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Chapter 1

Introduction and
Background

The omnipresence of noise in nature results in noise also being an omnipresent
topic in engineering. Engineers have to deal with electronic noise corrupting the
signals in a system as well as more abstract statistical noise in the data repre-
sented by these signals. This work is concerned with the mathematical model
of noise and its application to linear time-invariant (LTI) systems. It aims to
show the pitfalls of the widespread use of methods stemming from the study of
deterministic signals in the analysis of random signals and intends to overcome
them by first using a stochastic integral for this purpose and subsequently de-
veloping a novel approach based on generalized stochastic processes, which will
turn out to contain the results of the stochastic integral as a special case. While
the motivation for this work comes from electrical engineering, considering the
universal nature of the concepts, the application of generalized stochastic pro-
cesses to LTI systems and the relationship between LTI systems and differential
equations renders it relevant to other disciplines as well.
The remainder of this work is organized as follows: Chapter 1 will lay the foun-
dation for the later chapters by introducing the required concepts, discussing
the traditional treatment of random signals and pointing out the problems with
this approach. Chapters 2 and 3 will be concerned with introducing distribu-
tions (or “generalized functions”) and proving that the space of distributions
can be considered a probability space. Chapter 4 will subsequently introduce
generalized stochastic processes and Chapter 5 will examine the application of
generalized stochastic processes to LTI systems.

1.1 LTI Systems

LTI systems can be described in different ways, e.g. by means of network func-
tions as in Bode (1945, p. 105 ff.), state-space models as in Kalman (1961, p.
482), or based on the ring of linear differential operators with constant coeffi-
cients as in Bourlès and Marinescu (2011, p. 325 f.). The discussion contained
in this work will be based on the simple and powerful approach described in
many books on signal processing (and called “input-output representation” e.g.
in Hannan and Deistler (2012 [1988])), which due to its degree of abstraction
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2 CHAPTER 1. INTRODUCTION AND BACKGROUND

allows the description of many and varied physical systems without adding too
much complexity to the analysis. Due to the fact that permitting multiple inputs
and outputs would complicate the discussion without providing much benefit in
return, the treatise will be restricted to single-input/single-output (SISO) LTI
systems. The well-known definition of a SISO LTI system can be found e.g. in
Barry et al. (2004, p. 13 f.).

Definition 1 (LTI system). A single-input/single-output linear time-invariant
system S is a system, which is completely characterized by its unit-impulse re-
sponse function or weighting function h : R→ R and whose well-defined output
y : R→ R can be calculated from a well-defined input x : R→ R by means of the
convolution integral

y(t) =

∫
R

h(τ)x(t− τ) dτ = (h ∗ x)(t). (1.1)

This will also be written

y = S(x)

in the subsequent sections and chapters.

While the linearity of the system is provided by the linearity of the convo-
lution integral, the time-invariance depends on the parameters of the system
being constant. In a system without constant parameters, i.e. a time-variant
system, one would have to factor in the absolute time in the weighting function,
such that h would become a function in two variables h(t, τ) in the convolution
integral in Definition 1 (see Bendat and Piersol, 1993, p. 16).
For further details about the following definitions see Bendat and Piersol (1993,
p. 15 ff.) and Oppenheim et al. (1997, p. 114). A causal LTI system is char-
acterized by the fact, that it does not need future values of the input signal for
generating the output signal at present, which is necessary for the system to be
physically realizable.

Definition 2 (Causality). An LTI system S is called “causal” if for the char-
acterizing unit-impulse response function h

τ < 0 =⇒ h(τ) = 0.

LTI systems in this work will usually be expected to return bounded output
signals if they are stimulated by bounded input signals, which is a requirement
fulfilled by stable LTI systems.

Definition 3 (Stability). An LTI system S is called “stable”, if its unit-impulse
response function fulfills the condition

h ∈ L1.

The frequency response function describes the amplitude and phase shift,
that a sinusoidal input of different frequencies will have experienced when exiting
the LTI system. This function plays a very prominent role in signal processing
and thus also in this work.
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Definition 4 (Frequency response function). The frequency response function
h̃ is defined as the Fourier transform of the unit-pulse response h characterizing
the respective LTI system S:

h̃ := F(h).

Throughout this work, the term “LTI system” will refer to a stable (but not
necessarily causal) SISO LTI system. The convention for the Fourier transform
used in this work will be the one found in Gel’fand and Shilov (1964).

Definition 5 (Fourier transform). Let f ∈ L1, then

(Ff)(σ) :=

∞∫
−∞

f(x) exp(iσx) dx

is the Fourier transform and

(F−1f)(x) =
1

2π

∞∫
−∞

f(σ) exp(−iσx) dσ.

the corresponding inverse Fourier transform.

Brychkov and Prudnikov (1989, p. 148 ff.) provide very extensive tables of
Fourier transform pairs based on this convention.

1.2 Stochastic Processes and Random Signals

Random signals are traditionally modeled as classical stochastic processes, which
is why the methods of characterization of stochastic processes play a very im-
portant role in the context of LTI systems. The following well-known definitions
help with this characterization, and can be found e.g. in Lefebvre (2007, p. 49,
53 ff.) for real-valued stochastic processes and in Wong and Hayek (1985, p.
74) for complex-valued stochastic processes.

Definition 6 (Autocorrelation and autocovariance function). For a complex-
valued stochastic process X = (Xt)t∈I and t1, t2 ∈ I, the autocorrelation func-
tion is defined as

RX(t1, t2) := E(Xt1Xt2),

where X denotes the complex conjugate of X, and the autocovariance function
is defined as

CX(t1, t2) := E[(Xt1 −E(Xt1))(Xt2 −E(Xt2))].

For a real-valued stochastic process X this reduces to

RX(t1, t2) = E(Xt1Xt2)

and
CX(t1, t2) = RX(t1, t2)−E(Xt1)E(Xt2)

respectively.
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Based on Definition 6, the average power of the real-valued stochastic process

PX := E(X2
t ) = RX(t, t)

and the variance of the real-valued process

Var(Xt) = E(X2
t )−E(Xt)

2 = CX(t, t) (1.2)

can be calculated (see Lefebvre (2007, p. 50) and Klenke (2008, p. 103)).

Definition 7 (Wide-sense stationarity). The real-valued stochastic process X =
(Xt)t∈I is called “wide-sense stationary”, if

E(Xt) = m for all t ∈ I

and
RX(t1, t2) = RX(t2 − t1) for all t1, t2 ∈ I.

The following definition can be found in Lefebvre (2007, p. 56) and Sun-
darapandian (2009, p. 559).

Definition 8 (Ergodicity). A wide-sense stationary stochastic process X =
(Xt)t∈I for which E(Xt) = m for all t ∈ I is said to be mean ergodic, if

P

 lim
T→∞

1

2T

T∫
−T

X•t dt = m

 = 1,

where (X•t )t∈I is a realization of the process X, and correlation ergodic, if

P

 lim
T→∞

1

2T

T∫
−T

X•tX
•
t+τ dt = RX(τ)

 = 1.

Definition 9 (Spectral density). The spectral density of a real-valued wide-
sense stationary stochastic process X = (Xt)t∈I is the Fourier transform of its
autocorrelation function

SX := F(RX).

As explained in Ohm and Lüke (2007, p. 185), the spectral density deter-
mines the spectral distribution of power of a wide-sense stationary stochastic
process, such that its average power can be calculated by

PX = RX(0) =

∞∫
−∞

SX(ω) dω. (1.3)

In the context of LTI systems it is often interesting to know the nature of a
stochastic signal on the output of a system, when only the characteristics of
the random signal on the system input are known. Regarding the influence of
LTI systems on stochastic signals, there are several important and widespread
results, which are usually derived using methods stemming from the analysis
of deterministic signals and which will be shown in the following propositions.
The following lemma will appear throughout this work, when spectral densities
are calculated from autocorrelation functions.



1.2. STOCHASTIC PROCESSES AND RANDOM SIGNALS 5

Lemma 10. Let h : R→ R, h ∈ L1 ∩ L2, and

(f ⊗ g)(t) :=

∞∫
−∞

f(t′)g(t+ t′) dt′, (1.4)

then

F(h⊗ h) = |Fh|2 = |h̃|2.

Proof. h ∈ L2 ensures that ‖h ⊗ h‖1 ≤ ‖h‖22 < ∞ through Hölder’s inequality
(see e.g. Klenke (2008, p. 152)) and thus that h⊗ h is integrable, which means
that the Fourier transform from Definition 5 can be applied to h⊗ h.

F(h⊗ h) =

∞∫
−∞

 ∞∫
−∞

h(t′)h(t+ t′) dt′

 exp(iσt) dt

=

∞∫
−∞

∞∫
−∞

h(t′)h(t) exp(iσ(t− t′)) dtdt′

=

∞∫
−∞

h(t′) exp(−iσt′) dt′
∞∫
−∞

h(t) exp(iσt) dt

=

∞∫
−∞

h(t′) exp(iσt′) dt′

∞∫
−∞

h(t) exp(iσt) dt

= FhFh = |Fh|2 = |h̃|2.

The following proposition will examine the relationship of the autocorrela-
tion function of a stochastic process modeling the random output signal of an
LTI system and the autocorrelation function of the stochastic process modeling
its input random signal.

Proposition 11. Let the stochastic process X = (Xt)t∈I describing the input of
the LTI system characterized by the unit-impulse response function h ∈ L1∩L2,
h : R→ R be a real-valued and correlation-ergodic wide-sense stationary process,
whose paths X•t are almost surely (see Klenke (2008, p. 32)) integrable, and let
the stochastic process describing the output of the system Y = (Yt)t∈I be wide-
sense stationary and correlation-ergodic. In addition, let RX be bounded almost
everywhere. Then, the autocorrelation function RY can be calculated by

RY = RX ∗ (h⊗ h),

and RY is bounded.

Proof. As in Lemma 10, h ∈ L2 ensures that ‖h ⊗ h‖1 ≤ ‖h‖22 < ∞ through
Hölder’s inequality and thus that h ⊗ h is integrable. h ∈ L1 implies, that
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the convolution of h with the almost surely integrable paths of X results in an
integrable function (see Königsberger (2004, p. 318)). Then,

RY (τ) = E[YtYt+τ ]

= lim
T→∞

1

2T

T∫
−T

Y •t Y
•
t+τ dt

= lim
T→∞

1

2T

T∫
−T

 ∞∫
−∞

X•t−λ h(λ) dλ

 ∞∫
−∞

X•t+τ−η h(η)dη

 dt

=

∞∫
−∞

∞∫
−∞

lim
T→∞

1

2T

T∫
−T

X•t−λX
•
t+τ−η dt h(λ)h(η) dλdη

=

∞∫
−∞

∞∫
−∞

RX(τ + λ− η)h(λ)h(η) dλdη

=

∞∫
−∞

RX(τ − η′)
∞∫
−∞

h(λ)h(η′ + λ) dλdη′

=

∞∫
−∞

RX(τ − η′) (h⊗ h)(η′)dη′

= (RX ∗ (h⊗ h))(τ),

where t1, t2, which can be assumed without loss of generality as t2 ≥ t1, are
replaced by t = t1 and τ := t2−t1 due to the property of wide-sense stationarity.
Finally,

|RX ∗ (h⊗ h)| =

∣∣∣∣∣∣
∞∫
−∞

R(t− t′)(h⊗ h)(t′) dt′

∣∣∣∣∣∣
≤
∞∫
−∞

C|(h⊗ h)(t′)|dt′ = C‖h⊗ h‖1 <∞

due to |RX | ≤ C almost everywhere and h ⊗ h ∈ L1, which means that RY is
bounded.

As indicated in Definition 9, there is a close relationship between the spectral
density and the autocorrelation function.

Proposition 12. Suppose a given LTI system is described by the unit-impulse
response function h ∈ L1 ∩ L2 and X = (Xt)t∈I is a real-valued wide-sense
stationary process describing the random input signal fed into the LTI system.
Furthermore, let RX ∈ L1, such that RX and SX are a valid Fourier transform
pair. Then the spectral density SY of the stochastic process Y = (Yt)t∈I describ-
ing the random signal appearing at the output of the respective LTI system can
be calculated by means of

SY (ω) = |h̃(ω)|2SX(ω),
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where h̃ = Fh.

Proof. Applying Proposition 11 to the spectral density of Y yields

SY = FRY = F(RX ∗ (h⊗ h)).

Together with Lemma 10 and the properties of the Fourier transform this implies
that

SY = F(RX ∗ (h⊗ h)) = FRX F(h⊗ h) = SX |h̃|2.

The next proposition is concerned with the expected value of the random
signal at the input and the associated expected value of the random signal at
the output of an LTI system, i.e. the so-called “DC components” of the random
signals.

Proposition 13. Let an LTI system be described by the unit-impulse response
function h : R→ R with the property h ∈ L1 and let X = (Xt)t∈I be a real-valued
and mean-ergodic wide-sense stationary process describing the input random
signal. Furthermore, let the paths X• of X be almost surely integrable and let
the resulting stochastic process Y = (Yt)t∈I on the output of the LTI system be
mean-ergodic, then the expected value of the random signal Y on the output can
be calculated from the expected value of the random signal X on the input by
means of

E(Y ) = h̃(0) E(X),

where h̃ is the frequency response function of S and E(X) the (constant) expected
value of the wide-sense stationary process.

Proof. Königsberger (2004, p. 318) states that ‖h∗X•‖1 ≤ ‖h‖1‖X•‖1. There-
fore, the relevant integrals exist and

E(Y ) = lim
T→∞

1

2T

T∫
−T

Y •t dt

= lim
T→∞

1

2T

T∫
−T

 ∞∫
−∞

h(t− t′)X•t′ dt′
 dt

= lim
T→∞

1

2T

T∫
−T

X•t′

∞∫
−∞

h(t− t′) dtdt′

= lim
T→∞

1

2T

T∫
−T

X•t′

∞∫
−∞

h(t− t′) exp(i0t) dtdt′

= lim
T→∞

1

2T

T∫
−T

X•t′

∞∫
−∞

h(t′′) exp(i0(t′′ + t′)) dt′′dt′

= lim
T→∞

1

2T

T∫
−T

X•t′

∞∫
−∞

h(t′′) exp(i0(t′′)) dt′′dt′
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= h̃(0) lim
T→∞

1

2T

T∫
−T

X•t′ dt
′

= h̃(0) E(X).

Propositions 11 and 13 put the restriction of almost surely integrable paths
on the stochastic process on the input of the LTI system, which turns out to
be too strong for many applications: Øksendal (2007, p. 21) concludes that a
stochastic process Wt with the properties

1. t1 6= t2 =⇒Wt1 ,Wt2 independent,

2. the (joint) distribution of {Wt1+t, . . . ,Wtk+t} is independent of t, and

3. E(Wt) = 0 for all t,

as it is often required in the engineering context, especially when modeling noise,
cannot have continuous paths. If it is additionally required, that R(0) = C(0) =
Var(Wt) = E[W 2] = 1, the stochastic process cannot even be measurable.
Øksendal (2007, p. 21) states, that it is possible to represent such a so-called
“white noise process” Wt only as a generalized stochastic process, which triggers
the interesting question, how generalized stochastic processes can be applied
to LTI systems, and if the statements of Propositions 11 to 13 will still hold
in the respective context. This question will be addressed in the subsequent
chapters, where the motivating special case of the white noise process will also
be discussed. The analysis of white noise in this work will be based on the
definition in Hida and Si (2008, p. 13, 21), that is white noise will be considered
the derivative of a Wiener process in the distributional sense. As it will turn
out in Chapter 4, this definition will not only yield a white noise process as
defined in Øksendal (2007, p. 21) and discussed above, but also a white noise
process according to other widespread definitions, such as those in Ohm and
Lüke (2007, p. 187), who consider it as a stochastic process X characterized by
E(X) = 0 and a constant spectral density SX(ω) = N0, N0 ∈ R.



Chapter 2

Distributions

In the preceding chapter, it was shown that it makes sense to consider the us-
age of generalized stochastic processes when analyzing the properties of LTI
systems with respect to stochastic input signals. In the definition of generalized
stochastic processes, distributions play a crucial role. These concepts in turn
depend on the spaces D and S. The first two sections of this chapter intro-
duce D and S and their respective topologies. The third section deals with
distributions themselves and some of their properties, which will be needed in
the later chapters. Eventually, the fourth section explains the relationship of
distributions and measures and includes a discussion of the Dirac distribution,
which is of crucial importance in physics and engineering.

2.1 The Space D

The space D(Ω), with Ω being an open and (not necessarily proper) subset of
Rn, is essential for the introduction of distributions, which use this space as
their domain. As in Jantscher (1971, p. 27 ff.), let the n-tuple κ = (κ1, . . . , κn)
of κj ∈ N0 = {0, 1, 2, . . .} be an n-multi-index and

|κ| :=
n∑
j=1

κj .

Furthermore, let

D
κj

j :=
∂κj

∂x
κj

j

=

(
∂

∂xj

)κj

and

Dκ := Dκ1
1 . . . Dκn

n =
∂|κ|

∂xκ1
1 . . . ∂xκn

n
.

Definition 14. For a given domain Ω, let

C(Ω) := C0(Ω) := {ϕ|ϕ : Ω→ C and ϕ continuous},
C∞(Ω) := {ϕ|ϕ : Ω→ C and ∀κDκϕ ∈ C(Ω)}.

The space of test functions is defined as

C∞0 (Ω) := {ϕ|ϕ ∈ C∞(Ω) where supp(ϕ) is bounded and supp(ϕ) ⊂ Ω}.

9
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Definition 15 (Space D). With K ⊂ Ω being an arbitrary and fixed compact
set, let

DK(Ω) := {ϕ|ϕ ∈ C∞0 (Ω) and supp(ϕ) ⊂ K},
which is a linear subspace of the vector space of test functions C∞0 , and

D(Ω) :=
⋃
K⊂Ω

DK(Ω), (2.1)

then the space D is defined as

D := D(Rn).

In Chapter 3, the fact that D can be seen as a topological vector space will
play a very important role in the definition of a probability space. As explained
in Jantscher (1971, p. 39), a set X is called a topological vector space or linear
topological space over K, if

1. X is a linear space over K,

2. X is a topological space,

3. the addition and multiplication with scalars in X are continuous mappings
X ×X → X and K×X respectively.

This means that for D(Ω) and thus also D to be such a topological vector
space, it has to be shown that D(Ω) is a linear space, which will be done in
Proposition 16. Proposition 17 will then show how a topology can be generated
for DK(Ω) and that with this topology, it is in fact a topological vector space.
The topology of DK(Ω) will then be used in Proposition 18 to construct a
topology for D(Ω), which is subsequently also shown to be a topological vector
space.

Proposition 16. D(Ω) is a vector space over C and DK(Ω) is a linear subspace
of D(Ω). In addition,

D(Ω) = C∞0 (Ω).

Proof. Since DK(Ω) is a linear subspace of C∞0 (Ω), ϕ ∈ D(Ω) =⇒ ϕ ∈ DK(Ω)
for some K due to Equation (2.1) =⇒ ϕ ∈ C∞0 (Ω). Thus, D(Ω) ⊂ C∞0 (Ω).
Conversely, ϕ ∈ C∞0 (Ω) =⇒ ϕ ∈ D(Ω) with supp(ϕ) ⊂ K =⇒ ϕ ∈ D(Ω), which
implies D(Ω) ⊃ C∞0 (Ω). Therefore, D(Ω) = C∞0 (Ω).
The properties of D(Ω) being a vector space over C and DK(Ω) being a linear
subspace of D(Ω) follow directly from the association of D(Ω) with C∞0 (Ω).

For generating the topology for DK(Ω), let

pK,m(ϕ) := sup
x∈K,|κ|≤m

|Dκϕ(x)| for m ∈ N0, (2.2)

then
PK = {pK,m|m ∈ N0}

is a countable system of seminorms with the property

pK,mj (ϕ) ≤ pK,m(ϕ), (j = 1, 2) with m = max(m1,m2)

for all ϕ. The pK,m are norms on DK(Ω). PK can now be used to generate the
topology for DK(Ω).
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Proposition 17. With the system PK of norms, the linear subspace DK(Ω) ⊂
C∞0 (Ω) = D(Ω) becomes a locally convex separable topological vector space over
C, which satisfies the first axiom of countability. Furthermore, for a sequence

(ϕν)ν∈N ⊂ DK(Ω), ϕ0 ∈ DK(Ω)

it holds that

ϕν −−−−→
DK(Ω)

ϕ0 ⇐⇒ (∀κDκϕν ===⇒
K

Dκϕ0),

where

Dκϕν ===⇒
K

Dκϕ0

means uniform convergence on K.

Proof. See Jantscher (1971, p. 52).

Now, with the topologies defined on the linear subspaces DK(Ω) of D(Ω),
the topology for D(Ω) can be introduced.

Proposition 18. Let V∗ = {V } be the family of all those subsets V ∈ D(Ω),
which have the following properties:

1. for all α ∈ [0, 1] the set V fulfills αV + (1− α)V ⊂ V (V is convex),

2. for every ϕ ∈ D(Ω) there is a number c > 0, such that for all α ∈ C with
|α| ≥ c the set V fulfills 1

αϕ ∈ V (V is absorbing),

3. for every α ∈ C with |α| ≤ 1 the set V fulfills αV ⊂ V (V is circular),

4. for all K ⊂ Ω and V ∈ V∗ the set V ∩DK(Ω) is a neighborhood in DK(Ω).

Then V∗ is a neighborhood basis and the linear space D(Ω) becomes a locally
convex linear topological space over C through V∗.

Proof. See Jantscher (1971, p. 53).

The following proposition specifies the notion of convergence with respect to
this topology.

Proposition 19. A sequence (ϕν)ν∈N ⊂ D(Ω) converges to ϕ0 ∈ D(Ω) in D(Ω)
if and only if

1. there is a K ⊂ Ω with supp(ϕν) ⊂ K and supp(ϕ0) ⊂ K for all ν ∈ N
and

2. for all multi-indices κ it holds that Dκϕν ===⇒
K

Dκϕ0.

Proof. See Jantscher (1971, p. 56).
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2.2 The Space S

In many instances, it is helpful to be able to perform Fourier transforms on
distributions. However, as it will turn out, this depends on the domain of the
particular distribution being closed with respect to the Fourier transform, which
is not the case for D(Ω). Therefore, in order to be able to introduce the Fourier
transform of distributions, the space S of rapidly decreasing functions has to
be introduced based on the space E(Ω) defined in the following proposition.

Proposition 20. The linear space C∞(Ω) introduced in Definition 14 becomes
a locally convex topological vector space over C through the system of seminorms
defined in Equation (2.2). The resulting locally convex topological vector space
is called E(Ω), in the special case Ω = Rn it will be written E := E(Rn). For a
sequence (ϕν)ν∈N ⊂ E(Ω), ϕ0 ∈ E(Ω) it holds that

ϕν −−−→
E(Ω)

ϕ0 ⇐⇒ (∀κDκϕν ===⇒
K

Dκϕ0)

on every compact set K ⊂ Ω.

Proof. See Jantscher (1971, p. 50 f.).

Note that (as mentioned in Jantscher (1971, p. 52)), while D(Ω) ⊂ E(Ω),
the topology of D(Ω) constructed in the previous section is not the induced
topology from E(Ω), but a finer one. The definition of the space S is based on
E.

Definition 21 (Space S). The set S consists of all ϕ ∈ E with the property
that for every pair κ, λ of n-multi-indices there is a number Cκ,λ > 0 such that
for all x ∈ Rn

|xλDκϕ(x)| < Cκ,λ; xλ = xλ1
1 . . . xλn

n .

For the introduction of a topology for S, the system

pj,k(ϕ) := sup
x∈Rn,|κ|≤k

(1 + |x|)j |Dκϕ(x)| for ϕ ∈ S (2.3)

of seminorms is needed, which has the property

pji,ki(ϕ) ≤ pj,k(ϕ) for ϕ ∈ S and i = 1, 2,

where j := max(j1, j2) and k := max(k1, k2).

Proposition 22. The vector space S becomes a locally convex separable lin-
ear topological space over C through the system of seminorms defined in Equa-
tion (2.3) and satisfies the first axiom of countability. The convergence ϕν −→

S
o

(with o being the zero element of S) for a sequence (ϕν)ν∈N ⊂ S can be written
in three equivalent ways:

• For all j ∈ N0 and all n-multi-indices κ, λ the condition

(1 + |x|)jDκϕν ====⇒
Rn

o

is fulfilled.
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• For all n-multi-indices κ, λ it holds that

xλDκϕν ====⇒
Rn

o.

• On every compact set K ⊂ Rn and for all n-multi-indices κ it holds that
Dκϕν ====⇒

Rn
o and for all j ∈ N0 there exists a number Cκ,j > 0 such that

for every x ∈ Rn and every ν ∈ N the inequality (1+|x|)j |Dκϕν(x)| < Cκ,j
is fulfilled.

Proof. See Jantscher (1971, p. 167).

As stated in Jantscher (1971, p. 166 f.),

D ⊂ S ⊂ E

where the topology of D is finer than the one of S, which in turn is finer than
the topology of E. Furthermore, D is dense in S, which in turn is dense in
E. The functions in S allow the application of the Fourier transform, and are
closed with respect to this operation, as indicated in the next proposition.

Proposition 23. The Fourier transform is a linear and sequentially contin-
uous isomorphism F : S → S. Its inverse function F−1 is also sequentially
continuous.

Proof. See Jantscher (1971, p. 211 f. and 214).

2.3 The Spaces D′ and S′

Based on the space D(Ω) it is now possible to introduce distributions (or “gen-
eralized functions”). Distributions are linear functionals (i.e. they are linear
mappings T : F → C, with F being a vector space) where the vector space
D(Ω) acts as the domain. The fact that D(Ω) is also equipped with a topology
allows for the the inclusion of the notion of continuity into the definition. Some
distributions, the so-called tempered distributions, can be uniquely extended to
S and are then elements of its dual space S′, which means that the Fourier
transform can be performed on them.

Definition 24 (Distribution). The elements of the set

D′(Ω) := {T |T : D(Ω)→ C, T linear and continuous}

are called distributions. In the special case, that Ω = Rn, the notation
D′ := D′(Rn) will be used.

The element in C associated to ϕ ∈ D(Ω) by means of the distribution T
will be written

T (ϕ) = Tϕ = (T, ϕ).

As evident in the following two propositions, the continuity of the distribu-
tion T : D(Ω)→ C can be characterized by the continuity of its restrictions to
DK(Ω).

Proposition 25. Let T : DK(Ω)→ C be a linear functional. Then,
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1. T is either continuous everywhere or nowhere continuous,

2. T is continuous if and only if there is a number a > 0 and a k ∈ N0 such
that for all ϕ ∈ DK(Ω) it holds that

|Tϕ| ≤ a pK,k(ϕ),

where
pK,k(ϕ) = sup

x∈K,|κ|≤k
|Dκ ϕ(x)|

has the same meaning as in Equation 2.2,

3. T is continuous if and only if for every sequence (ϕν)ν∈N ⊂ DK(Ω) with

ϕν −−−−→
DK(Ω)

o,

o being the zero element of DK(Ω), it holds that

Tϕν −−−→
C

0.

Proof. See Jantscher (1971, p. 60 f.).

Proposition 26. Let T : D(Ω)→ C be a linear functional. Then,

1. T is either continuous everywhere or nowhere continuous,

2. T is continuous if and only if for every compact set K ⊂ Ω the restriction
T |DK(Ω) of T to DK(Ω) is continuous.

Proof. See Jantscher (1971, p. 61).

The next proposition shows, that the set D′(Ω) has the important property
of being a vector space itself.

Proposition 27. With the usual definitions of the sum T1 + T2 for T1, T2 ∈
D′(Ω) and the product αT for α ∈ C, T ∈ D′(Ω), the set D′(Ω) constitutes a
vector space over C. D′(Ω) is the dual space of D(Ω).

Proof. See Jantscher (1971, p. 64).

Apart from the sum and product mentioned in Proposition 27, there are
several other operations that can be defined for the elements of D′(Ω). The
operations relevant for this work are the multiplication of a distribution with a
function from the space E, and the differentiation of a distribution.

Proposition 28. Let T ∈ D′(Ω) and χ ∈ E(Ω). Then

(χT )ϕ := T (χϕ)

defines a mapping χT : D(Ω)→ C for all ϕ ∈ D(Ω) with the property

χT ∈ D′(Ω).

D′(Ω) is closed with respect to multiplication with an element of E(Ω).
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Proof. See Jantscher (1971, p. 76).

Proposition 29. Let Ω ⊂ R, T ∈ D′(Ω), ϕ ∈ D(Ω) and k ∈ N. The relation

T (k)ϕ := (−1)k T (ϕ(k))

defines a mapping T (k) : D(Ω) → C. T (k) is then called the k-th derivative of
the distribution T (or its derivative of the k-th order), which can equivalently be
written

dk

dtk
T := T (k).

The mapping T (k) : D(Ω)→ C has the properties

T (k) ∈ D′(Ω)

and

T (k+1) =
d

dt
T (k).

D′(Ω) is closed with respect to differentiation.

Proof. See Jantscher (1971, p. 80).

For the Fourier transform, which is an essential tool for the analysis of LTI
systems, there is unfortunately no equivalent operation in D′(Ω). Instead, one
has to resort to the functions of the vector space S, which has been determined
closed under the Fourier transform in Proposition 23, and define a Fourier trans-
form on the space of continuous linear functions on S (i.e. the dual vector space
of S).

Definition 30 (Space S′). The set

S′ := {T |T : S→ C, T linear and continuous}

is the dual vector space of S.

Proposition 31. Let T be a linear form on S′, then

1. either T is continuous everywhere or nowhere continuous, and

2. T is continuous if and only if there exist numbers a > 0 and j, k ∈ N0

such that for all ϕ ∈ S it holds that

|Tϕ| ≤ a pj,k(ϕ),

where pj,k are the seminorms defined in Equation (2.3).

Proof. See Jantscher (1971, p. 174).

The vector space S′ has several other notable properties, which are summed
up in the following proposition.

Proposition 32. The vector space S′ has the following properties:
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1. For T ∈ S′ the restriction

T |D =: T ∗ ∈ D′,

and if T ∗ = O on D, then T = O on S, with O being the respective zero
elements.

2. For T ∈ S′ and ψ ∈ OM it holds that ψT ∈ S′. S′ is thus closed with
respect to the multiplication with an element of OM .

3. For T ∈ S′ and for all multi-indices κ, DκT ∈ S′. S′ is thus closed with
respect to differentiation.

4. S′ is complete.

Proof. For the property 1 see p. 169, for the properties 2 and 3 p. 171, and for
property 4 p. 173 of Jantscher (1971).

The central property of S′ is the possibility of applying the Fourier transform
to its elements.

Proposition 33. Let T ∈ S′ and ϕ ∈ S. Then the mapping T̃ : S→ C

(FT )(ϕ) = T̃ (ϕ) := T (ϕ̃)

is called the Fourier transform of T . The Fourier transform of T is a continuous
linear functional on S.

Proof. See Jantscher (1971, p. 216).

Under certain conditions, a given T ∈ D′ can be uniquely extended to S,
such that the Fourier transform becomes possible for T .

Definition 34 (Tempered distribution). A distribution T ∈ D′ is called tem-
pered, if there is a unique linear and continuous extension of T to S.

Proposition 35. A distribution T ∈ D′ is tempered if and only if there is a
k ∈ N0, an n-multi-index κ and a bounded function f ∈ C(Rn), such that

T = Dκ((1 + |x|2)
k
2 f(x))

on D.

Proof. See Schwartz (1978 [1966], p. 240).

2.4 Distributions and Measures

The vector space of distributions D′ can be divided into regular and singular
distributions. A regular distribution is a distribution generated using a locally
integrable function

f ∈ Lloc
1 (Ω) := {f |f : Ω→ C almost everywhere on Ω,

for all K ⊂ Ω the function f is measurable and |f | integrable}
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and is defined by[
f
]

: D(Ω)→ C,
[
f
]
ϕ =

∫
Rn

f(x)ϕ(x) dx, (2.4)

where ϕ ∈ D(Ω). Distributions, which are not regular, are called singular
(Jantscher, 1971, p. 65).
If certain prerequisites are fulfilled, it is also possible to define distributions
based on given measures, or represent given distributions by measures. To
explain this in greater detail, some concepts have to be introduced first. In
Gel’fand and Vilenkin (1964, p. 136 and 140), positive distributions are defined
and the concept of positive-definiteness is extended to D′.

Definition 36 (Positive distribution). f ∈ D′ is called positive, if for every
ϕ ∈ D with ϕ(x) ≥ 0, x = {x1, . . . , xn} it holds that (f, ϕ) ≥ 0.

Definition 37 (Positive-definite distribution). f ∈ D′ is called positive-definite,
if for every ϕ ∈ D′

(f, ϕ ∗ ϕ∗) ≥ 0,

where ϕ∗(x) := ϕ(−x).

The following definitions can be found in Gel’fand and Vilenkin (1964, p.
140 and 345 f.).

Definition 38 (Tempered measure). A positive measure µ is called tempered,
if the integral ∫

(1 + |λ|2)−p dµ(λ)

converges for some p ≥ 0.

Definition 39 (Fourier transform of a measure). The Fourier transform of a
nonnegative measure µ in Rn is defined as the function

f(x) =

∫
exp(i(x, y) dµ(y),

where (·, ·) is the inner product. With a view to Section 3.2, this definition can
be extended to the dual space Φ′ of a linear topological space Φ and a cylinder
set measure µ. In this case, with f representing the elements of Φ′ and ϕ those
of Φ, the non-linear functional defined on Φ

L(ϕ) :=

∫
exp(i(f, ϕ)) dµ(f),

is the Fourier transform of the cylinder set measure µ.

With these definitions, the connections between measures and distributions
relevant for this work, which can be found in Gel’fand and Vilenkin (1964, p.
147 and 158), can be understood.

Proposition 40. Every positive f ∈ S′ is given by a tempered measure µ;

(f, ϕ) =

∫
ϕ(x) dµ(x). (2.5)

Conversely, if µ is a positive tempered measure, then Equation (2.5) defines a
positive f ∈ S′.
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Proof. See Gel’fand and Vilenkin (1964, p. 145-147).

Proposition 41 (Bochner-Schwartz). Every positive-definite f ∈ D′ is the
Fourier transform of a positive tempered measure µ, that is it can be written as

(f, ϕ) =

∫
ϕ̃(λ) dµ(λ).

Conversely, the Fourier transform of any positive tempered measure defines a
positive-definite f ∈ D′.

Proof. See Gel’fand and Vilenkin (1964, p. 158-165).

As mentioned in Gel’fand and Vilenkin (1964, p. 157), the space D′ is
substantially richer in distributions than S′. Nevertheless, it turns out that, al-
though S′ ⊂ D′, the class of positive-definite distributions (described by Propo-
sition 41) does not grow when passing from S′ to D′; the class of positive-definite
functions in D′ is the same as in S′.
Obviously, the well-known Dirac measure

δx0
(X) :=

{
1 if x0 ∈ X
0 if x0 /∈ X

is a positive tempered measure and thus according to Proposition 40 defines an
f ∈ S′

(δx0 , ϕ) =

∫
ϕ(x) dδx0(x),

the so-called Dirac distribution, which is an example of a singular distribution
and often written as

δx0(ϕ) := ϕ(x0).

Proofs, that the Dirac distribution cannot be represented in the way outlined in
Equation (2.4) can be found in Constantinescu (1974, p. 37 f.) and Jantscher
(1971, p. 65 f.). Nevertheless, Equation (2.4) is often used as a notation for the
Dirac distribution; in this work, the Dirac distribution will be written as

δx0
(ϕ) =

∫
δx0

(x)ϕ(x) dx =

∫
δ(x− x0)ϕ(x) dx

where beneficial.



Chapter 3

Probability Spaces on D′

In Chapter 2, distributions and the space D′ have been defined, which will now
be used as a basis for the construction of a probability space. The analysis in this
chapter will mostly be conducted on the more general level of topological vector
spaces, of which D′ was shown to be an example in Chapter 2. As a first step
for defining a probability space on a topological vector space, cylinder sets will
be introduced in the first section, and the properties of families of cylinder sets
will be investigated. In the second section of this chapter, so-called “cylinder set
measures” will be introduced, and it will be explained under which conditions
these cylinder set measures can be uniquely extended to the σ-algebra generated
by the cylinder sets on D′. The third section will eventually build a probability
space on D′ based on the concepts introduced in the preceding sections.

3.1 Cylinder Sets on Topological Vector Spaces

Before introducing the notion of a cylinder set, cosets have to be introduced,
which serve as building blocks for cylinder sets. As explained in Gel’fand and
Vilenkin (1964, p. 304), the decomposition of Φ′ into cosets is uniquely defined
by the specification of the annihilator. The topological vector space Φ will later
become D and the role of its adjoint Φ′ will be taken over by D′.

Definition 42 (Annihilator). Let Ψ be a finite-dimensional subspace in Φ, then
the annihilator Ψ0 ⊂ Φ′ of Ψ is defined as

Ψ0 := {f ∈ Φ′|(f, ψ) = 0 for all ψ ∈ Ψ}.

With the help of the annihilator, the quotient space Φ′/Ψ0 can now be
defined, which decomposes Φ′ into cosets. The equivalence relation used as a
basis for the decomposition is

f1 ∼ f2 ⇐⇒ f1 − f2 ∈ Ψ0.

Definition 43 (Coset). The collection of all elements f ∈ Φ′, which are mem-
bers of the same equivalence class in Φ′/Ψ0 are called a coset with generating
subspace Ψ0.

19
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Gel’fand and Vilenkin (1964) thus combine all the f ∈ Φ′, which take equal
values on Ψ, into one equivalence class and associate the value of

(f(ψ1), . . . , f(ψn)) = (a1, . . . , an) ∈ Rn, (3.1)

with the particular equivalence class or coset; here, the functions ψ1, . . . , ψn are
a chosen basis of the finite-dimensional subspace Ψ. Associating every functional
f ∈ Φ′ with the coset (or equivalence class) containing it, one obtains a linear
mapping Φ′ → Φ′/Ψ0 (the quotient or natural mapping as in Kasriel (2009
[1971], p. 235)). These concepts allow the definition of the cylinder set as given
in Gel’fand and Vilenkin (1964, p. 304).

Definition 44 (Cylinder set). The collection of all elements f ∈ Φ′, which
are carried into elements of a subset A ⊂ Φ′/Ψ0 by the quotient mapping
Φ′ → Φ′/Ψ0, is called the cylinder set Z with base A and generating subspace
Ψ0.

As elaborated in Gel’fand and Vilenkin (1964, p. 303), the cylinder set Z
then contains all f ∈ Φ′, for which

((f, ψ1), . . . , (f, ψn)) ∈ A

with the base A ⊂ Rn and ψ1, . . . , ψn being the basis of Ψ. On p. 304, the au-
thors point out that the cylinder set Z is the union of those cosets corresponding
to the points of the set A and that any union of cosets is a cylinder set in Φ′.
The following two theorems hold for the class of locally convex linear topological
spaces.

Proposition 45. Any linear functional f which is defined on a subspace Ψ of
a locally convex linear topological space Φ can be extended to a linear functional
on all of Φ.

Proof. The continuity of f implies the existence of a neighborhood U of zero
in Φ, such that |(f, ϕ)| ≤ 1 for ϕ ∈ U ∩ Ψ. Choosing an absolutely convex
neighborhood of zero V ⊂ U , we take V as the unit sphere in Φ of a seminorm
‖ϕ‖ (that is we set ‖ϕ‖ = 1/ sup |λ|, where λϕ ∈ V , for all ϕ ∈ Φ). Then
|(f, ϕ)| ≤ ‖ϕ‖ for all ϕ ∈ Ψ. By using the Hahn-Banach theorem, one finds
that the functional f has an extension f̃ , which is defined on all of Φ, additive,
homogeneous and satisfies |(f̃ , ϕ)| ≤ ‖ϕ‖ for all ϕ ∈ Φ. Subsequently the
condition |(f̃ , ϕ)| ≤ 1 holds for ϕ ∈ V , which means that f̃ is continuous
relative to the topology of Φ.

Proposition 46. If Φ is a locally convex linear topological space and Ψ is a
subspace of Φ, then the space Φ′/Ψ0 is the adjoint space of Ψ.

Proof. Any f ∈ Φ′ is a linear functional on Φ, which entails that it is also a
linear functional on Ψ. Two functionals f1, f2 ∈ Φ′ coincide on Φ if and only
if they belong to the same coset relative to Ψ0, that is if they correspond to
the same element in the factor space Φ′/Ψ0. Consequently, to every element
f̃ ∈ Φ′/Ψ0 corresponds a linear functional on Ψ, and to distinct elements of
Φ′/Ψ0 correspond distinct functionals on Ψ. Now, let f0 be a linear functional
on Ψ. Since Φ is assumed to be a locally convex linear topological space and Ψ a
subspace of Φ, Proposition 45 can be utilized to extend f0 to a linear functional
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on all of Φ. The various possible extensions of f0 all coincide on Ψ and thus
belong to the same coset relative to Ψ0. This entails that every linear functional
on Ψ corresponds to some element of Φ′/Ψ0.

Proposition 46 implies the following result.

Proposition 47. If a subspace Ψ ⊂ Φ is n-dimensional, then the factor space
Φ′/Ψ0 is also n-dimensional.

Proof. See Gel’fand and Vilenkin (1964, p. 306).

A given cylinder set can be defined by various generating subsets and bases.
This raises the question of which conditions have to be fulfilled, such that a
cylinder set Z1, having generating subspace Ψ0

1 and base A1, and a cylinder set
Z2, having generating subspace Ψ0

2 and base A2, coincide.

Proposition 48. Let the cylinder sets Z1, Z2 be defined by the generating sub-
sets Ψ0

1,Ψ
0
2 and the bases A1, A2 respectively. Furthermore, let Ψ0

3 = Ψ0
1 ∩ Ψ0

2.
The condition

T−1
1 (A1) = T−1

2 (A2),

where T1 denotes the natural linear mapping of Φ′/Ψ0
3 onto Φ′/Ψ0

1 and T2 de-
notes the natural linear mapping of Φ′/Ψ0

3 onto Φ′/Ψ0
2, is necessary and suffi-

cient for Z1 and Z2 to coincide.

Proof. As explained in Gel’fand and Vilenkin (1964, p. 306 f), the cylinder
sets Z1 and Z2 can be given by the same generating subspace Ψ0

3, which is the
annihilator of the subspace Ψ3 ⊂ Φ generated by the subspaces Ψ1 and Ψ2, and
coincides with Ψ0

1∩Ψ0
2. Due to the fact that Ψ0

3 = Ψ0
1∩Ψ0

2 ⊂ Ψ0
1, any coset with

respect to Ψ0
3 belongs to some coset with respect to Ψ0

1. By means of associating
every coset with respect to Ψ0

3 with the coset with respect to Ψ0
1, that contains

it, one obtains a linear mapping T1 : Φ′/Ψ0
3 → Φ′/Ψ0

1. Then the cylinder set
Z1 can be defined by the generating subspace Ψ0

3 and the base T−1
1 (A1), where

T−1
1 (A1) is the inverse image of A1 under the mapping T1. In the same way,

the cylinder set Z2 can be defined by the generating subspace Ψ0
3 and the base

T−1
2 (A2), where T2 : Φ′/Ψ0

3 → Φ′/Ψ0
2 is the linear mapping associating every

coset with respect to Ψ0
3 with the coset with respect to Ψ0

2, that contains it. The
obvious fact that two cylinder sets with the same generating subspace coincide
if and only if their bases coincide then proves the statement.

When it comes to families of cylinder sets C on the space Φ′, there are several
important properties listed in Gel’fand and Vilenkin (1964, p. 307).

Proposition 49. Let C be the family of cylinder sets on the space Φ′, and
Zc := Φ′ \ Z. Then,

1.
Z ∈ C =⇒ Zc ∈ C, (3.2)

2.
Z1, Z2 ∈ C =⇒ Z1 ∩ Z2 ∈ C, (3.3)

3.
Z1, Z2 ∈ C =⇒ Z1 ∪ Z2 ∈ C, (3.4)
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and C is an algebra of sets.

Proof. Proposition 1.7 of Klenke (2008, p. 3) requires the validity of the Equa-
tions (3.2), (3.3), and Φ′ ∈ C for C being an algebra of sets. When using A = Rn
as base, the resulting cylinder set is made up of all f ∈ Φ′, thus Φ′ ∈ C. The
other required properties for C being an algebra of sets are proved below as in
Gel’fand and Vilenkin (1964, p. 307).

1. If the cylinder set Z is defined by the generating subspace Ψ0 and the
base A, then Φ′ \ Z has the same generating subspace and its base is the
complement of A in the factor space Φ′/Ψ0.

2. Z1 and Z2 can be defined by the same generating subspace Ψ0 ⊂ Φ′.
Supposing that their bases are accordingly A1 and A2, then Z1∩Z2 is the
cylinder set with generating subspace Ψ0 and base A1 ∩A2.

3. Z1 and Z2 can be defined by the same generating subspace Ψ0 ⊂ Φ′.
Supposing that their bases are accordingly A1 and A2, then Z1∪Z2 is the
cylinder set with generating subspace Ψ0 and base A1 ∪A2.

Proposition 50. Let R be the family of cylinder sets on the space Φ′, whose
bases A ⊂ Rn are Borel sets (that is A ∈ B(Rn), B(Rn) being the Borel σ-
algebra on Rn). Then R has the same properties as C in Proposition 49 and is
an algebra of sets.

Proof. The proof for Φ′ ∈ R can be taken over from Proposition 49, because
Rn is a Borel set. Similarly, the proofs for Equations (3.2) to (3.4) are also
applicable for R, because the complement of A is again a Borel set, and with
A1, A2 being Borel sets, A1 ∩A2 and A1 ∪A2 are Borel sets, too.

Proposition 51. Let RΨ0 be the family of cylinder sets on the space Φ′ with
generating subspace Ψ0, whose bases A ⊂ Rn are Borel sets in Φ′/Ψ0. Then for
Z,Z1, Z2, . . . ∈ RΨ0 and Zc like in Proposition 49,

1.
Z ∈ RΨ0 =⇒ Zc ∈ RΨ0 , (3.5)

2.

Z1, Z2, · · · ∈ RΨ0 =⇒
∞⋂
n=1

Zn ∈ RΨ0 , (3.6)

3.

Z1, Z2, · · · ∈ RΨ0 =⇒
∞⋃
n=1

Zn ∈ RΨ0 , (3.7)

and RΨ0 is a σ-algebra of sets.

Proof. Definition 1.2 of Klenke (2008, p. 2) requires the validity of the Equa-
tions (3.5), (3.7), and Φ′ ∈ RΨ0 for RΨ0 being a σ-algebra of sets. The way
Φ′ ∈ RΨ0 has been proved in Proposition 49 also holds here, because Rn is a
Borel set. For the other necessary properties see below.
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1. The proof of Equation (3.2) together with the fact, that the complement
of a Borel set A is again a Borel set, is also valid for this case.

2. See Gel’fand and Vilenkin (1964, p. 307).

3. See Gel’fand and Vilenkin (1964, p. 307).

3.2 Cylinder Set Measures

With the concept of families of cylinder sets in place, one can introduce cylinder
set measures on them and investigate, under which conditions they can be used
to uniquely determine a measure on the σ-algebra generated by the family of
cylinder sets on D′.

Definition 52 (Cylinder set measure). A cylinder set measure is a numerical
valued function µ defined on the family of all cylinder sets with Borel bases
R. For all Z,Z1, . . . , Zn ∈ R, with Z1, . . . , Zn being a finite system of disjoint
cylinder sets, µ has the following properties:

1.
0 ≤ µ(Z) ≤ 1,

2.
µ(Φ′) = 1, (3.8)

3.

µ

(
n⋃
k=1

Zk

)
=

n∑
k=1

µ(Zk), (3.9)

4.
µ(Z) = inf

U∈U
µ(U),

where U = {U ∈ R|Z ⊂ U and U open} and the weak-* topology on Φ′ is
considered determining the openness of sets.

It has to be noted that, despite µ being called a “cylinder set measure”
in Gel’fand and Vilenkin (1964, p. 307 ff.), it is not a measure but only a
content (see Definition 1.28 in Klenke (2008, p. 12)) on the algebra R due to
the property of additivity indicated in (3.9). For µ to be a measure, σ-additivity
(see Definition 1.27 in Klenke (2008, p. 12)) and R being a σ-algebra would
be needed. Only if the nonintersecting sets Z1, . . . , Zn with Borel bases have a
common generating subspace Ψ0, i.e. Z1, . . . , Zn ∈ RΨ0 , the condition

µ(Z) =

∞∑
n=1

µ(Zn) (3.10)

is fulfilled (see Gel’fand and Vilenkin (1964, p. 308)). It is, however, essential
for the construction of generalized random functions, that µ be a measure on
the family of all cylinder sets with Borel bases R. As it is noted in Gel’fand and
Vilenkin (1964, p. 312), µ shall therefore be extended to the σ-algebra generated
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by the Borel cylinder sets i.e the smallest σ-algebra, for which σ(R) ⊃ R. The
members of σ(R) are then to be called “Borel sets in Φ′”.
The content µ on the algebra R is σ-finite (see Klenke (2008, p. 12)) due to
Property (3.8), because Φ′ is already covered by itself with µ(Φ′) = 1 < ∞.
Furthermore, as an algebra of sets, R is also a ring of sets (see Klenke (2008, p.
7)). Now, if µ also had the property of σ-additivity, it would be a pre-measure
on R and the following theorem would already allow the unique extension of µ
to σ(R).

Proposition 53 (Carathéodory’s extension theorem). Let A be a ring and µ
a σ-finite pre-measure on A. Then there is a unique extension µ̂ of µ to σ(A),
and the extension µ̂ is σ-finite.

Proof. See Klenke (2008, p. 19 ff.).

The missing property of σ-additivity, however, can be fixed for the space D′,
as proved in Gel’fand and Vilenkin (1964, p. 333).

Proposition 54. Any positive normalized measure on the cylinder sets of D′,
which satisfies the continuity condition, is σ-additive.

Proof. See Gel’fand and Vilenkin (1964, p. 333).

The additional property required for Proposition 54 is defined as follows (see
Gel’fand and Vilenkin (1964, p. 310 f.)).

Definition 55 (Continuous cylinder set measure). A cylinder set measure µ is
said to be continuous, if for any bounded continuous function F (x1, . . . , xm) of
m variables the function

I(ϕ1, . . . , ϕm) =

∫
Φ′

F ((f, ϕ1), . . . , (f, ϕm)) dµ(f)

is sequentially continuous in the variables ϕ1, . . . , ϕm ∈ Φ.

The following theorem clarifies the conditions, under which the cylinder
measure µ induces a system of measures on the Borel σ-algebra B(Rn) of the
bases of cylinder sets.

Proposition 56. Suppose that {νΨ(A)} is a system of normalized positive mea-
sures in the factor spaces Φ′/Ψ0, which is regular in the sense of Carathéodory,
i.e. for any Borel set A one has

νΨ(A) = inf
U∈V

νΨ(U),

where V = {U ∈ Rn|U open and A ⊂ U}. If the compatibility condition

νΨ1(A) = νΨ2(T−1(A)) (3.11)

holds for every Borel set A in Φ′/Ψ0
1 whenever Ψ1 ⊂ Ψ2, then the measures νΨ

are induced by a cylinder set measure µ(Z) in Φ′.
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Proof. As in Gel’fand and Vilenkin (1964, p. 308 f.), if A is a Borel set in Φ′/Ψ0

and Z ∈ RΨ0 is a cylinder set with base A and generating subspace Ψ0,

νΨ(A) := µ(Z)

can be set, where νΨ turns out to be a positive normalized measure in Φ′/Ψ0,
which is regular in the sense of Carathéodory. The measures induced by µ in
different factor spaces Φ′/Ψ0 are not independent, therefore it is necessary that
whenever a given cylinder set Z can be defined by the generating subspace Ψ0

1

and base A1 as well as the generating subspace Ψ0
2 and base A2, the condition

νΨ1(A1) = νΨ2(A2) be fulfilled, such that

µ(Z) = νΨ1(A1) = νΨ2(A2)

is properly defined. If Ψ1 ⊂ Ψ2, then Ψ0
1 ⊃ Ψ0

2 and Proposition 48 can be used
with Ψ0

2 ⊂ Ψ0
1 ∩Ψ0

2 to reformulate the equality above as

νΨ1
(A) = νΨ2

(T−1(A)),

where T−1(A) denotes the inverse image of A with respect to the natural map-
ping T of Φ′/Ψ0

2 onto Φ′/Ψ0
1. As indicated in Gel’fand and Vilenkin (1964, p.

309), the necessary condition for a system of measures {νΨ(A)} in the factor
spaces Φ′/Ψ0 to be induced by a cylinder measure is also sufficient.

3.3 Cylinder Sets and Probability Spaces

In the foregoing section, it was shown in Proposition 54, that any positive
normalized measure µ (properties fulfilled by the cylinder set measure from
Definition 52) on the cylinder sets of D′ satisfying the continuity condition is σ-
additive and can therefore (via Carathéodory’s extension theorem) be uniquely
extended to the σ-algebra σ(D′) generated by D′. The extended measure µ̂ on
σ(D′) is then, due to property 3.8, a probability measure on σ(D′) (see Klenke
(2008, p. 12)). A probability space is usually defined as in Klenke (2008, p.
17).

Definition 57 (Probability space). Let Ω be a nonempty set and A a σ-algebra,
then the pair (Ω,A) is called measurable space. The triple (Ω,A, ν) is referred
to as measure space, if (Ω,A) is a measureable space and ν is a measure on A.
In the special case that ν is a probability measure, it will be written P := ν, and
(Ω,A,P) is called probability space.

Obviously, based on the considerations above, one can now identify

• the space of distributions D′ with the sample space Ω,

• the σ-algebra σ(D′) generated by the Borel cylinder sets in D′ with the
σ-algebra A containing the respective events, and

• an extended cylinder set measure µ̂ defined on σ(D′) and based on a
cylinder set measure µ on D′, which satisfies the continuity condition,
with the probability measure P,

which leads to
(D′, σ(D′), µ̂)

being the probability space that can be used as a basis for the definition of
generalized random functions.



Chapter 4

Generalized Stochastic
Processes

Based on the probability space constructed in the preceding chapter it is now
possible to introduce randomness and define the notion of a generalized stochas-
tic process (or generalized random process). In the first section of this chapter,
generalized stochastic processes and their associated random variables will be
introduced based on the deliberations in the preceding chapters, and their phys-
ical motivation will be explained. The second section will define concepts for
the characterization of generalized stochastic processes similar to the ones pre-
sented for classical stochastic processes in Chapter 1. Subsequently, the third
and fourth sections will outline Gaussian processes and the special cases of the
Wiener process and the white noise process, which play an outstandingly im-
portant role in the engineering field. The fifth and sixth sections of this chapter
will eventually introduce stationarity for generalized stochastic processes and
will explain, how wide-sense stationary generalized stochastic processes can be
represented by random and spectral measures.

4.1 Foundations

The definition of the generalized random function, generalized random function
and generalized random field can be found in Gel’fand and Vilenkin (1964, p.
242 f.). While it is possible to construct complex-valued generalized stochastic
processes as in Gel’fand and Vilenkin (1964), there is only very limited use for
them with respect to the intended application of modeling random signals in
the context of LTI systems. This being the case, the present work will restrict
itself to the explicit introduction of real-valued generalized stochastic processes,
although many of the concepts subsequently introduced will also be applicable
without change in the case of a complex-valued generalized stochastic process
being examined.

Definition 58 (Generalized random function, generalized random process, gen-
eralized random field). A generalized random function

Φ : D→ R

26
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is a distribution in the sense of Definition 24. In the case, where the domain
of Φ consists of test functions of one variable, that is Φ : D(R)→ R, the corre-
sponding generalized random function Φ is called a generalized random process.
In the case, where Φ : D(Rn) → R with n > 1 and thus the space of test func-
tions of several variables is the domain of the random function, Φ is called a
generalized random field.

In Chapter 2, there was no distinction made between D(R) and D(Rn) with
n > 1, as there is no necessity of doing so in the theory of distributions. Both
of them were written D, which is a practice that will be kept in Chapters 4 and
5, since it will always be clear from the context, which one of the spaces or if
both of them will be meant.
It is worth noting, that in Gel’fand and Vilenkin (1964, p. 243) the generalized
random function Φ is considered continuous if the convergence of (ϕkj)j∈N in D
with

ϕkj −−−→
D

ϕj

entails
(Φ(ϕk1), . . . ,Φ(ϕkn)) −−−−→

Rn
(Φ(ϕ1), . . . ,Φ(ϕn)),

and that this definition fits the continuity of distributions outlined in point 2 of
Proposition 26 together with point 3 of Proposition 25.
The classical notion of a random variable is based on the probability space from
Definition 57, which is used to construct the random variable as in Klenke (2008,
p. 43).

Definition 59 (Random variable). Let (Ω,A,P) be a probability space, (Ω′,A′)
a measurable space and X : Ω→ Ω′ a measurable mapping. Then X is called a
random variable with values in (Ω′,A′); if (Ω′,A′) = (R,B(R)) with B(R) being
the Borel σ-algebra on R, it is referred to simply as random variable.

At the same time, the following definition can be found in a similar form in
Gel’fand and Vilenkin (1964, p. 243).

Definition 60 (Associated random variable). Let ϕ1, . . . , ϕn ∈ D be fixed and
Φ : D→ R a generalized random function, then

(Φ(ϕ1), . . . ,Φ(ϕn)) : D′ → Rn, Φ(·) 7→ (Φ(ϕ1), . . . ,Φ(ϕn))

is called the random variable associated to ϕ1, . . . , ϕn ∈ D.

The associated random variable is a classical random variable in the sense
of Definition 59, where X : D′ → Rn and the probability space (D′, σ(D′), µ̂)
introduced in Section 3.3 is mapped to the measurable space (Rn,B(Rn)). How-
ever, according to Proposition 56 the cylinder set measure on D′ induces the
system of measures {νΨ(A)} on the Borel sets A ⊂ Rn and thus on (Rn,B(Rn)).
Choosing Ψ = {ϕ1, . . . , ϕn} with the ϕ1, . . . , ϕn from Definition 60, their asso-
ciated random variable can be viewed completely detached from D′, because its
probability distribution on (Rn,B(Rn)) is completely specified by the measure
νΨ. This allows to treat associated random variables just like regular random
variables with a probability distribution on Rn. When making use of this fact
in the later sections of this chapter, the measure νΨ will be written P.
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The physical interpretation of the generalized random process is explained in
Gel’fand and Vilenkin (1964, p. 243): While in classical probability theory the
stochastic process is constructed based on the assumption, that it is possible to
measure its value at every point in time without considering all the other points
in time, this is not the case with the generalized stochastic process. In the lat-
ter case, a form of indeterminacy is introduced by making the assumption, that
every measurement has to be accomplished by means of an apparatus, which
has certain inertia. The output of the apparatus is not the underlying random
variable ξ(t) at the instant t itself, but a certain averaged value

Φ(ϕ) =

∫
ϕ(t)ξ(t) dt, (4.1)

where ϕ is a function characterizing the apparatus in a similar way to the impulse
response used in signal processing. These quantities depend linearly upon ϕ
and have the property of small changes of ϕ resulting in small changes in the
random variable Φ(ϕ) (that is, apparatuses which differ only slightly in their
transfer characteristics give close readings). As a consequence of measuring the
value of a random function by means of apparatuses, one obtains a continuous
linear random functional, that is a generalized random process. As a result of
the smoothing action of the apparatus, one can not only obtain a probability
distribution for processes, which exist at each instant of time t, but also for
“generalized processes”, for which there do not exist probability distributions
at isolated instants of time.

4.2 Moments and the Characteristic Functional

The concepts for the characterization of stochastic processes outlined in Sec-
tion 1.2 can be introduced for generalized stochastic processes as well. As in
Gel’fand and Vilenkin (1964, p. 246), the random variables Φ(ϕ) of a generalized
random process Φ can be assumed to have a mean m(ϕ), which is continuous
in ϕ. Then m(ϕ) is a continuous functional on D.

Definition 61 (Mean functional). The mean of a generalized random process
Φ is defined by

m(ϕ) := E[Φ(ϕ)] =

∫
xdP(x).

Proposition 62. The functional m is a distribution in the sense of Defini-
tion 24.

Proof. Since Φ is a generalized random process, it is linear, and thus Φ(αϕ +
βψ) = αΦ(ϕ) + βΦ(ψ) as well as

m(αϕ+ βψ) = E[Φ(αϕ+ βψ)] = E[αΦ(ϕ) + βΦ(ψ)] = αm(ϕ) + βm(ψ).

Thus, the linearity of the generalized random process Φ renders the functional
m a linear functional on D. With the determination of continuity as in Gel’fand
and Vilenkin (1964, p. 246), m fulfills Definition 24 and is thus a distribution.
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As explained in Gel’fand and Vilenkin (1964, p. 247), the fact that the
generalized random process Φ(ϕ)−m(ϕ) has mean zero entails that every gen-
eralized random process is the sum of a linear functional m(ϕ) and a generalized
random process having mean zero (under the condition that m exists).
The correlation functional B(ϕ,ψ) in the following definition can be interpreted
as connecting the readings of the apparatuses characterized by the functions ϕ
and ψ. Its definition is given in Gel’fand and Vilenkin (1964, p. 248).

Definition 63 (Correlation functional). The correlation functional B(ϕ,ψ) of
a complex-valued generalized random process Φ is given by

B(ϕ,ψ) := E[Φ(ϕ)Φ(ψ)],

which in the case of Φ being a real-valued generalized random process Φ becomes

B(ϕ,ψ) = E[Φ(ϕ)Φ(ψ)].

If P(x1, x2) denotes the joint distribution function of the random variables Φ(ϕ)
and Φ(ψ), then the correlation functional can be written

B(ϕ,ψ) =

∫
x1x2 dP(x1, x2).

Proposition 64. The correlation functional B(ϕ,ψ) is positive-definite. In the
case of Φ being a real-valued generalized random process it is also R-bilinear.

Proof. The linearity of the real-valued generalized random process Φ and of the
operator E(·) entail

B(αϕ1 + βϕ2, ψ) = E[Φ(αϕ1 + βϕ2)Φ(ψ)]

= E[(αΦ(ϕ1) + βΦ(ϕ2))Φ(ψ)]

= E[αΦ(ϕ1)Φ(ψ) + βΦ(ϕ2)Φ(ψ)]

= αE[Φ(ϕ1)Φ(ψ)] + βE[Φ(ϕ2)Φ(ψ)]

= αB(ϕ1, ψ) + βB(ϕ2, ψ)

for ϕ1, ϕ2 ∈ D and α, β ∈ R. The corresponding result B(ϕ, αψ1 + βψ2) =
αB(ϕ,ψ1)+βB(ϕ,ψ2) can be obtained in a similar manner, if ψ ∈ D is replaced
accordingly by ψ1, ψ2 ∈ D and α, β ∈ R. Therefore, B is a bilinear functional
for Φ being a real-valued generalized random process.

B(ϕ,ϕ) = E[Φ(ϕ)Φ(ϕ)] = E[|Φ(ϕ)|2] ≥ 0

means that B is positive-definite for a complex-valued generalized stochastic
process Φ and thus also for the special case of Φ being a real-valued generalized
stochastic process.

After the definition of the correlation functional it is natural to introduce a
covariance functional C(ϕ,ψ) as well. The definition for complex-valued gen-
eralized random processes is motivated by the similarity with the well-known
classical definitions (see e.g. Wong and Hayek (1985, p. 74)), while the defi-
nition for the real-valued case can be found in Gel’fand and Vilenkin (1964, p.
247).
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Definition 65 (Covariance functional). The covariance functional C(ϕ,ψ) for
the complex-valued generalized random process Φ is defined by

C(ϕ,ψ) := E[(Φ(ϕ)−m(ϕ))(Φ(ψ)−m(ψ))],

which in the case of Φ being a real-valued generalized random process becomes

C(ϕ,ψ) = B(ϕ,ψ)−m(ϕ)m(ψ).

Proposition 66. The covariance functional C(ϕ,ψ) is positive-definite. For
real-valued generalized random processes it is also R-bilinear.

Proof. Due to the bilinearity of B in the real-valued case and the linearity of
the expectation functional m,

C(αϕ1 + βϕ2, ψ) = B(αϕ1 + βϕ2, ψ)−m(αϕ1 + βϕ2)m(ψ)

= αB(ϕ1, ψ) + βB(ϕ2, ψ)− αm(ϕ1)m(ψ)− βm(ϕ2)m(ψ)

= α(B(ϕ1, ψ)−m(ϕ1)m(ψ)) + β(B(ϕ2, ψ)−m(ϕ2)m(ψ))

= αC(ϕ1, ψ) + βC(ϕ2, ψ)

for ϕ1, ϕ2 ∈ D and α, β ∈ R. Since in a similar way C(ϕ, αψ1 + βψ2) =
αC(ϕ,ψ1) + βC(ϕ,ψ2) can be obtained for ψ1, ψ2 ∈ D and α, β ∈ R, the
covariance functional C is R-bilinear for a real-valued generalized stochastic
process. C is positive-definite, since

C(ϕ,ϕ) = E[(Φ(ϕ)−m(ϕ))(Φ(ϕ)−m(ϕ))]

= E[|Φ(ϕ)−m(ϕ)|2] ≥ 0.

With the first and second order moments defined, one can also define higher-
order moments similar to the n-th order moments found in classical probability
theory.

Definition 67 (n-th order moment of a generalized stochastic process). The
n-th order moment of the real-valued generalized random process Φ is defined as
the polylinear functional

m[Φ(ϕ1) . . .Φ(ϕn)].

According to Gel’fand and Vilenkin (1964, p. 260), the characteristic func-
tional of a generalized random process generalizes the notion of the characteristic
function of a probability distribution (see e.g. Klenke (2008, p. 299)).

Definition 68 (Characteristic functional). Let Φ be a generalized random pro-
cess. The mean of the random variable exp(iΦ(ϕ)) is called the characteristic
functional L of Φ, that is

L(ϕ) := m(exp(iΦ(ϕ))) = E[exp(iΦ(ϕ))] =

∫
exp(ix) dP(x)

where P is the probability measure belonging to the associated random variable
Φ(ϕ).
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The properties of characteristic functionals are similar to those of character-
istic functions, which is shown by the next theorem.

Proposition 69. The characteristic functional L of a generalized random pro-
cess Φ has the following properties.

1. L is continuous,

2. L is positive-definite, that is for any functions ϕ1, . . . , ϕn ∈ D and α1, . . . , αn ∈
C,

n∑
j=1

n∑
k=1

L(ϕj − ϕk)αjαk ≥ 0.

3. L has the property

L(o) =

∫
dP(x) = 1,

with o being the zero element of D.

Proof. 1. If lim
k→∞

ϕk(t) = ϕ(t), then, as mentioned in Gel’fand and Vilenkin

(1964, p. 261),

lim
k→∞

∫
f(x) dPk(x) =

∫
f(x) dP(x)

for any continuous bounded function f(x), where Pk(x) is the distribu-
tion function of the random variable Φ(ϕk) and P(x) is the distribution
function of Φ(ϕ). With f(x) = exp(ix) one obtains

lim
k→∞

L(ϕk) = L(ϕ),

which proves the continuity of L.

2. As in Gel’fand and Vilenkin (1964, p. 261),

n∑
j=1

n∑
k=1

L(ϕj − ϕk)αjαk =

n∑
j=1

n∑
k=1

E[αjαk exp(iΦ(ϕj − ϕk))] =

= E

∣∣∣∣∣∣
n∑
j=1

αj exp(iΦ(ϕj))

∣∣∣∣∣∣
2

≥ 0.

3. See Gel’fand and Vilenkin (1964, p. 262).

As explained in Gel’fand and Vilenkin (1964, p. 262), the properties 1 to 3
of Proposition 69 are not only necessary, but also sufficient for a functional L
to be the characteristic functional of some generalized random process Φ.

Proposition 70. Let L be a positive-definite continuous functional D with
L(o) = 1, o being the zero element of D, then there exists a generalized ran-
dom process Φ whose characteristic functional is L.

Proof. See Gel’fand and Vilenkin (1964, p. 262).
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4.3 Gaussian Processes

Gaussian processes are a highly important class of stochastic processes with
many applications in physics and engineering. Since an important aim of the
present work is to use generalized stochastic processes for modeling random
signals, it makes sense to define real-valued Gaussian processes in the framework
of generalized stochastic processes. The proper Gaussian process is defined on
p. 248 of Gel’fand and Vilenkin (1964).

Definition 71 (Proper Gaussian process). A real-valued generalized random
process is said to be a proper Gaussian process, if for any linearly independent
ϕ1, . . . , ϕn ∈ D the random variable (Φ(ϕ1), . . . ,Φ(ϕn)) is normally distributed,
that is the probability for the event (Φ(ϕ1), . . . ,Φ(ϕn)) ∈ X ⊂ Rn is expressed
by

P(X) := P({(Φ(ϕ1), . . . ,Φ(ϕn)) ∈ X}),

with

P(X) =

√
det Λ

(2π)
n
2

∫
X

exp

(
−1

2
(Λx, x)

)
dx. (4.2)

Here, Λ = (λij) is a nondegenerate positive-definite matrix, and (Λx, x) denotes
the quadratic form

(Λx, x) = xTΛx =

n∑
i=1

n∑
j=1

λijxixj .

Gaussian processes have the important property that the probability distri-
bution P(X) is uniquely defined by the correlation functional B (see Defini-
tion 63) of the process Φ, since their mean is zero at all times. This is shown by
the next proposition. Gel’fand and Vilenkin (1964) remark that if the mean of
the Gaussian process Φ is different from zero, (4.2) has to be dropped in favor
of a different formula, which can be found on p. 251 of the respective work.

Proposition 72. If Φ is a proper Gaussian process, then for any linearly inde-
pendent functions ϕ1, . . . , ϕn ∈ D one has Λ = (B(ϕi, ϕj))

−1, where (B(ϕi, ϕj))
is the matrix consisting of the elements B(ϕi, ϕj) with the respective indices
i = 1, . . . , n and j = 1, . . . , n.

Proof. The procedure is as in Gel’fand and Vilenkin (1964, p. 249 f.). As stated
in the definition of the correlation functional, the correlation functional and the
expected value are related according to

B(ϕi, ϕj) = E[Φ(ϕi)Φ(ϕj)].

However, the random variable Φ(ϕi)Φ(ϕj) can also be considered as a function
of the n-dimensional random variable whose distribution function is the one
defined in Equation (4.2). This entails

E[Φ(ϕi)Φ(ϕj)] =

√
det Λ

(2π)
1
2n

∫
xixj exp

(
−1

2
(Λx, x)

)
dx. (4.3)
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To compute this integral one can use the formula
√

detC

(2π)
1
2n

∫
(Ax, x) exp

(
−1

2
(Cx, x)

)
dx = Tr(AC−1)

shown in Gel’fand and Vilenkin (1964, p. 250) and valid for any strictly positive-
definite matrix C and any matrix A, with Tr(AC−1) denoting the trace of
the matrix AC−1. With the matrix Aij consisting of zeros except for the one
element aij = 1, the product xixj can be represented as xixj = (Aijx, x), and
Equation (4.3) becomes

E[Φ(ϕi)Φ(ϕj)] = Tr(AijΛ
−1).

The result of Tr(AijΛ
−1) is the element µij of Λ−1. Λ−1 can be written (µij)

and

Λ = (µij)
−1 = (Tr(AijΛ

−1))−1 = (E[Φ(ϕi)Φ(ϕj)])
−1 = (B(ϕi, ϕj))

−1,

which proves the assertion.

If the functions ϕ1, . . . , ϕn are linearly dependent, then the probability dis-
tribution of the random variable (Φ(ϕ1), . . . ,Φ(ϕn)) is concentrated on a sub-
space Rm ⊂ Rn, whose dimension m is equal to the dimension of the linear space
spanned by ϕ1, . . . , ϕn. The subspace consists of those points (x1, . . . , xn) ∈ Rn
whose coordinates satisfy the same linear relations as the functions ϕ1, . . . , ϕn.
The respective probability distribution is given on Rm by a formula similar to
Equation (4.2).

Definition 73 (Continuous Gaussian random process). A Gaussian random
process, for which the correlation functional B(ϕ,ψ) is of the form

B(ϕ,ψ) =

∫
B(t, s)ϕ(t)ψ(s) dtds, (4.4)

where B(t, s) is symmetric and satisfies the condition∫
B(t, s)ϕ(t)ϕ(s) dtds ≥ 0

for any ϕ(t) ∈ D (i.e. B(t, s) is a positive-definite continuous kernel), is called
a continuous (or classical) Gaussian random process.

For continuous Gaussian random processes, a probability distribution exists
for any moments of time t1, . . . , tn; this probability distribution is given by

Pn(X) =

√
det Λ

(2π)
n
2

∫
X

exp

(
−1

2
(Λx, x)

)
dx, (4.5)

where Λ is the inverse of the matrix B = (B(ti, tj)). Conversely, if Φ is a contin-
uous random process and if for any moments of time t1, . . . , tn the probability
distribution can be described by Equation 4.5 with Λ = (B(ti, tj))

−1, then the
correlation functional of Φ can be expressed by Equation 4.4 (see Gel’fand and
Vilenkin (1964, p. 258)). The following theorem creates a very powerful link
between the correlation functional B and the characteristic functional L of a
Gaussian random process.
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Proposition 74. Let B be the correlation functional of a Gaussian generalized
random process. Then the characteristic functional L of the respective Gaussian
random process is given by

L(ϕ) = exp

(
−1

2
B(ϕ,ϕ)

)
.

Proof. The variable Λ, needed in Equation (4.2) for determining the probability
measure associated with the Gaussian random variable, can be calculated with
the help of Proposition 72. Here, due to the fact that the generalized random
process Φ is one-dimensional, the matrix (B(ϕi, ϕj)) for Φ reduces to B(ϕ,ϕ)
and

Λ =
1

B(ϕ,ϕ)
.

The one-dimensionality of Φ has the additional effect that n = 1, and thus the
probability measure for Φ(ϕ) from Equation (4.2) becomes

P(X) =
1√

2πB(ϕ,ϕ)

∫
X

exp

(
− x2

2B(ϕ,ϕ)

)
dx, (4.6)

withX ⊂ R. Obviously, the density of this measure with respect to the Lebesgue
measure is

1√
2πB(ϕ,ϕ)

exp

(
− x2

2B(ϕ,ϕ)

)
and one finds

L(ϕ) = E[exp(iΦ(ϕ))]

=

∫
exp(ix) dP(x)

=

∫
exp(ix)

1√
2πB(ϕ,ϕ)

exp

(
− x2

2B(ϕ,ϕ)

)
dx

=
1√

2πB(ϕ,ϕ)

∫
exp

(
ix− x2

2B(ϕ,ϕ)

)
dx

= exp

(
−1

2
B(ϕ,ϕ)

)
as in Gel’fand and Vilenkin (1964, p. 261) and in the assertion.

The following two theorems contain important statements regarding the ex-
istence of generalized random processes with certain predetermined properties.

Proposition 75. In order for a given continuous bilinear functional B and a
given continuous linear functional m to be respectively the correlation functional
and the mean functional of a generalized random process Φ, it is necessary and
sufficient, that

B(ϕ,ψ)−m(ϕ)m(ψ)

be positive-definite, in which case the process Φ can be chosen to be Gaussian.

Proof. See (Gel’fand and Vilenkin, 1964, p. 252-256).
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Proposition 76. Let Φ be any generalized random process with mean functional
m and correlation functional B, then there exists a Gaussian generalized random
process having the same mean functional and correlation functional as Φ.

Proof. If m(ϕ) is the mean functional and B(ϕ,ψ) is the correlation functional
of Φ, the bilinear functional B(ϕ,ψ) − m(ϕ)m(ψ) is positive-definite. This,
together with Proposition 75, implies that there exists a Gaussian generalized
random process with mean m(ϕ) and correlation functional B(ϕ,ψ).

The fact that the derivative of an ordinary generalized random process al-
ways exists raises the question, whether the derivative Φ′ “inherits” certain
properties of the generalized random process Φ.

Proposition 77. The derivative of a Gaussian random process with correlation
functional B(ϕ,ψ) is a Gaussian random process with correlation functional
B(ϕ′, ψ′).

Proof. As in Gel’fand and Vilenkin (1964, p. 257), suppose that the probability
distribution of the n-dimensional random variable (Φ(ϕ1), . . . ,Φ(ϕn)) is given
by

Pn(X) =

√
det Λ

(2π)
n
2

∫
X

exp

(
−1

2
(Λx, x)

)
dx,

where Λ is the inverse of the matrix B = (B(ϕi, ϕj)). By definition of the
derivative of a random process, the random variable (Φ′(ϕ1), . . . ,Φ′(ϕn)) has
the same probability distribution as the random variable (−Φ(ϕ′1), . . . ,−Φ(ϕ′n)),
that is the probability P′n of the event {(Φ′(ϕ1), . . . ,Φ′(ϕn)) ∈ X}, X ⊂ Rn
occurring is given by

P′n(X) =

√
det Λ′

(2π)
n
2

∫
−X

exp

(
−1

2
(Λ′x, x)

)
dx, (4.7)

where Λ′ is the inverse of the matrix B′ = (B(ϕ′i, ϕ
′
j)) and −X is the reflec-

tion of X through the origin of coordinates. Since (Λ′x, x) = (−Λx,−x), one
can replace −X by X in Equation 4.7 and finds that (Φ′(ϕ1), . . . ,Φ′(ϕn)) is a
Gaussian random variable whose matrix of second moments is (B(ϕ′i, ϕ

′
j)).

4.4 The Wiener Process and White Noise

The Wiener process and the white noise process are prominent examples of
Gaussian random processes, as the Wiener process forms the basis for certain
stochastic integrals, one of which will be introduced in Section 5.1, and the
white noise process fulfills the requirements with regard to a stochastic process
fit for the modeling of noise formulated in Section 1.2.

Definition 78 (Wiener process). The Wiener process is a continuous Gaussian
random process Φ(t), for which the probability of the event {(Φ(t1), . . . ,Φ(tn)) ∈
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X} with X ⊂ Rn and 0 < t1 < · · · < tn is given by

Pn(X) = Pn({Φ(t1), . . . ,Φ(tn)) ∈ X})

=

∫
X

exp
(
− 1

2

[
x2
1

t1
+ · · ·+ (xn−xn−1)2

tn−tn−1

])
dx1 . . . dxn√

(2π)nt1(t2 − t1) . . . (tn − tn−1)
,

(4.8)

and for which the probability distribution is concentrated in the point x = 0 in
the case t < 0.

Proposition 79. The correlation functional of the Wiener process is given by

B(ϕ,ψ) =

∞∫
0

(ϕ̆(t)− ϕ̆(∞))(ψ̆(t)− ψ̆(∞)) dt

with

ϕ̆(t) :=

t∫
0

ϕ(t) dt and ψ̆(t) :=

t∫
0

ψ(t) dt.

Proof. It was mentioned in Definition 73 and in the explications thereafter, that
the general form of the correlation functional of a continuous Gaussian random
process is (4.4) and that the matrix B = (B(ti, tj)) can be calculated as the
inverse of the matrix Λ from the general form of the probability measure (4.5)
associated with the Wiener process. When comparing Equations (4.5) and (4.8)
it is immediately obvious that in the context of the Wiener process and in the
case n = 2 the matrix Λ has to fulfill the conditions

1.

(Λx, x) =
x2

1

t1
+

(x2 − x1)2

t2 − t1
,

2.

det Λ =
1

t1(t2 − t1)
,

where 0 < t1 < t2. This can be achieved with the matrix

Λ =

( t2
(t2−t1)t1

− 1
t2−t1

− 1
t2−t1

1
t2−t1

)
=

1

t2 − t1

( t2
t1
−1

−1 1

)
,

which, due to the relationship between the matrix (B(ti, tj)) and Λ explained
below Definition 73, implies

B = (B(ti, tj)) = Λ−1 =

(
t1 t1
t1 t2

)
.

Since the matrix B has the form

B =

(
B(t1, t1) B(t1, t2)
B(t2, t1) B(t2, t2)

)
one finds that

B(t1, t1) = t1, B(t1, t2) = t1, B(t2, t1) = t1, B(t2, t2) = t2,
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which (because of 0 < t1 < t2) can also be written

B(t1, t2) = min(t1, t2).

If t1 < 0 or t2 < 0, then, as stated in Gel’fand and Vilenkin (1964, p. 259),
B(t1, t2) = 0. This means that with

B(t, s) =

{
min(t, s) for s, t ≥ 0

0 else

the kernel of the integral (4.4) has been found. Equation (4.4) then takes the
form

B(ϕ,ψ) =

∞∫
0

∞∫
0

min(t, s)ϕ(t)ψ(s) dtds

=

∞∫
0

ϕ(t)

t∫
0

sψ(s) dsdt+

∞∫
0

ψ(s)

s∫
0

tϕ(t) dsdt.

As explained in Gel’fand and Vilenkin (1964, p. 259), integration by parts and
setting

ϕ̆(t) :=

t∫
0

ϕ(t) dt and ψ̆(t) :=

t∫
0

ψ(t) dt

then yields

B(ϕ,ψ) =

∞∫
0

(ϕ̆(∞)− ϕ̆(t)) tψ(t) dt+

∞∫
0

(ψ̆(∞)− ψ̆(s)) sϕ(s) ds.

Integrating the first term by parts and taking into account that

∞∫
0

sϕ(s) ds =

∞∫
0

(ϕ̆(∞)− ϕ̆(s)) ds

eventually leads to

B(ϕ,ψ) =

∞∫
0

(ϕ̆(t)− ϕ̆(∞))(ψ̆(t)− ψ̆(∞)) dt.

Gel’fand and Vilenkin (1964, p. 260) explain, that it can be shown, that
the derivative of the Wiener process is not a continuous random process. How-
ever, this so-called “white noise” process exists as a generalized random process.

Proposition 80. The correlation functional of the white noise process has the
form

B(ϕ,ψ) =

∞∫
0

∞∫
0

δ(t− s)ϕ(t)ψ(s) dsdt =

∞∫
0

ϕ(t)ψ(t)dt. (4.9)
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Proof. Proposition 77 implies, that the correlation functional of the derivative
of the Wiener process is B′(ϕ,ψ) = B(ϕ′, ψ′), where B(ϕ,ψ) is the correlation
functional of the Wiener Process and thus of the form shown in Proposition 79.
Since

˘(ϕ′)(t) =

t∫
0

ϕ′(s)ds = ϕ(t)− ϕ(0) and ˘(ψ′)(t) = ψ(t)− ψ(0)

and due to the fact that ϕ and ψ have bounded supports, that is ϕ(∞) =
ψ(∞) = 0, the equation

B′(ϕ,ψ) =

∞∫
0

ϕ(t)ψ(t)dt

follows directly from the representation of the correlation functional of the
Wiener process in Proposition 79. This can also be written in the form

B′(ϕ,ψ) =

∞∫
0

∞∫
0

δ(t− s)ϕ(t)ψ(s) dsdt.

It is very important to note that, while Equation (4.9) in Proposition 80
proved on p. 260 in Gel’fand and Vilenkin (1964) has 0 and ∞ as limits of
integration, the authors state on p. 264 that the correlation functional of the
white noise process has the form

B(ϕ,ψ) =

∞∫
−∞

ϕ(t)ψ(t) dt. (4.10)

At the first glance, this seems to be a contradiction. When considering, however,
a translation operation similar to the one in Definition 82 and shifting the
correlation functional and the test functions ϕ,ψ “into the future” or “to the
right” and thus progressing by the time τ in the model, the correlation functional
becomes

B(ϕ(t− τ), ψ(t− τ)) =

∞∫
0

ϕ(t− τ)ψ(t− τ) dt.

When the shift τ becomes large enough, say τ0, both the compact support of
the shifted version of ϕ and of the shifted version of ψ will be contained in the
interval [0,∞) and the correlation functional will become

B(ϕ(t− τ0), ψ(t− τ0)) =

∞∫
0

ϕ(t− τ0)ψ(t− τ0) dt =

∞∫
−∞

ϕ(t− τ0)ψ(t− τ0) dt.

For shifts τ ≥ τ0, the correlation functional B(ϕ(t−τ), ψ(t−τ)) will not change
any more, and the white noise process will thus be (wide-sense) stationary, as
will be explained in the next section. Thus, Equation (4.10) is valid under the
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condition, that the apparatuses used to measure the stochastic process from
(4.1) have “forgotten”, that the Wiener process underlying the white noise pro-
cess started in t = 0 (see Definition 78) and can only “remember” the Wiener
process running. A very similar situation will be encountered in Section 5.1
when calculating the statistical properties of the output random signal of an
LTI system excited by white noise by means of stochastic integration.
As explained in Gel’fand and Vilenkin (1964, p. 260), the white noise process
is the simplest generalized process of Gaussian type and plays a role similar
to that of the Dirac distribution in the theory of distributions, which is why
the derivative of the Wiener process is also called the unit generalized random
process. The following proposition establishing the link between the correlation
functional and the characteristic functional of the white noise process can be
found in Gel’fand and Vilenkin (1964, p. 261).

Proposition 81. The characteristic functional L of the white noise process is
of the form

L(ϕ) = exp

(
−1

2

∫
ϕ2(t) dt

)
.

Proof. The general form of the correlation functional B of the white noise pro-
cess implies

B(ϕ,ϕ) =

∫
ϕ2(t) dt.

Proposition 77 states, that the derivation of a Gaussian process is again a Gaus-
sian process, so Proposition 74 is applicable, which connects the correlation
functional B and the characteristic function L with the result

L(ϕ) = exp

(
−1

2
B(ϕ,ϕ)

)
= exp

(
−1

2

∫
ϕ2(t)dt

)
.

4.5 Stationary Processes

Stationary processes are very important tools in engineering, where such pro-
cesses are used to model noise. The definitions of stationarity and wide-sense
stationarity can be found in Gel’fand and Vilenkin (1964) on p. 262 and p. 268
respectively. As explained on p. 263 of Gel’fand and Vilenkin (1964), the gener-
alized random process Φ is stationary, if the result of measurements carried out
by apparatuses characterized by the functions ϕ1, . . . , ϕn ∈ D is not changed
by simultaneous translation of all the measurements by the same time interval
τ . Furthermore, on p. 268, the authors remark that since Gaussian general-
ized random processes are uniquely defined by their mean functionals m and
their correlation functionals B, for such processes stationarity and wide-sense
stationarity are equivalent.

Definition 82 (Stationary process). A generalized random process Φ is called
stationary, if for any n ∈ N, any functions ϕ1, . . . , ϕn ∈ D, and any number
τ ∈ R the random variables

(Φ(ϕ1(t+ τ)), . . . ,Φ(ϕn(t+ τ)))
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and

(Φ(ϕ1(t)), . . . ,Φ(ϕn(t)))

are identically distributed.

Definition 83 (Wide-sense stationary generalized random process). A gen-
eralized random process Φ is called stationary in the wide sense, if its mean
functional m and correlation functional B are translation-invariant.

The mean functional of a stationary generalized random process Φ is invari-
ant under translation, that is for any function ϕ(t) ∈ D and any number τ it
holds that

m(ϕ(t)) = m(ϕ(t+ τ)),

which leads to the following proposition.

Proposition 84. The mean functional m of a stationary generalized random
process is of the form

m(ϕ) = a

∫
ϕ(t) dt, (4.11)

where a is some number.

Proof. See (Gel’fand and Vilenkin, 1964, p. 263).

The following proposition gives details on the properties of the correlation
functional of a stationary generalized random process. It is based on a result on
p. 169 in Gel’fand and Vilenkin (1964) about the general form of translation-
invariant positive-definite Hermitean bilinear functionals on D, which describes
B for complex-valued stationary generalized stochastic processes. Since a spe-
cialized result for the corresponding general form of translation-invariant positive-
definite bilinear functionals is not available, which would describe the functional
B for real-valued stationary generalized stochastic processes, the treatise in
Gel’fand and Vilenkin (1964), which subsequently concentrates on complex-
valued generalized stochastic processes, will be followed and the results special-
ized, where needed.

Proposition 85. The correlation functional B(ϕ,ψ) of a complex-valued sta-
tionary generalized random process Φ has the form

B(ϕ,ψ) =

∫
ϕ̃(λ)ψ̃(λ) dσ(λ), (4.12)

where σ is some positive tempered measure (see Definition 38). This can be
equivalently represented as

B(ϕ,ψ) = (B0, ϕ ∗ ψ∗), (4.13)

where B0 is the Fourier transform of some positive tempered measure σ and
ψ∗(x) := ψ(−x).

Proof. See Gel’fand and Vilenkin (1964, p. 264).

The measure σ is referred to as the spectral measure of the process Φ.
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Proposition 86. The spectral measure of the white noise process is the Lebesgue
measure λ.

Proof. The correlation functional of the complex-valued white noise process is
given by

B(ϕ,ψ) =

∞∫
−∞

ϕ(t)ψ(t) dt (4.14)

according to Gel’fand and Vilenkin (1964, p. 264), which entails

B(ϕ,ψ) =

∞∫
−∞

δ(t)

 ∞∫
−∞

ϕ(s)ψ(s− t) ds

 dt = (δ, ϕ ∗ ψ∗) (4.15)

and thus B0(t) = δ(t) in (4.13). Since δ(t) is the Fourier transform of the
Lebesgue measure, the spectral measure of the white noise process is the Lebesgue
measure, that is dσ(λ) = dλ (see Gel’fand and Vilenkin (1964, p. 264)). The
correlation functional then has the form

B(ϕ,ψ) =

∫
ϕ̃(λ)ψ̃(λ) dλ. (4.16)

The real-valued white noise process has a correlation functional of the form
(4.10), which means that it can be extracted from (4.14) by setting B(ϕ,ψ).
But the transition

B(ϕ,ψ) =

∫
ϕ̃(λ)ψ̃(λ) dλ

does not have any effect on the spectral measure, which means that for the
real-valued white noise process the spectral measure is also λ.

Note that as a consequence for the white noise process

B(ϕ,ϕ) =

∞∫
−∞

|ϕ(t)|2 dt =

∞∫
−∞

|ϕ̃(λ)|2 dλ (4.17)

has to hold, which is always fulfilled in S due to Plancherel’s theorem (see e.g.
Königsberger (2004, p. 333)).

4.6 Random and Spectral Measures

Equation (4.11) gives an expression for the correlation functional of a complex-
valued stationary generalized random process in the form of the Fourier trans-
form of some positive tempered measure and suggests the construction of a
Fourier transform of a stationary generalized process Φ itself. For this purpose,
as in Gel’fand and Vilenkin (1964, p. 269), the concepts of convergence in mean
square and random measures have to be introduced.

Definition 87 (Mean square convergence). The sequence of random variables
(ξn)n∈N is said to converge in mean square to a random variable ξ, if

lim
n→∞

E[|ξn − ξ|2] = 0.
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Definition 88 (Random measure). For every Borel set ∆ ∈ B(R) let Z(∆) be
a random variable. Then Z(∆) is a random measure, if

1. Z(∆) is a completely additive random function of sets, that is for any
decomposition

∆ =

∞⋃
n=1

∆n

with the ∆n being nonintersecting (Borel) sets, the equality

Z(∆) =

∞∑
n=1

Z(∆n)

holds in the sense of convergence in mean square,

2. E[Z(∆)] = 0 for any ∆ ∈ B(R),

3. there exists a positive measure σ such that

E[Z(∆1)Z(∆2)] = σ(∆1 ∩∆2) (4.18)

for any ∆1,∆2 ∈ B(R),

4. E[|Z(∆)|2] = σ(∆) <∞,

5. σ is finite on bounded intervals.

For ∆1 ∩∆2 = ∅, Equation 4.18 implies

E[Z(∆1)Z(∆2)] = σ(∆1 ∩∆2) = σ(∅) = 0

due to Z being a measure, which in turn entails that the random variables Z(∆1)
and Z(∆2) corresponding to nonintersecting sets ∆1 and ∆2 are uncorrelated.
Gel’fand and Vilenkin (1964, p. 269) remark that it would be more natural
to consider measures for which the random variables Z(∆1) and Z(∆2) corre-
sponding to nonintersecting sets ∆1 and ∆2 are not only uncorrelated, but also
independent. This can be achieved by letting the Z(∆) form a Gaussian family
of random variables.

Proposition 89. If the random variables Z(∆) form a Gaussian family of ran-
dom variables (that is the joint distribution of any finite collection of them is
Gaussian) then the uncorrelatedness of Z(∆1) and Z(∆2) implies their inde-
pendence.

Proof. As in Gel’fand and Vilenkin (1964, p. 269), let ξ = Z(∆1) and η = Z(∆2)
be real random variables such that E[ξ] = E[η] = 0 and suppose that the
distribution of the two-dimensional random variable ζ = (ξ, ν) has the form

Pζ(a, b) =

√
det Λ

2π

a∫
−∞

b∫
−∞

exp

(
−1

2
(λ11x

2 + 2λ12xy + λ22y
2)

)
dxdy, (4.19)

where Pζ(a, b) denotes the probability that ξ < a and η < b, and

Λ =

(
λ11 λ21

λ12 λ22

)
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is the inverse of the matrix of second moments

B =

(
E[ξ2] E[ξη]
E[ξη] E[η2]

)
.

If E[ξη] = 0, then λ12 = 0 and Equation 4.19 can be written as

Pζ(a, b) =

√
λ11

2π

a∫
−∞

exp

(
−1

2
λ11x

2

)
dx

√
λ22

2π

b∫
−∞

exp

(
−1

2
λ22y

2

)
dy

= Pξ(a)Pη(b),

where Pξ(a) is the distribution function of ξ and Pη(b) is the distribution func-
tion of η. As a consequence, E[ξη] = 0 implies that Pζ(a, b) = Pξ(a)Pη(b),
which in turn means that ξ and η are independent.
As noted in Gel’fand and Vilenkin (1964, p. 269), if ζ has a degenerate Gaussian
distribution, then one of the random variables ξ and η is a multiple of the other.
This means that E[ξη] = 0 implies that one of the random variables ξ and η is
identical to zero and thus independent of the other random variable.

Similar to the Fourier transform of a measure, which was formalized in Def-
inition 39, the Fourier transform of a random measure can be defined as in
Gel’fand and Vilenkin (1964, p. 270).

Definition 90 (Fourier transform of a random measure). The Fourier trans-
form of a random measure Z = Z(∆) is defined as the random process

Φ :=

∫
exp(iλt) dZ(λ). (4.20)

Equation 4.20 means that with ϕ ∈ D one associates the random variable

Φ(ϕ) =

∫
ϕ(t) exp(iλt) dZ(λ)dt =

∫
ϕ̃(λ) dZ(λ). (4.21)

This leads to the three following very important results.

Proposition 91. If the measure σ(∆) = E[|Z(∆)|2] is tempered, then (4.21)
defines a continuous linear random functional on D, that is if σ(∆) is tempered,
Φ from Definition 90 is a generalized random process.

Proof. See Gel’fand and Vilenkin (1964, p. 270).

Proposition 92. The generalized random process Φ from Definition 90 is sta-
tionary in the wide sense.

Proof. Since the mean of every one of the random variables Z(∆) = 0 equals
zero, E[Φ(ϕ)] = 0 holds for every ϕ ∈ D. As a consequence, using Definition 61,

m(ϕ(t)) = m(ϕ(t+ τ)) = 0,

and further
B(ϕ,ψ) = E[Φ(ϕ)Φ(ψ)]

= E

[∫
ϕ̃(λ) dZ(λ)

∫
ψ̃(µ) dZ(µ)

]
=

∫∫
ϕ̃(λ)ψ̃(µ)E[dZ(λ)dZ(µ)],
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which can, due to Equation (4.18), be rewritten in the form

B(ϕ,ψ) =

∫
ϕ̃(λ)ψ̃(λ) dσ(λ).

Translation of the functions ϕ(t) and ψ(t) by τ yields

B(ϕ(t+ τ), ψ(t+ τ)) =

∫
exp(−iλτ)ϕ̃(λ) exp(−iλτ)ψ̃(λ) dσ(λ)

=

∫
ϕ̃(λ)ψ̃(λ) dσ(λ)

= B(ϕ(t), ψ(t)),

as F(ϕ(t+ τ)) = exp(−iλτ)F(ϕ).

Now it will be proved that the converse is also true.

Proposition 93. Let Φ be a wide-sense stationary generalized random process,
such that E[|Φ(ϕ)|2] is finite for all ϕ, and let σ be the corresponding spectral
measure. Then there exists a random measure Z(∆) such that

Φ =

∫
exp(itλ) dZ(λ) (4.22)

and
E[Z(∆1)Z(∆2)] = σ(∆1 ∩∆2). (4.23)

Proof. By means of the positive-definite functional B(ϕ,ψ), the correlation
functional of Φ, and the definition

(ϕ,ψ) := B(ϕ,ψ) (4.24)

one can introduce a scalar product in D. The Hilbert space obtained by com-
pleting D with respect to the scalar product (4.24) will be denoted H. A scalar
product can also be introduced in the linear space R consisting of all the ran-
dom variables Φ(ϕ) (which is a linear space due to the linearity of the random
process Φ), namely by setting

(Φ(ϕ),Φ(ψ)) := B(ϕ,ψ) = E[Φ(ϕ)Φ(ψ)]. (4.25)

The Hilbert space resulting from the completion of R with respect to the scalar
product (4.25) will be denoted h. For the case of the bilinear functional B(ϕ,ψ)
being degenerate, Gel’fand and Vilenkin (1964, p. 271) remark, that it is then
first necessary to take the factor spaces of D and R relative to the subspaces in
D and R on which B(ϕ,ψ) and the inner product defined in Equation 4.25 are
degenerate. As

(Φ(ϕ),Φ(ψ)) = B(ϕ,ψ) = (ϕ,ψ),

the mapping ϕ→ Φ(ϕ) is an isometric mapping of D onto R.
Thus one obtains an isometry between the spaces H and h and since Φ is
assumed stationary in the wide sense, for any two functions ϕ,ψ ∈ D

(ϕ,ψ) = B(ϕ,ψ) =

∫
ϕ̃(λ)ψ̃(λ) dσ(λ),
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where σ(∆) is the spectral measure of Φ. This implies that the correspondence
ϕ(t) → ϕ̃(λ) with ϕ ∈ D can be extended to an isometry between H and the
space L2(σ) of functions ϕ̃(λ) having square integrable moduli with respect to
the measure σ.
In particular, L2(σ) contains the characteristic functions χ∆(λ) of all bounded
Borel sets ∆. With Z(∆) denoting the element of the space h corresponding

to the function χ∆(λ) and ∆ =
∞⋃
n=1

∆n being a decomposition of ∆ into a

countable union of nonintersecting sets, then

χ∆(λ) =

∞∑
n=1

χ∆n(λ).

Since the mapping of L2(σ) onto h is linear, it follows that

Z(∆) =

∞∑
n=1

Z(∆n)

in the sense of mean square convergence, which means that Z(∆) is a random
measure. In view of the isometry of the mapping of L2(σ)→ h and the equation

χ∆1
(λ)χ∆2

(λ) = χ∆1∩∆2
(λ)

it can be derived that

E[Z(∆1)Z(∆2)] = (Z(∆1), Z(∆2))

=

∫
χ∆1

(λ)χ∆2
(λ) dσ(λ)

=

∫
χ∆1∩∆2

(λ) dσ(λ)

= σ(∆1 ∩∆2),

which proves (4.23).
Since to the random variable Φ(ϕ) ∈ R corresponds the function ϕ̃(λ) ∈ L2(σ)
and ϕ̃(λ) can be approximated by sums of the form

n∑
k=1

ϕ̃(λk)χ∆k
(λ),

where λk is a point in the set ∆k, the random variable Φ(ϕ) is the limit of sums
of the form

n∑
k=1

ϕ̃(λk)Z(∆k).

But this means that

Φ(ϕ) =

∫
ϕ̃(λ) dZ(λ),

which proves (4.22) and thus Proposition 93.
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Through the deliberations above, which can be found in Gel’fand and Vilenkin
(1964, p. 270-272), a representation of the wide-sense stationary process Φ as
the Fourier transform of a random measure Z(∆) has been found. As remarked
in Gel’fand and Vilenkin (1964, p. 272), this representation can be considered
valuable only for Gaussian random processes, as only then the random variables
Z(∆1) and Z(∆2), corresponding to non-intersecting sets ∆1 and ∆2, will be
mutually independent.



Chapter 5

Application to LTI Systems

After generalized stochastic processes have been introduced in the preceding
chapter, it is now possible to look for ways of applying this concept in the
context of LTI systems. In the first section of this chapter, the Wiener process
outlined in Section 4.4 will be used to construct a stochastic integral such that
the properties of the output of an LTI system can be calculated, given that white
noise is fed into its input. The results of this section will enhance the approach
presented in Chapter 1, which could not cope with white noise as input signal.
The second section will take a more general approach and use the representation
of a wide-sense stationary Gaussian generalized stochastic process by a random
measure found in Section 4.6 to derive input-output relations of random signals
in the context of LTI systems. This approach will allow to draw more general
conclusions than the approach based on the stochastic integral, while at the
same time giving the same results in its domain.

5.1 Stochastic Integration

The stochastic integral developed in this section is the so-called Wiener integral,
which is constructed with the aim of developing an integration calculus for
functions multiplicatively disturbed by white noise and thus giving sense to
convolution integrals of the form (1.1), where white noise is the input signal x.
The following approach is formulated in Schäffler (2018, p. 62 ff.), and starts
out with the formulation of the Wiener integral for step functions.

Definition 94. Let (Ω,A,P) be a probability space, (Bt)t∈[0,∞) a one-dimensional
Wiener process, and f : [0, T ]→ R with T > 0 a continuous function, which is
multiplicatively disturbed by white noise. Then the random variable ri is defined
as ri : [0, T ]× Ω→ R,

(t, ω) 7→
ki−1∑
j=0

f(tij)
Btij+1

(ω)−Btij (ω)

tij+1 − tij
χ[tij ,t

i
j+1)(t), (5.1)

where χ[tij ,t
i
j+1) is the indicator function of the interval [tij , t

i
j+1) and {ti0, . . . , tiki}i∈N

is a sequence of partitions of the interval [0, T ] with

0 = ti0 < ti1 < · · · < tiki = T i, ki ∈ N,

47
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and
lim
i→∞

max{tij − tij−1; j = 1, . . . , ki} = 0.

Additionally, the step function fi approximating the function f is defined as

fi : [0, T ]→ R, t 7→
ki−1∑
j=0

f(tij)χ[tij ,t
i
j+1)(t), i ∈ N. (5.2)

For the step function fi from Equation (5.2), a stochastic integral can be
defined as follows.

Definition 95 (Wiener integral of the step function fi). Let (Ω,A,P) be a
probability space, (Bt)t∈[0,∞) a one-dimensional Wiener process, and fi, ri as
in Definition 94. Then the random variable T∫

0

fi(t) dBt

 (ω) :=

T∫
0

ri(t, ω) dt

=

ki−1∑
j=0

f(tij)
Btij+1

(ω)−Btij (ω)

tij+1 − tij
(tij+1 − tij)

=

ki−1∑
j=0

f(tij)(Btij+1
(ω)−Btij (ω)),

(5.3)

which for T = 0 is defined as 0∫
0

fi(t) dBt

 (ω) := 0

P-almost surely, is called Wiener integral of the step function fi.

As explained in Schäffler (2018, p. 64), the random variable from Defini-
tion 95 has the expected value and variance

E

 T∫
0

fi(t) dBt

 = 0, Var

 T∫
0

fi(t) dBt

 =

ki−1∑
j=0

f2(tij)(t
i
j+1 − tij) (5.4)

respectively. This random variable does not converge pointwise for i→∞ due
to the properties of the Wiener process, however, it is still possible to define an
integral of the function f , to which it converges in mean square.

Definition 96 (Wiener integral of the function f). Let (Ω,A,P) be a probability
space, (Bt)t∈[0,∞) a one-dimensional Wiener process, and f as in Definition 94.
Then the Gaussian distributed random variable XT : Ω→ R with

E(XT ) = 0, Var(XT ) =

T∫
0

f2(t) dt

is called Wiener integral of the function f and will also be written

T∫
0

f(t) dt := XT .



5.1. STOCHASTIC INTEGRATION 49

Proposition 97. The Wiener integral of the function f from Definition 96
is well-defined. In addition, for the Wiener integral of the step function from
Definition 95 and the Wiener integral from Definition 96 it holds that

lim
i→∞

T∫
0

fi(t) dBt =

T∫
0

f(t) dt = XT

in the mean square sense.

Proof. See Schäffler (2018, p. 65 f.).

The Wiener integral introduced in Definition 96 has the following properties,
which will be helpful in the subsequent calculations.

Proposition 98. For f, g ∈ L2([α, β]) with 0 ≤ α < β the Wiener integral has
the properties

1.

E

 β∫
α

f(t) dBt

 = 0, (5.5)

2.

E


 β∫
α

f(t) dBt

2
 = ‖f‖22, (5.6)

3.

E

 β∫
α

f(t) dBt

 β∫
α

g(t) dBt

 =

β∫
α

f(t)g(t) dt. (5.7)

Proof. See Deck (2006, p. 33, 44, 235).

The structure of the Wiener integral and its properties strongly suggests the
use of unit-impulse response functions with compact support, when translating
(1.1) into a stochastic integral. As noted in Elstrodt (2009, p. 134), the space
of test functions C∞0 (Rn) lies dense in L1(Rn), which means that any given
unit-impulse response function of a stable LTI system can be approximated
by a function ĥ ∈ D with arbitrary precision. This makes the space D an
appropriate candidate for the representation of LTI systems.

Theorem 99. Let ĥ ∈ D represent the unit-impulse response of an LTI system
and let (Bt)t∈[0,∞) be a one-dimensional Wiener process. Suppose that

supp(ĥ) ⊂ K = [k−, k+]

and t ≥ k+. Then the stochastic integral from Definition 96 can be used to
calculate the random output signal Yt of the LTI system in the point of time t
and

E(Yt) = 0. (5.8)
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If t2, t1 ≥ k+ and t2−t1 =: τ , the autocorrelation function of the random output
signal has the form

R(t1, t2) = R(τ) = (ĥ⊗ ĥ)(τ), (5.9)

and the output process is wide-sense stationary. Under the same conditions, the
spectral density of the output random signal is

SY = |h̃|2. (5.10)

Proof. Let h := ĥ|K , then the convolution integral (1.1) can be translated into

Yt =

t−k−∫
t−k+

h(t− t′) dBt′ . (5.11)

As long as t− k+ ≥ 0, h can be interpreted as a function

f(t′) : [0, T ]→ R, f(t′) := h(t− t′)

with T := t − k−, that fulfills the requirements of Definition 96, which implies
that the Wiener integral with respect to h is well-defined.
h fulfills the requirements of Proposition 98, and using (5.5) with α = t−k+ ≥ 0
and β = t− k− immediately yields

E(Yt) = E

 t−k−∫
t−k+

h(t− t′) dBt′

 = 0, (5.12)

which proves (5.8).
Without loss of generality one can suppose that t2 ≥ t1 ≥ k+. Let h1 be defined
as ĥ restricted to [t1 − t2 + k−, k+] ⊃ K and h2 be defined as ĥ restricted to
[k−, k+ + t2 − t1] ⊃ K. Then, using the fact that t2 ≥ t1 ≥ k+, which ensures
that the Wiener integral is well-defined, together with (5.7),

R(t1, t2) = E(Yt1Yt2)

= E


 t2−k−∫
t1−k+

h1(t1 − t′) dBt′


 t2−k−∫
t1−k+

h2(t2 − t′) dBt′


 =

=

t2−k−∫
t1−k+

h1(t1 − t′)h2(t2 − t′) dt′.

Since both h1 and h2 were only restrictions of the same function to a set already
containing the entire support,

R(t1, t2) =

t2−k−∫
t1−k+

ĥ(t1 − t′)ĥ(t2 − t′) dt′

=

∞∫
−∞

ĥ(t1 − t′)ĥ(t2 − t′) dt′.

(5.13)
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A variable substitution t′′ = t1 − t′ yields

R(t1, t2) =

∞∫
−∞

ĥ(t′′)ĥ(t2 − t1 + t′′) dt′′ =: R(t2 − t1)

and together with (5.8) reveals, that the resulting process is wide-sense station-
ary. With τ := t2 − t1,

R(τ) =

∞∫
−∞

ĥ(t′′)ĥ(τ + t′′) dt′′ = (ĥ⊗ ĥ)(τ),

and the proof of (5.9) is complete.

Equation (5.10) follows directly from the fact that as a test function ĥ ∈ L1∩L2,
and from the subsequent application of Lemma 10.

While, of course, neither of the Propositions 11 to 13 is applicable in the
present situation, their results look similar to those from Theorem 99. An in-
teresting result following directly from (5.9) is that for the variance (see Equa-
tion (1.2)) of the output random signal of the LTI system from Theorem 99 at
time t it holds that

Var(Yt) = CY (t, t) = (ĥ⊗ ĥ)(0) = ‖ĥ‖22,

which also follows from applying the property (5.6) directly to the “stochastic
convolution integral” (5.11), that was introduced as the translation of the “de-

terministic convolution integral” (1.1): Let h := ĥ|K and the boundaries of the
integral as in the proof of Theorem 99, then

Var(Yt) = E(Y 2
t )−E(Yt)

2 = E(Y 2
t )

= E


 t−k−∫
t−k+

h(t− t′) dBt′


2

= ‖h‖22
= ‖ĥ‖22.

The origin of the necessary condition t2, t1, t ≥ k+ in Theorem 99 has already
been discussed when the transition from (4.9) to (4.10) was made: The compact

support of the unit-impulse response ĥ ∈ D describing the stable LTI system in
Theorem 99 represents the time limitation of the LTI system’s memory. Only
when the absolute time in the model reaches k+, the LTI system will “for-
get” about the Wiener process and thus the white noise process having been
“switched off” at a time t < 0 in the past, and the situation will be the same as
if they had always been there. This is the point, when the results of Theorem 99
reach exact validity and the output random signal becomes wide-sense station-
ary. For a unit-impulse response g ∈ C∞0 \L1, this might not be the case, as the
support of such a function might not be bounded and the memory of such an
LTI system might thus be unlimited. As a consequence, an approximation ĥ has
to be chosen from the space C∞0 (which lies dense in L1 according to Elstrodt
(2009, p. 134)) for which Theorem 99 is applicable, whose results, however, will
then also only be arbitrarily exact approximations.
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5.2 Random and Spectral Measures

The stochastic integral in the preceding section was specialized to the integra-
tion with respect to the white noise process and therefore only provides results
for a rather narrow class of input random signals. Now, the analysis shall be
extended to wide-sense stationary Gaussian generalized stochastic processes,
which are of great practical importance and still do not complicate the analysis
too much, because for such processes wide-sense stationarity and stationarity
are equivalent (see Section 4.5) and the representation as Fourier transforms of
random measures is possible and valuable (see Section 4.6).
In Equation (4.1), the general idea of ϕ representing an apparatus with a cer-
tain inertia was outlined, and the notion of a generalized stochastic process was
introduced in the form of a regular distribution. It now seems natural to try to
interpret the function ϕ as a unit-impulse response function of an LTI system
and the regular distribution (4.1) as a convolution integral of the form (1.1).
Unfortunately, in general

Φ(ϕ(t′)) =

∞∫
−∞

ϕ(t′)ξ(t′) dt′ 6=
∞∫
−∞

ϕ(−t′)ξ(t′) dt′. (5.14)

Under certain conditions, however, equality holds in Equation (5.14) as shown
in the following proposition.

Proposition 100. Let
t : R→ R, x 7→ −x

and let the spectral measure σ of a given real-valued wide-sense stationary Gaus-
sian generalized stochastic process Φ be invariant in the sense

σ(∆) = σ(t−1(∆)) ∆ ∈ B(R). (5.15)

In addition, let ϕ◦(t′) := ϕ(−t′). Then,

Φ(ϕ) = Φ(ϕ◦).

Proof. With (5.15), t and

t(µ)(∆) := µ(t−1(∆)) ∆ ∈ B(R)

the transformation formula found in Elstrodt (2009, p. 191)∫
R

f dt(µ) =

∫
R

f ◦ tdµ

can be used, which for the present case yields∫
R

f(x) dσ(−x) =

∫
R

f(−x) dσ(x),

and which in turn, together with (5.15), implies∫
R

f(x) dσ(x) =

∫
R

f(x) dσ(−x) =

∫
R

f(−x) dσ(x). (5.16)
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The probability measure of the real-valued Gaussian random variables Φ(ϕ),Φ(ϕ◦)
has the general form (4.6), which means that it has to be shown that

B(ϕ,ϕ) = B(ϕ◦, ϕ◦). (5.17)

According to Proposition 85, the correlation functional of the given wide-sense
stationary Gaussian generalized stochastic process can be represented in the
form

B(ϕ,ψ) =

∫
ϕ̃(λ)ψ̃(λ) dσ(λ),

which together with (5.16) and with ϕ◦(t) = ϕ(−t)⇐⇒ ϕ̃◦(λ) = ϕ̃(−λ) implies

B(ϕ,ϕ) =

∫
|ϕ̃(λ)|2 dσ(λ) =

∫
|ϕ̃◦(−λ)|2 dσ(λ)

=

∫
|ϕ̃◦(λ)|2 dσ(−λ) =

∫
|ϕ̃◦(λ)|2 dσ(λ)

= B(ϕ◦, ϕ◦).

This means that (5.17) is valid, which proves Proposition 100.

Proposition 100 has the far-reaching consequence, that under the given con-
dition the associated random variable Φ(ϕ) indeed provides a distribution for
the output of an LTI system with the unit-impulse response ϕ, i.e.

Φ(ϕ) = Φ(ϕ◦) =

∞∫
−∞

ϕ◦(t′)ξ(t′) dt′ =

∞∫
−∞

ϕ(−t′)ξ(t′) dt′ = (ϕ ∗ ξ)(0), (5.18)

for the (rather arbitrary) point in time t = 0. In Section 4.4, it was explained
that ϕ(t′) can be translated in time by a shift t through setting ϕ(t′)→ ϕ(t′−t).
Here, t ∈ R and t > 0 means “into the future” or “to the right” while t < 0
means “into the past” or “to the left”. The situation is the same for ϕ◦, which
motivates the definitions

ϕt(t
′) := ϕ(t′ − t), ϕ◦t (t

′) := ϕ◦(t′ − t).

One finds that

Φ(ϕ◦t ) =

∞∫
−∞

ϕ◦(t′ − t)ξ(t′) dt′ =

∞∫
−∞

ϕ(t− t′)ξ(t′) dt′ = (ϕ ∗ ξ)(t)

which according to LTI system theory and (1.1) means that the whole output
and thus the random variable Φ(ϕ◦) has been shifted in time. This in turn
motivates the definition

Φt(ϕ
◦) := Φ(ϕ◦t )

The following proposition will now show that due to the properties of wide-sense
stationary Gaussian generalized stochastic process (5.18) can be generalized for
any point in time t ∈ R.
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Proposition 101. Let Φ be a wide-sense stationary Gaussian generalized stochas-
tic process, then with τ := t2 − t1

B(ϕt1 , ϕt2) = B(ϕ,ϕτ ), B(ϕ◦t1 , ϕ
◦
t2) = B(ϕ◦, ϕ◦τ ). (5.19)

If Φ is real-valued and the spectral measure σ of the process Φ fulfills (5.15),

B(ϕ,ϕτ ) = B(ϕ◦, ϕ◦τ ) (5.20)

and
Φ(ϕ) = Φ(ϕt) = Φ(ϕ◦t ) = Φ(ϕ◦). (5.21)

Proof. With ϕ̃t = ϕ̃0 exp(iλt) and ϕ̃◦t = ϕ̃◦0 exp(iλt) and the general form of the
correlation functional of a wide-sense stationary generalized stochastic process
from Proposition 85,

B(ϕt1 , ϕt2) =

∫
ϕ̃0(λ) exp(iλt1)ϕ̃0(λ) exp(iλt2) dσ(λ)

=

∫
ϕ̃0(λ) exp(iλt1)ϕ̃0(λ) exp(−iλt2) dσ(λ)

=

∫
ϕ̃0(λ)ϕ̃0(λ) exp(iλ(t1 − t2)) dσ(λ)

=

∫
ϕ̃0(λ)ϕ̃0(λ) exp(iλ(t2 − t1)) dσ(λ)

= B(ϕ,ϕτ ).

A similar calculation with ϕ◦ instead of ϕ yields B(ϕ◦t1 , ϕ
◦
t2) = B(ϕ◦, ϕ◦τ ) and

thus (5.19) is proved. If now the spectral measure σ of the process Φ fulfills
(5.15) one can use (5.16) and ϕ◦(t) = ϕ(−t)⇐⇒ ϕ̃◦(λ) = ϕ̃(−λ) to calculate

B(ϕ,ϕτ ) =

∫
ϕ̃0(λ)ϕ̃0(λ) exp(iλτ) dσ(λ)

=

∫
ϕ̃◦0(−λ)ϕ̃◦0(−λ) exp(iλτ) dσ(λ)

=

∫
ϕ̃◦0(λ)ϕ̃◦0(λ) exp(−iλτ) dσ(−λ)

=

∫
ϕ̃◦0(λ)ϕ̃◦0(λ) exp(−iλτ) dσ(λ)

=

∫
ϕ̃◦0(λ) exp(iλτ)ϕ̃◦0(λ) dσ(λ)

= B(ϕ◦τ , ϕ
◦).

Since for a real-valued process Φ according to Definition 63

B(ϕ◦τ , ϕ
◦) = E[Φ(ϕ◦τ )Φ(ϕ◦)] = E[Φ(ϕ◦)Φ(ϕ◦τ )] = B(ϕ◦, ϕ◦τ ),

it also holds that
B(ϕ,ϕτ ) = B(ϕ◦, ϕ◦τ )

and thus (5.20) is proved. As in the proof of Proposition 100, the associated real-
valued Gaussian random variables Φ(ϕ),Φ(ϕt),Φ(ϕ◦),Φ(ϕ◦t ) are characterized
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by a probability measure of the form (4.6), and thus shaped completely by the
correlation functional B. This means that in order to show the validity of (5.21)
it has to be shown that

B(ϕ,ϕ) = B(ϕt, ϕt) = B(ϕ◦t , ϕ
◦
t ) = B(ϕ◦, ϕ◦). (5.22)

Considering (5.19),

B(ϕt, ϕt) = B(ϕ,ϕ0) = B(ϕ,ϕ)

and

B(ϕ◦t , ϕ
◦
t ) = B(ϕ◦, ϕ◦0) = B(ϕ◦, ϕ◦) (5.23)

follow immediately.

B(ϕ,ϕ) = B(ϕ◦, ϕ◦) (5.24)

follows from (5.20) with τ = 0 and considering that ϕ0 = ϕ and ϕ◦0 = ϕ◦.
Equations (5.23) and (5.24) together imply (5.22) and thus (5.21).

Proposition 101 states, that for real-valued wide-sense stationary Gaussian
generalized stochastic processes with spectral measures σ, that fulfill condition
(5.15), it does not matter whether the function ϕ from the original definition of
the apparatus in Gel’fand and Vilenkin (1964, p. 243) is used, or its inverted
version ϕ◦, which allows the interpretation of the generalized stochastic process
as an LTI system. It is thus possible to drop the distinction altogether and treat
the associated variables (Φt(ϕ))t∈R as a stochastic process modeling the output
random signal (Yt)t∈R of an LTI system with the characterizing unit-impulse
response ϕ, while at the same time using all the theory of generalized stochastic
processes from Chapter 4. This insight leads to the following definition.

Definition 102. Let Φ be a real-valued wide-sense stationary Gaussian gen-
eralized stochastic process characterized by a spectral measure σ, that fulfills
condition (5.15), and let h ∈ D be the unit-impulse response of an LTI system.
Then the stochastic process

(Yt)t∈R = (Φt(h))t∈R = (Φ(h))t∈R (5.25)

is the stochastic process describing the random output signal of the respective LTI
system. In addition, let the input random signal of an LTI system characterized
by h be described by the stochastic process

(Xt)t∈R := (Φt(ϕ))t∈R = (Φ(ϕ))t∈R, (5.26)

then the stochastic process describing the output of the LTI system is defined as

(Yt)t∈R := (Φt(h ∗ ϕ))t∈R = (Φ(h ∗ ϕ))t∈R. (5.27)

While (5.25) and (5.26) are obviously well-defined and exist due to the theory
developed above, this is not the case for (5.27).

Lemma 103. The stochastic process (Yt)t∈R in (5.27) is well-defined and exists.
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Proof. The stochastic process characterizing the output random signal con-
sists of random variables determined by the same generalized stochastic process
Φ ∈ D′ (see Definition 58) as the random variables, that make up the stochas-
tic process describing the input random signal. Therefore it remains to check,
whether with ϕ, h ∈ D the function h ∗ ϕ is still an element of D, or in other
words, whether h ∗ϕ is still an element of the domain of Φ. The spaces C∞(R),
C∞0 (R), and D were introduced in the Definitions 14 and 15.

1. In Königsberger (2004, p. 318) it is noted, that supp(h ∗ ϕ) ⊂ supp(h) ∪
supp(ϕ), thus if h, ϕ have bounded support, then the support of h ∗ ϕ is
also bounded.

2. According to Königsberger (2004, p. 319), f ∈ L1(Rn), g ∈ Ck0 (Rn) im-
plies f ∗ g ∈ Ck(Rn). Therefore h, ϕ ∈ C∞0 (R) =⇒ h ∗ ϕ ∈ C∞(R).

Points 1 and 2 together mean that h ∗ ϕ ∈ C∞0 (R). In addition, setting K :=
supp(h) and K ′ := supp(ϕ) imply K ′′ := K ∪K ′ being compact and thus

h ∗ ϕ ∈ DK′′ ⊂ D.

The following theorems will investigate the influence of an LTI system on
an existing random signal, which is shaped by ϕ ∈ D as in (5.26), and the
properties of the resulting signal defined as in (5.27). Here, ϕ ∈ D represents
one or several cascaded preceding LTI systems shaping the input noise of the
LTI system characterized by the unit-impulse response function h ∈ D. The
result of Theorem 104 transfers the statement of Proposition 13 to real-valued
wide-sense stationary Gaussian generalized stochastic processes with spectral
measures, that fulfill condition (5.15), and therefore to a wide class of processes,
which can be used to model noise.

Theorem 104. Let Φ be a real-valued wide-sense stationary Gaussian gen-
eralized stochastic process characterized by a spectral measure σ, that fulfills
condition (5.15), and let h ∈ D be the unit-impulse response of an LTI system.
Furthermore, let the input random signal of the LTI system be characterized by
the stochastic process

X = (Xt)t∈R = (Φ(ϕ))t∈R,

with the expected value E(X), then the expected value of the stochastic process
describing the output of the LTI system

Y = (Yt)t∈R = (Φ(h ∗ ϕ))t∈R

can be calculated by

E(Y ) = h̃(0) E(X),

where h̃ is the frequency response function of the LTI system, i.e. the Fourier
transform of its unit-impulse response function.

Proof. As mentioned in Section 4.5 and Gel’fand and Vilenkin (1964, p. 268),
for Gaussian generalized processes stationarity and wide-sense stationarity are
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equivalent. Proposition 84 states that the mean functional of a stationary pro-
cess has the form (4.11), which means that at the input of the LTI system

E(X) = m(ϕ) = a

∫
ϕ(t) dt

and at the output

E(Y ) = m(h ∗ ϕ) = a

∫
(h ∗ ϕ)(t) dt =

= a

∫∫
h(t′)ϕ(t− t′) dt′dt

=

∫
h(t′) a

∫
ϕ(t− t′) dtdt′

=

∫
h(t′)m(ϕ(t− t′)) dt′.

The respective process is stationary, however, and thus m(ϕ(t− t′)) = m(ϕ(t))
as in (4.5) and further

E(Y ) =

∫
h(t′)m(ϕ(t)) dt′ = m(ϕ)

∫
h(t′) dt′ = E(X)h̃(0).

Theorem 105 transfers the statement of Proposition 11 to real-valued wide-
sense stationary Gaussian generalized stochastic processes with spectral mea-
sures σ fulfilling condition (5.15).

Theorem 105. Let Φ be a real-valued wide-sense stationary Gaussian gener-
alized stochastic process with finite E[|Φ(ϕ)|2] for all ϕ, that is characterized by
a spectral measure σ fulfilling condition (5.15), and let h ∈ D be the real-valued
unit-impulse response of an LTI system. Furthermore, let the input random
signal of the LTI system be characterized by the stochastic process

X = (Xt)t∈R = (Φ(ϕ))t∈R,

with RX(τ) := B(ϕ(t), ϕ(t+ τ)) ∈ L1, then the autocorrelation function RY of
the stochastic process describing the output of the LTI system

Y = (Yt)t∈R = (Φ(h ∗ ϕ))t∈R

can be calculated by
RY = RX ∗ (h⊗ h).

Proof. The autocorrelation functional of a wide-sense stationary input process
can be interpreted as the autocorrelation function from Definition 6 through
setting RX(τ) = B(ϕ(t), ϕ(t + τ)). Due to the input process being wide-sense
stationary, Theorem 93 entails the existence of a random measure Z(∆) such
that the input random variable at t has the form (4.21)

Xt = Φ(ϕ) =

∫
ϕ̃(λ) dZ(λ),
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and

E[Z(∆1)Z(∆2)] = σ(∆1 ∩∆2).

The output random variable is then determined according to Definition 102 and

Yt = Φ(h ∗ ϕ) =

∫
h̃(λ)ϕ̃(λ) dZ(λ).

Then, with F(ϕ(t+ τ)) = exp(−iλτ)F(ϕ(t)) = exp(−iλτ)ϕ̃ as in Theorem 92,

RX(τ) = B(ϕ(t), ϕ(t+ τ))

= E

[∫
ϕ̃(λ) dZ(λ)

∫
ϕ̃(η) exp(−iητ) dZ(η)

]
=

∫∫
ϕ̃(λ)ϕ̃(η) exp(iητ) E

[
dZ(λ)dZ(η)

]
=

∫
|ϕ̃(λ)|2 exp(iλτ) dσ(λ).

(5.28)

With this result, the autocorrelation function at the output can now be calcu-
lated.

RY (τ) := B(h(t) ∗ ϕ(t), h(t) ∗ ϕ(t+ τ))

= E

[∫
h̃(λ)ϕ̃(λ) dZ(λ)

∫
h̃(η)ϕ̃(η) exp(−iητ) dZ(η)

]
=

∫∫
h̃(λ)ϕ̃(λ) h̃(η)ϕ̃(η) exp(iητ) E

[
dZ(λ)dZ(η)

]
=

∫
h̃(λ)ϕ̃(λ) h̃(λ)ϕ̃(λ) exp(iλτ) dσ(λ)

=

∫
|ϕ̃(λ)|2 exp(iλτ)h̃(λ)h̃(λ) dσ(λ)

=

∫
|ϕ̃(λ)|2 exp(iλτ)

∫
h(η) exp(iλη) dη

∫
h(ν) exp(iλν) dν dσ(λ)

=

∫∫∫
|ϕ̃(λ)|2 exp(iλ(τ + η − ν)) dσ(λ)h(η)h(ν) dηdν.

(5.29)
A comparison between (5.28) and (5.29) immediately reveals that the left part
of (5.29) is the correlation functional B(ϕ(t), ϕ(t+ τ + η− ν)) = RX(τ + η− ν)
and thus (5.29) becomes

RY (τ) =

∫∫
RX(τ + η − ν)h(η)h(ν) dηdν

=

∫
RX(τ − ν′)

∫
h(η)h(ν′ + η) dηdν′.

(5.30)

With a view to Equation (1.4), RY can then also be written

RY = RX ∗ (h⊗ h).
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Proposition 106. Let

M+ := {f |f : X → R and f nonnegative},

where (X,A, µ) is some measure space and R := R∪{−∞,∞}. Then for every
f ∈M+ it holds that f � µ : A → R,

(f � µ)(A) :=

∫
X

fχA dµ (A ∈ A),

where χA is the indicator function of A, is a measure on A, the so-called measure
with the density f with respect to µ.

Proof. See Elstrodt (2009, p. 127).

Theorem 107 provides a very general analogon for Proposition 12 for the
spectral measures of real-valued wide-sense stationary Gaussian generalized
stochastic processes.

Theorem 107. Let Φ be a real-valued wide-sense stationary Gaussian general-
ized stochastic process with finite E[|Φ(ϕ)|2] for all ϕ, that is characterized by a
spectral measure σ fulfilling condition (5.15), and let h ∈ D be the unit-impulse
response of an LTI system. Furthermore, let the input random signal of the LTI
system be characterized by the stochastic process

X = (Xt)t∈R = (Φ(ϕ))t∈R,

and let the stochastic process

Y = (Yt)t∈R = (Φ(h ∗ ϕ))t∈R

describe the output of the LTI system. Then the spectral measure of the stochas-
tic process at the output of the LTI system σY can be calculated from the spectral
measure at the input σX by means of

σY (λ) = |h̃(λ)|2 � σX(λ). (5.31)

If the spectral measure has a density with respect to the Lebesgue measure, the
spectral density (i.e. the spectral distribution of power) of the stochastic process
at the output of the LTI system SY can be calculated from the spectral density
of the stochastic process at the input of the LTI-system SX by means of

SY (ω) = |h̃(ω)|2SX(ω). (5.32)

Proof. Due to the input process being wide-sense stationary, Theorem 93 entails
the existence of a random measure Z(∆) such that the input random variable
at t has the form (4.21)

Xt = Φ(ϕ) =

∫
ϕ̃(λ) dZ(λ),

and
E[Z(∆1)Z(∆2)] = σ(∆1 ∩∆2).
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Using PX = RX(0) = E[|Xt|2] with RX as in Theorem 105 as the definition for
the power of the stochastic process in the time instant t yields

PX = RX(0) = B(ϕ(t), ϕ(t))

= E

[∫
ϕ̃(λ) dZ(λ)

∫
ϕ̃(η) dZ(η)

]
=

∫∫
ϕ̃(λ) ϕ̃(η) E

[
dZ(λ)dZ(η)

]
=

∫
|ϕ̃(λ)|2 dσ(λ).

(5.33)

It holds that |ϕ|2 ∈M+ (see Proposition 106), which means that Theorem 2.12
in Elstrodt (2009, p. 127) can be applied and with

PX =

∫
|ϕ̃(λ)|2 dσ(λ) =

∫
d(|ϕ̃|2 � σ)(λ) =:

∫
dσX(λ)

the spectral distribution of power of the stochastic process describing the input
random signal (1.3) has been found in the form of σX = |ϕ̃|2� σ. The power of
the stochastic process describing the output random signal of the LTI system is

PY = RY (0) = B(h(t) ∗ ϕ(t), h(t) ∗ ϕ(t))

= E

[∫
h̃(λ)ϕ̃(λ) dZ(λ)

∫
h̃(η)ϕ̃(η) dZ(η)

]
=

∫∫
h̃(λ)ϕ̃(λ) h̃(η)ϕ̃(η) E

[
dZ(λ)dZ(η)

]
=

∫
|h̃(λ)|2|ϕ̃(λ)|2 dσ(λ).

=

∫
|h̃(λ)|2 dσX(λ).

(5.34)

Again, |h̃| ∈ M+ and the application of Theorem 2.12 in Elstrodt (2009, p.
127) yields

PY =

∫
|h̃(λ)|2 dσX(λ) =

∫
d(|h̃|2 � σX) =:

∫
dσY .

This means that the spectral measure of the stochastic process describing the
input random signal has been modified by the LTI system in the form

σY = |h̃|2 � σX ,

which proves (5.31). Now, if the measure σX has a density with respect to the
Lebesgue measure,

PX =

∫
SX(λ) dλ,

just as in Equation (1.3), and

PY =

∫
SY (λ) dλ =

∫
|h̃(λ)|2SX(λ) dλ,
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due to (5.34). Therefore, the spectral measure of the stochastic process modeling
the output of the LTI system has the density

SY = |h̃|2SX ,

which proves (5.32). In the physical context of (1.3), the densities of the mea-
sures σX , σY are referred to as the spectral distributions of power of random
signals.

The results of Theorem 107 include the very general result (5.31) for mea-
sures, which do not have a density with respect to the Lebesgue measure. Noise
processes relevant for real-world applications, however, will always have a spec-
tral density, which was identified with the density with respect to the Lebesgue
measure in Theorem 107. Ohm and Lüke (2007, p. 185) note that for real-valued
signals, the spectral density fulfills the condition S(λ) = S(−λ). This has the
far-reaching consequence, that for application-relevant real-valued wide-sense
stationary Gaussian generalized stochastic processes the condition (5.15) is au-
tomatically fulfilled, which implies that the method outlined in Definition 102
and the statements in this section based on it, will be applicable for such pro-
cesses without having to worry about the respective necessary condition.
To show an application of the developed theory, the following proposition will
use (5.25) from Definition 102 to derive the results of Theorem 99 entirely from
the theory of generalized stochastic processes.

Proposition 108. Suppose the conditions explained in Section 4.4 are fulfilled,
such that (4.10) describes the correlation functional of the real-valued white noise
process. Additionally let ϕ ∈ D represent the unit-impulse response function of
an LTI system, which has a random signal modeled by the white noise process
as its input, then the stochastic process Y = (Yt)t∈R = (Φ(h))t∈R representing
the output random signal of the LTI system will have the properties

E(Y ) = 0, (5.35)

RY (t1, t2) = RY (τ) = (ϕ⊗ ϕ)(τ), (5.36)

with τ := t2 − t1, and
SY = |ϕ̃|2. (5.37)

Proof. In Proposition 86, the spectral measure of the white noise process was
identified with the Lebesgue measure λ, which obviously fulfills (5.15) and im-
plies, that the input-output relation as specified in Definition 102 is applicable.
It was shown in Proposition 77, that the real-valued white noise process, as the
derivative of the real-valued Gaussian Wiener process from Definition 78, is a
Gaussian process. Thus, its probability distribution has the form (4.2), which
was specialized for the present case n = 1 in (4.6). Together with the general
form of the correlation functional of the real-valued white noise process given
in (4.10), this equation reads

P(X) =
1√

2π
∞∫
−∞

ϕ2(t) dt

∫
X

exp

− x2

2
∞∫
−∞

ϕ2(t) dt

dx,
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which makes it obvious, that the expected value of the random variables asso-
ciated to the white noise process is 0 at all times. Therefore,

E(Y ) = 0,

as in (5.35). The correlation functional of the real-valued white noise process is
described by (4.10), and the calculation

RY (t1, t2) = B(ϕt1 , ϕt2) =

∞∫
−∞

ϕt1(t)ϕt2(t) dt =

∞∫
−∞

ϕ(t− t1)ϕ(t− t2) dt′

=

∞∫
−∞

ϕ(t′ + t2 − t1)ϕ(t′) dt′ =

∞∫
−∞

ϕ(t′ + τ)ϕ(t′) dt′

= (ϕ⊗ ϕ)(τ)

entails (5.36). Using the more general correlation functional for the white noise
process (4.14), the average power of Y can be calculated as in (1.3):

PY = R(0) = B(ϕ,ϕ) =

∞∫
−∞

|ϕ(t)|2 dt = ‖ϕ‖22.

With Plancherel’s theorem (see Equation (4.17) or Königsberger (2004, p. 333))

PY = ‖ϕ‖22 = ‖ϕ̃‖22 =

∞∫
−∞

|ϕ̃(λ)|2 dλ.

A comparison with (1.3) then immediately yields

SY = |ϕ̃|2,

which is (5.37).



Chapter 6

Summary and Conclusions

The present work aims to show the pitfalls of the widespread use of methods
stemming from the study of deterministic signals in the analysis of random sig-
nals and intends to overcome them by using approaches based on stochastic
integration and generalized stochastic processes.
The analysis begins with the introduction of LTI systems and the definition of
concepts for the characterization of stochastic processes in Chapter 1, which is
followed by the presentation of the classical approach to the analysis of the ef-
fect of LTI systems on the properties of random input signals. It turns out that
for this approach to work, the stochastic processes modeling the input random
signals are required to have certain properties, which cannot be assumed for
stochastic processes suitable for the modeling of noise. Eventually, the solution
is identified to be the use of generalized stochastic processes. Chapter 2 subse-
quently introduces distributions, which form the basis of generalized stochastic
processes, and discusses tempered distributions as well as the relationship be-
tween measures and distributions. Chapter 3 builds upon the foundation from
Chapter 2 and introduces cylinder sets, first in the more general setting of topo-
logical vector spaces, then in the space of distributions. It proceeds to show that
it is possible to introduce a content on the cylinder sets in a topological vector
space, which under a certain continuity condition forms a pre-measure on the
cylinder sets of the space of distributions. The fact that this pre-measure can
then be uniquely extended to the σ-algebra generated by the cylinder sets of
distributions then renders the introduction of a probability space on the space of
distributions possible. Based on this probability space, Chapter 4 introduces the
concept of the generalized stochastic process and presents a way of representing
wide-sense stationary generalized stochastic processes by random and spectral
measures. The Wiener process introduced in Chapter 4 is used in Chapter 5
to construct a stochastic integral, which allows to translate the usual “deter-
ministic convolution integrals” found in LTI system theory into a “stochastic
convolution integral” where the white noise process plays the role of the input
signal. This stochastic integral enhances the approach presented in Chapter 1,
which is unfit for handling white noise as input signal. Chapter 5 then goes on
to prove that with a certain symmetry condition for its spectral measure ful-
filled, a given real-valued wide-sense stationary Gaussian generalized stochastic
process is a mapping from the unit-impulse response function of a given LTI
system to the stochastic process modeling its output random signal. In this
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case, the spectral measure takes the role of the input signal. The analysis sub-
sequently proceeds to investigate the relationships between a given stochastic
process modeling the input random signal of a certain LTI system and the re-
sulting output stochastic process modeling its output signal, before concluding
with a demonstration showing that the results of the “stochastic convolution
integral” can also be obtained using the generalized stochastic process-based
method proposed in this work.
Chapter 5 discusses the role of the required symmetry condition for the appli-
cability of the method proposed in this work, and finds that, since real-world
random signals can be expected to have a spectral density and spectral densities
of real-valued signals are always symmetric in the required sense, the symme-
try condition is always fulfilled for real-world random signals. In addition, the
relationships between the characteristics of the random signals on the input
side and on the output side of an LTI system found in Chapters 1 and 5 are
identical. The generalized stochastic process-based approach to random signals
formulated in this work can thus be seen as a well-suited view of random signals
in the context of LTI systems when it comes to the random signals being of the
wide-sense stationary Gaussian type.
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