t : Xt < 0}. The purpose of the dividend
optimization problem is to maximize the discounted expected value of the dividend payments.
The performance criterion is

J(x, u) = Ex

[ ∫ τ

0
e−βtut dt

]
.

The process u is the control variable of the problem with respect to which the performance
criterion is maximized over all admissible controls as defined in Section 3.1. The aim is to find
an optimal control u∗ such that V (x) = J(x, u∗). In the following the case, where there is
an upper bound u0 on the rate according to which dividends can be paid out, is considered.
The optimal control u∗t at time t should only depend on the past through Xt only, which is a
consequence of the Markov property of the free surplus process.

The optimal value function is

V (x) = sup
u∈A(x)

J(x, u).

4.1.1 Derivation of the HJB equation

To derive the HJB equation the differential operator Lu is needed

Luf(x) =
(
µ− ut

) ∂
∂x
f(x) +

1

2
σ2 ∂

2

∂x2
f(x).
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Then, the HJB equation for the case of an infinite time horizon (Section 3.3.2) is used

sup
u∈U
{ψ(x, u) + LuV (x)− βV (x)} = 0

The function ψ in this setting can be identified as ψ(x, u) = u. As the dividend payments are
restricted by an upper bound u0 the HJB equation is

sup
0≤u≤u0

{
u+ (µ− u)V ′(x) +

1

2
σ2V ′′(x)− βV (x)

}
= 0, (14)

V (0) = 0.

The natural boundary condition V (0) = 0 holds, because if the initial capital is zero dividends
cannot be paid out.

4.1.2 Optimal value function and optimal strategy

Suppose f(x) is a solution of the HJB system. As the optimization problem is linear dependent
on u it is maximized by the optimal control u∗(x), which is either 0 or u0 at each point x, i.e.

u∗(x) =

0 f ′(x) > 1,

u0 f ′(x) ≤ 1.

Under the assumption that the solution f is concave, which will be shown later, there exists a
point m ≥ 0 such that f ′(x) > 1 as x < m and f ′(x) ≤ 1 as x ≥ m. Thus the HJB equation can
be rewritten as

σ2

2
f ′′(x) + f ′(x)µ− βf(x) = 0, 0 ≤ x ≤ m (15)

σ2

2
f ′′(x) + f ′(x)(µ− u0)− βf(x) + u0 = 0, x ≥ m. (16)

The characteristic equation

σ2

2
θ2 + λ θ − β = 0

has roots

θ1(λ) =
−λ+

√
λ2 + 2βσ2

σ2
> 0, θ2(λ) =

−λ−
√
λ2 + 2βσ2

σ2
< 0. (17)

Then the generalsolution of (15) has the form

C1e
θ1(µ)x + C2e

θ2(µ)x.

For the solution of the inhomogeneous differential equation (16) one observes that the particular
solution is u0

β . The general solution is the sum of the general solution of the homogeneous
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equation and the particular solution and therefore has the form

u0

β
+ C3e

θ1(µ−u0)x + C4e
θ2(µ−u0)x.

As for any control u ∈ [0, u0] it holds that

J(x, u) = Ex

[ ∫ τ

0
e−βtut dt

]
≤ Ex

[ ∫ ∞
0

e−βtu0 dt
]

=
u0

β

for all admissible u. Hence, as V (x) = sup
u∈U

J(x, u) only f with f(x) ≤ u0
β are considered. As

θ1 > 0 it follows that C3 = 0, as exponential growth is not possible. Moreover C4 ≡ −d < 0,
such that f(x) ≤ u0

β is not violated. As f(0) = 0 it holds C1 = −C2 ≡ C and as f(x) > 0 it
holds C > 0. Let θ1 = θ1(µ), − θ2 = θ2(µ), − θ3 = θ2(µ− u0). The function f should be twice
continuously differentiable. To identify the parameter d,C and the unknown boundary m the
principle of smooth fit or the smooth pasting condition is used to get

f(m+) = f(m−),

f ′(m+) = 1

f ′(m−) = 1.

This is equivalent to

C(eθ1m − e−θ2m) =
u0

β
− de−θ3m, (18)

C(θ1e
θ1m + θ2e

−θ2m) = 1 (19)

dθ3e
−θ3m = 1. (20)

The system leads to

C(eθ1m − e−θ2m) =
u0

β
− 1

θ3
=: α

As C > 0 and eθ1m > e−θ2m, a solution can only exist if α > 0. In the following it will be shown
that this is a sufficient condition to solve (18)-(20).

Dividing (18) by (19) gives

eθ1m − e−θ2m

θ1eθ1m + θ2e−θ2m
= α ⇔

(1− αθ1)eθ1m = (1 + αθ2)e−θ2m

Under the assumption that αθ1 < 1 it holds

m =
1

θ1 + θ2
log

1 + αθ2

1− αθ1
> 0.
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It follows the proof that αθ1 < 1, which is equivalent to u0
β < 1

θ1
+ 1

θ3
. From the inequality√

a2 + b− a < b
2a follows that

θ1 =
−µ+

√
µ2 + 2βσ2

σ2
<

2βσ2

2µ

σ2
=
β

µ
.

If u0 ≤ µ

u0

β
≤ µ

β
≤ µ

β
+

1

θ3

and the claim follows. If u0 ≥ µ, then use

θ3 =
(µ− u0) +

√
(µ− u0)2 + 2σ2β

σ2
=
−(u0 − µ) +

√
(u0 − µ)2 + 2σ2β

σ2
<

β

u0 − µ

to see that

1

θ1
+

1

θ3
>

1

θ1
+
u0 − µ
β

>
u0 − µ
β

>
u0

β
.

It was shown that αθ1 < 1 has to hold. Therefore, there exists a m > 0 if and only if α > 0 as
θ1, θ2 > 0. The coefficients C, d are determined through the equations (19) and (20)

C =
1

θ1eθ1m + θ2e−θ2m
,

d =
eθ3m

θ3
.

The next theorem characterizes the solution of the HJB equation, where one has to distinguish
the cases α > 0 and α ≤ 0.

Theorem 4.1. There exists a twice continuously differentiable concave solution to (14). If α ≤ 0,
then the solution is

f(x) =
u0

β
(1− e−θ3x). (21)

If α > 0, then

f(x) =

C(eθ1x − e−θ2x), 0 ≤ x ≤ m,
u0
β − de

−θ3x, x > m,
(22)

where C, d,m are the unique solutions of (18)− (20).

Proof. The function (21) is concave, satisfies f(0) = 0 and f ′(0) = θ3u0/β ≤ 1. Therefore
f ′(x) ≤ 1 for all x > 0 and

(u0 − u)(f ′(x)− 1) ≤ 0, u ∈ [0, u0].

30
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Adding this inequality to the equality

σ2

2
f ′′(x) + f ′(x)(µ− u0)− βf(x) + u0 = 0

satisfied by f , leads to (14).

Now, concavity for the second case is shown. It is assumed that α > 0. The function f satisfies
f(0) = 0. By construction f is continuous and f ′(m−) = f(m+). As f satisfies (15) for
x ∈ [0,m] and (16) for x ∈ (m,∞) it holds

f ′′(m−) =
2

σ2
(βf(m−)− µf ′(m−)),

f ′′(m+) =
2

σ2
(βf(m+)− (µ− u0)f ′(m+)− u0).

As f ′(m) = f ′(m−) = f ′(m+) = 1 and f(m+) = f(m−) by construction, it holds

f ′′(m−) =
2

σ2
(βf(m)− µ),

f ′′(m+) =
2

σ2
(βf(m)− (µ− u0)− u0).

Therefore, f ′′(m) = f ′′(m−) = f ′′(m+) and f is twice continuously differentiable. Concavity on
(m,∞) is obvious

f ′′(x) = −dθ2
3e
−θ3x < 0 for x ∈ (m,∞).

To see that f is concave on [0,m] note that f ′′′(x) = C(θ3
1e
θ1x + θ3

2e
−θ2x) > 0 for x ∈ [0,m],

which means that f ′′ is monotone increasing. As f ′′(0) < 0 and f ′′(m+) = f ′′(m−) = −θ3 < 0

it follows f ′′(x) < 0 for x ∈ [0,m] and f is concave on [0,m]. Thus, f is concave on [0,∞).

Now it is shown that function f for the case α > 0 satisfies the HJB equation (14). If x ≤ m,
then f ′(x) ≥ 1 and adding the inequality −u(f ′(x)−1) ≤ 0 to (15) leads to (14). If x > m, then
f ′(x) = dθ3e

−θ3x = eθ3(m−x) < 1 and (14) follows by adding (u0 − u)(f ′(x)− 1) ≤ 0 to (16).

Uniqueness of the coefficients C, d,m was already shown before.

Proposition 4.1. The function f in Theorem 4.1 is greater than J(x, u) for any admissible
control u and any initial capital x, i.e. f(x) ≥ V (x).
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Proof. Using Itôs product formula gives

e−β(τ∧T )f(Xτ∧T )− f(x)

= e−β0f(X0) +

∫ τ∧T

0
e−βs df(Xs)−

∫ τ∧T

0
f(Xs)βe

−βs ds− f(x)

=

∫ τ∧T

0
e−βs

(
f ′(Xs) dXs +

σ2

2
f ′′(Xs) ds

)
−
∫ τ∧T

0
f(Xs)βe

−βs ds

=

∫ τ∧T

0
e−βs

(
f ′(Xs)(µ− us) +

σ2

2
f ′′(Xs)− f(Xs)β

)
ds+

∫ τ∧T

0
e−βsf ′(Xs)σ dWs. (23)

The last term is a stopped local martingale (therefore a local martingale itself) and as f is
concave (f ′(x) ≤ f ′(0) for any x) it holds

E
[[ ∫ τ∧·

0
e−βsf ′(Xs)σ dWs

]
T

]
= E

[ ∫ τ∧T

0
e−2βsf ′(Xs)

2σ2 ds
]

≤ E
[ ∫ τ∧T

0
e−2βsf ′(0)2σ2 ds

]
<∞.

Hence, it is a square integrable zero-expectation martingale. From (14) one can see that the
bracket in the first integrand of (23) doesn’t exceed −us. Rearranging terms and taking expec-
tations lead to

f(x) ≥ Ex
[ ∫ τ∧T

0
e−βsus ds

]
+ Ex

[
e−β(τ∧T )f(Xτ∧T )

]
Taking limits T →∞, using the Monotone Convergence Theorem and that f(0) = 0 and Xτ = 0,
yields

f(x) ≥ Ex
[ ∫ τ

0
e−βsus ds

]
= J(x, u).

The claim f(x) ≥ V (x) follows trivially.

Proposition 4.2. Define

u∗(x) =

0, 0 ≤ x ≤ m

u0, x > m

and let X∗t be the solution of the stochastic differential equation (13) with ut = u∗(X∗t ). Then
J(x, u∗) = f(x).

Proof. Substitution u∗(x) = u01x>m in the expression for e−β(τ∧T )f(Xτ∧T )−f(x) derived in the
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proof for Proposition 4.1 gives

e−β(τ∧T )f(Xτ∧T )− f(x)

=

∫ τ∧T

0
e−βs

(
f ′(Xs)(µ− u01Xs>m) +

σ2

2
f ′′(Xs)− f(Xs)β

)
ds+

∫ τ∧T

0
e−βsf ′(Xs)σ dWs

=

∫ τ∧T

0
e−βsf ′(Xs)σ dWs.

If Xs ≤ m the expression in the bracket is zero with (15), if Xs > m the expression is equal to
u0. Taking expectations yields

f(x) = Ex

[ ∫ τ∧T

0
e−βsu0 ds

]
+ Ex

[
e−β(τ∧T )f(Xτ∧T )

]
.

Since f(0) = 0 and Xτ = 0,

Ex
[
e−β(τ∧T )f(Xτ∧T )

]
= Ex

[
e−β(τ∧T )f(Xτ∧T )1τ>T

]
= Ex

[
e−βT f(XT )1τ>T

]
≤ e−βT sup

x≥0
f(x) ≤ e−βTu0/β,

which converges to zero for T →∞. Passing to the limit with Monotone Convergence yields

f(x) = Ex

[ ∫ τ

0
e−βsu0 ds

]
.

Corollary 4.1. f(x) = V (x) = J(x, u∗)

4.2 Unrestricted dividends

In this section the case, where the dividend is not restricted and the situation ut =∞ is possible,
is considered following again the approach of [3]. The cumulative dividend process up time t is
defined as

Lt =

∫ t

0
us ds.

As the process L = (Lt)t≥0 describes the summed up amount of dividends paid out up to the
time t, it is called admissible if

• Lt ∈ Ft,

• L is non-decreasing and non-negative.

In comparison to the last section dealing with restricted dividends, instead of u the dividend
strategy L is the control process. The imposed conditions for L do not imply continuity, but they
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do not exclude it. It is only assumed, that the process is left continuous with right limits. The
controlled surplus process is defined as

dXt = µ dt+ σ dWt − dLt.

As X0 = x − L0, it is conventionally assumed that L0− = 0 and therefore X0− = x. The
performance index is

J(x, L) = Ex

[ ∫ τ

0
e−βt dLt

]
,

interpreted as Riemann-Stieltjes integration, with the left endpoint of integration included. De-
fine the optimal return function as the supremum over all admissible L

V (x) = sup
L adm.

J(x, L).

The objective is to find an optimal control L∗ such that

V (x) = J(x, L∗).

Compared with the last section, when dividends were bounded and the optimal dividend was to
pay 0 or the maximal rate, in this case the maximal rate is unrestricted.

4.2.1 Derivation of the HJB equation

The HJB-equation derivation follows the approach of [4]. Here, it is assumed that dividends are
paid at a constant rate l ≥ 0, i.e. (Lt)t≥0 = (lt)t≥0 and dLt = l dt. To derive the HJB equation
the differential operator Ll is needed

Llf(x) =
(
µ− l

) ∂
∂x
f(x) +

1

2
σ2 ∂

2

∂x2
f(x).

Then, the HJB equation for the case of an infinite time horizon (Section 3.3.2) is used

sup
l≥0
{ψ(x, l) + LlV (x)− βV (x)} = 0

The function ψ in this setting can be identified as ψ(x, l) = l. Putting everything together yields

sup
l≥0

{
l + (µ− l)V ′(x) +

1

2
σ2V ′′(x)− βV (x)

}
= 0, (24)

V (0) = 0,
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The natural boundary condition V (0) = 0 holds, because if the initial capital is zero dividends
cannot be paid out. Rearranging terms gives

l
(
1− V ′(x)

)
+ µV ′(x) +

1

2
σ2V ′′(x)− βV (x) ≤ 0 for all l ≥ 0.

As this inequality holds for all l ≥ 0 it has to hold V ′(x) ≥ 1 because otherwise it will be violated
for l large enough, i.e. l → ∞. This means the left side of the inequality attains its maximum
at l = 0 for V ′(x) > 1. If V ′(x) = 1, then it remains

µV ′(x) +
1

2
σ2V ′′(x)− βV (x) = 0.

Theorem 4.2. The optimal return function V satisfies the following Hamilton-Jacobi-Bellmann
equation:

max
{1

2
σ2V ′′(x) + µV ′(x)− βV (x), 1− V ′(x)

}
= 0, (25)

V (0) = 0.

4.2.2 Optimal value function and optimal strategy

This equation is solved in the following way. First, one constructs a twice continuously differ-
entiable function f , which satisfies (25). Second, it has to be shown that this solution is the
optimal return function, i.e. V = f . Third, an optimal control L∗ has to be found such that the
corresponding performance criterion is V .

The solution is constructed as follows. It is assumed that f is concave, so that f ′(x) is non-
increasing. Define m = sup{x : f ′(x) > 1}. As it has to hold f ′(x) ≥ 1 for a solution, one
has

f ′(x) =

> 1, x < m,

= 1, x ≥ m.

Moreover,

1

2
σ2f ′′(x) + µf ′(x)− βf(x) = 0, x ≤ m. (26)

The solution f should therefore consist of two pices: one satisfies (26) on [0,m] and on f ′(x) = 1

on [m,∞]. To find the boundary m again the principle of smooth fit is used. As f is twice
continuously differentiable it has to hold that

f(m) = f(m−) = f(m+), (27)

f ′(m) = f ′(m+) = f ′(m−) = 1, (28)

f ′′(m) = f ′′(m+) = f ′′(m−) = 0. (29)
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As seen in Section 4.1, a general solution of (26) is f(x) = C1e
θ1x+C2e

θ2x, where θ1, θ2 are given
in (17), with C := C1 = −C2 > 0 because f(0) = 0. Then

f(x) = C(eθ1x − e−θ2x), (30)

f ′(x) = C(θ1e
θ1x + θ2e

−θ2x), (31)

f ′′(x) = C(θ2
1e
θ1x − θ2

2e
−θ2x). (32)

From (28) and (31) follows

C =
1

θ1eθ1x + θ2e−θ2x
(33)

and from (29) and (32)

m =
2

θ1 + θ2
log
(θ2

θ1

)
. (34)

As it holds f ′(x) = 1 on [m,∞) it follows that f(x) = x+ constant on [m,∞). As the function
f is assumed to be twice continuously differentiable it has to satisfy f(m) = f(m−) = f(m+)

which leads to the equation C(eθ1m − e−θ2m) = m+ const. Therefore the constant is computed
as C(eθ1m − e−θ2m)−m.

Theorem 4.3. Define

f(x) =

C(eθ1x − e−θ2x), x ≤ m,

C(eθ1m − e−θ2m) + x−m, x ≥ m.

where the parameter C and m are given by (33) and (34) and the parameter θ1, θ2 by (17). Then
f(x) is a solution to the Hamilton-Jacobi-Bellman equation (25).

Proof. What remains to be shown is that it holds

f ′(x) ≥ 1, x ≤ m,
1

2
σ2f ′′(x) + µf ′(x)− βf(x) ≤ 0, x ≥ m.

Are this conditions fulfilled, the function f satisfies the HJB equation of Theorem 4.2. Consid-
ering the third derivative of f

f ′′′(x) =

C
(
θ3

1e
θ1x + θ3

2e
−θ2x

)
x ≤ m,

0 x > m,
≥ 0, (35)

as θ1, θ2 are positive. This means that f ′′(x) is non-decreasing. Furthermore, f ′′(0) < 0 as
−θ2 > θ1. Since f ′′(m) = 0 it holds f ′′(x) ≤ 0 for x ≤ m. This proves that f(x) is concave on
[0,m]. Hence, f ′(x) ≥ f ′(m) = 1 for x ≤ m.
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For x ≥ m

1

2
σ2 f ′′(x)︸ ︷︷ ︸

=0

+µ f ′(x)︸ ︷︷ ︸
=1

−βf(x) = µ− βf(x) ≤ µ− βf(m) =
1

2
σ2f ′′(m) + µf ′(m)− βf(m) = 0,

as f is monotone increasing because of f ′(x) = 1 for x ≥ m.

Proposition 4.3. If L is any control, then

f(x) ≥ J(x, L) = E
[ ∫ τ

0
e−βt dLt

]
Moreover, f(x) ≥ V (x).

Proof. To use Itôs formula the non-decreasing dividend process L is decomposed into its contin-
uous LC and discontinuous part LD

Lt = LCt + LDt =

∫ t

0
dLCs +

∑
Ls− 6=Ls,s≤t

(Ls − Ls−).

Using Itôs product formula

e−βtf(Xt) = f(x) +

∫ t

0
e−βsdf(Xs) +

∫ t

0
(−β)e−βsf(Xs) ds

where with Itôs formula for semimartingales [16, Proposition 8.19]

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)dXs +

∫ t

0

1

2
σ2f ′′(Xs) d[X]Cs

+
∑

Xs 6=Xs−,s≤t

(
f(Xs)− f(Xs−)− f ′(Xs)(Xs −Xs−)

)
=

∫ t

0
f ′(Xs)

(
µ ds+ σ dWs − dLCs

)
−

∑
Ls− 6=Ls,s≤t

f ′(Xs)(Ls − Ls−)

+

∫ t

0

1

2
σ2f ′′(Xs) ds+

∑
Xs 6=Xs−,s≤t

(
f(Xs)− f(Xs−)− f ′(Xs)(Xs −Xs−︸ ︷︷ ︸

−(Ls−Ls−)

)
)

=

∫ t

0

(
f ′(Xs)µ+

1

2
σ2f ′′(Xs)

)
ds+

∫ t

0
f ′(Xs)σ dWs

−
∫ t

0
f ′(Xs) dL

C
s +

∑
Xs 6=Xs−,s≤t

(
f(Xs)− f(Xs−)

)
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as {s : Xs 6= Xs−} = {s : Ls 6= Ls−} leads to

e−β(t∧τ)f(Xt∧τ ) = f(x) +

∫ t∧τ

0
e−βs

(
f ′(Xs)µ+

1

2
σ2f ′′(Xs)− βf(Xs)︸ ︷︷ ︸
≤0

)
ds

+

∫ t∧τ

0
e−βsf ′(Xs)σ dWs −

∫ t∧τ

0
e−βsf ′(Xs) dL

C
s

+
∑

Xs 6=Xs−,s≤t∧τ
e−βs

(
f(Xs)− f(Xs−)

)
Since f is concave f ′(x) < f ′(0) < ∞. The stochastic integral

∫ t∧τ
0 e−βsf ′(Xs)σ dWs is a

zero expectation martingale because of its square integrable integrands. As f satisfies the HJB
equation the following inequality holds

E
[
e−β(t∧τ)f(Xt∧τ )

]
≤ f(x)− E

[ ∫ t∧τ

0
e−βsf ′(Xs) dL

C
s

]
+ E

[ ∑
Xs 6=Xs−,s≤t∧τ

e−βs
(
f(Xs)− f(Xs−)

)]
.

It holds f(Xτ ) = f(0) = 0. Therefore,

E
[
e−β(t∧τ)f(Xt∧τ )

]
= E

[
e−βtf(Xt)1t<τ

]
= e−βtE

[
f(Xt)1t<τ

]
.

It holds that Xt = x+ µt+ σWt − Lt ≤ |x+ µt+ σWt| and as f is concave, there exist a, b > 0

such that f(x) ≤ a+ bx. Therefore,

e−βtE
[
f(Xt)1t<τ

]
≤ e−βtE

[
(a+ bXt)1t<τ

]
≤ e−βt(a+ bE[|x+ µt+ σWt|])

As

E[|Wt|] =

∫ ∞
0

2x
1√
2πt

exp

(
− 1

2t
x2

)
dx =

√
2t

π

it follows that

e−βtE
[
f(Xt)1t<τ

]
≤ e−βt

(
a+ bx+ bµt+ b

√
2t

π

)
t→∞−→ 0.

Since f ′(x) ≥ 1

−E
[ ∫ t∧τ

0
e−βsf ′(Xs) dL

C
s

]
≤ −E

[ ∫ t∧τ

0
e−βs dLCs

]
and since f(Xs)−f(Xs−) = f ′(ζ)(Xs−Xs−) = −f ′(ζ)(Ls−Ls−) ≤ −(Ls−Ls−) for ζ ∈ [Xs, Xs−]

E
[ ∑
Xs 6=Xs−,s≤t∧τ

e−βs
(
f(Xs)− f(Xs−)

)]
≤ −E

[ ∑
Xs 6=Xs−,s≤t∧τ

e−βs
(
Ls − Ls−)

)]
.
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Combining these inequalities and taking limits t→∞ gives

0 ≤ f(x)− E
[ ∫ τ

0
e−βs dLCs

]
− E

[ ∑
Xs 6=Xs−,s≤τ

e−βs
(
Ls − Ls−)

)]
= f(x)− E

[ ∫ τ

0
e−βsdLs

]
︸ ︷︷ ︸

=J(x,L)

.

Since f(x) ≥ J(x, L) for any admissible strategy L it holds

f(x) ≥ V (x) = sup
L
J(x, L)

Now, the functional L∗ is constructed, such that J(x, L∗) = f(x). Define

L∗t = max
s≤t

[
x+ µs+ σWs −m

]+
, (36)

X∗t = x+ µt+ σWt − L∗t .

The process L∗ is a continuous non-decreasing process with L∗(0) > 0 when x > m. In this
case L∗ has a jump of size x−m at t = 0 and X∗0 = m. The process X∗ is a Brownian motion
with upper reflection boundary m. The optimal dividend strategy L∗ increases at the same time,
when X∗ = m. This means

X∗t ≤ m for all t ≥ 0,∫ ∞
0

1X∗
t <m

dL∗t = 0.

This dividend strategy pays out the amount the controlled surplus processX∗t exceeds the bound-
ary m. If the controlled surplus process is below m, no dividend is paid.

Proposition 4.4. It holds J(x, L∗) = f(x) = V (x). This means L∗ is the optimal control.

Proof. The same approach as in the proof of Theorem 4.3 is used. First the case x ≤ m is
considered. The stopping time is definied as τ∗ = inf{t : X∗t ≤ 0}. Now, one notes that

f ′(x)µ+
1

2
σ2f ′′(x)− βf(x) = 0 for x ≤ m

to see that

E
[
e−β(t∧τ∗)f(X∗t∧τ∗)

]
= E

[
e−βtf(X∗t )1t<τ∗

]
= f(x)− E

[ ∫ t∧τ∗

0
e−βsf ′(X∗s ) dL∗Cs

]
+ E

[ ∑
X∗
s 6=X∗

s−,s≤t∧τ∗
e−βs

(
f(X∗s )− f(X∗s−)

)]

= f(x)− E
[ ∫ t∧τ∗

0
e−βsf ′(X∗s ) dL∗s

]
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4 1-DIMENSIONAL OPTIMAL DIVIDEND PROBLEM

because L is a continuous process for x ≤ m.

E
[ ∫ t∧τ∗

0
e−βsf ′(X∗s ) dL∗s

]
= E

[ ∫ t∧τ∗

0
e−βsf ′(X∗s )1X∗

s=m dL∗s

]
= E

[ ∫ t∧τ∗

0
e−βs f ′(m)︸ ︷︷ ︸

=1

dL∗s

]

= E
[ ∫ t∧τ∗

0
e−βs dL∗s

]
.

This gives

f(x) = E
[
e−βtf(X∗t )1t<τ∗

]
+ E

[ ∫ t∧τ∗

0
e−βs dL∗s

]
Letting t tend to ∞ and using the Bounded Convergence Theorem (f bounded on [0,m]) and
the Monotone Convergence Theorem, one has

f(x) = E
[ ∫ t

0
e−βsdL∗s

]
= J(x, L∗).
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5 2-dimensional optimal dividend problem

In this chapter the optimal dividend strategy is analysed for the case when two insurance com-
panies (or business lines) are involved. The problem was solved by Gu, Steffensen and Zheng
(2016) [11] in a framework where the free surplus processes are modelled as diffusion processes.
In this model it is not possible that only one company survives and the other one goes ruin, i.e.
ruin is defined as simultaneous ruin. The collaboration allows money to be transferred from one
company to another one, but must be transferred in order to avoid ruin of one company. Both
companies aim to maximize their joint paid out dividends.

5.1 The model

The considered model includes two insurance companies: Company 1 and Company 2. The free
surplus process of Company 1 is denoted by X̄1

t and the free surplus process of Company 2 by
X̄2
t . Both free surpluses are diffusion processes

X̄1
t = x1 + µ1t+ σ1W

1
t ,

X̄2
t = x2 + µ2t+ σ2W

2
t ,

were x1, x2 are the initial surplus levels and W1 and W2 are independent standard Brownian
motions. The collaboration works as follows. If the current surplus of one company hits zero,
the other one is obligated to transfer positive cash to avoid ruin. Moreover, both companies are
allowed to transfer money to each other at any time without costs.

If there is a positive surplus, both companies are can to pay out dividends to their shareholders.
The dividend strategy Lt = (L1

t , L
2
t ) is the cumulative dividend paid out up to time t. The

process C21
t corresponds to the total amount transferred from Company 2 to Company 1 and

C12
t to the total amount transferred from Company 1 to Company 2 up to time t. Then the

associated controlled surplus processes are

X1
t = X̄1

t + C21
t − C12

t − L1
t ,

X2
t = X̄2

t + C12
t − C21

t − L2
t .

Ruin can only occur simultaneously at the moment both processes hit zero. The ruin time of
the companies is

τ := inf{t > 0 : X1
t , X

2
t < 0}.

A dividend and transferring strategy (L,C) = (L1, L2, C12, C21) is called admissible, denoted as
(L,C) ∈ π(x1,x2), if

1. L1, L2 are left continuous with right limits and Ft-predictable, where Ft is the natural
filtration generated byX1 andX2. This corresponds to the fact, that an insurance company
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plans its dividend policy itself and the amount to be paid out at time t is known before
time t.

2. C12, C21 are right continuous with left limits and Ft-adapted. In comparison to the divi-
dends payments costs can arise unexpected but are observable right after they are paid.

3. L1, L2, C12, C21 are non-negative and non-decreasing. These processes describe the accu-
mulated dividends resp. costs of Company 1 resp. Company 2 up to time t. Neither
dividends nor costs can be negative. These properties imply finite variation.

4. L1
t ≤ X1

t + C21
t − C12

t and L2
t ≤ X2

t + C12
t − C21

t . It is not possible to be pay out more
dividends than the available surplus after deducting costs.

Let R2
+ denote the set {(x1, x2) : x1 ≥ 0, x2 ≥ 0}. For any initial surplus level (x1, x2) ∈ R2

+,
the optimal value function is

V (x1, x2) = sup
(L,C)∈π(x1,x2)

JL,C(x1, x2),

where the performance criterion J is

JL,C(x1, x2) = Ex1,x2

[
a

∫ τ

0
e−βsdL1

s + (1− a)

∫ τ

0
e−βsdL2

s

]
.

The weights a and 1− a represent possible different proportional costs when drawing money out
of the two companies.

5.2 Derivation of the HJB equation

For fixed l1, l2,∆x1,∆x2 > 0 and B1 > x1, B2 > x2, the following strategy (L,C) is considered.
The processes X1 and X2 are the controlled surplus processes associated with (L,C). For a given
initial surplus (x1, x2), Company 1 pays dividends at rate l1 and transfers money to Company 2
with rate ∆x1 until time τ̄ , where τ̄ = inf{t ≥ 0 : X1

t = 0 or X2
t = 0 or X1

t ≥ B1 or X2
t ≥ B2}.

Analogously, Company 2 pays dividends at rate l2 and transfers money at rate ∆x2 up to time
τ̄ .

X1
t = x1 + (µ1 + l1 + ∆x2 −∆x1)t+ σ1W

1
t

X2
t = x2 + (µ2 + l2 + ∆x1 −∆x2)t+ σ2W

2
t

Using the dynamic programming principle

V (x1, x2) = sup
(L,C)∈π(x1,x2)

Ex1,x2

[
a

∫ τ̄∧t

0
e−βsl1 ds+ (1− a)

∫ τ̄∧t

0
e−βsl2 ds

+ e−β(τ̄∧t)V (X1
τ̄∧t, X

2
τ̄∧t)

]
(37)
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it holds

V (x1, x2) ≥ Ex1,x2

[
a

∫ τ̄∧t

0
e−βsl1 ds+ (1− a)

∫ τ̄∧t

0
e−βsl2 ds

]
+ Ex1,x2

[
e−β(τ̄∧t)V (X1

τ̄∧t, X
2
τ̄∧t)

]
. (38)

Using Itô’s formula for e−βtV (X1
t , X

2
t ) gives

d
(
e−βtV

)
= e−βt dV + V (−β)e−βt dt+ d[V, e−β·]t = e−βt dV − V βe−βt dt,

dV (X1
t , X

2
t ) =

∂V

∂x1
dX1

t +
∂V

∂x2
dX2

t +
1

2
σ2

1

∂2V

∂x2
1

dt+
1

2
σ2

2

∂2V

∂x2
2

dt+
∂2V

∂x1x2
d[X1, X2]t

=
( ∂V
∂x1

(µ1 + ∆x2 −∆x1 − l1) +
∂V

∂x2
(µ2 + ∆x1 −∆x2 − l2) +

1

2
σ2

1

∂2V

∂x2
1

dt+
1

2
σ2

2

∂2V

∂x2
2

)
dt

+
∂V

∂x1
σ1 dW

1
t +

∂V

∂x2
σ2 dW

2
t .

Taking expectations and using the optional sampling theorem, under the assumption that the
integrands are such that the stochastic integrals resp. W 1 and W 2 are martingales, leads to

Ex1,x2

[
e−β(τ̄∧t)V (X1

τ̄∧t, X
2
τ̄∧t)

]
− V (x1, x2)

= Ex1,x2

[ ∫ τ̄∧t

0
e−βsLV ds

]
(39)

+ Ex1,x2

[ ∫ τ̄∧t

0
e−βs

[ ∂V
∂x1

(∆x2 −∆x1 − l1) +
∂V

∂x2
(∆x1 −∆x2 − l2)

]
ds
]
,

where

LV := µ1
∂V

∂x1
+ µ2

∂V

∂x2
+

1

2
σ2

1

∂2V

∂x2
1

+
1

2
σ2

2

∂2V

∂x2
2

− βV.

Substitution (39) into (38), subtracting V (x1, x2) on both sides and taking the limes for t ↘ 0

gives

0 ≥ lim
t↘0

Ex1,x2
[ ∫ τ̄∧t

0 e−βsLV ds
]

t

+ lim
t↘0

Ex1,x2

[ ∫ τ̄∧t
0 e−βs

(
∂V
∂x1

(∆x2 −∆x1 − l1) + ∂V
∂x2

(∆x1 −∆x2 − l2)
)
ds
]

t

+ lim
t↘0

Ex1,x2

[ ∫ τ̄∧t
0 e−βs(al1 + (1− a)l2) ds

]
t
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and after rearranging terms and using that (X1
0 , X

2
0 ) = (x1, x2)

0 ≥ LV (x1, x2) + l1

(
a− ∂V

∂x1
(x1, x2)

)
+ l2

(
1− a− ∂V

∂x2
(x1, x2)

)
+ ∆x2

(
∂V

∂x1
− ∂V

∂x2

)
(x1, x2) + ∆x1

(
∂V

∂x2
− ∂V

∂x1

)
(x1, x2)

By setting l1 = l2 = ∆x1 = ∆x2 = 0, one has 0 ≥ LV (x1, x2). By setting l2 = ∆x1 = ∆x2 = 0

and assuming that l1 → ∞ gives that is has to hold that 0 ≥ (a − ∂V
∂x1

)(x1, x2). And letting
l2 → ∞, l1 = ∆x1 = ∆x2 = 0, ∆x1 → ∞, l1 = l2 = ∆x2 = 0 and ∆x2 → ∞, l1 = l2 = ∆x1 = 0

gives a similar result. Therefore, under the assumption that ’sup’ and ’lim’ in (37) can be
interchanged one has

0 = sup
l1,l2,∆x1,∆x2≥0

LV (x1, x2) + l1

(
a− ∂V

∂x1
(x1, x2)

)
+ l2

(
1− a− ∂V

∂x2
(x1, x2)

)
+ ∆x2

(
∂V

∂x1
− ∂V

∂x2

)
(x1, x2) + ∆x1

(
∂V

∂x2
− ∂V

∂x1

)
(x1, x2)

and the corresponding HJB equation for this problem is given by

0 = max

{
LV (x1, x2), a− ∂V

∂x1
(x1, x2), 1− a− ∂V

∂x2
(x1, x2),

∂V

∂x2
(x1, x2)− ∂V

∂x1
(x1, x2),

∂V

∂x2
(x1, x2)− ∂V

∂x1
(x1, x2)

}
, (40)

0 = V (0, 0).

Due to symmetry, without loss of generality, it is assumed that a ≥ 1
2 .

This optimization problem is solved by following the steps below.

1. A function f , that solves the HJB equation (40), is constructed.

2. It is shown that the solution f is greater than the optimal value function V .

3. A dividend strategy L∗ and a transferring strategy C∗ are constructed, such that f(x1, x2) =

JL∗,C∗(x1, x2) for any initial capital x1, x2. This proves that (L∗, C∗) gives the optimal
strategy.

5.3 Optimal value function and optimal strategy

Proposition 5.1. Let X1, X2 be the controlled surplus processes with control (L,C) and initial
values x1, x2. For any twice continuously differentiable function ψ on R2

+ and a finite stopping
time τ∗ ≤ τ , if one of the following two conditions holds,

1. X1, X2 are bounded,

2. ψ has bounded first derivatives,
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then, one has

e−βτ
∗
ψ(X1

τ∗ , X
2
τ∗)− ψ(x1, x2)

=

∫ τ∗

0
e−βsLψ(X1

s−, X
2
s−) ds+M(τ∗)

+

∫ τ∗

0
e−βs[ψx1(X1

s−, X
2
s−)− ψx2(X1

s−, X
2
s−)] dC21C

s

+

∫ τ∗

0
e−βs[ψx2(X1

s−, X
2
s−)− ψx1(X1

s−, X
2
s−)] dC12C

s∑
X1
s− 6=X1

s ,X
2
s− 6=X2

s ,s≤τ∗
e−βs[ψ(X1

s , X
2
s )− ψ(X1

s−, X
2
s−)]

−
∫ τ∗

0
ae−βsdL1

s −
∫ τ∗

0
(1− a)e−βsdL2

s

+

∫ τ∗

0
(a− ψx1(X1

s−, X
2
s−))e−βsdL1C

s

+
∑

L1
s+ 6=L1

s,s<τ
∗

∫ L1
s+−L1

s

0
(a− ψx1(X1

s − α,X2
s ))e−βsdα

+

∫ τ∗

0
(1− a− ψx2(X1

s−, X
2
s−))e−βsdL2C

s

+
∑

L2
s+ 6=L2

s,s<τ
∗

∫ L2
s+−L2

s

0
(1− a− ψx2(X1

s+, X
2
s − α))e−βsdα,

where M is a martingale, LiC , CijC are the continuous parts of Li, Cij and ψxi := ∂ψ
∂xi

, ψxixj :=
∂2ψ
∂xixj

.

Proof. Let X = (X1, X2). The dividend process Li is non-decreasing and left continuous, there-
fore finite variation and the sum of the jumps converges and it can be written as

Lit =

∫ t

0
dLiCs +

∑
Xi
s+ 6=Xi

s,s<t

(Lis+ − Lis). (41)

The same holds for the right continuous cost process

Cijt =

∫ t

0
dCijCs +

∑
Xs− 6=Xs,s≤t

(Cijs − C
ij
s−). (42)

Also the controlled surplus processes are of finite variation and can be expressed as

Xi
t =

∫ t

0
dXiC

s +
∑

∆Xi
s 6=0,s<t

∆Xi
s (43)

=

∫ t

0
dXiC

s +
∑

Xi
s 6=Xi

s−,s≤t

(Xi
s −Xi

s−) +
∑

Xi
s+ 6=Xi

s,s<t

(Xi
s+ −Xi

s). (44)
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Itôs product formula gives

e−βτ
∗
ψ(X1

τ∗ , X
2
τ∗)− ψ(x1, x2)

=

∫ τ∗

0
e−βs dψ(X1

s , X
2
s ) +

∫ τ∗

0
ψ(X1

s , X
2
s ) d

(
e−βs

)
+

∫ τ∗

0
d [ψ(X1, X2), e−β·]s︸ ︷︷ ︸

=0

=

∫ τ∗

0
e−βs dψ(X1

s , X
2
s )− β

∫ τ∗

0
e−βsψ(X1

s , X
2
s ) ds. (45)

The surplus processes X1 and X2 are rewritten as (43). The Itô formula for semimartinales [16,
Proposition 8.19] leads to

ψ(Xt) =

∫ t

0
ψx1(Xs−) dX1

s +

∫ t

0
ψx2(Xs−) dX2

s +
1

2

∫ t

0
ψx1x2(Xs) d [X1, X2]Cs︸ ︷︷ ︸

=0

+
1

2

∫ t

0
ψx1x2(Xs) d [X2, X1]Cs︸ ︷︷ ︸

=0

+
1

2

∫ t

0
ψx1x1(Xs) d[X1, X1]Cs +

1

2

∫ t

0
ψx2x2(Xs) d[X2, X2]Cs

+
∑

Xs 6=Xs−
s≤t

(ψ(Xs)− ψ(Xs−)− ψx1(Xs−)(X1
s −X1

s−)− ψx2(Xs−)(X2
s −X2

s−))

+
∑

Xs+ 6=Xs
s<t

(ψ(Xs+)− ψ(Xs)− ψx1(Xs−)(X1
s+ −X1

s )− ψx2(Xs−)(X2
s+ −X2

s ))

=

∫ t

0
ψx1(Xs−) dX1C

s +

∫ t

0
ψx2(Xs−) dX2C

s +
1

2

∫ t

0
ψx1x1(Xs) d[X1]Cs

+
1

2

∫ t

0
ψx2x2(Xs) d[X2]Cs +

∑
Xs 6=Xs−
s≤t

(ψ(Xs)− ψ(Xs−)) +
∑

Xs+ 6=Xs
s<t

(ψ(Xs+)− ψ(Xs))

The processes L1, L2, C12 and C21 are rewritten as (41) resp. (42). As one company transfers
money to the other company, the right continuous processes C21 and C12 jump at the same
time. As the dividend strategy is left continuous and the Brownian motion and drift parts are
continuous it holds that {s : X1

s− 6= X1
s } = {s : X2

s− 6= X2
s } = {s : C12

s− 6= C12
s } = {s :

C21
s− 6= C21

s }. Also note that continuous finite variation processes have quadratic variation zero.
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Therefore,

ψ(Xt) =

∫ t

0
ψx1(Xs−) dX1C

s︸ ︷︷ ︸∫ t
0 ψx1 (Xs−) d(µ1s+σ1W 1

s +C21C
s −C12C

s −L1C
s )

+

∫ t

0
ψx2(Xs−) dX2C

s︸ ︷︷ ︸∫ t
0 ψx2 (Xs−) d(µ2s+σ2W 2

s +C12C
s −C21C

s −L2C
s )

+
1

2

∫ t

0
ψx1x1(Xs) d[X1]Cs︸ ︷︷ ︸

=σ2
1 ds

+
1

2

∫ t

0
ψx2x2(Xs) d[X2]Cs︸ ︷︷ ︸

=σ2
2 ds

+
∑

X1
s 6=X1

s−,X
2
s 6=X2

s−
s≤t

(ψ(X1
s , X

2
s )− ψ(X1

s−, X
2
s−))

+
∑

L1
s+ 6=L1

s,L
2
s+=L2

s
s<t

(ψ(X1
s+, X

2
s )− ψ(X1

s , X
2
s )) +

∑
L2
s+ 6=L2

s,L
1
s+=L1

s
s<t

(ψ(X1
s , X

2
s+)− ψ(X1

s , X
2
s ))

+
∑

L2
s+ 6=L2

s,L
1
s+ 6=L1

s
s<t

(ψ(X1
s+, X

2
s+)− ψ(X1

s , X
2
s )).

Rearranging terms yields

ψ(X1
t , X

2
t ) =

∫ t

0

(
ψx1µ1 + ψx2µ2 +

1

2
σ2

1ψx1x1 +
1

2
σ2

2ψx2x2
)
(X1

s−, X
2
s−) ds

+

∫ t

0
ψx1(X1

s−, X
2
s−)σ1 dW

1
s +

∫ t

0
ψx2(X1

s−, X
2
s−)σ2 dW

2
s

+

∫ t

0

(
ψx1 − ψx2

)
(X1

s−, X
2
s−) dC21C

s +

∫ t

0

(
ψx2 − ψx1

)
(X1

s−, X
2
s−) dC12C

s

−
∫ t

0
ψx1(X1

s−, X
2
s−) dL1C

s −
∫ t

0
ψx2(X1

s−, X
2
s−) dL2C

s

+
∑

X1
s 6=X1

s−,X
2
s 6=X2

s−,s≤t

[ψ(X1
s , X

2
s )− ψ(X1

s−, X
2
s−)]

+
∑

L1
s+ 6=L1

s,s<t

(ψ(X1
s+, X

2
s )− ψ(X1

s , X
2
s )) +

∑
L2
s+ 6=L2

s,s<t

(ψ(X1
s+, X

2
s+)− ψ(X1

s+, X
2
s )).
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Using this result to compute the first term of equation (45) gives∫ τ∗

0
e−βs dψ(X1

s , X
2
s ) =

∫ τ∗

0
e−βs

(
ψx1µ1 + ψx2µ2 +

1

2
σ2

1ψx1x1 +
1

2
σ2

2ψx2x2
)
(X1

s−, X
2
s−) ds

+

∫ τ∗

0
e−βsψx1(X1

s−, X
2
s−)σ1 dW

1
s +

∫ τ∗

0
e−βsψx2(X1

s−, X
2
s−)σ2 dW

2
s

+

∫ τ∗

0
e−βs

(
ψx1 − ψx2

)
(X1

s−, X
2
s−) dC21C

s +

∫ τ∗

0
e−βs

(
ψx2 − ψx1

)
(X1

s−, X
2
s−) dC12C

s

−
∫ τ∗

0
e−βsψx1(X1

s−, X
2
s−) dL1C

s −
∫ τ∗

0
e−βsψx2(X1

s−, X
2
s−) dL2C

s

+
∑

X1
s− 6=X1

s ,X
2
s− 6=X2

s ,s≤τ∗
e−βs(ψ(X1

s , X
2
s )− ψ(X1

s−, X
2
s−))

+
∑

L1
s+ 6=L1

s,s<τ
∗

e−βs(ψ(X1
s+, X

2
s )− ψ(X1

s , X
2
s ))

+
∑

L2
s+ 6=L2

s,s<τ
∗

e−βs(ψ(X1
s+, X

2
s+)− ψ(X1

s+, X
2
s )).

As the processes W 1 and W 2 are standard Brownian motions, they are (local) martingales.
Stochastic integrals with respective to a local martingale are again local martingales. Therefore
the process

Mt :=

∫ t

0
e−βsψx1(X1

s−, X
2
s−)σ1 dW

1
s +

∫ t

0
e−βsψx2(X1

s−, X
2
s−)σ2 dW

2
s

is a local martingale. If one of the conditions hold, i.e. first derivatives of ψ are bounded orX1, X2

are bounded (together with ψ continuous differentiable) it follows that the integrands are bounded
resp. bounded on [0, t] (by Weierstrass’ Theorem). Therefore, it holds E

[
[M(·)]t

]
<∞ and Mt

is a martingale. With the optional sampling theorem it follows that the stopped martingale is
again a martingale. Since X1

s+ −X1
s = −(L1

s+ − L1
s),

−
∫ τ∗

0
e−βsψx1(X1

s−, X
2
s−) dL1C

s

+
∑

L1
s+ 6=L1

s,s<τ
∗

e−βs(ψ(X1
s+, X

2
s )− ψ(X1

s , X
2
s ))

= −
∫ τ∗

0
e−βsψx1(X1

s−, X
2
s−) dL1C

s

−
∑

L1
s+ 6=L1

s,s<τ
∗

e−βs
∫ L1

s+−L1
s

0
ψx1(X1

s − α,X2
s ) dα

= −
∫ τ∗

0
ae−βs dL1

s +

∫ τ∗

0
e−βs(a− ψx1(X1

s−, X
2
s−)) dL1C

s

+
∑

L1
s+ 6=L1

s,s<τ
∗

e−βs
∫ L1

s+−L1
s

0
(a− ψx1(X1

s − α,X2
s )) dα.
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Analogously,

−
∫ τ∗

0
e−βsψx2(X1

s−, X
2
s−) dL2C

s

+
∑

L2
s+ 6=L2

s,s<τ
∗

e−βs(ψ(X1
s+, X

2
s+)− ψ(X1

s+, X
2
s ))

= −
∫ τ∗

0
e−βsψx2(X1

s−, X
2
s−) dL2C

s

−
∑

L2
s+ 6=L2

s,s<τ
∗

e−βs
∫ L2

s+−L2
s

0
ψx2(X1

s+, X
2
s − α) dα

= −
∫ τ∗

0
(1− a)e−βs dL2

s +

∫ τ∗

0
e−βs((1− a)− ψx2(X1

s−, X
2
s−)) dL2C

s

+
∑

L2
s+ 6=L2

s,s<τ
∗

e−βs
∫ L2

s+−L2
s

0
((1− a)− ψx2(X1

s+, X
2
s − α)) dα.

Combining all equalities shown above, the proof is complete.

Now, the goal is to find a twice continuously differentiable function in R2
+ that solves problem

(40). Define the following function f on R2
+:

f(x1, x2) =

aC(eθ1(x1+x2) − e−θ2(x1+x2)), x1 + x2 < m,

a[C(eθ1m − e−θ2m) + x1 + x2 −m], x1 + x2 ≥ m,
(46)

where θ1, θ2, C,m are positive constants, which have to be determined. The intuition to find
this function is the same as in Section 4.2 for x = x1 + x2. It is required that L(f) = 0 when
x1 + x2 ≤ m. The characteristic equation is(1

2
σ2

1 +
1

2
σ2

2

)
θ + (µ1 + µ2)θ − β = 0,

with roots θ1,−θ2, where θ2 > θ1 > 0

θ1 =
−(µ1 + µ2) +

√
(µ1 + µ2)2 + 2(σ2

1 + σ2
2)β

(σ2
1 + σ2

2)
, (47)

−θ2 =
−(µ1 + µ2)−

√
(µ1 + µ2)2 + 2(σ2

1 + σ2
2)β

(σ2
1 + σ2

2)
. (48)

As f has to be twice differentiable, analogously to Section 4.2 the principle of smooth fit has to
hold:

∂f

∂x1

∣∣∣
x1+x2=m

=
∂f

∂x2

∣∣∣
x1+x2=m

= a,

∂2f

∂x2
1

∣∣∣
x1+x2=m

=
∂2f

∂x2
2

∣∣∣
x1+x2=m

=
∂2f

∂x1x2

∣∣∣
x1+x2=m

= 0.
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Again, these conditions lead to

C(θ1e
θ1m + θ2e

−θ2m) = 1,

θ2
1e
θ1m − θ2

2e
−θ2m = 0,

which gives the same coefficients as in the 1-dimensional problem with unrestricted dividends
for µ = µ1 + µ2 and σ2 = σ2

1 + σ2
2:

C =
1

θ1eθ1m + θ2e−θ2m
, m =

2

θ1 + θ2
ln
(θ2

θ1

)
. (49)

Proposition 5.2. The function f defined in (46), with coefficients given in (47) and (49) is
twice continuously differentiable and has bounded first derivatives and is a solution to the HJB
equation (40).

Proof. The function f is twice continuously differentiable, has bounded first derivatives by con-
struction and ∂f

∂x1
= ∂f

∂x2
.

• Case x1 + x2 < m: By construction, it holds Lf = 0. It remains to show that a− ∂f
∂x1
≤ 0

and (1−a)− ∂f
∂x2
≤ 0. One has ∂3f

∂x31
= aC(θ3

1e
θ1(x1+x2) + θ3

2e
−θ2(x1+x2)) > 0. The derivative

∂2f
∂x21

is increasing and ∂2f
∂x21

∣∣∣
x1+x2=m

= 0, thus ∂2f
∂x21
≤ 0. The derivative ∂f

∂x1
is decreasing and

∂f
∂x1

∣∣∣
x1+x2=m

= a, thus a− ∂f
∂x1
≤ 0 for x1 +x2 < m. Similarly, (1−a)− ∂f

∂x2
≤ a− ∂f

∂x2
≤ 0.

• Case x1 + x2 ≥ m: Here, it holds (1− a)− ∂f
∂x2
≤ 0 and a = ∂f

∂x1
= ∂f

∂x2
. The cases x2 ≤ m

and x2 > m are considered to prove that Lf ≤ 0. Note that f is monotone increasing
in both arguments. If x2 ≤ m, Lf(x1, x2) = µ1a + µ2a − βf(x1, x2) ≤ µ1a + µ2a −
βf(m− x2, x2) = Lf(m− x2, x2) = 0. If x2 > m, Lf(x1, x2) = µ1a+ µ2a− βf(x1, x2) ≤
µ1a+ µ2a− βf(0,m) = Lf(0,m) = 0.
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5 2-DIMENSIONAL OPTIMAL DIVIDEND PROBLEM

Now, the optimal dividend and transferring strategy (L∗, C∗) is constructed. For this purpose,
the domain R2

+ is divided into three parts:

• A =
{

(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ m
}
,

• B =
{

(x1, x2) : x1 > 0, x2 ∈ [0,m], x1 + x2 > m
}
,

• C =
{

(x1, x2) : x1 ≥ 0, x2 > m
}
.

(0,m)

(m,0)(0,0)

A
B

C

x1 + x2 = m

x2 = m

x1

x2

Figure 3: Areas for the optimal strategy

The dividend strategy is L∗ and the transferring strategy is C∗ with initial surplus level (x1, x2).
The strategy (L∗, C∗) is constructed as follows (see Figure 4-6):

1. (x1, x2) ∈ C: Company 2 transfers x2 −m to Company 1. Continue with 2.

2. (x1, x2) ∈ B: Company 1 pays x1 + x2 −m as dividend. Continue with 3.

3. (x1, x2) ∈ A: Company 1 pays accumulated max
s≤t

[X1∗
s + X2∗

s −m]+ up to time t until the

process reaches (0, 0). If X1∗ hits zero, money is transferred from Company 2 to Company
1. Analogously, if X2∗ hits zero, money is transferred from Company 1 to Company 2.
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(0,m)

(m,0)(0,0)

A

B

C

x1 + x2 = m

x2 = m

x1

x2

Figure 4: Optimal Strategy when initial value in area C

(0,m)

(m,0)(0,0)

A

B

C

x1 + x2 = m

x2 = m

x1

x2

Figure 5: Optimal Strategy when initial value in area B
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(0,m)

(m,0)(0,0)

A

B

C

x1 + x2 = m

x2 = m

x1

x2

Figure 6: Optimal Strategy when initial value in area A

Here, X1∗ and X2∗ denote the controlled surplus processes using the strategies (L∗, C∗). The
optimal strategy implies that dividends are only paid if the sum of the two surplus processes
exceeds or reaches the barrier m. Company 2 never pays any dividends, but if its surplus is
higher than the barrier, it transfers the money exceeding m to Company 1. Only Company 1
pays dividends when the sum of both surplus processes of the companies X1∗

s + X2∗
s hits the

barrier m.

The next theorem shows that the above constructed strategy gives the optimal value function,
which means that this barrier strategy is optimal.

Theorem 5.1. The strategy (L∗, C∗) gives the optimal strategy and the function f gives the
optimal value function, i.e. f(x1, x2) ≥ JL,C(x1, x2) and f(x1, x2) = JL∗,C∗(x1, x2).

Proof. The first step is to show that for any initial capital (x1, x2) ∈ R2
+ and any admissible

control (L,C),

f(x1, x2) ≥ JL,C(x1, x2).

Let X1, X2 denote the controlled surplus processes of Company 1 resp. Company 2 with L and
C. Then, as L is left-continuous, X1

s 6= X1
s−, X

2
s 6= X2

s− only when money is transferred. As the
money is only exchanged between the two companies it holds

X1
s −X1

s− = X2
s −X2

s− ⇔

X1
s +X2

s = X1
s− +X2

s−
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and hence,

f(X1
s , X

2
s ) = f(X1

s−, X
2
s−).

As f satisfies the HJB equation (40), by Proposition 5.1 with finite stopping time τ ∧ t,

e−β(τ∧t)f(X1(τ ∧ t), X2(τ ∧ t))− f(x1, x2)

=

∫ τ∧t

0
e−βτ∧t Lf(X1

s−, X
2
s−)︸ ︷︷ ︸

≤0

ds+Mτ∧t

+

∫ τ∗

0
e−βs (fx1(X1

s−, X
2
s−)− fx2(X1

s−, X
2
s−))︸ ︷︷ ︸

=0

dC21C
s

+

∫ τ∗

0
e−βs (fx2(X1

s−, X
2
s−)− fx1(X1

s−, X
2
s−))︸ ︷︷ ︸

=0

dC12C
s

∑
X1
s− 6=X1

s ,X
2
s− 6=X2

s ,s≤τ∧t

e−βs (f(X1
s , X

2
s )− f(X1

s−, X
2
s−))︸ ︷︷ ︸

=0

−
∫ τ∧t

0
ae−βsdL1

s −
∫ τ∧t

0
(1− a)e−βsdL2

s

+

∫ τ∧t

0
(a− fx1(X1

s−, X
2
s−))︸ ︷︷ ︸

≤0

e−βsdL1C
s

+
∑

L1
s+ 6=L1

s,s<τ∧t

∫ L1
s+−L1

s

0
(a− fx1(X1

s − α,X2
s ))︸ ︷︷ ︸

≤0

e−βsdα

+

∫ τ∧t

0
(1− a− fx2(X1

s−, X
2
s−))︸ ︷︷ ︸

≤0

e−βsdL2C
s

+
∑

L2
s+ 6=L2

s,s<τ∧t

∫ L2
s+−L2

s

0
(1− a− fx2(X1

s+, X
2
s − α))︸ ︷︷ ︸

≤0

e−βsdα,

≤Mτ∧t −
∫ τ∧t

0
ae−βsdL1

s −
∫ τ∧t

0
(1− a)e−βsdL2

s

with Proposition 5.1 and Proposition 5.2. The stopped martingale M has expectation zero by
the optional stopping theorem. Hence,

f(x1, x2) ≥ Ex1,x2
[ ∫ τ∧t

0
ae−βsdL1

s +

∫ τ∧t

0
(1− a)e−βsdL2

s

]
and by Monotone Convergence Theorem,

f(x1, x2) ≥ lim
t→∞

Ex1,x2

[ ∫ τ∧t

0
ae−βs dL1

s +

∫ τ∧t

0
(1− a)e−βs dL2

s

]
= Ex1,x2

[ ∫ τ

0
ae−βsdL1

s +

∫ τ

0
(1− a)e−βs dL2

s

]
= JL,C(x1, x2).
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This means f dominates JL,C for all L,C and therefore it follows f(x1, x2) ≥ V (x1, x2) =

V (x1, x2).

The next step is to show that for the constructed control (L∗, C∗), f(x1, x2) = JL∗,C∗(x1, x2).
This means (L∗, C∗) is optimal. Let X∗1 , X∗2 denote the controlled surplus processes of Company
1 resp. Company 2 with L∗ and C∗. For (x1, x2) ∈ A, by Proposition 5.1 and Proposition 5.2 it
holds Lf = 0. Moreover L2∗ = 0, L1∗

s+ − L1∗
s = 0, therefore

e−β(τ∧t)f(X1∗
τ∧t, X

2∗
τ∧t)− f(x1, x2)

=

∫ τ∧t

0
e−βτ∧t L(L∗,C∗)f(X1

s−, X
2
s−)︸ ︷︷ ︸

=0

ds+Mτ∧t

+

∫ τ∗

0
e−βs (fx1(X1

s−, X
2
s−)− fx2(X1

s−, X
2
s−))︸ ︷︷ ︸

=0

dC21∗C
s

+

∫ τ∗

0
e−βs (fx2(X1

s−, X
2
s−)− fx1(X1

s−, X
2
s−))︸ ︷︷ ︸

=0

dC12∗C
s

∑
X1
s− 6=X1

s ,X
2
s− 6=X2

s ,s≤τ∧t

e−βs (f(X1
s , X

2
s )− f(X1

s−, X
2
s−))︸ ︷︷ ︸

=0

−
∫ τ∧t

0
ae−βsdL1∗

s −
∫ τ∧t

0
(1− a)e−βs dL∗2s︸︷︷︸

=0

+

∫ τ∧t

0
(a− fx1(X1

s−, X
2
s−))e−βsdL1∗C

s

+
∑

L1
s+ 6=L1

s,s<τ∧t

∫ =0︷ ︸︸ ︷
L1∗
s+ − L1∗

s

0
(a− fx1(X1

s − α,X2
s ))e−βsdα︸ ︷︷ ︸

=0

+

∫ τ∧t

0
(1− a− fx1(X1

s−, X
2
s−))e−βs dL2∗C

s︸ ︷︷ ︸
=0

+
∑

L2
s+ 6=L2

s,s<τ∧t

∫ =0︷ ︸︸ ︷
L2
s+ − L2

s

0
(1− a− fx1(X1

s+ − α,X2
s ))e−βsdα︸ ︷︷ ︸

=0

= Mτ∧t −
∫ τ∧t

0
ae−βsdL1∗

s +

∫ τ∧t

0
(a− fx1(X1∗

s−, X
2∗
s−))e−βsdL1∗C

s ,
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where ∫ τ∧t

0
(a− fx1(X1∗

s−, X
2∗
s−))e−βsdL1∗C

s∫ τ∧t

0
(a− fx1(X1∗

s , X
2∗
s ))e−βsdL1∗C

s∫ τ∧t

0
(a− fx1(X1∗

s , X
2∗
s ))e−βs1X1∗

s +X2∗
s =m dL1∗C

s

= 0

as fx1(x1, x2)
∣∣
x1+x2=m

= a. Since (X1∗
τ , X

2∗
τ ) = (0, 0)

f(x1, x2)

= Ex1,x2
[
e−β(τ∧t)f(X1∗

τ∧t, X
2∗
τ∧t)

]
+ Ex1,x2

[ ∫ τ∧t

0
ae−βsdL1∗

s

]
= Ex1,x2

[
e−βtf(X1∗

t , X
2∗
t )1t<τ

]
+ Ex1,x2

[ ∫ τ∧t

0
ae−βsdL1∗

s

]
.

Using the Bounded Convergence Theorem and the Monotone Convergence Theorem, it follows

f(x1, x2) = Ex1,x2
[

lim
t→∞

e−βtf(X1∗
t , X

2∗
t )1t<τ

]
+ Ex1,x2

[
lim
t→∞

∫ τ∧t

0
ae−βsdL1∗

s

]
= Ex1,x2

[ ∫ τ

0
ae−βsdL1∗

s

]
and

f(x1, x2) = JL∗,C∗(x1, x2).

For the case x1 +x2 > m the strategy L∗ pays immediately dividend x1 +x2−m and f(x1, x2) =

x1 + x2 −m+ f(x̃1, x̃2)|x̃1+x̃2=m. For x̃1, x̃2 ∈ A the previous computation holds and the result
follows.

The optimal value function V 2−dim(X1, X2) of 2-dimensional optimal dividend problem for two
collaborating companies is similar to the optimal value function for the 1-dimensional problem
V 1−dim(X). Specifically, the relation is V 2−dim(X1, X2) = aV 1−dim(X1 + X2). Like in the
1-dimensional problem, dividends are only paid out when the sum of the two companies exceeds
an optimal barrier. If the sum is below this barrier, no dividend is paid.
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6 Local time and Tanaka’s formula

This chapter is based on the book of Chung and Williams [6], where more details and the missing
proofs can be found. Let Wt denote a Brownian motion. The goal of this chapter to derive a
decomposition, known as Tanaka’s formula, of the process |Wt| as the sum of another Brownian
motion Ŵt and a continuous increasing process Lt

|Wt| = Ŵt + Lt.

As |Wt| is a submartingale,

E
[
|Wt|

∣∣Fs] ≥ ∣∣E[Wt

∣∣Fs]∣∣ =
∣∣Ws

∣∣ for ∀s ≤ t,

it is intuitive that Lt has to be increasing. A more general formula is given for x ∈ R with

|Wt − x| = Ŵt + Lt(x).

The process Lt(x) is called local time of Brownian motion and can be expressed as

Lt(x) = lim
ε→0

1

2ε

∫ t

0
1(x−ε,x+ε)(Ws) ds = lim

ε→0

1

2ε
λ
{
s ∈ [0, t] : Bs ∈ (x− ε, x+ ε)

}
(50)

where λ is the Lebesgue measure. Thus, the local time measures the time the Brownian motion
stays in a neighbourhood of x. As the set

{
t ∈ R+ : Bt = x

}
has Lebesgue measure zero, it is

not obvious that the process Lt(x) doesn’t vanish.

6.1 Existence of local time

Theorem 6.1. For each t ∈ R+ and x ∈ R, it holds almost surely, that

(Wt − x)+ − (W0 − x)+ =

∫ t

0
1[x,∞)(Ws) dWs +

1

2
Lt(x)

where L is defined in (50) with the limit in L2.

Proof. For x ∈ R, the function fx(y) = (y − x)+ is defined. This function is not differentiable
but its first two derivatives exist in the sense of generalized functions (Schwartz distributions)

f ′x(y) = 1[0,∞)(y),

f ′′x (y) = δx(y) = lim
ε→0

1

2ε
1(x−ε,x+ε)(y).

A formal application of Itô’s formula yields:

(Wt − x)+ − (W0 − x)+ =

∫ t

0
1[x,∞)(Ws) dWs +

1

2

∫ t

0
δx(Ws) ds.

If the Itô formula holds in this case, the last integral exists and coincides with the definition of
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Lt(x), then the claim is proven. Now, a function fxε is defined as

fxε(y) =


0, for y ≤ x− ε,
(y−x+ε)2

4ε , for x− ε < y < x+ ε,

y − x, for y ≥ x+ ε

x − ε x x + ε

ε

Figure 7: fxε

This construction is a continuous differentiable function, which converges uniformly to fx(y) for
ε→ 0. Its first and second derivatives are

f ′xε(y) =


0, for y ≤ x− ε,
y−x+ε

2ε , for x− ε < y < x+ ε,

1, for y ≥ x+ ε
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1

x − ε x x + ε

Figure 8: f ′xε

and

f ′′xε(y) =


0, for y ≤ x− ε,
1
2ε , for x− ε < y < x+ ε,

0, for y ≥ x+ ε.

x − ε x x + ε

1

2ε

Figure 9: f ′′xε

The second derivative f ′′xε is not defined at x± ε, therefore it is set to zero. The graphs show fxε

and its derivative

To apply Itôs formula to fxε a so called mollifier is used create sequences of smooth functions
approximating this nonsmooth function via convolution. There is a sequence φn ∈ C∞ (mollifier)
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with compact supports shrinking to {0}, i.e. support(φn)→ 0 for n→∞, such that

gn = φn ∗ fxε =

∫
R
fxε(y − z)φn(z) dz,

then

• gn ∈ C∞,

• gn → fxε uniformly in R,

• g′n → f ′xε uniformly in R,

• g′′n → f ′′xε pointwise except at x± ε.

The sequence φn can be defined as follows: φn(y) = nφ(ny), where φ(y) = c exp
(
− (1− y2)−1

)
for |y| < 1 and φ(y) = 0 for |y| ≥ 1. The constant c is such that c

∫ 1
−1 φ(y) dy = 1. As gn is

smooth enough, Itô’s formula can be applied

gn(Wt)− gn(W0) =

∫ t

0
g′n(Ws) dWs +

1

2

∫ t

0
g′′n(Ws) ds. (51)

Now, it holds

lim
n→∞

1[0,t]g
′
n(Ws) = 1[0,t]f

′
xε(Ws)

uniformly on on R+ × Ω and hence in L2(λ× P ), i.e.

lim
n→∞

E
[ ∫ t

0

(
g′n(Ws)− f ′xε(Ws)

)2
ds
]

= 0.

With Itôs isometry it holds

lim
n→∞

E
[ ∫ t

0

(
g′n(Ws)− f ′xε(Ws) dWs

)2]
= lim

n→∞
E
[ ∫ t

0

(
g′n(Ws)− f ′xε(Ws)

)2
ds
]

= 0.

and therefore

lim
n→∞

∫ t

0
g′n(Ws) dWs =

∫ t

0
f ′xε(Ws) dWs in L2(P ).

As P [Wt = x± ε] = 0

lim
n→∞

g′′n(Wt) = f ′′xε(Wt) a.s.

and this relation also holds for λ-almost all s ∈ R+ a.s. As |g′′n| ≤ 1
2ε it follows by bounded

convergence that

lim
n→∞

∫ t

0
g′′n(Ws) ds =

∫ t

0
f ′′xε(Ws) ds

60



6 LOCAL TIME AND TANAKA’S FORMULA

a.s. and in L2. Thus, by letting n → ∞ in (51), as gn converges uniformly to fxε it holds for
each x and t, almost surely

fxε(Wt)− fxε(W0) =

∫ t

0
f ′xε(Ws) dWs +

1

2

∫ t

0
f ′′xε(Ws)︸ ︷︷ ︸

1
2ε

1(x−ε,x+ε)(Ws)

ds

Furthermore,

lim
ε→0

fxε(Wt)− fxε(W0) = fx(Wt)− fx(W0) = (Wt − x)+ − (W0 − x)+

in L2 since |fxε(Wt)− fxε(W0)| ≤ |Wt −W0|. Also

E
[ ∫ t

0
(f ′xε(Ws)− 1[x,∞)(Ws))

2 ds
]
≤ E

[ ∫ t

0
1(x−ε,x+ε)(Ws) ds

]
≤
∫ t

0

2ε√
2πs

ds
ε→0−→ 0.

where the upper bound in last inequality is the maximal density value 1√
2πs

in the interval
(x− ε, x+ ε) times the interval length 2ε. An illustration of this inequality is given in the graph
below. With Itôs isometry

lim
ε→0

∫ t

0
f ′xε(Ws) dWs =

∫ t

0
1[x,∞)(Ws) dWs in L2(P ).

0 x − ε x x + ε

1
1[x,∞)

f′xε

Figure 10: Illustration of the proof idea

It was shown that 1
2ε

∫ t
0 1(x−ε,x+ε)(Ws) ds can be represented as sum of L(P )2-convergent terms

and is therefore also L2(P )-convergent. Thus, the local time exists and the claim is proven.
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6 LOCAL TIME AND TANAKA’S FORMULA

The local time Lt(x) can be interpreted as the length of time the Brownian motion stays in an
interval until time t because ∫ t

0
1[a,b](Ws) ds =

∫ b

a
Lt(x) dx.

6.2 Tanaka’s formula

Theorem 6.2. For each (t, x), it holds a.s.

|Wt − x| − |W0 − x| =
∫ t

0
sgn(Ws − x) dWs + Lt(x).

Here sgn(y) is 1, 0, or −1, as y is greater, equal, or less than zero, respectively.

Proof. Note that −Wt is again a Brownian motion with local time at −x denoted by L−t (−x).
Applying Theorem 6.2 to it yields

(−Wt + x)+ − (−W0 + x)+ =

∫ t

0
1[x,∞)(−Ws) d(−Ws) +

1

2
L−t (−x).

As (−Wt + x)+ = (Wt − x)− and L−t (−x) = Lt(x), because

L−t (−x) = lim
ε→0

1

2ε

∫ t

0
1(−x−ε,−x+ε)(−Ws) ds

= lim
ε→0

1

2ε

∫ t

0
1(x−ε,x+ε)(Ws) ds = Lt(x),

it holds

(Wt − x)− − (W0 − x)− = −
∫ t

0
1(−∞,x](Ws) dWs +

1

2
Lt(x).

Adding this to

(Wt − x)+ − (W0 − x)+ =

∫ t

0
1[x,∞)(Ws) dWs +

1

2
Lt(x)

yields

|Wt − x|+ |W0 − x| =
∫ t

0
(1[x,∞)(Ws)− 1(−∞,x](Ws))︸ ︷︷ ︸

=sgn(Ws−x)

dWs + Lt(x).

In this case the definition of sgn at zero is not important as
∫ t

0 1{x}(Ws) dWs = 0 a.s. because

E
[( ∫ t

0
1{x}(Ws) dWs

)2]
= E

[ ∫ t

0
1{x}(Ws)

2 ds
]

= E
[ ∫ t

0
1{x}(Ws) ds

]
= 0.

62



6 LOCAL TIME AND TANAKA’S FORMULA

Define

Ŵt(x) = |W0 − x|+
∫ t

0
sgn(Ws − x) dWs.

According to the next Theorem Tanaka’s formula holds also pathwise. For the proof see [6].

Theorem 6.3. For each x, we have a.s.

|W − x| = Ŵ (x) + L(x)

where Ŵ (x) is a Brownian motion and L(x) is a continuous increasing process with initial value
zero. Moreover, almost surely, L(x) can increase only when |W − x| is at zero, i.e.,∫ ∞

0
1{t:Wt 6=x}dLt(x) = 0 a.s.

6.3 Reflected Brownian motion at zero

Definition 6.1 (Skorokhod: Problem of reflection). Let C denote the class of continuous func-
tions from R+ to R. Given x ∈ C, a pair (z, y) is called a solution of the problem of reflection
for x, denoted by PR(x), if z ∈ C, y ∈ C, and the following three conditions are satisfied

1. z = x+ y

2. z ≥ 0

3. y(0) = 0, y is increasing on R+, and
∫∞

0 z(t) dy(t) = 0.

Lemma 6.1. Let x ∈ C with x(0) ≥ 0. Then PR(x) has a unique solution given by (z, y) where

z = x+ y, y(t) = max
0≤s≤t

x−(s) for each t ∈ R+.
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6 LOCAL TIME AND TANAKA’S FORMULA

Figure 11: A path (plain line) and its reflection (red dashed line)

The above graph shows the reflection z (red-dashed line) of a path of x.

Tanaka’s formula from the previous section is only a special case of the Skorokhod reflection
problem. As (|W |, L) is a solution of PR(Ŵ ) and Ŵ (0) = |B0| ≥ 0, it follows with the previous
lemma that the local time of Brownian motion is

Lt = max
0≤s≤t

Ŵ−(s)for each t ∈ R+.

6.3.1 Optimal dividend problem as reflection problem

The optimal dividend strategy and the optimal value function can be interpreted as the solution
of a reflection problem.

The controlled free surplus process was given as

Xt = x+ µ t+ σ Wt −Dt,

where Dt denotes the dividend strategy. The optimal dividend strategy is

D∗t = sup
s≤t

(x+ µ t+ σ Wt −m)+

for some barrier m.

According to Peskir (2006) [13] for a Brownian motion with drift

Y x
t = x− µ

∫ t

0
sgn(Y x

s ) ds+ σWt,
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6 LOCAL TIME AND TANAKA’S FORMULA

Tanaka’s formula gives

|Y x
t | = |x|+

∫ t

0
sgn(Y x

s ) dY x
s + LY

x

t (0) = |x| − µt+ σ

∫ t

0
sgn(Y x

s ) dWs︸ ︷︷ ︸
=:−W̃t

+LY
x

t (0),

where LY x denotes the local time for the process Y x and −W̃ is a standard Brownian motion.
Skorokhod’s Lemma 6.1 can be applied and provides the unique solution

LY
x

t (0) = sup
0≤s≤t

(
|x| − µs− σW̃s

)−
= sup

0≤s≤t

(
−|x|+ µs+ σW̃s

)+
.

Thus, assuming that m ≥ x, the reflection of Y x
t at barrier m is

m− |Y x
t −m| = m− |Y x−m

t | = m−
(
m− x− µt− σW̃t + sup

0≤s≤t

(
x−m+ µs+ σW̃s

)+
)

= x+ µt+ σW̃t − sup
0≤s≤t

(
x+ µs+ σW̃s −m

)+
.

Here, x + µt + σW̃t can be interpreted as the free surplus process with parameter µ and σ.
The process sup

0≤s≤t

(
x+ µs+ σW̃s −m

)+
describes the optimal dividend payments. As the Sko-

rokhod reflection problem provides an unique solution, the local time of the process Y x−m can
be interpreted as the optimal dividend strategy.
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7 SIMULATION STUDY

7 Simulation study

In this chapter the theoretical optimal barrier computed in the previous section is compared with
other strategies for numerical examples. This is done by a simulation study using Monte Carlo
methods. For more information on numerical methods refer the book of Seydel (2000) [15].

For simplicity the optimal value function is

V (x1, x2) = sup
(L,C)∈π(x1,x2)

JL,C(x1, x2),

with the performance criterion

JL,C(x1, x2) = Ex1,x2

[ ∫ τ

0
e−βs dL1

s +

∫ τ

0
e−βs dL2

s

]
.

7.1 Simulation 1: Stable market

In this chapter the optimal strategy is compared in a model with the following parameter for the
surplus processes of the two companies:

Company 1 x1 µ1 σ1

surplus X1 0.05 0.03 0.02
Company 2 x2 µ2 σ2

surplus X2 0.05 0.02 0.03

Table 1: Simulation 1: Model parameter the 2-dim model

Hence, the two free surplus processes are

X1
t = 0.05 + 0.03 t+ 0.02 W 1

t ,

X2
t = 0.05 + 0.02 t+ 0.03 W 2

t .

Both companies generate profit in average and the volatility is moderate. The discount factor
is β = log 1.1, which corresponds to an annual interest rate of 10%. The initial capital for both
companies is 0.05. The dividend is paid out until both companies go ruin simultaneously or
to infinity otherwise. As an infinite time interval is not possible for numerical computations,
the time needs to be cut. Therefore the time interval [0, T ] for T = 1000 is chosen. This time
horizon seems to be a good idea, because of the discount factor the dividend after 1000 years
is not significant anymore. Furthermore, a discretization of time is needed. In this simulation
the interval [0, 1000] is divided into N = 100000 parts, which corresponds to time steps of size
∆t = 0.01.

66



7 SIMULATION STUDY

7.1.1 Comparison of different barriers

Now, the optimal barrier strategy presented by [11] is computed and then compared with different
barriers. The optimal barrier for the model is

m =
σ2

1 + σ2
2√

(µ1 + µ2)2 + 2β(σ2
1 + σ2

2)
log

(
−(µ1 + µ2)−

√
(µ1 + µ2)2 + 2β(σ2

1 + σ2
2)

−(µ1 + µ2) +
√

(µ1 + µ2)2 + 2β(σ2
1 + σ2

2)

)
= 0.092888

and the theoretical optimal value function given in (46) is

V (0.05, 0.05) = 0.5317147.
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Figure 12: 2-dim controlled surplus simulation

In the previous illustration one trajectory of both controlled surplus processes is simulated for
10 years following this model. Here, the optimal barrier strategy is used to pay out dividends.
One can see, that if x1 = 0 or x2 = 0 the other company transfers money. When the diagonal
red line, where x1 + x2 = m, is hit dividends are paid out. The red point indicates the initial
capital.

The corresponding paid out accumulated dividends are given in the plot below.
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Figure 13: Paid out dividend

A Monte Carlo simulation is implemented to compare strategies, described by Figure 4-6, with
different barriers. In each of n = 10000 simulations the discounted dividends are summed up,
then the mean over all simulations is computed. This method also approximates the value
function (when using the optimal barrier). In the next graph, the black points show the value
of the expected discounted dividend for the barrier given on the x-axis. For the simulation the
different barriers m + i · 0.01 for i ∈ {−9,−8, . . . , 39, 30} are used. The red point indicates the
theoretical value function

V (0.05, 0.05) = 0.5317147.
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Figure 14: Performance comparison for different barriers

One can observe that the calculated barrier is also optimal compared to other barriers in a
simulation. The table below lists the simulated values for all barrier, where the values for the
optimal barrier are marked in bold.

The relative deviation of the simulated optimal value VMC and the real theoretical optimal value
V is ∣∣∣∣∣VMC(0.05, 0.05)− V (0.05, 0.05)

V (0.05, 0.05)

∣∣∣∣∣ =
0.5326389− 0.5317147

0.5317147
= 0.173815%

This shows that the performance of Monte Carlo simulation is quite satisfactory.
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barrier exp. dividend
1 0.002888 0.104600
2 0.012888 0.119218
3 0.022888 0.157026
4 0.032888 0.228076
5 0.042888 0.324411
6 0.052888 0.418333
7 0.062888 0.484921
8 0.072888 0.519276
9 0.082888 0.531880

10 0.092888 0.532639
11 0.102888 0.529158
12 0.112888 0.520501
13 0.122888 0.511166
14 0.132888 0.503281
15 0.142888 0.494051
16 0.152888 0.485113
17 0.162888 0.476000
18 0.172888 0.467278
19 0.182888 0.457930
20 0.192888 0.450215
21 0.202888 0.441159
22 0.212888 0.432998
23 0.222888 0.425021
24 0.232888 0.418743
25 0.242888 0.408267
26 0.252888 0.402513
27 0.262888 0.395969
28 0.272888 0.385891
29 0.282888 0.380418
30 0.292888 0.374326
31 0.302888 0.365788
32 0.312888 0.359335
33 0.322888 0.353267
34 0.332888 0.347004
35 0.342888 0.341147
36 0.352888 0.333863
37 0.362888 0.327036
38 0.372888 0.321062
39 0.382888 0.315071
40 0.392888 0.310655

Table 2: Simulation 1: Results
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7.1.2 Optimal strategy II

The value function of the optimal dividend problem is unique as shown in Chapter 5, whereas the
optimal strategy is not. Another possibility would be to transfer continuously money to or from
Company 1 to keep the surplus of Company 2 at zero. This procedure corresponds to combining
two companies into one surplus process.

0
(!)
= X2

t = X̄2
t + C12

t − C21
t − L2

t︸︷︷︸
=0

⇔ C21
t − C12

t = X̄2
t

Company 2 never pays dividends as its surplus process is always zero. Therefore, the controlled
surplus process for Company 1 is

X1
t = X̄1

t + X̄2
t − L1

t = x1 + µ1t+ σ1W
1
t + x2 + µ2t+ σ2W

2
t − L1

t .

As W 1 and W 2 are two independent Brownian motions, it holds

σ1W
1
t + σ2W

2
t =

√
σ2

1 + σ2
2 Wt

where W is another Brownian motion. Therefore,

X1
t = (x1 + x2) + (µ1 + µ2)t+

√
σ2

1 + σ2
2 Wt − L1

t .

The 2-dimensional problem is now transformed into a 1-dimensional problem as described in
Section 4.2 for

x := x1 + x2 = 0.1

µ := µ1 + µ2 = 0.05

σ :=
√
σ2

1 + σ2
2 = 0.0361

and the corresponding results can be used. The 1-dimensional optimal dividend problem for a
company with free surplus process

Xt = 0.1 + 0.05 t+ 0.0361 Wt

is considered. It follows that optimal barrier is again

m =
σ2√

µ2 + 2βσ2
log

(
−µ−

√
µ2 + 2βσ2

−µ+
√
µ2 + 2βσ2

)
= 0.092888

and the theoretical optimal value function given in Theorem 4.3 is

V (0.05, 0.05) = 0.5317147.
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In the following plot one trajectory of Company 1’s controlled surplus process simulated for 10
years is illustrated. The controlled surplus process of Company 2 is zero.
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Figure 15: Controlled surplus simulation of Company 1

The red point indicates the initial capital x1 +x2. Dividends are only paid out when free surplus
processes with drift µ1 + µ2, volatility σ2

1 + σ2
2 and initial capital x1 + x2 is above the optimal

barrier, which is indicated by the red horizontal line.

7.1.3 No collaboration agreement

It is assumed that there is no collaboration contract between the two companies. This means
that they are not liable for each others losses and only maximize their own expected dividend. It
is possible that one company goes ruin while the other one survives. The ruin time of Company
1 is denoted by τ1 and the ruin time of Company 2 by τ2. Therefore, both optimal dividend
problems are considered separately and the optimal value function of Company 1 V Co1 and
Company 2 V Co2 given by Theorem 4.3 are added in the end. This means the following problem
is considered

V sep(x1, x2) = sup
L1

Ex1

[ ∫ τ1

0
e−βsdL1

s

]
+ sup

L2

Ex2

[ ∫ τ2

0
e−βsdL2

s

]
= V Co1(x1) + V Co2(x2).
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Using Theorem 4.3 for both companies one gets

V sep(0.05, 0.05) = V Co1(0.05) + V Co2(0.05) = 0.3148879 + 0.164547 = 0.4794349

Comparing this value with the optimal value of the collaborating case V (0.05, 0.05) = 0.5317147

one comes to the conclusion that it is advantageous to help each other out.

The question arises if collaboration is reasonable in any case or if there are cases where the com-
panies should only be responsible for themselves. If one company is performing badly compared
to the other one (low drift combined with high volatility), then it is better not to collaborate.
The bad company would impair the good company as it has to come up for its losses. In this
case it is better to let the bad company go ruin, such that the good company can pay out more
dividends instead of helping the other one to survive. In the following graph the same model as
before is considered for different volatility parameter for Company 1 σ1. The other parameters
are fixed.
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Figure 16: Collaboration versus no collaboration for σ1

The more insecure (volatile) the surplus of Company 1 is, the better it is to operate separately.

In the next graph the same model as before is considered for different drift parameter for Company
1 µ1. The other parameters are fixed.
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Figure 17: Collaboration versus no collaboration for µ1

The principle is the same as before. If the drift parameter is low, it is more likely that losses occur
and the other company has to balance them out instead of paying dividends to their shareholders.
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7.2 Simulation 2: Stressed market

In this simulation a more stressed model is considered. Company 1 performs as before, but
Company 2 generates a loss in average. Moreover, its surplus is more volatile than before. As
both companies are liable for each others losses, Company 1 has to help out more often. It is
analysed how the optimal strategy performs in this setting, when transferring money is a bigger
issue. To avoid early ruin a higher initial capital is chosen: for Company 1 x1 = 0.1 and for
Company 2 x2 = 0.1. To sum up, the following parameters are used:

Company 1 x1 µ1 σ1

surplus X1 0.1 0.03 0.02
Company 2 x2 µ2 σ2

surplus X2 0.1 -0.01 0.05

Table 3: Simulation 2: Model parameter the 2-dim model

Hence, the two free surplus processes are

X1
t = 0.1 + 0.03 t+ 0.02 W 1

t ,

X2
t = 0.1− 0.01 t+ 0.05 W 2

t .

As in the first simulation, the discount factor is β = log 1.1 and the time interval [0, T ] for
T = 1000 is chosen. In this simulation the interval [0, 1000] is divided into N = 100000 parts,
which corresponds to time steps of size ∆t = 0.01.

7.2.1 Comparison of different barriers

The optimal barrier for this model is

m =
σ2

1 + σ2
2√

(µ1 + µ2)2 + 2β(σ2
1 + σ2

2)
log

(
−(µ1 + µ2)−

√
(µ1 + µ2)2 + 2β(σ2

1 + σ2
2)

−(µ1 + µ2) +
√

(µ1 + µ2)2 + 2β(σ2
1 + σ2

2)

)
= 0.1450075.

It is notable that the optimal barrier is now higher than in the previous model. As Company 2
is performing worse than in the last chapter, the barrier needs to be higher to maintain a buffer.
Otherwise both companies could go ruin in the next moment as the risk of a loss is higher. The
next illustration shows one trajectory of both controlled surplus processes simulated for 10 years.
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Figure 18: 2-dim controlled surplus simulation

In this case one can observe that the surplus Company 2 is zero more often, which means that
Company 1 had to transfer money to compensate the losses of Company 2. Nevertheless, in
the end both companies go ruin, as the trajectory reaches the point (0, 0). The corresponding
paid out accumulated dividends are visible in the next plot. Here, the accumulated dividend
is constant in the end because no dividends are paid out anymore. This is either because both
companies went ruin or because their surplus is low and hence below the barrier.
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Figure 19: Paid out dividend

Again, a Monte Carlo simulation is implemented to compare strategies, described by Figure
4-6, for different barriers. In the next graph, the black points show the value of the expected
discounted dividend for the barrier given on the x-axis. For the simulation the different barriers
m+ i · 0.01 for i ∈ {−14,−8, . . . , 39, 25} are used. The red point indicates the theoretical value
function given in (46), calculated as

V (0.1, 0.1) = 0.2648337.
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Figure 20: Performance comparison for different barriers

One can observe that the calculated barrier is also optimal compared to other barriers in a
simulation. The table below lists the simulated values for all barrier, where the values for the
optimal barrier are marked in bold.

The relative deviation of the simulated optimal value VMC and the real theoretical optimal value
V is ∣∣∣∣∣VMC(0.1, 0.1)− V (0.1, 0.1)

V (0.1, 0.1)

∣∣∣∣∣ =
0.2683334− 0.2648337

0.2648337
= 1.321471%

The performance of Monte Carlo simulation is worse than in the previous model. The approx-
imation is still satisfactory and the accuracy could be improved by increasing the number of
simulations.
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barrier exp. dividend
1 0.005007 0.204265
2 0.015007 0.206657
3 0.025007 0.209746
4 0.035007 0.214177
5 0.045007 0.219907
6 0.055007 0.227580
7 0.065007 0.233908
8 0.075007 0.243422
9 0.085007 0.248868
10 0.095007 0.256139
11 0.105007 0.261388
12 0.115007 0.261954
13 0.125007 0.267251
14 0.135007 0.267242
15 0.145007 0.268333
16 0.155007 0.265797
17 0.165007 0.263074
18 0.175007 0.260086
19 0.185007 0.255955
20 0.195007 0.250046
21 0.205007 0.242980
22 0.215007 0.236861
23 0.225007 0.227245
24 0.235007 0.222263
25 0.245007 0.216294
26 0.255007 0.207520
27 0.265007 0.200595
28 0.275007 0.194272
29 0.285007 0.188308
30 0.295007 0.178197
31 0.305007 0.173750
32 0.315007 0.167956
33 0.325007 0.162817
34 0.335007 0.157062
35 0.345007 0.151917
36 0.355007 0.145047
37 0.365007 0.140861
38 0.375007 0.133538
39 0.385007 0.130173
40 0.395007 0.124427

Table 4: Simulation 2: Results
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7.2.2 Optimal strategy II

Analogously to the first simulation example, it is possible to transfer the 2-dimensional problem
into a 1-dimensional problem analogously to the derivation in Section 7.1.2. The free surplus
process

Xt = 0.2 + 0.02 t+ 0.05385165 Wt

in the 1-dimensional optimal dividend problem is considered. The optimal barrier is m =

0.145007. The following plot shows a surplus trajectory of Company 1 after absorbing the
free surplus process of Company 2.
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Figure 21: Controlled surplus simulation of Company 1

7.2.3 No collaboration contract

As Company 2 has a negative drift parameter, and will therefore produce a loss in average it
is better not to collaborate. In this case Company 1 doesn’t have to compensate Company 2’s
losses and can pay out more dividends.
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7.3 Simulation 3: Switching from collaboration to no collaboration

The following parameter set is considered

Company 1 x1 µ1 σ1

surplus X1 0 0.03 0.02
Company 2 x2 µ2 σ2

surplus X2 0.05 0.002 0.03

Table 5: Simulation 3: Model parameter of the 2-dim model

The two free surplus processes are

X1
t = 0.03 t+ 0.02 W 1

t ,

X2
t = 0.05 + 0.002 t+ 0.03 W 2

t .

Again, the discount factor is β = log 1.1 and the time interval [0, T ] for T = 500 is chosen. In
this simulation the interval [0, 500] is again divided into N = 100000 parts, which corresponds
to time steps of size ∆t = 0.005.

Company 1 is performing very well compared to Company 2, which only has a small expected
surplus. But Company 1 on the other hand has no initial capital, i.e. ruin would be immediate.
Therefore, both companies agree on a collaboration following the strategy illustrated by Figure
4-6, such that Company 1 can start its business and then balance each others losses. Now, the
scenario is considered where the companies are allowed to switch to "no collaboration" at some
point. This can also be interpreted as disregarding the agreement and "betraying" the other one.

The following plot shows the optimal value function for collaboration and the sum of the optimal
value functions for no collaboration dependent on the initial capital of Company 1 x1.
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Figure 22: Optimal value functions dependent on x1

As one can see in the graph the expected discounted dividend for x1 = 0 and x2 = 0.05, if there
is collaboration with optimal barrier m = 0.1063, is

V (0, 0.05) = 0.2688.

Without cooperation the expected discounted dividend is

V Co1(0) + V Co2(0.05) = V Co2(0.05) = 0.001.

Therefore, it is recommended to collaborate in this scenario. According to this illustration one
can see that Company 1 won’t collaborate if it’s initial surplus is more than 0.012

V (x1, 0.05) = V Co1(x1) + V Co2(0.05) ⇔

x1 = 0.012.

This brings up the question, if there is an incentive to terminate the cooperation after Company 1
reaches a certain surplus level. After hitting this level, both companies will operate optimally on
their own. The idea is that the weaker Company 2 won’t get any help from its partner anymore
and will go ruin sooner. Company 1 on the other hand doesn’t have to "waste" its positive
surplus to eventually save Company 2. The value function for this problem will be denoted by
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V switch. The ruin time of Company 1 and Company 2 are denoted by τ1 and τ2, respectively.
Simultaneous ruin time within a collaboration contract is τ . The time when the required capital
for Company 1 is reached to switch to no collaboration is τ̄ . The optimal dividend strategy for
collaboration described by Figure 4-6 is denoted by (L1, L2). Without collaboration the optimal
strategies for Company 1 and Company 2 is L̃1 resp. L̃2 given by formula (36).

V switch(0, 0.05) = sup
τ̄
Ex1,x2

[∫ τ∧τ̄

0
e−βs dL1

s

+

∫ τ∧τ̄

0
e−βs dL2

s + e−βτ̄
(∫ τ1

τ̄
e−βs dL̃1

s +

∫ τ2

τ̄
e−βs dL̃2

s

)
1τ̄<τ

]

Monte Carlo simulations with 50000 trajectories are implemented for different surplus levels,
which have to be reached such that Company 1 terminates the cooperation, to find an estimation
for V switch(0, 0.05) . If the free surplus level of Company 1 hits the switching levels i · 0.001 for
i ∈ {0, 1, 2, . . . , 100} they continue operating without each other. In the following graph the
black points show the value of the expected discounted dividend for the switching level given on
the x-axis.
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Figure 23: Switching from collaboration to no collaboration

As one can see in the plot, it is best to work together until Company 1 has reached the free
surplus level of approximately 0.027 and then it should abandon its partner to achieve a value
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function of approximately 0.3055.

Obviously, there are other transferring and dividend strategies, which additionally allow switch-
ing from collaboration to no collaboration, such that the expected dividend strategy is higher.
Another strategy, for example, would be if Company 2 agrees to transfer its initial capital to
Company 1 at time 0 and goes ruin itself as a consequence. Then Company 1 operates alone
until its own ruin time. The discounted expected dividends of this strategy, is the optimal value
function for Company 1

V Co1(0.05) = 0.3149.
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8 Conclusion

In this diploma thesis the problem of finding an optimal dividend strategy, in the sense that
the expected discounted dividend pay-out is maximal for the shareholders, is considered. It is
assumed that there are two companies involved, whose free surplus processes are are modelled
as diffusions. In comparison to the work of Asmussen and Taksar (1997) [3] it is assumed that
there are two collaborating companies (or business lines), which are obligated to balance out
each others losses to avoid ruin of one company. As a consequence only simultaneous ruin is
possible.

In Section 5 the Hamilton-Jacobi-Bellman equation (HJB) for this 2-dimensional model is de-
rived. The corresponding (optimal) partial differential equation allows a unique classical solution,
which can be computed explicitly. This solution is the value function of the control problem.
Then, an optimal strategy, which has to be executed to achieve this value function, is constructed.
It turns out that the optimal strategy has to be a barrier strategy. As the companies are allowed
to transfer money freely, the optimal strategy is not unique and there are several possibilities to
get maximal pay-out in expectation.

In the last section a simulation study was implemented to compare different alternative strategies
with the theoretically optimal strategy. Three models are considered: In the first model both
companies are performing well in average. In the second model the second company is performing
badly and it is very likely that the other company has to bail out a lot. In the third model a
setting is considered, where one company would perform pretty well, but has no initial capital.
The other company on the other hand, is performing badly but has initial capital. It is assumed
that both agree on a collaboration, but the well-performing company terminated the contract as
soon it has enough capital to act alone.

Comparing different barriers showed that the calculated barrier is indeed optimal. The question
arises if it is maybe better for the shareholders if the businesses don’t work together. In this case
the weak one goes ruin while the other one can pay out more dividends instead of rescuing the
weak one first. As expected it turns out that it depends on the drift and volatility if collaboration
is recommended or if a selfish approach will lead to a possible better result. In the third model
is better to start with collaboration and then end the cooperation at a certain (optimal) point.
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9 Appendix: Code

###########FUNCTIONS##########
barrierstrategy<-function(barrier,start1,start2,mu1,mu2,sigma1,sigma2,beta,N,T){

theta1<-(-(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
theta2<-(+(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
m_optimal<-2/(theta1+theta2)*log(theta2/theta1)
C_optimal<-1/(theta1*exp(theta1*m_optimal)+theta2*exp(-theta2*m_optimal))
line1<-numeric(N)
line2<-numeric(N)
dividend<-numeric(N)
x1<-start1
x2<-start2
BM1<-c(0,rnorm(N-1,mean=mu1*T/N,sd=sigma1*sqrt(T/N))) #mu1*t+sigma*W_t
BM2<-c(0,rnorm(N-1,mean=mu2*T/N,sd=sigma2*sqrt(T/N)))

if (barrier!="optimal"){
m<-barrier

}
else m<-m_optimal

for (i in 1:N) {
x1<-x1+BM1[i]
x2<-x2+BM2[i]

if ((x1+x2)<=0) break

if (x1<0 & x2>0) {
x2<-x2+x1
x1<-0

}
if (x2<0 & x1>0) {

x1<-x2+x1
x2<-0

}
if ((x1+x2>m) && (x2>m)){

x1<-x1+x2-m
x2<-m

}
if ((x1+x2>m) & (x2 <= m)) {

dividend[i]<-x1+x2-m
x1<-m-x2

}
line1[i]<-x1
line2[i]<-x2
dividend[i]

}
return(list("dividend"=cumsum(dividend),"line1"=c(start1,line1),"line2"=c(start2,line2),

"m_optimal"=m))}
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divmax<-function(sims,barrier,start1,start2,mu1,mu2,sigma1,sigma2,beta,N,T){

theta1<- (-(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
theta2<- (+(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
m_optimal<-2/(theta1+theta2)*log(theta2/theta1)
C_optimal<-1/(theta1*exp(theta1*m_optimal)+theta2*exp(-theta2*m_optimal))
enddiv<-numeric(sims)
count<-0
for (k in 1:sims){

x1<-start1
x2<-start2
dividend<-numeric(N)
discounted_dividend<-numeric(N)
BM1<-c(0,rnorm(N-1,mean=mu1*(T/N),sd=sigma1*sqrt(T/N))) #mu1*t+sigma*W_t
BM2<-c(0,rnorm(N-1,mean=mu2*(T/N),sd=sigma2*sqrt(T/N)))

if (barrier!="optimal"){
if (barrier>=0) m<-barrier
else m<-0

}
else if (m_optimal<0){

m<-0
m_optimal<-0

}
else m<-m_optimal

for (i in 1:N) {

x1<-x1+BM1[i]
x2<-x2+BM2[i]

if ((x1+x2)<=0) break

if (x1<0 & x2>0) {
x2<-x2+x1
x1<-0

}

if (x2<0 & x1>0) {
x1<-x2+x1
x2<-0

}

if ((x1+x2>m) && (x2>m)){
x1<-x1+x2-m
x2<-m

}

if ((x1+x2>m) & (x2 <= m)) {
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dividend[i]<-x1+x2-m
x1<-m-x2

}

}
discounted_dividend<-exp((-beta)*(T/N)*(0:(N-1)))*dividend

enddiv[k]<-sum(discounted_dividend)
}

if ((start1+start2)<m_optimal) valuefunction<-C_optimal*(exp(theta1*(start1+start2))
-exp(-theta2*(start1+start2)))

else valuefunction<-C_optimal*(exp(theta1*(m_optimal))-exp(-theta2*(m_optimal)))
+start1+start2-m_optimal

return(c("simulation_value"=mean(enddiv),"optim value"=valuefunction,
"survival"=sims-count,"m optim"=m_optimal))

}

m_opti_fun<-function(mu1,mu2,sigma1,sigma2,beta){
theta1<- (-(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
theta2<- (+(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
m_optimal<-2/(theta1+theta2)*log(theta2/theta1)
C_optimal<-1/(theta1*exp(theta1*m_optimal)+theta2*exp(-theta2*m_optimal))
return(m_optimal)

}

m_opti_value<-function(mu1,mu2,sigma1,sigma2,beta,start1,start2){
theta1<- (-(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
theta2<- (+(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
m_optimal<-2/(theta1+theta2)*log(theta2/theta1)
C_optimal<-1/(theta1*exp(theta1*m_optimal)+theta2*exp(-theta2*m_optimal))

if(start1+start2>m_optimal) valuefunction<-C_optimal*(exp(theta1*(m_optimal))
-exp(-theta2*(m_optimal)))+start1+start2-m_optimal

else valuefunction<-C_optimal*(exp(theta1*(start1+start2))-exp(-theta2*(start2+start1)))

return(valuefunction)
}

divmax_switch<-function(sims,grenze,start1,start2,mu1,mu2,sigma1,sigma2,beta,N,T){

theta1<- (-(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
theta2<- (+(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
m_optimal<-2/(theta1+theta2)*log(theta2/theta1)
enddiv<-numeric(sims)

theta1_1<- (-(mu1)+sqrt((mu1)^2+2*(sigma1^2)*beta))/(sigma1^2)
theta2_1<- (+(mu1)+sqrt((mu1)^2+2*(sigma1^2)*beta))/(sigma1^2)
m_optimal_1<-2/(theta1_1+theta2_1)*log(theta2_1/theta1_1)

theta1_2<- (-(mu2)+sqrt((mu2)^2+2*(sigma2^2)*beta))/(sigma2^2)
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theta2_2<- (+(mu2)+sqrt((mu2)^2+2*(sigma2^2)*beta))/(sigma2^2)
m_optimal_2<-2/(theta1_2+theta2_2)*log(theta2_2/theta1_2)

m1<-m_optimal_1
m2<-m_optimal_2
m<-m_optimal

count<-0
for (k in 1:sims){

x1<-start1
x2<-start2
dividend<-numeric(N)
line1<-numeric(N)
line2<-numeric(N)
discounted_dividend<-numeric(N)
BM1<-c(0,rnorm(N-1,mean=mu1*(T/N),sd=sigma1*sqrt(T/N))) #mu1*t+sigma*W_t
BM2<-c(0,rnorm(N-1,mean=mu2*(T/N),sd=sigma2*sqrt(T/N)))
check1<-0
check2<-0
for (i in 1:N) {

if (check1 != 2) x1<-x1+BM1[i]
if (check2 != 2) x2<-x2+BM2[i]
if(x1>=grenze) check1<-1 #keine collaboration

if ((check1==1) && (x2<0)){
check2<-2
x2<-0

}#no collaboration, Comp2 ruin
if ((check1==1) && (x1<0)){

check1<-2
x1<-0

}#no collaboration, Comp1 ruin

if ((check1==2) && (check2==2)) break #both ruin without collaboration

if (check1==0){ #collaboration
if ((x1+x2)<=0) break
if (x1<0 & x2>0) {

x2<-x2+x1
x1<-0

}
if (x2<0 & x1>0) {

x1<-x2+x1
x2<-0

}
if ((x1+x2>m) && (x2>m)){

x1<-x1+x2-m
x2<-m

}

89



9 APPENDIX: CODE

if ((x1+x2>m) & (x2 <= m)) {
dividend[i]<-x1+x2-m
x1<-m-x2

}
}

if(check1==1){
if ((x1>m1)) {

dividend[i]<-x1-m1
x1<-m1

}
}
if((check1 != 0) && (check2==0)){

if (x2>m2) {
dividend[i]<-dividend[i]+x2-m2
x2<-m2

}
}

}
discounted_dividend<-exp((-beta)*(T/N)*(0:(N-1)))*dividend
enddiv[k]<-sum(discounted_dividend)

}
return(c("simulation_value"=mean(enddiv)))

}

premium<-function(t) return(6*t)

PP_Simulation<-function(lambda,T){
#simulate homogeneous poisson process
rpp1<-function(T,lambda) sort(runif(rpois(1,T*lambda), max=T))
arrivals<-c(0,rpp1(T,lambda))

#number of claims
claimnumber<-length(arrivals)

#size of claims (assume, that claimsize at t=0 is zero)
claimsize<-c(0,rgamma(claimnumber-1,2,2))

#cumulated claimes
cumclaims<-cumsum(claimsize)

return(list("arrivals"=arrivals,"cumclaims"=cumclaims))
}

###########Figure 1##########
lambda <- 7
T<-1
x<-1.2
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simulation<-PP_Simulation(lambda,T)
arrivals<-simulation$arrivals
cumclaims<-simulation$cumclaims

#wealth before each claim
upper_w<-premium(arrivals)-c(0,cumclaims[-length(cumclaims)])+x
#wealth after each claim
lower_w<-premium(arrivals)-cumclaims+x

#adjust data for plot
M<-rbind(cbind(arrivals,lower_w),cbind(arrivals,upper_w))
C<-M[order(M[,1],-M[,2]), ]
#1. Arrival time are sorted in ascending order
#2. Corresponding wealth is sorted in descending order

plot(rbind(C[1:11,],c(0.56476834,-0.2)),ylim=c(-0.7,2.2),type="l",
main="Free surplus process of the insurance company",
xlab="time",ylab="surplus")

abline(c(0,0),c(0,1))

text(0.554,-0.12, labels = expression(paste(tau)),cex=1.5)
text(0.557,-0.33, labels = expression(paste("ruin time ")),cex=0.7,col="darkgrey")
text(0.05075726,0.84, labels = expression(paste(tau[1])),cex=0.9)
text(0.05075726,0.67, labels = expression(paste(1,"st claim")),cex=0.7,col="darkgrey")
text(0.16239057,0.84-0.47, labels = expression(paste(tau[2])),cex=0.9)
text(0.16239057,0.67-0.47, labels = expression(paste(2,"nd claim")),cex=0.7,col="darkgrey")
text(0.20608430,0.84-0.7, labels = expression(paste(tau[3])),cex=0.9)
text(0.52189696,0.84+0.41, labels = expression(paste(tau[4])),cex=0.9)

###########Figure 2##########
PP_Simulation<-function(lambda,T){

#simulate homogeneous poisson process
rpp1<-function(T,lambda) sort(runif(rpois(1,T*lambda), max=T))
arrivals<-c(0,rpp1(T,lambda))

#number of claims
claimnumber<-length(arrivals)

#size of claims (assume, that claimsize at t=0 is zero)
claimsize<-c(0,rexp(claimnumber-1,1))

#cumulated claimes
cumclaims<-cumsum(claimsize)

return(list("arrivals"=arrivals,"cumclaims"=cumclaims))
}

lambda <- 10000
T<-1
x<-50
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simulation<-PP_Simulation(lambda,T)
arrivals<-simulation$arrivals
cumclaims<-simulation$cumclaims

#wealth before each claim
upper_w<-premium(arrivals)-c(0,cumclaims[-length(cumclaims)])+x
#wealth after each claim
lower_w<-premium(arrivals)-cumclaims+x

#adjust data for plot
M<-rbind(cbind(arrivals,lower_w),cbind(arrivals,upper_w))
C<-M[order(M[,1],-M[,2]), ]
#1. Arrival time are sorted in ascending order
#2. Corresponding wealth is sorted in descending order

par(mfrow=c(2,1))
plot(seq(0,1,by=1/10000),cumsum(c(50,rnorm(10000,mean=-50/10000,sd=sqrt(1/10000)*100))),

type='l',main="Free surplus process in the Brownian motion model",
xlab="time",ylab="surplus")

abline(c(0,0),c(0,1))

plot(C,type="l",main="Free surplus process in the Cramer Lundberg model",
xlab="time",ylab="surplus")

abline(c(0,0),c(0,1))

par(mfrow=c(1,1))

###########Figure 3##########
plot(c(0,4),c(4,0), xlim=c(-1,6), axes=FALSE, pch=19, ylim=c(-1,6),xlab="",ylab="")
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(2, pos=0,labels=FALSE,tck=0)

segments(0, 4, x1 = 4, y1 = 0)
segments(0, 4, x1 = 6, y1 = 4)

text(c(-0.5,4,-0.35),c(4,-0.5,-0.4), labels = c("(0,m)","(m,0)","(0,0)"),cex=0.8)
text(c(1,4,3),c(1.5,2.5,5.3), labels = c("A","B","C"),col="red",cex=1.5)
text(2.6,2.2, labels = expression(paste(x[1]+x[2]," = ",m)),cex=0.8)
text(2.9,4.3, labels = expression(paste(x[2]," = ",m)),cex=0.8)
text(c(5.8, -0.25),c(-0.3,5.8), labels = c(expression(x[1]),expression(x[2])),cex=0.8)

###########Figure 4##########
plot(c(0,4),c(4,0), xlim=c(-1,6), axes=FALSE, pch=21,bg="grey", cex=0.8,ylim=c(-1,6),xlab=""

,ylab="")
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(2, pos=0,labels=FALSE,tck=0)

segments(0, 4, x1 = 4, y1 = 0)
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segments(0, 4, x1 = 6, y1 = 4)

text(c(-0.5,4,-0.35),c(4,-0.5,-0.4), labels = c("(0,m)","(m,0)","(0,0)"),cex=0.8)
text(c(1,4,3),c(1.5,2.5,5.3), labels = c("A","B","C"),col="black",cex=1)
text(2.6,2.2, labels = expression(paste(x[1]+x[2]," = ",m)),cex=0.8)
text(2.9,4.3, labels = expression(paste(x[2]," = ",m)),cex=0.8)
text(c(5.8, -0.25),c(-0.3,5.8), labels = c(expression(x[1]),expression(x[2])),cex=0.8)

library(shape)
points(1,5,pch=16,cex=0.8)
points(2,4,pch=21,bg="grey",cex=0.8)
Arrows(1,5,2,4,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(2,4,0,4,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
plot_result<-barrierstrategy(4,4,4,0.05,-0.4,0.1,0.1,1.1,1000,20)
lines(plot_result$line1,plot_result$line2)

###########Figure 5##########
plot(c(0,4),c(4,0), xlim=c(-1,6), axes=FALSE, pch=21,bg="grey", cex=0.8,ylim=c(-1,6),xlab=""

,ylab="")
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(2, pos=0,labels=FALSE,tck=0)

segments(0, 4, x1 = 4, y1 = 0)
segments(0, 4, x1 = 6, y1 = 4)

text(c(-0.5,4,-0.35),c(4,-0.5,-0.4), labels = c("(0,m)","(m,0)","(0,0)"),cex=0.8)
text(c(1,4,3),c(1.5,2.5,5.3), labels = c("A","B","C"),col="black",cex=1)
text(2.6,2.2, labels = expression(paste(x[1]+x[2]," = ",m)),cex=0.8)
text(2.9,4.3, labels = expression(paste(x[2]," = ",m)),cex=0.8)
text(c(5.8, -0.25),c(-0.3,5.8), labels = c(expression(x[1]),expression(x[2])),cex=0.8)

library(shape)
points(4,3,pch=16,cex=0.8)
points(1,3,pch=21,bg="grey",cex=0.8)
Arrows(4,3,1,3,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
plot_result<-barrierstrategy(4,1,3,-0.1,-0.4,0.1,0.1,1.1,1000,20)
lines(plot_result$line1,plot_result$line2)

###########Figure 6##########
plot(c(0,4),c(4,0), xlim=c(-1,6), axes=FALSE, pch=21,bg="grey", cex=0.8,ylim=c(-1,6),xlab=""

,ylab="")
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(2, pos=0,labels=FALSE,tck=0)

segments(0, 4, x1 = 4, y1 = 0)
segments(0, 4, x1 = 6, y1 = 4)

text(c(-0.5,4,-0.35),c(4,-0.5,-0.4), labels = c("(0,m)","(m,0)","(0,0)"),cex=0.8)
text(c(1,4,3),c(1.5,2.5,5.3), labels = c("A","B","C"),col="black",cex=1)
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text(2.6,2.2, labels = expression(paste(x[1]+x[2]," = ",m)),cex=0.8)
text(2.9,4.3, labels = expression(paste(x[2]," = ",m)),cex=0.8)
text(c(5.8, -0.25),c(-0.3,5.8), labels = c(expression(x[1]),expression(x[2])),cex=0.8)

library(shape)
points(1,2,pch=16,cex=0.8)
plot_result<-barrierstrategy(4,1,2,-0.2,-0.4,0.1,0.1,1.1,1000,20)
lines(plot_result$line1,plot_result$line2)

###########Figure 7##########
y<-seq(-2.89,2.89,by=0.01)
x<-0
epsilon<-1
f<-(x-epsilon<y)*(x+epsilon>y)*(y-x+epsilon)^2/(4*epsilon)+(y-x)*(y>=x+epsilon)
f1<-(y-x+epsilon)/(2*epsilon)*(x-epsilon<y)*(x+epsilon>y)+(y >= x+epsilon)
f2<-1/(2*epsilon)*(x-epsilon<y)*(x+epsilon>y)

plot(y,f,type='l',axes=FALSE,xlab="",ylab="",lwd=2,col="darkred")
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(1, pos=0,labels=c(expression(x-epsilon),expression(x),expression(x+epsilon)),

at=c(x-epsilon,x,x+epsilon))
axis(2, pos=0,labels=FALSE,tck=0)
axis(2, pos=0,labels=expression(epsilon),at=epsilon,las=1)
Arrows(0,0,0,3,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(0,0,3,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(-2.9,0,-3,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
lines(y,f,lwd=2,col="darkred")

###########Figure 8##########
plot(y,f1,type='l',axes=FALSE,xlab="",ylab="",lwd=2,col="darkred",ylim=c(0,1.5))
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(1, pos=0,labels=c(expression(x-epsilon),expression(x),expression(x+epsilon)),

at=c(x-epsilon,x,x+epsilon))
axis(2, pos=0,labels=FALSE,tck=0)
axis(2, pos=0,labels=expression(1),at=epsilon,las=1)
Arrows(0,0,0,1.57,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(0,0,3,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(-2.9,0,-3,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
lines(y,f1,lwd=2,col="darkred")

###########Figure 9##########
plot(y,f2,type='l',axes=FALSE,xlab="",ylab="",lwd=2,col="darkred",ylim=c(0,1.5))
lines(c(x-epsilon,x-epsilon),c(0,1/(2*epsilon)),col="white",lwd=4)
lines(c(x+epsilon,x+epsilon),c(0,1/(2*epsilon)),col="white",lwd=4)
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(1, pos=0,labels=c(expression(x-epsilon),expression(x),expression(x+epsilon)),

at=c(x-epsilon,x,x+epsilon))
axis(2, pos=0,labels=FALSE,tck=0)
text(-0.16,0.73,expression(frac(1,2*epsilon)),cex=0.7)
Arrows(0,0,0,1.57,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
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Arrows(0,0,3,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(-2.9,0,-3,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
points(c(x-epsilon,x+epsilon),c(0,0),pch=20,col="darkred")
points(c(x-epsilon,x+epsilon),c(1/(2*epsilon),1/(2*epsilon)),pch=21,bg="white",col="darkred")
lines(c(-2.89,x-epsilon),c(0,0),col="darkred",lwd=2)
lines(c(x+epsilon,2.9),c(0,0),col="darkred",lwd=2)

###########Figure 10##########
y<-seq(-0.4,2.5,by=0.01)
x<-1
epsilon<-0.5
f<-(x-epsilon<y)*(x+epsilon>y)*(y-x+epsilon)^2/(4*epsilon)+(y-x)*(y>=x+epsilon)
f1<-(y-x+epsilon)/(2*epsilon)*(x-epsilon<y)*(x+epsilon>y)+(y >= x+epsilon)
f2<-1/(2*epsilon)*(x-epsilon<y)*(x+epsilon>y)
plot(y,f1,type='l',axes=FALSE,xlab="",ylab="",lwd=2,col="darkred",ylim=c(0,1.5),lty=2)
axis(1, pos=0,labels=FALSE,at=NULL,tck=0)
axis(1, pos=0,labels=c(0,expression(x-epsilon),expression(x),expression(x+epsilon)),

at=c(0,x-epsilon,x,x+epsilon))
axis(2, pos=0,labels=FALSE,tck=0)
axis(2, pos=0,labels=expression(1),at=1.01,las=1)
lines(c(x,2.5),c(1.01,1.01),lwd=2)
points(x,1.01,pch=20,col="black")
text(x+0.1,1.14,expression(1[paste("[x,",infinity,")")]),cex=0.8)
text(x+epsilon+0.2,0.9,expression(f*minute[paste("x",epsilon)]) ,cex=0.8)
Arrows(0,0,0,1.57,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(0,0,2.5,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
Arrows(-0.4,0,-0.5,0,lwd=1,arr.adj = 1,arr.type="triangle",arr.length=0.2,arr.width=0.08)
lines(y,f1,type='l',lwd=2,col="darkred",lty=2)

###########Figure 11##########
x<-seq(0,10,by=0.1)
y<-2.9+sin(x)+cos(1.5*x+1)
supi<-NULL
for(i in 1:length(x)){

supi[i]<-max(-min(y[1:i])+3.5,0)
}
plot(x,y,type='l',ylim=c(1,7.3),xlab="",ylab="",xaxt="n",yaxt="n")
abline(h=3.5)
lines(x,y+supi,lty=5,col="red")

###########Figure 12 und Figure 13##########
mu1<- 0.03
mu2<- 0.02
sigma1<- 0.02
sigma2<- 0.03
start1<- 0.05
start2<- 0.05
beta <- log(1.1)

plot_result<-barrierstrategy("optimal",start1,start2,mu1,mu2,sigma1,sigma2,beta,2000,10)
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m_opt<-plot_result$m_optimal
plot(plot_result$line1,plot_result$line2,type='l',xlim=c(0,m_opt)*1.3,ylim=c(0,m_opt)*1.3,

xlab="Company 1",ylab="Company 2",main="Controlled surplus processes")
abline(a=m_opt,b=-1,col="red")
abline(h=m_opt,col="red")
points(start1,start2,col="red",pch=20)
plot(c(0,seq(0,10-2*0.005,by=0.005)),plot_result$dividend,type="l",main="Accumulated Dividend",

col="red",xlab="time (in years)",ylab="dividend")

###########Figure 14##########
T<-1000
N<-100000
sims<-10000

theta1<- (-(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
theta2<- (+(mu1+mu2)+sqrt((mu1+mu2)^2+2*(sigma1^2+sigma2^2)*beta))/(sigma1^2+sigma2^2)
m_optimal<-2/(theta1+theta2)*log(theta2/theta1)
C_optimal<-1/(theta1*exp(theta1*m_optimal)+theta2*exp(-theta2*m_optimal))

require(foreach)
start_time <- Sys.time()
values<-m_opt+0.01*(-14:25)
n<-length(values)
simvalues<-numeric(n)

require(doSNOW)
cores <- parallel::detectCores()
cl <- makeSOCKcluster(cores)
registerDoSNOW(cl)
pb <- txtProgressBar(min=1, max=n, style=3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress=progress)

list<-foreach (a=1:n, .options.snow=opts) %dopar% {
optimalvalue_est<-divmax(sims,values[a],start1,start2,mu1,mu2,sigma1,sigma2,beta,N,T)
simvalues[a]<-optimalvalue_est[1]

}

close(pb)
stopCluster(cl)
end_time <- Sys.time()
end_time - start_time

plot(values,as.numeric(list),pch=16,xlab="barrier values",ylab="expected dividend",
main="Barrier strategy for the 2-dim problem")

optimal_value<-C_optimal*(exp(theta1*(m_optimal))-exp(-theta2*(m_optimal)))+start1+start2
-m_optimal

points(m_optimal,optimal_value,col="red",pch=18)

###########Figure 15##########
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mu_new<-mu1+mu2
sigma_new<-sqrt(sigma1^2+sigma2^2)
start_new<-start1+start2

plot_result<-barrierstrategy("optimal",start_new,0,mu_new,0,sigma_new,0,beta,2000,10)
m_opt<-plot_result$m_optimal
plot_result$dividend[N]
plot(c(0,seq(0,10-2*0.005,by=0.005)),plot_result$dividend,type="l",main="Accumulated Dividend",

col="red",xlab="time (in years)",ylab="dividend")
plot(c(0,seq(0,10-0.005,by=0.005)),plot_result$line1,type='l',ylim=c(0,start_new),

xlab="time (in years)",ylab="Company 1",main="Controlled surplus process of Company 1")
abline(h=m_opt,col="red")
points(0,start_new,col="red",pch=20)

###########Figure 16##########
mu1<- 0.03
mu2<- 0.02
sigma1<- 0.02
sigma2<- 0.03
start1<- 0.05
start2<- 0.05
beta <- log(1.1)

sigma1<-seq(0.0001,0.2,by=0.2/100)
zusammen <-numeric(length(sigma1))
einzeln <-numeric(length(sigma1))
for (i in 1:length(sigma1)){

zusammen[i]<-m_opti_value(mu1,mu2,sigma1[i],sigma2,beta,start1,start2)
einzeln[i]<-m_opti_value(mu1,0,sqrt(sigma1[i]^2),0,beta,start1,0)
+m_opti_value(mu2,0,sqrt(sigma2^2),0,beta,start2,0) #einzeln

}
plot(sigma1,y=zusammen,type='l',xlab=expression(sigma[1]),ylab="optimal value function",

main=expression(paste("Optimal value function for different ",mu[1])))
lines(sigma1,einzeln,col="red")
legend(0.13,0.55, c("collaboration","no collaboration"),cex = 0.75,lty=c(1,1),

lwd=c(1,1),col=c("black","red"))

###########Figure 17##########
mu1<- 0.03
mu2<- 0.02
sigma1<- 0.02
sigma2<- 0.03
start1<- 0.05
start2<- 0.05
beta <- log(1.1)

mu1<-seq(0.0001,0.005,by=0.002/100)
zusammen <-numeric(length(mu1))
einzeln <-numeric(length(mu1))
for (i in 1:length(mu1)){
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zusammen[i]<-m_opti_value(mu1[i],mu2,sigma1,sigma2,beta,start1,start2)
einzeln[i]<-m_opti_value(mu1[i],0,sqrt(sigma1^2),0,beta,start1,0)
+m_opti_value(mu2,0,sqrt(sigma2^2),0,beta,start2,0) #einzeln

}
plot(mu1,y=zusammen,type='l',xlab=expression(mu[1]),ylab="optimal value function",

main=expression(paste("Optimal value function for different ",mu[1])))
lines(mu1,einzeln,col="red")
legend(0,0.253, c("collaboration","no collaboration"),cex = 0.75,lty=c(1,1),

lwd=c(1,1),col=c("black","red"))

###########Figure 18-Figure 21##########
#Plots analogously to previous plots with different parameter
mu1<- 0.03
mu2<- -0.01
sigma1<- 0.02
sigma2<- 0.05
start1<- 0.1
start2<- 0.1
beta <- log(1.1)

###########Figure 22##########
beta <- log(1.1)
mu1<- 0.03
mu2<- 0.002
sigma1<- 0.02
sigma2<- 0.03
start1<-0.05
start2<-0.05

start1<-seq(0,0.1,by=0.1/100)
zusammen <-numeric(length(start1))
einzeln <-numeric(length(start1))
for (i in 1:length(start1)){

zusammen[i]<-m_opti_value(mu1,mu2,sigma1,sigma2,beta,start1[i],start2)
einzeln[i]<-m_opti_value(mu1,0,sqrt(sigma1^2),0,beta,start1[i],0)
+m_opti_value(mu2,0,sqrt(sigma2^2),0,beta,start2,0) #einzeln

}
plot(start1,y=zusammen,type='l',xlab=expression(x[1]),ylim=c(0.05,0.45),

ylab="optimal value function",
main=expression(paste("Optimal value function for different ",x[1])))

lines(start1,einzeln,col="red")
legend(0.02,0.15,y.intersp=1.7,text.width = strwidth("no collaboration")[1]*1.5,

c("collaboration","no collaboration"),cex = 0.8,lty=c(1,1),lwd=c(1,1),
col=c("black","red"))

abline(v=0.012,col="grey")
points(0.012, 0.2873112,pch=20)
text(0.0142,0.1,expression(paste(x[1],"=0.012")), col="darkgrey",cex=0.85)

###########Figure 23##########
mu1<- 0.03

98



9 APPENDIX: CODE

mu2<- 0.002
sigma1<- 0.02
sigma2<- 0.03
start1<- 0
start2<- 0.05
beta <- log(1.1)

T<-500
N<-100000
sims<-50000

require(foreach)
start_time <- Sys.time()
grenze<-seq(0,0.1,by=0.001)
n<-length(grenze)
simvalues<-numeric(n)

require(doSNOW)
cores <- parallel::detectCores()
cl <- makeSOCKcluster(cores-1)
registerDoSNOW(cl)

pb <- txtProgressBar(min=1, max=n, style=3)
progress <- function(n) setTxtProgressBar(pb, n)
opts <- list(progress=progress)

#running time: 48h (with parallelization on 3 cores)
list<-foreach (a=1:n, .options.snow=opts) %dopar% {

optimalvalue_est<-divmax_switch(sims,grenze[a],start1,start2,mu1,mu2,sigma1,sigma2,beta,N,T)
simvalues[a]<-optimalvalue_est[1]

}

close(pb)
stopCluster(cl)
end_time <- Sys.time()
end_time - start_time

plot(grenze,as.numeric(list),pch=16,cex=2.7,xlab="switching levels",ylab="expected dividend",
main="Switching from Collaboration to No Collaboration")

abline(h=max(as.numeric(list)),col="red")
max(as.numeric(list))
grenze[which(as.numeric(list)==max(as.numeric(list)))]
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