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Abstract

Bandpass filters are widely deployed in modern RF communication systems. The mathe-
matical concepts of these filters, their characteristic functions, and coupling matrices were
discussed by many authors. However, when realizing an actual 3-D filter structure, little
information is available in literature. This thesis presents a step-by-step guide for the
design of a resonant cavity based filter. It starts from a coupling matrix, continues with
the simulation of 3-D models and works its way up to manufacturing the filter. The de-
sign is optimized for in-house production, considering limits of the available machines and
materials. Therefore, the designed filter is not optimal from its electrical characteristics,
however critical parameters can be determined. Additionally, two common techniques for
loss reduction, i.e. polishing and silver-plating, are experimentally evaluated. To do so, a
simple resonant cavity is designed. To determine the influence on the losses, the unloaded
quality factor was estimated. Therefore, two common quality estimation methods were
applied on the cavity, utilizing different energy coupling mechanisms. However, these did
not show the desired accuracy. Consequently, a new method is developed, which considers
coupling mechanism imperfections. Polishing was found to give a negligible loss reduction,
while silver-plating indicates a quality factor improvement of 33%. Hence, silver-plating
was also applied to the filter in order to reduce the losses. With this technique, a filter
was designed with a very low insertion loss, which fits the requirements of the design.
Furthermore, this was achieved with minimized manufacturing effort, allowing to build it
with simple machines.
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Kurzfassung

In Kommunikationssystemen sind Bandpass Filter ein unersetzbarer Bestandteil. Die ma-
thematischen Konzepte dahinter, wie Eigenfunktionen und Kopplungsmatrizen, sind in
der Literatur detailliert beschrieben. Wie man diese mathematischen Konzepte in eine
3D-Filter-Struktur umsetzt, ist hingegen kaum dokumentiert. In dieser Arbeit wird eine
Schritt-für-Schritt Anleitung für den Entwurf und die Herstellung eines Bandpass Filters
präsentiert. Dabei wird mit der Kopplungsmatrix-Synthese gestartet, daraus eine 3D Si-
mulation des Filters durchgeführt und zuletzt das Filter gefertigt. Ziel dieser Arbeit ist es,
dieses Filter in Eigenfertigung zu realisieren, da heißt eine Anpassung der Filtergeometrie
an den Fertigungsprozess. Die elektrischen Eigenschaften werden somit nicht optimal sein,
jedoch ist es Ziel der Arbeit die kritischen Parameter zu identifizieren. Zusätzlich werden
zwei Techniken zur Reduzierung der Verluste eingesetzt: Oberflächenpolitur und Versil-
berung. Der Effekt soll anhand eines einfachen Resonators gezeigt werden. Dazu muss
die Güte bestimmt werden, wofür zwei aus der Literatur bekannte Methoden verwendet
wurden. Der Resonator wurde dazu mit unterschiedlichen Kopplungen gemessen. Da diese
beiden Methoden unzureichende Ergebnisse lieferten, wurde eine neue Methode entwi-
ckelt, die die Verluste in den Kopplungsmechanismen berücksichtig, was eine genauere
Gütebestimmung bewirkt. Es hat sich gezeigt, dass Oberflächenpolitur die Güte nur un-
wesentlich verbessert, jedoch eine Versilberung der Oberfläche bewirkt eine Erhöhung der
Güte um 33%. Deshalb wurde auch die Oberfläche des Filters versilbert. Somit wurde
ein Bandpass Filter mit sehr kleiner Einfügedämpfung erzeugt, was den Anforderungen
voll und ganz entspricht. Dies wurde erreicht mit minimalem Fertigungsaufwand, wodurch
dieses Filter nur mit einfachen Maschinen gefertigt werden konnte

ii



Acknowledgements

I would like to thank my thesis advisor, Assoc. Prof. Dr. techn. Holger Arthaber, for his
constant support and guidance. With his knowledgeableness, he has steered me in the
right direction throughout the research and writing of this work.

For all the advice and help they have provided, I would also like to thank all the mem-
bers of the Microwave Engineering Group at TU Wien, especially Project Ass. Dipl.-Ing.
Michael Zaisberger and Univ. Ass. Dipl.-Ing. Bernhard Pichler. In times of doubt, I could
always turn to them for guidance.

Last but not least, I would like to express my gratitude and eternal indebtedness to my
parents. Without their constant unlimited support throughout my academic path, this
achievement would be unreachable.

iii



Table of Contents

1 Introduction 1

2 Microwave Filters 3
2.1 Microwave Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Quality Factor (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Coaxial Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Cylindrical Waveguide Resonators . . . . . . . . . . . . . . . . . . . 5
2.1.4 Equivalent Parallel Lumped Elements RLC Circuit . . . . . . . . . . 6

2.2 Energy Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Measuring Unloaded Q-Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Q0 Improvement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Polishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Silver-Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Coupling Matrix Based Filter Synthesis . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Characteristic Polynomials of Lowpass Prototype Filter Networks . . 15
2.5.2 Coupling Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Coupling Matrix Reduction . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Box Section Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Realization of Physical Structures . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 Individual Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 External Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.3 Interresonator Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Design Process 24
3.1 Resonant Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Bandpass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Synthesis and Calculations . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



4 Measurements and Post-Processing 46
4.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Resonant Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Bandpass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Results 50
5.1 Q0 of a Resonant Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Polishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 Silver-Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.3 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . . 52

5.2 Bandpass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusion and Outlook 57

A Bandpass Filter Technical Drawings 59

References 62

v



List of Figures

1.1 Initial filter design: S-parameters . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Equivalent lumped elements RLC circuit . . . . . . . . . . . . . . . . . . . . 6
2.2 General coupled microwave resonators . . . . . . . . . . . . . . . . . . . . . 7
2.3 Resonant cavity equivalent circuit model: a) full model; b) simplified equiv-

alent circuit in the vicinity of resonant frequency ω0 . . . . . . . . . . . . . 9
2.4 Example of the circle described by Γi − ΓD in Smith chart . . . . . . . . . . 11
2.5 Trigonometric interpretation of the reflection coefficients . . . . . . . . . . . 12
2.6 General asymmetric lowpass filter prototype circuit . . . . . . . . . . . . . . 17
2.7 N+2 lowpass filter prototype with parallel resonators . . . . . . . . . . . . . 18
2.8 The formation of the box section configuration . . . . . . . . . . . . . . . . 20
2.9 Resonator with a coupling loop mechanism . . . . . . . . . . . . . . . . . . 22
2.10 Inductive coupling iris mechanism . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 Capacitive coupling probe mechanism . . . . . . . . . . . . . . . . . . . . . 23

3.1 Symmetry plane cross-sectional view of the resonant cavity model . . . . . . 27
3.2 Q-circle simulations for the three selected pin lengths . . . . . . . . . . . . . 27
3.3 Connectors: C1 (left), C2 (middle), and C3 (right) . . . . . . . . . . . . . . 28
3.4 Comparison: cavity 1 (left) vs. cavity 2 (right) . . . . . . . . . . . . . . . . 28
3.5 Comparison: unpolished cover (left) vs. polished cover (right) . . . . . . . . 29
3.6 Silver-plated cavities: cavity 2 (left) and cavity 3 (right) . . . . . . . . . . . 29
3.7 Resonator shape vs. circle with equivalent area . . . . . . . . . . . . . . . . 32
3.8 Resonator design dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 Single resonator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Resonant frequency simulation, coarse screw length sweep . . . . . . . . . . 34
3.11 Resonant frequency simulation, fine screw length sweep . . . . . . . . . . . 35
3.12 Single resonator model with probe . . . . . . . . . . . . . . . . . . . . . . . 35
3.13 External coupling simulation, coarse connector height sweep . . . . . . . . . 36
3.14 External coupling simulation, fine connector height sweep . . . . . . . . . . 36
3.15 Inductive coupling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.16 Inductive coupling simulation, minimum iris height sweep . . . . . . . . . . 38
3.17 Inductive coupling simulation, iris width sweep . . . . . . . . . . . . . . . . 39
3.18 Inductive coupling simulation, iris tuning screw sweep . . . . . . . . . . . . 39
3.19 Capacitive coupling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20 Capacitive coupling simulation, horizontal probe length sweep . . . . . . . . 41
3.21 Capacitive coupling simulation, vertical probe length sweep . . . . . . . . . 41

vi



3.22 Capacitive coupling simulation, probe angle sweep . . . . . . . . . . . . . . 42
3.23 Full filter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.24 Full model simulation, detuned and tuned filter S-parameters . . . . . . . . 43
3.25 Complete filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.26 Tuning of the filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.27 Complete filter after silvering . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Proposed expanded model of a resonant cavity . . . . . . . . . . . . . . . . 48
4.2 Results of optimization by steps . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Comparison between the three cavities (connector 1) . . . . . . . . . . . . . 51
5.2 Comparison between different connector lengths (cavity 1) . . . . . . . . . . 51
5.3 Comparison of tuned filter results for all material combinations . . . . . . . 55
5.4 Transmission loss comparison between the three material combinations and

the synthesized result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 Inner conductor dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Cover dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.3 Full filter dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



List of Tables

2.1 Roots of J ′n(p′nm) (left) and Jn(pnm) (right) . . . . . . . . . . . . . . . . . . 5
2.2 Electrical conductivity of AlMgSi0,5 and Ag . . . . . . . . . . . . . . . . . . 14

3.1 The first 6 resonant modes with their corresponding resonant frequency . . 25
3.2 Theoretical results for unloaded quality factor (Q0) of TE111 mode . . . . . 25
3.3 Calculated vs. simulated resonant frequencies . . . . . . . . . . . . . . . . . 26
3.4 Calculated vs. simulated Q0 for TE111 . . . . . . . . . . . . . . . . . . . . . 26
3.5 Bandpass filter specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Filter parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Coupling matrix of a box section filter . . . . . . . . . . . . . . . . . . . . . 31
3.8 Resonant frequencies obtained from the coupling matrix . . . . . . . . . . . 31
3.9 Inter-resonator coupling bandwidths . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Brass conductivity for 91% and 65% Cu brass . . . . . . . . . . . . . . . . . 33
3.11 Estimated tuning screw lengths to realize our resonant frequencies . . . . . 34
3.12 Estimated inductive coupling parameters for all inductive couplings . . . . . 40

5.1 Q0 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Comparison of Q0 variation results with other models . . . . . . . . . . . . 52
5.3 Comparison of mean Q0 results with other models . . . . . . . . . . . . . . 53
5.4 Extracted coupling matrix of the manufactured model - aluminum/brass . . 53
5.5 Extracted coupling matrix of the manufactured model - silver/brass . . . . 54
5.6 Extracted coupling matrix of the manufactured model - silver/silver . . . . 54
5.7 Comparison of filter Q0 estimates . . . . . . . . . . . . . . . . . . . . . . . . 55
5.8 Comparison of silver-plated Q0 estimates: CST simulation vs. FD3D ex-

traction vs. Hagensen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



Abbreviations

BPF bandpass filter

CST Computer Simulation Technology

EM electromagnetic

FD3D Filter Designer 3D

FIR frequency-invariant response

MSE mean squared error

MW microwave

PEC perfect electric conductor

Q-factor quality factor

Qext external quality factor

QL loaded quality factor

Q0 unloaded quality factor

RF radio frequency

TE transverse electric

TEM transverse electromagnetic

TM transverse magnetic

VNA vector network analyzer

ix



1 Introduction

Microwave filters represent one of the basic building blocks for any modern-day telecom-
munication system. As such, they have been a topic of great interest in the radio fre-
quency (RF) engineering community in both the current and the previous century. Various
mathematical models have been derived for the design and computation of filter elements,
giving different filter behaviors, e.g. steep passband-to-stopband transition (Chebyshev)
filter, the maximally flat (Butterworth) filter, or more complex filters introducing trans-
mission zeros [1, Ch. 3]. In the early 1970s, the term filter coupling matrix was introduced,
which represents a filter as a cascade of resonators with coupling coefficients between all
pairs of resonators, as explained in [1, Ch. 8]. This allows for the use of matrix operations,
substantially simplyfing the synthesis procedure required for the design of filters.

With the technological advances in the computer technology, 3-D electromagnetic (EM)
simulation software became commercially available in the last decades of the previous
century. Such software enables a designer to simulate the designed RF component before
the actual production, to observe if the behavior conforms to what is expected and, if
necessary, to adapt appropriately, thus reducing the total costs and time required for the
design. Additionally, various software also provides numerous optimization algorithms,
which can be used to modify the design parameters in order to reach the desired design
goal. It is worth noting, however, that these optimization processes are both resource and
time demanding and should only be used when the design is already close to the design
goals.

The main goal of this thesis is to design and produce a narrowband bandpass filter (BPF),
operating in the L-band. It is intended to be used in an aircraft communication system,
operating at a channel with a frequency range from 963.5 MHz to 970.5 MHz. To avoid
interference from the neighboring channel, which is placed at the frequency band above
this one, strong stopband rejection for this band is required. To do so, a box section model
[1, Ch. 10, Sec. 4] is used, which allows for nonsymmetric transmission parameters with
one or more transmission zeros. The initial filter design can be seen below, in Figure 1.1.
With the help of Computer Simulation Technology (CST) Microwave Studio [2], a 3-D EM
simulation software, separate filter segments as well as the complete filter are simulated and
adapted accordingly. The goal is to produce the designed filter in-house, using machines
with limited precision, recognizing the tolerances of the filter to this limited precision and
identifying the critical parameters. As a consequence, an optimum filter structure in the
sense of filter performance is not possible. Instead, it is optimized to the manufacturing
process, using materials which are easily available and easy to process. An aluminum
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CHAPTER 1. INTRODUCTION

alloy was used for the structures which have to be milled and brass was used for the
structures which require hollowing by a turning machine. Concretely, the aluminum alloy
is AlMgSi0,5, while the composition of the brass is unfortunately unknown. The materials
used would be sub-optimum if designing an optimal filter, however, the main goal is to get
acquainted with the design process and see if it is possible to manufacture such a filter with
the available equipment. Beside the non-optimum materials, many design parameters are
optimized for the manufacturing process as well.

Figure 1.1: Initial filter design: S-parameters

Furthermore, two common techniques are used to improve the quality of the filter, i.e.
surface polishing and silver-plating. Using a resonant cavity, these techniques are evaluated
in order to obtain quantitative information about their effect and compare the results with
the theoretically obtained expected values. To do so, it is required to obtain the unloaded
quality factor (Q0) [3]. To minimize the effects of imperfections caused by the production
process, a simplified cylindrical cavity is to be used. A new method for determining Q0 is
implemented, using an error minimization algorithm and the equivalent circuit model of
a resonant cavity.

Designing a practical model generally lacks literature support, while the existing literature
offers many empirical formulae. The document aims to provide the reader with a step-
by-step guide to design and produce a microwave resonant cavity filter with limited tools
available. Its goal is to simplify and speed up the process of designing an RF BPF for
the reader. It also provides quantitative results for the techniques used to improve the
overall quality of the filter, which should help the reader decide whether to implement
these methods in his/her given situation.
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2 Microwave Filters

This chapter provides the theoretical background, necessary for conducting the design,
production, and measurements described hereafter. Its intention is to make the reader
familiar with the existing literature and the concepts used in this thesis. It is divided into
six major sections, discussing the resonant cavities, which are the basic building blocks
of any microwave filter, the evaluation of their losses with the help of a quality factor,
coupling of energy to and between the resonators, the mathematical concepts for filter
design, the physical realization of the mathematical model of a filter, and the common
methods to reduce losses in microwave (MW) filters.

Section 2.1 introduces MW resonators. Different resonant structure topologies are pre-
sented along with the general definition of the quality factor (Q-factor) of a resonator
and mathematically derived models for determining the quality factor of the resonant
structures of interest. In addition, a simple equivalent circuit model for these structures
is presented. Transporting energy to/from a resonator and between a pair of resonators
is called energy coupling. It is a fundamental operation of any resonant MW structure.
Both concepts are explained in Section 2.2. In Section 2.3, two methods of measuring
the Q-factor are explained. An extended RLC circuit model including the mechanism
to couple the energy into the resonator is considered. The two common methods of re-
ducing losses in resonant structures are presented Section 2.4. Analytical models for a
single resonator are given for both. The mentioned sections summarize all the concepts
required for designing a filter. The actual mathematical synthesis of a filter is discussed in
Section 2.5. Characteristic filter functions are presented and the concept of transmission
zeros introduced. The main focus is put on the coupling matrix synthesis approach, which
contains the resonator frequencies and the couplings between all resonator pairs. The last
section, Section 2.6, continues with the selected filter model and its coupling matrix. It
discusses the physical realization of the values obtained from the coupling matrix.

2.1 Microwave Resonators

The basic building block of any microwave filter is a resonator. EM resonators are capable
of storing electric and magnetic energy. At resonance frequency, the two stored energy
contributions are equal [1, Ch. 11]. Based on their topology, they can be grouped into
three categories: lumped-element LC resonators, planar resonators, and three-dimensional
cavity-type resonators.

3



2.1 Microwave Resonators

2.1.1 Quality Factor (Q)

The most important parameter of a resonant circuit is its quality factor, Q [4, Ch. 6],
defined as

Q = ω
average energy stored

energy loss/second
= ω

Wm +We

Ploss
. (2.1)

It is a dimensionless quantity and indicates the amount of losses in the resonant cavity,
rising towards infinity as the losses are decreasing towards zero. Equation (2.1) represents
a general equation for the Q-factor. Based on the origin of the losses, different Q-factors
can be derived. The loaded quality factor (QL) represents the quality factor of the overall
system, which includes coupling mechanisms. These will be discussed in Section 2.2. It
can be split into two contributions, one due to the losses in the resonant structure, Q0,
and one due to the losses in the coupling mechanism, called external quality factor (Qext).

When comparing resonators with different topologies, considering the same resonant fre-
quency, both the size and Q0 of the resonator increase in the same order. LC resonators
have the smallest size and lowest Q0, while 3-D structures result in the largest resonators
with the highest Q0 values. Thus, the selection of the resonator type is a trade-off be-
tween the dimensions and Q0, which directly affects the insertion loss of a structure. The
LC resonators have typical Q0 values between 10 and 50 at 1 GHz, planar resonators are
slightly better with a Q0 between 50 and 300 at the same frequency, while 3-D struc-
tures offer values ranging from 3000 to 30 000 [1, Ch. 11]. Due to the high Q0, needed to
maintain the insertion loss low, the focus of this thesis will be only on the 3-D structures.
Numerous 3-D resonant structures exist, the more common among them are the coax-
ial resonator, the rectangular and cylindrical waveguide cavity resonators, and dielectric
resonators. Typically, the coaxial resonators are the smallest and the waveguide cavity
resonators tend to be the largest for the same frequency of resonance. Coaxial resonators
and cylindrical waveguide resonators are presented more thoroughly in the following two
subsections. Both have an infinite number of resonant frequencies, each supported by a
different propagation mode.

2.1.2 Coaxial Resonators

Coaxial resonators belong to the group of transmission-line resonant circuits, along with
microstrip transmission-line resonators. Typically, transmission-line resonators are termi-
nated in either a short or an open circuit [4, Ch. 6]. A resonator can be realised as a
short-circuited λ/2 line, where the voltage wave at both ends is 0 for the resonant fre-
quency, an open-circuited λ/2 line, where the voltages are at its peak at both ends, and a
short-circuited λ/4 line, which has a maximum voltage at the open side and zero voltage
at the short-circuited side. Based on the frequency dependent dimensions of all these
resonators, the size for a λ/4 resonator is half of that for any of the λ/2 realizations. The
unloaded Q-factor, Q0, for the fundamental transverse electromagnetic (TEM) mode of
such a resonator is given in [5, Ch. 5] as

Q0 =
λ

δ

1

4 + 2L
a ·

1+a/b
ln(a/b)

, (2.2)

where δ is the skin depth, L the length of the resonator, and a and b the outer and inner
diameter of the coaxial resonator. The equation is given for a half-wavelength resonator,

4



2.1 Microwave Resonators

hence the 2L dependence in the denominator. A general practical form is given later in
Equation (2.66). We should note here, that beside the influence of the skin depth, the
ratio between the diameters plays an important role in determining Q0. Concretely, a
ratio of a/b = 3.6 is found to be the optimal ratio, giving the maximum Q0.

2.1.3 Cylindrical Waveguide Resonators

Cylindrical resonant cavities can be considered as a section of a circular waveguide, shorted
at both ends [4, Chs. 3, 6]. The cylindrical geometry of the resonant cavity supports
transverse electric (TE) and transverse magnetic (TM) modes of propagation. To calculate
the resonance frequencies of the modes, two equations are given. The equation for TE
modes is given as

fnml(TE) =
c

2π
√
µrεr

√(
p′nm
a

)2

+

(
lπ

d

)2

, (2.3)

and the equation for TM modes as

fnml(TM) =
c

2π
√
µrεr

√(
pnm
a

)2

+

(
lπ

d

)2

. (2.4)

In the equations, a corresponds to the radius of the cavity, and d to the height of the
cavity. Variables n, m, and l correspond to the number of circumferential (φ), radial
(ρ), and longitudinal (z) variations respectively, indicating the number of field maxima
in each of the cylindrical coordinates. The one variable in which the two equations differ
is p′nm, which is replaced by pnm in the second equation. The values represent the m-th
root of the derivative of the Bessel function of first kind, J ′n(p′nm), and the m-th root of
the Bessel function of first kind, Jn(pnm), respectively. They represent the solution to
the wave equation for a cylindrical cavity. The first 9 values for both variables are given
in Table 2.1, starting with m = 1, to conform to the boundary conditions on the cavity
surface. The same applies in z direction, leading to the lowest value and therefore the
lowest TE mode being TE111. For the TM mode, only the constraint in ρ direction applies,
resulting in the lowest TM mode of a cylindrical cavity being TM010.

n p′n1 p′n2 p′n3
0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970

n pn1 pn2 pn3
0 2.405 5.520 8.654
1 3.832 7.016 10.174
2 5.135 8.417 11.620

Table 2.1: Roots of J ′n(p′nm) (left) and Jn(pnm) (right)

An analytical expression for Q0 of a cylindrical cavity exists as well, derived from the
electric and magnetic field distributions within the cavity [6, Ch. 7]. For the sake of
brevity, the derivation of the expression is omitted at this point. The analytical expression
for the quality of TE modes is given as

Q0 =

(
1

Qd
+

1

Qc

)−1
. (2.5)
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2.1 Microwave Resonators

Qd is the contribution due to the dielectric material inside the cavity,

Qd =
1

tan δ
, (2.6)

where tan δ is the loss tangent of the dielectric. Qc is the contribution due to the losses
in the imperfectly conducting walls,

Qc =
λ0
δs

[
1−

( n

p′nm

)2][(
p′nm

)2
+
( lπa
d

)2]3/2
2π

[(
p′nm

)2
+

2a

d

( lπa
d

)2
+
(

1− 2a

d

)( nlπa
p′nmd

)2] , (2.7)

where δs = 1/
√
πfµ0σ is the skin depth and σ represents the electrical conductivity of the

conducting walls.

2.1.4 Equivalent Parallel Lumped Elements RLC Circuit

The basic function of both presented types of resonators can conveniently be represented
by a simple parallel RLC circuit, as the one shown in Figure 2.1. Since a resonant cavity

Figure 2.1: Equivalent lumped elements RLC circuit

produces an infinite number of resonant frequencies, it is worth noting here, that this model
is only (approximately) accurate around a certain resonant frequency and, additionally,
disregards the mechanism used to couple the energy to the resonant cavity. The input
impedance of the model is

Zi =

(
1

R
+

1

jωL
+ jωC

)−1
, (2.8)

and the complex power delivered to the resonator is

Pi =
1

2
V I∗ =

1

2
|V |2 1

Z∗i
=

1

2
|V |2

(
1

R
+

j

ωL
− jωC

)
, (2.9)

as described in [4, Ch. 6]. If the contributions are separated to the power dissipated by
the resistor, the average electric energy stored in the capacitor and the average magnetic
energy stored in the inductor, the complex power can be rewriten as

Pi = Ploss + 2jω(Wm −We), (2.10)
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2.2 Energy Coupling

where

Ploss =
|V |2

2R
, Wm =

|V |2

4ω2L
, and We =

|V |2C
4

. (2.11)

As mentioned before, the time-average stored magnetic and electric energies are equal in
magnitude at a resonant frequency. However, the power contributions are 180◦ out of
phase and cancel each other out, resulting in a purely real input impedance of R. From
this condition and Equation (2.11), the resonant frequency can be defined as

ω0 =
1√
LC

. (2.12)

2.2 Energy Coupling

Filters are typically built using multiple resonators, requiring the energy to be coupled
between them. Moreover, even when speaking of a single resonator, the energy needs to
be provided to the resonator and we can also talk about energy coupling. In general,
the coupling coefficient is defined as the ratio of coupled energy to stored energy [7]. In
integral form, this can be described as

κ =

∫∫∫
εE1 ·E2 dv√∫∫∫

ε|E1|2 dv ·
∫∫∫

ε|E2|2 dv
+

∫∫∫
εH1 ·H2 dv√∫∫∫

ε|H1|2 dv ·
∫∫∫

ε|H2|2 dv
, (2.13)

where the contribution of the electrical fields (electric coupling) and the magnetic fields
(magnetic coupling), evaluated at resonance, are summed up to give the total coupling.
The coupling can either be positive or negative, which corresponds to either enhancing
or reducing the stored energy. Moreover, the electric coupling and the magnetic coupling
can be of opposite signs, causing the opposite effect on the stored energy. In Figure 2.2,
a graphical representation of the coupling is given. Note that the structure and the self-
resonant frequency of the two resonators can be different. Also, the coupling mechanism
to transport the energy to a resonator can be considered as a resonator itself, thus making
Equation (2.13) generally applicable. Since this method requires known field distributions

Figure 2.2: General coupled microwave resonators

and integration over space, it is generally a very complex procedure. Instead, the goal
is to find characteristic frequencies related to the electric and magnetic coupling. Using

7



2.3 Measuring Unloaded Q-Factor

lumped element circuits, Hong derives the coupling coefficient equation based on four
characteristic frequencies [7]. These are the uncoupled resonant frequencies of both the
resonators, ω01 and ω02, and the two resonant frequencies of the complete system, ω1 and
ω2. The equation is then defined as

κ = ±1

2

(
ω02

ω01
+
ω01

ω02

)
·

√(
ω2
2 − ω2

1

ω2
2 + ω2

1

)2

−
(
ω2
02 − ω2

01

ω2
02 + ω2

01

)2

, (2.14)

In [8, Ch. 8], Hong further suggests that the meaning of positive or negative coupling in
filter design is relative. Coupling of energy occurs due to reactive elements. If a certain
S-parameter phase response of a coupling is considered to represent the positive coupling,
the coupling with opposite phase response sign represents the negative coupling. However,
by convention, capacitive couplings are considered negative, while inductive couplings are
considered positive. When constructing a filter, each is realized with a different mechanism.
The mechanisms will be presented in Section 2.6.

External Coupling

External coupling represents the input/output coupling of energy to/from the resonator
with the use of a coupling mechanism. The maximum power transfer between the external
circuitry and the resonator is achieved when the coupling coefficient, κ, is one. In this
case, the resonator is matched to the feed line of the external circuit, and is said to be
critically coupled [4, Ch. 6]. The coupling coefficient can be expressed as

κ =
Q0

Qext
. (2.15)

When Q0 is larger than Qext, the resonator is said to be overcoupled, giving κ > 1. If Q0

is smaller than Qext, the resonator is said to be undercoupled. The coupling coefficient
in that case is κ < 1. The level of required coupling depends on the application. The
coupling coefficient plays an important role when measuring Q0, which will be discussed
further in the next section.

2.3 Measuring Unloaded Q-Factor

The unloaded Q-factor is the characteristic of interest, as it allows for an evaluation of the
resonant cavity properties. In a realistic setup, however, Q0 cannot be directly measured.
The losses in the coupling mechanism circuitry lower its value to the value of the overall,
loaded Q-factor, QL. Various methods have been devised for the extraction of Q0 from the
measurements, both one- and two-port [1, Ch. 11]. The first methods were created before
the vector network analyzers (VNAs) became widely spread, which is the case nowadays.
These methods were gathered and described by Ginzton in [9, Chs. 9, 10].

Kajfez and Hwan proposed the first method using a VNA in [3]. An equivalent resonant
circuit in a wide frequency band is offered for the resonant cavity, comprising of an infinite
series of resonant circuits (as the one seen in Figure 2.1), each representing one resonant
mode of the cavity. The coupling of energy is represented with an additional impedance.
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2.3 Measuring Unloaded Q-Factor

Figure 2.3: Resonant cavity equivalent circuit model: a) full model; b) simplified equivalent
circuit in the vicinity of resonant frequency ω0

In Figure 2.3(a), the cavity is inductance-coupled, therefore an inductor Ls represents the
reactive part of the coupling impedance. When near to a certain resonant frequency, the
circuit can be simplified to the one shown in Figure 2.3(b). The ”external impedance”,
Re + jXe, is now a combination of the contributions due to the coupling mechanism and
the contributions due to other resonant circuits. The resistive component is ignored, while
the reactance component is presented with the first two terms of a Taylor series as

Xe = X1 + 2Z0Q1ψ, (2.16)

where X1 is the constant reactive part, Z0 the characteristic impedance of the transmission
line to which the circuit is connected, Q1 the linearly growing part and ψ (the authors use
δ, which is already used in this document for the skin effect) is the frequency detuning
parameter, defined as follows

ψ =
ω − ω0

ω0
. (2.17)

In the whole range of used frequencies, which are close to the resonant frequency, |ψ| � 1,
and we can approximate

ω

ω0
− ω0

ω
' 2ψ. (2.18)

When considering the lowest resonant frequency, ω0, and neglecting the presence of higher
resonant frequencies, the function Xe (when inductively coupled) becomes

Xe = ω0Le(1 + ψ) = X1(1 + ψ), (2.19)

and the input impedance of the circuit, Zi is then

Zi = jXe +
R0

1 + jQ0

(
ω

ω0
− ω0

ω

) = jX1(1 + ψ) +
R0

1 + j2Q0ψ
. (2.20)
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2.3 Measuring Unloaded Q-Factor

The input reflection coefficient is then

Γi =
Zi − Z0

Zi + Z0
=
ZF − Z∗S
ZF + ZS

, (2.21)

where the impedance is separated in a fast varying function, ZF , and a slow varying
function, ZS . The slow varying elements of the impedance are

ZS = Z0

[
1 + j

(
X1(1 + ψ)

Z0

)]
, (2.22)

and the resonant circuit contributes to the fast varying elements

ZF =
R0

1 + j2Q0ψ
. (2.23)

When the frequency is detuned (offset from the resonant frequency), the fast varying
function is negligible and the input reflection coefficient is

ΓD = −
Z∗S
ZS

, (2.24)

and the difference Γi − ΓD takes the form

Γi − ΓD =
2Z0

Z2
S

(
Z−1S + Z−1F

) ' 2Z0

Z2
S

(
1

Z0

(
1

1 + x21
+
Z0

R0

)
(1 + j2QLψL)

) . (2.25)

Here, x1 is the normalized reactance, ψL the loaded detuning parameter, defined as

ψL =
ω − ωL
ω0

= ψ − x1κ

2Q0
, (2.26)

and the loaded Q factor, QL, as

QL =
Q0

1 + κ
. (2.27)

The variable κ in the last two equations is the coupling coefficient

κ =
R0

Z0(1 + x21)
. (2.28)

The ψ dependence in Equation (2.22) is now neglected and Z2
S approximated as

Z2
S = Z0

(
1 + x21

)
ej2tan

−1x1 , (2.29)

which, inserted in Equation (2.25), gives

Γi − ΓD =
2ej2tan

−1x1

(1 + κ−1) (1 + j2QLψL)
. (2.30)

This equation describes a circle on a Smith chart, an example is presented in Figure 2.4.
The maximum absolute value of the equation gives the diameter of the circle. The loaded
detuning parameter, ψL, in this case is zero, allowing to express the diameter of the circle

10



2.3 Measuring Unloaded Q-Factor

Figure 2.4: Example of the circle described by Γi − ΓD in Smith chart

just with the coupling coefficient. After rearranging, the value of κ based on the diameter
of the circle is found to be

κ =
d

2− d
. (2.31)

The loaded Q-factor can also be expressed from Equation (2.30). The only variable that
changes when changing the frequency ψL is the angle φL, marked in Figure 2.4 is expressed
by

tanφL = −2QLψL, (2.32)

from which the formula for QL follows

QL =
f0

f(+φL) − f(−φL)
tanφL '

fL
f1 − f2

tanφL, (2.33)

where fL is assumed to be approximately equal to f0. Finally, Q0 is obtained from
Equation (2.27) as

Q0 = QL(1 + κ), (2.34)

Another method for evaluation of Q0 was proposed by Shahid et al. [10]. The authors
propose a simple and fast method which makes use of two least square algorithms applied
sequentially. The method is derived using the same circuit model as in the previous
method, shown in Figure 2.3(b), therefore the input impedance derivations apply here as
well. In the first step, a circle is fitted to the measured reflection parameter data using
the circle fitting procedure described in [11]. The diameter of the fitted Q-circle can then
be used in Equation (2.31) to obtain the coupling coefficient κ. The authors define the
input reflection function as

Γi = ΓD

[
(1− κ)/(1 + κ) + j2QLψL

1 + j2QLψL

]
, (2.35)

where the detuned reflection coefficient is

ΓD =
jXe − Z0

jXe + Z0
= ejφD , (2.36)
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2.3 Measuring Unloaded Q-Factor

and is considered to have unit magnitude. At resonance, the detuning parameter is zero
and the loaded reflection coefficient is expressed as

ΓL = ΓD

(
1− κ
1 + κ

)
, (2.37)

If κ > 1, the Q-circle encloses the center of the Smith chart and ∠ΓL = φL = φD + π,
and otherwise φL = φD. From Equations (2.35) and (2.37) the following expression can
be obtained

2QLψL = −
[
j(Γi − ΓL)

ΓD − Γi

]
, (2.38)

which is interpreted trigonometrically as shown in Figure 2.5. The three points, Γi, ΓD,
and ΓL, build a triangle with a right angle between |Γi−ΓL| and |ΓD−Γi|. Since Γi−ΓL is
multiplied with j, the resulting ratio in Equation (2.38) is always a real value, the tangent
of the angle φi. Hence, the equation translates to

2QLψL = −tanφi, (2.39)

which is the basis for the linear frequency scale and the starting point for the second least
squares algorithm. The error function is defined as

Figure 2.5: Trigonometric interpretation of the reflection coefficients

E =

N∑
in=1

[
tanφi +

2QL
f0

(fi − fL)

]2
=

N∑
i=1

[yi − (mxi + c)]2 , (2.40)

m being the slope and c the intercept of the least squares best straight line fit to xy data,
x representing the frequency axis and y the tanφi axis. The normal equations for the two
parameters are

m =
N(
∑
xiyi)− (

∑
xi)(

∑
yi)

N(
∑
x2i )− (

∑
xi)2

, (2.41)
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and

c =
(
∑
yi)(
∑
x2i )− (

∑
xiyi)(

∑
xi)

N(
∑
x2i )− (

∑
xi)2

. (2.42)

The parameters of interest can then be calculated from the two factors as

QL =
c

2

f0
fL
− Xe

2Z0

(
κ

1 + κ

)
' c

2
− Xe

2Z0

(
κ

1 + κ

)
' c

2
, (2.43)

and
fL = − c

m
. (2.44)

The first QL approximation is made due to the fact that the loaded and unloaded resonant
frequencies are typically very close and their ratio is therefore close to unity. Xe can be
obtained from Equation (2.36). Typically, the second part of the equation for QL is much
smaller than the first value, giving reason for the second approximation. Q0 is calculated
from Equation (2.34).

2.4 Q0 Improvement Techniques

As explained earlier, Q0 is a representation of the amount of losses in a MW structure.
Since receivers require a certain level of power from the received signal and signal amplifiers
add noise to the signal and cause signal deformation, it is important to maintain the
insertion loss of a filter as low as possible, meeting the design requirements. Two common
methods to reduce the insertion loss are presented in the following two subsections.

2.4.1 Polishing

One method to reduce the losses and increase Q0 of a resonant cavity is surface polishing.
It is done to reduce the imperfections of the conducting surface, commonly named surface
roughness. Many surface roughness models have been proposed, which can be divided into
two classes. The phenomenological models use formulae or correction factors in order to
match the theoretical values to the observed values. The topological models, on the other
hand, propose various structures on the conductor surface and analyze their influence using
3-D field simulation. Gold and Helmreich proposed a simple single-parameter model for
incorporating surface rougness in the electrical conductivity [12]. To do so, they proposed
a location dependent σ(x), which varies proportionally to the cumulative distribution
function (CDF) of the probability density function (PDF) of surface roughness as

σ(x) = σbulk · CDF (x) = σbulk
1

Rrms
√

2π

∫ x

−∞
e
− u2

2R2
rms du, (2.45)

where Rrms is the root-mean-squared value of the surface roughness, which has to be
measured for the material at hand.

In 2014, the two authors suggested a frequency dependent effective electrical conductivity,
σeff (f) [13]. This concept is very practical and allows for simulations with a changed effec-
tive conductivity, thus providing results without any additional complexity and required
additional computation time. The effective conductivity was measured using a resonant
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2.5 Coupling Matrix Based Filter Synthesis

cavity with interchangeable lids with different roughness, while treating the rough surfaces
as ideally smooth. For a cylindrical waveguide resonant cavity, as an example, the effec-
tive conductivity for a TE mode of resonance can then be calculated from the unloaded
Q-factor equation given in Equation (2.7), expressing σeff from the equation as

σeff =
Q2
c

λ20fµ0

4π

[(
p′nm

)2
+

2a

d

( lπa
d

)2
+
(

1− 2a

d

)( nlπa
p′nmd

)2]2
[
1−

( n

p′nm

)2]2[(
p′nm

)2
+
( lπa
d

)2]3 . (2.46)

2.4.2 Silver-Plating

Another method, used to minimize losses and, with it, increase the unloaded Q-factor
is covering the conductive walls with a sufficiently thick layer of a material with higher
conductivity. Specifically, the material with the highest electrical conductivity (at room
temperatures) is silver, and the process is called silver-plating. In Table 2.2, the values
for electrical conductivity of both the aluminum alloy and silver are provided. The alu-
minum alloy conductivity is not precisely known, instead a range is given. The electrical
conductivity of silver is extracted from CST Microwave Studio [2]. From Equation (2.7) it

material electrical conductivity (σ)

AlMgSi0,5 from 28 · 106 to 35 · 106 S/m
Silver (Ag) 63.012 · 106 S/m

Table 2.2: Electrical conductivity of AlMgSi0,5 and Ag

can be seen that the imperfectly conducting walls contribution of Q0 is inversely propor-
tional to the skin depth, which is inversely proportional to the square root of the electrical
conductivity, i.e.

Qc ∝
1

δs
∝
√
σ. (2.47)

By comparing the conductivities of both materials, the following conclusion can be drawn:

Qc,Ag
Qc,alloy

=

√
σAg

√
σalloy

=⇒ Qc,Ag ≈ (1.34− 1.5) ·Qc,alloy, (2.48)

meaning that Qc should increase somewhere between 34% and 50%, if the surfaces of an
aluminum alloy cavity are silver-plated. It is worth noting that this condition is only valid
when the thickness of the silver layer is larger than or equal to the skin depth, so that all
the electrical current density is confined to that layer.

2.5 Coupling Matrix Based Filter Synthesis

All the necessary concepts, required to build an RF filter, were introduced in the previous
sections. A filter is a two-port network, built from a combination of multiple resonators,
where some or all are coupled. The goal of a filter is transmitting signals in specified
frequency bands and attenuating signals in all other frequency bands. This has to be
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2.5 Coupling Matrix Based Filter Synthesis

done with minimized distortion and loss of energy of the transmitted signal. Any realistic
physical system has to conform to the causality condition, since it cannot anticipate the
future states of its input signal [1, Ch. 3].

2.5.1 Characteristic Polynomials of Lowpass Prototype Filter Networks

The synthesis of a filter starts with the derivation of characteristic polynomials that build
the desired reflection and transfer parameters of the filter, which is at this point considered
to be a lossless linear two-port network. The reflection coefficient ρ of a two-port network
is expressed from the input impedance as

ρ(s) =
zin(s)− 1

zin(s) + 1
, where zin(s) =

Zin(s)

Z0
. (2.49)

Z0, in this case, is the characteristic impedance of the transmission line and s = jω the
complex frequency variable. The input impedance is a positive real function, which can
be expressed as a quotient of two polynomials, the numerator n(s) and denominator d(s).
The reflection coefficient is then expressed as

ρ(s) =
n(s)− d(s)

n(s) + d(s)
=
F (s)

E(s)
. (2.50)

The magnitude of the reflection coefficient is

|ρ(jω)|2 =
F (s)F (s)∗

E(s)E(s)∗
=
F (s)F (−s)
E(s)E(−s)

. (2.51)

In the case of a lossless two-port network, the total power equals the sum of the reflected
and transmitted power. The transmission coefficient t follows

|t(jω)|2 = 1− |ρ(jω)|2 =
E(s)E(−s)− F (s)F (−s)

E(s)E(−s)
=
P (s)P (−s)
E(s)E(−s)

, (2.52)

where the right-hand side of the equation is valid because the root pattern has a quadrantal
symmetry and the roots on the imaginary axis have even mutliplicity [1, Ch. 3]. The three
polynomials, F(s), P(s), and E(s), are referred to as the characteristic polynomials. Their
properties are:

� F(s) is a polynomial with real coefficients, its roots are either real and/or conjugate
complex roots. It can have multiple roots only at the origin. The roots represent
the frequencies where no power is reflected, called the reflection zeros, and the filter
loss is zero.

� P(s) is a pure even polynomial with real coefficients. Its roots lie on the imaginary
axis as conjugate pairs and they represent the frequencies at which no power is trans-
mitted, and the filter loss is infinite. The root frequencies are called transmission
zeros or attenuation poles. Its roots can also occur as conjugate pairs on the real
axis or as a complex quad in the s plane, which leads to linear (nonminimum) phase
filters.

� E(s) is a Hurwitz polynomial with real coefficients, with all its roots lying inside the
left half of the s-plane.
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In the terms of scattering parameters, the transmission and reflection coefficient are more
commonly referred to as S21 and S11. The two are expressed in terms of the characteristic
polynomials as

S21(s) = t(s) =
P (s)

E(s)
, and S11(s) = ρ(s) =

F (s)

E(s)
. (2.53)

Dissipation Factor δ

To include the effect of finite conductivity of the materials, the characteristic functions
require an adaptation. This is done by changing the complex frequency variable s to s+δ,
where δ is the dissipation factor. The complex frequency variable for the k-th pole or zero
is then s = sk − δ. In terms of a lowpass prototype, δ is inversely proportional to Q0 of
the resonator. In bandpass filters, the frequency transformation from lowass to bandpass
has to be considered, which is

ω′ =
ω0

∆ω

(
ω

ω0
− ω0

ω

)
. (2.54)

The dissipation factor δ of a bandpass filter is then derived to be

δ =
ω0

∆ω

1

Q0
. (2.55)

FIR Elements

It is sometimes required, that the filter has an asymmetric response in either amplitude,
phase, or both. For example, when very high signal suppresion in a certain frequency
range is required, a transmission zero can be used. In bandpass prototype networks, this
is possible, however the lowpass prototype filters always result in a symmetric response
with regards to zero. A frequency transformation from a symmetric lowpass circuit to
a passband circuit always leads to a symmetric passband circuit. To be able to create
a lowpass prototype network which would transform into the appropriate asymmetric
filter response, frequency-invariant response (FIR) elements were introduced. They are
hypothetical elements which only become realizable after the frequency transformation.

Generation of Transfer and Reflection Polynomials

The generation of transfer and reflection polynomials for an arbitrary frequency response
is generally a complex procedure, requiring computer-aided optimization procedures. For
some more common types of filters, however, analytical models for determining the critical
frequencies exist. The most common among them are the maximally flat Butterworth
filters and the equiripple Chebyshev filters. Due to the asymmetric response of the filter
that is to be designed in the course of this thesis, a more complex filter response is needed.
Thus, CST Filter Designer 3D (FD3D) is used for the derivation of the coupling matrix
and the methods to construct transfer and reflection polynomials will be omitted at this
point.
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2.5.2 Coupling Matrices

A filter network can be represented by a matrix consisting of the self-resonances of the
filter’s individual resonators and the couplings between them. The matrix form of the
circuit allows for common matrix operations, such as inversion, similarity transformation,
and partitioning. With help of these operations, the synthesis and topology reconfiguration
are substantially simplified. Each element in the matrix represents a realistic element
in the finished device. A general lowpass prototype circuit model for a filter with an
asymmetric response with all possible couplings is shown in Figure 2.6. The coupling
elements, labeled with Mk,l, are assumed frequency-invariant, and FIR elements allow the
circuit to represent asymmetric characteristics, as discussed in the previous section. The
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M1,2 M2,k Mk,l Ml,N-1 MN-1,N
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M1,N-1

M1,N

Mk,N

Figure 2.6: General asymmetric lowpass filter prototype circuit

impedance matrix of the two-port network in Figure 2.6, comprising of a sum of three
contributions, is

Z = [jM + sI + R], (2.56)

where M is the main coupling matrix, j the imaginary unit, I the unit matrix, s = jω
the complex frequency variable and R the termination impedance matrix [1, Ch. 8]. The
dimension of all three matrices is N·N. The values of mainline couplings between the se-
quentially numbered nodes Mk,k+1, self-couplings on the main diagonal Mk,k, represented
by the FIR elements Bk, and cross-couplings between non-sequential nodes, Mk,l 6=(k±1)
build the first matrix as

M =


M1,1 M1,2 M1,3 . . . M1,N

M2,1 M2,2 M2,3 . . . M2,N
...

...
...

. . .
...

MN,1 MN,2 MN,3 . . . MN,N

 =


B1 M1,2 M1,3 . . . M1,N

M1,2 B2 M2,3 . . . M2,N
...

...
...

. . .
...

M1,N M2,N M3,N . . . BN

 , (2.57)

where due to the symmetry of the couplings, the matrix is symmetrical over the main
diagonal. The second matrix, I, contains the frequency variable portion on the main
diagonal, s = jω, and the third matrix, R, contains the source impedance at R1,1 = RS
and load impedance at RN,N = RL.
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2.5 Coupling Matrix Based Filter Synthesis

N+2 Coupling Matrix

By inserting impedance inverters MS,1 and MN,L of values
√
R1,1 and

√
RN,N into the

circuit in Figure 2.6, the (nonzero!) source and load terminantions can be normalized.
The total transformed admittance circuit is presented in Figure 2.7. It can be seen that

MS,1 M1,k Mk,l Ml,N MN,L GLig

MS,k

MS,l

Mk,N

M1,l Ml,L

M1,N

M1,L

MS,N

MS,L

Mk,L

GS
jB1

C1

jBk

Ck

jBl

Cl

jBN

CN

Figure 2.7: N+2 lowpass filter prototype with parallel resonators

additional coupling from source/load to nodes other than the first/last and direct cou-
pling between source and load are now included. The full (N+2)·(N+2) coupling matrix,
commonly called N+2 matrix, can then be written as

M =


MS,S MS,1 MS,2 . . . MS,N MS,L

MS,1 M1,1 M1,2 . . . M1,N M1,L

MS,2 M1,2 M2,2 . . . M2,N M2,L
...

...
...

. . .
...

...
MS,L M1,L M2,L . . . MN,L ML,L

 . (2.58)

A coupling matrix can be synthesized from the lowpass prototype circuit, designed before-
hands, or directly from the S-parameter polynomials. The direct method will be discussed
here. It can be done both for the N·N matrix and for the N+2 matrix. Both cases follow
the same approach, that is to formulate the admittance parameters in two ways: first
from the filter polynomials F(s), P(s), and E(s), which make up the desired S-parameter
characteristics, and second from the coupling matrix itself. The two formulations are then
equated to relate the coupling values to the coefficients of the S-parameter polynomials.

2.5.3 Coupling Matrix Reduction

The coupling matrix, derived in the previous section, has all the resonators directly coupled
to the input and/or output. Realization of such a structure is highly unpractical, therefore
coupling matrix reduction has to be done. A sequence of similarity transformations, also
called rotations, is done, minimizing the number of couplings. A similarity transformation
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2.5 Coupling Matrix Based Filter Synthesis

is done by pre- and postmultiplying the coupling matrix M with a rotation matrix S and
its transpose S′ as

MT = S ·M · S′. (2.59)

A rotation matrix for a pivot {k,l} (k 6= l) consists of elements Sk,k = Rl,l = cos(Θr),
Rl,k = −Rk,l = sin(Θr), where Θr is the rotation angle. Other elements on the main
diagonal are one, and the remaining elements are zero. The similarity transformation
only affects the k-th and l-th rows and columns and furthermore, if elements, facing each
other across the rows and columns of the pivot of a transformation, are zero before the
transformation, they remain zero after it. Due to these two properties, the similarity
transformation is useful for coupling matrix reduction. [1, Ch. 8] gives the rotation angle
Θr formulas for annihilating specific elements in the coupling matrix with a rotation at
pivot {k,l} as

Θr = tan−1(Mk,m/Ml,m), for the m-th element in row k (Mk,m)

Θr = −tan−1(Ml,m/Mk,m), for the m-th element in row l (Ml,m)

Θr = tan−1(Mm,k/Mm,l), for the m-th element in column k (Mm,k)

Θr = −tan−1(Mm,l/Mm,k), for the m-th element in column l (Mm,l)

Θr = tan−1

−Mk,l ±
√
M2
k,l −Mk,kMl,l

Ml,l

 , for cross-pivot element (Mk,k)

Θr = tan−1

Mk,l ±
√
M2
k,l −Mk,kMl,l

Mk,k

 , for cross-pivot element (Ml,l)

Θr =
1

2
tan−1

(
2Mk,l

Ml,l −Mk,k

)
, for cross-pivot element (Mk,l)

(2.60)

Which elements are selected to be nonzero and which not depends on the design. Numerous
realizations exist, the next section will focus on the realization selected for our filter.

2.5.4 Box Section Filters

As stated earlier, if a filter requires high signal suppression in a certain frequency range,
it can be designed with an asymmetric response with regards to its center frequency.
This is realized by implementing a transmission zero in the stopband. In the sense of
filter configurations, the minimum structure capable of realizing such a transmission zero
is a trisection. It consists of three mutually coupled nodes and is able to realize one
transmission zero. Depending on the position of the transmission zero, the cross-coupling
is positive or negative. In the case of a transmission zero below bandpass, a negative cross-
coupling is required, while a positive cross-coupling is needed for a transmission zero above
bandpass. The realization of the two couplings will be discussed further in Section 2.6.
Trisections can be joined together to build larger, more complex structures. The cross
coupling in each trisection of the joint structure still describes its particular transmission
zero. The inherent limitation of a trisection, when talking about filter manufacturing, is
its requirement for a diagonal coupling. These are typically difficult to manufacture.

In order to simplify the structure and avoid diagonal couplings, box section configuration
can be used [1, Ch. 10]. The formation of a box section from a trisection is presented in
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2.6 Realization of Physical Structures

Figure 2.8. A cross-pivot similarity transformation is done on the trisection, seen left in
the figure. The transformation annihilates the coupling between the resonator pair {2,3}
and instead couples the resonator pair {2,4}, which can be seen in the middle setup in the
figure. By untwisting, that is switching the location of resonator 3 and 4, the box section
is created, seen in the figure on the right side. It can be seen that the diagonal coupling

Figure 2.8: The formation of the box section configuration

in the setup has been eliminated and the coupling between resonator pair {1,3} is now
negative. From the setup, the coupling matrix is given as

M =



0 MS,1 0 0 0 0
MS,1 M1,1 M1,2 M1,3 0 0

0 M1,2 M2,2 0 M2,4 0
0 M1,3 0 M3,3 M3,4 0
0 0 M2,4 M3,4 M4,4 M4,L

0 0 0 0 M4,L 0

 . (2.61)

This coupling matrix represents the final structure, which can be used for realizing the
bandpass filter at hand.

2.6 Realization of Physical Structures

A synthesized coupling matrix of a filter provides all the normalized mathematical coupling
values, which correspond to a specific behavior of a filter. It does not, however, provide
any physical models. To manufacture a filter, the translation of matrix values to physical
elements is needed. This section will provide the necessary steps to derive actual filter
structures, which realize the resonances and the couplings described in the coupling matrix.
Before talking about designing the structures, some important filter parameters have to
be presented. The center frequency of a filter is defined as

f0 =
√
fU · fL, (2.62)

where fU and fL are the upper and lower band edges of the filter passband bandwidth,
as given in the specifications. The bandwidth of a filter, BW, is defined as the difference
between fU and fL, as

BW = fU − fL. (2.63)

The fractional bandwidth, FBW, is then

FBW =
BW

f0
. (2.64)
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2.6 Realization of Physical Structures

The physical realization procedure will be introduced on an example of coaxial quarter-
wavelength resonators, which will also be used for the design and production of the filter,
as discussed in more detail in Section 3.2. In [14], Hagensen describes the design of
such a filter. To avoid a design of the ideal structure, which perfectly fits the desired
operation, tunability of the filter parameters is required in practice. This is done with
tuning screws. The construction of tunable physical structures, corresponding to coupling
matrix parameters, will be discussed in the following subsections. The relations between
the coupling matrix coefficients and values which can be measured and/or simulated are
given in the CST Online Help [2].

2.6.1 Individual Resonator

The elements on the main diagonal of the coupling matrix are realized with resonators,
which are offset from the center frequency, if the value of the element is nonzero. The
general expression to determine the self-resonant frequency of a resonator from its coupling
matrix value is

fres,k = f0

√1 +

(
−mk,k

FBW

2

)2

+mk,k
FBW

2

 . (2.65)

For simplicity, all resonators can be designed with the same dimensions. The frequency off-
set is then realized with a tuning screw, which is sunk in the center of the inner conductor.
The resonant frequency decreases with tuning screw length, thus the initial resonator is
designed for a higher frequency, i.e. a shortening factor n is suggested for the length of the
resonator. As a rule of thumb, Hagensen proposes a shortening factor 0.5 ≤ n ≤ 0.8 [14].
An experimental Q0 equation is proposed,

Q0 = 0.75 · nλ
δ

1

4 + nλ
a ·

1+a/b
ln(a/b)

, (2.66)

where the factor of 0.75 is suggested as an estimate of the additional losses due to the lower
realistic surface conductivity, surface roughness and the influence of the tuning screws. In
the case that the shape of the cavity is not circular, Hagensen suggests that the equivalent
circular diameter is determined from the base area of the structure.

2.6.2 External Coupling

The external coupling is usually given in the form of an external quality factor. The factor
is obtained from the coupling matrix by using the normalized coupling coefficient as

Qext =
1

(mS/L,i)2 · FBW
. (2.67)

Different mechanisms for coupling of the energy to the resonator exist. When connecting
3-D filters to coaxial transmission lines, the most common options are either a coupling
probe or a coupling loop. A coupling probe is a length of the connector inside the resonant
structure, which is left unconnected. This induces a strong coupling of the electric field,
i.e. the coupling is capacitive. The other option, the coupling loop, is a connector wire
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2.6 Realization of Physical Structures

connected to the surface of the cavity, forming a loop. This induces a strong magnetic field
coupling, and is thus called inductive coupling. The coupling loop mechanism is shown
in Figure 2.9. To determine the amount of external coupling, simulations of the coupling
mechanism are required.

Figure 2.9: Symmetry plane cross-sectional view of a single resonator with a coupling loop mech-
anism between the inner and the outer conductor

2.6.3 Interresonator Coupling

The interresonator coupling coefficient from Equation (2.14) can be obtained from the
coupling matrix as

κk,l = mk,l · FBW, (2.68)

The sign of the coupling coefficient determines the type of coupling mechanism, either
inductive or capacitive. The coupling is commonly expressed in the terms of a coupling
bandwidth CBW as

CBW = mk,l · BW, (2.69)

Inductive Coupling

The positive coupling matrix coefficients, which are not on the main diagonal of the
coupling matrix, represent an inductive coupling mechanism between the corresponding
resonator pairs. Different mechanisms for realization of such a coupling exist. The most
simple approach is using an iris opening in the filter wall between the two resonators, as
presented in Figure 2.10. Another method suggests constructing a loop in the opening
in the wall between the resonator pair [15]. The advantage of the iris realization is that
tuning screws can be used, which affect the amount of coupling, and is therefore favored.
The computation of the amount of coupling between 3-D resonant structures is a complex
mathematical process, which requires the simulation of the electric and magnetic fields,
as presented in Section 2.2. The coupling values are obtained from simulation results.

Capacitive Coupling

The negative coupling matrix coefficients, which are not on the main diagonal of the
coupling matrix, represent a capacitive coupling mechanism between the corresponding
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2.6 Realization of Physical Structures

Figure 2.10: Symmetry plane cross-sectional view of the inductive coupling iris mechanism

resonator pairs. The most typical realization of a capacitive coupling is a conductive probe,
placed in the filter wall between the resonators [15]. An example is shown in Figure 2.11.
As in the case of any other coupling mechanism, analytical solution is difficult to obtain

Figure 2.11: Symmetry plane cross-sectional view of the capacitive coupling probe mechanism

and simulation tools are used to get the coupling bandwidth.
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3 Design Process

The aim of the chapter at hand is to provide the reader with a detailed step-by-step
description of the design process. It is structured into two separate sections, one for the
single resonant cavity and the other one for the BPF, both having three subsections. The
first of the subsections discusses the synthesis and calculations required for the design, the
second subsection discusses the simulations required, while the last subsection talks about
the actual manufacturing of the designed devices.

Section 3.1 focuses on the resonant cavity. In the calculus subsection, the resonant frequen-
cies of the lowest six modes are calculated based on the cavity dimensions. The process is
continued in the simulations subsection, where the propagation mode field distributions
can be observed using 3-D EM simulations. The coupling of energy to the cavity can
be simulated in order to optimize the coupling. Effects of changing the electrical con-
ductivity or surface roughness of the conducting walls can also be simulated. The last
subsection presents the actual production procedure and the procedures used to improve
the surface of the conducting walls. In Section 3.2, the bandpass filter design process is
discussed. As stated above, the topic is divided into three major subsections, starting with
the matrix synthesis process, from which the coupling coefficients are obtained. The initial
filter structure dimensions are also calculated here, giving the physical dimensions of the
filter. These values are then used to proceed to the next subsection, where the filter is
modeled in a simulation environment and the calculated parameters adapted accordingly.
The simulation part of the process leads us to a full filter model, ready to be produced.
This part of the process is discussed in the final subsection, devoted to shed light on the
manufacturing of the BPF.

3.1 Resonant Cavity

To minimize all the imperfections, caused by the production of a resonant cavity, a simple
cylindrical cavity was to be designed. The goal was to simply dive the milling cutter into
the aluminum alloy solid to obtain the resonant cavity. A milling cutter with a diameter
of 22 mm and a height of 40 mm was selected, thus providing both the cylindrical cavity
dimensions.
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3.1 Resonant Cavity

3.1.1 Calculations

Following Equations (2.3) and (2.4), using the milling cutter parameters, the first six
modes and their frequencies of resonance were found, listed in Table 3.1. The mode
with the lowest frequency, TE111, was selected for further calculations and was used for
the final measurements of Q0. Then, the theoretical values for Q0 could be calculated

mode resonant freq.

TE111 8821.066 MHz
TM010 10 431.896 MHz
TE112 10 951.729 MHz
TM011 11 084.561 MHz
TM012 12 845.102 MHz
TE211 13 766.836 MHz

Table 3.1: The first 6 resonant modes with their corresponding resonant frequency

from Equation (2.5). Since the cavity is not filled with a dielectric, Q0 was obtained by
calculating the contribution of the imperfectly conducting walls in Equation (2.7). This
was done for both the aluminum alloy cavity and the silver-plated cavity, which is covered
with a sufficiently thick layer of silver. Sufficiently thick in this context means larger than
the skin depth δS , so that the current density is restricted to the silver layer. The results
are shown in Table 3.2, where a range of unloaded Q-factors is given for the aluminum
alloy corresponding to its range of probable electrical conductivity.

material Q0,theoretical

AlMgSi0,5 8122-9081
silver 12 185

Table 3.2: Theoretical results for Q0 of TE111 mode

3.1.2 Simulations

The simulations were done in two steps, one to obtain the resonant modes and the other
to get the S-parameters of the complete structure. For the simulations, CST Microwave
Studio was used.

Resonant Modes

To obtain all the resonant modes in the selected frequency range and their field distri-
butions, a trivial vacuum cylinder was modeled. A frequency range from 0 to 18 GHz
was used, since the selected SMA connectors typically operate in this frequency range.
Due to the fast convergence, eigenmode solver with tetrahedral meshing was used for the
simulation of resonant modes, which does not consider losses in the solution. Therefore,
the background, that is the surrounding material of the vacuum cavity model, was set to
perfect electric conductor (PEC) in this step and boundary conditions were set to Et = 0.
The solver calculates the frequencies and the corresponding field patterns (eigenmodes),
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3.1 Resonant Cavity

while no excitation needs to be applied. Although real materials are not considered in
the simulation, an additional post-processing step gives the Q0 calculation based on the
given conductivity. In Tables 3.3 and 3.4, a comparison for the resonant frequencies and
Q0 at TE111 is displayed. Due to the symmetry of the cavity, the orthogonal TE modes

mode calculated freq. simulated freq. |∆f |
TE111 8821.066 MHz 8821.789 MHz 723 kHz
TM010 10 431.896 MHz 10 431.140 MHz 756 kHz
TE112 10 951.729 MHz 10 952.313 MHz 584 kHz
TM011 11 084.561 MHz 11 083.851 MHz 710 kHz
TM012 12 845.102 MHz 12 844.490 MHz 612 kHz
TE211 13 766.836 MHz 13 767.830 MHz 994 kHz

Table 3.3: Calculated vs. simulated resonant frequencies

should have the same resonant frequency, but the simulation gives slightly different results.
Since the difference is smaller than a kilohertz, it is smaller than the rounding error of the
results. Thus, the difference can be neglected. It can be seen, that the variations between

material calculated Q0 simulated Q0 |∆Q0|
AlMgSi0,5 8122 - 9081 8110 - 9068 12 - 13
silver 12 185 12 167 18

Table 3.4: Calculated vs. simulated Q0 for TE111

the calculated and simulated results are very small. Specifically, the variation of simulated
results from the calculated results is found to be less then 1500 ppm. The difference is
mainly caused by rounding errors in both the calculations and simulations, and in the lim-
ited numerical simulation resources, which result in an offset from the analytical model.
If required, reducing the mesh size of the simulation model would reduce the variations
even further.

Reflection Parameters

Next, the goal was to model a more realistic physical device, with a mechanism to couple
energy to the resonant cavity. An SMA connector was modeled and a waveguide port
defined on it, which applies an EM field at the port reference plane. The complete model
is portrayed in Figure 3.1. The teflon of the connector was assumed to be cut to the
cavity edge. The connector was placed in the middle of the cavity height, which supports
coupling to the TE111 mode. The length of the connector pin is the variable which was
varied to change the coupling coefficient. The background was now set to a lossy metal
with a realistic conductivity, either aluminum alloy or silver. The boundary conditions
were changed from the previous idealistic setup to conducting walls, which accept the
electrical conductivity as the only parameter. Taking into account the defined excitation
and the lossy materials used, a different solver was needed. Specifically, the frequency
domain solver was used. When compared to the time domain solver, this is the better
option due to the long settling time of strongly resonant structures, which make time
domain simulation times very long. The results of the solver are the S-parameters for the
defined ports. In this case, the S11 parameter was obtained. The goal of the simulation
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Figure 3.1: Symmetry plane cross-sectional view of the resonant cavity model

was to find three different pin lengths, one for coupling close to critical (C1), one for
an overcritical coupling (C2), and one for an undercritical coupling (C3), as described in
Section 2.2. Multiple connectors were used in order to observe the variations of the Q-
factor estimation. Ideally, the goal is to obtain a constant result, since the real Q-factor
is independent of the coupling mechanism. The simulated Q-circles for the selected three
pin lengths are shown in Figure 3.2.

Figure 3.2: Q-circle simulations for the three selected pin lengths
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3.1 Resonant Cavity

3.1.3 Production

Knowing the desired dimensions of the cavity and the connector probe lengths, the cavity
and the connectors could now be constructed. The one parameter that has not been
discussed yet is the wall thickness of the resonator. The thickness should be large enough
to drill holes for the screws of the covers and mount the connector. It was found that
a thickness of 6 mm is a good option. This thickness is also much larger than the skin
depth at the frequencies of interest, so the cavity is electromagnetically sealed. The
connectors were chosen in accordance with the simulation results (C1 = 6.42 mm, C2 =
7.82 mm, and C3 = 5.76 mm) and can be seen in Figure 3.3. Two test cavity samples

Figure 3.3: Connectors: C1 (left), C2 (middle), and C3 (right)

were originally built, one to be polished and the other to be silver-plated. One was made
with the aforementioned milling cutter with a diameter of 22 mm. Initially, the cutter
was supposed to be dived in a piece of aluminum with a height larger than 40 mm so that
a cover would be required on one side only. When testing this method, the bottom of
the cavity was found to be very rough. The model was then modified to cut through a
40 mm high piece of aluminum, closing it with a cover on both sides. The first cavity was
built following this procedure, and the 22 mm cutter was found to vibrate significantly,
causing scratch marks on the surfaces. The second cavity was built by firstly diving a less
vibrating smaller milling cutter and later cutting the edges until the desired diameter of
22 mm was reached. The difference between the cavities can be observed in Figure 3.4.

Figure 3.4: Comparison: cavity 1 (left) vs. cavity 2 (right)
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Surface Processing

After measuring the S-parameters of the manufactured resonant cavities, the cavities were
ready for surface processing. Cavity 1, which had a visually rougher surface, as seen in
Figure 3.4, was polished using a polishing paste. The difference between the unpolished
and polished surface can be seen in Figure 3.5. Cavity 2 was selected for silver-plating.

Figure 3.5: Comparison: unpolished cover (left) vs. polished cover (right)

Since the equipment needed to do this is not available in-house, the silver-plating was
outsourced to a company that specializes in metal-plating. Unfortunately, the silver-
plating process of the company used a less-conductive nickel (Ni) layer under the silver
layer, deteriorating the connection between the outer and inner surfaces of the cavity,
increasing the amount of losses and decreasing Q0. This will be discussed in further detail
later. At this point, a third cavity had to be built, cavity 3, which was sent to a different
company for the silver-plating process. This company used copper as the intermediary
layer, allowing for a better plating for the given aluminum alloy. Both silver-plated cavities
are shown in Figure 3.6.

Figure 3.6: Silver-plated cavities: cavity 2 (left) and cavity 3 (right)
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3.2 Bandpass Filter

3.2 Bandpass Filter

Every filter design process starts from the same point, the desired filter specifications.
More specifically, for the passband, the required specifications are the frequency range,
the minimum return loss, the maximum insertion loss and/or ripple. For the stopband,
the minimum attenuation and the frequency range for this attenuation has to be defined.
If a certain frequency band needs to be suppressed in particular, this can also be stated in
the specification. The initial specifications for this work are listed in Table 3.5. These will
be revisited later, when modifications will have to be made, mainly due to the in-house
production, based on the trade-off between the performance and the complexity of the
structure. From the specifications in Table 3.5, the upper band-edge frequency fU and

passband return loss/ripple insertion loss channel suppresion

963.5...970.5 MHz ≤ 1 dB ≥ 20 dB 971.5...978.5 MHz

Table 3.5: Bandpass filter specifications

the lower band-edge frequency fL are found to be fU = 970.5 MHz and fL = 963.5 MHz.
The center frequency, filter bandwidth, and the fractional bandwidth can be calculated
from the two edges, using Equations (2.62) to (2.64). The values are listed in Table 3.6.

parameter value

f0 967 MHz
BW 7 MHz
FBW 0.00724

Table 3.6: Filter parameters

3.2.1 Synthesis and Calculations

The derivation of the filter functions and the construction of the coupling matrix is gener-
ally a demanding procedure. However, software is readily available for the design, which
assists the designer with these tasks. To obtain the coupling matrix, CST FD3D was
used. The filter specifications were provided to the software and the box section filter
with four resonant nodes was selected. The structure was limited to four resonators in
order to maintain the structure compact and easy to manufacture. The box section filter
was selected to avoid the need for a diagonal coupling when realizing the required trans-
mission zero at 975 MHz, necessary for achieveing good suppression of the neighboring
channel. The software then computed the optimal coupling matrix for this given case. The
resulting coupling matrix is shown in Table 3.7. The resonant frequencies of the individ-
ual resonators were calculated from the coupling matrix elements on the main diagonal,
following Equation (2.65), and are listed in Table 3.8. The external coupling bandwidths
for source and load are typically represented with external Q-factors, Qext. Both are the
same in our example, QS,1 = Q4,L = 129.199, which can also be observed in the equal
coupling matrix values in Table 3.7 (MS,1 = M4,L = 1.034). The couplings between res-
onators are typically represented by coupling bandwidths. They are listed in Table 3.9.
Quarter-wavelength coaxial resonators were selected for the filter due to their small size
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3.2 Bandpass Filter

S 1 2 3 4 L

S 0.000 1.034 0.000 0.000 0.000 0.000
1 1.034 0.039 0.740 -0.528 0.000 0.000
2 0.000 0.740 0.536 0.000 0.740 0.000
3 0.000 -0.528 0.000 -0.845 0.528 0.000
4 0.000 0.000 0.740 0.528 0.039 1.034
L 0.000 0.000 0.000 0.000 1.034 0.000

Table 3.7: Coupling matrix of a box section filter

no. frequency

1 966.857 MHz
2 965.120 MHz
3 969.955 MHz
4 966.857 MHz

Table 3.8: Resonant frequencies obtained from the coupling matrix

when comparing to other 3-D resonators, as discussed in Section 2.1. The resonators were
then to be tuned to the exact required frequencies using the tuning screws. As mentioned
in Section 2.6, a shortening factor between n = 0.5 and n = 0.8 should be chosen for the
design of the resonator. The value of n = 0.51 was found to give the resonator height of

h = n · c0
4f0
≈ 39.5 mm, (3.1)

which is the minimum suggested value, which can be rounded to a precision of 0.5 mm.
The shape of the outer resonator wall was selected to be square rather than circular, which
is much easier to manufacture with a milling machine. The size of the square resonator
was chosen to be 40 mm, again the main reason was to keep the structure compact. Due to
the fact that sharp square edges are difficult to manufacture with the available equipment,
the edges were rounded instead, with a radius of 9 mm. The calculation of the equivalent
circle radius with the same shape area gives

Sshape = a2 − (4− π)r2 ⇒ reqc =

√
a2 − (4− π)r2

π
≈ 22.07 mm. (3.2)

M5 tuning screws were selected. Note that the diameter of the tuning screws was chosen
only because these screws were readily available with a fine thread, which was important
to keep the screws stable in position. Screws with smaller diameter would allow making
the inner conductor smaller, thus improving the resonator quality. However, the available
screws were preferred, hence, a sub-optimal design was accepted. The inner conductor is
hollow, so that the tuning screws can be dived into the center. This allows the minimization
of the total cavity height, which then needs to be slightly higher than the inner conductor
to realize the open circuit at one side of the coaxial resonator. In literature, the dimensions
of the resonators are often based on empirical values, hence the values here are often based
on best-guess strategies and are optimized in the simulation process. The gap between the
inner conductor and the cavity wall, for example, follows this method. A simulation was
done using different gap heights between the inner conductor and the wall of the cavity.
It was found, that the frequency decreases significantly when approaching the cavity wall.
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pair bandwidth

1-2 5.182 MHz
1-3 -3.699 MHz
2-4 5.182 MHz
3-4 3.699 MHz

Table 3.9: Inter-resonator coupling bandwidths

A gap of 0.5 mm was identified as the best gap width, that can still be realized, giving the
total cavity height of 40 mm. The outer radius of the inner conductor, b, was selected to be
8 mm, which is not the optimum Q-factor size, determined to be bopt = reqc/3.6 = 6.13 mm.
This larger radius was selected to avoid short-circuiting the cavity with the tuning screw.
One should also bare in mind, that b is the outer radius of a hollow conductor, while
the inner radius is smaller for the thickness of the conductor, which was selected to be
1 mm, as this was the minimum safely obtainable thickness with the avaliable machines.
The final shape of the cavity and its circular equivalent are shown in Figure 3.7 and the
dimensions of the resonators are shown in Figure 3.8. For the inner conductor, brass was

Figure 3.7: Resonator shape vs. circle with equivalent area

Figure 3.8: Resonator design dimensions

selected, because it allows to be hollowed out using a turning machine easily. Therefore,
an absolute value of Q0 could not be determined from Equation (2.66). Instead, a range of
possible Q0 values can be estimated, where the upper limit is the unloaded Q-factor of a
structure completely made from the aluminum alloy and the lower limit a structure made
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3.2 Bandpass Filter

completely from brass. Unfortunately, the electrical conductivity of brass, which was not
known for the given material, is highly dependent on the amount of zinc (Zn) it contains.
CST provides values for 91% copper (Cu) brass and 65% Cu brass, shown in Table 3.10.

Cu-Zn (%) σ (S/m)

91-9 27.4·106

65-35 15.9·106

Table 3.10: Brass conductivity for 91% and 65% Cu brass

Following Equation (2.66), a range of Q0 values between 957 and 1420 was found, where
the lowest value would be in the case of the whole structure made from 65% brass and the
best case for the whole structure made from highest conductivity aluminum alloy, listed
in Table 2.2.

3.2.2 Simulations

The simulations were performed using CST Microwave Studio. The resonant frequencies
of the individual resonators and the coupling bandwidths between them, obtained from
the coupling matrix, had to be realized using actual 3-D structures. As a starting point
for the models, the calculated resonator dimensions were used.

Resonant Frequency

A coaxial resonant cavity is constructed by using the chosen dimensions. The model is
shown in Figure 3.9. The eigenmode solver was used for the simulation and all the metals

Figure 3.9: Single resonator model

were assigned to be PEC in order to limit the simulation time and required computational
resources due to the complexity of the structure. Our goal was to obtain the tuning
screw dependent resonant frequency. Therefore, a sweep over the screw length was done.
The tuning screw was modeled as a simplified conductive cylinder. To determine the
approximate range of screw lengths for the frequency values of the resonators, a coarse
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sweep from 0 mm, representing the resonant cavity without a tuning screw, to 16 mm
was done. The maximum possible value is 30 mm, where the screw touches the bottom of
the inner conductor. The inner conductor is not fully hollow to provide the possibility to
mount it into the cavity using a screw. The coarse sweep simulation results are presented
in Figure 3.10. The upper edge frequency fU and lower edge frequency fL are marked with

Figure 3.10: Resonant frequency simulation, coarse screw length sweep

a red dashed line to indicate the range of interest, since all resonant frequencies are in the
passband. After the screw length range for our resonant frequencies was estimated, a finer
sweep could be made in this range, to obtain screw length dependency of the resonant
frequency. It was found that the frequency decreases approximately linearly with the screw
length, which can be seen in Figure 3.11. A straight line was fitted over the simulated
results to avoid the effects of simulation noise, and the slope of the linear equation was
extracted from the results. In the figure, the three resonant frequencies of the resonators
(f4 = f1) are marked along with their estimated screw lengths. The screw lengths are
shown in Table 3.11. The parameters of the fitted linear equation, y = k · x + n, were

no. screw length

1 6.67 mm
2 6.89 mm
3 6.37 mm
4 6.67 mm

Table 3.11: Estimated tuning screw lengths to realize our resonant frequencies

found to be k=-7.74 MHz/mm and n=1018.46 MHz. They were noted for the full model
tuning process.

External Coupling

The next step of the design was the simulation of the external coupling. As stated in
Section 2.6, the external coupling can be altered with the height of the coupling probe,
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Figure 3.11: Resonant frequency simulation, fine screw length sweep

indicating the distance from the bottom, short-end of the resonator to the connector. A
50 Ω coaxial connector was created and placed at half-width of one of the cavity walls. The
new model can be seen in Figure 3.12. To achieve desired coupling, the external Q-factor,

Figure 3.12: Single resonator model with probe

Qext, was determined by CST in the simulation. It was used to obtain the connector height
dependent Qext. This was again done in two steps, starting with a coarse sweep from 1
to 10 mm. The coarse sweep results can be seen in Figure 3.13. The goal Qext is marked
with a red dashed line, which suggest a connector height of approximately 4 mm. The fine
sweep was therefore done closely around the value of 4 mm, with connector heights from
3.9 to 4.1 mm. From the fine sweep results, shown in Figure 3.14, the optimum connector
height from the bottom of the cavity was found to be 4.016 mm. Due to limited precision
in the manufacturing process, it was decided that a connector height of 4 mm will be used
for future simulations and production instead.
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Figure 3.13: External coupling simulation, coarse connector height sweep

Figure 3.14: External coupling simulation, fine connector height sweep
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Inter-Resonator Coupling

Theoretically, the simulation of the coupling between two resonators is independent of
whether the two resonators are considered adjacent (mainline coupling) or non-adjacent
(cross-coupling). The realization of couplings instead depends on whether magnetic or
electric energy is coupled. In a realistic case, of course, both energies are coupled, but one
is dominant, and based on it we separate energy coupling into inductive and capacitive
coupling. In the coupling matrix, the inductive couplings have a positive value, while
capacitive couplings have a negative value. The two couplings are commonly represented
with a coupling bandwidth, which carries the sign of the coupling. In CST, the coupling
bandwidth can be determined by 2 · |f1− f2|, where f1 and f2 are the first and second res-
onant mode, determined by the eigenmode solver. This is an approximation, which is only
valid for synchronously tuned resonators. In our example, the resonance frequencies of
resonators are different. Therefore, to obtain the coupling bandwidths, the resonance fre-
quencies of the two modes were obtained from the simulation results and Equations (2.14),
(2.68) and (2.69) implemented in MATLAB [16].

Inductive Coupling

When talking about inductive coupling, the dominant field that is coupled between the
resonators is magnetic. This can be realized in various ways, the simplest among them
is putting an iris opening in the wall between the resonators. The inductively coupled
resonators model is shown in Figure 3.15. The strength of the coupling is influenced

Figure 3.15: Inductive coupling model

by three parameters, the iris width, the iris depth, and most importantly, the tuning
screw. Note that in the simulations, iris depth is represented by its inverse parameter,
the minimum height from the bottom of the resonator, hiris]. As for the case of the
resonant frequencies, a tuning screw can be used to fine-tune the coupling bandwidth of
an iris-coupled cavity pair. This means we can have multiple parameter combinations for
the realization of the same coupling coefficient, therefore we have some freedom of choice
when selecting the parameter values. The electric field and with it, the capacitive coupling
component, is the strongest at the open end of the coaxial cavity. The tuning screw
decreases the electric energy coupling and thus increases the overall magnetic coupling
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with increasing length. The magnetic field is stronger at the shorted end of the coaxial
cavity, therefore a CBW decrease is expected for an increase of the minimum iris height.
The depth was chosen as the first parameter for the sweep. The tuning screw was set to 0
length at this point, while the iris width was chosen to be 10 mm. Due to lack of literature,
the iris width value was a guess choice. The sweep was done in the range from 0 to 20 mm
minimum iris height, the results are shown in Figure 3.16. It was found that the simulation

Figure 3.16: Inductive coupling simulation, minimum iris height sweep for resonator pairs 1-2 &
2-4 and pair 3-4 for wiris=10 mm and lscrew,iris=0 mm

results tend to be somewhat unpredictable due to simulation noise. However the general
influence of CBW decreasing with increasing minimum iris height was recognized. The
CBW values in the whole sweep range were much smaller than the desired values, which
indicated that other parameters certainly have to be modified. Although a minimum
iris height of 0 mm shows itself as the best value based on the results of the sweeps, a
height of 8 mm was selected for all three resonator couplings. This was done to provide
additional structure strength, if, due to manufacturing issues, the filter would have to be
manufactured with two covers. Coupling between resonator pairs 1-2 and 2-4 is the same,
therefore only one of them had to be simulated in the following steps. Coupling between
resonator pair 3-4 is different, so it had to be simulated individually. The next step was to
determine the iris width for both of these couplings. The results of the sweeps can be seen
in Figure 3.17. It was found that the influence of differently tuned resonators was small,
both simulations giving a similar coupling bandwidth. For the iris width, values realizing
coupling bandwidths smaller than the goal were selected. This way, the tuning screws,
which increase the CBW, can be used for fine tuning. For resonator pairs 1-2 and 2-4,
an iris width of 14 mm was selected, and for resonator pair 3-4, an iris width of 12 mm.
The last parameter to be varied for fine-tuning the coupling bandwidth was the tuning
screw. The tuning screw sweep for both depth-width pairs are shown in Figure 3.18. The
parameters for the realization of desired the inductive couplings were estimated from the
simulation sweeps in Figures 3.16 to 3.18. The estimations are listed in Table 3.12.

Capacitive Coupling
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Figure 3.17: Inductive coupling simulation, iris width sweep for resonator pairs 1-2 & 2-4 and
pair 3-4 for hmin,iris=8 mm and lscrew,iris=0 mm

Figure 3.18: Inductive coupling simulation, iris tuning screw sweep for pairs 1-2 & 2-4 and pair
3-4
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res. pair hmin,iris wiris lscrew,iris

1-2 8 mm 14 mm 6.2 mm
2-4 8 mm 14 mm 6.2 mm
3-4 8 mm 12 mm 10 mm

Table 3.12: Estimated inductive coupling parameters for all inductive couplings

In the case of capacitive coupling, the dominant coupled energy is electric. The electric
field in a quarter - wavelength coaxial resonator is the strongest at the open end of the
resonator, therefore the capacitive coupling mechanism is implemented on that side. The
mechanism is realized with a conductive probe approaching the inner conductors of both
resonator cavities. This requires a small hole in the wall between the cavities. A dielectric
is used to hold the probe in place. The model can be seen in Figure 3.19. The capacitive

Figure 3.19: Capacitive coupling model

coupling is the most demanding mechanism in the filter. Tuning screws are not applicable
in this setup, limiting the tunability of the setup. Many various methods of realization
exist, with different probe shapes. The idea behind the used design was to use a simple
copper wire (with a diameter of 1.5 mm) as the coupling probe, which can easily be bent.
The parameters that affect the coupling bandwidth in this case are the length of the
horizontal part of the copper wire, the length of the bent parts, and the angle at which
these parts are bent. The first two parameters were considered as the initial parameters,
which had to be determined first. Due to lack of literature, we started with setting the
parameters to initial best-guess values, which were to be validated during simulations. The
bending angle was set to α = 90◦ and the vertical probe length to 12 mm. The sweeps of
the horizontal probe length is shown in Figure 3.20. Since three parameters are available
for the capacitive coupling, at this point an approximate value convenient to manufacture
was selected, i.e. 13 mm. Using this value, a vertical probe length sweep followed around
the value selected for the previous simulation. The bending angle was kept at α = 90◦ in
this step as well. The simulation results are plotted in Figure 3.21. Again, for the ease
of production, an approximate value of 12 mm was selected. The bending angle was then
varied to find the optimal coupling bandwidth. This is presented in Figure 3.22. From
the three parameter sweeps, the approximate parameters for the capacitive coupling were
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3.2 Bandpass Filter

Figure 3.20: Capacitive coupling simulation, horizontal probe length sweep for lvertical=12 mm
and α=90◦

Figure 3.21: Capacitive coupling simulation, vertical probe length sweep for lhorizontal=13 mm
and α=90◦
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3.2 Bandpass Filter

determined: lhorizontal = 13 mm, lvertical = 12 mm, and α = 88.5◦. Determining the values
more precisely at this point is not needed, since the precision of the handmade production
of the coupling probe is severely limited.

Figure 3.22: Capacitive coupling simulation, probe angle sweep for lvertical=12 mm and
lhorizontal=12 mm

Full Model

In the previous sections, physical models of all the coupling matrix elements were created
by using simulations with parameter sweeps. The full model was now built by joining all
the segments together. The idealistic materials (PEC and lossless teflon) were replaced
with the materials which were going to be used for the manufacturing process. The
eigenmode solver was now replaced with the frequency domain solver and two ports were
defined on the source and load connectors. With these settings, the structure could now be
simulated to obtain the full model S-parameters. The full model can be seen in Figure 3.23.
The position of each of the coupling mechanisms is determined from the coupling matrix
structure in Table 3.7. When joining all of the individual segments to a full model, the
segments influence each other and are consequently detuned. In the simulation, detuned S-
parameters were obtained, which are portrayed in Figure 3.24. The S-parameters from the
detuned model were imported into CST Filter Designer 3D. Using this software, a coupling
matrix can be extracted from the S-parameters. It also shows the offset percentages for
all of the coupling matrix elements. The filter model now had to be tuned to compensate
for these detuning effects, caused by joining all segments of the filter. From the sweep
results in the previous sections, the required changes for all tuning screws and the angle
of the capacitive coupling probe were estimated. Since every parameter change influences
all the other values, this was done in steps. In the first step, the resonator tuning screws
were tuned. Tuning of the inductive coupling tuning screws followed in second step. In
the last, third step, the capacitive coupling probe angle was tuned.
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Figure 3.23: Full filter model

Figure 3.24: Full model simulation, detuned and tuned filter S-parameters
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3.2.3 Production

The tuning of the full filter model during simulation is not unconditionally necessary in
order to manufacture the filter, since the tuning can more easily be done on the actual
physical model while measuring the S-parameters. However, it gives us initial values of the
tuning elements, which ideally should work the same in a real model, but more realistically,
it is a good starting point for the tuning, due to the limited precision of the manufacturing
process and possible human errors. The manufactured model is shown in Figure 3.25, while
technical drawings of the manufactured structure are given in Appendix A. The more

Figure 3.25: Complete filter

robust type N connectors were mounted to the filter, the dielectric was cut to the inside
walls of the resonant cavities and the inner conductors, made from brass, were mounted
into the cavity using submersible screws in the bottom of the filter. The connectors need
to be electrically well connected to the inner conductors to obtain the external Q-factor
which was simulated. Therefore, they had to be soldered. This process was especially
difficult due to the large dimensions of the filter, which had to be heated sufficiently for
the solder to attach to the inner conductors. A mistake was done during the manufacturing
process, causing one dimension of cavity 3 to be 0.55 mm larger than initially designed,
with the wall between cavity 1 and cavity 3 being 0.55 mm smaller than other walls. The
inner conductor was placed aligned with other conductors. The manufactured filter was
not discarded, instead the effects of this mistake on the complete filter were investigated
with some post-production simulation steps. It was discovered, that the filter can still
be tuned to the desired operation. The tuning screws and the capacitive coupling probe
were set to the tuned simulation result parameters. This gave us a detuned result. The
measured S-parameters were saved, imported, and the coupling matrix was extracted in
CST Filter Designer 3D, following the same procedure as for the simulation results. Then,
the screw lengths and the angle of the capacitive probe were adapted using the simulated
sweeps. This was repeated three times until a satisfiable result was found. The initial
setup and the tuned setup can be seen in Figure 3.26. As a final processing step, the
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Figure 3.26: Tuning of the filter

filter was sent to be silver-plated. After silver-plating, it was measured in two different
setups, once using brass inner conductors and once using silver-plated inner conductors.
The silver-plated filter with silver-plated inner conductors is shown in Figure 3.27.

Figure 3.27: Complete filter after silvering
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4 Measurements and Post-Processing

After designing and manufacturing the bandpass filter and the resonant cavities, it is now
required to do the measurements and the post-processing of these measurements to obtain
comparable results. This chapter deals with these two segments of the thesis.

The first part focuses on the measurements and the measurement equipment used. This
is described in Section 4.1. The measurements were done with a VNA and the results
given in the form of scattering parameters. After that, these S-parameters have to be
processed to obtain the desired results. Since the required results in the case of a BPF
are S-parameters, which directly allow the evaluation of filter characteristics, no post-
processing steps are required in this case. The unloaded Q-factor, on the other hand, has
to be determined from the complex reflection parameter, which is the focus of Section 4.2
of this chapter.

4.1 Measurements

The required measurements for both the filter and the resonant cavities were standard
S-parameter measurements with a VNA, specifically the Agilent PNA E8364A. The mea-
surement process is well known and will therefore not be described in detail. The focus is
on stating the measurement settings, the frequency range etc.

4.1.1 Resonant Cavities

In the case of resonant cavities, female SMA connectors were used, which can be used
at a wider frequency range than the type N connectors (up to 18 GHz in comparison to
type N, which typically operate up to 11 GHz). Resonant cavities were designed only
with one port, so a one-port SOL (Short-Open-Load) calibration with the HP 85052D
calibration kit was done, using the female connector set, since the used DUT connectors
were also female. The measurements, and therefore also the calibrations, were done in
two frequency ranges, one from 0 Hz to 18 GHz, which is the operation range of the SMA
connectors, and the other range with a 1 GHz span around the first resonance frequency,
which was found to be at approximately 8.833 GHz. In both cases, the IF bandwidth of
1 kHz was used to obtain a good resolution of the very narrow resonances. The number
of points was set to the maximum, 20 001, in both cases, for the larger frequency band it
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was simply necessary due to the large bandwidth. In the 1 GHz frequency band, it was
done in order to have a small frequency step, which is important around the resonance
frequencies for the post-processing steps done on these measurement results.

4.1.2 Bandpass Filter

The bandpass filter operates at the L frequency band, its passband designed to be in the
range between 963.5 MHz and 970.5 MHz. At such low frequencies, type N connectors
can be used, which are larger and more robust than the SMA connectors. Female type N
connectors were used. The calibration was therefore done with the female HP 85032B
type N calibration kit. Understandably, since the filter is a two port device, a two-
port SOLT (short-open-load-through) calibration was done. The frequency range of the
measurement was selected to be between 900 MHz and 1000 MHz. A detuned filters
resonances can be offset far from the desired passband so a smaller frequency range would
be very impractical when tuning the filter. To avoid too long measurement times, which
would make the screw tuning harder, 1601 measurement points were selected. As in the
resonant cavities case, the IF bandwidth of the VNA was reduced to 1 kHz to achieve a
good resolution.

4.2 Post-Processing

As mentioned before, the goal of the resonant cavity measurements was to obtain its un-
loaded Q-factor. Two methods for calculating Q0 from measured S-parameters were de-
scribed in Section 2.3. Both methods assume negligible losses of the coupling mechanism
and attempt to fit the measured data in a narrow frequency band around the resonance.
To avoid these limitations, a new model is proposed, which develops an equivalent circuit
model of the resonator, together with some effects of the nonideal couplig mechanism and
an error minimization algorithm to fit the model to the measured results. The minimiza-
tion algorithms convergence strongly depends on the initial parameter values, which have
to be estimated before running the algorithm. Because of the simplicity and computation
speed of the algorithm proposed in [10], it was used as a starting point to obtain the initial
parameter values.

The new proposed circuit model, shown in Figure 4.1, assumes an additional 50 Ω trans-
mission line of length l, a series inductance due to the connector, LC , and a parallel
connector capacitance, CC . The additional transmission line attempts to model the 50 Ω
line of the SMA connector from the reference plane of the measurement to the inner wall of
the cavity. It is modeled as lossless, while the losses are considered in the real part of the
coupling mechanism. The series inductance and parallel capacitance are parasitic effects
which originate from the mathematical model of the SMA connector, as described e.g. in
[17]. It was observed that they can be used to incorporate the reflection fluctuation in the
frequency range far from the resonance frequency. The input impedance is calculated in
steps, starting at Z1 and adding components until Zin is reached. The steps for calculating
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Figure 4.1: Proposed expanded model of a resonant cavity

the input impedance, marked in Figure 4.1, are

Z1 =
R0

1 + jQ0
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(4.1)

The reflection coefficient can then be expressed from Zin as

Γin =
Zin − Z0

Zin + Z0
. (4.2)

This coefficient should now be fitted to match to the measured results. For the initial
values, Q0, f0, R0, and Xe from the method in [10] are selected, where f0 is simply
assumed to be fL. The length of the connector up to the inner cavity wall was measured
and estimated to be approximately l = 11 mm. The coupling losses, represented with Re
were assumed small, a value of 0.2 Ω was selected as the starting value. The parasitic
effects of the connector, together with the additional line length, cause a shift of the
resonant frequency and can cause a circle to appear fitted to the values, which has a
very high error due to the shift of the resonant frequency. The starting values were
estimated experimentally to assure convergence of the algorithm. This was done using NI
AWR Microwave Office [18], by modifying the parameter values to match the results. It
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was found that the influence of the parasitic capacitance is negligible, while the parasitic
inductance is detrimential for the behavior of the circuit. The initial parasitic series
inductance was selected to be LC ≈ 0.1 nH.

In the next step, the error minimization algorithm follows. The mean squared error
(MSE) between the measurement results and the model reflection coefficient is defined,
which is used as the input for the minimizing algorithm, MATLABs fminsearch function.
The optimization of the parameters is separated into multiple steps, where the first step
attempts to fit the line length l, the second step fitts the resonant cavity parameters, the
third step the coupling parameters, the fourth step the parasitics of the connector, and
in the final, fifth step, all the resulting optimized parameters are input to the optimizer
for the final optimization. A common issue with optimizing algorithms is the problem
of the order of variables being very different. To avoid this, all the parameters input to
the function were normalized. To avoid parameter sign switching, which could result in
nonphysical values, a penalty value was added to the MSE in such cases. An example
Smith chart plot of the results of the optimization steps is shown in Figure 4.2.

Figure 4.2: Results of optimization by steps

49



5 Results

In this chapter all the results obtained in the scope of this thesis are presented. It aims
to present the results of the measurements and draw a comparison between them and the
results obtained analytically and/or from simulations. Again, the results are divided into
two major sections.

In Section 5.1, all the results for the evaluation of the unloaded Q-factor are presented.
The results obtained from the newly created model are compared to the two techniques
proposed in [3],[10]. The second section, Section 5.2, presents the BPF results. The
coupling matrices for three different material setups along with their offsets from the
synthesized matrix are shown. The reduction of losses due to silver-plating is presented
graphically, as an insertion loss comparison, and as Q0 estimations by CST FD3D,.

5.1 Q0 of a Resonant Cavity

To observe the difference between the manufactured cavities, the measured S-parameters
were compared firstly, shown in Figure 5.1. It can be seen that for the same connector,
the results between the cavities vary in the range of tens of MHz. The differences were
found to be caused by small differences in cavity dimensions and, partially, the changes
in the cavity wall thickness, which resulted in a variation of the length of the connector
inside the cavity. Afterwards, the effect of different connector lengths on the reflection
parameter was observed. Figure 5.2 shows the comparison between the three selected
connector lengths. Connector 1 (l = 6.42 mm) is approximately optimally coupled. This
results in a return loss of more than 20 dB. Connector 2 (l = 7.82 mm) has caused a very
weak overcritical coupling with approximately 2 dB return loss at the loaded resonant
frequency. The third connector, connector 3 (l = 5.76 mm), resulted in an undercritical
coupling, which was, with around 6 dB return loss, stronger than the undercritical case.

These measured results were now processed using the new proposed method, presented in
Section 4.2. From the MATLAB script implementation of the method, the Q0 results were
obtained for all three cavities. They are listed in Table 5.1. Since the resonant frequencies
are still very close to each other, it was expected that Q0 results will remain similar for
all three cavities. These expectations were confirmed and the variation coefficient of Q0

from the mean value for the three cavities was less than 0.4 %.
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Figure 5.1: Comparison between the three cavities (connector 1)

Figure 5.2: Comparison between different connector lengths (cavity 1)
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measurement connector 1 connector 2 connector 3 mean

cavity 1 7215.7 7180.4 7211.4 7202.5
cavity 2 7190.4 7135.7 7155.1 7160.4
cavity 3 7178.7 7269.8 7167.7 7208.4
polished 1 7413.5 7343.5 7414.6 7390.5
silver-plated 2 5327.5 5315.6 5324.3 5322.5
silver-plated 3 9572.4 9611.2 9546.0 9576.5

Table 5.1: Q0 results

5.1.1 Polishing

Cavity 1, which had a visually rougher surface than cavity 2, was selected to be polished.
The unloaded Q-factor of the polished cavity is also listed in Table 5.1. A small improve-
ment of Q0, 2.6%, was observed when comparing the results to the unpolished results of
cavity 1.

5.1.2 Silver-Plating

The Q0 results for the silver-plated cavities 2 and 3 are also listed in Table 5.1. The
results for cavity 2 indicate a deterioration of Q0 for silver-plating, which does not agree
with the theoretical expectations. The silver-plating process has increased the losses in
the cavity. It was found that the the silver layer was poorly contacted with the aluminum
alloy cavity. A less conductive layer of nickel was used between the cavity surface and
the silver layer. The middle layer is needed to disperse the silver layer on the structure,
because a direct joining of the two materials at hand is difficult. During this process,
something probably went wrong. The results of the silver-plated cavity 3 show a more
realistic effect of silver-plating the cavity. Here, a layer of copper was used under the silver
layer. A good electrical connection was obtained. Q0 increase of 33% in comparison to the
non-silver-plated cavity was observed. In Section 2.4, the theoretically expected range was
found to be between 34% and 50%. Our measurement thus coincides with the analytically
expected values.

5.1.3 Comparison with Other Methods

A comparison of Q0 results and their variation for different coupling coefficients was done
to establish the quality of the proposed method. The results can be seen in Tables 5.2
and 5.3. The variation coefficient of the proposed method is found to be close to a factor

variation coefficient
(
variance
mean

)
method cav. 1 cav. 2 cav. 3 pol. 1 sil.pl. 2 sil.pl. 3 avg. var

Kajfez [3] 3.0% 3.2% 1.2% 3.0% 3.2% 3.3% 2.8%
Shahid [10] 3.6% 3.6% 2.4% 3.8% 2.7% 3.8% 3.3%
new method 0.3% 0.4% 0.8% 0.6% 0.1% 0.3% 0.4%

Table 5.2: Comparison of Q0 variation results with other models
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mean Q0

method cav. 1 cav. 2 cav. 3 pol. 1 sil.pl. 2 sil.pl. 3

Kajfez [3] 7010.4 6964.1 6977.5 7245.1 5205.3 9258.8
Shahid [10] 7016.5 6957.2 6990.1 7200.7 5197.1 9236.5
new method 7202.5 7160.4 7205.4 7390.5 5322.4 9576.6

Table 5.3: Comparison of mean Q0 results with other models

10 smaller than the two presented existent methods. Additionally, it can be seen that the
Q0 values are somewhat higher than for the other two methods. This is mainly due to the
fact that the coupling mechanism losses are considered in the proposed method, whereas
the other two methods assign these losses to the unloaded Q-factor. Thus, it was found
that the results, obtained from the new proposed method, are more accurate and more
stable than the results obtained from the other two methods.

5.2 Bandpass Filter

The S-parameters of the filter were measured for three different setups. First with alu-
minum structure and brass inner conductors, second with silver-plated structure and brass
inner conductors, and the third with both the filter housing and the brass inner conductors
silver-plated. In all cases, the parameters of the BPF had to be tuned. The sequential
tuning process, presented in Section 3.2.3, was used and repeated until the deviations
from the synthesized coupling matrix coefficients were below 10%. With the first setup,
before silver-plating, the extracted coupling matrix results for the final tuned model were
offset for 8.2 % or less. The extracted matrix of the tuned filter, along with the offset
percentages from the initial design, is shown in Table 5.4. The extraction interval, i.e. the

S 1 2

S 0.000 0.992 (-4.0%) 0.000
1 0.992 (-4.0%) 0.089 (-2.5%) 0.754 (+1.8%)
2 0.000 0.754 (+1.8%) 0.437 (+4.9%)
3 0.000 -0.555 (+5.0%) 0.000
4 0.000 0.000 0.767 (+3.6%)
L 0.000 0.000 0.000

3 4 L

S 0.000 0.000 0.000
1 -0.555 (+5.0%) 0.000 0.000
2 0.000 0.767 (+3.6%) 0.000
3 -0.770 (-3.7%) 0.507 (-4.0%) 0.000
4 0.507 (-4.0%) 0.203 (-8.2%) 0.992 (-4.0%)
L 0.000 0.992 (-4.0%) 0.000

Table 5.4: Extracted coupling matrix of the manufactured model - aluminum/brass

frequency interval of extraction, strongly influences the results. CST recommends that
the interval captures all transmission zeroes while remaining as small as possible. An
interval from 955 MHz to 980 MHz was used in this example and in the two following
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5.2 Bandpass Filter

extraction cases as well. For the second material combination, the silver-plated cavity
walls and brass inner conductors, the extracted matrix of the tuned filter, along with the
offset percentages from initial design, is shown in Table 5.5. For the third material combi-

S 1 2

S 0.000 1.023 (-1.1%) 0.000
1 1.023 (-1.1%) 0.070 (-1.5%) 0.741 (+0.03%)
2 0.000 0.741 (+0.03%) 0.628 (-4.6%)
3 0.000 -0.488 (-7.7%) 0.000
4 0.000 0.000 0.753 (+1.7%)
L 0.000 0.000 0.000

3 4 L

S 0.000 0.000 0.000
1 -0.488 (-7.7%) 0.000 0.000
2 0.000 0.753 (+1.7%) 0.000
3 -0.803 (-2.1%) 0.518 (-1.9%) 0.000
4 0.518 (-1.9%) 0.006 (+1.7%) 1.023 (-1.1%)
L 0.000 1.023 (-1.1%) 0.000

Table 5.5: Extracted coupling matrix of the manufactured model - silver/brass

nation, silver-plated filter with silver-plated inner conductors, the extracted matrix of the
tuned filter, along with the offset percentages from initial design, is shown in Table 5.6.
For the from S-parameters extracted coupling matrix, CST Filter Designer 3D provides

S 1 2

S 0.000 1.001 (-3.2%) 0.000
1 1.001 (-3.2%) 0.048 (-0.46%) 0.734 (-0.84%)
2 0.000 0.734 (-0.84%) 0.532 (+0.2%)
3 0.000 -0.491 (-7.0%) 0.000
4 0.000 0.000 0.745 (+0.59%)
L 0.000 0.000 0.000

3 4 L

S 0.000 0.000 0.000
1 -0.491 (-7.0%) 0.000 0.000
2 0.000 0.745 (+0.59%) 0.000
3 -0.841 (-0.18%) 0.528 (-0.15%) 0.000
4 0.528 (-0.15%) 0.042 (-0.14%) 1.001 (-3.2%)
L 0.000 1.001 (-3.2%) 0.000

Table 5.6: Extracted coupling matrix of the manufactured model - silver/silver

an estimation of uncoupled resonators Q0. The comparison between all three filter ma-
terial combinations is listed in Table 5.7. These estimates give us an indication of the
improvement due to the silver-plating of the filter. The factor of improvement between
the start model and the completely silver-plated model is approximately 2.2. A compari-
son of scattering parameters of all the material combinations and the original synthesized
result can be seen in Figure 5.3. Although the coupling matrix coefficients do not indicate
large differences in filter tuning, the results in Figure 5.3 lead to the conclusion that the
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5.2 Bandpass Filter

materials Q0

aluminum/brass 1389
silver/brass 2498
silver/silver 3075

Table 5.7: Comparison of filter Q0 estimates

initially constructed filter was poorly tuned, which is indicated by the high return loss in
the center of the passband. Since the filter was later silver-plated, a repeated tuning and
measurement was unfortunately not possible. To see the effects of this improvement, a

Figure 5.3: Comparison of tuned filter results for all material combinations

transmission loss comparison between all three material combinations and the synthesized
design was made. How well the filter is tuned plays a big role in the passband transmission
loss. Repeated equivalent tuning of all structures is practically impossible, so these effects
have to be taken into account. Nevertheless, the overall improvement when the filter is
silver-plated can be recognized from Figure 5.4. An estimated improvement of 0.5 dB is
observed. The filter still does not reach the synthesized results, which were derived for a
Q0 of 3000. Presumably, the difference of approximately 0.5 dB, as estimated from the
results, is due to additional connector losses and imperfect tuning. A larger transmission
loss can be seen in the high end of the filter bandpass. This is due to the transmission
zero, which was selected to be very close to the bandpass edge. An inconsistency between
the CST simulated results, FD3D extracted results, and Equation (2.66) was observed. In
Table 5.8, all three values for the example of a silver-plated cavity are listed. The simu-
lation result is idealized, therefore it is expected to be higher than the realistic case. The
value extracted from CST FD3D, however, should be similar to the calculated value from
the empirical equation suggested by Hagensen. A more detailed analysis of the unloaded
quality factor can only be done by realizing a single coaxial resonant cavity, which was
out of scope for the work at hand.
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5.2 Bandpass Filter

Figure 5.4: Transmission loss comparison between the three material combinations and the syn-
thesized result

method Q0

Hagensen [14] 1905
CST sim. post-proc. step 4422
CST FD3D extraction 3075

Table 5.8: Comparison of silver-plated Q0 estimates: CST simulation vs. FD3D extraction vs.
Hagensen
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6 Conclusion and Outlook

The complete procedure of an RF bandpass filter design was presented in the course of
this thesis. First, with the help of CST Filter Designer 3D, a coupling matrix was syn-
thesized based on the design specifications. The coupling matrix coefficients were then
realized by modeling tunable quarter-wavelength coaxial resonators and the mechanisms
needed to realize external and interresonator couplings. The design and the choice of
manufacturing materials were optimized for an in-house manufacturing. Hence, many de-
sign parameters were adopted to allow for a manufacturing process using machines with
limited accuracy. The influences of all parameters were investigated by simulated param-
eter sweeps. During modeling, the limitations of the manufacturing process were kept in
mind at all times. Critical parameters of the manufacturing process were identified. The
modeled coupled resonator pairs from the simulation sweeps were then joined together to
form a detuned four-resonator box-section filter. The filter had to be tuned by adapting
the parameters with the use of previously obtained parameter sweep results. Based on the
tuned simulation parameters, the filter was then produced in-house. Due to imperfections
and numerical simulation errors, the measurement of the built filter was again detuned
required a new tuning procedure, following the same sequential procedure as in the case
of simulation results. As a final step, the filter was silver-plated to increase the unloaded
Q-factor of the resonators, which is directly related to a reduction of the insertion loss.
Since the insertion loss is highly dependent on the tuning quality, loss reduction conclu-
sions cannot be made based on this. Q0 was thus analyzed beforehand, by manufacturing
individual resonant cavities. Two existing techniques for Q0 evaluation were implemented
for this analysis. Because the techniques do not consider coupling mechanism losses, the
Q0 factors were found to be inaccurate. Therefore, a new method for unloaded Q-factor
evaluation of a single resonant cavity was proposed, which considers the losses and parasitic
influences of the coupling mechanism and attempts to fit the results on a wide frequency
band, contrary to the presented existing methods. To minimize the manufacturing er-
rors, simple waveguide cavities were manufactured for this evaluation process instead of
using the quarter-wavelength coaxial resonators. The impact of polishing was found to be
negligible, while silver-plating resulted in a 33% increase of Q0.

Again, it should be noted that the design and parameter selection here followed the limita-
tions of the available manufacturing tools. Thus, the designed filter was optimized to the
manufacturing process and not to maximum filter performance. Non-optimal materials
with low, not precisely known electrical conductivity were used. Imprecision of the tools
caused further deviations from the optimal design. For the evaluation of maximal possible
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CHAPTER 6. CONCLUSION AND OUTLOOK

filter performance, an optimal structure should be designed and manufactured instead.
The filter tuning procedure has also proven itself as a difficult task. Methods to ease and
speed up the tuning process of a filter should be further devised. Within the work done,
an inconsistency between the experimental formula, simulation results and complete filter
measurement estimation for the unloaded quality factor of a coaxial resonant cavity was
found. To determine the validity of the three methods, this should be further investigated
with the help of the introduced Q0 estimation method.

After reading this document, the reader should be equipped with the know-how and the-
oretical background needed to design and manufacture a 3-D resonant cavity based filter.
With the help of the evaluation of Q0 improvement techniques, decisions regarding their
implementation based on the filter specifications at hand can be drawn. The introduced
Q0 evaluation method is applicable on a wide range of EM resonant structures and can
be used in various situations, where precise values of the unloaded Q-factor of a resonant
cavity are required.
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A Bandpass Filter Technical Drawings
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Figure A.1: Inner conductor dimensions
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