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Abstract

The aim of this thesis is the investigation of electronic correlations in the interme-
diate region between the metallic and insulating phase of the frustrated Kagome
lattice. Most previous studies address the ground state of the Heisenberg model
on the Kagome lattice, and therefore only the purely insulating phase. However,
we go a step further by studying the Hubbard model on the Kagome lattice and
thus including metallic contributions. We solve the Hubbard model with the de-
terminant quantum Monte Carlo (DQMC) method and compare to results of the
dynamical mean field theory (DMFT). First we study the half-filled system across
the range of the Mott-Hubbard metal-insulator transition, and then the electron-
doped system, where the chemical potential is in the center of the flat band. In
various post-processing steps we calculate the k-integrated spectral functions, the
k-resolved spectral functions, the equal-time magnetic structure factors and the
dynamic magnetic structure factors.
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Chapter 1

Introduction

Geometrical frustration of lattices gives rise to interesting phenomena, such as e.g.
spin liquids. One famous lattice of this type is the Kagome lattice which is one of
the simplest frustrated lattices with the coordination number of 4. One common
model which is used to describe spin liquids is the Heisenberg model. Numerous
studies have addressed the ground state of the Heisenberg model on the Kagome
lattice. One important question, most of them are trying to answer is, if the spin
excitation spectrum is gapped, which in turn defines the nature of the spin liquid
ground state. A gapped spin liquid ground state in Kagome would give rise to
Z2 topological states, which are in the focus of current research. Such topological
states could have applications in quantum computing, due to the long-range entan-
glement and they could also be used as high-temperature superconductors because
of their stability stemming from the topological protection. Finding the solution of
these problems is hard, because an analytical solution is not possible, and numer-
ical solutions are challenging as well. In order to solve the Heisenberg model on
the Kagome lattice, various methods can be applied and because of the different
approximations used, the results are also different. Indeed, some methods show
a gapped ground state, whereas other methods claim a gapless one. Therefore,
it is still not clear whether the ground state is gapped or not. This discrepancy
remains unresolved also on the experimental site: there are papers vouching for a
gapless ground state[30, 43] as well as for gapped ground states[11, 55, 45].

One other interesting feature of Kagome’s electronic structure is the flat band.
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Flat bands pertain to non-dispersive states and are also appearing in bipartite
lattices with an unequal number of sites in the sub-lattices[21, 7]. For this type
of lattice Lieb’s theorem[31] holds which says that if a uniform onsite energy is
turned on at half filling, the ground state has a non zero spin and therefore, is fer-
rimagnetic. Such Lieb lattices are not frustrated. Hence, this Lieb theorem does
not apply for the Kagome lattice and therefore we will explore the magnetism of
flat bands beyond this theorem.

On the experimental side, it is very hard to actually realize a Kagome lattice.
Usually, the Kagome lattice appears within a three dimensional structure as a
sublattice layer. Most problems of creating a Kagome lattice involve the growing
process, where the crystal is easily polluted with defects and impurities. So far,
only insulating compounds have been realized, which is why most of the theoretical
studies for the Kagome lattice are done on the basis of the Heisenberg model and
therefore only considering magnetic interactions. Growing such insulating struc-
tures is challenging but possible. However, to grow a metallic Kagome lattice is
even more complicated and not realized yet. Generally, a way to go from an insu-
lating compound to a metallic one is to substitute some of the atoms. For instance
when using cuprates, one can chemically substitute atoms that are in between the
CuO2 layers (e.g. replace La by Sr) and the effect is to dope the CuO2 layers.
In this way, the insulating antiferromagnet can be tuned into a superconductor.
However, this is not possible for Kagome: First, chemical replacements are hard to
do and second, even if chemical replacements work, one would face the problem,
of disorder: impurity atoms will sit right in the Kagome lattice itself instead of
going into the interlayer space. Maybe the most promising route towards a metal-
lic Kagome system is through a gate voltage.

Cuprates can be described with the Hubbard model which allows not only spin-spin
interactions, but also the hopping of electrons between lattice sites and therefore,
can be used to describe metallic systems. The difficulties of actually realizing a
metallic Kagome compound makes it worth studying the Hubbard model on a
Kagome lattice to see whether new interesting physics would arises and whether
metallic Kagome, may hence have an application. In this thesis we are especially
interested under which circumstances the electronic system undergoes phase tran-
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sitions within the intermediate coupling regime between the pure metallic phase
and the insulating spin liquid region. In particular, we study the behavior of the
Hubbard model for different interaction strengths and different temperatures.

In order to solve the Hubbard model, describing a correlated system, different
techniques have been developed. Three distinct methods that are relevant for this
thesis are the determinant quantum Monte Carlo (DQMC)[5], the dynamical mean
field theory (DMFT)[18], and its diagrammatic extension, the dynamical vertex
approximation (DΓA)[17]. We investigate three major parts: the metal-insulator
transition at half filling and magnetic properties by looking at the one-particle
spectra and spin-spin correlation functions. And finally the spin-spin correlations
at the filling corresponding to the half-filled flat band.
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Chapter 2

Models and Methods

This chapter introduces the models and methods used in this work. We start
with a recapitulation of the basics of quantum field theory and then turn to the
Hubbard model and Kagome lattice. After that, we describe the two methods
determinant quantum Monte Carlo (DQMC) and dynamical mean-field theory
(DMFT). Finally, we explain the analytic continuation method - the maximum
entropy method, used in post-processing to obtain dynamic correlation functions.

2.1. Quantum Field Theory
This section is a short reminder of the most important tools used to describe quan-
tum many-body systems. The fundamental apparatus describing such systems is
based on Green’s functions and Feynman diagrams. Green’s functions are widely
used in physics, in particular in field theories to describe the interaction between
particles, and are one of the standard tools in modern physics. In condensed mat-
ter physics, the energy scales are usually non-relativistic and therefore we do not
have to worry about a covariant formulation and the equations take a simpler form
than in general Lorentz-invariant field theories. This introduction closely follows
the text book by Zagoskin[2].
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2.1.1. Green’s Functions

Let us start with the definition of a Green’s function and a propagator. A Green’s
function G(x, x′; t, t′) is a solution of a linear differential equation and obeys

L(x, t)G(x, x′; t, t′) = −δ(t− t′)δ(x− x′) (2.1)

where L is a differential operator of a linear differential equation. This definition
is very abstract, but we can interpret the Green’s function in a more physical way.
For this we introduce the following definition of a propagator K(x, t;x′, t′)

ψ(x, t) =
∫
K(x, t;x′, t′)ψ(x′, t′) , (2.2)

which propagates a wave ψ from location x′ and time t′ to location x and time t. If
the propagator fulfils the causality principle, the following applies: K(x, t;x′, t′) =
0 for t < t′ and K(x, t;x′, t′) = δ(x− x′)δ(t− t′) for t = t′ to yield again the wave
function ψ(x, t). To see the connection between Green’s function and propagator
we take a look at the Schrödinger equation and reformulate it into

[
i~
∂

∂t
− H(x, t)

]
︸                    ︷︷                    ︸

Lψ

ψ(x, t) = 0 , (2.3)

where we defined the linear differential operator Lψ of the Schrödinger equation.
By plugging in Equation (2.2) and applying the chain rule on it, one can seen,
that the propagator must satisfy

LψK(x, t;x′, t′) = i~δ(x− x′)δ(t− t′) . (2.4)

Besides the pre-factor, this is the definition of the Green’s function in Equa-
tion (2.1). Hence, we can interpret the Green’s function, which solves the Schrödinger
equation, as a propagator for location x and time t to location x′ and time t′. The
above equations are for single particles at zero temperature. However, we would
like to extend these methods to describe many particles at finite temperature. To
calculate realistic systems we have to deal with ∼ 1023 particles, which makes it
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impossible to describe all of the particles. But even if we could calculate every
particle at every time point, we would not really benefit from it. It is more im-
portant to know, how a system reacts under a perturbation and this is essentially
what Green’s functions telling us. We can interpret them as a perturbation by
”removing” a particle at (x, t) and ”inserting” it again at (x′, t′). Let us introduce
the time evolution operator

U(t) = T e
− i
~

t∫
0
dτH(τ)

, (2.5)

which moves the wave function from time 0 to time t. The Wick time ordering
operator T ensures chronological ordering of the integrals when expanding the
exponent. With this operator we can now relate a wave function between any
time points t and t′ by

ψ(t) = U(t)U †(t′)ψ(t′) = S(t, t′)ψ(t′) , (2.6)

where the S-operator is defined as

S := U(t)U †(t′) . (2.7)

With this definition and using the completeness of the orthogonal eigenstates of
H, we can express the wave function of the particle in the Schrödinger picture and
in the space time coordinates (x, t) via its value at some previous space-time point
(x′, t′) as

ψ(x, t) = 〈x|φ(t)〉 = 〈x|S(t, t′)|φ(t′)〉

=
∫
dx′ 〈x|S(t, t′)|x′〉 〈x′|φ(t′)〉

=
∫
dx′ 〈x|S(t, t′)|x′〉ψ(x′, t′) .

(2.8)

By comparing Equation (2.8) with Equation (2.2), we can identify the previously
defined propagator

K(x, t;x′, t′) = 〈x|S(t, t′)|x′〉 . (2.9)

The Green’s function will be the key component for describing a many particle
system. Unfortunately, we cannot work with the simple one-particle wave func-
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tion any more, but rather need to take the whole many particle wave function into
account, which can be expressed by the eigenfunctions of the single particle Hamil-
tonian. Further, we have to obey the principle of indistinguishable particles, which
means by exchanging two particles, the wave function must stay the same modulo
a phase factor. The phase factor only takes the values +1 or −1, for bosons and
fermions respectively. Therefore, a multi-particle wave function must be symmet-
ric (bosons) or antisymmetric (fermions) with respect to particle exchange. The
wave function is now a state in Fock space and second quantization operators are
acting in it. All operators can be represented by creation/annihilation operators
where we distinguish again between bosonic and fermionic ones. We briefly remind
here the most important operator relations. In general, the following applies when
creation and annihilation operators act on states

ψ†
i |. . . , Ni, . . .〉 ∝ |. . . , Ni + 1, . . .〉
ψi |. . . , Ni, . . .〉 ∝ |. . . , Ni − 1, . . .〉 .

(2.10a)
(2.10b)

The field operators ψ†
i and ψi are the creation and annihilation operators for the

i-th state respectively and Ni denotes the number of particles in this state. If
we consider fermions, Ni can only be 0 or 1, due to the Pauli principle and for
bosons Ni can be any positive integer including zero. For the fermionic creation
and annihilation operators c†

i and ci , one can derive then the anti-commutator
relations {

ci,σ, c
†
j,σ′

}
= δσσ′δij{

ci,σ, cj,σ′

}
=
{
c†
i,σ, c

†
j,σ′

}
= 0 ,

(2.11a)

(2.11b)

where the index σ is denoting the spin. The bosonic operators obey the commu-
tator relations [

bi,σ, b
†
j,σ′

]
= δσσ′δij[

bi,σ, bj,σ′

]
=
[
b†
i,σ, b

†
j,σ′

]
= 0 .

(2.12a)

(2.12b)

By looking back at the propagator and Green’s function definition in Equations (2.4)
and (2.9), one can formulate the causal Green’s function with the general creation
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and annihilation operators from Equation (2.10) as

Gxxxxxx′,tt′,σσ′ = −i
〈
ψxxx,t,σψ

†
xxx′,t′,σ′

〉
Θ(t− t′) ∓ i

〈
ψ†
xxx′,t′,σ′ψxxx,t,σ

〉
Θ(t′ − t)

= i
〈
T ψxxx,t,σψ†

xxx′,t′,σ′

〉
.

(2.13)

In the first line we ensured the causality with the Heaviside function, which was
simplified in the last line with the Wick time ordering operator. As one can see, the
above definition in Equation (2.13) can be interpreted as the following: a particle
with spin σ at position x and time t is annihilated and created at different position
x′ and time t′ with spin σ′. Thus, a propagation. The brackets 〈· · · 〉 are denoting
the Green’s function’s statistical average over all states of the many-body system,
which is its trace with the density operator ρ. In general, for an operator O this
is

〈O〉 = 1
Z

tr {ρO} = 1
Z

tr
{
e−βHO

}
Z = tr {ρ} = tr

{
e−βH

}
,

(2.14a)

(2.14b)

where Z is the partition function of a canonical system. However, we will use
the grand canonical formulation of Equation (2.14), where the density operator
changes to

ρ = e−β(H−µN ) . (2.15)

In this ensemble the exchange of particles is allowed, which is controlled by the
chemical potential µ coupling to the particle operator N . For an unperturbed
system with Hamiltonian H0 at zero temperature, one can derive the result for the
Fourier transformed causal fermionic Green’s function analytically by taking the
limit β → ∞ and tracing over the eigenstates, which gives

Gkkk,ω = 1
ω − (εkkk − µ) + isgn(ω)0+

. (2.16)

In the above result, εkkk is the dispersion relation and ω the energy. If we want
to describe realistic systems, we need a more sophisticated formalism, also taking
interactions and finite temperatures into account. This will be the well-known
Feynman perturbation theory. The beauty of this theory lies in the fact, that the
perturbation is expanded as a series, where each term can be represented as a set
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of graphs, the Feynman diagrams. Let us assume we can write the Hamiltonian of
the interacting system as

H = H0 + W(t) , (2.17)

with W(t) a small time dependent perturbation. This allows us to use the inter-
action picture, where an operator is defined as

AI(t) := e
i
~
H0tAe− i

~
H0t . (2.18)

From here on, all operators are defined in the interaction picture, including the
Green’s function which we formulate by using the S-operator, introduced earlier.
Further we assume that the adiabatic theorem holds, which leads to the formula-
tion

iGxxxxxx′,tt′,σσ′ =
〈Φ0|T S(∞,−∞)Ψxxx,t,σΨ†

xxx′,t′,σ′ |Φ0〉
〈Φ0|S(∞,−∞)|Φ0〉

, (2.19)

The state |Φ0〉 is the ground state of the unperturbed system and the S-operator
is defined in the interaction picture as

S(t, t′) = T e
−i

t∫
t′
dt̃W(t̃)

. (2.20)

We mentioned before, that Feynman perturbation theory uses expansion series, in
particular the expansion of the exponent in Equation (2.20). One obtains then
terms of the form

〈Φ0|T W(t1)W(t2) · · · W(tn)Ψxxx,t,σΨ†
xxx′,t′,σ′|Φ0〉 . (2.21)

Cutting off at a certain order n and plugging it back in into Equation (2.19) yields
the approximation of order n of the interacting Green’s function. Each term of
this perturbation series consists of multiple operators and can be very complicated.
However, with Wick’s theorem (see Section 2.1.3) we can reduce the correlation
function into sum of non-interacting Green’s functions and construct the Feynman
diagrams from it.
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2.1.2. Matsubara Green’s Functions

In the previous derivations, we were working with the system at zero temperature.
We now generalize to finite temperature, which means that we have to average over
all excited states and not only the ground state. The states are then highly degen-
erate, the adiabatic theorem is not valid any more and the previous scheme breaks
down. However, one can exploit the analogy between the time evolution operator
exp (−iHt) and the density operator exp (−βH). We define the transformation
into imaginary time through the Wick rotation

t ↔ −iτ , (2.22)

with 0 < τ < β. From this definition, one obtains an equation similar to the
Schrödinger equation

i
∂

∂t
ρ(it) = Hρ(it) . (2.23)

As we discussed before, we can use Green’s functions to solve the Schrödinger
equation. This motivates the definition of the new temperature- or Matsubara
Green’s function

Gxxx1xxx2,τ1τ2,σ1σ2 = −
〈
Tτψxxx1,τ1,σ1ψ

†
xxx2,τ2,σ2

〉
. (2.24)

The creation and annihilation operator above are the Wick rotated operators

ψxxx,τ,σ = eHτψxxx,σe
−Hτ

ψ†
xxx,τ,σ = eHτψ†

xxx,σe
−Hτ ,

(2.25a)
(2.25b)

where the operator exp (Hτ) determines the time evolution in imaginary time.
Further, the time ordering operator Tτ orders now the imaginary time arguments.
Let us now explore some important properties of the temperature Green’s func-
tion. Looking back at the definition in Equation (2.24) of the imaginary time
Green’s function, one can show by using the cyclic invariance of the trace that the
imaginary-time Green’s function only depends on the difference τ = τ2 − τ1, which
is valid for any temperature Green’s function. We also assume an isotropic system,
where the Green’s function spatially depends only on the difference xxx = xxx2 − xxx1.
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We can write then
Gxxx1xxx2,τ1τ2,σ1σ2 = Gxxx,τ,σ1σ2 . (2.26)

A closer look at Equation (2.32) also reveals why we restricted the imaginary time
range to 0 < τ1/2 < β. The reason is, if β < |τ |, the sign in the exponent of
exp (H(τ − β)) would get positive and the Green’s function would diverge. The
divergence results from the fact, that there is only a lower bound for the eigen-
values of hermitian operators and the eigenvalues can get arbitrarily big. These
two properties, the restriction of the τ -range and that the Green’s function only
depends on a single τ value, has some further consequences: τ only varies from
−β to β and therefore can be expanded as the Fourier series with a single set of
discrete frequencies νn

Gxxx,τ,σ1σ2 = 1
β

∞∑
n=−∞

Gxxx,νn,σ1σ2e
−iνnτ , (2.27)

where the frequencies are known as Matsubara frequencies and satisfy

νn = πn

β
. (2.28)

By Fourier transforming this expression in x and νn, we obtain the Green’s function
in k-space and Matsubara frequencies. Hence,

Gkkk,νn =
β∫

0

dτeiνnτGkkk,τ . (2.29)

When investigating the periodicity of the Green’s function, it can be shown (again
by using the cyclic invariance of the trace), that it fulfills

Gxxx,τ+β,σ1σ2 = ∓Gxxx,τ,σ1σ2 . (2.30)

The sign depends on the type of operators used, for fermions it is negative and for
bosons positive. It is caused by the exchange of fermionic or bosonic operators and
therefore, depends on the statistics. Hence, bosonic(fermionic) Green’s functions
are (anti-)periodic and only even(odd) coefficients in the Fourier series are non-
zero. This allows us to distinguish between the fermionic (νF

n ) and bosonic (νB
n )
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Matsubara frequencies

νF
n = (2n+ 1) π

β

νB
n = 2nπ

β
.

(2.31a)

(2.31b)

We will derive an important representation of the Green’s function, the spectral
representation. Let us assume we have a Hamiltonian H, whose eigenstates are
|n〉 and En the corresponding eigenvalues. We can write the Green’s function in
k-space and imaginary time as

Gkkk,τ = − 1
Z

tr
{
e−βHeHτckkke

−Hτc†
kkk

}
. (2.32)

After explicitly writing out the trace with a sum, doing the Fourier transformation
in Equation (2.29) and inserting a complete set of eigenstates, we get

Gkkk,νn = − 1
Z

β∫
0

dτeiνnτ
∑
nm

〈m|e−βHeτHckkk|n〉 〈n|e−τHc†
kkk|m〉

= 1
Z
∑
nm

e−βEm 〈m|ckkk|n〉 〈n|c†
kkk|m〉

iνn − (En − Em) e
iνnτ−τ(En−Em)

∣∣∣∣∣
β

0

= 1
Z
∑
nm

e−βEm ±e(−En+Em)β − 1
iνn −En + Em︸           ︷︷           ︸

−ω′

〈m|ckkk|n〉 〈n|c†
kkk|m〉 .

Let us define the spectral function as

Akkk,ω′ := 1
Z
(
1 ± e−βω′)∑

nm

e−βEm 〈m|ckkk|n〉 〈n|c†
kkk|m〉 δ (ω′ − (En − Em)) , (2.33)

which allows us to write the Matsubara Green’s function in the form

Gkkk,νn =
∫
dω′ Akkk,ω′

iνn − ω′ . (2.34)

The result in Equation (2.34) is important and has some physical meaning. If we
consider the limits for T = 0 (β → ∞) and positive energy ω > 0, the spectral
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function becomes

Akkk,ω =
∑
m

∣∣∣〈m|ckkk|φ0〉
∣∣∣2 δ (ω − (E0 − Em)) . (2.35)

This expression tells us the probability of adding or removing a particle with mo-
mentum kkk from the ground state |φ0〉 and adding the energy −ω. Experimentally,
this can be realized in photoemission spectroscopy. Equation (2.34) is a relation
connecting the Green’s function on the imaginary frequency axis with the spectrum
on the real axis, through a kernel

Kνn,ω = 1
iνn − ω

, (2.36)

which can also be formulated for imaginary time by doing a Fourier transformation.

Another important property of the Green’s function can be derived from the fact,
that in general it is a complex function and can be written as a sum of a real and an
imaginary part. Because of the analytical properties of the retarded and advanced
Green’s function, in particular that the causality relation holds, these two parts
are not independent from each other. This is described with the Kramers-Kronig
relations

RGR,A
kkk,ω = P 1

π

∫
dω′IG

R,A
kkk,ω′

ω − ω′

IGR,A
kkk,ω = −P 1

π

∫
dω′RG

R,A
kkk,ω′

ω − ω′ .

The operator P denotes the principle value. Comparing this to Equation (2.34),
one also obtains the relation

Akkk,ω = − 1
π
IGkkk,ω′ . (2.38)

Therefore, the imaginary part of the Green’s function has the very important phys-
ical meaning of describing the excitation spectrum of the system. We mentioned
the spectral function in the previous part, where the mapping onto the real axis
is done with the integral in Equation (2.34). However, the kernel for bosonic re-
sponse functions χqqq,ω is singular at ω = 0. In order to avoid the singularity, we can
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define a new function Bqqq,ω and analytic continue it with a different kernel. The
starting point is the relation

χ′
qqq,ω = 1

π

∞∫
−∞

dω′ χ
′′
qqq,ω′

ω′ − ω
(2.39)

from linear response theory, where we denoted χ′
qqq,ω as the real part and χ′′

qqq,ω as
the imaginary part. Due to causality, one can show that for bosonic response
functions χ′′

qqq,−ω = −χ′′
qqq,ω holds. By using this relation on the split up integral

(from −∞ to 0 and from 0 to ∞) and dividing the nominator and denominator
by ω′, Equation (2.39) can be written as

χ′
qqq,ω = 2

π

∞∫
0

dω′ ω′2

ω′2 + ω2

χ′′
qqq,ω′

ω′︸  ︷︷  ︸
B
qqq,ω′

. (2.40)

This expression will be used in the maximum entropy method, described in Sec-
tion 2.6.1 for bosonic correlations such as the spin susceptibility.

2.1.3. Wick’s theorem

Wick’s theorem is one of the most important theorems in quantum field theories.
It states that[54] the time-ordered product of field operators in interaction rep-
resentation equals to the sum of their normal-ordered products with all possible
contractions

T ψ1ψ2 · · ·ψn =N [ψ1 · · ·ψn] +
∑
(ij)

N [ψ1 · · ·ψi · · ·ψj · · ·ψn]

+
∑

(ij)(kl)
N [ψ1 · · ·ψi · · ·ψk · · ·ψj · · ·ψl · · ·ψn]

+ . . . ,

(2.41)

where N denotes normal ordering and the over-braces the pair contractions. The
indices in (i, j) denote the summation over pairs. The ψi can be creation or annihi-
lation operators and the index i labels any dependency (e.g. time, position, spin).

16



The normal ordering N [ψ1 · · ·ψn] of some operators means, that all annihilation
operators stay on the right of the creation ones. A contraction of two operators is
defined as the difference between their time ordered and normal ordered product

ψiψj := T ψiψj −N [ψiψj] . (2.42)

Contractions of operators of the same sort (i.e. both annihilation or both cre-
ation) vanish, which can be shown by inserting into Equation (2.42). However,
contracting two conjugated operators will give a number and can be expressed as
an unperturbed Green’s function. We are ready to apply the theorem on an exam-
ple. A simple example, which can be found in Zagoskin[2], is the interaction with
strength U of two electrons. Given the perturbation W(t) of this problem, the
first step is to expand the interacting Green’s function. If we limit the expansion
to first order, we obtain

iGXX′ ≈
〈φ0|ψXψ

†
X′|φ0〉 − i

2~
∫ ∫

d1d2U12 〈φ0|T ψ†
1ψ

†
2ψ2ψ1ψXψ

†
X′ |φ0〉

1 − i
2~
∫ ∫

d1d2U12 〈φ0|T ψ†
1ψ

†
2ψ2ψ1|φ0〉

, (2.43)

where the 1 and 2 are denoting internal vertices, which will be integrated out. The
labels X and X ′ are carrying the actual significant coordinates of the approximated
interacting Green’s function. The interaction term U12 is acting between the two
vertices 1 and 2. In order to find the contributions for the Green’s function we need
to know another theorem, the linked cluster theorem. It states that we can omit
the denominator in Equation (2.43) and at the same time ignore the contributions
of disconnected diagrams. When applying Wick’s theorem on the correlators in
Equation (2.43), one obtains product of non-interacting Green’s functions of the
form

The gray diagrams are called disconnected and only contribute to the vacuum
amplitude. Therefore, they cancel with the denominator and we only need to
include the connected diagrams. When doing so the only diagrams left in first
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order are
GXX′ + GX2G21G1X′U12 + GX1G1X′G22U12 (2.44)

which are the non-interacting Green’s function, the Fock term and the Hartree
term respectively. As one can see, this method is very powerful and helps to
interpret even complicated correlation functions. For more details about Feynman
diagrams, we refer to the literature[23, 10, 2].

2.1.4. Self Energy

The self energy is a concept to summarize Feynman diagrams in a compact form
and allows it to connect the non-interacting Green’s function with the interacting
one. This connection is given by the Dyson equation

Gij,τ = Gij,τ +
∑
i′j′

β∫
0

β∫
0

dτ ′dτ ′′Gii′,τ ′Σ(i′j′,τ ′′−τ ′)Gj′j,τ ′′ (2.45)

= +
Σ

The self energy Σ contains all one-particle irreducible Feynman diagrams, which
means, that by cutting one Green’s function line, the diagram cannot be separated
into two parts. Two of such first-order diagrams, we obtained already in Equa-
tion (2.44). However, the self energy usually contains also higher order diagrams
and from all the diagrams in the self energy, one can build then all possible re-
ducible contributions to the interacting Green’s function. This is essential done
in the recursion of Equation (2.45). An example of two second-order reducible
diagrams build from the first-order irreducible diagrams in Equation (2.44) are
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By writing out the recursion, one can build a geometric series from it. Fourier
transformed self energy in Matsubara frequencies and in k-space is diagonal and
then we can write

Gkkk,νn = Gkkk,νn + Gkkk,νnΣkkk,νn
Gkkk,νn + Gkkk,νnΣkkk,νn

Gkkk,νnΣkkk,νn
+ . . .

= Gkkk,νn
∞∑
m=0

(
Σkkk,νn

Gkkk,νn
)m

= Gkkk,νn
(
1 − Gkkk,νnΣkkk,νn

)−1
=
([

Gkkk,νn
]−1

− Σkkk,νn

)−1
,

and further
G−1
kkk,νn

= G−1
kkk,νn

− Σkkk,νn
(2.46)

The curly G is denoting the non-interacting Green’s function and Σ the self energy.
For a detailed discussion of the self energy we refer to the literature[23, 10, 2].

2.2. The Hubbard Model
With the development of quantum theories the necessary tools for describing mi-
croscopic effects in materials were given. Scattering experiments showed that the
atoms in a solid are arranged in a periodic pattern and upon this, Felix Bloch
showed[6] that the wave functions of electrons inside a periodic potential satisfy
the same periodicity. His famous theorem was the basis of the first descriptions
of metals and their electronic properties. Because of the vast amount of parti-
cles in a solid, approximations must be used to solve the underlying Schrödinger
equation. A very rudimentary approximation is neglecting the electronic interac-
tions completely and treating the electrons as freely moving inside the potentials
of the nuclei. Although, this seems to be a very bad approximation, because the
Coulomb interaction is long ranged and every electron should feel all other elec-
trons, it works quite well for certain material types, especially partially filled s

and p materials, particularly metals. We call the theory for such weakly correlated
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materials Fermi liquid theory[1].

Consider a free electron gas where we slowly turn on interactions. If this turning on
is slow enough we are in the adiabatic regime and spin, charge and momentum are
unchanged. Only dynamical properties such as the mass change to a renormalized
value. Therefore, there is a one to one correspondence between elementary excita-
tions in the Fermi gas and Fermi liquid called quasi-particles. Quasi-particles can
be understand as a collective phenomena e.g a ”dressed” electron which is screened
from the surrounding electrons. Usually, simple mean field theories are sufficient
for describing weakly correlated materials. If orbitals are getting very narrow, the
Coulomb interaction is not screened well any more and the Fermi liquid theory
breaks down. This is the case for d and f orbitals. Thus, correlation effects can-
not be neglected and a much more difficult problem needs to be solved. The most
common model for studying such systems is the Hubbard model[8]. We start with
the general form of an interacting Hamiltonian and explain the approximations
yielding the Hubbard model. The d and f electrons are more localized compared
to the s and p electrons and therefore, it is convenient to use the tight-binding
representation[49]. The orbital resolved full solid state Hamiltonian with Coulomb
interaction and tight-binding approximation in second quantization is

H = −
∑

ij,mn,σ

tmnij c
†
i,m,σcj,n,σ +

∑
i,mn,σ

δijδmnµc
†
i,m,σci,n,σ︸                                                                ︷︷                                                                ︸

Hhop

+

1
2

∑
σ,σ′,ijkl,mnop

Umnop
ijkl c†

i,m,σc
†
j,n,σ′ck,o,σcl,p,σ′

︸                                                     ︷︷                                                     ︸
HInt

,
(2.47)

where {i, j, k, l} are lattice sites, {m,n, o, p} are orbital indices and {σ, σ′} the
spins up or down. The hopping term is described through the hopping tensor tmnij
or orbital overlap and the chemical potential µ which controls the filling. The
tensor Umnop

ijkl is the Coulomb interaction between the electrons. The Hamiltonian
in Equation (2.47) contains all the energy bands and the full Coulomb interaction.
Hence, we have made no approximations yet. To simplify this model and keep the
essential physics we have to do make a few approximations:

1. For lower temperatures the interesting physics happens around the Fermi
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energy, which is why we consider only the bands around the Fermi level.
In the later calculations, we focus on a model Hamiltonian which uses one
orbital only. Therefore, for the calculations we drop the orbital dependency
completely.

2. As already mentioned, we are interested in the physics of d and f electrons,
which are very localized in real space. Thus, we restrict ourself to only nearest
neighbour hopping and let the sum in the first term of Equation (2.47) run
only over the corresponding nearest neighbours denoted as < ij >. Further,
we neglect inter-orbital hopping and the hopping tensor becomes tij. If the
hopping is uniform, we can also drop the spatial dependence and set it to a
constant value t.

3. We simplify the interaction Uijkl by reducing the spacial dependence. The
interaction tensor Uijkl consists of three major parts: Uijij = Vij with i , j

representing the classical electrostatic interaction between electrons on site
i and j. Uijji = Jij with i , j is the exchange interaction and responsible
for ferro- and anti-ferromagnetic coupling. The onsite Coulomb interaction
Uiiii is the third part and becomes predominant if the overlap between the
Wannier functions and correspondingly the Vij and Jij are small. Thus, as
another approximation, we use the Uiiii only and extract U = Uiiii. This is
called Hubbard interaction[8].

By applying all above mentioned approximations, the Hamiltonian in Equation (2.47)
reduces to the Hubbard Hamiltonian

HHubbard = −t
∑

〈i,j〉;σ=↑↓
c†
i,σcj,σ + U

∑
i

ni,↑ni,↓ − µ
∑
i

(
ni,↑ + ni,↓

)
. (2.48)

Depending on the strength of the interaction U , it is possible to distinguish be-
tween a metallic or insulating phase. In general, when U/t increases from zero the
system undergoes a phase transition known as Mott metal-insulator transition[36].
When U � t on average one lattice site holds one electron, charge fluctuations
become negligible and the Hubbard model reduces to the Heisenberg model with
a antiferromagnetic exchange coupling of J ≈ −4t2/U . In contrast when U/t � 1
the remaining Hubbard model describes a weakly correlated metal and the elec-
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trons are de-localized. Although the Hubbard model is a simple model describing
electronic correlation in a lattice, it is not a trivial problem to solve and has kept
the community busy for decades[35, 41]. From the various methods developed
addressing this problem[12, 9], we use the determinant quantum Monte Carlo ap-
proach (Section 2.4), directly solving the Hubbard model at finite temperature in
real space, and the dynamical mean field theory (Section 2.5), a diagrammatic
approach of solving the Hubbard model.

2.3. Kagome Lattice
The Kagome lattice is a highly frustrated lattice which has been studied by vari-
ous analytical and numerical methods. Frustrated lattices[52] are at the focus of
research because they show remarkable collective phenomena, such as fractional
particle excitations (which predict emergent magnetic monopoles) and emergent
gauge fields[3]. Another interesting property of Kagome lattices are the existence
of flat bands. Flat bands describe non dispersive particles and therefore, particles
which effectively cannot hop between lattice sites and are purely localized[21, 56].

In Figure 2.1 we show the Kagome lattice, where the dots are the atoms and
the lines the bonds in between. The blue rhomboid is the unit cell we chose, where
the two vectors ~a1 and ~a2 are the two basis vectors and the three red dots are the
atom-basis.
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Figure 2.1: The Kagome lattice including a possible unit cell with the two basis vectors
in blue and the three basis atoms in red.

The frustration has simple geometric origin: In two dimensions the lattice con-
sists of hexagons and triangles. In order to minimize the total energy, spins of
neighbouring lattice sites prefer to align anti-parallel. Due to the triangular mo-
tifs in the lattice this is not possible for all neighbouring sites as it can be seen in
Figure 2.2.

Figure 2.2: Frustration of spin alignment due to geometry[3]. For one triangle there are
six possible ground state configurations where black bonds are anti-parallel alignments
and red parallel alignments.

As a result a quantum spin liquid is formed in the Heisenberg limit. Here, the con-
stituent spins are correlated and can fluctuate down to very low temperature. This
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makes it very challenging to find the minimal energy and the ground state config-
uration of the system, because it is highly degenerate. Many papers with different
methods are published addressing this problem. For example Singh et al.[26, 48]
are describing the system as a valence bond crystal (VBC) where two antiparallel
lattice sites are forming a valence bond. They developed a series expansion by
including five topological graphs of bonds which contribute up to fifth order of
perturbation theory. Their result is a VBC consisting of 36 sites per unit cell in
a pinwheel distorted lattice. The Kagome lattice was also realized experimentally.
A famous example is the mineral Herbertsmithite[37] (ZnCu3(OH)6Cl2) which has
been synthesised by Shores et al.[47] with copper ions forming a Kagome lattice.
Experiments indeed show that there is no ordering of spins down to temperature
of 20 mK. Another realization of a Kagome lattice was done by Jo et al.[24] with
ultracold atoms. Here, overlaying two commensurate triangular optical lattices
give rise to a Kagome lattice.

By looking at the terms in Equation (2.48), we can identify two major parts:
the hopping term and the interaction term. If we set U = 0, only the hopping
term remains and we are able to solve the problem analytically. This is in principle
the tight-binding approximation[49, 1] and it only requires to solve the eigenvalue
problem. By solving the eigenvalue problem with negative hopping along the high-
symmetry points Γ - M - K - Γ, we obtain the band structure in Figure 2.3. By
integrating over all k-points we get the non-interacting density of states, shown on
the right side. The tight-binding approximation shows us already some important
physics:

1. One outstanding feature is the flat band at ω = 2 which appears in the
density of states as a delta peak and two Van Hove singularities at ω = 0 and
ω = −2 respectively. As mentioned in the introduction, the electrons in the
flat band are completely localized, and therefore have infinite effective mass.
Of course this is a model Hamiltonian and for a real system the band would
not be completely flat. The flat band in Kagome has geometric origins. For
other compounds the flat bands appear due to strong electron coupling[39].
Especially compounds containing partially filled 4f and 5f elements form
these bands, and are generally referred to as heavy fermion metals. These
compounds are in focus of current research because of interesting properties
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such as unconventional superconductivity[27].

2. Another important property, which can directly be see from the non-interacting
density of states is that the system is non particle hole symmetric. The non-
symmetry only results from the flat band. Without the flat band, only the
dispersing bands are left and those are symmetric around ω = −1.

3. The band structure also shows a crossing of bands at the K point. Therefore,
in the tight-binding description of electrons on the Kagome lattice yields a
metallic behavior.

Figure 2.3: The orbital resolved band structure and density of states of the non-
interacting case. We used the definition of the hopping term term in Section 2.2 with a
leading minus sign. For positive hopping t = 1 it gives the above band structure with
the flat band on top. For t = −1, the flat band would be at the bottom.

2.4. Determinant Quantum Monte Carlo
In order to characterize phase transitions, one would like to know how the system
changes under influence of temperature, interaction strength, doping or other vari-
ables. More precisely, we would like to evaluate certain observables characterizing
phase transition. In the thermodynamic equilibrium, observables are calculated by
summing up the weighted values of the observable on every phase space point. The
weight for the sum or integral, depending if the system is discrete or continuous,
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is given by a Boltzmann factor. In general we distinguish between microscopic,
canonical and grand canonical ensemble. The case we are interested in is the grand
canonical ensemble, for which the Hubbard Hamiltonian in Equation (2.48) is de-
fined. The grand canonical ensemble allows exchange of heat and particles for a
constant volume. Before we go into detail with the DQMC algorithm, we explain
why we are able to use only matrices rather than the real Hamiltonians consisting
of the fermionic operators. There is a theorem allowing us to only use their matrix
representations, which is based upon the fact, that the fermionic operator can be
traced out. Consider the Hamiltonian below, consisting of two terms K and V ,
which can be expressed as

H = K + V =
∑
ijσ

c†
i,σ

Kij,σ + Vij,σ︸            ︷︷            ︸
Hij,σ

 cj,σ . (2.49)

Here, the non-curly operators Kij,σ, Vij,σ and Hij,σ denote the matrix represen-
tation, which remains after tracing out the fermionic operators c†

i,σ and cj,σ. In
the following, we will only work with these matrix representations of the original
operators.

Let us consider first a classical system, where the thermodynamic weight of a
state is given by

Z−1e−β(H−µN) . (2.50)

and where the partition function is calculated through

Z =
∫ dp1 · · · dp3Ndx1 · · · dx3N

h3NN ! e−β(H(p,q)−µN) , (2.51)

where q and p denote location and momentum respectively and h is the Planck
constant. As it can be seen already, depending on the phase space dimension,
the evaluation of this integral can be rather expensive. For such high dimensional
integral, Monte Carlo simulations are a perfect numerical fit. We will turn now
to quantum mechanical systems where the calculation of the partition function Z
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changes to

Z = tr
[
e−β(H−µN)

]
=
∑
n

〈n|e−β(H−µN)|n〉 , (2.52)

and the statistical average of an operator O is given by

〈O〉 = tr
[
e−β(H−µN)O

]
, (2.53)

in analogy to the operators in Equation (2.14). If we now assume a system with
N particles, the sum in Equation (2.53) consists of 4N summands. Therefore, is
of order O(4N) and has exponential complexity. Directly evaluating such a trace
is even for small systems numerically not favourable. However, it is possible to
relate the trace to calculating a determinant through[5]

tr
[
e−β(H−µN)

]
= det

[
1 + e−β(H−µN)

]
. (2.54)

This expression is an identity if the Hamiltonian has a quadratic form. Numer-
ically, the calculation of the determinant of a general matrix is of order N3 and
therefore, a major gain compared to the 4N order of the trace. This relation will
be the central idea of the determinant quantum Monte Carlo method. But before
this equation will be of any use, some further steps have to be done, which are
described in the following sections.

2.4.1. Trotter decomposition

To calculate a statistical average by the method described in the previous section,
we first have to take a look at properties of the Hamiltonian. If we consider a
Hubbard Hamiltonian, it can be split up into an hopping Hhop and interaction
part Hint.

H = −t
∑

<ij>,σ

c†
i,σcj,σ + µ

∑
i

(
ni,↑ + ni,↓

)
︸                                              ︷︷                                              ︸

Hhop

+U
∑
i

ni,↑ni,↓︸             ︷︷             ︸
Hint

. (2.55)

The hopping term is modeled by the inter-orbital hopping with constant hopping
parameter t and constant chemical potential µ as described in Section 2.2. The
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separation between the hopping and interaction part is necessary to distinguish
between quadratic and quartic fermionic terms, because the quartic term needs an
additional treatment, which will be a Hubbard-Stratonovich transformation. It is
helpful to split up the exponential term into successive small pieces in order to be
able to evaluate imaginary time propagation. Thus,

e−βH =
L∏
m

e−∆τKe−∆τV + O
(
(∆τ)2

)
, (2.56)

where ∆τL = β. The Hamiltonian parts K and V are possible not commuting and
therefore, one makes an error of order tU (∆τ)2, known as Trotter error. Because
of this error scaling, it is important to carefully choose the number of time slices
L and the ∆τ . A rule of thumb is to to keep ∆τ below 1/10 and thus have
tU (∆τ)2 << 1. However, if one is interested in the dynamical properties of a
correlation, it is better to keep L fixed to have a good resolved imaginary time
correlation. In some of the upcoming simulations, we chose a dens time grid with
L = 500.

2.4.2. Hubbard-Stratonovich Transformation

In the previous section we separated the quartic interaction term from the quadratic
interactions. In order to treat the quartic direct electronic interactions, we replace
it with a quadratic term coupling to an auxiliary bosonic field. This is called a
Hubbard-Stratonovich transformation. Through the Trotter decomposition we get
terms such as exp (−∆τHhop) exp

(
−∆τUni,↑ni,↓

)
where we can completely sepa-

rate the hopping term from the interaction term at each time slice. This allows us
to treat the interaction independently. Basically, the Hubbard-Stratonovich trans-
formation is rewriting the quadratic appearance of an operator of an exponential,
into a linear one by the cost of introducing a new auxiliary field

e
1
2 Â

2 =
√

2π
∞∫

−∞

dxe− 1
2x

2−xÂ , (2.57)

where x is the new continuous auxiliary field. The fermions in the quartic term
ni↑ni↓ in the Hamiltonian can only take the values 0 and 1, we can express the
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operator ni↑ni↓ in terms of the local density ni = ni↑ +ni↓ and local magnetization
operator mi = ni↑ − ni↓ through

ni,↑ni,↓ = −1
2m

2
i + 1

2ni

ni,↑ni,↓ = 1
2n

2
i − 1

2ni

ni,↑ni,↓ = 1
4n

2
i − 1

4m
2
i . .

(2.58a)

(2.58b)

(2.58c)

The auxiliary field couples then to the local magnetization and local density if
the first two Equations (2.58a) and (2.58b) are used. This also leads to a discrete
auxiliary field[19] instead of the continuous field in Equation (2.57). The discrete
field then only takes the values s = ±1 and we can do Monte Carlo much like in
the classical Ising case by randomly flipping +1 to −1 or −1 to +1. Finally, we can
express the interaction term in the partition function through a coupling of the
charge or magnetization to the Hubbard-Stratonovich field. For the repulsive case
U > 0, Equation (2.58a) is a good choice which allows to rewrite the interaction
term as

e−U∆τn
i,↑ni,↓ = 1

2e
−U∆τ

2 ni
∑
s=±1

esλmi = 1
2
∑
s=±1

∏
σ=↑↓

e−(σsλ+U∆τ
2 )ni,σ , (2.59)

where cosh λ = exp (1/2|U |∆τ). For the attractive case Equation (2.58b) is better
and the interaction term becomes

e|U |∆τn
i,↑ni,↓ = 1

2
∑
s=±1

∏
σ=↑↓

e(sλ+ |U|∆τ
2 )(ni,σ− 1

2 ) . (2.60)

Because of the Trotter decomposition, the Hubbard-Stratonovich has also a time
dependency. For convenience, we define the time dependent interaction field Viτσ

as
Vi,τ,σ = 1

∆τ λσsi,τ +
(
µ− U

2

)
, (2.61)

where τ is in the discrete case representing the index of the L time slices. By sub-
stituting the interaction term in the determinant of Equation (2.54) with Equa-
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tion (2.60), the determinant will contain matrix products of the form

Bτ,σ = e−∆τKe−∆τVτ,σ , (2.62)

where Bτ , K and Vτ,σ are N × N matrices, with N the number of sites. It is
worth to point out that Vτ,σ is diagonal which is why we denoted Vi,τ,σ without a
second spatial index and the Hubbard-Stratonovich field is a pure local property.
Therefore, it is trivial to evaluate the exponent e−∆τVτ,σ compared to the hopping
term.

By applying the Trotter decomposition and using the Hubbard-Stratonovich trans-
formation, we can finally express the partition function as

Z =
(1

2

)NdL ∑
s=±1

∏
σ=↑↓

det
[
1 +Bβ,σB(β−∆τ),σ . . . B0,σ

]

=
(1

2

)NdL ∑
s=±1

∏
σ=↑↓

det [Oσ] .
(2.63)

Above equation is on of the central results for the DQMC.

2.4.3. Simulation

In the previous sections we introduced the fundamental equations behind the
DQMC algorithm and how to obtain the partition function. An even more im-
portant quantity within the DQMC algorithm is the Green’s function, which we
will explain how to calculate before we describe the full DQMC algorithm. As
we described in Section 2.1 the Green’s function can be written as a product of
a fermionic creation and annihilation operators, where the equal-time and time
dependent Green’s functions can be expressed as elements of the matrices

Gij,σ = 〈ci,σc
†
j,σ〉 =

([
1 +Bβ,σB(β−∆τ),σ . . . B0,σ

]−1
)
ij

Gij,ττ ′,σ = 〈ci,τ,σc
†
j,τ ′,σ〉 =

[
Bτ,σB(τ−∆τ),σ . . . B(τ ′+∆τ),σg(τ ′+∆τ),σ

]
ij
,

(2.64a)

(2.64b)
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with the Bτ,σ matrices defined in Equation (2.62) and gτ,σ as the N × N Green’s
function matrix at time slice τ and spin σ, defined as

gτ,σ =
[
1 +B(τ−∆τ),σB(τ−2∆τ),σB0,σBβ,σ . . . Bτ,σ

]−1
. (2.65)

We are not going to outline the detailed derivation of these equations but want
to mention, that the derivation involves a change of the operators representations
into the Heisenberg picture and using their diagonal form. After reordering the
trace in the thermal brackets, one yields the above result. For more information
see the appendix of dos Santos’ paper[44].

The DQMC algorithm is similar to the classical Monte Carlo algorithm for Ising
spins, but rather by flipping the spins on lattice sites, we flip the Hubbard-
Stratonovich field configuration si,τ in the space-time lattice and the Boltzmann
weight will be calculated differently. As always, the start is to choose an initial con-
figuration, which can be done by either assigning it randomly or using a constant
configuration. Next, is to sweep through the space-time lattice, where the start is
the first time slice τ = 0 and apply Equation (2.64a) to calculate the Green’s func-
tion. The algorithm continues by sweeping through the spatial lattice and propos-
ing a move by flipping si,τ on a site i. By doing this, the matrices Bi,σ change to
B′
i,σ through the potential term Vij,τ,σ(s) → Vij,τ,σ(−s) = −Vij,τ,σ(s) = V ′

ij,τ,σ(s).
For this proposed move we have to calculate then the Boltzmann weight, which is
done by building the ratio

r′ =
det

[
O′

↑

]
det

[
O′

↓

]
det [O↑] det [O↓]

=
∏
σ=↑,↓

r′
σ , (2.66)

with Oσ defined in Equation (2.63) and

r′
σ = det [O′

σ]
det [Oσ] . (2.67)

The above definition of the ratio would require to calculate four determinants,
which actually can be avoided by using the Green’s function instead. This leads
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to the expression

r′
σ = 1 +

(
1 − gii,τ,σ

)
γi,τ,σ , (2.68)

with the matrix γi,τ,σ = eVi,τ,σ −1, where we used the fact again, that V is diagonal
and each spin σ appears at just one element. The probability of accepting a move is
then given by r′/(1 + r′), which is known as the heat-bath algorithm. If the move
is accepted, the new updated Green’s function has to be calculated. There are
two possibilities, either by calculating the Green’s function from scratch through
Equation (2.64) or by calculating it from the previous Green’s function with

g′
ij,τ,σ = gij,τ,σ −

(
δji − gji,τ,σ

)
γi,τ,σgik,τ,σ

1 +
(
1 − gii,τ,σ

)
γi,τ,σ

. (2.69)

Obviously, the latter one seems favourable in terms of performance, because it
scales with O(N2). However, it comes with the disadvantage, that by multiple
applying Equation (2.69), the error amplifies. To avoid that the Green’s function
is drifting away to much, it has to be calculated from scratch every once and a
while using Equation (2.64). After sweeping through all spacial sites of the τ = 0
time slice, the algorithm starts with the next time slice τ = ∆τ and first spacial site
again. As before, the Green’s function for the new time slice has to be calculated
which can be done from scratch or with the iterative solution

g(τ+∆τ),σ = Bτ,σgτ,σ
[
Bτ,σ

]−1
. (2.70)

For the iterative solution, the same O(N2) scaling advantage and same error am-
plifying disadvantage are present. This whole procedure is repeated for every time
slice, which then completes the Monte Carlo loop. The Monte Carlo loop itself
is then done many times. Before any measurements can be performed, the sys-
tem has to be brought into equilibrium, which is done by a bunch of warmup
sweeps at the beginning of the simulation, where usually a several hundred are
enough. After that, the algorithm starts doing measurements, which we describe
in Section 2.4.4. However, this only describes a single Monte Carlo simulation
and frankly, one cannot obtain reliable data from it. What one has to do is, to
run multiple independent simulations from which a statistic can be calculated.
Independent means, that the sequence of spin flips between simulations has to be
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different, which can be achieved e.g. through a different random seed, if pseudo
random generators are used. A set of simulations is then called a bin, for which
statistics can be calculated with resampling methods. Two famous ones are the
bootstrap and jackknife method. In this thesis we used the jackknife resampling.
The first step is to calculate the mean value x̄i for each subsample i of the set,
by averaging all simulations in the subsample and omitting the i-th simulation.
Thus,

x̄i = 1
N − 1

N∑
j=1,i,j

xj . (2.71)

From that, the mean value of the bin is calculated by averaging over all subsample
mean values through

x̄ = 1
N

N∑
i=1

x̄i . (2.72)

The jackknife estimate of the variance is then calculated with

Var(x̄) = N − 1
N

N∑
i=1

(x̄i − x̄)2 . (2.73)

As mentioned in the previous parts, one big disadvantage of QMC methods is the
minus sign problem, specially for the DQMC. In DQMC it results from the fact,
that apart from some cases, there is no guarantee that the determinant det [Oσ]
in Equation (2.63) is positive definite.

2.4.4. Measurements

In this section we describe how the measurements in determinant quantum Monte
Carlo are performed and we will give some examples. In principle there are time
dependent and time independent measurements. Typical time independent mea-
surements are observables such as densities, magnetization but also equal correla-
tion functions e.g. spin-spin correlators in real space or their Fourier transforms
(structure factors). The time dependent measurements are dynamical observables
where we can also investigate the energy dependency of correlation functions.
But to obtain the energy dependency one first has to do a non trivial post pro-
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cessing task, which transforms the observable back onto the real frequency axis,
also known as analytic continuationSection 2.6. The central idea of measuring is
to reduce the correlator into Green’s functions, possible because Wick’s theorem
holds. The DQMC method allows it to directly sample the single particle Green’s
function and in combination with Wick’s theorem, which was introduced in Sec-
tion 2.1.3, we can measure even complex correlators consisting of many fermionic
operator. Examples are the following density-density correlations, consisting of
four fermionic operators each.

〈
ni,σnj,σ

〉
=
〈
c†
i,σci,σc

†
j,σcj,σ

〉
=
〈
c†
i,σci,σ

〉 〈
c†
j,σcj,σ

〉
+
〈
c†
i,σcj,σ

〉 〈
ci,σc

†
j,σ

〉
=
(
1 −Gii,σ

) (
1 −Gjj,σ

)
+
(
δij −Gji,σ

)
Gij,σ〈

ni,σnj,σ̄
〉

=
〈
c†
i,σci,σc

†
j,σ̄cj,σ̄

〉
=
〈
c†
i,σci,σ

〉 〈
c†
j,σ̄cj,σ̄

〉
=
(
1 −Gii,σ

) (
1 −Gjj,σ̄

)

(2.74a)

(2.74b)

(2.74c)

We used the Wick’s theorem and the anti-commutator relations of the fermionic
operators, described in Section 2.1 to represent the pair contractions as equal-time
Green’s functions. The Wick’s theorem is not restricted to equal-time correlation
and also works for time dependent correlators. However, for time dependent cor-
relations it is important to use time ordering. One important time dependent cor-
relation function we want to mention here is the susceptibility χz

ij,ττ ′ = 〈Sz
i,τS

z
j,τ ′〉

of the z-spin component. By expressing this definition of this correlation func-
tion in terms of fermionic operators, applying the Wick’s theorem again and using
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Equations (2.74b) and (2.74c) we get

χz
ij,ττ ′ =

〈
Tτ

(
ni,τ,σ − ni,τ,σ̄

)
︸                 ︷︷                 ︸

Sz
i,τ

(
nj,τ ′,σ − nj,τ ′,σ̄

)
︸                   ︷︷                   ︸

Sz
j,τ ′

〉

=
〈
Tτ ni,τ,σnj,τ ′,σ

〉
+
〈
Tτ ni,τ,σ̄nj,τ ′,σ̄

〉
−
〈
Tτ ni,τ,σ̄nj,τ ′,σ

〉
−
〈
Tτ ni,τ,σnj,τ ′,σ̄

〉
=
(
Gii,ττ,σ −Gii,ττ,σ̄

) (
Gjj,τ ′τ ′,σ −Gjj,τ ′τ ′,σ̄

)
−Gji,τ ′τ,σGij,ττ ′,σ −Gji,τ ′τ,σ̄Gij,ττ ′,σ̄

+δij
(
Gij,ττ ′,σ +Gij,ττ ′,σ̄

)
.

(2.75)

This correlator will be especially important for investigating the dynamic magnetic
characteristics of the Kagome system e.g the dynamic structure factors.

2.4.5. Checkerboard Approximation

As we previously saw, the calculation of the partition function requires for each
spin at least L, probably dense, matrix multiplications and a determinant evalua-
tion. For the Green’s function an additional matrix inversion is necessary as well.
Further, for each time slice we have to exponentiate the hopping matrix K as
outlined in Equation (2.62). Compared to the dens matrix multiplication, scaling
with O(N2), the exponentiating of K is relatively cheap. Therefore, the biggest
bottleneck in performance is the multiplication of dense matrices. This is why we
will introduce an additional approximation, called checkerboard approximation,
which gets rid of the dense matrices and replaces them with sparse ones, yielding
a better scaling in terms of computation time. The starting point is to again split
up the exponential much like as in the Trotter approximation. Of course we only
want to split up the hopping term, because the potential term is diagonal anyways.
Hence,

exp (∆τK) = exp
(

∆τ
∑
n

K(n)
)

≈
∏
n

exp
(
∆τK(n)

)
, (2.76)

where the K(n) are strictly sparse matrices with zero diagonal. Constructing the
K(n) depends on the geometry and can not be trivial for certain lattices. Lee et.
al.[28] are listing some checkerboard break ups for different geometries.
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2.4.6. Determining the Chemical Potential

In Chapter 1 and section 2.3 we gave an introduction to the Kagome system
and mentioned its properties and relevance. We want to point out that when
doing calculation on a system, in particular with the grand canonical Hubbard
Hamiltonian described in Section 2.2, one first have to choose a filling by setting
the chemical potential µ properly. This is important, because the filling sets the
Fermi level at a certain position in the band structure and hence, selects the “types”
of electrons contributing in the interaction. The filling corresponds to a density n
which can take values between zero and two. The case where n = 1, is the case of
half filling. For a particle hole symmetric system (e.g. the square lattice) at half
filling the chemical potential in Equation (2.48) must be set to zero to get n = 1, if
convention Equation (2.48) is used. This is not true for non-particle hole symmetric
systems such as the Kagome lattice. Therefore, one first has to guess the chemical
potential yielding the filling one wants to have. This can be very tedious if done by
hand, which is why we introduce here an iterative scheme to obtain the chemical
potential. The scheme is based on the “false position method” or “regular falsi”
root finding algorithm. The false position method originally is used to finding
roots of functions, but it trivial to altered to find roots on a “shifted” x-axis. In
our case, the y-axis is the density n and the x-axis is the chemical potential µ,
which is shifted up by the density n0 one wants to obtain. The algorithm requires
to evaluate the function n(µ) at certain points for which each we ran a Monte Carlo
simulation with a small number of warmup and measurement sweeps to avoid a
long runtime. This worked surprisingly well, although we only used 100 warmup
sweeps and 400 measurement sweeps. The difference of the density from the real
simulation is within the Trotter error and therefore neglect-able. The start of the
algorithm is to calculate the density for two initial points, where we chose µa0 = −2
and µb0 = 2. Then, the intersection with the secant of the two points and with
n = n0 is calculated through

µint = [n0 − n(bi)] · bi − ai
n(bi) − n(ai)

+ bi . (2.77)

The intersection point with n = n0 is one end point of the new secant for the next
iteration i + 1. Depending which previous secant end point has the opposite sign
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of n(µi+1)−n0, is the other new secant end point. This procedure is repeated until
a convergence criteria is reached or an iteration number is exceeded. Figure 2.4
outlines the algorithm in a pseudo function and shows the secants of the first two
iterations. Usually, this method converges already within 5 to 10 iterations and
thus is very effective for finding the chemical potential.

Figure 2.4: Example of false position method showing the secants of the first two itera-
tions.

2.4.7. Specific Heat and Entropy

In DQMC the two energy contributions kinetic- and potential energy automatically
comes out. Because of this free result we will explain how we can obtain further
energy depending quantities such as the specific head and the entropy. The entropy

37



can be calculated through

S(T ) = S(∞) −
∞∫
T

dT ′C(T ′)
T ′ = S(∞) −

∞∫
T

dT ′
(
dE)
dT ′

)
1
T ′

= S(∞) −

E(T ′)
T ′

∣∣∣∣∣
∞

T

+
∞∫
T

dT ′E(T ′)
T ′2


= S(∞) + E(T )

T
−

∞∫
T

dT ′E(T ′)
T ′2 .

(2.78)

The S(∞) can be calculated analytically, which is the entropy the system can
maximal have and therefore, corresponds to the entropy with the maximum re-
alization possibilities. Thus, we can simply calculate it through the Boltzmann
equation

S(∞) = kB lnW (∞) = ln(4) . (2.79)

Here, kB is set to one and W (∞) are the four possible realization possibilities
|0〉, |↑〉, |↓〉 and |↑↓〉. With Equation (2.78) it is then easy to calculate the en-
tropy at different temperatures. For calculating the specific heat by building finite
difference or the straight forward numerical differentiation, one is facing the disad-
vantage that in order to get a smooth result, the energy grid has to be fine enough.
This requires a lot of measurements at many temperature points. To overcome
this, McMahan et. al.[32][38] provided a method which uses a fit function for
differentiation. The function is given by

E(T ) = E(0) +
M∑
l=1

cle
−βl∆ , (2.80)

where the fit parameters cl and ∆ are chosen by minimizing

χ2 = 1
NT

NT∑
n=1

(E(T ) − En)2

(δEn)2 . (2.81)

The constant NT are the number of measured temperature points and En the
energy at point n. McMahan et. al. suggest to choose M around one fourth of
the number of measured temperature points. A too low M results in a bad fit
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and too high in an over-fitting. The choice of the fit functional in Equation (2.80)
also has the advantage of satisfying the limits for low and high temperatures,
which is C(T ) → 0. The specific heat can then be calculated by differentiating
Equation (2.80) which gives

CV(T ) = ∆
T 2

M∑
l=1

clle
−βl∆ . (2.82)

2.5. Dynamical Mean Field Theory
The dynamical mean field theory (DMFT) is a well established method in the
condensed matter theory for dealing with strong electronic correlations. There are
many papers and articles describing the method in detail and therefore, in the
following only a short overview will be given. For a more detailed description see
[13, 18, 42]. To deal with complex problems, it is usually not enough to look at
the limits of the non-interacting case or the limit of no kinetic energy, because the
interesting physics emerges in the intermediate region between these two limits.
There is another limit preserving the interaction strength and kinetic energy but
resulting in a momentum independent treatment, which is the d → ∞ limit, the
limit of infinite dimensions. This is equivalent to a lattice with infinite coordination
number[33, 13]. In this limit, all dynamic correlations are purely local. To really
solve the approximation in infinite dimensions, one has to map it first onto an
Anderson impurtiy model (AIM) in a self-consistent way. The general AIM in
k-space is

HAIM =
∑
kkk,i,σ

εkkk,ia
†
kkk,i,σakkk,i,σ +

∑
kkk,i,j,σ

[
Vkkk,ija

†
kkk,i,σckkk,j,σ + h.c.

]
+

∑
i,j,l,m,σ,σ′

Uijlmc
†
i,σc

†
j,σ′cl,σ′cm,σ .

(2.83)

The AIM describes the interaction of a bath of non-interacting electrons with an
impurity, represented by the first and second term respectively. The operators a†

i,σ

and ai,σ denote the creation and annihilation operators of bath electrons with spin
σ, where c†

i,σ and ci,σ are creation and annihilation operators of impurity electrons
with spin σ respectively. The bath term describes free electrons with the dispersion
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relation of εkkk,i, hybridizing with the impurity through a hybridization term Vkkk,ij.
The third term describes the interaction of electrons in the impurity. The DMFT
algorithm is a self-consistent scheme, where the self energy from Equation (2.46)
plays an important role. All quantities are purely local, which we denote with the
superscript “loc”. The algorithm goes as follows:

1. A trial self energy is chosen and from which one can calculate the non-
interacting Green’s function through a reformulation of Equation (2.46).
Thus,

G loc
νn =


 1
Vkkk

∫
BZ

dkkkGkkk,νn

−1

+ Σloc
νn


−1

. (2.84)

2. This G will then be used to calculate the Green’s function of the impurity
problem Equation (2.83). In this step all irreducible Feynman diagram are
constructed with the given G and U . In practice, this calculation of G is
done numerically using an “impurity solver”. We use continues time quantum
Monte Carlo simulations in the hybridization expansion to this end.

3. After the new interacting Green’s function G is obtained, a new self energy
is calculated through

Σloc
νn =

[
G loc
νn

]−1
−
[
Gloc
νn

]−1
. (2.85)

4. The new self energy is then plugged in again in step 2, which closes the cycle.

The above steps are repeated until a convergence criteria is reached e.g. Σ(n+1) =
Σ(n). The result is then the solution of the one AIM with an adapted hybridization
Vkkk,ij, yielding the same solution than the original Hubbard model.

2.6. Analytic Continuation
In Section 2.4 and Section 2.5 we explained two well-known computational meth-
ods used to solve the correlated many-body problems by computing the Matsub-
ara Green’s functions and through that other dynamical quantities in imaginary
time/frequencies can be calculated. In order to compare these results with real
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experiments, we have to transform it back from imaginary time/frequency into
real time/frequency. A common experimental result is the excitation spectrum
of a system, which is directly related with the Green’s function through Equa-
tion (2.38). For transformation of the Matsubara Green’s function back onto the
real-axis, one has to compute Equation (2.34) by integrating over the kernel in
Equation (2.36). However, this is a non-trivial procedure, due to small statistical
fluctuations in imaginary space lead to large fluctuations in real space and it is
therefore an ill conditioned transformation. The instability of the solution can also
be seen when performing a single value decomposition. Let us for now consider
the discrete case, where the Green’s function and spectral function are vectors and
the kernel is a matrix. The analytic continuation problem can then be formulated
as

G = K · A
G = UΣV TA

U−1G︸    ︷︷    ︸
G′

= ΣV TA︸  ︷︷  ︸
A′

⇒ A′ = Σ−1G′ ,

where we applied the single value decomposition. The matrix Σ is a diagonal
matrix containing the singular values. Because of the inversion of Σ, the small
singular values are amplifying the error of G. Therefore, a regularization scheme
is needed, which will be the maximum entropy method described in this section.
The derivation in this section is mainly based on [22], which also gives a detailed
analysis of the maximum entropy method.

2.6.1. Maximum Entropy Method

The analytic continuation problem in Matsubara frequencies is solving the inverse
of Equation (2.34). In imaginary time we can formulated it with the kernel Kωτ

as

Gτ =
∞∫

−∞

dωAωKωτ . (2.86)

The inversions of Equations (2.34) and (2.86) are not unique and ill-conditioned
and therefore, we have to find the one solution which is the most ”likely” one of
all. To do so, we need to define a function which tells us how well our fit Ḡτ
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agrees with the original imaginary time Green’s function Gτ . First we define the
covariance matrix

Cττ ′ := 1
M(M − 1)

M∑
j

(
Gτ −G(j)

τ

) (
Gτ ′ −G

(j)
τ ′

)
, (2.87)

where Gτ denotes the expectation value of the Green’s function on imaginary time
slice τ and G(j)

τ is the jth sample of a set of M estimates. Thus, Equation (2.87)
is an averaged covariance matrix and tells us how errors for different time slices
are correlated. Of course the same definition holds in Matsubara space, where one
would obtain the matrix Cνnν′

n
. Next, we can use the covariance matrix to define

a goodness of the fit through

χ2 :=
L∑
τ,τ ′

(Ḡτ −Gτ )∗C−1
ττ ′ (Ḡτ ′ −Gτ ′). (2.88)

This requires a back-continuation which is the reverse transformation from a can-
didate Aω to a Green’s function Ḡτ on the imaginary axis, using ??. If the input
data are uncorrelated, the matrix Cττ ′ becomes diagonal, the equation reduces to

χ2 =
∑
τ

(
Ḡτ −Gτ

)2

σ2
τ

, (2.89)

where στ is the standard derivation. Since only the back-transformation is well-
defined but not the inversion of Equation (2.86), a straight-forward least squares
fitting routine to minimize χ2 would fail. However, we can add additional condi-
tions, which should regularize the problem and minimize a different function. If
an entropy term is added, we obtain the maximum entropy method. The starting
point for it is the Bayes’ rule from statistics

P (A|G) = P (G|A)P (A)
P (G) . (2.90)

The ”posterior probability” P (A|G) is, given the Green’s function G, the probabil-
ity to obtain the spectral function A. The ”likelihood” P (G|A), is the probability
when A is given, we get G. P (G) can be ignored, because it is a constant function
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and not important for the minimization process and drops out. The most tricky
probability to obtain is P (A), also known as ”prior probability” for A. This part
will involve an entropy term, giving the method its name. The basic assumption
for the probabilities is that they follow the central limit theorem and therefore we
are able to write

P (G|A) = P (G|Ḡ) ∝ e− 1
2χ

2 = P (G|K ∗ A) (2.91)

with Ḡ in Equation (2.88) replaced by the back transformation K ∗ A. For the
P (A) calculation we have to use information which known in before, the prior
probability. Here, we can force the spectrum to be positive and to have a certain
norm. One expression satisfying this is

P (A) ∝ exp (αS) (2.92)

with
S = − 1

2π

∫
dω

(
Aω −Dω − Aω ln

(
Aω
Dω

))
. (2.93)

The α parameter is a Lagrangian multiplier and S the entropy. The calculation
of the entropy involves a function Dω, also known as default model. In general,
the result depends not much on the choice of the default model and a linear
default model is often sufficient enough. In interesting aspect, as pointed out
in the numerical recipes[40], is that there is nothing universal about the form of
the entropy S. Actually, the maximum entropy method can be seen as a more
nonlinear generalized regularization scheme. If we now want to maximize for a
given Aω the probability in Equation (2.90), we have to maximize the exponential
eQ of Equation (2.92), where

Q = αS − 1
2χ

2 . (2.94)

Therefore, one has to find the maximum with respect to A by solving

δQ

δA

∣∣∣∣∣
A=Aopt

= 0. (2.95)
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The result depends implicitly on α through A(α), but α will be fixed and the
functional derivative above is evaluated on A(αopt) = Aopt. The methods for
fixing the Lagrangian multiplier α are explained in the next paragraph.

α - determination

To maximize Equation (2.94) we have to determine the α parameter. For this we
can start with the Bayesian inference in Equation (2.90) again, but we rewrite this
equation to explicitly depend on α through

P (A,α|G) = P (G|A,α)P (A,α)
P (G) = P (G|A,α)P (A|α)P (α)

P (G)

= P (G|A)P (A|α)P (α)
P (G) .

(2.96)

By again using the central limit theorem and the definition for the prior probability
in Equation (2.92), one obtains the relation

P (A,α|G) ∝ P (α)
Z(α, S)e

Q, (2.97)

with Z(α, S) a normalization factor. The only unknown function is P (α) where
one can make a guess. A common choice is the Jeffrey’s prior P (α) ∝ 1/α. If we
integrate out the A dependency by integrating over all possible spectra, one gets
the probability

P (α|G) = P (A)
Z(α, S)

∫
DAeQ (2.98)

which is usually a sharply peaked function at some α = αopt. The solution is then
the spectrum A, using α = αopt and maximizing Q. Though, A depends on α and
α on A and therefore, an iterative scheme has to be applied to obtain the final
solution. This whole procedure is know as the classical maximum entropy method
and was used for computing the dynamical quantities in this thesis. However,
there are more ways to determine the α value and another well-known method is
the Bryan’s method. Bryan’s method calculates for each α (usually a discretized
α grid) the Aα, maximizing Q. The final solution is the calculated through the
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integration

Aω =
∫
dαAαωP (α|G) (2.99)

and can be seen as a weighted average of all possible Aα. Usually, this method is
more computationally intensive and therefore slower.

Correlated Error

In the previous Equation (2.87), we introduced the correlation matrix Cττ ′ which
is also known as the covariance matrix. This matrix tells us, how the data at
an imaginary time point τ is correlated with another imaginary time point τ ′.
The diagonal is the variance and all the off-diagonal elements are the covariances.
In the case where the covariance matrix entries are zero or very small, the data
are uncorrelated and basically completely random distributed. In terms of linear
algebra we can also say, that the covariance matrix is in its own eigen basis and
therefore diagonal. This also means, that the data vector and kernel are in the eigen
bases of the covariance matrix and thus, we can simply apply the Equation (2.89)
for calculating χ2. But what if we have data which are correlated over τ? To
still be able to use the previous equations of the maximum entropy method we
have to rotate the kernel K and the data vector G in a basis where the covariance
matrix is diagonal. Obviously, this is the basis spanned by the eigen vectors of
the covariance matrix. Therefore, we have to diagonalize C and rotate the kernel
matrix and data vector through a matrix vector multiplication. Thus,

C ′ = U−1CU

K ′ = U−1K

G′ = U−1G ,

(2.100a)
(2.100b)
(2.100c)

where U is the matrix of the eigenvectors. The new errors can then be calculate
through taking the square root of the eigen values λi of the covariance matrix,
thus

σ′
i =

√
λi (2.101)

Using the covariance matrix actually improved our results. Especially in DQMC,
it made it possible to compute dynamic correlation function for U and β values
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where the quality of data is lower, due to sign problem. We also found, that the
assumption of uncorrelated error in DQMC is in general not given.
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Chapter 3

Results

In this chapter we will discuss the results for the Hubbard model on the Kagome
lattice and compare the two methods DQMC and DMFT described in the previous
Sections 2.4 and 2.5. DQMC is very limited in the size of the system and strongly
depending on the geometry of the lattice. In the case of a Kagome structure it is
limiting us in temperature and interaction U due to the sign problem, where the
sign problem in DMFT is absent. However, the sign problem for DQMC starts at a
temperature where correlation effects are already important, and therefore we are
able to investigate electronic correlation effects. Figures 3.1 and 3.2 show the plots
of the sign for different temperatures and interacting strengths for DQMC. The
geometric dependence of the sign problem in DQMC was investigated in detail by
Iglovikov et. al.[20]. Our results for the sign at β = 4, U = 6 and n = 1, as shown
in Figures 3.1 and 3.2, are in good agreement with Figure 14 in their paper[20].
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Figure 3.1: Average sign in DQMC for different U values and different temperatures at
n = 1.

Figure 3.2: Average sign in DQMC for different temperatures β and interactions U at
half filling (n = 1).

We can see: if we want to have a U -range from 1 to 10 and want to keep the sign
above the value 0.1, only the temperature β = 3 satisfies this. Therefore, we chose
in the following β = 3, in order to investigate the Mott metal-insulator transition
and are able to compare it with DMFT. For the weaker correlation U = 3, we are
able to do calculations down to temperatures β = 10. In addition we will also
present results along a k-path.

Most of the results involve the post-processing step of analytic continuation and,
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as we mentioned in Section 2.6, this is an ill-conditioned problem and the solution
is not unique. Therefore, after obtaining a result analytic continued to the real
axis, it is not clear whether the best or most physical solution is found. One big
problem is to distinguish between physical peaks and artifacts of the maximum en-
tropy method. To improve the outcome, one can do a couple of checks. One check
is to refine the frequency grid for the computation. The frequency grid should be
such that major features of the non-interacting spectra are resolved. By looking at
the non-interacting density of states, we can identify the features of the spectral
function for the limits of zero temperature and U → 0 (see Section 2.3). With
increasing U , above a certain U -value, a gap around the Fermi energy opens and
the system undergoes the phase transition to an insulator. In this case, one can
estimate the position of the Hubbard bands with ±U/2. For U >> 1 the spectrum
should feature the non-interacting density of states twice, separated with the Mott
gap. With these information we can refine the frequency grid, to better resolve the
occurring peaks. A second check is to vary the error. On the one hand, when the
error is too small, one is over-fitting the spectrum and sharp peaks are appearing.
On the other hand, when the error is too big, the spectrum will look similar to the
default model. If the spectrum stays stable when varying the error in small steps,
it indicates that the physical spectrum is found. In order to chose a maximum
entropy program, we tried out three different implementations and applied error
rescaling and used different frequency grids. The first program we used is from
Levy et. al.[29], the second one is from Bergeron[4] and the third one is a from
Kaufmann[25]. Let us briefly mention the main features and differences of the
three programs:

1. Levy et. al offers various kernels for bosonic and fermionic data in Mat-
subara, imaginary time or Legendre representation with or without particle
hole symmetry. You can choose from various pre-defined frequency grids and
default models.

2. Bergeron implemented features for detecting peaks and automatically refine
the grid in regions around peaks. It is very sophisticated in terms of providing
parameters for every step during the analytic continuation and for optimizing
results. However, the biggest difference between the other two programs
is, that it does not use the classical nor Bryan’s method to determine the
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optimal α. Instead it locates the optimal α by finding the regions where only
noise and only information is fitted and uses the crossover of these regions.
Another difference is that imaginary time data are first Fourier transformed
into Matsubara frequencies and then cubic spline interpolated. This allows
one to compute the Green’s function piecewise with high numerical accuracy.

3. Kaufmann’s Python package is a library containing the necessary routines
for analytical continuation, but the users are encouraged to write their own
scripts. Thus, the users have to choose the alpha determination, kernel,
frequency grid and default models by themselfs. This provides a lot of free-
dom and flexibility for optimization. For determining the optimal α you can
choose between the classical or Bryan’s method.

Because of its flexibility and customization possibilities, we chose the maximum
entropy program by Kaufmann. Because the program is mainly written in Python,
it makes it easier to read in the raw data from a hdf5 file and process them directly
in Python instead of generating input files first. Therefore, we were able to do ana-
lytic continuation for thousands of points at once, which was necessary to generate
k-resolved correlations on the real axis. Another advantage is that we could ex-
tend the code to support covariance matrices described at the end of Section 2.6.1.
This turned out to be a major improvement for the DQMC results. In order to
calculate the covariance e.g. for Green’s functions, we need a data set containing
all Green’s functions from many independent simulations. The DMFT program
w2dynamics[53] is supporting this by writing out the Green’s functions of each
statistic run into an hdf5 file. From that, one can do the necessary post-processing
steps, e.g. bootstrap or jackknife resampling, to obtain the averaged result and the
covariance matrix. The DQMC program QUEST (http://quest.ucdavis.edu), does
not support this out of the box. The program was designed to calculate statistics
internally and only writes out the averaged results, which avoids generating huge
output files. However, if we want to calculate the covariance matrix we need the
result of every statistic run. Therefore, we built a MPI (Message Passing Interface)
Python script which is able to run DQMC simulations on multiple nodes and with
different random seeds. The different random seeds ensure, that the sequence of
Monte Carlo moves are independent from each other and so are the simulations.
In this way, we obtain for each temperature β and Hubbard U , that we are in-
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terested in, 320 simulations. Each of these simulations used 500 imaginary time
slices, 600 warmup sweeps and 3000 measurement sweeps. We want to note here,
that the amount of 500 imaginary time slices in DQMC is very unusual, because
∆τ becomes unnecessary small (for β = 3). However, to obtain decent resolve
dynamical quantities, one needs to have a dens imaginary time grid. The lattice
size are 5 × 5 unit cells and therefore 75 sites with periodic boundary conditions.
One simulation with these parameters took around two days on a Intel Xenon
IvyBridge-EP E5-2650v2 CPU core. For some results, we analyzed the correla-
tions between the statistic runs and we found a highly non-diagonal covariance
matrix, where the matrix off-diagonal elements are of the same magnitude as the
diagonal ones. Figure 3.3 shows a heat plot of the covariance matrix of the Green’s
functions for U = 3 and β = 3.

Figure 3.3: Covariance matrix of the local imaginary time Green’s function Gτ for U = 3
and β = 3 with 320 DQMC statistic runs. It can clearly be seen that the matrix is not
diagonal and therefore, the simulations are correlated along the τ -axis.

Because of this strong correlation in τ , it is crucial to include the covariance in
maximum entropy and apply the method described at the end of Section 2.6.1.

3.1. Half Filling
In this section we present the results for a half filled Kagome lattice. As we
mentioned in Section 2.3, the spectrum of the Kagome lattice is not particle-hole
symmetric, and therefore we need to find the chemical potential which yields half
filling. Numerically, this is done iteratively and the DMFT program w2dyamics
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provides such an iterative determining of the chemical potential. However, the
DQMC program QUEST does not support an automatic determining of the chem-
ical potential. Therefore, we implemented the method described in Section 2.4.6.
We created a new Fortran module in the QUEST program, built a Python wrap-
per around it and implemented the “false position method” in a Python script,
which calls the underlying Fortran routines of QUEST. The package, including the
Fortran module and Python script is available on github[50]. The top plot of Fig-
ure 3.4 shows the resulting chemical potentials for different inverse temperatures
and different Hubbard interactions U . The bottom plot shows the corresponding
densities obtained, when running a full simulation using the calculated chemical
potentials. Because of the sign problem, we neglected data points where the sign
is below than 0.1. It is important to mention that for U ≈ 8 the Mott gap in
DQMC spectra is already present and therefore, for U > 8 the chemical potential
is not well defined any more. The Fermi level will then lay within the gap and
thus, the results for µ become arbitrary within the gap.

Figure 3.4: The calculated DQMC chemical potentials µ for different U values vs. den-
sities n at temperatures where the average sign is >= 0.1.
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3.1.1. Mott-Hubbard Metal-Insulator Transition

In Section 2.6 we described the maximum entropy method, which we used to
obtain the Green’s function in real frequencies. The imaginary part of the real
frequency Green’s function is directly related to the interacting particle spectrum
(see Equation (2.38)) and can be compared with experimental measurements such
as photo emission spectroscopy (PES) and angle resolved photo emission spec-
troscopy (ARPES). Thus, the spectral function can tell us much about the inter-
acting system. Let us start to compare the DMFT and DQMC integrated spectral
functions Aω. For this, we analytic continued the local Green’s function. The
DMFT data are provided by Josef Kaufmann and were calculated with w2dy-
namics. Figures 3.7 and 3.8 shows obtained spectra after applying the maximum
entropy method. Up to U = 5 the spectra look similar. However, one can clearly
see the differences starting with U > 5. In particular there is a Mott Hubbard
metal-insulator transition in DQMC starting between U = 6 and U = 7, and the
gap forming between U = 8 and U = 9. In DMFT the Mott Hubbard metal-
insulator transition is starting later between U = 8 and U = 9. At U = 10 the gap
as almost formed and therefore we assume, that maximum entropy would show an
open gap between U = 10 and U = 11.

In DQMC we can use the spatial dependence of the Green’s function to do a
Fourier transformation into k-space and then to do an analytic continuation for
obtaining a momentum resolved spectrum. The only downside is, that we only
have a few r-points because of the small grid size DQMC is using. In particular,
with lattice size of 5 × 5 unit cells, we would only have 25 k points. However,
we can use a much denser k-grid for Fourier transformation, as long the Green’s
function is decaying fast enough around the center r = 0. This is an approxi-
mation, where we truncate the Fourier series and neglect components higher than
a certain order. Figure 3.5 shows the value of the Green’s function for different
distances r. As it can be seen, only the Green’s function components of the first
few smallest rrr are playing a role in the Fourier transformation. Therefore, our
assumption is satisfied and we defined a cutoff distance Rcutoff and neglected all
contributions above Rcutoff . One can write then the Fourier transformation of the
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Figure 3.5: The value of the DQMC equal-time Green’s function for U = 5 and β = 3
for different distances. On the left are the values drawn onto the Kagome lattice, where
the radii are direct proportional to the values. The red hollow circle denotes the local
Green’s function at r = 0, the full circles are the non-local ones. Red color means positive
value and blue negative value. On the right is the corresponding one-dimensional plot.

Green’s function as
Gkkkτ =

∑
|rrr|<Rcutoff

Grrrτ e
ikkkrrr , (3.1)

The cutoff distance Rcutoff was chosen as the distance for which the value to error
ratio of the Green’s function exceeds a certain limit. That is, the distance where
the data points became unreliable. By using Equation (3.1) we calculated the
interacting band structure along the first Brillouin zone (BZ) path Γ−M ′ −K ′ −Γ.
However, to include all information, we need to include points from the extended
BZ (EBZ), because not all information is contained within the first BZ. Thus, in
order to calculate the path, we have to map all possible first BZ path segments
of the EBZ back, onto the corresponding first BZ path segments (in this way we
obtain three bonds for the first BZ instead of one bond for the EBZ). Figure 3.6
shows all possible segments of the Γ −M ′ −K ′ − Γ path in the EBZ, denoted with
colors blue, red and green.
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Figure 3.6: All possible first BZ (dashed area around Γ) path segments of Γ−M ′−K ′−Γ
in EBZ (solid area). The green are all Γ − K ′ segments, which are Γ − K ′, M − K and
M − K ′ respectively. The red are all K ′ − M ′ segments, which are K ′ − M ′, M ′′ − K ′

and M ′′ − K respectively. The blue ones are all the M ′ − Γ segments, which are M ′ − Γ,
M − M ′ and M − M ′′ respectively.

Figure 3.9 shows the obtained band structures. Except for the spectrum at U = 3
and β = 3, where we rescaled the error with a factor of 200, we did not apply
any error rescaling and only used the covariance matrix as input for the error.
This worked surprisingly well for generating smooth band structures. For U = 3
to U = 6, the bands follow the non-interacting bands and with increasing U only
a broadening can be seen. While the broadening at U = 3 is certainly due to a
mixture of physical self-energy effects and artifacts of the maximum entropy, the
increasing broadening from U = 3 to U = 6 can be identified with a physical effect:
strong correlations lead to reduced life times, i.e, a larger broadening. Starting
with U = 7 the band structure starts breaking up into two parts, in agreement
with Figure 3.8. With increasing interaction strength, the flat band is shifting up
and merges with the appearing Hubbard band on the top. Starting with U = 8,
the gap is forming and is fully developed at U = 10 with a width around 3, also
in agreement with Figure 3.8.
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Figure 3.7: k-integrated spectral functions Aω at β = 3 and U = 3, 4, 5 and 6. The left
column are the DQMC results and the right column the DMFT results.
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Figure 3.8: k-integrated spectral functions Aω at β = 3 and U = 7, 8, 9 and 10. The left
column are the DQMC results and the right column the DMFT results.

57



Figure 3.9: DQMC k-resolved spectral functions Akkk,ω at β = 3 and U = 3, 4, . . . , 10
along the high symmetry path Γ − M ′ − K ′ − Γ of the first BZ. The black dashed line is
the band structure of the non-interacting system in tight-binding approximation, shifted
by the chemical potential µ = 0.502 for half filling.
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3.1.2. Temperature Dependence at Weak Interaction

In this section we discuss the electronic correlations for the weak interaction U = 3.
Looking back at Figure 3.1, we see that for U = 3, we are able in DQMC to do
calculation down to β = 10. Figure 3.10 shows the integrated spectral functions
for β = 6, 8 and 10.

Figure 3.10: Integrated spectral functions Aω at β = 6, 8, 10 and U = 3. The left column
are the DQMC results and the right column the DMFT results.

The main difference between the above DMFT and DQMC spectra is in the region
-6 to 0. DQMC features in this region three peaks close to -4, -2 and 0, which
are getting more pronounced with lower temperature. However, DMFT only has
two peaks close to -3 and 0, where the latter one splits up when temperature is
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lowered.

3.1.3. Magnetic Structure Factor

In this section we discuss the calculated magnetic properties of the Kagome lat-
tice, in particular the magnetic structure factor. The magnetic structure factor is
directly related to neutron scattering experiments[16]. The equal-time magnetic
structure factor is defined as the Fourier transformation of the real space spin-spin
correlation. Thus,

Sqqq =
∑
rrri,rrrj

〈
Sz
rrri
Sz
rrrj

〉
eiqqq(rrri−rrrj) . (3.2)

For a energy resolved spectrum, one can define the dynamic magnetic structure
factor as

Sqqq,τ =
∑
rrri,rrrj

〈
Sz
rrri,τ

Sz
rrrj ,0

〉
eiqqq(rrri−rrrj) (3.3)

and

Sqqq,ω = − 1
π
I

[
χqqq,ω

1 − e−βω

]
= − 1

π
I

[
ωBqqq,ω

1 − e−βω

]
, (3.4)

where the operator I is returning the imaginary part, Bqqq,ω is defined in Equa-
tion (2.40) and χqqq,ω is the magnetic susceptibility. Let us from here on drop the
word “magnetic” from all future structure factor names. All results below, are gen-
erated with DQMC. Calculating the equal-time structure factor in Equation (3.2)
only requires a Fourier transformation, where one can use the fact again, that the
spin-spin correlations are decaying fast with increasing distance. Hence, we ap-
plied the same method as for the k-resolved spectra in Section 3.1.1. Figure 3.11
compares the obtained equal-time structure factors for U = 3, 4, . . . , 10 and β = 3
and Figure 3.12 compares the the equal-time structure factors for U = 3 and
β = 3, 6, 8 and 10. Drawn into the plots are the first BZ in dashed lines and the
extended BZ in solid lines with its three symmetry points Γ, M and K.
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Figure 3.11: DQMC equal-time structure factor Sqqq in the EBZ at β = 3 and U =
3, 4, . . . , 10.

61



Figure 3.12: DQMC equal-time structure factor Sqqq in the EBZ at U = 3 and β =
3, 6, 8, 10.

A larger structure factor is formed at the M point and K point and in between
forming a ring-like structure with the hexagonal symmetry still visible. It can
be seen that most of the intensity is almost only in the EBZ, in good agreement
with the results in Heisenberg approximation by Sherman[46]. More specifically
in the spin liquid, the structure factors are featuring triangles where the corners
are close to the M points and the centers are on the K points. With increasing
U the corners of the triangles are getting sharper and thinner. Only at U = 8 a
rounder pattern around K can be seen, which is probably resulting from a lower
quality of data. Overall, the shapes of the different structure factors for different
U and β = 3 are very similar. The intensity of Sqqq is increasing with U and has
its maximum for U = 9 at the K point. For the equal-time structure factors with
U = 3 at temperatures β = 3, 6, 8, 10 only the shape is slightly changing but the
intensity stays the same.
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More information is contained in the dynamic structure factors. To obtain the
dynamic structure factors, a Fourier transformation and an analytic continuation
is needed to get from χrrr,τ to χqqq,ω. The difference, compared to Section 3.1.1 is, that
we have to use a bosonic kernel instead a fermionic one for analytic continuation.
We calculated the dynamic structure factor along the EBZ path Γ−M−K−Γ. For
the analytic continuation we chose an equidistant frequency grid with 500 points
between 0 and 20/U and an equidistant grid with 200 points from 20/U to 20. The
plotted region is from 0 to 20/U , where the region from 20/U to 20 is only used to
ensure well behaved asymptotic. Here, we scaled the frequency by 1/U for keep-
ing the magnetic coupling which is J = 4t2/U approximately constant. Further,
we used the covariance matrix of the data and no error rescaling. Figures 3.13
and 3.14 show the results. With the scaling of 1/U the structure factor essentially
stays the same from U = 6 to U = 10, despite the Mott-Hubbard transition.

Figure 3.13: DQMC dynamic structure factor Sqqq,ω at β = 3 and U = 3, 4, 5 and 6 along
the high symmetry path Γ − M − K − Γ in the EBZ.
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Figure 3.14: DQMC dynamic structure factor Sqqq,ω at β = 3 and U = 7, 8, 9 and 10 along
the high symmetry path Γ − M − K − Γ in the EBZ.

3.2. Flat Band
In Section 2.3 we listed the main properties of the Kagome system, where one
outstanding feature is the flat band. When using the Hubbard Hamiltonian defi-
nition in Equation (2.48) with t > 0 and changing the filling to 5/6, one obtains
a half-filled flat band. The same is true for t < 0 with 1/6 filling, related to the
former cause by a particle-hole transformation. In this special case, the Kagome
lattice may be expected to exhibit flat band ferromagnetism, as it was first rig-
orously shown by Mielke[34] and reviewed and extended by Tasaki[51]. Therefore
the localized electrons in the flat band are developing long-range order. Such
calculations are an optimal case for DMFT, where interactions are purely local
and k-independent. However, for DQMC it is quite the opposite, where lattice
dimensions are usually very small and long-ranging correlation effects are difficult
to obtain. Further, it is challenging in DQMC to get a ferromagnetic system as
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it does calculations in real space. When having ferromagnetism, the symmetry
is broken and in case of Kagome in two possible ways. Therefore, the outcome
of the Monte Carlo simulations is arbitrary with respect to the two magnetic ori-
entations possible. This means when running many simulations, on average the
net spin should cancels out. Indeed, this is what we found when running DQMC
calculations on Kagome with half filled flat band. However, the spatial spin-spin
correlation χrrr should be long-ranging, which we were unable to see. Figure 3.15
shows the susceptibility χrrr for different distances |rrr|.

Figure 3.15: DQMC equal-time susceptibility for U = 3 and β = 5 at 5/6 filling. The
plot shows the values for different distances. Besides the local susceptibility, all other
contributions are basically vanishing.

Unfortunately, because of the above mentioned reason, we were not able to inves-
tigate the ferromagnetism in the half filled flat band of the Kagome lattice with
DQMC.

3.3. Energy, Entropy and Specific Heat Capacity
In this section we present the results of the energy dependent quantities total
energy, entropy and specific heat capacity. For the DQMC method, it is straight
forward to obtain the total energy of the system, because one knows the Green’s
function and the occupancies of sites in real space and therefore, can directly
obtain the hopping part and the interaction part of Equation (2.48). Through the
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total energy, we can calculate the entropy and specific heat capacity by using the
methods introduced in Section 2.4.7. We applied these methods in the temperature
range of T = 0.2 to 100. Compared to the dynamic quantities, where one needs to
do time dependent measurements on a dens imaginary time grid, the calculation
of the total energy only requires equal time measurements. Therefore, it is much
cheaper in terms of computation time and thus one can run many calculations.
Figure 3.16 shows the obtained total energies for 43 temperatures between T =
0.2 and 100 and U = 3, 4, . . . , 8 for the half filling Kagome lattice. It can be

Figure 3.16: DQMC calculated total energies for U = 3, 4, . . . , 8 and temperature range
0.2 to 100.

seen that the total energy increases with temperature until it reaches a (for the
Colombo repulsion U characteristic) plateau. The obtained entropy and specific
heat capacity are in Figures 3.17 and 3.18.
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Figure 3.17: DQMC calculated entropy for U = 3, 4, . . . , 8 and temperature range 0.2 to
100.

Figure 3.18: DQMC calculated specific heat capacities for U = 3, 4, . . . , 8 and tempera-
ture range 0.0 to 10. The dots are marking every tenth calculated point.

The entropies for different U values are behaving very similar and only have a
slightly different value between 1 and 10, because of the different slops in Fig-
ure 3.16. The asymptotic value of the entropy is ln (4), because of the 4 different
ground states |↑〉, |↓〉, |0〉 and |↑↓〉, which are all occupied in the thermodynamic
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limit. The specific heat capacities for different U values are featuring a peak when
coming from higher temperature which is moving towards lower temperatures for
smaller U . However, the second peak does not follow such a pattern. At low
temperatures, the specific heat capacities are bending away to higher or lower val-
ues, where some are becoming negative and therefore are not physical anymore.
The reason for this might be the increasing QMC noise with lower temperature or
over-fitting of the data before differentiating.
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Chapter 4

Conclusion and Outlook

To solve the Hubbard model, we used two fundamentally different methods, DQMC
and DMFT, and investigated the following three cases: First, the Mott-Hubbard
metal-insulator transition at half filling through the k-integrated and k-resolved
spectral functions, where we compared the DQMC and DMFT results. Second,
the magnetic structure factor at half filling with DQMC, at the same temperature
and interaction strengths as we used for the Mott-Hubbard metal-insulator tran-
sition calculations. Third, the half filled flat-band case with DQMC.

We were able to find the Mott-Hubbard metal-insulator transition in DQMC and
DMFT, albeit at different interaction strengths. The equal-time magnetic struc-
ture factors are featuring intensity patterns, which are in a good agreement with
previous publications for Heisenberg models. Further, we calculated the dynamic
magnetic structure factor, where we could see a flattening of the intensity pat-
tern with increasing electronic interaction. Due to the frustration in the half-filled
case, the correlation are short-ranged and the DQMC method turned out to be a
good fit. Hence, the restriction to a finite-sized lattice is well justified. For the
case of flat band doping, ferromagnetism is anticipated, i.e. the spatial correlation
length is expected to be large. However, we were unable to find it in DQMC. In
order to obtain the spectral functions and magnetic structure factors, tools for
various post-processing steps were developed. Most of them are footing on the
analytic continuation of imaginary-time Green’s function with the maximum en-
tropy method. We found out that the common assumption of uncorrelated data
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in DQMC is generally not fulfilled and it is crucial to take this into consideration.

The DQMC and DMFT methods are used since decades and still constantly im-
proved. In DMFT, a central object is the local self-energy, and with diagrammatic
extensions it is possible to even obtain non-local contributions to it. In DQMC,
non-local correlations are included naturally within the algorithm. However, the
self-energy is usually not calculated. For a future work, it would be very interesting
to implement a self-energy measurement in DQMC, in the spirit of Refs[14, 15].
This would allow for comparison with non-local self-energies from diagrammatic
methods e.g. DΓA.

70



Acknowledgements
First and foremost, I want to thank my supervisor, Prof. Karsten Held, for giving
me the opportunity to participate in his research group and complete this master
thesis. It was an honor and a valuable experience to learn from his vast physical
knowledge. I also want to thank him for arranging the possibility to do research
abroad at the University of California Davis in Prof. Richard Scalettar’s group.

I owe deep gratitude to Prof. Richard Scalettar, for making me feel welcome
in his research group and explaining me the concepts of DQMC. He was always
there when I had questions and supported me throughout my whole stay. It was a
pleasure and inspirational to talk with him due to his knowledge and experience.
Furthermore, I want to thank his group members, for not only the helpful discus-
sions regarding my thesis but also for the company and the coffee breaks.

I also want to thank my advisors, Dr. Oleg Janson and Dipl.Ing Josef Kauf-
mann. for helping me during those moments of struggle when I came to a dead
end. Furthermore, I want to express a special gratuity to Josef Kaufmann, who
explained to me the maximum entropy method and allowed me to use his imple-
mentation in Python. This truly helped me to achieve the results in this thesis
and to go beyond the usual scope of DQMC data post-processing. I am also very
thankful that he provided the DMFT data for comparison with the DQMC results.

Last but not least, I owe deep gratitude to my parents, Anton and Stephanie,
who supported me and my curiosity for the world around me. I know that my
accomplishments in my studies have made them proud.

71



Bibliography

[1] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Cengage Learning,
2011. isbn: 9788131500521. url: https://books.google.at/books?id=x\
_s\_YAAACAAJ.

[2] Alexandre Zagoskin (auth.) Quantum Theory of Many-Body Systems: Tech-
niques and Applications. 2nd ed. Graduate Texts in Physics. Springer Inter-
national Publishing, 2014. isbn: 978-3-319-07048-3,978-3-319-07049-0.

[3] Balents Leon. “Spin liquids in frustrated magnets”. In: Nature 464.7286
(2010). 10.1038/nature08917, pp. 199–208. issn: 0028-0836. doi: http://
dx.doi.org/10.1038/nature08917.

[4] Dominic Bergeron and A-MS Tremblay. “Algorithms for optimized maximum
entropy and diagnostic tools for analytic continuation”. In: Physical Review
E 94.2 (2016), p. 023303.

[5] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar. “Monte Carlo calcula-
tions of coupled boson-fermion systems. I”. In: Phys. Rev. D 24 (8 1981),
pp. 2278–2286. doi: 10.1103/PhysRevD.24.2278. url: https://link.
aps.org/doi/10.1103/PhysRevD.24.2278.

[6] Felix Bloch. “Über die Quantenmechanik der Elektronen in Kristallgittern”.
In: Zeitschrift für Physik 52.7 (1929), pp. 555–600. issn: 0044-3328. doi:
10.1007/BF01339455. url: https://doi.org/10.1007/BF01339455.

[7] Natanael C. Costa et al. “Ferromagnetism beyond Lieb’s theorem”. In: Phys.
Rev. B 94 (15 2016), p. 155107. doi: 10.1103/PhysRevB.94.155107. url:
https://link.aps.org/doi/10.1103/PhysRevB.94.155107.

72

https://books.google.at/books?id=x\_s\_YAAACAAJ
https://books.google.at/books?id=x\_s\_YAAACAAJ
http://dx.doi.org/http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1103/PhysRevD.24.2278
https://link.aps.org/doi/10.1103/PhysRevD.24.2278
https://link.aps.org/doi/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1007/BF01339455
https://doi.org/10.1007/BF01339455
http://dx.doi.org/10.1103/PhysRevB.94.155107
https://link.aps.org/doi/10.1103/PhysRevB.94.155107


[8] “Electron correlations in narrow energy bands”. In: Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 276.1365
(1963), pp. 238–257. issn: 0080-4630. doi: 10 . 1098 / rspa . 1963 . 0204.
eprint: http://rspa.royalsocietypublishing.org/content/276/1365/
238.full.pdf. url: http://rspa.royalsocietypublishing.org/content/
276/1365/238.

[9] Patrik Fazekas. Lecture notes on electron correlation and magnetism. Mod.
Condensed Matter Phys. Singapore: World Scientific, 1999. url: http://
cds.cern.ch/record/334821.

[10] “Feynman Diagrams for Condensed Matter Physics”. In: Topics and Meth-
ods in Condensed Matter Theory: From Basic Quantum Mechanics to the
Frontiers of Research. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 217–256. isbn: 978-3-540-70727-1. doi: 10.1007/978-3-540-70727-
1_11. url: https://doi.org/10.1007/978-3-540-70727-1_11.

[11] Mingxuan Fu et al. “Evidence for a gapped spin-liquid ground state in a
kagome Heisenberg antiferromagnet”. In: Science 350.6261 (2015), pp. 655–
658.

[12] F. Gebhard. The Mott Metal-Insulator Transition: Models and Methods.
Springer Series in Solid-State Sciences Nr. 137. Springer, 1997. isbn: 9783540614814.
url: https://books.google.at/books?id=U8UrAAAAYAAJ.

[13] Antoine Georges et al. “Dynamical mean-field theory of strongly correlated
fermion systems and the limit of infinite dimensions”. In: Reviews of Modern
Physics 68.1 (1996), p. 13.

[14] P. Gunacker et al. “Worm-improved estimators in continuous-time quantum
Monte Carlo”. In: Phys. Rev. B 94 (12 2016), p. 125153. doi: 10.1103/
PhysRevB . 94 . 125153. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevB.94.125153.

[15] Patrik Gunacker and Patrik Gunacker. “Kontinuumsszeit-Quanten-Monte-
Carlo in der Hybridisierungs-Expansion: Implementierungen und Anwendun-
gen”. eng. PhD thesis. Wien, 2018. url: https://resolver.obvsg.at/urn:
nbn:at:at-ubtuw:1-114444.

73

http://dx.doi.org/10.1098/rspa.1963.0204
http://rspa.royalsocietypublishing.org/content/276/1365/238.full.pdf
http://rspa.royalsocietypublishing.org/content/276/1365/238.full.pdf
http://rspa.royalsocietypublishing.org/content/276/1365/238
http://rspa.royalsocietypublishing.org/content/276/1365/238
http://cds.cern.ch/record/334821
http://cds.cern.ch/record/334821
http://dx.doi.org/10.1007/978-3-540-70727-1_11
http://dx.doi.org/10.1007/978-3-540-70727-1_11
https://doi.org/10.1007/978-3-540-70727-1_11
https://books.google.at/books?id=U8UrAAAAYAAJ
http://dx.doi.org/10.1103/PhysRevB.94.125153
http://dx.doi.org/10.1103/PhysRevB.94.125153
https://link.aps.org/doi/10.1103/PhysRevB.94.125153
https://link.aps.org/doi/10.1103/PhysRevB.94.125153
https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-114444
https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-114444


[16] Tian-Heng Han et al. “Fractionalized excitations in the spin-liquid state of
a kagome-lattice antiferromagnet”. In: Nature 492.7429 (2012), p. 406.

[17] K. Held. “Dynamical Vertex Approximation”. In: ArXiv e-prints (Nov. 2014).
arXiv: 1411.5191 [cond-mat.str-el].

[18] K. Held. “Electronic Structure Calculations using Dynamical Mean Field
Theory”. In: eprint arXiv:cond-mat/0511293 (Nov. 2005). eprint: cond-mat/
0511293.

[19] J. E. Hirsch. “Discrete Hubbard-Stratonovich transformation for fermion
lattice models”. In: Phys. Rev. B 28 (7 1983), pp. 4059–4061. doi: 10 .
1103/PhysRevB.28.4059. url: https://link.aps.org/doi/10.1103/
PhysRevB.28.4059.

[20] V. I. Iglovikov, E. Khatami, and R. T. Scalettar. “Geometry Dependence of
the Sign Problem”. In: Phys. Rev. B 92, 045110 (2015) (Jan. 12, 2015). doi:
10.1103/PhysRevB.92.045110. arXiv: 1501.02832v3 [cond-mat.str-el].

[21] V. I. Iglovikov et al. “Superconducting transitions in flat-band systems”. In:
Phys. Rev. B 90 (9 2014), p. 094506. doi: 10.1103/PhysRevB.90.094506.
url: https://link.aps.org/doi/10.1103/PhysRevB.90.094506.

[22] Mark Jarrell and James E Gubernatis. “Bayesian inference and the analytic
continuation of imaginary-time quantum Monte Carlo data”. In: Physics Re-
ports 269.3 (1996), pp. 133–195.

[23] Radi A. Jishi. Feynman Diagram Techniques in Condensed Matter Physics.
Cambridge University Press, 2013. doi: 10.1017/CBO9781139177771.

[24] Gyu-Boong Jo et al. “Ultracold Atoms in a Tunable Optical Kagome Lat-
tice”. In: Phys. Rev. Lett. 108 (4 2012), p. 045305. doi: 10.1103/PhysRevLett.
108.045305. url: https://link.aps.org/doi/10.1103/PhysRevLett.
108.045305.

[25] Josef Kaufmann. 2018. url: https://github.com/josefkaufmann/ana_
cont.

74

http://arxiv.org/abs/1411.5191
cond-mat/0511293
cond-mat/0511293
http://dx.doi.org/10.1103/PhysRevB.28.4059
http://dx.doi.org/10.1103/PhysRevB.28.4059
https://link.aps.org/doi/10.1103/PhysRevB.28.4059
https://link.aps.org/doi/10.1103/PhysRevB.28.4059
http://dx.doi.org/10.1103/PhysRevB.92.045110
http://arxiv.org/abs/1501.02832v3
http://dx.doi.org/10.1103/PhysRevB.90.094506
https://link.aps.org/doi/10.1103/PhysRevB.90.094506
http://dx.doi.org/10.1017/CBO9781139177771
http://dx.doi.org/10.1103/PhysRevLett.108.045305
http://dx.doi.org/10.1103/PhysRevLett.108.045305
https://link.aps.org/doi/10.1103/PhysRevLett.108.045305
https://link.aps.org/doi/10.1103/PhysRevLett.108.045305
https://github.com/josefkaufmann/ana_cont
https://github.com/josefkaufmann/ana_cont


[26] Ehsan Khatami, Rajiv R. P. Singh, and Marcos Rigol. “Thermodynamics
and phase transitions for the Heisenberg model on the pinwheel distorted
kagome lattice”. In: Phys. Rev. B 84 (22 2011), p. 224411. doi: 10.1103/
PhysRevB . 84 . 224411. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevB.84.224411.

[27] NB Kopnin, TT Heikkilä, and GE Volovik. “High-temperature surface super-
conductivity in topological flat-band systems”. In: Physical Review B 83.22
(2011), p. 220503.

[28] Che-Rung Lee, Zhi-Hung Chen, and Quey-Liang Kao. “Parallelizing the
hamiltonian computation in dqmc simulations: Checkerboard method for
sparse matrix exponentials on multicore and gpu”. In: Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012
IEEE 26th International. IEEE. 2012, pp. 1889–1897.

[29] Ryan Levy, J.P.F. LeBlanc, and Emanuel Gull. “Implementation of the maxi-
mum entropy method for analytic continuation”. In: Computer Physics Com-
munications 215.Supplement C (2017), pp. 149 –155. issn: 0010-4655. doi:
https://doi.org/10.1016/j.cpc.2017.01.018. url: http://www.
sciencedirect.com/science/article/pii/S0010465517300309.

[30] Hai-Jun Liao et al. “Gapless spin-liquid ground state in the S= 1/2 kagome
antiferromagnet”. In: Physical review letters 118.13 (2017), p. 137202.

[31] Elliott H. Lieb. “Two theorems on the Hubbard model”. In: Phys. Rev. Lett.
62 (10 1989), pp. 1201–1204. doi: 10.1103/PhysRevLett.62.1201. url:
https://link.aps.org/doi/10.1103/PhysRevLett.62.1201.

[32] A. K. McMahan et al. “Volume-Collapse Transitions in the Rare Earth Met-
als”. In: J. Comput.-Aided Mater. Des. 5, 131 (1998) (May 6, 1998). doi: 10.
1023/A:1008698422183. arXiv: cond-mat/9805064v1 [cond-mat.str-el].

[33] Walter Metzner and Dieter Vollhardt. “Correlated lattice fermions in d=∞
dimensions”. In: Physical review letters 62.3 (1989), p. 324.

[34] Andreas Mielke. “Ferromagnetism in the Hubbard model and Hund’s rule”.
In: Physics Letters A 174.5 (1993), pp. 443 –448. issn: 0375-9601. doi:
https://doi.org/10.1016/0375- 9601(93)90207- G. url: http://
www.sciencedirect.com/science/article/pii/037596019390207G.

75

http://dx.doi.org/10.1103/PhysRevB.84.224411
http://dx.doi.org/10.1103/PhysRevB.84.224411
https://link.aps.org/doi/10.1103/PhysRevB.84.224411
https://link.aps.org/doi/10.1103/PhysRevB.84.224411
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2017.01.018
http://www.sciencedirect.com/science/article/pii/S0010465517300309
http://www.sciencedirect.com/science/article/pii/S0010465517300309
http://dx.doi.org/10.1103/PhysRevLett.62.1201
https://link.aps.org/doi/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1023/A:1008698422183
http://dx.doi.org/10.1023/A:1008698422183
http://arxiv.org/abs/cond-mat/9805064v1
http://dx.doi.org/https://doi.org/10.1016/0375-9601(93)90207-G
http://www.sciencedirect.com/science/article/pii/037596019390207G
http://www.sciencedirect.com/science/article/pii/037596019390207G


[35] A. Montorsi. The Hubbard Model: A Reprint Volume. World Scientific, 1992.
isbn: 9789810205867. url: https://books.google.at/books?id=QoGl8H7tphYC.

[36] N F Mott. “The Basis of the Electron Theory of Metals, with Special Ref-
erence to the Transition Metals”. In: Proceedings of the Physical Society.
Section A 62.7 (1949), p. 416. url: http : / / stacks . iop . org / 0370 -
1298/62/i=7/a=303.

[37] M. R. Norman. “Colloquium, Herbertsmithite and the search for the quan-
tum spin liquid”. In: Rev. Mod. Phys. 88 (4 2016), p. 041002. doi: 10.1103/
RevModPhys.88.041002. url: https://link.aps.org/doi/10.1103/
RevModPhys.88.041002.

[38] Thereza Paiva et al. “Signatures of Spin and Charge Energy Scales in the
Local Moment and Specific Heat of the Two-Dimensional Hubbard Model”.
In: Phys. Rev. B 63, 125116 (2001). (Aug. 2, 2000). doi: 10.1103/PhysRevB.
63.125116. arXiv: cond-mat/0008044v1 [cond-mat.str-el].

[39] Warren E Pickett and David J Singh. “LuNi 2 B 2 C: A novel Ni-based
strong-coupling superconductor”. In: Physical review letters 72.23 (1994),
p. 3702.

[40] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific
Computing. 3rd ed. New York, NY, USA: Cambridge University Press, 2007.
isbn: 0521880688, 9780521880688.

[41] M. Rasetti. The Hubbard Model: Recent Results. International journal of mod-
ern physics / B. World Scientific, 1991. isbn: 9789810206239. url: https:
//books.google.at/books?id=pIpwtAEACAAJ.

[42] G Rohringer et al. “Diagrammatic routes to nonlocal correlations beyond
dynamical mean field theory”. In: Reviews of Modern Physics 90.2 (2018),
p. 025003.

[43] Tôru Sakai and Hiroki Nakano. “Gapless quantum spin liquid of the kagome-
lattice antiferromagnet”. In: Polyhedron 126 (2017), pp. 42 –44. issn: 0277-
5387. doi: https://doi.org/10.1016/j.poly.2017.01.012. url: http:
//www.sciencedirect.com/science/article/pii/S0277538717300256.

76

https://books.google.at/books?id=QoGl8H7tphYC
http://stacks.iop.org/0370-1298/62/i=7/a=303
http://stacks.iop.org/0370-1298/62/i=7/a=303
http://dx.doi.org/10.1103/RevModPhys.88.041002
http://dx.doi.org/10.1103/RevModPhys.88.041002
https://link.aps.org/doi/10.1103/RevModPhys.88.041002
https://link.aps.org/doi/10.1103/RevModPhys.88.041002
http://dx.doi.org/10.1103/PhysRevB.63.125116
http://dx.doi.org/10.1103/PhysRevB.63.125116
http://arxiv.org/abs/cond-mat/0008044v1
https://books.google.at/books?id=pIpwtAEACAAJ
https://books.google.at/books?id=pIpwtAEACAAJ
http://dx.doi.org/https://doi.org/10.1016/j.poly.2017.01.012
http://www.sciencedirect.com/science/article/pii/S0277538717300256
http://www.sciencedirect.com/science/article/pii/S0277538717300256


[44] Raimundo R. dos Santos. “Introduction to Quantum Monte Carlo simula-
tions for fermionic systems”. In: Braz. J. Phys. 33, 36 (2003) (Mar. 26, 2003).
arXiv: cond-mat/0303551v1 [cond-mat.str-el].

[45] Nicholas E. Sherman, Takashi Imai, and Rajiv R. P. Singh. “Nuclear relax-
ation rates in the Herbertsmithite Kagome antiferromagnets ZnCu3(OH)6Cl2”.
In: Phys. Rev. B 94, 140415(R) (2016) (Sept. 1, 2016). doi: 10 . 1103 /
PhysRevB.94.140415. arXiv: 1609.00422v1 [cond-mat.str-el].

[46] Nicholas E. Sherman and Rajiv R. P. Singh. “Structure Factors of the Kagome-
Lattice Heisenberg antiferromagnets at finite temperatures”. In: Phys. Rev.
B 97, 014423 (2018) (Nov. 15, 2017). doi: 10.1103/PhysRevB.97.014423.
arXiv: 1711.05375v1 [cond-mat.str-el].

[47] Matthew P. Shores et al. “A Structurally Perfect S = 1/2 Kagomé Anti-
ferromagnet”. In: Journal of the American Chemical Society 127.39 (2005).
PMID: 16190686, pp. 13462–13463. doi: 10.1021/ja053891p. eprint: http:
//dx.doi.org/10.1021/ja053891p. url: http://dx.doi.org/10.1021/
ja053891p.

[48] Rajiv R. P. Singh and David A. Huse. “Ground state of the spin-1/2 kagome-
lattice Heisenberg antiferromagnet”. In: Phys. Rev. B 76 (18 2007), p. 180407.
doi: 10.1103/PhysRevB.76.180407. url: https://link.aps.org/doi/
10.1103/PhysRevB.76.180407.

[49] J. C. Slater and G. F. Koster. “Simplified LCAO Method for the Periodic
Potential Problem”. In: Phys. Rev. 94 (6 1954), pp. 1498–1524. doi: 10.
1103/PhysRev.94.1498. url: https://link.aps.org/doi/10.1103/
PhysRev.94.1498.

[50] Klaus Steiner. 2018. url: https://github.com/ksteiner92/PyMPDQMC.

[51] Hal Tasaki. “From Nagaoka’s Ferromagnetism to Flat-Band Ferromagnetism
and BeyondAn Introduction to Ferromagnetism in the Hubbard Model”. In:
Progress of Theoretical Physics 99.4 (1998), pp. 489–548. doi: 10.1143/
PTP.99.489. eprint: /oup/backfile/content_public/journal/ptp/99/
4/10.1143/ptp.99.489/2/99-4-489.pdf. url: http://dx.doi.org/10.
1143/PTP.99.489.

77

http://arxiv.org/abs/cond-mat/0303551v1
http://dx.doi.org/10.1103/PhysRevB.94.140415
http://dx.doi.org/10.1103/PhysRevB.94.140415
http://arxiv.org/abs/1609.00422v1
http://dx.doi.org/10.1103/PhysRevB.97.014423
http://arxiv.org/abs/1711.05375v1
http://dx.doi.org/10.1021/ja053891p
http://dx.doi.org/10.1021/ja053891p
http://dx.doi.org/10.1021/ja053891p
http://dx.doi.org/10.1021/ja053891p
http://dx.doi.org/10.1021/ja053891p
http://dx.doi.org/10.1103/PhysRevB.76.180407
https://link.aps.org/doi/10.1103/PhysRevB.76.180407
https://link.aps.org/doi/10.1103/PhysRevB.76.180407
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
https://link.aps.org/doi/10.1103/PhysRev.94.1498
https://link.aps.org/doi/10.1103/PhysRev.94.1498
https://github.com/ksteiner92/PyMPDQMC
http://dx.doi.org/10.1143/PTP.99.489
http://dx.doi.org/10.1143/PTP.99.489
/oup/backfile/content_public/journal/ptp/99/4/10.1143/ptp.99.489/2/99-4-489.pdf
/oup/backfile/content_public/journal/ptp/99/4/10.1143/ptp.99.489/2/99-4-489.pdf
http://dx.doi.org/10.1143/PTP.99.489
http://dx.doi.org/10.1143/PTP.99.489


[52] J Vannimenus and G Toulouse. “Theory of the frustration effect. II. Ising
spins on a square lattice”. In: Journal of Physics C: Solid State Physics 10.18
(1977), p. L537.

[53] Markus Wallerberger et al. “w2dynamics: Local one- and two-particle quan-
tities from dynamical mean field theory”. In: (Jan. 30, 2018). arXiv: 1801.
10209v2 [cond-mat.str-el].

[54] Gian-Carlo Wick. “The evaluation of the collision matrix”. In: Physical review
80.2 (1950), p. 268.

[55] Simeng Yan, David A. Huse, and Steven R. White. “Spin-Liquid Ground
State of the S = 1/2 Kagome Heisenberg Antiferromagnet”. In: Science
332.6034 (2011), pp. 1173–1176. issn: 0036-8075. doi: 10.1126/science.
1201080. eprint: http://science.sciencemag.org/content/332/6034/
1173.full.pdf. url: http://science.sciencemag.org/content/332/
6034/1173.

[56] Yuanyuan Zong et al. “Observation of localized flat-band states in Kagome
photonic lattices”. In: Opt. Express 24.8 (2016), pp. 8877–8885. doi: 10.
1364/OE.24.008877. url: http://www.opticsexpress.org/abstract.
cfm?URI=oe-24-8-8877.

78

http://arxiv.org/abs/1801.10209v2
http://arxiv.org/abs/1801.10209v2
http://dx.doi.org/10.1126/science.1201080
http://dx.doi.org/10.1126/science.1201080
http://science.sciencemag.org/content/332/6034/1173.full.pdf
http://science.sciencemag.org/content/332/6034/1173.full.pdf
http://science.sciencemag.org/content/332/6034/1173
http://science.sciencemag.org/content/332/6034/1173
http://dx.doi.org/10.1364/OE.24.008877
http://dx.doi.org/10.1364/OE.24.008877
http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8877
http://www.opticsexpress.org/abstract.cfm?URI=oe-24-8-8877

	Introduction
	Models and Methods
	Quantum Field Theory
	Green's Functions
	Matsubara Green's Functions
	Wick's theorem
	Self Energy

	The Hubbard Model
	Kagome Lattice
	Determinant Quantum Monte Carlo
	Trotter decomposition
	Hubbard-Stratonovich Transformation
	Simulation
	Measurements
	Checkerboard Approximation
	Determining the Chemical Potential
	Specific Heat and Entropy

	Dynamical Mean Field Theory
	Analytic Continuation
	Maximum Entropy Method


	Results
	Half Filling
	Mott-Hubbard Metal-Insulator Transition
	Temperature Dependence at Weak Interaction
	Magnetic Structure Factor

	Flat Band
	Energy, Entropy and Specific Heat Capacity

	Conclusion and Outlook

