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Kurzfassung

Aktuelle Entwicklungen im Bereich der Ingenieurswissenschaften, die besser unter dem
Begriff „Industrie 4.0“ bekannt sind, erfordern flexiblere Produktionssysteme. Diese Art
von modernen Produktionssystemen werden typischerweise als disziplinübergreifende
Engineering-Umgebungen entworfen, in denen Akteure unterschiedlichster Ingenieursdiszi-
plinen, Daten von verschiedenen, heterogenen Datenquellen integrieren, und Änderungen
innerhalb dieser integrierten Datenquellen verwalten müssen, um Änderungen an einem
Datensatz in anderen relevanten Datensätzen widerzuspiegeln. Aus diesem Grund sind
disziplinübergreifende Engineering-Umgebungen stark auf eine Integration der Daten
zwischen den verschiedenen Akteuren und Ingenieursdisziplinen angewiesen. Technologien
aus dem Forschungsbereich Semantic Web unterstützen eine solche übergreifende Daten-
integration mittels sogenannten ontologiebasierten Datenintegrationsansätzen, die ihren
Bedingungen entsprechend, Voraussetzungen für die Unterstützung von Management-
ansätzen von Wissensänderungen in disziplinübergreifenden Engineering-Umgebungen
sind.

Für ontologiebasierte Datenintegrationen wurden bisher drei Ansätze vorgeschlagen:
kombinierte Ontologien, die domänenübergreifend, alle Entitäten beinhalten, multiple
Ontologien, die untereinander auf Entitäten verweisen, und hybride Ontologien, die auf ein
gemeinschaftliches Vokabular zurückgreifen. Eine solche Klassifizierung wurde jedoch als
zu allgemein erachtet, um zu entscheiden, welcher der Ansätze am geeignetsten im Bereich
von disziplinübergreifenden Engineering-Umgebungen ist. Eine erste Herausforderung
besteht darin, zu verstehen was unter der Eignung von ontologiebasierten Dateninte-
grationsvarianten für disziplinübergreifende Engineering-Umgebungen verstanden wird
und wie die Möglichkeiten, die diese Ansätze bieten erweitert werden können. Nachdem
das Management von Wissensänderungen hauptsächlich auf Ansätzen für kombinierte
Ontologien untersucht wurde, besteht die zweite Herausforderung in der Bereitstellung
von Techniken für das Management von Wissensänderungen, die auch für komplexere
ontologiebasierte Datenintegrationsansätze, wie zum Beispiel hybride Ansätze anwendbar
sind.

Um die erste Herausforderung zu adressieren, wird in dieser Dissertation die Machbarkeit
und Eignung von ontologiebasierten Datenintegrationsansätzen in disziplinübergreifenden
Engineering-Umgebungen bewertet. Dafür wird ein neuer Ansatz für ontologiebasierte
Datenintegration namens Global-as-View vorgeschlagen und die Kriterien für eine Klassi-
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fizierung von ontologiebasierten Datenintegrationvarianten ausgearbeitet, welche danach
eine qualifizierte Entscheidungsgrundlage für unterschiedlichen Szenarien disziplinüber-
greifender Engineering-Umgebungen bilden. Der zweite Teil der Arbeit adressiert die
Forschungslücke im Bereich der Unterstützung von Wissensänderungen in komplexen,
ontologiebasierten Datenintegrationen. An dieser Stelle wird in der Arbeit eine Auswahl
an Anforderungen für das Management von Wissensänderungen für komplexe ontologieba-
sierte Datenintegrationen im disziplinübergreifenden Engineering-Umgebungen, auf Basis
von Anwendungsfällen der Domäne, definiert. Aus diesen zugrundeliegenden Anforde-
rungen wird ein generisches, technologieunabhängiges Rahmenwerk für das Management
von Wissensänderungen für hybride und Global-as-View Szenarien in der ontologiebasier-
ten Datenintegration entwickelt. Um diesen Ansatz zu evaluieren, wird ein spezifischer
Bezugsrahmen für das Management von Wissensänderungen als Forschungsprototyp
realisiert, und anhand dessen eine Machbarkeitsstudie durchgeführt.

Die wichtigsten Beiträge der Dissertation sind: (1) eine systematische Literaturrecherche,
die Anwendungsarten von ontologiebasierten Datenintegrationen in disziplinübergreifen-
den Engineering-Umgebungen beinhaltet, auf deren Basis ein neue Variante einer ontolo-
giebasierten Datenintegration und ein dementsprechender Leitfaden für die Auswahl einer
solchen Variante, basierend auf den Charakteristiken des jeweiligen Anwendungsaspekts,
vorgeschlagen wird; (2) eine Evaluierung des vorgeschlagenen Leitfadens für die Auswahl
von ontologiebasierten Datenintegrationen, mit dem Ziel, spezifische, prototypische An-
wendungen für ontologiebasierte Datenintegration für zwei konkrete Anwendungsfälle aus
dem Bereich des disziplinübergreifenden Ingenieursumgebung zu verwirklichen; (3) die
Definition eines generischen Rahmenwerks für das Management von Wissensänderungen
für disziplinübergreifende Engineering-Umgebungen und dessen Evaluierung.



Abstract

The recent developments in the engineering domain, often associated with the German
term “Industrie 4.0”, require more flexible production systems. Such modern production
systems are typically designed in Multi-Disciplinary Engineering Environments (MDEEs),
where stakeholders from diverse engineering disciplines need to integrate data from
heterogeneous data sources and manage changes within the integrated data sources,
so that changes in one dataset are reflected in other relevant data sources. MDEEs,
therefore, strongly rely on data integration across various stakeholders and engineering
disciplines. Semantic Web Technologies support data integration using Ontology-Based
Data Integration (OBDI) approaches, which, on their term are a prerequisite to support
knowledge change management in MDEEs.

Three variants of OBDI approaches have been proposed: single-ontology, multiple-
ontology, and hybrid approaches. However, this classification is deemed too generic for
understanding which approaches are most suitable in MDEEs. A first challenge, on
the one hand, consists in understanding the suitability of OBDI approach variants for
diverse MDEE scenarios and considering potential extensions thereof. On the other
hand, since the topic of knowledge change management has been primarily investigated
for single-ontology OBDI approaches, a second challenge therefore consists in providing
knowledge change management techniques that are also applicable for more complex
OBDI approaches (e.g., hybrid approaches).

To address the first challenge, in this thesis, we evaluate the feasibility and suitability of
OBDI approaches for diverse MDEE use cases. We propose a new OBDI variant called
Global-as-View OBDI and distill criteria for classifying OBDI variants that allow for their
informed selection for use in diverse MDEE scenarios. Our second line of work addresses
the gap in supporting knowledge change management in complex OBDI variants. To that
end, we define a set of knowledge change management requirements for complex OBDI
in MDEE based on use cases from the engineering domain. Based on these requirements,
we develop a generic, technology-agnostic framework of knowledge change management
for hybrid and Global-as-View OBDI scenarios. To evaluate our approach, we instantiate
the reference framework as a research prototype and conduct an initial feasibility study.

The main outputs of the thesis are: (1) a systematic literature review on OBDI applications
in MDEE, based on which we propose a new OBDI variant and guidelines for the selection
of OBDI variants based on application context characteristics; (2) the evaluation of the
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OBDI selection guidelines to design concrete prototypes of OBDI applications for tackling
two use cases in MDEEs; and (3) the definition of a generic knowledge change management
framework for MDEEs and its feasibility evaluation.
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CHAPTER 1
Introduction

Current developments in the engineering domain, often associated with the German term
“Industrie 4.0” [BtHVH14], require more flexible production systems (i.e., factories) that
rely on strong data integration across various stakeholders and engineering disciplines.
The lifecycle of such production systems typically involves contributions by engineers from
a variety of disciplines that collaborate in a Multi-Disciplinary Engineering Environment
(MDEE) [BGL17], an environment where stakeholders from several engineering disciplines
work together to achieve a common goal (e.g., the design of a factory). For instance,
the engineering of a modern hydro power plant usually involves a main contractor,
subcontractors, and component vendors [SKEB16]. These stakeholders cover a variety of
engineering disciplines including mechanical, electrical, and software engineering, and
make use of various engineering software tools, datasets, and terminologies, with limited
overlap.

An illustrative example of an MDEE from the engineering of mechatronic systems from
Automation System Engineering domain is shown in Figure 1.1. This figure shows
engineers from software, electrical and mechanical engineering that are working together
to build a complex mechatronic system (e.g., a production system) using specific tools
from their respective engineering disciplines (left hand side of Figure 1.1).

Collaboration among these stakeholders requires synchronizing and exchanging data
produced by software tools specific to their disciplines. In order to reach their goals, on
the one hand, it is important to be able to define and share the necessary knowledge for
common work processes between these engineers by the means of data integration. On
the other hand, project managers, knowledge engineers and domain experts need to see
an integrated view of the mechatronic system in order to conduct the necessary analyses,
e.g., to analyze artefact changes during the engineering process (right hand side of Figure
1.1).

1



1. Introduction

Figure 1.1: An MDEE problem setting example: the engineering of mechatronic systems

The cross-disciplinary knowledge in MDEEs, however, is often available only implicitly
and is therefore challenging to share. This results in time-consuming and repetitive tasks
of manually retrieving and processing such knowledge [MB12]. In many cases of MDEEs,
domain experts and project managers also have to invest considerable effort to provide
the required cross-disciplinary functions due to the unavailability of explicit knowledge
and semantic gaps between disciplines [MMW+11].

Consequently, processes in MDEEs that create modern and flexible production
systems have strong needs for data integration, a crucial prerequisite to enable
advanced capabilities that support the work of engineering teams, such as early defect
detection [KWK+14] or knowledge change management [WMM+11b]. MDEEs must
therefore evolve from current, primarily manual practices towards the use of more flexible
and knowledge-driven technologies.

These advanced capabilities are important to improve work efficiency and overall project
management (e.g., to mitigate common risks in such projects). In addition, the desired
shorter life-cycles and higher variation of products in modern production systems also
require better integration between (i) the life cycles of products and the associated
production systems; and (ii) the engineering and operation phases of these production
systems [SEB17]. A key challenge in this context is therefore caused by the heterogeneous
and semantically overlapping models [FHK+15].

Recently, research on applying Semantic Web (SW) technologies, especially the Ontology-
Based Data Integration (OBDI), to address the challenge of data integration in MDEE
has been intensified, e.g., for engineering design quality improvement [SRFF11, HVKE16],
for simulation generation and evaluation [TU14, DVYP14], for knowledge representation
[LLP+15, NFGT16], and for team collaboration [WMM11a]. OBDI, with ontologies as

2



1.1. Research Questions

key resources, facilitates data integration by capturing the implicit knowledge across
heterogeneous data sources and establishing semantic interoperability between them
[WVV+01].

However, given the complexity of data integration scenarios in MDEEs, choosing the
most appropriate OBDI variant, as well as suitable technologies for implementing it is
challenging, since appropriate choices are mainly determined by the specific characteristics
of the problem setting, such as data source heterogeneity or mapping complexity between
data sources. Therefore, providing an understanding on how suitable the OBDI approach
and its variants are for the diverse data integration scenarios is highly important, both
for researchers and practitioners.

Another challenge lies in providing support for data transformation and change propa-
gation, which is part of the Knowledge Change Management (KCM) process for
OBDI systems. The current approaches to deal with KCM from the SW community
do not sufficiently address such requirements, which are crucial to ensure an efficient
and correct knowledge management and foster further adoption of OBDI in MDEEs and
other similar environments.

1.1 Research Questions
Following the challenges previously introduced, the central research question in the thesis
is the following:

Which mechanisms and methods from Semantic Web technologies
are suitable to address challenges of Data Integration and Knowl-
edge Change Management in Multi-Disciplinary Engineering En-
vironments?

Three variants of Ontology-Based Data Integration (OBDI) approaches have been pro-
posed: single-ontology, multiple-ontology and hybrid approaches [WVV+01]. However,
this classification is deemed too generic and it is not clear how the OBDI variants relate
to scenarios in Multi-Disciplinary Engineering Environments (MDEEs). Therefore, the
first challenge in the thesis consists in understanding the suitability of the OBDI
approach and its variants for diverse MDEE scenarios as well as identifying possible gaps
and considering potential extensions thereof.

RQ1: “How suitable are the Ontology-Based Data Integration ap-
proach variants for the diverse data integration scenarios in Multi-
Disciplinary Engineering Environments?

The OBDI approach allows development of knowledge graphs in the MDEEs as a basis
for advanced applications. There is, however, only limited support for managing explicit
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(i.e., in opposite of tacit) knowledge graph changes in OBDI, since the topic of Knowledge
Change Management (KCM) has been primarily investigated for single-ontology OBDI
approaches [Eka15].

This aspect of KCM is important for scenarios in the MDEE where changes are integral
parts of the process, e.g., the iterative engineering process of hydro-power plant systems.
Due to this issue, the second challenge in the thesis consists of providing KCM methods
and techniques for more complex OBDI approaches (e.g., the hybrid approach) in the
context of MDEEs.

RQ2: “How to provide sufficient support for Knowledge Change
Management in Multi-Disciplinary Engineering Environments in
systems using Ontology-Based Data Integration approach?”

1.2 Research Contributions

The first contribution of the thesis is a literature review on existing Ontology-Based
Data Integration (OBDI) applications in Multi-Disciplinary Engineering Environments
(MDEEs) to address RQ1 on the suitability of OBDI approach variants for MDEE
scenarios [ESS+17]. The review is based on Systematic Literature Review (SLR) method
[KC07, ZRM+15] and covers 23 OBDI applications reported in 29 papers.

During the review process, we observed that there are OBDI applications that are similar,
but do not exhibit all the characteristics of hybrid OBDI. We refer to this approach
as Global-as-View (GAV) OBDI due to its similarity with the GAV approach from the
relational databases [DHI12]. To differentiate this OBDI approach from existing variants,
we propose to add GAV to the existing OBDI typology from Wache et al. [WVV+01].
Based on the review, we develop a guideline to support the selection of suitable OBDI
approaches on the context of MDEEs.

To support our findings above, the second contribution of the thesis lies on the
evaluation of the OBDI selection guidelines in the engineering context. To this end, we
use the guideline to help designing and developing OBDI applications for two distinct
use cases in MDEEs: AutomationML Analyzer and Ontology-based Cross-disciplinary
Defect Detection (OCDD).

AutomationML Analyzer [SEKB16] is an OBDI application that aims to support analysis
of engineering data and was later extended to support generation of simulation models
[NEB17]. The OBDI approach in this context aims to address the challenge of (1)
understanding complex data structures with intricate links between the elements of
engineering data, and (2) providing support for conducting cross-disciplinary analytics
by end users. The application uses a single-ontology OBDI variant due to the availability
of AutomationML1 –an open standard for engineering data exchange– in the use case.

1www.automationml.org
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OCDD approach is an OBDI application that aims to support defect detection across
heterogeneous engineering data models [KWK+14]. We applied the OBDI selection
guideline against the use case characteristics, which resulting in the selection of the
multiple-OBDI variant for OCDD approach.

The third contribution answers RQ2 by designing a Knowledge Change Management
(KCM) framework for MDEEs based on the OBDI approach. To design such framework,
we first define the KCM requirements for MDEEs [ESSB15b]. Considering these require-
ments, we make an analysis of Semantic Web (SW) related work, which shows the gap
on the KCM support beyond single-ontology OBDI systems [Eka15], especially in the
context of MDEEs. The proposed KCM framework addresses this gap by building on
the the GAV OBDI approach [Eka16], which can be generalized beyond the SW research
communities.

To evaluate the proposed framework, we instantiate the framework as a research prototype
using SW technologies and conducts an initial feasibility evaluation in the use case of a
hydro-power plant engineering process, which is based on a real-world use case from our
industry partner [ESSB16]

In summary, the three main results from this thesis are the following:

• A comparison and analysis on current OBDI variants in MDEE, which proposes an
extension of OBDI variant classifications and a guideline for the selection
and adaptation of OBDI variants depending on project contexts;

• The evaluation of the proposed guideline to design and develop two concrete
prototypes of OBDI applications for tackling distinct use cases and their
challenges in the MDEEs; and

• The definition of a generic KCM framework for MDEE applications built on
the OBDI approach, which would allow advanced features such as engineering
project progress analysis and monitoring.

1.3 Thesis Structure

Chapter 2 introduces the research context and motivates the needs of our research. In
Chapter 2, we explain important terms and related work, e.g., Semantic Web (SW),
Ontology-Based Data Integration (OBDI), Ontology Change, and Multi-Disciplinary
Engineering Environments (MDEEs). Furthermore, we explain how SW technologies are
being utilized within the MDEEs [SKEB16].

Chapter 3 reviews OBDI applications in the MDEEs from both architectural (i.e., OBDI
variants) and technical points of view [ESS+17]. Furthermore, we introduce an additional
variant of OBDI, called Global-as-View (GAV) OBDI and propose a guideline to help
users in selecting the most suitable OBDI variant for their scenario.
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Chapter 4 tests the guidelines created in Chapter 3 within two concrete use cases from
our industry partners. As the result, we develop two concrete OBDI prototypes in
MDEEs that are enabled by OBDI, namely AutomationML Analyzer [SEKB16] and
Ontology-based Cross-discplinary Defect Detection Tool [KSS+14]. These prototypes
demonstrate contexts and needs from MDEE projects, together with approaches and con-
crete prototypes to solve them. In addition, we briefly discuss the benefit and drawbacks
of Semantic Web Technologies (SWT) in comparison with alternative technologies.

Chapter 5 provides the definition of a generic framework for Knowledge Change Man-
agement (KCM) in MDEE as an extension of OBDI. We build on a set of requirements
from MDEEs to develop the framework [ESSB15b, Eka16]. Further, we develop an
instance of the framework using SW technologies based on a use case of hydro-power
plant engineering from an industry partner [ESSB16] to conduct a feasibility evaluation.

Chapter 6 concludes the thesis with a discussion about research questions and results,
describes the thesis limitations, and finally provides a set of potential research issues and
challenges to be pursued in further research.

1.4 Publications
During this PhD, we have co-authored 27 peer-reviewed scientific publications, including
2 journal papers, 5 book chapters, 14 full conference papers and 6 workshop/in-progress
papers. We won two best paper awards (i-Semantics 2013 and ICoDSE 2014) and received
one nomination for best paper award (SEMANTiCS 2016). Parts of this thesis are based
on a subset of the aforementioned publications, as explained next.

Parts of Chapter 2 are published in the following publications:

• Marta Sabou, Olga Kovalenko, Fajar J. Ekaputra, and Stefan Biffl. Semantic Web
Solutions in Engineering. In Stefan Biffl and Marta Sabou, editors, Semantic Web
Technologies for Intelligent Engineering Applications, chapter 11, pages 281–296.
Springer International Publishing, Cham, 2016 [SKEB16].

• Marta Sabou, Fajar J. Ekaputra, and Stefan Biffl. Semantic Web Technologies
for Data Integration in Multi-Disciplinary Engineering. In Stefan Biffl, Detlef
Gerhard, and Arndt Lüder, editors, Multi-Disciplinary Engineering for Cyber-
Physical Production Systems, pages 301–329. Springer, 2017 [SEB17].

Chapter 3 of the Thesis is written based on the following publication:

• Fajar J. Ekaputra, Marta Sabou, Estefanía Serral, Elmar Kiesling, and Stefan Biffl.
Ontology-Based Data Integration in Multi-Disciplinary Engineering Environments:
A Review. Open Journal of Information Systems (OJIS), 4(1):1–26, 2017 [ESS+17].

Chapter 4 of the Thesis is written based on the following publications:
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• Olga Kovalenko, Estefanía Serral, Marta Sabou, Fajar J. Ekaputra, Dietmar Win-
kler, and Stefan Biffl. Automating Cross-Disciplinary Defect Detection in Multi-
disciplinary Engineering Environments. In Knowledge Engineering and Knowledge
Management: 19th International Conference, EKAW 2014, Linköping, Sweden,
November 24-28, 2014. Proceedings, volume 8876, pages 238–249, 2014 [KSS+14]

• Olga Kovalenko, Manuel Wimmer, Marta Sabou, Arndt Lüder, Fajar J. Ekaputra,
and Stefan Biffl. Modeling AutomationML: Semantic Web Technologies vs. Model-
Driven Engineering. In 2015 IEEE 20th Conference on Emerging Technologies &
Factory Automation (ETFA), pages 1–4. IEEE, 2015 [KWS+15]

• Marta Sabou, Fajar J. Ekaputra, Olga Kovalenko, and Stefan Biffl. Supporting the
engineering of cyber-physical production systems with the AutomationML analyzer.
In 2016 1st International Workshop on Cyber-Physical Production Systems (CPPS),
pages 1–8. IEEE, apr 2016 [SEKB16]

• Petr Novák, Fajar J. Ekaputra, and Stefan Biffl. Generation of Simulation Models
in MATLAB-Simulink Based on AutomationML Plant Description. In IFAC -
Papers Online, pages 7613–7620, 2017 [NEB17]

And finally, Chapter 5 is written based on the following publications:

• Fajar J. Ekaputra. Ontology change in ontology-based information integration
systems. In 12th European Semantic Web Conference, ESWC 2015, volume 9088,
pages 711–720. Springer International Publishing, 2015 [Eka15].

• Fajar J. Ekaputra, Estefanía Serral, Marta Sabou, and Stefan Biffl. Knowledge
Change Management and Analysis for Multi-Disciplinary Engineering Environ-
ments. In Joint Proceedings of the Posters and Demos Track of 11th International
Conference on Semantic Systems - SEMANTiCS2015 and 1st Workshop on Data
Science: Methods, Technology and Applications (DSci15), volume 1481, pages 13–17,
2015 [ESSB15b].

• Fajar J. Ekaputra. Knowledge Change Management and Analysis in Engineering.
In Stefan Biffl and Marta Sabou, editors, Semantic Web Technologies for Intelli-
gent Engineering Applications, chapter 7, pages 159–178. Springer International
Publishing, Cham, 2016 [Eka16].

• Fajar J. Ekaputra, Marta Sabou, Estefanía Serral, and Stefan Biffl. Knowledge
change management and analysis during the engineering of cyber physical pro-
duction systems: A use case of hydro power plants. In Proceedings of the 12th
International Conference on Semantic Systems - SEMANTiCS 2016, volume 13-
14-Sept, pages 105–112, New York, New York, USA, 2016. ACM, ACM Press
(nominated for best paper award) [ESSB16].
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In addition to the papers that directly contributed to the thesis, we have co-authored a
number of other papers2. A selected list of these papers includes:

• Marta Sabou, Fajar J Ekaputra, Tudor Ionescu, Juergen Musil, Daniel Schall, Kevin
Haller, Armin Friedl, and Stefan Biffl. Exploring Enterprise Knowledge Graphs : a
Use Case in Software Engineering. In Extended Semantic Web Conference (ESWC),
2018 [SEI+18].

• Juergen Musil, Fajar J. Ekaputra, Marta Sabou, Tudor Ionescu, Daniel Schall,
Angelika Musil, and Stefan Biffl. Continuous Architectural Knowledge Integra-
tion: Making Heterogeneous Architectural Knowledge Available in Large-Scale
Organizations. In Proceedings - 2017 IEEE International Conference on Software
Architecture, ICSA 2017, pages 189–192, 2017 [MES+17].

• Richard Mordinyi, Estefanía Serral, and Fajar J. Ekaputra. Semantic Data Inte-
gration: Tools and Architectures. In Semantic Web Technologies for Intelligent
Engineering Applications, pages 181–217. Springer, 2016 [MSE16].

• Richard Mordinyi, Dietmar Winkler, Fajar J. Ekaputra, Manuel Wimmer, and
Stefan Biffl. Investigating model slicing capabilities on integrated plant models
with AutomationML. In IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA, volume 2016-Novem, 2016 [MWE+16]

• Fajar J. Ekaputra and Xiashuo Lin. SHACL4P: SHACL constraints validation
within Protégé ontology editor. In Proceedings of 2016 International Conference
on Data and Software Engineering, ICoDSE 2016, 2016 [EL16].

• Stefan Biffl, Marcos Kalinowski, Fajar J. Ekaputra, Estefanía Serral, and Dietmar
Winkler. Building Empirical Software Engineering Bodies of Knowledge with
Systematic Knowledge Engineering. In International Conference on Software
Engineering and Knowledge Engineering (SEKE), 2014 [BKE+14].

• Stefan Biffl, Marcos Kalinowski, Rick Rabiser, Fajar J. Ekaputra, and Dietmar
Winkler. Systematic Knowledge Engineering: Building Bodies of Knowledge from
Published Research. International Journal of Software Engineering and Knowledge
Engineering, 24(10):1533–1571, dec 2014 [BKR+14].

• Fajar J. Ekaputra, Estefanía Serral, Dietmar Winkler, and Stefan Biffl. A semantic
framework for data integration and communication in project consortia. In Proceed-
ings of 2014 International Conference on Data and Software Engineering, ICODSE
2014, pages 1–6. IEEE, IEEE, nov 2014 (best paper award) [ESWB14].

• Fajar J. Ekaputra, Marta Sabou, Estefanía Serral, and Stefan Biffl. Supporting
Information Sharing for Reuse and Analysis of Scientific Research Publication

2https://scholar.google.at/citations?user=ELwbaWYAAAAJ&hl=en
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Data. In Proceedings of the 4th Workshop on Semantic Publishing (SePublica 2014),
volume 1155. CEUR-WS, 2014 [ESSB14].

• Fajar J. Ekaputra, Estefanía Serral, Dietmar Winkler, and Stefan Biffl. An analysis
framework for ontology querying tools. In Proceedings of the 9th International
Conference on Semantic Systems - I-SEMANTICS ’13, page 1, New York, New
York, USA, 2013. ACM Press (best paper award) [ESWB13].
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CHAPTER 2
Background and Related Work

This chapter explains our research context and motivation, important terms, and related
works that are relevant to this thesis.

Parts of this chapter are published in several publication venues, including the general
introduction of semantic web solutions [SKEB16] in engineering and semantic web-
based data integration approaches [SEB17] for multi-disciplinary engineering process.
Furthermore, we adapt the related work from several of our previous publications
on relevant subjects, such as Ontology-Based Data Integration (OBDI) [ESS+17] and
Knowledge Change Management (KCM) [Eka15, Eka16], providing an in-depth discussion
to the chapter.

2.1 Multi-Disciplinary Engineering Environments

The typical traditional industrial production systems are focused on a rigid, mass
productions with limited produce varieties and customization. In recent years, there
is an increasing trend in industries to move towards more modern production systems
with flexible, low-volume productions with large varieties based to customer demands.
This movement is reflected in several initiatives across the globe. E.g., the Industrie 4.0
initiative in Germany is a vision of an advanced production system control architecture
and engineering methodology [BtHVH14]. Similar initiatives have also been initiated
in other countries, such as Industrial Internet consortium in the US and Factory of the
Future in France and UK [RCW13].

To achieve such a vision, it is necessary that the current traditional production systems
go through major changes in their whole life cycle. As the first step of this cycle, the
engineering of these production systems needs to produce higher quality results that
allow such flexible productions.
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To this end, there is a need to streamline the work of the engineering organization (i.e., a
set of multi-disciplinary engineering teams that is involved in the planning, realization,
and commissioning of new technical systems [Ver09]) responsible for the engineering
process, utilize diverse discipline-specific tools, and exploit heterogeneous data and data
models with limited overlap coming from aforementioned stakeholders and tools [SLSB14].
In this context, an engineering organization becomes the execution environment (referred
as the Multi-Disciplinary Engineering Environment (MDEE)) of an engineering
process that requires collaboration between involved engineering disciplines to develop
products and the associated production systems [BGL17].

However, the optimization of engineering processes is often hampered by their heteroge-
neous and collaborative nature of the MDEE of an engineering organization. Heterogeneity
is a key characteristic because a large and diverse set of stakeholders is involved in an
engineering organization, often spanning across several divisions within and between
companies. Despite their heterogeneity, the involved stakeholders in an MDEE need to
collaborate toward designing and building a complex production system. Indeed, they all
provide data and engineering effort to the engineering process. Based on these inputs,
many engineering decisions are taken that shape the detailed engineering and imple-
mentation of the intended production system [SLSB14]. Therefore, a key challenge
for realizing such flexible engineering of production systems lies on solving
the data integration among these stakeholders (e.g., engineers from mechanical,
electrical and software disciplines; project managers) and artefacts (e.g., discipline-specific
tools, data model, and data) across engineering disciplines.

Knowledge-based approaches in general have been observed to be particularly suitable to
deal with data heterogeneity as well as to enable advanced functionalities of such systems
(e.g., handling disturbances adapting to new business requirements) [LLVH13]. This opens
up the need for knowledge-based approaches, such as Semantic Web Technologiess (SWTs)
where ontologies [Gru93, SBF98] are used as models [BLHL01, SBLH06]. SWTs extend
the principles of knowledge-based approaches to Web-scale settings which introduce novel
challenges in terms of data size, heterogeneity, and level of distribution [BLHL01]. In
such setting, SWTs focus on large-scale (i.e., Web-scale) data integration and intelligent,
reasoning-based methods to support advanced data analytics. SWTs enable a wide range
of advanced applications [SBLH06] and they have been successfully employed in various
areas, ranging from pharmacology [GGL+14] to cultural heritage [Hyv12] and e-business
[Hep08].

The adoption of SWTs in the industrial production settings and theMDEE in particular is
comparatively slower than the aforementioned areas [SKEB16]. A potential explanation
is the complexity of the MDEE hampers a straightforward adoption of SWTs in both
aspects of the core data integration challenge and crucial advanced engineering process
supports, such as Knowledge Change Management (KCM).

This chapter aims to provide the background and motivates the needs of our research,
which is focus on the following research gaps: (1) The limited understanding of potential
stakeholders on how Ontology-Based Data Integration (OBDI) approach and its variants
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can be adopted to address the core data integration challenge due to the complexity and
the diverse data integration scenarios in MDEE, and (2) The lack of advanced engineering
process supports of KCM, which is a necessary requirement in many use cases of MDEE,
in systems using OBDI approaches.

2.1.1 The Needs for Semantic Supports

In their work [BLW16], Biffl et al. identifies a number of needs for semantic supports
derived from production systems engineering use case and scenarios –which subsumes
the MDEE settings– in a similar manner as the discussion on the enterprise systems
ecosystem [Obe14]. These needs (Nx) are as follows:

N1-Explicit engineering knowledge representation. The stakeholders in the en-
gineering domain use a wide-range of models regularly to represent certain aspects of
the engineering knowledge [NBJ11]. However, in many cases, the modeling languages do
not provide sufficient level of expressiveness needed to automate the production systems
engineering. Therefore, there is a need of knowledge representation support to analyze
the requirements for the level of representation needed and providing the stakeholders
with the necessary tools and methods.

N2-Engineering data integration. The engineering tool network in the MDEE of pro-
duction system engineering environment contains a collection of tools with heterogeneous
data models, which use different terms and data formats for similar concepts [MB12].
Due to this heterogeneity it is difficult, costly, and error prone to provide a consistent
production system plant model for parallel engineering. In particular, in MDEEs there
is the need for an engineering data integration approach, which therefore provides an
integrated data model of the common concepts of stakeholders across disciplines to enable
the linking of engineering knowledge across disciplines.

N3-Engineering knowledge access and analytics. Knowledge access and analytics
in production system engineering builds on the availability of formally represented (N1)
and integrated (N2) engineering data in an MDEE. Stakeholders need basic functions
operating on common data model, e.g., reports and analyses to check the project progress
and the quality of the results from parallel engineering. Therefore, effective and efficient
mechanisms are needed for (a) querying of engineering models, including versions and
changes; and (b) defining and evaluating engineering model constraints and rules across
several views.

N4-Efficient access to semi-structured data in the organization and on the
Web. Production systems engineering process automation is mostly based on structured
data, e.g., in databases or documents that follow a structured data model. In addition to
structured data in databases or knowledge bases, the use of semi-structured data, e.g.,
technical fact sheets including natural language text, or linked data, e.g., component
information in the organization and on the Web can help improve the automated support
for reuse processes. Therefore, there is a need for more efficient access to semi-structured
data in the organization and on the Web.
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N5-Flexible and intelligent engineering applications. Assuming the capability of
knowledge access and analytics (N3) on an integrated production system plant model,
stakeholders can now design and develop intelligent engineering applications, such as
defect detection and knowledge change management. In a production system context,
these engineering solutions need to be flexible to adapt to the changes in the production
system both at design time and at runtime. Furthermore, an intelligent engineering
application needs to go beyond hard-coded programs and is driven by the description of
the production system plant.

N6-Support for multidisciplinary engineering process knowledge. One of the
major goals of the stakeholders in production system engineering is improving the
productivity of the engineering project, e.g., by avoiding unnecessary repeatable work. To
this end, there is a need to support increasing the quality and efficiency of the engineering
process by representing engineering process responsibilities and process states linked to
the production system plant model. This need extends N3 with respect to knowledge on
engineering processes

N7-Provisioning of integrated engineering knowledge at production system
runtime. In a flexible production system context, domain experts need engineering
knowledge at runtime to assess in a situation, which needs changing the system, the set
of options for a successful change. In addition, changes have to be documented in a way
that supports future change analysis. Therefore, there is a need for providing integrated
engineering knowledge at system runtime beyond simple printouts of engineering plans.
The knowledge has to be available in a sufficiently timely manner to support applications
that depend on reacting in time to real-time processes.

2.1.2 The Challenges

Lüder and Schmidt [LS17] identify a set of concrete technical tasks that are still chal-
lenging to perform in the general area of mechatronic engineering, which subsumes the
MDEE setting. They identify that techniques are needed for model generation, model
transformation, model integration, and model consistency management. We consider these
tasks put forward by Lüder and Schmidt [LS17] as good indicators for typical technical
tasks that engineering applications should solve.

In addition, there is a challenge to allow KCM tasks to support flexible model integration
and analysis of engineering processes [WMM+11b, MB15]. KCM is often required since
the process of designing complex mechatronic objects, such as industrial production
systems, requires iterations and redesign phases, which lead to continuous changes of
the data and knowledge within the MDEEs. To deal with these changes, stakeholders
need to keep data versions, move backwards to previous versions, and query different
versions of large data from heterogeneous local data sources. Furthermore, the effective
and considerate propagation of changes is essential to ensure a consistent view of the
project, to minimize defects and risks, as well as facilitate acceptance of new solutions by
domain experts.

14



2.1. Multi-Disciplinary Engineering Environments

In this section and our thesis in general, we focus our attention on the following two
engineering challenges in the context MDEEs: (C1) The core challenge of model/data
integration1, which requires N1-Explicit engineering knowledge representation
and N2-Engineering data integration, and (C2) The advanced challenge of KCM
support, which requires N3-Engineering knowledge access and analytics and N5-
Flexible and intelligent engineering applications. We will elaborate on each of
these challenges next.

C1: Data Integration

Data integration aims to bridge semantic gaps in engineering environments between project
participants and their tools, who use different local terminologies [AvdADtH06, HW03,
MMMB10], thus ultimately supporting the analysis, automation, and improvement
of multidisciplinary engineering processes. Semantic data integration is defined as
solving problems originating from the intent to share information across disparate and
semantically heterogeneous data [Hal05]. These problems include the matching of data
schemata, the detection of duplicate entries, the reconciliation of inconsistencies, and
the modeling of complex relations in different data sources [NDH05]. Noy [Noy04]
identified three major dimensions of the application of ontologies for supporting semantic
data integration: the task of finding cross-source mappings (semi-)automatically, the
declarative formal representation of these mappings, and reasoning using these mappings.

Engineering setups introduce important constraints and challenges for the semantic
integration of engineering knowledge, namely: (1) The high number of involved engineering
disciplines with a limited terminological overlap between them, thus further hampering
data integration possibilities; (2) The variety of software tools and tool data models
in these engineering disciplines; (3) The requirement of domain experts to continue
using their well-established tools and processes; (4) The use of domain-specific jargon
to represent a (large) part of the engineering knowledge; and (5) The distributed and
concurrent nature of engineering projects, with geographically dispersed experts working
on the project at the same time. Such constraints make semantic integration challenging
in engineering environments.

C2: Knowledge Change Management

The engineering process of industrial production systems (e.g., modern power plants
or steel mills) often requires teams of engineers from diverse engineering domains (e.g.,
mechanical, electrical and software engineering) to work together. As a result, this design
process typically takes place in a MDEE, in which experts from various engineering
domains and organizations work together toward creating complex engineering artifacts
(Serral et al. 2013). In such as process, domain specific engineers use their own tools to
create models that represent parts of the final system. Therefore, the MDEEs is highly

1Please note that we use the term of model integration and data integration interchangeably in the
context of this thesis
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heterogeneous, as it involves a wide range of data models, processes, and tools that were
originally not designed to cooperate seamlessly. Despite this situation, other engineers
and project managers need to perform tasks that require access to project-level data
as opposed to domain specific data alone. For these stakeholders, there is a need for
accessing integrated data at project level.

In addition to the characteristics described above, the process requires iterations and
redesign phases, which lead to continuous changes of the data and knowledge within the
MDEE [MB15]. To deal with these changes, stakeholders need to keep data versions,
move backwards to previous versions, and query different versions of large data (schema
and instances) from heterogeneous local data sources. Furthermore, the effective and
considerate propagation of changes is essential to ensure a consistent view of the project,
to minimize defects and risks, as well as facilitate acceptance of new solutions by domain
experts [WMM+11b]. To achieve this, changes originating from one engineering discipline
need to be communicated and coordinated with participants of other disciplines, where
those changes are relevant. Ideally, this communication should focus on high-level changes
(e.g., defined in terms of domain concepts such as “Motor X updated to new version”)
as opposed to low-level individual changes (i.e., change operations on versioned files) to
ease the data analysis process.

To cater for all these needs, the stakeholders need processes and tools support for
knowledge change management and analysis (KCMA) within the MDEE.

2.2 The Semantic Web: Background and Relevance to
Engineering

The successful implementation of the World Wide Web led to an explosive growth of
data available on it [HA99]. A search of "Ekaputra" on Google to look for this thesis
author, for example, will lead to more than 1.5m pages in result, including a number of
(distinct) research scientists and Indonesian travel agents, among others. This growth
posed challenges for information retrieval processes, where one of the proposed solutions
was to annotate web content with machine-processable representations.

This idea of applying formal knowledge representation on the web to help addressing
the information retrieval challenge was started in the 1990s, e.g., SHOE (Simple HTML
Ontology Extensions) [LSR96] and OntoBroker [FDES98]. The idea was later associated
with the Semantic Web (SW) vision, originated from a seminal paper of Tim Berners Lee
[BLHL01], which described as "an extension of the current Web, in which information is
given well-defined meaning, better enabling computers and people to work in cooperation".
In this definition, the "well-defined meaning" is established through semantic descriptions,
e.g., metadata of web pages.

In order to make these semantic descriptions interpretable by machines and to support
information retrieval from the web, several principles must be followed [Sab16]. First,
semantic descriptions should describe information in terms that impose precise meaning
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and reflect agreement of a wider community. Further, a collection of these semantic
terms and the relations between them will form an ontology [Gru93]. Second, semantic
descriptions should be expressed in a representation language that can be parsed and
interpreted by computer programs. In particular, these languages have to have clearly
specified semantics that can be leveraged to enable computer programs to derive new
information, a process referred to as inference or reasoning.

2.2.1 The Use of Semantic Web Technologies

SWTs were originally developed with the aim to implement the vision of SW [HKR09].
To this end, the W3C as the standardization body of the web has published a number of
standards for SWTs that, although originally developed for the web, can and have been
applied in many other areas, such as, for instance, integration of genome data and media
publishing [SBLH06].

A very good example shown in the e-Science domain where ontologies facilitate data
interoperability between scientific communities in different sub-fields and allow them to
share and communicate with each other that may in turn lead to new scientific discoveries.
In this case, ontologies are used as a “means of communicating and resolving semantic
and organizational differences between "biological databases” [SK08]. Semantic integration
of datasets is achieved using ontologies as mediators. Furthermore, based on the formal
nature of ontology languages, automated reasoning can be used to derive new knowledge
as well as to detect potential errors and inconsistencies in ontologies [KBM+11].

Similarly to the scenario in the e-Science settings, the challenges of engineering of complex
production systems (including CPPS) as discussed in Section 2.1.2 involve integrating
and making sense of heterogeneous datasets produced by different engineering disciplines.
To realize these use cases, the following needs –using the same coding with the needs
from engineering domain explained in Section 2.1.1– must be fulfilled: (N1) abilities to
explicitly represent engineering knowledge, (N2) to integrate engineering knowledge, (N3)
to provide access on (the integrated and versioned) engineering knowledge; and (N5) to
develop a flexible and intelligent applications, such as KCM supports for MDEE.

This and the following two sections (2.2-2.4) will explore SWTs required for addressing the
needs from the selected set of challenges previously mentioned: We address the needs of
explicit representation of knowledge (N1) using Ontologies (Section 2.2.2) and Knowledge
Representation languages (Section 2.2.3). Further, we tackle the data integration need
(N2) with the OBDI approach (Section 2.3). Knowledge access and analytics (N3) is
enabled by the Semantic query languages (Section 2.2.3), and lastly we handle the specific
application support of KCM (N5) with the ontology change supports (Section 2.4).

2.2.2 Ontologies

An ontology is a technical artifact that acts as a centerpiece of any Semantic Web-based
solution and allows the explicit and formal representation of knowledge relevant for the
application at hand. Adopters of Semantic Web solutions therefore need to acquire an
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Figure 2.1: An example ontology in the engineering domain

ontology either by creating it themselves or by reusing one from similar applications.
This section defines ontologies, explains the main elements of an ontology and describes
a set of characteristics to be considered when reusing ontologies.

Studer et al. (1998) define an ontology as “a formal, explicit specification of a shared
conceptualization”. In other words, an ontology is a domain model (conceptualization)
which is explicitly described (specified). An ontology should express a shared view between
several parties, a consensus rather than an individual view. Also, this conceptualization
should be expressed in a machine-readable format (formal). As consensual domain
models, the primary role of ontologies is to enhance communication between humans (e.g.,
establishing a shared vocabulary, explaining the meaning of the shared terms to reach
consensus). As formal models, ontologies represent knowledge in a computer-processable
format thus enhancing communication between humans and computer programs or two
computer programs.

For example, a mechanical engineering ontology, such as depicted in Figure 2.1, could de-
scribe concepts such as Conveyer or Engine and their relations, such as hasSupplier2.
Data items (e.g., a specific engine referred to as Engine1) are then described in terms
of ontology concepts (e.g., by associating Engine1 to the concept ElectricMotor by
means of the instanceOf relation)3.

2.2.3 The Semantic Web Languages

To represent Semantic Web specific data, a set of languages have been developed, most no-
tably RDF (Resource Description Format), RDFS (RDF Schema) and OWL (Web Ontol-

2Concepts and relations in an ontology are also called terminological components or T-Box)
3The data items in an ontology are called assertion components or A-Box)
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Figure 2.2: Example RDF triples (A) and their integration in an RDF graph (B)

ogy Language). While relational databases rely on a relational (i.e., table like) data model,
Semantic Web specific languages adopt a triple (or graph based) model with data being
represented as triples. For example, to declare that Engine1 is an ElectricMotor,
a triple is created stating that <Engine1, isA, ElectricMotor>. Figure 2.2 il-
lustrates triples that refer to the Engine1 resource (part A) and show how these are
combined into an equivalent graph based structure (part B).

In addition to the data representation languages, W3C introduces SPARQL query
language, which allows querying semantic data represented in RDF and therefore plays a
key role in many applications built using SWTs. We will briefly explains each of these
aforementioned languages in the following.

The Resource Description Framework4 (RDF) is a language for describing re-
sources on the Web and was adopted as the data interchange model for Semantic Web
languages. Resources can refer to anything including “physical things, documents, abstract
concepts, numbers, and strings” [CWL14]. RDF allows expressing relationships between
two resources through RDF statements. RDF statements consist of three elements: a
subject (a resource or a blank node), a predicate (a property/relation), and an object
(a resource, a blank node or a literal value), which are collectively referred to as triples.
Furthermore, a set of RDF triples constitutes an RDF graph.

An important principle of RDF is that individual triples can be merged whenever one of
their resources is the same, as shown in Figure 2.2. This characteristic of RDF facilitates
tasks that require integrating data from various sources, for example, from different
webpages that provide (potentially) different information about the same entity (for
example, the same person or company). This characteristic differentiates the graph-based
RDF data model from more traditional, relational data models.

4RDF: https://www.w3.org/RDF/
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The RDF Schema5 (RDFS) is a lightweight data modeling vocabularies which is
compatible with RDF. RDFS provides basic means of structuring data, e.g., rdfs:Class
to declare that an object is a class (i.e., ontology concepts), rdfs:subClassOf to declare
a subsumption relation between two classes and rdfs:subPropertyOf to declare a
subsumptions relation between two properties. The availability of these classes and
properties in RDFS making it possible for a reasoner to run the inference mechanism,
e.g., to deduce that the instance of class A is also an instance of class B, if class A is a
subclass of class B.

In addition, RDFS offers a (limited) set of properties to relate a resource with literal
values, such as rdfs:label to provide a human-readable version of a resource name
and rdfs:comment to describe a resource in a human-readable way.

Web Ontology Language (OWL) is a Semantic Web language designed to represent
rich and complex knowledge about things, group of things, and relations between things.
OWL could also be seen as an RDF vocabulary since it is compatible with the RDF data
model. OWL is a W3C recommendation since 2004 and its successor, OWL 2, is a W3C
recommendation since 2012.

An example of a basic concept in OWL 2 lies in its class hierarchy. In an OWL
2 class hierarchy, there are two predefined class identifiers, namely owl:Thing and
owl:Nothing. The class extension of owl:Thing is all individuals, while the class ex-
tension of owl:Nothing is an empty set. Consequently, every OWL 2 class is a subclass
of owl:Thing (since it is the super class of any class) and has owl:Nothing as its sub-
class (since owl:Nothing is always at the bottom of the class hierarchy). For classes, OWL
2 provides constructs beyond simple subsumption hierarchies of RDFS. One can specify,
e.g., classes that have exactly the same set of instances with owl:equivalentClass
or specify classes that share no instances at all with owl:disjointWith.

Unlike RDF(S), OWL 2 distinguishes object properties (i.e., properties where the range
is another instance identified by an IRI, declared with owl:ObjectProperty) and
datatype properties (i.e., properties where the range is a literal ––e.g., string, number,
date–– declared with owl:DatatypeProperty).

SPARQL Query Language is a W3C recommendation [HS13] for querying and manip-
ulating RDF graph data and is widely used in the Semantic Web community. SPARQL6

can be used for querying and manipulating RDF graph data across different data sources
as well as a single source. Semantic Web datasets are can be made accessible through a
SPARQL Endpoint, which enables querying that dataset via HTTP (Hypertext Transfer
Protocol). In principle, SPARQL works on the principle of mathing query patterns
over an RDF data graph. Listing 2.1 shows a basic SELECT query that returns all the
component of ex:Engine1.

Listing 2.1: A SPARQL query example
5RDFS: https://www.w3.org/TR/rdf-schema/
6SPARQL 1.1: https://www.w3.org/TR/sparql11-query/
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PREFIX ex : <http :// data . i f s . tuwien . ac . at /ns/mdee#>
SELECT ?component
WHERE {

ex : Engine1 ex : hasComponent ?component
}

In addition to the basic SELECT queries that return tabular results, there are also other
types of queries, i.e., CONSTRUCT queries, which return RDF graphs, ASK queries
that return boolean, and DESCRIBE queries that return a single result RDF graph
containing RDF data about resources. Further functionalities, such as FILTER, ORDER,
and GROUP BY are available for advanced querying and manipulation of RDF graph
data.

2.3 Ontology-Based Data Integration

Semantic Web technologies are well suited to support large-scale data integration scenarios
[WVV+01, Noy04]. Ontologies can be used to provide a semantic bridge for information
integration. Concretely, ontologies are often developed with the goal to support data
integration [Noy04]. For example, developers of several applications can agree on a
general ontology and then extend this ontology with concepts and properties specific to
their own applications. Since individual applications share a common semantic ground,
this enables easily finding correspondences between them and therefore integrating their
data. A set of high level ontologies such as SUMO [NP01] and DOLCE [GGMO03] have
been developed specifically for supporting data integration scenarios.

Ontology-Based Data Integration (OBDI) refers to the use of (potentially several layers of)
ontologies that capture knowledge across heterogeneous data sources to achieve semantic
interoperability between these sources [WVV+01]. Figure 2.3 illustrates three OBDI
variants and their components based on a categorization introduced by Wache et al.
[WVV+01]: single-ontology, multiple-ontology, and hybrid OBDI . This classification
reflects the number and type of ontologies used for data integration.

We distinguish among four layers of OBDI components as shown in Figure 2.3: (1) Data
sources represent the (heterogeneous) local data repositories, which need to be integrated.
(2) The local ontology layer contains so-called “local ontologies”, which represent the
content of each individual data source repository. (3) The global ontology layer contains
so-called “global ontologies”, which are semantically sufficiently broad to represent the
data from all data sources to be integrated. (4) The software applications layer represents
the applications, which access the data integrated with OBDI.

7Red arrows indicate access from an application to data, black arrows represent transformation/virtual
access to the data; dotted green arrows represent implicit relations between involved ontologies, and
numbered items show the sequence of system development.
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Figure 2.3: Three variants of OBDI from [WVV+01]: (1) single-ontology, (2) multiple-
ontology, (3) hybrid.7

Assuming three data sources A, B and C, their integration can be achieved by means of
three alternative OBDI variants as follows:

The single-ontology OBDI relies on a single global ontology to integrate all data
sources (cf. Figure 2.3-1). In this approach, the integration process consists of two steps:
(i) define a single global ontology G and (ii) transform source data from A, B, and C into
the global ontology G. This integration process is typically hard to maintain because it is
susceptible to changes in each data source. Any time a change occurs in one of the data
sources, a decision has to be made whether to push the change to the global ontology. If
so, to ensure compatibility, the global ontology as well as all mappings to all data sources
must be updated.

The multiple-ontology OBDI involves a local ontology per integrated data source
and an alignment of these ontologies with each other using semantic mappings (cf. Figure
2.3-2). Examples for this mappings include SPIN [KHI11], SPARQL Construct [HS13],
and EDOAL. The integration process consists of three steps: (i) create local ontologies
LA, LB, and LC for data sources A, B, and C, respectively, (ii) transform source data of
A, B, and C according to their respective local ontologies, and (iii) establish semantic
mappings between related ontologies. The drawback of this approach is that semantic
mappings among involved ontologies are hard to define and maintain due to varying
granularities of the local ontologies. Also, each inclusion of a new data source requires
additional semantic mappings to all existing local ontologies.
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Finally, the hybrid OBDI is similar to the multiple-ontology OBDI as it is characterized
by definitions of a local ontology per data source. However, instead of independent
alignments among local ontologies, this approach defines a shared vocabulary (i.e., a
set of basic terms of a domain, which sometimes is also an ontology [VSWV00]) to be
used and/or extended within local ontologies, i.e., by means of ontology refinements (cf.
Figure 2.3-3). In this approach, the integration process consists of three steps: (i) define
a shared vocabulary V that contains basic terms/concepts of the domain, (ii) create three
local ontologies LA, LB and LC by using and/or extending the shared vocabulary V for
data sources A, B, and C respectively, and (iii) transform/annotate source data from A,
B, and C according to local ontologies LA, LB, and LC.

Research Gaps. Despite the availability of OBDI and all its variants, taking into account
the complexity of data integration scenarios in MDEE, choosing the most appropriate
OBDI variant, as well as particular suitable technologies is still challenging. Appropriate
choices are mainly determined by the specific characteristics of the problem setting,
such as data source heterogeneity or mapping complexity between the data sources. We
identify such a challenge as an important research gap to address in this thesis.

2.4 Knowledge Change Management in Ontology-Based
Data Integration

The emergence of OBDI approach for data integration raises issues on how to maintain
the integrated system, i.e., how to manage the knowledge change within the system. KCM
support is an important requirement of an OBDI system, especially in a mission- and
safety-critical systems such as those in the production systems engineering [MB10] where
change support is often needed to deal with changes in ontology schemas (i.e., T-Box)
and data (i.e., A-Box). These changes have to be validated, applied and propagated to
all relevant parts of the system to ensure its consistency.

The current approaches to deal with ontology change from the SW community are mostly
focused on a single OBDI variant and therefore these approaches are not sufficient to
support ontology changes in other OBDI variants with multiple ontologies and complex
mappings.

Note that in the SW research community, many relevant (and sometimes confusingly
related) terms that are used to describe changes in ontologies and their instances. Flouris
et al. provide an excellent summary and distinction of many ontology change terms that
are used in the Semantic Web community [FMK+08] Three of the most relevant terms
are the following, of which we refer throughout our work:

• Ontology change, which is defined as "the problem of deciding the modifications
to perform upon ontologies in response to a certain need for a change as well as
the implementation of these modifications and the management of their effects in
depending data, services, applications, agents or other elements". Note that we use
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the term of "knowledge change management" and "ontology change" interchangeably
within the context of the thesis.

• Ontology evolution, which is a process of modifying an ontology in response to
a certain change in the domain or its conceptualization, and

• Ontology versioning, an ability to handle an evolving ontology by creating and
managing different variants/versions of this ontology.

We will describe next major related works relevant to the KCM in OBDI approaches from
the SW research communities, namely Processes in Ontology Change, Change Detection
and Representation, and Tool Support for Ontology Change.

Processes in Ontology Change Recent work from Zablith et al. [ZAD+15] has sum-
marized major ontology evolution process approaches [Kle04, NCLM06, Zab09, VPT+05,
Sto04]. They proposed five steps for the ontology evolution process:

1. Detecting Evolution Need. This step initiates the ontology evolution process
by detecting the need for such change, which can be internal or external to the
ontology. The goal is to determine whether to an extent whether changes should
be conducted.

2. Suggesting Changes. This step collects and suggests a set of possible concrete
ontology changes that can be executed according to the need of changes in the
previous step. The goal is provide the decision maker with all possible options and
let him or her decides which operations should be executed.

3. Validating Changes. This step filters out all changes from the suggested changes
that are not not necessary to address the evolution needs. There are two typical
types of this validation: (i) domain-based validation that check potential changes to
ontology content, and (ii) formal properties-based validation that validate changes
againts a set of formal techniques.

4. Assessing Impact. This step focuses on assessing the external impact of changes
that is being applied to an ontology. This means how the changes on the ontology
affect applications and usages that depend on the ontology.

5. Managing Changes. This step address tasks related to tracking performed
changes and versions of ontologies, including their provenance information. The
step would serve as a basis for advanced features to be executed, e.g., restoration
of previous version of ontologies.

These processes are designed with the focus only on the changes in an ontology schema. A
research that is closer to ours comes from Papavassiliou et al., where they take into account
changes both in the ontology schema and data [PFF09b]. However, these approaches
mainly consider changes in a single ontology instead of in the context of OBDI systems,
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which presents the challenge of data transformation and change propagation across the
system.

Change Detection and Representation. A major requirement for the knowledge
change management in OBDI is the ability to detect low-level (i.e., addition and deletion
of triples) changes and high-level (e.g., concept move and deletion) changes between
different ontology versions [PFF09b] and represent them in a machine readable format
for future analytics, while considering their effects on the change propagation process. To
address change detection between two ontology versions, the use of heuristics algorithms
[NM02], structural differences [PFF09b, RN11], and OWL reasoning [GPS10] have been
proposed and evaluated. To support the change detection mechanism, approaches for
change representation as change ontologies [NCLM06, PHCGP09] and change languages
[PFF09a] have also been proposed. A different change scenario happens when two copies
of repositories changed in parallel, which may results in conflicts in such co-evolution
settings. To address this, Faisal et al. propose a set of conflict resolution strategies
[FES+16]. The aforementioned approaches assume that users are interested in the whole
Knowledge Graph. Endris et al. suggests that this is not always the case, since many
users are interested only in a certain part of the graph, which can be represented as
interest expressions [EFO+15].

Similar to ontology change process, the approaches in this area are typically focused on
detecting changes of a single-ontology OBDI. In our research, we aim to build on the
state of the art of ontology change detection and representation to detect and represent
low-level changes and selected sets of high-level changes of OBDI system ontologies and
their complex mappings.

Tool Support for Ontology Change. To provide tool support for ontology change,
an initial set of requirements that focused on ontology evolution was introduced by
Stojanovic and Motik for the KAON tool [SM02]. In the similar timeframe, PrompDiff
change detection algorithm was integrated into Protégé tool [NM02]. Later on, Noy et
al. introduced support for different scenarios of ontology editing in Protégé, providing
background support for storing ontology metadata using CHAO vocabulary [NCLM06].
The latest addition to the impressive set of Protégé ontology change support tools is
the Protégé versioning server, which is based on the previously proposed architecture
client-server architecture [RSDT08].

Recent researches on ontology change focus more on ontology versioning. One of the first
in this area ia an interesting work comes from the adaptation of distributed versioning
systems, SemVersion [VG06] and R&Wbase [VCV+13], which provide support for ontology
versioning similar to source code versioning systems. Arndt et al. [ARM16] goes a step
further, which proposed a Git adaptation for collaborative authoring of RDF data.
Graube et al. proposes another approach that utilizes SPARQL extensions to query
older versions of data using query re-writing technique [GHU16], as an extension to the
original R43ples versioning system that utilizes named graph to handle RDF Graph
versioning [GHU14]. Another approach comes from Frommhold et al., which proposes
a method for capturing information from changes in arbitrary RDF datasets [FPA+16].
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Their approach emphasizes support for protection against version history manipulations
and blank nodes, which is mainly left unhandled in other approaches.

To ensure and compare the quality of the proposed versioning methods, the first benchmark
on querying RDF data archives is proposed [FUPK16]. In the paper, they explain the
theoretical foundations of the benchmark, as well as the prototypical implementation of
the benchmark, referred as BEAR (BEnchmark of RDF ARchives).

Research Gaps. The current approaches to deal with KCM from the SW community
are mostly focused on a single-ontology OBDI and therefore not sufficiently address
requirements for KCM in other OBDI variants, e.g., data transformation and change
propagation. Such supports are crucial to further the adoption of OBDI in MDEEs due
to its importance in many MDEEuse cases [WMM+11b, MB15], and therefore worthy of
further research.

2.5 Summary
The SWTs, especially the OBDI approach, with ontologies as key resources, has the
potential to capture knowledge across heterogeneous data sources and create semantic
interoperability between them to facilitate data integration [WVV+01], which is highly
suitable to address data integration requirements in MDEEs. However, given the com-
plexity of data integration scenarios in MDEEs, choosing the most appropriate OBDI
variant, as well as particular suitable technologies is challenging. Therefore, providing
an understanding on how suitable is the OBDI approach and its variants for the diverse
data integration scenarios is highly important, both for researchers and practitioners. We
regard such importance deserves further investigations in the context of our thesis. To
this end, Chapter 3 focuses on reviewing OBDI applications in the MDEEs from both
architectural (i.e., OBDI variants) and technical points of view. In the same chapter,
we introduce an additional variant of OBDI, called Global-as-View (GAV) OBDI and
propose a guideline to help users in selecting the most suitable OBDI variant for their
scenario. Furthermore, in Chapter 4, we tests the guideline created in Chapter 3 within
two concrete use cases from our industry partners.

Another challenge lies in providing a better support for ontology change, especially
on KCM on OBDI systems. The current approaches to deal with KCM from the SW
community are mostly focused on a single-ontology OBDI and therefore not sufficiently
address requirements for KCM in other variants of OBDI system, e.g., data transformation
and change propagation. Such supports are crucial to further the adoption of OBDI in
MDEEs and other similar environments, such as empirical research publication [BKR+14,
ESSB15a], and therefore worthy of further research. We dedicate Chapter 5 to provide
the definition of a generic framework for KCM in MDEE as an extension of OBDI.
We build on a set of requirements from MDEEs use cases to develop the framework.
Further, we develop an instance of the framework using SW technologies based on a use
case of hydro-power plant engineering from an industry partner to conduct a feasibility
evaluation.
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CHAPTER 3
Ontology-Based Data Integration
in Multi-Disciplinary Engineering

Environments: A Review

The lifecycle of modern production systems typically involves stakeholders from several
engineering disciplines to collaborate in a Multi-Disciplinary Engineering Environment
(MDEE), an environment where they work together to achieve a common goal [BGL17].
Processes in MDEEs have strong needs for data integration to overcome the inherent
semantic heterogeneity in the environments. Data integration is also a basis for advanced
capabilities to support the work of engineering teams, such as early defect detection
[KSS+14] and knowledge change management [ESSB16]. The Ontology-Based Data
Integration (OBDI) approach, i.e., the use of ontologies that capture implicit knowledge
accross heterogeneous data sources to achieve semantic interoperability [WVV+01], has
recently emerges as a potential solution. The OBDI has been utilized for several purposes
in MDEE use cases, e.g., engineering design quality improvements [SRFF11, HVKE16]
and simulation generation and evaluation [TU12, DVYP14].

However, given the complexity of data integration scenarios in MDEEs, choosing the
most appropriate OBDI variant, as well as particular suitable technologies is challenging.
Therefore, providing an understanding on how suitable is the OBDI approach and its
variants for the diverse data integration scenarios is highly important, both for researchers
and practitioners, as reflected in the first research question of this thesis (RQ1): How
suitable are the Ontology-Based Data Integration approach variants for the diverse data
integration scenarios in Multi-Disciplinary Engineering Environments?

To address RQ1, in this chapter we reports on the literature survey of OBDI approaches
in MDEEs, which has been published as a journal paper [ESS+17]. The review is
motivated by the increasing interest from both Automation System Engineering and
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Semantic Web (SW) communities to adopt OBDI to tackle the challenge of integrating
heterogeneous data in MDEEs. This interest has resulted in a growing body of literature
that is dispersed across both research communities and has not been systematically
reviewed so far. We address this gap with a survey reflecting on OBDI applications in the
context of MDEEs. To this end, we analyze and compare 23 OBDI applications reported
in 29 papers published in venues from both communities.

As the main results of our survey, we (i) propose an extension to the OBDI variant
classifications based on our observation of their applications in MDEEs, (ii) identify key
problem context characteristics, (iii) compare strengths and limitations of OBDI variants
as a function of problem context, and (iv) provide a recommendation guideline for the
selection of OBDI variants based on characteristics of MDEEs. These results provide a
basis to answer RQ1, which will be evaluated in the following Chapter 4.

This Chapter is structured as the following: Section 3.1 explains the survey methodology
to select and retrieve research publications following the Systematic Literature Review
(SLR) approach [KC07, ZRM+15]. Section 3.2 briefly introduces the OBDI applications
retrieved in the survey, which consist of 23 OBDI applications from 29 publications.
Section 3.3 describes the characteristics of data integration scenarios in MDEEs, grouped
by their objectives. Section 3.4 reports on the technical realizations of OBDI elements,
categorized in the following categories: Ontology Languages and Frameworks, Data
Acquisition methods, Semantic Mapping and Transformations, and Storage and Data
Access. Section 3.5 reports on our analysis of the OBDI variant adoptions against the
data integration characteristics of MDEEs. In this section, we also describe an additional
OBDI variant beyond the three variants already described in Section 2.3 as a result of our
analysis. Section 3.6 presents our guideline for selecting the most suitable OBDI variant
based on use case characteristics, and finally we summarize the chapter in Section 3.7.

3.1 Paper Selection Methodology

To understand the current landscape of OBDI applications in MDEEs, we identified rele-
vant research articles from SW and Automation System Engineering (ASE) communities
through the SLR method [KC07, ZRM+15] covering the following steps (see Figure 3.1):

1. Keyword-based search on article title published at selected conferences in the
SW and ASE research communities. Different sets of keywords were used for the
two target communities, which resulted in a large number of research papers for
further processing.

2. Definition and application of the inclusion/exclusion criteria. Taking into
account the inclusion and exclusion criteria, we analyzed the paper titles, abstracts,
and content. Based on this analysis, we reduced the number of selected papers to
include only the most relevant papers.
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Figure 3.1: Number of articles and OBDI applications retrieved during literature search

3. Retrieval of further potential articles from citations and references of selected
papers. To avoid missing important papers, we also took a look on paper references
and papers that cite the selected papers.

4. Identification of the final set of OBDI applications from selected papers to
be further analyzed. Some of the papers reported different applications of the same
or similar methods. In this step, we group these applications as one.

We will explain each of the SLR steps of the survey in Section 3.1.1 - 3.1.3.

3.1.1 Step 1: Keywords-based search

In our survey, we limit our keyword search to research articles published in five main
conferences of the SW community (ISWC, ESWC, i-Semantics/SEMANTiCS, i-KNOW,
and EKAW) and three main conferences of the ASE community (ETFA, IFAC, and
INDIN). We executed the keyword search on all selected conferences between 2010 – 2016
using the Scopus search engine, with the exception of the 2016 edition of i-KNOW (not
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indexed by Scopus – skipped) and ISWC (metadata did not mention ISWC – manual
search). The keyword search yielded more than 350 papers (Figure 3.1, Step 1).

We use a separate set of keywords for SW and ASE conferences. Both sets of keywords
omit the “data integration” term, as this keyword typically does not appear in the title.
For SW conferences, we assume that ontology-related keywords are unnecessary, as it is
implied with the article submissions to conferences in this research area. Therefore, we
focus on keywords related to the domain, e.g., engineering or production (cf. Listing 3.1).
In contrast, for conferences in the ASE domain, we focus our search on ontology-related
keywords with supplementary terms that specify our focus on the domain, which are
“production system” or “production plant” (cf. Listing 3.2).

Listing 3.1: Keywords for SW conferences
automation OR eng ine e r i ng OR product ∗ OR system OR
product ion OR manufactur∗ OR energy OR plant .

Listing 3.2: Keywords for ASE conferences
onto log ∗ OR semantic OR knowledge∗base OR
" l i nked data " OR " product ion system " OR " product ion p lant "

3.1.2 Step 2: The Definition and Execution of Inclusion and
Exclusion Criteria

We set the following inclusion and exclusion criteria to remove irrelevant papers from the
list of papers identified with the keyword-based search in the previous step.

Inclusion Criteria:

• IC1. Paper contains scenarios or use cases of data integration using ontologies in
the automation system engineering domain. We consider ASE applications that
are using ontologies for integration purposes.

• IC2. Ontology languages or frameworks used for data integration are explicitly
mentioned and explained. We consider ASE applications that explicitly mentioned
the ontology languages or frameworks that is used within their proposed method.

Exclusion Criteria:

• EC1. The reported approach involves only a single data source. We only con-
sider ASE applications that integrate data from several data sources to exclude
applications that use ontologies only for analysis purposes.

30



3.2. Survey Results

• EC2. Non-OBDA relational database or purely Eclipse Modelling Framework
(EMF)-based approaches. We consider EMF-based approach as a different method
for data integration and therefore did not include them as targets of this survey.

Step 2a: Inclusion/Exclusion. We applied the inclusion and exclusion criteria first on
the paper titles, which resulted in a set of 88 papers (Figure 3.1, Step 2a).

Step 2b: Abstract Analysis. In the next step, we applied the criteria to the abstracts of
the remaining 88 papers, reduced the overall set of papers to 28 papers (Figure 3.1, Step
2b).

Step 2c: Content analysis. There were cases where the abstract did not clearly justify
an article’s inclusion or exclusion. In these cases, we analyzed the content of the paper
to take the final decision (Figure 3.1, Step 2c). As a result, we shortlisted 19 papers.

3.1.3 Step 3 & 4: Retrieval of further potential articles and
Identifying the final set of OBDI applications

The keyword-based search only covered a limited number of publications on the topic.
To extend our set of considered papers, we conducted an additional search based on
references and papers that were cited by the 19 papers from the shortlist we obtained in
the previous step. As a result of the third step, we added ten additional papers (Figure
3.1, Step 3) and resulting in a set of 29 papers.

After further reading, we realized that several of these 29 papers covered the same
approaches or extensions thereof. Therefore, as a last step, we grouped these papers
accordingly and arrived at the final 23 OBDI applications (Figure 3.1, Step 4). These are
listed in Table 3.1, which summarizes a set of OBDI applications in MDEEs classified
along the life cycle of production systems as the result of our survey.

Eleven applications focus on the design phases (planning and design) for purposes such
as design validation, quality improvement, simulation generation and evaluation (Section
3.2.1). Six applications focus on the run-time phases (startup, production, and service)
for system monitoring, diagnostic, evaluation and transient data integration (Section
3.2.2). The remaining six applications address both design and runtime phases to support
tasks such as integrated data analysis (Section 3.2.3).

3.2 Survey Results
In this section, we provide a brief introduction of selected OBDI applications in MDEEs
retrieved for our survey. We classify the OBDI applications along production system
lifecycle stages [BÖF+10] as shown in Table 3.1 and briefly explain in the following:

• Planning of assembly and production processes. In this phase, plant planners
decide on manufacturing processes and resources necessary for building a plant.
This phase can also be considered as the pre-project phase.
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• Production plant design. In this phase, engineers work within their respective
domains to build the design of a production system. The phase includes exchange
of design data among involved engineering disciplines.

• Virtual and actual start-up. The virtual start-up validates the production plant
design by systematically iterating through planned and potential plant operation
scenarios. The actual start-up of a plant involves plant adjustments on the shop
floor after the plant assembly process.

• Production and service. Monitoring and improvement of the production plant,
manufacturing execution, predictive maintenance, and plant re-configuration are
examples of tasks in this phase.

3.2.1 OBDI in the Design Phases

Dibowski and Kabitzsch [DK11] propose an Ontology-based Device Description ap-
proach, which aims to provide a formal, unified, and extensible production system device
specifications using SW technologies. This approach uses several layers of ontologies,
where the top level contains generic domain vocabularies that will be reused and extended
in lower layers. Their approach implements a hybrid OBDI, where the top-level ontology
is comparable to the shared vocabularies.

Imran and Young [IY16] demonstrate the potential of formal reference ontologies to
support interoperability with a study case of manufacturing bill of materials. They use a
Common Logic-based Knowledge Frame Language framework to define concepts within
assembly systems in a multi-layered ontology approach. Their approach implements a
GAV OBDI with a foundation ontology as shared vocabularies.

Lin and Harding [LH07] propose using ontologies to support collaboration of engineers
involved in a manufacturing system engineering process. The proposal implements a
Global-as View (GAV) OBDI (see Section 5.1), where the involved organizations develop
their independent local ontologies and then map these to the global ontology. These
mappings serve as a semantic bridge to exchange and integrate the data across these
organizations.

Wiesner et al. [WMM11a] build on their previous work of the OntoCAPE ontology
[MWM09] to develop an information integration approach in chemical process engineering,
which is called the Comprehensive Information Base (CIB). CIB adopts the hybrid OBDI
where they derive the shared vocabulary from OntoCAPE and develop source (local)
ontologies for several local data sources based on the global ontology. They use a two-layer
local ontology approach: (i) Import ontologies, which are derived directly from data
sources (e.g., XML files) using (semi)-automatic data transformation, which are later
transformed into (ii) Document ontologies that are conformed to the shared vocabularies.
They use F-Logic instead of the standard RDF/OWL languages to represent all facts,
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Table 3.1: An overview of OBDI approaches in MDEEs classified according to relevant
production plant life cycle phases (no shadow) and OBDI variants (gray shadow)
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Aarnio et al. [ASF14] X X
Abele et al. [ALGM13, AGZK14] X X

Brecher et al. [BÖF+10] X X X X X
Dibowski & Kabitzsch [DK11] X X

Dubinin et al. [DVYP14] X X
Ekaputra et al. [ESSB16] X X
Feldman et al. [FHK+15] X X X

Graube et al. (2013) [GZUH13] X X X X
Graube et al. (2016) [GUH16] X X

Hennig et al. [HVKE16] X X
Imran and Young [IY16] X X
Kovalenko et al. [KSS+14] X X

Lee & Kim [LK07] X X
Lin & Harding [LH07] X X

Natarajan et al. [NS14a] X X
Novak and Sindelar [NS13] X X X

ONTO-PDM [PDT12, GAP+12] X X
Optique [KJRZ+13, KSÖ+14, SHL+14] X X X

Sabou et al. [SEKB16] X X
Softic et al. [SRD+13] X X
Strube et al. [SRFF11] X X

VFF [TU14, KTS13, TTU15] X X X X
Wiesner et al. [WMM11a] X X

rules, and queries. The authors argue that F-Logic is more suitable for defining rules for
integration and mapping purposes as well as for the formulation of expressive queries.

Strube et al. [SRFF11] propose an approach to combine the CAEX data format [IEC08]
and SW technologies to support re-developments/modernization of plant automation. The
approach involves integrating several CAEX instance files containing plant designs and
their proposed changes, together with a set of rule definitions to validate plant changes.
These data are integrated using a single-ontology OBDI that is using an adaptation of
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the CAEX data model as a global ontology. They define a set of SWRL [HPsB+04] rules
for validating the proposed changes in the modernization process of plant automation.

Softic et al. [SRD+13] semantically integrate data from several data sources to track
engineering tasks in an automotive product lifecycle within a single-ontology OBDI. Their
architecture consists of three layers: (1) Data layer, where their approach acquires data
from local data sources, (2) Entities layer, where they store and link data, and (3) View
layer, where users interact with the integrated data. Two different views of data are
defined in the view layer: (a) project managers’ view and (b) engineers’ view, which allow
the system to provide different focus on the integrated data.

Dubinin et al. [DVYP14] introduce an approach based on GAV OBDI for integrating
information across data sources in the automation domain. Rather than the typical
local ontologies development based on a shared global ontology, they develop the global
ontology independent of the local ontologies. To transform local ontology data into
instances of the global ontology, they introduce the eSWRL transformation language as
an extension of SWRL [HPsB+04] for RDF-to-RDF transformation.

Kovalenko et al. [KSS+14] focus on the use of SW technologies to detect defects
early in the power plant engineering process. To this end, they adopt the multiple-
ontology OBDI to integrate heterogeneous data from several engineering disciplines.
They cooperate with domain experts to define links between data from several involved
disciplines, i.e., mechanical engineering, electrical engineering, and project management.
Furthermore, they develop a set of SPARQL queries to detect defects and validate power
plant engineering data.

Ekaputra et al. [ESSB16] primarily focus on using SW technologies to support data
change management within MDEE, where data changes in one engineering discipline
need to be validated and propagated to other disciplines. To this end, they adopt a GAV
OBDI to represent the heterogeneous data as local and global ontologies. Similar to
Dubinin et al. [DVYP14], they develop both local and global ontologies independently
from each other, and they use SPARQL queries to transform, validate and propagate
changes between several local ontologies via the global ontology.

Hennig et al. [HVKE16] propose a SW-based approach to improve the semantic validity
and the analysis capability of the multi-disciplinary engineering/system engineering of
space systems. To this end, they integrate data from various engineering disciplines
within the space system engineering (e.g., mechanical, electrical, instruments, control
and software engineering) using the ECSS-E-TM-10-23A data exchange standard as a
common (global) data model in a single-ontology OBDI. They focus on the inferencing
capability of OWL2 to provide advanced analysis in their scenario.

Sabou et al. [SEKB16] develop the AutomationML Analyzer tool to support engineering
of Cyber-Physical Production Systemss (CPPSs) according to the single-ontology OBDI,
where they use an ontology form of the AutomationML data exchange format as the
global ontology for integrating and analyzing AutomationML data from engineering
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disciplines. The combined data serves as a baseline to provide advanced capabilities to
engineers, e.g., analysis and visualization of CPPS engineering design.

3.2.2 OBDI in the Runtime Phases

Aarnio et al. [ASF14] propose an adaptation of a hybrid OBDI to support condition-
based monitoring in automation systems. They conduct a four-steps transformation
process from local data to RDF: (1) Automatic transformation of source data from local
source formats to temporary RDF data, (2) Transformation of temporary RDF data into
instances of local ontologies, where the local ontologies conform to shared vocabularies,
(3) Use of the SILK [64] tool to link between data from local ontologies, (4) Development
and execution of rulesets on top of local ontologies to infer new information.

The two-level local ontology approach is similar to the approach in Wiesner et al.
[WMM11a], with the difference that they are using the standard RDF/OWL language
to represent both local and global ontologies with the help of SILK. They evaluate their
approach with a set of SPARQL queries targeting both local and global ontologies.

Abele et al. [AGZK14] suggest utilizing SW technologies to support monitoring and
diagnostic systems (MDS) in industrial applications. This approach builds on their
previous work on the single-ontology OBDI that utilizes the Semantic Media Wiki
infrastructure, rule ontology and Drools engine [AG13]. To this end, they integrate both
static plant artifacts data from the design-time engineering and plant component states
from run-time engineering to provide users with relevant MDS information.

Graube et al. [GUH16] propose a “mixed” solution based on a single-ontology OBDI
to integrating static data (e.g., RDF data) and transient data (i.e., sensor data that is
coming from web services) based on the URI dereferencing feature of SPARQL 1.1. An
evaluation of the proposed solution offers sufficient performance to access transient data
as an alternative to the currently available solutions (e.g., SSN, SensorML, and Linked
Sensor Middleware).

Lee and Kim propose a framework for engineering collaboration for distributed product
development [LK07]. They use SW technologies to integrate and facilitate the exchange
of context information from several data sources (e.g., Bluetooth, PDA, Etc.). To this
end, the framework deploys a single-ontology OBDI to model engineering contexts (e.g.,
locations of users and roles) and uses it to determine relevant services for stakeholders
based on context data derived through inference.

Natarajan et al. [NGS12] propose an extension of the OntoCAPE ontology [MWM09],
which is called OntoSAFE, to provide an application-oriented ontology focused on process
supervision in large chemical plants. Later on, they utilize OntoSAFE as a basis for
integrating and exchanging complex plant supervision data using the single-ontology
OBDI [NS14a].

Kharlamov et al. [KJRZ+13] explain the underlying OBDI approach (OPTIQUE)
that can be used in MDEE to facilitate data integration using a multiple-ontology OBDI
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and OBDA. Two example applications in MDEE based on this approach are: Kharlamov
[KSÖ+14] and Solomakhina [SHL+14]. Kharlamov et al. [KSÖ+14] propose an OBDA
approach to improve access to large, heterogeneous and stream data at a large organization.
To support the proposed OBDA approach, they develop a query repository to store both
predictive and reactive analysis queries. They evaluate their approach in a large-scale
scenario that involves a combination of static data and dynamic data from sensors (>
30GB of new data produced every day). Solomakhina et al. [SHL+14] propose an
ontology-based approach to improve the precision and recall of statistical data analysis
in the domain of production systems. They integrate data from three different local
ontologies that represent power generation facilities (i.e., Turbine, Sensor, and Diagnostics
ontologies) with different OWL2 dialects (OWL2-QL and OWL2-DL). They show that
their integration methods, which combine explicit domain models with SW technologies
and statistical analysis, yield a better result compared to a pure statistical analysis.

Panetto et al. [PDT12] develop an approach to support product data interoper-
ability between applications and stakeholders involved within manufacturing process
environments. Their approach implements a single-ontology OBDI, with their proposed
ONTO-PDM ontology based on two industry standards (i.e., ISO 10303 [ISO14] and
IEC 62264 [IEC03]) as a common data model and mediator between applications during
manufacturing process lifecycle. They implement the ontology in both OWL and rela-
tional database, and use First Order Logic (FOL) patterns to map between data coming
from the two industry standards within the ONTO-PDM ontology. Giovannini et al.
[GAP+12] extend ONTO-PDM with concepts and rules on sustainability principles and
technology knowledge. In addition, the authors propose a knowledge base system that
use formalized knowledge for supporting product design and process planning. The
approach uses SWRL rules to infer additional information and conduct analysis related
to sustainability of products.

3.2.3 OBDI in the Production System Lifecycle

Brecher et al. [BÖF+10] aim for software tool integration in production plant lifecycles
with SW technologies. Their approach implements the single-ontology OBDI. They
develop an information model as a common ontology for production plant lifecycles and
connect a set of software tools via data interpreter and generic interfaces. They use the
Globally Unique Identifiers or unique names to identify the same objects in different data
sources. The integrated data is used to navigate through production plant lifecycles,
including the planning phase of the production process and the assembly process.

Feldmann et al. [FHK+15] introduce an inconsistency management approach based on
SW technologies. The approach integrates two types of data: SysML4Mechatronics data
that represent the mechatronics architecture and Matlab/Simulink data representing
workpieces throughput of the plant in a system that implements a multiple-ontology
OBDI. In this approach, relations between the two ontologies are defined manually by
domain experts. They develop a set of SPARQL queries to detect inconsistencies in the
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integrated data and successfully retrieve inconsistency of the data as intended in their
evaluation.

Graube et al. [GZUH13] suggest using linked data to allow orchestration of software
applications in the production system environment. Their approach implements a multiple-
ontology OBDI, where they represent various data sources (e.g., device details, plant
structure, report-and-form information, and live data access) as separate local ontologies,
and store the information about and the relation among these ontologies in a separate
ONT ontology. These ontologies are then orchestrated to build various applications (e.g.,
Task-List applications and Neighborhood-Browser for data flow explorations) related to
production systems.

Novak and Sindelar [NS13] proposes a single-ontology OBDI to support simulation
design and integration of simulation models in industrial automation. The authors
develop the automation ontology that serves as the global ontology of the approach that
is wrapped in a java-based tool. The tool receives input data from engineers (plant
designs) as well as knowledge about devices in the particular industrial plant and available
simulation libraries. As outputs, it produces executable simulation configuration files for
simulators based on SPARQL query result on automation ontology instances.

Kádár et al. [KTS13] propose the Virtual Factory Framework (VFF), an integrated
collaborative environment to support the design and management of factory entities.
VFF initiate a global ontology (Virtual Factory Data Model - VFDM) for integrating
and representing factory objects related to production systems, resources, processes, and
products, resembling the single-ontology OBDI. A Virtual Factory Manager builds on top
of the VFDM to manage and provide access to the VFDM data from various connected
tools. These tools act both as data providers as well as data users. Terkaj and Urgo
[TU14] focus on integrating static data of production systems and their performance
history, build on their previously explained VFF. The method allows evaluation of
a system design by simulating its performance based on system and simulation logs.
Terkaj et al. [TTU15] extends VFF to evaluate the impact of planning and maintenance
decisions during the operation phase of a manufacturing system. They report on an
application case of roll-shop system designs, where they develop a graphical user interface
and combine it with a Discreet Event Simulation tool to evaluate the performance of
roll-shop system configurations.

3.3 Characteristics of Data Integration Scenarios

As discussed in Section 2.1, MDEEs are characterized by the involvement of engineers
from various engineering disciplines. This collaboration results in the need for integrating
heterogeneous data sources produced by domain-specific software tools. We discuss
characteristics of data integration scenarios in MDEE that we identified and generalized in
our survey to address the following question: What key characteristics of data integration
scenarios in MDEE affect the choice of an adequate OBDI variant?
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Identifying these characteristics is also the first step to establish criteria that practitioners
can use to choose appropriate OBDI variants for their settings.

3.3.1 Data Integration Objectives

There is a wide range of objectives for data integration in Multi-Disciplinary Engineering
(MDE) settings. In this chapter, we do not directly derive recommendations for OBDI
variant selection based on these objectives, but focus on the relationships between setting
characteristics – explained in Section 3.3.2 and 3.3.3 – and OBDI variants. The data
integration objectives we compiled from the papers are as follows (summarized in Table
3.2):

Objectives related to data:

• Data Change Management refers to the process of managing local data changes
and their effects on the overall system [ESSB16]. For this particular scenario, data
integration serves as a foundation to enable data change management.

• Transient Data Integration, such as stream data integration, aims to integrate
transient data sources with combination with non-transient data [GUH16, KSÖ+14].

• Centralized Engineering Repository data integration scenarios aim to provide
a centralized engineering repository (e.g., [HVKE16, TU14, LH07]).

• Integrated Data Analysis refers to typical OBDI approaches that aim to enable
data analysis on top of integrated OBDI data (e.g., [BÖF+10, ASF14, SEKB16]).

Objectives related to the overall system:

• Design Quality Improvement aims at improving the quality of system design
in MDEE, e.g., with inconsistency management [FHK+15] or defect detections
[KSS+14, SRFF11, HVKE16] over a global view of data sources.

• Design Validation aims to validate system designs against a set of validation
criteria based on integrated data [SRFF11, HVKE16, TU14, KTS13].

• Simulation Generation and Evaluation aim to generate [TU14, DVYP14] and
evaluate [TU14] system simulation in MDEE.

• System Monitoring, Diagnostic and Evaluation aim for system monitoring
[ASF14, AGZK14, NS14a], diagnostic [AGZK14] and evaluation [KTS13] in MDEE.

Objectives related to collaborations:

• Team Collaboration. This goal refers to the use of integrated data for supporting
team collaborations [ESSB16, LH07, WMM11a, SRD+13].
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Table 3.2: Data Integration Objectives for OBDI in MDEE (No shading: data-related
objectives; light shading: overall-system objectives; dark shading: collaboration objectives)
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Aarnio et al. [ASF14] X X
Abele et al. [ALGM13, AGZK14] X

Brecher et al. [BÖF+10] X X
Dibowski & Kabitzsch [DK11] X X

Dubinin et al. [DVYP14] X
Ekaputra et al. [ESSB16] X X X
Feldman et al. [FHK+15] X X

Graube et al. (2013) [GZUH13] X
Graube et al. (2016) [GUH16] X X

Hennig et al. [HVKE16] X X X
Imran and Young [IY16] X
Kovalenko et al. [KSS+14] X X

Lee & Kim [LK07] X
Lin & Harding [LH07] X X

Natarajan et al. [NS14a] X X
Novak and Sindelar [NS13] X

ONTO-PDM [PDT12, GAP+12] X X
Optique [KJRZ+13, KSÖ+14, SHL+14] X X X

Sabou et al. [SEKB16] X X
Softic et al. [SRD+13] X
Strube et al. [SRFF11] X X

VFF [TU14, KTS13, TTU15] X X X X X
Wiesner et al. [WMM11a] X X

• Software Interoperability. This goal aims to provide a “common language” for
software partners to interact with each other (e.g., for app orchestration [GZUH13],
intelligent service finder [LK07], or data exchange [KTS13]).

3.3.2 Data Sources

In this section, we explain data-source related characteristics of OBDI scenarios in
MDEEs.

39



3. Ontology-Based Data Integration in Multi-Disciplinary Engineering
Environments: A Review

Table 3.3: Data source types for OBDI in MDEE

Data source types
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Aarnio et al. [ASF14] X X X
Abele et al. [ALGM13, AGZK14] X

Brecher et al. [BÖF+10] X
Dibowski & Kabitzsch [DK11] X

Dubinin et al. [DVYP14] X
Ekaputra et al. [ESSB16] X
Feldman et al. [FHK+15] X X

Graube et al. (2013) [GZUH13] X X
Graube et al. (2016) [GUH16] X

Hennig et al. [HVKE16] X
Imran and Young [IY16] X
Kovalenko et al. [KSS+14] X X

Lee & Kim [LK07] X
Lin & Harding [LH07] X

Natarajan et al. [NS14a] X
Novak and Sindelar [NS13] X X

ONTO-PDM [PDT12, GAP+12] X
Optique [KJRZ+13, KSÖ+14, SHL+14] X X

Sabou et al. [SEKB16] X
Softic et al. [SRD+13] X
Strube et al. [SRFF11] X

VFF [TU14, KTS13, TTU15] X X
Wiesner et al. [WMM11a] X

Data types. The primary focus of a multi-disciplinary engineering process is on the
structured data. Spreadsheets, XML-based data formats, RDF, streaming/sensor data,
and relational databases are the most common data types in the MDEE as shown in Table
3.3. Several scenarios also report the use of specific data formats, e.g., AutomationML for
data exchange, SysML for plant design, and ECSS-E-TM-10-23A for space engineering.

Number of data sources. Due to our focus on OBDI approaches in research commu-
nities, data integration scenarios typically report on the integration of a small number
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(i.e., less than ten) of data sources.

Size of data. There is a large variety in the size of data, ranging from cases with the
least amount of tens of data points [ESSB16] up to those that can handle more than 30
GB of sensor data daily [KSÖ+14].

Data source dynamics. The addition and removal of data sources can be crucial for
engineering scenarios. Several engineering scenarios consider this data source dynamics
[WMM11a, ASF14], while others do not.

Data access. Most scenarios need access to the integrated data as a whole. Some
scenarios, however, report on the requirement to access both local and global (parts of
integrated) data for various reasons, e.g., to compare local data from different sources
[FHK+15, WMM11a, ASF14] or to enable data change propagation [ESSB16].

3.3.3 Semantic Heterogeneity

Semantic heterogeneity reflects differences between two or more data sources. The
heterogeneity in data integration systems varies between individual cases in MDEEs. As
an example, the semantic heterogeneity is small in data integration cases where engineers
develop most of their local data sources according to a data standard (e.g., AutomationML
[SEKB16], CAEX [SRFF11], OPC-UA [GUH16] and ECSS-E-TM-10-23A [HVKE16]).

However, there are cases where local data source structures are created independently
without prior agreement or standard as a basis (e.g., hydropower plant UC [KSS+14,
ESSB16]). In these cases, we cannot assume any prior agreement among data owners
and must rely on mapping definitions of source structures (or between data sources and
common data structure, depending on the chosen data integration approach) to enable
interoperability. In these cases, the semantic heterogeneity is in general considerably
higher.

Mapping complexity reflecting the complexity of relations among involved data sources
varies across scenarios. This characteristic is important due to the differences of OBDI
variant capabilities to represent mappings.

3.4 Technical Realization of Ontology-Based Data
Integration Elements

This section explains technical realization options for OBDI elements from our survey.
We focus our investigation to the main OBDI elements shown in Figure 3.2, including:
(1) Ontology Language and Framework, the ontology languages and subsequent
frameworks used to represent knowledge in the OBDI application; (2) Data Acquisi-
tion, concerning the methods for acquiring data from non-ontology data sources to the
OBDI system; (3) Mapping and Transformation, focusing on methods and tools for
mapping and aligning data from heterogeneous data sources within OBDI application;
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Figure 3.2: OBDI solution elements (blue texts)

and (4) Storage and OBDI data access, which deals with the storage solutions of
ontology data in the OBDI solution and how software applications access such data.

We report on the results of our survey for each of these elements in Sections 3.4.1 - 3.4.4.

3.4.1 Ontology Language and Framework

In recent years, the Resource Description Framework (RDF) for expressing information
about resources [HS13], together with RDF Schema as a data modeling vocabulary
[GB14], and Web Ontology Language (OWL) as an ontology language [W3C12] emerged
as the de facto standard for representing ontologies on the Semantic Web (SW). Most
SW-based OBDI applications use these three standards. Abele et al. [AGZK14] propose
an alternative approach on top of the RDF-based Semantic Media Wiki. Several of these
approaches use standard and custom RDF vocabularies, e.g., SSN and DUL to represent
sensor data [SHL+14], IEC-61499 ontology [DVYP14], SysML and Matlab/Simulink
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ontologies [FHK+15].

Only a few of the surveyed approaches do not use W3C standard-based ontology languages
and frameworks. Wiesner et al. [WMM11a] rely on F-Logic [KL89] to represent all facts,
rules, and queries. They argue that even though the combination of OWL and the rule
language SWRL [HPsB+04] can in principle provide the same level of expressiveness
as F-Logic, it has drawbacks, e.g., the lack of negations. F-Logic could define rules for
integration and mapping purposes as well as formulations of expressive queries. Imran
and Young [IY16] use similar arguments for their selection of Common Logic-based
Knowledge Frame Language (KFL) and emphasize that KFL is more expressive and has
more powerful reasoning capabilities compared to OWL. Lee and Kim [LK07] use XML
Topic Maps, which were proposed as an alternative to RDF at the time of their research.
Because W3C standards are the dominant approach, the following sections will focus on
the RDF(S) and OWL.

3.4.2 Data Acquisition

OBDI approaches in the engineering domain typically integrate structured data in various
formats. Most approaches in our survey integrate relational databases [TU14, ASF14,
GZUH13, KSÖ+14, SHL+14, KTS13], spreadsheets [ESSB16, ASF14], XML [KSS+14,
SRFF11, WMM11a, SRD+13, SEKB16], and RDF graph data [KSS+14, FHK+15,
DVYP14, LH07, ASF14]. Several OBDI approaches also integrate specific or legacy data
formats, e.g., SysML [FHK+15], CAEX [SRFF11], web services and ECAD [BÖF+10],
and ECSS-E-TM-10-23A [HVKE16].

Several approaches are possible to integrate non-ontology data into an ontology graph.
The Extract, Transform, and Load (ETL) mechanism is one of the most used, where OBDI
approaches develop custom applications to convert data (e.g., [TU14, DK10, KTS13]).

The Extract, Load, and Transform (ELT) mechanism represents another method,
which may involve automatic conversion to an ontology graph (e.g., [KSS+14, ESSB16,
WMM11a, ASF14]). This mechanism first transforms data source instances to an ar-
bitrary ontology graph and then transforms the resulting graph into a target ontology
representation. In comparison to ETL, ELT transforms data within a single ontology
language.

The Ontology-Based Data Access (OBDA) method allows users to access virtual RDF
graphs of non-RDF data source instances, mainly from relational databases (e.g.,
[KSÖ+14, SHL+14] use Ontop [CCKE+16]). RML Mapping Language [DSC+14] fa-
cilitates OBDA for other data sources (e.g., XML, JSON, and CSV). However, we have
not found an RML application in approaches within our survey.

Graube et al. [GUH16] propose a method to acquire transient data (e.g., web services
that contain sensor data) as part of their OBDI implementation. They adapt the URI
dereferencing functionality of SPARQL 1.1 Service Description [Wil13] to retrieve web
services data during SPARQL query executions. Due to the preliminary nature and the
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small amount of data involved, Hennig et al. [HVKE16], Dibowski and Kabitzsch [DK10],
and ONTO-PDM [PDT12, GAP+12] used manual data acquisition/transformation of
source data to RDF.

3.4.3 Semantic Mapping and Transformation

We observe that most OBDI approaches in our survey rely on either a single or one
from the following combinations of methods for mapping definitions: RDF property
mapping, Globally Unique Identifier (GUID) matching, a combination of both RDF
property mapping and GUID matching, or property value matching.

• RDF property mapping relies on a set of RDF properties to link classes, prop-
erties and instances of different ontologies, e.g., owl:sameAs, rdfs:subClassOf,
rdfs:subPropertyOf, owl:equivalentClass and custom RDF properties (e.g., [KSS+14,
FHK+15, KSÖ+14]).

• URI/GUID matching links instances of ontologies with identical URIs (e.g., [BÖF+10,
GUH16, ASF14]). The approach rests on the assumption that individuals will be
assigned a unique identifier across different local ontologies in the acquisition
process.

• Property value matching is another method used for instances mapping, where two
or more objects in different ontologies are considered the same if certain property
values of these instances are the same [DVYP14, PDT12, GAP+12].

To define these mappings and create the actual relations, OBDI applications employ
RDF to RDF transformation methods and tools, such as SILK [VBGK09] (e.g., [ASF14]),
SPARQL construct queries (e.g., [ESSB16]) and arbitrary transformation code based
on RDF APIs (e.g., [50]). Within these tools, algorithms for finding links among these
ontologies are deployed, e.g., string matching or custom user-defined rules.

An alternative to the transformation methods and tools are reasoners and rule engines. We
found a number of them in our survey, e.g., Wiesner et al. [WMM11a] use the OntoBroker
[AKL09] rule engine to define rules for mapping, Natarajan et al. [NS14a] use the Hermit
reasoner to improve the querying process, and ONTO-PDM [PDT12, GAP+12] use first
order logic (FOL) to define instance relations based on property values. Hennig et al.
[HVKE16] use Pellet and Strube et al. [SRFF11] use SWRL with Jess to derive implicit
knowledge.

3.4.4 Storage and Data Access

In our survey, we identify three RDF-based storage options: RDF triplestore, in-memory
store and relational databases. Wiesner et al. use the OntoBroker storage system for
their F-Logic based ontologies.
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Aarnio et al. [ASF14] X X X X X X X X X
Abele et al. [ALGM13, AGZK14] X X X X X - X X X X

Brecher et al. [BÖF+10] X X X - X X - X
Dibowski & Kabitzsch [DK11] X X X X X X X X

Dubinin et al. [DVYP14] X X X - X X X -
Ekaputra et al. [ESSB16] X X X X X X X X
Feldman et al. [FHK+15] X X X X X X X X

Graube et al. (2013) [GZUH13] X X X X X X X X
Graube et al. (2016) [GUH16] X X X X X X X X X

Hennig et al. [HVKE16] X X X X X X X X -
Imran and Young [IY16] X X X - X X X
Kovalenko et al. [KSS+14] X X X X X X X X

Lee & Kim [LK07] X X X - X - X
Lin & Harding [LH07] X X X - X X X -

Natarajan et al. [NS14a] X X X - - X - X
Novak and Sindelar [NS13] X X X X X X X

ONTO-PDM [PDT12, GAP+12] X X X X X X X X
Optique [KJRZ+13, KSÖ+14, SHL+14] X X X X X - X X X

Sabou et al. [SEKB16] X X X X X X X X
Softic et al. [SRD+13] X X X X - - X X
Strube et al. [SRFF11] X X X X X X - X

VFF [TU14, KTS13, TTU15] X X X X - X X X X
Wiesner et al. [WMM11a] X X X X X X X

Table 3.4: Technology options for OBDI elements and their adoptions in MDEE (“X” indicates adoption; “-” indicate that no
clear information available in the paper)
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• RDF triple stores (e.g., Virtuoso, Jena TDB, StarDog or RDF4J) allow users to
store large RDF data as triples (e.g., [DK10, PDT12, GAP+12] - Cf. [MDT+17]
for a comparison of selected RDF store solutions in MDEE.

• The in-memory store [LH07, IY16, NS13] is often used for smaller-scale data, e.g.,
for prototypes or proof-of-concepts.

• The use of relational databases via an OBDA layer are also common [KSÖ+14,
SHL+14]. Despite efforts from the SW community, the capabilities of RDF triple-
stores are still lacking behind relational databases. Relational databases with an
OBDA layer are often used in scenarios that need to cope with large amounts of
data.

The three most widely used mechanisms to access OBDI data from software applica-
tions are SPARQL endpoints (e.g., [ASF14, GZUH13, SEKB16]), API-based services
(e.g., [IY16, NS13, SRFF11]), and custom-build GUIs (e.g., [SRD+13, NS14a, TTU15]).
Furthermore, extensions of SPARQL endpoints are being developed to allow access to
streaming data [GUH16].

Table 3.4 summarizes technology options used as part of OBDI approaches on papers
within our survey.

3.5 Analysis of Ontology-Based Data Integration Variant
Adoptions

In this section, we evaluate each OBDI variant (i.e., single-ontology, multiple-ontology,
hybrid and GAV OBDI) against a set of MDEE scenario characteristics observed in
Section 3.3 (i.e., semantic heterogeneity, data access, mapping complexity, and data
source dynamic). Furthermore, we consider the ontology implementation effort as an
additional criterion.

3.5.1 Single-ontology OBDI

Single-ontology OBDI is common in MDEE – more than half of the papers surveyed
belong to this category.

Semantic heterogeneity. Single-ontology OBDI is convenient when data sources are
semantically close (e.g., [TU14, SRD+13, BÖF+10, AGZK14]) or when they can be
aligned according to a common data standard (e.g., AutomationML [SEKB16], CAEX
[SRFF11], OPC-UA [GUH16] and ECSS-E-TM-10-23A [HVKE16]).

Data access. Software applications built on top of a single-ontology OBDI infrastructure
can only access the global ontology, i.e., they cannot access data that are not captured
in the global ontology.
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Mapping complexity. Because only a single (global) ontology is used, single-ontology
OBDI typically does not require any mapping definitions. In some cases, where semi-
automatic global ontology acquisition is possible (e.g., [59]), mappings are needed to
transform intermediate ontology instances (i.e., the automatically generated local ontolo-
gies from data sources) according to the global ontology.

Data source dynamics. Changes to the global ontology are costly, also because they
may affect transformation mechanisms from local ontologies. Therefore, the single-OBDI
approach is more suitable for scenarios with infrequent data source additions or if addition
of a data source does not affect the global ontology.

Ontology implementation effort. Single-ontology OBDI requires only the develop-
ment of a global ontology, but no additional inter-ontology mappings.

3.5.2 Multiple-ontology OBDI

Semantic heterogeneity. Each data source is described independently using a local
ontology, without an implicit assumption that these local ontologies share vocabular-
ies. Therefore, multiple-ontology OBDI is suitable in scenarios with high semantic
heterogeneity.

Data access. Each local ontology can be accessed independently, an aggregation
of local ontologies can be made accessible using named graphs [KSS+14, FHK+15]
or an aggregated ontology [KSS+14, KSÖ+14, SHL+14] can be used. In principle,
the aggregated local ontology could also be accessed via SPARQL Federated Queries
[SPFW13], although we did not encounter an implementation of it in the survey.

Mapping complexity. Multiple-ontology OBDI requires a set of mappings that define
relations among the involved local ontologies. We found that most applications of
multiple-ontology OBDI ([KSS+14, KSÖ+14, SHL+14, FHK+15]) use RDF property
mappings to represent these relationships. There is only one exception [GZUH13] that
uses instance mappings instead.

Data source dynamics. Each addition of a new data source to a multi-ontology OBDI
infrastructure requires (i) the definition of new local ontology and (ii) mappings from
the new local ontology to other local ontologies. This implies that adding data sources
involves considerable effort. Most implementations in our survey involve a fixed number
of data sources and a limited number of mappings and do not consider data source
dynamics. Graube et al. [GZUH13] hint at the possibility of adding new data sources,
but the authors do not explain how their application would address such dynamics.

Ontology implementation effort. The approach requires development of a set of
local ontologies and the definition of a set of mappings among them. This is acceptable
for scenarios with a limited number of local sources and mappings, which were common
in our survey [KSS+14, KSÖ+14, SHL+14, FHK+15]. For more complex cases, however,
alternative OBDI approaches are necessary.
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3.5.3 Hybrid OBDI

Semantic heterogeneity. A central concept in hybrid OBDI is the availability of a
shared vocabulary that facilitates the integration of data sources, not only those that
have a similar view of a domain (i.e., low semantic heterogeneity), but also those with a
high level of semantic heterogeneity.

Data access. Hybrid OBDI provides two ways to access data: (i) direct access to the
(aligned/restructured) local ontologies, and (ii) access to the shared vocabulary, where
the system queries each local ontology and merges the results. Aarnio et al. [ASF14]
demonstrate and evaluate both access methods, and they report that direct access to
local ontologies is faster than access to the shared vocabulary. Wiesner et al. [WMM11a]
focus more on accessing the integrated data via shared vocabularies.

Mapping complexity. Hybrid OBDI defines mappings between local and global
ontologies using semantic relations. To this end, this approach typically uses a set of RDF
properties as reported in [ASF14] (e.g., owl:sameAs and owl:subClassOf). In applications
that do not rely on SW technologies (but rather, e.g., F-Logic [WMM11a]), authors
typically do not report on how relationships among involved ontologies are established.

Data source dynamics. Hybrid OBDI makes integration of additional data sources
easier through the shared vocabulary refinement method. Reports on hybrid OBDI
[ASF14, WMM11a] hint at this capability without discussing it in detail or considering
dynamics in their application.

Ontology implementation effort. Initial development of a hybrid OBDI system
involves considerable effort. Stakeholders need to reach an agreement on the definition
of shared vocabularies and need to develop (or redesign, if local ontologies are already
available) local ontologies for each data source based on the shared vocabulary. However,
these efforts then result in aligned local ontologies without need for additional mappings.

3.5.4 Global-as-View OBDI

Looking back into OBDI categorizations from Wache et al. [WVV+01] (cf. Figure 2.3),
we observe in our literature study that there are OBDI applications that are similar
(i.e., they make use of a global ontology and several local ontologies), but do not exhibit
all the characteristics of hybrid OBDI, such as [ESSB16, DVYP14, LH07]. Specifically,
these applications develop local ontologies before the definition of the global ontology
(cf. Figure 3.3). Therefore, the local and global ontologies are independent from each
other. In this situation, interoperability is achieved either by (1) transformation of local
ontologies’ instances into the global ontology instances or by (2) query re-writing based
on predefined mappings alignments. We refer to this approach as Global-as-View (GAV)
OBDI due to its similarity (i.e., it contains a global schema that is independent of local
schemas) with the GAV approach from the relational databases [DHI12]. To differentiate
this OBDI variant from existing variants, we distinguish the integration process in the
equal context with other OBDI variants (cf. Figure 3.3 and 2.3).
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Figure 3.3: The fourth OBDI variant: Global-as-View

GAV OBDI requires the definition of one local ontology per data source, similar to
multiple-ontology and hybrid OBDI. In this variant, the integration process consists of
four steps (cf. Figure 3.3): (i) Creation of three independent local ontologies LA, LB, and
LC (or reuse of existing local ontologies) for data sources A, B, and C respectively. (ii)
Transformation of source data in local sources A, B, and C according to local ontologies
LA, LB, and LC. (iii) Development of a global ontology G represents a set of common
concepts relevant to scenarios, and (iv) Definition of independent mappings between
each local repository (i.e., LA, LB, and LC) and the global ontology G to facilitate data
transformation from local ontologies to the global ontology.

Several researchers, e.g., Gagnon [Gag07], Modoni et al. [MDT+17], and Moser [Mos09,
Mos16] have proposed ideas similar to, or having common points with the GAV OBDI
without differentiating GAV OBDI from existing variants, while Juarez et al. report an
adoption of GAV OBDI in a related domain, home automation [JRMGC+14]. In this
Section and Figure 3.3, we formulate and differentiate GAV from existing OBDI variants
shown in Figure 2.3 and explained in Section 2.3. Next, we will analyze the GAV OBDI
adoption in MDEEs.

Semantic heterogeneity. Similar to the hybrid OBDI approach, the availability of a
“common view” of a global ontology in Global-as-View (GAV) OBDI can address various
levels of heterogeneity.

Data access. GAV OBDI provides access on the global and local ontology levels. In
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line with this capability, MDEE data integration scenarios using GAV OBDI provide
access to both local and global ontologies [ESSB16, LH07, DVYP14].

Mapping complexity. Mappings between local and global ontologies are represented
by a set of transformation rules or queries. Depending on the scenario, the mappings
can be one-way (local-to-global, e.g., [DVYP14, LH07]) or two-ways (local-to-global and
global-to-local [ESSB16]), with various levels of complexity.

Data source dynamics. GAV OBDI requires several steps to include an additional
data source. First, it is necessary to define or reuse a local ontology for the new data
source. Then, transformation rules to the global ontology have to be established. It
does not, however, require other local ontologies and mappings to change. Two reports
[ESSB16, LH07] highlight this as an advantage of the approach.

Ontology implementation effort. The effort required to establish the ontologies and
their mapping is comparable to the effort for hybrid OBDI, albeit with a different use of
such mapping (i.e., for transforming instead of linking RDF data instances). SPARQL
Construct [ESSB16], eSWRL (an extension of SWRL rule language) [DVYP14], and
arbitrary transformation code [LH07] are example languages that are used for this kind
of transformation. TopBraid SPIN can also serve as an alternative, however, so far none
of the approaches has been used in an MDEE.

3.6 Guidelines for the selection of Ontology-Based Data
Integration approach variant in Multi-Disciplinary
Engineering Environments

In this section, we discuss the strengths and limitations of OBDI variants with respects to
key characteristics of data integration scenarios in MDEEs and conclude with a guideline
for the selection of OBDI variant in MDEEs. Table 3.5 summarizes comparison results
and highlights the strengths and limitations of OBDI variants in MDEE based on the
analysis in Section 3.5.

Wache et al. [WVV+01] consider hybrid OBDI the most effective among the three OBDI
variants. We observe, however, that single-ontology OBDI is the most popular OBDI
approach in MDEE, presumably due to its simplicity (i.e., it is suitable for scenarios
where there is no need to preserve local data structures). If users need to keep local data
source structures and compare instances from these sources, other OBDI variants are
more suitable.

Single-ontology OBDI. In this OBDI variant, the shared vocabulary of all the data
sources that need to be integrated is defined in a single global ontology. Data from
various data sources are transformed into instances of the global ontology to achieve the
data integration.

The approach is convenient to use when various data sources are semantically close or
when data sources can be transformed into a “common language” of the domain (e.g.,
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Table 3.5: Characteristics, strengths and limitations of OBDI variants (Green: strengths,
yellow: slight limitations; red: significant limitations)

Single-ontology Multiple-ontology Hybrid Global-as-View

Semantic
Heterogeneity

best applied for
data sources
similar view of a
domain

support
heterogeneous
views

support
heterogeneous
views

support
heterogeneous
views

Data Access only allows access
on global data

allows access on
each (original, if
any) local
ontology and the
aggregated local
ontologies.

allows access on
each
(restructured)
local ontology
and the global
ontology.

allows access on
each (original, if
any) local
ontology and the
global ontology

Data Source
Dynamics

needs for some
adaptation in the
global ontology

needs to provide
a new local
ontology and
map the new
local ontology to
other local
ontologies

only needs to
provide (or
restructure) local
ontology based
on the shared
vocabulary

needs to provide
a new local
ontology and
define mappings
to the global
ontology

Mapping
Complexity

N/A supports simple
mappings
(semantic
relations)

supports simple
mappings
(vocabulary
refinement)

supports simple
and complex
mappings
(queries and
rules)

Ontology Im-
plementation
Effort

straightforward costly reasonable rather costly

AutomationML). If such semantic closeness or a “common language” are not available,
any addition or removal of data sources may require adaptation of the global ontology to
avoid loss of information. Our survey revealed, however, that this approach appears to
be sufficient for most MDEE scenarios: more than half of the studied cases adopt this
approach. We assume that this popularity is due to the low implementation effort it
requires (e.g., only one ontology needs to be built, no ontology mapping/alignment is
required).

Multiple-ontology OBDI. Each data source in a multiple-ontology OBDI is described
using its local ontology. We cannot assume that these local ontologies share any joint
vocabulary. Mappings are established between the local ontologies.

The advantage of this approach is that there is no commitment among local ontologies
to shared vocabularies or a global ontology; however, this is also the most significant
disadvantage due to the difficulties of relating content in different local ontologies. To
overcome this drawback, inter-ontology mappings between local ontologies have to be
added. However, these mapping definitions become more difficult when more data sources
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are being introduced to the system, since local ontologies have to be mapped to each
other, which constitutes an exponential problem. The multiple-ontology OBDI is hence
more suitable for scenarios where there are a limited number of data sources and therefore
a manageable number of inter-ontology mappings is needed. For more complex data
integration scenarios, other OBDI variants are more appropriate.

Hybrid OBDI. Hybrid OBDI is characterized by the availability of a shared vocab-
ulary that contains basic terms of a domain that local ontologies should build on via
vocabulary/ontology refinement.

The shared vocabulary allows linking and comparing instances from multiple local
ontologies, which are relevant for multiple data integration scenarios in multidisciplinary
environments. This approach reduces the effort required to define inter-ontology mappings
among local ontologies. However, this approach has its drawback: it forces re-development
of local ontologies – including their mappings to local data sources – in order to comply
with the shared vocabulary. As such, the hybrid OBDI is less suitable for MDEE cases
where local ontologies are already established (e.g., in a brownfield OBDI scenario) or
they can be automatically generated from data sources.

Global-as-View (GAV) OBDI. The central concept of the GAV approach lies in the
global ontology definition, which is similar to the hybrid OBDI. GAV OBDI, however, does
not require re-development of existing local ontologies due to inter-ontology transformation
definitions between local and global ontologies similar to those used in the multiple-
ontology OBDI. In this way, existing local ontologies can be preserved and mapping
definitions can be added to allow comparison among local ontologies. Furthermore, data
sources can be added with moderate effort (i.e., mappings between the local ontology
representing the new data source and the global ontology). Additionally more complex
relations beyond ontology representation capabilities are possible (e.g., to represent
complex engineering mappings from [GUH16]).

3.6.1 OBDI Recommendation Tree

We developed the OBDI approach recommendation tree (Figure 3.4) based on the OBDI
characteristics (cf. Table 3.5) in MDEE scenarios, the OBDI comparison table by Wache
et al. [WVV+01], and our analysis result in Section 3.5. The tree summarizes our
discussion in section 3.6, which considers several factors (i.e., semantic heterogeneity,
resource limitations, mapping complexity, local data access/preservation, and data source
dynamics) and can serve as a guideline for practitioners and researchers in selecting the
most suitable OBDI approach for the characteristics of their scenario.

There are four main questions in the tree for guiding users in choosing the most suitable
OBDI approach in their use cases as shown in Figure 3.4. We will briefly describe these
questions in the following:

Question 1: Are local views of data (i.e., local ontologies) needed for the use
case? This question helps users to decide whether it is suitable for them to choose a
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Figure 3.4: The OBDI approach recommendation tree

single OBDI for their use case. If local views of data are not necessary and a global
ontology is sufficient for a use case, a single OBDI approach would be the most suitable
for the case.

Several other factors weighting toward choosing a single OBDI in a use case are: (1) the
local data sources contain similar views of a domain and therefore could be represented
in a single global ontology (i.e., low semantic heterogeneity); (2) the availability of a
common/exchange data standard as a global ontology (i.e., lowering the effort to transform
data between the global ontology and local data sources considerably); (3) limitation on
the resources, e.g., manpower and time to implement the OBDI application, given that
the single OBDI requires least effort compared to others (i.e., resource limitations).

Question 2: Is it possible to represent the relations between involved on-
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tologies within the capability of the chosen ontology framework (e.g., RDF)?
This question focuses on the mapping complexity between among local ontologies and
between local and global ontologies. MDEE use cases that contain complex relations
or mappings1 between ontologies may require mapping representation beyond standard
SPARQL querying capabilities. In these cases, the GAV OBDI is a suitable approach
since it could rely on custom mapping beyond ontology framework, e.g., rule-based and
arbitrary programming that support complex mappings.

Question 3: Is preserving legacy (or automatically generated) ontologies’
structure (if these ontologies exist) important for the use case? The focus of
this question lies on the suitability of the use case with the Hybrid OBDI approach, since
the hybrid OBDI requires restructuring local ontologies according to the global ontology.
If the answer for Question 3 is "no", Hybrid OBDI is a suitable solution, since the use
case does not need access to the original local ontologies.

Question 4: Is the dynamic of the data sources (e.g., addition and deletion
of data sources) a part of the use case? Will there be high numbers of data
source and mapping involved? This question considers the dynamics of data sources,
i.e., how often new data sources are added and removed from the system, which will
affect choice between the two possible OBDI approach: multiple and GAV OBDI.

The main disadvantage of a multiple-ontology OBDI solution is the high costs of manually
defining mappings between data sources. Therefore, the GAV OBDI is more suitable
in cases involving a high number of data sources and mappings between ontologies or
concerning dynamic system where data sources are frequently added or removed. In the
opposite, we recommend the multiple-ontology OBDI in use cases with a limited amount
of data sources and do not emphasis addition and removal of data sources.

3.7 Summary

In this chapter, we report on a review of Ontology-Based Data Integration (OBDI)
approaches in Multi-Disciplinary Engineering Environments (MDEEs). Our survey covers
both the Semantic Web (SW) and Automation System Engineering (ASE) research
communities.

Based on the papers identified in a systematic literature review, we derive a set of data
integration characteristics in the MDEEs, propose an extension to the classification
of OBDI conceptual approaches, and evaluate the suitability of different OBDI vari-
ants against the derived characteristics. Our proposed classification is useful not only
in the multi-disciplinary engineering domain, but also in other domains with similar
characteristics, e.g., research experiment data [BKE+14, ESSB14].

Furthermore, we identify an additional OBDI variant not considered in prior categoriza-
tions, the so-called Global-as-View (GAV) ontology approach. We differentiate the GAV

1See [KE16] for a more comprehensive overview about semantic mapping in the engineering domain.
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from other OBDI variants and discuss the strengths and limitations of these variants.
One of the main advantage of the GAV approach is its ability to preserve existing local
ontology structures for analysis purposes.

In addition to the contributions above, we observe technology options for OBDI elements
from the selected papers. We find that most of OBDI implementations are using W3C
standards of SW technologies (i.e., RDF-based approaches). There are, however, several
approaches using alternative technologies, mainly due to their maturity for industrial
uptake, e.g., F-Logic as an alternative of RDF [WMM11a]. We also observed feedbacks
from the engineering community with regards to their adoption of SW technologies in their
domain, e.g., inadequate storage performance [KSS+14], high-learning curve [HVKE16],
and the unavailability of rules and transformation standards [ESSB16, DVYP14].

In the following Chapter 4, we will use our analysis result of the OBDI characteristics
and recommendations from this chapter to evaluate a set of MDEE scenarios.
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CHAPTER 4
Applications of Ontology-Based
Data Integration in Engineering

A key output of Chapter 3 is a decision tree model for selecting the right Ontology-Based
Data Integration (OBDI) approach for given application contexts (Section 3.6.1). In this
chapter, we evaluate these guidelines by demonstrating how we have used them to decide
on OBDI approach variants to be used in two concrete settings from Multi-Disciplinary
Engineering Environments (MDEEs) described in Sections 4.1 and 4.2. Besides the main
goal of evaluating the guidelines, an alternative goal of this chapter is also to reflect
on other technologies than Semantic Web (SW) that are used for data integration in
MDEEs (as discussed in Section 4.3). Therefore, this chapter, together with Chapter
3 become important elements for answering RQ1:How suitable are the Ontology-Based
Data Integration approach variants for the diverse data integration scenarios in Multi-
Disciplinary Engineering Environments?

The first application report (Section 4.1) of AutomationML Analyzer is mainly based
on our publication at The 1st International Workshop on Cyber-Physical Production
Systems [SEKB16]. AutomationML Analyzer is a concrete implementation of a single-
ontology OBDI variant and aims to support the analysis of engineering data based on
the AutomationML data exchange format and SW technologies. In addition, we will
also explain how AutomationML Analyzer is additionally utilized further for simulation
generation, which is published at The 20th International Federation of Automatic Control
(IFAC) World Congress 2017 [NEB17].

The second application (Section 4.2), called Ontology-based Cross-disciplinary Defect
Detection (OCDD), focuses on defect detection in MDEEs’ setting. The OCDD prototype
built is an application of the multiple-ontology OBDI variant based on an industrial use
case from the industry partners of Christian Doppler Laboratory “Software Engineering
Integration for Flexible Automation Systems” (CDL-Flex). Section 4.2 explaining OCDD
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is adapted from our publication at The 19th International Conference on Knowledge
Engineering and Knowledge Management (EKAW) [KSS+14].

Our reflection on the comparison of Semantic Web Technologies (SWT) and alternative
technologies (Section 4.3) is summarized from on our publication at The 20th IEEE
International Conference on Emerging Technologies & Factory Automation (ETFA)
2015 [KWS+15] and the conclusion of The Semantic Web Technologies for Intelligent
Engineering Applications book [BS16].

4.1 AutomationML Analyzer

In this section, we present AutomationML Analyzer, an application that combines the
use of SW technologies and with the AutomationML data exchange standard to enable
efficient integration, browsing, querying and analysis of diverse engineering models.

4.1.1 Use Case and Motivation

AutomationML is an open, XML-based data exchange format that was developed to
support the exchange of engineering data within the engineering process in production
systems. It includes information about system topology, geometry, kinematics, and control
behavior and allows inclusion of links to detailed engineering models representing such
information, e.g., COLLADA or PLCopen files. For more details about AutomationML
please consult [CO15].

Thanks to providing a “common language” for different engineering tools as well as the
ability to provide links to detailed engineering information, AutomationML simplifies data
exchange across different engineering disciplines and tools in multidisciplinary engineering
projects. Nevertheless, there are still issues to address in order to ensure efficient and
effective engineering processes. In particular, there are a number of limitations of the
engineering processes that solely rely on the use of AutomationML, which are depicted
in Figure 4.1 and explained in the following:

1. Complex data structures with intricate links between engineering disci-
plines. Engineering data in multi-disciplinary engineering projects (e.g., such as
for designing a power plant) tends to be highly heterogeneous, contains complex
structures and has to be managed at a large scale even within one engineering
discipline. Also, there are naturally intricate links and correspondences between
the data set and data models developed within the different disciplines, since they
represent the same object (e.g. a power plant), but from different engineering view-
points. AutomationML has limited support for defining such links. For example,
one can define links between engineering components within AutomationML files.
But there are no means to specify cardinality, constraints or the nature of such a
relation (e.g., subsumption, sameAs, dependsOn).
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Figure 4.1: Problem Setting: AutomationML Limitations in MDEE settings

2. Support for cross-disciplinary analytics by end users. Several stakeholders
have a key interest in performing data analytics over the integrated engineering data.
For example, project managers often need to monitor and analyze cross-disciplinary
engineering data to track the advances of engineers from different disciplines (e.g.,
milestones reached, the number of fixed issues per project participant). At a more
technical level quality managers and domain experts need to validate the integrated
engineering data. Defect detection across the integrated engineering models is an
example of such a validation process.

3. Integration of AutomationML data with external data. The integration of
AutomationML data with relevant data from external sources (e.g., with standard
product catalogs, such as Ecl@ss) would be highly beneficial. Although the Au-
tomationML consortium currently works on providing some support for integrating
Ecl@ss data [GHJ+15], the proposed AutomationML specific constructs are not
sufficiently generic for integrating data from other domain-specific standards and
catalogs than Ecl@ss.

4.1.2 Selecting an appropriate OBDI Variant

The first question for selecting the OBDI variant according to the recommendation tree
in Chapter 3 is to check the semantic heterogeneity of the use case and the resource
availability of stakeholders. In this step, the main question to be asked is whether local
views of data are necessary for the use case.

In the AutomationML analyzer use case, heterogeneous local views of data is not necessary,
as the use case focuses on integrating heterogeneous AutomationML data and enables cross-
disciplinary analytics on the integrated data. Additionally, the fact that AutomationML
can be seen as a “common language” for integrating engineering data support the
decision to use the Single-Ontology OBDI approach, since the heterogeneous tools from
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Figure 4.2: The generic Single-Ontology OBDI approach (left) and AutomationML
Analyzer approach (right)

different disciplines are assumed to be able to export their data in a “common language”.
AutomationML import and export plugins are being implemented for various engineering
tools, e.g., Enterprise Architect, OPC UA Modeller1. Due to these reasons, we decided
to use the Single-Ontology OBDI approach for this use case and do not go further in the
decision tree steps.

Figure 4.2 depicts the AutomationML Analyzer approach in parallel with the generic
Single-Ontology OBDI approach. It shows that AutomationML files and external data
sources serve as local data sources for the global AutomationML ontology.

4.1.3 OBDI System Design and Implementation for AutomationML

To address the AutomationML limitations previously described, we designed and imple-
mented the AutomationML Analyzer tool based on the single-ontology OBDI approach.
The first part of this section explains the conceptual design of the tool and how it
addresses the limitations detailed previously. The later part provides implementation
details of the AutomationML Analyzer tool.

Conceptual Design

In the conceptual level, AutomationML Analyzer consists of three major components as
shown in Figure 4.3. These major components are marked with number 1-3, and will be
explained next.

1. Knowledge Acquisition. The knowledge acquisition component reads input
files from internal (i.e., AutomationML files) and external sources (e.g., DBPedia

1https://www.automationml.org/o.red.c/tools.html
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and spreadsheet files) and transforms these into an RDF representation. This
component performs the first step towards addressing the 1st and 3rd limitation of
AutomationML related to the integration of AutomationML data by transforming
all data into the global AutomationML ontology as the core of AutomationML
Analyzer.

2. Data Integration & Enhancement. The functions of this component are
twofold. Firstly, it supports data integration between different AutomationML
files from heterogeneous data sources. Secondly, it simplifies the complex Automa-
tionML data structure and makes intricate links between components explicit as
modeled in the AutomationML ontology (the global ontology of our Single-Ontology
OBDI approach). This component mainly addresses the 1st and 3rd limitations of
AutomationML and as such contributes towards enabling easier AutomationML
data analysis.

3. Validation Checks Repository. This component addresses the 2nd limitation
of AutomationML and supports the cross-disciplinary analytics and validation of
integrated engineering data by the tool users. To that end, it contains a collection
of frequent analytical tasks and validation checks formulated as questions over the
engineering data integrated using Single-Ontology OBDI approach. Queries are
made in terms of the global AutomationML ontology.

Prototype Implementation

In the following, we briefly explain the implementation details of our prototype based on
the conceptual system design depicted in Figure 4.3. The AutomationML Analyzer adopts
the Single-Ontology OBDI approach and embraces open standards (AutomationML,
RDF(S)), while it relies on a mature technical solution, as described in the following:

• Knowledge Acquisition and Integration. AutomationML input files are auto-
matically transformed to RDF(S) format and enriched through (1) alignment to an
AutomationML ontology and (2) mechanisms to make implicit cross-disciplinary
links explicit. Core to the Single-Ontology OBDI approach of the AutomationML
Analyzer is the AutomationML ontology that provides a richer semantic represen-
tation of AutomationML data. An earlier version of the AutomationML ontology
and its creation process are described in [KWS+15]. The current AutomationML
ontology provides a semantically rich model into which data from various engineer-
ing tools, available in different data formats, is transformed. It has to be noted
that external sources integration, such as DBPedia and Ecl@ss is not yet fully
implemented and still in progress at the moment.

We provide options to transform data into the AutomationML ontology from
different data formats (e.g., AutomationML and XMI data format). The procedure
to transform AutomationML data to ontologies is adapted from the transformation
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from Ecore2 (Eclipse Modeling Framework metamodel) into OWL (Web Ontology
Language) [KKKK06]. Here, we benefit from the fact that transformations from
the CAEX model that underlie AutomationML to Ecore are already in place3.
Ecore is used as an intermediate format before conversion to OWL and could be
replaced by direct translations in the future.

• Data Storage and Data Access. We utilize OpenRDF Sesame (now it is
renamed into Eclipse RDF4J4), an open source, mature and user-friendly RDF
triplestore to store the semantic representation of the AutomationML data created
in the knowledge acquisition and integration step. Sesame offers an embedded
SPARQL endpoint – an interface that enables querying integrated engineering data.
We utilize SPARQL queries to perform typical engineering level consistency checks
as well as project management level analysis on the global ontology.

• User Interface. The AutomationML Analyzer provides a set of project-wide
validation checks defined according to the requirements from domain experts
and AutomationML experts to be checked against the AutomationML ontology
data. These checks are materialized through SPARQL queries. However, the
tool’s interface only presents users with the textual descriptions of the checks to
hide technical complexities (cf. Figure 4.4). The associations between textual
descriptions and SPARQL realizations of the checks are stored in a repository
that can be further extended with additional checks. The query-based validation
interface was created using Apache Wicket5.

4.1.4 Feasibility Study

For demonstrating the feasibility of the tool, we use a set of AutomationML files obtained
from the lab-size simulation model of a production system created at the IAF of the Otto-
v.-Guericke University Magdeburg6, the so-called “Produktionsmodell”. This simulation
model represents a research prototype of Cyber-Physical Production Systems (CPPS)
and comprises ten conveyers, eight turntables and three multipurpose machines. The
wiring is done by a modular fieldbus I/O system (WAGO). A coupler and several digital
I/O modules connect to Raspberry Pi based controllers. The controllers host PLC code
for the aforementioned model components.

We used three AutomationML files each representing a different viewpoint on the pro-
duction model from the perspective of mechanical, electrical and software engineering
respectively. Within the mechanical file, the system physical topology is defined together
with the geometry and mechanical properties, e.g. weight, material or load capacity of

2https://www.eclipse.org/modeling/emf/
3https://github.com/fekaputra/amlMetaModel
4http://rdf4j.org/
5http://wicket.apache.org/
6http://www.iaf-bg.ovgu.de/en/technische_ausstattung_cvs.html
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Figure 4.4: AutomationML Analyzer UI for querying and browsing engineering data

the devices. In addition, the information about the maximum and actual working hours
for the model components is defined. Within the electrical file, a wiring for system’s
components is defined together with electrical properties, e.g. power consumption or
switching time. The software engineering file contains information about used PLC
interfaces and variables.

The ontology-based representation and integration of AutomationML data using the
Single-Ontology OBDI approach enables querying (via SPARQL [HS13]) of data origi-
nating from different disciplines, thus, enabling the cross-disciplinary and cross-tool data
analysis and consistency checking on heterogeneous CPPS project data. Some example
queries are:

• show all composite devices and their sensors;

• show all interfaces for all sensors;

• find all devices that exceeded their maximum working hours.

We describe two sample cross-disciplinary analysis tasks and their implementation as
SPARQL queries in the following:

• Task 1: The process engineer would like to check that the overall weight and power
consumption of the designed plant do not exceed the customer’s settings at the
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location where the plant will be deployed. Listing 4.1 shows the corresponding
SPARQL query.

• Task 2: This task presents an example of combining information from both design
and operation time of a plant. Here an engineer from the plant maintenance team
would like to know, which devices have already exceeded their maximum working
hours threshold and need, therefore, to be changed as soon as possible. Values for
actual working hours are obtained from the sensors streaming data in the plant
at operation time and a type of specific machinery chosen during the plant design
and development specifies the maximum working hours. Listing 4.2 shows the
corresponding SPARQL query.

Listing 4.1: SPARQL query showing the overall weight and power consumption of the
production model
SELECT

SUM( xsd : i n t e g e r (? deviceWeight ) ) AS ? systemWeight )
SUM( xsd : i n t e g e r (? devicePC ) ) AS ?systemPC)

WHERE {
? dev i ce a aml : Interna lElement .

? dev i ce aml : a t t r i b u t e ? a t t r i bu t e .
? a t t r i b u t e aml : name "Gewicht " .
? a t t r i b u t e aml : va lue ? deviceWeight .

? dev i ce aml : a t t r i b u t e ? a t t r i bu t e .
? a t t r i b u t e aml : name " Le i s tung " .
? a t t r i b u t e aml : va lue ? devicePC .

}

Listing 4.2: SPARQL query selecting all devices that already exceeded their maximum
working hours and need to be replaced
SELECT ? conta ine r ? dev i c e ? actHours ?maxHours
WHERE {

? dev i ce a aml : Interna lElement .

? dev i ce aml : a t t r i b u t e ? atActHours .
? atActHours aml : name " Aktue l l eBet r i ebs s tunden " .
? atActHours aml : va lue ? actHours .

? dev i ce aml : a t t r i b u t e ?atMaxHours .
?atMaxHours aml : name " MaxBetriebsstunden " .
?atMaxHours aml : va lue ?maxHours .
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FILTER
( xsd : i n t e g e r (? actHours ) > xsd : i n t e g e r (?maxHours ) )

MINUS { ? dev i ce aml : interna lE lement ? subPart } .
OPTIONAL {? conta ine r aml : inte rna lE lement ? dev i ce . }

}
ORDER BY ? conta ine r ? dev i ce

Simulation Generation with AutomationML Analyzer

Besides supporting exploration and analysis of engineering data, AutomationML Analyzer
was also adopted for the use case of simulation generation in the MDEE settings, as
reported in our paper at IFAC World Congress 2017 [NEB17] and will be explained
briefly next.

Simulation models are becoming efficient test-beds that can support decision-making,
estimating unmeasured variables, or training human operators. They are necessary for
advanced process control, including model predictive control. However, the design phase
of the simulation model life-cycle is extremely time-consuming and error-prone, as it
is stated in VDI 3633 [Ver13]. Due to the development-time and economic reasons,
simulations are not used as widely as they could be.

The AML2SIM method is proposed to ease such challenges in simulation design complexity.
It is a systematic method that utilizes AutomationML Analyzer and extended bond
graph theory [NŠ14b] for creating simulation models for industrial plants. It generates a
simulation model (SIM) semi-automatically based on combining (i) a given real plant
topology represented in AutomationML and (ii) available simulation blocks that are
included in a simulation block library.

The overall AML2SIM method is summarized in Figure 4.5. The basic idea of the
AML2SIM method is that it assembles simulations as a combination of available simulation
blocks semi-automatically, based on existing CAD (computer-aided design) description
of industrial plants. The steps of generating the simulation in AML2SIM will be briefly
explained as follows:

• Step 1. The creation of CAD descriptions of industrial plants. In this step,
engineers draw the plant descriptions in any CAD tool and serialize the data as
AutomationML files.

• Step 2. The AutomationML files are transformed into RDF graphs and integrated
with the AutomationML Analyzer to allow a queryable and traceable model. We
develop a set of REST web services that contain specific SPARQL construct queries
to extract the required information to build the simulation.
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Figure 4.5: The workflow of the AML2SIM approach that utilizes AutomationML
Analyzer

• Step 3. The extracted information from AutomationML analyzer is combined
with the available simulation blocks, their interfaces, and parameters stored in the
simulation libraries.

• Step 4. In this step, we utilize the extended bond-graph algorithm to match the
available simulation blocks with the plant descriptions.

• Step 5. This step represents the generated executable simulation models as a
result from the Step 4 above. This simulation model can be then used directly in
the simulation tool, such as MATLAB-Simulink.

The adoption of AutomationML Analyzer in AML2SIM method helps generating simula-
tion models by providing means for querying an integrated data model of CAD description
of production plants. As a result, the implemented prototype of AML2SIM shows that
the time and costs needed to develop a simulation model can be reduced by an estimate
of 30-40% compared to the legacy methods [NEB17].

4.1.5 Conclusion

We investigated the use of the OBDI Single-Ontology variant to support the engineering
of CPPSs. The aim was to conduct a feasibility check on the Single-Ontology OBDI
approach capabilities to integrate and analyze heterogeneous engineering data, which
was made available using the AutomationML data exchange standard. We found that
the resulting prototype of AutomationML Analyzer is able to address the challenges
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faced when engineers and domain experts solely relying on AutomationML data exchange
format in the following:

• Facilitating integration of AutomationML data and its components from heteroge-
neous data sources, and

• due to the AutomationML data integration, allowing project level analysis and
quality assurance (e.g., defect detection) of engineering data.

In the engineering of systems such as CPPS, the quality assurance of engineering knowledge
with advanced checks is highly relevant. Given the mission-critical character of engineering
projects, inconsistencies, defects and faults among diverse engineering models should
be discovered as early as possible. However, state of the art engineering models tend
to capture only limited aspects of cross-domain interdependencies with links between
models that are understandable by humans but not by machines [KVH13]. Therefore,
the proposed adoption of the Single-Ontology OBDI approach improves the state of the
art because it enables formally representing and integrating engineering knowledge. The
formal nature of the engineering models and the links between them allow interpretation
through reasoning and querying mechanisms, thus, enabling the automation of various
quality assurance tasks, as was shown in the case of the AutomationML Analyzer.

We conclude that the Single-Ontology OBDI approach was suitable for AutomationML
Analyzer due to its ability to integrate heterogeneous engineering data based on the global
AutomationML ontology and facilitating project level analysis and quality assurance of
the integrated data. However, the approach has limitations when it comes to integrating
heterogeneous external data sources, as this requires an adaptation of the global ontology.
If a data source is significantly different from the other data sources, such an adaptation
might not be possible. In such cases, other OBDI variants should be investigated based
on the decision tree approach we develop in Chapter 3.

4.2 Ontology-Based Cross-Disciplinary Defect Detection
In this section, we describe OCDD, a multiple OBDI application that aims to support
defect detection in MDEE use cases. OCDD supports automated defect detection
across discipline boundaries. The ontology and SW technologies allow representing the
data models of different engineering disciplines and tools and their interrelations in a
machine-understandable form, thus, enabling automated processing and analysis across
disciplines.

4.2.1 Use Case and Motivation

Multi-Disciplinary Engineering (MDE) projects, e.g., in the automation systems en-
gineering (ASE) domain, typically follow a sequential engineering process. However,
in the industry practice, tight project delivery times and project constraints typically
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require concurrent engineering [Kus93], with engineering teams working in parallel rather
than sequentially. This requires adjusting the engineering process and including a set of
synchronizations at each project stage to identify early defects and inconsistencies across
disciplines from concurrent changes in heterogeneous project data.

Two important types of defects affect engineering processes of MDEE projects:

• intra-disciplinary defects (affect data within one discipline) and

• cross-disciplinary defects (affect data in more than one discipline), e.g., changing a
sensor might have an effect on the related software component variable and might
lead to defects if not addressed properly.

While defects within a single engineering discipline are usually discoverable by discipline-
specific tools, cross-disciplinary defects are detected and fixed mainly during the synchro-
nization phase. Because of the lack of tool support, project engineers usually perform
cross-disciplinary data analysis manually, which is time-consuming and error-prone.

Based on the problem description above, it is necessary for MDEE projects to provide
efficient and effective mechanisms for defect detection. These mechanisms should be
aware of the following requirements: (a) multiple engineering disciplines involvement; (b)
cross-disciplinary dependencies in the project data; and c) concurrent engineering. In
this section, we focus on addressing these requirements in a specific case study described
next.

Case Study Description. The case study is performed in an MDEE project of
powerplant engineering. The case study involves data from two engineering domains:
Hardware Configuration (HC) data of the Mechanical Engineering domain that contains
the physical structure design of devices and their connections, and Control System (CS)
data of the Software Engineering domain that corresponds to the control system design.
Additionally, we also integrate MDEE Project Configuration (PC) data, which contains
information about MDEE projects and their relations with engineering data.

In additional to the data, there are mappings/links between these data that are known
by project engineers and domain experts. We extract this information from an interview,
and instantiate two of them in our case study: (1) variables that link CS and HC domains,
i.e. for each device a set of software variables are defined for its (hardware) inputs and
outputs; and (2) artifacts that link the PC domain with HC and CS domains, i.e. an
artifact can represent a piece of PLC code on the CS side or a certain hardware device
from the HC data, which can be linked to the users responsible for these parts from PC
data.

4.2.2 Selecting an appropriate OBDI Variant

In this use case, we are following the questions on the OBDI variant recommendation
tree from Chapter 3 as follow:
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• Question 1: Are local views of data (i.e., local ontologies) needed for
the use case? In our case study, the availability of the local views of data is
necessary, mainly for analysis purposes. To this end, the use of Single-Ontology
OBDI is not suitable, since it does not provide local views of data, which lead us
to move to the next step.

• Question 2: Is it possible to represent the relations between involved
ontologies within the capability of the chosen ontology framework (e.g.,
RDF)? Our case study is designed as a proof-of-concept prototype in the industrial
settings, which will only involve simple (non-complex) mappings between ontologies
from different engineering disciplines. Therefore, in this case we move forward to
the next question.

• Question 3: Is preserving legacy (or automatically generated) ontologies’
structure (if these ontologies exist) important for the use case? The data
sources used within the use case consists of several XML files generated from various
engineering tools. Due to the availability of the ontology generator from XML7,
we can automatically retrieve the local ontologies from the data sources. In the
use case, we assume that there are analysis of data both on the local views and
the global views, and therefore, we want to avoid re-structuring of the ontologies.
Due to these reasons, we are not using Hybrid OBDI and move further to the next
question.

• Question 4: Is the dynamic of the data sources (e.g., addition and dele-
tion of data sources) a part of the use case? Will there be high numbers
of data source and mapping involved? In our use case, it is assumed that
there will be no addition of data sources beyond the pre-defined data sources and
the number of mapping will be limited to manageable amount. These aspects leads
to the conclusion that the multiple-ontology OBDI variant is the most suitable in
our case study.

The selection of OBDI variant for OCDD is much dependent on the case study setting.
Our case study, in particular, is suitable to be addressed with the multiple-ontology
OBDI due to the fixed and small number of data sources and semantic mappings involved.
Furthermore, source data are available as a rich structured format (i.e., XML) that allows
automatic translation to RDF format as local ontologies. The manual effort of adding
inter-ontology mappings between resulted local ontologies is negligible due to the limited
number of mapping required.

In comparison with other OBDI variants, the usage of a single-ontology OBDI requires
additional efforts of building a global ontology definition and maintaining the consistency
between local data sources and the global ontology. The other option of using hybrid-
ontology OBDI also requires additional efforts of developing a shared vocabulary and

7https://bitbucket.org/fekaputra/xml-tab-jena
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Figure 4.6: The generic multiple-ontology OBDI (left) and its adaptation for OCDD
(right)

re-development of local ontologies to make it work. Therefore, we conclude that the use
of a multiple-ontology OBDI variant for this particular use case is the best option.

4.2.3 OBDI System Design and Implementation for OCDD

To address the challenge of providing effective and efficient defect detection methods in
MDEE projects, we together with colleagues propose OCDD, an Ontology-Based Data
Integration (OBDI)-based approach for facilitating automatic defect detection across
engineering disciplines.

Conceptual OBDI Design

We follow the principle of the multiple-ontology OBDI approach with a development of
local ontologies from data sources as the first step. To this end, we develop three local on-
tologies of Hardware Configuration (HC), Control System (CS) and Project Configuration
(PC). We will briefly explain the content of these ontologies in the following8:

• Hardware Configuration Ontology. The Hardware Configuration (HC) ontol-
ogy consists of information about engineering devices, their inputs and outputs and
variables that correspond to values on certain hardware inputs/outputs.

• Control System Ontology. The Control System (CS) ontology contains engineer-
ing artifacts that concern control system software. In the case study, our industry
partner uses the IEC61131-3 standard – a standard of International Electrotechnical
Commission (IEC) for representing programmable logic controllers.

8For more comprehensive information about these ontologies, we refer interested readers to the
original paper [KSS+14]
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• Project Configuration Ontology. The Project Configuration (PC) ontology
comprises more general project related information such as: engineering projects;
project members and their responsibilities; and the history of changes in the
engineering data of these projects.

In addition to the three ontologies, we also define inter-ontology mappings between these
ontologies as part of the proposed solution. The overview of our conceptual solution of
the OCDD in comparison to the generic multiple-ontology OBDI is shown in Figure 4.6.

Prototype Implementation

The technical implementation overview of the OCDD approach for our case study is
shown in Figure 4.7. The HC ontology is created based on the automatic transformation
of XML export files of mechanical engineering tools used by our industry partner. For
transforming the data, we develop an adaptation of the XMLTab9 plugin of Protégé10

called XMLTabJena11. In a similar manner, the CS ontology of software engineering is
also automatically procured using the XMLTabJena from the XML source files produced
by our industry partner (these XML files conform to the IEC61131-3 standard). The PC
data source is already in RDF format, and therefore do not need any transformation.

We have previously explained in the Section 4.2.1 that there are two known mappings in
our case study (shown in Figure 4.7). The first mapping links the HC and CS ontology.
Fortunately, we do not need to explicitly add this mapping to the ontologies since it can
be implicitly determined (and queried) by string matching function between CS and HC
variable names. In practice, we can also make the mapping explicit by adding a dedicated
property to link HC devices and CS software properties, but we decided against it as it
was not necessary for the case study.

The second mapping links PC with both HC and CS ontologies. The original local PC
ontology stores information about MDEE projects, project members and activities. We
add one class and two properties in the PC ontology as mappings between PC, HC and
CS ontologies:

1. The pc:Artifact class as a superclass of both hc:Variable and cs:Variable
classes.

2. Property pc:belongsTo as a relation between pc:Artifact and the project
that it belongs to.

3. Property pc:wasPerformedOn as a relation between an activity with the affected
pc:Artifact.

9http://protegewiki.stanford.edu/wiki/XML_Tab
10http://protege.stanford.edu/
11https://bitbucket.org/fekaputra/xml-tab-jena
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Figure 4.7: Prototype Implementation of OCDD approach based on multiple-ontology
OBDI.

We are using the Apache Jena ARQ12 to allow access and execution of SPARQL queries
on top of the integrated data of our OCDD approach.

4.2.4 Feasibility Study

The defined mappings between local ontologies enable formulations and executions of
comprehensive SPARQL queries to perform various checks on variable data across domain
boundaries, which was not possible to perform automatically before. We describe two
cross-disciplinary checks that were implemented for the case study and successfully
executed.

Q1: Which global variables on CS side are not declared on HC side? Each global variable
declared in the control system software (CS ontology) should be declared as a specific
device input or output in the hardware system topology (HC ontology). If a corresponding
declaration is missing on the HC side, this might indicate two possible problems: a) either
there is a redundant global variable (CS side); b) or a variable declaration is missing in
the physical system topology (HC side).

Listing 4.3: Q1: Which variables in HC are not used in CS (as a global variable)?
# PREFIXES: hc − hardware c on f i g u r a t i on onto logy

12https://jena.apache.org/documentation/query/
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# cs − c on t r o l system onto logy
# pc − p ro j e c t c on f i gu r a t i on onto logy

SELECT ?hc_var_id ?hc_var_name
WHERE {

?hc_var a hc : Var iab le .
?hc_var hc : hasVarID ?hc_var_id .
?hc_var hc : hasItemName ?hc_var_name .

OPTIONAL
{

? cs_var a cs : Var iab le .
? cs_var cs : hasName ?cs_var_name .
FILTER (?hc_var_name = ?cs_var_name ) .

# checking whether va r i ab l e i s g l oba l in CS
? g loba l_vars_conta iner a cs : g loba lVars .
? g loba l_vars_conta iner cs : ha sVar i ab l eS l o t ? a r t i f a c t .

}
FILTER ( ! bound (? cs_var ) )

}
ORDER BY ?hc_var_name

Q2: Which activities were performed on global variables, which are declared at a certain
device, and were not allowed by a project role of the project member, who performed
them? This check concerns data from all three domains. Every project member working
in a project has project roles, which specifies what kind of activities that is allowed
in a project. If there are doubts on the consistency of global variables within the
project, one way to discover the cause of defects could be checking whether a project
member has performed an activity not allowed by his role. If such cases are found, the
engineering artifacts involved (i.e., global variables) are the first candidates to be tested
for consistency.

Listing 4.4: Q2: Which activities were performed on global variables that are declared
at a certain device and were not allowed by a project role of the project member who
performed them?
# PREFIXES: hc − hardware c on f i g u r a t i on onto logy
# cs − c on t r o l system onto logy
# pc − p ro j e c t c on f i gu r a t i on onto logy

SELECT ?var_name ?person_name ? r o l e
? ac t iv i ty_date ? ac t iv i ty_type

WHERE {
? a c t i v i t y a pc : Ac t i v i ty .
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? a c t i v i t y pc : wasPerformedBy ? person .
? a c t i v i t y pc : wasPerformedOn ? a r t i f a c t .
? a c t i v i t y pc : wasPerformedAt ? ac t iv i ty_date .
? a c t i v i t y pc : hasActivityType ? ac t iv i ty_type .

? person a pc : ProjectMember .
? person pc : hasFullName ?person_name .
? person pc : ha sRe spon s i b i l i t y ? resp .
? resp pc : hasCorrPro ject ? p r o j e c t .
? re sp pc : hasCorrProjectRole ? r o l e .
? r o l e pc : ha sA l l owedAct i v i t i e s ? a l lowed_act iv i ty_type

? a r t i f a c t pc : belongsTo ? p r o j e c t .
? a r t i f a c t a cs : Var iab le .
? a r t i f a c t cs : hasName ?var_name .

# checking whether va r i ab l e i s g l oba l in CS
? g loba l_vars_conta iner a cs : g loba lVars .
? g loba l_vars_conta iner cs : ha sVar i ab l eS l o t ? a r t i f a c t .

# g l oba l var i s s e t on a s p e c i f i c dev i c e in HC onto logy
?hc_var a hc : Var iab le .
?hc_var hc : hasItemName ?hc_var_name .
FILTER (?hc_var_name = ?var_name) .
? dev i ce a hc : Device .

# dev i c e i s s p e c i f i e d by i t s id
# (? param_device_id i s g iven as an input in Jena
# be fo r e query execut ion )
? dev i ce hc : hasDeviceID ? device_id
FILTER (? device_id = ?param_device_id )

? dev i ce hc : hasVarGrpSlot ?var_group .
?var_group hc : hasVarSlot ?hc_var .
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# performed a c t i v i t y was o f not a l lowed type
FILTER (? al lowed_act iv i ty_type != ? act iv i ty_type )

}
ORDER BY ?person_name ? ac t iv i ty_date

75



4. Applications of Ontology-Based Data Integration in Engineering

4.2.5 Conclusion

Multi-Disciplinary Engineering project participants from different engineering disciplines
collaborate to deliver a high-quality end product. Typically, engineering disciplines
involved are rather isolated and therefore, it is difficult to efficiently analyze data and
perform defect detection activities across the disciplines.

In this section, we introduced the ontology-based cross-disciplinary defect detection
(OCDD) approach, which applies the multiple-ontology OBDI as an information integra-
tion mechanism, to support automated cross-disciplinary defect detection. In our case
study, we have shown that the adoption of the multiple-ontology OBDI approach is able
to address the challenges posed by MDEE projects in detecting cross-disciplinary defects
in an efficient manner.

The selection of multiple-ontology OBDI variant for OCDD in our case study is based
on the fact that only a small number of data sources and semantic mappings involved.
Moreover, since the engineering source data is available as a rich structured format, it
allows automatic transformation of the data into local ontologies with a minimal effort.
In different cases with more dynamic data sources involved, however, other OBDI variant
should be considered.

4.3 Notes on Semantic Web and Alternative Technologies

In practice, a number of alternative technologies are used to address challenges in Multi-
Disciplinary Engineering Environment (MDEE). We will discuss the comparison between
these technologies and Semantic Web Technologies (SWT) next.

4.3.1 General-purpose End-user Approaches

In MDEEs, there is a wide variety of tools and data formats used, and these tool networks
often use general-purpose end-user approaches, such as databases, spreadsheets, and
scripting, as means to integrate, transform, and reuse data. While these general-purpose
end-user approaches are widely used, they suffer, in comparison to the SWT, from low
formality and flexibility and, therefore, rely heavily on domain experts to apply and
maintain the code and to interpret the results [FBW+13, WB12].

Therefore, general-purpose end-user approaches fall short in addressing the needs iden-
tified in Section 2.1.1. However, it is important that we conduct a careful analysis of
general-purpose end-user approaches in use before introducing SWT into an engineering
environment. Such an analysis is a prerequisite for understanding the existing expertise
and for minimizing the risk of failing to provide the benefits expected from applying
SWT.
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4.3.2 Model-Driven Engineering

Model-Driven Engineering and Semantic Web are different approaches to creating intelli-
gent application in MDEEs that provide several similar capabilities, but also capabilities
that differ in important ways. We identify the following similarities between the two
technologies:

• Making knowledge explicit with conceptual modelling. In Model-Driven
Engineering, this is achieved with Ecore13 metamodels, models, and transformations
[WLRW15]; in Semantic Web with ontologies, ontology instances, and reasoning.

• Direct interaction with knowledge bases. Both Model-Driven Engineering
and Semantic Web communities provide user-friendly generic tools for creating,
changing, and populating knowledge bases: in Model-Driven Engineering with
Eclipse-based tools and plug-ins [BCW12]); in Semantic Web based on an open
development environment for semantic web applications [Knu04].

• Data integration. Both Model-Driven Engineering and Semantic Web commu-
nities provide mechanisms for creating and maintaining mappings to integrate
heterogeneous data sources, in particular, links between schemas and between
instances [Obe14].

To provide a better insight into the comparison between the two approaches, we will
discuss next our experience in working with both approaches to model engineering data
based on AutomationML. This comparison is based on our earlier publication [KWS+15].

Modeling of AutomationML using Semantic Web Technologies vs Model
Driven Engineering

We analyse the differences of Model-Driven Engineering and Semantic Web approaches
for modelling AutomationML and discuss the potential benefits and limitations of the
adopted model creation process and resulting models. The discussion is built over
the following aspects: a) model creation process; b) resulting model (metamodel and
ontology); and c) potential usages of the resulting model for improving engineering
processes in production systems engineering (PSE).

Process. In terms of the effort needed to build a model, creating a model with Model-
Driven Engineering approach can be done fast and easy, if the semi-structured represen-
tation (e.g., XML schema definition (XSD) in case of AutomationML) is available as a
starting point. The conversion of the XSD into an Ecore metamodel is straight-forward
and requires no involvement of domain experts, thus, avoiding many iterations and
reducing the time needed to have a working model. As the resulting metamodel is a
one-to-one match to the original XSD structure, data transformation from the original

13http://eclipse.org/modeling/emf/
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AutomationML format is therefore straight-forward and easy to perform. However, as
soon as changes are made in the metamodel, e.g., for optimization purposes, also the
data transformations have to be adapted.

In contrast, when modelling knowledge with Semantic Web technologies and according
to a top-down approach, designing an ontology was an iterative process with domain
experts in the loop. This leads to a relatively long time for model creation, as the
knowledge engineer has to get a detailed understanding of the modelled domain together
with expected application to design a suitable model. Additionally, (at least) several
verification iterations with domain experts are required during the model creation. Also,
defining a complete data transformation from AutomationML format into ontology is
more complex, as the resulting model structure differs from the original AutomationML
XSD (both on syntactic and semantic level). However, the advantage is obtaining a
light-weight, concise and application-tailored model as a result.

Resulting model. The obtained resulting models (metamodel and ontology) differ in
many aspects for two major reasons: a) the data representation language (Ecore and
OWL); and b) the provided reasoning capabilities.

Ecore enables specifying dynamic behaviour inside the model for instance to define a
model simulator for AutomationML, which is not possible in OWL. The Object Constraint
Language (OCL) 14 complements Ecore and enables specifying query operations, derived
values, pre- and post-conditions. Another advantage is the straight-forward mapping
from Ecore into Java objects, which makes the programmatic access to the model easier
and supported out-of-the-box. A key limitation, however, is that the Ecore model must
stay stable w.r.t. schema, i.e., once defined and populated with data, it is challenging to
modify the metamodel, e.g., changing a class or a property, and would lead to co-evolution
problems for the existing models. Because of this limitation, it was decided to store all
AutomationML data on the instance level, e.g., all Role and SystemUnit classes are stored
as instances as well as the Internal Elements from the Instance Hierarchy. This makes
the model more complex and may make the OCL rules formulation (e.g., for consistency
checking) potentially more challenging. Furthermore, there is no out-of-the-box semantics
defined for the roles and classes, e.g., the inheritance between roles and classes is just a
simple data link which is not considering inherited elements in query tasks.

Speaking of OWL, the language is very flexible w.r.t. class descriptions. OWL supports
various ways to define classes: by a class identifier, an exhaustive enumeration of
individuals, property restrictions, or by reusing already existing class descriptions (i.e.,
an intersection of class descriptions, a union of class descriptions, or the complement of a
class description). Classes can also constitute nested hierarchies, which makes explicit
type definition (e.g., for consistency checking) not mandatory. Type inference can be
performed based on class descriptions, thus enabling dynamic classification of objects
into class. Also, unlike Ecore, OWL is very flexible w.r.t. modifications on schema level,
i.e. it is relatively easy adding new classes or properties, if there is a need to extend an

14http://www.omg.org/spec/OCL/
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existing ontology. Another important feature is that OWL allows definition of transitive
properties, which simplifies query structures for some cases. This is not explicitly possible
with Ecore and OCL and would require some workaround with derived features.

Usage. The resulting AutomationML ontology is well suited for applications such
as data analysis and consistency checking, both because it was designed with those
in mind and because of the features of the OWL language, which make ontologies
particularly useful for performing those tasks. For example, reasoners are available to
process ontologies for consistency checking, concept satisfiability, instance classification
and concept classification. Some of the reasoners also provide axiom explanation in case
inconsistencies/violations have been found, facilitating understanding, localizing and
fixing activities for engineers.

The resulting AutomationML metamodels allow applying model transformations lan-
guages to perform in-place transformations on AutomationML data, such as providing
improvements to a model as well as out-place transformations such as transforming
AutomationML to other systems modeling languages or for mapping AutomationML
to formal languages, which facilitate model analysis. Furthermore, highly task specific
languages such as model validation, model comparison, model merging languages, are
available as demonstrated before which proved already useful in several engineering
scenarios.

The important difference for applying AutomationML Ecore metamodels and Automa-
tionML ontology is that semantics in MDE approach adopts Closed World Assumption,
while OWL adopts Open World Assumption by default. This might lead to different
results while performing querying and reasoning on model and corresponding data. How-
ever, it is also possible to force OWL reasoning and querying under the closed world
assumption. Speaking of limitations, applying both models for applications in industrial
and factory automation requires sufficient understanding from developers and engineers.
Having bridges between the modelware and ontoware, the benefits of both worlds may
be combined.

Conclusion

Semantic Web approaches have some advantages over Model-Driven Engineering regarding
agile schema development, i.e., schema evolution at runtime, reasoning-based checks
[KVH13], knowledge reuse. Semantic Web approaches have strong advantages over
Model-Driven Engineering in the Semantic Web home grounds of linked data, e.g., with
the unique resource identifier (URI) identification, and linking URIs with the sameAs
mechanism, and of browsing and exploring distributed data sets, e.g., engineering models
and external data sources [GM07]. [Obe14] discusses why and when to apply SWT in
enterprise systems, which are in some ways similar to engineering project support systems,
and characterizes the state of Semantic Web usage as considerable academic interest and
early industrial products.

79



4. Applications of Ontology-Based Data Integration in Engineering

Model-Driven Engineering has advantages over Semantic Web with a strong open source
community in business and industry, and a skill set that is better compatible with existing
expertise in typical software engineering projects.

4.4 Summary
In this chapter, we report on the applications of Ontology-Based Data Integration
(OBDI) in two different use case scenarios with different motivations and goals: (1) The
AutomationML Analyzer that focus on supporting integrated engineering data analysis
based on AutomationML data standard, and (2) The Ontology-based Cross-disciplinary
Defect Detection (OCDD) tool, which aims to provide a defect-detection mechanism for
in Multi-Disciplinary Engineering Environment (MDEE) settings.

This chapter shows that differences in use case characteristics can have a big impact on
the choice of OBDI variant for the application. To this end, the decision tree presented
in Chapter 3 shown to be very helpul in deciding the most suitable OBDI variant for
the use cases: the single-ontology OBDI for AutomationML Analyzer use case and the
multiple-ontology OBDI for OCDD use case.

In both cases, we evaluate the OBDI variant decision with the development of a working
prototype. Afterwards, we populate the prototype with real-world data from our industry
(for OCDD) and research partners (for AutomationML Analyzer), and successfully
conducted feasibility studies on both prototypes.

In addition to the two applications, we discuss the comparison between Semantic Web
(SW) and alternative technologies for MDEE use cases. Toward this end, we provides
both generic and a more in-depth comparison between technologies, showing advantages
and drawbacks from these approaches.
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CHAPTER 5
Knowledge Change Management
in Multi-Disciplinary Engineering

Environments

This chapter builds on the foundation of Ontology-Based Data Integration (OBDI)
provided in the Chapter 3 and 4 to develop a solution approach for Multi-Disciplinary
Engineering Environments (MDEEs) to answer (RQ2): How to provide sufficient support
for Knowledge Change Management in Multi-Disciplinary Engineering Environments
beyond the Ontology-Based Data Integration approach?.

Parts of this chapter is published in several publication venues. We first propose the
definition of a generic framework for Knowledge Change Management (KCM) in MDEE
as an extension of OBDI [Eka16] based on a set of requirements derived from MDEEs
[ESSB15b, Eka15]. Further, we develop an instance of the framework using Semantic
Web (SW) technologies based on a use case of hydro-power plant engineering from an
industry partner [ESSB16] to conduct a feasibility evaluation.

5.1 Introduction
Knowledge is changing rapidly within the engineering process of Cyber-Physical Produc-
tion Systems, which is typically conducted within a MDEE. Such rapid changes lead
to the need for management and analysis of knowledge changes in order to preserve
knowledge consistency. Furthermore, KCM in MDEEs is a challenging task since it
involves heterogeneous, versioned, and linked data in a mission-critical fashion, where
failure to provide correct data could be costly.

Figure 5.1 depicts a problem setting of KCM in an MDEE, which could be seen as an
extended version of Figure 1.1 on the generic problem setting of an MDEE. Figure 5.1
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Figure 5.1: The Problem Setting of KCM in an MDEE

shows that domain specific engineers (shown on the right hand side) use their own tools,
data models, and data to create models that represent parts of the final system. Due
to this, the environment is highly heterogeneous, as it involves a wide range of data
models, processes, and tools that were originally not designed to cooperate seamlessly.
Despite this situation, as shown on the left hand side of Figure 5.1, there are engineers
and project managers that need to perform tasks that require access to project level
data as opposed to domain specific data alone. In response to this need, knowledge
engineers aim to integrate models and data from different engineering domains based on
the requirements and feedback of engineers and project managers. We addressed this
need in Chapter 3 and 4.

Additionally to the characteristics described above, the process of designing complex
mechatronic objects, such as Cyber Physical Production Systems, requires iterations and
redesign phases, which lead to continuous changes of the data and knowledge within
the MDEEs. To deal with these changes, industrial partners need to keep data versions,
move backwards to previous versions, and query different versions of large data (schema
and instances) from heterogeneous local data sources. Furthermore, the effective and
considerate propagation of changes is essential to ensure a consistent view of the project,
to minimize defects and risks, as well as facilitate acceptance of new solutions by domain
experts. To achieve this, changes originating from one engineering discipline need to
be communicated and coordinated with participants of other disciplines, where those
changes are relevant. Ideally, this communication should focus on high-level changes
(e.g., defined in terms of domain concepts such as “Motor X updated to new version”)
as opposed to low-level individual changes (i.e., change operations on versioned files) to
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ease the data analysis process. To cater for all these needs, a process and tool support
should be available for KCM within MDEEs.

Technology solutions for knowledge change management in general, and to some extent
for multi-disciplinary engineering in particular, have been proposed by research fields
as diverse as Database Systems, Model Based Engineering and the SW. Although the
general strengths and weaknesses of these solution approaches are somewhat known, a
precise comparison of how well they could support KCM in the MDEEs is hampered by
two major factors. Firstly, there is a lack of understanding of requirements for KCM
in MDEE, i.e., a characterization of the problem that needs to be solved. Secondly, a
baseline setting that would allow an objective comparison of these technologies is also
missing.

To overcome these shortcomings, in this chapter, issues related to KCM in MDEEs
are investigated. Specifically, we aim to provide a KCM solution that built on the
OBDI approach, which address the second research question of our thesis (RQ2): “How
to provide sufficient support for Knowledge Change Management in Multi-Disciplinary
Engineering Environments beyond the Ontology-Based Data Integration approach?”.

To this end, this chapter makes two important contributions. Firstly, it provides a
characterization of KCM by means of key requirements that should be fulfilled (Section
5.2). These requirements were derived from concrete industry specific projects where
the author investigated the need for KCM. Secondly, this chapter analyzes alternative
approaches from relational database and Model-Driven Engineering research communities
(Section 5.3) and related work from SW research communities in relation with the elicited
requirements (Sections 5.4).

Based on this analysis, the chapter provides a generic reference framework for solving
KCM (Section 5.5) that builds on top of the OBDI approach discussed in Chapter 3
and 4. This reference framework is suitable to play the role of a baseline for comparing
the strengths and weaknesses of implementations relying on either SW or other relevant
technologies, such as database or model-driven engineering. To evaluate our framework,
a prototype implementation based on SW technologies and its feasibility study are
presented in Section 5.6 and Section 5.7 respectively. We summarize the chapter in
Section 5.8.

5.2 Motivating Use Case

For illustration purposes, we provide an excerpt of the data (usually called a “signal list”)
exchanged between the engineers participating the engineering process of a hydro power
plant (Table 5.1).

A signal list is typically serialized and used by engineers as spreadsheet files. The header of
Table 5.1 represents the data schema used within the signal list, while its body represents
data instances. The combination of the first four columns (ANR, L1, L2, and SIG)
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Table 5.1: Excerpt of the engineering data of a power plant engineering process.

ANR L1 L2 SIG S3 DIFF MAX S3 GRADIENT MAX RESISTANCE VALUE
0 BAA30 GS100 XB01 0,025 0,8 500
0 BAA30 GS191 YB01 0,025 0,8 500
0 BAA30 GS191 YB02 0,025 0,8 500
0 BFB10 GS100 XB01 0,025 0,8 500
0 BFB10 GS100 XM01 0,025 0,8 500
0 BFB10 GS100 YB01 0,025 0,8 500

identifies the engineering signals/objects, while the later three (DIFF MAX, GRADIENT
MAX, and RESISTANCE VALUE) represent signal/object properties.

In such MDEEs, the project models and the project data change over time due to:

• Changes in the represented domains, such as the introduction/removal of
domain concepts (e.g., the removal of RESISTANCE VALUE column from Table
5.1 since it is not relevant anymore in the domain) or granularity changes (e.g.,
adding more detailed information than at signal level);

• Changes in the underlying data sources, such as when new data elements
become available and old data elements become obsolete (e.g., a new spreadsheet
file is produced to replace the old file without changing the data schema); or

• Changes in the intended use of the models and data, such as by changing
requirements of the currently supported tools or the design of new tools (e.g., a
new data schema is introduced and it has to be mapped into the old schema in
Table 5.1).

To address these changes, an integrated versioning of the MDEE data needs to be
prepared for facilitating this evolution and the consequent data transformations and
propagation, according to the evolved model.

5.2.1 Requirement Analysis

Dealing with the types of possible changes described above requires both activities for
managing and analyzing changes. In terms of change management, it is important to
record data versions and to be able to move backwards to previous versions, as well as
to query different versions of integrated data (schema and instances) originating from
heterogeneous local data sources.

Furthermore, on a more analytic related level, it is essential to enable the effective and
considerate propagation of changes across data from different disciplines. This will ensure
a consistent view of the project and it will minimize defects and risks. To achieve this,
changes originating from one discipline need to be communicated and coordinated with
participants of other disciplines, where those changes are relevant, especially in cases

84



5.2. Motivating Use Case

when data from different engineering disciplines is closely interlinked. The KCM approach
should also provide high-level change definitions instead of low-level ones to ease the
analysis process of data.

Based on our involvement and experiences in several industrial engineering settings where
KCM was required, we have identified a set of requirements and characteristics of KCM
in MDEEs as follows:

1. Closely interlinked knowledge. In the engineering process within an MDEE,
engineering models and data created by different engineering disciplines reflect
diverse views on the same system and are therefore naturally interlinked (e.g.,
an electrical signal activates a mechanical component as a result of executing a
certain software routine). Therefore, knowledge changes within one discipline may
require changes in other disciplines too due to this relation between data in different
disciplines. For example, a signal change in electrical engineering area will require
the adaptation of the corresponding machinery part (mechanical engineering) or
reprogramming of the relevant software components (software engineering).

2. Support for change management of large amounts of data. Engineering
projects typically deal with large amounts of data required to describe any complex
system. For example, an average size power plant design data contains data about
hundreds of thousands to tens of millions of signals. This already large data size is
further multiplied due to many iteration processes during the design time of the
system, which should all be versioned and stored [MSWB14].

3. Changes in schema and instances. In MDEEs, both data models (i.e., schema)
and actual data (instances) is likely to change. Indeed, the heterogeneity of data
sources within MDEEs and the environment’s dynamism mean that additional
tools could be added anytime, which may imply changes in the data models of all
engineering disciplines involved. At the same time, data instances (e.g., signals
with changed characteristics, added or deleted signals) within MDEEs will change
even more frequently due to revisions and engineering process iterations.

4. Change validation support. Given the mission critical nature of projects in
MDEEs, domain experts and engineers do not want to fully rely on automatic
change validation mechanisms (e.g., to decide whether changes initiated by one
discipline will break the overall consistency of the project wide data). Therefore,
instead of fully automated change validation, the involvement of domain experts in
the validation workflow is important for making critical decisions about changes.

5. High-level change definition and detection. Typical tools currently used in
individual engineering disciplines are able to produce report data that consists
of signal lists that represent those parts of a CPPS, which these specific tools
handle [VHLFR14]. The differences between two versions of signal lists represent
changes between them. However, it is challenging for a project manager to grasp the
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meaning of such low-level changes in data, i.e., signal changes. Instead, they would
highly benefit from changes to data being presented in a more meaningful manner
as high-level changes. Such presentation could be achieved in terms of domain level
common concepts, e.g., relocation of specific engine to different machine rack.

6. Support for data evolution and versioning. A KCMs approach should be
able to address both data evolution and data versioning. Data evolution focuses
on how to modify the data in response to the changes in the surrounding. Data
versioning covers the management of different versions of data schema caused by
the data evolution [NK04, Rod95].

5.3 Alternative Technologies
This section introduces brief summaries of approaches related to the KCM in the engi-
neering domain from the Database systems (Section 5.3.1) and Model-Driven Engineering
research communities (Section 5.3.2).

5.3.1 Database Schema Evolution and Versioning

One of the earliest works concerning knowledge change management is reported in
the field of database systems. Roddick summarized the issues of schema evolution
and versioning in database systems [Rod95]. He explains that change management is
closely related to data integration, claiming that both areas are the flavors of a more
generic problem: using multiple heterogeneous schemata for various tasks. To solve
the issues suggested by Roddick, there were several proposed conceptual approaches.
One of them is the Hypergraph Data Model (HDM), which targets schema evolution
for heterogeneous database architectures [MP02]. The HDM schema consists of Nodes,
Edges, and Constraints. Nodes and Edges in the schema define a labeled (Nodes require
unique names), directed (the Edges may link sequences of Nodes or Edges), and nested
(Edges could link an unlimited number of other Nodes and Edges) hyper graph, while
Constraints define a set of Boolean valued queries over the HDM schema.

In the field of MDEEs, there are limited concrete solutions that are utilizing relational
databases as the basis for managing and analyzing changes in engineering data from
multiple engineering datasets. One exception is the Engineering Database (EDB), a
solution based on relational databases that was introduced as an attempt to provide
versioning management of engineering data using database technology [MWZ+10]. The
Engineering Database is a concrete implementation of Engineering Knowledge Base
(EKB) [Mos16]. The EDB stores engineering data as a flat database table, consisting of
objects, properties, values and important metadata information such as change commit
information and provenance from the original data sources. The approach is capable of
handling closely linked knowledge from different engineering disciplines.

To conclude, the maturity of database approaches in general provides a solid basis
for handling change management of a large number of data. Additional KCM related
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solutions from database systems, not covered in this chapter, are also worth further
investigations.

5.3.2 Model-Driven Engineering Co-Evolution

A lot of attention has been given to the comparison and versioning of software models in
the Model-Driven Engineering research community, with more than 450 papers written
in this area1, covering various topics such as change modeling and definition of evolution
frameworks. Similarly to other research areas, the domain of Engineering is not the main
application area of these works. An exception is the work of Göring and Fay, which
proposes a meta-model language for modeling temporal changes of automation systems
together with their physical and functional structures [GF12]. Their work extends the
IEC 81346 standard [IEC09], which already includes product, function and location
aspects. In the approach, however, they do not explain how to map their meta-model to
other meta-models that are potentially used in the same system and therefore it is not
clear how data integration is achieved.

Another line of Model-Driven Engineering work focuses on change propagations of
model variants of a single meta-model, to ensure the consistency of changes as well as
the adoption of relevant changes in different model variants [KKT14]. Recently, the
authors of [BBM+15] provide means of a prototype-based model co-evolution, showing
the capability of providing various levels of validation configuration to be applied in a
top-down coevolution approach.

Meyers and Vangheluwe propose one of the most recent frameworks for evolution of
model and modeling languages, which claim that any possible model co-evolution could
be derived as a composite of the basic co-evolution schema shown in Figure 5.2 [MV11].
It consists of a model m that conforms to meta-model domain (MMD). Model m needs to
be transformed into T(m) via transformation T, which again will conform to image meta-
model (MMi). This co-evolution framework could theoretically address the requirements
of knowledge change management within closely linked discipline data.

In conclusion, these works from the Model-Driven Engineering research community
partially address the requirements of KCM in MDEE as mentioned in Section 5.2. Benefits
of using Model-Driven Engineering techniques for knowledge change management in
engineering projects include the availability of a good tool support and solid theoretical
frameworks [MV11, TELW14].

5.4 Related Work

In this section, we summarize related work from the SW research community in terms
of the KCM requirements stated in Section 5.2. Table 5.2 provides an overview of the
extent to which each requirement is addressed by each work we overview.

1http://pi.informatik.uni-siegen.de/CVSM
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m T(m)

MMI

T

MMD

Figure 5.2: Basic co-evolution schema, adapted from [MV11]
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[Kle04] X X X
[Sto04, SM02] X (X) X X X X X X
[NCLM06] X X X X
[PFF09b] X (X) X X X X X
[GPS10] X X X X X
[Zab11] X X X X

[VCV+13] X X X X
[HRTM13] X X X X (X) X X (X)
[GHU14] X (X) X X X

Table 5.2: Related work on KCM requirements
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• Closely interlinked knowledge. Closely interlinked knowledge is a condition
where changes in one ontology within a system of interlinked ontologies may require
propagation of the changes to the linked ontologies to maintain the global validity
of the knowledge. This is not the typical setting for KCM in SW community, which
primarily focuses with open web data. This difference is reflected within most
of traditional [GHU14, GPS10, Zab11, PFF09b] or multiple loosely interlinked
ontologies [HRTM13, Kle04, RSDT08, VCV+13], where changes in an ontology are
independent and do not have to be propagated in order to maintain the validity of
overall knowledge within a system. The work of Stojanovic is an exception to this
trend, where she provided an attempt to propagate changes to relevant ontologies
[Sto04]. However, her work is not further continued.

• Support for change management of large amounts of data. Horridge et al.
provide an answer to the large-scale challenge of the changed data by introducing
binary formats for storing ontology data and differences between ontology versions
[HRTM13]. Their approach is claimed to handle more than one million triples. A
different approach is adopted by Graube et al., where named graphs are used to
store changes and ontology versions [GHU14]. Their approach did not scale well
for change data analysis, since the query performance on the change data dropped
significantly after several thousands of triples. Papavassiliou et al., on the other
hand, successfully experimented their approach on almost 200k triples [PFF09b].
While the current approaches seem promising, given the closely-coupled nature of
the engineering data, these approaches need to be re-evaluated in order to asses
their feasibility.

• Changes in schema and instances. Instance changes are required for addressing
changes in the underlying data sources, whereas schema changes are crucial for
addressing changes in the represented domains and changes in the intended use of the
models and data, as previously mentioned in Section 7.2. Several ontology change
management approaches are already able to deal with both schema and instance
level changes [HRTM13, PFF09b, Sto04], where other approaches either focus on
schema [GPS10, NCLM06, Zab11] or focus on instances [GHU14, VCV+13].

• Change validation support. This aspect of validation provides a mechanism
to ensure the validity of data changes according to a predefined set of validation
rules (automatic validation) or in combination with domain experts’ involvement
according to certain workflows (semi-automatic validation). Several approaches
already support automatic change validations [HRTM13, Sto04]. Furthermore,
there are approaches from general SW concerning data validation and linked data
quality, e.g., RDFUnit [KWA+14] and Shape Expression [BGP14] that can be
adapted to support ontology change validation. In the direction of semi-automatic
validation, Stojanovic et al. proposed a mechanism to involve domain experts to
check the semantic validity of ontology changes over multiple ontologies [SM02].
This involvement of stakeholders is indeed important in the MDEE due to the
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mission-critical characteristic of the domain, as we previously mentioned in Section
7.2.1.

• High-level change definition and detection. One of the goals of KCM is
to provide stakeholders with a better decision support system. The high-level
change definition and detection process helps to achieve this goal by providing
a mean to detect and encapsulate atomic changes into more meaningful and
higher-level changes in terms of domain concepts, which are easier to understand,
especially to non domain experts. In this regards, Papavassiliou et al. have
developed an algorithm to support the detection of high-level changes from low-
level changes, simplifying the effort to analyze changes in large datasets and without
compromising performance [PFF09b]. Alternatively, Gröner et al. used a subset
of OWL-DL reasoning to recognize high-level change patterns [GPS10]. One of
the prerequisites for high-level change definition and detection is the formalization
of low-level changes. This formalization can be achieved by using triple patterns
[PFF09b, GPS10, VCV+13, HRTM13, GHU14] or specialized ontologies [PFF09b,
PHCGP09].

• Support for data evolution and versioning. Ontology evolution (i.e., how to
modify the data according to relevant changes in the surrounding) and versioning
(i.e., management of different versions of data schema and instances caused by ontol-
ogy evolution) are both important to the KCM process and should be available and
easily accessible by relevant stakeholders. Most of the ontology change management
approaches focus either on ontology evolution [GPS10, Kle04, NCLM06, Zab11] or
on ontology versioning [GHU14, VCV+13]. The rest of the approaches we surveyed
try to address both ontology evolution and versioning [Sto04, HRTM13].

To conclude, parts of KCM requirements in MDEE are already well explored in SW
research. Schema and instance changes, for example, are addressed already by most
approaches. Likewise, approaches for change detection, ontology evolution and ontol-
ogy versioning are well researched and reported, providing ample options to choose
from. However, due to the open nature of web data, approaches for ontology
changes in closely interlinked knowledge settings are rarely investigated. Sim-
ilarly, approaches for handling changes of large amounts of data and validating changes
are currently limited, probably since these aspects are not the focus in current ontology
change management research. There are options to use general ontology validation
approaches for ontology change validation, i.e., by adapting RDFUnit [KWA+14] or
Shape Expression [BGP14] approach, but these adaptations are not yet seen as integral
part of general ontology change management approaches. We therefore see the need
to advance and combine existing approaches such that all KCM requirements are suffi-
ciently addressed. The KCM reference framework presented next provides a conceptual
framework to guide this process.
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5.5 The Generic Reference Framework
In order to address the challenges of providing support for KCM in MDEE, we propose a
generic reference framework shown in Figure 5.3. This is a technology agnostic process
that could be implemented with technologies drawn from SW or other related technologies,
such as databases or model-based engineering. Implementations using different techniques
but following this reference framework will be easier to compare and will support a more
objective comparison of the strengths and weaknesses of the available technologies. There
are KCM requirements for which we cannot cater at the process level but which should
be considered during the implementation of the reference framework (e.g., dealing with
large amounts of data).

The reference framework was derived by adapting and extending the OBDI approach
(cf. Section 2.3) thus closely connecting process steps for data integration and change
management. The reference framework is technology agnostic: for this, we replaced all
SW specific terms with general terms, e.g., ’ontologies’ with ’data models’. The extension
of OBDI consisted in adding four more phases. These phases were derived from relevant
related work and requirements and are shown as white boxes in the Figure 5.3 while
the original phases are shown as gray boxes. We utilize an IDEF-0 style diagram to
structure the proposed approach, in which processes are shown as boxes and resources
are shown as directed arrows. The diagram clearly defines input (incoming arrows from
the left hand side of the box), output (outgoing arrows to the right hand side of the box),
consumable resources and stakeholders (input arrows from the bottom of the box) and
standards (incoming arrows from the top of the box) used in the reference framework.

There are three domain expert roles involved in the framework: Knowledge Engineer,
Project Manager, and Domain Expert. Input and output of the system is shown in the
left and right side of the diagram respectively. In the following, we explain the seven
main phases of the KCM reference framework:

1. Local Data Model Definition. This phase requires the Knowledge Engineer
and Domain Experts to translate the local tools data structure (e.g., MCAD model
for mechanical engineer) to the local data model instance definition.

2. Common Data Model & Mapping Definition. Knowledge Engineer and
Domain Expert will define the common data model and its mappings to the local
data models. To support this goal, vocabularies and standards are required to
formalize the data model and mapping.

3. Local Data Model Extraction, Transformation and Load (ETL). With
regards to the heterogeneous domain tools and their data formats within the MDEE,
we need to provide the suitable extract, transform, and load (ETL) functions phase
to produce the data in the required data model formats.

4. Change detection. This phase focuses on the detection of low-level (i.e., triples)
and high-level (e.g., semantic and domain-specific) changes between two versions of

92



Knowledge
Engineer (KE)

Project 
Manager (PM)

Domain
Experts (DE)

Common Data 
Model & Mapping 

Definition

Change 
Validation

Common Data Model 

& Mapping Definition

Common Data Model & 

Mapping Definition

Change 
Detection

Local Data ETL

Local data

Detected Changes

Changes 
Propagation

Latest Version of Data

Validated 
Changes

Validation Rules & 
Workflows

Latest Version of Axioms

Validation Results

Data Store & 
Analysis

Relevant Data 
for Change Analysis

Knowledge Change Queries

Domain Tools 
Input Data

Analysis 
Results

High-Level 
Changes Definition

Relevant Changes to Domain Tools

Local  Data 
Model Axioms

Domain Knowledge & 
Analysis Requirements

DE KE

KE

DE KE

KE

(C) (W)

(R) (W)

(Q) (P)

(Q) Query (C) Contraints (R) Rules (W) Workflow (P) Change Representation

PM KE

3

4

5

62

7

(Q) (R)

(C) (R)

Local Data Model 
Definition

Local Data Model 
Axioms

Local
Data
Structure

1

DE KE

DE KE

Figure 5.3: reference framework model for KCM in the MDEEs. The white boxes extend a typical OBDI process (grey boxes).



5. Knowledge Change Management in Multi-Disciplinary Engineering
Environments

engineering data. An important point to consider within this phase is to balance
the expressiveness of high-level changes defined as input and the computational
complexity of the detection algorithm, as mentioned in [PFF09b].

5. Change validation. The phase of change validation requires the definition of
constraints for preserving the validity of data in the local (e.g., mechanical engi-
neering) and global data models (e.g., power plant). Workflow definition is another
important element, in order to configure involvement of validation components
(e.g., constraint validation engine and domain experts) in the validation process.

6. Change propagation. Changes in the MDEE need to be propagated to the
relevant components (i.e., common data model and other relevant local data
models). This phase requires the common data model and mapping definitions, as
well as validated changes. The knowledge engineer will configure the propagation
based on the mapping definitions to make sure that no corrupted or irrelevant data
is included in the propagation process.

7. Data Store and Analysis. The goal of this phase is to enable relevant stakeholders
(e.g., project manager) to access and analyze the data and its changes within the
projects. The changed data will be stored within a designated data store. Examples
of queries that will be relevant to this data are: (1) Provenance information of the
changes (e.g., committer, date, reasons of change), (2) Change overview on specific
objects, and (3) Analysis of completeness and inconsistencies over changes.

5.6 Semantic Web-Based Prototype
To demonstrate the feasibility of the proposed framework explained in Section 5.5
within a real-world scenario and answering our RQ2: How to provide sufficient support
for Knowledge Change Management in Multi-Disciplinary Engineering Environments
beyond the Ontology-Based Data Integration approach?, an implementation in a specific
technology is needed. To address this challenge, this section reports on the development
and evaluation of our SW-based KCM tool prototype as an instance of the framework.
This section consists of the following: Section 5.6.1 describes the use case of engineering
Hydro Power Plants as an example of MDEEs, Section 5.6.2 reports on the KCM
prototype development using SW technologies, and Section 5.7 discusses the feasibility
evaluation of the prototype.

5.6.1 Use Case: Hydro Power Plant Engineering

This section presents a multi-disciplinary engineering use case provided by one of our
industrial partners developing, creating, and maintaining hydro power plants.

A hydro power plant manages from 40 to 80 thousand signals, depending on the size of
the commissioned plant, in different tools of different engineering disciplines. Signals
consist of structured key value pairs that represent communication links between different
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power plant components (an example of a signal list is shown in Figure 5.1). They are
one of the core information artifacts in the course of developing power plants. In order
to exchange data with engineers from different engineering disciplines, signal information
is typically exported from the discipline-specific tools in machine-readable formats, such
as Comma Separated Values (CSV) or eXtensible Markup Language (XML), to be used
by other disciplines.

The engineering of the hydro power plants is conducted in parallel. Engineers from
different disciplines work on their own part but rely on the exchanged signal data to
coordinate their work on the system with other engineering teams. Here, the challenge of
providing a KCM arises due to the heterogeneity of terms used for the same concept and
the implicit linking between engineering objects in different engineering specific tools. For
example, information about a CPU is stored as part of the composite programmable logic
controller (PLC) address in EPLAN (electrical engineering tool) data, while it is stored
as property LK_BSE in OPM (mechanical engineering tool) data. Such heterogeneous
representations of the same engineering artifact within diverse engineering models raises
the need for propagating changes across data from different engineering disciplines. In
this particular example, changes to the CPU at the mechanical level (e.g., replacement
with a new version) must be communicated with the electrical engineers to update their
models accordingly.

In the hydro power plants use case, there are two engineering specific tools used to
produce signal information: (1) OPM is used in mechanical engineering to develop the
plant topology and its components and (2) EPLAN2 is used by electrical engineers to
develop the electrical component of the power plants. Additionally to signal information,
relevant general information includes information about the engineering project, customer,
and engineering activities.

To sum up, in this use case there are three different local data sources whose changes
need to be managed in an integrated way:

• Mechanical Engineering Data (OPM). The mechanical data source is available
as CSV files, exported from the OPM tool. It represents the design of the overall
structure of the mechanical components. However, depending on the project type,
the exported file can also contain information about software components.

• Electrical Engineering Data (EPL). The electrical data source is available
as CSV files, exported from the EPLAN tool used in the electrical engineering
domain. This data contains information about the electrical setup and its link to
the mechanical components. It also contains specific information about electrical
components, which may or may not be useful to stakeholders from other engineering
domains.

2http://www.eplanusa.com/
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Figure 5.4: The hydro power plant engineering process

• Project Management Data (PMO). This data source is available as spreadsheet
files that contain the project information as well as engineers and customers involved
in the project. This document is used across the system for project identification
purposes.

Figure 5.4 shows a simplified process of the use case. This process is iterative, i.e., it
will be conducted repeatedly, and concurrent, i.e., engineers from different engineering
disciplines may be working at the same time. The project steps indicated with numbers
on Figure 5.4 are:

1. The project manager commits the initial project information into a KCM enabled
system on request from the Client.

2. A mechanical engineer reads the initial project information from the system, and
designs the mechanical part of the plant based on project information.

3. The mechanical engineer commits the first version of mechanical plant design into
the system.

4. An electrical engineer retrieves the plant topology and mechanical component
design from the system, and designs the electrical components of the plant.

5. The electrical engineer commits the electrical components design of the plant into
KCM enabled system.

6. The project manager retrieves the hydro power-plant engineering data (including
changes’ information) from the KCM enabled system and analyzes the data to
understand the project progress.
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Figure 5.5: The SW-based KCM solution for hydro power plant use case

5.6.2 KCM Prototype Development

In this section, we will explain the application process of the framework (cf. Section 5.5)
into a solution prototype for the hydro power plant use case using SW technologies. In
the prototype development, we are using the following assumptions:

• Fully automatic process. In order to simplify the KCM process, we assume that
it is fully automatic, i.e., no human interaction is accommodated, for example,
for validating the proposed changes. It is essential to keep it this way to avoid
cluttering the process in this feasibility study.

• Strict importance hierarchy of local data sources for change propagation. We
assume that there exists a strict order for propagating changes among the local
data sources. In our use case, Project Management Ontology (PMO) holds the
highest priority, followed by OPM and EPL data. The strict importance hierarchy
reduces the risk of deadlock during change propagation of data and minimizes the
need of human interaction with the prototype.

The prototype contains four RDF repositories, one for each local data model: OPM
for mechanical data, PMO for project management data, EPL for electrical data, and
Common Concept Ontology (CCO) for the common concepts. It relies of the following
three components that build on top of semantic data repositories: (A) Local Data
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Management, including local change detection and validation, (B) Transformation and
Change Propagation mechanisms between local and common concept repositories, and
(C) Common Data Management, including CCO change detection and validation. These
components are shown in Figure 5.5 and described next.

A. Local Data Management

CSV to one-class RDF transformation. We first clean the CSV input data using
OpenRefine3, a cleaning tool for tabular data. In this process, we clean up split the data
to extract only relevant data from the raw CSV input data. Afterwards, we convert each
CSV from the local data source into an RDF Graph with one concept and number of
properties using CommonCSV4, a CSV manipulation library for Java, and Apache Jena5,
a Java RDF API, and store it in the repository. While the one-class RDF does not provide
much semantic information in the repository, it allows easier data transformation between
different data repositories (i.e., between local data and CCO). We treat this one-class
RDF as the local data model for each engineering discipline. This step corresponds with
the 1st and 3rd phases in our generic reference framework shown in Figure 5.3.

Local Change Validation. The next step is to conduct the validation of the input data.
There are several domain rules that are applied here, e.g., Kraftwerk-Kennzeichensystem
(KKS)6 keys data has to be complete for OPM data and PLC address has to be complete
for EPL data. If the data is not adhering to the domain rules, it will be rejected. The
validation is implemented using SPARQL queries, and executed before any other process
is conducted. This step corresponds with the 5th phase in our reference framework.

Local Change Detection. We first detect the low-level changes (i.e., triple-level
changes) between the new input and the current version of stored local data. We then
transform these triple-level changes to conform with our change representation format,
which combines PROV-O [BCC+13] for engineering document provenance (i.e., commit
versions from different disciplines) and Change Set ontology for content changes (i.e.,
triple level changes). This step corresponds with the fourth phase in the reference
framework.

B. Transformation and Propagation Management

Transformations between various RDF data sources (e.g., between local and global
level data) are required to enable efficient change propagation of engineering data. In
the following we explain the RDF-to-RDF transformation mechanism and the change
propagation steps that utilize this transformation.

RDF-to-RDF transformation. Because we store the local data in one-class RDF a
transformation mechanism is needed to transform it into CCO data and vice-versa. There

3OpenRefine: http://openrefine.org
4CommonCSV: https://commons.apache.org/proper/commons-csv/
5Apache Jena: http://jena.apache.org
6https://www.vgb.org/en/db_kks_eng.html
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are several options to execute the transformation, including SPARQL Construct and
SPIN. In the end, we choose SPARQL Construct since it is a W3C standard. This step
corresponds with the 2nd phase in our generic reference framework.

Change Propagation. In the use case, we use RDF-to-RDF transformations to propa-
gate the data from local to common model and from the common model to other valid
models. Additionally, the metadata information about the change is also propagated to
keep local repositories aware of the relevant changes coming from other data sources.
This step corresponds with the sixth phase in our generic reference framework shown in
Figure 5.3.

C. Common (Global) Data Management

The Hydro Power Plant common concept ontology (CCO) represents the common (global)
information relevant for different engineering disciplines involved in the use case.

The CCO Ontology. The CCO consists of two major parts. First, as depicted on the
left hand side of Figure 5.6, the ontology contains concepts that describe organizational
level aspects. These concepts include the Project, the Customer for whom the project
is performed, as well as the Engineers (and Engineering Roles) necessary to realize the
project. Engineers conduct Engineering Activities, which take as input and create as their
output various Engineering Documents (e.g., signal lists, design documents). Engineering
documents are versioned and reviewed by the customer, thus constituting an important
exchange medium between the customer, who requested a project, and the engineering
team executing that project. This step corresponds with the second phase in our reference
framework.

Second, the CCO describes various Engineering Objects created during the engineer-
ing project (right-hand side of Figure 5.6). The ontology identifies different types of
engineering objects, such as Software Objects, Mechatronic Objects, and Electrical
Objects.

The ontology also clarifies the various parts of a mechatronic object, their internal
structure and connections among them. To that end, the ontology captures different
types of Mechatronic, Electrical and Software objects, and details their internal structure
at a high level of abstraction. Physical Signals and Logical Signals represent the links
between engineering objects created by different engineering disciplines and how these
diverse components can command or exchange data with each other. In addition to these
signals, detailed descriptions of the various mechatronic components are also available as
engineering documents (e.g., PLC programs for software objects, or ECAD diagrams for
the electrical wiring).

The internal structure of the components captured by the ontology emerged during several
projects, and can also be represented using other approaches, such as the AutomationML
instance hierarchy or domain-specific structuring standards.
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Common Changes Validation and Propagation. When a new change from one
discipline is validated in that discipline, it will be transformed into CCO format and
checked against data from higher-level hierarchy. In our case, PMO data holds the
highest importance, followed by OPM data and EPL data. For example, if there are new
data coming in, it will always be accepted regardless of whether other local sources are
affected. On the other hand, if data from EPL is committed, if it updates of deletes data
from OPM or PMO, it will be rejected. This step corresponds with the sixth phase in
our reference framework.

Change Vocabularies and Data Storage

Previous components are built on top of a foundation of data storage facility and change
vocabularies to enable analysis of KCM data. We will explain both elements in the
following, which correspond with the seventh phase in our reference framework.

Change representation. Ontology changes can be represented either as triples (e.g.,
DBPedia change representation [SMLH10]) or specialized ontologies for change repre-
sentation (e.g., change representation for OWL2 [PHCGP09], CHAO [NCLM06] and
Talis change set7). For change representation, W3C provides a recommendation for
provenance information (PROV-O [BCC+13]) that can be used in conjunction with the
change representation ontologies. In our use case, we decided to use the combination or
PROV-O and Talis change set to represent the changed data.

PROV-O (together with FOAF ontology) is integrated with the PMO data (e.g.,
cco:EngineeringDocument is a subclass of prov:Collection class), while all
triple changes between two engineering documents are represented as Talis change set (i.e.,
cs:ChangeSet is the range of prov:hadMember property of cco:Engineering-
Document). A complete overview of the change representation is shown in Figure
5.7.

Table 5.3: Set of commit sequences for the feasibility evaluation.

Person Activity Document Type
Andy pm_design_00 andy-pm_design_00-pmo.csv PMO
Brad m_design_00 brad-m_design_00-opm.csv OPM
Casey e_design_00 casey-e_design_00-epl.csv EPL
Casey e_design_01 casey-e_design_01-epl.csv EPL
Casey e_design_02 casey-e_design_02-epl.csv EPL
Casey e_design_03 casey-e_design_03-epl.csv EPL
Brad m_design_01 brad-m_design_01-opm.csv OPM
Brad m_design_02 brad-m_design_02-opm.csv OPM

7http://vocab.org/changeset/
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Figure 5.7: Change representation in hydro power plant use case

5.7 Feasibility Study

To test our prototype8, we extract a portion of data from hydro power plant local data
sources. Table 5.3 shows a generic information sheet about the data to be inserted into
three local data sources. We commit the data according to the sequence in Table 5.3, and
we provide invalid data on purpose for two of the steps above (marked with bold-italic
text) to check the validation step.

The result from our feasibility evaluation shows that the following stages of the KCM
framework were successfully covered: the CSV data was successfully transformed into
local RDF data (1st and 3rd phases of the KCM generic reference framework), it was
possible to detect data change from its previous versions (4th phase), the data was mapped
to the common data (2nd phase), changes from both local and global perspectives were
validated (5th phase), changes were propagated to other local data sources (6th phase),
as well as stored and analyzed (7th phase).

8The source code of the prototype and our feasibility study is available at
https://gitlab.isis.tuwien.ac.at/Ekaputra/schimbare-old

102



5.7. Feasibility Study

In the process of feasibility evaluation, we define a set of SPARQL construct queries
for transforming and propagating data from local to common model (e.g., except the
SPARQL Construct for transforming PMO to CCO data as shown in Listing 1) and
vice versa, and also a set of SPARQL queries for validating changes both in local and
common models. The time required for insertion, propagation and querying is negligible
due to the sample size, but the scalability of the approach should be checked with larger
datasets.

Listing 5.1: SPARQL query to find which objects have changed in the last commit.
PREFIX rd f s :<http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX owl :<http ://www.w3 . org /2002/07/ owl#>
PREFIX cs :<http :// pur l . org /vocab/ changeset /schema#>
PREFIX prov :<http ://www.w3 . org /ns/prov#>
PREFIX sch :<http :// juang . id / onto logy / schimbare#>

SELECT d i s t i n c t ? type ( count (? sub j e c t ) as ? subject_count )
WHERE
{

GRAPH sch :DIFF
{

?commit prov : hadMember ? change .
OPTIONAL {

?commit2 prov : wasRevisionOf ?commit .
}
FILTER ( !BOUND(? commit2 ) ) .
? change a cs : ChangeSet .
? change cs : subjectOfChange ? sub j e c t .

}
GRAPH sch :ABOX
{

? sub j e c t a ? type
}

}
group by ? type

After all the data were committed, the repository allows queries related to changes to be
asked to the CCO repository. Example queries are:

• What are the objects that have been changed in the last commit? (cf. Listing 5.1)

• How many racks added in the overall commit? or

• How many changes occurred to a signal named “KOM/0. BBA00.GS104.XB01_050.04.02.5.07”
in the last 4 commits?
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In Listing 5.1, we show the query for summarizing the number of objects that have
changed in the last commit, grouped by their type as shown in Figure 5.6. In the
prototype, we used several named graphs to represent different parts of the data, e.g.,
sch:DIFF to store the changes, sch:ABOX to store the latest version of the data, and
sch:TBOX to store the CCO ontology. These named graphs are reflected in the query
shown in Listing 5.1.

Two example results are shown in the Table 5.4 and 5.5, representing the object changes
from the second and third commit in our scenario (cf. Table 5.3) respectively.

Table 5.4: Object changes for the second commit

Object type Object count
<http://data.ifs.tuwien.ac.at/engineering/cco#Channel> 5
<http://data.ifs.tuwien.ac.at/engineering/cco#Rack> 2
<http://data.ifs.tuwien.ac.at/engineering/cco#Cpu> 1

<http://data.ifs.tuwien.ac.at/engineering/cco#PhysicalSignal> 13
<http://data.ifs.tuwien.ac.at/engineering/cco#EngineeringProject> 1
<http://data.ifs.tuwien.ac.at/engineering/cco#SensorActuator> 13

<http://data.ifs.tuwien.ac.at/engineering/cco#System> 2
<http://data.ifs.tuwien.ac.at/engineering/cco#Position> 13
<http://data.ifs.tuwien.ac.at/engineering/cco#Plant> 1

<http://data.ifs.tuwien.ac.at/engineering/cco#EquipmentUnit> 5
<http://data.ifs.tuwien.ac.at/engineering/cco#ElectricalComponent> 1

Table 5.5: Object change for the third commit

Object type Object count
<http://data.ifs.tuwien.ac.at/engineering/cco#Channel> 6
<http://data.ifs.tuwien.ac.at/engineering/cco#Cpu> 1
<http://data.ifs.tuwien.ac.at/engineering/cco#Rack> 1

<http://data.ifs.tuwien.ac.at/engineering/cco#PhysicalSignal> 8
<http://data.ifs.tuwien.ac.at/engineering/cco#EngineeringProject> 1
<http://data.ifs.tuwien.ac.at/engineering/cco#SensorActuator> 8

<http://data.ifs.tuwien.ac.at/engineering/cco#System> 1
<http://data.ifs.tuwien.ac.at/engineering/cco#Position> 8
<http://data.ifs.tuwien.ac.at/engineering/cco#Plant> 1

<http://data.ifs.tuwien.ac.at/engineering/cco#EquipmentUnit> 2
<http://data.ifs.tuwien.ac.at/engineering/cco#ElectricalComponent> 1

5.8 Summary

In this chapter, we have defined the context and challenges of KCM in MDEEs. To
address the challenges, we have identified key requirements and provided an overview of
techniques to address these challenges from the SW research community.

Furthermore, we generalize and extend the OBDI approach, previously proposed for
the purposes of data integration, to develop a generic reference framework of KCM
in MDEEs. This generic and technology-agnostic reference framework is meant to lay
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the foundation towards a solution for providing a fully functional KCM solution for
MDEEs, which address our second research question of the thesis (RQ2): “How to provide
sufficient support for Knowledge Change Management in Multi-Disciplinary Engineering
Environments beyond the Ontology-Based Data Integration approach?”.

To evaluate our framework, we implemented a prototype based on the framework using
SW Technologies to show its feasibility for MDEEs. Through creating a prototype, we
have shown that it is possible to adapt the reference framework for a real-world scenario.
For it to be adopted, however, the current prototype needs to be improved and better
evaluated to address the challenges arising from the use case, especially with regards to
the scalability and ease of use.
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CHAPTER 6
Conclusion

The fourth industrial revolution or “Industrie 4.0” brings forth the need for more flexible
production systems that requires strong data integration between involved stakeholders
and engineering disciplines. The lifecycle of such production systems typically happens
in a Multi-Disciplinary Engineering Environment (MDEE), where stakeholders from
various engineering disciplines work together in a highly heterogeneous environment. In
an MDEE, collaboration among stakeholders requires synchronization and exchange of
data produced by different tools and methods specific to their respective engineering
disciplines. Despite of this, cross-disciplinary knowledge in MDEEs often available only
implicitly, which results in tedious tasks of manually retrieving and processing such
knowledge. Therefore, addressing the challenge of providing a strong data integration
support and advanced applications based on this integration, such as Knowledge Change
Management (KCM) in MDEEs is an important and timely topic.

The work in this thesis investigates mechanisms and methods from Semantic Web (SW)
research to support data integration in MDEEs as well as advanced applications, such
as KCM and cross-disciplinary data analysis that build on top of the data integration
foundation.

6.1 Reviewing the Research Questions

In the introductory chapter, we formulated the following central research question.

Which mechanisms and methods from Semantic Web technologies
are suitable to address challenges of Data Integration and Knowl-
edge Change Management in Multi-Disciplinary Engineering En-
vironments?
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In order to answer this research question, we will discuss the two more specific research
questions in which the general question is split up.

RQ1: “How suitable are the Ontology-Based Data Integration approach vari-
ants for the diverse data integration scenarios in Multi-Disciplinary Engi-
neering Environments?”

When first considering the central research question, the answer for the data integration
part seemed to be straightforward: there is already an established method called Ontology-
Based Data Integration (OBDI) with its three variants: single-ontology, multiple-ontology,
and hybrid, where the hybrid variant was recommended for typical use cases due to the
strengths and benefits that combines the other two variants [WVV+01].

However, from our initial investigation, we found that different OBDI variants are being
adopted in Multi-Disciplinary Engineering Environments (MDEEs)’s use cases. Such
findings motivated us to conduct a literature study on the applications of OBDI in
MDEEs as reported in Chapter 3.

In the study, we further our understanding on how OBDI approaches are being applied
in MDEEs, including the technical realization options and the characteristics of data
integration scenarios in the environment. Additionally, we analyze the strengths and
limitations of each OBDI variant against MDEE scenarios’ characteristics that we observe.
During the literature study process, we notice an additional OBDI variant of Global-
as-View (GAV) that is not yet covered, and propose to add it to the existing typology
of OBDI. Finally, the study proposes a guideline to support users in choosing the most
suitable OBDI approach variant based on their MDEE scenario characteristics.

To validate our understanding of the OBDI variants and their suitability in MDEE, we
develop concrete OBDI prototypes to address challenges of advanced applications built on
data integration, such as engineering data analysis and cross-discplinary defect detection.
Chapter 4 reports on selected prototypes, their design and developments, as well as
justifications on why we select a certain OBDI variant for each use case.

RQ2: “How to provide sufficient support for Knowledge Change Manage-
ment in Multi-Disciplinary Engineering Environments beyond the Ontology-
Based Data Integration approach?”

While OBDI allows development of Knowledge Graphs in a MDEE as a basis for advanced
applications, it does not fully support the management of knowledge graph changes,
partly due to fact that the topic of Knowledge Change Management (KCM) has primarily
been investigated for the single-ontology variant of OBDI. This is an important topic
in MDEE, especially in cases where changes are integral part of the routine engineering
process.

As an effort to address this issue, Chapter 5 focuses on providing KCM capabilities for
MDEE scenarios that build on the glsgav OBDI approach. The chapter begins with the
definition of a set of KCM requirements for MDEEs [ESSB15b] and follows it up with an
analysis of related works on KCM from the Semantic Web (SW) research community

108



6.2. Limitation of the Thesis

with regards to the requirements. Based on this analysis, we design and develop a generic
framework for KCM for MDEE that builds on the OBDI components. [Eka16].

In order to evaluate the proposed framework, we instantiate the framework as a research
prototype and conduct an initial feasibility study in the use case of a hydro-power plant
engineering process, which is based on a real-world use case from our industry partner
[ESSB16].

To sum up, based on the presented contributions, the central research question can
be answered positively, since we show that the OBDI variants –including the newly
observed GAV– are particularly suitable to support various data integration scenarios in
MDEEs and our proposed KCM framework for MDEEs could support the management
of knowledge change beyond single-ontology OBDI approaches.

6.2 Limitation of the Thesis
The work in this thesis has a number of limitations. With regards to RQ1, our work
focused on the applicability of the Ontology-Based Data Integration (OBDI) variants in
Multi-Disciplinary Engineering Environments (MDEEs) use cases. Due to this focus, we
do not provide comprehensive comparisons between OBDI approaches and alternative
technologies. Nevertheless, we include comparisons of Semantic Web (SW) technologies
in general to other alternative technologies used in MDEEs (Section 4.3). We also address
the topic of alternative technologies for Knowledge Change Management (KCM) in
Section 5.3.

In addressing RQ2, we spent significant efforts in providing a solid conceptual approach
towards supporting the KCM processes in Multi-Disciplinary Engineering Environment
within the context of the Christian Doppler Laboratory “Software Engineering Integration
for Flexible Automation Systems” (CDL-Flex) project. However, due to the shift of
focus in the project towards its end in 2016, the resources –especially from our industry
partners– were only scarcely available to support the development and evaluation of the
KCM prototype. Therefore, we could only conduct the prototype development and its
evaluation to a limited extent.

6.3 Future Work
In this section, we outline our planned future works in our two main research topics:
Ontology-Based Data Integration (OBDI) and Knowledge Change Management (KCM).

6.3.1 Ontology-Based Data Integration

An Extension of the OBDI Survey Beyond the Current Domain. Currently, the
scope of our survey and its results is limited to the engineering domain, more specifically in
those applications within the boundary of the Multi-Disciplinary Engineering Environment
(MDEE) settings. We are cautiously optimistic that our findings can be relevant beyond
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this specific domain. To this end, we would like to extend the validation of our proposed
guideline with general data integration scenarios. An initial work within this direction is
currently underway to conduct a similar survey in the Tourism domain.

Expressiveness of the Ontology Framework Another line of possible future work
is a research on the expressiveness of the ontology framework. We observed during our
literature study that several OBDI-based systems in MDEE use non-Semantic Web (SW)
ontology frameworks (i.e., KFL and F-Logic) in their application, arguing that Semantic
Web Technologiess (SWTs) are not sufficiently expressive for their data integration needs.
Since the limitations of SWTs have not been systematically investigated in this context,
we identify this issue as a research gap and therefore worthy of further research.

RDF Graph Transformations. During our thesis, we realize that there is a need for
an investigation on RDF graph transformation methods to provide a better support for
the mapping and transformation processes in GAV OBDI approach beyond SPARQL
construct with rules. Currently, a standardization effort in this direction is ongoing
within the SHACL W3C working group. To be precise, they are working towards SHACL
Advanced Features (AF)1, of which one of the main key component is RDF graph rules
for transforming RDF graph data.

OBDI Applications in Other Domains. In the last few years, we have been involved
in many discussions with colleagues and domain experts from within and outside of the
Semantic Web area. To this end, we discussed the possibilities to bring our knowledge of
OBDI to other application domains outside engineering, such as personal data manage-
ment (i.e., in the wake of the recent enforcement of EU-GDPR law [Eur16]) and Digital
Humanities.

As results, we have been involved and co-authored two research proposals on the topic
related to the application of OBDI in the domain of personal data management and
one short proposal in the digital humanities domain. One of these proposal, that
we wrote together with our colleagues from WU Wien2 and OwnYourData3 entitled
"EXPEDiTE: EXPloring opportunities and challenges for Emerging personal DaTa
Ecosystems: Empowering humans in the age of the GDPR - A Roadmap for Austria" has
been accepted and will be started on October 2018, focusing on the designing the blueprint
of personal data ecosystems in Austria using SWTs and based on OBDI principles.

6.3.2 Knowledge Change Management in Hybrid OBDI

KCM Tool Extensions. There is a clear need of the KCM support for OBDI approach
in the context of MDEEs, as explained in Chapter 5. To this end, we are planning
to extend of our current KCM framework prototype to fully support the necessary
requirements in MDEEs. Our current KCM prototye have shown the potential of our
approach to address some of the identified requirements. The prototype, however, requires

1https://www.w3.org/TR/shacl-af/
2WU Wien: www.wu.ac.at
3OwnYourData: www.ownyourdata.eu
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further developments to fully address all the requirements needed in MDEEs. To this end,
we are planning to identify and evaluate several improvements ideas and options based
on the recent advances on ontology change research, such as RDF Graph co-evolution
[FES+16] and Git-based RDF versioning [ARM16].

We also consider to reuse the Semantic Container concept coming from the aviation
domain [NGS+17] and adapt it for the KCM context. The Semantic Container concept
allows data providers to conduct efficient distribution without giving up control over its
usage while providing data consumers with efficient and well-managed mechanisms to
obtain and use data in a trustworthy and reproducible manner. Since Semantic Container
allows packaging data and processing capabilities into reusable containers, describing
the semantics of the content and permissible usage, and providing uniform interfaces, a
data set contains well-defined content and quality, as well as clear ownership and usage
provenance. We foresee that such approach would allow a more transparent, trustworthy,
and reproducible KCM approach, which is crucial in the safety- and mission-critical
domain such as industrial production systems engineering and beyond.
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