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Kurzfassung der Dissertation

Diese Arbeit besteht aus zwei Teile.

Der erste Teil behandelt die Anwendung Boolescher Ultrapotenzen auf Cichoń’s
Diagramm, und basiert auf zwei Forschungsarbeiten:

1. ([KTT18], gemeinsam mit J. Kellner und F. Tonti) Wir beginnen mit einer
finite support ccc Iteration P̃ 4 aus [Mej13b], die erzwingt, dass

ℵ1 < add( ) < cov( ) < b < d = 2ℵ0 .

Ausgehend von drei stark kompakten Kardinalzahlen zeigen wir dann, dass
eine Boolesche Ultrapotenz dieser Iteration acht verschiedene Werte erzwingt:

ℵ1 < add( ) < cov( ) < b < d < non( ) < cof( ) < 2ℵ0 .

Dieses Resultat wurde zur Veröffentlichung im Journal of Symbolic Logic
angenommen und ist als preprint verfügbar (arXiv:1706.09638).

2. ([KST17], gemeinsam mit J. Kellner und S. Shelah.) Aufbauend auf [She00]
erhalten wir eine andere (als in in [GMS16]) Reihenfolge der Einträge auf der
linken Seite des Diagramms: Wir vertauschen cov( ) und b und erhalten:
ℵ1 < add( ) < add() = b < cov( ) < non() < cov() = 2ℵ0 .

Diese Konstruktion ist eine deutlich kompliziertere Variante der Konstruktion
in [GKS17].
Ausgehend von vier stark kompakten Kardinalzahlen und mit Hilfe von Boo-
leschen Ultrapotenzen (ähnlich wie in [GKS17]) können wir das Resultat auf
die rechte Seite erweitern, wobei die Duale von b und cov( ) auch vertauscht
werden, und erhalten:
ℵ1 < add( ) < add() = b < cov( ) < non() <

< cov() < non( ) < cof() = d < cof( ) < 2ℵ0 .

Dieses Resultat is zur Veröffentlichung in den "Commentationes Mathemat-
icae Universitatis Carolinae" (special issue in honor of Bohuslav Balcar)
eingereicht und als preprint verfügbar (arXiv:1712.00778).
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Der zweite Teil (grösstenteils mit J. Kellner und S. Shelah) ist durch folgende
Frage motiviert: Können wir Shelahs oracle-cc Konstruktion auf überabzählbare �
(mit �<� = �) verallgemeinern?

Wir untersuchen zwei Probleme, die beide für � = ! von Shelah durch eine
oracle-cc Konstruktion gelöst wurden:

1. Die Existenz eines lifting Homomorphismus’ für Bor(�)∕(�).
Die klassischen Beweise von Neumann, Stone und von Carlson lassen sich
verallgemeinern: Die Existenz folgt aus 2� = �+, und ist konsistent mit
2� = �++ (bezeugt durch das �-Cohen Modell).
Wir beschreieben in dieser Arbeit zwei unserer Versuche (keine davon von
Erfolg gekrönt), um ein Modell ohne lifting zu konstruieren:

• (Gemeinsam mit S. Friedman) Wir versuchen, die oracle-cc Methode
aus [She82] direkt zu verallgemeinern. Viele Aspekte davon funktion-
ieren auf die offensichtliche Art, aber die Limiten kleiner Kofinalität
stellen ein Problem dar.

• Wir definieren eine Iteration die “essentially Cohen”ist (ein Begriff der
Ahnlichkeit zu einer Iteration von �-Cohens ausdrückt). Damit kommen
wir ziemlich weit in einem möglichen Beweis für die Nichtexistenz, aber
den Beweis abzuschließen ist ein Ziel für künftige Arbeiten.

Wir erwähnen auch, dass die Existenz eines <�-vollständigen Booleschen
Algebra lifting Homomorphismus impliziert, dass � messbar ist.

2. Die Existenz eines nichttrivialen Automorphismus’ von (�)∕[�]<�.
Für unerreichbares � wurde in [SS15] gezeigt, dass 2� = �+ die Existenz
impliziert. Hier geben wir einen vereinfachten Beweis für den messbaren Fall.
Unter den Voraussetzungen � < 2ℵ0 und MA(�-centered) zeigen wir, dass
jeder Automorphismus trivial ist.
(Die Konsistenz von “jeder Automorphismus ist trivial” für nicht unerreich-
bare � oder für 2� > �+ ist ein Ziel für künftige Forschung.)



Abstract

The thesis consists of two parts.

The first part is concerned with applications of Boolean ultrapowers to Cichoń’s
diagram and is based on two research papers:

1. ([KTT18], joint work with J. Kellner and F. Tonti) We started with a finite
support ccc iteration P̃ 4 from [Mej13b] forcing that

ℵ1 < add( ) < cov( ) < b < d = 2ℵ0 .

Assuming three strongly compact cardinals, we then showed that a Boolean
ultrapower of this forcing iteration (again a finite support ccc iteration) forces
eight different values to the characteristics in Cichoń’s diagram:

ℵ1 < add( ) < cov( ) < b < d < non( ) < cof( ) < 2ℵ0 .

This result has been accepted for publication in the Journal of Symbolic Logic
and available as a preprint (arXiv:1706.09638).

2. ([KST17], joint work with J. Kellner and S. Shelah) Building on [She00], we
give a construction to get a different order of the characteristics in the left
hand side of Cichoń’s diagram than the one in [GMS16]. We swap cov( )
and b:
ℵ1 < add( ) < add() = b < cov( ) < non() < cov() = 2ℵ0 .

This construction is a modification of the one in [GKS17], however, consider-
ably more complicated.
Assuming four strongly compact cardinals, using a Boolean ultrapower (in a
similar way to [GKS17]) we can then expand our result to the right hand side,
where also the characteristics dual to b and cov( ) are swapped, resulting in:
ℵ1 < add( ) < add() = b < cov( ) < non() <

< cov() < non( ) < cof() = d < cof( ) < 2ℵ0 .

This result is submitted for publication in the special issue of "Commenta-
tiones Mathematicae Universitatis Carolinae" in honor of Bohuslav Balcar
and available as a preprint (arXiv:1712.00778).
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The second part (mostly joint work with J. Kellner and S. Shelah) is motivated
by the search for generalizations of Shelah’s oracle-cc construction to cardinals other
than ℵ0, more specifically, to uncountable � with �<� = �.

We investigate two problems (which were solved by Shelah for the case � = ℵ0
using oracle-cc):

1. The existence of lifting homomorphisms for Bor(�)∕(�).
The classical proofs of Neumann, Stone and Carlson generalize: The existence
is implied by 2� = �+, and consistent with 2� = �++ (witnessed by the �-
Cohen model).
From the various tries (none of which successful) for obtaining a model with
no lifting homomorphisms, we present two in this thesis:

• (Joint work with S. Friedman.) We tried to generalize the oracle-cc
machinery as presented in [She82]. While most of the results generalize
in the obvious way, the limit steps of small cofinality pose a problem.

• We defined a forcing iteration which is “essentially Cohen” (a notion
which describes similarity to an iteration of �-Cohens). This gets us
quite far in a hopeful proof for the nonexistence of a lifting; but to
complete the proof remains as a goal for future research.

We also mention that the existence of a <�-complete Boolean algebra lifting
homomorphism implies that � has to be a measurable cardinal.

2. The existence of nontrivial automorphism of (�)∕[�]<�.
For � inaccessible, [SS15] shows that 2� = �+ implies that there is a nontrivial
automorphism. Here, we give a simplified proof for the measurable case.
Assuming � < 2ℵ0 and MA(�-centered), we show that every automorphism
is trivial.
The consistency of “every automorphism is trivial” for � not inaccessible
and/or 2� > �+ is in early progress stages and remains a goal for future
research.
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Boolean ultrapowers and
Cichoń’s Diagram
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Chapter 1

Introduction

Cantor’s result (from 1874) that the cardinality c = 2ℵ0 of the real line is strictly
bigger than the cardinality ℵ0 of a countable infinite set, was the first theorem about
cardinal characteristics of the continuum. This is a central result for, e.g., real
analysis: We often study notions of “smallness”, such as Lebesgue measure zero
or meager, with the property that countable sets are small. (So if the real line was
countable, these notions would not make sense.) A cardinal characteristic (also
called cardinal invariant), is, roughly speaking, the minimal cardinal number for
which such a smallness property (which holds for all countable sets) fails.

To recall: A subset A of the Cantor space 2! (or of any other Polish space) is
nowhere dense if its closure has an empty interior andmeager (or: of first category) if
it is contained in the countable union of (closed) nowhere dense sets. The collection
 of meager sets forms a �-ideal (i.e.,  is closed under taking countable unions)
and has a basis consisting of Borel (and even F�) sets. We can also see the Cantor
space as a probability space, equipped with the standard product measure (each basic
clopen set [s] has measure 2−|s|, and this measure can be extended to all Lebesgue
measurable sets). The collection of (Lebesgue) measure zero sets forms a �-ideal
as well, its basis consisting of Borel (and even G�) sets.

The ideal generated by �-compact sets � contains those subsets of the Baire
space !! (this space is homeomorphic to the irrational numbers) which can be
covered by a countable union of compact sets.

We can now define some cardinal characteristics associated with these �-ideals:
Definition 1.1. Let  be a �-ideal on a setX (in particular,  can be, or�).
The additivity, covering, uniformity and cofinality numbers are defined respectively
as follows:

• add() ∶= min{| | ∶  ⊆  with ⋃

 ∉ },
• cov() ∶= min{| | ∶  ⊆  with ⋃

 = X},
• non() ∶= min{|I| ∶ I ⊆ X, I ∉ }, and
• cof() ∶= min{| | ∶  ⊆  such that (∀I ∈ ) (∃J ∈  ) ∶ I ⊆ J}.

3



4 CHAPTER 1. INTRODUCTION

Definition 1.2. For f, g ∈ !!, f is eventually dominated by g, or: f ≤∗ g, if
(∀∗n ∈ !) f (n) ≤ g(n) (where ∀∗ means “all but finitely many”). A family  ⊆ !!
is dominating if every f ∈ !! is eventually dominated by some g ∈  and
unbounded if no single f ∈ !! eventually dominates all members of  . The
dominating number d is the minimal cardinality of a dominating family and the
bounding number b is the minimal cardinality of an unbounded family.

Note that for any f ∈ !!, {g ∈ !! ∶ g ≤∗ f} ∈ � and every element of
� can be covered by such a set, and that add(�) = non(�) = b and cov(�) =
cof(�) = d.

1.1 Cichoń’s diagram and previous results

The ZFC-provable inequalities between the cardinal characteristics defined above
(for , and �) are summarized in Cichoń’s diagram:

cov( ) // non() // cof() // cof( ) // 2ℵ0

b //

OO

d

OO

ℵ1 // add( ) //

OO

add() //

OO

cov() //

OO

non( )

OO

An arrow between x and y indicates a ZFC-provable inequality x ≤ y. Moreover,
max(d, non()) = cof() and min(b, cov()) = add().

Every assignment of ℵ1 and ℵ2 to the entries of Cichoń’s diagram that honors these
restrictions can be shown to be consistent. These facts have been proven by various
authors, cf. [BJ95; Bar84; BS10; CKP85; JS90; Kam89; Mil81; Mil84; RS83], a
complete proof can be found in [BJ95, ch. 7]. It is even more challenging and requires
more involved techniques to get show the consistency of many simultaneously
different values.

For example, matrix iterations, which are a are special kinds of FS ccc iterations
(introduced by Blass and Shelah in [BS89]) were used in the context of Cichon’s
diagram by D. Mejia in [Mej13b] and [Mej13a] for obtaining at most six different
values. In [FFMM18] and [Mej18], the technique was extended to arbitrary coherent
systems of finite support iterations, resulting in seven different values. The limitation
is that a finite support ccc iteration of uncountable cofinality � always results in
non() ≤ � ≤ cov().

A different approach can be seen in [FGKS17], where five different cardinal
characteristics on the right side of Cichoń’s diagram were separated using a crea-
ture forcing construction (between a product and an iteration), as in Kellner and
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Shelah’s [KS09; KS12]. This construction forces d = ℵ1, it is !!-bounding, so it
cannot be used to separate the cardinal below d.

In our research, we use a Boolean ultrapower construction to control character-
istics in Cichoń’s diagram (this idea is due to Shelah).

1.2 An overview of the results

It was a longstanding question whether all cardinal characteristics in Cichoń’s Dia-
gram (other than add() and cof(), of course) can be simultaneously different.

In the second chapter of the thesis, which is basically the paper [KTT18]
(joint work with J. Kellner and F. Tonti), we assume three strongly compact car-
dinals, and start with a well known finite support ccc iteration P̃ 4 (introduced in
Mejia’s [Mej13b]) for the “left hand side”, forcing that ℵ1 < add( ) < cov( ) <
b < d = 2ℵ0 (and actually something stronger). We than apply Boolean ultrapowers
to P̃ 4, resulting in another finite support ccc iteration, which also controls the “right
hand side”, forcing

ℵ1 < add( ) < cov( ) < b < d < non( ) < cof( ) < 2ℵ0 .

I.e., we get the following values in the diagram (for some increasing cardinals �i):
�2 // // // �6 // �7

�3 //

OO

�4

OO

ℵ1 // �1 //

OO

//

OO

//

OO

�5

OO

The kind of Boolean ultrapower construction we use was introduced in Mans-
field’s [Man71], similar methods have recently been applied, e.g., by Malliaris
and Shelah [MS16] and Raghavan ans Shelah [RS]. The idea to apply Boolean
ultrapowers to control characteristics in Cichoń’s diagram is due to Shelah.

More recently, Goldstern, Kellner and Shelah [GKS17] solved the question for
the whole diagram, assuming four strongly compact cardinals. The construction is
similar, but, of course, more complicated: For the left hand side, the construction
of [GMS16] (Goldstern, Mejia, Shelah) is used, which gives

ℵ1 < add( ) < cov( ) < add() = b < non() < cov() = 2ℵ0 .

However, the construction has to be modified to be compatible with GCH. Then a
similar Boolean ultrapower construction is used to get the following order:

�2 // �4 // // �8 // �9

�3 //

OO

�6

OO

ℵ1 // �1 //

OO

//

OO

�5 //

OO

�7

OO
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Recently Mejia [Mej18] managed to use matrix iterations and ultrafilter limits to
obtain seven different values in Cichoń’s diagram. His iteration requires weaker
assumptions and it is simpler to construct than the Goldstern-Mejía-Shelah’s version
presented in [GMS16] and used (as the initial iteration) in [GKS17]. The Boolean ul-
trapower construction applied to this iteration in exactly the same way as in [GKS17],
assuming only three compact cardinals, gives the same model, with weaker hypothe-
ses. So maybe it might be possible to construct ever more sophisticated FS-ccc
methods that could replace the use of Boolean ultrapowers in the specific application
altogether, but this remains a goal for future research.

In the third chapter, which is basically the paper [KST17] (joint work with
J. Kellner and S. Shelah), we give a construction to get a different order for these
characteristics. This time we build on a finitely additive measure (FAM) method
originating from Shelah’s [She00], which results in a left hand configuration with
swapped cov( ) and b:

ℵ1 < add( ) < add() = b < cov( ) < non() < cov() = 2ℵ0 .

Once we get this, we can very similarly apply Boolean ultrapowers to get the follow-
ing order:

�3 // �4 // // �8 // �9

�2 //

OO

�7

OO

ℵ1 // �1 //

OO

//

OO

�5 //

OO

�6

OO

Getting this order is considerably more complicated, and we briefly describe the
difference.

In both constructions, we assign to each of the cardinal characteristics of the left
hand side a relation R (e.g., R ⊆ !! × !! is “eventually different” in case of the
characteristic non()). We can then show that the characteristic remains “small”
(i.e., is at most the intended value � in the final model), because all single forcings we
use in the iterations are either small (i.e., smaller than �) or are “R-good”. However,
b is an exception: We do not know any variant of an eventually different forcing
(which we need to increase non()) which satisfies that all of its subforcings are
“eventually dominating”-good. To show that b “remains small” is therefore the main
difficulty (in both constructions).

In the old construction, each non-small forcing is a subforcing of the eventually
different forcing E. To deal with such forcings, ultrafilter limits of sequences of
E-conditions are introduced and used (and it is required that all E-subforcings are
basically E intersected with some small elementary model, and thus closed under
limits of sequences in the model). In the new construction, we have to deal with an
additional kind of “large” forcing: (subforcings of) random forcing. Ultrafilter limits
do not work any more, but, similarly to [She00], we can use finite additive measures
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(FAMs) and interval-FAM-limits of random conditions. But now E doesn’t seem to
work with interval-FAM-limits any more, so we replace it with a creature forcing
notion Ẽ.

We also have to show that cov( ) remains small. In the old construction, we
could use a very simple relation R and use the fact that all �-centered forcings are
R-good: All large forcings are subforcings of either E or of Hechler, both �-centered.
In the new construction, the large forcings we have to deal with are subforcings of Ẽ.
But Ẽ is not �-centered, just (�, �)-linked. So we use a different (and more cumber-
some) relationR′; and use the fact of [OK14] that (�, �)-linked forcings areR′-good.
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Chapter 2

Eight values in Cichoń’s Diagram

This chapter is based on the paper “Compact cardinals and eight values in Cichoń’s
Diagram” (arXiv:1706.09638, http://dx.doi.org/10.1017/jsl.2018.17.), joint work
with J. Kellner and F. Tonti. The notation is slightly changed, namely the iteration
will be P̃ and we use LCU and COB, instead of⊚ and⊞, in order to have a uniform
notation.

Introduction

The result consists of two parts: In the first one, Section 2.1, we present a finite
support ccc iteration P̃ 4 forcing that ℵ1 < add( ) < cov( ) < b < d = 2ℵ0 (and
actually something stronger, cf. Lemmas 2.18 and 2.20). This is nothing new: The
forcing and all required properties were presented in [Mej13b]. We recall all the
facts that are required for our result, in a form convenient for our purposes.

In the second part 2.2, we investigate the (iterated) Boolean ultrapower P̃ 7
of P̃ 4. Assuming three strongly compact cardinals, this ultrapower (again a finite
support ccc iteration) forces

ℵ1 < add( ) < cov( ) < b < d < non( ) < cof( ) < 2ℵ0 ,

i.e., we get the following values in the diagram (for some increasing cardinals �i):

�2 // // // �6 // �7

�3 //

OO

�4

OO

ℵ1 // �1 //

OO

//

OO

//

OO

�5

OO

It seems unlikely that the large cardinals assumption is actually needed, but we
would expect a proof without it to be considerably more complicated.

The kind of Boolean ultrapower that we use was investigated in [Man71], and
recently applied, e.g., in [MS16] and [RS] (where a Boolean ultrapower of a forcing

9



10 CHAPTER 2. EIGHT VALUES IN CICHOŃ’S DIAGRAM

notion is applied to cardinal characteristics of the reals). Recently Shelah developed
a method of using Boolean ultrapowers to control characteristics in Cichoń’s diagram.
The current chapter is a relatively simple application of these methods. A more
complicated one, in a later paper of Goldstern, Kellner and Shelah [GKS17], shows
that all possible invariants in Cichoń’s diagram can be pairwise different.

2.1 The initial iteration P̃ 4

The goal for this section is to obtain the following constellation:

�2 // // // �4 // �4

�3 //

OO

�4

OO

ℵ1 // �1 //

OO

//

OO

//

OO

�4

OO

Figure 2.1: The initial iteration for eight values.

We want to show that some forcing P̃ 4 results in xi = �i (for i = 1, 2, 3). So we
have to show two “directions”, xi ≤ �i and xi ≥ �i. The direction xi ≤ �i will be
given by the fact that P̃ 4 is (Ri, �i)-good for a suitable relation Ri.

As mentioned before, this iteration is nothing new, it is just a suitable rewrite of
properties and results which were presented in [Mej13b].

2.1.1 Good iterations and the LCU property

The notion of “goodness” was first explored in by Judah and Shelah [JS90] and
Brendle [Bre91], later expanded by Brendle and Mejía [BM14]. In this section, we
will recall the facts of good iterations, and specify the instances of the relations we
use.
Assumption 2.1. We will consider binary relations R on X = !! (or on X = 2!)
that satisfy the following: There are relations Rn such that R = ⋃

n∈! R
n, each Rn

is a closed subset (and in fact absolutely defined) of X × X, and for g ∈ X and
n ∈ !, the set {f ∈ X ∶ f Rn g} is nowhere dense. Also, for all g ∈ X there is
some f ∈ X with f R g.

We will actually use another space as well, the space  of strictly positive rational
sequences (qn)n∈! such that∑n∈! qn ≤ 1. It is easy to see that  is homeomorphic
to !!, when we equip the rationals with the discrete topology and use the product
topology.
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We use the following instances of relations R on X; it is easy to see that they all
satisfy the assumption (in case of X =  we use the homeomorphism mentioned
above):
Definition 2.2. 1. X = : f R1 g if (∀∗n ∈ !) f (n) ≤ g(n).

(We use “∀∗n ∈ !” for “(∃n0 ∈ !) (∀n > n0)”.)
2. X = 2!: f R2 g if (∀∗n ∈ !) f ↾ In ≠ g ↾ In,

where (In)n∈! is the increasing interval partition of ! with |In| = 2n+1.
3. X = !!: f R3 g if (∀∗n ∈ !) f (n) ≤ g(n).
We say “f is bounded by g” if f R g; and, for  ⊆ !!, “f is bounded by ” if

(∃y ∈ ) f R y. We say “unbounded” for “not bounded”. (I.e., f is unbounded by
 if (∀y ∈ ) ¬f R y.) We call  an R-unbounded family, if ¬(∃g) (∀x ∈ ) xR g,
and an R-dominating family if (∀f ) (∃x ∈ ) f R x. Let bi be the minimal size of
an Ri-unbounded family, and di of an Ri-dominating family.

We only need the following connection between Ri and the cardinal characteris-
tics:
Lemma 2.3. 1. add( ) = b1 and cof( ) = d1.

2. cov( ) ≤ b2 and non( ) ≥ d2.

3. b = b3 and d = d3.

Proof. (3) holds by definition.
(1) can be found in [BJ95, 6.5.B].
To prove (2), note that for fixed g ∈ 2! the set {f ∈ 2! ∶ ¬g R2 f} is a null set,

call itNg. Let  be an R2-unbounded family. Then {Ng ∶ g ∈ } covers 2!: Fix
f ∈ 2!. As f does not bound , there is some g ∈  unbounded by f , i.e., f ∈ Ng .
Let X be a non-null set. Then X is R2-dominating: For any g ∈ 2! there is some
x ∈ X ⧵Ng, i.e., g R2 x.
Definition 2.4. [JS90] Let P be a ccc forcing, � an uncountable regular cardinal,
and R as above. P is (R, �)-good, if for each P -name r ∈ !! there is (in V ) a
nonempty set  ⊆ !! of size <� such that every f (in V ) that is R-unbounded by
 is forced to be R-unbounded by r as well.

Note that �-good trivially implies �-good if � ≥ � are regular.
How do we get good forcings? Let us just quote the following results:

Lemma 2.5. A FS iteration of Cohen forcing is good for any (R, �), and the com-
position of two (R, �)-good forcings is (R, �)-good.
Assume that (P�, Q�)�<� is a FS ccc iteration. Then P� is (R, �)-good, if each Q�
is forced to satisfy the following:

1. For R = R1: |Q�| < �, orQ� is �-centered, orQ� is a sub-Boolean-algebra
of the random algebra.
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2. For R = R2: |Q�| < �, or Q� is �-centered.

3. For R = R3: |Q�| < �.

Proof. (R, �)-goodness is preserved by FS ccc iterations (in particular compositions),
as proved in [JS90], cf. [BJ95, pp. 6.4.11–12]. Also, ccc forcings of size <� are
(R, �)-good [BJ95, p. 6.4.7], which takes care of the case of Cohens and of |Q�| < �.

So it remains to show that (for i = 1, 2) the “large” iterands in the list are (Ri, �)-
good. For R1 this follows from [JS90] and [Kam89], cf. [BJ95, pp. 6.5.17–18]. For
R2 this is proven in [Bre91].
Lemma 2.6. Let � ≤ � ≤ � be uncountable regular cardinals. After forcing with
� many Cohen reals (c�)�∈�, followed by an (R, �)-good forcing, we get: For every
real r in the final extension, the set {� ∈ � ∶ c� is unbounded by r} is cobounded
in �. I.e., (∃� ∈ �) (∀� ∈ � ⧵ �) ¬c� R r.

(The Cohen real c� can be interpreted both as Cohen generic element of 2! and
as Cohen generic element of !!; we use the interpretation suitable for the relation
R.)
Proof. Work in the intermediate extension after � many Cohen reals, let us call it V� .
The remaining forcing (i.e., � ⧵ � many Cohens composed with the good forcing) is
good; so applying Definition 2.4 we get (in V�) a set  of size <�.

As the initial Cohen extension is ccc, and � ≥ � is regular, we get some � ∈ �
such that each element y of  already exists in the extension by the first � many
Cohens, call it V� . The set of realsMy bounded by y is meager (and absolute). Any
c� for � ∈ � ⧵ � is Cohen over V�, and therefore not inMy, i.e., not bounded by y.
As this holds for all y, c� is unbounded by  , and thus, according to the definition
of good, unbounded by r as well.

In the light of this result, let us revisit Lemma 2.3 with some new notation:
Definition 2.7. For i = 1, 2, 3, � > ℵ0 regular, and P a ccc forcing notion, let
LCUi(P , �) stand for: “There is a sequence (x�)�∈� of P -names such that for every
P -name y we have (∃� ∈ �) (∀� ∈ � ⧵ �)P ⊩ ¬x� Ri y.”
Lemma 2.8. LCUi(P , �) implies bi ≤ � and di ≥ �. In particular:

1. LCU1(P , �) implies P ⊩ ( add( ) ≤ �& cof( ) ≥ � ).

2. LCU2(P , �) implies P ⊩ ( cov( ) ≤ �& non( ) ≥ � ).

3. LCU3(P , �) implies P ⊩ ( b ≤ �& d ≥ � ).

Proof. The set {x� ∶ � ∈ �} is certainly forced to be Ri-unbounded; and given a
set Y = {yj ∶ j < �} of � < � many P -names, each has a bound �j , so for any
� ∈ � above all �j we get P ⊩ ¬x� Ri yj for all j; i.e., Y cannot be dominating.
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2.1.2 Ground model Borel functions, partial random forcing

The following lemma seems to be well known (but we are not aware of a good
reference or an established notation):
Definition 2.9. Let Q be a forcing notion, and let � be a Q-name for a real. We say
that Q is “generically Borel determined (by �, via B)”, if

• Q consists of reals,
• the Q-generic filter is determined by the real �, and moreover:
• B ⊆ ℝ2 is a Borel relation such that for all q ∈ Q, Q ⊩ (BQ(q, �)↔ q ∈ G).
We investigate iterations of such forcings:

Lemma 2.10. Assume that (P� , Q�)�<� is a FS ccc iteration such that each Q� is
generically Borel determined (in an absolute way already fixed in V ). Then for each
P�-name r for a real, there is (in the ground model) a Borel function F ∶ ℝ! → ℝ
and a sequence (�i)i∈! of ordinals in � such that P� forces r = F ((��i)i∈!).

Proof. We prove by induction on  ≤ �:
• For all p ∈ P there is a Borel relation Bp ⊆ ℝ! and a sequence (�pi )i∈! of

elements of  such that P ⊩ Bp((��pi )i∈!)↔ p ∈ G .
• For each P -name r for a real, there is a Borel function F r and a sequence
(�ri )i∈! of elements of  such that P ⊩ r = F r((��pi )i∈!).

The second item follows from the first, as we can use the countable maximal an-
tichains that decide r(n) = m.

If  is a limit ordinal, then P has no new elements, so there is nothing to do.
So assume  = � + 1. By our assumption, Q� is generically Borel determined

from �� via a Borel relation B� . Consider (p, q) ∈ P� ∗ Q� . This is in G iff
p ∈ G� (which, by induction, is Borel) and q ∈ G(� ). As q is a real, it is forced that
q = Bq((�qi )i∈!). Moreover, P� forces that Q� forces that q ∈ G(� ) iff B� (�� , q) iff
B� (�� , Bq((�

q
i )i∈!)).

Definition 2.11. Given (P� , Q�)�<� as above, and some w ⊆ �, we define the P�-
name ℝw to consist of all reals r such that in the ground model there are a Borel
function F and a sequence (�i)i∈! of elements of w such that r = F ((��i)i∈!).

The following is straightforward:
Fact 2.12. • Set (in V ) � = (|w|+2)ℵ0 . Then it is forced thatℝw has cardinality

≤ �.
• If w′ ⊇ w, then (it is forced that) ℝw′ ⊇ ℝw.
• If w is the increasing union of (w�)�∈ with cf() ≥ !1, then (it is forced

that) ℝw =
⋃

�∈ ℝw� .
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• For every P�-name r for a real, there is a countable w such that (it is forced
that) r ∈ ℝw.

Definition 2.13. Let B be the definition of random forcing, i.e., positive pruned
trees T , ordered by inclusion. Given (P� , Q�)�<� as above, w ⊆ �, we define the
P�-name Bw ∶= B ∩ℝw and call it “partial random forcing defined from w”.

Clearly Bw is a subforcing (not necessarily a complete one) of B, and if p, q
in Bw are incompatible in Bw, then they are incompatible in random forcing. In
particular Bw is ccc.

Note thatQw is again generically Borel determined (by the generic real � defined
by {�} = ⋂

{[s] ∈ G ∶ s ∈ 2<!}, and by the Borel relation “� ∈ [T ]”).
Remark 2.14. In this section, we have provided a very explicit notion of “partial
random”, using Borel functions. The use of Borel functions is not essential, we could
use any other method of calculating reals from generic reals at certain restricted
positions, provided this method satisfies Fact 2.12. One such alternative definition
has been used in [GMS16]: We can define the sub-forcing P� ↾ w of P� in a natural
way, and require that it is a complete subforcing (which is a closure property of
w). Then we can define Q� to be the random forcing, as evaluated in the P� ↾ w-
extension.

While this approach is basically equivalent (and may seem slightly more natural
than the artificial use of Borel functions), it has the disadvantage that we have to
take care of the closure property of w.
Definition 2.15. Analogously to “partial random”, we define the “partial Hechler”
and “partial amoeba” forcings.

These forcings are generically Borel determined as well.

2.1.3 The initial forcing P̃ 4

Assume that � is regular uncountable and � < � implies �ℵ0 < �. Then |w| < �
implies that the size of a partial forcing defined by w us <�.
Definition 2.16. Assume GCH and let �1 < �2 < �3 < �4 be regular cardinals. Set
�4 = �4 + �4. Partition �4 ⧵ �4 into unbounded sets S1, S2, and S3. Fix for each
� ∈ �4 ⧵ �4 some w� ⊆ � such that each {w� ∶ � ∈ S i} is cofinal in [�4]<�i .1

We now define P̃ 4 = (P�, Q�)�∈�4 to be the FS ccc iteration which first adds �4
many Cohen reals, and such that for each � ∈ �4 ⧵ �4,

if � is in
⎧

⎪

⎨

⎪

⎩

S1
S2
S3

⎫

⎪

⎬

⎪

⎭

, then Q� is the partial
⎧

⎪

⎨

⎪

⎩

amoeba
random
Hechler

⎫

⎪

⎬

⎪

⎭

forcing defined from w�.

1I.e., if � ∈ S i then |w�| < �i, and for all u ⊆ �4, |u| < �i there is some � ∈ S i with w� ⊇ u.
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The forcing results in 2ℵ0 = �4, which follows from the following easy and
well-known fact:
Lemma 2.17. Let (P�, Q�)�<� be a FS ccc iteration of length � such that eachQ� is
forced to consist of real numbers, and set �(�) ∶= (2+�)ℵ0 . Then P� ⊩ 2ℵ0 ≤ �(�).

Proof. By induction on �, we show that there is a dense subforcing D� ⊆ P� of
size ≤�(�). Then the continuum has size at most �(�) (as each name of a real
corresponds to a countable sequence of antichains, labeled with 0, 1, in P� , without
loss of generality in D�).

For � + 1, D� ⊆ P� is dense and has size ≤�(�), and Q� is forced to have size
≤�(�). Without loss of generality we can identify Q� with a subset of �(�). Let
D�+1 consist of (p, �̌) ∈ P�+1 such that p ∈ D� forces � ∈ Q�.

For � limit, the union of D� is dense in P� = ⋃

�∈� P�.
According to Lemma 2.5 P̃ 4 is (Ri, �i)-good for i = 1, 2, 3, so Lemmas 2.6

and 2.8 gives us:
Lemma 2.18. LCUi(P̃ 4, �) holds for i = 1, 2, 3 and each regular cardinal � in
[�i, �4].

So in particular, P̃ 4 forces add( ) ≤ �1, cov( ) ≤ �2, b ≤ �3 and cof( ) =
non( ) = d = 2ℵ0 .

Theorem 2.19. [Mej13b, Thm. 2] P̃ 4 forces add( ) = �1, cov( ) = �2, b = �3,
and d = �4 = 2ℵ0 .

Proof. It is easy to see that the partial amoebas take care of add( ) ≥ �1: Let
(Ni)i∈�, ℵ1 ≤ � < �1 be a family of P̃ 4-names of null sets. EachNi is a Borel code,
i.e., a real, i.e., and therefore Borel-calculated from some countable set wi ⊆ �4.
The union of the wi is a set w∗ of size ≤� that already Borel-decides allNi. There
is some � ∈ S1 such that w� ⊇ w∗, so the partial amoeba forcing at � sees all the
null setsNi and therefore covers their union.

Analogously one proves cov( ) ≥ �2 and b ≥ �3.
We will reformulate the proof for cov( ) in a cumbersome manner that can be

conveniently used later on, namely as the “cone of bounds” property:
Lemma 2.20. Let COB2(P , �, �) stand for: “P is a ccc forcing notion, and there is
a <�-directed partial order (S,≺) of size � and a sequence (rs)s∈S of P -names for
reals such that for each P -nameN of a null set (∃s ∈ S) (∀t ≻ s)P ⊩ rt ∉ N .”

• COB2(P , �, �) implies P ⊩ ( cov( ) ≥ �& non( ) ≤ � ).

• COB2(P̃ 4, �2, �4) holds.

Proof. cov( ) ≥ �: Fix <� many P -namesN� of null sets. Each real has a “lower
bound” s� ∈ S, i.e., P ⊩ rt ∉ N� whenever t ≻ s�. Let t ≻ s� for all � (this is
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possible as S is directed). So P ⊩ rt ∉ N� for every �, i.e., the union doesn’t cover
the reals.

non( ) ≤ �, as the set of all rs is not null: For every nameN of a null set there
is some s ∈ S such that P ⊩ rs ∉ N .

For P̃ 4, we set S = S2, s ≺ t if ws ⊆ wt, and we let rs be the partial random
real added at s. A P̃ 4 name for a null setN depends (in a Borel way) on a countable
index set w∗ ⊆ �4. Fix some s ∈ S2 such that ws ⊇ w∗, and pick any t ≻ s. Then
wt contains all information to calculate the null set N , and therefore the partial
random rt over wt will avoidN .

2.2 The Boolean ultrapower of a forcing

2.2.1 Boolean ultrapowers

Boolean ultrapowers generalize regular ultrapowers by using arbitrary Boolean
algebras instead of the power set algebra.
Assumption 2.21. � is strongly compact, B is a �-distributive, �+-cc, atomless
complete Boolean algebra.
Lemma2.22. [KT64] Every �-complete filter onB can be extended to a �-complete
ultrafilter U .2

Proof. List the required properties of U as a set of propositional sentences in �
(a propositional language allowing conjunctions and disjunctions of any size <�),
using atomic formulas coding b ∈ U and b ∉ U for b ∈ B.

Assumption 2.23. U is a �-complete ultrafilter on B.
Lemma 2.24. There is a maximal antichainA0 inB of size � such thatA0∩U = ∅.
In other words, U is not �+-complete.

Proof. Let A0 be a maximal antichain in the open dense set B ⧵ U . As B is �+-cc
A0 has size ≤�. It cannot have size <�, as U is �-complete and therefore meets
every antichain of size <�.

The Boolean algebra B can be used as forcing notion. As usual, V denotes the
universe we start with, sometimes called the ground model. In the following, we
will not actually force with B (or any other p.o.); we always remain in V , but we
still use forcing notation. In particular, we call the usual B-names “forcing names”.
Definition 2.25. A BUP-name (or: labeled antichain) x is a functionA→ V whose
domain is a maximal antichain. We may write A(x) to denote A.

2For this, neither �+-cc nor atomless is required, and it is sufficient that B is �-complete.
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Each BUP-name corresponds to a forcing-name3 for an element of V . We will
identify the BUP-name and the corresponding forcing-name. In turn, every forcing
name � for an element of V has a forcing-equivalent BUP-name.

In particular, we can calculate, for two BUP-names x and y, the Boolean value
⟦x = y⟧.4
Definition 2.26. • Two BUP-names x and y are equivalent, if ⟦x = y⟧ ∈ U .

• For v ∈ V , let v̌ be a BUP-name-version of the standard name for v (unique
up to equivalence).

• The Boolean ultrapowerM− consists of the equivalence classes [x] of BUP-
names x; and we define [x] ∈− [y] by ⟦x ∈ y⟧ ∈ U .

• j− ∶ V →M− maps v to [v̌].
We are interested in the ∈-structure (M−,∈−).
GivenBUP-names x1,… , xn and an∈-formula', the truth value ⟦'V (x1,… , xn)⟧

is well defined (it is the weakest element of B forcing that in the ground model
'(x1,… , xn) holds, which makes sense as x1,… , xn are guaranteed to be in the
ground model).5
Lemma 2.27. • Łoś’s theorem:

(M−,∈−) ⊨ '([x1],… , [xn]) iff ⟦'V (x1,… , xn)⟧ ∈ U.

• j− ∶ (V ,∈)→ (M−,∈−) is an elementary embedding.

• In particular, (M−,∈−) is a ZFC model.

Proof. Straightforward by the definition of equivalence and of [x] ∈− [y], and by
induction (using that U is a filter for '∧ and for ∃v'(v), and that it is an ultrafilter
for ¬'). For elementarity, note thatM− ⊨ '([x̌1],… , [x̌n]) iff ⟦'V (x̌1,… , x̌n)⟧ ∈
U iff V ⊨ '(x1,… , xn).
Lemma 2.28. (M−,∈−) is wellfounded.

Proof. This is the standard argument, using the fact that U is �-complete:
Assume [xn+1] ∈− [xn] for n ∈ !. Choose a common refinement A of the

antichains A(xn). Again, let x′n be the BUP-names with domain A equivalent to xn.
3more specifically, to the forcing-name {(x̌(a), a) ∶ a ∈ A(x)}.
4We can calculate ⟦x = y⟧ more explicitly as follows: Pick some common refinement A′ of A(x)

andA(y). This defines in an obvious way BUP-names x′ and y′ both with domainA′: For a ∈ A′ we set
x′(a) = x(ã) for ã the unique element of A(x) above a. Then ⟦x = y⟧ is⋁{a ∈ A′ ∶ x′(a) = y′(a)}
(which is independent of the refinement A′).

5Equivalently, we can explicitly calculate ⟦'V (x1,… , xn)⟧ as follows: Chose a common refinement
A′ ofA(x1),… , A(xn), and set ⟦'V (x1,… , xn)⟧ to be⋁{a ∈ A′ ∶ '(x′1(a),… , x′n(a))}; where againthe BUP-names x′i are the canonically defined BUP-names with domain A′ that are equivalent to xi.
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So, by our assumption, un ∶= ⟦xn+1 ∈ xn⟧ =
⋁

{a ∈ A ∶ x′n+1(a) ∈ x′n(a)} is in
U for each n. As U is �-complete, there is some u ∈ U stronger than all un. This
implies: If a ∈ A is compatible with u, then a is compatible with un (for all n), and
therefore x′n+1(a) ∈ x′n(a) for all n, a contradiction
Definition 2.29. LetM be the transitive collapse of (M−,∈−), and let j ∶ V →M
be the composition of j− with the collapse. We denote the collapse of [x] by xU .
So in particular v̌U = j(v).
Lemma 2.30. • M ⊧ '(xU1 ,… , xUn ) iff ⟦'V (x1,… , xn)⟧ ∈ U . In particular,

j ∶ V →M is an elementary embedding.

• If |Y | < �, then j(Y ) = j′′Y . In particular, j restricted to � is the identity.
M is closed under <�-sequences.

• j(�) ≠ �, i.e., � = cr(j).

Proof. If [x] ∈ j−(Y ), then we can refine the antichain A(x) to some A′ such that
each a ∈ A′ either forces x = y for some y ∈ Y , or x ∉ Y . Without loss of
generality (by taking suprema), we can assume different elements a of A′ giving
different values y(a); i.e., A′ has size |Y | + 1 < �. So U selects an element a of A′,
and as ⟦x ∈ Y ⟧ ∈ U , this element a proves that [x] = j−(y(a)).

We have already mentioned that there is a maximal antichain A0 = {ai ∶ i ∈ �}
of size � such that A0 ∩ U = ∅. The BUP-name x with A(x) = A0 and x(ai) = i
satisfies [x] ∈− j−(�), but is not equivalent to any v̌; so � ≤ xU < j(�).

As we have already mentioned, an arbitrary forcing-name for an element of V
has a forcing-equivalent BUP-name, i.e., a maximal antichain labeled with elements
of V . If � is a forcing-name for an element of Y (Y ∈ V ), then without loss of
generality � corresponds to a maximal antichain labeled with elements of Y . We call
such an object y a “BUP-name for an element of j(Y )” (and not “for an element of
Y ”, for the obvious reason: unlike in the case of a forcing extension, yU is generally
not in Y , but, by definition of ∈−, it is in j(Y )).

2.2.2 The algebra and the filter

We will now define the concrete Boolean algebra we are going to use:
Definition 2.31. Assume GCH, let � be strongly compact, and � > � regular.

P�,� is the forcing notion adding � Cohen subsets of �. More concretely: P�,�
consists of partial functions from � to � with domain of size<�, ordered by extension.
Let f ∗ ∶ � → � be the name of the generic function.

�,� is the complete Boolean algebra generated by P�,�.
Clearly �,� is �+-cc and �-distributive, as P�,� is even �-closed.

Lemma 2.32. There is a �-complete ultrafilter U on B = �,� such that:
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a. The Boolean ultrapower gives an elementary embedding j ∶ V →M . M is
closed under <�-sequences.

b. The elements xU ofM are exactly (the collapses of equivalence classes of)
B-names x for elements of V ; more concretely, a function from an antichain
(of size �) to V . We sometimes say “xU is a mixture of � many possibilities”.

Similarly, for Y ∈ V , the elements xU of j(Y ) correspond to the B-names x
of elements of Y , i.e., antichains labeled with elements of Y .

c. If |A| < �, then j′′A = j(A). In particular, j restricted to � is the identity.

d. j has critical point �, cf(j(�)) = �, and � ≤ j(�) ≤ �+.

e. If � > � is regular, then max(�, �) ≤ j(�) < max(�, �)+.

f. If S is a <�-directed partial order, and � < �, then j′′S is cofinal in j(S).

g. If cf(�) ≠ �, then j′′� is cofinal in j(�), so in particular cf(j(�)) = cf(�).

Proof. We have already seen (a)–(c).
(d): For each � ∈ �, f ∗(�) is a forcing-name for an element of �, and thus a

BUP-name for an element of j(�). Let x be some other BUP-name for an element of
j(�), i.e., an antichain A of size � labeled with elements of �. Let � ∈ � be bigger
than the supremum of supp(a) for each a ∈ A. We call such a pair (x, �) “suitable”,
and set bx,� ≔ ⟦f ∗(�) > x⟧. We claim that all these elements form a basis for
a �-complete filter. To see this, fix suitable pairs (xi, �i) for i < � where � < �;
we have to show that ⋀i∈� bxi,�i ≠ 0. Enumerate {�i ∶ i ∈ �} increasing (and
without repetitions) as �j for j ∈  ≤ �. Set Aj = {i ∶ �i = �j}. Given qj , define
qj+1 ∈ P�,� as follows: qj+1 ≤ qj ; �j ∈ supp(qj+1) ⊆ �j ∪ {�j}; and qj+1 ↾ �j
decides for all i ∈ Aj the values of xi to be some �i; and qj+1(�j) = supi∈Aj (�i) + 1.For j ≤  limit, let qj be the union of {qk ∶ k < j}. Then q is stronger than each
bxi,�i .As � is strongly compact, we can extend the �-complete filter generated by
all bxi,�i to a �-complete ultrafilter U . Then the sequence (f ∗(�)U )�∈� is strictly
increasing (as (f ∗(�), �′) is suitable for all � < �′) and cofinal in j(�) (as we have
just seen); so cf(j(�)) = �.

(e): We count all BUP-names for elements of j(�). As we can assume that the
antichains are subsets of P�,� , which has size �, and as � is regular and GCH holds,
we get |j(�)| ≤ [�]� × �� = max(�, �).

(f): An element xU of j(S) is a mixture of � many possibilities in S. As � < �,
there is some t ∈ S above all the possibilities. Then j(t) > xU .

(g): Set � = cf(�), and pick an increasing cofinal sequence �̄ = (�i)i∈� in �.
j(�̄) is increasing cofinal in j(�) (as this is absolute betweenM and V ). If � < �,
then j′′�̄ = j(�̄), otherwise use (f).
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2.2.3 The ultrapower of a forcing notion

We now investigate the relation of a forcing notion P ∈ V and its image j(P ) ∈M ,
which we use as a forcing notion over V . (Think of P as being one of the forcings
of Section 2.1; it has no relation with the boolean algebra B.)

Note that as j(P ) ∈M andM is transitive, every j(P )-generic filter G over V
is trivially generic overM as well, and we will use absoluteness betweenM[G] and
V [G] to prove various properties of j(P ).
Lemma 2.33. If P is �-cc, then j gives a complete embedding from P into j(P ).
I.e., j′′P is a complete subforcing of j(P ), and j is an isomorphism from P to j′′P .

Proof. It is clear that j is an isomorphism onto j′′P : By definition the order <j(P )
on j(P ) is j(<P ), and by elementarity p ≤P q iff j(q) <j(P ) j(p). Also, p ⟂ q is
preserved: M ⊨ p ⟂j(P ) q by elementarity, so p ⟂j(P ) q holds in V (as j(P ) ∈M
andM is transitive).

It remains to be shown that each maximal antichain A of P is preserved, i.e.,
j′′A ⊆ j(P ) is predense.

By our assumption, |A| < �, so j′′A = j(A) (by Lemma 2.32(c)), which is
maximal inM (by elementarity) and thus maximal in V (by absoluteness).

Accordingly, we can canonically translate P -names into j(P )-names, etc.
For later reference, let us make this a bit more explicit: Let g be a P -name for

a real (i.e., an element of !!). Each g(n) is decided by a maximal antichains An,
where a ∈ An forces g(n) = gn,a ∈ !. Then the j(P )-name j(g) corresponds to the
antichains

j(An) = j′′An, and j(a) forces j(g)(n) = gn,a for each a ∈ An. (2.34)
Lemma 2.35. If P = (P�, Q�)�<� is a finite support (FS) ccc iteration of length
�, then j(P ) is a FS ccc iteration of length j(�) (more formally: it is canonically
equivalent to one).

Proof. M certainly thinks that j(P ) = (P ∗� , Q
∗
�)�<j(�) is a FS iteration of length

j(�).
By induction on � we define the FS ccc iteration (P̃�, Q̃�)�<j(�) and show that

P ∗� is a dense subforcing of P̃�: Assume this is already the case for P ∗� . M thinks
that Q∗� is a P ∗� -name, so we can interpret it as a P̃�-name and use it as Q̃� . Assume
that (p, q) is an element (in V ) of P̃� ∗ Q̃�. So p forces that q is a name inM ; we
can increase p to some p′ that decides q to be the name q′ ∈M . By induction we
can further increase p′ to p′′ ∈ P ∗� , then (p′′, q′) ∈ P ∗�+1 is stronger than (p, q). (Atlimits there is nothing to do, as we use FS iterations.)

j(P ) is ccc, as any A ⊆ j(P ) of size ℵ1 is in M (and M thinks that j(P ) is
ccc).

Similarly, we get:
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• If � = xU is inM a j(P )-name for an element of j(Z), then � is a mixture
of � many P -names for an element of Z (i.e., the BUP-name x consists of
an antichain A ⊆ B labeled, without loss of generality, with P -names for
elements of Z).
(This is just the instance of “each xU ∈ j(Y ) is a mixture of elements of Y ”,
where we set Y to be the set6 of P -names for elements of Z.)

• A j(P )-name � for an element ofM[G] has an equivalent j(P )-name inM .
(There is a maximal antichain A of j(P ) labeled with j(P )-names inM . As
M is countably closed, this labeled antichain is inM , and gives a j(P )-name
inM equivalent to �.)

• In V [G],M[G] is closed under <� sequences.
(We can assume the names to be inM and use <�-closure.)

• In particular, every j(P )-name for a real, a Borel-code, a countable sequence
of reals, etc., is inM (more formally: has an equivalent name inM).

• If each iterand is forced to consist of reals, then j(P ) forces the continuum to
have size at most |2 + j(�)|ℵ0 .
(This follows from Lemma 2.17 as j(P ) also satisfies that each iterand consists
of reals.)

2.2.4 Preservation on values of characteristics

Lemma 2.36. Let � be a regular uncountable cardinal and P a ccc forcing.

a. Let x be either add( ) or b. If P ⊩ x = � and � ≠ �, then j(P ) ⊩ x = �.

b. Let y be either cof( ) or d. If P ⊩ y ≥ � and � < �, then j(P ) ⊩ y ≥ �.

c. Let (x, y) be either (b, d) or (add( ), cof( )). Then we get:
If P ⊩ ( � < x& y ≤ � ) then j(P ) ⊩ y ≤ �.

Proof. (a)We formulate the proof for add( ); the proof for b is the same.
Let N̄ = (Ni)i<� be P -names for an increasing sequence of null sets such that

⋃

i<�Ni is not null. So in particular for every P -name N of a null set: (∃i0 ∈
�) (∀i ∈ � ⧵ i0)P ⊩ Ni ⊈ N . (We can choose the i0 in V due to ccc.)

ThereforeM thinks that the same holds for the sequence j(N̄) of j(P )-names
of length j(�). So wheneverN is a j(P )-name of a null set, we can assume without
loss of generality thatN ∈M , soM thinks that from some i0 on it is forced that
Ni ⊈ N , which is absolute.

6Formally: We set Y to be some set that contains representatives of each equivalence class of
P -names of elements of Z.
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As � ≠ �, we know that j′′� is cofinal in j(�). So (since the sequence j(N̄) is
increasing) we can use (j(Ni))i∈� and get the same property.

This shows that j(P ) ⊩ add( ) ≤ �
For the other inequality, fix some � < �, and (Ni)i<� a family of j(P )-names

for null sets (without loss of generality each name is inM), and p ∈ j(P ).
• Case 1: � ≥ �. Then the sequence (Ni)i<� (as well as p) is in M , and
M ⊧

(

p ⊩
⋃

Ni null
); which is absolute.

• Case 2: � < �. Every Ni is a “mixture” of � many P -names for null sets,
so there is a single P -name N ′

i such that P forces N ′
i is superset of all thenames involved. Therefore, j(P ) forces that j(N ′

i ) ⊇ Ni. And P forces that
⋃

i<� N
′
i is null, i.e., covered by some null set N∗. Then j(P ) forces that

j(N∗) covers⋃i<� Ni.
(b)We show that a small set cannot be dominating: Fix a sequence (fi)i<� of

j(P )-names of reals, with � < �. Each fi corresponds to � < � many possible
P -names. As � < �, there is a P -name g unbounded by all � ×� < �many possible
P -names. So if f is any of the possibilities, then P forces g ≰∗ f ; and thus j(P )
forces j(g) ≰∗ fi for all i. So j(P ) forces d ≥ �.

The same proof works for cof( ) (using “the null set g is not a subset of any of
the possible null sets”).

(c) For (x, y) = (b, d): Fix a P -name of a dominating family f̄ = (fi)i∈�.
We claim that j(P ) forces that j′′f̄ = (j(fi))i<� is dominating. Let r be a j(P )-

name of a real, i.e., a mixture of � many possibilities (each possibility corresponding
to a P -name for a real). As P ⊩ � < b, P forces that these reals cannot be
unbounded, i.e., there is a P -name � ∈ � such that f� is forced to dominate all the
possibilities. By absoluteness, j(P ) ⊩ j(f�) >∗ r.

It remains to be shown that j(P ) ⊩ j(f�) ∈ j′′f̄ . (Note that � is just a P -
name.) Fix a maximal antichain A in P deciding �, i.e., a ∈ A forces � = �(a).
As j maps P completely into j(P ), j′′A is a maximal antichain in j(P ). So j(P )
forces that exactly on j(a) for a ∈ A is in the generic filter, cf. (2.34). Accordingly
j(f�) = j(f�(a)) ∈ j′′f̄ .

The proof for cof( ) is the same.

For the other direction of the invariants, and the pair (cov( ), non( )), we use
the following two lemmas, which are reformulations of results of Shelah.7

Recall Definition 2.7 (which is useful because of Lemma 2.8 and satisfied for
the inital forcing according to Lemma 2.18).
Lemma 2.37. Assume LCUi(P , �). Then LCUi(j(P ), cf(j(�))).
So if � ≠ �, then LCUi(j(P ), �), and if � = �, then LCUi(j(P ), �).

7S. Shelah, personal communication.
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Proof. Let ȳ = (y�)�<� be the sequence of P -names witnessing LCUi(P , �). Note
that j(ȳ) is a sequence of length j(�); we denote the �-th element by (j(ȳ))� . SoM
thinks: For every j(P )-name r of a real (∃� ∈ j(�)) (∀� ∈ j(�) ⧵ �) ¬(j(ȳ))� Ri r.
This is absolute. In particular, pick in V a cofinal subset A of j(�) of order type
cf(j(�)) =∶ �. Then j(ȳ) ↾ A witnesses that LCUi(j(P ), �) holds.

We have seen in Lemma 2.20 that COB2(P 5, �2, �4) holds and implies that P̃ 4
forces cov( ) ≥ �2 and non( ) ≤ �4 (which is trivial in the case of P̃ 4).
Lemma 2.38. Assume COB2(P , �, �). If � > �, then COB2(j(P ), �, |j(�)|); if
� < �, then COB2(j(P ), �, �).

Proof. Let (S,≺) and r̄ witness COB2(P , �, �).
M thinks that

for each j(P )-nameN of a null set
(∃s ∈ j(S)) (∀t ∈ j(S)) t ≻ s→ j(P ) ⊩ (j(r̄))t ∉ N, (∗)

which is absolute.
If � > �, then j(�) = �, and j(S) is �-directed inM and therefore in V as well,

and so we get COB2(j(P ), �, |j(�)|).
So assume � < �. We claim that j′′(S) and j′′r̄ witness COB2(j(P ), �, �). j′′S

is isomorphic to S, so directedness is trivial. Given a j(P )-nameN , without loss
of generality inM , there is inM a bound s ∈ j(S) as in (∗). As j′′S is cofinal in
j(S) (according to Lemma 2.32(f)), there is some s′ ∈ S such that j(s′) ≻ s. Then
for all t′ ≻ s′, i.e., j(t′) ≻ j(s′), we get j(P ) ⊩ j(rt) ∉ N .

2.2.5 The main theorem

We now have all everything required for the main result:
Theorem 2.39. Assume GCH and that ℵ1 < �7 < �1 < �6 < �2 < �5 < �3 <
�4 < �5 < �6 < �7 are regular, �i strongly compact for i = 5, 6, 7. Then there is a
ccc order P 7 forcing

add( ) = �1 < cov( ) = �2 < b = �3 < d = �4 < non( ) = �5
< cof( ) = �6 < 2ℵ0 = �7.

Proof. Let ji ∶ V →Mi be the Boolean ultrapower embedding with cf(j(�i)) = �i
(for i = 5, 6, 7). We set P̃ 5 ∶= j5(P̃ 4), P̃ 6 ∶= j6(P̃ 5), and P̃ 7 ∶= j7(P̃ 6); and
j6(�5) =∶ �6 and j7(�6) =∶ �7.

It is enough to show the following:
a. P̃ i is a FS ccc iteration of length �i and forces 2ℵ0 = �i for i = 4, 5, 6, 7.
b. P̃ i ⊩ ( add( ) = �1& b = �3& d = �4 ) for i = 4, 5, 6, 7.
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c. P̃ i ⊩ non( ) ≥ �5 for i = 5, 6, 7.
P̃ i ⊩ cof( ) ≥ �6 for i = 6, 7.
P̃ i ⊩ cov( ) ≤ �2 for i = 4, 5, 6, 7.

d. P̃ i ⊩ cof( ) = �6 for i = 6, 7.
e. P̃ i ⊨ ( cov( ) ≥ �2& non( ) ≤ �5 ) for i = 4, 5, 6, 7.
(a) was shown in Section 2.2.3.
(b): For P̃ 4 this is Theorem 2.19). For P̃ 5 use Lemma 2.36 (using for d that

�5 < �3). Using the same lemma again we get the result for P̃ 6 and P̃ 7 (using that
�i < �3 for i = 6, 7 as well.)

(c): As �5 > �2, we haveLCU2(P̃ 4, �5) (by Lemma 2.18), and thusLCU2(P̃ 5, �5)
(by Lemma 2.37, as cf(j5(�5)) = �5), so P̃ 5 ⊩ non( ) ≥ �5 (Lemma 2.8). Repeat-
ing the same argument we get LCU2(P̃ i, �5) for i = 6, 7 (as �i ≠ �5 for i = 6, 7).

Analogously, as �6 > �1, we start with LCU1(P̃ 4, �6), get LCU1(P̃ 5, �6) (as
�5 ≠ �6) and then LCU1(P̃ 6, �6) (as cf(j6(�6)) = �6) and LCU1(P̃ 7, �6) (again as
�7 ≠ �6). So we get thus P̃ i ⊩ cof( ) ≥ �6 for i = 6, 7.

Similarly, LCU2(P̃ 4, �2) holds, which is preserved by all embeddings, so we get
cov( ) ≤ �2.

(d): As P̃ 6 forces the continuum to have size �6, the previous item implies
P̃ 6 ⊩ cof( ) = �6. And as in (b), this implies the same for P̃ 7 (as �7 < �1, the
value of add( )).

(e): COB2(P̃ 4, �2, �4) holds (cf. Lemma 2.20). So by Lemma 2.38 for the case
� > �, and as |j5|(�4) = �5, according to Lemma 2.32(e), COB2(P̃ 5, �2, �5) holds.
I.e., P̃ 5 forces cov( ) ≥ �2 and non( ) ≤ �5 (the latter being trivial as the
continuum has size �5). For i = 6, 7, the same lemma, now for the case � < �, gives
COB2(P̃ i, �2, �5), i.e., P̃ i forces cov( ) ≥ �2 and non( ) ≤ �5.

2.2.6 An alternative

In the same way we can prove the consistency of
ℵ1 < add( ) < cov( ) < non() < cov() < non( ) < cof( ) < 2ℵ0 .

(I.e., we can replace b and d by non() and cov(), respectively.)
For this, we use the following relation as R3:

f R3 g, if f, g ∈ !! and (∀∗n ∈ !) f (n) ≠ g(n).

By a result of [Mil82; Bar87] (cf. [BJ95, 2.4.1 and 2.4.7]) we have
non() = b3 and cov() = d3.

As before, we use that iterations where each iterand has size <�3 is (�3, R3)-good.
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To define P̃ 4, we use partial eventually different (instead of partial Hechler)
forcings.

Unlike for (b, d), we do not know whether non() = � is generally preserved if
� ≠ � and cov() = � is preserved if � is small; but we can use the same argument
for (non(), cov()) that we have used for (cov( ), non( )). So we can get the
analogous of Lemma 2.20) that proves that non() is large and cov() small; and
LCU3 implies that non() is small and cov() large.



26 CHAPTER 2. EIGHT VALUES IN CICHOŃ’S DIAGRAM



Chapter 3

Another ordering of ten values

This chapter is based on the paper “Another ordering of the ten cardinal characteristics
in Cichoń’s diagram” ([KST17], arXiv:1712.00778), joint work with J. Kellner
and S. Shelah, accepted for publication in the special issue of "Commentationes
Mathematicae Universitatis Carolinae" in honor of Bohuslav Balcar.

We show the consistency of
ℵ1 < add( ) < add() = b < cov( ) < non() < cov() = 2ℵ0 .

Assuming four strongly compact cardinals, it is consistent that

ℵ1 < add( ) < add() = b < cov( ) < non() <
< cov() < non( ) < cof() = d < cof( ) < 2ℵ0 .

Introduction

We assume that the reader is familiar with basic properties of Amoeba, Hechler,
random and Cohen forcing, and with the cardinal characteristics in Cichoń’s diagram,
given in Figure 3.1: An arrow between x and y indicates that ZFC proves x ≤ y.
Moreover, max(d, non()) = cof() and min(b, cov()) = add(). These
(in)equalities are the only one provable. More precisely, all assignments of the

cov( ) // non() // cof() // cof( ) // 2ℵ0

b //

OO

d

OO

ℵ1 // add( ) //

OO

add() //

OO

cov() //

OO

non( )

OO

Figure 3.1: Cichoń’s diagram

27
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values ℵ1 and ℵ2 to the characteristics in Cichoń’s diagram are consistent, provided
they do not contradict the above (in)equalities. (A complete proof can be found
in [BJ95, ch. 7].)

In the following, we will only deal with the ten “independent” characteristics
listed in Figure 3.2 (they determine cof() and add()).

cov( ) // non() // // cof( ) // 2ℵ0

b //

OO

d

OO

ℵ1 // add( ) //

OO

//

OO

cov() //

OO

non( )

OO

Figure 3.2: The ten “independent” characteristics.

�2 // �4 // // �8 // �9

�3 //

OO

�6

OO

ℵ1 // �1 //

OO

//

OO

�5 //

OO

�7

OO

Figure 3.3: The old order.

�3 // �4 // // �8 // �9

�2 //

OO

�7

OO

ℵ1 // �1 //

OO

//

OO

�5 //

OO

�6

OO

Figure 3.4: The new order.
Regarding the left hand side, it was shown in [GMS16] that consistently

ℵ1 < add( ) < cov( ) < add() = b < non() < cov() = 2ℵ0 . (leftold)
(This corresponds to �1 to �5 in Figure 3.3.) The proof is repeated in [GKS17], in a
slightly different form which is more convenient for our purpose. Let us call this
construction the “old construction”.

In this paper, building on [She00], we give a construction to get a different order
for these characteristics, where we swap cov( ) and b:
ℵ1 < add( ) < add() = b < cov( ) < non() < cov() = 2ℵ0 . (leftnew)

(This corresponds to �1 to �5 in Figure 3.4.)
This construction is more complicated than the old one. Let us briefly describe

the reason: In both constructions, we assign to each of the cardinal characteristics
of the left hand side a relation R. E.g., we use the “eventually different” relation
R4 ⊆ !!×!! for non(). We can then show that the characteristic remains “small”
(i.e., is at most the intended value � in the final model), because all single forcings we
use in the iterations are either small (i.e., smaller than �) or are “R-good”. However,
b (with the “eventually dominating” relation R2 ⊆ !! ×!!) is an exception: We do
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not know any variant of an eventually different forcing (which we need to increase
non()) which satisfies that all of its subalgebras are R2-good. Accordingly, the
main effort (in both constructions) is to show that b remains small.

In the old construction, each non-small forcing is a (�-centered) subalgebra
of the eventually different forcing E. To deal with such forcings, ultrafilter limits
of sequences of E-conditions are introduced and used (and we require that all E-
subforcings are basically E intersected with some model, and thus closed under
limits of sequences in the model). In the new construction, we have to deal with an
additional kind of “large” forcing: (subforcings of) random forcing. Ultrafilter limits
do not work any more, but, similarly to [She00], we can use finite additive measures
(FAMs) and interval-FAM-limits of random conditions. But now E doesn’t seem to
work with interval-FAM-limits any more, so we replace it with a creature forcing
notion Ẽ.

We also have to show that cov( ) remains small. In the old construction, we
could use a rather simple (and well understood) relation Rold and use the fact that
all �-centered forcings are Rold-good: As all large forcings are subalgebras of either
eventually different forcing or of Hechler forcing, they are all �-centered. In the new
construction, the large forcings we have to deal with are subforcings of Ẽ. But Ẽ
is not �-centered, just (�, �)-linked for a suitable pair (�, �) (a property between �-
centered and �-linked, first defined in [OK14], see Def. 3.18). So we use a different
(and more cumbersome) relation R3, introduced in [OK14], where it is also shown
that (�, �)-linked forcings are R3-good.

Regarding the whole diagram: In [GKS17], starting with the iteration for
(leftold), a new iteration is constructed to get simultaneously different values for
all characteristics: Assuming four strongly compact cardinals, the following is
consistent (cf. Figure 3.3):
ℵ1 < add( ) < cov( ) < b < non() <

< cov() < d < non( ) < cof( ) < 2ℵ0 .

The essential ingredient is the concept of the Boolean ultrapower of a forcing notion.
In exactly the same way we can expand our new version (leftnew) to the right

hand side, where also the characteristics dual to b and cov( ) are swapped. So we
get: If four strongly compact cardinals are consistent, then so is the following (cf.
Figure 3.4):
ℵ1 < add( ) < b < cov( ) < non() <

< cov() < non( ) < d < cof( ) < 2ℵ0 .

We closely follow the presentation of [GKS17]. Several times, we refer to
[GKS17] and to [She00] for details in definitions or proofs. We thank Martin
Goldstern and Diego Mejía for valuable discussions, and an anonymous referee for
a very detailed and helpful report pointing out (and even fixing) several mistakes in
the first version of the paper.
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3.1 Finitely additive measure limits and the Ẽ-forcing.

3.1.1 FAM-limits and random forcing

We briefly list some basic notation and facts around finite additive measures. (A bit
more details can be found in Section 1 of [She00].)
Definition 3.1. • A “partial FAM” (finitely additive measure) Ξ′ is a finitely

additive probability measure on a sub-Boolean algebra  of (!), the power
set of !, such that {n} ∈  and Ξ′({n}) = 0 for all n ∈ !. We set dom(Ξ′) =
.

• Ξ is a FAM if it is a partial FAM with dom(Ξ) = (!).
• For every FAM Ξ and bounded sequence of non-negative reals ā = (an)n∈! we

can define in the natural way the average (or: integral) AvΞ(ā), a non-negative
real number.

[She00, p. 1.2] lists several results that informally say:
There is a FAM Ξ that assigns the values ai to the sets Ai (for all i
in some index set I) iff for each I ′ ⊆ I finite and � > 0 there is an
arbitrary large1 finite u ⊆ ! such that the counting measure on u
for Ai approximates ai with an error of at most �, for all i ∈ I ′.

(∗)

For the size of such an “�-good approximation” u to some FAM Ξ we can give
an upper bound for |u| which only depends on |I ′| and � (and not on Ξ):
Lemma 3.2. Given N, k∗ ∈ ! and � > 0, there is anM ∈ ! such that: For all
FAMs Ξ and (An)n<N there is a nonempty u ⊆ ! of size ≤M such thatmin(u) > k∗

and Ξ(An) − � <
|An∩u|
|u|

< Ξ(An) + � for all n < N .

Proof. We can assume that � = 1
L
for an integer L. {An ∶ n ∈ N} generates

the set algebra B ⊆ (!). Let  be the set of atoms of B. So  is a partition of
! of size ≤2N . Set  ′ = {x ∈  ∶ Ξ(x) > 0}. Every x ∈  ′ is infinite, and
∑

x∈ ′ Ξ(x) = 1.
Round Ξ(x) to some number Ξ�(x) = lx ⋅ 1

L⋅2N for some integer 0 ≤ lx ≤ L ⋅2N ,
such that |Ξ(x) − Ξ�(x)| < 1

L⋅2N and∑x∈ ′ Ξ�(x) is still 1. So∑x∈ ′ lx = L ⋅ 2N ,
and we construct u consisting of lx many points that are bigger than k∗ and in x
(for each x ∈  ′).

We will use the following variants of (∗), regarding the possibility to extend a
partial FAM Ξ′ to a FAM Ξ. The straightforward, if somewhat tedious, proofs are
given in [She00, 1.3(G) and 1.7].

1Equivalently: “a finite u with arbitrary large minimum”, which is the formulation actually used in
most of the results.
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Fact 3.3. Let Ξ′ be a partial FAM, and I some index set.
(a) Fix for each i ∈ I some Ai ⊆ !.

If A ∩
⋂

i∈I ′ Ai ≠ ∅ for all I ′ ⊆ I finite and A ∈ dom(Ξ′) with Ξ′(A) > 0,
then Ξ′ can be extended to a FAM Ξ such that Ξ(Ai) = 1 for all i ∈ I .

(b) Fix for each i ∈ I some real bi and some bounded sequence of non-negative
reals āi = (aik)k∈!.
If for each finite partition (Bm)m<m∗ of ! into elements of dom(Ξ′), for each
� > 0, k∗ ∈ !, and I ′ ⊆ I finite there is a finite u ⊆ ! ⧵ k∗ such that

• for all m < m∗, Ξ′(Bm) − � ≤ |Bm∩u|
|u|

≤ Ξ′(Bm) + �, and
• for all i ∈ I ′, 1

|u|
∑

k∈u a
i
k ≥ bi − �,

then Ξ′ can be extended to a FAM Ξ such that AvΞ(āi) ≥ bi for all i ∈ I .
We first define what it means for a forcing Q to have FAM limits.

Remark 3.4. Intuitively, this means (in the simplest version): Fix a FAM Ξ. We
can define for each sequence qk of conditions that are all “similar” (e.g., have the
same stem and measure) a limit limΞ q̄. And we find in the Q-extension a FAM Ξ′
extendingΞ, such that limΞ(q̄) forces that the set of k satisfyingP (k) ≡ “qk ∈ G” has
“large”Ξ′-measure. Up to here, we get the notion used in [GMS16] and [GKS17] (but
there we use ultrafilters instead of FAMs, and “large” means being in the ultrafilter).
However, we need a modification: Instead of single conditions qk we use a finite
sequence (pl)l∈Ik (where Ik is a fixed, finite interval); and the condition P (k), which
we want to satisfy on a large set, now is “ |{l∈Ik∶ pl∈G}|

|Ik|
> b” for some suitable b.

This is the notion used implicitly in [She00].
Notation. Let T ∗ be a compact subtree of!<!, for example T ∗ = 2<!. Let s, t ∈ T ∗.
Let S be a subtree of T ∗.

• t� s means “t is immediate successor of s”.
• |s| is the length of s (i.e.: the height, or level, of s).
• [t] is the set of nodes in T ∗ comparable with t.
• We set lim(S) = {x ∈ !! ∶ (∀n ∈ !) x ↾ n ∈ S}.
• trunk(S) is the smallest splitting node of S. With “t ∈ S above the stem”
we mean that t ∈ S and t ≥ trunk(S); or equivalently: t ∈ S and |t| ≥
| trunk(S)|.

• Leb is the canonical measure on the Borel subsets of lim(T ∗). We also write
Leb(S) instead of Leb(lim(S)).2

2I.e., we define Leb([s]) by induction on the height of s ∈ T ∗ as follows: Leb(T ∗) = 1, and if s
has n many immediate successors in T ∗, then Leb([t]) = Leb([s])

n
for any such successor. This defines a

measure on each basic clopen set, which in turn defines a (probability) measure on the Borel subsets
of lim(T ∗) (a closed subset of !!).
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We fix, for the rest of the paper, an interval partition Ī = (Ik)k∈! of ! such that
|Ik| converges to infinity. We will use forcing notions Q satisfying the following
setup:
Assumption 3.5. • Q′ ⊆ Q is dense and the domain of functions trunk and loss,

where trunk(q) ∈ H(ℵ0) and loss(q) is a non-negative rational.
• For each � > 0 the set {q ∈ Q′ ∶ loss(q) < �} is dense (in Q′ and thus in Q).
• {p ∈ Q′ ∶ (trunk(p), loss(p)) = (trunk∗, loss∗)} is ⌊ 1

loss∗ ⌋-linked. I.e., each
⌊

1
loss∗ ⌋ many such conditions are compatible.3

In this paper,Qwill be one of the following two forcing notions: random forcing,
or Ẽ (as defined in Definition 3.12). We will now specify the instance of random
forcing that we will use:
Definition 3.6. • A random condition is a tree T ⊆ 2<! such that Leb(T ∩[t]) >

0 for all t ∈ T .
• trunk(T ) is the stem of T (i.e., the shortest splitting node).
• If Leb(T ) = Leb([trunk(T )]), we set loss(T ) = 0. Otherwise, let m be the

maximal natural number such that
Leb(T ) > Leb([trunk(T )])(1 − 1

m
)

and set4 loss(T ) = 1
m
.

Note that Leb(T ) ≥ 2−| trunk(T )|(1 − loss(T )) (and the inequality is strict if
loss(T ) > 0).

Note that this definition of random forcing satisfies Assumption 3.5 (with Q′ =
Q).
Definition 3.7. Fix Q and functions (trunk, loss) as in Assumption 3.5, a FAM Ξ
and a function limΞ ∶ Q! → Q. Let us call the objects mentioned so far a “limit
setup”. Let a (trunk∗, loss∗)-sequence be a sequence (ql)l∈! of Q-conditions such
that trunk(ql) = trunk∗ and loss(ql) = loss∗ for all l ∈ !.

We say “limΞ is a strong FAM limit for intervals”, if the following is satisfied:
Given

• a pair (trunk∗, loss∗), j∗ ∈ !, and (trunk∗, loss∗)-sequences q̄j for j < j∗,
• � > 0, k∗ ∈ !,
• m∗ ∈ ! and a partition of ! into sets Bm (m ∈ m∗), and

3In [She00, p. 2.9], trunk and loss are called ℎ2 and ℎ1; and instead of Ik the interval is called
[n∗k, n

∗
k+1 − 1]. Moreover, in [She00] the sequence (n∗k)k∈! is one of the parameters of a “blueprint”,

whereas we assume that the Ik are fixed.4In [She00], this is implicit in 2.11(f).
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• a condition q stronger than all limΞ(q̄j) for all j < j∗,
there is a finite u ⊆ ! ⧵ k∗ and a q′ stronger than q such that

• Ξ(Bm) − � <
|u∩Bm|
|u|

< Ξ(Bm) + � for m < m∗,

• 1
|u|

∑

k∈u
|{l∈Ik∶ q′≤q

j
l}|

|Ik|
≥ 1 − loss∗ −� for j < j∗

(We are only interested in limΞ(q̄) for q̄ as above, so we can set limΞ(q̄) to be
undefined or some arbitrary value for other q̄ ∈ Q!.)

The motivation for this definition is the following:
Lemma 3.8. Assume that limΞ is such a limit. Then there is aQ-name Ξ+ such that
for every (trunk∗, loss∗)-sequence q̄ the limit limΞ(q̄) forces Ξ+(Aq̄) ≥ 1−

√

loss∗,
where

Aq̄ = {k ∈ ! ∶ |{l ∈ Ik ∶ ql ∈ G}| ≥ |Ik| ⋅ (1 −
√

loss∗)} (3.9)

Proof. Work in the Q-extension. Now Ξ is a partial FAM. Let J enumerate all
suitable sequences q̄ ∈ V with limΞ(q̄) ∈ G, and for such a sequence q̄j set ajk =
|{l∈Ik∶ q

j
l∈G}|

|Ik|
, and bj = 1−loss∗. Using that Ξ satisfies Definition 3.7, we can apply

Fact 3.3(b), we can extend Ξ to some FAM Ξ+ such that AvΞ+(āj) ≥ 1 − loss∗ for
j < j∗. So Ξ+(Aq̄j ) + (1 − Ξ+(Aq̄j )) ⋅ (1 −

√

loss∗) ≥ AvΞ+(a
j
k) ≥ 1 − loss∗, and

thus Ξ+(Aq̄j ) ≥ 1 −
√

loss∗.

Definition 3.10. (Q, trunk, loss) as in Assumption 3.5 “has strong FAM limits for
intervals”, if for every FAM Ξ there is a function limΞ that is a strong FAM limit for
intervals.
Lemma 3.11. [She00] Random forcing has strong FAM-limits for intervals.

Proof. limΞ is implicitly defined in [She00, p. 2.18], in the following way: Given a
sequence rl with (trunk(pl), loss(pl)) = (trunk∗, loss∗), we can set r∗ = [trunk∗]
and b = 1 − loss∗; and we set n∗k such that Ik = [n∗k, n∗k+1 − 1]. We now use these
objects to apply [She00, p. 2.18] (note that (c)(∗) is satisfied). This gives r⊗, and
we define limΞ(r̄) to be r⊗.

In [She00, p. 2.17], it is shown that this r⊗ satisfies Definition 3.7, i.e., is a limit:
If r is stronger than all limits r⊗i, then r satisfies [She00, 2.17(∗)].

3.1.2 The forcing Ẽ

We now define Ẽ, a variant of the forcing notion Q2 defined in [HS]:



34 CHAPTER 3. ANOTHER ORDERING OF TEN VALUES

Definition 3.12. By induction on the height ℎ ≥ 0, we define a compact homoge-
neous tree T ∗ ⊂ !<!, and set

�(ℎ) ≔ max(|T ∗ ∩ !ℎ|, ℎ + 2) and �(ℎ) ≔ ((ℎ + 1)2�(ℎ)ℎ+1)�(ℎ)ℎ , (3.13)
we set Ωs to be the set {t� s ∶ t ∈ T ∗}, i.e., the set of immediate successors of s,
and define for each s a norm �s on the subsets of Ωs. In more detail:

• The unique element of T ∗ of height 0 is ⟨⟩, i.e., T ∗ ∩ !0 = {⟨⟩}.
• We set

a(ℎ) = �(ℎ)ℎ+2, M(ℎ) = a(ℎ)2, and �ℎ(n) = loga(ℎ)

(

M(ℎ)
M(ℎ) − n

)

for natural numbers 0 ≤ n < M(ℎ), and we set �ℎ(M(ℎ)) = ∞.
• For any s ∈ T ∗ ∩ !ℎ, we set Ωs = {s⌢l ∶ l ∈ M(ℎ)} (which defines
T ∗ ∩ !ℎ+1). For A ⊂ Ωs, we set �s(A) ≔ �ℎ(|A|). So |Ωs| = M(ℎ),
�s(∅) = 0 and �s(Ωs) = ∞. Note that |A| = |Ωs| ⋅

(

1 − a(ℎ)−�s(A)
).

We can now define Ẽ:
Definition 3.14. • For a subtree p ⊆ T ∗, the stem of p is the smallest splitting

node. For s ∈ p, we set �s(p) = �s({t ∈ p ∶ t� s}).
Ẽ consists of subtrees pwith some stem s∗ of height ℎ∗ such that �t(p) ≥ 1+ 1

ℎ∗for all t ∈ p above the stem. (So the only condition with ℎ∗ = 0 is the full
condition, where all norms are∞.)
Ẽ is ordered by inclusion.

• trunk(p) is the stem of p.
loss(p) is defined if there is an m ≥ 2 satisfying the following, and in that case
loss(p) = 1

m
for the maximal such m:

– p has stem s∗ of height ℎ∗ > 3m,
– �s(p) ≥ 1 +

1
m
for all s ∈ p of height ≥ℎ∗.

We set Q′ = dom(loss).
By simply extending the stem, we can find for any p ∈ Ẽ and � > 0 some q ≤ p

in Q′ with loss(q) < �; i.e., one of the assumptions in 3.5 is satisfied. (The other
one is dealt with in Lemma 3.19(a).) In particular Q′ ⊆ Ẽ is dense.

We list a few trivial properties of the loss function:
Facts 3.15. Assume p ∈ Q′ with s = trunk(p) of height ℎ.
(a) loss(p) < 1, �s(p) ≥ 1 + loss(p) for any s above the stem, and loss(p) > 3

ℎ
.
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(b) If q is a subtree of p such that all norms above the stem are ≥ 1 + loss(p) − 2
ℎ
,

then q is a valid Ẽ-condition.
(c) ∏∞

l=ℎ(1 −
1
l2
) = 1 − 1

ℎ
> 1 − loss(p)

3
.

Lemma 3.16. Let s ∈ T ∗ be of height ℎ and A ⊂ Ωs.

(a) If �s(A) ≥ 1, then |A| ≥ |Ωs| ⋅ (1 −
1
ℎ2
).

(b) If A ⊊ Ωs, i.e., A is a proper subset, then �s(A ⧵ {t}) > �s(A) −
1
ℎ
for t ∈ A.

(c) For i < �(ℎ), assume thatAi ⊆ Ωs satisfies �s(Ai) ≥ x. Then �s(
⋂

i∈�(ℎ)Ai) >
x − 1

ℎ
.

(d) For i < I (an arbitrary finite index set) pick proper subsets Ai ⊊ Ωs such that
�s(Ai) ≥ x, and assign weighs ai to Ai such that

∑

i∈I ai = 1. Then

�s(B) > x −
1
ℎ

for B ≔
{

t ∈ Ωs ∶
∑

t∈Ai

ai > 1 −
1
ℎ2

}

. (3.17)

Proof. (a) Trivial, as a(ℎ)−�s(A) ≤ 1
a(ℎ) <

1
ℎ2
.

(b) �s(A ⧵ {t}) = loga(ℎ)(|Ωs|) − loga(ℎ)(|Ωs| − |A| + 1) ≥
≥ loga(ℎ)(|Ωs|) − loga(ℎ)(2(|Ωs| − |A|)) ≥ �s(A) − loga(ℎ)(2) > �s(A) −

1
ℎ
.

(c) �s(⋂i∈�(ℎ)Ai) = loga(ℎ)(|Ωs|) − loga(ℎ)(|Ωs| − |

⋂

i∈�(ℎ)Ai|) =
= loga(ℎ)(|Ωs|) − loga(ℎ)(|

⋃

i∈�(ℎ)(Ωs − Ai)|) ≥
≥ loga(ℎ)(|Ωs|)−loga(ℎ)

(

�(ℎ)⋅maxi∈�(ℎ) |Ωs−Ai|
)

≥ x−loga(ℎ)(�(ℎ)) > x−
1
ℎ
.

(d) Set y = ∑

i∈I ai ⋅ |Ai|. On the one hand, y ≥ |Ωs| ⋅ (1 − a(ℎ)−x). On the other
hand, y = ∑

t∈Ωs
∑

t∈Ai
ai ≤ |B| + (|Ωs ⧵ B|) ⋅ (1 −

1
ℎ2
).

So |B| ≥ |Ωs|(1 − ℎ2a(ℎ)−x) > |Ωs|(1 − a(ℎ)
−(x− 1

ℎ )), as a(ℎ) 1ℎ > �(ℎ) >
ℎ2.
Ẽ is not �-centered, but it satisfied a property, first defined in [OK14], which is

between �-centered and �-linked:
Definition 3.18. Fix f, g functions from ! to ! converging to infinity. Q is (f, g)-
linked if there are g(i)-linked Qi

j ⊆ Q for i < !, j < f (i) such that each q ∈ Q is in
every⋃j<f (i)Q

i
j for sufficiently large i.

Recall that we have defined � and � in (3.13).
Lemma 3.19. (a) If �(ℎ) many conditions (pi)i∈�(ℎ) have a common node s above

their stems, |s| = ℎ, then there is a q stronger than each pi.
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(b) Ẽ is (�, �)-linked (In particular it is ccc).

(c) The Ẽ-generic real � is eventually different (from every real in lim(T ∗), and
therefore from every real in !! as well).

(d) Leb(p) ≥ Leb
(

[trunk(p)]
)

⋅
(

1 − 1
2
loss(p)

)

; more explicitly: for any ℎ >
| trunk(p)|,

|p ∩ !ℎ|
|T ∗ ∩ !ℎ ∩ [trunk(p)]|

≥ 1 − 1
2
loss(p).

(e) Q′ (which is a dense subset of Ẽ) is an incompatibility-preserving subforcing
of random forcing, where we use the variant5 of random forcing on lim(T ∗)
instead of 2!. Let B′ be the the sub-Boolean-algebra of Borel∕Null generated
by {lim(q) ∶ q ∈ Q′}. Then Q′ is dense in B′.

(Here, Borel refers to the set of Borel subsets of lim(T ∗). In the following proof,
we will denote the equivalence class of a Borel set A by [A] .)
Proof. (a) Set S = [s] ∩⋂i<�(ℎ) pi. According to 3.16(c), for each t ∈ S of height

ℎ′ ≥ ℎ, the successor set has norm bigger than 1+ 1∕ℎ− 1∕ℎ′ > 1, so in particular
there is a branch x ∈ S, and S ∩ [x ↾ 2ℎ] is a valid condition stronger than all
pi.

(b) For each ℎ ∈ !, enumerate T ∗ ∩ !ℎ as {sℎ1 ,… , sℎ�(ℎ)}, and set Qℎ
i = {p ∈

Ẽ ∶ sℎi ∈ p and | trunk(p)| ≤ ℎ}. So for all ℎ, Qℎ
i is �(ℎ)-linked, and p ∈

⋃

i<�(ℎ)Q
ℎ
i for all p ∈ Q with | trunk(p)| ≤ ℎ.

(c) Use 3.16(b).
(d) Use 3.16(a) and the definition of loss.
(e) As in the previous item, we get that Leb(p ∩ [t]) > 0 whenever p ∈ Q′ and

t ∈ p. So Q′ is a subset of random forcing. As both sets are ordered by
inclusion, Q′ is a subforcing. If q1, q2 ∈ Q′ and q1, q2 are compatible as a
random condition, then q1 ∩ q2 has arbitrary high nodes, in particular a node
above both stems, which implies that q1 is compatible with q2 in Ẽ and therefore
in Q′. It remains to show that Q′ is dense in B′. It is enough to show: If
x ≠ 0 in B′ has the form x =

⋀

i<i∗[lim(qi)] ∧
⋀

j<j∗[lim(T ∗) ⧵ lim(qj)]then there is some q ∈ Q′ with [lim(q)] < x. Note that 0 ≠ x = [A] for
A = lim

(
⋂

i<i∗ qi
)

⧵
⋃

j<j∗ lim(qj), so pick some r ∈ A and pick ℎ > i∗ large
enough such that s = r ↾ ℎ is not in any qj . Then any q ∈ Q′ stronger than all
qi ∩ [s] (for i < i∗) is as required.

Lemma 3.20. Ẽ has strong FAM-limits for intervals.
5We can use Definition 3.6, replacing 2! with lim(T ∗).
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Proof. Let (pl)l∈! be a (s∗, loss∗)-sequence, s∗ of height ℎ∗. Set �̃ℎ∗ = 0 and

�̃ℎ ≔ 1 −
∏ℎ−1

m=ℎ∗(1 −
1
m2
) for ℎ > ℎ∗.

This is a strictly increasing sequence below 1
3 loss

∗, cf. Fact 3.15(c). Also, all norms
in all conditions of the sequence are at least 1 + loss∗, cf. Fact 3.15(a).

We will first construct (qk)k∈! with stem s∗ and all norms > 1 + loss∗ − 1
ℎ∗

such
that qk forces |{l∈Ik∶ pl∈G}|

|Ik|
> 1 − 1

3 loss
∗. We will then use q̄ to define limΞ(p̄), and

in the third step show that it is as required.
Step 1: So let us define qk. Fix k ∈ !.
• Set
Xt = {l ∈ Ik ∶ t ∈ pl} and Yℎ =

{

t ∈ [s∗] ∩ !ℎ ∶ |Xt| ≥ |Ik| ⋅ (1 − �̃ℎ)
}

.

• We define qk by induction on the level, such that qk∩!ℎ ⊆ Yℎ. The stem is s∗.
(Note thatXs∗ = Ik and so s∗ ∈ Yℎ∗ .) For s ∈ qk∩!ℎ (and thus, by induction
hypothesis, in Yℎ), we set qk ∩ [s] ∩!ℎ+1 = [s] ∩ Yℎ+1, i.e., a successor t of s
is in qk iff it is Yℎ+1. Then �s(qk) > 1 + loss∗ − 1

ℎ
.

Proof: Set I = Xs. By induction, |Xs| ≥ |Ik| ⋅ (1 − �̃ℎ). For l ∈ I , set
Al = pl ∩ [s] ∩ !ℎ+1, i.e., the immediate successors of s in pl. Obviously
�s(Al) ≥ 1 + loss∗. We give each Al equal weight al = 1

|I|
. According

to (3.17), the set B = {t � s ∶ |{l ∈ Xs ∶ t ∈ Al}| ≥ |I| ⋅ (1 − 1
ℎ2
)} has

norm > 1 + loss∗ − 1
ℎ
.

• qk forces that pl ∈ G for ≥ |Ik| ⋅ (1 −
1
2 loss

∗) many l ∈ Ik.
Proof: Let r < qk have stem s′ of length ℎ′, without loss of generality
ℎ′ > |Ik| + 1. As s′ ∈ Yℎ′ , there are > |Ik| ⋅ (1 −

1
3 loss

∗) many l ∈ Ik such
that s′ ∈ pl. So we can find a a condition r′ stronger than r and all these pl
(as these are at most |Ik| + 1 ≤ ℎ′ many conditions all containing s′ above
the stem).

Step 2: Nowwe use (qk)k∈! to construct by induction on the height q∗ = limΞ(p̄),
a condition with stem s∗ and all norms ≥1 + loss∗ − 2

ℎ
such that for all s ∈ q∗ of

height ℎ ≥ ℎ∗,

Ξ(Zs) ≥ 1 − �̃ℎ, for Zs ≔ {k ∈ ! ∶ s ∈ qk}. So Ξ(Zs) > 1 −
1
3
loss∗ . (∗)

Note that Zs∗ = !, so (∗) is satisfied for s∗. Fix an s ≥ s∗ satisfying (∗). Set A(k)
to be the s-successors in qk for each k ∈ Zs. Enumerate the (finitely many) A(k) as
(Ai)i∈I . Clearly �s(Ai) > 1 + loss∗ − 1

ℎ
. Assign to Ai the weight ai = 1

Ξ(Zs)
Ξ({k ∈
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Zs ∶ A(k) = Ai}). Again using (3.17), �s(B) ≥ 1 + loss∗ − 2
ℎ
, where B consists of

those successors t of s such that

1 − 1
ℎ2

<
∑

t∈Ai

ai =
1

Ξ(Zs)
Ξ({k ∈ Zs ∶ t ∈ qk}) ≤

1
Ξ(Zs)

Ξ(Zt).

So every t ∈ B satisfies Ξ(Zt) > Ξ(Zs)(1 −
1
ℎ2
) ≥ �̃ℎ+1, i.e., satisfies (∗). So we

can use B as the set of s-successors in q∗.
This defines q∗, which is a valid condition by Fact 3.15(b).
Step 3: We now show that this limit works: As in Definition 3.7, fix m∗,

(Bm)m<m∗ , �, k∗, i∗ and sequences (pil)l<! for i < i∗, such that (trunk(pil), loss(pil)) =
(trunk∗, loss∗).

For each i < i∗, q̄i = (qik)k∈! is defined from p̄i = (pil)l∈!, and in turn definesthe limit limΞ(p̄i). Let q be stronger than all limΞ(p̄i).
LetM be as in Lemma 3.2, forN = m∗ + i∗. So for anyN many sets there is a

u of size at mostM (above k∗) which approximates the measure well. We use the
followingN many sets:

• Bm (for m < m∗).
• Fix an s ∈ q of height ℎ > M ⋅ i∗; and use the i∗ many sets Z i

s ⊆ ! defined
in (∗).

Accordingly, there is a u (starting above k∗) of size ≤M with
• Ξ(Bm) − � ≤

|Bm∩u|
|u|

≤ Ξ(Bm) + � for each m < m∗, and

• |Zi
s∩u|
|u|

≥ 1 − 1
3
loss∗ −� for each i < i∗.

So for each i ∈ i∗ there are at least |u| ⋅ (1 − 1
2 loss

∗ −�) many k ∈ u with s ∈ qik.
There is a condition r stronger than q and all those qik (as≤M ⋅i∗+1many conditions
of height ℎ > M ⋅ i∗ with common node s above their stems are compatible). So
r forces, for all i < i∗ and k ∈ u ∩ Z i

s, that qik ∈ G and therefore that |{l ∈ Ik ∶
pil ∈ G}| ≥ |Ik|(1 −

1
3 loss

∗). By increasing r to some q′, we can assume that r
decides which pil are in G and that r is actually stronger than each pil decided to be
in G. So all in all we get q′ ≤ q such that

1
|u|

∑

k∈u

|{l ∈ Ik ∶ q′ ≤ pjl}|
|Ik|

≥ 1
|u|

|{k ∈ u ∶ k ∈ Zj
s}|(1 −

1
3
loss∗) >

> 1 − loss∗ −�,

as required.
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3.2 The left hand side of Cichoń’s diagram

We write x1 for add( ), x2 for b (which will also be add()), x3 for cov( ) and
x4 for non().

3.2.1 Good iterations and the LCU property

We want to show that some forcing P 5 results in xi = �i (for i = 1…4). So we have
to show two “directions”, xi ≤ �i and xi ≥ �i.

For i = 1, 3, 4 (i.e., for all the characteristics on the left hand side apart from
b = add()), the direction xi ≤ �i will be given by the fact that P 5 is (Ri, �i)-good
for a suitable relation Ri. (For i = 2, i.e., the unbounding number, we will have to
work more.)

We will use the following relations:
Definition 3.21. 1. Let  be the set of strictly positive rational sequences (qn)n∈!

such that ∑n∈! qn ≤ 1.6 Let R1 ⊆ 2 be defined by: f R1 g if (∀∗n ∈
!) f (n) ≤ g(n).

2. R2 ⊆ (!!)2 is defined by: f R2 g if (∀∗n ∈ !) f (n) ≤ g(n).
4. R4 ⊆ (!!)2 is defined by: f R4 g if (∀∗n ∈ !) f (n) ≠ g(n).
So far, these relations fit the usual framework of goodness, as introduced in [JS90]

and [Bre91] and summarized, e.g., in [BJ95, p. 6.4] or [GMS16, Sec. 3] or [Mej13b,
Sec. 2]. For x3, i.e., cov( ), we will use a relationR3 that does not fit this framework
(as the range of the relation is not a Polish space). Nevertheless, the property
“(R3, �)-good” behaves just as in the usual framework (e.g., finite support limits of
good forcings are good, etc.). The relation R3 was implicitly used by Kamo and
Osuga [OK14], who investigated (R3, �)-goodness.7 It was also used in [BM14]; a
unifying notation for goodness (which works for the usual cases as well as relations
such as R3) is given in [MC, §4].
Definition 3.22. We call a set  ⊂ !! an R3-parameter, if for all e ∈ 

• lim e(n) = ∞, e(n) ≤ n, lim(n − e(n)) = ∞,
• there is some e′ ∈  such that (∀∗n) e(n) + 1 ≤ e′(n), and
• for all countable  ′ ⊆  there is some e ∈  such that for all e′ ∈  ′
(∀∗n) e(n) ≥ e′(n).

Note that such an R3-parameter of size ℵ1 exists. This is trivial if we assume
CH (which we could in this paper), but also true without this assumption, see [MC,
p. 4.20]. Recall that � and � were defined in (3.13).

6It is easy to see that  is homeomorphic to !!, when we equip the rationals with the discrete
topology and use the product topology.

7They use the notation (∗<�c,ℎ), cf. [OK14, Def. 6].
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Definition 3.23. We fix, for the rest of the paper, an R3-parameter  of size ℵ1, and
set
b(ℎ) = (ℎ+1)2�(ℎ)ℎ+1,  =

{

 ∈
∏

ℎ∈!
P (b(ℎ)) ∶ (∀ℎ ∈ !) | (ℎ)| ≤ �(ℎ)ℎ

}

,

e =
{

� ∈
∏

ℎ∈!
P (b(ℎ)) ∶ (∀ℎ ∈ !) |�(ℎ)| ≤ �(ℎ)e(ℎ)

} and ̂ =
⋃

e∈
e.

We can now define the relation for cov( ):
3. R3 ⊆  × ̂ is defined by:  R3 � iff (∀∗n ∈ !)�(n) ⊈  (n).
Note that e ⊂ ̂ ⊂  and that e and  are Polish spaces. Assume thatM is a

forcing extension of V by either a ccc forcing (or by a �-closed forcing). Then  is
an “R3-parameter” inM as well, and we can evaluate inM for each e ∈  the sets
Me and M , as well as ̂M =

⋃

e∈ Me . Absoluteness gives Ve = Me ∩ V and
̂V = ̂M ∩ V .
Definition 3.24. Fix one of these relations R ⊆ X × Y .

• We say “f is bounded by g” if f R g; and, for  ⊆ !!, “f is bounded by
” if (∃y ∈ ) f R y. We say “unbounded” for “not bounded”. (I.e., f is
unbounded by  if (∀y ∈ ) ¬f R y.)

• Wecall anR-unbounded family, if¬(∃g) (∀x ∈ )xR g, and anR-dominating
family if (∀f ) (∃x ∈ ) f R x.

• Let bi be the minimal size of an Ri-unbounded family,
• and let di be the minimal size of an Ri-dominating family.
We only need the following connection between Ri and the cardinal characteris-

tics:
Lemma 3.25. 1. add( ) = b1 and cof( ) = d1.

2. b = b2 and d = d2.

3. cov( ) ≤ b3 and non( ) ≥ d3.

4. non() = b4 and cov() = d4.

Proof. (2) holds by definition. (1) can be found in [BJ95, 6.5.B]. (4) is a result
of [Mil82; Bar87], cf. [BJ95, 2.4.1 and 2.4.7].

To see (3), we work in the space Ω =∏

ℎ∈! b(ℎ), with the b defined in Defini-tion 3.23 and the usual (uniform) measure. It is well known that we get the same
values for the characteristics cov( ) and non( ) whether we define them using Ω
or, as usual, 2! (or [0, 1] for that matter, etc). Given  ∈  , note that

N = {� ∈ Ω ∶ (∃∞ℎ) �(ℎ) ∈  (ℎ)}
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is a Null set, as {� ∈ Ω ∶ (∀ℎ > k) �(ℎ) ∉  (ℎ)} has measure∏ℎ>k(1 −
| (ℎ)|
b(ℎ) ) ≥

∏

ℎ>k(1 −
1

(ℎ+1)3 ), which converges to 1 for k→∞.
Let  ⊆  be an R3-unbounded family. So for every � ∈ ̂ there is some

 ∈ A such that (∃∞ℎ) (ℎ) ⊇ �(ℎ). In particular, for each � ∈ Ω, there is a  ∈ A
with � ∈ N ; i.e., cov( ) ≤ ||.

Analogously, letX be a non-null set (in Ω). For each  there is an x ∈ X ⧵N ,
so �x(n) = {x(n)} satisfies  R3 �x.
Remark 3.26. As shown implicitly in [OK14], and explicitly in [MC, p. 4.22], we
actually get cov( ) ≤ c∃

b,�Id
≤ b3.

Definition 3.27. Let P be a ccc forcing, � an uncountable regular cardinal, and
Ri ⊆ X × Y one of the relations above (so for i = 1, 2, 4, Y = X, and for i = 3
Y = ̂e). P is (Ri, �)-good, if for each P -name r for an element of Y there is (in V ) a
nonempty set  ⊆ Y of size <� such that every f ∈ X (in V ) that is Ri-unbounded
by  is forced to be Ri-unbounded by r as well.

Note that �-good trivially implies �-good if � ≥ � are regular.
Lemma 3.28. Let � be uncountable regular.

a. Forcings of size<� are (Ri, �)-good. In particular, Cohen forcing is (Ri, ℵ1)-
good.

b. A FS ccc iteration of (Ri, �)-good forcings (and in particular, a composition
of two such forcings) is (Ri, �)-good.

1. A sub-Boolean-algebra of the random algebra is (R1, ℵ1)-good. Any �-centered
forcing notion is (R1, ℵ1)-good.

3. A (�, �)-linked forcing is (R3, ℵ1)-good (for the �, � of Definition 3.12).

Proof. (a&b): For i = 1, 2, 4 this is proven in [JS90], cf. [BJ95, p. 6.4]. The same
proof works for i = 3, as shown in [OK14, Lem. 12, 13]. The proof for the uniform
framework can be found in [MC, pp. 4.10, 4.14].

(1) follows from [JS90] and [Kam89], cf. [BJ95, pp. 6.5.17–18].
(3) is shown in [OK14, Lem. 10], cf. [MC, Lem. 4.24]; as our choice of �, � and

b (see Definition 3.23) satisfies �(ℎ) ≥ b(ℎ)�(ℎ)ℎ = ((ℎ + 1)2�(ℎ)ℎ+1)�(ℎ)ℎ .
Each relation Ri is a subset of some X × Y , where X is either 2!, !! (or

homeomorphic to it) or  , and Y is the range of Ri.
Lemma 3.29. For each i and each g ∈ Y , the set {f ∈ X ∶ f Ri g} ⊆ X is
meager.

Proof. We have explicitly defined each f Ri g as ∀∗nRni (f, g) for some Rni . Thelemma follows easily from the fact that for each n ∈ !, the set {f ∈ X ∶ Rni (f, g)}is closed nowhere dense.



42 CHAPTER 3. ANOTHER ORDERING OF TEN VALUES

Lemma 3.30. Let � ≤ � ≤ � be uncountable regular cardinals. Force with �
many Cohen reals (c�)�∈�, followed by an (Ri, �)-good forcing. Note that each
Cohen real c� can be interpreted as element of the Polish space X where Ri ⊆
X × Y . Then we get: For every real r in the final extension’s Y , the set {� ∈ � ∶
c� is Ri-unbounded by r} is cobounded in �. I.e., (∃� ∈ �) (∀� ∈ � ⧵ �) ¬c� Ri r.

Proof. Work in the intermediate extension after � many Cohen reals, let us call it V� .
The remaining forcing (i.e., � ⧵ � many Cohens composed with the good forcing) is
good; so applying the definition we get (in V�) a set  ⊆ Y of size <�.

As the initial Cohen extension is ccc, and � ≥ � is regular, we get some � ∈ �
such that each element y of  already exists in the extension by the first � many
Cohens, call it V�.

Fix some � ∈ � ⧵ � and y ∈ Y . As {x ∈ X ∶ xRi y} is a meager set already
defined in V�, we get ¬c� Ri y. Accordingly, c� is unbounded by  ; and, by the
definition of good, unbounded by r as well.

In the light of this result, let us revisit Lemma 3.25 with some new notation, the
“linearly cofinally unbounded” property LCU:
Definition 3.31. For i = 1, 2, 3, 4,  a limit ordinal, and P a ccc forcing notion, let
LCUi(P , ) stand for:

There is a sequence (x�)�∈ of P -names such that for every P -name y
(∃� ∈ ) (∀� ∈  ⧵ �)P ⊩ ¬x� Ri y).

Lemma 3.32. • LCUi(P , �) is equivalent to LCUi(P , cf(�)).

• If � is regular, then LCUi(P , �) implies bi ≤ � and di ≥ �.
In particular:

1. LCU1(P , �) implies P ⊩ ( add( ) ≤ �& cof( ) ≥ � ).

2. LCU2(P , �) implies P ⊩ ( b ≤ �& d ≥ � ).

3. LCU3(P , �) implies P ⊩ ( cov( ) ≤ �& non( ) ≥ � ).

4. LCU4(P , �) implies P ⊩ ( non() ≤ �& cov() ≥ � ).

Proof. Assume that (��)�∈cf(�) is increasing continuous and cofinal in �. If (x�)�∈�
witnesses LCUi(P , �), then (x�� )�∈cf(�) witnesses LCUi(P , cf(�)). And if (x�)�∈cf(�)witnesses LCUi(P , cf(�)), then (y�)�∈� witnesses LCUi(P , cf(�)), where y� ≔ x�
for � ∈ [�� , ��+1).

The set {x� ∶ � ∈ �} is certainly forced to be Ri-unbounded; and given a set
Y = {yj ∶ j < �} of � < � many P -names, each has a bound �j ∈ � so that
(∀� ∈ � ⧵ �j)P ⊩ ¬x� Ri yj), so for any � ∈ � above all �j we get P ⊩ ¬x� Ri yj
for all j; i.e., Y cannot be dominating.
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3.2.2 The initial forcing P 5 and the COB property

We will assume the following throughout the paper:
Assumption 3.33. • �1 < �2 < �3 < �4 < �5 are regular uncountable cardinals

such that � < �i implies �ℵ0 < �i.
• We set �5 = �5+�5, and partition �5⧵�5 into unbounded setsS i for i = 1,… , 4.

Fix for each � ∈ �5 ⧵ �5 a w� ⊆ � such that {w� ∶ � ∈ S i} is cofinal8 in
[�5]<�i (for each i = 1,… , 4).

The reader can assume that (�i)i=1,…,5 and (S i)i=1,…,4 have been fixed once and
for all (let us call them “fixed parameters”), whereas we will investigate various
possibilities for w̄ = (w�)�∈�5⧵�5 in the following. (We will call a w̄ which satisfies
the assumption a “cofinal parameter”.)

We define by induction:
Definition 3.34. We define the FS iteration (P�, Q�)�∈�5 and, for � > �5, P ′� as
follows: If � ∈ �5, then Q� is Cohen forcing. In particular, the generic at � is
determined by the Cohen real ��. For � ∈ �5 ⧵ �5:

1. Qfull� ≔
⎧

⎪

⎨

⎪

⎩

Amoeba
Hechler
Random

Ẽ

⎫

⎪

⎬

⎪

⎭

for � in
⎧

⎪

⎨

⎪

⎩

S1
S2
S3
S4

.

So Qfull� is a Borel definable subset of the reals, and the Qfull� -generic is
determined, in a Borel way, by the canonical generic real ��.

2. P ′� is the set of conditions p ∈ P� satisfying the following, for each � ∈
supp(p): � ∈ w� and there is (in the ground model) a countable u ⊆ w� ∩ �
and a Borel function B ∶ (!!)u → Qfull� such that p ↾ � forces that p(�) =
B((� )∈u). We assume that

P ′� is a complete subforcing of P�. (3.35)
3. In the P�-extension, letM� be the induced P ′�-extension of V . ThenQ� is the
M�-evaluation of Qfull� . Or equivalently (by absoluteness): Q� = Qfull� ∩M� .
We call Q� a “partial Qfull� forcing” (e.g.: a “partial random forcing”).

Some notes:
• For item (3) to make sense, (3.35) is required.
• We do not require any “transitivity” of the w�, i.e., � ∈ w� does generally

not imply w� ⊆ w�.
• We do not require (and it will generally not be true) that P� forces that Q� is

a complete subforcing of Qfull� .
8i.e., if � ∈ S i then |w�| < �i, and for all u ⊆ �5, |u| < �i there is some � ∈ S i with w� ⊇ u.
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A simple absoluteness argument (betweenM� and V [G�]) shows:
Lemma 3.36. P� forces:

(a) Q� is an incompatibility preserving subforcing ofQfull� and in particular ccc.
(And so, P� itself is ccc for all �.)

(b) For � ∈ S i, |Q�| < �i.

(c) Q� forces that its generic filter G(�) is also generic over M�. So from the
point of view ofM�,M�[G(�)] is a Qfull� -extention.

(2) For � ∈ S2: The partial Hechler forcing Q� is �-centered.

(3) For � ∈ S3: The partial random forcing Q� equivalent to a subalgebra of
the random algebra.

(4) For � ∈ S4: A partial Ẽ forcing is (�, �)-linked and basically equivalent to
a subalgebra of the random algebra (as in Lemma 3.19(e)).

Proof. (b): |P ′�| ≤ |w�|
ℵ0 × 2ℵ0 < �i by Assumption 3.33. There is a set of nice

P ′�-names of size < �i such that every P ′�-name for a real has an equivalent name in
this set. Accordingly, the size of the reals inM� is forced to be < �i.

(c) is trivial, as Q� is element of the transitive classM�.
(4): By Lemma 3.19(b) we know thatM� thinks that Ẽ is (�, �)-linked; i.e., that

there is a family9 Qi
j as in Definition 3.18. Being l-linked is obviously absolute

between M� and V [G�] (for any l < !); and M� ⊨
⋃

ℎ∈!,i<�(ℎ)Q
ℎ
i = Qfull�

translates to V [G�] ⊨ ⋃

ℎ∈!,i<�(ℎ)Q
ℎ
i = Q�.

Similarly,M� thinks that Ẽ satisfies 3.19(e), i.e., that there is some denseQ′ ⊆ Ẽ
and a dense embedding from Q′ to a subalgebra B′ of the random algebra.

So from the point of view of V [G�], there is a Q′ dense in Ẽ ∩M� and a dense
embedding of Q′ into some B′, which is a subalgebra of the random algebra inM�
and therefore of the random algebra in V [G�].

It is easy to see that (3.35) is a “closure property” of w�:
Lemma 3.37. Assume we have constructed (in the ground model) (P� , Q�)�<� and
w� according to Definition 3.34; for some � ∈ S i, i = 1,… , 4. This determines
the (limit or composition) P�.

(a) For every P�-name � of a real, there is (in V ) a countable u ⊆ � and a Borel
function B ∶ (!!)u → !! such that P� forces � = B((� )∈u).

(So if w� ⊇ u satisfies (3.35), then P� forces that � ∈M�.)

(b) The set of w� satisfying (3.35) is an !1-club in [�]<�i (in the ground model).
9Actually there is even a Borel definable family Qi

j , see the proof of Lemma 3.19(a), but this is not
required here.
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(A set A ⊆ [�]<�i is an !1-club, if for each a ∈ [�]<�i there is a b ⊇ a in A, and
if (ai)i∈!1 is an increasing sequence of sets in A, then the limit b ≔ ⋃

i∈!1
ai is in A

as well.)
Proof. The first item follows easily from the fact that we are dealing with a FS ccc
iteration where the generics of all iterandsQ� are Borel-determined by some generic
real �� . (See, e.g., Section 2.1.2, for more details.)

Any w ∈ [�]<�i defines some Pw� . We first define w′ for such a w:
Set X = [Pw� ]

≤ℵ0 , as set of size at most (2ℵ0 × |w|ℵ0)ℵ0 < �i. For x ∈ X, pick
some p ∈ P� stronger than all conditions in x (if such a condition exists), and some
q ∈ P� incompatible to each element of x (again, if possible). There is a countable
wx ⊆ � such that p, q ∈ Pwx . Set w′ ≔ w ∪

⋃

x∈X wx.
Start with any w0 ∈ [�]<�i . Construct an increasing continuous chain in [�]<�i

with wk+1 = (wk)′. Then w!1 ⊇ w0 is in the set of w satisfying (3.35); which
shows that this set is unbounded. It is equally easy to see that it is closed under
increasing sequences of length !1.

For later reference, we explicitly state the assumption we used (for every � ∈
�5 ⧵ �5):
Assumption 3.38. w� is sufficiently closed so that (3.35) is satisfied.

Let us also restate Lemma 3.37(a):
Lemma 3.39. For each P 5-name f of a real, there is a countable set u ⊆ �5 such
that w� ⊇ u implies that (P 5 forces that) f ∈M�.

Lemma 3.40. LCUi(P 5, �) holds for i = 1, 3, 4 and each regular cardinal � in
[�i, �5].

Proof. This follows from Lemma 3.36:
For i = 1: Partial random and partial Ẽ forcings are basically equivalent to

a sub-Boolean-algebra of the random algebra; and partial Hechler forcings are �-
centered. The partial amoeba forcings are small, i.e., have size <�1. So according
to Lemma 3.28, all iterands Q� (and therefore the limits as well) are (R1, �1)-good.

For i = 3, note that partial Ẽ forcings are (�, �)-linked. All other iterands have
size <�3, so the forcing is (R3, �3)-good.

For i = 4 it is enough to note that all iterands are small, i.e., of size <�4.
We can now apply Lemma 3.30.
So in particular, P 5 forces add( ) ≤ �1, cov( ) ≤ �3, non() ≤ �4 and

cov() = non( ) = cof( ) = �5 = 2ℵ0 ; i.e., the respective left hand character-
istics are small. We now show that they are also large, using the “cone of bounds”
property COB:
Definition 3.41. For a ccc forcing notion P , regular uncountable cardinals �, � and
i = 1, 2, 4, let COBi(P , �, �) stand for:
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There is a <�-directed partial order (S,≺) of size � and a sequence
(gs)s∈S of P -names for reals such that for each P -name f of a real
(∃s ∈ S) (∀t ≻ s)P ⊩ f Ri gt.

For i = 3, let COB3(P , �, �) stand for:
There is a <�-directed partial order (S,≺) of size � and a sequence
(gs)s∈S of P -names for reals such that for each P -name f of a null-set
(∃s ∈ S) (∀t ≻ s)P ⊩ gt ∉ f .

So s is the tip of a cone that consists of elements bounding f , where in case
i = 3 we implicitly use an additional relationN R3′ r expressing that the null-setN
doesn’t contain the real r. Note that cov( ) is the bounding number b′3 of R3′, and
non( ) the dominating number d′3. So add( ) = b′3 ≤ b3 and non( ) = d′3 ≥ d3(as defined in Lemma 3.25).

COBi(P , �, �) implies that P forces that bi ≥ � and that di ≤ � (for i = 1, 2, 4,
and the same for i = 3 and b′3, d′3): Clearly P forces that {gs ∶ s ∈ } is dominating.
And if A is set of names of size � < �, then for each f ∈ A the definition gives a
bound s(f ) and directedness some t ≻ s(f ) for all f , i.e., gt bounds all elements of
A. So we get:
Lemma 3.42. 1. COB1(P , �, �) implies P ⊩ ( add( ) ≥ �& cof( ) ≤ � ).

2. COB2(P , �, �) implies P ⊩ ( b ≥ �& d ≤ � ).

3. COB3(P , �, �) implies P ⊩ ( cov( ) ≥ �& non( ) ≤ � ).

4. COB4(P , �, �) implies P ⊩ ( non() ≥ �& cov() ≤ � ).

Lemma 3.43. COBi(P 5, �i, �5) holds (for i = 1, 2, 3, 4).

Proof. We use the following facts (provable in ZFC, or true in the P�-extention,
respectively):

1. Amoeba forcing adds a sequence b̄ which R1-dominates the old elements of
.
(The simple proof can be found in [GKS17, Lem. 1.4], a slight variation
in [BJ95].)
Accordingly (by absoluteness), the generic real �� for partial amoeba forcing
Q� R1-dominates  ∩M�.

2. Hechler forcing adds a real which R2-dominates all old reals.
Accordingly, the generic real �� for partial Hechler forcing Q� R2-dominates
all reals inM�.

3. Random forcing adds a random real.
Accordingly, the generic real �� for partial random forcing Q� is not in any
nullset whose Borel-code is inM�.
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4. The generic branch � ∈ lim(T ∗) added by Ẽ is eventually different to each
old real, i.e., R4-dominates the old reals.
(This was shown in Lemma 3.19(c).)
Accordingly, the generic branch �� for partial Ẽ forcing Q� R4-dominates the
reals inM�.

Fix i ∈ {1, 2, 3, 4}, and set S = S i and s ≺ t if ws ⊊ wt, and let gs be �s, i.e., the
generic added at s (e.g., the partial random real in case of i = 3, etc).

Fix a P 5-name f for a real. It depends (in a Borel way) on a countable index set
w∗ ⊆ �5. Fix some s ∈ S i such thatws ⊇ w∗. Pick any t ≻ s. Thenwt ⊇ ws ⊇ w∗,
so (P 5 forces that) f ∈Mt, so, as just argued, P 5 ⊩ f Ri gt (or: P 5 ⊩ f R3′ gt for
i = 3).

So to summarize what we know so far about P 5: Whenever we choose (in
addition to the “fixed” �i, S i) a cofinal parameter w̄ satisfying Assumptions 3.33
and 3.38, we get
Fact 3.44. • COBi holds for i = 1, 2, 3, 4. So the left hand side characteristics

are large.
• LCUi holds for i = 1, 3, 4. So the left hand side characteristics other than b

are small.
What is missing is “b small”. We do not claim that this will be forced for every

w̄ as above; but we will show in the rest of Section 3.2 that we can choose such a w̄.

3.2.3 FAMs in the P�-extension compatible with M�, explicit condi-
tions.

We first investigate sequences q̄ = (ql)l∈! of Q�-conditions that are inM� , i.e., the
(evaluations of) P ′�-names for !-sequences in Qfull� . For � ∈ S3 ∪ S4,M� thinks
that Q� (i.e., Qfull� ) has FAM-limits. So ifM� thinks that Ξ0 is a FAM, then for
any sequence q̄ inM� there is a condition limΞ0(q̄) inM� (and thus in Q�). We can
relativize Lemma 3.8 to sequences inM�:
Lemma 3.45. Assume that � ∈ S3 ∪ S4, that Ξ is a P�-name for a FAM and that
Ξ0, the restriction of Ξ toM�, is forced to be inM�. Then there is a P�+1-name Ξ+
for a FAM such that for all (trunk∗, loss∗)-sequences q̄ inM�,

limΞ0(q̄) ∈ G(�) implies Ξ
+(Aq̄) ≥ 1 −

√

loss∗.

Aq̄ was defined in (3.9) (here we use G(�) instead of G, of course).
Proof. This Lemma is implicitly used in [She00]. Note that P ′� is a complete
subforcing of P�, and so there is a quotient R such that P� = P ′� ∗ R. We consider
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the following (commuting) diagram:

V
P� //

P ′�   

V�
Q� // V�+1

M�

R
OO

Q�
//

OO

Note that (P ′� forces that) R ∗ Q� = R ×Q�. So from the point of view ofM�:
• Q� = Qfull� has FAM limits, and Ξ0 is a FAM. So there is a Q�-name for a

FAM Ξ+0 satisfying Lemma 3.8.
• R is a ccc forcing, and there is an R-name10 Ξ for a FAM extending Ξ0.
• So there is R ×Q�-name Ξ+ for a FAM extending both Ξ+0 and Ξ (cf. [She00,

Claim 1.6]).
Back in V , this defines the P�+1-name Ξ+. Let q̄ = (ql)l∈! be a sequence inM�.
ThenM�[G(�)] thinks: If limΞ0(q̄) ∈ G(�), then Ξ+0 (Aq̄) is large enough. This isupwards absolute to V [G�+1] (as Aq̄ is absolute).

For later reference, we will reformulate the lemma for a specific instance of
“sequence inM�”. Recall that a sequence inM� corresponds to a “P ′�-name of a
sequence in Qfull� ”. This is not equivalent to a “P�-name for a sequence in Q�”,
which would correspond to an arbitrary sequence inQ� (of which there are |�+ℵ0|ℵ0
many, while there are only less than �i many sequences inM�). However, we can
define the following:
Definition 3.46. • An explicit Q�-condition (in V ) is a P ′�-name for a Qfull�condition.

• A condition p ∈ P 5 is explicit, if for all � ∈ supp(p) ∩ (S4 ∪ S5), p(�) is an
explicit Q�-condition.

Here we mean that for p(�) there is a P ′�-name q� such that p ↾ � ⊩ p(�) = q�
(and the map � → q� exists in the ground model, i.e., we do not just have a P�-name
for a P ′�-condition q�).
Lemma 3.47. The set of explicit conditions is dense.

Proof. We show by induction that the set D� of explicit conditions in P� is dense in
P� . As we are dealing with FS iterations, limits are clear. Assume that (p, q) ∈ P�+1.
Then p forces that there is a P ′�-name q′ such that q′ = q. Strengthen p to some
p′ ∈ D� deciding q′. Then (p′, q′) ≤ (p, q) is explicit.

Note that any sequence in V of explicit Q�-conditions defines a sequence of
conditions inM� (as V ⊆ M�). So we get:

10We identify the P�-name Ξ in V and the induced R-name inM� = V [G′
�].
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Lemma 3.48. Let �, Ξ, and Ξ+ be as in Lemma 3.45, and let (pl)l∈! be (in V ) a
sequence of explicit conditions in P 5 such that � ∈ supp(pl) for all l ∈ !. Set
ql ≔ pl(�) and q̄ ≔ (ql)l∈!, and assume that (trunk(ql), loss(ql)) is forced to be
equal to some constant (trunk∗, loss∗).

Then there is a P ′�-name for a Q
full
� -condition (and thus a P�-name for a Q�-

condition) limΞ0(q̄) such that limΞ0(q̄) forces that Ξ
+(Aq̄) ≤ 1 −

√

loss∗.

3.2.4 Dealing with b (without GCH)

In this section, we follow [GKS17, p. 1.3], additionally using techniques inspired
by [She00].

We assume the following (in addition to Assumption 3.33):
Assumption 3.49. (This section only.) � < �3 is regular such that �ℵ0 = � , �+ ≥ �2
and 2� = |�5| = �5.

Set S0 = �5 ∪ S1 ∪ S2. So �5 = S0 ∪ S3 ∪ S4, and P 5 is a FS ccc iteration
along �5 such that � ∈ S0 implies |Q�| < �2, i.e., |Q�| ≤ � (and Q� is a partial
random forcing for � ∈ S3 and a partial Ẽ-forcing for � ∈ S4).

Let us fix, for each � ∈ S0, a P�-name
i� ∶ Q� → � injective. (3.50)

Definition 3.51. • A “partial guardrail” is a function ℎ defined on a subset of
�5 such that, for � ∈ dom(ℎ): ℎ(�) ∈ � if � ∈ S0; and ℎ(�) is a pair (x, y)
with x ∈ H(ℵ0) and y a rational number otherwise. (Any (trunk, loss)-pair
is of this form.)

• A “countable guardrail” is a partial guardrail with countable domain. A “full
guardrail” is a partial guardrail with domain �5.

We will use the following lemma, which is a consequence of the Engelking-
Karlowicz theorem [EK65] on the density of box products (cf. [GMS16, p. 5.1]):
Lemma 3.52. (As |�5| ≤ 2� .) There is a familyH∗ of full guardrails of cardinality
� such that each countable guardrail is extended by some ℎ ∈ H∗. We will fix such
anH∗.

Note that the notion of guardrail (and the density property required in Lemma 3.52)
only depends on the “fixed” parameters � , �5, S0, S3 and S4; so we can fix anH∗

that will work for all these fixed parameters and all choices of the cofinal parameter
w̄.

Once we have decided on w̄, and thus have defined P 5, we can define the
following:
Definition 3.53. D∗ ⊆ P 5 consists of p such that there is a partial guardrail ℎ (and
we say: “p follows ℎ”) with dom(ℎ) ⊇ supp(p) and, for all � ∈ supp(p),
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• If � ∈ S0, then p ↾ � ⊩ i�(p(�)) = ℎ�.
• If � ∈ S3 ∪ S4, the empty condition of P� forces

p(�) ∈ Q� and (trunk(p(�)), loss(p(�))) = ℎ(�).

• Furthermore,∑�∈supp(p)∩(S3∪S4)
√

loss(p(�)) < 1
2 .

• p is explicit (as in Definition 3.46).
Lemma 3.54. D∗ ⊆ P 5 is dense.

Proof. By induction we show that for any sequence (�i)i∈! of positive numbers the
following set of p is dense: If supp(p) = {�0,… , �m}, where �0 > �1 >,… (i.e.,
we enumerate downwards), lossp�n < �n whenever �n ∈ S3 ∪ S4. For the successorstep, we use that the set of q ∈ Q� such that loss(q) < �0 is forced to be dense.
Remark 3.55. So the set of conditions following some guardrail is dense. For each
fixed guardrail ℎ, the set of all conditions p following ℎ is n-linked, provided that
each loss in the domain of ℎ is < 1

n
(cf. Assumption 3.5).

Definition 3.56. A “Δ-system with heart ∇ following the guardrail ℎ” is a family
p̄ = (pi)i∈I of conditions such that

• all pi are in D∗ and follow ℎ,
• (supp(pi))i∈I is a Δ system with heart ∇ in the usual sense (so ∇ ⊆ �5 is

finite)
• the following is independent of i ∈ I :

– | supp(pi)|, which we call mp̄.
Let (�p̄,ni )n<mp̄ increasingly enumerate supp(pi).

– Whether �p̄,ni is less than, equal to or bigger than the k-th element of ∇.
In particular it is independent of i whether �p̄,ni ∈ ∇, in which case we
call n a “heart position”.

– Whether �p̄,ni is in S0, in S3 or in S4.
If �p̄,ni ∈ Sj , we call n an “Sj-position”.

– If n is not an S0-position:11 The value of ℎ(�p̄,ni ) ≕ (trunkp̄,n, lossp̄,n).
If n is an S0-position, we set lossp̄,n ≔ 0.

A “countable Δ-system” p̄ = (pl ∶ l ∈ !) is a Δ system that additionally satisfies:
11If n is a S0-position, ℎ(�p̄,ni ) will generally not be be independent of i; unless of course n is a heartposition.
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• For each non-heart position12 n < mp̄, the sequence (�p̄,nl )l∈! is strictly
increasing.

Fact 3.57. • Each infinite Δ-system (pi)i∈I contains a countable Δ-system. I.e.,
there is a sequence il in I such that (pil )l∈! is a countable Δ-system..

• If p̄ is a Δ-system (or: a countable Δ-system) following ℎ with heart ∇, and
� ∈ ∇ ∪ (max(∇ + 1)), then p̄ ↾ � ≔ (pi ↾ �)i∈I is again a Δ-system (or: a
countable Δ-system, respectively) following ℎ, now with heart ∇ ∩ �.

Definition 3.58. Let p̄ be a countableΔ-system, and assume that Ξ̄ = (Ξ�)�∈∇∩(S3∪S4)
is a sequence such that each Ξ� is a P�-name for a FAM and P� forces that Ξ� re-
stricted to M� is in M�. Then we can define q = limΞ̄(p̄) to be the following
P 5-condition with support ∇:

• If � ∈ ∇ ∩ S0, then q(�) is the common value of all pn(�). (Recall that this
value is already determined by the guardrail ℎ.)

• If � ∈ ∇ ∩ (S3 ∪ S4), then q(�) is (forced by P 5� to be) limΞ� (pl(�))l∈!, seeLemma 3.48.
We now give a specific way to construct such w̄, which allows to keep b small.

Lemma/Construction 3.59. We can construct by induction on � ∈ �5 for each
ℎ ∈ H∗ some Ξℎ� , and, if � > �5, also w�, such that:

(a) Each Ξℎ� is a P�-name of a FAM extending
⋃

�<� Ξ
ℎ
� .

(b) If � is a limit of countable cofinality: Assume p̄ is a countable Δ-system in P�
following ℎ, and n < mp̄ such that (�p̄,nl )l∈! has supremum �. Then Ap̄,n is
forced to have Ξℎ�-measure 1, where

Ap̄,n ≔
{

k ∈ ! ∶ |

|

|

{

l ∈ Ik ∶ pl(�
p̄,n
l ) ∈ G(�

p̄,n
l )

}

|

|

|

≥ |Ik| ⋅
(

1 −
√

lossp̄,n
)

}

(c) For each countableΔ-system p̄ in P� following ℎ, the P�-condition lim(Ξℎ� )�<� (p̄)
is well-defined and forces

Ξℎ�(Ap̄) ≥ 1 −
∑

n<mp̄

√

lossp̄,n, where

Ap̄ ≔
{

k ∈ ! ∶ |

|

|

{

l ∈ Ik ∶ pl ∈ G�
}

|

|

|

≥ |Ik| ⋅
(

1 −
∑

n<mp̄

√

lossp̄,n
)

}

.

(d) For � > �5: w� is “sufficiently closed”. More specifically: It satisfies Assump-
tions 3.33 and 3.38, and if � ∈ S3 ∪S4 then P� forces that Ξℎ� restricted toM�
is inM�.
Actually, the set of w� satisfying this is an !1-club set.

12For a heart position n, (�p̄,nl )l∈! is of course constant.
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Proof. (a&c) for cf(�) > !: We set Ξℎ� =
⋃

�<� Ξ
ℎ
� . As there are no new reals at

uncountable confinalities, this is a FAM. Each countable Δ-system is bounded by
some � < �, and, by induction, (c) holds for �; so (c) holds for � as well.

(a&b) for cf(�) = !: Fix ℎ. We will show that P� forces A∩⋂j<j∗ Ap̄j ,nj ≠ ∅,
where A is a Ξℎ� -positive set for some � < �, and each (p̄j , nj) is as in (b).

Then we can work in the P�-extension and apply Fact 3.3(a), using⋃�<� Ξ
ℎ
� as

the partial FAM Ξ′. This gives an extension of Ξ′ to a FAM Ξℎ� that assigns measure
one to all Ap̄,n, showing that (a) and (b) are satisfied.

So assume towards a contradiction that some p ∈ P� forces
A ∩

⋂

j<j∗
Ap̄j ,nj = ∅.

We can assume that p decides the � such that A ∈ V� , that � is above the hearts
of all Δ-sequences p̄j involved, and that supp(p) ⊆ �. We can extend p to some
p∗ ∈ P� to decide k ∈ A for some “large” k: By large, we mean:

• Let F (l; n, p) (the cumulative binomial probability distribution) be the proba-
bility that n independent experiments, each with success probability p, will
have at most l successful outcomes. As limn→∞ F (n ⋅ p′; n, p) = 0 for all
p′ < p, and as limk→∞ |Ik| = ∞, we can find some k such that

F (|Ik|p′j ; |Ik|, pj) <
1

2 ⋅ j∗
(3.60)

for all j < j∗, where we set p′j ≔ 1 −
√

lossp̄j ,nj and pj ≔ 1 − 1+
√

2
2

⋅ lossp̄
j ,nj .

(Note that p′j < pj , as lossp̄
j ,nj ≤ 1

2
.)

• All elements of Y = {�p̄j ,njl ∶ j < j∗ and l ∈ Ik} are larger than �. (This is
possible as each sequence (�p̄j ,njl )l<! has supremum �.) We enumerate Y by
the increasing sequence (�i)i∈M , and set �−1 = �.

We will find q ≤ p∗ forcing that k ∈ ⋂

j<j∗ Ap̄j ,nj . To this end, we define a finitetree  of heightM , and assign to each s ∈  of height i a condition qs ∈ P�i−1+1(decreasing along each branch) and a probability prs ∈ [0, 1], such that∑t�s prt = 1for all non-terminal nodes s ∈  . For s the root of  , i.e., for the unique s of height
0, we set qs = p∗ ∈ P�−1 and prs = 1.So assume we have already constructed qs ∈ P�i−1+1 for some s of height i < M .
We will now take care of index �i and construct the set of successors of s, and for
each successor t, a qt ≤ qs in P�i+1.

• If �i ∈ S0, the guardrail guarantees that �i ∈ supp(pjl) implies pjl ↾ �i ⊩
i�i(p

j
l(�i)) = ℎ(�i). In that case we use a unique  -successor t of s, and we

set qt = q⌢s (�i, i−1�i ℎ(�i)), and prt = 1.
In the following we assume �i ∉ S0.
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• Let Ji be the set of j < j∗ such that there is an l ∈ Ik with �p̄
j ,nj
l = �i (there

is at most one such l). For j ∈ Ji, set rji = pjl(�i) for the according l. So
each rji is a P�i-name for an element of Q�i .
The guardrail gives us the constant value (trunk∗i , loss∗i ) ≔ ℎ(�i) (which is
equal to (trunkp̄j ,nj , lossp̄j ,nj ) for all j ∈ Ji).

• The case �i ∈ S3, i.e., the case of random forcing, is basically [She00, p. 2.14]:
For x ⊆ [trunk∗i ], set Lebrel(x) = Leb(x)

Leb([trunk∗i ])
. Note that the rji are closed

subsets of [trunk∗i ] and Lebrel(rji ) ≥ 1 − loss∗i .
Let ∗ be the power set of [trunk∗i ]; and let  be the sub-Boolean-algebra
generated by by rji (j ∈ Ji), let  be the set of atoms and  ′ = {x ∈
 ∶ Lebrel(x) > 0}. So | ′

| ≤ 2Ji ≤ 2j∗ , ∑x∈ ′ Lebrel(x) = 1, and
∑

x∈ ′,x⊆rji
Lebrel(x) = Lebrel(rji ).

So far,  ′ is a P�i-name. Now we increase qs inside P�i to some q+ deciding
which of the (finitely many) Boolean combinations result in elements of
 ′, and also deciding rational numbers yx (x ∈  ′) with sum 1 such that
|Lebrel(x) − yx| <

√

2−1
2 ⋅ loss∗i ⋅2

−j∗ .
We can now define the immediate successors of s in  : For each x ∈  ′, add
an immediate successor tx and assign to it the probability prtx = yx and thecondition qtx = q+⌢(�i, rx), where rx is a (name for a) partial random condi-
tion below x (such a condition exists, as the Lebesgue positive intersection of
finitely many partial random condition contains a partial random condition).
Note that when we choose a successor t randomly (according to the assigned
probabilities prt), then for each j ∈ J the probability of q+ ⊩ qt(�i) ≤ rji isat least

∑

x∈ ′,x⊆rji
prx ≥

∑

x∈ ′,x⊆rji

(

Lebrel(x) −
√

2−1
2

⋅ loss∗i ⋅2
−j∗) ≥

≥
(
∑

x∈ ′,x⊆rji
Lebrel(x)

)

−
√

2−1
2 ⋅ loss∗i = Leb

rel(rji ) −
√

2−1
2 ⋅ loss∗i ≥

≥ 1 − loss∗i −
√

2−1
2

⋅ loss∗i = 1 −
1+

√

2
2

⋅ loss∗i .

• The case �i ∈ S4, i.e., the case of Ẽ:
Recall that Ẽ-conditions are subtrees of some basic compact tree T ∗, and
there is a ℎ such that: ifmax{|Ik|, j∗}many conditions share a common node
(above their stems) at height ℎ, then they are compatible.
All conditions rji have the same stem s∗ = trunk∗i . For each j ∈ Ji, set
d(j) = rji ∩!

ℎ. Note that (P�i forces that) d(j) is a subset of T ∗ ∩ [s∗] ∩!ℎ of
relative size ≥ 1 − 1

2 loss
∗
i (according to Lemma 3.19(d)). First find q+ ≤ qs

in P�i deciding all d(j).
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We can now define the immediate successors of s in  : For each x ∈ T ∗ ∩
[s∗]∩!ℎ add an immediate successor tx, and assign to it the uniform probability
(i.e., prtx = 1

|T ∗∩[s∗]∩!ℎ| ) and the condition qtx = q+⌢(�i, rx), where rx is a
partial Ẽ-condition stronger than all rji that satisfy x ∈ d(j). (Such a conditionexists, as we can intersect ≤ j∗ many conditions of height ℎ.)
If we chose t randomly, then for each j ∈ J the probability of q+ ⊩ qt ≤ rji
is at least 1 − 1

2 loss
∗
i ≥ 1 −

1+
√

2
2 ⋅ loss∗i .

In the end, we get a tree  of heightM , and we can chose a random branch
through  , according to the assigned probabilities. We can identify the branch with
its terminal node t∗, so in this notation the branch t∗ has probability∏n≤M prt∗↾n.Fix j < j∗. There are |Ik| many levels i < M such that at �i we deal with the
(p̄j , nj)-case. LetM j be the set of these levels. For each i ∈ M j , we perform an
experiment, by asking whether the next step t ∈  (from the current s at level i) will
satisfy qt ↾ �i ⊩ qt(�i) ≤ rji . While the exact probability for success will depend
on which s at level i we start from, a lower bound is given by 1 − 1+

√

2
2 ⋅ loss∗i .

Recall that loss∗i = lossp̄
j ,nj , and that we set pj ≔ 1 − 1+

√

2
2 ⋅ loss∗i and p′j ≔

1 −
√

lossp̄j ,nj in (3.60). So the chance of our branch t∗ having success fewer than
|Ik| ⋅ (1 −

√

lossp̄j ,nj ) many times, out of the the |Ik| many tries, (let us call such a
t∗ “bad for j”) is at most F (|Ik|p′; |Ik|, p) ≤ 1

2j∗ .Accordingly, the measure of branches that are not bad for any j < j∗ is at least
1
2 . Fix such a branch t∗. Then for each j < j∗,

|

|

|

{

i ∈M j ∶ qt∗ ↾ �i ⊩ qt∗(�i) ≤ rji
}

|

|

|

≥ |Ik| ⋅
(

1 −
√

lossp̄j ,nj
)

,

and thus qt∗ forces that
|

|

|

{

l ∈ Ik ∶ pl(�
p̄j ,nj
l ) ∈ G(�p̄

j ,nj
l )

}

|

|

|

≥ |Ik| ⋅
(

1 −
√

lossp̄j ,nj
)

.

(c) for cf(�) = !:
Fix p̄ as in the assumption of (c). To simplify notation, let us assume that ∇ ≠ ∅

and that sup(∇) < sup(supp(pl)) (for some, or equivalently: all, l ∈ !). Let 0 <
n0 < mp̄ be such that sup(∇) is at position n0 − 1 in supp(pl), i.e., sup(∇) = �p̄,n0−1l(independent of l), and set � ≔ sup(∇) + 1.

p̄ ↾ � is again a countableΔ-system following the same ℎ, and lim(Ξℎ )<� (p̄) is bydefinition identical to lim(Ξℎ )<� (p̄ ↾ �), which by induction is a valid condition and
forces (c) for p̄ ↾ �. This gives us the setAp̄↾� of measure at least 1−∑n<n0

√

lossp̄,n.
For the positions n0 ≤ n < mp̄, all (�p̄,nl )l∈! are strictly increasing sequences

above � with some limit �n ≤ �. Then (b) (applied to �n) gives us an according
measure-1-set Ap̄,n.
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So lim(Ξℎ )<� (p̄) forces that A′ = Ap̄↾� ∩
⋂

n0≤n<mp̄ Ap̄,n has measure

Ξℎ�(A
′) ≥ 1 −

∑

n<n0

√

lossp̄,n ≥ 1 −
∑

n<mp̄

√

lossp̄,n.

Note that pl ∈ G iff pl ↾ � ∈ G� and pl(�p̄,n) ∈ G(�p̄,n) for all n0 ≤ n < mp̄.
Fix k ∈ A′. As k ∈ Ap̄↾� , the relative frequency for l ∈ Ik to not satisfy

pl ↾ � ∈ G� is at most ∑n<n0

√

lossp̄,n. For any n0 ≤ n < mp̄, as k ∈ Ap̄,n, the
relative frequency for not pl(�p̄,n) ∈ G(�p̄,n) is at most

√

lossp̄,n. So the relative
frequency for pl ∈ G to fail is at most ∑n<n0

√

lossp̄,n +
∑

n0≤n<mp̄
√

lossp̄,n, as
required.

(a&c) for � =  + 1 successor:
For  ∈ S0 this is clear: Let Ξℎ� be the name of some FAM extending Ξℎ . Let p̄be as in (c), without loss of generality  ∈ ∇. Then q+ ≔ lim(Ξℎ� )�<� (p̄) = q

⌢(, r),
where q ≔ lim(Ξℎ� )�< (p̄ ↾ ) and r is the condition determined by ℎ(), i.e., each
pl ↾  forces pl() = r. In particular, q+ forces that pl ∈ G� iff pl ↾  ∈ G�. By
induction, (c) holds for  , and therefore we get (c) for �.

Assume  ∈ S3 ∪ S4. By induction we know that (d) holds for  , i.e., that
Ξℎ restricted toM (call it Ξ0) is inM . So the requirement in the definition 3.58
of the limit is satisfied, and thus the limit q+ ≔ limΞ̄ℎ(p̄) is well defined for any
countable Δ-system p̄ as in (c): q+ has the form q⌢(, r) with q = lim(Ξℎ� )�< (p̄ ↾ )and r = limΞ0((pl())l∈!). Now Lemma 3.48 gives us the P�-name Ξ+, which will
be our new Ξℎ� .This works as required: Again without loss of generality we can assume  ∈
∇. By induction, q forces that Ξℎ (Ap̄↾ ) ≥ 1 −

∑

n<mp−1

√

lossp̄,n. According to
Lemma 3.48, r forces that Ξ+(A(pl())l∈!) ≥ 1 −

√

lossp̄,mp−1. So q+ = q⌢r forces
that Ξℎ�(Ap̄) ≥ 1 −

∑

n<mp
√

lossp̄,n.
(d):
So we have (in V ) the P�-name Ξℎ� . We already know that there is (in V ) an

!1-club set X0 in [�]<�i (for the appropriate i ∈ {3, 4}) such that w ∈ X0 implies
thatw satisfies Assumptions 3.33 and 3.38. So each suchw ∈ X0 defines a complete
subforcing Pw of P� and the P�-mame for the according Pw-extentionMw.

Fix some w ∈ X0. We will define w′ ⊇ w as follows: For a Pw-name (and thus
a P�-name) r ∈ 2!, let s be the name of Ξ�(r) ∈ [0, 1]. As in Lemma 3.37(a), we can
find a countable wr determining s. (I.e., there is a Borel function that calculates the
real s from the generics at wr; moreover we know this Borel function in the ground
model.) Let w′ ⊇ w be in X0 and contain all these wr, for a (small representative
set of) all Pw-names for reals.

Iterating this construction !1 many steps gives us a suitable w�: Note that the
assignment of a name r to the Ξ�-value s can be done in V , and thus is known to
M� . In addition,M� sees that for each “actual real” (i.e., element ofM�), the value
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s is already determined (by P ′�). So the assignment r → s, which is Ξ� restricted to
M�, is inM�.

Note that in (c), when we deal with a countable Δ-system p̄ following the
guardrail ℎ ∈ H∗, the condition limΞ̄ℎ p̄ forces in particular that infinitely many pl
are in G. So after carrying out the construction as above, we get a forcing notion P 5
satisfying the following (which is actually the only thing we need from the previous
construction, in addition to the fact that we can choose each w� in an !1-club):
Lemma 3.61. For every countableΔ-system p̄ there is some q forcing that infinitely
many pl are in the generic filter.

Proof. According to Lemma 3.52, p̄ follows some ℎ ∈ H∗; so q = limΞ̄ℎ(p̄) will
work.
Lemma 3.62. LCU2(P 5, �) for � ∈ [�2, �5] regular, witnessed by the sequence
(c�)�<� of the first � many Cohen reals.

Proof. Fix a P 5-name y ∈ !!. We have to show that (∃� ∈ �) (∀� ∈ � ⧵ �)P 5 ⊩
¬c� ≤∗ y).

Assume towards a contradiction that p∗ forces that there are unboundedly many
� ∈ � with c� ≤∗ y, and enumerate them as (�i)i∈� . Pick pi ≤ p∗ deciding �i to be
some �i, and also deciding ni such that (∀m ≥ ni) c�i(m) ≤ y(m). We can assume
that �i ∈ supp(pi). Note that �i is a Cohen position (as �i < � ≤ �5), and we can
assume that pi(�i) is a Cohen condition in V (and not just a P�i-name for such a
condition). By strengthening and thinning out, we may assume:

• (pi)i∈� forms a Δ system with heart ∇.
• All ni are equal to some n∗.
• pi(�i) is always the same Cohen condition s ∈ !<!, without loss of generality

of length |s| = n∗∗ ≥ n∗.
• For some position n < mp̄, �i is the n-th element of supp(pi).

Note that this n cannot be a heart condition: For any � ∈ �, at most |�| many pi can
force �i = �, as pi forces that �i ≥ i for all i.

Pick a countable subset of this Δ-system which forms a countable Δ-system
p̄ ≔ (pl)l∈!. So pl = pil for some il ∈ �, and we set �l = �il . In particular
all �l are distinct. Now extend each pl to p′l by extending the Cohen condition
pl(�l) = s to s⌢l (i.e., forcing c�l (n∗∗) = l). Note that p̄′ ≔ (p′i)i∈! is still a
countable Δ-system,13 and by Lemma 3.61 some q forces that infinitely many of the
p′l are in the generic filter. But each such p′l forces that c�l (n∗∗) = l ≤ y(n∗∗), a
contradiction.

13Note that p̄′ will not follow the same guardrail as p̄.
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3.2.5 The left hand side

We have now finished the consistency proof for the left hand side:
Theorem 3.63. Assume GCH and let �i be an increasing sequence of regular
cardinals, none of which is a successor of a cardinal of countable cofinality for
i = 1,… , 5. Then there is a cofinalities-preserving forcing P resulting in

add( ) = �1 < add() = b = �2 < cov( ) = �3 < non() = �4 <
< cov() = 2ℵ0 = �5.

Proof. Set � = �2, and let R be the set of partial functions f ∶ � × �5 → 2 with
| dom(f )| < � (ordered by inclusion). R is <�-closed, �+-cc, and adds �5 many
new elements to 2� . So in theR-extension, Assumption 3.49 is satisfied, and we can
construct P 5 according to Assumption 3.33 and Construction 3.59. Fact 3.44 gives
us all inequalities for the left hand side, apart from b ≤ �2, which we get from 3.62.

In the R-extension, CH holds and P is a FS ccc iteration of length �5, |�5| = �5,
and each iterand is a set of reals; so 2ℵ0 ≤ �5 is forced. Also, any FS ccc iteration of
length � (of nontrivial iterands) forces cov() ≥ cf(�): Without loss of generality
cf(�) = � is uncountable. Any set A of (Borel codes for) meager sets that has size
<� already appears at some stage � < �, and the iteration at state � + ! adds a
Cohen real over the V�, so A will not cover all reals.
Remark 3.64. So this consistency result is reasonably general, we can, e.g., use the
values �i = ℵi+1 . This is in contrast to the result for the whole diagram, where in
particular the small �i have to be separated by strongly compact cardinals.

3.3 Ten different values in Cichoń’s diagram

We can now apply, with hardly any change, the technique of [GKS17] to get the
following:
Theorem 3.65. Assume GCH and that ℵ1 < �9 < �1 < �8 < �2 < �7 < �3 <
�6 < �4 < �5 < �6 < �7 < �8 < �9 are regular, �i is not a successor of a cardinal
of countable cofinality for i = 1,… , 5, �2 = �+ with � regular, and �i strongly
compact for i = 6, 7, 8, 9. Then there is a ccc forcing notion P 9 resulting in:

add( ) = �1 < b = add() = �2 < cov( ) = �3 < non() = �4 <
< cov() = �5 < non( ) = �6 < d = cof() = �7 < cof( ) = �8 < 2ℵ0 = �9.

To do this, we first have to show that we can achieve the order for the left hand
side, i.e., Theorem 3.63, starting with GCH and using a FS ccc iteration P 5 alone
(instead of using P = R ∗ P 5, where R is not ccc). This is the only argument that
requires �2 = �+. We will just briefly sketch it here, as it can be found with all
details in [GKS17, p. 1.4]:
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• We already know that in the R-extension, (where R is <�-closed, �+-cc and
forces 2� = �5) we can find by the inductive construction 3.59 suitable w�
such that R ∗ P 5 works.

• We now perform a similar inductive construction in the ground model: At
stage �, we know that there is anR-name for a suitablew1� of size < �i (where
i is 3 in the random and 4 in the Ẽ-case). This name can be covered by some
set w̃1� in V , still of size < �i, as R is �+-cc. Moreover, in the R-extension,
the suitable parameters form an !1-club; so there is a suitable w2� ⊇ w̃1�, etc.Iterating !1 many times and taking the union at the end leads to w� in V
which is forced by R to be suitable.

• Not onlyw� is in V , but the construction forw� is performed in V , so we can
construct the whole sequence w̄ = (w�)�∈�5 in V .

• We now know that in the R-extension, the forcing P 5 defined from w̄ will
satisfy LCU2(P 5, �) in the form of Lemma 3.62.

• By an absoluteness argument, we can show that actually in V the forcing P 5
defined form w̄ will satisfy Lemma 3.62 as well.

The rest of the proof is the same as in [GKS17, Sec. 2], where we interchange b
and cov( ) as well as d and non( ).

We cite the following facts from [GKS17, pp. 2.2–2.5]:
Facts 3.66. (a) If � is a strongly compact cardinal and � > � regular, then there is

an elementary embedding j�,� ∶ V →M (in the following just called j) such
that

• the critical point of j is �, cf(j(�)) = |j(�)| = �,
• max(�, �) ≤ j(�) < max(�, �)+ for all � ≥ � regular, and
• cf(j(�)) = � for � ≠ � regular,

and such that the following is satisfied:
(b) If P is a FS ccc iteration along �, then j(P ) is a FS ccc iteration along j(�).
(c) LCUi(P , �) implies LCUi(j(P ), cf(j(�))), and thus LCUi(j(P ), �) if � ≠ � reg-

ular.14

(d) If COBi(P , �, �), then COBi(j(P ), �, �′), for �′ =
{

|j(�)| if � > �
� if � < �.

14In [GKS17], we only used “classical” relations R3 that are defined on a Polish space in an absoluteway. In this paper, we use the relation R3 which is not of this kind. However, the proof still works
without any change: The parameter  used to define the relation R3, cf. Definition 3.22, is a set of
reals. So j() =  , and we can still use the usual absoluteness arguments betweenM and V . (A
parameter not element ofH(�9) might be a problem.)
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Using these facts, it is easy to finish the proof:15

Proof of Theorem 3.65. Recall that we want to force the following values to the
characteristics of Figure 3.2 (where we indicate the positions of the �i as well):

�3
�6 // �4 // // �8 // �9

�2 //

OO
�7

�7

OO

ℵ1 �9
// �1 //

OO

�8

//

OO

�5 //

OO

�6

OO

Step 5: Our first step, called “Step 5” for notational reasons, just uses P 5. This
is an iteration of length �5 with cf(�5) = |�5| = �5, satisfying:

For all i: LCUi(P 5, �) for all � ∈ [�i, �5] regular, and
COBi(P 5, �i, �5). (3.67)

As a consequence, the characteristics are forced by P 5 to have the following values16
(we also mark the position of �6, which we are going to use in the following step):

�3
�6 // �4 // // �5 // �5

�2 //

OO

�5

OO

ℵ1 // �1 //

OO

//

OO

�5 //

OO

�5

OO

Step 6: Consider the embedding j6 ≔ j�6,�6 . According to 3.66(b), P 6 ≔ j6(P 5)
is a FS ccc iteration of length �6 ≔ j6(�5). As |�6| = �6, the continuum is forced to
have size �6.

For i = 1, we have LCU1(P 5, �) for all regular � ∈ [�1, �5], so using 3.66(c) we
get LCU1(P 6, �) for all regular � ∈ [�1, �5] different to �6; as well as LCU1(P 6, �6)
(as cf(j(�6)) = �6). For � = �1 the former implies P 6 ⊩ add( ) ≤ �1, and the
latter P 6 ⊩ cof( ) ≥ �6 = 2ℵ0 .

More generally, we get from (3.67) and 3.66(c)
For all i: LCUi(P 6, �) for all regular � ∈ [�i, �5] ⧵ {�6}.
For i < 4: LCUi(P 6, �6). (3.68)

15This is identical to the argument in [GKS17], with the roles of b and cov( ), as well as their
duals, switched.

16These values, and the ones forced by the “intermediate forcings” P 6 to P 8, are not required for
the argument; they should just illustrate what is going on.
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So in particular for � = �i, we see that the characteristics on the left do not
increase; for � = �5 that the ones on the right are still at least �5; and for i < 4 an
� = �6 that the according characteristics on the right will have size continuum. (But
not for i = 4, as �4 < �4. And we will see that cov() is at most �5.)

Dually, because �3 < �6 < �4, we get from (3.67) and 3.66(d)
For i < 4: COBi(P 6, �i, �6). For i = 4: COB4(P 6, �4, �5). (3.69)

(The former because |j6(�5)| = max(�6, �5) = �6.) So the characteristics on the left
do not decrease, and P 6 ⊩ cov() ≤ �5.

Accordingly, P 6 forces the following values:
�3 // �4 // // �6 // �6

�2 //

OO
�7

�6

OO

ℵ1 // �1 //

OO

//

OO

�5 //

OO

�6

OO

Step 7: We now apply a new embedding, j7 ≔ j�7,�7 , to the forcing P 6 that we
just constructed. (We always work in V , not in any inner modelM or any forcing
extention.) As before, set P 7 ≔ j7(P 6), a FS ccc iteration of length �7 = j7(�6),
forcing the continuum to have size �7.

Now �7 ∈ (�2, �3), so arguing as before, we get from (3.68)
For all i: LCUi(P 7, �) for all regular � ∈ [�i, �5] ⧵ {�6, �7}.
For i < 4: LCUi(P 7, �6). For i < 3: LCUi(P 7, �7). (3.70)

and from (3.69)
For i < 3: COBi(P 7, �i, �7).
For i = 3: COB3(P 7, �3, �6). For i = 4: COB4(P 7, �4, �5). (3.71)

Accordingly, P 7 forces the following values:
�3 // �4 // // �7 // �7

�2 //

OO

�7

OO

ℵ1 // �1 //

OO

�8

//

OO

�5 //

OO

�6

OO

Step 8: Now we set P 8 ≔ j�8,�8(P
7), a FS ccc iteration of length �8. Now

�8 ∈ (�1, �2), and as before, we get from (3.70)
For all i: LCUi(P 8, �) for all regular � ∈ [�i, �5] ⧵ {�6, �7, �8}.
For i < 4: LCUi(P 8, �6). For i < 3: LCUi(P 8, �7).
For i < 2 (i.e., i = 1): LCU1(P 8, �8).

(3.72)
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and from (3.71)
For i = 1: COB1(P 8, �1, �8). For i = 2: COB2(P 8, �2, �7).
For i = 3: COB3(P 8, �3, �6). For i = 4: COB4(P 8, �4, �5). (3.73)

Accordingly, P 8 forces the following values:
�3 // �4 // // �8 // �8

�2 //

OO

�7

OO

ℵ1 �9
// �1 //

OO

//

OO

�5 //

OO

�6

OO

Step 9: Finally we set P 9 ≔ j�9,�9(P
8), a FS ccc iteration of length �9 with

|�9| = �9, i.e., the continuum will have size �9. As �9 < �1, (3.72) and (3.73) also
hold for P 9 instead of P 8. Accordingly, we get the same values for the diagram as
for P 8, apart from the value for the continuum, �9.
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Part II

On Liftings for Bor(�)∕(�) and
Automorphisms of (�)∕[�]<�
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Chapter 4

Introduction

In this part of the thesis we consider the generalized Cantor space 2� and study
the lifting problem for Bor(�)∕(�) and the existence of trivial automorphisms of
(�)∕[�]<�. All the results presented are joint work with J. Kellner and S. Shelah,
appart from Section 6.1, which was done under the supervision of S. Friedman.

The study of the generalized Cantor space was started by Sikorski in [Sik50],
where he studied compactness properties of the space 2!1 . Recently, this area of
research has been progressing quickly, the generalized spaces have been studied from
the topological, model theoretical and combinatorial perspective (in [KLLS16],
Komskii, Laguzzi, Löwe and Sharakou collected many questions inspired by the
series of workshops on this topic).

Our motivation for studying the generalized Cantor space was to find a general-
ization of Shelah’s oracle-cc forcing method ([She83] and [She82, Ch. IV], [She98,
Ch. IV]). In the “classical” case (� = !), the consistency of “no lifting for Bor∕
plus 2ℵ0 = ℵ2” and the consistency of “all automorphisms of (!)∕[!]<! are
trivial” were shown using this method.

In the rest of this chapter, we will introduce well knonw basic notions and
standard facts concerning the generalized space (none of which are due to the
author).

4.1 Basic Notions and Notation

We always assume � is an uncountable cardinal , with �<� = � (which implies that
� is regular). Whenever we use the terms real, we mean �-real (i.e., an element of
2�); and with Borel, meager or Cohen we mean �-Borel, �-meager and �-Cohen (as
defined in the following).

The bounded topology, or �-box topology, on 2� is generated by the cones
[s] = {� ∈ 2� ∶ � > s}

for s ∈ 2<� (which are in fact clopen).

65
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The family of �-Borel sets (or Borel sets for short, denoted by Bor) is the smallest
family containing the cones and which is closed under complements and ≤� unions.
Without the assumption 2<� = �, controlling the Borel sets is difficult, in particular,
even some open sets may not be Borel (since they might not be a �-union of cones).

A subset of 2� is �-meager (or just meager), if it is contained in the union of �
many closed nowhere dense sets. Let be the family of meager Borel sets.
Remark 4.1. As in the classcical case,

• Borel sets satisfy the Baire property (i.e., for every Borel B there is an open
set O with BΔO meager).
(Proof: The collection of sets with Baire property contains the cones and is
closed under complements and �-unions.)

• The Baire Category theorem holds (i.e., a nonempty open set is not meager).
(Proof: Let {Di ∶ i < �} be a family of dense open sets and letD ∶=

⋂

i∈�Di.
We argue that D is dense: Given s0 ∈ 2<�, build ⟨si ∶ i < �⟩ increasing
such that [si+1] ⊆ Di (possible since Di is dense) and for limit �, define
s� ∶=

⋃

i<� si. Then s� ∶=
⋃

i<� si is such that [s�] ⊆ D, witnessing that D
is dense.)

We fix an (injective) enumeration (s�)�<� of 2<�. Let T be a wellfounded subtree
of �<!. We can interpret it as Borel code in the following way: We calculate the
Borel set B(T , t) for all t ∈ T by induction: If t = s⌢� is a terminal node, then
B(T , t) is the cone [s�]. Otherwise, B(T , t) is 2� ⧵⋃s⊳t B(T , s) (where ⊳ denotes
“immediate successor”). We set B(T ) ∶= B(T , ⟨⟩).

Obviously each Borel set has a code (which is not unique). Abusing notation,
we will often identify codes with their resulting Borel sets.

�-Cohen forcing (or just Cohen, for short, written as ℂ) is 2<� ordered by
extension. ℂ is �-closed, and satisfies the �+-cc (cf. [Jec03, Lem. 15.4])

With ℂI we denote the <�-support product (with index set I) of copies of ℂ.
This is a <�-closed, �+-cc forcing for any I (cf., e.g., [Jec03, Lem. 15.17]). Note
that ℂ� is isomorphic to ℂ

|�| and dense in the the <�-support iteration of length �
of copies of ℂ. By “� many Cohens” we mean either of these two forcing notions.

In forcing notions, we write q ≤ p for “q is stronger than p”, p ∥ q for “p and q
are compatible” and p ⟂ q for “p and q are incompatible”.

A dense embedding is a function between two forcings that preserves ≤ and
⟂ which has a dense image. More generally, a complete embedding F ∶ P → Q
preserves≤ and⟂ and satisfies: For every q ∈ Q there is a p ∈ P such that F (p′) ∥ q
for all p′ ≤P p (or equivalently: Q forces that F−1(GQ) is P -generic).

Define q ≤∗ p by q ⊩ p ∈ G. Let q ≡∗ p mean q ≤∗ p and p ≤∗ q. We call P
separative, if q ≤∗ p implies q ≤ p. Note that ℂ� is separative. If F is complete,
then F (q) ≤ F (p) implies q ≤∗ p.
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Fact 4.2. Any �-complete, atomless forcing Q of size � is equivalent to ℂ (as there
is a dense embedding f ∶ ℂ → ro(Q)).
Proof. Construct f (s) by induction on length(s), such that {f (s⌢0), f (s⌢1)} is
maximal antichain under f (s), each value either being below alength(s) or ¬alength(s),
where a� enumerates Q; and extend f continuously to limits. Then {f (s) ∶
length(s) = �} is a maximal antichain for each � < �.

Absoluteness in the generalized context is a big issue, even Σ11 absolutenessgenerally fails:
Example 1. Let S ⊆ S!1! be such that both S and S!1! ⧵ S are stationary. Shoot
a club through S ∪ S!1! , by forcing with the poset PS , consisting of all bounded
closed sets of ordinals ⊆ S, ordered by end-extension. This forcing even preserved
ℵ1, since it is !-distributive. Looking at the Σ11-formula defining the club filter, we
have an example for the failure of Σ11-absoluteness.

We will always work with forcing notions that are �-complete. Note that Σ11-formulas are absolute between the ground model and the extension via a �-complete
forcing notion:
Lemma 4.3. Given P a �-complete forcing and G a P -generic filter over V , Σ11-
formulas are absolute between V and V [G].

Proof. Consider Φ a Σ11 formula with parameters in V , and assume V P ⊧ Φ(x) for
some x ∈ ��. In V , let T be a tree such that its projection to the first coordinate
p[T ] is {x ∈ �� ∶ Φ(x)}.

Consider ℎ̇ a P -name for an ℎ ∈ �� such that V P ⊧ (x, ℎ) ∈ [T ].
We can now define, by induction, an increasing sequence of condition {pi ∶

i < �} ⊆ P and an increasing sequence {ti ∈ �<�, i < �} such that pi ⊩ ti ⊆ ℎ̇.
Successor stages are no problem, and in limit stages the < � closure of P comes to
use: We can define, for � limit ordinal, t� = ⋃

i<� ti and pick p� to be a lower boundfor {pi ∶ i < �}. Since for every i < �, pi ⊩ (x̌, ℎ̇) ∈ [T ], we have (x ↾
|ti|, ti) ∈ T ).Letting g ∶= ⋃

i<� ti( in V ), we get (x, g) ∈ [T ], yielding that Φ(x) holds in V .
The Cohen-generic filter is determined by the generic Cohen real c ∈ 2� in the

obvious way; and a real c is Cohen over V iff c avoids all meager sets of V (by which
of course we mean that there is in V a code T for a meager set such that c ∉ B(T )
in V [c]).

Here it does not matter whether “c is meager” is evaluated in V or in V [c], as
it turns out that many properties of Borel codes are absolute under forcing with
�-complete forcings,1 in particular:

1. T is a Borel code,
2. B(T1) = B(T2), and analogously for ⊆,
1Note that such forcings also preserve �<� = �.
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3. B(T1)ΔB(T2) = B(T3),
4. B(T ) is meager.

4.2 Liftings for Bor∕

Whenever P and Q are mathematical structures and � ∶ P → Q is a surjective
homomorphism, we can ask if a right inverse exists, i.e. a homomorphism f ∶ Q→
P such that �(f (x)) = x for all x ∈ Q. These right inverse homomorphisms are
called liftings or splitting homomorphisms.

For example, any surjection between sets has a lifting, the projection � ∶ ℤ2 ×
ℤ2 → ℤ2 to the second component from the Klein-4-group to the cyclic group of
order 2 has a lifting, namely (a → (0, a)), while there is no lifting between ℤ4 and
ℤ2.

In this thesis, we will use the term “lifting” for the following special case:
Definition 4.4. A lifting is a Borel algebra homomorphism H ∶ Bor∕ → Bor
such that H([A])ΔA is �-meager for all �-Borel sets A (where [A] denotes the
equivalence class of A modulo �-meager).

Equivalently, we can search for the homomorphism H ′ ∶ Bor → Bor, H ′ =
�◦H (where � is the canonical projection, mapping each Borel sets to its equivalence
class modulo meager), or for a subalgebra  of Bor such that � ↾  is bijective.



Chapter 5

Liftings under GCH and in the
Cohen Model

In the case � = !, CH implies that there is a lifting of Borel modulo Meager
(cf. [NS35]), and Carlson proved that there is still a lifting after adding ℵ2 many
Cohen reals1. Both facts are proved in [CFZ94], and the proofs there work in the
case of general � as well; we just have to replace every instance of “!”, “ℵ0” and
“countable” with “�”. So we get the following:
Theorem 5.1. (Neumann, Stone) 2� = �+ implies that there is a lifting of Bor∕.

Actually, we have a lifting under 2� = �+ for any ≤ �-complete Bolean algebra
 and any proper ≤ �-closed ideal I , with |∕| ≤ 2�.
Proof. We use Sikorski’s extension lemma:
Lemma 5.2. Let f ∶  →  be a Boolean algebra homomorphism, x ∉  and
y ∈ . Then there is a homomorphism g ∶ ⟨ ∪ {x}⟩ →  extending f and
mapping x to y iff for all a, a′ ∈ , if a ≤ x ≤ a′ in , then f (a) ≤ y ≤ f (a′) in
.

Enumerate ∶= ∕ as {A� ∶ � < �+} and denote by� the Boolean algebra
generated by {A� ∶ � < �}. Note that this Boolean algebra will have size ≤ � for
|�| ≤ �. We will inductively construct homomorphisms f� ∶ � →  such that

1. f� extends f� whenever � ≤ � ≤ �+.
2. �◦f� = id�

,
At successor steps �+1, define�+1 ∶= ⟨�∪{A�}⟩, that is, the subalgebra of

 generated byA� and elements of� . Since� has size≤ �, {A ∈ � ∶ A ≤ A�}
obviously has size ≤ �. Define D ∶= sup{f�(A) ∶ A ∈ �, A ≤ A�} and

1Actually the results are formulated for Lebesgue measurable modulo null, but it is obvious that
they apply to meager (and similar ideals) as well.
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D′ ∶= inf{f�(A) ∶ A ∈ �, A ≤ A�} (they exist in , and clearly D ≤ D′: we
know inf{A ∈ �, A ≤ A�} and sup{A ∈ �, A ≤ A�} exist in  and A� is in
between). Moreover, � is a ≤ �-complete Boolean algebra homomorphism, and
D′ > D would contradict the previous statement.

By ≤ �-completeness we can find a representative in this interval: Whenever
B ∈  is such that �(B) = A� , thenB′ ∶= (B∨D′)∧D is in the interval and clearly
�(B′) = A�. Moreover, whenever A,A′ ∈ �, if A ≤ A� ≤ A′, f�(A) ≤ D ≤
B′ ≤ D′ ≤ f�(A′) in . Therefore, by the above extension lemma, we know there is
a unique extension f�+1 of f� mapping A� to B′ and {A ∈ �+1 ∶ �(f�(A)) = A}
is a subalgebra of�+1 containing � ∪ {A�}, hence equals�+1.

Obviously�+1 will also have size at most �, so we can iterate the above.
At limit steps �, � ∶=

⋃

�<�� and f� ∶= ⋃

�<� f�’s.

Theorem 5.3. (Carlson) It is consistent with 2� = �++ that there is a lifting. (More
precisely, adding �++ many �-Cohens to a model of 2� = �+ preserves the lifting.)

Proof. If  is a subalgebra of Bor∕ and b ∈ Bor∕ then the gap determined
by b over  is a pair ⟨C,D⟩, where C = {c ∈  ∶ c ≤ b} and where D = {d ∈
 ∶ d ≥ b}. We call a gap �-generated if C is �-generated as an ideal and D is
�-generated as a filter.

We also call a pair ⟨M,N⟩ of models of ZFC withM ⊆ N good if the gap
determined by any element of (Bor∕)N over (Bor∕)M is �-generated.

We first show that she pair ⟨V , V [G]⟩ is good, where G is a V -generic filter for
�-Cohen forcing: Let b ∈ (Bor∕)V [G] and fix a name ḃ for it. For each p ∈ G,
let bp ∶= sup{c ∈ (Bor∕)V ∶ p ⊩ c ≤ ḃ}. Then {bp ∶ p ∈ G} is obviously
of size � and generates the lower part of the gap. The upper part is generated by
{bp ∶ p ∈ G}, where bp ∶= inf{c ∈ (Bor∕)V ∶ p ⊩ c ≥ ḃ}.

Since every b ∈ (Bor∕)V [G] appears in some �-Cohen extension, we get that
the pair ⟨V , V [G]⟩ is good, where G is a V -generic filter for Add(�, �), the forcing
adding � many �-Cohen reals.

Assume  is a subalgebra of ′ such that the gap determined by b over  is
�-generated for any b ∈ ′ . If  ∶= ⟨ ∪ C⟩ for some set C ⊆ ′ of size �, then
the gap determined by b over  is �-generated for any b ∈ ′ : The lower part of
this gap determined by b over is generated by {b′ ∩ c ∶ c ∈ ⟨C⟩, b′ is in the lower
part of the �-generated gap determined by b ∪ (¬c) over }, hence �-generated.
Analogously for the upper part.

Start with V ⊧ 2� = �+ and G an Add(�++, �)-generic filter over V . We show
that in V Add(�++,�) there is an enumeration of Bor∕ of length �++ such that the
gap determined by each element over the algebra generated by the previous ones is
�-generated. Whenever we have such small gaps (we are �-complete), we can use
the extension Lemma (since there is a candidate).

We will denote the Fn(�++ × �, 2)-generic filter by G and for each � < �++
define G� ∶= G ∩ Fn(� × �, 2). Note that G� will be generic and consider the
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�-complete algebra of �-Borel sets in V [G�] (not in V [G]), which will be further
denoted by �. The following hold:

1. � < � ≤ �++ implies � ⊆ � ,
2. |�| = �+ for each � < �++.

List Bor∕ in a sequence ⟨b� ∶ � < �++⟩ such that � is enumerated in the �’th
interval of length �+(maybe with repetitions).

Suppose � < �++ and let  be the algebra generated by {b ∶  < �}. We need
to show that the gap generated by b� over  is �-generated.

We know there is � < �++ and � < �+ such that � = � × � + �. Let  be the
algebra generated by {b ∶  < �+�}. Then by the previous lemma it suffices to
show that the gap determined by b over  is �-generated for all b ∈ Bor∕ (there
is some C of size � between them).

The case � = 0 is clear.
If � is a limit ordinal with cof(�) = �+ then  = � and again we are done (no

new reals).
If � is a limit ordinal with cof(�) < �+, then  =

⋃

{� ∶ � < �} and the gap
determined by b over  is just the union of the gaps determined by b over � for
� < �, hence �-generated.

If �1 is a successor ordinal and  = �+1 and we have some countable C below,
the gap determined by b� over everyting prevoius is �-generated since it is just some
some �-Cohen extensions and everyting is �-generated Cohen extensions. In the
middle we won’t know if it is a Cohen extension, but we know it is small generated,
more precisely, there is some C of size �.
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Chapter 6

Trying to obtain a model with no
liftings

In the “classical” case (� = !) the consistency of no lifting plus 2ℵ0 = ℵ2 was
shown in [She83], using the oracle-cc forcing method introduced in [She82, Ch. IV]
(where it is shown that there may be only trivial automorphisms of (!)∕f in. Both
results are summarized in [She98, Ch. IV].)

We wanted to find a �-variant of this oracle construction. Unfortunately, up to
this point we did not succeed, some of the ideas looked promising for a long time.
This chapter will be an exposition of these tries.

6.1 First try: A direct generalization of the oracle-c.c.

To obtain a model with no such lifting, Shelah defined “oracles", what it means
for a poset to be “M̄-cc" for an oracle M̄ and described how these posets should
be iterated. With Sy Friedman as adviser, the approach was to find appropriate
generalizations (to � = ℵ2) of these notions and the corresponding iteration results
with the scope of generalizing the involved construction of a model with no lift.
While some of the notions and results generalize in an obvious way, the preservation
of the oracle chain condition in limit steps of small cofinality is far from clear. We
tried thinning out the inverse limit, but we did not manage to obtain the desired
result.

6.1.1 !2-oracles

We denote by S!2!1 the set of ordinals less than !2 of cofinality !1.
Definition 6.1. An !2-oracle is a sequence M̄ = ⟨M� ∶ � ∈ S

!2
!1 ⟩, such that

• for each such �,M� is a countably closed transitive model of ZFC− contain-
ing � andM� ⊧ � < !2, cof(�) = !1
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• ∀A ⊆ !2 ∶ IM̄ (A) ∶= {� ∈ S!2!1 ∶ A ∩ � ∈ M�} contains a trace of a
club(C ∩ S!2!1 )

The existence of an oracle is equivalent with the existence of a♢∗(S!2!1 )-sequence,that is, a sequence ⟨S� ∶ � ∈ S!2!1 ⟩ such that |S�| ≤ !1 for each � and for every set
A ⊆ !2, {� ∈ S!2!1 ∶ A ∩ � ∈ S�} contains a club.To each !2-oracle M̄ we associate a trapping filterDM̄ , generated by {IM̄ (A) ∶
A ⊆ !2}. Every restriction to S!2!1 of a club C ⊆ !2 is in this filter DM̄ and hence,
DM̄ is the restriction of the club filter on !2 to S!2!1 (recall that, since !2 regular,the club filter on !2 is proper and normal ).

For M̄ an oracle and P a poset with universe !2, we introduce the following
notation:

• P ∩ � <M�
P iff predense sets in P ∩ � which are inM� are predense in P

• P ∩ � ≪M�
P iff P ∩ � <M�

P and incompatibility is preserved (m.a.c of
P ∩ � which are inM� remain maximal antichains in P ).

• P ∩ � ≪V P just means completely embedded.
For a poset with universe !2, i.e. P = (!2, <), we say that P is M̄-cc for an

!2-oracle M̄ iff {� ∈ S!2!1 ∶ P ∩ � <M�
P } ∈ DM̄ . If the universe is not !2 but the

poset has size ℵ2 then we just go to the isomorphic partial order with universe !2.
Note that M̄-cc posets of size ℵ2 have the ℵ2-cc.
Lemma 6.2. Given !2-many oracles {M̄� ∶ � < !2}, we can find an oracle N̄
encompassing all the given ones, i.e. for any partial order P if P is N̄-cc then P is
M̄�-cc for all � < !2.

The central idea of the oracle chain condition is the following Omitting Type-type
Theorem, again a straightforward generalization of the classical case:
Theorem 6.3. ( OTT)

Assume ♢∗(S!2!1 ). Suppose ⟨ i(x) ∶ i < !2⟩ is given, each  i(x) is Π
1
1 with free

variable x and possibly a generalized-real parameter. Suppose there is no solution
x, neither in V nor in any !1-Cohen extension to

⋀

i<!2

 i(x) (6.4)

Then there is an oracle M̄ such that, for every M̄-cc countaly closed poset P ,
there is still no solution in V P .

Proof. Let � be large enough so that H(�) reflects V . Given a countably closed
forcing notion P of size ℵ1 and a nice P -name for a real �, let

• M(P , �) be a countably closed elementary submodel ofH(�) containing P , �
and the sequence of formulas ⟨ i(x) ∶ i < !2⟩.
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• (P , �) the collection of predense subsets of P which are inM(P , �)

The required oracle M̄ will be build using ♢∗(S!2!1 ) and a closing process (sincewe need to deal with all possible names �) in such a way that whenever P is a
countably closed forcing notion of size ℵ1 and � is a P -name, both inM� , we have
M� ⊇ I(P , �).

We now need to argue that this !2-oracle satisfies the requirements, therefore,
we assume towards a contradiction that for an M̄-cc, countably closed poset Q of
size ℵ2 (w.l.o.g. with universe !2), a Q-name � for a solution exists. But then we
can find � ∈ S!2!1 such that

• � is a Q ↾ �-name
• Q ↾ �, � ∈M�

• Q ↾ � ⊆ic Q

• Q ↾ � <M�
Q

Letting P ∶= Q ↾ � we obtain a contradiction using the following claim.
Claim 6.5. If P ,Q are posets, G is aQ-generic filter over V and � is a P -name for
a real with P countably closed of size ℵ1, P ⊆ic Q and every predense subset of P
lying inM(P , �) is predense in Q, then, for some i

V Q ⊧ ¬
⋀

i<!1

 i(�[G])

Proof. Every predense subset of P lying inM(P , �) is predense in Q, therefore we
get that G ∩ P is P -generic overM(P , �) and that �[G] = �[G ∩ P ].

Since M(P , �) be a countably closed elementary submodel of H(�), H(�)
reflects V , andM(P , �) ⊧“P is countably closed of size ℵ1”, we know thatM(P , �)
satisfies the assumptions of the Theorem, hence

M(P , �)[G ∩ P ] ⊧ }}¬
⋀

i<!2

 i(�[G]) for some i < ℵ2”

So, for some i < ℵ2, i ∈M(P , �),M(P , �)[G ∩ P ] ⊧ ¬
⋀

i<!2
 i(�[G]).

The same holds for the transitive collapse as well, since the collapse is an
isomorphisms and first order properties are preserved under isomorphisms.

Since  i(x) isΠ11, we have ¬ i(x) is Σ12, and we know Σ11 statements are upwards
absolute, hence V [G] ⊧ ¬⋀i<!1

 i(�[G]).
We would like to have a way of iterating M̄ -cc forcing notions:

Lemma 6.6. (The two step iteration) Assuming CH and ♢∗(S!2!1 ), let M̄ be an
oracle. If P is M̄-cc countably closed forcing notion with |P | = ℵ2, then there is a
P -name for an oracle ̇̄N st for each P -name Q̇ for a partial order, if⊩P }}Q̇ is ̇̄N-
cc" then P ∗ Q̇ is M̄-cc.



76 CHAPTER 6. TRYING TO OBTAIN A MODEL WITH NO LIFTINGS

The proof is a straightforward generalization of the one in the !-case: Without
loss of generality, we restrict ourselves to forcing notions with universe !2. In V P ,
we construct an oracle N̄ = ⟨N� ∶ � ∈ S!2!1 ⟩. Since P is M̄-cc, on a filter set of
�’s, predense subsets of P ∩ � which are inM� are predense in P . Also, P ∩ � is in
M� . Denote the P -generic filter by G. Then for this filter set of �’s, G ∩ � is P ∩ �
generic overM� . But, for such �’s, P ∩ � is equivalent with !1-Cohen forcing, since
it is countably closed, of size ℵ1. Thus we can take N� to be a countably closed
transitive model,M�[G ∩ �] ⊆ N�.

We now show that thisN works. More precisely, we have to check the guessing
property: working in V P , given A ⊆ !2 we want to argue that {� ∈ S!2!1 ∶ A ∩ � ∈
N�} contains the trace of a club.

The countable support iteration does not work: Assume ♢∗(S!2!1 ), and let M̄ be
an !2-oracle � ≤ !3 a limit ordinal, ⟨P� ∶ � ≤ �⟩ a countable support iteration of
countably closed forcings of size ℵ2 based on ⟨Q� ∶ � < �⟩⟩ such that for each
� < �, P� is M̄-cc. Then P� is NOT M̄-cc.

The limit steps of uncountable cofinality are no problem, everything actually
appeared earlier. If we try to just take inverse limits in limit steps of countable
cofinality, we do not get that M̄-cc is preserved: Assume we look at P!. Then, for
all n, we get that projPnp is compatible the projection to Pn of some condition in the
dense set D ⊆ P! ∩ � (downwards closure of the predense set). The problem is that,
as n varies, we project different elements of D and we do not have any closure for
this dense set.

To solve this problem we tried to define a new support, more precisely to thin
out the inverse limit, to not allow full support at stage ! (or any stage of cofinality
!).

We will need P! countably closed and whenever D ⊆ P! ↾ � predense inM�
then every p ∈ P! is compatible with a condition in D. If we consider countably
closed ℵ2-Suslin trees which are oracle-cc for our given oracle, it seems that we can
iterate those as follows:

Since Pn (with universe !2) is M̄-cc for every n ∈ !, we have, for each n, a
club Cn witnessing the M̄ − cc of Pn. Let C ∶= ⋂

Cn ∩ ♢∗(S!2!1 ). Enumerate C in
increasing order as �0 < �1 < �2 < .. and define P! ↾ �i by induction on i.

Since M� is countably closed for any � ∈ C , it can see all !-sequences of
conditions in Pn indexed < �. So P! ↾ � ∈M�.

A condition in P! will be an! sequence of nodes in Ṗn(trees) and has to hit(since
we are in the tree case) these dense sets (⊆ P! ↾ � which are inM� . This condition
should fall between �i and �i+1. Actually we will build a dense subset of P!. We
will also need to close under weakening (we need to show that we still are M̄-cc
after this closure).

We define P! ↾ �0 as the inverse limit of the Pn ↾ �0. Let p a condition (p is
an !-sequence of names) which falls between �0 and �1 which hits all the dense
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D ⊆ P! ↾ �0 which are inM�0 (these are ℵ1 many, so what we defined is in the
!-closed modelM�1). This describes the successor steps .When we get to �!, we take the conditions in this layer which respect allM�n .Our construction seems !-closed (the only sequences that jump levels are at the !
th level). Also note that the P! defined this way embeds the direct limit.

We will need the following:
Lemma 6.7. (CH and ♢∗(S!2!1 )) Given M̄ = ⟨M� ∶ � ∈ S

!2
!1 ⟩ an !2-oracle and ℎ

a lifting homomorphism, there is a forcing poset P satisfying M̄-cc and a P -name
Ẋ for a Borel set such that for any generic filter G ⊆ P ∗ ℂ over V , there is no
Borel set A in V [G] satisfying

• A = ẊG mod meager

• for each ground model Borel setB, ifBV [G] ⊆(!1) ẊG then (ℎ(B))V [G] ⊆ A

• for each ground model Borel setB, ifBV [G]∩ẊG =(!1) ∅ then (ℎ(B))
V [G]∩

A = ∅

The poset P for destroying a lifting homomorphism is unfortunately not a tree
forcing and we have not figured out a way of iterating non-arboreal oracle cc posets.
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6.2 Second try: Essentially Cohen

Instead of constructing the oracle sequence with diamonds, we tried to generically
generate the oracle forcing. For the � = ! case, something similiar has been done
in [GKSW14]; also related is [Jus92]. This is one of several approaches undertaken
jointly with J. Kellner and S. Shelah.

6.2.1 Essentially Cohen and the Preparatory Forcing

Using some natural isomorphism between 2� and 6� (which is actually a homeomor-
phism, where in both spaces we use the bounded topology), we will often interpret
a real c ∈ 2� to code a pair (�, �), where � ∈ 2� and � ∈ {−1, 0,+1}�.

In particular a set {(�i, �i) ∶ i ∈ I} is dense if for all � < �, x ∈ 2� and
y ∈ {−1, 0, 1}� there is some i ∈ I such that �i > x and �i > y. From now on we
will assume 2� = �+ and 2�+ = �++ in the ground model V .

We intend to call a forcing iteration P̄ “essentially Cohen”, if its is, well, es-
sentially equivalent to ℂ� for some �. We will actually use a slightly cumbersome
instance of this concept, that fits the proof in this chapter.
Definition 6.8. • P is �-essentially Cohen (�-e.C.), if there is a dense set D ⊆

P and a dense embedding F from P to ℂ� such that the image of P is closed
under <�-limits. (I.e. the union of a decreasing <�-sequence in F ′′P is again
in F ′′P .)

• P is e.C., if it is �-e.C. for some � ≤ �+.
Recall that F (q) ≤ F (p) implies q ≤∗ p. We can select one ≡∗-representative

for each p ∈ D, resulting in the dense set D′ ⊆ D ⊆ P and an isomorphism of F
from (D′,≤∗) to its image. (So in the case of a separative P , we get an isomorphism
from D′ to the image.) The isomorphism is continuous. So in particular we get:
Comparability is equivalent to compatibility in (D′,≤∗); every short descending
sequence p� in (D′,≤∗) has in (D′,≤∗) a unique limit p (and F (p) = ⋃

F (p�)); and
if F (p�) is a descending sequence then so is p� (with respect to ≤∗), etc.

The e.C. notion is not “robust” at all: For example, the dense subset of ℂ
consisting of sequences of successor length is not e.C., as it has no dense subset
with unique limits. Let us formalize this notion:
Definition 6.9. A forcingQ “has limits”, if for all decreasing (pi)i<� of length � < �
there is an infimum p∗, i.e.: p∗ ≤ pi for all �, and if q ≤ pi for all � then q ≤ p∗.

Note that such a p∗ is not necessarily unique: p′ is a limit as well iff p′ ≤
p∗ ∧ p∗ ≤ p′. Nevertheless we call p∗ the limit. If q∗ is the limit of (qi)i<� and p∗
of (pi)i<� and qi ≤ pi for all i, then clearly q∗ ≤ p∗.

If P is separative and e.C., then there is a dense D ⊆ P which has limits. So in
particular the dense subset of ℂ consisting of sequences of successor length is not
e.C. However, we get:
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Lemma 6.10. Assume that Q is �-closed, atomless, has limits and has size �.

1. There is a dense embedding F from ℂ∗ ∶= (�<�, ⊆) to Q. Furthermore F
is “continuous”, i.e., if � is a limit and � ∈ ��, then F (�) is the limit of
(F (� ↾ �))�<�.

2. Q is 1-e.C.

Remark 6.11. Similar (and equally simple) arguments show the following: Assume
Q is �-closed, atomless, and of size �. (Having limits is not assumed.) Then the
subset of ℂ∗ consisting of nodes of successor length can be densely embedded into
Q; and ℂ can be densely embedded into ro(Q).
Proof. First note that given p, q ∈ Q there is a maximal antichain A(q, p) below q
of size � such that each element of A is either incompatible with or below p.

Now enumerate Q as (p�)�∈�, and set f (⟨⟩) = 1Q. We construct a dense
embedding F ∶ ℂ∗ → Q by induction.

Assume F (s) is already defined for s ∈ �� . Then we define F on the successors
of s such that F (s⌢�) enumerates A(q, p�) for each � ∈ �.

If t has limit length �, we set F (t) to be the limit of (the decreasing sequence)
(F (t ↾ �))�<�. So the constructed F will be continuous.

F clearly preserves ≤ and also ⟂: Assume s ⟂ t split at some height � < �, and
set ps = F (s ↾ (� + 1)) and pt = F (t ↾ (� + 1)). By the construction, ps ⟂ pt, and
thus F (s) ⟂ F (t).

For every height �, the antichain {f (s) ∶ s ∈ ��} is maximal: Given r ∈ Q,
set r0 = r and �0 = ⟨⟩. and construct for � < � decreasing sequences �� ∈ �� and
r� ∈ Q such that r� ≤ F (��). (For successors, set ��+1 = ��⌢� for some � such
that F (��+1) is compatible with r� , and let r�+1 be some common lower bound. At
limits �, set �� = ⋃

�<� �� and set r� to be the limit of (r�)�<�, which is below the
limit of (F (��))�<�, i.e., below F (��).)

We now show (2). First note that, as ℂ∗ is seperative and x ≤ y ∧ y ≤ x implies
x = y, the embedding F we just constructed is actually an isomorphism onto the
(dense) image, so we get an inverse, a surjective isomorphism G ∶ D → ℂ∗.

Also, we can apply (1) to ℂ: There is a some F0 ∶ ℂ∗ → ℂ Then F0◦G gives
the desired witness of e.C.

We will use the following basic properties of e.C. forcings:
Lemma 6.12. 1. ℂ� , as well as the <�-support iteration of � many Cohens, is

�-e.C.

2. If P is e.C., then it is forcing equivalent to some ℂ� . (The converse is not
true, as already mentioned.)

3. In particular: e.C. implies �+-cc, and
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4. if r is a P -name for an element of 2�, then there is a P -name c for a (single)
�-Cohen over V such that r ∈ V [c].

Proof. (1)–(3) are trivial. For (4): We can assume by (2) that r is a ℂ�-name. r(�)
is decided by a maximal antichain A� for all � < �. Due to �+-cc and <�-support,
X� ∶=

⋃

{dom(p) ∶ p ∈ A�} has size �. Set I = ⋃

�∈�X�. Then r is actually an
ℂI -name, and a dense subset of ℂI is isomorphic to ℂ, as |I| = �.
Lemma 6.13. • If P is �1-e.C. and P forces thatQ is �2-e.C. (where �2 ∈ V ),

then P ∗ Q is (�1+�2)-e.C.

• More generally, if (P�, Q�)�<� is a <�-support iteration such that each P�
forces that Q� is ��-e.C., then P� is

∑

��-e.C.

Proof. • Let (D1, F1)witness e.C. for P , and let P force that (D2, F2)witnesses
e.C. for Q.
Set D = {(p, q) ∈ D1 ∗ Q ∶ (∃�(p) ∈ ℂ�2) p ⊩ (q ∈ D2 ∧ F2(q) = �(p))}.
For (p, q) ∈ D, we set F (p, q) ∶= (F1(p), �(p)) ∈ ℂ�1+�2 .
It is clear that F preserves ≤.
The image of F is dense: given any (x, y) ∈ ℂ�1+�2 , let q be a name for an
element of D2 such that F2(q) extends y, then pick p ∈ D1 deciding F2(q)
such that F1(p) extends x.
AssumeF (p, q) ∥ F (p′, q′); let (p′′, q′′) be such thatF (p′′, q′′) ≤ F (p, q), F (p′, q′).
In particular F1(p′′) ≤ F1(p), F1(p′), and therefore p′′ ≤∗ p, p′ (here, q ≤∗ p
denotes q ⊩ p ∈ G). So p′′ decides F2(q) and F2(q′) and F2(q′′), and
F2(q′′) ≤ F2(q), F2(q′). So p′′ forces q′′ ≤∗ q, q′; therefore (p, q) ∥ (p′, q′).

• Let D�, F� be the P�-names witnessing that Q� is e.C. For each �, we set D�

to be the set of all p ∈ P� such that there is (in V ) a sequence (xi)i∈dom(p)
such that p ↾ i forces p(i) ∈ Di and Fi(p(i)) = xi (for all i ∈ dom(p)). This
naturally defines F � ∶ D� →

∑

i<� �i.
We show by induction on � thatD� is dense and that F � is a dense embedding.
Note that for � < � we trivially get: p ∈ D� implies p ↾ � ∈ D� and
F �(p) ↾ ℂ∑

i<� �i = F
�(p ↾ �).

For � = � + 1 a successor, we can use the previous item, setting P ∶= P�,
Q ∶= Q�, D1 ∶= D� and F1 ∶= F � .
If the cofinality of � is ≥ �, then P � = ⋃

P �, D� =
⋃

D� and F � = ⋃

F �.
So let let � be a limit with cofinality � < �, and pick �i (i < �) cofinal.
We start with any p0 ∈ P� ; and we will construct a decreasing sequence pi
(for i ∈ � ) such that p� in D� .
Given pi, pick q ≤ pi ↾ �i inD�i , and set pi+1 = q ∧ pi (which is the condition
identical to q up to �i and identical (or forcing-equivalent) to pi beyond �i).
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At a limit stage j ≤ � we can define a (“pointwise”) limit condition pj . In more
detail: We set dom(pj) to be⋃i<j dom(pi) (a set of size <�). By induction on
� ∈ dom(pj), we have constructed pj ↾ � which is stronger than each pi ↾ �
(for i < j). So in particular pj ↾ � forces that pi(�) is in D� and F�(pi(�))
is some xi� (where the sequence xi� exists in V ), moreover this sequence is
decreasing. As the image of F� is closed, there is a q ∈ D� mapped to⋃i<j x

i
� .(Pick the smallest such q in some wellorder if required.) Set pj(�) = q.

Definition 6.14. P̄ = (P�, Q�)�<� is a nice iteration, if:
• P̄ is a <�-support iteration.
• P� forces Q� to be <�-closed.
• Each Q� has size ≤ �+.
• The generic object for Q� is determined by a real �� ∈ 2�.
• For all � < � ≤ � with cf(�) ≠ �+,

P� ⊩ P�∕G� is |� ⧵ �|-e.C.

Note that for all � (including cf(�) = �+), Q� has to be �+-cc (as otherwise the
composition P� ∗ Q� would not be �+-cc and thus not e.C.).
Remark 6.15. This definition contains an essential element of the oracle notion:
(The following is formally not quite correct, but morally true.) As preparatory
forcing, we force with the family of nice iterations, ordered by extension. This gives
us a generic iteration of length �++. Fix an � < �++ and a P�-generic filter G� , and
work in V [G�]. Then for any � in �++ bigger than �, the forcing Q� ∗ (P�∕G�) is
equivalent to Q� ∗ ℂ� for some �. So if we manage to let Q� force

(∀x ∈ 2�)'(x)

for some sufficiently absolute ', and moreover not onlyQ� but evenQ� ∗ ℂ� forces
the statement, then P�++ will force it as well (as any x ∈ 2� will appear in some
stage � < �++). This corresponds to the omitting type property of oracle-cc.
Definition 6.16. The forcing notionAP consists of all nice iterations of length<�++,
ordered by extension.
Lemma 6.17. AP is a <�++-complete and atomless (more specifically, if a ∈ AP
then a⌢ℂ ∈ AP).

Proof. Let (P�, Q�)�<� ∈ AP. Set Q� = ℂ and P�+1 = P� ∗ Q� . Let cf(�) ≠ �+.
Then P� forces that P�+1∕G� is P�∕G� ∗ Q, and accordingly |(� ⧵ �) + 1|-e.C.

Let (ai)i<� be a strictly decreasing sequence in AP (i.e., increasing as iterations)
with � < �++. We need a lower bound. By taking a subsequence we can assume
that � ≤ �+.
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Define bi+1 to be the iteration ai+1 restricted to length(ai) + 1, and bj = ⋃

i<j bifor j ≤ � limit. We set �i ∶= length(bi), which has cofinality <�+ for i < �. We
have to show that the limit bj = (P�, Q�)�<�� satisfies the e.C. property.We know that P ∗i ∶= P�i forces that Q∗i = P�j∕G�i is e.C. for all i < j < �.
We can interpret (P ∗i , Q∗i )i<� as <�-support iteration, so the limit P ∗� (which is
isomorphic to P�� ) is e.C. according to Lemma 6.13.

So AP does not add any new �+-sequences; in particular it forces 2�+ = �++,
and 2� = �+.
Definition 6.18. For � < �++, theAP-generic contains a unique (P �� , Q�

�)�<� , whichdefines for all � < �++ the unique objects P ∗� andQ∗� . Let P ∗�++ be the limit (i.e., the
union) of the P ∗� .

Let V +
� denote the universe we get after forcing with AP ∗ P ∗� . In this universe,

we can also define V −
� ∶= V [GP ∗� ].

The following lemma basically sais that we can “reflect” an AP ∗ P ∗�++-name
for a lifting ℎ as a P� name for some � of cofinality �+:
Lemma 6.19. 1. AP forces (for � ≤ � ≤ �+) that P ∗� is �+-cc, and that P ∗� is a

complete subforcing of P ∗� .

2. No new reals appear in AP ∗ P ∗� for cf(�) ≥ �+. I.e.: 2� ∩ V +
� =

⋃

�<� V
+
� .

(And of course 2� ∩ V −
� =

⋃

�<� V
−
� .)

3. Fix someAP ∗ P ∗�++ nameℎ for a function from 2
� to 2� and a = (P� , Q�)�<�0 ∈

AP. Then there is a b = (P� , Q�)�<� in AP extending a0 satisfying that
ℎ ↾ V +

� is determined by P�; in more detail:

• � (the length of b) has cofinality �+.

• b forces that 2� ∩ V +
� = 2� ∩ V −

� and that ℎ ↾ V −
� is in V −

� .

Proof. 1. Assumme (in V [GAP]) that A ⊂ P ∗� is an antichain.
Then A has size ≤ �: if it had size �+, then A ∈ V , and A is an antichain of
size �+ in V as well, a contradiction.
If A is a maximal (in V [GAP]), then it is maximal in V as well, and thus
maximal (in V and therefore also in V [GAP]) in P ∗� for any � < � < �++.

2. This trivially follows from �+-cc and the fact that P ∗� =
⋃

�<� P
∗
� .

3. • First fix an AP ∗ P ∗�++-name � for an element of {0, 1} and work in
V [GAP]. There is a maximal antichain A deciding �. Due to �+-cc,
A ∈ P ∗� for some � < �++, and moreover A ∈ V .
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• Now work in V and start with some (a0, p0) ∈ AP ∗ P̄ ∗. Given any
� as before, we can find a1 ≤ a0 in AP deciding � as some �1 (we can
assume length(a1) = �1) and A1 ⊆ P ∗�1 as above. (Note that we do
not have to do anything about p0, and that assuming a1 we can in V
effectively decide � from A1.)

• Given a sequence (�i)i∈�+ and a0, we can iteratively increase a0 to ai of
length �i and find Ai ⊆ P�i such that (below ai) Ai determines �i. Let
a′ be the limit of the ai, and �′ the limit of �i.

• Fix a0 and �0 < �++. All of the �+ many reals in V +
� , as well as their

ℎ-images, can thus be decided (below some a1 ≤ a0) by a ground model
sequence of antichains in some P ∗

�1
.

Iterating this construction gives increasing sequences aj and �j for
j ∈ �+; and the limit b = ⋃

j∈�+ a
j is as required.

6.2.2 The single forcing Q

Definition 6.20. Fix � ∈ 2� and � ∈ {−1, 0, 1}�
• The �-splitoff of � is the cone generated by � ↾ �⌢(1 − �(�)).
• The set In(�, �, �0) is the union of the �-splitoffs of � with � ≥ �0 and �(�) =
+1.

• Out(�, �, �0) is defined analogously with �(�) = −1.
• Undec(�, �, �0) is defined analogously with �(�) = 0.
So In, Out, Undec are disjoint open sets, each a union of ≤� many cones [s]

with the height of s a successor; and In ∪ Out ∪ Undec = [� ↾ �0] ⧵ {�}.
Definition 6.21.  is a “suitable parameter sequence” if  = (�∗� , �

∗
� )�∈I with

� ≤ |I| ≤ �+, the �∗� are pairwise different, {(�∗i , �∗i ) ∶ i ∈ I} is dense in
(2 × {−1, 0, 1})�, and (�∗� )−1(i) is unbounded for each � ∈ I and i ∈ {−1, 0, 1}.

For such  , Q is defined as follows:
• A condition q ∈ Q consists of (A, f ) such that

– A ⊆ I has size <�,
– f ∶ A→ �,
– We set In(q) ∶= ⋃

�∈A In(�
∗
� , �

∗
� , f (�)); and Out(q) analogously;

– We require In(q) ∩ Out(q) = ∅.
• q′ is stronger than q, if In(q′) ⊇ In(q) and Out(q′) ⊇ Out(q).
So q′ ≤ q implies A(q′) ⊇ A(q), but it does not imply f (q′) ↾ A(q) = f (q).
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Lemma 6.22. • p ⟂ q iff either In(p) ∩ Out(q) ≠ ∅ or In(q) ∩ Out(p) ≠ ∅.
Two compatible elements have a greatest lower bound.

• Q is separative, �-closed (and even has limits), and has has size ≤ �+.

• The generic is determined by the partition I = (In,Out,Stem) of 2<� into
In = {s ∶ (∃q ∈ G) [s] ⊆ In(q)}, Out (defined analogously) and Stem =
2<� ⧵ (In ∪ Out).
x ∈ Stem iff there is a q ∈ G and � ∈ A(q) such that �∗� ∈ [x], and Stem is
a perfect tree without end-nodes closed under limits (i.e. s ↾ � ∈ Stem for
all � < � implies s ↾ � ∈ Stem for � limit).

• Equivalently, the generic object is determined by the open set In′ =
⋃

q∈G In(q) =
⋃

s∈In[s].
[s] ⊆ In with s minimal implies that s has successor length.

Lemma 6.23. LetM be a transitive model of size �, closed under <� sequences,
and M = (�∗� , �

∗
� )�<� a suitable parameter sequence inM . Let (�∗�, �

∗
�) be Cohen

overM , and set  ∶= M⌢(�∗�, �
∗
�).

Then QM ∶= QM is anM-complete1 subforcing of Q ∶= Q .

6.2.3 Cohens ∗ Q

Lemma 6.24. Let ℂ�+ add �+ many Cohens (��, ��). We set  = (��, ��)�∈�+ .
Then ℂ�+ ∗ Q is �+-e.C.

Proof. In V , let the forcing Q∗ consist of pairs (T , g) such that
• T is a subtree of 2<� of size <� and g a function from T to {−1, 0, 1}.
• If g(s) ≠ 0, then g(s) is a terminal node in T .
• The nodes s ∈ T� with g(s) = 0 form a “closed” subtree: g(⟨, ⟩) = 0; if
g(s) = 0 and s is not terminal in T then there is a t >T s with g(t) = 0; and if
t has height � limit and g(t ↾ �) = 0 for all � < � then g(t) = 0.

Q∗ is ordered by extension. (So in particular, a the tree of the stronger condition
can only extend old nodes s with g(s) = 0.)

Given a Q∗-generic, we define Stem as the subtree g−1(0), and we define In as
the set of nodes in 2<� extending some node in g−1(1), and Out analogously with
−1.

Q∗ has size �, and is <�-closed and even has limits, and is nonatomic.
In theQ∗-extensionV ∗ = V [GQ∗], we defineℂ∗ to be the union2 of the following

two forcings ℂ∗ignored and ℂ∗chosen: ℂ∗ignored is regular Cohen forcing (i.e., adds some
1Note that the definition of QM is absolute betweenM and V , so QM ∈M .
2Formally, we let ℂ∗ be the disjoint union of ℂ∗

ignored and ℂ∗
chosen (each element of the one forcing

being incompatible with every element of the other) together with a new weakest element 1.
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(�, �) in the usual way), while ℂ∗chosen adds a Cohen branch � through the perfect
tree Stem and a Cohen � which is compatible with (In,Out) above some �0. In more
detail: A condition p of ℂ∗ignored has the form (�0, �, �), where �0 ∈ �, (�, �) ∈ (2 ×
{−1, 0, 1})� for some � ∈ [�0, �), � ∈ Stem, and � violates (In,Out) unboundedly
often below �0, and not anymore above �0. 3 The order of ℂ∗ignored is defines as
follows: (� ′0, �′, �′) is stronger than (�0, �, �) if � ′0 = �0 and (�′, �′) extends (�, �).In V ∗, let ℂ∗�+ be the <�-support product of �+-many copies of ℂ∗. We claim
that Q∗ ∗ ℂ∗�+ is equivalent to ℂ�+ ∗ Q :

Let D0 be the dense subset of P ∗ Q consisting of conditions (p, (A, f )) satisfy-
ing

• (A, f ) is in the ground model (not just a name).
• � ∈ A implies � ∈ dom(p) and p(�) has height > f (�).
• f is “minimal”: decreasing f (�) for any � would lead to an inconsistency.
• If � ∈ dom(p) ⧵ �, then � is prevented to every get into A′ of a stronger
(p′, (A′, f ′)) (some � ∈ A contradicts it).

Given such a condition, we can naturally calculate first some element ofQ∗, and
then map each p(�) to the corresponding element in the �-th copy of ℂ∗.

We will actually need something more general:
Definition 6.25. Consider the following three permutations � of {−1, 0, 1}: �1 =
(−1, 0), �2 = (1, 0) and �3 = (−1, 1).

For such a �i, �0 < �, and � ∈ {−1, 0,+1}�0 , we call �′ the “finite modification
of � using �i above �0, if �′(�) = �(�) for � < �0, and �(�) = �i◦�(�) otherwise.

In particular (�, �′) is Cohen over someM iff (�, �) is Cohen overM .
Question 6.26. After adding �+ many Cohens (�∗�, �

∗
�)�∈�+ , we choose (in the ex-

tension, not the ground model) for each � a finite modification �� of �∗� , and set
�� = �∗� and  = (��, ��)�∈�+ .

Then P� ∗ Q is e.C.

Actually, we do not only need e.C., but nice. We have no idea how to get nice,
not even in the “easy” version.
Question 6.27. Let P̄ be a nice iteration of length �+ ≤ � < �++ with cf(�) = �+.
Accordingly (as P is “essentially Cohen”) we can interpret P� as �+ many Cohens
(��, ��). We set  = (��, ��)�∈�+ .

Then P� ∗ Q is nice.
3More formally, let us say (�, �) violates (In,Out) at � if �(�) ∈ {−1, 1} and � ↾ �⌢(1 − �(�)) has

color 1 − �(�). So we claim that the set of � ∈ � where there is a violation is an unbounded subset of
�0.
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The problem is that to be nice, the quotient P� ∗ Q by some P� has to be e.C.
But this quotient is generally not the quotient by (�� , ��)�<� , as the Cohens lie in
some weird skewed way in the iteration.

Actually, we think we even need the more general version:
Question 6.28. Let P̄ be a nice iteration of length �+ ≤ � < �++ with cf(�) =
�+. Accordingly (as P is “essentially Cohen”) we can interpret P� as �+ many
Cohens (��, ��). We chose some cofinal subsequence i� of � of order type �+. In
the extension (not the ground model) we choose for each � a finite modification ��
of �∗� , and set �� = �

∗
� and  = (��, ��)�∈�+ .

Then P� ∗ Q is nice.

6.2.4 The main claim

Assuming that we can answer Question 6.28 positively, we could then show that
AP ∗ P ∗�++ forces that there is no lifting, in the following way:

1. Assume that (a0, p0) forces that ℎ is a lifting; let � be the length of a0. Without
loss of generality p0 ∈ P ∗� , cf(�) = �+ and ℎ ↾ V +

� ∈ V −
� , cf. Lemma 6.19.

2. We work in V ′ = V −
� = V [G�], where p0 ∈ G�.

We will construct a forcing Q and a Q-name X such that: For all Borelcodes
Y in aQ ∗ ℂ-extension there is in V ′ � ∈ 2� and A open satisfying � ∈ ℎ(A),
such that in the extension either (A ⊆ X and � ∉ Y ) or (A ∩X = ∅ and � ∈
Y ).

3. In someAP ∗ P ∗�++-extension over V (compatible with (a1, p0)), set Y = ℎ(X).
Y already appears in some V −

� , and due to niceness, V −
� is a subuniverse of

some ℂ�++-extension of V ′[GQ], and thus Y appears in a ℂ-extension of
V ′[GQ]. So there is A, � as in (2): � ∈ ℎ(A), and in the Q ∗ ℂ-extension of
V ′ either A ⊆ X and � ∉ Y or (which we will now assume without loss of
generality)

A ∩X = ∅ and � ∈ Y . (6.29)
By absoluteness, (6.29) holds in the Q ∗ ℂ�++-extension of V ′, and therefore
in V −

� , and thus also in the final extension, implying that ℎ is not a lifting after
all (as ℎ(X) = Y , A ∩X = ∅, � ∈ ℎ(A) and � ∈ Y ).

So we work in V ′ and have to construct Q. We will construct for � < �+:
• M�, a transitive set of size � (a model of enough of ZFC) closed under <�-

sequences, containing � ∶= (�∗� , �∗� )�<� . Q� is the forcingQ defined inside
M� (or equivalently in V ′).

• InM�, a Q� ∗ ℂ-name Y� and a Q� ∗ ℂ-condition (q�, c�).
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• (�∗�, �
∗
�), a finite modification of some (�i� , �i� ) for some i� < �. (Where

(� , � )<� is the generic Cohen sequence for P ∗� , which we have as we assume
that P ∗� is e.C.)

In the end, we will set Q =
⋃

Q� (which is Q for  the union of all �). We
set X to be the Q name for the generic In set.

Assume we have constructed the objects listed above for all � < �. This gives
us  = (�∗� , �

∗
� )�<� , which defines Q� , and we chooseM� so that it contains  and

(M�)�<� and is closed under <� sequences.
As the final forcingQwill be �+-cc, eachQ ∗ ℂ-name Y of an element of 2� can

actually be captured as a Q�-name for some �, and some bookkeeping guarantees
that each such name actually appears as an Y�, and we put Y� into M� as well.
Also, we enumerate all Q ∗ ℂ-conditions using suitable bookkeeping and deal with
(q�, c�) at stage �. (Actually we might fail to do so; but then we will try again with
the same Y and (q, c) at some later stage; and will succeed at some stage.)

We now want to find i� and (�∗�, �∗�).
1. First note that M� is element of some V [(�� , �� )�<�] for some � < �. By
�+-cc we can find an upper bound i�. So (�i� , �i� ) is Cohen over M�. Set
(�′, �′) = (�i� , �i� ).

2. According to Lemma 6.23, whenever we let (�, �) be generic overM� , then the
Q�+1 defined by extending � by (�, �) will be anM�-complete superforcing
of Q� . So we can consider Diagram 6.1. Note that Y appears inM1, and � in
M�[(�, �)]; so both exist inM2.

3. If �′ is not compatible with4 q�, then we “give up”: We just use (��, ��) =
(�′, �′). We will come back to the same Y and (q, c) cofinally often, and by
density at some such stage we will have compatibility.
So assume compatibility from now on.

4. InM�[(�′, �′)], pick some q′ ≤Q�+1 q� which actually uses (�′, �′), and find a
stronger Q�+1-condition q′′ and a ℂ-condition c′′ deciding (inM2) whether
�′ ∈ Y or not.

5. Case 1: InM�[(�′, �′)], (q′′, c′′) forces that �′ ∈ Y .
Then this is forced by some (s, t) ∈ ℂ with �′ ∈ [s], �′ ∈ [t]. So whenever
we modify �′ above the length of (s, t) (�0, say), we will still get �′ ∈ Y .
Recall that for each � < �,

In(�′, �′, �) ∪ Out(�′, �′, �) ∪ Undec(�′, �′, �) = [�′ ↾ � ] ⧵ {�′}, so

ℎ([�′ ↾ � ]) = ℎ([�′ ↾ � ] ⧵ {�′}) =
= ℎ(In(�′, �′, �)) ∪ ℎ(Out(�′, �′, �)) ∪ ℎ(Undec(�′, �′, �)).

4meaning: �′ ∈ In(q�) ∪ Out(q�)
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M�+1 Q�+1
// M̃3

ℂ
//M3

M�[(�, �)]Q�+1
//

OO

M̃2
ℂ
//

OO

M2

OO

M� Q�
//

ℂ

OO

M̃1
ℂ
//

OO

M1

OO

Figure 6.1: Generics for the top row induce generics for the rows below (note that
Q� is anM�-complete subforcing of Q�+1. The step from the middle to the top row
is not a forcing extension.

Also, �′ ∈ ℎ([�′ ↾ � ]), as ℎ([�′ ↾ � ])Δ[�′ ↾ � ] is a meager set inM�, and
thus avoided by the Cohen �′.
So �′ is in the In, Out or undecided set; we need it in the Out set. We now set �
to be the length of (s, t), and finitely modify �′ above � using one of the three
permutations �1, �2, �3, resulting in an �′′ so that new A ∶= Out(�′, �′′, �)
contains �′.
We now set (�∗�, �∗�) to be (�′, �′′). This is Cohen overM� , and we can extend
(q0, c0) ∈ Q� ∗ ℂ to some (q′′, c′′) ∈ Q� + 1 ∗ ℂ forcing that �∗� ∈ Y . Also,
�∗ ∈ A and q′′ forces that A ∩X = ∅.

6. Case 2: (q′′, c′′) forces that �′ ∉ Y . Then we do the same, but choose the
permutation that results in In(�′, �′′, �) containing �′.



Chapter 7

<�-complete liftings

We looked at one generalization of “(finitely-complete) Boolean algebra liftings of
Borel modulo meager”; another obvious generalization to � would be <�-complete
liftings. Of these liftings, we only know the following:
Lemma 7.1. If a <�-complete lifting homomorphism exists, then � has to be a
measurable cardinal.

Proof. Let ℎ be a <�-complete lifting homomorphism for Bor(�)∕(�).
ForW ⊆ 2<� with |W | < �, let BW ∶=

⋃

{[�] ∶ � ∈ W }, where [�] ∶= {� ∈
2� ∶ � ⊇ �} is the basic cone with trunc �. Note that the setE ∶=

⋃

{ℎ(BW )ΔBW ∶
W ⊆ 2<�, |W | < �} is meager, as a union of < � many meager sets (2<� = � and
ℎ is a lifting homomorphism forBor(�)∕(�)). This set will be our exception set.

Consider now �∗ ∈ 2<�⧵E. For � ∈ �, denote by �� the element of 2� that agrees
with �∗ below �, but ��(�) ≠ �∗(�) and for U ⊆ �, let AU ∶= ⋃

{[��] ∶ � ∈ U},
the elements of 2� that split off of �∗ at levels � ∈ U .

Define D ∶= {U ⊆ � ∶ �∗ ∈ ℎ([AU ](�))}. We now claim that D ia a <�-
complete ultrafilter on �, hence witnessing that � is a measurable cardinal ( it is
nonprincipal because of the exception set). We know AU ∪̇A�⧵U = 2� ⧵ �∗, so either
�∗ ∈ ℎ(AU ) or �∗ ∈ ℎ(A�⧵U ) (its image under ℎ must be everything), hence D is a
ultrafilter. If the set U increases, so does AU , hence D is closed under supersets.

The <�-completeness of D follows form the <�-completeness of ℎ: if �∗ ∈
ℎ(AUi) for all i ∈ � < �, then �∗ ∈

⋂

ℎ(AUi) = ℎ(
⋂

AUi) = ℎ(A
⋂

Ui).
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Chapter 8

Trivial Automorphisms

W. Rudin [Rud56a; Rud56b] was the first to study automorphisms of (!)∕[!]<!.
He showed that under CH, there are 2ℵ1 nontrivial automorphisms of (!)∕[!]<!.
More precisely, he showed that for any two P-points of weight ℵ1, there is an
automorphism sending one to the other. Parovičenko [Par16] also managed to
construct non-trivial automorphisms using the countable saturation of the Boolean
algebra (!)∕[!]<!.

In 1980, Shelah [She82] showed, using oracle-cc, that it is consistent that every
automorphism of (!)∕[!]<! is trivial. Shelah and Steprans [SS88] adapted the
oracle-cc proof to get the same conclusion from the Proper Forcing Axiom (PFA).
Velickovic showed in [Vel93] that the conjunction of the forcing axioms OCA (Open
Coloring Axiom) and MAℵ1 implies that every automorphisms of (!1)∕[!1]<! is
induced by a function from !1 to !1 and that PFA impies that every automorphisms
of(�)∕[�]<! is induced by a function from � to �, for uncountable �. (For cardinals
below the first inaccessible, this follows from OCA and MA alone, see [SS16]).

In this chapter, we study automorphisms of (�)∕[�]<� for � > ℵ0.

8.1 Basic notions and facts

An automorphism � of (�)∕[�]<� is called trivial if it is induced by an almost
permutation of �, that is, a bijection between sets in (�)∕[�]<�.

More formally:
Definition 8.1. A homeomorphisms � ∶ (�)∕I → (�)∕J is trivial if there is
a function f ∶ � → � such that �([X]I ) = [f−1(X)]J for all X ⊆ �, where [X]
denotes the equivalence class of X.

We use inverse images since these are guaranteed to preserve Boolean operations,
but we can often work with forward images (cf. [LM16, Lemma 2.2]), as in the case
of automorphisms of (�)∕[�]<�, since f restricts to a bijection between � ⧵ A and
� ⧵ B, where A,B ∈ [�]<� and moreover, f−1 witnesses �−1 is trivial.
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8.2 The existence of nontrivial automorphisms

For inaccessible �, S. Shelah and J. Steprans showed in [SS15] that under 2� = �+,
there is a nontrivial automorphism of (�)∕[�]<� (the cardinal characteristic related
to the dominating number form [SS15, lem 3.1] takes values > � and ≤ 2�, hence
the hypotheses of the lemma hold under 2� = �+ ).

We present here a simpler proof for measurable �.
Theorem 8.2. Assume � is a measurable cardinal and 2� = �+. Then (�)∕[�]<�
has a nontrivial automorphism.

Proof. Let  be a normal ultrafilter on � (exists since � is measurable) and denote
by  ∶= (�) ⧵ its dual (prime) ideal.

Since 2� = �+, we can list all almost permutations of � as {e� ∶ � < �+}. We
will construct a nontrivial automorphism � of(�)∕[�]<� in �+ stages, diagonalizing
over all e�’s, going along a tower {A� ∶ � < �+} of length �+ that generates the
ideal.

By induction on � < �+ we define A� ∈  and f� an almost permutation of A� ,
such that for � < �:

• A� ⊂∗ A�

• for almost all x ∈ A�∩A� , we have f�(x) = f�(x) (we say “f� almost extends
f�”)

At successor stages � + 1, we will construct A�+1 and f�+1 in such a way that
it is guaranteed to differ from e�.

Fix any X ∈  such that X is disjoint to A�. It might happen that e′′�X ∈ ,
but then we can split it into two parts, one of them not in , and take its preimage
instead of X. Hence, w.l.o.g. e′′�X ∈ .

First assume that |e′′�X ∩ A�| = �. Set A�+1 = A� ∪ X and f�+1 ↾ X = id.
Then f�+1 differs from e� as witnessed by X. So we assume |e′′�X ∩ A�| < �.
Choose Y ∉ , Y disjoint from e′′�X, set A�+1 = A� ∪X ∪ Y and define f�+1 to
extend f� and map X to Y bijectively. Clearly f�+1 differs from A� as witnessed by
X.

At limit stages � of cofinality less than �, let � ∶= cf(�) and choose ⟨�i ∶ i <
�⟩ a cofinal increasing sequence converging to �. The union ⋃

i<� A�i is, by < �
completeness, in  and f� defined as f�(x) = f�i(x), where �i is least such that
x ∈ A�i is an almost permutation of A� and almost extends all f�i .At limit stages � of cofinality � we choose an increasing cofinal sequence
⟨�i ∶ i < �⟩ converging to � and we do some preparation:

By induction on i ∈ � we construct A′i =∗ A�i , such that
• A′i ∩ i = ∅,
• f�i’s fully extend each other on the A′i’s,
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• f�i ∶ A
′
i → A′i is a real permutation (not just almost).

At each step i ∈ �, we first shrink A�i to S by taking out i, as well as the
points where f�i disagrees with some f�j , for j < i (these are < � many points).
f ∶ S → S is still an almost permutation. Then we obtain A′i by applying the
following lemma:
Lemma 8.3. Whenever we have f ∶ S → S an almost permutation, we can find
S ′ ⊆ S, |S ⧵ S′| < �, such that f ∶ S ′

→ S ′ is a permutation.
Proof. Recall that f ∶ S → S an almost permutation if there are A,B ⊆ S,
|A|, |B| < � such that f ∶ S ⧵ A→ S ⧵ B is bijective.

Starting with S0 ∶= dom(f ) = S ⧵ A and letting Si+1 ∶= Si ∩ f ′′Si ∩ f−1Si,
S′ ∶= S! =

⋂

i∈! Si will be as required.If � ∈ S! then clearly � ∈ dom(f ).
If f (�) =  ∉ S!, then  ∉ Si for some i < ! and thus � ∉ Si+1, a contradiction

(this works because � has uncountable cofinality).
The injectivity is trivial since we just have the restriction of a bijective function.

We define f� on A� ∶= ⋃

i∈�A
′
i (which, as A′i ∩ i = ∅, is equal to the diagonal

union, thus, by normality, in the ideal) as follows: for all x ∈ A� , let f�(x) ∶= f�i(x),for any i < � such that x ∈ A′i (we made sure that all such f�i(x) are identical).Then we prove that
1. f� is a permutation of A�:

If x ∈ A� , f�(x) is clearly in A� as well. For showing the injectivity, assume
x1 ≠ x2 in A�, but f�(x1) = f�(x2) =  . Hence there are i, j ∈ � such that
x1 ∈ A′i, x2 ∈ A′j ,  = f�i(x1) = f�j (x2). But then  ∈ A′�1 ∩A′�2 and f−1�i ()and f−1�j () can’t have different values.
It remains to argue the surjectivity: take an arbitrary  ∈ A�. By definition,
there is i < � such that  ∈ A′i. Then � ∶= f−1�i () ∈ A′i ⊆ A� is such that
f�(�) =  .

2. f� almost extends f� , for all � < � (onA′i we have a real extension, A′i =∗ A�iand for each � < � there is some i ∈ �, such that f�i on A�i almost extends
f� on A�).

On X ⊆ �, the nontrivial automorphism � is defined as follows:

�(X) ∶=

{

[f ′′� X] if X ∈ , X ⊆ A� for some � < �+
[� ⧵ f ′′� (� ⧵X)] if X ∉ , � ⧵X ⊆ A� for some � < �+

If � were trivial, then there would be � ∈ � such that e� induces �, a contradic-
tion, since at stage � + 1 we made sure this does not happen.



94 CHAPTER 8. TRIVIAL AUTOMORPHISMS

8.3 MA prevents nontrivial automorphisms for � < 2ℵ0

Theorem 8.4. Assume ℵ0 < � ≤ � < 2ℵ0 , cf(�) > ℵ0, andMA(=�)(�-centered)
holds. Then every automorphism of (�)∕[�]<� is trivial.

The rest of the section will contain the proof of this theorem.
Since � < 2ℵ0 , we can fix a function � ∶ �→ 2!, � → �� . I.e., we can see � as

a subset of 2! and consider an � ∈ � as coded by some branch �� ∈ 2!.
Set Ao2i+j ∶= {� < � ∶ ��(i) = j} and note that for all � ≠ � in �, there is an

i ∈ ! such that � ∈ Aoi , � ∉ Aoi . Of course, Ao2i∪̇Ao2i+1 = � for every i ∈ !.
Let � be an arbitrary Boolean algebra automorphism of (�)∕[�]<�.
Denote by A∗i ⊆ � a representative for the image of the equivalence class of Aoi ,more precisely, A∗i is such that �(Aoi∕[�]<� ) = A∗i ∕[�]<� . W.l.o.g. A∗2i∪̇A∗2i+1 = � for

every i ∈ !.
We will call Y an “image” under � of X if it is representative for the image of

the equivalence class of X, i.e. such that �(X∕[�]<� ) = Y ∕[�]<� and, in turn, X will
be called “preimage” of Y .

For every � < � define �� ∈ 2ℵ0 such that � ∈ A∗2i+j iff ��(i) = j. I.e.
A∗2i+j = {� < � ∶ ��(i) = j}.Wewill prove that the mapping � → � such that �� = �� is an almost permutation
of � which induces the given automorphism �, hence � is trivial.

We will need the following lemma:
Lemma 8.5. Under the assumptions of Theorem 8.4, given any two disjoint sets
A,B ⊆ 2! with |A| ≥ �, |A|, |B| ≤ �, we can find a tree T ⊆ 2<! such that
|A ∩ [T ]| ≥ �, [T ] ∩ B = ∅.

If also |B| ≥ �, we can find T ′ ⊆ 2<! such that |B ∩ [T ′]| ≥ �, [T ′] ∩ A = ∅
and T ∩ T ′ ⊆ 2n for some n.

Note that since [T ] is uncountable, it has size 2ℵ0 > � and hence [T ] ⊈ A.
Proof. We will prove the lemma by finding a coloring F ∶ 2<! → {0, 1}, such that
for x ∈ 2!, if x ∈ A then ⟨F (x ↾ n) ∶ n ∈ !⟩ is eventually 0 and if x ∈ B then
⟨F (x ↾ n) ∶ n ∈ !⟩ is eventually 1.

To apply Matrin’s axiom we need to define a �-centered forcing poset Q, such
that the existence of a “generic” filter (i.e. a filter that meets � many given dense
sets) is equivalent to the existence of such a function F .

A condition q ∈ Q consists of
1. A subset Sq of 2!, which in turn consists of

a. the tree 2n for some n ∈ !
b. finitely many branches to either A or B
c. we assume that for each s ∈ 2n there is a branch of at most one kind

(i.e., to A or to B) extending s.
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2. A function fq ∶ Sq → {0, 1}, which can have arbitrary values below n, and
above n, it is constant 0 if the branch is in A and constant 1 if the branch is in
B

Q is naturally ordered by inclusion, i.e. a condition q is stronger than p if the
underlying set Sq ⊆ 2! increases and the function fq extends fp.

This poset is clearly �-centered: if p and q have the same n and fp and fq are
identical below n, then (since (1).c. holds), their union will be a condition, stronger
than both p and q.

For a ∈ A, the set Da of conditions containing a branch to a is dense: starting
with an arbitrary q in Q, the branch to a might go for a while along branches that
end up in B. In this case, we choose n large enough (above all splitting points of a
from these braches) and 2n extending the finite part of q. Below n we do not care
about the color of the new nodes, but above n we color the new branch to a with the
color 0.

Therefore, “generically” (usingMA(=�)(�-centered)), if a branch is in A, then
it is eventually 0. The same holds for B with eventually 1.

We know |A| ≥ �, where cf(�) > ℵ0 and “eventually 0” is a countable quantifier,
so there is n0 such thatA0 = {x ∈ A ∶ ∀n ≥ n0, F (x ↾ n) = 0} of size ≥ �. Now let
T0 ∶= F−1(0) ∪ 2n0 . This tree might have dying branches, so we prune it to get the
tree T . We now know [T ] ∩ A = [T0] ∩ A = A0 has size ≥ � and that [T ] ∩ B = ∅.

If also |B| ≥ �, there is n0 such that B1 = {x ∈ B ∶ ∀n ≥ n1, F (x ↾ n) = 1} of
size ≥ �. Let n ∶= max{n0, n1}. Define T ′ ∶= F−1{1} ∪ 2n. Then |B ∩ [T ′]| ≥ �,
[T ′] ∩ A = ∅.

For a tree T ⊆ 2<!, define [T ]� = {� ∈ � ∶ �� ∈ [T ]} and [T ]� = {� ∈
� ∶ �� ∈ [T ]}. The set T� is approximated by its levels, that is, [T ]� is the
intersection of the decreasing sets [Tn]� ∶= {� ∈ � ∶ ��↾n ∈ T } and we know
what the automorphisms � does on each of these levels: �([Tn]�) = [Tn]� (since we
assumed A∗2i∪̇A∗2i+1 = � for every i ∈ !). Thus, �([T ]�) ⊆

⋂

�([Tn]�) (since it is
contained each of the �([Tn]�)’s, but �([Tn]�) = [Tn]� , so �([T ]�) ⊆ ⋂

[Tn]� = [T ]� .
Analogously we can show �−1([T ]�) ⊆

⋂

[Tn]� = [T ]�
We now show that the function e defined as e(�) = � with �� = �� is an

almost permutation of �. We know (by definition) that there is a well defined
mapping from � < � to �� and from � < � to �� . We will show that ∀∗� ∃!� (�� =
��),∀∗� ∃!� (�� = ��) (that is, e is almost injective and almost surjective). Then it
remains to show that it induces the automorphism �, i.e. ∀X ⊆ � (�(X) =∗ e′′X).

Proving the following claim will thus finish the proof of the theorem:
Claim 8.6. The following sets have cardinality < �:

1. Λ1 ∶= {� ∈ � ∶ ∃(≥2)� ∈ � (�� = ��)}

2. Λ2 ∶= {� ∈ � ∶ ∃(≥2)� ∈ � (�� = ��)}

3. For all fixed �0 ∈ 2� , Λ3 ∶= {� ∈ � ∶ �� = �0}
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4. Λ4 ∶= {� ∈ � ∶ �� ≠ �� for all � ∈ �}

5. Λ5 ∶= {� ∈ � ∶ �� ≠ �� for all � ∈ �}

6. Λ6 ∶= e′′X ⧵ �(X) for fixed X ⊆ �

7. Λ7 ∶= �(X) ⧵ e′′X for fixed X ⊆ �

Proof. The proofs will be indirect, we always assume the set were large and use the
lemma to get a contradiction.

(1) Assume that |Λ1| ≥ �. For every � ∈ Λ1, let �0� ≠ �1� in � be such that
�� = ��0� = ��1� ,For l ∈ {0, 1}, let Yl ∶= {�l� ∶ � ∈ Λ1} ∈ [�]≥� and denote byXl its preimage
under �, Xl of cardinality ≥ �. As Y0 and Y1 are disjoint, we can assume w.l.o.g.
that X0 and X1 are disjoint as well. For l ∈ {0, 1}, let X∗

l ∶= {�� ∶ � ∈ Xl}.
We now use the Lemma to find two trees T 0, T 1 ⊆ 2! for X∗

0 and X∗
1 . As

|[T l]� ∩Xl| ≥ �, it follows that �([T l]� ∩Xl) ⊆ [T l]� (and w.l.o.g. ⊆ Yl) also has
size ≥ �.

Let Z0 ∶= �([T 0]� ∩X0) ⊆ [T 0]� ⊆ Y0 and Z1 ∶= {�1� ∶ �0� ∈ Z0}. We have
Z1 ⊆ [T 0]� , hence �−1(Z1) ⊆ X1 ∩ [T 0]�, a contradiction, since X1 ∩ [T 0]� = ∅.

(2) Assume towards a contradiction |Λ2| ≥ �. As before, for l ∈ {0, 1} define
Xl ∶= {�l� ∶ � ∈ Λ2}, denote its image under � by Yl and let Y ∗l ∶= {�� ∶ � ∈ Yl}.These sets will be of cardinality ≥ � and disjoint. By the lemma we can find two
disjoint trees T l for l ∈ {0, 1} such that |[T l] ∩ Y ∗l | ≥ � and [T l] ∩ Y ∗1−l = ∅.
Letting [T l]� = {� ∈ � ∶ �� ∈ [T l]}, we know |[T l]� ∩ Yl| ≥ � and thus
|�−1([T l]� ∩ Yl)| ≥ �. We also know �−1([T l]� ∩ Yl) ⊆ [T l]� (and w.l.o.g. ⊆ X0).

Let Z0 ∶= �−1([T 0]� ∩ Y0) ⊆ [T 0]� ⊆ X0 and Z1 ∶= {�1� ∶ �
0
� ∈ Z0}. We

have Z1 ⊆ [T 0]� , hence �(Z1) ⊆ Y1 ∩ [T 0]� , a contradiction, since Y1 ∩ [T 0]� = ∅.
(3) Assume towards a contradiction |Λ3| ≥ �. Let Y be its preimage under

the automorphism �. Hence, |Y | ≥ � as well. Let Λ∗3 ∶= {�� ∶ � ∈ Λ3} and
Y ∗ ∶= {�� ∶ � ∈ Y }, both have to be of size at least �.

Again, using the lemma, we find a tree T ⊆ 2<!, such that |[T ] ∩ Y ∗| ≥ �,
�0 ∉ [T ] (we can ensure this by applying the lemma for Y ⧵ �0 and {�0}. Obviously
|[T ]� ∩ Y | ≥ �, and as before, �([T ]� ∩ Y ) ⊆ [T ]� . Therefore, if � ∈ �([T ]� ∩ Y ),
then �� ∈ [T ]. But � ∈ �([T ]� ∩ Y ) implies � ∈ Λ3, hence �� = �0, which is not in
[T ], a contradiction.

(4) Assume that the set Λ4 has at least � elements. Let Y ⊆ � be a preimage of
Λ4. Obviously |Y | ≥ �. Let Λ∗4 ∶= {�� ∶ � ∈ Λ4} and Y ∗ ∶= {�� ∶ � ∈ Y }. Bythe definition of Λ4, Λ∗4 ∩ Y ∗ = ∅.Wewill use the lemma to find a tree T ⊆ 2<!, such that [T ]∩Λ∗4 = ∅, |[T ]∩Y ∗| ≥
�. Hence |[T ]� ∩ Y | ≥ �.

As before �([T ]� ∩ Y ) ⊆ [T ]� , and hence � ∈ �([T ]� ∩ Y ) implies �� ∈ [T ].
But � ∈ �([T ]� ∩ Y ) also implies � ∈ Λ4, thus �� ∈ Λ∗4 (by definition), a

contradiction to [T ] ∩ Λ∗4 = ∅.
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(5) Assume that the set Λ5 has at least � elements. Let Y ⊆ � be an image of
Λ5. Obviously |Y | ≥ �. Let Λ∗5 ∶= {�� ∶ � ∈ Λ5} and Y ∗ ∶= {�� ∶ � ∈ T }.
Obviously Λ∗5 ∩ Y ∗ = ∅ and Y ∗ also has to have size ≥ � (because of (2))

We will use the lemma to find a tree T ⊆ 2<!, such that [T ] ∩ Λ5∗ = ∅, |[T ] ∩
Y ∗| ≥ �. Hence |[T ]� ∩ Y | ≥ �.

As before �−1([T ]� ∩Y ) ⊆ [T ]� , and hence � ∈ �−1([T ]� ∩Y ) implies �� ∈ [T ]
and since [T ] ∩ Λ∗5 = ∅, � ∉ Λ5.But � ∈ �−1(Y ) means � ∈ Λ5, a contradiction.

(6) Assume Λ6 ⊆ e′′X,Λ6 ∩ �(X) = ∅, |Λ6| ≥ �. We know �−1(Λ6) is disjoint
from X and as before, define X∗ ∶= {�� ∶ � ∈ X} and (�−1(Λ6))∗ ∶= {�� ∶ � ∈
�−1(Λ6)}

Wecan use the lemma toX∗ and (�−1(Λ6))∗ to get a tree T such that [T ]∩X∗ = ∅,
|[T ] ∩ (�−1(Λ6))∗| ≥ �.

Assuming � ∈ �([T ]� ∩ �−1(Λ6)), since �([T ]� ∩ �−1(Λ6)) ⊆ [T ]� , we get
�� ∈ [T ]. On the other hand, it means � ∈ Λ6 and we know Λ6 ⊆ e′′X. Since e is
an almost permutation, for almost all � ∈ Λ6,∃� ∈ X such that �� = �� . But since
�� ∈ X∗, it follows �� ∈ X∗, hence �� ∉ [T ], a contradiction.

(7) W.l.o.g we can assume �(X) ∩ e′′X = ∅ (otherwise just replace X with
�−1(�(X) ⧵ e′′X)), both of size ≥ �. Hence A ∶= �−1(e′′X) is also disjoint from
Λ7 = X. Defining A∗ ∶= {�� ∶ � ∈ A} and X∗ ∶= {�� ∶ � ∈ X}, we can apply
the lemma to obtain a tree T ⊆ 2ℵ0 such that |[T ] ∩ A∗| ≥ �, [T ] ∩X∗ = ∅. Then
�([T ]� ∩ A) ⊆ [T ]� , |�([T ]� ∩ A)| ≥ �.

If � ∈ �([T ]� ∩A), then on one hand, �� ∈ [T ]. On the other hand, � ∈ �(A) =
e′′X, and since e is an almost permutation of �, for most such �’s there must be
� ∈ X with �� = �� . Because �� ∈ X∗, and X∗ ∩ [T ] = ∅, we can conclude that ��
can’t be in [T ], hence the contradiction.
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