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Zusammenfassung

Exceptional points (EPs, deutsch “außergewöhnliche Punkte”) sind Singu-
laritäten die im Eigenwertspektrum von nicht-hermitschen Operatoren auf-
treten. Sie kommen in einer Bandbreite von Systemen vor und liegen vielen
– oftmals überraschenden – Phänomenen zugrunde. Solch ein Effekt ist die
chirale Umwandlung von Zuständen, wenn externe Parameter adiabatisch
und entlang eines zirkulären Pfades um einen EP im Parameterraum variiert
werden. In diesem Beispiel hängt das Ergebnis davon ab, ob der Pfad im
oder gegen den Uhrzeigersinn durchlaufen wird. In eine Richtung hält das
adiabatische Theorem, in die andere bricht es zusammen.

In dieser Dipolmarbeit identifizieren wir EPs in Armchair und Zigzag
Graphen Nanobändern und simulieren die Dynamik während sie umrundet
werden. Wir finden EPs die generisch an den Rändern einer Bandlücke
auftreten und eine Klasse EPs die sich nicht-generisch an echten Kreuzun-
gen in der Bandstuktur von Armchairbändern bildet. Wir können zeigen,
dass die dynamische Variation von Parametern um und in der Umgebung
von generischen EPs nicht-hermitsche Effekte, aber keine chirale Zustand-
sumwandlung zur Folge hat. Um nicht-generische EPs hingengen finden
wir chirale Zustandsumwandlung für eine Vielzahl an möglichen Parameter-
pfaden und Nanobandlängen. Wir runden die Arbeit mit einigen Gedanken
zu eventuellen experimentellen Realisierungen ab.
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Abstract

Exceptional points (EPs) are singularities in the spectrum of non-hermitian
operators. They occur in a wide range of systems and lead to many – of-
ten counterintuitive – effects. One such effect is the chiral state conversion
upon adiabatic, circular variation of external parameters around an EP. For
one encircling direction the adiabatic theorem holds, whereas for the other
direction it breaks down, resulting in a different outcome depending on the
encircling direction.

In this thesis we identify exceptional points in armchair and zigzag graphene
nanoribbons and, subsequently, simulate dynamically encircling them. We
find EPs occurring generically at the edges of a bandgap and an EP emerging
non-generically at real crossings in the bandstructure of armchair ribbons.
We can show that dynamical parameter variations around and in the vicin-
ity of generic EPs yield non-hermitian effects, but no chiral state conversion.
We find, however, chiral state conversion when encircling non-generic EPs
for a broad spectrum of parameter paths and ribbon lengths. In the end, we
conclude with comments on potential realizations in experiment.
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1 Introduction

Exceptional points appear in a wide range of systems. They are a phenomenon arising
due to non-hermitian physics, which, in a nutshell, incorporate an effective description
of not included degrees of freedom [1]. Depending on the system where the exceptional
point (EP) can be found in, its physical interpretation can vary strongly [2]. However,
they all have in common that at the EP two (or more) modes (or wavefunctions) coalesce,
resulting in a defective Hilbert-space. We will elaborate on this in chapter 2. In the last
twenty years researchers realized that EPs are not just mathematical peculiarities that
present an obstacle for approximative schemes, but a significant physical phenomenon,
that has been extensively studied in electrodynamics, mechanics, optics, atomic and
molecular physics [2].

A recent experiment by Doppler et al. [3], in which our group was involved, presented
the dynamical encircling of an exceptional point. In this experiment the boundary
conditions of a microwave resonator were varied adiabatically, such that the parameter
trajectory of the microwave would encircle an EP. Due to the particular structure of
the eigenvalues, one näıvely expects one state to be converted into the other upon
encircling the EP. However, due to the non-hermitian terms that give rise to the EP the
adiabatic theorem [4] only holds for one initial state, while it breaks down for the other.
Subsequently, dynamically encircling an exceptional point results in a different result
when encircling clockwise or counterclockwise, creating an asymmetric switch. We will
discuss this phenomenon in greater detail in chapter 2.

The idea of an asymmetric switch is intriguing, not only for microwave-guides, but for
many other systems, such as graphene. Graphene is the first two-dimensional material
that has been isolated and has gained a lot of attention since then [5]. It consists of
a single layer of carbon atoms arranged in a hexagonal honeycomb lattice. Around
the Fermi energy its bandstructure can be approximated very well by two cones at the
two inequivalent corners of the Brillouin zone (compare with Fig. 3.2). Its exceptional
bandstructure has two consequences which are partly responsible for its recent success.
Firstly, the bandstructure around the Fermi energy is approximately linear, turning the
electrons in graphene into a solid-state analogue of massless Dirac-fermions1, often called
Dirac quasiparticles. Secondly, the Dirac cones are strongly separated in momentum
space, introducing an additional degree of freedom, the “valley”.

The valley degree of freedom is notoriously hard to control, and a lot of research has
been invested in this direction, working towards the long-term goal of “valleytronics”[6].
This diploma thesis was initiated in order to investigate the existence and effects of

1In contrast to the parabolic dispersion E(k) = ~2k2

2m usually observed in metals, a linear one resembles
the relativistic energy-momentum relation for m = 0 E = cp.
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1 Introduction

exceptional points in graphene, perhaps enabling us to propose an asymmetric switch
to control the valley degree of freedom2.

In analogy to Doppler et al. [3] we will map the adiabatic variation of external
parameters to a slow change of these external parameters along a graphene nanoribbon.
Graphene nanoribbons are strips of graphene that extend in one direction much longer
than in the other. Generally, we consider graphene nanoribbons with either armchair
or zigzag edges (compare with Fig. 3.7) and we identify exceptional points in their
electronic structure.

There is not much literature concerning exceptional point physics in graphene nanorib-
bons. One study by Fagotti et al. [8] shows the existence of EPs in armchair ribbons,
associating them with the breakdown of parity-time (PT -)symmetry. Their study re-
lies on an approximation of the bandstructure similar to the Dirac equation and merely
proves the existence of EPs in armchair nanoribbons. They conclude with the following
remark:

“An aspect that certainly deserves further study is the effect of exceptional
points on the transport properties of graphene nanoribbons in the presence of
a potential that varies also in the longitudinal direction. Moreover, it would
be interesting to study more in depth the properties of complex eigenmodes
[...].” – Fagotti et al. [8].

Although they did not follow up on these ideas, they foreshadowed this thesis. In
particular we start this thesis by studying the behavior of the complex eigenmodes of
the nanoribbons. Tracking the eigenvalues of two modes as a function of two (or more)
external parameters results in the Riemann surface3 of the two modes. Subsequently,
this Riemann surface can be used to investigate the position of EPs and the topology
of the Riemann surface itself. The topology itself is then necessary to understand the
phenomena that occur when investigateing transport in longitudinally varying potentials.

Albeit there is not much literature on exceptional points in graphene nanoribbons,
we can draw conclusions from similar systems. A lot of research concerning exceptional
point physics has been conducted in optics. In PT -symmetric hexagonal photonic lat-
tices introducing a real mass for the Dirac-quasiparticles results in a bandgap opening
at the Dirac-point, whereas introducing an imaginary mass seems to “push” the Dirac
cones together [9], resulting in exactly the same behavior we will observe in chapter 3.2.
In a similar way this behavior of a Dirac cone was realized experimentally by Zhen et
al. using photonic crystals [10]: they identified the ring where the Dirac cones intersect
with a ring of exceptional points.

We adapt the presented concepts to graphene nanoribbons and present the character-
istics, limitations and potentials of exceptional points in graphene nanoribbons.

2Although the literature sometimes calls this phenomenon “topological switch”, recent research [7]
hints that this is not actually true, therefore we refrain from this expression.

3The notion Riemann surface is borrowed from complex mathematics due to the connection of the
eigenvalue structure around the EP to the square root of a complex number.
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2 Non-hermitian physics

2.1 Motivation

One of the pillars of our modern understanding of physics is energy conservation for
a closed system. As a consequence, the standard formulation of quantum mechanics
deals with hermitian Hamiltonians, exhibiting real eigenenergies and therefore unitary
time evolution. However, very often we want to focus on the relevant physics in a
small subsystem replacing the surrounding by an effective treatment. The resulting
open quantum system features complex eigenenergies. George Gamov [11] was the first
to show in a study on alpha decay that quantum states which have a probability to
tunnel out of the nucleus can be effectively described by complex eigenvalues. The real
and imaginary parts of the complex eigenvalues correspond to the experimentally found
energy levels and widths of the nuclear resonances, respectively. This was the birth of
non-hermitian quantum mechanics. It developed into a valuable tool, able to describe
dissipative systems, helping to understand effects by focusing on the system of interest
and simplifying the effect of the surroundings. Perhaps one of the most striking features
of non-hermitian quantum mechanics are exceptional points, also known as branch-point
singularities. At an exceptional point the eigenvalues “coalesce”, but in contrast to a
conventional degeneracy also the eigenvectors are exactly parallel. Exceptional points
occur in many different systems, are associated with many interesting phenomena and
are subject to a lot of current research [2, 12]. This chapter will give a brief introduction
to exceptional points, highlighting all their features that are necessary to understand
the effects discussed in this thesis.

3



2 Non-hermitian physics

2.2 Exceptional Points

In the following we will examine a simple non-hermitian Hamiltonian to demonstrate
the emergence and basic properties of an exceptional point. Exceptional points (EPs)
occur in general in systems with (infinitely) many eigenstates, but in the vicinity of an
EP the full behavior of the two levels involved can be modeled by a 2× 2-matrix. Even
in systems with several EPs the effects observed are merely a combination of two-level
EPs [13, 14]1. To illustrate the properties of EPs we therefore restrict ourselves to a two
level system. The following general remarks are based on [2, 7].

Consider the Hamiltonian

H =

(
ω1 + iγ1

2
g

g ω2 + iγ2
2

)
ωi, γi, g ∈ R; γ > 0 (2.1)

It is not completely general, but it captures the most important effects of EPs which
will be discussed later in this chapter.

In standard hermitian quantum mechanics the dual vector 〈v| of a vector |v〉 is given
by its hermitian conjugate 〈v| = (|v〉)†. Hence, the inner product is calculated via

〈v|v〉 ≡ (|v〉)† |v〉 . (2.2)

For a Hamiltonian that is non-hermitian, H† 6= H, as in Eq. (2.1), the eigenvectors are
not necessarily orthogonal with respect to the inner product defined in Eq. (2.2). In non-
hermitian quantum mechanics we therefore independently consider right H |vi〉 = εi |vi〉
and left 〈u∗i |H = ε̃ 〈u∗i | eigenvectors. The asterisk denotes the ”dual basis” 2. Because
the 〈u∗i | were chosen as dual basis, there is an orthogonality relation 〈u∗i |vj〉 = δij as well
as a closure relation

∑
i |vi〉 〈u∗i | = I.

For simplicity, but without the loss of generality, we perform a gauge transformation
of H:

H̃ =

(
−ω − iγ

2
g

g ω + iγ
2

)
with ω =

ω2 − ω1

2
γ =

γ1 − γ2
2

. (2.3)

The eigenvalues of H̃ are

λ± = ±λ = ±
√

(ω + i
γ

2
)2 + g2. (2.4)

The argument of the square root in Eq. (2.4) is a complex number, hence, in order
to understand λ± better, it is instructive to examine the properties of the complex
square root function. Let us start with a complex number in polar representation z =
reiφ, φ ∈ (−π, π] (red arrow in Fig. 2.1). Because the square root is multivalued, we

1There are higher order EPs, which are a coalescing of more than two wavefunctions [2]. However, for
this work we restrict ourselves to “regular” EPs.

2Note that 〈u∗i | 6= |ui〉
†
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2.2 Exceptional Points

choose (in analogy to the real numbers3) the principal square root of z to be
√
z =√

reiφ/2 (green arrow), then the second branch is
√
z
′

=
√
rei

φ
2
+π (blue arrow). There

is a branch cut along the negative real axis because
√
z is not unique when φ = π is

approached counterclockwise (upper two panels) or clockwise (lower two panels). To
avoid a discontinuous jump, analytic continuation across the branch cut requires an
additional phase factor of eiπ, i.e. the two branches

√
z and

√
z
′

are interchanged.

Figure 2.1: Illustration of z (red arrow), the principal value of the square root
√
z and

the secondary branch
√
z
′

approaching φ = π. The principal value of the
square root (green) at φ = π depends upon the the direction of approach.
Counterclockwise approaching φ = π results in

√
z = exp(iπ

2
) = i (top row),

whereas approaching φ = π clockwise results in
√
z = exp(−iπ

2
) = −i. This

discontinuity is called branch cut.

After making ourselves familiar with the complex square root, we examine the real
and imaginary part of λ (as in Eq. (2.4)) as a function of g and ω for fixed γ, as
plotted in Fig. 2.2. This figure can also be interpreted as the Riemann surface4 of the
complex square root (with g, ω as Re(z), Im(z)). The branch cut is situated along the
real crossing5 of λ which is on the negative g-axis. Hence, the branch cut lies where
the ‘upper’ and ‘lower’ sheet intersect. The color coding in Fig. 2.2 illustrates how the
sheets are connected at the real crossing. The EP lies exactly at the beginning of the
branch cut.

At the EP the two eigenvalues ”coalesce”, hence in order to find its position we set the

argument of the square root to zero (ω+ iγ
2
)2 + g2

!
= 0. Because the real and imaginary

part have to vanish independently, there are actuallly two equations. Requiring the

3The square root is also multivalued. Usually the principal branch is chosen to be
√
x = |

√
x|, while

the second branch is
√
x
′

= −|
√
x|.

4Riemann surfaces can be thought of as deformed complex planes, they can be “cut” and “glued” to
represent the topological characteristics of a complex function.

5A real crossing is a point or line where the real part of the eigenvalues are equal, i.e. cross. Analo-
gously, at an imaginary crossing the imaginary values cross.
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2 Non-hermitian physics

Figure 2.2: Real (left) and imaginary (right) part of the eigenvalue surfaces of H̃ as a
function of the parameters g and ω. We can also interpret these surfaces as
the real and imaginary part of the Riemann surface of Eq. (2.4) for fixed
γ. The color coding highlights the relative gain (red) and loss (blue) of the
state (i.e. the imaginary part). This figure is adapted from [7].

imaginary part to vanish leads to γω = 0 and therefore ωEP = 0 (ignoring the trivial

case of γ = 0). The real part yields ω2 − γ2

4
+ g2 = 0, resulting in gEP± = ±γ

2
. Hence,

we found two EPs, let’s call them EP+ and EP−:

EP+ = (gEP+, ωEP+) =
(γ

2
, 0
)

EP− = (gEP−, ωEP−) =
(
−γ

2
, 0
)

(2.5)

In the beginning of EP-physics people realized that avoided crossings of resonances
are always connected with a crossing of the widths of these resonances, as well as a
crossing of the levels is connected to a repulsion of the widths [13]. The EP separates
the two crossings and is part of both. It is worth to mention that the real part of λ
has a crossing λ+ = λ− at g ∈ [gEP−, gEP+], while the imaginary part has a crossing for
g ≥ gEP+ and g ≤ gEP−.

So far, an EP is not much more than a point-degeneracy in a two dimensional param-
eter space. To emphasize the difference between a degeneracy and an EP we examine
the eigenvectors of H̃. At the EP+ the eigenvectors take the form

〈λ∗1| = 〈λ∗2| =
(
i 1

)
|λ1〉 = |λ2〉 =

(
i
1

)
. (2.6)

There is only one eigenvector, and its norm 〈λ∗|λ〉 = 0 vanishes, the same is valid at
the EP−. Without a full basis available the Hamiltonian is not diagonalizable anymore
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2.2 Exceptional Points

and the Hilbert space collapses. At the EP the wavefunctions not only have the same
energy, but they are equivalent.

This characteristic of an EP can be used to find them. The Petermann factor [15, 16]
is an observable to measure the non-orthogonality of two modes. It becomes large in the
vicinity of an EP and diverges at the EP. It is defined as

Knm =
〈u∗n|u∗m〉 〈vm|vn〉
〈u∗n|un〉 〈v∗n|vn〉

. (2.7)

With 〈u∗n| and |vm〉 being the n-th left and m-th right eigenvector, respectively, normal-
ized as 〈u∗n|vm〉 = δnm. For our purposes the mean diagonal Petermann factor

K =
1

N

N∑
n=1

Knn , (2.8)

where N is the dimension of the vector space, is well suited. It is equal to one if the
eigenvectors are orthogonal and larger in any other case. At the EP the eigenvalues
coalesce and the Petermann factor diverges6 [17, 16]. The Petermann factor for the
model Hamiltonian in Eq. (2.3) is shown in Fig. 2.3.

Figure 2.3: Petermann factor for the Hamiltonian in Eq. (2.3) with γ = 1. The EPs are
at (g, ω) = (±1/2, 0). At the EPs the Petermann factor diverges.

The square root behavior of the eigenvalues λ±, as in Eq. (2.4), not only makes the
energy spectrum inherit the properties of the complex square root, it also makes λ very

6Because at the EP the hermitian inner product 〈vm|vn〉 = (|vm〉)† |vn〉 does not vanish but the
denominator 〈v∗n|vn〉, which is the product of a left and a right eigenvector, is zero.
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2 Non-hermitian physics

sensitive to parameter changes around the EPs. In fact, the derivative of λ with respect
to the external parameters diverges at the EP.

lim
g→gEP

∂λ

∂g
=∞ (2.9)

The physics of exceptional points have attracted a lot of interest. Many demonstra-
tions of EPs have been done using microwave cavities, coupled resonators and optics.
Because the ramifications of the EP are vastly different in various systems we refer the
reader to further literature [2, 12]. We only want to mention the subtle connection to
parity-time (PT ) symmetry. Because the eigenvalues of the PT -operator are real, a
non-hermitian, PT -symmetric Hamiltonian has entirely real eigenvalues. However, for
critical values of the external parameters which characterize the Hamiltonian the PT -
symmetry can be spontaneously broken and the eigenvalues become non-real. Indeed,
such a critical point is exactly where an EP occurs [2, 12].

The parametric and dynamical encircling of an EP has also received a lot of attention
due to the non-trivial topology of the energy level structure around EPs caused by the
branch cut. Considering the relevance of this topic for the present thesis, we will discuss
it in greater detail in the following section.
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2.3 Dynamically encircling an exceptional point

2.3 Dynamically encircling an exceptional point

The adiabatic theorem states that a physical system remains in its instantaneous eigen-
state if some external parameters are tuned slowly enough and there is always a gap
between the state and the rest of the eigenstates [4]. In the case of parameter variations
in the vicinity and especially around an exceptional point this implies that the system
remains on the ”upper” or ”lower” sheet, respectively, except at the branch cut where
the real parts of the eigenvalues cross. The phase factor eiπ due to analytic continuation
across the branch cut, discussed in the last section, determines that the system changes
from the upper sheet of the Riemann surface to the lower one. In the left panel of Fig.
2.4a this means that the state stays on the red sheet.

Hence, näıvely we expect to observe a “state flip” when encircling the exceptional
point once [18, 14]. When adiabatically transported around an EP, the state does not
return to itself, but ends on the other sheet, as depicted in Fig. 2.4a on the first panel,
where the starting and end point are on the lower and upper sheet, respectively. This
results in a 4π-periodicity upon variation of these external parameters around the EP,
because after a second encircling the state returns to itself.

In reality, this expectation does not hold up to closer examination. The same non-
hermicity that is responsible for the emerging of an exceptional point is also responsible
for the breakdown of the adiabatic theorem. This is shown in the second panel of Fig.
2.4a, where the starting point is located in a loss area on the upper sheet. In this case,
the upper state experiences damping, while the lower one is amplified, which leads to
a state change. In other words, the loss-gain structure of the Riemann surface (color
coded in Figs. 2.2 and 2.4) either exponentially damps or amplifies a state during time
evolution, according to the sign of the imaginary part of the eigenvalue [19]. In this
case the non-adiabatic effects cause the state to return back to itself rather than being
“flipped” into the lower state.

Figure 2.4: Real part of the eigenenergy surface of H̃ with schematic indications of the
instantaneous state of the system when encircling the EP. Panels (a) for
counter clockwise and panel (b) for clockwise encircling. This figure is taken
from [3].

This behavior is turned around when encircling the exceptional point in the other
direction (Fig. 2.4b). Hence, the exceptional point shows what we call “chirality”.
Just like in the example in the previous section, exceptional points often occur in pairs

9



2 Non-hermitian physics

with different chirality. Encircling both in the same direction (i.e. clockwise) results in
opposite states.

To illustrate how adiabaticity breaks down, we assume that g and ω from Eq. (2.3)
evolve in time and summarize them as ~q = (g, ω) = (g(t), ω(t)) = ~q(t). The following
remarks are general, but the notation follows [20].

While ~q evolves in time, let |n(~q(t))〉 and En(~q(t)) be the instantaneous eigenvectors
and eigenvalues, respectively, with n running from one to the dimension of the system.
Without loss of generality we can state that at any time t the state |Ψ(t)〉 can be written
as

|Ψ(t)〉 =
∑
n

cn(t)e−iφn(t) |n(~q(t))〉 , (2.10)

where φn(t) =
∫ t
0
En(~q(t′))dt′ is the accumulated phase due to time evolution.

Inserting into the time-dependent Schrödinger equation, i∂t |Ψ(x, t)〉 = Ĥ |Ψ(x, t)〉,
yields

i
∑
n

ċne
−iφn |n(~q)〉 = −

∑
n

cne
−iφn ~̇q ∇~q |n(~q)〉 . (2.11)

For readability we have suppressed the time dependencies. Suppose we prepare the
system in a state |a〉. If the adiabatic theorem holds, then, for sufficiently slow variations
the coefficient ca should dominate over all other amplitudes for all later times. We check
if this statement is self-consistent by multiplying Eq. (2.11) with |b〉 6= |a〉 from the left.

iċbe
−iφb ≈ icae

−iφa ~̇q 〈b|∇~q|a〉 (2.12)

For this step we have assumed that the eigenstates remain approximately orthogonal.
Hence,

ċb ≈ −cae−i
∫ t
0 {Ea(~q)−Eb(~q)}dt

′
~̇q 〈b|∇~q|a〉 . (2.13)

As long as Ea and Eb are real, the exponential is solely a phase factor and ċb can be
suppressed by choosing ~̇q arbitrarily small. If, however, Ea and Eb are not purely real
there can be exponential growth that cannot be compensated by choosing ~̇q arbitrarily
small. Hence, the assumption that the coefficient ca dominates for all times is not
self-consistent anymore.

This phenomenon of adiabatic breakdown due to loss, depicted in Fig. 2.4, can be
used to build an asymmetric switch for e.g. electromagnetic waves. It was realized by
Doppler et al. [3] for a microwave guide. The adiabatic evolution of external parameters
in time is realized by the adiabatic evolution of the boundary conditions of a waveguide
in space. The boundary conditions describe a loop around an EP in some parameter
space. Hence, traversing the microwave guide in one direction or the other corresponds
to moving counterclockwise (Fig. 2.4a) or clockwise (Fig. 2.4b), respectively, along
this parameter loop. Subsequently, if a superposition of two modes |n〉 and |m〉 enters
the waveguide from one side, transmission is high for only one mode, e.g. |n〉. If the
same superposition is inserted from the other side, the mode |n〉 now becomes suppressed
instead of enhanced, and transmission is high for mode |m〉. This is called an “asymetric
switch” (Fig. 2.5).

10



2.3 Dynamically encircling an exceptional point

Figure 2.5: Two modes of a microwave passing a waveguide with modulated boundary
conditions. Inserting from the left (right) side corresponds to encircling
an EP (counter) clockwise. The waveguide acts as an asymmetric switch
because the insertion direction affects which mode passes through. This
figure is taken from [3].

The first one to discuss the non-adiabatic processes when encircling an EP was Uzdin
et al. 2011 [19], with Gilary et al. 2013 [21] adapting the idea to a physical system.
Berry et al. [22] connected the system to the Stokes phenomenon of asymptotics and
Milburn et al. 2015 [23] discussed the onset of the non-adiabatic transition, using the
theory of stability loss delay. The first experimental confirmation of the effect happened
in 2016 by Doppler et al. [3] as already discussed above. Xu et al. demonstrated in 2016
the transfer of energy between two vibrational modes of a cryogenic optomechanical
device in laser fields [24].

Most of the studies mentioned so far only consider a very general closed loop around
an EP and discuss the chiral behavior when encircling an EP. In his diploma thesis, A.
Schumer [7] analytically examines a model system and shows that there exist “phase
boundaries” for radii and starting points of EP-centered, circular loops for which encir-
cling the EP yields chirality (Fig. 2.6). An even more striking result is that also loops
that do not encircle the EP show chirality [7, 25] (Fig. 2.7). This suggests that the
asymmetric switching observed when dynamically encircling an EP is not – as it is often
referred to in the literature [18, 14, 24] – a topological effect, but rather a result of a
complicated interplay of gain and loss in non-hermitian systems.
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2 Non-hermitian physics

Figure 2.6: Chirality in a system described by the Hamiltonian in Eq. (2.3) with γ = 1.
The color coding describes the chirality (−1) or non-chirality (+1) for circular
loops with starting point at (g0, ω0), that are centered around the EP+ (red
cross). The left (right) panel shows the initial states ψ− (ψ+). The black
circle demarcates the approximate boundary between the chiral and non-
chiral region. This figure is taken from [7].

When treating adiabatic transport along closed loops, we should also discuss the
geometric phase (often called ”Berry phase”). Berry showed [26] that a quantum system,
which is transported along such a closed loop, picks up a geometric phase according to

γn[C] = i

∮
C

〈n(~q)|∇~q|n(~q)〉 d~q, (2.14)

with ~q being coordinates in the space where the loop takes place. The Berry phase
is present when encircling an EP, because upon encircling the EP twice (4π-loop) the
eigenvalues return to their initial values (disregarding non-adiabatic effects) but the
eigenvectors pick up a minus sign. Hence, while the eigenvalues show a 4π periodicity,
the eigenvectors are 8π-periodic.

|ψ+〉
2π−→ |ψ−〉

2π−→ − |ψ+〉
2π−→ − |ψ−〉

2π−→ |ψ+〉 (2.15)

This is a manifestation of a Berry phase of exactly γ = π for the double circle [27].
When we numerically simulate the encircling of an EP, the geometric phase is implicitly
taken care of.
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2.3 Dynamically encircling an exceptional point

Figure 2.7: This figure illustrates the chirality for a circular loop with fixed radius at
variable positions. The upper panel shows three illustrative loops with cen-
ters at (g, ω) = (gc, 0) and the start position marked by a small rectangle.
The EPs are displayed as colored crosses. The bottom panel shows the chi-
rality (cY = −1 for a chiral loop, cY = +1 for a non-chiral loop) for circular
loops with r = 0.3 and centered at (g, ω) = (gc, 0) for an initial loss state
ψ− (blue, dashed line) and an initial gain state ψ+ (red, solid line). The
areas where the circle encloses the EP are shaded green or yellow. Note that
chirality prevails up until a value of gc where no EP is encircled (purple circle
in the upper panel). This figure is taken from [7].
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3 Graphene

In the previous chapter we motivated non-hermitian mechanics and explained what
exceptional points are. This chapter is dedicated to the second half of the title “Excep-
tional points in graphene nanoribbons”. We will introduce the reader to graphene and
its electronic structure, its connection to non-hermitian physics and the characteristics
of graphene nanoribbons.

Pure carbon occurs in nature in two crystalline forms. Its most famous form is of
course diamond, used in jewelery for its rareness as well as in cutting and drilling for
its hardness and great ability to conduct heat. The other phase occurring in nature is
graphite. While diamond is the hardest existing mineral, graphite is very soft. It is used
for electrodes in batteries and various other purposes, probably the most familiar one
being writing with pencils.

Graphite consists of layers of carbon atoms that have covalent bonds in plane and are
only weakly bound by van-der-Waals forces out of plane. In 2004 Geim and Novoselov [5]
were able to remove such a single plane of carbon atoms from graphite. This material is
today know as graphene. Their discovery not only showed the remarkable properties of
graphene, but turned out to be the spark that ignited the whole field of “two dimensional
materials”. They were awarded with the Nobel prize in 2010.

The electronic configuration of carbon is [He]2s22p2, but for molecular carbon the
2s and 2p orbitals containing the four chemically active electrons hybridize in different
combinations. Graphene has exceptional mechanical strength due to σ-bonds formed
by sp2 orbitals, but is even more famous for its electronic properties, which we will
investigate in the following chapter.

After its discovery a lot of research has been invested in the fabrication and theoretical
understanding of graphene and devices made thereof. Nowadays, very clean and large
samples [28] as well as atomically precise graphene ribbons can be fabricated [29]. This
makes graphene an attractive playground to test ideas and effects not only valid for
graphene, but also for the whole class of 2D-materials.
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3 Graphene

3.1 The electronic structure of graphene

As already mentioned, we find the carbon atoms of graphene in their sp2 hybridization.
Hence, they form a hexagonal honeycomb lattice with a 120◦ angle between the bonds.
The crystal structure is depicted in the left panel of Fig. 3.1. The sp2 orbitals mix with
the neighbouring orbitals and form bonding and antibonding σ bonds1. The binding sp2

orbitals are fully occupied, which leaves a single electron in the pz at every carbon site,
making it half-filled. It is safe to assume that the overlap of the pz orbitals is small, as
they extend mainly into the z-direction. Hence, it is natural to choose a tight binding
ansatz using only the pz orbitals [30, 31]. For didactic reasons the calculations in this
section are performed using only nearest neighbor hopping.

Figure 3.1: Left panel: Real space structure of graphene. The two sublattices are denoted
A and B, a1 and a2 are the lattice vectors and δi are the nearest neighbor
vectors. Right panel: The first Brillouin zone of graphene. The reciprocal
lattice vectors are denoted by b1 and b2. Note that there are two corners of
the Brillouin zone K and K ′ that are not connected by an a lattice vector.
Figure extracted from [31].

Before writing down the tight binding Hamiltonian we need to establish some geomet-
rical prerequisites. Graphene crystallizes in a hexagonal structure, which is basically a
trigonal unit cell with a diatomic basis or, expressed differently, two inequivalent trigo-
nal sublattices A and B. It is depicted in Fig. 3.1. We define the unit vectors for the
Bravais lattice as

~a1 =
a

2
(3,
√

3), ~a2 =
a

2
(3,−

√
3), (3.1)

where a ≈ 1.42Å is the carbon-carbon bond length. The three nearest neighbor vectors
are

~δ1 =
a

2
(1,
√

3), ~δ2 =
a

2
(1,−

√
3), ~δ3 = −a(1, 0). (3.2)

1Chemistry differentiates covalent bonds by their symmetry. For example a σ bond formed by the
mixing of two orbitals has rotational symmetry around the atom-atom axis. In contrast a π bond,
as formed for example by overlapping pz orbitals, is characterized by an electron density of zero in
a common nodal plane.
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3.1 The electronic structure of graphene

Suppose t is the overlap integral2 (”hopping integral”) of two pz orbitals. By symmetry
it has to be the same for all three nearest neighbor pairs. With these definitions we can
write down the tight binding Hamiltonian for graphene,

H = −t
∑
〈ij〉,σ

a†iσbjσ + h.c. , (3.3)

with a†iσ (aiσ) creating (annihilating) an electron with spin σ in the pz orbital on the A

sublattice of the unit cell at ~Ri. The same definition is valid for creation (annihilation)
on the sublattice B b†iσ (biσ). The first term represents the “hopping” of an electron
on an atom of sublattice A to one of its neighbors on sublattice B, the second term
h.c. denotes the hermitian conjugate of the first term, and therefore the hopping of an
electron from a B to a A site.

It is helpful to write the Hamiltonian more explicitly to work with it later,

H = −t
∑
i,σ

a†riσbri+δ1σ + a†riσbri+δ2σ + a†riσbri+δ3σ + h.c. . (3.4)

To make use of the Bloch’s we perform a 2D Fourier transform, this represents the
problem in reciprocal space (”k-space”). The unit vectors of the first Brillouin zone (see

Fig. 3.1 right panel) evaluate by their definition ~ai ·~bj = 2πδij to

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3). (3.5)

The 2D Fourier transformation is defined as

cj =
1√
N

∑
~k

cke
i~k·~rj (3.6)

c~k =
1√
N

∑
j

cje
i~k·~rj , (3.7)

with c = a, b. Inserting (3.6) into (3.4) and using the identity

1

N

∑
j

e−i(
~k−~k′)~rj = δkk′ (3.8)

leads to

H = −t
∑
k

(
a†k b†k

)( 0 H12

H21 0

)
︸ ︷︷ ︸

H0

(
ak
bk

)
, (3.9)

where H0 denotes the kernel of the Hamiltonian. Its matrix elements are

H12 = H∗21 = ei
~k·~δ1 + ei

~k·~δ2 + ei
~k·~δ3 . (3.10)

2The numerical value of t is typically t ≈ 2.8 eV [31], although it is not important for the properties
presented here.
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3 Graphene

We can calculate the eigenenergies by diagonalizing the kernel H0. The eigenenergies
are given by

ε±(~k) = ±|t|

√
3 + 2cos(

√
3kya) + 4cos(

3

2
kxa)cos(

√
3

2
kya) (3.11)

and represented in Fig. 3.2.

Figure 3.2: Bandstructure of graphene. Left panel: Bandstructure of graphene in the
nearest neighbor tight binding approximation. The cones touch at the corner
of the Brillouin zone. There are only two independent corners K, K ′ of the
Brillouin zone that are not connected by an inverse lattice vector, hence the
six cones visible reduce to two inequivalent cones. Right panel: Zoom of
the K point. Around the Fermi energy ε = 0 the bandstructure is perfectly
conical and, hence, linear.

Exactly at the corners of the Brillouin zone, denoted K and K ′ in Fig. 3.1, the filled
upper and lower bands touch (see Fig. 3.2). The lower band is completely filled and the
upper band is completely empty. This makes graphene a semi-metal: It does not have
a band gap, but the density of states at the Fermi energy is zero. The K and K ′ points
are located at

~K =

(
2π

3a
,

2π

3
√

3a

)
, ~K ′ =

(
2π

3a
,− 2π

3
√

3a

)
. (3.12)

In Fig. 3.2, the right panel shows a zoom of the K point. The dispersion relation does
not exhibit the parabolic bandstructure of a free electron but it is linear in a large energy
window around the Fermi energy EF . This resembles much more the linear dispersion
relation of a massless (relativistic) Dirac fermion. For that reason the touching point of
the upper and lower band is often called the Dirac point. The analogy between the quasi-
particles in graphene and relativistic fermions has been used to test ideas from quantum
electrodynamics, for instance the first experimental realization of Klein tunneling [32]
was done using graphene.

Since there are two inequivalent K-points (see Fig. 3.1) and the energy gap between
them is relatively large (compare with Fig. 3.2), the K/K ′-degree of freedom serves as
an additional quantum number called the ‘valley’.
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3.1 The electronic structure of graphene

When second or higher order nearest neighbor hopping terms are included the electron-
hole symmetry is lifted. Then, the upper and lower band in Fig. 3.2 are not symmetric
anymore. For the calculations of the nanoribbons in this thesis we employ a third nearest
neighbor hopping model and the recursive Greens function method in an implementation
by Libisch et al. [33].

The remarks on the electronic properties of graphene presented in this chapter are
limited by the scope of this work, for a more comprehensive treatment of the electronic
properties of graphene see the excellent review by Castro Neto et al. [31].

19



3 Graphene

3.2 Towards non-hermitian effects in graphene

This section will present how to evoke and describe non-hermitian effects in graphene.
As a first step we include real on-site terms. Imagine that the A and B atoms sit on top of
different atoms, then the inequivalent sublattices will experience different (constant) on-
site potentials, represented in the tight binding Hamiltonian as diagonal terms VA,B. The
following equation shows how such an on-site potential can be rewritten into a sublattice
independent term V0 = (VA +VB)/2 and a sublattice dependent term Vz = (VA−VB)/2,

H = H0 +

(
VA 0
0 VB

)
= H0 +

(
V0 0
0 V0

)
+

(
+Vz 0

0 −Vz

)
= H0 + V0σ0 + Vzσz . (3.13)

The subscripts of the transformed on-site potentials refer to the Pauli matrices σ0 and
σz. The sublattice-independent on-site term V0 shifts the overall energy scale locally, but
does not have an effect on the dispersion relation itself. On the other hand, the sublattice
dependent on-site term Vz has an effect on the bandstructure by opening a gap at the K
and K ′ points (as shown in Fig. 3.3). Because this is equivalent to introducing a mass
term in the Dirac equation, the Vz term is sometimes called a “mass term”.

Figure 3.3: Bandstructure of graphene around the K point. The degeneracy at the Dirac
point is lifted by a mass term of Vz = 0.1eV.

Figure 3.4: Unit cell of graphene (red) stacked on hexagonal boron nitride (green and
blue) in various stacking configurations. The carbon atoms of sublattice A
and B will not have the same tunneling probability to an underlying substrate
for any two of the stacking configurations.

As already mentioned in chapter 2, we can implement an effective model of gain
and loss by including imaginary terms iΓ in the diagonal of the Hamiltonian3. The

3The magnitude of Γ will be approximately proportional to the overlap of the orbials that come into
question.
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3.2 Towards non-hermitian effects in graphene

tunneling rate Γ will, in general, not be the same for both sublattices A and B. Imagine
a graphene flake stacked on hexagonal boron nitride on a conducting substrate. The
tunneling rate for to the conductor will depend on the stacking configuration (compare
with the illustration in Fig. 3.4). Hence, we assume the on site potentials VA 6= VB and
consequently V0 and Vz to be complex numbers (i.e. we absorb iΓ into the potentials).

Figure 3.5: Zoom of the K point for graphene with a complex sublattice splitting po-
tential of Vz = i0.1eV. In contrast to a real Vz (Fig. 3.3) the cones move
towards each other. Inside of the circular intersection line the eigenvalues
are purely imaginary. The intersection line is a ring of exceptional points.

The effect of a complex sublattice splitting potential can be seen in Fig. 3.5. While a
real Vz introduces a gap, an imaginary Vz moves the dirac cones into each other, making
the eigenvalues purely imaginary inside the circular boundary where the cones intersect.
The points on the intersection line are exceptional points. Hence, sublattice dependent
gain and loss introduces a ”ring of exceptional points” in graphene, that has already
been observed in similar systems [10]. To convince ourselves that this ring is constituted
by EPs we calculate the Petermann factor. Figure 3.6 shows how the average Petermann
factor K diverges at the circle where the two cones intersect. Hereby, we have shown
that graphene has exceptional points. In the next sections we will investigate whether
they are accessible in experiment.

Figure 3.6: Petermann factor for the same parameters and zoom of the bandstructure
as in Fig. 3.5. The Petermann factor diverges at the circle where the Dirac
cones intersect. This indicates that we observe a ring of exceptional points.
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3 Graphene

3.3 Graphene nanoribbons

In the discussions above we assumed bulk graphene, extending infinitely in both di-
rections. However, in an experiment (investigating transport) one usually considers
nanoribbons that extend much further in one direction than in the other. Theoretically
we imagine this by cutting strips out of pristine graphene. There are two major directions
as shown in Fig. 3.7. One edge is called zigzag and the other one armchair. Since the
Bloch theorem is only valid in one direction, the Brillouin zone is only one dimensional
too. The constriction in the other direction shows up as additional levels in the band
structure4. The two kinds of graphene nanoribbons have very distinct bandstructures,
which we will discuss in the following.

Figure 3.7: Different edge terminations of graphene nanoribbons. (a) Zigzag edge. (b)
Armchair edge. Taken from [34].

A ribbon like the one displayed in Fig. 3.7(b) that extends infinitely in the x direction
is called armchair ribbon. Because the Bloch theorem holds only in x direction (the
material is not periodic in the y-direction anymore) the two inequivalent cones depicted
in Fig. 3.2 are projected onto each other [31]. The resulting dispersion relation (see Fig.
3.8) has a small gap at the K and K ′ points that is inversely proportional to the width
of the nanoribbon [35, 36, 37].

On the other hand, when the ribbon displayed in Fig. 3.7(a) extends in macroscopi-
cally (infinitely) in x direction it is called zigzag. Because the constriction, and, hence,
quantization, is orthogonal to the armchair case the cones are not projected onto each
other (see Fig. 3.1 and Fig. 3.9). It is noteworthy that zigzag ribbons feature a topo-
logically protected edge state [31]. In a nearest neighbor description the edge state is
dispersionless, but when higher order neighbor hoppings are included (i.e. particle-hole
symmetry is broken) the edge state becomes weakly dispersive.

4This is because the dimension of the kernel (3.9) will now be the number N of atoms in the direction
of the constriction. This gives N eigenvalues for every k that point into the other direction.
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Figure 3.8: Bandstructure for an armchair nanoribbon with a width of w = 61Å in a
third nearest neighbor TB-description. The two Dirac cones are superim-
posed and at k = 0 a gap forms.
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Figure 3.9: Bandstructure for a zigzag nanoribbon with a width of w = 85Å in a third
nearest neighbor TB-model. The Brillouin zone is rotated with respect to
the armchair case, therefore the K and K ′ cones are not superimposed. The
edge state (energy level at E ≈ 0 connecting the two cones) is topologically
protected and prevents a gapless spectrum.
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4 Riemann surfaces

The first part of this work was to investigate the Riemann surface structure of graphene
or rather graphene nanoribbons. A Riemann surface visualizes the structure and con-
nections of the complex eigenvalues as a function external parameters. They are useful
tool when proving the existence of exceptional points and determining their location.
This chapter first discusses which parameters can be varied, then presents the steps
necessary to “draw” a Riemann surface that is analytically not accessible. The section
thereafter presents our results for different edge terminations and different parameter
combinations.

All the energies and potentials in this chapter are given in electron volt. We omit
them for clarity.

4.1 Parameter space

Without an experiment to reproduce, it is not straightforward to decide which parame-
ters to vary and in what range to vary them. For graphene, comparing Eqs. (2.3) and
(2.4)

H̃ =

(
−ω − iγ

2
g

g ω + iγ
2

)
and λ± = ±λ = ±

√
(ω + i

γ

2
)2 + g2,

with Eq. (3.13)

H = H0 + V0σ0 + Vzσz =

(
V0 + Vz tH12

tH∗12 V0 − Vz

)
,

using H12 as defined in Eq. (3.10) and Vz = V 0
z + iΓ, yields

εGraphene ∝
√
t2 ·H2

12 + (V 0
z − iΓ)2 . (4.1)

This suggests to vary two out of three of the real sublattice spliting potential V 0
z , the

sublattice dependent gain/loss rate Γ and the hopping parameter t. There are of course
other parameters that could be varied, which are not included explicitly in this formula
such as energy, the width of a ribbon or the magnetic field. Because calculating the
bandstructure of graphene nanoribbons analytically is not possible, we employ numerical
simulations.

We want to provide a physical interpretation of the parameters that can be varied and
explain the connection to experiment. For example, here the sublattice splitting poten-
tial consists of a real and imaginary part Vz = V 0

z + iΓ. The real part V 0
z represents
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the on-site energy, i.e. the chemical environment. The imaginary part iΓ represents the
tunneling probability or effective gain or loss, respectively. With this interpretation we
can concieve a hypothetical device depicted schematically in Fig. 4.1. A graphene flake
is separated from another graphene flake (or a graphite crystal) by a single layer of an
insulator (e.g. hBN). Between the two layers a voltage Vtunneling introduces a tunneling
current. If the substrate has the same crystal structure but with two inequivalent ele-
ments or AB/BA stacking (compare with 3.4), the on-site energy and tunneling current
will not be the same for both sublattices (compare with Fig. 3.4). With a spectro-
scopic method or two contacts at the graphene flake experiments can be conducted as a
function of Vtunneling ∝ Γ.

Figure 4.1: Sketch of the proposed device. Two graphene flakes (black) are separated
by a single or a few layers of an insulator. The graphene flakes will be
connected via tunneling which can be controlled by varying the number of
insulating atom-layers or tuning the tunneling voltage Vtunneling. Measuring
the conductivity for one of the flakes yields information about the transmis-
sion probability.

It is harder to imagine experiments where the chemical on-site potential is varied
dynamically. However, in moiré superstructures (see Fig. 4.2, left panel), forming, e.g.,
when graphene is placed on hexagonal boron nitride, the sublattice splitting potential
varies as a function of the position inside this superstructure [38, 39].

A different approach to creating an alternating potential is placing the graphene on
a surface that has reconstructed in a way similar to a washboard. Such a surface could
be the “missing row” reconstructed gold or platinum (110) surface (compare with Fig.
4.2, right panel). The graphene ribbon will then experiences a different local potential
in the form of a grating. We will call a potential generated by such a structure ‘grating
potential’ Vgrating ≡ Vg.

Modulating the hopping parameter t in an experiment is generally associated with
changing the lattice constant by strain. Of course one has to be careful, because this
also generates a phase1, analogous to a magnetic field [41, 42]. Limited by the scope of
this thesis, we avoid this complication and only show that varying t yields an exceptional
point, while we mainly focus on other parameters.

There is one last parameter that is only included implicitly, the width w of the nanorib-

1Because in Eq. (3.9) the nearest neighbor vectors in H12 change.

26



4.1 Parameter space

Figure 4.2: Left panel: Scanning tunneling microscope topography (constant current
mode) of graphene on hBN. The resulting superstructure with a lattice con-
stant of & 100nm is clearly visible. Fig. taken from [39]. Right panel:
STM image showing the Pt(110)(12) surface in the missing-row reconstruc-

tion with single adatoms and small islands. The imaged area is 140×140Å
2
.

Figure taken from [40].

bons. In general, the width determines the magnitude of the level spacings of the ribbon2,
as well as the size of the gap around the Fermi energy. The level spacings and the gaps
decrease for wider ribbons (compare with Sec. 3.3 and Refs. [35, 36, 37]). Figure 4.3
shows the width of a ribbon vs. the position of the EP, for the energy fixed at E = 0.1.
For increasing ribbon-width the potential value at the EP decreases. At approximately
w ≈ 220Å the EP vanishes, because the fixed energy is no longer inside the gap.
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Figure 4.3: Position of the EP of a zigzag ribbon vs. the width of the ribbon. We plot
Im(Vz) because the EP is always on the imaginary axis (Re(Vz) = 0). The
energy is fixed at E = 0.1 inside the gap. Hence, for widths larger than
w ≈ 220Å there is no EP, because the energy is not in the gap anymore. If
the energy would be fixed at E = 0.0 the curve would extend much further.

2We can compare the narrow constriction of the nanoribbon to to the one dimensional potential well.
There the level spacings are also proportional to 1/L.
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4.2 Inverse bandstructures

The most straightforward way to study exceptional points as a theoretician is by exam-
ining the Riemann surface of two energy levels. It yields whether there is an exceptional
point, where it is and potentially other non-trivial features. This section explains how
to “draw” a Riemann surface and establishes the principles that are common to all the
Riemann surfaces presented in the following section.

Näıvely, the first step to draw a Riemann surface is to track the evolution of the
energy of a certain state according to some external parameter. However, this work
was also aimed to explore dynamics in the presence of exceptional points. Instead of
varying some external parameters adiabatically in time, we use a scheme inspired by
Doppler et. al. [3] (see chapter 2). The boundary conditions of a graphene nanoribbon
are varied along the length of the nanoribbon and an electron propagating through
the ribbon experiences changing boundary conditions. Therefore, the place of the time
evolution operator U(t) = exp(iEt/~) is taken by Bloch’s phase, which allows us to
define an operator for the “time-evolution” where the position x takes the role of time3

U(x) = exp(ikx). If x takes the role of time, the crystal momentum k takes the role of
the energy E. Hence, we are not interested in the Riemann surface for the energy, but
for the quasi-momentum k. This is possible by solving the inverse problem of finding
the crystal momentum k for a fixed energy. In solid state physics usually bandstructures
E(k) are studied, but to draw Riemann surfaces for the problem at hand we need to
consider the inverse bandstructure k(E). The following paragraphs will highlight the
differences between a bandstructure and an inverse bandstructure.
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Figure 4.4: Left: Bandstructure E(k) for a 102 atoms wide graphene nanoribbon. Right:
Inverse bandstructure k(E) for the same ribbon, showing only the real
eigenvalues.

The inverse bandstructure is in a few aspects different to a ‘regular’ bandstructure.
When solving the N × N -Hamiltonian for E(k), it has N real eigenenergies for every
k. According to the right panel of Fig. 4.4 the inverse problem apparently does not

3In the following we will calculate stationary scattering states. Because the energy is kept real,
“regular” time evolution will only contribute a phase factor and we do not need to worry about
exponential growth or decay due to complex energies.
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4.2 Inverse bandstructures

have the same number of results for every energy. Inside the gap there are no (real)
eigenvalues at all. This is because Fig. 4.4 shows only the real eigenvalues of the inverse
problem, which is actually not limited to the real eigenvalues. This can be seen by
inserting Bloch’s theorem

ψ(x) = eikxuk(x) (4.2)

into the time-independent Schrödinger equation(
~

2m

∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x) . (4.3)

This leads to

~
2m

(u′′(x) + 2iku′(x)− k2u(x)) + V (x)u(x) = Eu(x) , (4.4)

the equation which needs to be solved for the inverse problem. The solutions for k don’t
need to be real because the differential operator is not self-adjoint anymore. When the
complex eigenvalues of the inverse problem are included, it has 2N solutions, because
k appears squared in eq. (4.4). In Fig. 4.5 all the solutions of the inverse problem
are included. Physically, the complex eigenvalues represent localized states, because
the Bloch factor (Eq. (4.2)) with a complex k does not propagate the electron along
the ribbon, but represents an exponential decay. At this point it becomes clear that the
bandstructure and the inverse bandstructure are not the same problem solved differently,
but especially in the case of a non-hermitian potential V (x), they are different problems4.
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Figure 4.5: Inverse bandstructure k(E) including all eigenvalues for a 102 atoms wide
graphene nanoribbon. Left panel: Real part Re(k(E)) of the eigenvalues.
Right panel: Zoom to the Dirac point, same as the left panel, but with the
imaginary part Im(k(E)) plotted as z-axis.

In order to draw a Riemann surface, we record the evolution of the complex eigenvalue
for a fixed energy k(E) when varying some external parameters. The external parameters
can be chosen freely, compare with the discussion in the previous section. An exemplary

4In practice this can be seen for instance when the ’regular’ and inverse problem both show EPs, but
at completely different parameter combinations. One could say that we consider different three-
dimensional cuts through the four-dimensional space spanned by Re(k), Im(k), Re(E) and Im(E).
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Riemann surface for an armchair ribbon is depicted in Fig. 4.6. It shows the sign of
the imaginary part of the respective eigenvalue as color coding, with red (green) being a
gain (loss) state. The EP is situated on the imaginary axis and is connected to a second
EP, that is mirrored across the real axis, by a real crossing (as opposed to an imaginary
crossing, like the one starting at the EP and going to negative imaginary infinity).
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Figure 4.6: Riemann surface for the bandstructure in Fig. 4.5. The color coding rep-
resents the sign of the imaginary part, red (green) representing gain (loss).
Left panel: Real part of the k-eigenvalue. Right panel: Imaginary part of
the k-eigenvalue.
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4.3 Results

After establishing how to determine them, this section presents the Riemann surfaces
for various parameter combinations. We will start with armchair ribbons with complex
grating potential and discuss generic and non-generic EPs. Then we will discuss a
complex sublattice splitting potential for zigzag ribbons, representative for both armchair
and zigzag ribbons. In this theoretical study we present typical cases, which of course
would need to be adapted for a certain device.

4.3.1 Armchair with grating potential

We start with an armchair ribbon that is placed on a surface in the missing-row re-
construction (Fig. 4.2), where the on-site potential alternates for every column of the
graphene nanoribbon. We call this a grating potential Vg = V 0

g + iΓg.
The bandstructure of an armchair terminated graphene nanoribbon has a gap at the

Fermi energy and the two Dirac cones of the graphene bandstructure are projected on
top of each other (compare with Fig. 4.7).
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Figure 4.7: Bandstructure for an armchair nanoribbon with a width of 102 atoms. (same
as Fig. 3.8)

If we fix the energy EF inside the gap in the absence of a potential (V0 = Vg = 0),
then the k-value for the first state (marked in Fig. 4.8) will be completely imaginary
(with Re(k) = 0, blue dots in Fig. 4.8). When a grating potential Vg is introduced, the
bandstructure shifts to higher (or lower) k-values. At some point, V 0

g is large enough
that the fixed energy is no longer inside the gap (blue triangles or squares in Fig. 4.8).
The spectrum becomes completely real. This behavior corresponds to the square root
of a real number, which is zero at around V EP

c = (0.2900505 ± 0.0000005) + i0.0. This
point is an exceptional point.
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Figure 4.8: Behaviour of the modes around the EP. The top panel shows a cut through
the Riemann surface at Im(Vg) = 0.0. The red crosses (green circles) denote
the real part (imaginary part) of the crystal momentum k. The blue symbols
correspond to the blue symbols in the lower three panels. The lower three
panels show a zoom of the inverse bandstructure, increasing the real grating
potential from left to right. The energy is fixed at E = 0.05, marked by a
green line. The blue symbols in the lower panels indicate the point where
the green line intersects with the band. We mark the same Vg values with
blue symbols in the upper panel.

In order to find Riemann surfaces that resemble the one shown in Fig. 2.2, a second
parameter has to be varied. Following the argumentation in the last section this can
either be the tunneling probability Im(Vg) = Γg or the hopping parameter t. Figure 4.9
shows the resulting plot for variation in the Re(Vg)-Im(Vg)-plane.
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Figure 4.9: Riemann surface for a w ≈ 102Å wide graphene nanoribbon, at E = 0.05
for grating potential Vg varied in the complex plane. The EP is at Vg =
(0.2900505 ± 0.0000005) + i0.0. The color coding represents the sign of the
imaginary part. Left panel: Real part of the k-eigenvalue. Right panel:
Imaginary part of the k-eigenvalue.

It is important to identify the coupled states in this example. The lower row in Fig.
4.8 shows that it is the “upper” and “lower” branch of one state in a k(E) plot. This
corresponds to the “left” (negative slope) or “right” (positive slope) branch of one state
in the E(k) plot (Fig. 4.7), representing a wave that propagates through the nanoribbon
either to the left or to the right5. This will restrict the possibilities when investigating
the dynamics around the EP, on which we discuss in chapter 5.

The armchair Riemann surface has another interesting feature, represented in Fig.
4.10. There are multiple exceptional points. They are all situated on the real axis
and the spacing decreases for increasing Re(Vg). This will be relevant when we discuss
dynamics.

For all the plots presented above, the varied external parameters were the real and
imaginary part of the sublattice splitting potential. As discussed before, varying the
hopping parameter t is also an option. Starting from Fig. 4.8 we need to introduce a
small Γ, to make the Hamiltonian non-hermitian. Variation in t yields the Riemann
surface plotted in Fig. 4.11. Please note that this is done only by modulating the
nearest neighbor hopping parameter t1. For a w = 102Å wide armchair ribbon with the
energy fixed at E = 0.05 and the imaginary part of the grating potential Vg = 0.01 the
exceptional point is located at Re(Vg)EP = 0.0, tEP = 0.874125 ± 0.000025. This shows
clearly that in accordance with Eq. (4.1) we can also calculate a Riemann surface and,
thereby, find an EP when varying the real part of the grating potential and the hopping
parameter. We leave this statement as is and focus on the variation of other external
parameters. This is because we interpret the modulation of the hopping parameter as a
change in bond length (i.e. strain), which would be accompanied by a modulation of the
higher order hoppings and be constrained to realistic strain patterns. Two restrictions
which were neglected at this point.

5This interpretation is easily explained by considering the group velocity vG ∝ ∂E
∂k .
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Figure 4.10: A graphene nanoribbon shows more than one EP in the complex Vg plane.
Left panel: Cut through the Riemann surface at Im(Vg) = 0.0. All points
where both the real (red crosses) and the imaginary (green circles) part
of k vanish are EPs. Right panel: Riemann surface around the two EPs
(arrows). Real part of the eigenvalues color coded according to the sign of
the imaginary part (red equals positive and green equals negative Im(k))
of the respective eigenvalue. Note how the color coding indicates a certain
kind of “mirror symmertry” between adjacent EPs.
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Figure 4.11: Riemann surface for a w = 102Å wide armchair ribbon with E = 0.05 and
Vg = 0.01. We find the EP on the t-axis at tEP = 0.874125± 0.000025. The
color coding corresponds to the sign of the imaginary part of the respective
eigenvalue. Left panel: Real part of the eigenvalues. Right panel: Imaginary
part of the eigenvalues.
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4.3.2 Non-generic armchair with grating potential

While the exceptional point presented above occurs generically in every armchair termi-
nated graphene nanoribbon, there are other EPs, that only occur for a specific ribbon-
width and energy. Figure 4.12 illustrates how two modes that are (truly) degenerate
begin to couple and exhibit a nonzero imaginary k-value for imaginary Vg. This seems to
happen for all real crossings (as opposed to avoided crossing), although the magnitude
of the imaginary part of k varies considerably from crossing to crossing.
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Figure 4.12: Top panel: Inverse bandstructure of a w = 48Å wide armchair ribbon. The
green rectangle marks the real crossing that we track in order to find a
non generic EP. Lower panels: Zoom in to the real crossing in the green
rectangle in the upper panel showing the behavior of the eigenvalues at the
crossing as a function of an imaginary grating potential Vg.

By fixing an energy near a crossing and tracking the evolution of the crystal momentum
k as a function of Vg we can draw a Riemann surface as shown in Fig. 4.13. Although
this kind of exceptional point does not occur generically, it has the advantage of coupling
two modes with a finite group velocity of the same sign. For the EP presented previously
the two modes that couple have group velocities of opposite sign, which makes the group
velocity at the EP zero, which will be a problem when trying to exploit the dynamics
around an EP in a transport experiment.

The inverse bandstructure in Fig. 4.12 also contains many avoided crossings. The
phenomenon shown in the lower row of Fig. 4.12 does not happen there, in other words,
two states that have an avoided crossing at a certain energy do not have an EP at that
energy. We do not have a satisfying explanation why real and avoided crossings act
so differently. However, the behavior of the modes around an avoided crossing when
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Figure 4.13: Eigenvalue spectrum of the fifth and sixth mode of a w ≈ 48Å wide armchair
nanoribbon, for an energy fixed at E = 0.882883. The varied parameters
are the real and imaginary part of the grating potential Vg. There is an
EP at V EP

g ≈ 0.0 + i0.1003. The color coding represents the sign of the
imaginary part, red (green) for a state that experiences gain (loss). Left
panel: Real part of the eigenvalues. Right panel: Imaginary part of the
eigenvalues.

turning on an imaginary potential is very different to what we see at real crossings and
might be worthwhile to study. We do not include this here due to the limited scope of
this thesis.

Avoided crossings are degeneracies lifted by an interaction and have been described as
early as 1929 by Wigner and von Neumann [43]. Such an interaction is forbidden for the
two states we investigate (see Fig. 4.12 and 4.13) due to their odd and even symmetry.

4.3.3 Zigzag with a sublattice splitting potential

In this section we discuss a zigzag ribbon with a complex sublattice splitting potential,
for instance a ribbon placed on hexagonal boron nitride. As already discussed, the
zigzag-ribbon has a topologically protected edge state and, hence, does not have a gap.
We, however, focus on the 1st “normal” state, marked in Fig. 4.14. This is necessary
because the only EP for the zigzag ribbon are generic ones that couple two modes
propagating in opposite directions, which is not possible for the edge state. Also, for
the zigzag ribbon the two Dirac cones are not superimposed, hence, there are no other
crossings that could feature an exceptional point.

This discussion is also valid for generic EPs for a complex sublattice splitting potential
in armchair graphene nanoribbons. Because the analysis would be practically identical
for the armchair ribbon we omit it.

Figure 4.15 shows the Riemann surface for a zigzag ribbon that is w = 58Å wide at zero
energy but with a constant potential of V0 = −0.1. At Vz = 0.0 + i0.0 the fixed energy
E = 0.0 is inside the gap and the k-values for the two states have a finite imaginary
part of opposite sign. Complementary to the exceptional point for an armchair ribbon
(see Fig. 4.9) the EP is located on the imaginary axis, at V EP

z = 0.0 + i0.255.
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Figure 4.14: Upper panel: Bandstructure E(k) for a w ≈ 85Å wide zigzag nanoribbon
without a potential. The spectrum is always gapless due to a topologically
protected edge state. The blue dot marks the mode for which we show
the EP in Fig. 4.15. Lower panels: Real part of the inverse bandstructure
k(E) around E = 0.0, the blue dot denotes the same state as in the upper
panel. Inside the gap the crystal momentum is imaginary. As we increase
the imaginary part of the potential Im(Vz) from left to right, the gap closes.
For a certain potential the gap vanishes and the k-eigenvalues are completely
real. We find a generic EP for any energy inside the gap. Compare this
with the behavior of infinite graphene in Fig. 3.5.
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Figure 4.15: Eigenvalue surface for a w ≈ 85Å wide zigzag nanoribbon at E = 0.1. We
vary the real and imaginary part of the sublattice splitting potential Vz and
find an EP at V EP

z = 0.0 + i0.255. The color coding represents the sign of
the imaginary part, red (green) for a state that experiences gain (loss).
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4.3.4 Parity-Time symmetry

For all Hamiltonians examined in this chapter so far V0 in Eq. (3.13) was purely real.
This implies that they all commutate6 with the parity-time operator PT . The PT -
operator has only real eigenvalues, hence, because they commutate and therefore have
a common set of eigenvectors, the energy eigenvalues are real. In non-hermitian physics
exceptional points are associated with a spontaneous breaking of this symmetry [2, 12].
This provides a nice interpretation for the EP in an armchair ribbon as (for example)
shown in Fig. 4.8. For values Γ = 0, V 0

z & 0.29 the eigenvalues are real, for lower values
of V 0

z they are complex, making Vz = 0.029 + i0.0 an exceptional point.
We also investigated systems without PT -symmetry, by lifting the balance between

gain and loss by adding a complex V0. Figure 4.16 shows such a Riemann surface,
calculated for a w = 61Å wide armchair ribbon with V0 = 0.1i and fixed energy at
E = 0.05. The EP is approximately at V EP

g = (0.5915± 0.00025) + i(0.525± 0.001).
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Figure 4.16: Eigenvalue spectrum as a function of a complex grating potential Vg for

a w = 61Å wide armchair ribbon with V0 = 0.1i and the energy fixed at
E = 0.05. The EP has moved away from the real axis and is approximately
at V EP

g ≈ 0.5915 + i0.525. A red (green) color coding shows a negative
(positive) sign of the imaginary part of the eigenvalue. Left panel: Real part
of the eigenvalue spectrum. Right panel: Imaginary part of the eigenvalues.

The most prominent effect we observe is that the EP has moved away from the real
(or imaginary) axis7. The deviation of the position of the EP with respect to its posi-
tion for a PT -symmetric Hamiltonian |∆Vz| = |VzEP − V PTzEP| is always larger than the
complex V0 that lifts PT -symmetry, |∆Vz| ≥ |V0|. This is shown in Fig. 4.17, where
the red crosses with errorbars mark the positions of the EP for stepwise increasing PT -
symmetry breaking potential V0 (green circles). For V0 > 0.04 the position of the EP on
the imaginary axis grows approximately linear. Therefore, we numerically verified the
statement that in terms of the experiment an EP only occurs if there is periodic gain
and loss, respectively, present in the nanoribbon. To realize this requirement, we need
to modify the device proposed in Fig. 4.1 by adding an extra insulating plus conducting
layer as shown in Fig. 4.18.

6[H,PT ] = 0
7The symmetry of the Riemann surface w.r.t. the axes is a consequence of PT -symmetry.
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Figure 4.17: Position of the generic EP of a w = 61Å wide armchair ribbon in the
complex Vg plane (red crosses with error bars) for a stepwise increasing
gain-loss-balance breaking potential Im(V0) (green circles). The stepwidth
is ∆Im(V0) = 0.01. For Im(V0) > 0.04 the imaginary potential at the EP
Im(V EP

g ) grows linearly, and, hence, will always remain larger than Im(V0).

We verified this for the entire relevant potential window (not shown).

Figure 4.18: Sketch of the adapted device. Three graphene flakes (black) are separated
by a single or a few layers of an insulator. The graphene flakes will be
connected by tunneling rates Γ which can be controlled by varying the
number of insulating atom-layers or tuning the tunneling voltage Vtunneling.
Measuring the conductivity for the middle flake yields information on the
transmission probability.
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This hypothetical device consists of a graphene layer encapsulated between two hBN
monolayers, with conductors on the top and bottom. The tunneling voltage between
the graphene and the two conductors can be modified in such a way that the tunneling
rate Γ1 to the graphene flake is the same as the tunneling rate Γ2 for leaving the flake,
corresponding to a PT -symmetric Hamiltonian or de-tuning it to realize a non-PT -
symmetric Hamiltonian.
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5 Dynamics in the vicinity of
exceptional points

After revealing the existence and location of exceptional points in graphene we want
to investigate dynamics in their presence. Inspired by the experiments demonstrating
dynamical encircling of an EP (as described in Sec. 2.3) we focus on transport through
nanoribbons with longitudinally changing parameters. This section presents the results
found, focusing on the PT -symmetric case where gain and loss is balanced, because as
mentioned before, all of our results point towards the conclusion, that there are no EPs
if there is not alternating gain and loss.

We will start with the discussion of armchair ribbons with a grating potential because
it is a very instructive case. The armchair ribbon has two kinds of EPs, the first occuring
generically and the second appearing only at certain crossings. In the end we will discuss
a zigzag ribbon with a sublattice dependent potential.

All the energies and potentials in this chapter are given in electron volt. We omit
them for clarity.
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5.1 Physical motivation

We map the adiabatic evolution of a state in time to a longitudinal parameter variation
along a graphene nanoribbon. Hence, instead of a time resolved scattering experiment,
we simulate a transport experiment. Applying a finite bias to the nanoribbon leads to
a current that can be measured to calculate the conductivity G = I/U . We describe
this theoretically by considering scattering through a finite structure with (semi-)infinite
leads, where we fix the energy E of the incoming electrons. We can assign numbers to
the modes in the leads and then calculate the transmission tij from a certain mode j in
the incoming lead to a mode i in the outgoing lead. The insertion energy is proportional
to the bias applied to the nanostructure and the macroscopic conduction G can be
calculated by multiplying the total transmission T =

∑
ij tij with the electronic flux

quantum: G = T e2

h
.

While earlier we considered bandstructures and, hence, infinite nanoribbons for a uni-
form potential V = V 0+iΓ, we now consider a locally varying V = V (~r) = V 0(~r)+iΓ(~r).
For instance hexagonal boron nitride (hBN) and graphene have a lattice mismatch of
1.8% which results in a so called moiré structure (Fig. 4.2). There, the stacking config-
urations change on a scale which is proportional to the inverse of the lattice mismatch.
Hence, the on-site potential V 0

z and the tunneling rate Γ change on the same scale.
With these remarks we can motivate the change of Vz along a graphene nanoribbon

assuming hBN is used as substrate and insulating layer. Note, however, that this is only
a motivation and we do not provide a realistic set of parameters, because the ab-initio
simulation of tunneling probabilities in graphene on hBN goes beyond the scope of this
thesis. For the armchair ribbons we consider a grating potential Vg that alternates for
every other row of carbon atoms along the ribbon. This corresponds to the ribbon being
placed on a reconstructed surface.

In this first study we restrict ourselves to perfect graphene nanoribbons. Investigating
ribbons with defects or imperfect edges was beyond the scope of this thesis. Because
of their very different bandstructure we discuss the zigzag- and armchair-nanoribbons
separately.
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5.2 Armchair with grating potential – a generic EP

For a w ≈ 61Å wide ribbon we fix the energy at E = 0.05 inside the gap and find
a Riemann surface as shown in Fig. 5.1. The EPs are located on the Re(Vg)-axis,
situated at Vg = (0.2900505± 0.0000005) + i0.0 and mirrored across the imaginary axis
at Vg = (−0.2900505± 0.0000005) + i0.0. A real crossing connects them1.
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Figure 5.1: Left panel: Real part of the eigenvalues of the investigated graphene nanorib-

bon for variable grating potential Vg. The ribbon is w ≈ 61Å wide, the energy
is fixed at E = 0.05 and we find an EP at Vg ≈ 0.290 + i0.0. The color cod-
ing shows the sign of the imaginary part, red (green) corresponding to gain
(loss). Right panel: Position of the EPs (red dots) in the complex Vg-plane.

We investigate transport by imagining devices where the values of Re(Vg) and Im(Vg)
change adiabatically when going along the x-direction of the device (compare with pre-
vious section). Such a parameter variation along the x-direction is shown in Fig. 5.2
on the left panel. The parameter variation as a function of x can be interpreted as a
path in the Re(Vg)-Im(Vg)-plane (right panel in Fig. 5.2). Usually, we choose this path
to be circular or elliptical. Due to technical limitations this path has to start on the
Re(Vg)-axis2.

For a device that represents such a parameter-variation we calculate the transmission
T from left to right and the transmission T ′ from right to left. The same goes for R
and R′. Wherever it is necessary to distinguish, we will call the transmission (reflection)
for a positive tunneling voltage T+ (R+), for negative tunneling voltage T− (R−) and
without tunneling T0 (R0).

1This follows from the energy being fixed inside the gap, the eigenvalue at Vg = 0.0 + i0.0 has to be
purely imaginary.

2The tight-binding solver we use [44] requires a real potential for the semi-infinite leads.
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5 Dynamics in the vicinity of exceptional points

Figure 5.2: Upper left and center panel: Local sublattice-splitting potentials V 0
g (x) =

Re(Vg(x)) and Γ(x) = Im(Vg(x)) as a function of the position along the
ribbon. Upper right panel: Path in the complex Vg plane. Lower panel: Real
part of the grating potential along a short ribbon. The color scale ranges
from black (minimum) to red (maximum), same as in Fig. 5.14.

For this EP the two modes that couple are the left- and right-going mode. Hence, when
measuring the conductance there is only one mode accessible. Following the remarks in
section 2.3 we näıvely expect transmission to be large for one mode and the other mode
to be suppressed and inverse when passing through the parameter path in the opposite
direction, i.e. when passing through the ribbon in the opposite direction. In other words,
the same mode that is transmitted well in the first direction will be suppressed in the
other. Hence, we expect to observe a diode-like transmission.

5.2.1 EP centered circular paths

In a first step we consider a circular path centered around the EP. As Schumer reports
[7], not all radii show chirality, therefore, we vary the radius of the parameter-circle.
Transmission vs. radius is plotted in Fig. 5.3. T+ corresponds to a positive tunnel-
ing voltage and T− corresponds to a negative tunneling voltage. Apparently, the real
potential dominates the transmission behavior, as there is little to no difference to the
transmission with the same real potential without imaginary part (labeled T0 in Fig.
5.3). This behavior is connected to the existence of a gap. When adiabatically moving
along the circular path the electron moves through an area with no local density of states
(e.g. at V EP

g − rVg). This will become more clear with the next example.
The behavior when encircling the EP is vastly different from what we expected because

the ribbon is Lorentz reciprocal [45]. Lorentz reciprocity is a property from electromag-
netism that requires the scattering matrix that connects the incoming and outgoing
currents to be symmetric (for details we refer the reader to [45]). For the nanoribbons
presented in this thesis this implies3 T = T ′ .

3Even though reciprocity is not broken it can be circumvented for individual modes when there are
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5.2 Armchair with grating potential – a generic EP
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Figure 5.3: Transmission for a parameter variation that describes a circular path in the
complex Vg plane, centered around the EP. T+, T− and T0 denote the trans-
mission for a positive, negative and no tunneling voltage, the primed quanti-
ties indicate transmission from the other direction. Apparently the real po-
tential dominates, because the transmissions with imaginary potential (T+,
T−) do not deviate from the transmission for a real potential T0.

The reflections for incoming modes from the left side R and from the other side R′ are
not required to be equal. Two electrons that are transmitted through the structure in
opposite directions will experience no net gain or loss because they pass through all the
parts of the structure with positive and negative imaginary potential. An electron that
is reflected does not probe the full structure but only part of it, hence, it can experience
net gain or loss. This is manifested in Fig. 5.4, where for the real potential the reflection
R0 goes towards zero (fulfilling the condition T0 + R0 = 1), while the left reflection R
and the right reflection R′ are not equal and do not sum up to one with the transmission
(T +R 6= 1) due to the absorbing/emitting potential.

several of them present. Because the transmission is defined as T =
∑
tij and T ′ =

∑
tji, it is still

possible to find tij 6= tji.
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5 Dynamics in the vicinity of exceptional points

Comparing the transmission for positive (T+), negative (T−) and hermitian (T0) dy-
namics yields almost identical results (see Fig. 5.3). We conclude that the imaginary
potential does not influence the transport properties, and therefore no chiral behavior
emerges.
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Figure 5.4: Reflection for a parameter variation that describes a circular path in the
complex Vg plane, centered around the EP. R+ and R0 denote the reflection
for a positive and no tunneling voltage, respectively. The primed quantities
indicate reflection from the other direction. Please note the logarithmic
scale! For r = 0, i.e. no parameter variation, all reflections are zero. While
for a finite radius R0 and R′0 quickly go to one, the reflection with imaginary
potential is amplified for one side R+ and damped for the other R′+. This is
reversed for negative tunneling voltage (R− and R′−, not shown for clarity.)
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5.2 Armchair with grating potential – a generic EP

5.2.2 Circular paths with variable center

While we do not find interesting behavior when encircling the EP, another category of
quasi-adiabatic paths can be investigated by fixing the radius of the path and moving
its center along the real axis. This experiment shows whether containing the EP inside
the circle actually has an effect on the transmission properties. Figure 5.5 shows, that T
is effectively zero up until a critical value V 0

zcenter ≈ 0.4, which corresponds to V 0
zcenter =

VzEP + 2r, with the radius of the parameter-circle r = 0.05. For smaller values of V 0
zcenter

transmission is blocked because the local density of states at EF vanishes in some areas
along the ribbon.
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Figure 5.5: Transmission of a l = 42000Å long nanoribbon, where the potential passes
through a circular path of r = 0.05 in the complex Vg plane. The center is
moved along the real axis and the transmission is recorded for a given center
position. The ribbon is w = 61Å wide. Evidently, the transmission is zero
for V 0

zcenter < VzEP + r, and unity for larger values. We associate this with
the state having to tunnel through a region of zero density of states, where
it will be exponentially suppressed.

At approx V 0
zcenter ≈ 0.4 ≈ VzEP + 2r transmission is equal to one. This is interesting,

because it is exactly what we expect for adiabatically changing the parameters in a her-
mitian system. Apparently, the adiabatic theorem holds although the electron passes
through an imaginary potential. Another surprising feature is that the transmission
drops again to zero at about Vzcenter = 0.77. Comparing this behavior with Fig. 4.10
reveals that this drop is connected to a second EP. This is highlighted in Fig. 5.6 by
overlaying Fig. 4.10 with a cut through the Riemann surface at Im(Vz) = 0. Contin-
uously shifting the center of the parameter path repeats the same pattern for multiple
EPs, in line with the Riemann surface presented in Fig. 4.10.
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5 Dynamics in the vicinity of exceptional points
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Figure 5.6: Same figure as above (Fig. 5.5), with a linecut through the real Riemann sur-
face Re(k(Vg)) at Im(Vg) = 0.0. The figure illustrates that the transmission
is zero when the electron passes through a parameter region were Re(k) = 0.

When the center (in Fig. 5.5) is at approximately Vg ≈ 0.4 the transmission T+ is
briefly larger than one, whereas T− does not seem to exceed one. We investigate this
small difference between T+ and T− by either omitting by the imaginary potential or
by increasing the length of the ribbon (Fig. 5.7). Without an imaginary potential the
transmission goes quickly to unity at V 0

gcenter = VgEP + r ≈ 0.34. This agrees with
the explanation that the transmission alternating between zero and one is actually not
linked to non-hermitian physics. The best explanation is that in the areas where the
transmission is small, the electrons have to pass through a region with vanishing density
of states and, hence, transmission is suppressed if this area is too large. However,
we see that the transmission is enhanced at about Vgcenter ≈ 0.37, which is clearly a
consequence of the non-hermitian nature of the Hamiltonian. Apparently the difference
between T+ and T− in Fig. 5.3 is a numerical artifact. If the ribbon is longer, i.e.
the parameter variation happens slower, numerical errors seem to dominate, as the
transmission fluctuates wildly, but however, clearly exceeds unity. Numerical simulations
in non-hermitian physics are prone to numerical errors, especially for large non-hermitian
potentials or long propagation in the non-hermitian potential. The exponential nature
of the time propagator (or, in our case, Bloch’s phase) for an imaginary eigenvalue can
amplify even tiny numerical errors.

Another way to highlight the non-hermitian effects around Vcenter = 0.4 is to study the
wavefunctions directly. Figure 5.8 shows the wavefunctions of l = 4200Å long ribbons
with zero and full transmission. The wavefunction of the ribbon without transmission
(T = 0, Vgcenter = 0.33, upper panel in Fig. 5.8) goes to zero along the ribbon as we
expect, whereas for the other ribbon with transmission T = 1 (Vgcenter = 0.39, lower
panel in Fig. 5.8) we find unexpected behavior: the wavefunction drops to zero in the
middle of the ribbon and is then ‘revived’ in the second half of the ribbon. This is clearly
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5.2 Armchair with grating potential – a generic EP
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Figure 5.7: Same ‘experiment’ as in Fig. 5.5, with the area around the onset of trans-
mission enlarged. Left panel: Comparison of an oscillation with amplitude
r = 0.05 of the real potential (blue) around the same center as a circular
path in the complex plane with the same radius (red/green) for a l = 4200Å
long ribbon. The enhanced transmission round Vg ≈ 0.37 is a feature of
the non-hermitian potential. Right panel: Comparison of the transmission
of a nanoribbon where the potential stretches over l = 4200Å (red) and a
nanoribbon where the potential stretches over l = 42000Å (red). For the
long nanoribbon numerical fluctuations seem to dominate in the region of
transition from T = 0 to T = 1.

a non-hermitian effect.
The reflection (left panel of Fig. 5.9) is large for one side while being practically

zero for the other one. Again, this is not very surprising, as the wavefunction of a
reflected particle mainly probes the first part of the imaginary potential, as seen from
its initial direction of motion. If we, however, compare this with the transmission T and
transmission phase φT shown in the left panel of Fig. 5.9, we discover a certain position
of the center of the circle where the transmission is one, T = 1 and the transmission
phase vanishes, φT = 0 (V = 0.386, vertical black line). This resembles strongly a
phenomenon in PT -symmetric optics called “unidirectional invisibility. The expression
describes a Bragg grating of optically active materials that are designed to absorb the
incoming light from one direction and (re-)emit into the other direction, while being
invisible in transmission by having T = 1 and a vanishing transmission phase4 φT = 0.
This was described and realized recently [46, 47, 48]. Although, at first glance all these
criteria are met, for a unidirectional invisible grating these properties hold for a large
range of incoming frequencies, which is not true in this case.

4In this case we define the transmission phase as the phase shift aquired by the electron after passing
through the structure. The transmission phase without a potential would also vanish.
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5 Dynamics in the vicinity of exceptional points

Figure 5.8: Absolute square of the wavefunction |ψ|2 of the ribbon in Fig. 5.5. The

aspect ratio of the images do not correspond to the actual 4200Å × 61Å
ribbons. Upper image: Wavefunction for a parameter circle centered around
Vgcenter = 0.33, transmission is T = 0. Lower image: Wavefunction for a
parameter circle centered at Vgcenter = 0.39 with T ≈ 1. The wavefunction
vanishes in the middle of the ribbon but is ‘revived’ by non-hermitian effects.
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Figure 5.9: Reflectivity and transmission phase for the region of interest around the
onset of transmission. Left panel: The reflectivity for the hermitian case
(R0 = R′0, blue and orange) is the same for both directions and drops at
the onset of transmission according to T0 + R0 = 1. For the non-hermitian
potential the reflectivity is large for one direction R+ and exponentially small
for the other R′+. The vertical line marks the center position where we
find ‘unidirectional invisibility’. Right panel: The transmission (red) for
orientation and the transmission phase (green) divided by π. The vertical
black line marks the position where transmission is one and the transmission
phase vanishes. Combined with the asymmetric reflectivity this point shows
unidirectional invisibility.
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5.3 Armchair with grating potential – a non-generic EP

5.3 Armchair with grating potential – a non-generic EP

In Sec. 4.3.2 we presented the Riemann surface for an exceptional point that is concep-
tually different. Although this EP does not occur generically at a known energy and for
every ribbon, it has certain advantages. It does not connect two modes that move in
opposite directions, but two modes that propagate in the same direction, thus allowing
us to observe “chirality” when dynamically encircling the EP. With multiple modes ac-
cessible, the “forward” and “backward” transmission from one to another mode can be
different, tij 6= tji, without violating Lorentz reciprocity T = T ′.

The Riemann surface for a w = 48Å wide ribbon is shown in Fig. 5.10, the energy is
chosen at E = 0.882883 and the two modes connected are the fifth and sixth occuring
modes (compare with Fig. 4.12). We find the EP located on the imaginary axis at
V EP
g = 0.0 + i0.1003.

-0.001
-0.0005

 0
 0.0005

 0.001
Re(Vg)  0.098

 0.099
 0.1

 0.101
 0.102

Im(Vg)

 0.0714

 0.0715

 0.0716

 0.0717

Re k

-0.001
-0.0005

 0
 0.0005

 0.001
Re(Vg)  0.098

 0.099
 0.1

 0.101
 0.102

Im(Vg)

-0.0002

-0.0001

 0

 0.0001

 0.0002

Im k

Im(k)<0
Im(k)>0

Figure 5.10: Eigenvalue spectrum of the fifth and sixth mode at E = 0.882883 for a

w = 48Å wide armchair nanoribbon. There is an EP in the complex Vg
plane at V EP

g ≈ 0.0 + i0.1003. The color coding represents the sign of the
imaginary part, red (green) for a state that experiences gain (loss). Left
panel: Real part of the eigenvalues. Right panel: Imaginary part of the
eigenvalues.

5.3.1 EP centered elliptical paths

In a first step we try encircling the EP with an ellipse and vary the semi-axis in the
real direction. We do not vary the imaginary semi-axis because we are again technically
restricted to start points on the real axis, hence, only one EP-centered radius is possible.
The encircling path is shown in Fig. 5.11.

Because there are multiple modes accessible the analysis becomes slightly more in-
volved. We will call the transmission from the incoming mode i to the outgoing mode j
tij. The transmissions tij can be arranged in a matrix, connecting the modes in the left
lead ψ = (φi, φj) to the modes in the right lead ψ′ = (φ′i, φ

′
j),(

φ′i
φ′j

)
=

(
tii tij
tji tjj

)(
φi
φj

)
. (5.1)
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5 Dynamics in the vicinity of exceptional points

Figure 5.11: Left and center panel: The local grating potential as a function of the
position along the ribbon for positive and negative tunneling voltage. Right
panel: Parameter path in the complex plane.

The transmissions of interest are t55, t56, t65 and t66, and the notation for scattering in
the reverse direction is t′ij. First, we calculate them for a l = 4200Å long ribbon, as
shown in Fig. 5.12.
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Figure 5.12: Transmission for a w = 48Å wide and l = 4200Å long armchair ribbon. The
center in the imaginary direction is fixed at the EP Im(Vgcenter) = 0.1003
and the radius is equal rim = 0.1003 to guarantee a starting point on the real
axis. We vary the radius in the real direction rre and find chiral behavior
for rre > 0.09. How to spot chiral behavior is described in the running
text and Tab. 5.1. Left panel: Transmission tij for insertion from the left,
i.e. passing counterclockwise through the parameter loop. Right panel:
Transmission t′ij for insertion from the right, i.e. passing through the loop

clockwise.

Apparently for r > 0.9 there is chiral behavior in the sense of Sec. 2.3. This can
be understood by comparing the orders of magnitude of the various tij for forward
propagation and t′ij for backward propagation. For radii r > 0.9 we find5 t56 > t55 and
t66 > t65. If we start in mode φ5 we will most likely end up in the other mode φ6,
while an electron in mode φ6 will remain in that mode (compare with Tab. 5.1). For
the propagation in the opposite direction we find the exactly opposite behavior, hence,
encircling the EP yields chiral behavior.

5In terms of the matrix: one column dominates linewise over the other.
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5.3 Armchair with grating potential – a non-generic EP

Table 5.1: Exemplary comparison of the orders of magnitude of the transmissions from
mode i to j, tij. The values are similar to rre ≈ 0.1 in Fig. 5.12.

Counterclockwise
Start in φ5 Start in φ6

t55 ≈ 1 t65 ≈ 0.01
t56 ≈ 100 t66 ≈ 1
End in φ6 End in φ6

Clockwise
Start in φ6 Start in φ6

t′55 ≈ 1 t′65 ≈ 100
t′56 ≈ 0.01 t′66 ≈ 1
End in φ5 End in φ5
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Figure 5.13: For completeness we give the reflection that corresponds to the transmission
in Fig. 5.12. Left panel: Reflection rij for insertion from the left, i.e. passing
counterclockwise through the parameter loop. Right panel: Reflection r′ij
for insertion from the right, i.e. passing through the loop clockwise.

A further illustration of the chiral behavior is the change of the wavefunction charac-
teristic after passing through the ribbon. Both outgoing modes have mainly the same
characteristics, which we find for the ingoing modes φ5 (see Fig. 5.14).

To make sure that the phenomenon we observe is not just coincidental, we compare
with some other modes, for example the first two. As can be seen in Fig. 5.15, the
diagonal elements are approximately one, while the off diagonal elements are practically
zero. This is exactly what we expect when varying external parameters adiabatically.
The electron remains in its instantaneous eigenstate and returns into its initial state
after being transported adiabatically along a closed path in parameter space.
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5 Dynamics in the vicinity of exceptional points

Figure 5.14: Absolute squared wavefunctions |ψ|2 for the ribbon in Fig. 5.12, for
rRe = 0.1. Top panels: Wavefunction for the fifth φ5 and sixth mode φ6

when inserted from the left. Please note that the color scales are not equal
because φ6 is amplified disproportionally strong. The grey rectangles mark
the areas that are enlarged in the top panels. Lower panels: Extracts of
the wavefunctions in the lower panels of the incoming and outgoing wave.
The enlarged sections are placed next to each other to compare the wave-
function characteristics. The in and outgoing part of φ5 are roughly similar
(left panel), whereas φin6 and φout6 show very different characteristics (right
panel). The middle panel indicates that the characteristics of the outgoing
wave of φ6 are actually those of the incoming wave of φ5. This confirms
that irrespective of which mode is inserted, the outgoing mode will be the
same.
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Figure 5.15: Transmissions for the first two modes coming from left and right. The
variation of the potential is adiabatically slow, hence, the states are not
scattered into each other which can be seen by the diagonal transmissions
amounting to one t11 = t22 = 1 and the off-diagonal transmissions being
practically zero t12 = t21 = 0.

We want to test whether chirality is also present for longer ribbons. However, it is
useful to introduce introduce a chirality parameter c following Schumer [7]. First we
define a transfer efficiency tiE,

tiE =
tij

tii + tij
, tiE ∈ [0; 1] . (5.2)

The transfer efficiency is large when the initial state i evolves into state j after en-
circling. Usint this we can define a chirality parameter ci that compares the transfer
efficiency for passing through the structure from the left tiE (going through the param-
eter circle counterclockwise) to passing through the structure in the opposite direction
t′iE (clockwise).

ci = 4

(
tiE −

1

2

)(
t′iE −

1

2

)
, ci ∈ [−1; 1] . (5.3)

The chirality parameter is positive when we find the same result irrespective of the
direction in which we pass through the parameter circle, while a negative ci indicates
that the result depends on whether we go through the parameter circle clockwise or
counterclockwise. In the quasi-adiabatic regime the chirality parameter is usually either
minus one or one. Hence, for what we called ‘chiral behavior’ in Sec. 2.3 the chirality
parameter evaluates to ci = −1.

Using the chirality parameter ci for the same ribbon as in Fig. 5.12, the information
of eight lines in two plots can be condensed into one line (Fig. 5.16), repeating the
statement of before, that for rRe > 0.09 we observe chiral behavior. Using this compact
representation we examine the chirality in the right panel of Fig. 5.16 in a larger range
of rRe and compare it to a longer ribbon. Although areas of non-chirality and chirality
change, there remain large parameter ranges featuring chiral behavior.
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Figure 5.16: Chirality parameter c5 giving the chirality for the fifth state according to Eq.
(5.3). A value of minus one signifies that encircling in one direction yields
the opposite result of encircling in the other direction. Left panel: Figure
5.12 summed up into the chirality parameter. The ribbon is l = 4200Å
long. We find chiral behaviour for rRe > 0.09. Right panel: Chirality for
the same ribbon in a larger range of rRe and in comparison with a longer
ribbon l = 42000Å. The areas of chirality and non-chirality have changed,
but (for a ribbon that is 4.2µm long!) there are large parameter ranges
where we obtain chiral behavior.
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5.4 Zigzag with sublattice splitting

5.4 Zigzag with sublattice splitting

In this section we discuss a generic EP in the V 0
z -Γz-plane for a w = 85Å wide zigzag

ribbon. The Riemann surface is shown in Fig 5.17 and the EPs are situated at V EP
z =

0.0 + i0.255 and V EP
z = 0.0− i0.255, with a real crossing connecting them. The energy

effectively is E = 0.1.
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Figure 5.17: Left panel: Riemann surface for a w = 85Å wide graphene nanoribbon.
The sign of the imaginary part of the eigenvalue is color coded red (green)
corresponds to gain (loss). Right panel: Position of the EPs in the complex
parameter plane. The EPs are situated on the imaginary axis.

As described in section 5.2 we vary some parameters along the x-direction as shown
in Fig. 5.18 on the left panel. This time the path in the Re(Vz)-Im(Vz)-plane is elliptical
instead of circular. While we start on the Re(Vz)-axis for infinite waveguides, an elliptical
path gives us more freedom to vary parameters, because a circular path can be realized
for exactly one radius rVz = Im(VzEP).

5.4.1 EP centered elliptical paths

In a first step we want to consider an elliptical path around the EP where we scan the
semi-axis in the real direction rRe. We start by considering only an oscillation in the
real potential, with rIm = 0. As displayed in Fig. 5.19, left panel, the transmission is
one up until the potential is approximately larger than the energy of the electron. It is
still able to tunnel quantum mechanically, as long as the potential is not too large. We
find resonances at rVz ≈ 0.1417 and rVz ≈ 0.142.

The left panel in Fig. 5.19 introduces a small imaginary potential oscillation rIm =
0.001. On one hand the resonances are shifted to slightly higher radii, on the other
hand they are enhanced and exceed T = 1. For larger radii of rIm the transmission
stays T = 1 up to a higher rRe, the resonances shift to higher values and new resonances
appear. Note that this is far away from encircling the EP, but symmetric around the
branch cut where the loss/gain behavior of the modes changes.

We find a consistent result in the reflection for the same device (see Fig. 5.20).
Modes approaching from one side are absorbed and modes approaching from the other
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5 Dynamics in the vicinity of exceptional points

Figure 5.18: Top panels: Typical parameter variation in this chapter. The maximum in
the imaginary potential will be prominent in the wavefunction plots (e.g.
Fig. 5.24). Lower panels: Real part of the potential variation for shorter,
narrower ribbon. There are parts where the two sublattices are approxi-
mately equal (bright) and where one sublattice is strongly favoured (dark).
The color scale ranges from black (minimum) to red (maximum), same as
in Fig. 5.14.

direction are reflected and amplified. The dips in the reflection are at the positions
of the resonance-peaks in transmission6. The role of the left- and right-going modes
is exchanged for reversed tunneling voltage (not shown). For very large radii the real
potential dominates and the reflection approaches the Im(Vz) = 0 limit, R = R′ = 1
(also not shown).

Similarly as for the armchair ribbon in Sec. 5.2 we try to search for points fulfilling the
conditions for unidirectional invisibility by comparing the reflections from both sides,
the transmission and the transmission phase, see Fig. 5.21. At rRe = 0.1413 all the
conditions for unidirectional invisibility are fulfilled. We refer the reader to the discussion
in Sec. 5.2. However, please note that this phenomenon is only valid at exactly this
radius, distinguishing it from the unidirectional invisible Bragg gratings which have that
feature over a certain frequency range.

6The reflection is not restricted by Lorentz reciprocity, which can be understood intuitively: depending
on the incoming direction, the reflected wave mainly probes the region with dominantly loss/gain
(compare with Fig. 5.18).
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Figure 5.19: Transmission as a function of the real radius rRe with the center fixed at the

EP. The ribbon is w = 85Å wide and l = 2400Å. We study the effect of an
increasing imaginary amplitude. Upper left panel: No imaginary potential.
There are two resonances present. Upper right panel: Imaginary potential
amplitude VIm = 0.001, the peaks have shifted slightly to higher radii and
are amplified. Lower left panel: Imaginary potential amplitude VIm =
0.002, the peaks shift to even higher radii. Lower right panel: Imaginary
potential amplitude VIm = 0.004. Apparently the movement is not linear as
the peaks are shifted to much higher radii. Furthermore, three new peaks
have appeared.
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Figure 5.20: Reflection for the same ribbon as in Fig. 5.19. Left panel: Reflection with-
out an imaginary potential. The dips are at the same position as the peaks
in the transmission, agreeing with T0+R0 = 1. Right panel: Reflection with
an oscillation of the imaginary potential with amplitude rim = 0.001. The
positions of the dips still agree with the positions of the peaks, although
reflection in one direction is strongly damped while it is strongly amplified
in the other.
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Figure 5.21: Transmission, transmission phase and reflectivities in both directions for an
ellipse with a complex semi-axis of rIm = 0.001 and variable rRe (same as
the upper right panel in Fig. 5.19). The vertical black line at rRe = 0.1413
marks the point where the phase shift due to the potential vanishes, the
transmission is equal to one and the reflectivity is enhanced in one and
damped in the other direction. Hence, we have unidirectional invisibility at
that point.

60



5.4 Zigzag with sublattice splitting

5.4.2 Elliptical paths with variable center

As in the previous section, we hope to gain insight by moving the center of the ellipse
along the real axis. When the ellipse is centered around the EP (zero on the x-axis),
transmission is one. Moving the center of the ellipse for fixed rRe = 0.1, rIm = 0.275
along the real axis, we find maximal transmission at Vzcenter ≈ 0.018 (compare with
Fig. 5.22). At first glance, the change in transmission arises due to the competition
between the real and imaginary potential. However, this does not explain why the point
of maximum transmission is shifted to Vzcenter ≈ 0.018. We can gain some insight by
comparing with the Riemann surface Fig. 5.17, whose color-coding shows the gain-loss
structure. If the ellipse is centered around the EP, the amount of gain and loss which
the state undergoes is equal, so the transmission at Vzcenter = 0 is one. If the ellipse is
shifted slightly to one side, gain or loss takes over. The interplay between the gain-loss
structure and the real potential results in a maximum at Vzcenter ≈ 0.18.
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Figure 5.22: Transmission of a w = 85Å wide and l = 2400Å long nanoribbon for which
the sublattice splitting potential Vz runs through an ellipse in the complex
plane. The imaginary radius and center are chosen as ImVzcenter = 0.275 and
rim = 0.275 such that the ellipse for ReVzcenter = 0 is centered around the
EP. For an EP-centered ellipse the transmission is one, for ReVzcenter < 0 it
drops and for ReVzcenter < 0 it grows with a maximum at ReVzcenter ≈ 0.018.

Strikingly, for most of parameter circles the reflectivities are approximately the same
for both directions, R ≈ R′. This is in contrast to previous results, where the potential
was odd w.r.t. the center of the ribbon. The imaginary potential is symmetric around
the center of the ribbon (see Fig. 5.18), therefore reflection in both directions is equal,
as long as the reflected wave does not probe the area around the branch cut. The
symmetric imaginary potential is also visible in the absolute square of the wavefunction
|ψ|2 (see Fig. 5.24). At points of suppressed (Vzcenter = −0.018), approximately perfect
(Vzcenter = 0.0) and enhanced (Vzcenter = 0.018) transmission shows that the imaginary
potential (which is fixed) produces an area of strong gain in the center of the ribbon.
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Figure 5.23: Reflection for the same ribbon as in 5.22. Note that the reflection is ap-
proximately equal in both directions R = R′.

(a)

(b)

(c)

Figure 5.24: Absolute square of the wavefunction |ψ|2 for the same ribbon as in Fig. 5.22
at (a) Vzcenter = −0.018, (b) Vzcenter = 0.0 and (c) Vzcenter = 0.018. The
color scale is logarithmic, otherwise the area with gain in the center of the
ribbon would oversaturate. The imaginary potential is fixed and gives an
area of strong gain in the center of the ribbon. The variable transmission
arises due to the competition between the real and imaginary potential.
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6 Conclusion and Outlook

We conclude with an overview of the topics covered in this thesis and highlight the
conclusions that were drawn. We also present a few thoughts concerning future research
and realization in experiment.

In the course of this masters thesis we investigated the existence, location and dy-
namics in the presence of exceptional points in graphene nanoribbons. Chapters 2 and 3
introduced the necessary background and proved the existence of exceptional points in
bulk graphene, consistent with the literature about hexagonal optical lattices [10]. The
subsequent chapter (Chap. 4) explored the dependence of the k-eigenvalues as a function
of various external potentials. We were able to identify two kinds of exceptional points in
graphene nanoribbons, which we called generic and non-generic EPs. The former occurs
for every state that has a gap, irrespective of the type of ribbon, the latter emerges only
at real crossings in the inverse bandstructure of armchair ribbons. Actually, all borders
of bandgaps are generic EPs, because there is a transition from real k to imaginary k
(compare with Fig. 4.8).

We determined that generic EPs can be probed as a function of external parameters
by varying on-site potentials or hopping parameters. By tracking the movement of the
generic EP when slowly tuning away from balanced gain and loss we found that there
is no EP in the absence of at least one sublattice with gain (or loss, respectively). Non-
generic EPs appear for a complex grating potential (compare with Fig. 4.2) and form
around real crossings. However, the nature of these crossings and the magnitude of the
imaginary part of the complex modes surrounding them depends strongly on the width
of the ribbon. Because they do not occur at the same (or easily predictable) energy in
every ribbon we named them non-generic EPs.

With several EPs identified we subsequently investigated the dynamics in their vicin-
ity. In the introduction we referred to the dynamical encircling of an EP by Doppler et al.
[3] as an inspiration for this thesis. It turns out, that the dynamics around generic EPs
are limited by the principle of Lorentz reciprocity, which relates incoming and outgoing
currents. The states that form the generic EP propagate in opposite directions, leading
to the fact that there is only one mode contributing to transport through the nanorib-
bon. Without breaking Lorentz reciprocity the total transmission (i.e. transmission
through that single mode) has to be equal in both directions. Hence, the asymmetric
switch presented by Doppler et al. cannot be transferred to the dynamical encircling of
a generic EP in graphene nanoribbons. For a non-generic EP, however, the two modes
that are connected propagate into the same direction. In this case it is possible to ‘con-
vert’ one mode into the other tij 6= tji and have different mode to mode transmissions
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in both scattering directions tij 6= t′ij, while preserving1 T = T ′. In Sec. 5.3 we show
that encircling a non-generic EP yields chiral behavior, i.e. the outgoing state depends
on the encircling direction of the EP.

For generic EPs we could identify a certain parameter-variation which is impossible to
detect from one direction. The phenomenon is described in the literature as ‘unidirec-
tional invisibility’ [46, 47, 48]. An experiment that probes this particular potential from
one direction will find no reflection, a transmission equal to one and no phase shift in the
transmitted mode. Probing the structure in the other direction, an enhanced reflection
will be found.

There are, of course, certain limitations to the findings in this thesis, which perhaps
legitimate future research.

Although using a complex potential is an effective treating of the surroundings, the
underlying interactions are assumed to be fully coherent. This requires perfect alignment
of the graphene flakes to enable momentum conserving tunneling which takes a lot of
effort to realize in an experiment [49, 50]. While is possible to create systems with
coherent loss it is very hard to implement coherent gain. However, the findings in
Sec. 4.3.4 suggest that it is necessary to have gain somewhere in the system. This is
certainly not conclusive, and different potentials, materials or exceptional points can be
investigated to eliminate the necessity of coherent gain.

Concerning the experiment we want to stress that this thesis presented principles,
and was not restricted to realistic parameter combinations. In the course of planning
an experiment, a more extensive discussion of possible substrates and the resulting
(complex) local potentials will be necessary. This will require detailed calculations based
on realistic parameters either from experiment or from ab-inition parametrizations. A
realistic simulation will also have to incorporate that the nanoribbons in an experiment
will have imperfect edges and defects, which might have drastic effects, especially on
non-generic EPs.

Although graphene has been investigated extensively both experimentally, and theo-
retically, more detailed studies of the behavior of complex modes, similar to Fig. 4.12,
potentially can provide even further insight into the nature of this fascinating material
and the complexity of bandstructures themselves. Perhaps there are ways to extract
new information from a bandstructure in the four-dimensional space spanned by ReE,
ImE, Rek and Imk.

Summing up, this thesis was able to find exceptional points and phenomena associated
with them in graphene. It was able to extend the current state of the literature concern-
ing exceptional points in graphene nanoribbons and made general contributions towards
the realization of an experiment demonstrating exceptional point physics in graphene
nanoribbons.

1T =
∑

ij tij
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