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Zusammenfassung

Schwerionenkollisionen erlauben es, die Quantenchromodynamik im Bereich hoher Dichte
und hoher Energien zu untersuchen. Das Modell des Farbglaskondensats (engl. color
glass condensate, CGC) ist eine klassische, effektive Feldtheorie, welche die kollidieren-
den Kerne als flache, lorentzkontrahierte Scheiben beschreibt. Der vorliegende C++-Code
kann die ersten Phasen von Schwerionenkollisionen im Rahmen dieses Farbglaskonden-
sats simulieren und verwendet dabei Kerne mit endliche Dicke. Die gesamten Bewe-
gungsgleichungen, Zwangsbedingungen und die Hamiltondichte sind abgeleitet von der
CGC-Wirkung. Zusätzlich wird eine alternative Diskretisierung des Poynting-Vektors
hergeleitet, welche eine bessere Erhaltung des Poynting-Theorems erlaubt. Im Vergleich
zum Vorgänger, dem OpenPixi Simulator, sollte der vorliegende C++-Code eine leichter
vorhersagbare Skalierung aufweisen, schneller sein und weniger Speicher verbrauchen.
Um dies zu untermauern wurde eine Reihe von Tests und Benchmarks durchgeführt. So
wurden wohlbekannte Effekte wie das Auftreten einer Druckanisotropy und Gaußscher
Rapiditätsprofile im Vergleich mit OpenPixi überprüft.

Abstract

Heavy ion collisions allow the study of quantum chromodynamics in the dense, high
energy regime. The color glass condensate (CGC) model is a classical, effective field
theory that describes the colliding nuclei as flat, Lorentz contracted discs. The present
C++ code can simulate the early stages of heavy ion collisions in the CGC framework with
nuclei of finite thickness. All equations of motion and constraints as well as the Hamilton
density are derived from the CGC action. Additionally, an alternative discretization of
the Poynting vector, which allows better conservation of Poynting’s theorem, is obtained.
Compared to its predecessor, the OpenPixi simulator, the new C++ code should have
more predictable scaling, run faster and use less memory. In order to confirm this, a
set of tests and performance benchmarks were conducted. Furthermore, the emergence
of well-known features like the pressure anisotropy and Gaussian rapidity profiles were
studied in comparison with OpenPixi.
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1. Introduction

In the standard model of particle physics, quantum chromodynamics (QCD) is the fun-
damental theory of the strong interaction, which describes the forces between the color
charged quarks and gluons. However, due to confinement they can not be directly
observed under normal conditions. Only at very high temperatures and densities the
hadrons will melt into their constituents, creating a quark–gluon plasma (QGP) [1]. It
is believed that very shortly after the Big Bang the universe was in this state of matter
[2]. Nowadays, a quark–gluon plasma can be produced artificially in heavy ion collisions
presently performed at Brookhaven National Laboratory’s Relativistic Heavy Ion Col-
lider (RHIC) and CERN’s Large Hadron Collider (LHC). These collision experiments
help to gain a better understanding of the interactions between the fundamental parti-
cles of QCD. So far the theoretical description of heavy ion collisions relies on effective
theories and numerical methods to solve them. The color glass condensate (CGC) is a
classical model, which describes the colliding nuclei as very thin, Lorentz contracted discs
of hard, color charged particles and soft gluon fields [3, 4]. Right after the collision of
these discs, a highly coherent state of matter consisting of longitudinal color flux tubes,
the so called glasma, is created. This glasma then transforms into the quark–gluon
plasma [5].

OpenPixi – Open Colored Particle-in-Cell (CPIC) simulator – can simulate these early
stages of heavy ion collisions within the CGC framework [6, 7]. This is achieved by
using real-time lattice gauge theory and the CPIC method which allow the description
of Yang-Mills fields coupled to color charged point particles. In contrast to other sim-
ulations, OpenPixi uses nuclei with finite longitudinal thickness in 3+1 dimensions [8,
9]. Therefore it can go beyond the boost-invariant case, which is the limit of infinite
Lorentz contraction that leads to infinitesimally thin nuclei and effectively reduces the
dimensions to 2+1 [10–12]. This limit also makes the whole theory invariant under
Lorentz boosts along the longitudinal direction, hence the name. Using thick nucleons
enables studying collisions at lower energies, because thicker ions correspond to lower
Lorentz contraction. In principle it is also possible to find the limits of applicability in
this regard of the CGC framework, which is only an accurate theory for QCD in the
limit of infinite energies.

OpenPixi is written in Java which is an uncommon choice in high performance computing
(HPC). This is because it usually is not very resource-efficient with rather unpredictable
memory usage. Consequently, one can not reliably predict the memory consumption
of the simulation and is at risk of running out of memory at some point. The goal of
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1. Introduction

this master thesis is to continue the work, started in my preceeding project thesis [13],
and port the existing Java code to C++. This language was designed with performance,
efficiency and flexibility of use in mind [14]. It allows a high level of abstraction via
features such as object-oriented and generic programming, while also providing low-level
programming features. Therefore it should be possible to fix the issue mentioned above
and reduce memory consumption as well as execution time.

Chapter 2 gives more details on the theoretical description of the early stages of heavy ion
collisions. The numerical methods are discussed in chapter 3. It gives an introduction to
real-time lattice gauge theory, as well as the colored particle in cell method. Furthermore,
the equations of motion, the Hamiltonian density, the Poynting vector and the initial
conditions are derived. Chapter 4 describes how the software is organized in general and
how the numerical methods and other modules are implemented. The results of various
tests that verify the validity and benchmark the C++ code are presented in Chapter 5.
Finally, chapter 6 gives a conclusion.
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2. Early Stages of Heavy Ion Collisions

Trying to describe relativistic heavy ion collisions in a fully quantum-field theoretical
way from the fundamental QCD-Lagrangian is way out of reach with current calculation
tools and computational power. Due to the strong coupling and the non-Abelian nature
of QCD even calculating the energy spectra of hadrons, let alone nuclei, is not trivial.
The kinematics of high energy collisions however help simplify things. The following
overview of the theoretical description of heavy ion collisions is based on papers by
François Gelis. For more details see [15–17].

A prominent feature of QCD is its running coupling which decreases at small distances or
high energies and increases at large distances or low energies. This leads to the so called
asymptotic freedom and to confinement respectively. If one squeezes many hadrons into a
tiny volume, the small inter-quark distances will lead to weak coupling. Thus the quarks
will no longer be confined into hadrons but will form a plasma of deconfined quarks and
gluons. This suggests that instead of the color singlet hadrons the many quarks and
gluons are the relevant degrees of freedom in such a situation. Experimentally, such
conditions with high particle densities can be achieved in heavy ion collisions presently
performed by the RHIC and the LHC. Figure 2.1 shows the different stages of such
collisions, which have a duration in the order of 10 fm/c. It also shows the theories
and tools used in each of the stages. The first one is described by the color glass
condensate which will be discussed in more detail in section 2.3. The transition from
the anisotropic fields of this stage to the thermalized quark–gluon plasma described by
viscous hydrodynamics is an active field of research. A possible candidate for a theory
that can explain the fast isotropization is the recently developed effective kinetic theory
[18, 19]. For the stages of the isotropic quark–gluon plasma, viscous hydrodynamics is
still the prevailing tool, before kinetic theory can be used to describe the dynamics of the
emerged hadrons. The goal of the software, created as part of this thesis, is to simulate
the very first stage of heavy ion collisions. At this early time, the transition from the
color glass condensate to the quark–gluon plasma goes through a state of matter called
glasma, a contraction of glass (from the color glass condensate) and plasma (from the
quark–gluon plasma) [20].

2.1. Parton Model

The parton model describes hadrons as a set of point-like constituents called partons. For
protons and neutrons at low energies, these constituents are their three valence quarks.
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Figure 2.1.: Minkowski diagram of a collision of two heavy ions moving close to the
speed of light along the light cone. The different stages of the collisions are
separated by hyperbolas representing different proper times. The tools and
theories used to describe the various stages are also mentioned [17, Fig. 5].

This changes however when going to higher energies. Figure 2.2a shows a simplified
picture of the dynamics of the valence quarks and gluons inside a slow nucleon. The
thick lines are the valence quarks, while the wiggly lines are virtual gluons providing
the binding force. Sea-quarks – pairs of virtual quarks and antiquarks – are not shown.
The blue strip highlights a typical timespan relevant for collisions. Even at these low
energies, virtual quarks spring in and out of existence, but their lifetime, compared to
the collision time, is too short for them to be relevant. If one collides such a slow hadron
with a very fast one, as depicted in fig. 2.2b, the blue strip stays the same. However, the
internal dynamics are slowed down by time dilation and the lifetime of some gluons is now
longer than the collision time. Therefore these previously off-shell constituents become
indistinguishable from on-shell particles. Another way to look at it is by considering that
a lower collision time ∆t at higher energies corresponds to a greater energy uncertainty
∆E ∼ 1

∆t of the gluons during the collision event. Again, this makes them appear to be
on-shell although they were off-shell before. Increasing the energy uncovers more gluons
because virtual particles and fluctuations exist at an arbitrarily small timescale. Thus
the parton model describes high energy nucleons as a set of quasi-free particles, called
partons, which have a density that increases with energy.

2.2. Gluon Saturation

At low energies, collisions mainly involve single parton interactions. This is no longer
true at higher energies because of the increased parton density. Multiparton interactions
and correlations between single partons become relevant and can change the behavior
of collision processes. When the parton density increases up to a value of the order
of the inverse coupling 1/g2, a strongly interacting regime – called gluon saturation –
is reached. This saturation can be illustrated in the following way. At low energies
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2.2. Gluon Saturation

(a)

(b)

Figure 2.2.: Simplified dynamics of valence quarks and virtual gluons in nucleons. Sea
quarks are not shown. The blue strip marks a typical timespan for collisions.
(a) shows a low energy nucleus [17, Fig. 6], while (b) shows a highly boosted
one [17, Fig. 7].

a hadron is described by only a few partons. However at increasing speed more and
more gluons are emitted by bremsstrahlung and since they are confined in the volume
of the hadron, the gluon density rises. At some point the gluon cascades cannot evolve
independently any more and recombination processes become relevant, counteracting
the density increase. In simplified terms, this happens when the number of gluons per
unit area times the cross section for recombining two gluons into one is larger than one
[17, eq. 4],

αsQ
−2︸ ︷︷ ︸

σgg→g

×A−2/3xG(x,Q2)︸ ︷︷ ︸
surface density

≥ 1. (2.1)

Here αs is the strong coupling, Q is the 4-momentum of the photon exchanged in the
scattering, A is the mass number of the nucleon and xG(x,Q2) is the integrated gluon
distribution. Rearranging this yields an inequality on Q [17, eq. 5],

Q2 ≤ Q2
s := αsxG(x,Q2

s)
A2/3︸ ︷︷ ︸

saturation momentum

∼ A1/3x−0.3. (2.2)

Processes are governed by saturation physics if their typical momenta are below the
saturation scale Qs. Figure 2.3 plots Q2

s over A and x. Although the non-linear interac-
tion of the gluons in this regime makes calculations complicated, there is also a positive
side to it. Qs replaces all softer scales for the typical momentum of a parton and thus
controls the running of the coupling. Since Qs increases when x decreases (i.e. when
energy increases), this allows for a weak coupling treatment of the partons in high energy
collisions.
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Figure 2.3.: Saturation momentum plotted over the fraction x of longitudinal momen-
tum carried by a parton and the mass number A [21, Fig. 1]. The blue
area illustrates the saturation regime that is kinematically accessible by an
elctron-ion collider.

2.3. Color Glass Condensate

The color glass condensate is an effective theory which quantitatively describes the gluon
saturation regime. As discussed in section 2.1, in high energy ion collisions the nucleons
look like thin disks of partons that are essentially frozen in the transverse directions
but carry a large longitudinal momentum. For an observer in the center of mass frame,
the only relevant information of such partons is the color current jµa , where µ is the
Lorentz index running from 0 to 3 and a is the color index running from 1 to the number
of generators of the gauge group, which is 8 for SU(3). In light-cone coordinates, the
dominant, longitudinal part of a hadron moving in positive z-direction reads

jµa (x) = ρa(x
−, xT )δµ+, (2.3)

where ρa(x) is the density of color charges, x± = 1√
2(t ± z) the standard light-cone

coordinates, xT the two transverse coordinates and δµ+ is the Kronecker delta which
equals 1 if the index µ is in x+-direction and vanishes otherwise. Due to time dilation
and Lorentz contraction, ρa does not depend on x+ and its x− dependence is very
peaked around x− = 0. The important part is that not all partons can be treated as
static longitudinal color currents. Some of them have a smaller longitudinal momentum
than the hard partons. These soft modes need to be described as full quantum fields.
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2.3. Color Glass Condensate

The CGC model introduces a momentum cutoff between the rapidity of the laboratory
frame and the hadron. Partons below the cutoff are mostly gluons and described as
Yang-Mills gauge fields, whereas those above it are treated as static longitudinal currents.
With this, the CGC effective action reads

SCGC =
∫

d4x

(
−1

4F
a
µνF

µν
a − j

µ
aA

a
µ

)
, (2.4)

where F aµν is the gluon field strength tensor, jµa is the current density caused by the
hard partons and Aaµ is the gauge field. One has to consider that the current still
contains the charge density ρa(x

−, xT ), which is very hard to determine for heavy ions.
With current methods, it is not possible to calculate it from first principles. Instead
one has to use models that are available with various degrees of sophistication. The
McLerran-Venugopalan model is one of the simplest ones [22–24]. It describes the charge
configuration as random charges with a Gaussian distribution. Consequently, when
calculating observables, one has to average over many charge configurations to obtain
the expectation value of the desired observable.

Although the action looks rather simple, one encounters problems when doing power
counting. In the saturation regime, ρa is of the order of the inverse coupling 1/g.
However, for every new source there needs to be a vertex of order g to connect it to the
rest of the Feynman diagram. Therefore one can add an arbitrary number of sources
without changing the magnitude of the diagram. This means that an infinite number
of graphs contributes at each order in g2. Fortunately, it can be shown that at leading
order the sum of all diagrams is just the solution of the classical field equations of motion
with boundary conditions

lim
x

0→−∞
Aaµ(x) = 0 . (2.5)

In conclusion, the CGC model drastically simplifies the description of heavy ion colli-
sions, requiring to leading order only the solution of the classical equations of motion of
an effective action. However, this is still not an easy task and requires numerical methods
like real-time lattice gauge theory which is explained in the following chapter.

7





3. Numerical Methods

The previous chapter showed that one only has to solve the equations of motion of a
classical field theory to describe heavy ion collisions at leading order. However, to achieve
that, the use of numerical simulations is necessary. First of all, a proper formulation of
the action on the lattice has to be found. Then, one has to describe the color charged,
point-like particles moving through the grid and interacting with the fields in a consistent
way, which is done with the colored particle in cell (CPIC) method. The final step is
to derive the equations of motion for both the fields and the particles, and to formulate
them in a way which can easily be implemented in a simulation code.

3.1. Real-time Lattice Gauge Theory

Lattice gauge theory often refers to a non-perturbative approach to solving quantum
field theories, especially QCD, with the help of numerical methods like Monte-Carlo
simulations. However, this is not what will be described here and used later on. The
goal of this section is to find a formulation of the classical CGC action on a cuboid lattice
that is still gauge invariant at the discrete level. The equations of motion, derived from
this action, can then be solved by a simple explicit solver. In this regard, it is more
similar to common applications of finite difference methods.

First, a few definitions, sign conventions and notation have to be explained. According
to section 2.3, the continuum CGC action in natural units (~ = 1, c = 1) and 3+1
dimensions reads

S =
∫
d4x

(
−1

4F
a
µνF

µν
a − j

µ
aA

a
µ

)
=
∫
d4x

(
−1

2 Tr(FµνF
µν)− 2 Tr( j

µAµ)
)
. (3.1)

Throughout the whole thesis, the Minkowski metric with mostly minus signs is chosen

ηµν = diag(+,−,−,−). (3.2)

The gauge group SU(2) instead of SU(3) is used, since this is already a non-Abelian
group and thus leads to qualitatively similar results, while being far less computationally
intensive. The three generators of the group are denoted by ta and have the following
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3. Numerical Methods

properties

(ta)† = ta, (3.3)

[ta, tb] = ifabct
c, (3.4)

Tr(tatb) = 1
2δ

ab, (3.5)

where fabc are the antisymmetric structure constants. The covariant derivative acting
on a field ψ is chosen to be

Dµψ := ∂µψ − igAµψ, (3.6)
where g is the coupling constant and i the imaginary unit. The gauge field, current
density and field strength tensor therefore read

Ax,µ := Aax,µta = Aaµ(x)ta, (3.7)
jx,µ := jax,µta = jaµ(x)ta, (3.8)

Fx,µν := F ax,µνta = ∂µAx,ν − ∂νAx,µ − ig[Ax,µ,Ax,ν ]

= (∂µA
a
x,ν − ∂νA

a
x,µ + gfabcA

b
x,µA

c
x,ν)ta (3.9)

and transform under gauge transformations with a group element Ωx like

A′x,µ = Ωx(Ax,µ + i
g
∂µ)Ω†x, (3.10)

j
′
x,µ = Ωx jx,µΩ†x, (3.11)

F ′x,µν = ΩxFx,µνΩ†x. (3.12)

The external current density j also needs to satisfy the continuity equation

Dµ j
µ = 0, (3.13)

in order for the action to be gauge invariant up to a total derivative. The following
correspondence between 3- and 4-vectors is used

V µ = (V 0, V i) := (V 0,V). (3.14)

Latin indexes always denote spacial components of a 4-vector and never those of the
3-vector (V)i. The electric and magnetic fields are chosen with the following signs

E i := Ea,ita := +F i0, (3.15)

εijkB
k := εijkB

a,kta := −Fij , (3.16)

with ε123 := 1.

To preserve the gauge symmetry of the action even in the discrete case, it is rewritten in
terms of Wilson loops instead of gauge fields. These loops are gauge-invariant quantities
defined as

WC := Tr
(
P exp

(
i
∮
C
Aµ dxµ

))
, (3.17)

10



3.1. Real-time Lattice Gauge Theory

where P is the path-ordering operator and C a closed curve in space. The path-ordered
exponential transforms locally under gauge transformations

P exp
(

i
∮
C
Aµ dxµ

)
→ Ω(x)P exp

(
i
∮
C
Aµ dxµ

)
Ω−1(x), (3.18)

with x being the initial and end point of the curve C, because gauge transformations in
between cancel each other. The invariance of the trace under cyclic permutations ensures
that the Wilson loop is indeed gauge invariant. In order to obtain the discrete version
of them on a 3+1-dimensional, cuboid lattice with lattice spacings aµ, it is convenient
to introduce so called gauge links Ux,µ. They correspond to the parallel transport of
the gauge field along the shortest possible path on the lattice. Since in the discrete
case Aµ is constant along the path from one grid point to the next, the path ordered
integral turns into a multiplication of the gauge field at point x with the lattice spacing
in direction µ,

Ux,µ := exp(−igaµAx,µ). (3.19)

Gauge links oriented in a negative direction are denoted with negative indexes and are
given by the hermitian conjugate of the neighboring link,

Ux,−µ = U †x−µ,µ. (3.20)

They transform under gauge transformations Ωx like

U ′x,µ = ΩxUx,µΩ†x+µ, (3.21)

U ′x,−µ = ΩxUx,−µΩ†x−µ (3.22)

where the subscript x + µ denotes the point one gets when shifting x by one lattice
spacing in the direction µ. Any Wilson loop on the lattice can now be built using these
gauge links as building blocks. The smallest possible loops (without the trace) are called
plaquettes and are defined as

Ux,µν := Ux,µUx+µ,νUx+µ+ν,−µUx+ν,−ν

= Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν , (3.23)

U †x,µν = Ux,νUx+ν,µUx+µ+ν,−nuUx+µ,−µ

= Ux,νUx+ν,µU
†
x+µ,νU

†
x,µ

= Ux,νµ, (3.24)

with the following transformation law

U ′x,µν = ΩxUx,µνΩ†x. (3.25)

Using the Backer-Campbell-Hausdorff formula and approximating the gauge field at x+ν
with

Ax+ν,µ = Ax,µ + aν∂νAx,µ +O(a2), (3.26)
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one finds that the plaquette variables are, up to linear order, the exponential of the field
strength tensors

Ux,µν = exp(−igaµaν(Fx,µν +O(a))). (3.27)

For a complete derivation see appendix A. To get the discretized action in terms of the
plaquettes, Tr(Ux,µν +U †x,µν) needs to be expanded up to −1

2g
2a2
µa

2
ν(Fx,µν +O(a))2 and

Tr(FµνF
µν) needs to be rewritten in the following way

Tr(FµνF
µν) = Tr(F0iF

0i + Fi0F
i0) + Tr(FijF

ij)

= −2
3∑
i=1

Tr(F2
0i) +

3∑
i=1

∑
j 6=i

Tr(F2
ij). (3.28)

The linear terms from the expansion of the plaquettes cancel and the constant term
does not matter because it does not contribute to the equations of motion. Using the
trapezoidal rule to discretize the integral, one finally finds the gauge-invariant lattice
action

S� =− V

g2
∑
x

3∑
i=1

 1
a2

0a
2
i

Tr(Ux,0i + U †x,0i)−
1
2
∑
j 6=i

1
a2
i a

2
j

Tr(Ux,ij + U †x,ij)


− V

∑
x

(
jµx,aA

a
x,µ + C +O(a2)

)
, (3.29)

where V = a0a1a2a3 is the spacetime volume of the unit cell and C is a constant. Note
that the error term is kept in the lattice action, which means that S� ≡ S. This unusual
notation is chosen because it is convenient for finding the error terms in all following
calculations. Furthermore, instead of the expected O(a), the error term in the action
is O(a2). Without doing a detailed calculation, this can easily be seen with symmetry
arguments. Since the action is invariant under the transformations xµ → −xµ, there can
only appear even error terms.

3.2. Colored Particle in Cell Method

The colored particle in cell (CPIC) method is used to simulate the dynamics of point-
like, color charged particles moving through a grid. The non-Abelian gauge fields that
influence them are discretized to the grid points while the particles’ positions are tracked
in continuous space-coordinates. Therefore, this kind of simulations requires two solvers,
namely the so called particle mover or pusher and the field solver. Since the back
reaction of the fields onto the particles’ velocities is not taken into account in the present
simulation, the particle mover is trivial to implement

xi+1 = xi + v∆t, v = (0, 0,±c) = const., (3.30)

12



3.2. Colored Particle in Cell Method

where xi is the position of a particle at time step i, v is the velocity and ∆t is the
time step. For the fields, an explicit solver, the leapfrog method, is used. Generally it
evaluates positions and velocities at different times shifted by half a time step, which
can be written as

vi+1/2 = vi−1/2 + a(xi)∆t, (3.31)
xi+1 = xi + vi+1/2∆t, (3.32)

with the same notation as above and a(xi) being the acceleration.

Applying this to the gauge fields of a CGC simulation, the positions and velocities are
replaced by the electric field and gauge links. The equations of motion that will be
derived in section 3.5, show that the acceleration or force in eq. (3.31) comes from two
sources, the first being the self-interacting nature of non-Abelian gauge theories. This
means that not only do the gauge links determine the evolution of the electric field but
the links themselves are also influenced by the E-field. The second source is the charge
and current density of the colliding nuclei. The important thing to note is that these
densities must be defined on the grid points, although the particles carrying the charges
and causing the current have continuous coordinates. Therefore an interpolation from
the particles’ positions to the grid, which preserves charge, energy etc. is necessary. The
nearest-grid-point (NGP) interpolation is chosen for this purpose. It maps the whole
charge of a particle to its nearest grid point, which is easy to implement and fast. Since
the particle’s charge is influenced by the surrounding gauge fields, it is necessary to also
interpolate the fields from the grid to the particle’s position. However, if the particles
are placed in the simulation volume in such a way that their transverse coordinates
coincide with those of the grid points, the particles will always move along longitudinal
grid lines, jumping from one cell to the next. Since the gauge links necessary for the
parallel transport of the charges, are defined along the lines between two grid points,
their interpolation becomes trivial. One just has to use the link that connects the two
grid points between which the particle moves. Although it would be sufficient to have
a single particle per cell to probe the charge density, it is better to use more of them,
because that leads to smoother current densities. In the present simulation, the number
of particles Np is given by

Np = al
at
, (3.33)

where al is the lattice spacing in longitudinal direction and at is the time step. This
ensures that at every time step, a single particle per cell moves far enough to be inter-
polated to the next grid point.

13



3. Numerical Methods

3.3. Variation of the Action

There are multiple ways to get from the action of a theory to its equations of motion.
One option is to use Hamilton’s principle. Given the action functional

S[q] :=
∫ t2

t1

L(q(t), q̇(t), t) dt, (3.34)

with the Lagrangian L(q(t), q̇(t), t), it states that the evolution q(t) of a system, de-
scribed by n generalized coordinates q, is a stationary point of that action, i.e.

δS

δq(t) = 0. (3.35)

In the case of the CGC action, the generalized coordinates correspond to the gauge fields
Ax,µ. Therefore, to find this point, the variation of the action w.r.t. the gauge fields has
to be calculated. For this, the following symbol is introduced

δa,µx := ∂

∂Ax,µ,a
, (3.36)

as well as these useful formulas

δa,µx Uy,ν =− igaµt
aUx,µδx,yδ

µ
ν , (3.37)

δa,µx U †y,ν = + igaµU
†
x,µt

aδx,yδ
µ
ν , (3.38)

δa,µx Tr(Uy,αβ) =− igaµ
(
δµαδx,y Tr(taUx,αβ)− δµβδx,y Tr(taUx,αβ)

−δµαδx−β,y Tr(taUx,−βα) + δµβδx−α,y Tr(taUx,β−α)
)
. (3.39)

Variation w.r.t. Aax,0 yields

δa,0x S� = V

g2

3∑
i=1

iga0

a2
0a

2
i

(
Tr(taUx,0i − h.c.)− Tr(taUx,−i0 − h.c.)

)
− V ρax + VO(a2) = 0,

(3.40)
where h.c. is the hermitian conjugate of the previous term. Using the following identi-
ties

2i Im Tr(A) = Tr(A−A†), (3.41)

2i Im Tr(A†) = Tr(A† −A) = −Tr(A−A†), (3.42)

eq. (3.40) can be rewritten as

3∑
i=1

1
a2
i

Im Tr(taUx,0i + taUx,0−i) +O(a3) = −ga0
2 ρax, (3.43)

14



3.4. Gauss Constraint

which is the discrete version of the Gauss constraint, as shown in section 3.4. Variation
w.r.t. Aax,i yields

δa,ix S� = V

g2

(
igai
a2

0a
2
i

(
−Tr(taUx,0i − h.c.) + Tr(taUx,i−0 − h.c.)

)
−
∑
j 6=i

igai
a2
i a

2
j

(
Tr(taUx,ij − h.c.)− Tr(taUx,−ji − h.c.)

))

− V ja,ix + VO(a2) = 0. (3.44)

The factor 1
2 in front of the sum

∑
j 6=i gets canceled because the four terms in eq. (3.39)

sum up pairwise, using Tr(taUx,ij−h.c.) = −Tr(taUx,ji−h.c.). Again, with eqs. (3.41)
and (3.42), one finds

Im Tr(taUx,i0+taUx,i−0)−
∑
j 6=i

a2
0

a2
j

Im Tr(taUx,ij+t
aUx,i−j)+

ga2
0ai
2 ja,ix +O(a5) = 0, (3.45)

which is a true equation of motion and not a constraint.

3.4. Gauss Constraint

The Gauss constraint in the case of a Yang-Mills theory is very similar to the one from
electrodynamics. The only differences are that the usual derivative is replaced by the
covariant one and instead of a single electric charge, one has multiple color charges:

(DiE
i)a = ρa. (3.46)

The interpretation of the Gauss law also remains. Each of the color charges ρa is the
source of its corresponding electric color field Ea.

To show that Equation (3.43) is in fact the Gauss constraint, some rewriting and rear-
ranging is necessary. Using

Ux,µ−ν = U †x−ν,νUx−ν,νµUx−ν,ν , (3.47)

it reads
3∑
i=1

1
a2
i

Im Tr(taUx,0i + taU †x−i,iUx−i,i0Ux−i,i) +O(a3) = −ga0
2 ρax. (3.48)

To recover the usual form in terms of derivatives of the electric field, one has to expand
the plaquette to linear order

Ux,0i = exp(−iga0ai(Fx,0i +O(a))) = exp(−iga0ai(E
a,i
x ta +O(a)))

= 1− iga0aiE
a,i
x ta +O(a3). (3.49)

15



3. Numerical Methods

Since the components of the electric field Eax,i, the coupling constant and the lattice
spacings are real, the following identity holds

Im Tr(taiga0aiE
i
x,bt

b) = ga0aiE
i
x,b Re Tr(tatb) = ga0aiE

i
x,b

1
2δ

ab = 1
2ga0aiE

a,i
x . (3.50)

With the definition
Ẽa,ix−i := (U †x−i,iE

b,i
x−itbUx−i,i)

a (3.51)

the Gauss constraint finally reads

3∑
i=1

Ea,ix − Ẽ
a,i
x−i

ai
+O(a) = ρax, (3.52)

which is the discrete version of eq. (3.46).1 As shown in appendix B, the equations of
motion derived in the following section exactly conserve the discrete Gauss constraint.

3.5. Equations of Motion

The equations of motion for the fields have already been derived in section 3.3. The goal
now is to rewrite eq. (3.45) in terms of the degrees of freedom used in the simulation.
These are the electric field and gauge links. The equation will also be rearranged into
a shape better suited for an explicit solver, i.e. the new fields will be expressed only in
terms of old fields and densities. Fortunately, this shape will evolve naturally during the
calculation.

Similarly to section 3.4 using eqs. (3.47), (3.49) and (3.50), the equations of motion
(3.45) can be rewritten in the following way

1
2ga0ai(E

a,i
x − Ẽ

a,i
x−0) +O(a4)−

∑
j 6=i

a2
0

a2
j

Im Tr(taUx,ij + taUx,i−j) + ga2
0ai
2 ja,ix = 0. (3.53)

Using the temporal gauge Aax,0 = 0, which implies Ux,0 = 1, the shifted electric field
Ẽa,ix−0 can be written as

Ẽa,ix−0 := U †x−0,0E
a,i
x−0Ux−0,0 = Ea,ix−0. (3.54)

1Naively, one would expect a constant error term, because (Ex − Ẽx−i + O(a))/a = ∆E/a + O(1).
However one has to be more careful with differences of error terms. It is important to know that
derivation with respect to x does not change a term regarding its order in a, as long as x 6= a.
Therefore, writing the error term with Rx = O(a) and disregarding the uninteresting terms with the
E-field, yields (Rx − R̃x−i)/a = (Rx −Rx − aDµRx +O(a2))/a = −DµRx +O(a) = O(a).

16



3.5. Equations of Motion

With this and the rearrangement of some terms, the equation of motion for the electric
field finally reads

Ea,ix = Ea,ix−0 + 2a0
gai

∑
j 6=i

1
a2
j

Im Tr(taUx,ij + taUx,i−j)− a0j
a,i
x +O(a2). (3.55)

The temporal gauge also implies that

Ea,ix := F a,i0x = −∂0A
a,i
x , (3.56)

which leads to
U̇x,i = −igai∂0A

a
x,itaUx,i = −igaiE

a,i
x taUx,i. (3.57)

Solving this differential equation yields the following equations of motion for the gauge
links

Ux+0,i = exp(−iga0aiE
a,i
x ta)Ux,i. (3.58)

The point-like particles that represent the external current appearing in the action move
along the longitudinal direction of the grid with the speed of light,

x3(t+ a0) = x3(t) + va0, v = ±1, (3.59)

rendering the problem effectively one-dimensional. They carry a charge Q = Qata, which
needs to be interpolated to the grid to get the charge and current density appearing in
eqs. (3.52) and (3.55). The nearest-grid-point (NGP) interpolation scheme is used for
this, which maps the whole charge of a particle to its nearest grid point. The contribution
of a single particle to the charge density is

ρax = Qax
a1a2a3

, (3.60)

where the position index x of the charge Qax does not denote its actual position but the
nearest grid point which it gets interpolated to. A current is only induced if a particle
crosses the boundary in the middle of the cell. If that happens between the cells at x and
x+ a3, the only induced current is ja,3x . Using that and evaluating the one-dimensional
continuity equation at x and x+a3 as well as t−a0 and t, one finds the following current
and charge update for the right moving particle:

ja,3x (t− a0
2 ) = a3

a0

Qax(t− a0)
a1a2a3

,

Qx+3(t) = U †x,3(t− a0
2 )Qx(t− a0)Ux,3(t− a0

2 ).

(3.61)

(3.62)

For the left moving particle from x to x− a3 the update reads

ja,3x−3(t− a0
2 ) = −a3

a0

Qax−3(t)
a1a2a3

,

Qx−3(t) = Ux−3,3(t− a0
2 )Qx(t− a0)U †x−3,3(t− a0

2 ).

(3.63)

(3.64)
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3. Numerical Methods

3.6. Hamiltonian Density

Since the Lagrangian of the CGC model does not explicitly depend on time, its Legendre
transform, the Hamiltonian density, equals the energy density of the whole system.
However, in the following only the Hamiltonian density of the fields will be calculated.
In general, the Legendre transform of the Lagrangian is given by

H(p,q) = q̇p− L(q, q̇), (3.65)

with the conjugate momenta p defined as

p = ∂L

∂q̇ . (3.66)

In case of the CGC action, the conjugate momentum to the gauge field Aa,ix is the
negative electric field −Ea,ix :

p(Aa,ix ) := ∂L
∂∂0A

a,i
x

= − 1
2F

b
x,µν

∂

∂∂0Aa,ix
Fµνx,b

= − 1
2F

b
x,µνδ

a
b (δµ0 δ

ν
i − δ

ν
0δ
µ
i )

= − 1
2(F ax,0i − F

a
x,i0)

= − F ax,0i = F a,0ix

= − Ea,ix . (3.67)

Using eq. (3.56) as well as the definitions of the electric and magnetic fields (eqs. (3.15)
and (3.16)), the Hamiltonian density of the Yang-Mills fields in the temporal gauge
reads

HYM = pq̇ − LYM

= −Ea,ix Ȧix,a + 1
4F

a
x,µνF

µν
x,a +O(a2)

= Ea,ix Eix,a + 1
4
(
F ax,0iF

0i
x,a + F ax,i0F

i0
x,a + F ax,ijF

ij
x,a

)
+O(a2)

= Ea,ix Eix,a −
1
2E

a,i
x Eix,a + 1

4εijkεijmB
a,k
x Bm

x,a +O(a2). (3.68)

The contraction of the two epsilon symbols is given by

εijkεijm = 2δkm, (3.69)

and yields

HYM = 1
2E

a,i
x Eix,a + 1

2B
a,m
x Bm

x,a +O(a2). (3.70)
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3.7. Poynting Vector

With the standard single plaquette definition for the magnetic contribution [25, 26]

1
4F

a
x,ijFx,a,ij = 2

g2
∑

1≤i<j≤3

1
a2
i a

2
j

Re Tr(1− Ux,ij) +O(a), (3.71)

the discrete Hamiltonian density for the fields reads

HYM,x = 1
2

3∑
i=1

Ea,ix Eix,a + 1
g2

3∑
i=1

∑
j 6=i

1
a2
i a

2
j

Re Tr(1− Ux,ij) +O(a). (3.72)

3.7. Poynting Vector

The classical continuity equation of electrodynamics ρ̇+ div j = 0 with charge density ρ
and current j can also be applied to conserved quantities other than the electric charge.
In particular the conservation of energy is interesting for most systems. Its corresponding
continuity equation in electrodynamics is called Poynting’s Theorem and reads

Ḣ+ div S = 0, (3.73)

where H is the continuum Hamiltonian density of the fields and S is the Poynting vector.
Since the latter has taken the place of the current density j, it corresponds to the flow
of the energy density H. The Poynting vector is usually given by

S = E×B. (3.74)

In the presence of an external current density j, an additional term must be added to
Poynting’s Theorem, which accounts for the work that is done when charges are moved
through an electric field E. In this case, Poynting’s theorem is given by

Ḣ+ div S + j ·E = 0 (3.75)

with the Poynting vector still given by eq. (3.74). The obvious approach to get the
discrete version of S on the lattice is to use eq. (3.74) and just substitute the continuum
variables with their lattice counterparts. However, one can also plug the discrete expres-
sions for the Hamiltonian density, the current and the electric field into eq. (3.75) and
then try to extract a formula for S. This should give a discretization of the Poynting
vector that best fits Poynting’s theorem. For the case without particles and external
currents, this has already been studied in more detail in [13].

First, the time derivative of the discrete Hamiltonian density has to be calculated:

ḢYM,x =
3∑
i=1

Ea,ix Ėix,a + 1
g2

3∑
i=1

∑
j 6=i

1
a2
i a

2
j

Re Tr(−U̇x,ij) +O(a). (3.76)
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3. Numerical Methods

The equations of motion for the electric field (3.55) can be rearranged to get the discrete
time derivative of Eax,i in the temporal gauge

Ėa,ix +O(a) =
Ea,ix − E

a,i
x−0

a0
= 2
gai

∑
j 6=i

1
a2
j

Im Tr(taUx,ij + taUx,i−j)− j
a,i
x +O(a). (3.77)

Using eqs. (3.23) and (3.57), the real trace of the time derivative of the plaquette reads

Re Tr(U̇x,ij) = −gRe Tr
(
i(aiE

a,i
x taUx,ij + ajE

a,j
x+itaUx+i,j−i

−aiE
a,i
x+jtaUx+j,−ji − ajE

a,j
x taUx,ij)

)
= g Im Tr(aiE

a,i
x taUx,ij + ajE

a,j
x+it

aUx+i,j−i

−aiE
a,i
x+jtaUx+j,−ji − ajE

a,j
x taUx,ij). (3.78)

Putting everything together yields

ḢYM,x = 1
g

3∑
i=1

∑
j 6=i

2
a2
i a

2
j

Im Tr(aiE
a,i
x taUx,ij + aiE

a,i
x taUx,i−j)

− 1
g

3∑
i=1

∑
j 6=i

1
a2
i a

2
j

Im Tr(aiE
a,i
x taUx,ij + ajE

a,j
x+itaUx+i,j−i

− aiE
a,i
x+jtaUx+j,−ji − ajE

a,j
x taUx,ij)−

3∑
i=1

Ea,ix jix,a +O(a)

= 1
g

3∑
i=1

∑
j 6=i

1
a2
i a

2
j

Im Tr(2aiE
a,i
x taUx,ij + 2aiE

a,i
x taUx,i−j − aiE

a,i
x taUx,ij

− ajE
a,j
x+itaUx+i,j−i + aiE

a,i
x+jtaUx+j,−ji + ajE

a,j
x taUx,ij)

−
3∑
i=1

Ea,ix jix,a +O(a). (3.79)

Writing out the sums explicitly and collecting similar terms gives

ḢYM,x = 1
g

Im Tr
( 1
a2

1a
2
2

(
a1E

a,1
x taUx,12 + 2a1E

a,1
x taUx,1−2 − a2E

a,2
x+1taUx+1,2−1

+ a1E
a,1
x+2taUx+2,−21 + a2E

a,2
x taUx,12 + (1↔ 2)

)
+ (2→ 3) + (1→ 2)

)

−
3∑
i=1

Ea,ix jix,a +O(a)

= 1
g

Im Tr
(

1
a1a2

(
Ea,1x taUx,12 + 2Ea,1x taUx,1−2 + Ea,1x+2taUx+2,−21

a2

+
−Ea,1x+2taUx+2,1−2 + Ea,1x taUx,21

a2
+
−Ea,2x+1taUx+1,2−1 + Ea,2x taUx,12

a1
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3.8. Initial Conditions

+
Ea,2x taUx,21 + 2Ea,2x taUx,2−1 + Ea,2x+1taUx+1,−12

a1

)
+ (2→ 3) + (1→ 2)

)

−
3∑
i=1

Ea,ix jix,a +O(a). (3.80)

Using eq. (3.41), Im Tr(Ux,ij) = − Im Tr(Ux,ji), some terms cancel and some can be
combined yielding

ḢYM,x = 2
g

Im Tr
(

1
a1a2

(
Ea,1x+2taUx+2,1−2 − E

a,1
x taUx,1−2

a2

+
Ea,2x+1taUx+1,2−1 − E

a,2
x taUx,2−1

a1

)
+ (2→ 3) + (1→ 2)

)

−
3∑
i=1

Ea,ix jix,a +O(a). (3.81)

Apart from the term
∑3
i=1E

a,i
x jix,a, this result can easily be rewritten as the discrete

divergence of a vector which by comparison with eq. (3.75) is the Poynting vector S,

Six = 2
g

∑
j 6=i

1
aiaj

Im Tr(Ea,jx taUx,j−i). (3.82)

In the limit of small a, the discrete Poynting vector becomes

Six = 2
g

∑
j 6=i

1
aiaj

Im Tr(Ea,jx ta(1− igaiajF
b
x,ijtb +O(a3)))

= −2
∑
j 6=i

Re Tr(Ea,jx taF
b
x,ijtb) +O(a)

= 2
∑
j 6=i

3∑
k=1

Re Tr(Ea,jx εijkB
b,k
x tatb) +O(a)

=
∑
j 6=i

3∑
k=1

εijkE
a,j
x Ba,k

x +O(a) = (Ea
x ×Ba

x)i +O(a), (3.83)

which is the expected result of the continuum.

3.8. Initial Conditions

The initial conditions of the simulation need to describe the nuclei before they collide.
For this, a model of the nuclei’s charge configuration has to be found and the electric
fields and gauge links have to be determined in a consistent manner. The external
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3. Numerical Methods

color current density for infinitely Lorentz contracted nuclei was already established in
section 2.3. In Cartesian coordinates it reads

jµa (x) = δ(t− z)ρ̂a(xT )sµ, (3.84)

where sµ = (1, 0, 0, 1)µ for a charge configuration ρ̂a(xT ), traveling in the positive z-
direction, at the speed of light. Note, that ρ̂a(xT ) is now the 2-dimensional charge den-
sity in the transverse plane, not to be confused with the charge density in 3 dimensions,
ρx. For the initial conditions of the present simulation, the delta function in eq. (3.84)
is changed to an envelope function f(t− z) to be able to describe nuclei with finite lon-
gitudinal thickness. As a model for the charge configuration of colliding heavy ions, the
McLerran-Venugopalan (MV) model is chosen [22–24]. It uses a gauge-invariant, Gaus-
sian probability functionalW [ρ̂] with zero mean and the two-point correlation function

〈ρ̂a(xT )ρ̂b(yT )〉 = g2µ2δabδ
(2)(xT − yT ), (3.85)

where g is the coupling and µ is the MV model parameter controlling average color
charge density. The subsequent derivation of the color current and the corresponding
fields follows the one in [8, section 2.3].

In order to find a field configuration that is consistent with the color current, the following
ansatz is used

jµa = f(t− z)ρ̂a(xT )sµ, (3.86)
Aµa = f(t− z)ϕ̂a(xT )sµ, (3.87)

where Aµa is the gauge field and ϕ̂a needs to be determined. For the arbitrary envelope
function a Gaussian profile

f(t− z) = 1√
2πσ

e
− (t−z)2

2σ2 (3.88)

is chosen, where the given width σ is proportional to the thickness of the nucleus in the
laboratory frame. Using the Lorenz gauge ∂µA

µ
a = 0 and putting the ansatz into the

Yang-Mills equations of motion
Dabµ F

µν
b = ja,ν , (3.89)

yields a Poisson equation for the gauge fields

−∆TA
a,ν := −

(
∂2

∂x2 + ∂2

∂y2

)
Aa,ν = ja,ν . (3.90)

This is because nonlinear terms vanish due to sµsµ = 0 and the time dependence drops
out since sµ∂µf(t−z) = 0. With the ansatz (3.86) and (3.87), as well as using the formal
notion of an inverse Laplace operator, the only part left of eq. (3.90) is

ϕ̂a(xT ) = − ρ̂a(xT )
∇2
T

. (3.91)
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3.8. Initial Conditions

When solving this equation in momentum space, an infrared (IR) regulator m and an
ultraviolet (UV) cutoff Λ can be introduced in the following way:

ϕ̂a(kT ) =


ρ̂a(kT )
|kT |

2+m2 , |kT | ≤ Λ,

0 , |kT | > Λ,
(3.92)

where ϕ̂a(kT ) and ρ̂a(kT ) are the Fourier transformations of ϕ̂a(xT ) and ρ̂a(xT ) re-
spectively. The addition of the infrared regulator m causes a finite correlation in the
transverse directions with a length of order m−1. Neither of the two changes violates
any equation of motion or constraint, because they can also be included via a redefined
charge density

ρ̂′a(kT ) = |kT |
2

|kT |
2 +m2 Θ(Λ− |kT |)ρ̂a(kT ), (3.93)

which satisfies the unmodified Poisson equation

ϕ̂a(kT ) = ρ̂′a(kT )
|kT |

2 . (3.94)

An interesting note is that an IR regulator of m2 > 0 leads to global color neutrality,
i.e.

ρ̂′(kT = 0) = 0. (3.95)
Using the obtained solution for ϕ̂a(xT ) and the definitions (3.9) and (3.15), the electric
field reads

Ei=1,2
a = ∂iA0

a

= f(t− z)∂iϕ̂a(xT ), (3.96)
E3
a = ∂3A0

a − ∂
0A3

a

= (−∂zf(t− z)− ∂tf(t− z)) ϕ̂a(xT )
= 0, (3.97)

because Ai=1,2
a = 0 and A0

a = A3
a. This means that gauge fields with only longitudinal

and temporal components in the Lorenz gauge lead to an E-field with only transverse
components. Since the lattice equations of motion were solved in the temporal gauge,
the solutions for the initial fields need to be transformed to this gauge as well. Therefore
the gauge transformation

A′µ(x) = V (x)(Aµ(x) + i
g
∂µ)V †(x) (3.98)

with Ωx = V (x) must ensure that A′0(x) ≡ 0. This yields the following equation for
V (x),

∂0V †(x) = ∂tV
†(x)

= igA0(x)V †(x). (3.99)
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3. Numerical Methods

Since the gauge fields eq. (3.87) commute at different times, this is solved by

V †(t, x, y, z) = exp(igϕ̂at
aF (t, z)), (3.100)

with F (t, z) :=
∫ t
−∞ f(t′ − z) dt′, but without the need of a time ordered exponential.

When the integral is rewritten in a more symmetric form∫ t

−∞
f(t′ − z) dt′ =

∫ t−z

−∞
f(t′ − z) d(t′ − z) =: F (t− z), (3.101)

it is easy to see, that

∂0F (t− z) = ∂tF (t− z) = −∂zF (t− z) = ∂3F (t− z), (3.102)

and therefore
∂0V †(x) = ∂3V †(x). (3.103)

Again, using Ai=1,2
a = 0 and A0

a = A3
a, the gauge fields in the temporal gauge read

A′µ=0,3(x) = 0, (3.104)

A′µ=1,2(x) = i
g
V (x)∂µV †(x). (3.105)

The color current must also be transformed j
′µ = V j

µV †, but the electric field is easier
calculated using eq. (3.56). It is important to note that in the temporal gauge one ends
up with purely transverse gauge fields. Additionally, because of the integral over the
envelope function f(t−z), these fields do not vanish behind the nucleus, but remain at a
constant value. Since these field configurations are pure gauge and can be transformed to
vacuum, they do not carry any energy. However, they require the use of fixed boundary
conditions in the longitudinal direction.

For a given simulation, the concrete parameters of the initial conditions are calculated
in the following way. The contracted thickness of a nucleus is chosen to be 4σ where
σ is the width of the longitudinal envelope function eq. (3.88). Therefore the relation
between the width σ, the nuclear radius R and the Lorentz factor γ is given by

γ = R

2σ . (3.106)

With a known center-of-mass energy per nucleon pair √sNN the gamma factor also
reads

γ =
√
sNN

2mN
, (3.107)

where mN ≈ 1 GeV is the nucleon mass. Putting everything together yields a formula
for the width of the envelope function:

σ = R
mN√
sNN

. (3.108)
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3.8. Initial Conditions

The gauge coupling is chosen to be g = 2, which is common in CGC literature [11,
27–29]. For early simulations, the parameter µ was determined according to an estimate
of McLerran and Venugopalan,

µ2 = 1.1A1/3fm−2, (3.109)

where A is the mass number of the nuclei and the gauge group is SU(3). Using gold
with A = 197 yields

µ = 0.505 GeV. (3.110)

Results obtained using this value should be taken cautiously, because the simulation uses
for simplicity the gauge group SU(2). For later simulations more accurate estimations
are used like the following one for the saturation momentum

Q2
s ≈ (√sNN)0.25 GeV2, (3.111)

with √sNN given in GeV [27, 30, 31]. As suggested in [32], a simple relation between Qs
and the MV model parameter µ is chosen as

0.75g2µ ≈ Qs. (3.112)

With a collision energy of √sNN = 200 GeV, this results in an MV model parameter of

µ ≈ 0.6464 GeV. (3.113)
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4. Implementation

The original Java version used the object-oriented programming paradigm quite well to
create clear, modular, easily expendable code. This made it very simple to exchange or
add e.g. new diagnostic modules or try new variants of existing solvers. The abstraction
of the physical quantities was also done in a straightforward way, making it easy to
translate equations to code. However, as the code base grew over time, there were
several modules and parts of the code that were not used anymore and the effort to
couple everything very loosely sometimes led to high class hierarchies. The C++ code
tries to inherit the clarity and modularity of the Java version, but reduces and simplifies
the hierarchy levels. As shown in fig. 4.1, it is segmented into four categories: simulation
core, initial conditions, diagnostics and tests. Each of these will be explained in more
detail in the following sections. Since C++ allows operator overloading, implementing
and reading mathematical expressions in code is even more straightforward and easier
than in Java. The standard template library (STL) is mainly used for handling resources,
like memory. If the size of a data field is not known at compile time or it is too large
for the stack, it is implemented as a std::vector, which uses dynamically allocated
memory and can change its size during runtime. Otherwise a std::array the size of
which must be determined at compile time is used. In general, pointers are avoided
where possible. However, if necessary, smart pointers like shared_ptr and unique_ptr
are used instead of naked pointers. All this allows consistent and convenient resource
handling without noticeable loss in execution speed, while also preventing memory leaks,
dangling pointers and the like. Compared to the garbage collector of Java, this should
also be much more resource efficient. The whole source code can be found on GitLab
[33]. The documentation is generated with doxygen and published online with the help
of GitLab Pages [34]. A final, important note is that in contrast to the descriptions and
calculations in previous sections, within the code the longitudinal direction is chosen to
be x1 instead of x3.

4.1. Simulation Core

The simulation core contains the bare necessities like the grid settings, the data fields
for the degrees of freedom, the equation of motion solver, a class for output data files,
etc.

The file CustomTypes.h defines two new types called rational and index. They are used
throughout the whole code for any non-integer data and for integer data representing
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Figure 4.1.: Overview of all classes (yellow) and files (green) of the C++ code. Abstract
base classes are shown in blue. Lines connect the derived classes with their
parent class.
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4.1. Simulation Core

an index of some container, respectively. The definition of rational depends on the
preprocessor constant USE_FLOAT and is either float or double. This allows for a
convenient change of the floating point precision of the whole simulation.

The classes AlgebraElement and GroupElement are defined in Su2.h and implement
the necessary su(2) and SU(2) elements. An AlgebraElement consists of three member
variables va defined by

v = 1
2vaσa, (4.1)

where v is an algebra element in the fundamental representation and σa are the Pauli
matrices. A GroupElement consists of four member variables, ga and g0, which are
defined by

g = g01 + igaσa, (4.2)

where g is a group element in the fundamental representation, 1 is the unit matrix and
i the imaginary unit. With this representation a proper group element is only defined if
the following identity holds:

g2
0 + g2

1 + g2
2 + g2

3 = 1. (4.3)

The classes for group and algebra elements also contain overloaded operators for ad-
dition, multiplication, etc. as well as functions for operations like exp, log, hermitian
conjugation, setting and getting single member variables and so on. Furthermore the
group dimension and the number of generators are defined.

It is possible to implement similar classes for other groups like SU(3). For convenient
switching between different implementations of GroupElement and AlgebraElement,
the file GroupAndAlgebra.h is introduced and acts as an abstraction layer. Every file
that uses group and algebra elements only includes this header without caring about the
concrete implementation of the elements. The latter is chosen by the file that is included
in GroupAndAlgebra.h. In the present case, that is Su2.h. If a different implementation
should be used, Su2.h has to be replaced by some other file, e.g. Su3.h (if available).

SuperParticle<v> is a class template describing all color charged, point-like particles
in the same transverse plane. This is possible because – as discussed in sections 3.2
and 3.5 – all particles move forever at the speed of light, in the longitudinal direc-
tion. The template parameter v is the velocity of the super particle and can either be
Velocity::positive or Velocity::negative, corresponding to right and left moving
particles respectively. The class template contains a vector of AlgebraElements that
describes the dimensionless charges of the particles and a member called unitFactorQ
to transform the charges to physical quantities, which is given by

unitFactorQ = a2a3
ga0a1

, (4.4)

where g is the coupling constant, a0 the time step and ai are the lattice spacings. It also
has member variables for the previous, current and next longitudinal position as well as
an inter-cell position. The latter is necessary because it is possible to put more than one
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particle into a single cell. The provided update() function moves the super particle by
changing the inter-cell position. If the particles jumped to the next cell, the previous,
current and next position are updated as well. In case the particle hits the longitudinal
boundary of the simulation grid, it will no longer be used in the simulation. Otherwise,
the charges are parallel transported according to eqs. (3.62) and (3.64) and the current
density is calculated as in eqs. (3.61) and (3.63). Finally the charges are interpolated to
the grid points using nearest-grid-point interpolation.

The DataFile class is a handler for a NetCDF file to save diagnostic data. The network
common data form (NetCDF) is a set of software libraries and self-describing, machine-
independent data formats for array-oriented scientific data [35]. Since it is a binary data
format it uses less memory compared to a text file and does not suffer form precision
loss if the file uses the same types as the code. However, the main reason for choosing
this file format is that it can easily be accessed in parallel when using MPI. This is
important, because when doing highly parallelized computations with many processes,
serial data access will become the main performance bottleneck. The disadvantage of
not being human-readable is compensated by the large number of programs available
for manipulating and displaying NetCDF files [36]. For the analysis of the results of
the present C++ simulator a common and powerful tool called ParaView was used. It
allows to display data in up to three dimensions and can also create animations as well
as plots over time. The data can be further processed by using common operations
and functions to calculate new quantities derived from the available ones. Features like
the computation of isosurfaces are also present. Figure 4.2 shows two screenshots of
the program illustrating some of its capabilities for two- and three-dimensional plots.
The self-describing nature of the NetCDF file format comes in the form of so called
dimensions, attributes and variables. Dimensions define the size that data arrays can
have in a particular direction. It is possible to define one unlimited dimension, which –
as the name suggests – can grow arbitrarily in size. Attributes can be tied to variables
or the whole file and are used for further description. Variables are arrays of simple data
types like int, double, char, etc. Each one has a distinct name and shape, given by a list
of dimensions. Variables that have the same name as a dimension are called coordinate
variable and usually define a physical coordinate, corresponding to the dimension. There
exist conventions for naming them and some programs treat them in a special way. The
DataFile class deals with all the dimensions, attributes and conventions automatically.
Its constructor creates a NetCDF file with dimensions for the x-, y- and z-coordinate
with the correct lengths, namely the grid sizes in the corresponding direction. Time is
added as an unlimited dimension. Coordinate variables with the correct names and unit
attributes are added for all four dimensions as well. All settings and initial conditions are
added as global attributes, which allows to exactly reproduce a simulation from the data
file. Finally, variables for all chosen diagnostics are added and the spacial coordinate
variables are filled with data in physical units. The DataFile class also provides an easy
to use function for writing to the file that hides all C-pointers and NetCDF functions
behind nice STL containers.
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4.1. Simulation Core

Figure 4.2.: Two screenshots of ParaView. A tool which is used to analyze and study
the C++ simulations. The top panel shows multiple two-dimensional plots
of for analyzing pressure anisotropy, while the bottom panel depicts the
three-dimensional distribution of the energy density shortly after a collision.
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The Settings class has members for the grid size, lattice spacings, time step, number
of time steps, initial time, coupling constant and number of particles per cell. It also
contains vectors that hold the initial conditions and diagnostics of the simulation.
Furthermore, it is possible to choose between periodic or fixed boundary conditions in
the longitudinal direction. Fixed boundary conditions are simply implemented by not
updating the left- and rightmost transverse plane of the simulation grid. Functions are
provided that return the first and one past the last position index of the active part of
the grid, which will get updates. This makes it easy to implement for-loops over this
active grid.

The Simulation class is derived from Settings to allow a less cumbersome access to its
members. The main purpose of this class is to provide the vectors containing the fields
and particles as well as the equation of motion solver. Since a leapfrog scheme is used,
the electric field and the charge density are stored at integer time steps, while the gauge
links and current density are stored at half a time step in the past and the future. All
of them are stored dimensionlessly, but member variables are provided to convert them
to physical units. They are defined as

unitFactorEi = (ga0ai)
−1, (4.5)

unitFactorBi = (gajak)
−1, j 6= i 6= k 6= j (4.6)

unitFactorRho = (ga0a
2
1)−1, (4.7)

unitFactorJ = (ga2
0a1)−1. (4.8)

The length of the vectors containing the fields equals the number of cells in the simu-
lation grid. Since the electric field and gauge links have multiple components, each of
their vector elements itself is an array of AlgebraElements or GroupElements. The
equation of motion solver as well as many diagnostics use plaquettes in their calculation.
It is therefore possible to store some of the plaquettes in addition to the gauge links, to
prevent them from being computed every time they appear in a calculation. Although
there are 24 different plaquettes, only 12 are used in the simulation and only three are
stored if the preprocessor constant STORE_PLAQUETTES is set to 1. These are the ones
where the indexes are positive and the first index is smaller than the second one. The
rest of the plaquettes can either be calculated by hermitian conjugation or by using

Ux,i−j = (Ux−j,ijUx−j,j)
†Ux−j,j . (4.9)

This gives a good trade-off between memory usage and execution speed [13].

The evolve() function implements the equation of motion solver. First it swaps old
and new gauge links and plaquettes, then it updates the fields and links according to
eqs. (3.55) and (3.58). After that, the new plaquettes are calculated. Finally, the
particles are updated and the charge and current density are interpolated to the grid.
In addition to the solver, the Simulation class also provides functions that are fre-
quently used in calculations, like the ones for shifting position indexes, getting specific
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gauge links, calculating plaquettes and the magnetic field, etc. It also contains functions
that apply all initial conditions and execute all diagnostics stored in the corresponding
vectors of Settings as well as writing all the diagnostic data to the output data file.

The class MpiWrapper is a very simple and lightweight C++ wrapper for MPI. It is
implemented as a singleton, which guarantees that only a single MPI instance exists at
a time. It is also ensured that initialization and finalization of the MPI environment
is always done at the right time. Apart from that, only a few of the most common
attributes of the MPI environment are provided.

The file Utility.h defines a new namespace called utility which contains a set of con-
venient functions that do not fit in any other class or file. This includes a function
for solving the 2-dimensional Poisson equation, writing OpenMP info to the screen, a
thread-safe function to get the local time and a parallel version of std::fill().

4.2. Initial Conditions

In the following, only the newly added initial conditions are discussed. For a descrip-
tion of RandomElectricField, GaussianPulse and GaussViolationExample, see the
preceeding project thesis [13].

InitialChargeDensity is an abstract base class from which all charge densities, required
for the description of high energy nuclei in the CGC framework, derive. Here the term
charge density refers to the 3-dimensional ρx. All derived classes must implement the
function initialize(), which returns the charge density and getDescription(), which
returns a string containing all useful information about themselves. This string will
be saved in a data file.

CoherentMvModel is the only child of InitialChargeDensity so far. It implements
the charge distribution described in section 3.8. The reason for it being called coherent
MV model is that the charges do not change in color along the longitudinal direction.
It would be possible to release this restriction and implement a changing longitudinal
structure. This is however out of scope for the current thesis. When creating an Object
of the CoherentMvModel class, the user has to specify the center point and width σ of the
Gauss profile, which is the longitudinal envelope function, as well as the parameter µ,
controlling the average charge density. It is also possible to define the seed of the 64-bit
Mersenne Twister which is used as a pseudorandom number generator in this class. The
longitudinal width of the volume, in which the charge density is defined, is 16σ. This
ensures that ρx is sufficiently small at the boundaries and can be neglected outside of
them.

All initial conditions derive from the abstract base class InitialCondition and need
to implement the function apply(), which sets all E-fields and gauge links and spawns
SuperParticles where necessary. In order to use a particular initial condition for a
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simulation, one has to add a unique_ptr or shared_ptr to the required class to the
initialConditions vector of the Settings class. Calling applyInitialConditions()
sets all initial conditions as specified in that vector.

For simulating heavy ion collisions the class CgcInitialCondition is used. It imple-
ments the initial conditions derived in section 3.8. The user has to specify the initial
charge density ρx, the velocity v of the nucleus (which can only be plus or minus the
speed of light), the infrared regulator m and the momentum cutoff Λ. Upon calling the
apply() function, the Poisson equation (3.92) is solved for every transverse plane of the
given charge density. Either the FFTW library [37] or the Intel R© MKL [38] is used for
the Fourier transformations required for this. The obtained ϕa(x) = f(t− x1)ϕ̂a(xT ) is
then used to calculate the gauge transformation Vx via eq. (3.100). However, the code
already performs a path ordered exponential, which would be necessary for possible
future charge densities with incoherent longitudinal structure. Calculating the electric
field and gauge link in the longitudinal direction is simple because A1

x = 0 and therefore
Ea,1x = 0 and Ux,1 = 1. Instead of also exponentiating the other gauge fields, it is easier
to use the transformation law for the links (3.21) and the fact that the transverse gauge
fields in Lorenz gauge vanish, yielding

Ux,i = VxV
†
x+i, i = 2, 3. (4.10)

Another trick is used to calculate the transverse electric field. First of all, ϕa(x + a0)
is calculated by shifting ϕa(x) one time step in the longitudinal direction. With this,
the gauge transformation Vx+0 as well as the gauge links Ux+0,i=2,3, which are one step
in the future, can be calculated. The electric field is then obtained by rearranging the
equations of motion for the links (3.58),

Ea,ix ta = i
ga0ai

ln
(
Ux+0,iU

†
x,i

)
, i = 2, 3. (4.11)

This ensures that the E-field matches the gauge links in the best numerically possible
way. In a similar manner, the charge density is calculated from the E-field with the help
of the Gauss constraint eq. (3.52). SuperParticles are then spawned with their charge
equal to

Qax = ρax
Np

, (4.12)

where Np is the number of particles per cell and both Qax and ρax are dimensionless.

4.3. Diagnostics

The diagnostics are conceptually designed similar to the initial conditions. Diagnostics
is the abstract base class all diagnostic modules derive from. Each of them needs to im-
plement the execute() function, which calculates the observable the class was made for,
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as well as the createDataFileVariables() and writeToDataFile() functions which
are used for storing the observables in data files. The diagnostics chosen for a par-
ticular simulation must be added to the corresponding vector of the Settings class.
Calling executeDiagnostics() and writeDiagnosticsToDataFile() then calculates
all observables and writes them to the given files respectively. In general, the diagnostic
classes compute data at every grid point in physical units. The classes with the pre-
fix Projected additionally integrate the observables over transverse planes. Table 4.1
lists all available diagnostic modules and the formulas used to calculate the observ-
ables. Most of them are very simple and straightforward, but some of them need a
little more explanation. First of all, the EnergyDensity and PoyntingVector classes
are special, because they allow to choose between two ways of calculating their respec-
tive observable. The choice is made by correctly setting a constant member variable.
Another thing to note about EnergyDensity is that it calculates and stores the electric
and magnetic as well as the longitudinal and transverse parts separately. The reason
why ProjectedDivS only calculates the longitudinal derivative is because the periodic
boundary conditions in the transverse directions cause the other terms to vanish. In
general, diagnostics also try to reuse already calculated results. This means e.g. that
if possible ProjectedEnergyDensity only sums up the values already computed by
EnergyDensity instead of calculating the energy again. Similar optimizations hold for
GaussConstraint and every Projected diagnostic except for ProjectedJInE. The latter
does not only store the dot product of the current density and the electric field inte-
grated over transverse planes, but also integrates it over the whole simulation volume
and additionally over time.

4.4. Tests

The tests in this section are to find logical errors in the program code and not for
benchmarking. They are only described briefly, because they were already implemented
before, and only little additions were made. For more details see [13].

• GridTest.cpp tests basic grid functions, like shifting indexes, mapping a position
index to a vector, and so on.

• Su2Test.cpp tests all operations on AlgebraElements and GroupElements, like
addition, multiplication, exp, ln, etc. It uses the Eigen 3 library for reference
calculations.

• GaussTest.cpp tests the conservation of the Gauss constraint. For this, a small
simulation is performed and the Gauss constraint at the beginning and the end is
compared. A new test case with particles was added.

• EnergyTest.cpp tests the conservation of total energy, similar to the test of the
Gauss constraint, by comparing initial and final energy of a small simulation. A
new test case with particles was added.
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ChargeDensity 2 Tr(ρx)2

ElectricField 2 Tr(E ix)2

OldCurrentDensity 2 Tr( jx−0/2)2

OldGaugeLinks 2 Tr
(
2 Im Tr(taUx−0/2,i)ta

)2

OldPlaquettes 2 Tr
(
2 Im Tr(taUx−0/2,ij)ta

)2

DivE
∑3
i=1(Ea,ix − Ẽ

a,i
x−i)/ai

EnergyDensity Hx =


1
2
∑3
i=1

(
Ea,ix Eix,a +Ba,i

x Bi
x,a

)
1
2
∑3
i=1

(
Ea,ix Eix,a + 1

g
2
∑
j 6=i

1
a

2
i a

2
j

Re Tr(1− Ux,ij)
)

GaussConstraint
∑3
i=1(Ea,ix − Ẽ

a,i
x−i)/ai − ρ

a
x

PoyntingVector Sx,i =


2
g

∑
j 6=i

1
aiaj

Im TrEa,jx taUx,j−i)
Sx,i = εijkE

j
xB

k
x

ProjectedDivS
∑
xT
a2a3(Sx+1 − Sx)/a1

ProjectedEnergyDensity
∑
xT
a2a3Hx

ProjectedGaussConstraint
∑
xT
a2a3

(∑3
i=1(Ea,ix − Ẽ

a,i
x−i)/ai − ρ

a
x

)
ProjectedJInE

∑
xT
a2a3

(
2 Tr

∑3
i=1 j

i
xE

i
x

)
ProjectedPowerDensity

∑
xT
a2a3(Hx −Hx−0)/a0

ProjectedPoyntingVector
∑
xT
a2a3Sx,i

Table 4.1.: List of all available diagnostics and the observables they calculate. Inte-
gration over transverse planes is denoted by

∑
xT
a2a3. The frequently ap-

pearing factor of 2 is to cancel the 1/2 in eq. (3.5). The inner expression for
OldGaugeLinks and OldPlaquettes calculates the linearized algebra element
of Ux−0/2,i and Ux−0/2,ij respectively, which is then squared the same way as
the other algebra elements. Some diagnostics have the possibility to choose
between two formulas for calculating their observable. For the definition of
the physical quantities used in the equations above, see sections 3.1, 3.4, 3.6
and 3.7.
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• PoyntingTest.cpp tests the conservation of Poynting’s theorem eq. (3.75). Again,
this is done by comparing the violation of the theorem before and after a small
simulation. A new test case with particles was added.

4.5. Parallelization

The already implemented shared-memory parallelization with OpenMP was extended
and now covers all computationally expensive parts, namely the equation of motion
solver, the particle pusher and the diagnostic modules. Only the initialization of the
simulation and writing to the data file is not parallelized. For the latter one, this is,
because MPI is needed for parallel access to NetCDF files. The main advantage of par-
allelizing code with OpenMP is, that it is easy to apply and requires minimal changes
to the code. Most of the time it is sufficient to add a few #pragma omp parallel and
#pragma omp for directives, which spread the work of the following for-loop over all
available threads. A disadvantage is that OpenMP only allows shared-memory paral-
lelization. This means that the work can only be distributed between CPU cores that
can access the same main memory. In a modern multi-core CPU, the number of threads
is therefore equal to the number of physical cores (twice the number if Intel R©’s Hyper-
Threading is used). Computer clusters like the Vienna Scientific Cluster 3 (VSC-3)
contain many CPUs and usually only those on the same computation node can access
the same memory via NUMA (non-uniform memory access) [39]. For the VSC-3, where
most of the simulations of this thesis were performed, a maximum number of 16(32)
threads can be used. This is because each node has two 8-core Intel R© CPUs [40].

The Message Passing Interface (MPI) allows to lift the restriction of shared-memory
parallelization and makes it possible to distribute work between CPUs on different com-
putation nodes. The main disadvantage is that this distributed-memory parallelization
works on a very low level, namely – as the name suggests – the passing of messages
between CPUs. The data these messages contain, when and how they are sent and
received, all of that has to be determined by the programmer. This results in a big
implementation overhead. Therefore it is simpler to use parallelization with MPI at a
very high level. As explained in section 2.3, to get meaningful physical data, the results
of many simulations need to be averaged, because the initial conditions are based on
random charge configurations. The loop over these simulations is parallelized with MPI.
For example, if the user wants to run 16 simulations, he or she can divide them among
as many as 16 computation nodes.

So far, there is no real need to run a single simulation on multiple nodes, because the
256 GB of memory each node holds are enough to handle the grid sizes used by now.
However, larger grids may be interesting in the future, which would require paralleliza-
tion with MPI on the level of a single Simulation.
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The results presented in this chapter are for validating and benchmarking the C++ code
in comparison with the original Java version. All simulations were run on the VSC-3,
with a coupling constant of g = 2 and a momentum cutoff of Λ = 10 GeV. The rest
of the settings are detailed in the specific sections. Thread pinning was also used for
all tests, meaning that each thread is pinned to a single physical core. If the threads
had been allowed to move to other cores, the cache would not have been moved with
them, resulting in more cache misses, leading to longer memory access time and therefore
reduced performance. This effect has already been studied in [13, section 4.3]

5.1. Pressure Anisotropy

A well known feature of the early glasma is its pressure anisotropy. The longitudinal
and transverse pressure 〈pL〉 and 〈pT 〉 are calculated in the following way:

〈pT 〉 = 〈εL〉, (5.1)
〈pL〉 = 〈εT 〉 − 〈εL〉, (5.2)

where 〈εL〉 and 〈εT 〉 are the longitudinal and transverse energy densities respectively.
Right after the collision so called color flux tubes are created and their longitudinal fields
give rise to a large transverse and negative longitudinal pressure. Observations show that
within a few fm/c the system then transitions into a quark–gluon plasma, with roughly
equal pressure in all directions [41, 42]. A more detailed physical discussion as well as
the reference results for the simulations in this section can be found in [8].

For the simulations, a grid size of NL ×N
2
T = 380 × 2562 cells, Nt = 380 time steps, a

lattice spacing of ai = 0.04 fm in all directions and a time step of at = az/2 = 0.02 fm/c
was chosen. The infrared regulator was set to m = 2 GeV and the MV parameter to
µ = 0.5 GeV. The longitudinal width σ, was set to 4az, 6az and 8az. For each of the
three widths, the results of 32 simulations were averaged. Figure 5.1 shows the projected,
longitudinal and transverse pressures at different times with σ = 4az, which corresponds
to a gamma factor of γ ≈ 23. The plots are in good agreement with [8, Figure 6]. They
show the same flat shape of the arising transverse pressure, as well as the exponential
decrease of the longitudinal pressure between the nuclei. The reason for the right plot to
be at t = 4.6 fm/c instead of t = 5 fm/c – as in the reference result – is, that the nuclei
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Figure 5.1.: The longitudinal and transverse pressure, 〈pL〉 and 〈pT 〉, are plotted over
the longitudinal axis z at different times. The pressures are scaled relative
to the maximum, longitudinal pressure of the initial nuclei 〈p0〉.

are initially further apart in the C++ code. Therefore, the same number of time steps
leads to a lower maximum time after the collision.

Additional simulations were run with smaller lattice spacings ai = 0.004 fm and time
step at = az/2 = 0.002 fm/c. The rest of the settings stayed the same. Figure 5.2 shows
the time evolution of the pressure components at the center point of the collision, z = 0.
The left figure plots the results of the coarse grid, the right one those of the fine grid. At
the very beginning, the longitudinal pressure of the nuclei dominates. However, as soon
as they move away far enough, the transverse pressure rises to 〈pT 〉/〈ε〉 ≈ 1/2, where 〈ε〉
is the energy density, and the longitudinal pressure vanishes. The latter implies that the
transverse energy density equals the longitudinal one. The results of the fine grid even
show negative longitudinal pressure at the beginning. Both these phenomena are also
observed in boost-invariant simulations [43]. There however, one starts right away with
〈pT 〉 = 〈εL〉 = −〈pL〉, because the nuclei are infinitesimally thin and their fields are not
taken into account. Contrary to the boost-invariant case, a steady, albeit too slow, trend
towards the isotropic values of the pressure components, 〈pT 〉/〈ε〉 = 〈pL〉/〈ε〉 ≈ 1/3, can
be seen. When comparing fig. 5.2 with [8, Figure 8], again one finds a good agreement of
the plots. However, one has to be careful with the comparison, because for convenience
the C++ version used a thickness of exactly one tenth of the coarse results while one of
the Java simulations used even thinner nuclei, resulting in a greater negative pressure.
In particular the range of thicknesses was σ ∈ {0.016 fm, 0.024 fm, 0.032 fm} for the C++
code and σ ∈ {0.008 fm, 0.016 fm, 0.032 fm} for the Java simulations.

5.2. Rapidity Profiles

The rapidity profiles discussed in this section are plots of the local rest frame energy
density 〈εloc〉 over the rapidity η at constant proper time τ . The latter two are defined
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Figure 5.2.: The longitudinal and transverse pressure 〈pL〉 and 〈pT 〉 are plotted over time
at the center point of the collision z = 0. The pressures are scaled relative
to the energy density 〈ε〉.

in the following way:

τ(t, z) =
√
t2 − z2, (5.3)

η(t, z) = 1
2 ln t− z

t+ z
, (5.4)

with the coordinate origin chosen to be at the point of maximum transverse pressure.
Since there shall be no energy flow in the local rest frame, 〈εloc〉 can be calculated
by diagonalizing the energy-momentum tensor 〈Tµν〉. In the laboratory frame of the
simulations, it can be written as

〈Tµν〉 =


〈ε〉 0 0 −〈SL〉
0 −〈pT 〉 0 0
0 0 −〈pT 〉 0
〈SL〉 0 0 −〈pL〉

 , (5.5)

with 〈ε〉 being the energy density and 〈SL〉 the longitudinal component of the Poynting
vector. When solving the eigenvalue problem, the local rest frame energy density is the
eigenvalue corresponding to the timelike eigenvector and reads

〈εloc〉 = 1
2

(
〈ε〉 − 〈pL〉+

√
(〈ε〉+ 〈pL〉)

2 − 4〈SL〉
2
)
. (5.6)

It is also the largest eigenvalue. The square root in eq. (5.6) turned out to be very
sensitive to small discretization errors, because the terms underneath have to cancel
each other for most of the simulation volume. If this cancellation is off by just a small
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a single event. The left panel calculates the Poynting vector according to
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amount, it can lead to negative values under the root and to imaginary and therefore
unphysical local energy densities. Figure 5.3 shows the value under the square root some
time before the collision for a single event. The left panel uses eq. (3.82) and clearly
shows negative values, while the plot on the right side uses a naive discretization for the
Poynting vector and is well behaved along the whole longitudinal axis. This is the reason
why in this section the Poynting vector is not calculated with the equation derived from
Poynting’s theorem, but with Sx,i = εijkE

j
xB

k
x.

The simulations are expected to show rapidity profiles with a Gaussian shape, as this
has been found in experiments at LHC [44] and RHIC [45, 46], as well as in holographic
calculations of colliding shock waves [47–49]. An explanation for this shape is given by
the Landau model [50]. For a more detailed physical discussion as well as the reference
results for this section, see [9].

In the longitudinal direction, a very fine grid is necessary to get smooth interpolations
when changing the coordinates from (t, z) to (τ, η). Therefore, the grid size was set
to NL × N

2
T = 2048 × 1922 cells, the number of time steps to Nt = 2048, the lattice

spacings to ax = ay = 0.031 25 fm, az = 0.002 93 fm and the time step to at = az/2 =
0.001 465 fm/c. This results in a physical simulation volume of (6 fm)3. The infrared
regulator is set to m = 0.2 GeV, the MV parameter to µ = 0.6464 GeV and the thickness
parameter to σ = 12.459az = 0.0365 fm, which corresponds to a center-of-mass energy
per nucleon pair of √sNN = 200 GeV. All observables are integrated over transverse
planes and the results are averaged over 16 simulations. The left panel of fig. 5.4 shows
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Figure 5.4.: Rapidity profiles, i.e. plots of the local rest frame energy density 〈εloc〉(τ, η)
over the rapidity η, at collision energies of √sNN = 200 GeV. The left figure
includes a Gaussian fit according to eq. (5.7).

the obtained rapidity profile at τ0 = 1 fm/c in the range η ∈ [−1, 1]. As expected, the
profile has a Gaussian shape. A fit of the form

〈εloc〉(τ0, η) ≈ 〈εloc〉(τ0, 0) exp
(
−

(η − µη)
2

2σ2
η

)
, (5.7)

is also plotted in the figure and yields a width of ση = 2.23. The results agree reasonably
well with the ones presented in [9, Figure 2], which are ση = 2.34 for the Java Simulation
and ση = 2.25 for experimental data from RHIC [45]. The reason why the profile is not
symmetric, but has its center shifted to the left, is because of the random color charges
used for the initial collisions. They lead to different energy densities of the two colliding
nuclei and even after averaging over 16 simulations, there is still some asymmetry left.
In the right panel of fig. 5.4 one can see that the Gaussian shape of the rapidity profile
is already formed at τ = 0.3 fm/c and stays roughly the same afterwards. This behavior
has also been observed in the Java simulations.

5.3. Transverse Pressure

The transverse pressure 〈pT 〉 is interesting to study, because it is equal to the energy
density of the longitudinal fields which are characteristic for the glasma. It is zero before
the collision and only builds up afterwards. Figure 5.5 plots the longitudinal energy den-
sity in the transverse plane at the center point of the collision, at the maximum overlap
of the nuclei. For these simulations the lattice spacing was set to ai = 0.028 fm, the
time step to a0 = ai/2, the IR regulator to m = 2 GeV and the MV model parameter
to µ = 0.5 GeV. For the left plot, a thickness parameter of σ = 4a1 and a longitudinal
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Figure 5.5.: Plots of the longitudinal energy density 〈εL〉 in the transverse plane at the
center point of the collision z = 0 at the time of maximum overlap. Two
different values for the thickness parameter were used.

number of cell of NL = 128 were used, while for the right plot the amount of longitu-
dinal cells as well as the thickness parameter were doubled. In the transverse direction
the grid size was set to N2

T = 1282. One can see that longitudinal fields appear ran-
domly throughout the whole transverse plane and that thicker nuclei causes the random
structure to be more washed out. These observations agree with those of similar Java
simulations (see [8, Figure 4]).

Figure 5.6 shows a plot of the transverse pressure in and around the forward light cone.
For this simulation, the same settings as in section 5.2 are used. In contrast to the
boost-invariant case, which would yield constant fields along the light cone, a rather
steep drop of 〈pT 〉 is observed. This – and the plot as a whole – agrees well with the
Java simulations (compare with [9, Figure 4]).

5.4. Execution Time and Memory Usage

A benchmark test, measuring start-up time, execution time of the main loop, as well as
memory usage, was conducted to compare the performance of the Java and C++ code.
Another member of the institute, David Müller, implemented a very similar simulator
in Cython – a C-extension for Python – which was also included in the comparison. No
diagnostic modules were active and no data file has been created in the tests. The lattice
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Figure 5.6.: Transverse pressure 〈pT 〉 of a collision with √sNN = 200 GeV, normalized to
its maximum and plotted in and around the forward light cone.

Java C++ Cython

size n
tstart texe memory tstart texe memory tstart texe memory
in s in ms in MiB in s in ms in MiB in s in ms in MiB

644 1 15 547 3490 0.5 153 158 3.0 134 133
644 8 15 109 3490 0.5 23 158 0.7 23 133
1284 8 120 1070 8530 4.1 196 1166 5.6 172 1024
2564 8 1646 9740 56890 31.7 1510 10240 45.7 1360 8325

Table 5.1.: Results of a benchmark, comparing the start-up time tstart, the execution
time per time step texe and the memory usage of Java, C++ and Cython
simulations. The problem size is given as the number of grid cells times the
number of time steps and n is the number of threads.

spacings were set to ai = 1 fm ∀i, the time step to at = ai/2, the IR regulator to m =
0.2 GeV and the MV parameter to µ = 0.6464 GeV. Three different cubic grid sizes with
an equal number of time steps were used, i.e. NL×N

2
T ×Nt ∈ {644, 1284, 2564}. For each

of these girds, a test with eight threads was performed. An additional, singlethreaded
one was run on the smallest grid. The thickness parameter was set to σ = NL/32.
Since the width of a single initial charge density used in CoherentMvModel is 16σ (see
section 4.2), the whole simulation volume was filled with particles.

Table 5.1 shows the results of the benchmark, which were averaged over four runs. They
were all performed on the VSC-3 on nodes with an Intel Xeon IvyBridge-EP E5-2650v2
with 2.6 GHz and 256 GB of main memory [39, 40]. The execution time per time step
and memory usage of the multithreaded tests are illustrated in fig. 5.7. It is easy to see
that the C++ and Cython code are faster, use less memory and better utilize multiple
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Figure 5.7.: Comparison of execution time per time step and memory usage of the Java,
C++ and Cython code for different grid sizes. Data is taken form table 5.1.

threads than the Java version. The latter has an uneven and hard to predict scaling
of all the measured quantities. Particularly the memory consumption on small grids
is considerably larger than expected. The C++ and Cython code on the other hand
show almost perfect scaling of start-up time, execution time and memory usage. For
reasonably large grid sizes – 2563 cells with 256 time steps – and when looking at the
total simulation time the C++ code is almost 10 times faster than the Java version, while
using less than a fifth of the memory. When comparing the C++ and Cython versions,
table 5.1 shows that the latter is up to 13 % faster and uses up to 20 % less memory.
The lower memory consumption is simply explained by the fact that the Cython version
does not store plaquettes. The difference in execution speed however was unexpected
and is harder to explain, since the C++ version was faster for simulations not involving
particles, as shown in table 5.2 and fig. 5.8. It was concluded that the particle pusher
was so much slower that the Cython code won the contest of overall execution speed.
Further investigations traced the poor performance of the C++ code back to two reasons.
The first and most important one is a different ordering of the update functions in the
simulation cycle. The C++ version calculates the electric field at time t and the gauge
links at t + a0/2. Then the particles are updated, the charges parallel transported and
the charge density at time t is interpolated. Finally the new current density at time
t + a0/2 is computed. The problem with this approach lies in eq. (3.63). In order to
calculate the new current density of the left moving particles at t+ a0/2, the charges at
the future time step t+ a0 are necessary. For this purpose, the charges are temporarily
parallel transported. The important thing to note here is that the parallel transport of
the charges is by far the most computationally expensive part of the particle pusher as

46



5.4. Execution Time and Memory Usage

Java C++ Cython
texe texe texe

grid size in ms in ms in ms
643 217 94 122
1283 2421 734 970
2563 26270 5622 7820

Table 5.2.: Results of a singlethreaded benchmark comparing execution time per time
step texe for a simulation without using particles. The lattice spacings were
set to ai = 1 fm, the time step to a0 = ai/2 and the coupling to g = 1. The
number of time steps was Nt = 1000 for the first two grid sizes and Nt = 100
for the largest one.

10

100

1000

10000

100000

643 1283 2563

t e
xe

in
m

s

NL ×N
2
T

Execution Time per step

Cython
C++
Java

Figure 5.8.: Comparison of execution time per time step of the Java, C++ and Cython
code for different grid sizes and without particles. Only a single thread was
used. Data is taken from table 5.2.
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#threads tstart texe s p
(#CPUs) in s in s in %

1(1) 2.0 207.0 1.0 –
2(1) 1.9 108.0 1.9 95
4(1) 1.8 57.7 3.6 96
8(1) 1.8 31.7 6.5 97
16(1)* 1.8 25.1 8.2 94
16(2) 1.8 18.2 11.4 97
32(2)* 1.8 20.9 9.9 93

Table 5.3.: Results of the parallelization benchmark, measuring start-up time tstart, ex-
ecution time of the main loop texe, speedup factor s, as well as level of paral-
lelization p. In the rows marked with star *, Intel R©’s Hyper-Threading was
used.

it involves two group multiplications. Consequently, the additional parallel transport of
the left moving particles increases the computational effort by almost 50 percent. The
Cython version circumvents this problem by executing the particle pusher before the
solver for the fields. As a result, the charge density is still calculated at time t, but the
new current density has to be computed at time t−a0/2. Therefore, charges at a future
time step t+a0 are no longer needed. By adopting the order of calculation regarding the
charge and current density depending on the direction of movement of the particles, no
additional parallel transports are necessary. The second reason for the better execution
speed of the Cython code is that by combining the charge and current update functions
in a single loop, a more efficient memory access pattern is achieved, which potentially
increases the performance even further.

5.5. OpenMP

To find out how well the C++ code is parallelized with OpenMP, a set of tests with
different numbers of threads was performed. The grid size times number of time steps
was set to NL ×N

2
T ×Nt = 1284, the lattice spacings to ai = 1 fm ∀i, the time step to

a0 = ai/2, the thickness parameter to σ = 4ai, the MV parameter to µ = 0.6464 GeV
and the IR regulator to m = 0.2 GeV. The most common diagnostic modules were used,
namely ProjectedEnergyDensity, ProjectedGaussConstraint and ProjectedJInE.
All their diagnostic values were stored in a data file. The results, shown in table 5.3,
were averaged over four runs. One of the first things to note is that the start-up time
tstart stays almost constant. The reason for this is that only the calculation of the initial
energy and Gauss constraint, which get printed on the screen, is parallelized. Setting up
the simulation and applying the initial conditions is all done in serial. When looking at
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Figure 5.9.: Single CPU results of OpenMP test. The execution time texe of the main
loop is plotted over the number of threads. Data is taken from table 5.3.

the speedup factor s in table 5.3, given by

s(n) = texe(1 thread)
texe(n threads) , (5.8)

one can see that it grows much slower than the number of threads. This is because every
parallelized program also contains serial code, which does not execute faster with more
threads, and therefore sets a lower limit for the execution time and an upper limit for
the speedup factor. Figure 5.9 shows how the execution time approaches this limit with
an increasing number of threads. To better understand how well the code is parallelized,
the so called level of parallelization p is introduced. Let a quantify the serial part of
the code and b the amount of perfectly parallel code. The level of parallelization is then
defined as

p := b

a+ b
, (5.9)

which is the fraction of code that is perfectly parallelized. Given the speedup factor s
and the number of threads n, one can also calculate p in the following way:

p = n(s− 1)
s(n− 1) . (5.10)

As expected, the level of parallelization in table 5.3 stays roughly the same for all tests.
Only those with Hyper-Threading have lower values. The reason for that is the lower
performance of the virtual threads used with this technology [51]. Surprisingly, the
best performance is achieved when using both CPUs of the computation node without
Hyper-threading. This is unexpected, because the additional virtual threads increase
performance on a single CPU. A possible reason for this behavior is that the so called
first touch policy is not implemented in the present code. Consequently, all the variables
and arrays are allocated in the main memory of a single CPU. Although the other CPU
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on the node can access this memory, the connection that allows this can become a
bottleneck as this is not as fast as accessing the CPU’s own memory. Therefore, a future
improvement would be to implement an allocator that puts the elements of arrays and
vectors closest to the thread that uses them.
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The color glass condensate is a classical and effective theory, describing the early stages of
heavy ion collisions, which allows the study of quantum chromodynamics in the dense,
high energy regime. A formulation of this theory on a cuboid lattice that is gauge
invariant even in the discrete case was presented. Based on the colored particle in
cell method, which is utilized to describe the point-like particles representing the hard
partons, all aspects of the CGC model are expressed on the grid. The derivation of
the equations of motion was done in the temporal gauge and they were formulated in
way allowing them to be used in an explicit numerical solver. For the Poynting vector,
an alternative discretization was derived that better preserves the Poynting theorem.
However, when calculating the local rest frame energy density, the naive discretization
of the continuum Poynting vector must be used since imaginary energy densities arise
due to discretization errors when using the alternative form.

Regarding the simulator itself, the available code was expanded by color charged particles
and CGC initial conditions using the McLerran-Venugopalan model. In particular, the
equation of motion solver as well as many diagnostic modules were adopted, rewritten
or newly added. With this, all necessary parts of OpenPixi have been implemented in
C++. The comparison tests and benchmarks show that the new simulator gives valid
results in comparison with the original Java version. It generates prominent features such
as pressure anisotropy and Gaussian rapidity profiles. The transverse pressure in the
forward light cone also agrees very well with the results of the Java code. Furthermore,
using thinner nuclei creates results more similar to boost-invariant simulations, which
was expected since the boost-invariant case corresponds to infinitely thin nuclei. Because
of their well behaved scaling, the execution time and memory usage can be predicted
more reliably for the C++ code. On top of that it was proven, that the C++ simulator
is about an order of magnitude faster than the Java version, while using only a fraction
of the memory. However, a Cython code also implementing a CGC simulator, showed
even higher performance. Thanks to a detailed analysis, the reasons for the difference
in execution speed and memory usage were found. It turned out that only little changes
are needed to make the C++ code at least as performant as the Cython code. The final
tests show that the parallelization with OpenMP is quite effective, with an achieved level
of parallelization of up to 97 %. In summary, porting OpenPixi from Java to C++ was a
worthwhile effort, although there are still a few details that need some improvement.

The documentation that has been created for the whole code makes it easier to use and
expand it in the future. Possible improvements would be to implement a new solver which
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does not suffer from lattice dispersion in the longitudinal direction or add distributed-
memory parallelism to single simulations with the help of MPI to allow larger grid sizes.
An incoherent version of the MV model for thick nuclei with nontrivial longitudinal
structure would also be interesting.

52



References

[1] Helmut Satz. “The Quark-Gluon Plasma: A Short Introduction”. In: Nucl. Phys.
A862-863 (2011), pp. 4–12. doi: 10.1016/j.nuclphysa.2011.05.014. arXiv:
1101.3937 [hep-ph].

[2] Johann Rafelski. “Connecting QGP-Heavy Ion Physics to the Early Universe”.
In: Nuclear Physics B - Proceedings Supplements 243-244 (2013). Proceedings of
the IV International Conference on Particle and Fundamental Physics in Space,
pp. 155–162. issn: 0920-5632. doi: https://doi.org/10.1016/j.nuclphysbps.
2013.09.017. url: http://www.sciencedirect.com/science/article/pii/
S0920563213005410.

[3] Edmond Iancu. “Gluon saturation at small x”. In: Multiparticle dynamics. Pro-
ceedings, 31st International Symposium, ISMD 2001, Datong, China, September
1-7, 2001. 2001, pp. 184–191. doi: 10.1142/9789812778048_0029. arXiv: hep-
ph/0111400 [hep-ph]. url: http://www.slac.stanford.edu/econf/C010901.

[4] Edmond Iancu, Andrei Leonidov, and Larry McLerran. “The Color glass conden-
sate: An Introduction”. In: QCD perspectives on hot and dense matter. Proceedings,
NATO Advanced Study Institute, Summer School, Cargese, France, August 6-18,
2001. 2002, pp. 73–145. arXiv: hep-ph/0202270 [hep-ph].

[5] Raju Venugopalan. “From Glasma to Quark Gluon Plasma in heavy ion collisions”.
In: J. Phys. G35 (2008), p. 104003. doi: 10.1088/0954-3899/35/10/104003.
arXiv: 0806.1356 [hep-ph].

[6] OpenPixi. Open Particle-in-Cell (PIC) simulator. url: http://www.openpixi.
org/ (visited on 10/03/2017).

[7] OpenPixi source code. url: https://github.com/openpixi (visited on 10/03/2017).
[8] Daniil Gelfand, Andreas Ipp, and David Müller. “Simulating collisions of thick

nuclei in the color glass condensate framework”. In: Phys. Rev. D94.1 (2016),
p. 014020. doi: 10.1103/PhysRevD.94.014020. arXiv: 1605.07184 [hep-ph].

[9] Andreas Ipp and David Müller. “Broken boost invariance in the Glasma via fi-
nite nuclei thickness”. In: Phys. Lett. B771 (2017), pp. 74–79. doi: 10.1016/j.
physletb.2017.05.032. arXiv: 1703.00017 [hep-ph].

[10] Alex Krasnitz and Raju Venugopalan. “Nonperturbative computation of gluon
minijet production in nuclear collisions at very high-energies”. In: Nucl. Phys. B557
(1999), p. 237. doi: 10.1016/S0550-3213(99)00366-1. arXiv: hep-ph/9809433
[hep-ph].

i

https://doi.org/10.1016/j.nuclphysa.2011.05.014
http://arxiv.org/abs/1101.3937
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2013.09.017
https://doi.org/https://doi.org/10.1016/j.nuclphysbps.2013.09.017
http://www.sciencedirect.com/science/article/pii/S0920563213005410
http://www.sciencedirect.com/science/article/pii/S0920563213005410
https://doi.org/10.1142/9789812778048_0029
http://arxiv.org/abs/hep-ph/0111400
http://arxiv.org/abs/hep-ph/0111400
http://www.slac.stanford.edu/econf/C010901
http://arxiv.org/abs/hep-ph/0202270
https://doi.org/10.1088/0954-3899/35/10/104003
http://arxiv.org/abs/0806.1356
http://www.openpixi.org/
http://www.openpixi.org/
https://github.com/openpixi
https://doi.org/10.1103/PhysRevD.94.014020
http://arxiv.org/abs/1605.07184
https://doi.org/10.1016/j.physletb.2017.05.032
https://doi.org/10.1016/j.physletb.2017.05.032
http://arxiv.org/abs/1703.00017
https://doi.org/10.1016/S0550-3213(99)00366-1
http://arxiv.org/abs/hep-ph/9809433
http://arxiv.org/abs/hep-ph/9809433


References

[11] T. Lappi. “Production of gluons in the classical field model for heavy ion collisions”.
In: Phys. Rev. C67 (2003), p. 054903. doi: 10.1103/PhysRevC.67.054903. arXiv:
hep-ph/0303076 [hep-ph].

[12] Alex Kovner, Larry D. McLerran, and Heribert Weigert. “Gluon production from
nonAbelian Weizsacker-Williams fields in nucleus-nucleus collisions”. In: Phys.
Rev. D52 (1995), pp. 6231–6237. doi: 10.1103/PhysRevD.52.6231. arXiv: hep-
ph/9502289 [hep-ph].

[13] Patrick Kappl. “Implementing a Simulation for Classical Yang-Mills Fields in C++”.
project thesis. Institute für theoretische Physik, Technische Universität Wien,
2017.

[14] Bjarne Stroustrup. Lecture: The essence of C++. University of Edinburgh, May 6,
2014. url: https : / / www . youtube . com / watch ? v = 86xWVb4XIyE (visited on
10/03/2017).

[15] F. Gelis. “Color Glass Condensate and Glasma”. In: Int. J. Mod. Phys. A28 (2013),
p. 1330001. doi: 10.1142/S0217751X13300019. arXiv: 1211.3327 [hep-ph].

[16] F. Gelis. “The Initial Stages of Heavy Ion Collisions”. In: Acta Phys. Polon. B45.12
(2014), pp. 2257–2306. doi: 10.5506/APhysPolB.45.2257.

[17] F. Gelis. “Initial state and thermalization in the Color Glass Condensate frame-
work”. In: Int. J. Mod. Phys. E24.10 (2015), p. 1530008. doi: 10.1142/S0218301315300088.
arXiv: 1508.07974 [hep-ph].

[18] Aleksi Kurkela et al. “Effective kinetic description of event-by-event pre-equilibrium
dynamics in high-energy heavy-ion collisions”. In: (2018). arXiv: 1805 . 00961
[hep-ph].

[19] Aleksi Kurkela et al. “Matching the non-equilibrium initial stage of heavy ion
collisions to hydrodynamics with QCD kinetic theory”. In: (2018). arXiv: 1805.
01604 [hep-ph].

[20] T. Lappi and L. McLerran. “Some features of the glasma”. In: Nucl. Phys. A772
(2006), pp. 200–212. doi: 10.1016/j.nuclphysa.2006.04.001. arXiv: hep-
ph/0602189 [hep-ph].

[21] Abhay Deshpande, Rolf Ent, and Richard Milner. “The EIC’s route to a new
frontier in QCD”. In: CERN Cour. 49N9 (2009), pp. 13–15.

[22] Larry D. McLerran and Raju Venugopalan. “Computing quark and gluon distri-
bution functions for very large nuclei”. In: Phys. Rev. D49 (1994), pp. 2233–2241.
doi: 10.1103/PhysRevD.49.2233. arXiv: hep-ph/9309289 [hep-ph].

[23] Larry D. McLerran and Raju Venugopalan. “Gluon distribution functions for very
large nuclei at small transverse momentum”. In: Phys. Rev. D49 (1994), pp. 3352–
3355. doi: 10.1103/PhysRevD.49.3352. arXiv: hep-ph/9311205 [hep-ph].

[24] Larry D. McLerran and Raju Venugopalan. “Green’s functions in the color field
of a large nucleus”. In: Phys. Rev. D50 (1994), pp. 2225–2233. doi: 10.1103/
PhysRevD.50.2225. arXiv: hep-ph/9402335 [hep-ph].

ii

https://doi.org/10.1103/PhysRevC.67.054903
http://arxiv.org/abs/hep-ph/0303076
https://doi.org/10.1103/PhysRevD.52.6231
http://arxiv.org/abs/hep-ph/9502289
http://arxiv.org/abs/hep-ph/9502289
https://www.youtube.com/watch?v=86xWVb4XIyE
https://doi.org/10.1142/S0217751X13300019
http://arxiv.org/abs/1211.3327
https://doi.org/10.5506/APhysPolB.45.2257
https://doi.org/10.1142/S0218301315300088
http://arxiv.org/abs/1508.07974
http://arxiv.org/abs/1805.00961
http://arxiv.org/abs/1805.00961
http://arxiv.org/abs/1805.01604
http://arxiv.org/abs/1805.01604
https://doi.org/10.1016/j.nuclphysa.2006.04.001
http://arxiv.org/abs/hep-ph/0602189
http://arxiv.org/abs/hep-ph/0602189
https://doi.org/10.1103/PhysRevD.49.2233
http://arxiv.org/abs/hep-ph/9309289
https://doi.org/10.1103/PhysRevD.49.3352
http://arxiv.org/abs/hep-ph/9311205
https://doi.org/10.1103/PhysRevD.50.2225
https://doi.org/10.1103/PhysRevD.50.2225
http://arxiv.org/abs/hep-ph/9402335


[25] Istvan Montvay and Gernot Münster. Quantum Fields on a Lattice. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, 1994. doi:
10.1017/CBO9780511470783.

[26] D. Bodeker, Guy D. Moore, and K. Rummukainen. “Chern-Simons number diffu-
sion and hard thermal loops on the lattice”. In: Phys. Rev. D61 (2000), p. 056003.
doi: 10.1103/PhysRevD.61.056003. arXiv: hep-ph/9907545 [hep-ph].

[27] T. Lappi. “Energy density of the glasma”. In: Phys. Lett. B643 (2006), pp. 11–16.
doi: 10.1016/j.physletb.2006.10.017. arXiv: hep-ph/0606207 [hep-ph].

[28] Kenji Fukushima. “Randomness in infinitesimal extent in the McLerran-Venugopalan
model”. In: Phys. Rev. D77 (2008), p. 074005. doi: 10.1103/PhysRevD.77.074005.
arXiv: 0711.2364 [hep-ph].

[29] Kenji Fukushima and Francois Gelis. “The evolving Glasma”. In: Nucl. Phys. A874
(2012), pp. 108–129. doi: 10.1016/j.nuclphysa.2011.11.003. arXiv: 1106.1396
[hep-ph].

[30] T. Lappi. “Wilson line correlator in the MV model: Relating the glasma to deep
inelastic scattering”. In: Eur. Phys. J. C55 (2008), pp. 285–292. doi: 10.1140/
epjc/s10052-008-0588-4. arXiv: 0711.3039 [hep-ph].

[31] Dmitri Kharzeev and Eugene Levin. “Manifestations of high density QCD in the
first RHIC data”. In: Phys. Lett. B523 (2001), pp. 79–87. doi: 10.1016/S0370-
2693(01)01309-0. arXiv: nucl-th/0108006 [nucl-th].

[32] Bjoern Schenke, Prithwish Tribedy, and Raju Venugopalan. “Event-by-event gluon
multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion colli-
sions”. In: Phys. Rev. C86 (2012), p. 034908. doi: 10.1103/PhysRevC.86.034908.
arXiv: 1206.6805 [hep-ph].

[33] openpixi_c source code. url: https://gitlab.com/openpixi/openpixi_c (vis-
ited on 10/03/2017).

[34] openpixi_c code documentation. url: http://openpixi.gitlab.io/openpixi_
c/ (visited on 09/29/2018).

[35] NetCDF. url: https://www.unidata.ucar.edu/software/netcdf/ (visited on
09/29/2018).

[36] NetCDF Software. url: https://www.unidata.ucar.edu/software/netcdf/
software.html (visited on 09/29/2018).

[37] FFTW Homepage. url: http://www.fftw.org/ (visited on 10/04/2018).
[38] Intel R© Math Kernel Library Homepage. url: https://software.intel.com/en-

us/mkl (visited on 10/04/2018).
[39] VSC-3. url: http://vsc.ac.at/systems/vsc-3/ (visited on 10/26/2018).
[40] VSC-3: compute nodes. 2014. url: http://vsc.ac.at/fileadmin/user_upload/

vsc/documents/vsc3/VSC-3-poster-node-web.pdf (visited on 10/26/2018).

iii

https://doi.org/10.1017/CBO9780511470783
https://doi.org/10.1103/PhysRevD.61.056003
http://arxiv.org/abs/hep-ph/9907545
https://doi.org/10.1016/j.physletb.2006.10.017
http://arxiv.org/abs/hep-ph/0606207
https://doi.org/10.1103/PhysRevD.77.074005
http://arxiv.org/abs/0711.2364
https://doi.org/10.1016/j.nuclphysa.2011.11.003
http://arxiv.org/abs/1106.1396
http://arxiv.org/abs/1106.1396
https://doi.org/10.1140/epjc/s10052-008-0588-4
https://doi.org/10.1140/epjc/s10052-008-0588-4
http://arxiv.org/abs/0711.3039
https://doi.org/10.1016/S0370-2693(01)01309-0
https://doi.org/10.1016/S0370-2693(01)01309-0
http://arxiv.org/abs/nucl-th/0108006
https://doi.org/10.1103/PhysRevC.86.034908
http://arxiv.org/abs/1206.6805
https://gitlab.com/openpixi/openpixi_c
http://openpixi.gitlab.io/openpixi_c/
http://openpixi.gitlab.io/openpixi_c/
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/software.html
https://www.unidata.ucar.edu/software/netcdf/software.html
http://www.fftw.org/
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
http://vsc.ac.at/systems/vsc-3/
http://vsc.ac.at/fileadmin/user_upload/vsc/documents/vsc3/VSC-3-poster-node-web.pdf
http://vsc.ac.at/fileadmin/user_upload/vsc/documents/vsc3/VSC-3-poster-node-web.pdf


References

[41] Paul Romatschke and Ulrike Romatschke. “Viscosity Information from Relativistic
Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?” In: Phys. Rev.
Lett. 99 (2007), p. 172301. doi: 10.1103/PhysRevLett.99.172301. arXiv: 0706.
1522 [nucl-th].

[42] Radoslaw Ryblewski and Wojciech Florkowski. “Highly-anisotropic hydrodynamics
in 3+1 space-time dimensions”. In: Phys. Rev. C85 (2012), p. 064901. doi: 10.
1103/PhysRevC.85.064901. arXiv: 1204.2624 [nucl-th].

[43] Hirotsugu Fujii and Kazunori Itakura. “Expanding color flux tubes and instabili-
ties”. In: Nucl. Phys. A809 (2008), pp. 88–109. doi: 10.1016/j.nuclphysa.2008.
05.016. arXiv: 0803.0410 [hep-ph].

[44] Ehab Abbas et al. “Centrality dependence of the pseudorapidity density distri-
bution for charged particles in Pb-Pb collisions at √sNN = 2.76 TeV”. In: Phys.
Lett. B726 (2013), pp. 610–622. doi: 10.1016/j.physletb.2013.09.022. arXiv:
1304.0347 [nucl-ex].

[45] I. G. Bearden et al. “Charged meson rapidity distributions in central Au+Au
collisions at s(NN)**(1/2) = 200-GeV”. In: Phys. Rev. Lett. 94 (2005), p. 162301.
doi: 10.1103/PhysRevLett.94.162301. arXiv: nucl-ex/0403050 [nucl-ex].

[46] Christopher E. Flores. “"The Rapidity Density Distributions and Longitudinal
Expansion Dynamics of Identified Pions from the STAR Beam Energy Scan"”. In:
Nuclear Physics A 956 (2016). The XXV International Conference on Ultrarela-
tivistic Nucleus-Nucleus Collisions: Quark Matter 2015, pp. 280–283. issn: 0375-
9474. doi: https : / / doi . org / 10 . 1016 / j . nuclphysa . 2016 . 05 . 020. url:
http://www.sciencedirect.com/science/article/pii/S0375947416301403.

[47] Jorge Casalderrey-Solana et al. “From full stopping to transparency in a holo-
graphic model of heavy ion collisions”. In: Phys. Rev. Lett. 111 (2013), p. 181601.
doi: 10.1103/PhysRevLett.111.181601. arXiv: 1305.4919 [hep-th].

[48] Wilke van der Schee. “Gravitational collisions and the quark-gluon plasma”. PhD
thesis. Utrecht U., 2014. arXiv: 1407.1849 [hep-th]. url: http://dspace.
library.uu.nl/handle/1874/294809.

[49] Wilke van der Schee and Bjoern Schenke. “Rapidity dependence in holographic
heavy ion collisions”. In: Phys. Rev. C92.6 (2015), p. 064907. doi: 10 . 1103 /
PhysRevC.92.064907. arXiv: 1507.08195 [nucl-th].

[50] L. D. Landau. “On the multiparticle production in high-energy collisions”. In: Izv.
Akad. Nauk Ser. Fiz. 17 (1953), pp. 51–64.

[51] Deborah T. Marr et al. “Hyper-Threading Technology Architecture and Microar-
chitecture”. In: Intel Technology Journal 06 (01 Feb. 14, 2002), pp. 4–15. issn:
1535766X. url: https://www.intel.com/content/dam/www/public/us/en/
documents/research/2002-vol06-iss-1-intel-technology-journal.pdf.

iv

https://doi.org/10.1103/PhysRevLett.99.172301
http://arxiv.org/abs/0706.1522
http://arxiv.org/abs/0706.1522
https://doi.org/10.1103/PhysRevC.85.064901
https://doi.org/10.1103/PhysRevC.85.064901
http://arxiv.org/abs/1204.2624
https://doi.org/10.1016/j.nuclphysa.2008.05.016
https://doi.org/10.1016/j.nuclphysa.2008.05.016
http://arxiv.org/abs/0803.0410
https://doi.org/10.1016/j.physletb.2013.09.022
http://arxiv.org/abs/1304.0347
https://doi.org/10.1103/PhysRevLett.94.162301
http://arxiv.org/abs/nucl-ex/0403050
https://doi.org/https://doi.org/10.1016/j.nuclphysa.2016.05.020
http://www.sciencedirect.com/science/article/pii/S0375947416301403
https://doi.org/10.1103/PhysRevLett.111.181601
http://arxiv.org/abs/1305.4919
http://arxiv.org/abs/1407.1849
http://dspace.library.uu.nl/handle/1874/294809
http://dspace.library.uu.nl/handle/1874/294809
https://doi.org/10.1103/PhysRevC.92.064907
https://doi.org/10.1103/PhysRevC.92.064907
http://arxiv.org/abs/1507.08195
https://www.intel.com/content/dam/www/public/us/en/documents/research/2002-vol06-iss-1-intel-technology-journal.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/research/2002-vol06-iss-1-intel-technology-journal.pdf


A. Plaquettes and Field Strength Tensor

To show that the plaquettes are, at leading order, equal to the exponential of the field
strength tensor, one has to combine the definition of the plaquettes (eq. (3.23)) and the
gauge links (eq. (3.19)):

Ux,µν = Ux,µUx+µ,νU
†
x+ν,µU

†
x,ν

= exp(−igaµAx,µ) exp(−igaνAx+µ,ν) exp(igaµAx+ν,µ) exp(igaνAx,ν). (A.1)

Since the fields Aµ are elements of a non-Abelian Lie algebra, the Baker-Campbell-
Hausdorff formula,

eεAeεB = eε(A+B)+ ε
2
2 [A,B]+O(ε3), (A.2)

has to be used to write all terms under a single exponential. Using the linearity of the
commutator [·, ·] and only collecting terms up to quadratic order yields the following
formula for combining three exponentials,

eεAeεBeεC = exp
(
ε(A+B + C) + ε2

2 [A,B] + 1
2[εA+ εB + ε2

2 [A,B], εC] +O(ε3)
)

= exp
(
ε(A+B + C) + ε2

2 ([A,B] + [A,C] + [B,C]) +O(ε3)
)
. (A.3)

With that, the plaquettes can be written as

Ux,µν = exp
(
− ig

(
aµAx,µ + aνAx+µ,ν − aµAx+ν,µ − aνAx,ν

)
−
g2aµaν

2
(
[Ax,µ,Ax+µ,ν ]− [Ax,µ,Ax,ν ]− [Ax+µ,ν ,Ax+ν,µ] + [Ax+ν,µ,Ax,ν ]

)
−
g2a2

µ

2 [Ax,µ,Ax+ν,µ]− g2a2
ν

2 [Ax+µ,ν ,Ax,ν ] +O(a3)
)
. (A.4)

Using the following approximation,

Ax+ν,µ = Ax,µ + aν∂νAx,µ +O(a2), (A.5)
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A. Plaquettes and Field Strength Tensor

the last two terms in eq. (A.4) vanish in quadratic order, yielding

Ux,µν = exp
(
− ig

(
aµAx,µ + aνAx+µ,ν − aµAx+ν,µ − aνAx,ν

)
−
g2aµaν

2
(
[Ax,µ,Ax,ν ]− [Ax,µ,Ax,ν ]− [Ax,ν ,Ax,µ] + [Ax,µ,Ax,ν ]

)
+O(a3)

)

= exp
(
− igaµaν

(
Ax+µ,ν −Ax,ν

aµ
−
Ax+ν,µ −Ax,µ

aν
− ig[Ax,µ,Ax,ν ]

)
+O(a3)

)

= exp
(
−igaµaν

(
∂µAx,ν − ∂νAx,µ − ig[Ax,µ,Ax,ν ]

)
+O(a3)

)
= exp

(
−igaµaν(Fx,µν +O(a))

)
, (A.6)

which is the claimed result.
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B. Conservation of Gauss Constraint

If the equation of motion solver preserves the Gauss constraint, calculating it at different
time steps should not change the result,

3∑
i=1

Ex,i − U
†
x−i−0/2,iEx−i,iUx−i−0/2,i

ai
− ρaxta

!=

3∑
i=1

Ex+0,i − U
†
x−i+0/2,iEx+0−i,iUx−i+0/2,i

ai
− ρax+0ta. (B.1)

Here Ux−i±0/2,i denotes the gauge link at time t ± ∆t/2. Expressing the electric field
and gauge links at the later time step with eqs. (3.55) and (3.58) yields

3∑
i=1

1
ai

[
Ex,i −

(
exp(−iga0aiEx−i,i)Ux−i−0/2,i

)†
Ex−i,i exp(−iga0aiEx−i,i)Ux−i−0/2,i

+
∑
j 6=i

′
Im Tr(taUx+0/2,ij + taUx+0/2,i−j)ta − a0 j

i
x+0/2

−
∑
j 6=i

′
U †x−i+0/2,i Im Tr(taUx−i+0/2,ij + taUx−i+0/2,i−j)taUx−i+0/2,i

+ a0U
†
x−i+0/2,i j

i
x−i+0/2Ux−i+0/2,i

]
, (B.2)

where the primed sum is introduced as a short hand notation, defined in the following
way ∑

j 6=i

′
:= 2a0

gai

∑
j 6=i

1
a2
j

. (B.3)

The terms involving either ρ or j are treated separately and will be dealt with later. For
now, only the terms with E-fields and plaquettes are of interest. Since exp(−iga0aiEx−i,i)
commutes with Ex−i,i, the two exponentials in the first line of eq. (B.2) cancel each other,
leaving only the desired terms for the Gauss constraint of the original time step, plus
the terms with the primed sum. Using the Fierz identity for the generators of SU(N)

(ta)αβ(ta)γδ = 1
2

(
δαδδβγ −

1
N
δαβδγδ

)
, (B.4)
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B. Conservation of Gauss Constraint

the imaginary trace of a group element X can be rewritten in the following way

Im Tr(taX)ta = 1
2i
(
(ta)αβXβα − ((ta)αβXβα)†

)
(ta)γδ

= 1
2i
(
(ta)αβ(ta)γδXβα − (ta)βα(ta)γδX

†
αβ

)
= 1

4i

(
Xγδ −X

†
γδ −

1
N

(Xαα −X
†
αα)δγδ

)
=: 1

2 [X]ah , (B.5)

where [X]ah denotes the anti hermitian, traceless part of X. It is easy to see that [·]ah
commutes with gauge transformations.

U †2i [X]ah U = U †XU − U †X†U − 1
N

Tr(X −X†)U †1U

= U †XU − (U †XU)† − 1
N

Tr(U †XU − (U †XU)†)1

= 2i
[
U †XU

]
ah

(B.6)

Together with eq. (3.47) the primed sum now reads

3∑
i=1

∑
j 6=i

′ 1
2ai

([
Ux+0/2,ij

]
ah

+
[
Ux+0/2,i−j

]
ah

−
[
U †x−i+0/2,iUx−i+0/2,ijUx−i+0/2,i

]
ah

−
[
U †x−i+0/2,iUx−i+0/2,i−jUx−i+0/2,i

]
ah

)
=

a0
g

3∑
i=1

∑
j 6=i

1
a2
i a

2
j

([
Ux+0/2,ij

]
ah

+
[
Ux+0/2,i−j

]
ah

−
[
Ux+0/2,j−i

]
ah
−
[
Ux+0/2,−j−i

]
ah

)
. (B.7)

The second together with the third term is antisymmetric under the exchange of the
indexes. Since the sum over i and j goes over every possible index pair with i 6= j, these
two terms cancel. The first as well as the last term are antisymmetric on their own
because [

Ux,ij
]
ah =

[
U †x,ji

]
ah

= −
[
Ux,ji

]
ah . (B.8)

Therefore the whole primed sum vanishes.

Regarding the terms with ρ and j , one has to show that

− ρaxta = −ρax+0ta −
3∑
i=1

a0
ai

(
j
i
x+0/2 − U

†
x−i+0/2,i j

i
x−i+0/2Ux−i+0/2,i

)
. (B.9)
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However, this is just the discrete continuity equation, which every particle fulfills by
definition, as this was the starting point for the derivation of the charge and current
update (see section 3.5). With that, it is finally proven that the equations of motion
exactly preserve the Gauss constraint.

ix


	Introduction
	Early Stages of Heavy Ion Collisions
	Parton Model
	Gluon Saturation
	Color Glass Condensate

	Numerical Methods
	Real-time Lattice Gauge Theory
	Colored Particle in Cell Method
	Variation of the Action
	Gauss Constraint
	Equations of Motion
	Hamiltonian Density
	Poynting Vector
	Initial Conditions

	Implementation
	Simulation Core
	Initial Conditions
	Diagnostics
	Tests
	Parallelization

	Test Results
	Pressure Anisotropy
	Rapidity Profiles
	Transverse Pressure
	Execution Time and Memory Usage
	OpenMP

	Conclusion
	References
	Plaquettes and Field Strength Tensor
	Conservation of Gauss Constraint

