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ABSTRACT

The Nyquist sampling theorem states that in order to be able to completely recover
and reconstruct an analog signal we can use uniform sampling with a rate of twice
the bandwidth of the band-limited signal. Miscellaneous types of natural or man made
signals exists that have large bandwidth but their information content is relatively small.
Following the Nyquist sampling theorem, one has to acquire many samples from the
original signal before compressing techniques are deployed to store or transmit the
reduced version of it. Compressed sensing (CS) tells us that instead of putting so much
effort into sampling the signal with high rate and then discarding a considerable part
of it we can specialize the Nyquist theorem to sparse signals and do a considerably
smaller amount of sampling and afterwards hope to recover the original signal using
sophisticated recovery schemes which is the basic idea of compressed sensing. Among
many applications of compressed sensing, this work narrows down its scope to CS-
based digital imaging, namely single-pixel imaging. Thanks to single-pixel imaging
contrary to conventional cameras, we do not to take a large number of samples from
the underlying scene that equals the large number N of pixels on the camera’s CCD
array. Instead we do M << N linear measurements from the scene and use the image’s
compressibility property to recover the image.

Recently scientists, in an effort to imitate human vision system, have even moved
one step forward and introduced focusing or foveation in images using compressed
sensing techniques which is termed as CS-based foveated imaging. The term foveation
means to introduce variable spatial resolution to the image. By deploying CS-based
fovetaed imaging, one can acquire M << N samples from the scene in a way that after
reconstruction some area of higher importance in an image is displayed with higher
resolution while other parts are displayed with less resolution. Before emergence of
CS-based foveated imaging in digital imaging its primitive mode, namely unfoveated or
uniform CS-based digital imaging, was the center of attention. Unfoveated single-pixel
imaging simply means that all area of image are recovered with the same resolution and
there is no area of higher interest within the image and all parts of the underlying image
are treated equally when it comes to the importance or resolution.

This thesis starts with an introduction to single-pixel imaging. The second chapter
provides background on state of the art approaches to uniform or unfoveated single-
pixel imaging and the underlying sampling and recovery schemes. Chapter 3 represents
foveated single-pixel imaging and underlying sampling and recovery techniques. Fi-
nally chapter 4 presents an implementation of a typical single-pixel imaging in Matlab
which employs several foveated and unfoveated sampling methods as well as underly-
ing recovery techniques. In terms of novelty, it introduces patch-based focusing tech-
nique which falls into the category of foveated single-pixel imaging and conducts mea-
surements to evaluate and compare it’s performance against it’s counterpart, namely
superpixel-based imaging technique. In general the thesis seeks to answer three crit-
ical questions in the area of the single-pixel imaging based on the numerical analysis
and simulations.
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NOTATION

Variables:

? a stands for a random variable.

? a stands for a scalar.

? aaa stands for a random vector.

? aaa stands for a vector.

? AAA stands for a random matrix.

? AAA stands for a matrix.

? AAAi j stands for the entry on the i′th row and j′th column of the matrix AAA.

? AAAT stands for transpose of matrix AAA.
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1 Introduction

We try to turn analog data from our physical world to digital data by sampling in order
to process them. For instance the cameras in our cellphones today sample the light from
objects. Nyquist sampling theorem tells us that, if we sample densely enough, namely
twice the highest frequency in the analog signal we can recover perfectly the original
signal [1]. For instance the digital camera needs to take a number of samples equal to
the number of mega pixels on the CCD array which is a huge number! Thanks to the
contribution of compressed sensing we can make considerably fewer samples from the
image if it is compressible, i.e., it can be represented in a sparse fashion in terms of
some basis. In fact compressed sensing enables us to specialize the Nyquist theorem
in digital imaging and define a new class of sampling or sensing as sub-Nyquist image
acquisition. In fact this is true that in practice many images, specially the ones that do
not have many edges, are sparse in terms of a DCT 1 and wavelet basis.

The Figure below depicts a basic digital camera based on single-pixel imaging
developed by Rice university.

Fig. 1.1. Rice single-pixel camera [2].

The proposed design is composed of a digital micromirror device (DMD), lenses and
an exotic single photon detector. First, the light from the objects is projected on a DMD
array which comprises N tiny mirrors each of them representing a single pixel. Each of
these mirrors can be individually oriented to either direct the light to the secondary lens
located above the DMD array or away from the secondary lens. As a result some of the
light is diverted away from the second lens and some of it is directed towards it. The
strength of the resulting light, which is the superposition of the lights directed toward
the secondary lens, is sensed by a photodectector and digitized for further processing.
This can be interpreted as the inner product of the light from the object and the pattern
from the DMD array. The collected light by the second lens is then sensed by a single
photo detector and digitized and saved or transmitted to the receiver to be processed
and recovered.

After a series of M << N inner products are acquired, digital signal processing can
recover the image using compressed sensing recovery techniques. Since the random

1Discrete Cosine Transform
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pattern on the DMD array is changed for each inner product operation, we have the
inner product of the image with a series of independent varying patterns and this helps
us to recover the image again. The single-pixel imaging combines both the sampling
and compression stages in one step and we are not confronted any more with huge pile
of sampling data to process or store.

Among many advantages of single-pixel imaging are:

? The measurement and transmission bandwidths are reduced considerably. This
means that the sensor can simply sample the source randomly and send it wire-
lessly to the receiver side which has to do computationally intensive task of im-
age reconstruction. Consequently, this sensing technique is considerably more
demanding on the receiver side than the transmitter side and is suitable for ap-
plications in which the sensor should not pose high demand on complexity and
battery usage which is usually the case.

? The size, complexity and cost of resulting camera is reduced.

? The quantum efficiency of single photodetector is higher than the pixel sensors
on conventional CCD or CMOS sampling arrays.

? A single photo detector receives on average more photons in comparison with
multi-pixel sensors which leads to higher design immunity against noise.

2 Unfoveated single-pixel imaging

An unfoveated CS-based imaging system is based on uniform compressed sensing and
recovery of the images. In other words there is no area of higher resolution or detail
in the image:all areas are equally important and recovered with the same resolution.
This chapter starts with some basic mathematical tools which are needed to explain
the dynamics of CS-based imaging. Then it will go through the CS-based sampling in
more detail and finally sheds light on some common CS-based recovery methods.

2.1 Vector spaces and basic notation

Throughout this work we will view our signals as vectors in N dimensional normed
euclidean vector space. The definition for the Lp norm is:

‖x‖p = p

√
∞

∑
n=1
|x|p p = 1,2, ...,N (1)

‖x‖p = max|xi| p = ∞ (2)

As we already know an indispensable part of any linear vector space is a set Ψ of
independent vectors called basis vectors Ψi. Let’s consider each Ψi as column vector
of size N × 1. Stacking all these column basis vectors vertically we get the N ×N
basis matrix or dictionary Ψ . Any vector x in such a space can be defined as linear
combination of the basis vectors, i.e.,
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xxx =
∞

∑
n=1

si ∗ΨΨΨi or xxx =ΨΨΨ∗sss (3)

In the world of digital imaging DCT, DFT and DWT bases are typically used. They are
good choices because many images tend to be sparse in terms of these basis functions.
In what follows a brief review is given on some of these basis functions:

2.1.1 Discrete Cosine Transform (DCT)

The DCT transforms a signal from a spatial representation into a frequency represen-
tation. It uses only real valued cosine functions.

sk = αk

N−1

∑
n=0

xncos(
π

N
(n+

1
2
)k) k = 0, 1, ..., N - 1 (4)

xn =
N−1

∑
0

αkskcos(
π

N
(n+

1
2
)k) k = 0, 1, ..., N - 1 (5)

αk =


√

1
N k = 0√
2
N k 6= 0

(6)

The DCT transform and its inverse in matrix notation:

sssN =DDD[N×N]×xxx[N]

xxxN =DDDT
[N×N]×sss[N]

(7)

The entries of DCT matrix are calculated as follows:

d0n =
1√
NI

, dkn =
2√
NI
× cos(

k(2n+1)π
2NI

) , k = 1,2, ...,N (8)

For instance, a 4×4 DCT matrix reads:
d00 d01 d02 d03
d10 d11 d12 d13
d20 d21 d22 d23
d30 d31 d32 d33


2.1.2 Discrete Fourier Transform (DFT)

Like the DCT the DFT also maps the signal or image from the time or spacial domain
to the frequency domain. In contrast with the DCT in which the signal is represented
by a series of harmonically related real-valued basis functions or basis vectors, The
DFT exploits a series of harmonically related exponential functions or basis vectors to
represent the signal. The DFT and inverse DFT are calculated using:
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sk =
N−1

∑
n=0

xne− j2π
kl
N k, l = 0, 1, ..., N - 1 (9)

xn =
1
N

N−1

∑
0

ske+ j2π
kl
N k, l = 0, 1, ..., N-1 (10)

2.1.3 Discrete Wavelet Transform (DWT)

DFT and DCT can not represent abrupt changes in signals accurately in general. Be-
cause they tend to represent data as a sum of sine waves which oscillate forever and
are not localized in time or space. As a result in order to represent the analyze signals
that exhibit abrupt changes like images we need to use another class of basis functions
that are well localized in time and frequency. A wavelet is a zero mean signal which
starts from zero and after some wave like behavior again dies out: as a result it’s well
localized in time and frequency. In DWT we aim at decomposing the original signal
into high and low frequency parts using orthogonal basis of functions which are de-
rived from an original function called the mother wavelet. There are several types of
the mother wavelets available. Depending on application and characteristic of the un-
derlying original signal a suitable mother wavelet, which represents the original signal
better than other classes of wavelets, is chosen.

JPEG2000 deploys the discrete wavelet transform for image compression [3].

Where the child wavelet ψ j,n is a scaled and shifted version of the original or mother
wavelet ψ:

ψ j,n(t) =
√

2− jψ(2− jt−n), (11)

Now we have that W0 = span{ψ(t−n),n ∈ Z} and the shifted versions have the prop-
erty 〈ψ(0,k),ψ(0,l)〉 = δk,l . In other words the shifted versions of the scaling function
are orthonormal and these basis functions together span the space W0.

The φ j,n is a scaled and shifted version of the scaling function φ :

φ j,n(t) =
√

2− j0φ(2− j0t−n), (12)

Now we have that V0 = span{φ0,n,n ∈ Z} and the shifted versions have the property
〈φ(0,k),φ(0,l)〉 = δk,l . In other words the shifted versions of the scaling function are
orthonormal and these basis functions together span V0 space. The scaling function has
also the property that:

...V2 ⊂V1 ⊂V0 ⊂V−1... (13)

Now there is an interesting property that Vj ∪Wj =Vj−1 In other words the orthogonal
complement sets Vj and Wj join together to give birth to the new Vj−1 space which
provides a finer resolution of the signal.

The approximation of the function ’f’ at scale l takes the form:
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f−1 = ∑c(−1)
n φ−1,n =

∞

∑
n=1
〈 f ,φ0,n〉φ0,n︸ ︷︷ ︸

∑
∞
n=1〈 f ,φ1,n〉φ1,n+∑

∞
n=1〈 f ,ψ1,n〉ψ1,n

+
∞

∑
n=1
〈 f ,ψ0,n〉ψ0,n (14)

In two dimension, the wavelets are:

ψ
d
j,m,n(x,y) = ψ j,m(x)ψ j,n(y) (15)

ψ
v
j,m,n(x,y) = ψ j,m(x)φ j,n(y) (16)

ψ
h
j,m,n(x,y) = φ j,m(x)ψ j,n(y), (17)

Where the scaling function is:

Φ j,m,n(x,y) = φ j,m(x)ψ j,n(y) (18)

The Figure 2.1 demonstrates the Original image and its Daubechies wavelet transform[4].

(a) (b)

Fig. 2.1. a) Lena’s image. b) Corresponding Daubechies Wavelet coefficients [4].

The Figure 2.1b has some interesting properties. In fact {
∣∣∣〈I,ψk

j,m,n〉
∣∣∣} j,m,n k ∈ {v,h,d}

characterizes the coefficients shown in Fig 2.1b. The buttom right square carries the
diagonal coefficients for the matrix {ψd

0,m,n}m,n and shows detail in diagonal direction.

The buttom left square carries the horizontal coefficients for the matrix {ψh
0,m,n}m,n

and shows detail in horizontal direction The top right square carries the horizontal
coefficients for the matrix {ψv

0,m,n}m,n and shows detain in vertical dimension.

As we move deep into higher resolution space i.e. in Vj, j scale becomes smaller
and smaller, our higher scale coefficients are located reside in the left and top most box



Compressive sensing measurement 12

which is only function of the φ function which resembles the low-pass version of the
image and carries most of the energy and can be accepted as a coarse approximation of
the whole image.

2.2 Compressive sensing measurement

Normally if we want to follow transform coding (Nyquist rate sampling) we need to
get as many as N samples from the original signal x and calculate the coefficients using
s[i] = 〈x,ψn〉 where {ψn}N

n=1 represents our basis vectors. As we already explained all
of these coefficients are quite small except some small number of them. The encoder
searches for K largest coefficients and encodes their respective location and magnitude
and forgets about the rest of coefficients: that’s why it can be regarded as lossy com-
pression. Here the encoder must go through the cumbersome task of computing all N
sample values even though it will only keep K of them.

A better approach is to assume that the original signal is k-sparse itself or in terms
of some basis and instead of putting so much effort to get N sample points which can
be quite a big value, get directly m linear measurements from the signal which brings
it directly to compressed form. This simplifies sampling and compression in one step
which relaxes signal processing and storage requirements at the sensor or transmitter.
In other words the sensing can be described in terms of inner product of our original
signal x with a series of M patterns {φm}M

m=1 as in y[i] = 〈x,φm〉 and stack the result ym
vertically into the vector y. If we stack each of these test vectors horizontally we get
the matrix Φ which is also know as measurement or sensing matrix. Of course we add
noise vector www to model the noise in our measurement system. This operation in matrix
form is:

yyy = ΦΦΦ[M×N]×xxx[N] = ΦΦΦ[M×N]× ΨΨΨ[N×N]×sss[N]︸ ︷︷ ︸
basis expansion of x

+www[M] (19)

Thus, in compress sensing we multiply our original signal (which lives in the RN

space) with a sensing matrix ,whose number of rows is much smaller than those of
the columns, which reduces the number of rows in the sampled signal and reduces the
dimension from N to K which is the dimension in which the sample vector yyy lives. As
a result of this dimensionality reduction also less noise is collected in our measurement
which is one of the benefits of CS-based sampling.
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In fact this operation serves as a dimensionality reduction. Matrix ΘΘΘ , the product of the
sensing matrix and the basis or dictionary, is again a fat and short matrix as illustrated
in the Figure 2.2.

Fig. 2.2. a) Compressed sensing of a compressible signal or image. b) Resulting
sensing matrix ΘΘΘ defined as product of the original sensing matrix and the basis matrix
[2].

Since the number of rows are fewer than the number of columns we are confronted with
an underdetermined system of linear equations which means that it can have infinitely
many solutions. Apparently we are looking for a unique solution. For instance we do
not want the compressed sensing of two images be mapped to the same sampling vector
yyy. If this happens, how can we hope that we recover the result back to two original
images? The key here is that the vector sss is k-sparse, as a result this original fat and
short matrix turns into a skinny and tall matrix which means we are not restricted with
the underdetermined system anymore and we can exactly recover the original k-sparse
signal. In other words if we have two k sparse vectors sss

′
and sss

′′
:

ΦΦΦ×sss
′ 6= ΦΦΦ×sss

′′

ΦΦΦ×
(

sss
′ −sss

′′
)
6= 0

(20)

The difference of any two sparse vectors must not lie in null space of matrix ΦΦΦ and the
distance of sparse vectors are preserved through the transfer using matrix ΦΦΦ. Hence
if we pick randomly any 2k of vectors for matrix ΦΦΦ they must be independent. This
means the column space of the matrix must be at least of dimension 2k or twice the
sparsity level. Consequently, we should be careful while designing the compressed
sensing matrix and not any kind of matrix can be used in this respect. In general,
the sensing matrix should satisfy the Restricted Isometry Property (RIP) of order 2k.
The number of linear measurements M from the original signal which is equal to the
number of rows of the measurement matrix then is calculated as [5]:

M ≥ 2k
10
× log(

N
k
) (21)
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As is evident from the Figure 2.2b, the final sensing matrix is the product of two ma-
trices φ and Psi. As far as the matrix Φ is i.i.d Gaussian and the columns of the matrix
ψ or our basis vectors are orthogonal, the resulting sensing matrix Φ×Ψ is again i.i.d
Gaussian still satisfying the RIP criteria.

2.3 Images and DCT basis expansion

Now let’s consider the analysis of an image as a two dimensional signal in the DCT
domain. As I already discussed, for many images (like natural images) we have a lot
of smooth areas and few edges and consequently can be really sparsely represented in
terms of the DCT basis. The JPEG standard for instance makes use of a DCT basis to
do image compression. It does so by expanding the image in terms of the DCT basis
and keeping those DCT coefficients with large magnitudes and discarding all others.
This can bring about a compression rate of 3%.

The Figure 2.3 depicts the typical DCT coefficients for an image.

Fig. 2.3. Top left: Original image. Top right. Bottom left: DCT coefficients in space
and frequency domains. Bottom right: DCT coefficients in the frequency domain [6].

As one can observe from the Figure 2.3, at the bottom right, the majority of the DCT
coefficients is zero except some in upper left hand corner of the DCT coefficient ma-
trix. This as well indicates that much of energy for the image is concentrated in low
frequencies.

Now let’s assume that a 4 × 4 matrix XXX represents our image in gray scale format:

XXX =


x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44
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First we need to form the N × N DCT matrix DDD:

DDD =


d00 d01 d02 d03
d10 d11 d12 d13
d20 d21 d22 d23
d30 d31 d32 d33


whose entries are calculated as follows:

d0n =
1√
NI

n = 0,1,2, ...,N (22)

dkn =
2√
NI
× cos(

k(2n+1)π
2NI

)n = 0,1,2, ...,N (23)

Then the DCT coefficients are calculated as:

SSS = D×XXX×DT (24)

The inverse DCT transform reads:

XXX = DT ×SSS×D (25)

Alternatively the vectorized version of the coefficient matrix can be calculated as:

vec(SSS) = Dkron× vec(XXX) (26)
Dkron = D⊗D (27)

vec(SSS) =



s00
s10
s20
s30
s01
s11
s21
s31
s02
s12
s22
s32
s03
s13
s23
s33



=


d00D d01D d02D d03D
d10D d11D d12D d13D
d20D d21D d22D d23D
d30D d31D d32D d33D


︸ ︷︷ ︸

Dkron



x00
x10
x20
x30
x01
x11
x21
x31
x02
x12
x22
x32
x03
x13
x23
x33



(28)

As can be seen from next sections, we use the vectorized version of the DCT coef-
ficient matrix CCC to be applied to the CS-based sensing or measurement system.
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2.4 Properties of the sensing matrix

Sensing matrices generally fall into two categories:

? Random matrices:

These matrices are generated using identical and independent distributions (i.i.d)
such as Gaussian and Bernoulli. Generally these are easy to construct and the
probability of reconstruction is high when these matrices are used as sensing
matrix to sample from the original signal. However they need a lot of storage
space and the recovery problem becomes difficult when the original signal or
image is considerably large. It’s worthwhile to mention that because of their
random nature no specific algorithm is there to speed up matrix multiplication.

? Deterministic matrices:

Usually the signal reconstruction becomes less complex when deterministic ma-
trices are used and also less storage space is needed.

2.5 Compressed sensing recovery

Now let’s recall our compressive sensing model:

y = ΦΦΦ[M×N]×xxx[N] = ΦΦΦ[M×N]× ΨΨΨ[N×N]×sss[N]︸ ︷︷ ︸
basis expansion of x

+www[M] (29)

Where ΘΘΘ is the product of the measurement or sensing matrix ΦΦΦ with sampling ratio
R = M

N and our sparsifying basis ΨΨΨ. xxx is the sparse or compressible signal that we
would like to reconstruct, y is the compressed sensing observation vector and white
Gaussian vector with i.i.d entries wi ∼N (0,σ2

w).

In contrast with traditional sampling methods, where the linear construction formulas
can be used to recover the original signal, in compressive sensing the task of signal re-
covery is highly nonlinear and more complex in general. In this section several classes
of signal recovery are studied.

2.5.1 L1 minimization

Historically the first recovery method is L1 minimization also known as Basis Pursuit
(BP). It has the best sparsity-undersampling trade-off.

If we forget about the noise we need to solve following optimization problem:

ŝss = argmin
sss
‖sss‖0 s.t. yyy = ΦΦΦ×ΨΨΨ︸ ︷︷ ︸

ΘΘΘ

×sss (30)

In the presence of the noise this formula becomes:

ŝss = argmin
s
‖sss‖0 s.t. ‖yyy−ΘΘΘsss‖2 ≤ ε (31)
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Unfortunately the L0 minimization problems above is NP hard and there is no known
algorithm to solve this problem. However it has been shown [5] that under some con-
straints problem 30 can be relaxed a bit and reformulated as:

ŝss = argmin
sss
‖sss‖1 s.t. yyy = ΘΘΘ×sss (32)

If we want to take into account the effect of additive noise then the formula becomes:

ŝss = argmin
s
‖sss‖1 s.t. ‖yyy−ΘΘΘsss‖ ≤ ε (33)

This is a convex optimization problem for which interesting algorithms and linear pro-
gramming solvers (LP) exist [7].

As is evident from above formula, the L0 norm has been replaced by L1 norm and still
the two problems have the same unique solution provided that the measurement matrix
satisfies some criteria and also the original signal is sparse.

The Figure 2.4 demonstrates the penalization that L0 and L1 norms pose.

Fig. 2.4. Lp norm curves. As p tends to zero, the norm approaches constant value one
for non-zero values except at the center which is zero [8].

As we can see as p approaches zero the Lp norm starts to pose no penalty for entries
equal to zero. In contrast it penalizes other non-zero entries with a constant value irre-
spective of their sign and magnitude. L1 norm treats the penalization linearly. It poses
no penalty for the zero valued entries of the vector. But in contrast with the L0 norm
it penalizes non-zero values linearly dependent on the value of the entry. Apparently
L0 and L1 norms treat the vectors with a minor difference. But the question is how the
relaxed version of the recovery problem also leads to the same solution as the original
problem. Under some circumstances (level of sparsity and the properties of measure-
ment matrix (ΘΘΘ) these two solutions are exactly the same [9]. The relation between the
equations has attracted a lot of researches and papers [10, 11, 12].

One drawback for L1 optimization methods is that when it comes to large scale appli-
cations they become inefficient and expensive.
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2.5.2 Least Absolute Shrinkage and Selection Operator (LASSO) using the ADMM
method

The Alternating Direction Method of Multipliers (ADMM) is actually a method which
breaks the main convex optimization problem into smaller and easier to solve optimiza-
tion problems [13, 14].

In machine learning and machine vision we are frequently confronted with convex
or L1 optimization of the form:

ŝ = argmin
sss

(
1
2
‖yyy−ΘΘΘ×sss‖2

2 + γ‖sss‖1) (34)

We can simply add a dummy variable ppp into the formula and rewrite it as

ŝss = argmin
sss,ppp
‖yyy−ΘΘΘ×sss‖2

2 + γ‖ppp‖1 +‖sss−ppp‖2
2 s.t. sss = ppp (35)

The augmented Lagrangian of the above statement is:

L(sss,ppp,rrr) =‖yyy−ΘΘΘ×sss‖2
2 + γ‖ppp‖1 +

ρ

2
‖sss−ppp‖2

2 + vec(RRR)T vec(sss−ppp) (36)

The algorithm has three main steps:

At first it minimizes the Lagrangian w.r.t sss as a result the term ‖ppp‖1 is seen as
constant and consequently the problem turns into a simple least squares regression
problem. At the second iteration we aim at minimizing w.r.t ppp then term ‖yyy−ΘΘΘsss‖2

2
has no effect and the minimization can be done easily. The final step updates the
Lagrangian multiplier matrix RRR.

sss(t+1) = argmin
sss

L(sss,pppt ,RRRt) (37)

ppp(t+1) = argmin
ppp

L(sss(t+1),ppp,RRRt) (38)

RRR(t+1) =RRRt +ρ(sss−ppp) (39)

2.5.3 Greedy methods

Greedy methods do not use the L1 relaxation method and try to solve directly the for-
mula below:

ŝss = argmin
s
‖sss‖0 s.t. ‖yyy−ΘΘΘsss‖2 ≤ ε (40)

Unlike the L1 minimization method, greedy methods are less computationally com-
plex and therefore considerably faster especially for large scale applications and some
variants of the greedy method provide accuracy better than L1 minimization.

Among prominent greedy approaches are: Matching pursuit (MP) [15], orthogonal
matching pursuit (OMP) [16], stagewise OMP (StOMP) [17] and compressive sam-
pling matching pursuit (CoSaMP) [18].
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The most basic approach is the matching pursuit (MP). The base idea in the match-
ing pursuit is to find first the most important column vector or atom in the sensing
matrix Θ or dictionary . We do so by traveling through the dictionary and choose the
most important one that helps to minimize the least square error‖yyy−ΘΘΘsss‖2. This trans-
lates into finding the atom which is most parallel to the residual yyy−ΘΘΘ×sss or in other
words the atom whose inner product with the residual produces larger absolute value.
Now as the name greedy implies we keep this selected atom and check whether the re-
sulting least square error is below the threshold ε or not. If not we travel again through
dictionary and find the second most important atom that with help of first atom mini-
mizes the least square error. If the error is below some threshold then we quit but if not
we keep the first two most important atoms and travel again through other columns of
dictionary to choose the third atom and so on.

The procedure for MP algorithm is as follows:

Initialization phase:

ŝss(0) = 000[N×1]

rrr(0) = yyy

I(0) = /0

Normal iterations:

i∗t ∈ argmax
i

∣∣∣〈rrr(t−1),ΘΘΘi〉
∣∣∣

I(t) = I(t−1)∪{i∗t }
ŝsst = 〈rrrt , i∗t 〉
rrrt = yyy−ΘΘΘ× ŝsst

iterations continue until:
∥∥∥ŝss(t+1)− ŝss(t)

∥∥∥
2
< ε

∥∥∥ŝss(t)
∥∥∥

2
with ε < 10−4 (trade-off iterations

vs. accuracy).

As is evident from the algorithm above, the initial estimate of the signal is set to zero
and the initial residual or error is set equal to yyy. As the iterations evolve, more and
more atoms are added to the active set I.

Orthogonal matching pursuit (OMP) like its predecessor involves many inner prod-
ucts and tries to minimize the residual with help of most important atoms. But it im-
proves the MP algorithm by updating the coefficients extracted so far by projecting the
signal yyy into the subspace of all already chosen atoms at each iteration which produces
indeed more accurate results i.e. sparsest vectors sss which meets minimum least square
criteria.

The procedure for OMP algorithm is as follows [19]:

Initialization phase:

ŝss(0) = 000[N×1]

rrr(0) = yyy

I(0) = /0

Normal iterations:

i∗t ∈ argmax
i

∣∣∣〈rt−1,ΘΘΘi〉
∣∣∣
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It = It−1∪{i∗t }
ŝsst = (ΘΘΘ∗It ×ΘΘΘIt )

−1×ΘΘΘ
∗
It ×yyy

rrrt = yyy−ΘΘΘ× ŝsst

iterations continue until:
∥∥∥ŝss(t+1)− ŝss(t)

∥∥∥
2
< ε

∥∥∥ŝss(t)
∥∥∥

2
with ε < 10−4 (trade-off iterations

vs. accuracy).

As one can observe, the OMP algorithm projects the observation vector yyy on the sub-
space of collected atoms to get the new approximation of the sparse vector sss. This is in
fact done by calculating the left pseudo inverse of the matrix ΘΘΘ and multiply it from the
right side by vector yyy. Despite OMP operation involves matrix inversion to compute
the pseudo norm, it’s still faster than L1 minimization method.

2.5.4 Iterative thresholding

As we already understood convex optimization problem becomes inefficient and ex-
pensive in large scale applications. As an alternative iterative thresholding can be used
to improve the speed as it’s easy and requires less storage. However this technique
exhibits a worse sparsity-undersampling trade-off than convex optimization. The steps
in iterative thresholding read:

sss(t+1) = η(sss(t)+θθθ
Tzzz(t);λ

(t)),

z(t)z(t)z(t) = yyy−ΘΘΘTsss(t)
(41)

Here s(t) is current estimate of the signal and zzz(t) is current estimate of residual. 〈uuu〉=
∑

N
1

uuu(i)
N where uuu = (uuu(1)uuu(2)...uuu(N)).

To have a closer look:

Initialization phase:

ŝss(0) = 000[N×1]

zzz(0) = yyy

Normal iterations:

uuu(t−1) = ŝss(t−1)+ΘΘΘ
Tzzz(t−1)

ŝss(t) = η(uuu(t−1);τ)

zzz(t) = yyy−ΘΘΘŝss(t)

iterations continue until:
∥∥∥ŝss(t+1)− ŝss(t)

∥∥∥
2
< ε

∥∥∥ŝss(t)
∥∥∥

2
with ε < 10−4 (trade-off iterations

vs. accuracy).

At first step it calculates the new approximation for the solution. At second step it
calculates the current residual or error in a ping pong manner. The value for τ which is
used for thresholding, needs to be chosen by trial and error which is an disadvantage of
this method. We will later see that more sophisticated algorithms use adaptive schemes
to find optimal thresholding values.
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The function η can be any function. Actually this function plays a big role in de-
termining the convergence of solution. It is a suitable denoiser to estimate the sparse
signal in presence of the additive Gaussian noise. If no function is used the solution
converges to least L2 norm and not the least L1 norm which is not acceptable in our
compressed sensing framework! The use of soft thresholding induces L1 norm mini-
mization.

Fig. 2.5. Soft thresholding function [20].

η(u;τ) =


u− τ u > τ

0 −τ ≤ u≤ τ

u+ τ u <−τ

In this case the algorithm is called Iterative Soft Thresholding (IST) [21]. If hard
thresholding function is chosen for η as:

Fig. 2.6. Hard thresholding function [20].

H(u;τ) =


u u > τ

0 −τ ≤ u≤ τ

u u <−τ

Then the algorithm is called Iterative Hard Thresholding (IHT) [22].
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2.5.5 Approximate Message Passing (AMP)

In [23, 24, 25, 26] it is proposed that if the residual calculation step in the above men-
tioned iterative thresholding is modified by adding a term called Onsager reaction term
to the residual calculation step then we get the AMP algorithm. This idea comes from
the belief propagation in graphical models and introduced byDonoho and co-authors
in [25]. This way we have the benefit of increased speed of the iterative thresholding
and at the same time the improved sparsity-undersampling trade-off. Extensive numer-
ical and Monte Carlo simulations show that in fact AMP matches those results of the
convex optimization or linear programming (LP) reconstruction techniques [19].

The original paper has used the soft thresholding function for function η which acts
as a scalar denoiser for the matched filter output uuu(i−1). It enforces a sparse solution
and assumes that the signal is sparse but no specific knowledge about the probabil-
ity distribution of the source is available. If the signal prior is also available we use
the Bayesian Approximate Message Passing (BAMP) algorithm which delivers more
accurate result.

The AMP algorithm reads [25]:

sss(t+1) = η(sss(t)+θθθ
Tzzz(t);λ

(t)), (42)

z(t)z(t)z(t) = yyy−ΘΘΘTsss(t)+
1
γ

zzz(t−1) < η
′(ΘΘΘTzzz(t−1)+sss(t−1))>︸ ︷︷ ︸
Onsager term

(43)

To have a closer look into algorithm [6]:

initialization phase:

ŝss(0) = 0[N×1] Signal vector

zzz(0) = yyy

c(0) = 1
M‖zzz

(0)‖2
2

normal iterations:
For i = 1,2,3, ...

uuu(t−1) = ŝss(t−1)+ΘΘΘ
Tzzz(t−1) Substitute measurements

ŝss(t) = η(uuu(t−1);
√

βc(t−1))

zzz(t) = yyy−ΘΘΘŝss(t)+zzz(t−1) 1
M

∥∥∥ŝss(t)
∥∥∥

0
Residual computation

ĉcc(t) = 1
M‖zzz

(t)‖2
2

iterations continue until:
∥∥∥ŝss(t+1)− ŝss(t)

∥∥∥
2
< ε

∥∥∥ŝss(t)
∥∥∥

2
with ε < 10−4 (trade-off iterations

vs. accuracy).

Intuitively, what the AMP algorithm does is to successively denoise the output of
ŝss(t−1)+ΘΘΘ

Tzzz(i−1) at each iteration step and tries to minimize the MSE at each iteration
step until it falls below a threshold when algorithm finishes. In other words, we observe
a white noise (w j) corrupted signal u(i−1)

j = s( j−1)+ΘΘΘ
T z(i−1) at each iteration that the
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noise variance diminishes little by little as the iterations go on [19, 25, 27]. In fact the
residual vector zzz(t) can be well modeled as an i.i.d additive white gaussian vector [23].
It’s well understood that the residual of the AMP shows a Gaussian distribution. This
is not the case with the Iterative Soft Thresholding (IST) discussed earlier. In many
situations in compressed sensing we are not aware of the probability distribution of the
source under sample. Then we have to rely on the AMP which uses soft thresholding
as a general guideline for all signals that are sparse in some base. If we already have
the knowledge of the signal prior, then we rely on BAMP method which is described
next. One disadvantage of AMP is that the value for β needs to be found by trial and
error which makes it less efficient than BAMP. It should be noted that the value for β

needs to be chosen by trial and error which is a disadvantage of this method.

2.5.6 Bayesian Approximate Message Passing (BAMP)

Provided that the prior distribution of the original signal is known, we can use this
knowledge to specialize the AMP algorithm to BAMP and take advantage of MMSE
denoiser which can adapt itself to the statistics of each of the entries of the signal vector
individually. This technique was first proposed in [28] which achieves more accuracy
in the solution in comparison with its AMP counterpart.

As is evident from the Figure 2.7, there is a link between the frequency content of
the image and its corresponding DCT coefficient matrix. BAMP method can exploit
this relation to extract distribution of the entries in DCT coefficient matrix. This leads
to a more accurate solution in comparison with AMP which ignores the signal prior.

Fig. 2.7. Different patterns and their frequency in images yield specific distribution in
their corresponding DCT coefficient matrix [6].
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The algorithm for BAMP is again like AMP with a difference that the denoiser function
F is no more universally chosen as soft thresholding function and is dependent on signal
prior. The BAMP algorithm proceeds in iterative fashion according to [25]:

sss(t+1) = F(sss(t)+θθθ
Tzzz(t);λ

(t)),

zzz(t) = yyy−ΘΘΘTsss(t)+
1
γ

zzz(t−1) < F ′(ΘΘΘTzzz(t−1)+sss(t−1))>︸ ︷︷ ︸
Onsager term

(44)

Let’s have a closer look to the algorithm [6]:

Initialization phase:

ŝss(0) = 000[N×1]

zzz(0) = yyy

ccc(0) = 1
M‖zzz

(0)‖2
2

Normal iterations:

uuu(t−1) = ŝss(t−1)+ΘΘΘ
Tzzz(t−1)

ŝss(t) = F(uuu(t−1);c(t−1))

z(t) = yyy−ΘΘΘŝss(t)+zzz(t−1) 1
M ∑

N
j=1 F ′(u(i−1)

j ;c(t−1))

ĉ(t) = 1
M‖zzz

(t)‖2
2

iterations continue until:
∥∥∥ŝss(t+1)− ŝss(t)

∥∥∥
2
< ε

∥∥∥ŝss(t)
∥∥∥

2
with ε < 10−4 (trade-off iterations

vs. accuracy).

It’s worthwhile to mention that intuitively BAMP at each iteration calculates the white
Gaussian noise contaminated version of the signal which will be used in next step to
calculate the new value for our solution. So it’s a signal plus noise model. As a result
of the iterations the variance of the noise (noise power) decreases below a threshold
value when the iteration ends and the final value for the signal is the solution to the
problem. Here we are not dependent on the sparsity of the signal.

The denoising function F is calculated using following formula [6]:

Fj(u j;c) = Ex j(X j|U j = u j) (45)

F ′j (u j;c) =
d

du j
F(u j;c) (46)

F ′j (u j;c) =
d

du j
F(u j;c) (47)

pS j |U j(s j|u j;c) =
pS j |U j(s j|u j;c)

pU j(u j;c)
=

pU j |S j(u j|s j;c)pS j(s j)

pU j(u j;c)
j = 1,2, ...,N (48)

Here is what differentiate the BAMP from the AMP. In fact
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pU j |S j(u j|s j;c) =
1√
2πc

exp(
−1
2c

(s j−u j)
2) (49)

Let’s consider the typical trend in the DCT coefficients of an image which can be
observed in the Figure 2.8:

Fig. 2.8. Top curve: DCT coefficients of an image. Bottom curves: zoomed version of
the top curve [6].

We can assume that coefficients follow a Gaussian distribution with mean of zero and
variance σ2

j is contaminated itself in white Gaussian noise wi ∼N (0,c). In this case
the denoiser adapted to this signal model is calculated as [6]:

ŝ j = Fj(u j;c) = Es j(S j|U j = u j) =
σ2

j

σ2
j + c

u j

F ′j (u j;c) =
d

du j
Fj(u j;c) =

σ2
j

σ2
j + c

(50)
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The Figure 2.9 helps us compare the efficiency level of AMP and BAMP.

(a) (b)

Fig. 2.9. a) The image on bottom left assumes that all the N entries of DCT coefficients
follow the same Bernoulli-Gauss prior. The image on bottom left assumes that the DCT
coefficients are point-wise Gaussian with different variance value for each entry in the
DCT coefficinet matrix which is estimated from the data. As eis evident from images,
point-wise Gaussian assumtion shows superior performance in comparison with its
Bernoulli-Gauss counterpart. b) The recovered DCT coefficients for the image using
BAMP with point-wise Gaussian assumption shows more accuracy in comparison with
Bernoulli-Gauss assumption BAMP and also AMP [6].

As is evident from the figure, the DCT coefficients of the image are more accurately re-
covered when BAMP (point-wise) has been used. Consequently the BAMP recovered
image has shows more detail and despite the great compression rate of .2, one can read
the number on the balls! In fact this is immediately visible in the DCT coefficients.
As discussed earlier, most of the energy in DCT coefficient matrix is concentrated in
top left corner of the matrix. A glimpse on the DCT coefficient matrix recovered by
Bernoulli-Gauss BAMP or AMP techniques reveals some white dots or larger values
dispersed all over the recovered DCT coefficient matrix which should not be the case.
The point-wise Gaussian BAMP yields a DCT coefficient matrix which is a better
match to the original DCT coefficient matrix.

3 Foveated single-pixel imaging

We already noticed that the CS-based imaging system reduces considerably the sam-
pling and also transmission bandwidth. In fact thanks to some sophisticated recovery
schemes we can recover the images using a number of measurements much smaller
than the number of pixels in the image which can be termed as sub-Nyquist sampling.
Recently scientists have claimed that we can improve the compression rate even further
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by mimicking the human visual system.

To come to a better understanding of what foveation single-pixel imaging means, I
start with a figure which shows the anatomy of the human vision system:

Fig. 3.1. Human vision system and foveation [30].

The light from the scene is passed by the lens into the fovea area. The fovea area has
highest density of light sensors, namely photoreceptors. The density of these light sen-
sors decreases exponentially towards the periphery with increasing eccentricity. This
simply means that our visual system samples the area around the fixation point or center
of our gaze with much higher resolution and the surrounding of the fixation point with
much smaller resolution [29][30]. This motivated the scientists to mimic the human
vision system in signal processing to obtain much higher resolution and consequently
less recovery error in some area of interest in an image or the underlying scene while
simultaneously allowing higher an higher recovery error or less resolution in rest of
the areas. This way we achieve much higher compression ratios while maintaining the
required resolution or detailed vision in the areas of interest. Now let’s have a look
on some technique employed in recent years to do foveation imaging which will be
classified into two categories.

3.1 Superpixel method

Recall from previous section that in order to do CS-based sensing uniformly from the
scene we employed a set of uniform random pixel grids which provided spatially con-
stant resolution over the image. One way to mimic foveation is to use spatially variant
pixel sizes or cells by combing or grouping the neighboring pixels together. Here we
use cell with smaller size in the foveated region and use cells or superpixels with larger
and larger size as we get distance from the foveated region into the margins of the
vision field.
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Figure 3.2 depicts a log map distribution of super pixels.

Fig. 3.2. Logmap superpixel representation [30].

One problem with above mentioned superpixel approach is that it is indeed difficult to
realize. A simpler technique is to use rectangular shaped cells. This way it’s easier to
implement.

Fig. 3.3. Superpixel using concentric rectangular rings [31].

The superpixel technique is employed during the sampling or sensing of the image and
the recovery process can be left as is. In other words the employed recovery technique
is blind to the distribution of the pixels and their sizes and treats the sampled image as
if uniform sampling pattern with constant spatial resolution had been employed to do
sampling.
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First row in the Figure 3.4 depicts the uniform pixel grid and the random patterns used
for CS-based uniform sampling from the original image. Second row exploits nonuni-
form pixel grid and as a result, nonuniform random patterns for CS-based nonuniform
or foveated sampling from the image. As is evident from the image, nonuniform pixel
grid uses the superpixel ideology. The pixels located in the center have small size which
translates into higher resolution for the central part of the image. The surrounding area
represents a logmap superpixel distribution.

Fig. 3.4. a) Uniform pixel grid. b) Random patterns based on Hadamard basis. c)
Recovered image of a cat. d) Nonuniform pixel grid e) Nonuniform random patterns.
f) Recovered image of cat as a result of foveated imaging [32].

As one can be seen from the figure above, as a result of smaller sized super pixels in
the center of the image, one can see more details in the center than the margins.

3.2 Foveation operator or filtering method

In previous section foveated imaging using superpixel method was discussed. This
section concentrates on other foveated imaging techniques which exploit filtering and
foveation operator to introduce focusing in an image. In what follows one can find
some details regarding these techniques.

3.2.1 Linear shift variant foveation filter

The first approach uses a bank of low-pass filters each of which determines the pixel
value in the recovered image based on required resolution.

The above mentioned approach is equivalent to using a linear shift variant foveation
filter (low-pass) which operates on every pixel of the underlying image and whose cut-
off frequency wc(u,v) varies dependent on the location of the pixel (u,v) [34]. For in-
stance, the cutoff frequency value of 1.0 is considered for the foveation regions (which
means no filtering) and cutoff values less than 1.0 or close to zero for those pixels far
from the foveation center which translates into stronger low-pass filtering operation for
the pixels as they get distant from foveation center.
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Because the foveation filter is linear it can be modeled as [34]:

F =


Lwc(0,0)(0,0)
Lwc(0,1)(0,1)

...
Lwc(0,N−1)(0,N−1)

 (51)

here, each row represents a 2D 2 low-pass FIR filter with cutoff frequency which is
padded and shifted to be centred at pixel (u,v).

By applying this filter to the original image we get the foveated image [34]:

XXXFov =FFF×XXX (52)

Now by combining the compressed sensing and foveation filtering we have [34]:

yyy = ΦΦΦ×sss = ΦΦΦ×ΨΨΨ
?×xxx = ΦΦΦ×ΨΨΨ

?× fff×xxx (53)

Where the ΨΨΨ
? matrix represents the direct sparsifying transform like DWT or DCT.

One of the key features of the compressed sensing is that it places low computational
complexity on the sensor or transmitter side. In order to stay tuned with this feature
we can simply precompute the resulting sampling matrix and apply it on the original
image.

The Figure 3.5 displays two examples of the foveation by applying the linear shift
variant low-pass filter:

(a) (b)

Fig. 3.5. Recovered images using by linear shift variant low-pass filtering a) Foveated
bridge image. b) Foveated Lena’s image [34].

Both images exhibit higher resolution in the foveation center.
2Two dimensional
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3.2.2 DWT based foveation operator

One other way to create foveated images is to bring the original signal to the wavelet
domain by applying discrete wavelet transform and then applying a mask to the re-
sulting wavelet coefficients and finally recover the foveated image by applying inverse
DWT.

In general a typical one dimensional mask can be of the form [35]

(T f )(x) :=
∫

∞

−∞

f (t)
1

w(x)
g(

t− x
w(x)

)dt (54)

w = α|x− γ|+β (55)

Where w is the weighing function and g is a Gaussian smoothing function. In the
weighing fuction formula, the value α , β and γ determine the resolution descrease
rate, foveal resolution and fovea location respectively. The Equations 54 and 55 can be
rewritten as [35]

(T f )(x) = f f = DWT−1{mask×DWT ( f )} (56)

Where mask represnets the DWT of the kernel function which defines the integral in
the Equation 54. The matrix mask introduces foveation into the wavelet domain.

This foveation technique can be simply generalized to 2D case by using 2D smooth-
ing and weighting functions in the Equation 54.

The operations above have nothing to do with compressed sensing and they are just
an example how we can bring foveation into an image using its wavelet representation.
It’s interesting that we can go one step forward and apply compressed sensing to this
scheme. Now we combine the compressed sensing with foveation technique above to
gain compression and foveation simultaneously. This combination can be formulated
as [35]:

yyy = ΦΦΦ×xxxFov = ΦΦΦ×ΨΨΨ×MMM×sss = ΦΦΦ×ΨΨΨ×MMM×ΨΨΨ
?︸ ︷︷ ︸

AAA

×xxx =AAA×xxx (57)

Here the Ψ is the N ×N orthonormal basis, Ψ? is the direct DWT transform and
M = diag{mask}. Here the diagonal elements of the mask can be approximated and
very small values can be approximated with zero which simplifies things and the mul-
tiplication process and the resulting foveated image then becomes an approximation.

Basically what the Equation 57 means is that forming the composite sensing matrix
AAA and applying it to the original signal is equivalet to applying the primitive sensing
matrix Φ to the unavailable foveated version of the image. The recovery procedure
yields the sparsest solution to following optimization problem [35]:

min
sss

∥∥∥∥∥∥∥MMM×sss︸ ︷︷ ︸
sssFov

∥∥∥∥∥∥∥
0

s.t. yyy = ΦΦΦ×xxxFov = ΦΦΦ×ΨΨΨ×MMM×sss = ΦΦΦ×ΨΨΨ×MMM×ΨΨΨ
?×xxx (58)
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The composite sensing matrix helps us get the foveated version of the wavelet coef-
ficent vector after the recovery process. Then, inverse DWT can be applied to the
foveated coefficient vector to yield the compressively sensed foveated image. The op-
timization problem in Equation 58 can be solved by employing any of the recovery
algorithms described in previous sections. The matrix used for recovery in this case
will be Φ×Ψ and the solution will be the sparse masked coefficient vector sFov which
after inverse wavelet transform yields the foveated image. As we already know, in order
for the optimization problem to have correct solution, the matrix Φ×Ψ must satisfy the
RIP property. In fact we have already designed the matrix Φ to meet this criteria. As far
as the matrix Φ is an i.i.d Gaussian matrix and the matrix Ψ is orthogonal, the resulting
Φ×Ψ is again i.i.d Gaussian. This ensures that our recovery procedure is successful.
Since matrix M is not an orthogonal matrix, the composite matrix Φ×Ψ×MMM does not
always satisfy the RIP requirement and hence it can not be used for recovery purpose.

If we further assume that we are directly sensing the wavelet coefficients the formula
can be rewritten as [35]:

yyy = ΦΦΦ×sssFov = ΦΦΦ×MMM×sss = ΦΦΦ×MMM×ψψψ
?︸ ︷︷ ︸

AAA

×xxx =AAA×xxx (59)

And the recovery procedure yields the sparsest solution to following optimization prob-
lem [35]:

min
sss

∥∥∥∥∥∥∥MMM×sss︸ ︷︷ ︸
sssFov

∥∥∥∥∥∥∥
0

s.t. yyy = ΦΦΦ×sssFov = ΦΦΦ×MMM×sss = ΦΦΦ×MMM×ΨΨΨ
?×xxx (60)

This optimization problem can be solved by employing any of the recovey algorithms
described in previous sections. The matrix used for recovery in this case will be Φ

and the solution will be the sparse masked coefficient vector sFov which after inverse
wavelet transform yields the foveated image. As we already know in order for the opti-
mization problem to have correct solution, the matrix Φ must satisfy the RIP property.
In fact we have already designed the matrix Φ to meet this criteria. As far as the matrix
Φ is an i.i.d Gaussian matrix for instance we are secure. If we use the matrix Ψ×MMM
for recovery purpose the RIP criteria is not satisfied anymore. Because M is not an
orthogonal matrix.
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Fig. 3.6. Top left: The Electrocardiogram (ECG) signal, Bottom left: The one dimen-
sional foveation mask for ECG signal. Top right: Lena’s image. Bottom right: The two
dimensional foveation mask for the image. The foveation points placed on cneter of the
eyes and the tip of the nose [35].

The Figure 3.6 demonstrates the foveation mask for two signals. First signal is the
critical one dimensional ECG signal and the second one is a 2D signal, namely Lena’s
image. These masks help us recover some parts or areas of an image or a signal with
higher resolution.

It’s worthwhile to monetion that foveated imaging techniques described above, pro-
vide foveation at the sampling or measurement stage. There are some other techniques
that involve both sampling and reconstruction or recovery stages which is out of scope
of this thesis.
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4 Single-pixel imaging and performance analysis

In previous chapters the thesis presented an overview on some interesting CS-based
imaging approaches. Some common approaches to uniform and foveated single-pixel
imaging were introduced. This chapter presents a typical single-pixel imaging sys-
tem implemented in Matlab which deploys both unfoveated and foveated single-pixel
imaging. In terms of novelty it introduces patch-based and superpixel-based focusing
techniques which fall into the category of foveated single-pixel imaging.

The implemented single-pixel imaging system seeks to answer three critical ques-
tions in the area of single-pixel imaging based on simulations and numerical analysis.
First, the thesis seeks to answer whether the recommended patch-based focusing tech-
nique introduces some kind of artifact to the recovered image. Second, to study if the
recommended focusing technique performs better than its superpixel-based counterpart
in terms of the quality or signal to noise ratio of the recovered images. Third, the the-
sis studies whether there are some random sensing matrices which perform better than
others to check whether random designs differ significantly from each other or their
performance is close to the average which is practically very important.

4.1 Implemented single-pixel imaging system in Matlab in a nut-
shell

As can be seen from the Figure 4.1, the implemented system starts with producing the
DCT basis matrix which will be further used to sparsify our original image. In other
words the image is first transformed to a sparse DCT coefficient domain. Before the
DCT coefficient matrix is input to the CS-based sampling or measurement unit, it is
vectorized using Matlab ’vec’ operator. Please consult the Subsection 2.3 for more
detail regarding the DCT transform on images.

The implemented code follows with creating suitable sensing matrix which in this
case in a i.i.d Gaussian matrix which ensures indeed the RIP property. This matrix is
generated in uniform and nonuniform formats depending on our choice. The nonuni-
form format helps us bring foveation or focusing in the image by employing the su-
perpixel ideology explained earlier. Next, the sensing matrix is applied to the sparse
vectorzied version of the DCT coefficients corresponding to the original image. Finally
the resulting measurement vector is fed into the recovery unit to solve the optimization
problem explained earlier. The implemented recovery methods are: LASSO, AMP and
BAMP. The resulting sparse solution is again transformed back into the matrix form
before the inverse DCT transform is applied to it to yield the approximated image.
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Fig. 4.1. Flowchart for the implemented single-pixel imaging system

4.2 Implemented CS-based focusing techniques

As explained in previous sections, there are several ways one can introduce foveation
into the CS-based digital imaging. Please recall from previous chapters that CS-based
sampling is a series of inner product of the underlying scene and random patterns.
One way to mimic foveation is to use patterns with spatially variant pixel sizes or
cells (nonuniform patterns) by combining or grouping the neighboring pixels together.
Here we use cells with smaller size in the foveated region and use cells or superpixels
with larger and larger size as we get distant from the foveated region and approach the
margins of vision field. In other words we employ a nonuniform or spatially variant
pixel grid to generate random patterns which will be used further for sampling or inner
product operation explained earlier. Henceforth, for the sake of simplicity, I will use
the term superpixel-based focusing to refer to this method.

In another approach the image is sampled using uniform patterns with spatially
equal pixel sizes but with different rate for different patches of the image. In other
words, the image is divided into patches of equal dimension and foveation is gained by
investing higher rate for the important patches and lower rate for the ones which are
not important. Here the important patches are the ones which are located in the areas
within the image which higher resolution or detail is required. Henceforth, for the sake
of simplicity, I will use the term patch-based focusing to refer to this method.

In what follows, two main methods employed by Matlab code to implement focus-
ing are discussed. Afterwards a performance analysis is run to compare the efficiency
level of the implemented techniques.
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4.2.1 Superpixel-based focusing

This method exploits only one patch to conduct a CS-based sampling from the under-
lying image. In general there are five variants of these matrices used in this implemen-
tation. One drawback of this method is that creating a random nonuniform patch to use
in the sensing stage is computationally time consuming.

a) b) c)

d) e)

Fig. 4.2. a) Original image. b) Recovered image. c) Non-uniform sensing matrix. d)
Original DCT coefficients. e) Recovered DCT coefficients.

For the above-mentioned superpixel-based method, BAMP recovery algorithm does
not converge and this is because the assumption for the sensing matrices made in the
BAMP derivation are not fulfilled. This includes in particular that not all matrix ele-
ments can be roughly approximated by A2

i j ≈ 1/M with M the number of measurements
taken. Consequently, the LASSO recovery scheme was deployed for the superpixel-
based method.

4.2.2 Patch-based focusing

As mentioned earlier, another focusing technique is also introduced in this work which
divides the image into the non-overlapping patches of the same dimension and proceeds
with the CS-based sensing and recovery of each patch individually. This is unlike the
superpixel-based focusing in that it operates on whole image at once using a nonuni-
form sampling matrix or pattern, The foveation is gained by investing higher sampling
ratio for the patches which spatially are located in points of interest where more reso-
lution is at high demand. This thesis has assumed that the center of image is the point
of high interest or focus. The final large image is then formed using assembling differ-
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ent patches together in a fashion quite like putting pieces of puzzle together. One big
advantage of this method is that it’s much speedier than its counterpart when it comes
to Matlab execution time because of two reasons. First, as a result of dividing the
large image into patches, the implemented sampling and recovery operate on matrices
of smaller size which considerably lowers the execution time for matrix multiplica-
tion for instance. Second, the creation of uniform matrices are considerably less time
consuming in comparison with nonuniform matrices of the same dimension.

As already discussed, One of major concerns of the thesis is to check whether using
the patch-based focusing, which involves individual processing of the patches, leads to
emergence of artifacts to the final recovered image or not. Simulations show that there
is no need to worry about this issue and the effect of artifacts is negligible. Intuitively,
the effect of artifacts can be visible when smaller and smaller values are invested for
the recovery of patches or when the noise becomes stronger. In such cases one also
can use overlapping patches in the patch margins and then to do pixel-averaging to get
better results in the overlap regions.

The Figure 4.3 below exemplifies a typical recovered image as a result of applying
patch-based focusing technique to the underlying image. It uses a sampling ratio of R=
0.3 for the central part and a ratio of R = 0.2, 0.1 and .09 for the surrounding patches
as they distance themselves from the center. It exploits BAMP recovery method.

(a) (b)

Fig. 4.3. a) Original image. b) Recovered foveated image using patch-based method.

Now let’s have a look into some patches inside the image above and study the visual
acuity and effect of sampling ratio on the accuracy of the BAMP recovery algorithm
and consequently the resolution of the recovered image.

The Figure 4.4 demonstrates one of the central patches which received high sam-
pling rate R = 0.3. As one can see the recovered patch has fine resolution and the DCT
coefficients are recovered with acceptable precision.
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a) b) c)

d) e) f)

Fig. 4.4. a) Original image. b) Recovered image. c) Uniform sensing pattern or matrix.
d) Original DCT coefficients. e) Recovered DCT coefficients. f) Sensing matrix.

One of the sampling patterns is shown in the Figure 4.4c. As is evident from the
uniform pattern, the cells or pixels are spatially of the same size. The dimension of the
patterns and the patch from the original image are identical.

The sensing matrix is shown in the Figure 4.4f. Each row of the sensing matrix is in
fact one of the sampling patterns that are stacked together horizontally. Intuitively the
number of columns in the sensing matrix is equal to the number of pixels in the patch
and the number of rows is equal to the number of times we have acquired samples
from the underlying patch. By dividing the number of rows in the sensing matrix by
the number of columns we get the CS-based sampling rate R = 0.3 which was used to
sense and recover the corresponding patch.
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As can be seen from the Figure 4.5, one of the patches near the image border which
received the smallest sampling rate and consequently least recovery accuracy and res-
olution inside the recovered patch.

a) b) c)

d) e)

Fig. 4.5. (a) Original image. b) Recovered image. c) Uniform sensing matrix. d)
Original DCT coefficients. e) Recovered DCT coefficients. f) Sensing matrix.

Intuitively, lower sampling rate for this patch leads to worse performance in estimating
the DCT matrix and thus higher discrepancy between the original DCT matrix of the
patch and that of recovered one. The Figure 4.5c shows one of the sampling patterns
used. As before, the dimension of the pattern is identical to the original patch from the
image. Figure 4.5f shows the sensing matrix to recover this patch in general. As dis-
cussed above, by dividing the number of rows of the matrix to the number of columns
we get the CS-based sampling rate R = 0.09 which was used to sense and recover the
corresponding patch.

For the patch-based focusing or sampling technique explained above, one can use
LASSO, AMP and BAMP recovery algorithms. For the reasons explained earlier in
this thesis, BAMP algorithm demonstrates superior performance. It does not converge
for the superpixel-based method but it converges and in fact does well in terms of the
precision and quality of the recovered image. Consequently, although the performance
of recommended patch-based method combined with all three implemented recovery
methods are studies in following section, patch-based method employing the BAMP
recovery is the method of choice.
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4.2.3 Performance comparison between suggested focusing techniques

Now it’s time to target the second question, namely whether the patch-based foveated
imaging technique does better than the nonuniform or superpixel-based focusing in
terms of quality or SNR 3 of the recovered images.

To test that, a database of 52 images were compressively sensed using above-
mentioned focusing techniques and recovered using implemented recovery schemes
(LASSO, AMP, BAMP) and subsequently their signal to noise ratio are computed and
exploited to get the mean and confidence interval (CI) of our measurement using the
Formulas 61, 62 and 63. The corresponding mean and CI are afterwards used as basis
to determine which focusing technique and which recovery method together give best
performance.

The formulas below (with n = 52) are used to compute the mean and confidence
interval (CI) from the SNR of 52 recovered images:

xn =
∑

n
i=1(xi)

n
(61)

σn =

√
1

n−1

n

∑
i=1

(xi− xn)2 (62)

cn = 1.96
σn√

n
(63)

Where xi represents the signal to noise ratio for the i’th image. Parameters xn and σn
represent the mean and standard deviation up to the n’th image. Finally cn represents
the 95 confidence interval up to n’th image.

As already discussed, among the implemented recovery schemes, only the LASSO
functioned well for the nonuniform or superpixel focusing and the other recovery
schemes (AMP and BAMP) did not converge. In what follows, one can find the simu-
lation results regarding the performance comparison of the super-pixel-based sampling
(using LASSO) and the patch-based sampling (using BAMP, AMP and LASSO).

Please consult the Table 4.1 where the simulation options and simulation results are
shown. In this table superpixel-based sampling is compared against the patch-based
sampling with various recovery schemes.

3Signal to noise ratio



Implemented CS-based focusing techniques 41

Simulation options and results
Focusing method

(Recovery scheme) Image size Number
of
patches

Patch size Total
rate

SNR
Mean ± CI

Superpixel-based focusing
(LASSO) 128×128 1 128×128 0.2 14.14 ± 0.70

Patch-based focusing
(BAMP) 128×128 4×4 32×32 0.2 13.16 ± 0.67

Patch-based focusing
patch sampling

(AMP) 128×128 4×4 32×32 0.2 9.12 ± 0.72
Patch-based focusing

(LASSO) 128×128 4×4 32×32 0.2 10.32 ± 0.71

Table 4.1: Simulation options and results for performance comparison between patch-
based method (using BAMP, AMP and LASSO) vs. superpixel-based method (using
LASSO).

As can be seen from the Table 4.1, the super-pixel focusing (combined with LASSO
recovery) shows performance of around 14.14 dB which is approximately 1 dB better
than patch-based method employing BAMP recovery. For the patch-based focusing
method the 128 images and patch size of 32× 32 were selected in order to give 16
patches. This way larger rate investment could be done in the central patches for higher
resolution in the center of image. Larger image sizes could be used to do the simulation
but the number of patches and also the resulting patch dimensions would rise which is
identical to much higher simulation time for Matlab.

In fact this result is practically very important. Although the super-pixel based
method has slightly better performance in terms of precision in recovery of compres-
sively sensed images, it is computationally much more time consuming than the patch-
based focusing recommended by this research. The superpixel-based technique is com-
putationally complex and intensive at random sampling matrix generation and specially
recovery steps. The principle reason is that in superpixel-based technique we have only
one patch which is actually with dimensional of the original image under sample. Con-
sequently, all the underlying sampling and sensing and subsequent recovery procedures
involve operations on vectors and matrices of considerably much larger size which
slows down the Matlab’s processing speed. For instance for the pixel-based method,
the average execution time for the BAMP recovery in Matlab is around 4× 10−4(s)
while the execution time for the LASSO recovery in superpixel-based method is around
0.7(s). Thus, one can ignore the 1 dB improvement of superpixel method and employ
the patch-based method combined with BAMP recovery to be able to be faster and in
fact to offer best compromise between speed and performance in terms of quality or
SNR or recovered images.

As discussed earlier, patch-based focusing operates on non-overlapping patches of
the image and invests larger rate for the patches of higher importance and lower rate
for other patches. The resulting overall rate for the image can is then calculated as:

rt =
m× rh +n× rl

m+n
=

4×0.5+12×0.1
4+12

= 0.2 (64)

Where parameters m and n are the number of high quality and low quality patches
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respectively. The parameters rh and rl represent the rate for the high resolution and low
resolution patches respectively.

The Figure 4.6 depicts the recovered images using patch-based and superpixel-
based focusing methods:

(a) (b)

Fig. 4.6. a) Recovered image using patch-based method (using BAMP recovery). b)
Recovered image using superpixel-based method.

In the Figure 4.6a one can observe that the 4 central patches have higher resolution
than the other patches which is because of larger rate (R = 0.5) being invested for those
patches and smaller rate (R = 0.1) for other patches. The central part of image 4.6b
has higher resolution as a result of smaller superpixels in the center of the nonuniform
pixel grid used for sampling the image.
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Please consult the Figure 4.7 for a graphical demonstration of the performance com-
parison between patch-base focusing (using BAMP) and the superpixel-based focusing
(using LASSO) techniques.

Fig. 4.7. Performance comparison: Patch-based focusing (BAMP) vs. superpixel-
based focusing(LASSO)

In order to draw the curves for the Figure 4.7, the Matlab code computes the mean
and the confidence interval up to n’th image using Formulas 61, 62 and 63 to show
progressively how the mean and confidence interval values evolve as the simulation
proceeds to next images. As is apparent from the Figure 4.7, as the simulation proceeds
to include larger number of images, the mean SNR for the superpixel-based method
converges to value 14.14 dB which is equal to averaged SNR values for 52 images in
the image database. Also on can observe from the image that patch-based method using
BAMP approaches mean SNR of around 13.16 which means the super-pixel method
performs better.

Please consult the Figure 4.8 for a graphical demonstration of the performance
comparison between patch-base focusing (using AMP recovery) and the superpixel-
based (using LASSO recovery) focusing techniques.
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Fig. 4.8. Performance comparison: Patch-based focusing (AMP) vs. superpixel-based
focusing(LASSO)

Again, in order to draw the curves for the Figure 4.8, the Matlab code computes the
mean and the confidence interval up to n’th image using Formulas 61, 62 and 63 to
show progressively how the mean and confidence interval values evolve as the simula-
tion proceeds to next images.

As is apparent from the Figure 4.8, as the simulation proceeds to include larger number
of images, the mean SNR for the superpixel-based method converges to value 9.12 dB
. This means that superpixel-based method performs around 5 dB better than patch-
based method (using AMP).
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Please consult the Figure 4.9 for a graphical demonstration of the performance com-
parison between patch-base focusing (using LASSO) and the superpixel-based (using
LASSO) focusing techniques.

Fig. 4.9. Performance comparison: Patch-based focusing (LASSO) vs. superpixel-
based focusing(LASSO)

Again, in order to draw the curves for the Figure 4.7, the Matlab code computes the
mean and the confidence interval up to n’th image using Formulas 61, 62 and 63 to
show progressively how the mean and confidence interval values evolve as the simula-
tion proceeds to next images.

As is apparent from the Figure 4.9, as the simulation proceeds to include larger number
of images, the mean SNR for the superpixel-based method converges to value 10.32 dB
. This means that superpixel-based method performs around 3.8 dB better than patch-
based method (using LASSO).
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4.3 Sensing matrix design

Now that the answer to first two questions are already given, let’s try to concentrate
on the third question, namely does any single random design for the sampling or sens-
ing matrix has a performance close to the performance averaged over many sensing
matrices or there are some random matrices which have considerably better perfor-
mance. In the implemented single-pixel imaging system one matrix is picked ran-
domly among many possible random i.i.d Gaussian matrices. In case the answer to the
above-mentioned question is positive, we need to worry about the design and in order
to make improvement to the overall system performance and be selective in choosing
the right sensing matrix. The answer to this question is practically very important be-
cause in practice one needs to deploy a fixed sensing matrix which could be computed
at initialization stage and live with it throughout its normal operation.

The implemented Matlab code uses a series of two main cycles (C1 and C2). Each
cycle iterates through a number of 52 images of dimension 128 × 128 from the image
databse and performs uniform CS-based sensing and recovery on them.

C1 and C2 cycles are different in that C1 uses a fixed single sensing matrix for all
52 images from the database. In contrast, C2 cycle changes the sensing matrix image
to image. Cycle C1 is executed 10 times, each time with a new choice for the single
fixed sensing matrix. Cycle C2 is executed 1 time. At the end of each C1 execution
round as well as single C1 execution round, the mean and confidence interval for the
SNR of the recovered images calculated using Formulas Formulas 61, 62 and 63 with
setting parameter with n = 52.

The mean SNR and confidence interval calculated for C2 cycle represents the perfor-
mance averaged over many (52) sensing matrices.

The mean SNR and confidence interval calculated for each of C1 execution rounds
represents the performance for the given single fixed sensing matrix in that round. C1
cycle is executed 10 times because the simulation wants to exclude the possibility of
being lucky in the choice of the single fixed matrix.

The simulation also takes the effect of additive Gaussian noise in the sensing step
into account. Among implemented recovery schemes, BAMP is used for this round of
simulation simply because it demonstrates superior performance in comparison with
AMP and LASSO. Furthermore, the sampling rate of 0.2 is chosen. Larger or smaller
values for the rate was possible. But the rate chosen is a appropriate compromise
between simulation speed and the quality of recovered images.

1st cycle (C1):
This cycle compressively senses a bunch of 52 images with dimension 128×128 uni-
formly using a single fixed sensing matrix. As the name ’uniform’ implies, here no
focusing is done and the whole image is seen as one patch and whole image is sensed
using a simple rate. Then Matlab code is instructed to do this cycle 10 times and every
time it changes the fixed signle sensing matrix to test that any single fixed random de-
sign has a performance close to average performance which is computed in the second
cycle (C2).

2nd cycle (C2):
The second cycle is quite like the first cycle (C1) with the difference that the sensing
matrix varies image to image to enable us to calculate the average performance. This
cycle is executed only 1 time.
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The table 4.2 summarizes the simulation options and the performance for each of ten
C1 cycles as well as the single C2 cycle.

Simulation options and results

Cycle type - iteration number
SNR (dB)

Mean ± CI Recovery
scheme

Rate Image
size

Patch
size

C1 - 1 13.99 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 2 13.95 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 3 13.97 ± 0.63 BAMP 0.2 128×128 128×128
C1 - 4 14.03 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 5 14.00 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 6 14.00 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 7 14.04 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 8 13.98 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 9 13.98 ± 0.62 BAMP 0.2 128×128 128×128
C1 - 10 14.01 ± 0.62 BAMP 0.2 128×128 128×128
C2 - 1 14.01 ± 0.61 BAMP 0.2 128×128 128×128

Table 4.2: Simulation options and results for the cycles C1 and C2.

Again the Formulas 61, 62 and 63 with n = 52 is used to calculate the mean and con-
fidence interval from the SNR values. The Table 4.2 clearly shows that both C1 and
C2 cycles demonstrate virtually the same performance. As cab be seen from the table,
every choice for the fixed single sensing matrix (each C1 execution round) has a per-
formance so close to the performance averaged over many sensing matrices (single C2
cycle execution round).

Please consult Figure 4.10 for a graphical demonstration of the performance compari-
son between the individual C2 cycle and one of the C1 cycle execution round.
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Fig. 4.10. Image recovery performance comparison between the individual C2 and one
of the C1 cycle execution rounds.

In order to draw the curves for the Figure 4.10, the Matlab code computes the mean
and the confidence interval starting from the first image up to the n’th image to show
progressively how the mean and confidence interval values evolve as the simulation
proceeds to next images according to the Formulas 61, 62 and 63.

As one can observe from the Figure 4.10, the mean and the confidence interval is ap-
proximately a match. In other words the performance remains unchanged irrespective
of applying the single fixed sensing matrix or varying sensing matrix. This means
that one single fixed sensing matrix provides the performance close to the performance
averaged over many sensing matrices.
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4.4 Conclusion

The primary goal of the thesis was to provide answers to some of the questions in the
world of CS-based foveated digital imaging based on numerical analysis and simula-
tions. It started with an introduction to single-pixel imaging. Then it provided the
reader with current researches regarding unfoveated digital imaging. Next it put one
step forward and studied some methods which help us introduce foveated imaging into
the world of CS-based digital imaging.

Next, it explains the implemented single-pixel imaging system in Matlab and in-
troduces patch-based and superpixel-based focusing methods to introduce focusing in
images. Using simulation results, the thesis concludes that despite the patch-based fo-
cusing has slightly lower performance than the superpixel-based method, it’s indeed
much speedier in terms of implementation and execution time so it can be the method
of choice.

This work also made it clear that as a result of the recommended patch-based fo-
cusing to create foveation virtually no artifact is introduced to the recovered image.
Intuitively, the effect of artifacts can be visible when smaller and smaller values are
invested for the recovery of patches or when the noise becomes more powerful. In
such cases one also can use overlapping patches in the patch margins and then to do
pixel-averaging to get better results in the overlap regions.

Last but not the least, at sensing matrix design stage, one needs not to worry about
the choice of sensing matrix. In other words any single and fixed random sensing
matrix has a performance completely close to the performance averaged over many
sensing matrices and they do not differ in terms of performance. The answer to this
question is practically very important because in practice only one fixed sensing matrix
is used.
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Abbreviations

RIP Restricted Isotropic Property

CS Compressed Sensing

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

DMD Digital Micromirror Device

IST Iterative Soft Thresholding

IHT Iterative Hard Thresholding

AMP Approximate Message Mapping

BAMP Bayesian Approximate Message Mapping

CCD Charge Coupled Device

CI Confidence Interval

2D Two dimensional
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