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Abstract

In this thesis we will discuss the numerical solution of techniques, that allow the calcula-

tion of thermodynamic properties and the specific numerical structure of integral equa-

tions, describing simple fluids. The calculation is performed by a program, written in

FORTRAN. It uses different specific numerical algorithms to solve the Ornstein-Zernike

integral equation in combination with a closure relation. The solution leads to the corre-

lation functions, as well as to the pair distribution functions for more component systems.

As solutions of the OZ-equations are sometimes required in higher dimensions as well,

the code was generalised from the original three-dimensional case to higher (odd) di-

mensions. To verify the adaptations, the numerical solutions for the special case of a

hard-sphere potential in different dimensions were compared to the corresponding ana-

lytic hard-sphere solutions, available for the Percus-Yevic closure relation. The program

was then applied to a binary, symmetric mixture, where the cross interaction was as-

sumed to be soft. This case is of relevance in investigations of glassy systems.
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1. Introduction

The description of the properties of a fluid requires the assumption of a basic interaction

between the particles. The commonly used potentials [2] are for example hard-sphere,

Lennard-Jones or soft-sphere potentials. In this thesis we will only consider pair poten-

tials φ(r), i.e. interactions that depend on the distance r between two particles only.

The considered system is homogeneous and isotropic. In an obvious generalisation more

components can be introduced, which requires a generalisation of φ(r) to φij(r), with i

and j being the indices of the different components.

One important function characterising the structure of the fluid is the pair distribution

function g(r), which plays a key role for the calculation of important thermodynamic

properties, such as the excess energy Uexc, the pressure P or the compressibility χT .

It contains information about the probability of a particle being located at distance r,

assuming that another particle is located at the origin. This probability is normalized

with respect to a totally random system of the same density ρ (like an ideal gas), with

no interaction between the particles. It can be derived from the direct and the total

correlation functions, c(r) and h(r), that on the other hand can be calculated by some

integral equations, consisting of the so called Ornstein-Zernike equation, and one so

called closure relation. Those relations can be derived by some basic thermodynamic as-

sumptions, together with some approximations, that depend on the considered potential.

The program that we use for the solution of the integral equations uses three differ-

ent numerical algorithms, namely the algorithm of Gillan [5], the algorithm of Ng [11]

and that of Labik, Malijevski and Vonka [12]. For a better understanding of the pro-

gram, those algorithms will be introduced shortly in chapter 2, together with the most

important functions, subroutines and modules of the program itself.

For the main part of this thesis we will use a general functional notation fij(r) where i, j
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specify the different components. As the numerical structure of the algorithms requires

finite vectors, we will also use a vectorial notation, with the vector fsi instead of the

function fij(r). In this case i denotes the grid point of the argument r, while s describes

the running index of the different combinations of components, meaning that for two

components a and b, s = 1 stands for aa, s = 2 represents both ab and ba (as we assume

ab = ba) and s = 3 stands for bb.

The study of higher dimensional functions requires a detailed consideration of the Fourier

transformation. The advantage of an isotropic and homogeneous system is, that we are

dealing with radially symmetric functions fij(r), that only depend on the distance r.

Therefore, if we restrict ourselves to odd dimensions, the generalisation to higher di-

mensions reduces to the consideration of the Fast Fourier transformation for radially

symmetric functions.

Numeric solutions in higher dimensions will be presented for hard-sphere and soft-sphere

potentials.
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2. Algorithm

To calculate the pair distribution function gij(r) we need to know its dependence on the

correlation functions cij(r) and hij(r) that, on the other hand, depend on the assumed

potential φij(r).

cij(r) represents the direct correlation between the particles, which means that only the

direct impact of the considered particle onto another particle is taken into account. It

must somehow depend on the density ρ and on the concentration xm for each component,

as well as on the assumed potential. As mentioned in the introduction, the potential

tells us how one special particle affects another particle in the distance r. So the direct

correlation function will have quite a similar length as the potential.

2.1. Ornstein-Zernike equation

Following the formalism of Ornstein and Zernike [2] in Eq. 2.1, the total correlation

functions, hij(r), are the sum of the direct correlation functions cij(r) and the indirect

correlation functions γij(r). Thus the hij(r) cover the direct correlation of two particles,

separated by a distance r, and indirect correlations caused by other particles in the en-

semble.

hij(r) = cij(r) + ρ
∑
m

km

∫
him(~r′)cmj(|~r − ~r′|)d~r′ (2.1)

As the pair distribution function depends on the total correlation function by

hij(r) = gij(r)− 1 (2.2)

we not only need to know the impact of the potential onto the direct correlation func-
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tion, but also the way how the direct correlation leads us to the total correlation function.

So the impact of one particle at ~r onto another particle at ~r′ is given by the direct

correlation function c(|~r− ~r′|) between them, times the total correlation function of the

particle at ~r′.

As we know that

γij = hij(r)− cij , (2.3)

the function c(|~r − ~r′|) is the essential part of the indirect influence of a particle at the

origin onto a particle at ~r′. So the total correlation function at ~r′ can be considered as

weight for the ’in-between’ function defining the indirect interaction of r on r′. Those

weighted interactions are then ’summed up’ by the integral over d~r′ for each point ~r′.

Finally the Ornstein-Zernike equation, that can be considered as convolution between

h(r) and c(r), has to be multiplied by the density (and by xm for more than one com-

ponent.

As a convolution two functions in r-space becomes a product of the related Fourier-

transforms of the functions in k-space, we will only use the Fourier transform of Eq.

(2.1), namely

h̃ij(k) = c̃ij(k)− ρ
∑
m

xmh̃im(k)c̃mj(k), (2.4)

or alternatively,

γ̃ij(k) = ρ
∑
m xmc̃

2
im(k)

1− ρ
∑
m xmc̃im(k) . (2.5)
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2.2. Closure Relations

Since the the OZ-equation relates to unknown functions, h(r) and c(r), we need an addi-

tional relation between these functions in order to solve this equation. These functions,

called ‘Closure relations’ in literature, involve also the potential φ(r). They can be de-

rived with the formalism of statistical mechanics [2]. A short motivation for some of the

most common closure relations will be given here, inspired by Kierfield [3].

For simplicity, the indices i and j will be omitted for the rest of chapter 2. As mentioned

above, the total correlation function h(r) can be split into a direct and an indirect con-

tribution. For the pair distribution function g(r) we proceed in the same way.

gtotal(r) = gindirect(r) + gdirect(r) (2.6)

where gtotal(r) is the conventional pair distribution function g(r), that we already in-

troduced. Similar to Eq. (2.2) there is a connection between the indirect correlation

function γ(r) and gindirect(r):

γ(r) = gindirect(r)− 1 . (2.7)

So we obtain

c(r) = h(r)− γ(r) = g(r)− gindirect(r) . (2.8)

Furthermore we introduce a mean field two-particle potential φMF(r) that yields the

mean distribution function g(r) by the well known Boltzmann distribution:

g(r) = e
−φMF(r)
kBT (2.9)

This potential φMF(r) is given by the mean force ~F (|~r − ~r′|) between two particles. It

can be derived by the total potential VN (r), that contains all interactions between the
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N particles. We denote one vector ~ri as coordinate vector of particle i. As the potential

φMF(r) is a two-particle potential, we label particle 1 and 2 with r and r′ and obtain [3]:

~F (|~r − ~r′|) = −
〈
5~r1VN (~r, ~r′, ~r3, ... ~rN )

〉
~r1=~r, ~r2=~r′

= −
∫
d3 ~r3...

∫
d3 ~rN5 ~r1 VN exp(VN/kBT )∫

d3 ~r3...
∫
d3 ~rN exp(VN/kBT )

= − 1
kBT
5~r ln

(∫
d3 ~r3...

∫
d3 ~rN exp(VN/kBT )

)

= − 1
kBT
5~r ln(〈δ(~r − ~r1)δ(~r′ − ~r2)〉)

= − 1
kBT
5~r ln[g(~r − ~r′)] .

(2.10)

The last equality originates from the definition of the pair distribution function g(r) for

a translational invariant radial symmetric potential.

Thus we can say that, based on Eq. (2.10), there is a mean force that fulfils

~F (|~r − ~r′|) = 5~rkBT ln(g(r)), (2.11)

with |~r − ~r′| = r.

The corresponding potential of the mean force ~F is then called φMF.

Now we can consider different approximations for the direct pair potential φ(r), which

leads us to the different closure relations.
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1) Mean-spherical Approximation (MSA)

For a potential with a hard sphere part and a very weak long range part we can

choose

φ(r) ≈ φMF(r) (2.12)

The long range potential is so weak, that the particles only affect their nearest

neighbour.

We therefore obtain

g(r) = e
−φ(r)
kBT (2.13)

and finally
g(r) = 0 , r < σ, φ =∞

c(r) ≈ −φ(r)
kBT

, r > σ, φ << 1
(2.14)

with σ as the hard sphere diameter.

For ’softer’ but also strongly repulsive potentials, the MSA can be extended to

the Soft-MSA (SMSA). It separates the potential into a compulsive and a repul-

sive part, represented by φ1(r) and φ2(r). The separation is performed at the

positive minimum r0 of the potential as follows:

r < r0 : φ1(r) = φ(r0)

φ2(r) = φ(r)− φ(r0)

r > r0 : φ1(r) = φ(r)

φ2(r) = 0 .
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(2.15)

Now we can write the SMSA Closure relation as:

c(r) =
[
1− e

φ1(r)
kBT

]
g(r)− φ2(r)

kBT
. (2.16)

2) Percus-Yevick (PY) closure relation

The structural properties of systems like short range potentials are often described

well using the PY- approximation. Here the indirect part of the distribution func-

tion, gindirect(r), can be written similar to Eq. (2.9) as

gindirect(r) = e
φMF(r)−φ(r)

kBT = g(r)e
φ(r)
kBT . (2.17)

The PY- closure relation then reads:

c(r) = g(r)− gindirect(r) = g(r)(1− e
φ(r)
kBT ) . (2.18)

3) Hypernetted-Chain closure relation (HNC)

The HNC - closure relation starts from Eq. (2.17), but expands the exponential

function for small arguments of [φMF(r)− φ(r)], giving

gindirect(r) = 1− φMF(r)− φ(r)
kBT

(2.19)

so that

c(r) = g(r)− gindirect(r) = g(r)− 1 + ln(g(r)) + φ(r)
kBT

. (2.20)
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Thus one obtains

g(r) = e
− φ(r)
kBT

+h(r)−c(r)
. (2.21)

Equation (2.20) and (2.21) hold for long range potentials.

As closure relations are only approximated expressions, a better accuracy can be achieved

by using parametrised closure relations. Those relations are hybrids between two closure

relations mentioned above, introducing a mixing parameter which has to be fixed.

One usually introduces the mixing function

f(α, r) = 1− e−αr α > 0 (2.22)

2.2.1. HMSA

The HMSA is a combination of the HNC and SMSA relations:

g(r) = e
−φ1(r)
kBT

1 +
exp

[
(h(r)− c(r)− φ2(r)

kBT

]
f(α, r)− 1

f(α, r)

 (2.23)

with φ1(r) and φ2(r) defined above.

As one can see, different choices of α lead to the HNC (α =∞) or to the SMSA (α = 0)

relations.

2.2.2. Rogers-Young (RY) relation

The RY method is a combination between the RY and the HNC relations [2]:

g(r) = e
− φ(r)
kBT

(
1 + exp(h(r)− c(r))f(α, r)− 1

f(α, r)

)
. (2.24)
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α =∞ leads to the HNC relation, while a choice of α = 0 reproduces the PY relation.

2.2.3. MHNC

The MHNC relation interpolates between the HNC relation and the exact relation, in-

troducing the so called bridge functions B(r)

g(r) = e
− φ(r)
kBT

+h(r)−c(r)+B(r)
. (2.25)

So for B(r) = 0 we have a single HNC relation, while we consider Eq. (2.25) for B(r) 6= 0

to be exact. Of course we do not know the exact solution, but we can calculate it for

some reference systems like the hard sphere potential for example, of which we know an

analytic solution.

A further method, called RHNC, optimizes those Bridge functions for a hard sphere

potential as described in chapter 3.

2.3. Solving the Integral equations

Now that we collected all the relevant equations, let us recall the essence of this the-

sis, namely the calculation of the pair distribution function g(r). In order to solve the

OZ-equation in combination with a closure relation, we need a numeric algorithm to

iteratively solve the two integral equations.

Of course, the program uses discrete vectors fsi instead of the functions fij(r), where s

is the index for the number of different combinations of components, replacing ij. (As

fij(r) = fji, we only have s = 1, 2, 3 for a two component system, for example.) The
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index i specifies the grid point index of the underlying vector space. For simplicity we

will still use the general functional description here.

All numerical algorithms applied on those equations use essentially the same iteration

method. We start with an initial guess for γ(r) (for example γ(r)=0) and calculate c(r)

via the Closure relation. Then we transfer from c(r) to k-space, receiving c̃(k). The

process is described in detail in section [3.3.6]. The transformation is necessary to use

the OZ-equation in k-space in Eq. (2.5).

We then insert c̃(k) into the OZ-equation in k-space, Eq. (2.5), and obtain a func-

tion γ̃(1)(k). Now we transform γ̃(1)(k) back into r-space and obtain a function γ(1)′(r)

by another Fourier transformation, where ′ denotes that γ(1)′(r) is the output value.

The difference between γ(1)(r) and γ(r) is then calculated. If the difference is small

enough the program stops. Otherwise this circle is iterated, now starting with the func-

tion γ(1)(r). Iterations are counted by the upper index n. The main difference between

the different numerical algorithms is how the new starting value is calculated, using the

output value γ(n)′(r).

For a basic Picard iteration we have

γ(n+1)(r) = (1− β)γ(n)′(r) + βγ(n−1)′(r) at 0 ≤ β ≤ 1 (2.26)

with a fixed value for β. As soon as the functions attempt higher values (according

to stronger correlations) the method becomes very slow. Therefore we need faster al-

gorithms with a better convergence. Using the program we can choose between three

different algorithms, that, for the sake of completeness, are shortly discussed below.
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2.3.1. Algorithm of Ng

Similar to the Picard iteration, the algorithm of Ng [11] uses a linear combination of the

old output functions of the loop for the new input. We start from the expression

γ(n+1)r) = (1− c1 − c2)γ(n)(r) + c1γ
(n−1)(r) + c2γ

(n−2)(r) (2.27)

In contrast to the simple Picard iteration, the coefficients c1 and c2 are optimized for

each circle. This is done as follows:

We define

γ(n)′(r) = Aγ(n)(r) (2.28)

d(n)(r) = γ(n)′(r)− γ(n)(r) (2.29)

where the primed variable γ(n)′(r) denotes the solution of the nth iteration, containing

closure relation, Fourier transformation, OZ-relation and inverse Fourier transformation,

represented by an operator A here. Now we compare

Aγ(n+1)(r) = γ(n+1)′(r) = (1− c1 − c2)γ(n)′(r) + c1γ
(n−1)′(r) + c2γ

(n−2)′(r) (2.30)

with equation Eq. (2.27) and obtain

d(n+1)(r) = γ(n+1)′(r)− γ(n+1)(r) . (2.31)

As d(n+1)(r) is the direct measure for the quality of convergence, the optimal coefficients

c1 and c2 are obtained by minimizing the function [d(n+1)(r)]2. The criterion for the
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determination of c1 and c2 finally reads

(
(d(n)(r)− d(n−1)(r)), (d(n)(r)− d(n−1)(r))

)
c1+(

(d(n)(r)− d(n−1)(r)), (d(n)(r)− d(n−2)(r))
)
c2 =(

d(n)(r), (d(n)(r)− d(n−1)(r))
)

(
(d(n)(r)− d(n−1)(r)), (d(n)(r)− d(n−2)(r))

)
c1+(

(d(n)(r)− d(n−2)(r)), (d(n)(r)− d(n−2)(r))
)
c2 =(

d(n)(r), (d(n)(r)− d(n−2)(r))
)

(2.32)

with the common inner product for functions, defined as

(a(r), b(r)) =
∫
a(r)b(r)dr . (2.33)

The only remaining task is to solve a linear equation system for c1, c2.

Finally the new starting value γ(n+1)(r) is calculated by

γ(n+1)(r) = (1− c1 − c2)γ(n)′(r) + c1γ
(n−1)′(r) + c2γ

(n−2)′(r) (2.34)

instead of Eq. (2.27), because otherwise all further γn(r) with n > 2 would be linear

combinations of the first solutions.

2.3.2. Algorithm of Gillan

The algorithm of Gillan is described in detail in chapter 4, as an example for important

differences in higher dimensions. Therefore no detailed consideration is provided in this

section. For a closer adjustment to the program, index notation is used there.
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2.3.3. Algorithm of Labik, Malijevsky and Vonka (LaMaVo)

The algorithm of Labik, Malijevsky and Vonka [12] separates the considered vector space

into a coarse and a fine part, using the Fourier transform of the first taylor expansion

for the closure relations, describing c(r). Then a newton iteration is performed before

we move to the fine part. The length of the coarse part is typically about 60dr. The

benefit of this separation is the improvement of speed, due to the the shorter vectors

involved in the coarse part.

In detail the taylor expansion is done as follows:

Considering the closure relation as a general equation, depending on φ(r) and γ(r)

c(r) = f(φ(r), γ(r)) (2.35)

one can formally write the expansion for any point of expansion c0(r) as

c(r) ≈ c0(r) +
(

∂f

∂γ(r)

)
γ(r)=γ0(r)

(γ(r)− γ0(r)) . (2.36)

We will understand the meaning of c0(r) later. For small arguments (γ(r) − γ0(r))

we can neglect higher derivatives of f(φ(r), γ(r)) (with respect to φ(r)). The Fourier

transform of Eq. (2.36) in three dimensions then reads

c̃(k) = c̃0(k) + 4π
k

∫ ∞
0

r sin(kr) ∂f

∂γ(r)

∣∣∣∣
γ(r)=γ0(r)

(γ(r)− γ0(r))dr . (2.37)
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If we insert the inverse Fourier transforms for γ(r) and γ0(r) as well, we obtain

c̃(k) = c̃0(k) + 4π
k

∫ ∞
0

r sin(kr) ∂f

∂γ(r)

∣∣∣∣
γ(r)=γ0(r)

dr( 1
2π2r

∫
k′ sin(k′r)γ(r)dk′ − 1

2π2r

∫ ∞
0

k′ sin(k′r)γ0(r)dk′
)
.

(2.38)

With respect to the definition of the Fourier transformation for radially symmetric func-

tions and some relations for sine and cosine which will be discussed in detail for the

Gillan algorithm in chapter 4, we can rewrite equation (2.38)

c̃(k) = ˜c0(k) +
∫
p̃(k′, r)(γ̃(k′)− γ̃0(k′))dr (2.39)

with

p̃(k′, r) = k′

k

∫
∂f

∂γ(r)γ(r)=γ0(r)
(cos(r(k − k′))− cos(r(k + k′)))dk′ . (2.40)

The Newton iteration is performed on the function F (γ̃(k)):

F (γ̃(k)) = γ̃(k)− FOZ(c̃( ˜γ(k))) (2.41)

with FOZ(c̃(γ̃(k))) as the equation of Ornstein-Zernike in k-space, Eq. (2.5), calculating

a new value for γ̃(k).

Now we can iteratively find a solution for γ̃(k) in Eq. (2.41) by searching for the zeroes

of F (γ̃(k)) = 0:

Due to the general formula of the Newton iteration

γ̃(n+1)(k) = γ̃(n)(k)− F (γ̃(n)(k)

∂F (γ̃(n)(k))
∂γ̃(n)(k)

(2.42)
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we obtain

γ̃(n+1)(k) = γ̃(n)(k)− F (γ̃(n)(k)
1− ∂FOZ(c̃(n)(γ̃(k)))

∂c̃(k)
c̃(k)
γ̃(k)

. (2.43)

Since the derivative c̃(k
γ̃(k) in Eq. (2.43) is

∫
p̃(k′, r)dk′ (as one can see from Eq. (2.39)),

we only need to insert expression Eq. (2.40) into Eq. (2.43), together with ∆γ̃(k) =

γ̃(n+1)(k)− γ̃(n)(k), to obtain the linear equation system:

∆γ̃(k)− ∂FOZ(c̃(n)( ˜γ(k)))
∂c̃(k)

∫
p̃(k′, r)dk′∆γ̃(k′) + F (γ̃(n)(k)) = 0. (2.44)

∆γ̃(k) = γ̃(n+1)(k)− γ̃(n)(k) (2.45)

So the procedure starts with an initial γ(n=0(i))(r) and a calculation of the non-separated

function c(0(i))(r) via a closure relation, followed by a calculation of c̃0(i)(k) and γ̃(0(i))(k)

via Fourier transformation. Index n, which is zero at the beginning, counts the steps of

newton iterations, while i represents the fine steps. For the very first step, i is zero as

well, of course. c(0(i))(r) corresponds to c0(γ0(r)) in Eq. (2.36), while γ(0(i))(r) is the

point of expansion.

Now we move on to the coarse step, which means that we only use the first 60 positions

of all functions that are involved in the process. At first we insert c̃(0)(k) and γ(0)(r)

into Eq. (2.40) to calculate p̃(k′, r) for the coarse part.

The second part of the coarse step is represented by the calculation of ∆γ̃(k) by Eq.

(2.44) and Eq. (2.45). Therefore, as F (γ̃(n(i))(k)) in Eq. (2.44) contains FOZ(c̃(n(i))(k)),

we need to calculate the coarse part of c̃(n(i))(k) by the Taylor expansion Eq. (2.39),

considering γ̃(k) as γ̃n(i)(r) such that:

c̃(n(i))(k) = c̃(0(i))(k) +
∫
p̃(k′, r)(γ̃(n(i))(k′)− ˜γ(0(i))(k′))dr (2.46)
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So in the first step of each coarse part we set c̃(n(i))(k) = ˜c0(i)(k), because we did not

produce γ̃n(i)(k′) so far, of course.

Now we can calculate ∆γ̃(k) and γ̃(n+1)(k) from the linear equation system Eq. (2.44)

and Eq. (2.45) and set γ̃(0(i))(k) = γ̃(1(i))(k), or γ̃(n(i))(k) = γ̃(n+1(i))(k) in general. If

∆γ̃(k) is not small enough, a new coarse Newton iteration cycle starts with the new value

γ̃(n+1(i))(k) instead of γ̃(n(i))(k), until ∆γ̃(k) corresponds to a satisfying value, that has

to be defined at the beginning.

The output value is γ̃(n+1(i))(k)coarse, that we can call γ̃(0(i+1))(k) for the next step.

Moving on to the fine step, we have to apply the Orstein-Zernike equation on the remain-

ing N − 60 positions of the initial γ̃(0(i))(k) and obtain γ̃(0(i+1))(k)fine, where N is the

number of grid points. Then we can evaluate γ̃(0(i+1))(k) by combining γ̃(0(i+1))(k)coarse
and γ̃(0(i+1))(k)fine, and transform this function back to r-space.

If ∆γ(r) is small enough as well, the algorithm stops; Otherwise, the whole circle, con-

taining the calculation of the coarse part will be performed again, with the new starting

value γ̃(n+1(i))(k).

Obviously the expression for the Fourier transformation we use at Eq. (2.37) will be

different in higher dimensions. Fortunately, as explained in chapter [4] and for the same

reason as for the Gillan algorithm, it will make no difference, as a full iteration circle

totally encloses the coarse circle, so that it is only a matter of speed how fast convergence

will be achieved.

As the generalization of the FFT to higher dimensions leads to more complicated func-

tions (see Eq. (4.56) and (4.57)) we will use the same functions for the FFT routine for

all dimensions.
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3. Description of the program in detail

To make it easier for further users to work with the program for the numerical solution

of the OZ -equation, this section will be dedicated to a description of the most important

parameters and functions as well as of important units and a short manual how to use

it. The program contains six different modules, together with external programs for the

potential, as well as three input files.

As mentioned, the program works with discrete vectors instead of functions. For the

functions we use N grid points with distance dr covering the relevant part of r-space.

Because the FFT-routine needs N = 2m- dimensional vectors as input, we have to choose

N = 2m in the program as well.

Furthermore, dk is fixed via dr ·dk = π/N , as the number of grid points in k-space must

be the same as in r-space.

3.1. Potential programs

In a first step we have to run one of the potential programs, producing the desired po-

tential file called ’poten’ as an input file for the main program. Therefore the parameters

dr, N , ρ, etc., that are input values for the program, have to be set in the potential file

as well.

3.1.1. File PHI_LJ.f90

PHI_LJ.f90 produces a Lennard-Jones Potential

φ(r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

(3.1)

for particles separated by a distance r, with an an attractive part r−6, modelling the

dipol-dipol interaction as well as Van-der-Waals-forces for bigger distances. The closer

the particles get, the more important the repulsive part r−12 becomes, due to the Pauli

principle. The parameter σ stands for the distance at φ(r) = 0, while ε is the depth of
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the potential at r = σ 6√2.

In general dimensionless reduced units are used instead of σ and ε to specify the potential,

defined as T ∗ = kBT
ε as well as ρ∗ = ρσ3. Furthermore the program uses the unit a: In

three dimensions a is defined as follows:

ρ = N

V
= 1
vp

= 3
4π a3 ⇒ ρ∗ = 3

4π

(
σ

a

)3
. (3.2)

vp is the spherical volume which contains only one particle; a is therefore the radius of

this sphere (not to be confused with the size of the particle itself). In higher dimensions

vp has to be calculated for a d-dimensional sphere, so that ρ reads for five dimensions

(where ρ∗ = ρσ5):

ρ = N

V
= 1
vp

= 15
8π2 a5 ⇒ ρ∗ = 3

4π

(
σ

a

)5
. (3.3)

For seven dimensions we find (with ρ∗ = ρσ7):

ρ = N

V
= 1
vp

= 105
16π3 a7 ⇒ ρ∗ = 3

4π

(
σ

a

)7
. (3.4)

As the program PHI_LJ.f90 asks for the standard parameters such as the energy pa-

rameter ε, temperature T , σ and density ρ, one has to take that into account by setting

each ε and ρ to one. For example, if the reduced temperature is given by T ∗ = 0.7 and

ρ∗ = 0.85 one has to set T = 0.7, σd = 0.85, ε = 1 and ρ = 1,with d = 1, 3, 5.

Furthermore, the program asks for the number of m, which is related to the number

of grid points N via N = 2m (which should be in the range of [8, 14]); The program also

requests the grid size dr, as well as the number of components NC. If NC is greater

than one, the program asks for separated values T ∗ and ρ∗ for each component, together

with some optional additive parameters for distance and energy, which are P1=0 and

P2=1 by default. P1 is added to σ, while P2 is multiplied with ε.
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3.1.2. File PHI_LJ-2comp.f90

PHI_LJ-2comp.f90 can be used for the special case of a two component system [4], with

a pair potential for the interaction between the different components, given by

φ12(r) = −ε12

[
c2

x2 + c2

]6

(3.5)

where x = r12
σ (with r12 as the difference between component 1 and 2), c = 3σ and ε12

is the interaction energy. As φ12(r) is attractive, c is chosen such that the range of the

attraction is short enough to make sure that only one atom of species 1 can interact with

at least one atom of species 2 [4]. The potential between equal components is either the

same as for ’PHI_LJ.f90’, or can be chosen as a soft-sphere potential instead with

φα(r) = εα

(
σα
rα

)ν
;α = 1, 2. (3.6)

(ν is mostly chosen as ν = 12, while d is the dimension of the system and rα is the

difference between particles of the same species 1 or 2.)

The soft sphere model is purely repulsive and can be considered as a high temperature

limit of the Lennard-Jones potential, neglecting dipol and Van-der-Waals forces. Again

the program uses reduced units, ρ∗ and T ∗.

So as before ε and ρ are set to one, as well as σ. Furthermore the dimensionless variable

Γ = ρ∗
T ∗d/ν

is introduced with

ε

kBT
= 1
T ∗

=
( Γ
ρ∗

)ν/d
= Γν/d (3.7)

The user can choose between metric units and units a. In the program we use S = 1
a

instead. If metric units are used, one has to change the scaling of ρ in the main program

as well. (See section [3.3.1]). For standard units, S is set to one. Finally the program
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produces the following potential:

−φ12(r12) = −ε12Γν/d
(

(0.3S)2

(0.3S)2 + ( r12
S )2

)6

φα(rα) = Γν/d
(
S

rα

)12
;α = 1, 2

(3.8)

As for ’PHI_LJ.f90’, the user has to choose dimension, grid size, grid points and ε12.

3.1.3. File hardsphere.f90

The program ’hardsphere.f90’ produces a hard sphere potential as follows:

φ(r) =

 0; r ≤ σ

∞; r > σ ,
(3.9)

where σ is the particle diameter. As before, the unit a is chosen, such that ρ = 1.

In contrast to the Lennard-Jones potential, temperature and energy are not relevant for

hard spheres. We only need information about the density ρ and the particle diameter

σ, to specify the system. The commonly used parameter for hard sphere systems is η

which can be calculated from ρ and σ:

η = ρ · Vd
2d (3.10)

Vd describes the volume of a particle in d dimensions with radius σ
2 . With this definition,

together with the definition of ρ by the standard measure a, we can evaluate σ:

d=3: Vd = 4π
3 σ

3 ρ = 3
4πa3 σ = 2η

1
3a

d=5: Vd = 8π2

15 σ
5 ρ = 15

8π2a5 σ = 2η
1
5a

d=7: Vd = 16π3

105 σ
7 ρ = 105

16π3a7 σ = 2η
1
7a

Table 1: Important relations between σ, ρ, η and a for hard spheres.
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The radius σ is called ’dred’ by the program. After the program received the information

for dimension d and η, it produces a potential with a discontinuity at σ, according to

Eq. (3.9).

3.2. Input Files

Apart from the potential file poten produced by one of the potential programs,

3.2.1. File inp_n

The file inp_n contains some parameters read by the program IEM-new.f90 at the

beginning.

• 1.line: g, rho, dr, rnu

• 2.line: Scale, par(i);i=1,NrIntTypes

• 3.line: shs

g is a scaling variable used in the subroutine PHASED (which is described in section

3.3) as well as in FFT-back transformations, which is set to zero in general.

rho and dr are the well known density and grid size, while rnu is a scaling factor for

the Axilrod-Teller potential, which was not part of this thesis, but can be looked up in

the thesis of Christian Libert [1], at page 45. One has to take into account, that ρ is the

total density here, which means that for two components with ρ1,2 = 1 we have to set

ρ = 2 here!

Scale is a scaling factor for the potential in general, with which the potential is multi-

plied.

par(i) is a vector for the mixing parameter of the HMSA (Eq. (2.23)) and RY (Eq.

(2.24)) closure relation between the components.
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So for two components we have to specify three different variables, as we always as-

sume f(12) = f(21) for all functions. Three components therefore need six parameters.

For RY being a mixture between HNC and PY closure relation, we have to set par = 0

to obatin the PY closure and par=∞ for the HNC closure (but 1024 should do it as well.)

If HMSA is chosen, par = 0 leads to SMSA, while par=∞ leads to the HNC closure.

Lastly we have shs which is a scaling variable for the RHNC method, which is not rele-

vant for this thesis.

3.2.2. File gaminp

The file gaminp contains the initial γ(ri), which is set to zero by the potential programs

by default. In PHI_LJ-new.f90 one can avoid that γ(ri) = 0, which can be important

for iterative studies, like, for example, when systematically increasing Γ.

3.2.3. File poten

As mentioned, the file poten is produced by the potential programs, providing the po-

tential function on the grid.

3.3. Modules

For a better readability, the main program was split into six different modules. We from

now on use index notation, with i or j for the grid points and s for the index indicating

the component.

3.3.1. Module IEM-new.f90

In the main program, all global parameters and variables are defined. If the user changes

the number of components or the number of grid points, those parameters have to be set
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explicitly in IEM-new.f90 as they are not read from in_p. The related parameters are

m, specifying the number of grid points via N = 2m, NrTypes, representing the number

of components and the vector rn(NrTypes), containing the density of each component,

mostly set to one. Thus for a single component system we have rn(NrTypes) = (1.),

while a two component system is specified by rn(NrTypes) = (1., 1.).

Other important global parameters are:

nx nx = 2m as the number of grid points

npoint npoint = 2m+1, used in the FFT-routines,for example

NrIntTypes number of different combinations of components,

(because f(12) = f(21) for all functions)

NrIntTypes = NrTypes
2 (NrTypes+ 1)

iTBcutoff cutoff point for the effective potential,

if a three component system is considered

iMethod, iAlgorithm, setting parameters for method, algorithm

iTask, iMode, task, number of components

iThreebody, iDimension, three- or two-body potential, dimension

ItBmax, iSucess, max. number of iterations for the bridge cycle

parameter of success with iSuccess=1

if the algorithm succesfully converges

and iSuccess=0 otherwise.
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isdepth,isldepth,isloop counting variables for checking the convergence, used by

different routines

dq increment dk in k-space

calculated by dq = 2π
npoint dr

cR, cQ, GammaR, arrays of dimension (nx,NrIntTypes),

GammaQ, gR, for the functions cis), γis),gis)

GammaR_new, Phi, and there Fourier transforms c̃is, γ̃is
PhiAtt, PhiRep as well as for the potential function φ(ris).

PhiRep and PhiAtt are relevant when a potential split is

performed

fmix mixing paramter for the closure relations

representing the function f(α, r) in Eq. (2.22)

α is read by in_p and stored in par(i)

for i being the index for the number of components

typtrans running index for the number of component combinations

set by the subroutine initAlgorithm

Some parameters are set in the modules itself:

MODULE Var_Gillan:

NrBaF Number of basis functions for the Gillan algorithm

nod size of the space between the nodes

for the basis functions P_BaF in terms of dr

28



b(NrBaF,NrBaF) array for the conjugated basis functions Bαβ
to calculate Qia (see Gillan algorithm)

rJacobi array of the Jacobi matrix

MODULE Var_Derivation: variables that are generally used for the derivation

of functions, used by the module THERMO-new.f90

ni dimension of the derivated array

func array for the derivated function,

ri array of arguments of the function

MODULE Var_Thermo:

UnC_tot, UnC(NrIntTypes) total excess energy U extot and U ex for each

component

P_tot, P(NrIntTypes), total pressure P and P for each

component

chi_tot, chi(NrIntTypes), total compressibility χ and χ for

each component

mu_tot, mu(NrIntTypes), total µ and µ for

each component

A_RHNC_tot, total free Helmholtz energy A and A for each

component

A_RHNC(NrIntTypes) component, relevant if RHNC is

chosen as closure relation
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MODULE Var_LaMaVo:

MaxIndexNewton size of the coarse part

P(0:MaxindexNetwton, array of the Fourier transform of the

0:MaxIndexNewton, NrIntTypes) derivation of the closure relation

MODULE Var_Bridge

BridgeR,hQ,d arrays and vectors relevant for

the calculations of bridge functions for the

MHNC- and RHNC-Closure relations

The main program IE calls only four different subroutines, which areMENU, init_Algorithm,

init_Method and Solve_2.

MENU reads all parameters for the choices of closure relation, algorithm, dimension,

etc from the command prompt. One can also choose between four different tasks:

• solution of integral-equations

• calculation of thermodynamics

• thermodynamic self-consistency

• phase coexistence

The subroutines init_Algorithm and init_Method initialize some important pa-

rameters for the start, as init_Method for exapmple reads in_p and poten produced

by the chosen potential program, and renormalizes ρ to units of a, as it is defined in Eq.

(3.2) to Eq. (3.4). As mentioned, if units of a shall not be used, one has to set ρ = ρ

instead of ρ = 3
4πρ.
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init_Algorithm sets two frequently used arrays, namely typtrans(i, j) and typtrans(j, i)

as follows:

DO i=1,NrTypes

DO j=i,NrTypes

k=k+1

typtrans(i,j)=k

typtrans(j,i)=k

ENDDO

ENDDO

As one can see from the routine above, typtrans is an array of the dimension NrTypes

x NrTypes, filled with a consecutive numbering of the combinations of components.

For example for two components, with NrTypes = 2 we have typtrans(1, 1) = 1,

typtrans(1, 2) = typtrans(2, 1) = 2 and typtrans(2, 2) = 3. Furthermore init_Algorithm

normalizes the particle densities rn(i) to

∑
i

rn(i) = 1 (3.11)

Lastly, Solve_2 is the superordinate solving structure; It calls the chosen algorithmic

subroutines as well as further subroutines required for the chosen task, like Thermo for

the calculation of thermodynamics, THD_SC for thermodynamic selfconsistency, and

PHASED for phase coexistence. If the closure relation RHNC is chosen, Solve_2

calls the subroutine RHNC instead which is also defined in IEM-new.f90. RHNC

runs the chosen algorithm before calling the bridge subroutinesTESTBR andBRIDGE

that are described down below.

Solve_2 also calculates the computation time which makes it possible to compare the

efficiency of different algorithms.

The variable iSucess, set by the algorithmic subroutines is set to one if the algorithm

has been successful and is set to zero as long as the iteration cycle does not converge.
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If the algorithm exits with iSucess = 0, another subroutine named SOLVER is called,

that rescales the potential by a multiplication with 7/8 and the parameter rnu by

rnu = rnu/2 to nevertheless achieve convergence. It can be called in two different

modes, ’1’ and ’-1’. Then SOLVER calls the active algorithm again. It uses the pa-

rameters isloop and isdepth to evaluate the convergence of the system. Each time the

program is scaled, isdepth will increase or decrease, depending on the mode. If it is

greater than 6, the program stops, as well as for isloop = 1, which is the case, if a switch

of the mode is performed more than two times.

3.3.2. Module STR-new.f90

This module contains most of the subroutines for all different algorithms and closure-

relations. STR-new.f90 is the new version of SRUCTM.f90 because the subrou-

tines FT_c_RtoQ, FT_Gamma_QtoR and FT_Gamma_RtoQ where generalized to

higher dimensions now.

• SUBROUTINE Potential_Separate searches for a point in the potential func-

tion φ(ris) where φ(ri+1s) is larger than φ(ris). If there is no such point, the

program stops with the message: ’NO SEPARATION OF PHI POSSIBLE’. The

separation is performed as described in section 2.2 for the SMSA Closure relation.

• SUBROUTINE init_Gillan initializes the Gillan algorithm, first called by

init_Algorithm. It also specifies the values l1 = nod(NrBaF − 1) and l2 =

l1 + nod, defining the length of the roof functions or the coarse part respectively.

As mentioned in section 4.2, there are n = NrBaF different roof functions P iβ with

a node-length of nod. Due to the fact that P iβ = 0 for i > l2 + nod, the Jacobi

matrix together with all other relevant functions only need l2 as an upper bound
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instead of the general number of grid points N = 2m.

Furthermore the coordinates Bαβ of the conjugate basis functions Qiα are defined

here, as their matrix has only a dimension of NrBaF x NrBaF .

• FUNCTION P_BaF(j,i) is a function, that specifies the roof functions P ij , for

the Gillan algorithm, explained in section 2.3.2, where i is the running index for

the grid points and j specifies the numbering index of the roof functions .

• SUBROUTINE calc_a calculates the weights aα from the whole vector γis as

described by Eq. (4.32) . It requires γis and the running index for the component

number ityp. The output is aα

• SUBROUTINE calc_DeltaGamma calculates the function ∆γis from Eq.

(4.62). Its input values are γis, aα and a storing vector for ∆γis.

• SUBROUTINE OZ calculates γ̃is via the Ornstein-Zernike equation in k-space,

using the vector cis. For the special case of a one component system the result is

directly given by the equation.

For the more component case a system of linear equations has to be solved, in

order to express the cross-terms ˜gammaij in terms of c̃ij in Eq. (2.5). For

this task we use a standard Gaussian solving routine called SUBROUTINE

solve_LinEquSyst, defined in the module FFT.f90.

The only input-value for the subroutine OZ is the running index k of γ̃is (named

’l’ in the program).

• SUBROUTINE Derivation_OZ calculated the derivative γ̃is
c̃is

via Eq. (4.53)

by solving a linear equation system, such as for the subroutine OZ. It needs the
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function γ̃is and an index indicating the components as an input. The output is γ̃isc̃is .

• FUNCTION Derivation_Closure provides the derivative of the closure rela-

tion cis
γis

, for each of the closure relations. It needs an index for both, the variable

r and the components as an input.

• SUBROUTINE calc_Jacobi calculates the Jacobi matrix to obtain the new

values for āα in the Newton iteration,as described in detail in chapter 4. This

subroutine calls the subroutine Derivation_OZ and uses the function Deriva-

tion_Closure. The values for ∂γsj∂γti
in expression Eq.(4.50) are stored in the vector

deri, while for the Jacobi matrix as well as for the inverse Jacobi matrix we use

rJacobi and rJacobiInv. They are both of the dimension imaxJa = NrBaF *

NrIntTypes as the Jacobi matrix is of the dimension NrBaF x NrBaF for each

component, see Eq. (4.43).

• SUBROUTINE Gillan finally performs the Gillan algorithm as described in

section 2.3.2. At the beginning the increments of convergence for the coarse and

the fine part, CoarseDev = 10−9 and FineDev = 10−8, are defined. CoarseDev

is the increment for ∆aα while FineDev ends the iteration for ∆γi.

All important calls of the Gillan algorithm are shown in Figure 3.2.

Further specifications of convergence are the parameters isuccount and current_CDEV .

current_CDEV is the sum of the difference between the weights of the roof func-

tions aα and āα for each component, used by the Gillan algorithm. If current_CDEV

is greater than 1000, isuccount increases by one. If isuccount is greater than 3,

iSuccess is set to zero, and the subroutine ends, followed by a call of SOLVER(1)

by the surrounding subroutine solve_2.
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• SUBROUTINE LaMaVo is the main subroutine for the algorithm of LaMaVo,

as described in section 2.3.3. Similar to the Gillan algorithm, it uses the parame-

ters CoarseDev and FineDev as indicators of convergence.

In contrast to the Gillan algorithm, CoarseDev is typically set to 10−5, because

it is compared to ∆γ̃is in k-space, which is generally coarser than r-space, due to

dr · dk = π/N .

A schematic overview of the algorithm is given in Figure 3.3.

For the calculation of the factors p̃i,ks), specified in Eq. 2.40, another subroutine,

calc_P is called, as well as calc_DeltaGammaQ for the calculation of ∆γ̃is in

k-space.

We need the old vector for γ̃is and c̃is as an input, while ∆γ̃is is the output value.

At the beginning of calc_DeltaGammaQ the subroutine calc_cQ_new cal-

culates the new vector c̃is, which also requests the old vector γ̃is, c̃is as well as the

index for k-space and the number of different components. For all subroutines of

the LaMaVo algorithm the length of the coarse part is specified by the parameter

MaxIndexNewton.

Similar to the subroutine Gillan, the subroutine LaMaVo uses the parameter

current−CDEV and isuccount as further criteria of convergence: current_CDEV

is the sum of ∆γ̃is for each component. If this variable is greater than 10, the vari-

able isuccount will increase by one and ends the subroutine LaMaVo, while setting

iSuccess = 0. The subroutine will also stop, if the parameter icount, which counts

the number of cycles performed by the subroutine, is greater than 25.

• SUBROUTINE Ng performs the algorithm of Ng as described in section 2.3.1.

For the criterion of convergence the variable Dev is defined at the beginning. It

will be compared with the variable current_Dev at the end of each circle, where

current_Dev is the the actual difference between the Gamma-functions.

If current_Dev is greater than 4000, or if the parameter istep, counting the num-
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ber of cycles performed by Ng, is greater than 400, the algorithm sets iSucess = 0

and end immediately.

A schematic representation of Ng is shown by Figure 3.4.

For the first round we start with setting d(n−2)
is = d

(n−1)
is = d

(n)
is = 0, as well as

γ0
is = 0, specified by Eq. 2.29 and Eq. ??. After the calculation of the coefficient

c1 and c2 used by the Eq. 2.34, a single iteration circle is performed on γ(n+1)
is .

The new value for γ(n+1′)
is is directly compared with γ(n)

is and stored in d(n)
is after

we set d(n−1)
is = d

(n)
is and d(n−2)

is = d
(n−1)
is .

• Subroutines of general use

Some subroutines are used by all three integral-equation solver algorithms. As they

are very short and easy to understand, they are just listed here for completeness:

The subroutines SUBROUTINE Closure_MHNC, Closure_RY and Clo-

sure_HMSA calculate gis and need φ(ris), γis and, for storage, gis or cis (de-

pending on the calling method) as an input. For the choice of ’RHNC’ the Clo-

sure_MHNC is used as well, but the main solver Solve_2 calls the optimizing

routine ’RHNC’ instead of the algorithms, to optimize the bridge functions, see

subsection BR-new.f90.

SUBROUTINE Closure sets the closure relation depending on the parame-

ter iMethod by calling the corresponding method, with cis as an output vector.

SUBROUTINES FT_c_RtoQ, FT_Gamma_QtoR and FT_Gamma_RtoQ

perform the FFT- transformation for d dimensions. They are described in detail in

section 4, as they where generalized two higher (odd) dimensions. They call some

basic FFT-routines, RSA and RCA, to perform either a simple sine or cosine

FFT. They need only the running index for the number of components as an input.

36



SUBROUTINE calc_PDF is called at the end of each algorithm, to finally

calculate gis, as the main loop of each algorithm is left with a fixed γis and cis. So

calc_PDF calls the chosen closure relation and stores gis.

3.3.3. Module BR-new.f90

BR-new.f90 is the new version of the subroutine BRIDGE.f90, containing all relevant

subroutines for the calculation of the bridge functions [1]. If either the method MHNC

or RHNC is chosen, the bridge function extrapolates the HNC closure relation. Those

Bridge diagrams are nearly the same for different potentials and can be derived from

a potential with an already existing solution, such as the hard sphere potential. For

RHNC the bridge functions are optimized by introducing the bridge functions of hard

spheres; The diameters of these hard spheres is optimized as follows:

First we need to determine the hard sphere particle diameter σ. As described in the

subsection 3.1.3 describing hard spheres , the packing fraction η is used instead of σ, as

specified in table 3.1.3. Because a further condition is needed here, the free Helmholtz

energy is minimized. So the determination of the bridge functions Bis is performed as

follows:

• Determination of the free Helmholtz energy of the system and its derivative with

respect to η.

• Calculation of the distribution function gis for a fixed Bis by solving the integral

equations.

• Minimization of the free Helmholtz energy with respect to η

• Cycle as long as convergence for η is reached, meaning that the equation of mini-

mization has to be satisfied by the current η.

37



The bridge functions are calculated by the subroutineBRSUB. As the method of RHNC

was not part of this thesis, the routine will not be described in detail here. It can be

looked up in the thesis of Christian Libert [1], in chapter 4.2.4. Nevertheless, as the

calculation of some coefficients for the bridge functions is performed in k-space, two

FFT routines, called FT_RtoQ and FT_QtoR, that are introduced in BR-new.f90,

where generalized to higher (odd) dimensions as well.

3.3.4. Module TESTBR.f90

The module TESTBR.f90 only contains the subroutine TESTBR to optimize η in

the above sense. It needs η as an input.

3.3.5. Module THERMO-new.f90

The module THERMO-new.f90 defines all important functions that allow the calcula-

tion of the thermodynamic properties; One can choose them at the beginning. This new

version of the old subroutine Thermo.f90, now contains the calculation of the excess

energy U ex2 , the pressure P and the compressibility χT , generalized to five and seven

dimensions.

• SUBROUTINE Thermo is the main subroutine for the calculation of all ther-

modynamic properties, calling the subroutines for the calculation of U ex2 , P , χT ,

the excess chemical potential µex and, for the RHNC closure, the calculation of

the free Helmholtz energy A. A schematic presentation of this routine is given by

Figure 3.5.
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• SUBROUTINE print_Thermo prints all final results of the thermodynamic

properties.

• SUBROUTINE U_EXC calculates the excess energy as specified in Eq. (4.65).

First a function fis is defined, containing all r-dependencies of U ex2 in Eq. (4.65),

that will be introduced in section 3.3.5. To be specific, the function fis in different

dimensions reads:

d=3:

fis = φ(ris)gis(i dr)2 (3.12)

d=5:

fis = 4π
3 φ(ris)gis(i dr)4 (3.13)

d=7:

fis = 8π2

15 φ(ris)gis(i dr)6 (3.14)

where the pre factors need to be introduced as an additional factor to the normal-

ization of the fast Fourier transformation in three dimensions. fis is then integrated

with the help of the subroutine DARSIM, using the Simpson method, defined in

section 3.3.6.

• SUBROUTINE Pressure uses a method similar to the subroutine U_EXC,

using now Eq. (4.67).

• SUBROUTINE Compressibility calculates the isothermal compressibility χT
as defined in Eq.(4.75).

• SUBROUTINE mu_excess and FUNCTION Bridge calculate of the chem-

ical potential µ. It was not used in this thesis, and was therefore not generalized to
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higher dimensions. For a derivation of the underlying equations we refer to further

literature [2], as well as for the calculation of Bridge and calc_A_RHNC for

the Helmholtz energy.

• FUNCTION Derivation_f(r,dl) and FUNCTION f_interpolated(r) call

the subroutine DERIV and DDVDIF, both defined in FFT.f90, to derive the

potentials in Pressure and mu_excess by r.

3.3.6. Module FFT.f90

The file FFT.f90 is a collection of some basic routines: Any of those are important rou-

tines and functions for integration, derivation or for the FFT-transformations RSA and

RCA. As both, their use and their input values are well described by the comments of

the module FFT.f90 itself, the most important functions are just listed here to provide

a better orientation while reading the code:

• SUBROUTINE RCA(MM, X, IX, Y, IY)

Describes a cosine Fast Fourier transformation of a real even function.

M: Integer number, such that N = 2M , with N being the number of grid points.

It limits the grid size of the functions to a square number of 2. This limitation is

the consequence of the fact that the FFT- algorithm, which recursively divides the

range of the functions by a factor of two.

X: Input vector of size N+1

IX: step size for the increase of the input values, X(r*IX+1)

Y: Output vector of size N+1

IY: step size for the increase of the output values, Y(k*IY+1)
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• SUBROUTINE RSA(MM, X, IX, Y, IY)

Describes a sine fast Fourier transformation of an odd function.

• SUBROUTINE solve_LinEquSyst(N,R,RES)

Solving of a system of linear equations, using the Gauss method.

N: Dimension of the equation system

R: Matrix of the dimension N x N

RES: Vector for the storage of the result

• SUBROUTINE calc_InverseMatrix(n,Matrix,res)

Calculation of an Inverse matrix. The variables are written in small letters, similar

to their specification in the program.

n: Dimension of the equation system

Matrix: Matrix of the dimension n x n

res: Vector for the storage of the result

• SUBROUTINE DARSIM(N,DEL,A,RES)

Integration of a function A(N) with N grid points, separated by an increment

DEL, with the result stored in RES(N)

• FUNCTION DERIV(F,X,DELTA,ABSCONV,RELCONV,ICONV)

Derivative of a function F with arguments X by an increment DELTA. The

parameters ABSCONV and RELCONV are chosen to define the convergence of

the routine. If the numerical difference between the last two steps of the derivation

process is bigger than either ABSCONV or RELCONV multiplied with the last

result, the parameter Iconv is set to one. Otherwise the routine ends by setting

Iconv to zero and by writing the message ’DERIV NON CONVERGE’ to the
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standard output line.

• FUNCTION DDVDIF(F,X,N,Z,M2)

polynomial Interpolation for a function F with known values at X, using Newton

interpolation

F: Array of the given function

X: Array of the given arguments

N: Number of grid points

Z: Argument on which the interpolation of the function should be performed

M2: Input for the order of interpolations. It can not be chosen bigger than 10.

3.4. Output files

Computation time and thermodynamic properties (if chosen) are shown in the stan-

dard output line. Furthermore IEM-new.f90 produces the output file gamout, that

contains the functions γ(r), the argument r and the array g(r). The direct correlation

function c(r) is written to the file c1.
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Figure 3.1: Program IE
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Figure 3.2: Gillan algorithm
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Figure 3.3: Algorithm of LaMaVo
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Figure 3.4: Algorithm of Ng
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Figure 3.5: subroutine Thermo
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4. Generalisation to higher dimensions

Proceeding to higher dimensions, we need to know how the assumption of a five or seven

dimensional function have to be taken into account by the program. Luckily we deal

throughout with radially symmetric functions, which means that most of the transfor-

mations will only apply to functions, which depend on one single argument, namely the

distance r. As a result the basic gillan algorithm contains only two subroutines, where

the dimensionality of the functions can not be neglected: The Fast Fourier Transforma-

tions(FFT) performed in the basic picard circle and the Jacobi Transformation.

4.1. Fast Fourier Transformation in higher dimensions

A general consideration of radially symmetric functions the Fast Fourier Transformation

leads to Hankel-transformations, which is the reason why we will focus on odd dimen-

sions only [2].

4.1.1. Hyper-spherical coordinates in Rn

First we have to transfer Euclidean n-dimensional space, with the coordinates

{x1, x2, ...xn} (4.1)

to hyper-spherical coordinates

{r, θ1, θ2, ...θn−2, φ} ; 0 ≤ θα ≤ π, α ∈ {1, ...n− 2}

0 ≤ φ ≤ 2π,

0 ≤ r ≤ ∞

(4.2)
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with
x1 = r cos(θ1)

x2 = r sin(θ1) cos(θ2)

...

xα = r sin(θ1) ... sin(θα−1) cos(φα)

...

xn−1 = r sin(θ1) ... sin(θn−2) cos(φ)

xn = r sin(θ1) ... sin(θn−2) sin(φ).

(4.3)

4.1.2. Volume of an n-dimensional sphere

By calculating the functional determinant of the above transformations, we find an

expression for the infinitesimal volume element:

dnr =
n∏

α=1
dxα = rn−1

n−2∏
α=1

sinn−α−1(θα)dθαdφ. (4.4)

This leads us to the volume Vn of an n-dimensional sphere with radius R:

Vn =
∫ 2π

φ=0
dφ

∫ R

r=0
rn−1dr

∫ π

θ1=0
sinn−2(θ1)dθ1 ...

∫ π

θn−2=0
sinn−2(θn−2)dθn−2 (4.5)

For the explicit integration of Eq.(4.5), we need the following expressions:

∫ π

θ=0
sin2l(θ)dθ = π

(2l − 1)!
(2l)!∫ π

θ=0
sin2l+1(θ)dθ = π

(2l)!
(2l + 1)!

l ∈ N.

(4.6)
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Together with the following relations of the Gamma-function

Γ(n+ 1) = n!

Γ(1) = 1

Γ
(1

2

)
=
√
π

(4.7)

we obtain

Vn = SnR

n
; Sn = nπn/2

Γ(n/2 + 1)R
n−1. (4.8)

4.1.3. Fourier transforms of radially symmetric functions

For a general function, f(~r), that depends on ~r ∈ Rn we define its Fourier transform,

f̃ , (~k) via

f̃(~k) =
∫
ei
~k~rf(~r)dnr. (4.9)

If we consider radially symmetric functions, we are free to choose our coordinate system

such that ~k = (k, 0, ...0) is the polar axis:

~k~r =
n∑
α

kαxα = kr cos(θ1). (4.10)

This, together with Eq. (4.4) for the volume element dr, transforms the relation Eq. 4.9

to the following expression of Eq.(4.9)

f̃(k) = 2π
∫ ∞

0
rn−1f(r)dr

∫ π

θ1=0
eikr cos(θ1) sinn−2(θ1)dθ1

×
n−3∏
α=1

∫ π

θα
sinn−α−2(θα)dθα (4.11)
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In an attemt to avoid complicated Hankel-transformations, we restrict ourselves to odd

dimensional functions, with n = 2l + 1.

Together with Eq. (4.8) for the surface Sn(r) we can integrate the product, which

appears as a last factor of Eq. (4.11)

f̃(k) = (2π)
n−1

2

(n− 3)!

∫ ∞
r=0

f(r)Xn(k, r)rn−1dr;

Xn(k, r) =
∫ π

θ=0
eikr cos(θ) sinn−2(θ)dθ. (4.12)

We can now explicitly solve the integral for Xn, using the relation

∫ π

θ=0
eia cos(θ) sin2ν(θ)dθ =

√
π

(2
a

)ν
Γ(ν + 1

2)Jν(a) (4.13)

where Jν(a) is the ν-th order Bessel-function of the first kind, i.e.,

Jν(a) =
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(
a

2

)2m+ν
. (4.14)

By comparing Eqs. (4.13) and (4.12), we find that ν = (n − 2)/2. Since n is odd,

ν is half-integer. We thus obtain

∫ π

θ=0
eikr cos(θ) sinn−2(θdθ) =

√
π

( 2
kr

)n−2
2

Γ
(
n− 1

2

)
Jn−2

2
(kr). (4.15)
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Eq. (4.15) can be simplified by using spherical Bessel-functions jν(a), which are re-

lated to the Jν(a) via:

jν(a) =
√
π

2aJν+ 1
2
(a). (4.16)

This leads to

Jn−2
2

(kr) =

√
2kr
π
jn−3

2
(kr). (4.17)

Putting these results together, we finally obtain

f̃(k) = 2n−1π
n−1

2

(n− 3)! Γ
(
n− 1

2

)∫ ∞
r=0

f(r)rn−1
jn−3

2
(kr)

(kr)
3−n

2
dr. (4.18)

4.1.4. Application of the Fourier transformation to the special cases of d=3,5,7

Using Eq. (4.18) for the special case of three, five and seven dimensions, we find:

d = 3 : f̃(k) = 4π
∫∞

0 f(r) sin(kr)
k rdr;

d = 5 : f̃(k) = 8π2 ∫∞
0 f(r)( sin(kr)

k3 r − cos(kr)
k2 r2)dr;

d = 7 : f̃(k) = 16π3 ∫∞
0 f(r)(3 sin(kr)

k5 r − sin(kr)
k3 r3 − 3 cos(kr)

k4 r2)dr.

(4.19)

The related inverse Fourier transformations read:
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d = 3 : f(r) = 1
2π2

∫∞
0 f̃(k) sin(kr)

r kdk;

d = 5 : f(r) = 1
4π3

∫∞
0 f̃(k)( sin(kr)

r3 k − cos(kr)
r2 k2)dk;

d = 7 : f(r) = 1
8π4

∫∞
0 f̃(k)(3 sin(kr)

r5 k − sin(kr)
r3 k3 − 3 cos(kr)

r4 k2)dk.

(4.20)

Thus the Fourier transforms in the higher dimensional spaces reduce to linear com-

binations of the sine- and cosine transforms of the function f , and the integrals are

weighted by suitable powers of k and r.

For numerical use those equations have to be discretized. FFTs are used in the following

modules and subroutines:

Module STR-new.f90

• subroutine FT_c_RtoQ

• subroutine FT_Gamma_QtoR

• subroutine FT_Gamma_RtoQ

Module BR-new.f90

• subroutine FT_RtoQ

• subroutine FT_QtoR

The cases k=0 and r=0 have to be considered separately for both, the direct and the

inverse transformations. Here the rule of de l‘Hospital is used to calculate the respective

Fourier transforms at vanishing r or k. For the three different cases of dimensionality,

one obtains for f(r) = 0:
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d=3:

f(r = 0) = lim
k→0

4πdr
∑N
r=0 f(k) sin(kr)

k r

= lim
k→0

4πdr
∑N
r=0 f(k) cos(kr)

1 r2 = 4πdr
∑N
r=0 f(k)r2 .

(4.21)

d=5:

For five dimensions the rule of de l´Hospital is a little bit more complicated, one obtains:

f(r = 0) = lim
k→0

8π2dr
∑N
r=0 f(k)( sin(kr)

k3 r − cos(kr)
k2 r2)

= lim
k→0

8π2dr
∑N
r=0 f(k) sin(kr)r−cos(kr)r2k

k3 .
(4.22)

Now the Taylor approximations for sine and cosine are used:

sin(kr) ≈ kr − 1
6k

3r3 (4.23)

cos(kr) ≈ 1− k2r2

2 . (4.24)

Thus f(r = 0) finally reads:

f(r = 0) = 8π2dr
N∑
r=0

f(k)r
4

3 (4.25)

d=7:

Similar to the five dimensional case, we obtain an expression Due to the fact, that

most of the low-order terms vanish, one more term of the Taylor expansion is needed for

both sine and cosine:
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sin(kr) ≈ kr − 1
6k

3r3 + 1
120k

5r5 (4.26)

cos(kr) ≈ 1− k2r2

2 + 1
24k

4r4. (4.27)

We finally obtain:

f(r = 0) = 16π3dr
N∑
r=0

f(k) r
6

15 (4.28)

Of course we can use Eqs. (4.21), (4.25) and (4.28) for the inverse transformations

as well, using instead 1
2π2 , 1

4π3 and 1
8π4 as pre-factors for each belonging dimension.

4.2. The Gillan algorithm and the Jacobi transformation in different

dimensions

There is another subroutine for which the dimensionality of the problem is of relevance,

namely the Jacobi transformation used in the Gillan algorithm. The main idea of the

Gillan algorithm [5] is to seprarate γ(r) into a coarse and a fine part with orthogonal

spacial subspaces. While the coarse part covers the main structure of γ(r), the fine one

represents small fluctuations around the main part.

As introduced in section 2.3.2, we use in the following index notation and discrete vectors

instead of functions, for the reason of a direct comparability with the program. We use

i,j and m as counters of grid points in r- or k-space, while s and t stand for the running

index of different particle interactions, meaning that combinations of components are

counted by this variable. So for two components a and b the running index s could have

three different values, namely s = 1, representing aa, s = 2, representing ab = ba and
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s = 3, representing bb.

4.2.1. Gillan algorithm

In detail the separation of γ(r) in the above sense is performed as follows [5] :

γsi =
∑
α

asαP
i
sα + ∆γsi (4.29)

P isα are the so called basis functions of the coarse part, where the asα are the expansive

coefficients. ∆γsi represents the fine part of γ(r). α counts the number of basis func-

tions, that are shaped such that the coarse part just covers a region of relatively small

r-values, where the potential is significantly different from zero. As the subspaces of the

coarse and the fine part are assumed to be orthogonal, the following equation must be

satisfied:

∑
i

P isα∆γsi = 0;∀α, s (4.30)

For the basis functions P isα, that shall be each orthogonal as well, we choose a discrete

version of the so called roof functions. Those functions are shaped like a triangle, with

its tights meeting in the so called node point. If we have n different basis functions P isα
(α = 1, 2, ...n), we have to choose the location of n different nodes in, that all have a

height of 1. For example if we choose in = 10 the first node is located at i = 10 (or

r = 0.1 for dr = 0.01).

P isα = 0 for 1 ≤ i ≤ isα−2

(i− isα−2)/(isα−1 − isα−2) for isα−2 ≤ i ≤ isα−1

(isα − i)/(isα − isα−1) for isα−1 ≤ i ≤ isα

0 for isα ≤ i ≤ N

(4.31)
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Figure 4.1 shows a typical example for roof functions, P isα. Here we use n = 6 with a

length of 10 sequences of i between the nodes.

Figure 4.1: Possible choice of roof functions for n = 6, in = 10
Details are given by the descriptions above.

For convergence both asα and ∆γsi have to converge. The Gillan algorithm in particular

tries to accomplish that by performing a Newton-Raphson iteration on the coarse part

followed by a basic Picard iteration on the fine part. After choosing an initial value for

γsi the algorithm passes the following steps:

1) Picard iteration from γsi to γ
′
si

2) Calculation of a′sα from γ
′
si by

a
′
sα =

∑
i

Qiαγ
′
i (4.32)

where Qiαγ
′
i are the conjugated basis functions, that are derived by:
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Qiaα =
∑
β

Bsα,sβP
isβ (4.33)

3) Calculation of dsα = |asα − a
′
sα|, If dsα for each α = 1, ...n is not small enough,

a coarse step is performed by a Newton-Raphson step iteration, with the aim to

minimize dsα(asα) to find its zeros:

asα = asα −
∑
tβ

J−1
sα,tβdtβ (4.34)

where

J−1
sα,tβ = ∂dsα

∂dtβ
. (4.35)

Obviously, to find asα, one has to calculate J−1
sα,tβ, which is done as follows [5] :

The coefficients Bsα,sβ of Eq. (4.33) are chosen such that

B−1
sα,sβ =

∑
i

P isαPsβ , (4.36)

and hence

∑
i

QisαP
i
sβ = δαβ , (4.37)

because the basis functions Psβ are orthogonal, as mentioned above. As a result

∆γsi is orthogonal to Qisα as well, so we obtain the expression

asα =
∑
i

Qisαγsi . (4.38)
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Due to the basic chain-rule and Eq. (4.33) to (4.38), the inverse of the Jacobi

matrix can be calculated via:

J−1
sα,tβ = ∂dsα

∂dtβ
= δsα,tβ −

∑
ij

Qjsα
∂γ
′
sj

∂γti
P itβ (4.39)

with
∂γ
′
sj

∂γti
=
∑
m=0

∂γ
′
sj

∂γ̃sm

∂γ̃sm
∂ ˜ctm

∂c̃tm
∂cti

∂cti
∂γti

. (4.40)

4.2.2. Calculation of the Jacobi matrix

The Jacobi matrix has the dimension n x n x NrIntType x NrIntType, where

NrIntType denotes the number of different component combinations. Typically

we choose n between 6 and 12. To calculate each of the four factors in Eq. (4.40)

we need explicit expressions [5] for γ′sj( ˜γsm), ˜γsm( ˜ctm), ˜ctm(cti) and cti(γti).

cti(γti) can be obtained from closure relations, hence in a first step the derivative

of the chosen closure relation by γti has to be calculated.

Secondly, the Fourier transform of the OZ-equation yields an expression for γ̃sm(c̃tm).

In the one component case we find the expressions:

γ̃m = ρc̃2
m

1− ρc̃m
(4.41)

with the derivative:

∂γ̃m
∂c̃m

= ( 2ρc̃m
1− ρc̃m

) + ( ρc̃m
1− ρc̃m

)2 . (4.42)

For the more-component case the derivation of the OZ-equation is a little bit more

complicated. We need to solve a linear equation system, performed by the subrou-

tine Derivation_OZ, as described in section 3.3.
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Expression γ′sj( ˜γsm) and ˜ctm(cti) are obtained via the Fourier transformation. This

is the reason why there is a formal difference between those expressions in different

dimensions. In three dimensions one finds the relation:

∂γ
′
sj

∂γ̃sm
= dk

2π2rsj
ksm sin(ksmrsj) (4.43)

∂c̃tm
∂cti

= 4πdr
ktm

rti sin(ktmrti) . (4.44)

There is basically no difference between ksm and ktm or rsi and rti, because the

distinction between the components is only relevant for the functions themselves,

but not for their arguments r and k, that are part of the same grid. We will

therefore suppress the component indices s and t for the arguments k and r in the

following equations. Eq. 4.43 and Eq. 4.44 now leads us to

∂γ
′
sj

∂γ̃sm

∂c̃tm
∂cti

= drdkri
rjπ

sin(kmri) sin(kmrj) . (4.45)

For a better applicability of the algorithm containing the Fast Fourier transforma-

tion, we need some basic sine and cosine relations:

cos(x1)− cos(x2) = −2 sin(x1 + x2
2 ) sin(x1 − x2

2 ) (4.46)

cos(x1) + cos(x2) = 2 cos(x1 + x2
2 ) cos(x1 − x2

2 ) (4.47)

sin(x1)− sin(x2) = 2 cos(x1 + x2
2 ) sin(x1 − x2

2 ) (4.48)

sin(x1) + sin(x2) = 2 sin(x1 + x2
2 ) cos(x1 − x2

2 ) . (4.49)
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In three dimensions only Eq. (4.46) is relevant. Choosing x1 +x2/2 = kmri and

x1 − x2/2 = kmrj leads to x2 = kmri + kmrj and x1 = kmri − kmrj and therefore:

∂γ
′
sj

∂γ̃sm

∂c̃tm
∂cti

= drdkri
rjπ

cos(kmri − kmrj)− cos(kmri + kmrj) . (4.50)

For the case j=0 (corresponding to r=0) we obtain

∂γ
′
s0

∂γ̃tm

∂c̃tm
∂cti

= 2drdkri
π

sin(kmri)km . (4.51)

Here we used Eq. (4.43)along with the rule of de l’Hospital, thus

lim
j→0

dk

2π2rj
km sin(kmrj) = dk

2π2rj
k2
m, (4.52)

from which Eq. (4.51) straightly follows.

The case of five dimensions is a little bit more complicated, but follows es-

sentially the same ideas. The terms now read:

∂γ
′
sj

∂γ̃sm
= dk

4π3
km sin(kmrj)

r3
j

− k2
m cos(kmrj)

r2
j

(4.53)

∂c̃tm
∂cti

= 8π2dr
ri sin(kmri)

k3
m

− ri cos(kmr2
i )

k2
m

. (4.54)
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This leads to

∂γ
′
sj

∂γ̃sm

∂c̃tm
∂cti

=
(
dk

4π3
km sin(kmrj)

r3
j

− k2
m cos(kmrj)

r2
j

)
(

8π2dr
ri sin(kmri)

k3
m

− ri cos(kmr2
i )

k2
m

)
.

(4.55)

A similar consideration as the one for three dimensions leads to:

∂γ
′
sj

∂γ̃sm

∂c̃tm
∂cti

= drdk

π

r2
i

r3
jkm

(sin(kmrj + kmri) + sin(kmrj − kmri))+

ri
r2
jkm

(sin(kmrj + kmri)− sin(kmrj − kmri))+

r2
i

r2
j

(cos(kmrj + kmri) + cos(kmrj − kmri))+

ri
r3
jk

2
m

(cos(kmrj + kmri)− cos(kmrj − kmri))

(4.56)

for j=0, corresponding to r=0, we obtain

∂γ
′
s0

∂γ̃sm

∂c̃tm
∂cti

= 2drdk k4
m

3π

(sin(kmri)
k3
m

ri −
cos(kmri)

k2
m

r2
i

)
(4.57)

To calculate the final sum in Eq. (4.40) we consider ∂γ̃sm∂c̃tm
as the Fourier transform of

∂γ
′
sj

∂γti
, as one can see from the following expressions for three and for five dimensions:

d=3:

∂γ
′
sj

∂γti
=

N∑
m=0

drdkri
rjπ

(cos(kmri − kmrj)− cos(kmri + kmrj))
∂γ̃sm
∂c̃tm

∂cti
∂γti

(4.58)
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and d=5:

∂γ
′
sj

∂γti
=

N∑
m=0

drdk

π

(
r2
i

r3
jkm

(sin(kmrj + kmri) + sin(kmrj − kmri))+

ri
r2
jkm

(sin(kmrj + kmri)− sin(kmrj − kmri))+

r2
i

r2
j

(cos(kmrj + kmri) + cos(kmrj − kmri))+

ri
r3
jk

2
m

(cos(kmrj + kmri)− cos(kmrj − kmri))
)
∂γ̃sm
∂c̃tm

∂cti
∂γti

(4.59)

where ∂cti
∂γti

can be calculated by the Closure relation. For r=0 we have

d=3
∂γ
′
sj

∂γti
=

N∑
m=0

2drdkri
π

sin(kmri)km
∂γ̃sm
∂c̃tm

∂cti
∂γti

(4.60)

and

d=5

∂γ
′
sj

∂γti
=

N∑
m=0

2drdk k4
m

3π

(sin(kmri)
k3
m

ri −
cos(kmri)

k2
m

r2
i

)
∂γ̃sm
∂c̃tm

∂cti
∂γti

. (4.61)

So for three dimensions for example, the subroutine just has to calculate the sum

by performing two cosine FFTs or one sine FFT for the case r=0 in Eq. (4.60).

The inverse of the Jacobi matrix then directly follows from Eq. (4.39).

We deliberately abstain from a consideration of seven dimensions here, as there is

no difference between the use of the calculation of the Jacobi matrix for three or

for higher dimensions concerning both the Gillan and the LaMaVo algorithm. This

is because the fine part is always a further control sequence for the coarse part. So

the coarse part just needs to produce a satisfying dsα to provide a useful starting

value for the fine part and it is only a matter of speed, when the calculated āsα

reaches a′sα.
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Because the derivation of ∂γ
′
sj

∂γti
is much slower using Eq. (4.56) and Eq. (4.57) the

same normalized transformation is used for all dimensions in the Jacobi-subroutine.

4) After one iteration of the coarse part we set asα = āsα and calculate dsα. If this

quantity is not small enough, another iteration of the coarse part has to be per-

formed until the coarse part has converged.

5) When the previous step has been successfully achieved convergence, ∆γ′si is calcu-

lated via

∆γ′si = γ
′
si −

∑
α

P isαasα ; (4.62)

This quantity is compared to the initial value of ∆γsi. If the difference is not small

enough, a new Picard iteration is performed and the loop starts from step 1) again.

4.3. Thermodynamics

Now we move on to the equations to calculate the thermodynamic properties in higher

dimensions. To be more specific, we focus on the excess energy U ex2 , the pressure P , and

the compressibility χT , which play an important role for the specification of different

materials.

4.3.1. Excess energy

For U ex2 we find the equation [2]:

U ex2
N

= ρ

2
∑
i,j

xixj

∫
φ2ij(~r)gij(~r)d~r (4.63)
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For the exact derivation of Eq. (4.63) we refer to more detailed literature [2]. xi and xj
are the concentrations for each component i and j, while ρ is the total density. φ2ij( ~rab)

is the pair potential

Vij(r) = 1
2

N∑
a,b;a6=b

φ2ij(rab) (4.64)

All potientials defined in section 3.1 are pair potentials, only interacting between two

particles each. As we deal with radial symmetric functions, the integration over a d-1-

dimensional spherical shell can be performed easily, so that (for a general) d-dimensional

problem, Eq. (4.63) reads:

U ex2
N

= ρ
π
d
2

Γ(d2)
∑
i,j

xixj

∫ ∞
0

rd−1φ2ij(r)gij(r)dr (4.65)

Where Γ(n2 ) is the common Gamma-function.

4.3.2. Pressure

For the pressure P we have to start from the equation

βP

ρ
= 1− 1

6βρ
∑
i,j

xixj

∫
~rφ
′
2ij(~r)gij(~r)d~r (4.66)

where u′2ij is the derivative of the pair potential after r. As before we just need to

integrate over a d-1 spherical shell to obtain

βP

ρ
= 1− 1

3βρ
π
d
2

Γ(d2)
∑
i,j

xixj

∫ ∞
0

rdφ
′
2ij(r)gij(r)dr (4.67)

For a three pair potential we obtain
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βP

ρ
= 1− 1

36βρ
2 π

d
2

Γ(d2)

∫ ∞
0

∫ ∞
0

∫ 1

−1
rdφ

′
3(r12, r13, x)g(r12, r13, x)rd12, r

d
13dr12dr13dx

(4.68)

4.3.3. Compressibility

For the calculation of the compressibility χT the program needs no changes at all, as

one can see from the following equations:

1 + ρ
∑
ij

xixj

∫
(g(2)
ij (~r)− 1)d~r = 〈N

2〉 − 〈N〉2

〈N〉
= ρkBTχT (4.69)

g2
ij is the two-particle distribution function, with the n-particle distribution function

generally defined as

ρng
(n)
ij ( ~rn) = ρ

(n)
ij ( ~rn) (4.70)

with ρ(n)
ij as the n-particle density defined as

ρ
(n)
ij ( ~rn) =

∞∑
N≥2

P (N)ρ(2)
N,ij( ~rn) (4.71)

where P (N) is the probability to find a system with exactly N particles (as the derivation

takes place in the grand canonic ensemble) and ρ(2)
N,ij( ~rn) represents the probability to

find n-particles in a space d~rn around ~rn. The notation ~rn is needed here to clarify that

the functions could generally be more than only 2-particle functions, as they initially

depend on r1, r2, ...rN , of course.

For a detailed derivation of Eq. (4.69) - (4.71) I refer to more detailed literature [2].

Because of the equation for the structure factor S̃(~k)

S̃(~k) = 1 + ρh̃(~k) (4.72)
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as well as for the general relations

hik(r) = gik(r)− 1 (4.73)

γik(r) = hik(r)− cik(r) (4.74)

and the Fourier transform of the OZ-equation (2.4), a comparison between Eq. (4.72)

and Eq.(4.69) leads to

S̃(0) = 1
1− ρ

∑
ij xixj c̃ij(0) = ρkBTχT (4.75)

As c̃ij(0) will already be calculated when the program calls the subroutine ’Compressibil-

ity’ to calculate χT , we do not need any changes here, because our general FFT already

works for higher dimensions.
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5. Validation of the solutions for hard-spheres by a comparison

of analytic to numerical results, using c(r)

To check the accuracy and reliability of the code in higher dimensions, we applied it to

hard-spheres, using the Percus-Yevick approximation for which analytic results for c(r)

in odd dimensions are accessible [6].

The following sections show a comparison of the analytic and the calculated solution

for c(r), considering different values for η.

5.1. Three dimensions

Following Leutheusser [6], and assuming σ=1, the analytic solution for c(r) reads in

three dimensions:

c(r) = c0 + c3r + c5r
3; 0 ≤ r ≤ 1 (5.1)

with

c0 = 4Q2
1

c3 = 6ηQ2
0

c5 = 1
2ηc0

(5.2)

and

Q0 = −
1 + η

2
(1− η)2

Q1 =
1
2 + η

(1− η)2

. (5.3)

As described in section 3.1.3, we use η as input parameter. Therefore we have to calcu-
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late σ by the equations specified in table 1, to produce the hard-sphere potential.

The following figures show a selection of the comparisons of the analytic and the numer-

ical solution for different values of dr and N . According to Figure 5.1 and 5.2, a larger

number of grid points does not lead to a different solutions (as long as the potential-

vector is long enough to cover the discontinuity and a significant number of zeroes, of

course). A comparison between Figure 5.2 and 5.3 shows, that an increase of η leads

to a larger difference between the numerical and the analytic solution. Fortunately a

smaller increment dr leads to a higher accuracy, as Figure 5.3 and 5.4 finally observe.

Figure 5.1: Comparison of analytic (solid, green line) and calculated (dashed, red line)
solution in three dimensions, for η=0.4, dr=0.01, N=210.
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Figure 5.2: Comparison of analytic (solid, green line) and calculated (dashed, red line)
solution in three dimensions, for η=0.4, dr=0.01, N=212.

Figure 5.3: Comparison of analytic (solid, green line) and calculated (dashed, red line)
solution in three dimensions, for η=0.5, dr=0.01, N=212.
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Figure 5.4: Comparison of analytic (solid, green line) and calculated (dashed, red line)
solution in three dimensions, for η=0.5, dr=0.005, N=214.

5.2. Five dimensions

Proceeding to higher dimensions (i.e. d=5 and d=7 dimensions) [6], the analytic solutions

for c(r) in higher dimensions become quite complicated. Therefore they were produced

in MATHEMATICA by a program provided by A. Santos [9].

A comparison of Figure 5.5 and 5.6 shows again, that for a smaller dr the numeric

solution comes quite close to the analytic solution.
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Figure 5.5: Comparison of analytic and calculated solution in five dimensions, for η=0.05,
0.1, 0.2 (from top to bottom), dr=0.01, N=212; The dashed line represents the analytic
solution, while the solid line represents the numeric solution.

Figure 5.6: Comparison of analytic and calculated solution in five dimensions, for
η=0.05,0.1,0.2 (from top to bottom), dr=0.001, N=212; The dashed line represents the
analytic solution, while the solid line represents the numeric solution.
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5.3. Seven dimensions

As for five dimensions, Figure 5.7 compares the analytic and the numeric solution for

different values of η. A higher accuracy could have been achieved by using a smaller in-

crement dr, together with a higher number of grid points N . Unfortunately (as η=0.07 is

comparatively high for seven dimensions) the program does not converge for dr = 0.001

anymore.

To validate the adjustments for the thermodynamics as well, the numeric solution for

the compressibility χT was compared to the analytic solution for the structure factor

S(q) at q=0, taken from a publication of Robles, López de Harob & Santos [9].

The results are shown in Table 2.

η χT S(0)

0.01 0.37873 0.37582

0.02 0.19136 0.18627

0.03 0.11058 0.11438

0.04 0.07071 0.06863

0.05 0.04776 0.04902

0.06 0.03483 0.03595

0.07 0.02491 0.02288

Tab.2: Comparison of χT and S(0) of hard spheres in seven dimensions, using the PY-

approximation.
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Figure 5.7: Comparison of analytic and calculated solution in seven dimensions, for
η=0.01 - 0.07 (from top to bottom), dr=0.01, N=212; The dashed line represents the
analytic solution, while the solid line represents the numeric solution for all cases but
the last one with η = 0.07, where the lines are switched.

74



6. Results for a binary soft sphere mixture

Inspired by the studies of Jean-Marc Bomont, Jean-Pierre Hansen and Giorgio Pastore

[4], [7], [8], a two-component system with a soft sphere potential was considered, due

to Eq. (3.5) and Eq. (3.6). The idea of their work (on which I am not going to refer

to in detail) is a systematic increase of the Γ, specifying the energy of the soft sphere

potential, as defined in section 3.1.2. Basically, the output function γ(r)out for a certain

Γ, with typical values between Γ = 1 and Γ = 1.7, is chosen as a new input γ(r)inp.

Comparatively high values of Γ can be reached by that method, as the algorithm would

normally not converge for a very high Γ and γ(r)inp = 0.

The interesting feature of the specific system considered in the studies of Jean-Marc

Bomont, Jean-Pierre Hansen and Giorgio Pastore [7] is, that at a certain Γ, the value of

the pair correlation function g12(0) at r = 0 is characterized by a certain increase, while

for a smaller Γ-value, g12(0) increases much slower.

At this point we have to remember, that we are dealing with an attractive potential

between the different components, due to equation Eq.(3.5).

On the other hand, the soft sphere potential between two equal particles is purely re-

pulsive. As a lot of other particles of both sorts will be located between them, the

combination of all repulsive forces can be seen as a barrier between one particle of sort 1

and another particle of sort 2. As an increase of Γ in Eq. (3.8) leads to a higher potential

for both, the attractive and the repulsive part, the attractive energy will be high enough

for the particles to overcome the barrier at a certain point, leading to significantly higher

values of the correlation function c12(r), with a higher value of g12(r) as a result. Of

course, the effect is particularly strong for small values of r12, when the particles are very

close. Therefore the value of g12(0) is of special interest. Further research dealing with

that effect can be looked up for example in publications of J.M. Bomont, J.P. Hansen

and G. Pastore [4], [7], [8].
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6.1. Results in three dimensions

At first, we have to choose an increment ∆Γ, that determines how fast Γ increases.

According to the studies of Bomont, Hansen ans Pastore [4], [7], [8], who worked with

another version of the program, the jump in g12(0) occurs between Γ = 1.76 and Γ = 1.77,

which was reproduced in our calculations in Figure 6.1. An increment of ∆Γ = 0.01 is

too large for the current program. For higher values of Γ we have to choose values of

∆Γ as small as ∆Γ = 0.0001 in order to achieve convergence.

Figure 6.1: Comparison of g12(0) as a function of Γ, for different values of Γ (as labelled),
for the current program and an older version of the program.
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As one can see in Figure 6.1, the jump happens between Γ = 1.76 to Γ = 1.78, and

is much lower than for ∆Γ = 0.01. To make sure, that the difference was not produced

by an error of one of the programs itself, a calculation with ∆Γ = 0.0001 was applied

on the old program as well. After all, the data obtained for the same value of ∆Γ are

coincident for both the old and the new program.

To find out whether one of the solutions might be unphysically, the Structure factor

S(k), as well as the function g12(r) were calculated for each of the Γ-values.

Without going into too much detail, the Structure function as it is defined in Eq. (4.72),

is related to the scattering cross section, assumed, that we are dealing with identical

point particles, producing a delta-function for the density function ρ(r).

As we can see in Figure (6.2) - (6.4), the pair distribution function g12 does only show

significant differences for very low r. Therefore S(k) in Eq. (4.72) does not change for

different values of Γ, because as a function of the Fourier transform of h(r) it combines

all functions of the entire r-space, which only differ for very low values of r. (See Figure

(6.5) -(6.7)).

A direct comparison between the relevant values for Γ, concerning different increments,

is shown in Figure (6.8) - (6.10).
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Figure 6.2: g12(0) as a function of Γ (as labelled), calculated by the new program, using
∆Γ = 0.0001.

Figure 6.3: g12(r) as a function of Γ (as labelled), calculated by the old program, using
∆Γ = 0.0001.
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Figure 6.4: g12(r) as a function of Γ (as labelled), calculated by the old program, using
∆Γ = 0.01.

Figure 6.5: S(k) as a function of Γ (as labelled), calculated by the new program, using
∆Γ = 0.0001.
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Figure 6.6: S(k) as a function of Γ (as labelled), calculated by the old program, using
∆Γ = 0.0001.

Figure 6.7: S(k) as a function of Γ (as labelled), calculated by the old program, using
∆Γ = 0.01.
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Figure 6.8: g12(r) as a function of Γ (as labelled), for old and new program, using
Γ = 1.76.

Figure 6.9: g12(r) as a function of ∆Γ (as labelled), for old and new program, using
Γ = 1.77.
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Figure 6.10: g12(r) as a function of ∆Γ (as labelled), for old and new program at Γ = 1.77
or Γ = 1.78 for the new program respectively.

6.2. Results in higher dimensions

In higher dimensions we can access much higher values for Γ as one can see in Figure 6.11

for five dimensions, and 6.12 for seven dimensions. A comparison between the functions

g12(r) for different values of Γ is given in Figures 6.13 and 6.14.
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Figure 6.11: g12(0) as a function of Γ in five dimensions, calculated by the new program,
using ∆Γ = 0.01.

Figure 6.12: g12(0) as a function of Γ in seven dimensions, calculated by the new program,
using ∆Γ = 0.01.
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Figure 6.13: g12(0) as a function of Γ in five dimension (as labelled), calculated by the
new program, ∆Γ = 0.01, with Γ = 2.1− 4.9.

Figure 6.14: g12(r) as a function of Γ in seven dimensions (as labelled), calculated with
the new program, using ∆Γ = 0.01, with Γ = 2.1− 16.7.
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Conclusion

In this thesis we introduced the generalisation of integral equation techniques, consist-

ing of the Ornstein-Zernike equation and a closure relation, to higher (odd) dimensions,

namely to five and seven dimensions. At first we compared the analytic solution of

the direct correlation function c(r), available for hard-spheres, using the Percus-Yevick

approximation, to the numeric solution, calculated by the program. In three dimen-

sions the difference ∆c(r) between the numeric and the analytic solution varies between

∆c(0) = 0.05 for η = 0.4 and ∆c(0) = 0.1 for η = 0.5, if the increment of the grid size

dr is chosen as dr = 0.01. If we improve the resolution by choosing dr = 0.005, the

difference becomes much smaller, with ∆c(0) = 0.001 for η = 0.5.

In five dimensions, when choosing dr = 0.01, we find ∆c(0) = 0.1 for η = 0.05, up

to ∆c(0) = 1.8 for η = 0.2. Fortunately, those comparatively high inaccuracies can be

compensated by choosing dr = 0.001. In this case we find ∆c(0) = 0.001 for η = 0.05

and ∆c(0) = 0.01 for η = 0.2. For dr = 0.01 the difference between the numeric and the

analytic solution ranges between ∆c(0) = 0.05 for η = 0.01 and ∆c(0) = 1.5 for η = 0.7.

Secondly, the numeric solution for the pair distribution function g12(r) for a binary

system were compared to the solution of another program version. Here the equal parti-

cles interact via a soft sphere potential, while different particles interact via an attractive

potential. In particular, we studied the increase of g12(0) with the systematic increase

of the parameter Γ, specifying the soft sphere potential. Depending on the increment

∆Γ we observed a substantial increase of ∆g12(0) at Γ ≈ 1.76 with both, the old and

the new program versions.

Depending on the increment ∆Γ, we obtained different values for the increase of ∆g12(0).

While ∆Γ = 0.0001 produces a smooth increase of ∆g12(0), the choice of ∆Γ = 0.01

leads to a much higher g12(0) at Γ = 1.77.
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A. Appendix

A.1. Code

For the generalisation to higher dimensions, a new variable, idimension, was introduced

in the module IEM-new.f90. It specifies the dimension of the system. To normalize

the density ρ with respect to the dimension, a few lines were added to the subroutine

init_Method:

if(iDimension .EQ. 3) then
rho=3.D0/4.D0/pi*rho
end if
if(iDimension .EQ. 5) then
rho=15.D0/8.D0/pi**2*rho
end if
if(iDimension .EQ. 7) then
rho=105.D0/16.D0/pi**3*rho
end if

Furthermore, the following subroutines where adapted:

In MODULE STR-new.f90: FT_Gamma_RtoQ, FT_c_RtoQ, FT_Gamma_QtoR

In MODULE BR-new.f90: FT_RtoQ, FT_QtoR

In MODULE THERMO-new.f90: U_EXC, Pressure

As the adaptations are quite similar, we we will exemplify the generalisation by just

one of them:

!=================================================
SUBROUTINE FT_Gamma_RtoQ(ityp)

!=================================================

USE Global_Variables
IMPLICIT DOUBLE PRECISION (a-h,o-z)
DOUBLE PRECISION :: fr(0:nx),fq(0:nx),fqs1(0:nx),fqc2(0:nx)
DOUBLE PRECISION :: frs(0:nx),fqs(0:nx),frc(0:nx),fqc(0:nx),frs1(0:nx)

87



DOUBLE PRECISION:: frs2(0:nx),fqs2(0:nx),frc1(0:nx),fqc1(0:nx),frc2(0:nx)
!––––––––––––––––––––––––-
if(iDimension .EQ. 3) then
pi=4.D0*ATAN(1.D0)
coef=2.D0*dr*dr*npoint*SQRT(2.D0**(m-1))
Gam0=0.D0

DO i=0,nx
r=i*dr
fr(i)=GammaR(i,ityp)*r
Gam0=Gam0+r*r*GammaR(i,ityp)

ENDDO

CALL RSA(m,fr(0),1,fq(0),1)
GammaQ(0,ityp)=Gam0*4.D0*pi*dr
GammaQ(nx,ityp)=0.D0
DO i=1,nx

GammaQ(i,ityp)=fq(i)*coef/i
ENDDO
end if

if(iDimension .EQ. 5) then
pi=4.D0*ATAN(1.D0)
coef=dr*8.D0*pi**2*SQRT(2.D0**(m-1))
Gam0=0.D0

DO i=0,nx
r=i*dr
frs(i)=GammaR(i,ityp)*r
frc(i)=GammaR(i,ityp)*r**2
Gam0=Gam0+r**4*GammaR(i,ityp)/3.D0

ENDDO

CALL RSA(m,frs(0),1,fqs(0),1)
CALL RCA(m,frc(0),1,fqc(0),1)
GammaQ(0,ityp)=Gam0*8.D0*pi**2*dr
GammaQ(nx,ityp)=0.D0
DO i=1,nx-1
q=i*dq

GammaQ(i,ityp)=fqs(i)*coef/q**3-fqc(i)*coef/q**2
ENDDO
end if
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if(iDimension .EQ. 7) then
pi=4.D0*ATAN(1.D0)
dr=0.01
dq=2.D0*pi/(DBLE(npoint)*dr)
coef=dr*16.D0*pi**3*SQRT(2.D0**(m-1))
Gam0=0.D0

DO i=0,nx
r=i*dr
frs1(i)=GammaR(i,ityp)*3.D0*r
frs2(i)=GammaR(i,ityp)*r**3
frc(i)=GammaR(i,ityp)*3.D0*r**2
Gam0=Gam0+(r**6)*GammaR(i,ityp)/15.D0

ENDDO

CALL RSA(m,frs1(0),1,fqs1(0),1)
CALL RSA(m,frs2(0),1,fqs2(0),1)
CALL RCA(m,frc(0),1,fqc(0),1)
GammaQ(0,ityp)=Gam0*16.D0*pi**3*dr
GammaQ(nx,ityp)=0.D0
DO i=1,nx-1
q=i*dq

GammaQ(i,ityp)=fqs1(i)*coef/q**5-fqs2(i)*coef/q**3-fqc(i)*coef/q**4
ENDDO
end if

!=================================================
!=================================================

END SUBROUTINE FT_Gamma_RtoQ
!=================================================
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