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Abstract

The goal of this thesis is to use an industrial robot for winding a rope around objects,
such as rods. In addition, the rope tension is to be controlled during this winding process.
For a model-based control approach, the dynamic model of the robot is derived. The

desired path for winding around the rods is specified using a teach-in procedure. A path
following controller based on transverse feedback linearization is employed to make the
end-effector of the robot follow the desired path.
The end-effector consists of a rope spool and a motor, which is used to control the

tension of the rope. The required end-effector orientation during the winding process is
derived from the path, i. e. only a position teach-in is required. Using the Frenet-Serret
frame and the parallel transport frame, end-effector orientations are derived that are
adapted to the rope winding application.
The proposed method is examined in both simulations and experiments. The results

validate the feasibility of the method for winding a rope using a robot without a priori
information on the required end-effector orientation.
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Kurzzusammenfassung

In dieser Arbeit wird ein Industrieroboter eingesetzt, um ein Seil um Objekte, wie z. B.
Stangen, zu wickeln. Dabei soll zusätzlich die Seilspannung während des Wickelvorganges
geregelt werden.
Für eine modellbasierte Regelung wird zunächst das dynamische Modell des Roboters

hergeleitet. Der gewünschte Pfad zum Wickeln des Seils um die Stangen wird durch
einen Teach-In-Vorgang vorgegeben. Unter Verwendung eines Pfadfolgereglers, der auf der
transversalen Eingangs-Zustandslinearisierung basiert, wird erreicht, dass der Roboter-
Endeffektor dem vorgegebenen Pfad folgt.
Der Endeffektor besteht aus einer Seilspule und einem Motor, der zur Regelung der

Seilspannung verwendet wird. Eine geeignete Orientierung des Endeffektors während
des Wickelvorganges wird aus dem vorgegebenen Pfad abgeleitet, d. h. es wird ledig-
lich ein Teach-In der Position benötigt. Es werden der Frenet-Serret-Rahmen und der
Paralleltransport-Rahmen eingesetzt und daraus Endeffektor-Orientierungen abgeleitet,
die an die Aufgabe des Seilwickelns angepasst sind.

Die präsentierte Methode wird sowohl in Simulationen als auch im Rahmen von Experi-
menten untersucht. Die Ergebnisse zeigen die Anwendbarkeit dieser Methode zum Wickeln
eines Seils durch einen Roboter, ohne dass a priori Informationen über die benötigte
Endeffektor-Orientierung vorhanden sind.
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1 Introduction

Industrial robots have been employed for automating various tasks for decades. The goal
of this thesis is to use a robot for winding a rope around objects, such as rods, in the
workspace of the robot. Additionally, the tension of the rope has to be controlled during
the winding process. The presented method could have applications in cable installation,
flexible packaging of objects or large-scale 3D printing by substituting the rope with
suitable materials.

In this work, a lightweight industrial robot, KUKA LWR IV+ , which is designed for a
safe human-robot interaction, is employed. In Chapter 2, the mathematical model of the
robot is developed. First, the forward and inverse kinematics of the robot are derived.
Secondly, the equations of motion are found assuming a rigid-body model for the robot.
Lastly, this dynamic model is extended to take into account the joint flexibility of the
robot.
The desired path for winding a rope around the rods is specified using a teach-in

procedure. This path is traversed by the robot end-effector by applying the path fol-
lowing controller designed in Chapter 3. This control strategy uses transverse feedback
linearization, which splits up the motion of the end-effector into tangential and transversal
dynamics with respect to the path. Controlling the transversal dynamics yields asymp-
totic convergence of the robot end-effector to the specified path. The desired motion
of the end-effector along the path is achieved by controlling the tangential dynamics.
In order to control the orientation of the end-effector an input-output linearization is
performed.
The robot end-effector consists of a rope spool and a motor, which is used to con-

trol the tension of the rope. A main aspect of this thesis, as described in Chapter 4,
is to appropriately specify the orientation of the robot end-effector during the wind-
ing process. This is not a trivial task as it requires additional information on how
the rods are oriented and when the orientation of the robot end-effector has to be
changed. Analyzing the winding process shows that the desired path can be utilized
to derive the desired orientation. For this purpose, two moving frames, the Frenet-
Serret frame and the parallel transport frame, are employed. These frames need to
be modified in order to derive suitable end-effector orientations for the rope winding
process.

The simulation and experimental results presented in Chapter 4 show the feasibility of
the proposed method for rope winding. Results of employing the Frenet-Serret frame and
the parallel transport frame are compared to determine which frame is more suitable for
the rope winding application.
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2 Mathematical Modeling

In order to design controllers for robots it is almost indispensable to have a mathematical
model describing the dynamics of the robot. Moreover, having a model makes it possible
to perform dynamical simulations of the robot.
The model of a robot arm can consist of rigid or flexible links. This distinction also

applies to the joints. The robot investigated in this work, KUKA LWR IV+ , is treated
as a system of rigid links that are connected by elastic joints. This joint flexibility mainly
arises from the use of harmonic drive gears. Compared to rigid manipulators, robots
with elastic joints require both an extended mathematical model and an adapted control
approach.
This chapter begins with the description of the robot forward kinematics. Then an

analytical inverse kinematics of the robot is derived. In Section 2.4, the dynamic model is
determined assuming that the robot has rigid joints. In Section 2.5, this model is modified
in order to take into account the joint flexibility. Finally, it will be analyzed under what
circumstances the model of rigid robots can be used for controlling robots with flexible
joints.

2.1 Forward Kinematics
Given a configuration of the robot joints, the forward kinematics determines the resulting
Cartesian position and orientation of the end-effector.
For the calculation of the forward kinematics, in a first step coordinate frames are

introduced, which are rigidly attached to each of the robot links. The position and
orientation of the end-effector are then determined using homogeneous transformations
between these frames.
Figure 2.1 shows the 7-axis robot in its zero position together with the coordinate

frames. The assignment of the coordinate frames follows the Denavit-Hartenberg (DH)
convention consisting of four rules, see [1]. Assuming that frame i− 1 is already given,
the successive frame i is defined as follows:

1. The zi-axis points along the axis of rotation.

2. If zi and zi−1 have a unique common normal, the origin 0i is given by the intersection
point of this common normal with the zi-axis. Otherwise, the origin can be arbitrarily
placed along the zi-axis.

3. The xi-axis is normal to the plane spanned by zi−1 and zi, while its positive direction
is arbitrary, i. e. xi = ±(zi−1 × zi). In Figure 2.1, all x-axes point towards the
viewer.

2



2 Mathematical Modeling 2.1 Forward Kinematics 3

4. The yi-axis is given by the cross product of xi and zi to ensure the right-handedness
of the resulting coordinate system, i. e. yi = zi × xi.

The origin and the x-axis of the base frame x0y0z0 are free to be chosen. Similarly, the
direction of the z-axis of the end-effector frame is arbitrary since it is not followed by a
further joint. Here, it is chosen to be the same as the z6-axis such that the 7th and 6th
frame coincide.
The DH-parameters (ϑi, di, ai, αi) of frame i are defined in the following order:

1. ϑi is the angle by which the previous frame i− 1 is to be rotated about zi−1 such
that xi−1 and xi are parallel.

2. di is the distance along the zi−1-axis to align the x-axes.

3. ai is the distance along the x-axis to make the origins of the frames coincide.

4. αi is the angle by which the previous frame i− 1 is to be rotated about the x-axis
such that zi−1 and zi are parallel.

In the special case where zi and zi−1 are parallel, there is no unique common normal
between them. In this case the parameter di, which specifies the offset to the common
normal, can be freely chosen.

x5 x6 x7

x0 x1 x2

x3 x4

z0

z1

z2

z3

z4

z5

z6 z7

d3

d5

Figure 2.1: Robot KUKA LWR IV+ and the coordinate frames according to the
DH-convention.

Table 2.1 lists the DH-parameters of the robot. For revolute joints the parameter ϑi
is the degree of freedom and is denoted by qi. The only non-zero distances d3 and d5
are also depicted in Figure 2.1. The numeric values of these parameters can be found in
Appendix A.
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i ϑi di ai αi

1 q1 0 0 π/2
2 q2 0 0 −π/2
3 q3 d3 0 −π/2
4 q4 0 0 π/2
5 q5 d5 0 π/2
6 q6 0 0 −π/2
7 q7 0 0 0

Table 2.1: Denavit-Hartenberg parameters of KUKA LWR IV+ according to the frames
shown in Figure 2.1.

Homogeneous Transformation
A vector pi ∈ R3 expressed in the coordinate frame i can be transformed into the frame
i− 1 using the homogeneous transformation matrix Ti

i−1 ∈ R4×4 bypi−1

1

 = Ti
i−1

pi
1

 . (2.1)

One of the advantages of using DH-parameters (ϑi, di, ai, αi) is the fact that the homoge-
neous transformation matrix can be easily composed of four basic transformations

Ti
i−1 = Rot(z, ϑi)Trans(z, di)Trans(x, ai)Rot(x, αi)

=


cos(ϑi) − sin(ϑi) 0 0
sin(ϑi) cos(ϑi) 0 0

0 0 1 0
0 0 0 1




1 0 0 ai

0 1 0 0
0 0 1 di

0 0 0 1




1 0 0 0
0 cos(αi) − sin(αi) 0
0 sin(αi) cos(αi) 0
0 0 0 1



=


cos(ϑi) − sin(ϑi) cos(αi) sin(ϑi) sin(αi) ai cos(ϑi)
sin(ϑi) cos(ϑi) cos(αi) − cos(ϑi) sin(αi) ai sin(ϑi)

0 sin(αi) cos(αi) di

0 0 0 1

 .

(2.2)

The robot pose describes the position and orientation of the end-effector expressed in
the robot base coordinate system. It can be represented by a homogeneous transformation
matrix, which is calculated by consecutive multiplication of the matrices Ti

i−1 , i = 1, . . . , 7,
i.e.

T7
0 = T7

6 . . .T1
0 . (2.3)



2 Mathematical Modeling 2.2 Inverse Kinematics 5

The resulting matrix has the form

T7
0 (q) =

R7
0 (q) d7

0 (q)
0 1

 , (2.4)

where R7
0 (q) ∈ SO(3) is a rotation matrix that performs a transformation on vectors

expressed in the end-effector frame into the base frame. The vector d7
0 (q) ∈ R3 specifies

the translation between these two frames. Using the rotation matrix R7
0 (q) and the

position vector d7
0 (q) the orientation and the position of the end-effector are determined

in the base coordinate system.

2.2 Inverse Kinematics
Let y denote the robot end-effector pose describing its position and orientation in the
3-D Cartesian space. The set of all possible poses y is the task space of the robot. The
configuration space of the robot is given by all joint configurations q within the mechanical
joint limits of the robot.
While the forward kinematics calculates the robot pose as a function of the joint

configuration q by

y = h(q) , (2.5)

the inverse kinematics determines the joint configuration q as a function of the given
robot pose, i. e.

q = h−1(y) . (2.6)

Note that finding an analytical inverse kinematics in closed form h−1(.) is not possible for
all robot types.
The path following control strategy that will be discussed in Chapter 3 is designed

in the task space, so that the inverse kinematics is not required. However, the robot
end-effector is driven to the starting point of the path by means of a computed torque
controller that is designed in the configuration space. Hence, the inverse kinematics is
employed to obtain the required joint angles for the desired starting point.

The robot KUKA LWR IV+ features a so-called Spherical-Roll-Spherical (S-R-S) struc-
ture. A joint with 3 intersecting axes at a single point is called a spherical joint. Comparable
to the human arm, the first three joints (1, 2, 3) of the robot build up a virtual spherical
joint as the shoulder S, the 4th joint is interpreted as the elbow E, and the last three
joints (5, 6, 7) form a virtual spherical joint as the wrist W .

The configuration space of the robot has 7 degrees of freedom, whereas for specifying any
position and orientation in the Cartesian space 6 degrees of freedom are sufficient. Hence,
this robot is said to be a redundant manipulator. A redundant robot has a self-motion,
i. e. it can vary its joint configuration without changing the end-effector pose. In other
words, there is no unique joint configuration for a given pose. In order to parametrize this
redundancy, an arm angle ψ is adopted, which is defined as the angle between the arm
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plane and the reference plane, see Figure 2.2. The arm plane is spanned by the shoulder
S, the elbow E and the wrist W , and the reference plane is the arm plane for the case
q3 = 0, i. e. when the joint axes 2 and 4 are parallel. In the following, quantities in the
reference plane are denoted by the superscript o as in qo1, R3,o

0 , etc.

Arm Plane

Reference Plane

S

E

q4q3

W

ψ

d3

d5

Figure 2.2: Arm angle ψ defined between the arm plane and the reference plane.

Based on the approach in [2], the joint angles are computed as a function of the arm
angle ψ. This choice allows that the robot can be regarded as a virtual non-redundant
manipulator for a fixed arm angle. Figure 2.3 shows the relevant coordinate frames for

x0
y0

z0

S E

W

d3 y3 z3
x4

z4

x7

y7

z7

d5

Figure 2.3: Relevant coordinate frames for the derivation of the inverse kinematics.

the calculation of the inverse kinematics. Let lse,3 and lew,4 be constant vectors denoting
the shoulder-elbow and the elbow-wrist distance in the 3-frame and 4-frame, respectively

lse,3 =
[
0 − d3 0

]T
, (2.7a)

lew,4 =
[
0 0 d5

]T
. (2.7b)
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The position of the end-effector in the base frame is given by

x7
0 = R3

0
(
lse,3 + R4

3 lew,4
)

. (2.8)

The end-effector orientation in the base frame can be determined by using the rotation
matrix

R7
0 = R3

0 R4
3 R7

4 . (2.9)

According to Figure 2.3 where the base coordinate system is placed in the shoulder, the
vector xsw,0 which connects the shoulder to the wrist is equal to x7

0

xsw,0 = x7
0 = R3

0
(
lse,3 + R4

3 lew,4
)

. (2.10)

This vector points along the axis around which the self-motion of the robot occurs. Let
esw,0 be the unit vector of this axis. The rotation of the wrist W by the arm angle ψ in
the base frame can be calculated using the axis-angle representation in the form

Rw
0 (ψ) = I3 + sin(ψ)S(esw,0) +

(
1− cos(ψ)

)
S2(esw,0) . (2.11)

Herein, I3 ∈ R3×3 is the identity matrix and S(esw,0) denotes the skew-symmetric matrix
of the vector esw,0. The skew-symmetric matrix of a vector a has the form

S(a) =


0 −az ay

az 0 −ax
−ay ax 0

 . (2.12)

Using (2.11) the wrist orientation can be determined by the rotation matrix

R4
0(ψ) = Rw

0 (ψ) R4,o
0 , (2.13)

where R4,o
0 determines the orientation of the wrist in the reference plane. This equation

can be written as

R3
0(ψ) R4

3(ψ)︸ ︷︷ ︸
R4

0(ψ)

= Rw
0 (ψ) R3,o

0 R4,o
3︸ ︷︷ ︸

R4,o
0

. (2.14)

Since for a given pose the elbow joint angle q4 is constant and independent of ψ, i. e.
R4

3(ψ) = R4,o
3 , the rotation matrix R3

0(ψ) is calculated to be

R3
0(ψ) = Rw

0 (ψ) R3,o
0 . (2.15)

By inserting this result in (2.9) the orientation of the end-effector in the base frame can
be obtained using the rotation matrix

R7
0(ψ) = Rw

0 (ψ) R3,o
0 R4,o

3 R7
4(ψ) . (2.16)
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The elbow joint angle q4, which is independent of ψ, is uniquely determined using the law
of cosines according to Figure 2.2

cos(q4) =

∥∥∥xsw,0∥∥∥2
− d2

3 − d2
5

2d3 d5
. (2.17)

Setting q3 = 0 in (2.10) the shoulder joint angles qo1 and qo2 in the reference plane can
be found by solving the equation

xsw,0 = R1,o
0 (q)R2,o

1 (q)R3
2(q)

∣∣∣
q3=0︸ ︷︷ ︸

R3,o
0 (q)

(
lse,3 + R4

3(q) lew,4
)

. (2.18)

Next, the shoulder joint angles q1 and q2 can be determined as a function of the arm angle
ψ. Inserting (2.11) in (2.15) yields

R3
0(ψ) = As sin(ψ) + Bs cos(ψ) + Cs , (2.19)

with the matrices

As = S(esw,0) R3,o
0 , (2.20a)

Bs = −S2(esw,0) R3,o
0 , (2.20b)

Cs =
(
I3 + S2(esw,0)

)
R3,o

0 =
[
esw,0 eT

sw,0
]

R3,o
0 . (2.20c)

On the other hand, using the forward kinematics the rotation matrix R3
0(q) is given by

R3
0(q) =


∗ cos(q1) sin(q2) ∗
∗ sin(q1) sin(q2) ∗

sin(q2) cos(q3) − cos(q2) − sin(q2) sin(q3)

 , (2.21)

where only the relevant elements are shown. The shoulder angle q1 can be calculated by
dividing the (2, 2)-element of the matrix R3

0(q) by its (1, 2)-element. Since every entry of
R3

0(q) has to be equal to the corresponding entry of R3
0(ψ), combining (2.19) and (2.21)

yields

tan(q1) =

(
R3

0
)

22(
R3

0

)
12

= as22 sin(ψ) + bs22 cos(ψ) + cs22
as12 sin(ψ) + bs12 cos(ψ) + cs12

, (2.22)

with asij , bsij and csij as the (i, j)-th elements of the matrices As, Bs and Cs, respectively.
Similarly, the shoulder joint angles q2 and q3 are calculated to be

cos(q2) = −
(
R3

0
)

32
= −as32 sin(ψ)− bs32 cos(ψ)− cs32 , (2.23a)

tan(q3) =
−
(
R3

0
)

33(
R3

0

)
31

= −as33 sin(ψ)− bs33 cos(ψ)− cs33
as31 sin(ψ) + bs31 cos(ψ) + cs31

. (2.23b)



2 Mathematical Modeling 2.2 Inverse Kinematics 9

In order to find the wrist angles q5, q6 and q7, first the rotation matrix R7
4(ψ) is obtained

from (2.16) in the form

R7
4(ψ) =

(
Rw

0 (ψ) R3,o
0 R4,o

3

)T
R7

0(ψ) . (2.24)

Using (2.11) the matrix R7
4(ψ) is given by

R7
4(ψ) = Aw sin(ψ) + Bw cos(ψ) + Cw , (2.25)

with the matrices

Aw = R3
4 AT

s R7
0 , (2.26a)

Bw = R3
4 BT

s R7
0 , (2.26b)

Cw = R3
4 CT

s R7
0 , (2.26c)

with As, Bs and Cs from (2.20). The rotation matrix R7
4(q) resulting from the forward

kinematics is given by

R7
4(q) =


∗ ∗ − cos(q5) sin(q6)
∗ ∗ − sin(q5) sin(q6)

sin(q6) cos(q7) − sin(q6) sin(q7) cos(q6)

 . (2.27)

Comparing this result to R7
4(ψ) from (2.25), the wrist joint angles q5, q6 and q7 are

obtained as a function of the arm angle ψ

tan(q5) =
−
(
R7

4
)

23

−
(
R7

4

)
13

= −aw23 sin(ψ)− bw23 cos(ψ)− cw23
−aw13 sin(ψ)− bw13 cos(ψ)− cw13

, (2.28a)

cos(q6) =
(
R7

4
)

33
= aw33 sin(ψ) + bw33 cos(ψ) + cw33 , (2.28b)

tan(q7) =
−
(
R7

4
)

32(
R7

4

)
31

= −aw32 sin(ψ)− bw32 cos(ψ)− cw32
aw31 sin(ψ) + bw31 cos(ψ) + cw31

, (2.28c)

with awij , bwij and cwij as the (i, j)-th elements of the matrices Aw, Bw and Cw, respec-
tively.
Since the joints have mechanical limits (see Appendix A), not every solution q of the

inverse kinematics is physically feasible. Hence, the results are modified in a further step
to ensure that the resulting joint configuration q is within the joint limits. In this work,
the arm angle ψ is utilized to avoid joint limit violations. First, for an arbitrary arm angle
ψ the joint angles q are calculated using the equations (2.17), (2.22), (2.23) and (2.28).
Assume that the resulting first joint angle q1 is below its lower limit, i. e. q1 < qmin1 . In
order to obtain an alternative configuration, first a value of π is added to q1 and the result
is wrapped to the interval [−π, π]. The final result will be within the joint limits but it
will change the given end-effector pose. To preserve the original pose, the sign of the joint
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q2 is changed and a value of π is added to q3. Similarly, the limit violations of the joints
q3 and q5 can be remedied. Altogether, for i = 1, 3, 5 this method can be written as

qi := qi + k(qi) , (2.29a)
qi+1 := −qi+1 , (2.29b)
qi+2 := qi+2 + k(qi) , (2.29c)

where

k(qi) =

π, if qi < qmini

−π, if qi > qmaxi

, (2.30)

see, e. g., [3]. To rectify the limit violation of q7, the joint angles q5 and q6 are modified.
In this case, (2.29) and (2.30) with k(q7) have to be used. The solutions for the joints
q2, q4 and q6 are given by the function arccos(.), which has a range of [0, π]. Hence, the
resulting joint angles are above their lower limit. In case any of these joints exceed their
upper limit, the calculation of the inverse kinematics is repeated for a different arm angle
ψ.

2.3 Manipulator Jacobian Matrix
The manipulator Jacobian matrix Ji0 (q) ∈ R6×7 establishes the relation between the joint
velocities q̇(t) ∈ R7 and the linear and angular velocity of each link in the formvi0

ωi0

 = Ji0 (q) q̇ . (2.31)

Herein, the linear velocity vi0(t) ∈ R3 and the angular velocity ωi0(t) ∈ R3 of the center of
mass of the ith link are expressed in the base coordinate system denoted by the subscript 0.
The manipulator Jacobian matrix consists of two parts

Ji0 (q) =

Jiv,0(q)
Jiω,0(q)

 , (2.32)

where Jiv,0(q) ∈ R3×7 is used to calculate the linear velocity and Jiω,0(q) ∈ R3×7 determines
the angular velocity.

The Jacobian matrix Jiv,0(q) is calculated as the partial derivative of the position vector
pi0 with respect to the joint angles q, i. e.

Jiv,0(q) = ∂pi0
∂q , i = 1, . . . , 7 . (2.33)

Consider the position vector of the center of mass of the ith robot link expressed in the
coordinate frame attached to the link

pii =
[
ci,x ci,y ci,z

]T
. (2.34)
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This vector is transformed into the base coordinate system using the homogeneous
transformation matrix Ti

0 (q) to obtain pi0pi0
1

 = Ti
0 (q)

pii
1

 . (2.35)

Using the Jacobian matrix resulting from (2.33) the linear velocity of this point in the
base coordinate system is given by

vi0 = d
dtp

i
0 = Jiv,0(q)q̇ . (2.36)

It can be shown, see, e. g., [4], that the components of the vector of angular velocity

ωi0 =
[
ωix,0 ωiy,0 ωiz,0

]T
, i = 1, . . . , 7 , (2.37)

can be extracted from the corresponding skew-symmetric matrix

S(ωi0) =


0 −ωiz,0 ωiy,0
ωiz,0 0 −ωix,0
−ωiy,0 ωix,0 0

 , i = 1, . . . , 7 . (2.38)

On the other hand, this matrix can be calculated by

S(ωi0) = Ṙi
0
(
Ri

0
)T

, (2.39)

where Ṙi
0 denotes the derivative of the rotation matrix Ri

0 with respect to time.
The Jacobian matrix Jiω,0(q) is given by

Jiω,0(q) = ∂ωi0
∂q , i = 1, . . . , 7 . (2.40)

For a given robot state (q, q̇) the angular velocity of the ith link can be obtained using
the Jacobian matrix by

ωi0 = Jiω,0(q)q̇ , i = 1, . . . , 7 . (2.41)

2.4 Dynamic Model of Rigid-Body Robots
Using the Euler-Lagrange equations

d
dt

(
∂

∂q̇i
L

)
− ∂

∂qi
L = τi , i = 1, . . . , n (2.42)

the dynamic model of a mechanical system consisting of n rigid bodies can be derived.
Herein, L denotes the Lagrangian function of the system that is defined as

L = T − V , (2.43)
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with the kinetic energy T and the potential energy V . Furthermore, qi, q̇i and τi denote
the generalized coordinates, velocities and forces of the ith body, respectively.
The equations of motion of a robot with n degrees of freedom have the form

M(q) q̈ + C (q, q̇) q̇ + g (q) = τ + τ ext , (2.44)

where q, q̇, q̈ ∈ Rn denote the generalized coordinates, velocities and accelerations,
respectively. The symmetric, positive definite mass matrix M(q) ∈ Rn×n includes the
masses and moments of inertia of the robot links, the expression C (q, q̇) q̇ contains the
centrifugal and Coriolis terms and g (q) ∈ Rn is the vector of potential forces. The
generalized forces τ ∈ Rn are motor torques that are applied to each link as control inputs
and τ ext ∈ Rn are external forces that act as disturbances on the joints. Note that in this
model, the friction in the joints is neglected.
The special structure of (2.44) is due to the following two conditions that robotic

manipulators satisfy, see, e. g., [4]. First, the kinetic energy is a quadratic function of the
vector of joint velocities q̇, i. e.

T = 1
2

n∑
j=1

n∑
i=1

mij(q)q̇iq̇j = 1
2 q̇TM(q)q̇ , (2.45)

and second, the potential energy V (q) depends only on the joint angles q and is independent
of the joint velocities q̇.

In order to obtain the dynamic model of the robot, the individual components in (2.44)
need to be determined. The mass matrix consists of a translational and a rotational part,
which in turn are the sum of the contributions from each link, i.e.

M(q) = Mv(q) + Mω(q) =
n∑
i=1

(
Mv,i(q) + Mω,i(q)

)
. (2.46)

The rotational parts of the mass matrix are given by

Mω,i(q) =
(
Jiω,0(q)

)T
Ii0Jiω,0(q) . (2.47)

The expression

Ii0 = Ri
0IiiRi

0
T (2.48)

is a similarity transformation that transforms the inertia tensor Iii of the ith link from the
frame attached to the link into the inertial frame. The translational parts of the mass
matrix are calculated as

Mv,i(q) = mi

(
Jiv,0(q)

)T
Jiv,0(q) , (2.49)

where mi denotes the mass of the ith link.
The (k, j)-th element of the matrix C (q, q̇) is given by

ckj(q) =
n∑
i=1

cijk(q)q̇i =
n∑
i=1

1
2

{
∂

∂qi
mkj(q) + ∂

∂qj
mki(q)− ∂

∂qk
mij(q)

}
q̇i , (2.50)
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where cijk are the so-called Christoffel symbols of the first kind and mij(q) is the (i, j)-th
element of the mass matrix M(q).
In order to obtain the vector of potential forces g (q), which does not depend on the

joint velocity and acceleration, first the total potential energy V of the robot is calculated.
Using the vector

γ0 =
[
0 0 − g

]T
, (2.51)

which gives the direction of the gravitational acceleration g in the inertial frame, the
potential energy is calculated to be

V =
n∑
i=1

Vi =
n∑
i=1
−miγ

T
0 pi0 , (2.52)

with mi and pi0 as the mass and the position vector of the center of mass of the ith link,
respectively. The vector of the potential forces g (q) is given by the partial derivative of
the potential energy with respect to the joint angles q, i. e.

g (q) = ∂V

∂q . (2.53)

Finally, the relation between the generalized forces τ and the motor torques τm is
described. Since the motor for actuating the ith link is rigidly attached at the end of the
preceding link (i− 1), two torques act on the link i: The motor torque τm,i acts about the
z-axis of the frame (i− 1). The other torque, −τm,i+1, is the reaction torque of the motor
attached at the end of the link and acts about the z-axis of the ith frame. Their effect on
the generalized coordinates q is obtained using the Jacobian matrix Jiω,0(q). Summing
up the results for all the links yields

τ =
6∑
i=1

(
Jiω,0(q)

)T
Ri−1

0




0
0
τm,i

+ Ri
i−1


0
0

−τm,i+1


+

(
J7
ω,0(q)

)T
R6

0


0
0
τm,7

 .

(2.54)

Note that in contrast to the other links, only one torque acts on the 7th link. This
calculation results in

τ =
[
τm,1 τm,2 τm,3 τm,4 τm,5 τm,6 τm,7

]T
= τm (2.55)

2.5 Dynamic Model of Robots with Flexible Joints
Since KUKA LWR IV+has flexible joints, a rigid-body model does not completely describe
its dynamics. Figure 2.4 illustrates the model of a flexible joint. Here, ϑi is the angle of
the motor shaft and qi is the joint angle. The joint torque is denoted by τi.



2 Mathematical Modeling 2.5 Dynamic Model of Robots with Flexible Joints 14

Motor i

Link i

ϑi

qi

τi

Figure 2.4: Model of a flexible joint.

Taking into account the coupling between the motors and the links, the dynamic model
is given by

M(q)q̈ + C (q, q̇) q̇ + g (q) = K (ϑ− q)︸ ︷︷ ︸
τ

+ τ ext , (2.56a)

Bϑ̈+ K (ϑ− q) = τm , (2.56b)

see [5]. In this model, K ∈ Rn×n is a positive definite, diagonal matrix representing the
stiffness of the transmission gears, and the positive definite, diagonal matrix B ∈ Rn×n
describes the inertia of the motor dynamics. Furthermore, ϑ ∈ Rn comprises the angles
of the motor shafts, and τm ∈ Rn are the motor torques.
The dynamics of the motor torques (2.56b) are considerably faster than the link

dynamics (2.56a). Using the singular perturbation theory and by introducing the small
scalar parameter ε the model is split up into two separate subsystems, see [5]. The
dynamics of the motor torques form the fast part of the system, whereas the dynamics
of the links are the slower subsystem. This partitioning allows for designing a cascade
control. Figure 2.5 shows the schematic of this cascade control. Using the parameter ε
the matrix K, which contains high stiffness values, can be formally replaced by

K = Kε

ε2 , (2.57)

with a positive definite diagonal matrix Kε.
The joint torques τ can be controlled in an inner loop using the control law

τm = τ d −Kτ (τ − τ d)− εDτ τ̇ , (2.58)

with positive definite matrices Kτ ,Dτ ∈ Rn×n as controller gains. Furthermore, τ d is the
desired reference torque, which is the resulting control input of the outer loop motion
controller that is designed for a rigid-body robot model.
By combining (2.56)-(2.58), using the relation

ϑ̈ = K−1τ̈ + q̈ , (2.59)
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Robot
Dynamics

Fast
Torque Controller

q, q̇

τ , τ̇
τm

τ d
Slow

Motion Controller

Figure 2.5: Cascade control of a robot with flexible joints.

and setting ε to zero, the closed-loop system for the link dynamics, from the input τ d to
the link state (q, q̇), is given by[

M(q) + (In + Kτ )−1B
]
q̈ + C (q, q̇) q̇ + g (q) = τ d , (2.60)

where In is the identity matrix. Since the matrix B and the controller gain Kτ are
constant, the closed-loop system can be rewritten as

(M(q) + B̃)q̈ + C (q, q̇) q̇ + g (q) = τ d , (2.61)

where B̃ is a constant diagonal matrix. Comparing this equation to (2.44) with τ ext = 0
reveals that this approach is equivalent to simply modifying the robot mass matrix M(q)
to (M(q) + B̃).

Since in the case of KUKA LWR IV+the robot controller unit, KRC 1, is equipped with
a joint stiffness compensation, the robot can be modeled and controlled as a rigid-body
robot (2.61) by the end-user. This approach was experimentally verified as follows. A
computed torque controller based on the extended model (2.61) was used to follow a
desired trajectory in the joint space. Choosing the identity matrix for B̃ resulted in very
small control errors in all except for the second joint. Analysis of the elements of the
mass matrix M(q) for different configurations showed that its second diagonal element is
comparatively larger than the diagonal elements for the other links. To compensate for
this effect, the second diagonal element of B̃ was set to zero, i. e.

B̃ =



1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (2.62)

which improved the control performance considerably.
1KUKA Robot Control



3 Path Following Control
When a geometrical curve is to be traversed by the robot end-effector, one can generally
employ two types of control strategies. In trajectory tracking control, a trajectory of
the end-effector is stabilized. This trajectory specifies the time parametrization of the
geometrical curve together with the required velocity. In this case, each point on the
curve is passed through at a defined instant of time.

In contrast to that, in path following control the curve has no a priori time parametriza-
tion and the primary objective is the convergence of the end-effector to the path. One of
the advantages of this approach is that the speed of traversal of the path can be specified
independently of the path itself.
In this chapter, first a short review of path following control approaches is given. In

Section 3.2, the problem is formulated, and the control objectives and admissible paths are
discussed. By introducing an orthonormal frame in Section 3.3 a coordinate transformation
is performed, which enables linearizing the system dynamics with respect to the path in
Section 3.4. Finally, the parametrization of the path is specified.

3.1 Literature Review
A common approach for path following control is the transverse feedback linearization
that splits up the motion into dynamics tangential to the path and dynamics orthogonal
to the path. This method was introduced by Banaszuk and Hauser in [6], where the
transverse dynamics of a single-input nonlinear control-affine system are linearized with
respect to a periodic orbit. By stabilizing the transverse dynamics the system output
converges asymptotically to the path. In [7], Nielsen and Maggiore determined necessary
and sufficient conditions under which a multi-input nonlinear control-affine system is
locally transversally feedback linearizable with respect to a given invariant submanifold.
Using transverse feedback linearization, path following controllers were designed for a
magnetically levitated positioning system in [8], for a quadrotor in [9] and for a laboratory
crane in [10]. Hladio et al. [11] showed that the tangential dynamics of a mechanical system
are also linearizable if the system has enough control inputs such that the tangential
dynamics are reachable. In this case, a desired motion on the path can be achieved. The
presented method in [11] requires not only a parametrization of the path but also its
implicit representation.

Using transverse feedback linearization a path following control method for parametrized
paths was proposed in [12]. By constructing an orthonormal frame with respect to the
path the tangential and transversal coordinates can be defined. As orthonormal frame
the Frenet-Serret frame is used, which requires the path curvature to be non-zero. In
[13], Bischof et al. use the parallel transport frame from [14] instead to overcome this
limitation. In this way, it is possible to design path following controllers for paths including

16
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segments with vanishing curvature. Furthermore, the use of the parallel transport frame
also simplifies the path following control law compared to [12].

In order to systematically satisfy the input and state constraints, Faulwasser et al. [15]
proposed a model predictive control approach to path following problems. In this method
the time evolution of the path parameter is considered as an extra constraint to the
optimal control problem that is to be solved.
In this work, the approach in [13] is used to design a path following controller for the

robot KUKA LWR IV+ . The transverse feedback linearization is applied to control the
position of the end-effector, whereas for the orientation an input-output linearization is
used.

3.2 Problem Statement
A path following controller is designed to drive the output of a dynamical system to a
desired path in the output space. Furthermore, the motion along the path has to fulfill
specified requirements. In this chapter, the dynamic model

M(q)q̈ + C (q, q̇) q̇ + g (q)︸ ︷︷ ︸
n(q,q̇)

= τ + τ ext , (3.1)

of the rigid-body robot, as derived in Section 2.4, is considered. The system output
y ∈ R6 is chosen to be the end-effector pose

y =

yt
yr

 =

ht (q)
hr (q)

 = h (q) , (3.2)

where yt ∈ R3 is the position of the end-effector in Cartesian coordinates and yr ∈ R3 is
its orientation. The function h (q) is the forward kinematics that maps the joint angles q
to the pose y. The path following controller is used to control the position yt, and an
input-output linearization is applied for the orientation yr. For the representation of the
orientation several possibilities exist. Although Euler angles or roll-pitch-yaw angles are
geometrically easy to interpret, they suffer from the problem of representation singularities.
Unit quaternions, however, do not have this issue and provide simpler mathematical
calculations. A quaternion consists of a scalar µ and a vector part ε in the form

Q = {µ ε} = {µ ε1 ε2 ε3} . (3.3)

To represent the orientation of the end-effector yr the vector part of the corresponding
unit quaternion is used. Using the normalization condition

‖Q‖2 = µ2 + ε21 + ε22 + ε23 = 1 (3.4)

the scalar part of the unit quaternion can be readily obtained, if required.
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3.2.1 Admissible Paths
For the approach taken in this work, parametrized paths with a path parameter ϑ ∈ T ⊆ R
are used. The path is defined to be

γt =
{
ȳt ∈ R3 : ȳt = σt(ϑ̄), ϑ̄ ∈ T

}
, (3.5)

where the function σt(ϑ) : T → R3 is the parametrization of the path.
The path γt has to be a regular curve, meaning that its tangent vector must not be

zero, see [16]. Hence, for the path parametrization σt(ϑ) one has

σ′t(ϑ) =
(
∂σt
∂ϑ

)
(ϑ̄) 6= 0 , ∀ϑ̄ ∈ T . (3.6)

Moreover, in order for the feedback law (Section 3.4) to be continuous, the path is required
to be threefold continuously differentiable, i. e. γt ∈ C3.

3.2.2 Control Objectives
The objectives of the path following control can be formulated as follows, see [8]:

(O1) Asymptotic Convergence to γt: the system output yt converges asymptotically to
the path, i. e. ∥∥yt (t)

∥∥
γt
→ 0 for t→∞ , (3.7)

where ∥∥yt(t)∥∥γt
= inf

ȳt∈γt

∥∥yt(t)− ȳt
∥∥

2 (3.8)

gives the shortest distance of the system output to the path γt.

(O2) Invariance Property: If the system state [q̄T(t0) ˙̄qT(t0)]T at time t0 is an element
of the controlled invariant subset Γ∗ of

Γ =


q̄

˙̄q

 ∈ R14 : ht(q̄) ∈ γt

 , (3.9)

then one has ∥∥yt (t)
∥∥
γt

= 0 , ∀t ≥ t0 , (3.10)

i. e. the system remains on the path for all t ≥ t0.

(O3) Tangential Motion: The motion on the path γt meets application-specific require-
ments, e. g. the direction and the speed of traversing the path can be specified.
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3.3 Coordinate Transformation
The motion of the end-effector can be partitioned into tangential and transversal dynamics
with respect to the path γt. The tangential subsystem describes the motion along the
path, whereas the transversal subsystem describes the motion orthogonal to the path.
For this purpose, an orthonormal frame must be constructed that is well defined for each
point of the path. One way to assign a frame to a curve is the use of Frenet-Serret frame
[16] as utilized by Gill et al. in [12] in their approach to path following control. The
Frenet-Serret formulas require the curve with parametrization σt(ϑ) to have second-order
regularity, i. e. its first two derivatives with respect to ϑ are linearly independent. Since
this condition implies that the curvature of σt(ϑ) must not be zero for any ϑ ∈ T , the
path following control will be limited to paths that do not include straight line segments.
Furthermore, using the Frenet-Serret frame the basis vectors orthogonal to the path have
a sudden change of sign at inflection points of the curve. This causes the frame to have
discontinuities along the curve. To cope with these limitations, the parallel transport
frame is used as in [13].

3.3.1 Parallel Transport Frame
For a C2 curve the parallel transport frame requires the first derivative to be non-zero.
The first basis vector is given by the unit tangential vector to the path γt

e‖(ϑ) = σ′t(ϑ)∥∥σ′t(ϑ)
∥∥

2
, (3.11)

with σ′t(ϑ) as the tangential vector to the path at ϑ.
To obtain the parallel transport frame, the remaining basis vectors e⊥ and et are

constructed in such a way that their first derivatives are parallel to the first basis vector
e‖, see [14], i. e.

e′i(ϑ) = κi(ϑ)e‖(ϑ) , i ∈ {⊥,t} , (3.12)

with a scalar κi(ϑ). Together with the orthonormality conditions, a system of differential-
algebraic equations is given for each normal vector ei(ϑ), i ∈ {⊥,t}

e′i(ϑ) = κi(ϑ)e‖(ϑ) , ei (ϑ0) = ei,0 (3.13a)
0 = 1− eT

i (ϑ)ei(ϑ) (3.13b)
0 = eT

‖ (ϑ)ei(ϑ) , (3.13c)

where ei,0 is the initial condition that is chosen from the null space of e‖,0 and also fulfills
(3.13b) and (3.13c). Note that this system of equations is overdetermined since there are
5 scalar equations with the 4 unknowns κi and the elements of ei. To solve this system of
equations, first, (3.13c) is differentiated with respect to ϑ, which results in

0 =
(
e′‖(ϑ)

)T
ei(ϑ) + eT

‖ (ϑ)e′i(ϑ) . (3.14)
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Multiplying (3.13a) by eT
‖ (ϑ) yields

eT
‖ (ϑ)e′i(ϑ) = κi(ϑ) eT

‖ (ϑ)e‖(ϑ)︸ ︷︷ ︸
=1

. (3.15)

By combining (3.14) and (3.15), κi(ϑ) is given by

κi(ϑ) = −
(
e′‖(ϑ)

)T
ei(ϑ) , (3.16)

which is then plugged into (3.13a) to obtain the ordinary differential equations for
i ∈ {⊥,t}

e′i(ϑ) = −
(
e′‖(ϑ)

)T
ei(ϑ)e‖(ϑ) , ei (ϑ0) = ei,0 . (3.17)

For real-time implementation on a digital control system, the result must be in discrete
time form. As shown in [13], the overdetermined system of equations (3.13) can be
discretized in time and then solved using a least-squares approach. The optimal solution
for the first normal vector e⊥ is given by

e∗⊥,k =
e∗⊥,k−1 − eT

‖,ke∗⊥,k−1e‖,k√
1−

(
eT
‖,ke∗⊥,k−1

)2
, e⊥,1 = e⊥ (ϑ0) . (3.18)

for the time steps k = 2, 3, . . . . While a similar equation also holds for the second normal
vector et, it is simpler to calculate et using the cross product

et(ϑ) = e‖(ϑ)× e⊥(ϑ) , (3.19)

which is a consequence of the orthogonality condition of the basis vectors.

3.3.2 Orthogonal Projection
In general, the system output is not located on the path. By means of the optimization
problem

ϑ∗ = PT (yt) = arg min
ϑ∈T

∥∥yt − σt (ϑ)
∥∥2

2 (3.20)

an orthogonal projection PT (yt) is defined, which determines the closest point y∗t = σt(ϑ∗)
on the path γt to the system output yt, see Figure 3.1. The first-order necessary condition
and the second-order sufficient condition for optimality of this optimization problem are
given by (

yt − σt(ϑ∗)
)T
σ′t(ϑ∗) = 0 , (3.21)

and ∥∥∥σ′t(ϑ∗)∥∥∥2

2
−
(
yt − σt(ϑ∗)

)T
σ′′t (ϑ∗) > 0 , (3.22)
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respectively. By introducing

α(yt) =
(
yt − σt(ϑ∗)

)T
σ′′t (ϑ∗)∥∥σ′t(ϑ∗)∥∥2
2

, (3.23)

and using (3.22) a feasible neighborhood of the path can be defined as

Yt = {ȳt ∈ R3 : α (ȳt) < 1} . (3.24)

If the system output is outside this feasible neighborhood, no unique path parameter ϑ∗
can be obtained.

x0
y0

z0

path γt

e‖ (ϑ ∗)

e⊥(ϑ∗)

et(ϑ∗)

|δ2|

|δ 1
|

y∗t = σt(ϑ∗)

ϑ = ϑ0

yt = ht(q)

Figure 3.1: Orthonormal frame at the point σt(ϑ∗) of the path γt.

In the following, the parallel transport frame is used together with the optimal path
parameter ϑ∗ to perform a coordinate transformation.

3.3.3 Tangential Subsystem
As proposed in [13], for the first tangential coordinate the arc length

η1 = g (yt) =
∫ ϑ∗

ϑ0

∥∥∥σ′t (τ)
∥∥∥

2
dτ (3.25)

is chosen, which is the traversed length along the curve from the starting point σt(ϑ0) to
the current point σt(ϑ∗), with ϑ∗ according to (3.20). The second tangential coordinate
is the time derivative of the arc length

η2 = η̇1 =
∥∥∥σ′t(ϑ∗)∥∥∥2

ϑ̇∗ , (3.26)

with the time derivative of the optimal path parameter ϑ̇∗, which is calculated as follows.
Differentiating the first order optimality condition (3.21) with respect to time yields(

ẏt − σ′t(ϑ∗)ϑ̇∗
)T
σ′t(ϑ∗) +

(
yt − σt(ϑ∗)

)T
σ′′t (ϑ∗)ϑ̇∗ = 0 . (3.27)
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Using (3.23) one has

ẏT
t σ
′
t(ϑ∗)− ϑ̇∗

(
σ′t(ϑ∗)

)T
σ′t(ϑ∗)︸ ︷︷ ︸

‖σ′t(ϑ∗)‖2
2

+α(yt)
∥∥∥σ′t(ϑ∗)∥∥∥2

2
ϑ̇∗ = 0 . (3.28)

This equation can be solved for ϑ̇∗ to obtain

ϑ̇∗ = ẏT
t σ
′
t(ϑ∗)(

1− α(yt)
) ∥∥σ′t(ϑ∗)∥∥2

2

=
ẏT
t e‖(ϑ∗)

(1− α(yt))
∥∥σ′t(ϑ∗)∥∥2

, (3.29)

where (3.11) is used. Finally, by introducing

β(yt) = 1
1− α(yt)

, (3.30)

the time derivative of the optimal path parameter ϑ̇∗ can be rewritten as

ϑ̇∗ =
β(yt)eT

‖ (ϑ∗)∥∥σ′t(ϑ∗)∥∥2
ẏt . (3.31)

Hence, the second tangential coordinate η2 from (3.26) is given by

η2 = β(yt)eT
‖ (ϑ∗)︸ ︷︷ ︸

(∇g)T

ẏt︸︷︷︸
∇htq̇

, (3.32)

with the gradient (∇g)T = ∂g/∂yt and the Jacobian matrix ∇ht = ∂ht/∂q.

3.3.4 Transversal Subsystem
According to (3.21), the difference (yt − σt(ϑ∗)) determines the component of the system
output yt that is locally orthogonal to the path γt. As proposed in [13], by projecting
this term onto the basis vectors e⊥ and et of the local coordinate frame, the transversal
coordinates

ξ1 = δ1(yt) = eT
⊥(ϑ∗)

(
yt − σt(ϑ∗)

)
(3.33)

and

ξ3 = δ2(yt) = eT
t (ϑ∗)

(
yt − σt(ϑ∗)

)
(3.34)

are defined, see Figure 3.1. It is obvious that if the output is on the path, the transversal
coordinates ξ1 and ξ3 are zero.
Differentiation of ξ1 and ξ3 with respect to time yields

ξ2 = ξ̇1 =
(
e′⊥(ϑ∗)

)T
ϑ̇∗
(
yt − σt(ϑ∗)

)
︸ ︷︷ ︸

(3.13a)
= 0

− eT
⊥(ϑ∗)σ′t(ϑ∗)ϑ̇∗︸ ︷︷ ︸

(3.13c)
= 0

+ eT
⊥(ϑ∗)︸ ︷︷ ︸

(∇δ1)T

ẏt︸︷︷︸
∇htq̇

, (3.35)
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and

ξ4 = ξ̇3 =
(
e′t(ϑ∗)

)T
ϑ̇∗
(
yt − σt(ϑ∗)

)
︸ ︷︷ ︸

(3.13a)
= 0

− eT
t (ϑ∗)σ′t(ϑ∗)ϑ̇∗︸ ︷︷ ︸

(3.13c)
= 0

+ eT
t (ϑ∗)︸ ︷︷ ︸

(∇δ2)T

ẏt︸︷︷︸
∇htq̇

. (3.36)

with the gradients (∇δ1)T = ∂δ1/∂yt and (∇δ2)T = ∂δ2/∂yt and the Jacobian matrix ∇ht
of the output yt. The first and second term in (3.35) and (3.36) vanish as a consequence
of the use of the parallel transport frame with (3.13a) and (3.13c) and due to (3.21).

3.3.5 Rotational Subsystem
The rotational part of the system output yr and its time derivative are chosen for the
first and second rotational coordinates ζ1 and ζ2

ζ1 = yr = hr (q) , (3.37)

ζ2 = ζ̇1 = ẏr = ∇hrq̇ , (3.38)

with the Jacobian matrix ∇hr of the output yr.

3.3.6 Diffeomorphism
Equations (3.25) and (3.32)-(3.38) define a C1-diffeomorphism Φ, which establishes a
mapping between the generalized coordinates q and velocities q̇ and the virtual output
ŷT = ĥT (q) = [η1 ξ1 ξ3 ζT

1 ] in the form

ŷ
˙̂y

 =



η1

ξ1

ξ3

ζ1
η2

ξ2

ξ4

ζ2


=



g ◦ ht (q)
δ1 ◦ ht (q)
δ2 ◦ ht (q)

hr (q)
(∇g)T∇ht q̇
(∇δ1)T∇ht q̇
(∇δ2)T∇ht q̇
∇hr q̇


= Φ (q, q̇) . (3.39)

For a proof that the mapping (3.39) is a diffeomorphism, see [13]. Using this coordinate
transformation the pose of the end-effector and its time derivative are transformed to the
corresponding path-related coordinates. This allows for a separation of the dynamics into
tangential, transversal and rotational subsystems.
The Jacobian of Φ is calculated to be

∇Φ =

Ĵ (q) 0
∗ Ĵ (q)

 , (3.40)
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Herein, the matrix Ĵ (q) is the transformation of the Jacobian matrix J (q) of the system
output y with respect to the path, i. e.

Ĵ (q) = L (q) J (q) , (3.41)

with the matrices

L (q) =

E (q) 0
0 I3

 , E (q) =


β(yt)eT

‖
eT
⊥

eT
t

 , (3.42)

where I3 ∈ R3×3 is the identity matrix. Analyzing equations (3.32), (3.35), (3.36) and
(3.38) shows that the matrix Ĵ (q) relates the time derivative of the virtual output ˙̂y to
the generalized velocities q̇ in the form

˙̂y =


η̇1

ξ̇1

ξ̇3

ζ̇1

 = Ĵ (q) q̇ . (3.43)

This equation is the counterpart of

ẏ = J (q) q̇ (3.44)

for the original output y.

3.4 Feedback Linearization
Using the equations (3.32), (3.35), (3.36) and (3.38) the second-order time derivative of
the tangential, transversal and rotational coordinates is calculated to be

η̈1 =
(

(∇β)T ẏteT
‖ (ϑ∗) + β(yt)

(
e′‖(ϑ∗)

)T
ϑ̇∗
)

ẏt + β(yt)eT
‖ (ϑ∗)ÿt (3.45a)

ξ̈1 =
(
e′⊥(ϑ∗)

)T
ϑ̇∗ẏt + eT

⊥(ϑ∗)ÿt (3.45b)

ξ̈3 =
(
e′t(ϑ∗)

)T
ϑ̇∗ẏt + eT

t (ϑ∗)ÿt (3.45c)

ζ̈1 = ÿr , (3.45d)

with (∇β)T = ∂β(yt)/∂yt. This is equivalent to differentiating (3.43) with respect to
time to obtain

¨̂y =


η̈1

ξ̈1

ξ̈3

ζ̈1

 = ˙̂J (q, q̇) q̇ + Ĵ (q) q̈ . (3.46)
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Using (3.1) the generalized accelerations q̈ are given by

q̈ = M−1(q)(τ + τ ext − n(q, q̇)) , (3.47)

so that (3.46) can be rewritten as

¨̂y = ˙̂J (q, q̇) q̇ + Ĵ (q)
(
M−1(q)(τ + τ ext − n(q, q̇))

)
. (3.48)

It can be shown that the use of the feedback transformation

τ = n (q, q̇)− τ ext + M(q)Ĵ† (q)
(

v− ˙̂J (q, q̇) q̇
)

(3.49)

yields a linear input-output relation from the virtual control input v to the virtual output
ŷ, which is expressed as 6 integrator chains of length two

¨̂y = v , (3.50)

where the virtual control input is

v =

vt
vr

 =


v‖
v⊥
vt

vr

 . (3.51)

Note that in (3.49) the generalized inverse of the matrix Ĵ (q),

Ĵ† (q) = ĴT (q)
(
Ĵ (q) ĴT (q)

)−1
, (3.52)

is used since the original system (3.1) has n = 7 control inputs, whereas only 6 virtual
inputs exist. In order to stabilize the self-motion of the robot, see, e. g., [17], a term τN

τN =
(
I7 − Ĵ† (q) Ĵ (q)

)
(−K1q̇ −K0q) (3.53)

is added to the control law (3.49), i. e.

τ = n (q, q̇)− τ ext + M(q)Ĵ† (q)
(

v− ˙̂J (q, q̇) q̇
)

+ τN , (3.54)

with the identity matrix I7 and positive definite diagonal matrices K0 and K1 as PD
controller gains.

With the help of the virtual control inputs the fulfillment of the objectives of the path
following control can be discussed. Due to the linear relation between the inputs v⊥ and
vt and the transversal states (ξ, ξ̇) according to (3.50) and because of the reachability of
this linear system, a linear state controller can be used to asymptotically stabilize the
transversal subsystem. Thus, the asymptotic convergence to σt(ϑ) can be guaranteed and
objective (O1) is fulfilled.
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By setting the transversal coordinates ξ1 and ξ3 and their time derivatives to zero, i. e.

Φξ(q, q̇) =


ξ1

ξ3

ξ2

ξ4

 =


δ1 ◦ ht (q)
δ2 ◦ ht (q)

(∇δ1)T∇ht q̇
(∇δ2)T∇ht q̇

 = 0 , (3.55)

the controlled invariant subset Γ∗ =
{

[q̄T ˙̄qT]T ∈ R14 : Φξ(q̄, ˙̄q) = 0
}
is found. Ele-

ments of this subset have the property that their corresponding system output is on the
path, and its velocity is tangential to the path. If at t0 the system state is an element of
Γ∗, then by choosing v⊥ = 0 and vt = 0 it can be achieved that

ξi = 0 , i = 1, 2, 3, 4 (3.56a)
‖yt‖γt

= 0 , ∀t > t0 , (3.56b)

i. e. the system output remains on the path and objective (O2) is satisfied.
Since the virtual input v‖ is in the tangential direction, it allows to control the motion

along the path and objective (O3) is fulfilled.

Control Law
The control law for the tangential and transversal coordinates is designed as a PD state
controller combined with a feedforward part as follows

vt =


η̈d1 − aη,1ėη − aη,0eη
ξ̈d1 − aξ,1ėξ1 − aξ,0eξ1

ξ̈d3 − aξ,1ėξ3 − aξ,0eξ3

 , (3.57)

where the desired values are denoted by the superscript d, and the errors between the
actual and desired values are given by

eη = η1 − ηd1 (3.58a)
eξi

= ξi − ξdi , i = 1, 3 . (3.58b)

The controller gains, ai,j > 0 with i ∈ {η, ξ} and j = 0, 1, are obtained using pole
placement so that the characteristic polynomial of the closed-loop system is guaranteed
to be a Hurwitz polynomial and thus, the error dynamics are exponentially stable.
Although the use of an integral action in the controller has the advantage of making

the steady-state control error zero for constant disturbances, it can cause an undesirable
limit cycle in combination with stick-slip friction.
For the rotational coordinates a PD controller is employed in the form

vr = −ar,0er − ar,1ẏr , (3.59)
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with the positive controller gains ar,0 and ar,1. Note that for the D-action not the time
derivative of the error ėr but the angular velocity

ẏr = J7
ω,0(q)q̇ (3.60)

is used. For the orientation error er, quaternions are used as described in the following.
Using rotation matrices the error between the desired end-effector orientation Rd and its
current orientation R(q) can be defined as R(q)RT

d . With the help of the corresponding
quaternions Qd and Q(q), the error can be expressed as

∆Q = Q(q)⊗Q−1
d . (3.61)

By means of the calculation rules of quaternions Q = {µ ε},

Q−1 = {µ − ε} (3.62a)
Q1 ⊗Q2 = {µ1µ2 − εT

1 ε2, µ1ε2 + µ2ε1 + ε1 × ε2} , (3.62b)

it can be shown, see, e. g., [18], that ∆Q = {1,0}, if and only if the desired and the actual
orientation are aligned, i. e. Rd and R are equal. Therefore, the orientation error of the
end-effector can be regarded as the vector part of the error in (3.61), i. e.

er = ∆ε = −µ(q)εd + µdε(q)− ε(q)× εd . (3.63)

3.5 Path Parametrization
As discussed in Section 3.2.1 the path is required to be threefold continuously differentiable
in order to guarantee continuous control inputs τ . Hence, quartic splines, which are of
class C3, can be used as a desired path. Quartic splines are piecewise polynomial functions
of order four, which are used to interpolate between given points. At the interpolation
points the adjacent curve segments have to satisfy continuity conditions for their function
values and the value of their first three derivatives. For details on spline interpolation see,
e. g., [19] and [20]. By constructing the quartic spline, the path is given as a segmented
parametrized curve

σ(ϑ) =



σ0(ϑ) , ϑ0 ≤ ϑ < ϑ1

σ1(ϑ) , ϑ1 ≤ ϑ < ϑ2
...
σl−1(ϑ) , ϑl−1 ≤ ϑ < ϑl

, (3.64)

consisting of l path segments

σs(ϑ) =


σs,x(ϑ)
σs,y(ϑ)
σs,z(ϑ)

 =
4∑
j=0


aj,s(ϑ− ϑs)j
bj,s(ϑ− ϑs)j
cj,s(ϑ− ϑs)j

 , s = 0, . . . , l − 1 , (3.65)
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with the polynomial coefficients aj,s, bj,s, cj,s for j = 0, . . . , 4.
In a further step the path parameter ϑ is normalized by dividing by its maximum value

ϑmax, i. e.

ϑn = ϑ

ϑmax
= ϑ

ϑl
, (3.66)

such that ϑn ∈ [0, 1]. Note that additionally, the polynomial coefficients of the spline must
be modified. The coefficients of the normalized curve σn(ϑn) are calculated to be

aj,s,n = ϑjmaxaj,s (3.67a)
bj,s,n = ϑjmaxbj,s (3.67b)
cj,s,n = ϑjmaxcj,s , (3.67c)

where j = 0, . . . , 4.



4 Robotic Winding of a Rope
The procedure of winding a rope around objects in the workspace of a robot can be divided
into 3 subtasks. First, the end-effector is to be controlled to follow a defined path. This
is achieved using the path following control described in the previous chapter. Secondly,
the orientation of the end-effector has to be specified depending on the orientation of the
objects to be wound around. Thirdly, during the winding process the tension of the rope
is required to be controlled.
In this chapter, after a literature review the problem is described in more detail in

Section 4.2. Then, in Section 4.3 the experimental setup is explained. In Section 4.4, it is
shown how the desired path is designed. The desired orientation of the end-effector is
derived in Section 4.5. In Section 4.6, the motion along the path is discussed. The chapter
concludes by presenting simulation and experimental results.

4.1 Literature Review
The use of robots for handling linear flexible objects, such as ropes, has been investigated
in various works. In [21] a method is proposed for placing a rope in a target shape on
a tabletop using a dual-arm robot and making a clove hitch in a further step. Vinh et
al. analyzed the motion required to tie a knot by a human and extracted key points which
are used for a point-to-point motion control of a robot arm to tie a knot, see [22]. In
[23] and [24] the dynamic knotting of a flexible rope is investigated by developing a rope
deformation model. Starting from the multi-link approximation of the rope, its equations
of motion can be replaced by an algebraic equation under the constraint of the high-speed
motion of a robot arm. The model is used for motion planning for tying a knot.

Using industrial robots Hultman et al. presented robotized cable winding of the stators
of electric machines, see [25]. In a robot cell two industrial robots cooperate to wind
cables in the stator slots in a predefined pattern.
In [26] an architectural structure is built using two synchronized industrial robots.

Carbon fiber is spanned between defined control points to complete the desired structure
over a steel frame that is held and moved by the robots. The fiber is delivered by a
spool that is placed on the floor. In contrast to that, in [27] the fiber spool is part of the
end-effector of a single robot. Using an adhesive the fiber is placed on the inner surface
of a membrane that surrounds the robot. Here, the contact force between the newly
applied fiber and the placed fiber is controlled to avoid pulling off the placed fibers and
also deforming the membrane. For this force control the robot is allowed to deviate from
the desired path by online modification of the original path.
In the present work, a rope is wound around arbitrarily oriented rods that are placed

within the workspace of a robot. During the winding process the tension of the rope is
controlled to be constant.

29
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4.2 Problem Statement
Given some rods in the workspace of the robot, a path has to be defined for the winding
process. This path is traversed by the robot end-effector using the path following control
algorithm discussed in Chapter 3. Having a rope spool mounted on the robot end-effector
and fixing the rope end, the rope is wound around the rods when the path is traversed.
Another objective is to ensure a constant rope tension during the winding. This is

achieved by a motor that drives the rope spool. By controlling the motor torque the
rope tension is kept constant. One of the requirements for choosing the motor is the
capability of having forces close to the maximum force that the robot can withstand. On
the other hand, the motor itself has to be as small and light as possible. A high force can
be achieved using a small motor if a gear is used. However, this adds additional friction
that is difficult to control.
One of the challenges during the winding process is to specify the orientation of the

end-effector. That is, for arbitrarily oriented rods the end-effector orientation must be
appropriately defined. This is covered in detail in Section 4.5.
Figure 4.1 shows the desired result of rope winding by the robot.

(a) side view (b) top view

Figure 4.1: Rope wound by the robot around three rods.

4.3 Experimental Setup
As a trade-off between the aforementioned requirements for the motor a direct drive
electronically commutated motor is employed. The motor EC 90 Flat from Maxon Motor
has a high torque density and can develop torques up to 560 mNm. Because of its external
rotor, it cannot be directly mounted on the robot. For that purpose a suitable motor
housing had to be designed and constructed.
Figure 4.2 shows the robot together with the end-effector. The components of the
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end-effector are illustrated in Figure 4.3 in detail. The lower part of the motor housing is
mounted on the mounting flange of the robot and is laterally fixed with the upper part of
the case. The upper part encloses the motor and is fixed with its upper face. The spool is
directly attached to the motor shaft.

Entwurf: September 28, 2018

(a) Robot with end-effector.

Entwurf: September 18, 2018

(b) End-effector.

Figure 4.2: 3-D view of the robot together with the end-effector.

Due to the construction of the end-effector it was possible to use the motor torque
controller provided by the manufacturer for controlling the rope tension. Given the desired
rope tension force F dr , the required motor torque τdm is calculated to be

τdm = raF
d
r , (4.1)

where ra is the average radius of the rope spool. Here, the following simplifying assumptions
were made:

• The rope is rigid, and thus the deformation and dynamics of the rope are not
modeled.

• It is assumed that the rope layers do not change the distance between the rope
contact point and the motor shaft axis considerably. Hence, the average radius can
be used for calculating the motor torque from the desired rope tension force.

• The stretched rope is orthogonal to the spool axis.

4.4 Path Recording
A teach-in procedure is performed to record the desired path. By compensating the
gravitational forces and friction of the robot it is possible to easily move the robot joints
to achieve the desired poses. The Cartesian position values of the end-effector along the
path are stored. This results in a large number of data points. Since in a next step a
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(a)

Spool

Motor housing
(upper part)

EC Motor
(Maxon Motor©)

Motor housing
(lower part)

(b)

Figure 4.3: 3-D sketch of the end-effector: (a) Assembled end-effector. (b) Parts of the
end-effector.

quartic spline interpolation is to be performed between the points, only a limited number
of points that roughly describe the desired path are selected.
As no collision monitoring is employed, the path has to be constructed in such a way

that the spool does not collide with the stretched rope. Hence, the user has to perform
the teach-in of the path with the mounted end-effector and rope so that possible collisions
can be observed and avoided.

In the post-processing of the recorded path, the fact that the spool orientation is directly
derived from the path must be especially taken into consideration. To this end, parts of
the path containing small back and forth motions are manually modified since they would
cause undesirable changes in the spool orientation. For the path shown in Figure 4.4 this is
done by flattening the part of the path around the left vertical rod, i. e. the z-coordinates
are set to an equal value. The torsion in the end part of the path is not flattened since
this would cause a collision of the spool with the stretched rope.

4.5 Desired Orientation of the End-effector
When winding a rope around a rod, the orientation of the spool must be appropriately
controlled using the control law derived in the previous chapter. In the case where all the
rods have the same orientation, a single spool orientation that is antiparallel to the rod
orientation can be kept constant during the whole winding process. However, this is not
applicable to the situation where each rod to be wound around has a different orientation.
For a vertically mounted rod the spool must also be vertically oriented, and for winding
around a subsequent horizontal rod, the spool orientation must be changed accordingly.
This would require additional external information on how the rods are oriented and
when the spool has to change its orientation. However, this work is aimed at deriving the
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Figure 4.4: Recorded path around three rods and selected points from which a quartic
spline is constructed. The robot base is in the origin.

required spool orientation from the given path.
One way of representing the end-effector orientation is through the use of rotation

matrices. The columns of a rotation matrix can be interpreted as the basis vectors of the
end-effector frame expressed in the base frame. Hence the problem of specifying the desired
end-effector orientation is equivalent to finding a well-defined coordinate frame at each
point of the path being traversed. This gives rise to using the concept of moving frames
from differential geometry, which provide a coordinate system at each point of a curve.
This coordinate system can be used to derive an appropriate end-effector orientation
during the winding process. In this work, two common moving frames, the Frenet-Serret
frame and the parallel transport frame, are employed and the results are compared.

4.5.1 Frenet-Serret Frame
For a three times differentiable parametrized curve σ(ϑ) ∈ R3 the basis vectors of the
Frenet-Serret frame are given by

T(ϑ) = σ′(ϑ)∥∥σ′(ϑ)
∥∥

2
(4.2a)

N(ϑ) = T′(ϑ)∥∥T′(ϑ)
∥∥

2
(4.2b)

B(ϑ) = T(ϑ)×N(ϑ) , (4.2c)

where T is the unit tangent vector to the path, N is the unit normal vector and B is
the unit binormal vector. The normal vector N points in the direction of the center of
curvature of the path. The osculating plane is spanned by the vectors T and N. When the
Frenet-Serret frame is used for the end-effector orientation, the osculating plane defines the
plane, in which the end-effector moves. Furthermore, the binormal vector B specifies the
direction of the spool axis, and thus it is referred to as the spool vector in the following.
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In order to express the normal vector N in terms of the derivatives of the curve σ(ϑ),
first, using (4.2a) the vector T′ is written as

T′(ϑ) = d
dϑ

 σ′(ϑ)∥∥σ′(ϑ)
∥∥

2

 =
σ′′
∥∥∥σ′∥∥∥

2
− σ′ (σ′′)Tσ′+(σ′)Tσ′′

2‖σ′‖2

‖σ′‖22

=
σ′′
∥∥∥σ′∥∥∥2

2
− σ′

(
(σ′)Tσ′′

)
‖σ′‖32

.

(4.3)

For simplicity the dependency of the curve σ(ϑ) on the path parameter ϑ is omitted here.
Using the identity

a × (b× c) = b(a · c)− c(a · b) , (4.4)

with a = c = σ′ and b = σ′′, (4.3) can be written as

T′(ϑ) = σ′ × (σ′′ × σ′)
‖σ′‖32

. (4.5)

By inserting this result in (4.2b) the unit normal vector N(ϑ) is given by

N(ϑ) = σ′ × (σ′′ × σ′)∥∥σ′ × (σ′′ × σ′)
∥∥ = σ′ × (σ′′ × σ′)

‖σ′‖ ‖σ′′ × σ′‖
, (4.6)

where the last equation follows from the orthogonality of σ′ to (σ′′ × σ′).
In the following, some of the properties of the Frenet-Serret frame that result in

discontinuities in the spool orientation are discussed, and it is shown how these issues can
be solved.

Using the Frenet-Serret formulas the frame is undefined at path segments with straight
lines, i. e. where the curvature σ′′(ϑ) vanishes. In this case the frame of the previous point
is adopted for the current point.
When passing through inflection points of the path the sign of the normal vector N

changes abruptly, which also results in an abrupt change in the spool vector B. This
discontinuity is detected by comparing the magnitude of the difference between the current
and previous normal vector against a threshold. By reversing the sign of the normal vector
a continuous spool orientation along the path is achieved.

When the osculating plane changes, a jump discontinuity occurs and the frame becomes
discontinuous. Let Qa and Qb denote the corresponding quaternions of the two consecutive
frames before and after the jump. To restore continuity, starting from Qa the time
derivative of the quaternion is integrated to reach the desired final value Qb. To this end,
the error ∆Q between the consecutive quaternions Qa and Qb is determined by

∆Q = Qa ⊗Q−1
b . (4.7)

The vector part of (4.7) is given by

∆ε = −µaεb + µbεa − εa × εb . (4.8)
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This difference is then multiplied by a scalar parameter kq to obtain

ω = kq∆ε , (4.9)

which can be interpreted as the scaled required angular velocity of the end-effector for the
transition from Qa to Qb. Using the corresponding quaternion Qω of ω the time derivative
of the quaternion is given by

Q̇ = 1
2Qω ⊗Qa = 1

2{0 ω} ⊗Qa , (4.10)

see, e. g., [18]. The discrete time integration with a sampling time Ts is performed as
follows

Qk = Qk−1 + TsQ̇ . (4.11)

This result is then normalized to obtain a unit quaternion. It can be converted to the
rotation matrix R7

0,k, from which the spool vector Bk at the k-th time step is extracted.

4.5.2 Parallel Transport Frame
Consider an initial frame (T,N,B) on a curve, with the tangent vector T and the normal
vectors N and B to the curve. When moving along the curve, the parallel transport frame
turns only as much as necessary for N and B to remain normal to the curve. Compared
to the Frenet-Serret frame, the change of the parallel transport frame only depends on
the curvature of the curve and not on its torsion, which results in a smaller change. The
discontinuities discussed for the Frenet-Serret frame do not occur when using the parallel
transport frame. A more extensive comparison between these two frames together with
examples can be found in [28].

Recall that the coordinate system (e‖, e⊥, et) required for the path following control in
Chapter 3 was calculated by the parallel transport frame. Hence, the same basis vectors
from (3.11), (3.18) and (3.19) can also be used for determining the desired orientation of
the end-effector, i. e.

T = e‖ (4.12a)
N = e⊥ (4.12b)
B = et , (4.12c)

with B representing the spool vector.

4.5.3 Modification of the Spool Vector
As mentioned earlier in this chapter, the spool orientation depends on the direction change
of the traversed path. In this section, the obtained spool vector B is modified in a few
steps so that it is adapted to the winding application. It is assumed that the free end of
the vertical rods points upwards, and the horizontal rods point towards the robot, see,
e. g., Figure 4.1.
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• Consider Figure 4.5 with a cylinder that is coaxial with the vertical axis of the robot
base. The robot end-effector lies on the cylinder surface. Given the position p of
the end-effector, the unit radial vector to this point is given by

rT(p) =

[
px py 0

]
∥∥∥∥[px py 0

]∥∥∥∥
. (4.13)

Using the vector

zT =
[
0 0 1

]
(4.14)

which is parallel to the vertical axis of the cylinder, the vector tangential to the
cylinder at p is defined by

κ(p) = z× r(p) . (4.15)

For winding around a horizontal rod pointing towards the robot, the tangential
component of the spool vector is suppressed to avoid collisions with the rod. To
this end, the spool vector is projected onto the plane spanned by the vectors r and
z, which is in the null space of the tangent vector κ. The projection of the spool
vector B onto this plane is given by

Bp =
(

I3 −
κκT

κTκ

)
B , (4.16a)

B̃p = Bp∥∥∥Bp

∥∥∥ . (4.16b)

Note that after each modification step a normalization of the vector is necessary to
obtain a unit vector.

• In the r-z-plane the spool vector is modified such that it is restricted to the range
spanned by the negative vertical vector −z and the radial vector r, see Figure 4.6(a).
This step is required since for a rod pointing upwards, winding is only possible with
the spool pointing downwards. Hence, if the z-component of B is positive, its sign
is reversed.

• A problem during winding around a horizontal rod is that the robot might get into
wrist singularities, i. e. the joint axes 5 and 7 become parallel. To avoid such a
situation, an inclination angle α for the spool vector is introduced, which specifies the
minimum required angle between the radial vector r and the spool vector as shown
in Figure 4.6(b). Let Bα denote the limit for the spool vector. The z-component of
B has to be modified to be

Bz := min (Bz , Bα,z) = min (Bz ,− arctan(α)) , (4.17a)

B̃ = B
‖B‖

. (4.17b)
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Figure 4.5: Projection of the spool vector B onto the r-z-plane to obtain Bp.
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Figure 4.6: (a) Allowed range of the spool vector B. (b) Allowed range with an inclination
angle α to avoid the wrist singularity.

• The spool vector might have components that point towards the robot. This is an
undesirable orientation considering the fact that the rods are usually placed away
from the robot and point towards it. In this case the spool vector and the radial
vector form an obtuse angle. To correct that, the spool vector is reflected through
the κ-z-plane as shown in Figure 4.7. Since the unit radial vector r is the normal
vector of this plane, the reflected spool vector Br is given by

Br = B− 2rrTB , (4.18a)

B̃r = Br

‖Br‖
. (4.18b)

In the following, the desired modified spool vector is denoted by Bd.

Orientation Error

From the previous calculations it can be seen that the modified spool vector Bd has no
components in the direction of the tangential vector κ(p) to the cylinder, i. e. they are
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Figure 4.7: Reflection of the spool vector B through the κ-z-plane to obtain Br.

orthogonal to each other. The desired orientation of the end-effector can be expressed by
the rotation matrix

Rd =
[
κ(p) Bd × κ(p) Bd

]
. (4.19)

To achieve this desired orientation during the winding around a rod, continuous changes
of the joint angle q7 may be required. This might cause a limit violation of the 7th joint.
However, due to the symmetry of the end-effector, rotations about the 7th joint axis
are not necessary and the only relevant vector for the orientation is the spool vector Bd.
Hence, for calculating the orientation error, not the whole rotation matrices but only
their third basis vectors are used, which specify the spool vector. In [29] it is shown how
a vector can be aligned with another vector using unit quaternions. The required unit
quaternion for aligning the current unit spool vector B(q) with the desired modified unit
spool vector Bd is given by

Q = {µ ε} =


√

1 + c

2

√√√√ 1
2(1 + c)

(
B(q)×Bd

) , (4.20)

with c = B(q) ·Bd, see [29]. The vector part ε of this quaternion is used as the orientation
error er in the control law (3.59).

4.6 Motion Along the Path
Since the primary objective of path following control is the asymptotic convergence of the
output to the path, the desired values for the transversal coordinates ξd1 and ξd3 and their
time derivatives are set to zero. To obtain a smooth trajectory for the desired tangential
coordinate ηd1 a setpoint filter is used.
Furthermore, the approach for finding the optimal path parameter is discussed in this

section.
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4.6.1 Setpoint Filter
In order to smooth a given signal u(t) a linear filter in the form

G(s) = ŷ(s)
û(s) = 1

s3 + a2s2 + a1s+ a0
(4.21)

is used. Herein, s is the Laplace variable and û(s) and ŷ(s) are the Laplace transform
of the filter input u(t) and output y(t), respectively. This third order filter also allows
for calculating the first two continuous derivatives of the input using a state space
representation. Applying a step input from umin to umax to this filter, a sufficiently
smooth trajectory y(t) is obtained. Additionally, it is desirable to limit the velocity u̇(t)
to a maximum value u̇max. This can be achieved by using a rate limiter at the input of
the filter. The resulting signals are shown in Figure 4.8.

Rate
Limiter

Setpoint
Filter

umin

umax

u̇max
1

u(t)
y(t)

Figure 4.8: Rate limiter and setpoint filter for achieving a sufficiently smooth trajectory.

4.6.2 Optimal Path Parameter
For the numerical implementation of the path following control algorithm a time dis-
cretization in the form t = kTs, k = 1, 2, . . . with the sampling time Ts is performed.
Using the Newton method, the optimization problem (3.20) with the cost function

f(ϑ) =
∥∥∥yt,k − σt(ϑ)

∥∥∥2

2
(4.22)

is iteratively solved in each time step k = 1, 2, . . . . The iteration is given by

ϑk,i = ϑk,i−1 −
f ′(ϑk,i−1)
f ′′(ϑk,i−1) , i = 1, 2, . . . (4.23)

with the initial condition ϑk,0 = ϑ∗k−1. The termination condition is given by∣∣∣ϑk,i − ϑk,i−1
∣∣∣ < ε (4.24)

with ε > 0. The derivatives of the cost function with respect to ϑk,i−1 are calculated to be

f ′(ϑk,i−1) = −2
(

yt − σt
(
ϑk,i−1

))T
σ′t
(
ϑk,i−1

)
(4.25)

f ′′(ϑk,i−1) = 2
∥∥∥∥σ′t (ϑk,i−1

)∥∥∥∥2

2
− 2

(
yt − σt

(
ϑk,i−1

))T
σ′′t
(
ϑk,i−1

)
. (4.26)
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This algorithm should be initialized at the global optimum ϑ∗0 for the time step k = 0.
For this purpose, a sufficient number of evenly spread points on the path γt are chosen.
The point with the shortest distance to yt(0) is used as the starting point for the local
minimum search (4.23) to obtain ϑ∗0.
Using the optimal solution ϑ∗k = ϑk,i, the arc length η1 from (3.25) is numerically

calculated to be

η1,k = η1,k−1 +
(
ϑ∗k − ϑ∗k−1

) ∥∥∥σ′t(ϑ∗k)∥∥∥2
, (4.27)

see [13].

4.7 Simulation Results
Using Matlab/Simulink, simulations of the path following control algorithm applied
to the robot model (3.1) were performed. The control parameters of the path following
control are tuned such that small errors can be achieved while making sure that the joint
torque and velocity limits of the robot are not violated. For a list of control parameters,
see Appendix A.3.
In the following, the simulation results of traversing the path from Figure 4.4 are

presented. The results of employing both the Frenet-Serret (FS) and parallel transport
(PT) frame for the desired orientation are compared.

The distance of the system output to the path is given by

d =
∥∥∥yt − σt(ϑ∗)∥∥∥ . (4.28)

As can be seen in Figure 4.9, starting with a distance d0 = 10 mm the system output
converges to the path when at t = 2 s the path following controller is turned on. At t = 5 s
the traversal of the path is started. The increase of distance d in the interval [50 s, 60 s]
can be traced back to the sharp torsion in the end part of the path.

Entwurf: October 1, 2018
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Figure 4.9: (Simulation) Distance of the system output to the path, d =
∥∥yt − σt(ϑ∗)∥∥.

The tangential coordinate η1 and its time derivative η2 are shown in Figure 4.10 together
with their desired values ηd1 and ηd2 , which are obtained using the setpoint filter from
Section 4.6.1. Using a rate limiter the maximum tangential velocity ηd2 is limited to be
0.07 m/s. The desired tangential acceleration is also depicted in this figure, which is used
as feedforward part for controlling the tangential motion according to (3.57).
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Figure 4.11 shows the time evolution of the optimal path parameter ϑ∗. The initial
optimum value is found at ϑ∗0 = 1.4× 10−4 and because of the normalization of the path
parameter the value at the end of the path equals 1.
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Figure 4.10: (Simulation) Tangential coordinate η1 and its time derivative η2 together
with their desired values ηd1 and ηd2 and the desired tangential acceleration
η̈d1 .

Entwurf: October 6, 2018

0 10 20 30 40 50 60
0

0.5

1

2 5
t in s

ϑ
∗

ϑ∗
F S

ϑ∗
P T

Figure 4.11: (Simulation) Time evolution of the optimal path parameter ϑ∗.

The transversal coordinates ξ1 and ξ3 and their time derivatives ξ2 and ξ4 are shown in
Figure 4.12. This is in accordance with Figure 4.9 since the distance to the path can also
be expressed as

d =
√
ξ2

1 + ξ2
3 . (4.29)
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Figure 4.12: (Simulation) Transversal coordinates ξ1 and ξ3 and velocities ξ2 and ξ4.

The spool vector B and its desired direction Bd are illustrated in Figure 4.13 for the
FS frame and in Figure 4.14 for the PT frame. The vector components of the orientation
error er are shown in Figure 4.15. During the winding around the first vertical rod until
t = 30 s the orientation error is almost zero. In the subsequent part the orientation error
becomes larger due to the changes in the curvature and torsion of the path. Setting the
controller parameters to larger values can improve the result at the cost of higher joint
velocities and torques close to the limits of the robot. An important observation is that
even when the orientation error increases, it is immediately driven to zero after each
increase.
Figure 4.16 shows the required joint torques τ . The resulting trajectories of the joint

angles q can be seen in Figure 4.17.
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Figure 4.13: (Simulation) Use of the Frenet-Serret frame for winding a rope around three
rods along the path γt. The spool vector B and its desired direction Bd are
shown at exemplary points.
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Figure 4.14: (Simulation) Use of the parallel transport frame for winding a rope around
three rods along the path γt. The spool vector B and its desired direction
Bd are shown at exemplary points.
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Figure 4.16: (Simulation) Joint torques τ .
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Figure 4.17: (Simulation) Joint angles q.
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4.8 Experimental Results
The method presented in this work is implemented in Matlab/Simulink, from which a
C++ code is generated. This code is then used on the real-time system TwinCAT from
Beckhoff Automation. The communication between TwinCAT and the KUKA controller
unit takes place via EtherCAT. The sampling time used for the time discretization is
Ts = 1 ms.
First, using a computed torque (CT) controller in the form

τ = M(q)v + C (q, q̇) q̈ + g (q) (4.30a)
v = q̈d −K0(q − qd)−K1(q̇ − q̇d) (4.30b)

the end-effector is driven to the configuration corresponding to the starting point of
the path, which is obtained using the inverse kinematics described in Section 2.2. The
controller gains K0 and K1 are positive definite diagonal matrices. The vectors qd, q̇d, q̈d
denote the desired trajectory of the joint angles, velocities and accelerations, respectively,
which are obtained by using the setpoint filter from Section 4.6.1 for each joint.

Once the stationary target point is reached, the controller is switched to the path
following control. In the following, the experimental results for the path from Figure 4.4
are presented.

Figure 4.18 shows the measured distance d of the end-effector to the path. The difference
in the initial distance to the path for the FS and PT case is due to the fact that the CT
controller does not always reach the exact same end pose, which is mainly caused by the
unmodeled joint friction. At t = 2.2 s, the path following controller is turned on. It can
be seen that the initial distance to the path gets smaller, cf. control objective (O1). At
t = 2.8 s, the spool motor is turned on, which acts as a disturbance to the controller. This
explains the increase of the distance at this point. The traversal of the path starts at
t = 5.1 s.

Entwurf: October 6, 2018
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Figure 4.18: Measured distance of the system output to the path, d =
∥∥yt − σt(ϑ∗)∥∥.

The tangential and transversal coordinates and their time derivatives are illustrated
in Figure 4.19 and Figure 4.20. The results show the decoupling of the position and
orientation control, as the quantities related to the position match in both cases FS and
PT.
The differences between the experimental and simulation results can be explained by

the measurement noise and the robot joint friction which are not taken into account in
the simulation.
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The time evolution of the optimal path parameter is shown in Figure 4.21.
The desired and measured spool vector during the traversal of the path are shown in

Figure 4.22 for the FS frame and in Figure 4.23 for the PT frame.
Figure 4.24 shows the vector components of the orientation error. It can be seen that

at the beginning, i. e. during the winding around the left vertical rod, both frames yield
the same result. Starting from the transition to the horizontal rod, the FS and PT frame
behave differently.
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Figure 4.20: Measured transversal coordinates ξ1 and ξ3 and velocities ξ2 and ξ4.
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The desired rope tension force during winding is set to F dr = 6 N. The desired and
actual torque of the spool motor are shown in Figure 4.25. This motor torque in the
end-effector acts as an external disturbance torque on the robot joints. These external
torques are estimated by the KUKA controller unit. Figure 4.26 shows the estimated
external torques τ ext, which are compensated in the control law (3.49). The differences
between the FS and PT case after t = 54 s is a result of the fact that using the PT frame
the spool orientation was not completely vertical when it reached the last vertical rod,
and thus the stretched rope slightly missed the rod and could not be wound.
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Figure 4.25: Torque of the spool motor τm and its desired value τdm.

The required joint torques τ for controlling the position and orientation of the end-
effector along the path are shown in Figure 4.27.

Figure 4.28 shows the trajectories of the joint angles q during the winding process. As
can be seen, the main differences between the FS and PT case are in the last three joints,
the wrist joints, which determine the orientation of the end-effector.

Comparing the results, it can be stated that both the FS and PT frame can be used for
determining the desired spool orientation. However, since the change of the PT frame
depends only on the curvature and not the torsion of the path, it must be ensured that
the path exhibits the required curvature before reaching the rod. Otherwise, it is possible
that the spool fails to wind around the rod.
In contrast to the PT frame, the FS frame takes into account both the curvature and

the torsion of the path. Moreover, during winding around a rod the osculating plane of
the FS frame clearly shows the relation between the motion of the end-effector and the
orientation of the rod.
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Figure 4.27: Joint torques τ .
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Figure 4.28: Measured joint angles q.



5 Conclusions

This thesis presented a method for robotic winding of a rope around arbitrarily oriented
rods in the robot workspace. During the winding process the rope tension is controlled to
be constant.
The mathematical model of the robot KUKA LWR IV+was derived in Chapter 2.

After calculation of the forward and inverse kinematics the dynamic model of the robot
was determined in two steps. First, the equations of motion were derived assuming a
rigid-body model for the robot. This model was extended in a further step to take into
account the joint flexibility.
In a teach-in procedure, the desired path for winding around the rods was acquired.

Using the path following control method described in Chapter 3 this path can be traversed
by the robot end-effector. The method uses transverse feedback linearization to split up
the motion of the end-effector into dynamics tangential and transversal to the path. The
asymptotic convergence of the end-effector to the path is guaranteed by controlling the
transversal dynamics, and the desired motion along the path is achieved by controlling
the tangential dynamics. Furthermore, an input-output linearization was used to control
the orientation of the end-effector.
The end-effector consists of a rope spool and a motor that is used for controlling the

rope tension. Chapter 4 described the specification of the end-effector orientation during
the winding process, which is a main aspect of this work. The Frenet-Serret frame and the
parallel transport frame, two moving frames from differential geometry, were used to derive
the desired orientation from the path. The simulation and experimental results show the
applicability of the presented method for the robotic winding of a rope. Comparison of the
results of employing the Frenet-Serret frame and the parallel transport frame reveal that
the Frenet-Serret frame is more suitable for deriving the required end-effector orientation
since it considers not only the curvature of the path but also its torsion. Furthermore, the
relation between the motion of the end-effector and the orientation of the rods can be
explained using the osculating plane of the Frenet-Serret frame.

In this work, the tangential vector of the path was used to derive the moving frame for
the spool orientation. As an extension, this vector can be replaced by the direction of the
stretched rope which can be acquired using a force sensor in the end-effector. In doing
so, the orientation control can be used in the path recording stage where the path is still
unknown.
Since the orientation of the end-effector is not stored during the teach-in procedure,

the path can also be specified without using the robot. Combined with vision systems,
the path can be adapted during the winding. This is useful to avoid collisions of the
end-effector with the stretched rope or to cope with the position change of the rods.

The presented method could be used for flexible packaging. The operator specifies the
desired path for wrapping an object that has an arbitrary shape. The only information
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needed for determining the required orientation of the robot end-effector is the path. The
tension of the material used for wrapping is specified as an independent parameter.



A Parameters

A.1 Robot Parameters
The non-zero DH-parameters of the robot are listed in Table A.1.

Parameter Value Unit
d3 400 mm
d5 390 mm

Table A.1: Non-zero DH-parameters of KUKA LWR IV+ .

Table A.2 shows the joint limits of KUKA LWR IV+ .

i 1 2 3 4 5 6 7
qmaxi 170◦ 120◦ 170◦ 120◦ 170◦ 120◦ 170◦
qmini −170◦ −120◦ −170◦ −120◦ −170◦ −120◦ −170

Table A.2: Upper and lower bounds of the joints of KUKA LWR IV+ .

The robot parameters used in this work are the results of parameter identifications
performed by Gaz et al. in [30] and [31].

A.2 Motor Parameters
The relevant parameters of the motor EC 90 Flat from Maxon Motor are listed in
Table A.3.

Parameter Value Unit
Nominal voltage 36 V
Nominal current (max. continuous current) 4.76 A
Nominal torque (max. continuous torque) 560 mNm
Torque constant 109 mNm/A

Table A.3: Relevant parameters of the motor EC 90 Flat.
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The motor current controller of the manufacturer is realized as a PI controller with
feedforward part. The controller parameters listed in Table A.4 were determined in an
auto-tuning process.

Parameter Value Unit
P-Gain 9.271 V/A
I-Gain 0.041 V/As
Feedforward 0.537 V/A

Table A.4: Control parameters of the motor EC 90 Flat.

A.3 Parameters of the Path Following Controller
The parameters of the path following controller are obtained using pole placement. The
characteristic polynomial of the error dynamics of a linear second-order system is given by

p(s) = s2 + a1s+ a0 . (A.1)

By placing both poles of this system at λ the controller parameters are given by a0 = λ2

and a1 = −2λ.
The poles λη, λξ and λr chosen for the tangential, transversal and rotational subsystem,

respectively, are listed in Table A.5. Herein, the poles are separately shown for the case of
employing the Frenet-Serret (FS) frame and parallel transport (PT) frame for deriving
the end-effector orientation.

Simulation Experiment
Pole FS PT FS PT
λη −10 −5 −5 −5
λξ −20 −12 −12 −12
λr −10 −4 −4 −4

Table A.5: Poles for calculating the controller parameters.
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