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Abstract

Coalition formation models lie at the intersection of political science and economics. They

deal with the creation of groups amongst agents as well as the determination of the outcome

of many social, economic and political interactions. Although coalition formation is a well

studied concept in the domain of economics, particularly in game theory, most models focus

on a stable outcome and the process of coalition formation has received less attention. Indeed,

the process of coalition formation is the point of departure of my research. The main goal of

this thesis is to investigate the process of coalition formation with a focus on international

agreements and the dynamics of Europe’s political economy.

Two game-theoretical coalition formation models are built and tailored to the EU and

international coalitions in general. One of the aims is to establish links between theoretical

models and applications thereby getting a better under standing of dynamics of the EU. While

the first model uses a sequential approach in which players iteratively form subcoalitions, the

second model uses a simultaneous approach in which players form coalitions at once with all

members. The sequential algorithm for coalition formation is inspired by the study of jets

in high energy physics experiments and the simultaneous model is inspired by correlation

clustering in computer science.

There are two main considerations. The first one is the computational complexity of

coalition formation processes. The computational aspects of coalition formation games are

of increased importance as these games are used to analyze situations with numerous players.

However, in economics and political science there are limited number of analyses concerning

with this issue. The second consideration is the determination of the distance between players.

The majority of theoretical works in the literature assume a geometrical distance function

in the Euclidean space. The examination of different distance functions and their role in

shaping coalitions is the subject of this research.



The distance between two countries is measured by a distance function which has

geometrical element, geographical distance, and non-geometrical elements, GDP, GDP

per capita, population and regime type. Python implementations of coalition formation

algorithms are presented. The results including data from 28 European countries illustrate

the impact of the distance function in the process. Both models predict five founder member

states (with the exception of Italy) of the EU.

The presented thesis is an interdisciplinary work. It is devoted to the questions of which

coalitions will be formed, how one defines the distance between players, how resulting

coalitions intertwine with the process and how to reduce the computational complexity of the

process.
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Zusammenfassung

Die theoretische Auseinandersetzung mit und Modellierung von Koalitionsmodellen erfolgt

an der Schnittstelle von Politik- und Wirtschaftswissenschaften. Kern der Betrachtung

sind dabei meist die Zusammenschlüsse einzelner Koalitionäre - wie hier z.B. Staaten -

und die Ziele ihrer sozialen, wirtschaftlichen und politischen Interessen und Interaktionen.

Wenngleich Koalitionen einen ausführlich untersuchten Bereich innerhalb der Wirtschaftswis-

senschaften, speziell der Spieltheorie, darstellen, so liegt der Fokus dabei meist auf dem

Erreichen eines stabilen Gleichgewichts. Dem zugrundeliegenden Prozess der Koalitionsbil-

dung wurde bisher nur wenig Bedeutung beigemessen. Dies bildet den Ausgangspunkt der

vorliegenden Arbeit.

Ein solcher Prozess wird anhand internationaler Übereinkommen, unter besonderer

Berücksichtigung der Dynamik der Politischen Ökonomie Europas, näher untersucht. Hi-

erfür werden zwei spieltheoretische Modelle entworfen und die Bildung von Koalitionen

anhand eines internationalen Staatenbündnisses auf europäischer Ebene angewendet. Zwei

Anwendungsbeispiele der Modelle ermöglichen dabei besseres Verständnis für die Dynamik

innerhalb der Europäischen Union. Das erste Modell mit sequentiellem Ansatz lässt die

SpielerInnen schrittweise Subkoalitionen bilden, während das zweite Modell mit simultanem

Ansatz die SpielerInnen zu einem bestimmten Zeitpunkt eine Koalition formen lässt. Der

sequentielle Ansatz hat seinen Ursprung in Experimenten der Hochenenergiephysik mit soge-

nannten "Jets"; der simultane Ansatz basiert auf korrelationsgesteuerte Clustering-Methoden

der Computerwissenschaft.

Die Zielsetzung dieser Arbeit umfasst zwei wesentliche Aspekte: die Rechenkomplexität

bei der Modellierung von Koalitionsbildungsprozessen sowie die Bedeutung der Distanzfunk-

tion. Die Rechenkomplexität im Rahmen der Modellierung von Koalitionsbildungsprozessen.

Diese ist von steigender Bedeutung, da anhand einzelner Spiele Koalitionen mit zahlreichen



SpielerInnen berechnet werden. In den Wirtschafts- und Politikwissenschaften haben sich

bisher jedoch nur wenige Studien mit diesem Problem auseinandergesetzt. Der zweite

wesentliche Teil dieser Arbeit ist die Beschäftigung mit der Abstandsfunktion zwischen

den einzelnen SpielerInnen. In der Literatur wird derzeit mit überwiegender Mehrheit die

Euklidsche Abstand angenommen. In der vorliegenden Arbeit werden verschiedene Dis-

tanzfunktionen und ihre Rolle in der Koalitionsbildung betrachtet. Die Distanz zwischen

zwei SpielerInnen - hier Staaten - wird anhand einer Distanzfunktion abgebildet, die ge-

ographische, geometrische und nicht-geometrische Größen, wie das Bruttoinlandsprodukt,

das Pro-Kopf-Bruttoinlandsprodukt, die Bevölkerungsgröße wie auch der Art der Regime-

Typen miteinbezieht.

Die entwickelten Algorithmen werden in Python implementiert und die Ergebnisse in

der Arbeit präsentiert. Diese umfassen Daten aus 28 Staaten und zeigen den Einfluss der

Distanzfunktion auf den Prozess der Koalitionsbildung. Beide der angewendeten Modelle

berechnen – mit Ausnahme von Italien – fünf der sechs Gründerstaaten der Europäischen

Union voraus.

Der in dieser Arbeit vorgestellte interdisziplinäre Zugang strebt die Beantwortung

mehrerer grundlegender Fragen an: Welche Koalitionen werden gebildet? Wie wird die

Distanz zwischen einzelnen SpielerInnen definiert? Welchen Zusammenhang gibt es zwis-

chen den gebildeten Koalitionen und dem ihnen zugrundeliegenden Prozess? Wie kann die

Berechnungskomplexität in der Modellierung eines solchen Prozesses reduziert werden?
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Chapter 1

Introduction

What are the reasons for forming coalitions with respect to political and economic coop-

erations among countries? How do countries form coalitions? What are the preferences

concerning potential partners and how are they shaped? Who wins and who loses in a

coalition? Why are some coalitions terminated while others are not? International coalitions

include long-term and complex relationships. The main goal of this thesis is to investigate

the formation of coalitions with a focus on international agreements and the dynamics of

Europe’s political economy. Within the presented research, several points will be considered

such as the emergence and evolution of coalitions, heterogeneity among coalition members,

and issues of potential enlargement.

Coalition formation is an extensively discussed topic in economic, political, and social

analysis. The intention is not to repeat all of these discussions here. The objective of this

thesis is to understand the process of coalition formation by applying game theory. There is a

broad and growing literature in game theory investigating these topics. Recently, hedonic

games, in which the payoff of a coalition only depends on its members (Banerjee et al.

(2001)), has attracted much attention. Despite the simple nature of these models, a few open

points warrant further study.

These are especially related to the European Union (EU) as an international/supranational

organization. A game theoretical coalition formation model can be used and tailored to the

EU in particular and international coalitions in general. One aim is to establish links between

the theoretical model and the formation and dynamics of the EU, thereby gaining a better

understanding of the potential entrance and exit of some countries.
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Introduction

The issue of coalitions is not unique to the fields of social sciences. The aggregation

of similar elements into groups is subject to many fields: mathematics, physics, computer

science, etc. There have been several attempts to describe and analyze the formation of

coalitions and networks in economics using concepts and tools from those fields1. The models

presented in this work particularly share similar characteristics with sequential recombination

algorithms from particle physics and correlation clustering from computer science.

These models are introduced in order to be able to study fundamental aspects of coalition

formation. To do so, I study the problem as a description of actual processes instead of

focusing on formal stability conditions. That provides a strong motivation for studying

properties of instability instead of trying to cure it. In both models, an algorithmic approach

is used in which players form coalitions by following certain rules.

The models allow us to test their predictions to compare the different procedures. Even if

the primary aim of this thesis is not to explore the formation of coalitions empirically, it is

important that the models can be easily tested. The models can be applied to a wide range of

problems, but I take the creation of the European Coal and Steel Community (ECSC) as an

example and demonstrate its formation using the sequential and the simultaneous model.

Recently, sequential recombination algorithms have been successfully used in particle

physics to analyze showers of particles produced in high energy collisions of elementary

particles. In chapter 5, the process of coalition formation resembles this kind of clustering

procedure which is a pairwise sequential recombination of particles.

Correlation clustering is a method of partitioning a set of elements into clusters. In

correlation clustering, the formation of clusters takes place simultaneously. It can be used in

several applications such as data mining. The number of clusters could be any value between

one and the number of elements (Bansal et al. (2004)). In chapter 6, simultaneous coalition

formation follows a similar structure.

One advantage of these approaches is that there is no need to determine the number of

clusters in advance. These two algorithmic approaches share a similar structure of hedonic

1The Landscape theory and the Ising model, which originated in the study of physics are used in analyzing
aggregations in economics and politics, see, for example, Axelrod and Bennett (1993) and Galam (2008). The
study of graphs, the Network theory, is widely used not only in mathematics and computer science but also
in economics and sociology. See Jackson (2008) for a comprehensive introduction to social and economic
networks.
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games in which any number of coalitions can be formed and there is no restriction on the

number of coalitions.

Needless to say, considering only two options, either sequential or simultaneous, for

the coalition formation process is debatable (a mixed approach could also be adopted,

for example). However, this keeps the models more traceable and allows us to focus on

other aspects. Using two complementary approaches to the problem provides a better

understanding of the coalition formation process. This can also contribute to the knowledge

about similarities and differences of formation processes in different fields, so that the theory

can be improved.

The thesis is organized as follows. In chapter 2, a survey of coalition formations in

political science and game theory will be presented. Basics elements of coalition formation

games and a review of theoretical approaches are given. Furthermore, shortcomings of

these theories are discussed. Chapter 3 introduces clustering theory which will be later

used for sequential and simultaneous coalition formation models. Clustering algorithms and

their advantages and disadvantages are discussed. In chapter 4 a brief history of formation

of the EU will be discussed and the data of countries’ characteristics will be presented.

The core of this thesis are chapter 5 and 6. In chapter 5 a recombination algorithm from

particle physics is presented and a sequential coalition formation model is built. In chapter 6

correlation clustering method is discussed and a simultaneous coalition formation model is

built. Furthermore, implementations of algorithms are presented for both models. The thesis

ends with conclusions.

3





Chapter 2

Coalition Formation

The theory of coalition formation was initially an interest of political science and cooperative

game theory. Models of coalition formation in game theory date back to Von Neumann and

Morgenstern (1944). There are different approaches and applications in political games:

Riker (1960) minimum size winning coalitions, Leiserson (1968) fewest actor principle,

Axelrod (1970) conflict of interest and connected coalitions, de Swaan (1973) minimizing

policy distance, Peleg (1981) coalition formation in dominated simple games, Deemen (1997)

the center player theory.

Coalitions are formed when agents prefer to act together in a group for the benefit

of all the members of the group. These groups can consist of only two agents, as in the

case of a married couple or a bilateral treaty, or several agents, as in a shared flat or an

economic/political union. There are two fundamental questions in the formation of coalitions:

which coalitions can be formed and how coalitions distribute payoffs among their members

(Hajdukov (2004)). These questions are intertwined since the members’ payoffs in a coalition

depend on which coalitions form and which coalitions form depend on the distribution of

payoffs among members.

An interesting subset of coalitional game theory is matching problems. Matching models

on marriage problems, college admission problems, and roommate problems are introduced

by Gale and Shapley (1962). In these models, players have preference lists over potential

partners or roommates and the challenge is to find whether a stable matching exists. There

is always a stable matching in the marriage problem while any matching might be unstable

for the roommate problem. From the perspective of mechanism design, several interesting

5



Coalition Formation

applications were inspired from these matching problems such as kidney exchange, school

admission, and labor market problems. Stability plays a crucial role in these markets. In

a general sense, stability means that no set of agents are interested in leaving their current

cooperation and creating a new one.

Another subset of coalitional game theory is hedonic games. They were first introduced

by Drèze and Greenberg (1980). More recently, hedonic games have been studied by, among

others, Banerjee et al. (2001), Barberà and Gerber (2003), Bogomolnaia and Jackson (2002),

and Burani and Zwicker (2003). Similar to matching games, in hedonic games, each player

has preferences over potential coalitions. (In fact, hedonic games encompass matching

games.). A partition of the set of players might be determined according to these preferences.

These models exhibit two main features. The first is that the payoffs can only be determined

by the identity of the coalition’s members. The second is the prediction of more than one

coalition, namely a partition.

Theoretical models suggest a number of restrictions in hedonic games in order to guar-

antee the stability of coalitions. Coalition formations emerge as a consequence of models’

assumptions. However, these restrictions are not always applicable for international coali-

tions. Furthermore, becoming exclusively preoccupied with stability and its assumptions

prevent us from studying other aspects of coalition formation like the formation process

itself.

The models of coalition formation deal with the players’ preferences and assumptions of

these preferences. The formation of a coalition can be a prolonged process spanning multiple

rounds of negotiations. An extreme example is the proposed EU membership of Turkey.

Different to static models, studying the dynamic structure of how players can change their

preferences over time is worth examining in order to shed light on the nature of coalition

formation.

Another critical point is determining how players’ preferences are shaped. In hedonic

games and most coalition formation theories, the preferences are exogenously given. These

preferences can either be in a one-dimensional or a multi-dimensional space. While in a one-

dimensional case ordinal preferences may be used, in a multi-dimensional case preferences

are cardinally measured. In both settings, the general assumption is that players will cooperate

6



2.1 Forming Coalitions

with their closest neighbors (the definition of what constitutes the closest neighbors may

differ among models). I will discuss different models in the following sections.

Many models in hedonic games focus on the stability of coalition partitions. However, if

preferences are unrestricted, this criterion is not always fulfilled. These models seek to find a

stable partition by restricting preferences. Despite the simplicity of hedonic games, finding a

stable partition is not easily guaranteed.

Hedonic games find many applications in economics. They vary from the proportional

sharing in production to the housing market. However, multilaterals and international

organizations are paid less attention. (Maybe one exception is hedonic formation models in

environmental issues.). These models are particularly plausible in these areas because they

allow for a partition instead of a bipolar result.

The chapter is organized as follows. In the next section, I will survey coalition formations

in political science and game theory. Before I present the framework of coalition formation,

there are three important points to discuss. The first is preferences and their assumptions in

both coalition theories in general and in hedonic models in particular. The second point is

the process of coalition formation. This point requires special attention since the formation

process and stability are closely related. The last point is the stability of coalitions. Multiple

stability concepts exist in the literature; therefore, I will review these concepts and discuss

their connections.

2.1 Forming Coalitions

In cooperative game theory, games are classified in two types: Transferable Utility (TU)

games and Nontransferable Utility (NTU) games. In TU games, the utility is freely trans-

ferable from one player to another. In other words, every coalition can divide its worth in

any possible way among its members. In NTU games, some feasible set of payoff vectors

for every coalition is given and there is no possibility for transferring utility among the

members. In pure hedonic games and matching games, there are no transfers between players.

Therefore, these games fall into latter category.

Although hedonic games are a particular type of NTU games, it is worth noting here

that there are models which use elements of non-cooperative game theory. For example,

7



Coalition Formation

Bogomolnaia and Jackson (2002) use the Nash stability, which is a non-cooperative notion

of stability. Bloch and Diamantoudi (2011) consider a non-cooperative perspective in which

players form coalitions without a social planner.

Let me start with the basics of n-players cooperative game theory and further discuss the

concepts relevant to international coalitions. Consider a finite set of players N = {1,2, ...,n}.

A coalition is a subset of N. In a game, 2N different coalitions can be formed. Note that the

empty coalition /0 and the grand coalition {N} are also considered to be valid. While for a

specific problem (in which players have a common scale to measure the worth of a coalition)

it is convenient to consider transferable utility, in a general situation, nontransferable utility

is more appropriate. Every TU game can be represented as an NTU game but the converse is

not true.

Definition 2.1.1 A TU game is a pair (N,v) where v : 2N → R is the characteristic function

assigning to each coalition S in 2N a value v(S) and satisfying v( /0) = 0.

An important class of TU games are superadditive games. In this class, merging any pair

of disjoint coalitions never diminishes the total payoff. Therefore, players can be expected to

form a grand coalition. Formally, if a TU game is superadditive for each pair S,T ⊂ N and

S∩T = /0, it holds that

v(S∪T )≥ v(S)+ v(T ).

Superadditivity is very demanding. The assumption of superadditivity may not be

imposed because of several reasons (see Aumann and Dreze (1974) [p.233]) such as hetero-

geneity, moral hazard, or communication issues (see Greenberg (1994)[p. 1309]).

It is not possible to transfer utility among players when there is no common currency in a

game. A classical example of this is an exchange economy. In NTU games, the possibilities

for each coalition is represented by a set of payoff vectors.

Definition 2.1.2 An NTU game is a pair (N,V ) where V is a mapping of feasible payoffs to

each coalition S in 2N \{ /0} a value V (S) satisfying V ( /0) = /0 and

• V (S) is nonempty, closed, and convex.

• V (S) is comprehensive

8



2.1 Forming Coalitions

• V (S)∩RS
+ is bounded

A coalitional game in which the payoff to a member of the coalition depends only on the

coalition members is called a hedonic game. Formally,

Definition 2.1.3 A hedonic game G is a pair (N,⪰i), where N is a finite set and i ∈ N. The

binary relation ⪰ is a complete, reflexive, and transitive preference relation for agent i. If

S ⪰i T , agent i prefers coalition T as much as coalition S.

The strict and indifference relation of a player i are as follows:

S ≻i T ⇐⇒ [S ⪰i T ∧T ⪰̸i S],

S ∼i T ⇐⇒ [S ⪰i T ∧T ⪰i S].

A feasible allocation in such a game is a partition of players. A partition is the distribution

of all players in non-overlapping coalitions1, i.e. it is supposed that each player belongs to

one and only one coalition. Note that, if we consider that players as not anonymous, then the

number of coalition partitions is more than simply the partition number of N.

Given a cooperative game, the question is how to determine the equilibrium. There are

several solution concepts of which the core, the stable set and the Shapley value are widely

used.

The set of all payoff profiles is called the core if no group of players deviate to form a new

coalition in which they are better off. Determining the core is mathematically challenging in

NTU games (Scarf (1967)) and might be empty.

A stable set is a set of payoff vectors which satisfies two properties: internal and external

stability. An outcome is internally stable if it is immune to any deviation within the set and

externally stable if any outcome outside of the set is not a possible solution. Additionally, the

stable set may be empty or there can be many stable sets. Neither the core nor the stable set

always predict a unique outcome.

These two concepts focus on the stability of an outcome. Other solution concepts of

cooperative games may focus on fairness. The Shapley value is based on the idea that players
1There are models that allow overlapping coalitions. However, an international organization like the EU

does not allow the formation of overlapping coalitions. Therefore, this study ignores this possibility.
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should receive outcomes proportional to their contributions. The Shapley value is the unique

payoff vector that satisfies the following assumptions:

• Symmetry: If two players’ contributions are equal for every coalition, then the values

assigned to them are equal.

• Efficiency: The total gain is distributed among the members.

• Null Player: A player is a null player if she or he does not influence the worth of any

coalition.

• Additivity: The value of the sum of two games is the sum of the values of two games.

The following example can be formalized as a TU and an NTU game. Let three players

A, B, and C divide a dollar. Consider we have an NTU game. If they divide a dollar in a way

in which any two of them divide it equally, then the core contains the outcomes of (1
2 ,

1
2 ,0),

(1
2 ,0,

1
2), (0,

1
2 ,

1
2). All three outcomes are stable but the core cannot predict which one of

them occurs.

If we consider a TU game and the players decide by simple majority voting on the

division of a dollar then the core is empty. All singletons {1},{2},{3} have a value of 0.

All pairs and the grand coalition {1,2}, {2,3}, {3,1}, {1,2,3} have a value of 1. The grand

coalition cannot be in the core because all pairs can deviate. However, none of the pairs can

be in the core because we can always find an objection for all the pairs since the utility is

transferable.

There is a similar problem, the roommate problem, in hedonic games and matching

problems. Three students have preferences over which other to be roommates with and

only two students can stay in one room. In the roommate problem, unlike in the marriage

problem, there is no stable matching. Suppose that their preferences are 2 ≻1 3 for the first,

3 ≻2 1 for the second and 2 ≻3 1 for the third student. In all possible two roommate cases,

one student always wishes to move in with the other student. The core is empty due to

the cyclical relation. The roommate problem resembles the idea of the Condorcet Paradox.

Roommate-like problems, resulting from a cycle, cause an empty core.

One of the main points in such games is to find the conditions for a nonempty core. For

example, if the players do not care about the identity of their roommate but rather the size of
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the coalition, then the core consists of {{1,2},{3}},{{1,3},{2}} and {{2,3},{1}}. This

condition guarantees a nonempty core for this specific example. However, anonymity is not

on hold in most cases of international coalitions. The population, culture, GDP, and other

concerns will be relevant reasons for coalition formation. I will discuss several restrictions

on preferences more in detail in 2.2.

In traditional coalition formation games, the winning coalition, the minimal size winning

coalition, and the minimal size connected coalition can be found in numerous models.

Coalition formation can be examined in a parliamentary system in which the theory can

predict a winning coalition, namely the government, and a losing one. Similarly, in a

non-democracy, players can be in a winning coalition, an oligarchy, or a losing coalition

(Acemoglu et al. (2008)). Hedonic games allow for numerous coalitions to be formed at the

same time and in arbitrary sizes. This feature allows us to examine the situations in which

there are not necessarily a winning and a losing coalition.

Another well-known theory is the minimal size principle. Among the winning coalitions,

the theory predicts that a minimal size coalition will be formed. The intuition behind this

principle is that rational players try to maximize their outcomes and to do so they seek to

keep their relative size as big as possible. This leads players to try to minimize the coalition

size in terms of seats, resources, ...etc.

The last theory is the minimal size connected coalition. The underlying idea in this theory

is that players try to minimize the conflict of interest among the coalition members. This

means they prefer to form a coalition with players close to them in terms of ideology or other

aspects.

There are a number of models that apply the theory of hedonic games with combina-

tions of these principles of winning coalitions. For example, Breton et al. (2007) combine

Gamson’s rule2 and hedonic games. They examine the situation in which heterogeneous

(in terms of endowment) agents play a weighted majority game. They identify players as a

combination of their weight and ideology in a multi-dimensional Euclidean space. Further,

they consider single and double division methods and examine the stability of coalitions.

Closely related to this work, there are models that consider heterogeneous agents as an

element in the model and examine the coalition formation process. The first group of studies
2Gamson’s rule states that the outcome of the winning coalition is shared among the members in proportion

to their weights.
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aim to show the role of heterogeneity and identity in hedonic coalition formation games.

Lazarova and Dimitrov (2012) consider heterogeneous players in terms of nationality, ethnic

background, or skill type who try to achieve a local (intra-group) or global (inter-group)

status through being members of a group. They show the existence of the core stable partition

when the players care only about the local status or only about the global status, both as

substitutes and as complements.

Desmet et al. (2006) provide an interesting study of the trade-off between increasing

returns in the provision of public goods and the cost of cultural heterogeneity. They empir-

ically test the relationship between genetic distance, linguistic and cultural distance, and

the stability of regional and national borders within Europe. Furthermore, they examine the

likelihood of secession and unification between pairs of countries. As a result, they argue

that larger nations benefit from increasing returns in the provision of public goods but suffer

the costs of greater cultural heterogeneity. This affects agents preferences over different

coalitions and the likelihood of unification or break-up.

The second group of studies aim to analyze the process of coalition formation. Un-

derstanding this process is particularly important because international coalitions exhibit a

dynamic formation pattern. There are different procedures that players go through to form a

coalition. On the one hand, large coalitions such as the EU often start off being small and

expand over time. Therefore, one way to form a coalition is by gradually accepting new

members. There is a crucial point to emphasize here. In section 2.3, I am going to discuss

the consequences of both entry and exit options more in detail. This means that gradual

formation can be interpreted as accepting new members or excluding current members. On

the other hand, some coalitions such as environmental agreements try to start off being as big

as possible. In this case, the players follow a greedy method in which they seek to maximize

participation in the coalition and still gradually expand.

Additional theories including endogenous coalition formation are Hart and Kurz (1983),

Ray and Vohra (1999), Konishi and Ray (2002). Others including dynamic elements are

Perry and Reny (1994), Bloch and Diamantoudi (2011) and Seidmann and Winter (1998).

Another strand of literature studies farsighted stability. Chwe (1994), and Diamantoudi and

Xue (2003) capture a farsighted aspect of rational players in their models. Barberà and

Gerber (2003) also analyze hedonic games with farsighted consideration.
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The chapter proceeds as follows. I introduce three elements, namely preferences, process

and stability. In section 2.2, I discuss these preferences in various models. First, I give

possible restrictions on preferences and their definitions. Second, I discuss coalition formation

in one-dimensional and multi-dimensional space. Furthermore, I look at the difference of

using ordinal versus cardinal and fixed versus changing preferences. Finally, this section

ends with the idea of forming coalitions with neighbors and the connectedness of a coalition.

In Section 2.3, the process is presented as an element of coalition formation. The section

provides two main approaches to the coalition formation process. In the last section, I discuss

stability and instability and their relation to the preferences and the process.

2.2 Preferences

Assume that players know their preferences on coalition partitions and are able to rank

them. Rational players seek to maximize their payoffs. Another assumption is complete

information. In non-cooperative games, the role of beliefs and uncertainties are well-known

concepts. There is relatively little work in cooperative games concerning these elements.

Although beliefs and uncertainty are interesting topics, they are beyond the scope of this

work.

The outcome of coalition formation games depends on the assumptions on preferences.

Thus, in this chapter I will examine these assumptions. As it has been pointed out, the

majority of models aim to find a stable partition. However, I will also discuss the adequacy

of these assumptions on preferences in international coalition formation games.

2.2.1 Restrictions on Preferences

The Condorcet paradox shows us that in the simple three players society, the aggregate

outcome may fall into a cycle. Black (1948) proved that if individual preferences are single-

peaked, which violates the condition of unrestricted domain of preferences, the simple

13



Coalition Formation

majority rule satisfies all other axioms of Arrow’s impossibility theorem. In coalition

formation games, the roommate problem resembles a similar cyclical relationship3.

In the presence of a cyclical outcome, the core of the game is empty. Most of the studies

on hedonic games and matching problems try to impose a set of restrictions on preferences

in order to be able to guarantee a core partition. These restrictions are applied either on

individual preferences or on the preference profiles. In the following, we will have a closer

look at these assumptions.

The first property, separability, is often used in models of hedonic coalition formation

(see Banerjee et al. (2001), Burani and Zwicker (2003), Dimitrov et al. (2006)). The idea

is that the preference ordering in a subset S does not depend on the choice of alternatives

outside of S. In other words, players can categorize the alternatives as good, bad, or neutral

for them. Formally,

Definition 2.2.1 A preference profile is separable if for any i ∈ N, for any S ∈ Ni and for

any j /∈ S

S∪{ j} ⪰i S ⇔{i, j} ≻i {i} and S∪{ j} ⪯i S ⇔{i, j} ⪯i {i}.

This means that adding a good player leads to a better coalition, while adding a bad player

leads to a worse coalition. When is this applicable to international coalitions? Separability is

a rather mild assumption and can be observed in many situations. However, the well-known

phenomenon “politics makes strange bedfellows” can occur in both party formations and

international coalitions.

Preferences can be represented in additive form if one can determine the value of a

coalition as simply the sum of the values of its members. If preferences are separable and

can be represented by a utility function of an additive form, they are additively separable.

Formally,

Definition 2.2.2 A game is additively separable if ∀i ∈ N there exists a function v : N → R

such that

S ≻i T ⇔ ∑
j∈S

ui( j)> ∑
j∈T

ui( j).

3In contrast to the Condorcet Paradox, single-peaked preferences alone are not sufficient for solving the
cycle in hedonic games and matching games. Tan (1991) identifies a necessary and sufficient restriction on
preferences for solving the roommate problem.

14



2.2 Preferences

In games with additively separable preferences, each player attaches a value to every

other player. Dimitrov et al. (2006) consider the additively separable preferences by defining

the preference profiles based on aversion to enemies and appreciation of friends. They show

that an individually stable and a contractual individually stable coalition structure always

exist under this consideration4.

Even though additive separability in matching games yields positive results (Barbera, B.,

Bossert, W. and Pattanaik, 2004, p. 963), in hedonic games the core may still be empty.

Additive separability is a stronger requirement than separability. This means that additive

separability implies separability but the converse is not always true. To illustrate this, imagine

four countries5. They consider cooperating on an environmental issue in order to reduce the

cost. Thus, they prefer more players to fewer. However, conflicts can exist between countries

that affect their preferences. Assume that the countries are placed on a line according to their

geographical positions.

3 1 2 4

Country 1’s preference is {1,3} ≻ {1,2} ≻ {1,4} among the possible pairs according to

the shortest distance. However, it prefers {1,2,4} ≻ {1,3,4} because it can be more costly

to have a disconnected cooperation. Nevertheless, countries 2 and 4 can have a conflict. If

they solve this conflict and therefore become part of a coalition, then the benefit increases.

Thus, the preference order for country 1 is:

{1,2,4} ≻ {1,3,4} ≻ {1,3} ≻ {1,2} ≻ {1,4} ≻ {1}.

This preference order is separable. However, country 1 prefers on the one hand {1,3} ≻
{1,2} and on the other hand {1,2,4} ≻ {1,3,4}. This violates the additive separability.

Separability and additive separability are assumed as natural restrictions in coalition

formation models. However, as we have discussed, they do not always hold – especially in

the context of the international coalitions.

Another restriction on preferences is symmetry. This argument is very easy: A preference

profile is symmetric if players have the same value as each other.

4For definitions of stability see Section 2.4
5The statement is true for the number of countries n > 3.
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Definition 2.2.3 A preference profile is symmetric if

ui( j) = u j(i) for all i, j.

Bogomolnaia and Jackson (2002) show that a Nash stable partition exists in hedonic

games with preferences that satisfy additively separability and symmetry. A detailed discus-

sion about symmetric additive separable preferences can be found in Burani and Zwicker

(2003).

A similar restriction is mutuality. Mutuality does not require the degree of a player’s

preference but it requires that players find each other mutually acceptable.

Definition 2.2.4 A preference profile satisfies mutuality if

{i, j} ≻i {i}⇔ {i, j} ≻ j { j}.

Symmetry is a stronger assumption than mutuality, i.e. symmetry implies mutuality but

the converse is not always true. While symmetry is cardinal, mutuality can be represented

ordinal.

There can be situations in which players only care about the size of a coalition. Every

player is indifferent among coalitions of the same size. Thus, in a game, players are

anonymous and homogeneous.

Definition 2.2.5 A game satisfies anonymity if for any player i∈N and for any two coalitions

S,T ∈ N it holds that if |S|= |T | then S ∼i T .

Darmann et al. (2012) study the Group Activity Selection Problem. This problem can

be formalized as an anonymous hedonic game. In their model, each player participates

in one activity at most, and her preferences regarding activities depend on the number

of participants in the activity. Furthermore, they examine the case where players have

preferences for activities in addition to the group size.

Again, in international coalitions, preferences are non-anonymous and players have

constraints over the identities of members in addition to their preferences on the number

of members. This can be due to several reasons: the decision mechanism in the coalition,

cultural or historical relationships, and so on.
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Anonymity is sufficient for obtaining a core stable partition with the combination of

additive separability (Banerjee et al. (2001)) and an individually stable coalition partition

with the combination of single-peakedness (Bogomolnaia and Jackson (2002)).

The next two restrictions are single-peaked and intermediate preferences which are

commonly used in social choice theory to eliminate the Condorcet cycle. We say that players’

preferences are single-peaked if their preference ordering for alternative coalitions is shaped

by their relative distance from their peak point. An alternative closer to this peak point

is preferred over more distant alternatives. Thus, the alternatives on a line are increasing

(decreasing) then decreasing (increasing). Formally,

Definition 2.2.6 A game satisfies single-peaked preferences if player i has a unique peak

point pi and for all alternatives a1 and a2 such that

a1 < a2 ≤ p or a1 > a2 ≥ p ⇒ a2 ≻i a1.

There are two types of single-peakedness: ordinal and cardinal. Brams et al. (2002)

consider a setting in which preferences are ordinally but not cardinally single-peaked. The

following preferences demonstrate this with 4 players.

Player 1 : 2 ≻ 3 ≻ 4

Player 2 : 3 ≻ 4 ≻ 1

Player 3 : 2 ≻ 1 ≻ 4

Player 4 : 3 ≻ 2 ≻ 1

These preferences are ordinally single-peaked with respect to the ordering 1-2-3-4.

Assume for contradiction that there is a cardinal single-peaked ordering. Since player 1 and

4 are always ranked last, they are the players on the most left and most right. According to

player 2’s preferences d(3,4)< d(3,1), while according to player 3’s preferences d(3,1)<

d(3,4). Hence, the above preference profile is not cardinally single-peaked.

Single-peakedness can be required only in one-dimensional space. It cannot restrict

preferences in multi-dimensions. In section 2.2.2, we will discuss one-dimensional and
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multi-dimensional models. I will introduce a property which is similar to single-peakedness

in multi-dimensional space: the intermediate preference property. It requires that if two

players have the same preference ordering of two alternatives, then any other players who are

in-between have the same preference ordering. The intermediate preference property relies

on the ordering of outcomes rather than players. Formally,

Definition 2.2.7 A preference profile satisfies the intermediate preference property if player

k between players i and j for any two alternatives a1 and a2 such that

[a2 ≻i a1 and a2 ≻ j a1]⇒ a2 ≻k a1.

These are the most commonly assumed restrictions on preferences. However, they are

not sufficient for guaranteeing stability. A game that satisfies additive separability, symmetry,

mutuality, the tree single-peaked property, and the tree intermediate preference property can

have an empty core (for an example, see Banerjee et al. (2001)).

As I pointed out before, most works on hedonic games focus on the conditions necessary

to achieve a stable coalition outcome. I do not intend to set new assumptions and find new

restrictions. However, there will be a close link between the process of coalition formation

and these restrictions. To understand the process, it is necessary to understand the basis of the

restrictions. In Section 2.3, I will discuss the process of coalition formation more in detail.

Next, I give two restrictions which guarantee a nonempty core.

The first restriction is the Top-Coalition Property (Banerjee et al. (2001)). The authors

give two conditions. The first restriction is the weak top-coalition property which guarantees

the existence of a core. The second restriction is the top-coalition property which guarantees

the uniqueness of core. The top-coalition property states that if there is a coalition in which

all members prefer this coalition to any other coalition for any nonempty subset of players,

then the core is unique and nonempty.

This is motivated by the result of Farrell and Scotchmer (1988) which uses the common

ranking property. According to this property, there is a linear ordering over all coalitions

which coincides with any player’s preference ordering over coalitions. This is sufficient

for core stability. The common ranking property implies the top-coalition property but the
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converse relation does not hold. Therefore, the top-coalition property is a relaxed version of

the common ranking property.

Definition 2.2.8 (1) Given a non-empty set of players V ⊆ N, a nonempty subset S ⊆V is a

top-coalition of V iff for any i ∈ S and any T ⊆V with i ∈ T , we have S ⪰i T .

(2) Given a non-empty set of players V ⊆ N, a non-empty subset S ⊆ V is a weak

top-coalition of V iff S has an ordered partition {S1, ...,Sl} such that

(i) for any i ∈ S1 and any T ⊆V with i ∈ T , we have S ⪰i T and

(ii) for any k > 1, any i ∈ Sk , and any T ⊆ V with i ∈ T , we have T ⪰i S ⇒
T
⋂
(
⋃

m<k Sm) = /0.

A coalition formation game G satisfies the (weak) top-coalition property iff for any

nonempty set of players V ⊆ N, there exists a (weak) top-coalition of V .

The second sufficient condition for a non-empty core in hedonic games is the Ordinal

Balancedness (Bogomolnaia and Jackson (2002)). The authors adopt the Scarf-balancedness

condition which is used to prove the existence of a non-empty core in NTU games.

To check whether a game is ordinally balanced, they check for each balanced family of

coalitions, a partition of N, in which each player prefers her coalition in the partition to her

worst coalition in the balanced family.

Definition 2.2.9 A collection of coalitions B is balanced if there exists a vector of positive

weights dS, such that for each player i ∈ N, ∑S∈B,i∈S dS = 1. A coalition formation game G

is ordinally balanced if for each balanced collection of coalitions B there exists a coalition

partition such that for each i there exists S ∈ B with i ∈ S such that SΠ(i)⪰i S6.

These two conditions are sufficient to find a stable partition in hedonic games but none of

them is necessary.

The restrictions on preferences that we examined up to now are imposed on preference

profiles. Another direction in the literature is restricting individual preferences rather than

preference profiles (Alcalde and Romero-Medina (2006), Pápai (2004)). These conditions

6 According to their notation Π is a coalition partition set and SΠ(i) denotes the set Sk ∈ Π such that i ∈ Sk.
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are called the Union Responsiveness Condition, the Intersection Responsiveness Condition,

and the Essentiality. Alcalde and Romero-Medina (2006) show that these three conditions

are independent and each alone guarantees the existence of a core stable partition.

Lastly, Alcalde and Revilla (2001) describe another restriction on each individual’s

preferences, the Top-Responsiveness Condition. This condition also ensures that the core is

nonempty.

2.2.2 One-dimensional versus Multi-dimensional models

One way to categorize coalition formation games is to differentiate them in terms of di-

mensionality. The early models mostly consider one-dimensional space. Considering only

a one-dimensional space of alternatives can simplify the problem because single-peaked

preferences can be used. Furthermore, if the number of voters is odd, then there is no

Condorcet Paradox. The outcome is also not manipulable.

Most coalition formation models are developed in the context of political elections and

social choice theory. The theories I have introduced so far are one-dimensional theories.

(Riker (1960) minimum size winning coalitions, Leiserson (1968) fewest actor principle,

Axelrod (1970) conflict of interest and connected coalitions, de Swaan (1973) minimizing

policy distance, Peleg (1981) coalition formation in dominated simple games, Deemen (1997)

the center player theory).

Axelrod (1970) model of conflict of interest can be seen as the combination of minimum

size winning coalitions and the minimal range principle in which parties in a parliament

can be arranged in a unidimensional space and make proposals about which coalitions

should be formed. For example, parties can compete on the left-right policy dimension.

One-dimensional models do not necessarily depend on policies, but they might depend

on power like Peleg (1981) dominated simple game7, for example. Although there may

be certain policy issues for which one dimension is sufficient, this is a tight limitation.

One dimension is not accurate in party politics when parties have different perspectives on

multiple policies. Consider a conservative-liberal scale: a party might be conservative on

government spending but liberal on social issues (Grofman and Straffin (1984)). This is also

related to the single-peaked preferences as I have discussed in section 2.2.1.

7A game is simple if a coalition either wins or not, with no outcomes in between.
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Some problems naturally have more than one dimension. One may consider settings

where alternatives take positions in two-dimensional rather than one-dimensional space.

This is especially relevant in economics as opposed to political science. Hotelling (1929)

model considers that consumers have preferences concerning the prices of products and

the locations of shops. In multi-dimensional space, Condorcet cycles can once again occur.

Furthermore, the Condorcet cycle is not the only source of instability.

Later theories, i.e. multi-dimensional theories, are based on spatial modeling. In the

spatial models, there is a relationship between the preferences and the locations or positions

of the alternatives. Among others, Grofman (1982) generalizes the Axelrod’s connected

coalitions of multi-dimensional space. Downs (1957) modifies the idea of Hotelling’s spatial

model to political competition. One of the main differences between one-dimensional and

multi-dimensional models is how the distance between players is measured. While the spatial

theories use the Euclidean distance, one-dimensional theories may apply ordinal orderings of

parties on the ideological dimension only. I will discuss ordinal and cardinal preferences in

the next section.

When the policy space is assumed to be multi-dimensional, many political issues can be

considered at the same time. The distance between players is calculated as follows: each

player i may choose a policy position xi from an n-dimensional Euclidean policy space Rn ,

n ≥ 1. A distance between two positions xi = (xi1, ...,xim) and x j = (x j1, ...,x jm) is given by

d(xi,x j) =

√
n

∑
k=1

(xik − x jk)2. (2.1)

There is a relationship between dimensionality and stability. Milchtaich and Winter

(2002) study stability and segregation in group formation. In their model, players seek to

join a group that consists of people similar to them. In addition, they assume that there is a

limit to the possible number of groups. When they assume one dimension where players can

be represented by points on the line, at least one stable partition exists. However, a stable

partition might fail into two or more dimensions. The model is closely related to Schelling

(1971) dynamic model of segregation. Milchtaich and Winter (2002) show that a stable

partition is also segregating. I will discuss Schelling’s model and segregation in coalition

formation in section 2.2.4.
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We will now turn our attention to hedonic games. Breton et al. (2007) examine one-

dimensional and multi-dimensional variants of Gamson’s game and apply a pure hedonic

coalition formation, where each player is distinguished by multiple arrays of characteristics.

In a single dimension, they determine that a winning coalition is stable if it has the least

endowment among all winning coalitions. Then, they study the case in multi-dimensional

space. First, they consider a single division method where the payoffs of players are a share

of their weighted endowment in the coalition. Under the single division method, they show

that a winning coalition is stable if it has the least total endowment among all winning

coalitions. This case is identical to the one-dimensional case. However, they then consider

the double division method where for each characteristic, the weighted share of each player

is calculated and then the total share is calculated as a weighted average according to the

weight for each characteristic. Under the double division method, a stable coalition may fail

to exist. Finally, they give the Congruence condition in order to guarantee a non-empty core.

Their condition generalizes the Top-Coalition Property which I introduced in the previous

section.

2.2.3 Cardinal and Ordinal Preferences

In game theory, utilities and preferences can be ordinally or cardinally represented. We call

the preferences ordinal if players order or rank their preferences and cardinal if they are

also commensurable. Hence, if players’ preferences can be described on a cardinal scale, it

implies that they can also be represented ordinally, but the converse is not true.

In the Theory of Political Coalitions, Riker (1960) compares the cardinality of the winning

coalitions. He shows that a winning coalition that has the smallest number of seats among all

the winning coalitions in the parliament can be formed. As we will see in this section and

in section 2.3, Brams et al. (2002) support Riker’s idea of a minimal size winning coalition.

However, they use both ordinal and cardinal preferences to examine coalition formation

using two processes.

Before I discuss ordinal and cardinal preferences, let me review definitions that I will use

in this section.
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Definition 2.2.10 A minimal winning coalition is a coalition in which each member is

necessary for the coalition in order to win. The set of winning coalitions is denoted by W and

if a coalition is not winning then it is an element of set L. Formally, S is a minimal winning

coalition if S ∈W and ∀T : (T ⊂ S ⇒ T ∈ L). The set of all winning coalitions is W MIN .

Definition 2.2.11 A minimal size winning coalition is a winning coalition which has the

smallest size among all winning coalitions. This is relevant especially in weighted voting

games. Formally, let wi ≥ 0 be weights, q be threshold and (q;w1, . . . ,wn) be a weighted

voting game. A winning coalition S is of minimum size if ∀T ∈W,w(S)≤ w(T ).

Connected coalitions are introduced in Axelrod (1970) Conflict of Interest Theory. The

model assumes ordinal preferences in one-dimensional space and predicts that only connected

coalitions are formed. The idea is that if the conflict between parties is smaller, it is more

likely they will form a coalition together. Additionally, winning connected coalitions have

minimal size. In contrast to this model, Brams et al. (2002) show that minimal winning

coalitions may be disconnected in their model. More interestingly, connected individual

preferences of players can result in a disconnected majority coalition.

Definition 2.2.12 A connected coalition is a coalition in which there is no other player

between linearly ordered players. Formally, ∀i,k ∈ S and xi > x j > xk then j ∈ S.

In one-dimensional theories, the policy positions of parties and coalitions are assigned to

one ideological dimension ordinally but in multi-dimensional space cardinal distances are

used. How does one determine whether a coalition is connected? While in one dimension

a connected coalition contains every player that is in between its two members, in a multi-

dimensional space a connected coalition forms a convex hull. Grofman (1982), in the

model of Protocoalition Formation, generalizes connectedness to multi-dimensional space.

However, connected coalitions in multi-dimensional space become more numerous, and

therefore, less helpful – maybe all minimal winning coalitions are connected (Grofman and

Straffin (1984)).Similarly, Schofield (1993) assumes that a party holds a position in a policy

space and that preferences for coalitions are based on Euclidean distances. Each winning

coalition is associated with a compromise set which is a convex hull of the preferred positions

of the parties.
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Ordinal preferences can be seen as a source of cycles in the Condorcet paradox or the

Roommate problem. A natural question is whether cardinal preferences solve the problem of

cycles. First, consider the Condorcet example. Now in addition to the ranking of preferences,

the individuals have intensity over alternatives. It prevents cycles in the case of majority

voting with three individuals and three alternatives.

However, Samuelson’s conjecture states that Arrow’s impossibility theorem holds for

cardinal preferences where individuals express their preferences by a von-Neumann Morgen-

stern utility function. Kalai and Schmeidler (1977) prove that if the number of players n ≥ 4

and cardinal preferences are continuous, the aggregation rule satisfies cardinal independence

of irrelevant alternatives and unanimity requirements if and only if it is cardinally dictatorial.

We have discussed the cardinal and ordinal preferences in coalition formation theories.

Now, I review a particular result in Brams et al. (2002). In that model, players’ preferences

are divided into two groups: ordinal and cardinal single-peaked preferences. Even if the

cardinality does not solve Arrow’s problem, single-peakedness solves it with both ordinal

and cardinal preferences. However, in coalition formation, the core is even more demanding.

Brams et al. (2002) state the following result:

Theorem 2.2.1 (Brams et al. (2002)) There may be no stable majority coalition even if

preferences are cardinally or ordinally single-peaked.

Their counterexample includes 4 players trying to form a majority coalition. The prefer-

ences are cardinally single-peaked (therefore also ordinally single-peaked) with respect to

ordering 1-2-3-4. The preferences are as follows.

Player 1 : 2 ≻ 3 ≻ 4

Player 2 : 1 ≻ 3 ≻ 4

Player 3 : 4 ≻ 2 ≻ 1

Player 4 : 3 ≻ 2 ≻ 1

In this example, there is no core stable majority coalition. To illustrate, consider the

possible majority coalitions. 123 is unstable because player 3 prefers 234; however, 234 is
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also unstable because player 2 prefers 123. Two disconnected majority coalitions, 124 and

134, are also unstable because player 1 prefers 123 and player 4 prefers 234.

While in most hedonic games players have ordinal preferences on coalitions they want to

join, models exist which consider purely cardinal preferences. Burani and Zwicker (2003)

study hedonic games with additively separable and symmetric preferences where players’

preferences are purely cardinal. They introduce a decomposition of the utility profiles

representing symmetric additively separable preferences into two components, the cardinal

component and the alternating component. When they consider purely cardinal preferences,

they show that a coalition structure always exists that is both core and Nash stable, and when

the preferences are restricted to be purely alternating the core may be empty.

2.2.4 Forming a coalition with neighbors

In the literature, coalition formation is mostly studied as party formation. However, inter-

national affairs is a rich area in which players need to form coalitions for mutual benefit or

dependence, but it also involves conflict or opposition. A good example is the Organization

of Petroleum Exporting Countries (OPEC). On the one hand, OPEC members gain benefits

as being part of the cooperation and restricting the oil supply. On the other hand, each

member wants to take as large as possible a share in aggregate production. These can appear

as centrifugal and centripetal forces. In addition, members have economic and political

objectives. Dynamic models examining strategic behaviors in OPEC are already to be found

in the literature (for example see Moran (1981)).

In international relationships or any other kind of coalition formation such as marriage,

clubs, and etc., the assumption that individuals prefer to associate with people similar to

them is considered a uniting force. Under this assumption, one of the most interesting results

is Schelling’s model of segregation.

Schelling’s dynamic model is the first attempt to understand the reasons and mechanisms

of segregation in a society. In the model there are two types of agents, black and white, trying

to live in a neighborhood where they are happy with their neighbors consisting of these two

types of agents. They have individual preferences for a certain neighborhood composition,

namely a black-white ratio in a neighborhood. These preferences are results of a tolerance
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level for the other types of agents. The agents have a certain tolerance level to live with the

other type of agents, but they always prefer to be a majority in their neighborhood.

Initially, the agents are randomly distributed on a line or plane. According to an ex-

ogenously given order, they move in turns to the closest position where they will be happy

with its black-white ratio. Even though they are not against living in a mixed neighborhood,

aggregation of individual preferences surprisingly results in a segregated outcome.

This simple model has a great power to explain segregation in society or coalition

formation into two groups, but it cannot offer the reason as to why there are sometimes more

than two groups. Hedonic games may help to explain such a phenomenon.

Preferences play a central role in coalition formation in hedonic models. In fact, the de-

termination of feasible coalitions depends on nothing but the players’ preferences concerning

their potential coalition members. In light of Schelling’s dynamic model of segregation, a

number of models introduce segregating and integrating properties. Milchtaich and Win-

ter (2002) and Lazarova and Dimitrov (2012) discuss segregation within a setting with

status-based preferences and with two types of agents (low and high). Both models state

conditions for stable partitions to be segregating. Differently, in Barberà et al. (2013))

non-segregated groups may arise within core stable structures. They consider three type

of agents (low, medium, and high) and two principles for distributing the benefits (agents

choose Egalitarianism or meritocracy by majority voting).

2.2.5 Fixed and changing preferences

Countries can enter and leave coalitions and characteristics of governments may change over

time. This poses questions regarding the reaction of all countries in coalitions when other

countries enter or exit. Such questions are of particular relevance to the EU. Since its initial

conception, the EU has been continuously expanding, with surprising speed during some

periods. More recently, the unprecedented question of the possibility of countries leaving the

EU has arisen. This leads us to a further consideration of internal subgroup dynamics which

could surface with groups of countries trying to push some members to exit.

The assumption of fixed preferences is often made in the literature on coalition formation

models. Both during formation and afterwards, the preferences and nature of coalitions may
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change. As a result, models that treat the preferences as given cannot examine and predict

situations due to changes in preferences.

Changes in players’ preferences and values take time. While some changes may immedi-

ately take place, others may have an impact only over a long time horizon. These changes

may be relevant to economic power (some currently rich EU members were relatively poorer

at an earlier time) or, regime type or identity (memberships of former communist countries).

Particularly, if the coalition has no end term, new entrants and other issues become more

relevant. The next chapter will discuss the role of process in coalition formation.

2.3 Process

The importance of the process of coalition formation is usually underestimated. The main

concern in cooperative game theory, as well in hedonic games, is the stability of coalitions.

However, the coalition formation process is pivotal for achieving a stable outcome. Two main

approaches are used in coalition formation: simultaneous formation in which decisions are

made in one stage and sequential formation in which decisions are made over time. Different

processes, simultaneous and sequential, may lead to different outcomes. Furthermore, the

outcomes of the two different sequential procedures may drastically differ.

A further categorization can be made in terms of choosing coalition partners. This can

be done using different algorithms. On the one hand, a choice can be “greedy” – meaning

players always make the choice that looks best at the moment. For example, players can

prefer to form a coalition with the closest neighbors until they reach the threshold for the

majority. They do not try to solve all the possible, related subproblems or future problems.

On the other hand, players can follow a dynamic approach to coalition formation. In this

approach, they consider subproblems and future possibilities.

Surprisingly, in some cases these two strategies predict the same solution. However, here

I will outline two models in which these strategies result in different outcomes. These models

are related to international coalitions in general and the EU in particular. Namely, they are

Managing the Evolution of Multilateralism (Downs et al. (1998)) and Single-Peakedness

and Disconnected Coalitions (Brams et al. (2002)). In both models, the process of coalition

formation plays a critical role.
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Downs et al. (1998) suggest sequential and inclusive constructions in forming coalitions

among countries – a coalition can be in terms of trade, military defense, or environmental

issues. The main assumption is that the initial group of members is more demanding than

others. For example, they demand no or minimum trade barriers in a trade agreement. The

countries have ideal points that reflect their demand for cooperation.

The inclusive formation is a one-step process in which all potential members are included

in the coalition where they decide on an initial treaty level by majority voting. Due to changes

in the ideal points of the countries over time, the treaty level may also change. The sequential

formation is a multi-step process in which a coalition expands gradually with new members.

Through the admission of new members, the coalition decides on a new treaty level. The

admission of new members depends on their progress. It is shown that coalitions formed by

a sequential construction are more likely to have a more cooperative treaty level than those

formed by inclusive construction.8

To illustrate two formations, consider that nine countries are deciding on a common tax

level by 2/3 majority voting.9 They are symmetrically ordered according to the preferred tax

level τ ∈ [0,1]. Assume that the rich countries tend to prefer a lower tax level than the poorer

countries and we follow an inclusive coalition formation process. In Figure 2.1, countries are

ordered according to their preferred tax level. Given single-peaked preferences, the Median

Voter Theorem gives the tax level of the median player, i.e. τ5.

Fig. 2.1 Inclusive Formation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

Now assume that the preferred tax levels are shifted due to changes in economies as in

Figure 2.2. After the change of the countries’ positions, the tax level stays at the same level,

at τ5, because the core lies in between τ4 and τ6 where any tax level in this interval cannot be

defeated. However, if the coalition would have formed after the change in tax level, then the

tax level would be τ4.
8The authors assume that if a player is a member of coalition by sequential or inclusive process, it stays in

that coalition. This means they only consider the entry option and not the exit option.
9The example is from Downs et al. (1998) and has been slightly modified.
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Fig. 2.2 Inclusive Formation After Change

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

τ

That means that, everything else equal, cooperation is deeper if the states integrate first

and then join the coalition rather than integrate in the coalition.

Brams et al. (2002) define two processes in coalition formation. Rather than predicting a

stable outcome the authors model the process of coalition formation. They show that both

procedures may not result in a minimal connected majority coalition. Furthermore, they

reason that the oversized coalition and strange bedfellows phenomena result from these two

processes.

The first process is the Fallback (FB) process: Players look for coalition partners accord-

ing to their rankings. If players mutually desire each other and comprise the majority of

players, they form a majority coalition. Otherwise, the second most desirable players are

considered and so on. A coalition is formed by this process when players consider possible

coalition partners in their preference rankings until some majority coalition forms where all

members consider each other mutually acceptable. The second process is the Build Up (BU)

process. The difference to the FB process is that when two players find each other acceptable

but cannot form a majority coalition, they fuse into a single player. The process continues

until a majority coalition is formed.

In these two processes of coalition formation, a further division is made in accordance

with the particular characteristics of preferences. Players’ preferences are divided into

two groups: ordinal and cardinal single-peaked preferences. The authors compare the

connectedness of coalitions resulting from the two procedures. Disconnected coalitions can

be formed under the FB procedure. However, when they consider cardinally single-peaked

preferences, the FB procedure always produces connected coalitions. Furthermore, FB

coalitions are not necessarily minimal under either ordinally or cardinally single-peaked

preferences. Similarly, the BU procedure results in a majority coalition which is always

connected under cardinally single-peaked preferences. However, when they consider ordinal

single-peakedness, a BU coalition can be the unique disconnected FB coalition. Indeed, these
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are the reasons why different procedures may produce strange bedfellows and oversized

coalitions.

2.4 Stability - Why so much Stability

The core is the most used stability concept in cooperative game theory even though it is not

very powerful for predicting which coalition will be formed – as we discussed in Section 2.1.

A coalition is stable if and only if a coalition of players that could strictly gain by forming

another coalition does not exit. Early models of hedonic games (Banerjee et al. (2001) and

Bogomolnaia and Jackson (2002)) state sufficient conditions for the core stability, i.e. a

non-empty core. Iehlé (2007) gives a condition necessary and sufficient for the existence of

core stable coalition structures in such hedonic games.

The simplest form of the coalition formation problem does not assume any restrictions

on preferences. If we look again at a coalition formation with three players, there are three

possible coalition structures. Namely: the grand coalition, coalitions with two players

together excluding the third player, and coalitions in which each player is alone. The question

then pertains to the number of ways in which one can write the total number of players n

as a sum of coalitions. The answer is the partition number denoted by p(n). A partition

of a positive integer n, also called an integer partition, is a way of writing n as a sum of

positive integers.10 In our three players example, the partitions are 1+1+1, 2+1 and 3, i.e.

p(3) = 3.

The partition number increases enormously with the increasing magnitude of the number.

If we have ten players, the partition number is 42. For fifty players, it is over 200.000 and it

is over a million for sixty one players. Note that only the size of coalitions is considered (two

sums that differ only in the order of their summands are considered to be the same partition).

If the identity of members is also considered, the number of combinations increases even

further.
10There is no closed formula for partition numbers. Euler developed a method for computing the partition

number and Ramanujan found an equation for the asymptotic behavior of partition numbers.
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As we have discussed, there are two main questions. Namely, whether the possible

partitions are core stable, i.e. the verification problem and whether a core stable partition

exists, i.e. the existence problem.

Definition 2.4.1 A coalition partition Π is core stable if there is no T ⊂ N such that T ≻i

SΠ(i) for all i ∈ T (otherwise T blocks Π).

In addition to the core stability, there are other stability notions both in cooperative and

non-cooperative perspectives. Bogomolnaia and Jackson (2002) examine stability in terms

of group and individual deviations. In addition to core stability, they introduce three other

stability concepts: Nash, Individual, and Contractual Individual stability. The most stringent

stability concept is Nash stability: no player would rather join a different coalition in the

given partition. If no player would rather join a different coalition and also be tolerated

there, the given partition is individually stable. Note that Individual stable partitions are a

subset of Nash stable partitions. Last, Contractual Individual stable partitions are a subset of

Individual stable partitions in which no player would rather join a different coalition of the

given partition, be tolerated there, and be allowed to leave.

Now, we look at two theorems that give sufficient conditions for a non-empty core.

Theorem 2.4.1 (Banerjee et al. (2001)) Suppose game G satisfies the weak top-coalition

property. Then, it has a non-empty core.11

I do not give a formal proof here but discuss the idea. The theorem states a sufficient

condition for the existence of a core. If a coalition S satisfies the weak top-coalition property

it has a partition of {S1,S2, . . .Sl} and set l = 4. Let me briefly illustrate the mechanism. In

partition S4, any player needs at least one player from S1
⋃

S2
⋃

S3 to form a more preferable

coalition than S. In S3, each player prefers S unless they cooperate with at least one player

from S1
⋃

S2. Therefore, no player in S3 is an option for players in S4. In S2 each player

prefers S unless they cooperate with at least one player from S1. Therefore, no player in

S2 is an option for players in S4 and S3. Finally, in S1 each player prefers S to any other

coalition. In other words, each partition of S, given that there is no better coalition without an

agent from earlier groups, is the best coalition for its members. Hence, there is no profitable

coalitional deviation. 12

11If the preferences are strict then the core is unique. For the proof see Banerjee et al. (2001).
12See Bogomolnaia and Jackson (2002) for an example in which the condition is not necessary.
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The second sufficient condition is from Bogomolnaia and Jackson (2002). The theorem

is adapted from Scarf (1967) and Greenberg (1994). It states that every balanced game has a

non-empty core.

Theorem 2.4.2 (Bogomolnaia and Jackson (2002)) If a game is ordinally balanced, then

there exists a core stable coalition partition.

Again, I do not give the formal proof.13 A hedonic game is ordinally balanced if there

is a partition for each balanced family of coalitions in which each player is better off than

her worst situation in the balanced family. The weight function in a balanced collection

of coalitions can be seen as players’ contribution of time, effort, cost, etc. They give an

algorithm for finding an individually stable coalition partition. An individually stable partition

might exist when there is no core partition.

The idea of finding an individually stable coalition partition is as follows. Players only

care about the size of the coalition of which they will be a part. Furthermore, their preferences

are single-peaked. First, a coalition S1 is formed in which players have the highest peaks

about the size. Then, a coalition S2 is formed from the remaining players depending on the

same idea. If S1 is open, then check the players according to highest peak size in S2. In

the case that any player prefers S1 to S2 and all players in S1 are better off by adding this

player, then move her or him to S1 until it is closed. This process is applied iteratively until

all players are assigned to a coalition.

13See Banerjee et al. (2001) for an example in which the condition is not necessary.
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Chapter 3

Clustering

Clustering is a technique for grouping elements (data objects) into meaningful structures.

The results are called clusters. To do so, a distance measure is used. The aim is to maximize

the similarity between elements of the same group and minimize the similarity between

elements of different groups. In other words, elements belonging to the same cluster have

high similarity and elements belonging to different clusters have low similarity. Therefore,

clustering can be seen as a tool for discovering “natural” groups among elements.

Unfortunately, this general definition remains unclear because there are many different

kinds of clustering problems and similarity is a subjective concept. Clustering is a vast

subject, and obtaining a full overview is not possible within the scope of this work. This

chapter aims to introduce the clustering techniques used in Chapter 5 and 6 and discuss their

theoretical perspectives.

Clustering techniques provide for theoretical models in diverse fields. Even though every

clustering method can be the object of criticism, these methods have to ascertain two general

points. First, they have to answer the question of what similarity means. Generally, similarity

is measured by a distance function. However, similarity can be an ambiguous term. Bronstein

and Mumford (2009) give the following example to manifest possible consequences of

working without technical restrictions. A centaur is a creature in Greek mythology with the

head, arms, and torso of a man and the body and legs of a horse. A centaur and a man are

similar, a centaur and a horse are similar, but we cannot conclude that a man and a horse are

similar. To clarify such issues and avoid complications, the formal definition of similarity is

given in Section 3.1.
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The second point that needs to be addressed is how to group elements together. This

is equivalent to choosing an algorithm for a specific clustering task. Only two clustering

methods are considered in this work to study the process of coalition formation. The first

one is partitional clustering, which constructs partitions of the set of elements according to

a distance measure. The second one is hierarchical clustering which creates a hierarchical

decomposition of a set of elements according to a distance measure.

In the following, the general distance measure is discussed. Any distance measure which

satisfies certain properties can be used to evaluate coalitions. However, the results are not

necessarily meaningful. At this point, the models should be guided by game theory.

3.1 Similarity and distance function

The concept of similarity can be confusing because it can be defined in different ways. In

this work, the similarity between two elements is defined by a quantitative measure that is

called a distance measure or function. Choosing a distance function is crucial to both models

in Chapter 5 and 6.

Even though there are infinitely many choices for defining a distance measure, the choices

should obey certain rules. The most used distance measure in the literature is the Euclidean

distance. However, we are not restricted to using only Euclidean distance. First, we can

generalize the distance function. To do so, we should give an abstract definition of distance

between two elements of an arbitrary nonempty set.

Formally, a distance is a function defined on the Cartesian product of a set X , d : X ×X →
R. It is called a metric on X if for every x,y,z ∈ X the following conditions hold,

(M1) d(x,y)≥ 0 (the Non-negativity)

(M2) d(x,y) = 0 if and only if x = y (the identity axiom)

(M3) d(x,y)+d(y,z)≥ d(x,z) (the triangle inequality)

(M4) d(x,y) = d(y,x) (the symmetry axiom)

A set X provided with a metric is called a metric space.
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The low dimensional Euclidean metric is often used in classical clustering problems. Ap-

plications in economics, political science and game theory often involve a two–dimensional

Euclidean metric. Two immediate problems appear when the Euclidean space is in a high

dimension and the space is not Euclidean at all.

One should choose a metric depending on the application. In this work, I will use

geometric and non–geometric elements in the distance measure even though using a mixture

of these is not a usual approach.

3.2 Clustering algorithms

This section presents two clustering algorithms. In a coalition formation process, two

strategies are considered. Players can either follow the bottom-up strategy or top-down

strategy. In the bottom-up strategy, players move sequentially. In this sequential process,

each element is assumed as a cluster by its own. Then, two elements are merged based on

their distance. The new cluster inherits properties of its predecessors. The process stops

when the merging is not feasible - depending on a rule. The idea is to form a coalition

step-by-step. In the top-down strategy, players move simultaneously. In the simultaneous

process, there are no intermediate steps before final clusters are reached. Instead, all players

decide simultaneously.

In clustering analysis, the way in which to cluster elements is specified by a clustering

algorithm. Clustering algorithms can be put into two groups: partitional and hierarchical

clustering algorithms.

K-means is one of the best known partitional algorithms. The idea is to allocate N objects

in a fixed number of clusters. For this one chooses K centroids, in other words center points.

These points are random but it is preferable that they are not very close to each other. Then

every object is attained to the closest centroid. Different configuration of initial centroid

allocation results in different outcomes. To overcome this instability resulting from the

sensitivity of k-means to initial centroid location, an algorithm can be run several times in

which more configurations are explored. Then, the most desirable one can be confidently

chosen. A typical algorithm is as following.

1. Choose K centroids at random
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2. Assign elements to closest centroid, forming K clusters

3. Calculate centroid (mean of distances) of each cluster, update centroids

4. Check if an element in a cluster is closer to another centroid. Reallocate if necessary

5. Repeat from step 3 until no object changes the cluster anymore.

The K-means algorithm has been met the criticism for the predetermined number of

clusters. In chapter 6, correlation clustering which overcomes this criticism will be discussed

in detail.

The second algorithm I want to review is for Hierarchical Clustering. It can be done two

ways: either agglomerative, in which every object is considered as a cluster and the closet

pairs gradually merge, or divisive, in which all objects are considered as one giant cluster and

are gradually split. I am particularly interested in Agglomerative Hierarchical Clustering.

A basic Agglomerative Hierarchical Clustering works as follows.

1. Define a similarity matrix

2. Merge the closest two clusters

3. Update the similarity matrix

4. Repeat steps 2-4 until only one cluster remains

These two procedures result in different outcomes. Both procedures have a number of

benefits and drawbacks. The one main advantage of sequential clustering is being able to

study subcoalitions. The general problem of the two clustering algorithms is the number of

clusters. The cluster number, k, must be determined beforehand. I will discuss this issue

and how to overcome this difficulty in sequential coalition formation in Chapter 5 and in

simultaneous coalition formation in Chapter 6.

3.2.1 Computational Complexity

The space and time requirements can be crucial to an algorithm. With a small number of

objects, neither is important. Given that current computers are reasonably fast, we can choose
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an algorithm that is easy to implement and not necessarily sophisticated, but, as the number

of objects get larger, there is a trade–off between exactness and running time.

In k-means clustering, the computational complexity is linear in the number of objects.

Namely, the running time is O(IKMN), where I is the number of iterations, K is the number

of clusters, M is the dimension of data and N is the number of objects. Typically, the result

converges in a few iterations. That means k-means is linear in its inputs and, therefore, fast.

The two main shortcomings are: i) the result can be highly sensitive to the choice of initial

centroids and ii) a prior knowledge of k is not always possible. However, when there is no

restriction on the number of clusters, we face a much “harder” problem. Chapter 6 studies an

algorithm with such a problem and its complexity.

The brute force algorithm for hierarchical clustering is not very efficient. At each step,

the distances between each pair is calculated to find the closest pair. The initial step takes

n2 time, and subsequent steps take (n−1)2,(n−2)2, and so on. Additionally, the time for

finding the minimum, n,(n−1),(n−2), . . . , makes the overall running time of this algorithm

O(N3). This running time is a significant limitation on the number of elements. Chapter 5

studies a more efficient algorithm and presents its complexity.
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Chapter 4

The EU and International Coalitions

4.1 A Brief History of the EU

The EU is a unique economic and political cooperation example. It is over sixty years since

six European countries formed the union. A proper discussion of its history and dynamics

would be beyond the scope of this work. For a comprehensive discussion of its historical

development and dynamics see Tilly et al. (2007). Yet the EU are experiencing the most

trouble time in its history. These problems and Europe’s future are discussed in Hanappi

(2013a) and Hanappi (2016).

A customs agreement was signed between Belgium, Luxembourg and the Netherlands in

1948. This was the first concrete step towards a European entity (Carchedi, 2001, p.11). This

was followed by Belgium, France, West Germany, Italy, Luxembourg, and the Netherlands

signing the so-called Treaty of Paris and thereby creating the ECSC. The actual integration

of the EU started with the ECSC in 1951 when this group of nations, known as the ‘inner

Six’, built a supranational authority (Baldwin and Wyplosz (2012)). This supranational

authority controlled the single market of coal and steel industries. On the one hand, the aim

of cooperation was to end wars, particularly between France and Germany. On the other

hand, European countries were not economically strong enough in the world market on their

own. Therefore, the formation of the ECSC had economic and political motivations and later

gradually evolved to the EU.
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Since the creation of ECSC, several enlargements and structural changes have taken

place1. The EU has grown from six to twenty-eight member states as a result of these

enlargements (See Figure 4.1). The founding members of the ECSC established two more

communities in 1957: the European Economic Community (EEC) and the European Atomic

Energy Community (EURATOM). By 1967, the ECSC, the EEC, and EURATOM constituted

the European Community (EC).

The first enlargement took place in 1973 with the entry of the United Kingdom, Ireland,

and Denmark. Further, Greece joined the EC in 1981 and Spain and Portugal joined in 1986.

The Single European Act (SEA) was signed in 1986 and came into force in 1987. The SEA

was an answer to the situation of ‘Eurosclerosis’, in which Europe experienced economic

stagnation in the period from the early 1970s up to the early 1980s ((Carchedi, 2001, p.12)).

Additionally, it created new institutional reforms for political cooperation.

The name ‘EU’ was used for the first time in the Maastricht Treaty (or the Treaty on

European Union (TEU)) in 1992. The EU consisted of three pillars ((Carchedi, 2001, p.8)).

In addition to the EC, a Common Foreign and Security Policy (CFSP) and Justice and Home

Affairs (JHA) constituted the EU. The Maastricht Treaty also outlined an Economic and

Monetary Union (EMU), including a common European currency (the Euro).

In 1995, Austria, Finland and Sweden joined the EU. With this enlargement, the number

of member states increased to fifteen.

After the fall of the Soviet bloc, an opportunity was given to Central and Eastern European

countries to join the EU. The criteria for membership were decided at the Copenhagen Summit

in 1990. The Czech Republic, Estonia, Cyprus, Slovakia, Latvia, Lithuania, Hungary, Malta,

Poland and Slovenia became new members of the EU in 2004. In 2007, Romania and

Bulgaria were accepted. The most recent enlargement was the membership of Croatia in

2013.

4.2 Coalition Formation in the EU

Usually, more than one country joined the EU at the same time. However, independent

negotiations took place for each country in order to gradually bring the potential candidate

1For a detailed history, see the EU website: http://europa.eu/about-eu/eu-history/
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Fig. 4.1 Enlargement of EU 1957–2013

1957
(Belgium, France, Germany 
(West), Italy, Luxembourg, 
The Netherlands)

1973
(Denmark, Ireland, The UK)

1981
(Greece)

1986
(Spain, Portugal)

1995
(Austria, Finland, Sweden)

2004
(Czech Republic, Cyprus, 
Estonia, Hungary, Latvia, 
Lithuania, Malta, Poland,  
Slovakia, Slovenia,)

2007
(Bulgaria, Romania)

2013
(Croatia)

Source: reproduced from Pinder and Usherwood (2013)
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countries closer to the EU. Negotiations for and the acceptance of new members widened

and deepened the EU. The progression of admissions can be seen as a sequential process in

which only one country could join the existing coalition. This line of reasoning applies to the

incremental expansion, but another critical issue is how the founding states got together in

the first place.

It can be hard to form a large coalition in the beginning of the process due to several

reasons. A common start is a coalition of few players. The initial members can stay together

and no expansion takes place. For example, the North American Free Trade Agreement

(NAFTA) did not experience expansion until recently. Or, as in the case of European Free

Trade Association (EFTA), even the founding members can leave. There are many other

international coalitions (for example, the North Atlantic Treaty Organization (NATO), the

Association of Southeast Asian Nations (ASEAN), the World Trade Organization (WTO))

following a sequential pattern in which they start as a small group of countries and continue

to accept new members.

One reason to start with a small group is that as the number of members increases, a

stable state becomes harder to achieve. Therefore one option is to assume that the initial state

of a coalition is taken as exogenously given2. Afterward, expansions can be modeled as a

process in a sequential game. Our approach differs in that we approach the creation problem

as well as the expansion problem. To reduce the complexity of the problem we omit, for now,

many other factors such as cultural heterogeneity, a specification of trade, etc.

Despite the large literature on coalition formation and accession games, formalizing them,

particularly in the case of the EU, as a process and including the creation problem seems to

be less developed. There are few models providing useful insight to our sequential coalition

formation game. I have mentioned some of them in the introduction. The intention here is

not to repeat all these models, but rather to review the most relevant ones.

Grofman (1982), Downs et al. (1998), Brams et al. (2002) study coalition formation as a

process. Their models follow a dynamic approach. In Grofman’s model of Protocoalition

Formation, players form pairwise coalitions in each step depending on their pairwise distance.

The model best describes the process of coalition formation in parliaments.

2See for example Downs et al. (1998). They start with an exogenously given group of players for one-step
and multi-step coalition formation. Implicitly, these approaches assume that the formation of the initial group
needs a different kind of model.
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Brams et al. (2002) introduce two different processes. The first one is the Build-Up (BU)

process in which players form pairwise coalitions. This is close to the idea of Grofman

(1982). Players merge with their closest neighbors until a majority coalition is formed.

The difference is that a majority coalition can be disconnected in one dimension. The

second one is Fall-Back (FB) process in which players look for their potential partners by

descending lower and lower in their preference rankings. Two different procedure allow us

to explain varying coalition formation situations that are different from empirically observed

life. For example, while coalitions in legislatures reflect a BU-like process, political parties

in parliament follow an FB process when they form a government.

Both models share the winning coalition principle. However, this can be inadequate for

some coalition formations as was discussed in Section 1.1.

Adopting two different procedures, Downs et al. (1998) analyze the evolution of multilat-

eralism. Particular attention is paid to the EU. They discuss whether to form a multilateral

sequentially or inclusively.

Another formal model to analyze coalition formation as a process is introduced by Bloch

(1996). His model captures the effects of externalities among coalitions. In the process,

players take the reaction of external players into account with the presence of externalities.

There are two models which explicitly model EU integration: Kóczy (2009) and Morelli

(2012). Both models propose a sequential admission game with externalities.

I have already mentioned that physical models can be used as templates to explain social

aggregations. Vinogradova and Galam (2013) use a theoretical framework, namely the Ising

Model of Spin Glass in Statistical Physics, to analyze the countries’ decision-making in

coalition formation. In this model, stability can be achieved as a result of the maximization

process. They apply their model to explain the current (in)stability of the Eurozone.

4.3 Data

This section outlines the data used for application of sequential coalition formation in the

next section. Furthermore, it discusses why the characteristics in the distance function are

chosen in Section 6 and 5. In order to do that, we take a closer look at particular coalitions in

Europe.
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After World War II, Europe segregated into two groups: the Western and Eastern Bloc.

Moreover, there were three main economic groups. Communist countries3 formed the

COMECON (Council for Mutual Economic Assistance) in 1949 under the leadership of the

Soviet Union. The ECSC was formed in 1951 (see Section A Brief History of the EU). As a

reaction to the establishment of the ECSC, the UK together with Norway, Sweden, Denmark,

Austria and Switzerland formed the EFTA (European Free Trade Association) in 1960.

There are similarities and differences in terms of structure and evolution of these coali-

tions. At the time of EFTA’s creation, Western Europe could be described as two non-

overlapping circles (Baldwin, 1994, p.16). In the late 1980s together with COMECON

there were three disconnected sets of European countries4. What factors influenced actors’

decisions and led to this partition? Of course, taking into account all factors is not possible.

Some factors, however, have more importance in the model than others.

The first factor considered here is geographical location – a quantity often used in

international trade theory. Geographically close countries are more likely to cooperate

(Deardorff (1998)). This is studied often in the gravity model of trade. The model predicts

the bilateral trade flows depending on the economic sizes and distance between two countries.

The gravity model of trade is an analogy to Newton’s law of gravity (gravitational

attraction between two bodies). In the simplest specification of the gravity model, trade

between two countries is proportionate to the product of their economic sizes (GDPs) and

inversely related to the distance between them (Frankel et al., 1998, p.93)5. Krugman (1991)

makes a similar argument and empirically tests whether geographical distance matters in

forming trading blocs.

Economic strength and population are the additional factors in the presented model. Here,

GDP is considered to represent economic strength. As the gravity model predicts, bilateral

trade increases with the increase in GDPs of the trading partners. Following this, in the

sequential coalitiın formation model, population and GDP are critical parameters in the

pairwise distance function considered by prospective coalition partners in the environment.

3The founder members were the Soviet Union, Bulgaria, Czechoslovakia, Hungary, Poland, and Romania.
4Yugoslavia was not a member of any of three groups. It had only an observer status in COMECON.
5See (Baldwin, 1994, p.70–71) for theoretical foundations. Populations of two countries are also considered

in the model.
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The factors GDP and population have two sides. First, they are important within the

coalition both in creation phase and afterwards in the decision making process. For example,

countries can have more weights on policy decision depending on their GDP or population.

Second, they play a role in competition with other coalitions. But these concerns are not in

the scope of this work.

One of the motivations for building the ESCS was reaching more economic strength to

be able to compete with the global hegemony of the US (Carchedi (2001)). The reason for

creating EFTA was similar. It was a rival free trade area against the ESCS for non- EEC

member states (Dinan (2004)). Although the number of countries was six in the ESCS and

seven in EFTA, total GDPs significantly differed. In the 1970s, the GDP of the EEC nations

was more than twice the size of the GDP of the EFTA nations (Baldwin, 1994, p.14).

The last factor is regime type. The cooperation between the Western European countries

can be seen as the formation of a bloc against the expansion of the Soviet Union. No coalition

was formed across bloc boundaries. Spain, Portugal and Greece were either too poor or not

democratic (McCormick, 2015, p.82). Therefore, countries are categorized according to their

regime types: liberal, socialist and military states. Among the Western European countries

Spain and Portugal were only military dictatorships in the 1950s (see Table 4.1).

This thesis uses Maddison Project6 data on population and GDP. The focus is on 28

European countries. Table 4.1 gives populations, GDPs, per capita GDPs and regime types

in 1950. This gives us an overview of Europe before the establishment of the ECSC.

As discussed in Section 5, countries tend to merge with similar countries with respect to

GDP, population, regime and location. Now, we take a closer look at the founder states of

three trading blocs.

European countries differ in terms of the discussed characteristics. The most clear

division is visible in terms of regime types. While democratic countries are either members

of the ESCS or EFTA, communist countries are members of COMECON. Spain and Portugal

are excluded because of their military regimes.

Among the Western European countries West Germany, France, UK, and Italy have large

populations and GDPs. The Western European countries have higher per capita GDP relative

6The data set “Historical Statistics of the World Economy: 1-2008 AD”
http://www.ggdc.net/maddison/oriindex.htm
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to the Eastern European countries with the exception of geographically far Greece, Portugal,

Spain and Ireland.

The six founder members of the ECSC were three big economies and three small/medium

economies. They also shared borders so that no state was disconnected. Since the creation

of the EU, no country has left and it has gradually expanded. Early enlargements were the

accession of former EFTA members and later enlargements took place after the collapse of

Soviet Bloc.

The seven EFTA countries were not as strong as the ECSC countries economically.

Finland (1970), Iceland (1986) and Lichtenstein (1991) were three enlargements. But as

the economic integration advanced, the inner six’s economic performance improved. This

motivated the UK to join the EEC in 1961 and led other countries follow (Ireland, Denmark

and Norway7). In 1986 Portugal and in 1995 Austria, Finland and Sweden left EFTA and

joined the EU8. Currently, only Switzerland, Norway, Liechtenstein and Iceland are EFTA

members.

COMECON collapsed in 1991. It had the largest population among the three coalitions.

Later expansions increased the diversity of member states in terms of geographical location9,

economic strength and size.

7Norway was accepted, but EEC membership were rejected in referendum twice
8In the literature one explanation for EFTA countries joining to the ESCS/EEC/EU sequentially is “Domino

effect”. See Baldwin (1993) for more details.
9Three non European countries were Mongolia (1962), Cuba (1972), and Vietnam (1978).
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Table 4.1 Europe 1950

Country1 Population2 GDP3 Per Capita GDP Regime4

Albania 1227 1229 1001 Soc.
Austria 6935 25702 3706 Lib.
Belgium 8639 47190 5462 Lib.
Bulgaria 7251 11971 1651 Soc.
Czechoslovakia 12389 43368 3500 Soc.
Denmark 4271 29654 6943 Lib.
Finland 4009 17051 4253 Lib.
France 42518 220492 5185 Lib.
East Germany5 18388 51412 2795 Soc.
West Germany6 50958 213942 4198 Lib.
Greece 7566 14489 1915 Lib.
Hungary 9338 23158 2479 Soc.
Iceland 143 762 5328 Lib.
Ireland 2963 10231 3452 Lib.
Italy 47105 164957 3502 Lib.
Luxembourg 296 2481 8381 Lib.
Netherlands 10114 60642 5996 Lib.
Norway 3265 17728 5429 Lib.
Poland 24824 60742 2446 Soc.
Portugal 8443 17615 2086 Dic.
Romania 16311 19279 1181 Soc.
Soviet Union 179571 510243 2841 Soc.
Spain 28063 61429 2188 Dic.
Sweden 7014 47478 6769 Lib.
Switzerland 4694 42545 9063 Lib.
United Kingdom 50127 347850 6939 Lib.
Yugoslavia 16298 25277 1550 Soc.

1 Microstates such as Liechtenstein and Monaco are excluded.
2 Population is given in ’000 at mid-year.
3 GDP is given in million 1990 International Geary-Khamis dollars
4 There are three main regime types; Soc.: socialist, Lib.: liberal democracy,
Dic.: military dictatorship
5,6 GDPs and Populations are from http://dx.doi.org/10.1787/486663055853
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The Dynamics of Europe’s Political

Economy: a game theoretic analysis

This part introduces two models of coalition formation with special emphasis on the coalition

formation process. While the first model uses a sequential approach in which players

iteratively form subcoalitions, the second model uses a simultaneous approach in which

players form coalitions at once with all members. These models attempt to account for

international coalition formation. To illustrate the predictions made by these models, I will

examine the formation of the European Coal and Steel Community (ECSC). Finally, I will

compare the two models in terms of their outputs and mechanisms.
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Chapter 5

Sequential Coalition Formation

The related literature is reviewed and a number of issues in the formation of coalitions are

discussed. In light of these, the key result is that the process is as important as the reasons

for cooperation and the resulting coalitions. This chapter presents a model of sequential

coalition formation model.

The sequential coalition formation model studies the process of coalition formation in a

game theoretical framework. A common discussion in game theory concerns how coalitions

are formed and how coalitions distribute payoffs among their members. Here, the main

challenge is describing how coalitions can be formed by using players’ preferences on their

potential coalition partners. This offers the motivation for building a model to establish a

way of viewing coalition formation as a process which is sensitive to different procedures.

One main property of the sequential coalition formation game is that once a coalition

is formed, players are restricted to remaining in that coalition (See Bloch (1996)). If two

players join a coalition, they act as a single player. The evolution of the EU provides a

relevant example. Moreover, the model guarantees that a subcoalition is formed at each

step. (See Grofman (1982), Brams et al. (2002)1). In a different perspective, players can be

partitioned simultaneously but this will be examined later.

The algorithm of sequential coalition formation provides a set of rules for grouping

players into coalitions. The idea is to repeatedly combine the closest pair of players according

to some distance measure. To do so, one needs to define a distance or dissimilarity function

1Sequential games can be seen as a solution to the myopia of simultaneous games. However, Brams et al.
(2002) argue that this setting can also lead a myopic outcome as in their Build-Up model.
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between players. A distance function can be chosen from a rich set of functions that measure

different characteristics of elements.

A distance function can involve one or more parameters that indicate how close two

players are. For example, physical distance can be the only parameter, and GDP, population

or regime type can be used as additional parameters. Furthermore, a rule governs how to

combine the properties of two previously separate players into the properties of a coalition.

The simplest rule is to take the average of these characteristics. Taken together, the algorithm

with its parameters and a combination rule for these parameters form the sequential coalition

formation model.

Using a distance measure will enable the model to have endogenous preferences on

coalition partners. This makes it different to most models of coalition formation in which

preferences are exogenously given. In hedonic games, players have exogenous preferences

over coalitions, e.g. Bogomolnaia and Jackson (2002), Banerjee et al. (2001). Indeed,

exogenously given preferences are one of the problems in the game theoretic study of

coalition formation in general (see (Deemen, 2013, p.27)). The formation of preferences is

as important as coalition preferences are in the coalition formation process.

Once parameters are determined for specific economic analysis tasks, the final question

that needs to be addressed is that of determining the partition of players across coalitions. As

previously discussed, many coalition formation models predict one winning coalition if one

exists. This might be a suitable prediction, for example, for party coalitions in governments

after political elections. However, many coalition formations cannot be formulated such

that resulting coalitions are either winning or losing. This model makes a crucial structural

difference. Similar to hedonic games, it predicts a set of coalitions.

In the model, players merge step-by-step. Now the question arises of when this process

stops. When analyzing a sequential formation, the formation of a winning coalition can be

used as a stopping condition. Since the model predicts no winning coalition, a different

solution is needed. A possible approach is to define a threshold value, for example, for the

size of a coalition, the utility of players or the distance measure. Or one can decide where to

stop depending on the length of the coalition formation sequence. However, this can lead to

somewhat ambiguous boundaries.
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Both attempts have advantages and disadvantages. Ideally, the stopping condition should

be defined without introducing an exogenous threshold value which varies. The reason for

this is that the value of the threshold can affect the result dramatically. Thus, a rather simple

solution is considered to determine a stopping condition: If players do not merge in early

iterations then they cannot be in the same coalition later. This approach might be more

relevant to the coalition formation process than specifying a threshold value for the size,

utility or distance. I will discuss this condition in more detail in later sections.

A partition of coalitions that seems to be unstable or unreachable can indeed be stable or

reached if players are allowed to form coalitions not only once and for all, but sequentially.

Both Nash Equilibrium and the core can be guaranteed under certain restrictions on the

preferences of players (Banerjee et al. (2001) and Bogomolnaia and Jackson (2002), see

Section 2.4). Otherwise, they might fail to exist. I do not impose any of these restrictions

here (See Section 2.2 for the arguments of these restrictions). Therefore, it is very likely

that a stable solution cannot be reached. However, the model can predict a partition in the

absence of a stable outcome.

A sequential recombination algorithm is simpler to state and study relative to a simul-

taneous algorithm. Additionally, it provides more information than just finding a partition.

It describes a clear sequence of steps towards resulting coalitions, which might be closely

connected to the dynamics of coalition formations, expansions, and modifications found in

actual political life.

5.1 Sequential Coalition Formation

This section attempts to formalize a sequential coalition formation. It encompasses three

essential elements: (i) the distance function, (ii) partner preferences and (iii) the coalition

formation. These will be studied in details.

Different models have been discussed in the domains of economics and political science.

Despite the fact that players (in our discussion countries) are not physical objects and their

interactions are not governed by laws of physics, tools from physics and mathematics can

contribute to the understanding of economic and political events. Surprisingly, in view of

the mechanics of the process, there are great similarities in the sense that the formation
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of international coalitions and the study of jets in physics can exhibit similar patterns.

Furthermore, different tools can overcome challenges such as computational complexity.

Particle physics methods are also designed to reduce the computing time. This is very

important practical consideration regarding events with large numbers of elements because

computing time and space are bounded. Therefore, producing efficient algorithms should be

of an interest in this work.

To examine and better understand these similarities, I begin with a short overview of jet

clustering in particle physics.

Sequential Jet Clustering Algorithms

The sequential algorithm for country clustering is inspired by the study of jets in high

energy physics experiments such as CMS and ATLAS at the LHC at CERN23. The LHC

accelerates protons and other subatomic particles to large energies. Inside the ATLAS and

CMS experiments these particles are brought to collisions. Jets are collimated showers

resulting from the decay of strongly interacting particles which are in turn a product of these

collision events. These collimated showers can be reconstructed as so-called jets in the

detector4. Thus, jets are physical structures which are observable.

The aim of jet clustering algorithms is to find the original particle that initiated the shower.

Jets are built from measurements of the energy deposited in parts of a detector. A detector

is designed to observe decay particles resulting from the colliding beam of, for example,

protons. In such a detector, there is a calorimeter which slows down or stops the particles

and measures their energy. The jet clustering algorithm is a set of rules that uses the distance

between particles on a cylinder (the shape of the detector) and their energy (measured by

calorimeters) to predict the original particle.

Jet clustering algorithms can be divided into two categories: cone and sequential re-

combination algorithms. Cones are circles in a plane with a fixed radius. In cone based

algorithms, cones are placed around seeds (particles with high energy) and the momenta

2The Large Hadron Collider (LHC) is a particle collider at European Organization for Nuclear Research
(CERN). ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) are two general purpose
experiments at the LHC.

3The main reference for this section is Salam (2010).
4See Salam (2010) for an introduction to jets and jet algorithms.
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of all the particles are calculated within the cone. This determines the new center, and the

direction of the resulting sum is then used as a new seed direction. The procedure is iterated

until the direction of the resulting cone is stable.

Cone based algorithms follow a top-down approach. They are not used in this work.

Here, I consider the latter category – sequential recombination jet algorithms which use a

bottom-up approach.

Sequential recombination algorithms repeatedly combine pairs of elements that are

similar. This is a process of working backwards, from the resulting particles, to find the

original particle. Two points are important when designing such algorithms: firstly, how

one chooses which pair of particles to combine, and secondly, when the algorithm stops

combining particles.

The first question is addressed by defining a distance measure. Typically, a distance

measure uses the transverse momentum and direction of the jets. Finding a stopping condition

is harder to ascertain and a radius parameter of jets is used for this purpose. Sequential

recombination algorithms differ in their choice of the distance measure and the numerical

value of the radius parameter.

The distance measure can be based on different properties of particles. For example, the

Cambridge/Aachen algorithm only considers the spatial distance between particles without

their momenta. Similarly, in Section 5.2.1, countries are clustered exclusively based on

their geographical locations. Other algorithms can use distance measures that include a

combination of energy and angle. In Section 5.2.2, in addition to geographical locations,

GDPs and populations are used in the distance function.

The choice of radius parameter is also not a trivial task. Currently, the most relevant way

to determine this choice is to systematically examine different values and decide which value

is the best. This is also true for choosing a jet algorithm. There is no best choice for all jet

studies. Most suitable jet clustering algorithm (and its respective radius parameter) depends

on where it is applied and what it aims to explain.

The three commonly most used sequential recombination algorithms are the kt , Cam-

bridge/Aachen, and anti-kt algorithms. The details of algorithms are neglected here. In

the following, a general distance measure is given. The distance measure di j between two

particles is defined as
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di j = min(k2p
ti ,k

2p
t j )

R2
i j

R2 , R2
i j = (ηi −η j)

2 +(φi −φ j)
2 (5.1)

where kti denotes the momentum (a 4-vector that describes the direction, energy and

mass of a particle), Ri j is the geometrical distance on the surface of a cylinder (the geometry

of the detectors is typically cylindrical), R is the distance parameter and p is a parameter

usually set to 0, 1 or −1 for different algorithms.

Each particle is assumed as a proto-jet. The distance di for each proto-jet is defined as

di = k2p
ti . (5.2)

A sequential recombination algorithm first finds the smallest distance of all the di j and di.

If the smallest distance is di j, two particles are combined by adding their momenta. This step

is repeated until there is no particle pair to satisfy the threshold condition. This means that

di is the smallest distance. Then the object is removed from the process and taken as a jet.

Clustering terminates when no particles are left.

Using an analogy to the jet algorithms, the model describes the pattern of coalition

formation among countries as a result of pairwise combination depending on the distance

between them. Therefore, the model follows an algorithmic similarity-based approach.

Similarly, the distance functions considered here have geometrical and non-geometrical

components.

Sequential Coalition Formation Models in Game Theory

The sequential algorithm is in the line of modeling processes of coalition formation coming

from the BU model (Brams et al. (2002)) and protocoalition model (Grofman (1982)). It is

important to predict which coalition will be formed, however, this cannot be isolated from its

process. Therefore, I will follow the approach in those kinds of models and study the process

of coalition formation.

There are considerable similarities and differences across sequential coalition formation

models. The model presented in this chapter also adopts a step-by-step formation. Similarly,

the model uses a clustering algorithm. One difference is the winning coalition condition. In

those models, a winning coalition serves as a stopping condition of the process. Instead, in
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the model presented in this chapter, a partition of players is predicted. Another difference

is the distance function. The distance between two players is not ‘typical’. Moreover, an

abstract distance function can have different realizations. This gives us the opportunity to

compare different clustering results in terms of emerging player pairs. This is discussed more

in detail in Section 5.2.

This model can be easily tested and the numerical evaluation is fast as the jet clustering

algorithms were designed to be executed on a huge amount of data. In Section 5.3, the results

with only about thirty players are presented. Computational complexity is not critical with

this number of players. However, the model is applicable to a large range of situations in

which the number of players can be numerous.

The model aims to study the process in coalition formation among countries in which

actors behave rationally and aim to maximize their individual benefits differently than

particles. I do not explicitly aim to study the stability or stabilization in this problem.

Countries will be used throughout the discussion but the model also holds for other players

from a multitude of economic, political or social situations.

5.2 Model

Recall that there are a finite number of n countries, N = {1,2, . . . ,n}. A partition of countries

is a specification of m groups of countries, such that each country belongs to one, and only

one, group. Thus, a partition S = (S1,S2, ...,Sm) describes a particular allocation of countries.

One country is assumed to be a coalition with one member.

Given the complexity of the issue, I will simplify the set-up of the problem. In order

to focus on our basic question of process, many interesting details and also some equally

important factors or characteristics will be abstracted from this model.

Each country i ∈ N is identified by K ≥ 1 characteristics. A number of standard charac-

teristics are considered. Namely, they are the geographical location, population, GDP and

regime type. Thus, country i is denoted by the vector Ci = (λi,φi, pi,gi,ri) where λi and φi

are longitude and latitude, pi is population, gi is GDP and ri is regime type of country i.

Section 4.3 describes these characteristics and gives numerical values.
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I will use a clustering solution for coalition formation. The utility of a country depends

on the distance, with utility equaling the inverse of the distance. Thus, smaller distance

means higher utility.

Distance function

The distance between two coalitions depends on these characteristics. Consider two coalitions

i and j. The distance between two coalitions di j is a measure of how different they are from

one another. Hence, according to the previous discussion, a coalition consists of mutually

similar players, and therefore if two coalitions i and j belong to the same coalition then they

have a low value of di j. Although the terms of distance and similarity are not equivalent,

both are referred to as distances in this model. A small distance means a large similarity.

The concept of distance should be clarified. It is used to calculate the difference between

players. Traditionally coalition formation models use Euclidean distance (Boekhoorn et al.

(2006)). However, (Grofman and Straffin, 1984, p.272) point out that other metrics can be

used for equal or better measurements. Indeed, they use a distance measurement which

combine the Euclidean distance and players’ weight. In this model, the distance function

is a combination of physical distance and certain properties of countries. It can have many

variants with situations where the distance function is pure geometrical or non-geographical

or both.

The reason why this is done is because of the results different distances have for clustering.

Since the distance function determines the closeness between two players, which in turn

determines the partition of players, the choice of distance function is crucial. This gives us the

opportunity to compare different distance functions and study their results. This comparison

helps to find a good measurement even if there is probably no unique one.

Different clustering results might also be important in terms of country pairs. For

example, when we compare two clustering results there are four scenarios. Two countries

can be members of the same cluster in both results. They can belong to different clusters

in both results. They can be in the same cluster in the first case, but they can be in different

clusters in the second case. They can belong to different clusters in the first case, but they

can belong to the same cluster in the second case.
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The geographical distance between two countries is defined by the distance between their

capital cities and denoted by ∆5. Note that it is a non-Euclidean distance since it depends on

the earth’s curvature and is not a straight line distance.

A general distance function is given by

di j =

 f (pi, p j,gi,g j)∆i j : ri = r j

∞ : ri ̸= r j.
(5.3)

The distance function is defined as a product of the distance in population and GDP

space and the distance in physical space. This form is motivated by the fact that the distance

which determines which countries should be clustered first can correspond to their power

(for example GDP) or geographical region. For now f (pi, p j,gi,g j) is only in an abstract

form. Section 5.3 discusses different concrete realizations.

Populations and GDPs are in some intervals. It can be difficult to combine numerical

characteristics with regime type. On the one hand, countries geographically or economically

close to each other are likely to form a coalition. On the other hand, countries with different

regime types are unlikely to form a coalition. The distance between two countries is set to

infinity if they have different regime types. Thus, countries can merge only within the same

regime type. This reduces the set of possible coalitions. (See Section 4.3 for descriptions,

motivations and discussions of these parameters.)

An important property of the distance measure is (non)symmetry. Symmetry means that

the distance between i and j is equal to the distance between j and i. Typically it is assumed

that di j = d ji. Do countries want each other as a coalition partner at the same degree? Of

course, geometrical distance alone is always symmetric. There are possible scenarios in

which the distance measure is not necessarily symmetric. If players are concerned about

their weight in the coalition, their perception on the distance can be different. For example,

5In Euclidean plane the distance between two points is given by

∆
2
i j = (λi −λ j)

2 +(φi −φ j)
2.

Since the distance between countries is not an Euclidean distance, a geographical distance is used instead. In
order to measure distance between two points on the earth, the inverse geodesic problem is solved. (A python

package, geographiclib, is used to compute geodesic distances.)
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Fig. 5.1 Three countries triangle
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consider a case in which the distance between players is a combination of physical distance

and the ratio of their weights to total weight,

di j = f (wi,w j)∆i j. (5.4)

where f (wi,w j) =
wi

wi+w j
. The weight of player i and j are wi and w j respectively. The

physical distance is denoted by ∆i j. Grofman and Straffin (1984) use this particular distance

function in the protocoalition formation model. Obviously di j ̸= d ji if wi ̸= w j. Thus, it is a

non-symmetric distance measure.

Preferences are not exogenously given. Now the question is determining how countries

shape their partner preferences. The simplest way is that country i prefers being with country

j to being with country k if and only if di j ≤ dik. Thus, countries prefer to cooperate with

closer potential partners. In other words, countries’ preferences based on the distances.

Example 5.2.1 Non-transitive and non-symmetric distance function Note that the distance

function is not necessarily transitive or symmetric. Consider the following three countries i,

j and k with their pairwise distance and weights given in Figure 5.1.

a. Non-Symmetry: First distance measure is di j =
w j

wi+w j
∆i j (Grofman and Straffin (1984)).

The distance between i and j is not symmetric. The idea is that if the weight of player

j, w j, is bigger than the weight of player i, wi, player j has more impact in the coalition.

Therefore, player i perceives a bigger distance. In other words, a weak player has to

move more than a strong player. Thus, it is not symmetric.
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b. Non-Transitivity: Second distance measure is di j = min(wi,w j). This distance is non-

geometrical part of kt distance. This distance function is symmetric but geometrically

closed countries are not necessarily close to each other. Non-transitivity is a well-

known phenomenon in rational choice theory. The distance transitivity requires triangle

inequality (Watts, 1999, p.11). However, unlike the physical systems, social systems are

not necessarily follow this property. It is easy to verify this. Assume that wk < w j < wi

as in Example 5.1. Then, distances must obey the triangle inequality : di j < d jk +dik

but they do not.

The distance functions presented in this work are symmetric. Furthermore, they have

a geometric part. Therefore, they are transitive as well. This has a particular importance

in finding nearest neighbors of a given point which has significant help to reduce the time

complexity of the algorithms. Next, a set of rules is defined which describe the combination

of characteristics when two coalitions merge.

Stability

This game can be consider as social distance game(Brânzei and Larson (2011)). The utility

of player i in coalition S can be defined as

ui(S) =
1
|S| ∑

Si=S j

d−1
i j (5.5)

The inverse distance function captures the closeness of the players. That means adding

a close player increases the utility. The utility of players also depends on the size of the

coalition. Therefore, an additional player increases utility with a decreasing rate.

I do not focus on stability for this game. Trivially, the grand coalition is the only core

stable partition. As we have discussed, the focus will be on the coalition formation process.

Combination Rules

When two coalitions find each other acceptable, they form a single coalition. This new

coalition needs to inherent the geographical location, population, GDP and regime from its

two parents. Since it is assumed that the first requirement to form a coalition is having same
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type of regime, there is no need to define a combination rule. The following rules show how

to combine the characteristics of two coalitions into one.

At each stage when two coalitions merge, the GDP and population of new coalition are

simply the sum of two GDPs and populations.

g{i, j} = gi +g j and p{i, j} = pi + p j (5.6)

Thus the GDP and population of a final coalition S are given by

gS = ∑
i∈S

gi and pS = ∑
i∈S

pi. (5.7)

The new geographical location of two coalitions is

λ{i, j} =
wiλi +w jλ j

wi +w j

φ{i, j} =
wiφi +w jφ j

wi +w j
.

(5.8)

where wi and w j are the weights of coalitions i and j. For example, if it is assumed that

each player has equal weight then the new location is simply the mid point of two coalitions.

The weight of a coalition can be its population, GDP or GDP per capita.

5.2.1 Coalition formation depends on only geographical location and

regime type

The first algorithm describes the coalition formation among countries which can have different

regime types. The distance function f (.) takes a simple form, i.e. it is a constant. Thus,

countries form coalitions depending on only geographical distance and regime type.

Initially, the number of coalitions is equal to the number of countries. First, all distances

between capital cities are calculated. If two countries have different regime types, for

example, country i is a communist state and country j is a democracy, then the distance

between them set to infinity di j = ∞. Otherwise, the distance between two coalitions is the

geographical distance between them, di j = ∆i j. Next, the closest pair is merged to form a

new coalition. This reduces the number of coalitions by one as the two previous coalitions
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are removed from the list.6 The location of new coalition is simply the population, GDP

or GDP per capita weighted average distance or midpoint of two capital cities. Distances

between the new coalition and the others are calculated. This iteration repeats until each

country is attached to a coalition. Algorithm 4 describes these steps.

Algorithm 1: Coalition Formation with Pairwise Geographical Distance

Data: Locations of capital cities and regime types

1 For each pair of countries define

di j =

{
∆i j : ri = r j
∞ : ri ̸= r j

2 Find the smallest di j

3 Merge i and j into a new coalition k with new location at the weighted midpoint of i
and j’s locations

4 repeat until no country is left

The geometric distance measure di j = ∆i j is symmetric. That is di j = d ji. It is also

transitive: if i is closer to j and j is closer to k, then i is closer to k. Note that while this

distance measure is transitive, a more general distance measure need not to be transitive (See

Example 5.2.1).

Fig. 5.2 Steps of coalition formation with geographical distance and regime
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6There can be pairs with the same distance. In the presence of ties, a rule is used to choose from the cases.
However, the data used in applications is finely measured so that there is no tie.
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Before we proceed to define a general distance measure, we take a look at Figure which

illustrates coalition formation according to Algorithm 4. There are countries with different

weights and randomly distributed on the plane. They are represented by circles. According

to the Euclidean distances, the closest elements are merged together. Here I assume that

the center of a new circle is the middle point of these elements (one can also consider the

weighted average point) and the area is the sum of two areas. This iteration continues with

updated distances. If we determine a threshold value (in which two points merge only if they

are in given radius), clustering is not possible after certain iteration and multiple clusters may

appear. If we do not have any threshold value, at the last stage there will be two clusters and

no alternative but to merge these two.

5.2.2 A general coalition formation

Now consider a more general distance function. There are other characteristics besides

geographical location and regime types, namely population and GDP of countries. Of

course, the most critical point is how to chose f (pi, p j,gi,g j). A set of different functions of

populations and GDPs can be used. Section 5.3 presents the results of different functions.

The general case is almost identical to the previous algorithm except introducing non-

geometric parts (populations and GDPs) in the distance measure. First, the pairwise distances

are calculated. Countries look for the closest coalition partner. The closest country pair

merges to a new coalition, i.e single player. Again, the new coalition’s location is defined

as the weighted midpoint of two capital cities. When two countries merge, new coalition’s

population and GDP are simply the sums of populations and GDPs of two countries. The

process continues until all countries are in some coalitions. Algorithm 4 describes the

coalition formation process.

Figure shows the steps of this algorithm. Here y coordinate is assumed to be zero for

all countries. The process starts with finding the smallest distance on the x-axis. Then two

countries are merged according to combination rules given in equations 5.6 and 5.8. Weights

can be any characteristics of countries. In this particular example, weights represent GDP

per capita.
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Algorithm 2: A General Sequential Coalition Formation

Data: Location of capital cities, regime type, population, GDP

1 Choose a function, f (pi, p j,gi,g j), and for each pair of countries define the distance
function

di j =

{
f (pi, p j,gi,g j)∆i j : ri = r j
∞ : ri ̸= r j.

2 Find the smallest di j

3 Merge i and j into a new coalition k with new location at the weighted midpoint of i
and j’s locations. New population and GDP are given by

pk = pi + p j and gk = gi +g j.

4 repeat until no country is left

Fig. 5.3 Steps of General Coalition Formation
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5.2.3 Computational Complexity

The term computational complexity can be broadly used in two contexts. It is then often not

clear which usage is meant. It might used to represent either time or space efficiency of a

given algorithm or traceability of a given problem. In this subsection, we will focus on the

first usage.

Before investigating the time and space complexity of the algorithms presented in Sub-

section 5.2.2, it is useful to be more specific about the second usage. In computational
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complexity theory, there is a main distinction among problems. They are belong to the

complexity classes such that P (Polynomial Time) and NP (Nondeterministic Polynomial

Time).

In P, computational problems are solvable by a polynomial time algorithm. The poly-

nomial time complexity is denoted by O(nk) where n is the complexity of input and k is

a non-negative integer. In NP, solutions of computational problems can be approved in

polynomial time. In simple words, problems in P can be decided quickly and in NP can

be checked quickly. Clearly, NP problems contain P problems. Then, the question is if the

answer to a problem is easy to check, is the problem itself easy to solve? This is the most

famous and unsolved question in computer science, so called The P versus NP problem.

How does the computational complexity relate to game theory? In the context of games,

there are some interesting questions concerning complexity. For example, consider hedonic

games outlined in Section 2.1. There are two main algorithmic problems around core stability

(Woeginger, 2012, p.3). The first question is the existence of a core stable partition of N

players and the second question is the verification of whether a given partition is core stable.

The existence and verification problems are NP− complete. This means that these decision

problems are in NP and at least as hard as the hardest problems in NP. Equivalently we can

say that there is not an (immediate) efficient algorithm for these decision problems and they

fall into “hard” problems category. Another question related to the core stable partition is

verification – whether a partition is blocked by any other coalition. The latter question turns

out as difficult as the former one. Thus, the verification problem is also NP−hard. (See

Ballester (2004) and Sung and Dimitrov (2010) for computational complexity in hedonic

games.).

We now examine the efficiency of a given algorithm. Obviously, algorithms in this thesis

perform in polynomial time. Then, the question is how many steps are needed to reach a

solution. When we know that we can calculate the clustering problem in polynomial time

why we should care about how much time it takes. After all, computers will do the job for us.

However, the running time might be crucial to some problems.

In the following, we will study the time complexity of Algorithm 4. This simply means

the amount of time taken by an algorithm. In each iteration, Algorithm 4 calculates distances

among all pairs and determines the smallest one. Therefore, the first step to determine the
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time complexity is finding the smallest distance. Then, the second step is to decide how

many times we should find the smallest distance.

The first step is called The Closest pair of points problem. This is the problem of finding

the closest pair of n ≥ 2 points in a set Q by using the euclidean distance. Consider a brute

force approach: first calculate the distance of every pair of points then pick the pair with the

smallest distance. There are n(n−1)
2 pairs of points. Thus, the closest pair of points can be

computed in O(n2) time.

Then, the closest pair is merged to one point and the same procedure is applied until

no player is left. The minimum distance is searched in O(n) time and there can be at most

n−1 clustering. This makes the total time of O(n3). These steps are shown in Algorithm 16.

Recall that every country is a coalition and coalitions is the set of countries.

Can we further reduce the time complexity? The Closest pair of points problem is a

geometric problem. There are methods in computational geometry in which we can find the

closest pair of points in a set of n points in the plane in O(n logn) time. Furthermore, the

total time of Algorithm 16 can be reduced to O(n logn).

The difference between O(n3) and O(n logn) is not significant when the application

includes only 15 European countries. But if one works with numerous players as in the case

of networks or jet clustering, the time complexity becomes important. One structure which

can be used is the Voronoi diagram7. Skiena (2009) suggests to use Voronoi diagram for

n ≥ 100). Figure shows various running times. [p. 581]

A Voronoi diagram partitions a plane into sites based on distances. In this diagram, every

point is assigned to the nearest site. The advantage of the Voronoi diagram is that we can

efficiently calculate the nearest neighbors of given points. Thus, we do not have to calculate

all pairwise distances to find the minimum distance. It is enough to calculate the nearest

neighbors. The Figure gives an intuitive picture. Blue lines represent Voronoi Diagram and

red lines represent its dual Delaunay Triangulation.

A point has its site and any point within the site is closest to that point than any other

points. In this example, people prefer to get their goods at the nearest site. Every region is

attained to a capital.

The time and space complexity to construct such structure as follows.

7See De Berg et al. (2008) for formal introduction.
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Algorithm 3: Coalition Formation
input :Countries on a plane
output :A partition of countries

1 default distance= ∞;
2 while length of coalition>1 do
3 minimum distance = default distance;
4 first coalition = None;
5 second coalition = None;
6 for i, coalition i in coalitions do
7 for j, coalition j in coalitions do
8 if i >= j then
9 continue

10 if distance(coalition i, coalition j) < minimum distance then
11 minimum distance = distance(coalition i, coalition j);
12 first coalition = coalition i;
13 second coalition = coalition j;

14 merge (first coalition and second coalition) and append to coalitions;
15 remove first coalition from coalitions;
16 remove second coalition from coalitions;

Fig. 5.4 The trading areas of the capitals of the twelve provinces in the Netherlands, as
predicted by the Voronoi assignment model

Source: reproduced and modified from (De Berg et al., 2008, p.147)
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Theorem 5.2.2 (De Berg et al., 2008, p.159) The Voronoi diagram of a set of n point sites

in the plane can be computed with a sweep line algorithm in O(n logn) time using O(n)

storage.

Now, the question is that how we can use Voronoi Diagram to find the minimum distance.

We can construct a list of size n for the nearest neighbors. That means instead of calculating

all di j for i (takes n operations), we only calculate one distance, i.e. distance between i and its

geometrical nearest neighbor. The minimum distance can then be identified among elements

of the list with O(n) operations.

Theorem 5.2.3 (Preparata and Shamos, 2012, p.220) The all nearest neighbors problem

is linear–time transformable to Voronoi Diagram and thus can be solved in O(logn) time,

which is optimal.

A special data structure can be used to store the distances: a priority queue. A priority

queue is often implemented with a heap which is a nearly complete binary tree. Therefore,

any operation such as adding an element in the tree takes O(logn) time (the depth of the

tree).

Finally, I present the Voronoi implementation in sequential jet clustering algorithms in

Cacciari and Salam (2006):

1. Construct the Voronoi diagram of the n particles. O(n logn)

2. Find the Geometric Nearest Neighbor of each of the n particles. Construct the di j

distances, store the results in a priority queue. O(n logn)

3. Merge/eliminate particles appropriately. Update Voronoi diagram and distances’ map.

O(logn)

Thus, the running time for the implementation is O(n logn).

5.3 Application

In this section, I will test various distance functions discussed in Chapter 5.2 and give results.

This will examine the theoretical model in explaining empirically observed formation of
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the ESCS. The section concludes with an overview of advantages and disadvantages of

step-by-step clustering in international coalitions.

The sequential coalition formation procedure is simple but still captures important prop-

erties of the coalition formation process. The order of merging two coalitions depends on

how the underlying quantities are combined in the distance function. Thus, this section

is an investigation of whether the combination of parameters in the distance functions are

valid from an empirical standpoint. Initially, for simplicity, I assume that players have equal

weights. Later, different weights and combination rules will be discussed.

5.3.1 Geographical pattern of coalition formation

I begin with the simplest distance function: the physical distance. The distance measure

between countries is physical distance. In the literature of spatial coalition formation models,

various distance functions are used i.e. Euclidean distance, Squared Euclidean distance,

Manhattan distance. Even if, the main idea of the general distance function given in equation

(5.3) is to abstract the distance between countries and not to restrict it to the physical location,

geography plays still an important role. There are two motivations for using Euclidean

distance.

The first motivation is that geographically close countries are more likely to cooperate in

areas of trade, military or environment. There are two immediate reasons for that. Firstly, if

the distance is smaller, the gain is larger from reduced transport and communication costs

(Krugman, 1991, p.19). These cost were even more important in the 1950s than they are

today. Secondly, the geographical distance can be a proxy for cultural distance (Desmet et al.,

2006, p.27) which potentially plays a role in coalition formation. In this work, the properties

like culture, language or in more general identity of a country are not explicitly considered

but the geographical distance implicitly brings these characteristics in the picture.

The second motivation is technical. One immediate advantage is its computational

tractability. Furthermore, Euclidean distance satisfies the triangle inequality therefore signifi-

cantly reduced the time complexity of clustering algorithms.

If countries consider only the regime type and geographical distance, they follow Algo-

rithm 4. It is assumed that all countries start as single coalitions and have identical weights.

Then, the algorithm looks for similarities. In this case only the geographical distance is used
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since countries with different regime types are not allowed to unite. A coalition formation

is seen as a process including a series of stages. In each stage, the closest coalition pair is

merged to a single coalition.

Table 5.1 gives the output of this process. Each line includes first and second coalition

which are merged at that stage and the distance between them in kilometers.

When countries form coalitions step-by-step according to geographical distances and

regime types, there are three final coalitions, namely; {Spain and Portugal}, {Soviet Union,

Hungary, Yugoslavia, Albania, Bulgaria, Romania, Poland, Czechoslovakia, East Germany}

and {Greece, Iceland, Finland, Sweden, Denmark, Norway, Ireland, Switzerland, Netherlands,

Belgium, West Germany, Luxembourg, France, United Kingdom, Austria, Italy}.

Since there are three regime types, three coalitions are formed in the end. This resulting

partition is trivial. The interesting point is the merging order or substructure. West Germany,

Luxembourg, Belgium and Netherlands form a coalition in the first three steps. This is

followed by merging with France and the United Kingdom. Five of the founder states of the

EU cluster rather quickly. Later, middle and south European countries merge. The Northern

bloc joins towards the end. Finally, this large coalition expands by Iceland joining last.

Among the Eastern European countries, coalitions merge relatively quickly and in the last

step the Soviet Union joins to the rest of Eastern countries. Spain and Portugal merge to one

coalition since both are ruled by the military regimes.

Table 5.1 Coalition Formation – Geographical Distance

First Coalition Second Coalition Distance

West Germany Luxembourg 123

Belgium Netherlands 173

West Germany, Luxembourg Belgium, Netherlands 200

Czechoslovakia East Germany 281

Bulgaria Romania 296

Hungary Yugoslavia 317

France United Kingdom 343

West Germany, Luxembourg,

Belgium, Netherlands

France, United Kingdom 389
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Finland Sweden 397

Bulgaria, Romania Hungary, Yugoslavia 466

Albania Bulgaria, Romania, Hungary,

Yugoslavia

456

Denmark Norway 484

Poland Czechoslovakia, East Germany 500

Portugal Spain 503

Switzerland West Germany, Luxembourg,

Belgium, Netherlands, France,

United Kingdom

507

Finland, Sweden Denmark, Norway 559

Ireland Switzerland, West Germany,

Luxembourg, Belgium, Netherlands,

France, United Kingdom

738

Austria Italy 767

Albania, Bulgaria, Romania,

Hungary, Yugoslavia

Poland, Czechoslovakia, East

Germany

882

Greece Austria, Italy 1054

Ireland, Switzerland, West Germany,

Luxembourg, Belgium, Netherlands,

France, United Kingdom

Greece, Austria, Italy 1259

Finland, Sweden, Denmark, Norway Ireland, Switzerland, West Germany,

Luxembourg, Belgium, Netherlands,

France, United Kingdom, Greece,

Austria, Italy

1340

Soviet Union Albania, Bulgaria, Romania,

Hungary, Yugoslavia, Poland,

Czechoslovakia, East Germany

1451
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Iceland Finland, Sweden, Denmark, Norway,

Ireland, Switzerland, West Germany,

Luxembourg, Belgium, Netherlands,

France, United Kingdom, Greece,

Austria, Italy

2395

5.3.2 General Case

As a result of Algorithm 4, countries are clustered according to richer distance functions.

There are a wide range of distance functions. However, I start by examining few building

blocs.

di j = |pi − p j|∆i j, (5.9)

di j = |gi −g j|∆i j, (5.10)

di j = |gi

pi
−

g j

pi
|∆i j. (5.11)

Population and GDP are normalized to 1 by dividing each quantity by the maximum

values. All three distance functions given above include also geographical distance. In this

section, only liberal democracies are considered.

Firstly, GDP distance is examined. GDP is chosen to represent economical state of a

country. Secondly, population distance is considered. Population is a measure for the size of

a country. Lastly, GDP per capita distance is evaluated. Tables 5.2, 5.3 and 5.4 present the

outcomes respectively. They provide an initial hint on some possible coalitions.

Table 5.2 Coalition Formation – GDP and Geographical Distance

First coalition Second coalition distance

Belgium Sweden 1.06

Finland Norway 1.54

France West Germany 7.54

Denmark Finland, Norway 9.13
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Netherlands Denmark, Finland, Norway 10.80

Belgium, Sweden Netherlands, Denmark, Finland,

Norway

10.21

Iceland Luxembourg 11.37

Ireland Iceland, Luxembourg 8.25

Greece Ireland, Iceland, Luxembourg 8.26

Austria Greece, Ireland, Iceland,

Luxembourg

3.35

Switzerland Austria, Greece, Ireland, Iceland,

Luxembourg

22.72

Italy Switzerland, Austria, Greece, Ireland,

Iceland, Luxembourg

91.38

United Kingdom France, West Germany 98.77

Belgium, Sweden, Netherlands,

Denmark, Finland, Norway

Italy, Switzerland, Austria, Greece,

Ireland, Iceland, Luxembourg

164.48

United Kingdom, France, West

Germany

Belgium, Sweden, Netherlands,

Denmark, Finland, Norway, Italy,

Switzerland, Austria, Greece, Ireland,

Iceland, Luxembourg

646.44

In each case, the formation process is completed in fifteen steps. I will focus on the most

likely merging in the beginning and the resulting blocs towards the end of the process. All

three distance measures have two properties in common. First, now non-contiguous neighbor

states can form coalitions. Second, the merging of two coalitions can lead to a decrease in

the distance: the distances are not monotonically increasing anymore. Thus, the absence or

addition of some players can change the process. Furthermore, the algorithm still allows for

merging small and big countries.

Table 5.3 Coalition Formation – Population and Geographical Distance

First coalition Second coalition distance

Austria Sweden 1.93

74



5.3 Application

Denmark Finland 4.55

Belgium Netherlands 5.01

Iceland Luxembourg 6.91

Ireland Norway 7.52

West Germany United Kingdom 8.36

Iceland, Luxembourg Ireland, Norway 31.19

Denmark, Finland Iceland, Luxembourg, Ireland,

Norway

31.36

Austria, Sweden Denmark, Finland, Iceland,

Luxembourg, Ireland, Norway

11.71

Greece Switzerland 93.75

France Italy 99.75

Belgium, Netherlands West Germany, United Kingdom 151.92

France, Italy Belgium, Netherlands, West

Germany, United Kingdom

435.14

Austria, Sweden, Denmark, Finland,

Iceland, Luxembourg, Ireland,

Norway

Greece, Switzerland 525.49

France, Italy, Belgium, Netherlands,

West Germany, United Kingdom

Austria, Sweden, Denmark, Finland,

Iceland, Luxembourg, Ireland,

Norway, Greece, Switzerland

2547.97

In the first six steps of Table 5.2, there are two coalitions: {France, Germany} and

{Belgium, Netherlands, Denmark, Norway, Finland, Sweden,}. The last two coalitions are

three biggest economies {France, Germany, United Kingdom} and the rest of Europe.

In Table 5.3, according to population distance, the last two coalition are {France, Italy,

Belgium, Netherlands, West Germany, United Kingdom} and the rest of Europe. The first

coalition is close to six founder members of the ESCS in which Luxembourg is replaced by

the United Kingdom.
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Both GDP and population distances might produce historically significant results suc |

P6.4cm | P6.4cm | l |h as {France, West Germany}, {Belgium, Netherlands} and clusters of

the Scandinavian countries. After examining GDP and population distance, a natural step is

to examine the GDP per capita distance. Table 5.4 shows the result.

Table 5.4 Coalition Formation – GDP per capita and Geographical Distance

First coalition Second coalition distance

Denmark United Kingdom 0.52

Belgium Norway 5.21

Netherlands Belgium, Norway 10.15

Finland West Germany 12.30

Ireland Italy 13.56

Austria Ireland, Italy 21.98

Luxembourg Switzerland 33.30

Sweden Denmark, United Kingdom 34.06

Netherlands, Belgium, Norway Sweden, Denmark, United Kingdom 35.58

France Iceland 46.80

Finland, West Germany France, Iceland 72.94

Netherlands, Belgium, Norway,

Sweden, Denmark, United Kingdom

Finland, West Germany, France,

Iceland

91.14

Greece Austria, Ireland, Italy 269.98

Luxembourg, Switzerland Netherlands, Belgium, Norway,

Sweden, Denmark, United Kingdom,

Finland, West Germany, France,

Iceland

273.34

Greece, Austria, Ireland, Italy Luxembourg, Switzerland,

Netherlands, Belgium, Norway,

Sweden, Denmark, United Kingdom,

Finland, West Germany, France,

Iceland

397.12
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This first attempt at formulating the non-geometrical part of the distance function as the

difference of GDP per capita has not provided historically relevant coalitions. Now, I propose

another measure which is the ratio of GDP per capita of paired countries. The distance

function takes the following form:

di j =
max( gi

pi
,

g j
p j
)

min( gi
pi
,

g j
p j
)

∆i j. (5.12)

The resulting merging process is given in Table 5.5. The five of the founder states,

Belgium, Netherlands, Luxembourg, France and West Germany, and northern countries,

Denmark, Sweden, Finland and Norway, merge in the early stages. Iceland and Greece join

the grand coalition in the end of the process.

In both distance measures including GDP per capita given in Equations 5.11 and 5.12,

the distance increases monotonically.

Table 5.5 Coalition Formation

First coalition Second coalition distance

Belgium Netherlands 190.16

West Germany Luxembourg 246.85

Belgium, Netherlands West Germany,Luxembourg 273.26

France Belgium, Netherlands, West Germany,

Luxembourg

422.73

Norway Sweden 520.84

Denmark Norway, Sweden 517.52

United Kingdom France, Belgium, Netherlands, West

Germany, Luxembourg

544.40

Austria Italy 812.56

Switzerland United Kingdom, France, Belgium,

Netherlands, West Germany, Luxem-

bourg

838.30

Finland Denmark, Norway, Sweden 936.63
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Ireland Switzerland, United Kingdom, France,

Belgium, Netherlands, West Germany,

Luxembourg

1195.56

Finland, Denmark, Norway, Sweden Ireland, Switzerland, United Kingdom,

France, Belgium, Netherlands, West

Germany, Luxembourg

1375.26

Austria, Italy Finland, Denmark, Norway, Sweden,

Ireland, Switzerland, United Kingdom,

France, Belgium, Netherlands, West

Germany, Luxembourg

1852.77

Iceland Austria, Italy, Finland, Denmark, Nor-

way, Sweden, Ireland, Switzerland,

United Kingdom, France, Belgium,

Netherlands, West Germany, Luxem-

bourg

2428.38

Greece Iceland, Austria, Italy, Finland,

Denmark, Norway, Sweden, Ireland,

Switzerland, United Kingdom, France,

Belgium, Netherlands, West Germany,

Luxembourg

5046.66

The UK Case

The UK presents a complicated case because even though its initial high potential of being a

part of the coalition, accession occurred only in 1973. One reason was its transatlantic and

Commonwealth trade links, particularly the special relation with the US (Carchedi (2001)).

Another reason was its strong concern about sovereignty. The idea of supranationalism

prevented the UK to participate to the ESCS. This was also related to the first reason:

supranationalism would weaken its transatlantic and Commonwealth links (Dinan, 2004,

p.45). The UK initiated less strict economic cooperation, the EFTA. However, shortly after
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the establishment of EFTA, the UK gained interest in joining the union which evolved to the

ECC by that time.

I will not discuss the UK case in terms of political reasons here. The results in Table 5.5

suggest that the UK is part of the coalitions from early stages. The participation delay of

qualified countries is an interesting research topic but in the present chapter, the focus is the

creation stage.8

8For example see Konstantinidis (2015), Kóczy (2009).
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Chapter 6

Simultaneous Coalition Formation

In this chapter, a simultaneous coalition formation model is considered. The correlation

clustering problem seems to be a natural formulation for a simultaneous coalition formation

game1. Therefore, it can be called a correlation clustering game. In the first part of the chapter,

I introduce and discuss correlation clustering and define the correlation clustering game.

Additionally, various solution concepts and a range of distance functions are considered. The

second part of chapter presents the outcomes of the model by using the data given in section

4.3 and selected distance functions to illustrate different scenarios for the formation of the

ESCS.

6.1 Correlation Clustering

A correlation clustering algorithm partitions elements into clusters based on their similarities.

The idea is to find the best partition of elements depending on their pairwise similarity

measures. To do so, similar elements are allocated in the same cluster and dissimilar elements

are allocated in different clusters. (This is the main objective of similarity based clustering

approaches in general.) Initially, correlation clustering is motivated to solve document

clustering problems, which aims to cluster textual documents according to, for example,

topics (see Becker (2005)).

As discussed in section 3, it is not always possible or desirable to determine the number of

clusters in advance. Correlation clustering does not require a prior knowledge of number of
1See Becker (2005) for a survey on Correlation clustering.
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clusters. Additionally, it does not require a threshold value that specifies a distance threshold

for clustering. This makes correlation clustering a natural formulation in clustering analysis

and particularly useful in coalition formation theory.

Correlation clustering can be applied a wide range of problems in game theory. For

example, consider the following problem (Demaine et al. (2006)): there is a set of people

who are invited to an event. Every guest has a preference list that shows with whom they

want to interact and whom they want to avoid. Is there a stable setting in which we assign

all guests to a number of tables so that nobody wants to change their seats? This problem is

called the Stable Invitation Problem and correlation clustering can be used to solve it.

Correlation clustering was introduced by Bansal et al. (2004). There are two variants:

minimizing disagreement and maximizing agreement. Agreements and disagreements are

determined by pairwise distances. Two variants are equivalent. The authors show that these

decision problems are NP-complete. Of course, computational complexity is crucial but

since the number of countries is small, it is not critical to this chapter. Therefore, a brute

force algorithm will be used to predict the partition of countries. Section 6.3.3 presents the

computational complexity of the correlation clustering game more in detail.

Bansal et al. (2004) consider the following clustering problem: on a complete graph2

G = (V,E) with n vertices each edge (u,v) ∈ E is labeled with + or − indicating whether

two the vertices u,v ∈ V are similar or different. I focus on the problem of minimizing

disagreements3. Then, the question is how to partition the vertices such that the number of −
edges between clusters’ members and the number of + edges between disjoint clusters is

minimized. The number of clusters is not given as a parameter of the minimization problem.

It is determined by the resulting clusters and can be between 1 and n.

Assuming that C is the collection of the disjoint clusters, the minimizing disagreements

problem can be formulated as

2A complete graph is an undirected graph in which each pair of nodes are connected by an edge.
3These two are equivalent at optimality but, as usual, differ from the point of view of approximation (Bansal

et al. (2004))
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min
C

∑
u,v

cu,v(1− e(u,v))+(1− cu,v)e(u,v)

cu,v =

1 if u and v are in the same cluster

0 otherwise

eu,v =

1 if it is a + edge

0 otherwise

(6.1)

The idea of this optimization problem is essentially to count the number of disagreements

in all possible partitions and determine the minimum one. Figure 6.2 illustrates a three nodes

example. Straightforward calculation of the correlation clustering calculation yields a cluster

including v and w together and u as a separate cluster. This is a perfect clustering in which all

the edges are positive within the cluster and all the edges are negative between the clusters.

That is we can simply delete − edges in order to obtain a partition.

Fig. 6.1 Correlation Clustering: a perfect cluster

u

v w

−

+

−

In general, however, a graph may not have a perfect clustering. For example, given nodes

a,b,c such that a,b and a,c are similar while b,c are dissimilar, a perfect clustering is not

possible. Then, one approach is to cluster elements in order to maximize the number of

agreements or minimize the number of disagreements.

In Chapter 1, pointed out that predicting a partition of players is essential to the coalition

formation in this work. Correlation clustering partitions elements into clusters regarding to

their similarities therefore, the resulting partition greatly depends on the distance measure.

Then, we have to answer the question of how to define the similarity function between
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Fig. 6.2 Correlation Clustering: not a perfect cluster

u

v w

+

−

+

countries. As in Chapter 5, a general distance function will be introduced (see Section 6.3)

in order to measure the similarities.

6.2 Clustering Games

Games are categorized into sequential games in which players move in turns and simultaneous

games in which players move simultaneously. In Chapter 5, we have studied a sequential

game of country clustering. In this chapter, the correlation clustering game falls into category

of simultaneous games.

Although correlation clustering can be seen as a natural formulation of the coalition

formation problem, we have to translate the problem into game theory. Hoefer (2007)

describes the translation as follows. Vertices represent players, N = {1, . . .n}. Strategies are

clusters, i.e. each player chooses a cluster. Utility for players is benefit of being in the same

cluster with similar players. In a given partition, the utility for player i is

ui = ∑
j

ci, j(1−d(i, j))+(1− ci, j)d(i, j). (6.2)

where d(i, j) denotes the distance between players i and j. The objective is to minimize

the disagreements within the clusters. These define a simultaneous game, namely a correlation

clustering game.

Equation 6.2 has two properties. The first part increases the sum by similarity within the

clusters. That is, players maximize their utility by clustering together with similar players.

The second part decreases the sum by dissimilarity within the clusters. If players are not

similar, they maximize their utility by avoiding each other. Clusters are formed as a result
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of the minimizing disagreements which are according to pairwise distances. Each player

simultaneously chooses a cluster and receives a payoff according to the similarity in this

cluster. Players are rational and have complete information.

The above game has been introduced and analyzed in a few works. Particularly, Feldman

et al. (2012) explicitly model correlation clustering in a game theoretic setting. Authors study

hedonic clustering games and investigate how to apply different clustering methods, fixed

clustering (k-median, k-center) and correlation clustering in order to study a non-cooperative

game. They adopt the Nash stability as a solution concept in additively separable hedonic

games. The focus is on providing upper and lower bounds on the price of stability and the

price of anarchy which are defined as follows (Feldman et al. (2012)): “The price of stability

is defined as the ratio between the social welfare/cost of the best Nash equilibrium and the

social optimal solution, while the price of anarchy is defined as the ratio between the social

welfare/cost of the worst Nash equilibrium and the social optimal solution.”

Clustering analysis is a recently developing subject and is gaining much attention in

game theory. Though not the main subject in this work, it is worth mentioning one more

approach of clustering in game theory. Pelillo and Bulò (2014) study the clustering problem

in a different environment. They use evolutionary game theory to analyze the clustering

problem. Clustering is defined as a non-cooperative game and they show that finding clusters

turns out to be equivalent to the equilibrium concept in evolutionary game theory.

6.3 Model

This section describes how I integrate the correlation clustering of Bansal et al. (2004) and

the correlation clustering game of Hoefer (2007) into a simultaneous country formation game.

Countries’ preferences as well as distance functions are introduced and some intermediate

results are presented. Comparing this model with sequential coalition formation will yield a

fruitful discussion for coalition formation in general and coalition formation in the EU in

particular.

There are a finite number of n countries, N = {1,2, . . . ,n}. A partition of countries is a

specification of m groups of countries, such that each country belongs to one, and only one,

group. Thus, a partition S = (S1,S2, ...,Sm) describes a particular allocation of countries.
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Each country i ∈ N is identified by K ≥ 1 characteristics. A number of standard charac-

teristics are considered. Namely, they are the geographical location, population, GDP and

regime type. Thus, country i is denoted by the vector Ci = (λi,φi, pi,gi,ri) where λi and φi

are longitude and latitude, pi is population, gi is GDP and ri is regime type of country i.

Section 4.3 describes these characteristics and gives numerical values.

Finding a meaningful partition is a general problem. In this model, countries form

coalitions according to a correlation clustering algorithm with respect to the distances

between them. The algorithm evaluates every possible coalitions and finds the best one. Due

to the complexity, I focus on subsets of Western democracies. A relatively small number of

countries allows the respective codes for algorithms to run in reasonable time.

There is no limitation on the number of clusters and no limitation on their sizes. For

example: the best solution could be one giant cluster or n singletons. In our formulation, the

input is naturally a complete graph. But each edge (distance between two countries) di j is

still required to be normalized to interval [0,1].

The distance di j is a measure of similarity between two countries. For now we consider

a general and abstract metric. In the following section possible realizations of this metric

are presented. Additionally, numerical values can be assigned to countries as weights. The

country i, j ∈ N has the weight wi j .

The correlation game is formulated as an n-players game with complete information. The

objective is to

minimize ∑
Si=S j

wi jdi j + ∑
Si ̸=S j

wi j(1−di j)

subject to di j ∈ [0,1]

di j +d jk ≥ dik

di j = d ji

The intuition underlying the minimization formulation is that if two countries i and j

share the same cluster they pay the price for their dissimilarity, which is measured by the
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distance di j while if they are in different clusters they pay the price of their similarity which

is measured by 1−di j.

The weights are assumed to be equal to one. There are two reasons for this. First, I want

to focus on the distances and simplify the optimization problem. Second, the correlation

clustering game is equivalent to an additively-separable hedonic game (Feldman et al. (2012)).

To examine the equivalence, assume that P is the partition of the minimization problem

given in equation 6.2. Then, for player i the cost is less than any other partition P′. Formally,

ci(P) = ∑
Si=S j

di j + ∑
Si ̸=S j

1−di j ≤ ci(P′) = ∑
S′i=S′j

di j + ∑
S′i ̸=S′j

1−di j (6.3)

Recall that a game is additively separable if ∀i ∈ N there exists a function v : N → R such

that

S ⪰i T ⇔ ∑
j∈S

ui( j)≥ ∑
j∈T

ui( j).

Equivalently, if we consider cost as negative utility

S ⪰i T ⇔ ∑
j∈S

ci( j)≤ ∑
j∈T

ci( j). (6.4)

The cost ci is −ui for player i and it is given by

ci(P) = ∑
Si=S j

di j + ∑
Si ̸=S j

1−di j

Distance

The key factor determining a partition of elements is the distance measure. As before, the

general distance between two countries is defined as a product of the distance in population

and GDP space and the distance in geographical space. The distance in regime space is

omitted. Recall that

• pi is the population of country i

• gi is the GDP of country i
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• ∆i j is the Euclidean distance between countries i and j.

The general distance between two countries is

di j = f (pi, p j,gi,g j)∆i j. (6.5)

The pairwise distances di j will be computed and then normalized to [0,1]. There are two

reasons for using this general form for distance measure. First, it allows us to select any

characteristics of countries using the non-geometrical part of the distance function. Second,

the geometrical part of the distance function ensures that computational geometry can be

used to design algorithms.

Stability

When we search for a stable outcome, we can examine either individual deviations or group

deviations. A partition of players is called Nash stable if players have strategies such that

players cannot increase their payoff by unilaterally changing their strategy, namely their

clusters.

Definition 6.3.1 A partition P is Nash stable if ∀i ∈ SP(i)⪰i S j ∪{i} for all S j ∈ P∪{ /0}.

Corollary 6.3.1 A Nash stable solution exits in the clustering game.

Proof

Let P be the partition that is the outcome of the minimization problem. Assume that the

list of coalitions in P is {S1, ..,Sl,Sm, ..Sk}, k ≤ n and i belongs to coalition Sm. Recall that

if partition P is the solution of the minimization problem, then sum of cost functions of all

players is minimized and equal to ∑ci(P).

Player i prefers another coalition over the current coalition if her cost is lower there. Let

P′ be the partition that results from i moves to another coalition. Assume that the new list of

coalitions is {S1, ..,Sl ∪{i},Sm \{i}, ..Sk}, k ≤ n and now i belongs to coalition Sl . Her cost

in the new coalition should be lower.
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ci(P′) = ∑
j∈Sl

di j + ∑
j∈Sm

(1−di j)+ ∑
j∈∪k=1Sk\{Sl ,Sm}

(1−di j)< ci(P)

= ∑
j∈Sm

di j + ∑
j∈Sl

(1−di j)+ ∑
j∈∪k=1Sk\{Sl ,Sm}

(1−di j)

implies that

0 < ∑
j∈Sm

di j + ∑
j∈Sl

(1−di j)− ∑
j∈Sl

di j − ∑
j∈Sm

(1−di j). (6.6)

Let the right part of inequality be equal to M. After player i moves to Sl , the cost of

partition P′ can be written as

∑ci(P′) = ∑ci(P)+
M
2

< ∑ci(P).

This is a contradiction. Therefore, partition P is Nash stable. This completes the proof.

More generally every symmetric and additively seperable hedonic game admits a Nash

stable partition (Bogomolnaia and Jackson (2002)). A Nash stable partition implies other

individual stability concepts. Nash stability ⇒ individual stability ⇒ contractual individual

stability. Thus, the correlation clustering game is individual and contractually individually

stable.

If we want to examine group behavior we can look at a core stable partition. A partition

of the players is called core stable if players have strategies such that no group of players can

increase their payoff by unilaterally changing their strategy.

Definition 6.3.2 A coalition partition P is core stable if ∄T ⊂ N such that T ≻i Sp(i) for all

i ∈ T .

Definition 6.3.3 A game satisfies the common ranking property if and only if there exists an

ordering ⪰ over 2N \{ /0} such that for any i ∈ N any coalitions i ∈ S and i ∈ T it holds that

S ⪰i T ⇔ S ⪰ T. (6.7)

Theorem 6.3.2 (Farrell and Scotchmer (1988)) The common ranking property guarantees

the existence of a core stable partition.
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Corollary 6.3.3 A core stable solution exits in the correlation clustering game.

Proof.

It is enough to show that the correlation clustering game satisfies the common-ranking

property. Player i prefers being in coalition S to being in coalition T if and only if the cost of

being in coalition S is lower:

ci(S) = ∑
Si=S j

di j + ∑
Si ̸=S j

(1−di j)< ci(T ) = ∑
Ti=Tj

di j + ∑
Ti ̸=Tj

(1−di j) (6.8)

Equivalently,

S ⪰i T ⇔−ci(S)≥−ci(T ) (6.9)

Equation 6.9 implies that there is a linear ordering over coalitions consistent with players’

preferences. It means that preference profiles satisfy the common ranking property. This

completes the proof.

Note that the top-coalition property is also satisfied since the common ranking property

implies the top-coalition property (the other direction does not necessarily hold).

The idea behind the theorem is the common ranking property allows us to find a coalition

S that maximizes the value for all its members. In coalition S, all players prefer S to any

other coalition, therefore they do not attempt to deviate. We can repeat this process for the

remaining players until no players are left. Note that common ranking property is not a

necessary but sufficient condition for a non-empty core.

A Nash stable and core stable coalition exist in the correlation clustering game. However,

these two solution concepts do not have an implication relationship.

Nash ⇏Core, Core ⇏ Nash

Bogomolnaia and Jackson (2002) demonstrate this statement with the following examples.
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Example 6.3.4 (Core stable but not Nash stable)

Player 1 {1,2} ≻ {1} ≻ {1,2,3} ≻ {1,3}

Player 2 {1,2} ≻ {2} ≻ {1,2,3} ≻ {2,3}

Player 3 {1,2,3} ≻ {2,3} ≻ {1,3} ≻ {3}

Partition {{1,2},{3}} is core stable because no other coalition is more preferable for

player 1 and 2. However, since player 3 prefers {1,2,3} to being alone it is not Nash stable.

Example 6.3.5 (Nash stable but not core stable)

Player 1 {1,2} ≻ {1,3} ≻ {1,2,3} ≻ {1}

Player 2 {2,3} ≻ {1,2} ≻ {1,2,3} ≻ {2}

Player 3 {1,3} ≻ {2,3} ≻ {1,2,3} ≻ {3}

Partition {{1,2,3}} is Nash stable because no player wants to deviate and join another

coalition. However, there is no core stable partition: being alone is preferred to a grand

coalition, a grand coalition is preferred to any pair, any pair and one singleton is preferred to

any other pair and singleton.

We now discuss the coalition formation in two scenarios. I propose brute force algorithms

that solve the optimization problem. These algorithms will be applied to the data given in

Section 4.3 using a range of distance functions.

6.3.1 Coalition formation depends on location

The first algorithm uses the distance between capital cities of countries which is only a

function of geographical location, di j = ∆i j. As pointed out, the correlation clustering is

NP− hard problem.However, the focus is not on the computational issues but is on the

process of different approaches. Thus, I propose a straightforward calculation for only a

limited number of countries. In this calculation, the partitions of an n-element set are first

listed. Then, the cost of each partition is calculated as the sum of each player’s cost. They

prefer being in the same coalition with similar countries and in a different coalition than

dissimilar countries. The following brute force algorithm defines this process.
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Algorithm 4: A Geographical Simultaneous Coalition Formation

Data: Geographical locations of capital cities

1 Calculate pairwise distances for each pair of countries as

di j = ∆i j.

2 List all partitions of countries.
3 Calculate the cost of every partition such that

c(S) = ∑
Si=S j

di j + ∑
Si ̸=S j

(1−di j),∀i ∈ N

.

4 Choose the partition with the minimum cost.

We can observe countries following such strategies when the cost of the coalition is linear

to the geographical distance. For example, countries can form a coalition in order to reduce

the transportation cost of goods only which linearly increases with geographical distance.

Then, this algorithm gives us the network of countries which minimizes the overall cost.

6.3.2 A general coalition formation

Now we turn our attention to a richer distance measure. As we have discussed, one aim of

this thesis is also to examine a general definition of distance function and not be stuck on the

Euclidean space. To be able to be consistent I will examine the same distance measures that

are defined in Section 5.

A general coalition formation differs from a geographical coalition formation only in

terms of the distance measure. The distance between two countries is a combination of

a geometrical element (geographical distance) and one or more non-geometrical elements

(population, GDP, regime type,etc.). The combination of these elements is normalized to

[0,1] interval. In the following, the algorithm for general coalition formation is given.

This algorithm is a base model underlying the idea of a compound distance measure.

Coalitions can have various concerns: trade, public health, innovation, education, transporta-

tion, energy and so on. Indeed, formation requests are not limited to only a few factors.

92



6.3 Model

Algorithm 5: A General Simultaneous Coalition Formation

1 Choose a function, f (pi, p j,gi,g j), and for each pair of countries calculate the
distance as

di j =

{
f (pi, p j,gi,g j)∆i j : ri = r j
∞ : ri ̸= r j.

2 List all partitions of countries.
3 Calculate the cost of every partition such that

c(S) = ∑
Si=S j

di j + ∑
Si ̸=S j

(1−di j),∀i ∈ N

.

4 Choose the partition with the minimum cost.

However, we can always add these considerations in the distance measure. Before presenting

results of these algorithms, we will take a closer look at the computational aspects.

6.3.3 Computational Complexity

In correlation clustering games the time taken to reach a stable partition depends strongly

on the number of players. On the one hand, the game presented in this section is an

additively separable hedonic game; on the other hand, it is a reformulation of the correlation

clustering problem. Thus, in this subsection, I will review the computational complexity of

both additively separable hedonic games and correlation clustering. As we discussed, the

problems of the existence of a stable outcome and the decision of whether a given partition is

stable are at the heart of the computational aspect of game theory. We will restrict complexity

results for Nash and core stable outcomes.

The problem of deciding whether a Nash or a core stable partition exists in a hedonic

game is NP-hard in general (Ballester (2004)). Even if we restrict our attention to additively

separable hedonic games NP-hardness is inherited.

Theorem 6.3.6 (Sung and Dimitrov (2010)) In the class of additively separable hedonic

games checking whether a core stable or Nash stable outcome exists is NP-hard.

The existence of a Nash stable outcome can be guaranteed by restricting arbitrary prefer-

ences. It has been shown that in the class of symmetric additively separable hedonic games
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the existence of a Nash partition is guaranteed. If that is so, then how hard is it to compute

this outcome?

Theorem 6.3.7 (Gairing and Savani (2010)) In the class of symmetric additively separable

hedonic games, the problem of computing a Nash-stable outcome, is PLS-complete

PLS (polynomial local search) is a complexity class and PLS-complete problems in

which a local optimum solution to an optimization problem can be verified in polynomial

time. For details and algorithms see Gairing and Savani (2010).

Trivially, when the common-ranking property is satisfied, the question of existence is in

P. Otherwise, computing this partition can still be done in polynomial time for special cases.

For example,

Theorem 6.3.8 (Dimitrov et al. (2004)) In the class of additively seperable games, if pref-

erences are based on the appreciation of friends, a core stable coalition structure can be

found in polynomial time.

The correlation game fulfills the common-ranking property. However, when we know

that a core stable partition exists, how to find it is not always an easy task.

Theorem 6.3.9 (Sung and Dimitrov (2010)) The verification problem for core stability is

strongly NP–complete under enemy–oriented preferences.

The problem of correlation clustering is also NP-hard. Even for small size n (in our case,

sixteen countries), the running time can be impractical. Demaine et al. (2006) reformulate the

minimizing disagreement as a linear program and provide approximation algorithm which

has a complexity of O(logn). The exact complexity of a correlation clustering game depends

on the problem definition and the method used to evaluate the quality of partitions.

Algorithm 1 and Algorithm 2 are intended to be used for calculations with a very limited

number of countries. In the brute force, all partitions are first listed and evaluated, then a

comparison is performed. Listing all partition traps the implementation in a exponential

running time. There are O(2N) possible subsets which are used to list all partitions for each

element O(N). Evaluating the distance O(N2). Then finding the minimum takes O(N) time.

The following demonstrates the severity of impracticality. If clustering 10 countries takes

1 second, for 30 countries it takes about 36 days and for 100 countries about 1020 years.

Therefore, in the next section only a few countries are used.
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6.4 Application

In this section, I present the implementation of the two algorithms given in Section 6.3.1

and 6.3.2. Here, applications are not considered to illustrate the predictive power of the

theoretical model but to study a special problem, discover new questions and obtain feedback

to the theory. In economics, this type of communication is uncommon but models can benefit

from their applications.

Given a set of players (countries) and properties (geographical location, GDP and popula-

tion) implementations provide a stable partition of countries. Brute force algorithm is given

above.

6.4.1 Coalition formation depends on only location

First, only geographical location is considered. Therefore, the distance matrix contains the

geographical distance between countries. It is given in Table 6.1.

Countries form two groups. The best score is 69.88.

• Iceland

• Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxem-

bourg, Netherlands, Norway, Sweden, Switzerland, UK

Table 6.1 Geographical distance between countries
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Austria 0.0 0.22 0.21 0.35 0.25 0.17 0.31 0.69

Belgium 0.22 0.0 0.18 0.4 0.06 0.05 0.5 0.51

Denmark 0.21 0.18 0.0 0.21 0.25 0.16 0.51 0.51

Finland 0.35 0.4 0.21 0.0 0.46 0.37 0.59 0.58
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France 0.25 0.06 0.25 0.46 0.0 0.1 0.5 0.54

Germany 0.17 0.05 0.16 0.37 0.1 0.0 0.46 0.54

Greece 0.31 0.5 0.51 0.59 0.5 0.46 0.0 1.0

Iceland 0.69 0.51 0.51 0.58 0.54 0.54 1.0 0.0

Ireland 0.4 0.19 0.3 0.49 0.19 0.23 0.69 0.36

Italy 0.18 0.28 0.37 0.53 0.27 0.26 0.25 0.79

Luxembourg 0.18 0.04 0.19 0.4 0.07 0.03 0.46 0.55

Netherlands 0.23 0.04 0.15 0.36 0.1 0.06 0.52 0.48

Norway 0.32 0.26 0.12 0.19 0.32 0.25 0.63 0.42

Sweden 0.3 0.31 0.13 0.1 0.37 0.28 0.58 0.51

Switzerland 0.16 0.12 0.25 0.45 0.1 0.1 0.4 0.63

UK 0.3 0.08 0.23 0.44 0.08 0.12 0.57 0.45
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Austria 0.4 0.18 0.18 0.23 0.32 0.3 0.16 0.3

Belgium 0.19 0.28 0.04 0.04 0.26 0.31 0.12 0.08

Denmark 0.3 0.37 0.19 0.15 0.12 0.13 0.25 0.23

Finland 0.49 0.53 0.4 0.36 0.19 0.1 0.45 0.44

France 0.19 0.27 0.07 0.1 0.32 0.37 0.1 0.08
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West Germany 0.23 0.26 0.03 0.06 0.25 0.28 0.1 0.12

Greece 0.69 0.25 0.46 0.52 0.63 0.58 0.4 0.57

Iceland 0.36 0.79 0.55 0.48 0.42 0.51 0.63 0.45

Ireland 0.0 0.45 0.23 0.18 0.3 0.39 0.29 0.11

Italy 0.45 0.0 0.24 0.31 0.48 0.47 0.17 0.34

Luxembourg 0.23 0.24 0.0 0.07 0.28 0.31 0.08 0.12

Netherlands 0.18 0.31 0.07 0.0 0.22 0.27 0.15 0.09

Norway 0.3 0.48 0.28 0.22 0.0 0.1 0.35 0.28

Sweden 0.39 0.47 0.31 0.27 0.1 0.0 0.37 0.34

Switzerland 0.29 0.17 0.08 0.15 0.35 0.37 0.0 0.18

UK 0.11 0.34 0.12 0.09 0.28 0.34 0.18 0.0

6.4.2 A general coalition formation

In the following, I will present three results depending on the distance function defined as

di j =
max( gi

pi
,

g j
p j
)

min( gi
pi
,

g j
p j
)

∆i j (6.10)
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Algorithm 6: Coalition Formation
input :Countries on a plane
output :A partition of countries

1 List all partitions given list l and number of clusters K, clusters(l, K)
2 Choose non-empty clusters, neclusters(l, K)
3 Define the minimization function Phi(partition)
4 distance = 0
5 for coalition in partition do
6 for member in coalition do
7 for other member in coalition do
8 if member == other member then
9 continue

10 else
11 distance += distance(member, other member)

12 for other coalition in partition do
13 if other coalition == coalition then
14 continue

15 else
16 for other member in other coalition do
17 distance += 1-distance(member, other member)

18 return distance
19 Set best partition = None and set best score = ∞

20 for number of clusters in range(1, number of countries) do
21 Find neclusters(countries, K)
22 while True do
23 try;
24 current partition = clust.next()
25 score = Phi(current partition)
26 if score ≤ best score then
27 best score = score
28 best partition = current partition

29 except StopIteration
30 break
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Table 6.2 Geographical distance between countries
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Austria 0. 0.12 0.14 0.14 0.13 0.07 0.21 0.36

Belgium 0.12 0. 0.08 0.18 0.02 0.02 0.51 0.19

Denmark 0.14 0.08 0. 0.12 0.12 0.09 0.67 0.24

Finland 0.14 0.18 0.12 0. 0.2 0.13 0.47 0.26

France 0.13 0.02 0.12 0.2 0. 0.04 0.49 0.2

West Germany 0.07 0.02 0.09 0.13 0.04 0. 0.37 0.25

Greece 0.21 0.51 0.67 0.47 0.49 0.37 0. 1.

Iceland 0.36 0.19 0.24 0.26 0.2 0.25 1. 0.

Ireland 0.16 0.11 0.22 0.22 0.1 0.1 0.44 0.2

Italy 0.07 0.16 0.26 0.23 0.14 0.11 0.17 0.43

Luxembourg 0.15 0.02 0.08 0.28 0.04 0.02 0.72 0.31

Netherlands 0.13 0.02 0.06 0.18 0.04 0.03 0.58 0.2

Norway 0.17 0.09 0.05 0.09 0.12 0.12 0.64 0.15

Sweden 0.2 0.14 0.05 0.05 0.17 0.16 0.73 0.23

Switzerland 0.14 0.07 0.12 0.34 0.07 0.08 0.68 0.38

United Kingdom 0.2 0.04 0.08 0.26 0.04 0.07 0.75 0.21
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Austria 0.16 0.07 0.15 0.13 0.17 0.2 0.14 0.2

Belgium 0.11 0.16 0.02 0.02 0.09 0.14 0.07 0.04

Denmark 0.22 0.26 0.08 0.06 0.05 0.05 0.12 0.08

Finland 0.22 0.23 0.28 0.18 0.09 0.05 0.34 0.26

France 0.1 0.14 0.04 0.04 0.12 0.17 0.07 0.04

West Germany 0.1 0.11 0.02 0.03 0.12 0.16 0.08 0.07

Greece 0.44 0.17 0.72 0.58 0.64 0.73 0.68 0.75

Iceland 0.2 0.43 0.31 0.2 0.15 0.23 0.38 0.21

Ireland 0. 0.17 0.2 0.11 0.17 0.28 0.27 0.08

Italy 0.17 0. 0.21 0.19 0.27 0.33 0.15 0.25

Luxembourg 0.2 0.21 0. 0.04 0.15 0.14 0.03 0.05

Netherlands 0.11 0.19 0.04 0. 0.09 0.11 0.08 0.04

Norway 0.17 0.27 0.15 0.09 0. 0.04 0.21 0.13

Sweden 0.28 0.33 0.14 0.11 0.04 0. 0.18 0.13

Switzerland 0.27 0.15 0.03 0.08 0.21 0.18 0. 0.08

United Kingdom 0.08 0.25 0.05 0.04 0.13 0.13 0.08 0.

Countries form two groups. The best score is 43.62.
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• Greece

• Austria, Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Italy, Luxem-

bourg, Netherlands, Norway, Sweden, Switzerland, UK

Next, I consider the founding members of the ECSC and the UK.

Table 6.3 Geographical distance between countries
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Belgium 0. 0.1 0.09 0.64 0.09 0.07 0.14

France 0.1 0. 0.17 0.58 0.17 0.17 0.16

Germany 0.09 0.17 0. 0.45 0.09 0.12 0.3

Italy 0.64 0.58 0.45 0. 0.85 0.78 1.

Luxembourg 0.09 0.17 0.09 0.85 0. 0.15 0.2

Netherlands 0.07 0.17 0.12 0.78 0.15 0. 0.15

UK 0.14 0.16 0.3 1. 0.2 0.15 0.

Countries form two groups. The best score is 7.74.

• Italy

• Belgium, France, Germany, Luxembourg, Netherlands, UK

Last, only the group of founding members is examined. Again countries form two groups.

The best score is 5.08.
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• Italy

• Belgium, France, Germany, Luxembourg, Netherlands

The results are consistent with the results in table 5.5.

Table 6.4 Geographical distance between countries
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Belgium 0. 0.12 0.1 0.76 0.11 0.08

France 0.12 0. 0.2 0.68 0.2 0.21

Germany 0.1 0.2 0. 0.53 0.1 0.14

Italy 0.76 0.68 0.53 0. 1. 0.92

Luxembourg 0.11 0.2 0.1 1. 0. 0.17

Netherlands 0.08 0.21 0.14 0.92 0.17 0.
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Chapter 7

Conclusion

The point of departure of this thesis is the process of coalition formation. The focus is on

the emergence and evolution of coalitions, in particular the creation of the ECSC. For this

purpose, I use methods from game theory and beyond to construct two theoretical frameworks

and apply these to the ECSC.

The recent political and economical crisis urges a better understanding of national and

international coalitions. Its urgency was recently demonstrated by the Brexit. Game theory

is a very strong tool to tackle such problems. However, the equilibrium centered part of

economic game theory has shortcomings in particular with regard to the aspects of political

economy (see for example Hanappi (2013b)). In this thesis tools from physics and computer

science were combined with game theory in an attempt to investigate coalition formation and

its process.

First, theoretical models of coalition formation with a focus on hedonic games in which

players have preferences over which group they belong to were reviewed. Although these

models have a simple setting they have a wide range of applications and very interesting

features. One of the important features of these games is that the number of coalitions is not

fixed, i.e. the number number of coalitions can lie between and the total number of players.

The main focus is on the restrictions of preferences required to guarantee a solution as well

as the computational complexity of finding a solution. Several restrictions, solution concepts

and computational issues are discussed. It was concluded that the definitions of similarity,

and of the process need further attention in order to make the theory more applicable in such

setting.
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Conclusion

Cluster analysis has been successfully used in many fields and has attracted attention as

an important tool in economics. Particularly, in the modeling of coalition formation processes

clustering algorithms can be used. In chapter 3, clustering techniques and algorithms were

discussed. Then, the history of the EU was reviewed and the relevant data from the 1950s for

the application of these models were presented. In the application GDP and population size

were considered measures for economic strength. Furthermore, government type, a further

variable, was classified in three types.

In light of these, two country coalition formation games were studied. Two points are

important when designing such coalition formation games: (i) determining the players’

preferences and (ii) the procedure. The first point is addressed by defining a distance measure.

The distance between countries i and j is measured by a distance function containing

geometrical and non-geometrical elements. Thus, the distance between two countries is

defined as a product of the distance in population, GDP and political regime space and the

distance in physical space.

The second point is addressed by the use of clustering algorithms. In the first model

a sequential procedure is used in which players iteratively form subcoalitions. This is a

clustering methods borrowed from high energy physics. In the second model a simultaneous

procedure is used in which players form coalitions at once. This correlation clustering

algorithm is a well studied method in computer science. These algorithms are tailored to

the coalition formation process by subjecting them to the constraints required by the game

theoretical setting..

To illustrate the predictions made by this model, the formation of the ECSC is examined.

Concrete realizations of the general distance function are presented. The results produced

using data from 28 European countries illustrate the impact of the distance function in the

process. If the distance is defined as a ratio of countries’ GDP per capita in combination with

the geographical distance, the sequential algorithm produces a coalition of five of the six

founder states of the ESCS in the first four steps; namely France, Belgium, the Netherlands,

West Germany and Luxembourg. Due to the computational complexity, if one restricts the

number of players only to the founder states in the simultaneous coalition formation game

using the same distance function exactly the same outcome is produced. Many other results

of both algorithms using different realizations of the distance function were presented.
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Furthermore, the computational complexity of the algorithms was examined. Since the

simultaneous coalition formation problem is NP−hard, only a limited number of players

were selected for the application. The running time is n3 for the naive sequential algorithm.

However, a special class of sequential clustering algorithms proposed in physics improves

the running time to nlogn. Given the rising importance of computational matters in game

theory, this type of tool can provide a significant contribution.

Coalition formation is a difficult task and there is no unique method for solving this

problem. However, in my opinion three common aspects are necessary for a coalition

formation process in the context of international coalitions. These are geographic, economic

and social elements. Two models studied in this work contain several ideas with jet clustering

from particle physics and correlation clustering from computer science. This brings an

algorithmic approach to coalition formation processes.

This thesis should be seen as a step towards developing new frameworks in game theory

by using different techniques and improvements. This stream of research is crucial and

essential for understanding the coalition formation process in political and economical

environments.

Looking forward, although these models bring a new perspective and attempt to deal

with technical matters such as defining a distance function and computing and reducing the

complexity of the solution method, coalition formation processes still need a considerable

effort in order to be considered as being well understood.

A natural extension to the sequential coalition formation model would be to develop

a dynamic model in which the evolution of a coalition can be studied. The EU has been

expanded gradually and several structural changes took place. If such model is developed it

could be tested on the data by simulations. Furthermore, within this dynamic model many

interesting problems can be studied such as fairness and power.

In both models a fundamental challenge is to find the distance function. In this thesis

a general distance function was proposed but only a small number of possible realizations

were presented. The elements in the distance function and their relevant importance should

be studied in more details. The distance function is a measure for similarity. The concepts of

similarity and distance are crucial for the theory.
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Conclusion

Another important point is determining a threshold for the pairwise distance between

countries in the the sequential coalition formation model. This allows more precise analysis

using the algorithm proposed in this thesis. Any stability depends on the choice of the

threshold value.
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Appendix A

Computer Codes

A.1 Sequential Coalition Formation

import math

import sys

sys.path.append("/usr/local/lib/python/site -packages")

from geographiclib.geodesic import Geodesic

import time

default_dummy_distance = float("inf")

class coalition:

def __init__(self ,

name ,

lat ,

lng ,

pop ,

gdp ,

regime):

self.name = name

self.lat = lat

self.lng = lng

self.pop = pop

self.gdp = gdp
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self.regime = regime

# End of constructor

# Create a dictionary of distances

distances = {}

def distregime(A, B):

if A.regime == B.regime:

return 1

else:

return default_dummy_distance

def distloc(A, B):

distloc = Geodesic.WGS84.Inverse(A.lat , A.lng , B.lat , B.lng)

return (distloc['s12']/1000)*distregime(A, B)

# End of location distance - dist['s12 '] is in meters

distances["distregime"] = distregime

distances["distloc"] = distloc

# And for the rest , use lambda function

# geocode distance combination with pop

distances["distpop"] = lambda A,B: distloc(A, B)*abs(A.pop -B.pop

)

# geocode distance combination with gdp

distances["distgdp"] = lambda A,B: distloc(A, B)*abs(A.gdp -B.gdp

)

# geocode distance combination with per capita gdp

distances["distpercapitagdp"] = lambda A,B: distloc(A, B)*abs(A.

gdp/A.pop -B.gdp/B.pop)

# geocode distance combination with max/min per capita gdp ratio

distances["distmaxminpercapitaratio"] = lambda A,B: distloc(A, B

)*max((A.gdp/A.pop),(B.gdp/B.pop))/min((A.gdp/A.pop),(B.gdp/B

.pop))

def midpoint(A,B):

d = Geodesic.WGS84.Inverse(A.lat , A.lng , B.lat , B.lng)

h = Geodesic.WGS84.Direct(A.lat , A.lng , d['azi1'], d['s12'

]/2)
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return h['lat2'], h['lon2']

def merge(A, B):

new_name = "{0} ,{1}".format(A.name , B.name)

new_lat , new_lng = midpoint(A, B)

new_pop = A.pop + B.pop

new_gdp = A.gdp + B.gdp

new_regime = A.regime

C = coalition(new_name ,

new_lat ,

new_lng ,

new_pop ,

new_gdp ,

new_regime)

return C

# Choose the distance function here

if len(sys.argv) == 2:

distance_name = sys.argv [1]

else:

print "Invalid number of command line arguments"

print "Usage: program.py ditance_function_name"

print sys.exit()

distance = distances[distance_name]

in_f = open("input_europe.txt", "r")

coalitions = []

for line in in_f:

# Allow comments in the text file

if "#" in line:

continue

# split by "," and remove extra whitespace

[name , lat , lng , pop , gdp , regime] = [x.strip() for x in

line.split(",")]

# Create coalition object and add to list

coalitions.append(coalition(name ,
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float(lat),

float(lng),

float(pop),

float(gdp),

int (regime)))

# End of reading coalitions from file

outfile_name = "out_"+distance_name+"_"+time.strftime("%Y_%m_%d_

%H%M")+".odt"

out_f = open(outfile_name , "w")

m = [[ distance_name ],['First coalition ', 'Second coalition ', '

distance ']] # python nested list

n = [[ distance_name ],['Country ', 'pop', 'gdp']] # python nested

list

while len(coalitions) >1:

min_distance = default_dummy_distance

first_coalition = None

second_coalition = None

for i, coalition_i in enumerate(coalitions):

for j, coalition_j in enumerate(coalitions):

if i >= j:

continue

if distance(coalition_i , coalition_j) < min_distance

:

min_distance = distance(coalition_i , coalition_j

)

first_coalition = coalition_i

second_coalition = coalition_j

out_f.write(first_coalition.name)

out_f.write(" - ")

out_f.write(second_coalition.name)

out_f.write("{:.2f}".format(distance(first_coalition ,

second_coalition)))
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A.1 Sequential Coalition Formation

out_f.write("\n")

coalitions.append(merge(first_coalition , second_coalition))

coalitions.remove(first_coalition)

coalitions.remove(second_coalition)

m.append ([ first_coalition.name , second_coalition.name , "

{:.2f}".format(distance(first_coalition , second_coalition

))])

t = matrix2latex(m)

out_f.write(t)
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Country Data:

# input_europe.txt

# Name, lat, lng, pop, gdp, regime

Albania, 41.3275459, 19.8186982, 1227.0, 1229.0, 0

Austria, 48.2081743, 16.3738189, 6935.0, 25702.0, 1

Belgium, 50.8503396, 4.3517103, 8639.0, 47190.0, 1

Bulgaria, 42.6977082, 23.3218675, 7251.0, 11971.0, 0

Czechoslovakia, 50.0755381, 14.4378005, 12389.0, 43368.0 ,0

Denmark, 55.6760968, 12.5683371, 4271.0, 29654.0, 1

Finland, 60.17332440000001, 24.9410248, 4009.0, 17051.0, 1

France, 48.856614, 2.3522219,42518.0, 220492.0, 1

East Germany, 52.5200066, 13.404954, 18388.0, 51412.0, 0

West Germany, 50.73743, 7.0982068, 50958.0, 213942.0, 1

Greece, 37.983917, 23.7293599, 7566.0, 14489.0, 1

Hungary, 47.497912, 19.040235, 9338.0, 23158.0, 0

Iceland, 64.133333, -21.933333, 143.0, 762.0, 1

Ireland, 53.3498053, -6.2603097, 2963.0, 10231.0, 1

Italy, 41.8723889, 12.4801802, 47105.0, 164957.0, 1

Liechtenstein, 47.14137, 9.5207, 14.0, 159.0, 1

Luxembourg, 49.815273, 6.129583, 296.0, 2481.0, 1

Monaco, 43.73841760000001, 7.4246158, 18.0, 158.0, 1

Netherlands, 52.3702157, 4.895167900000001, 10114.0, 60642.0, 1

Norway, 59.9138688, 10.7522454, 3265.0, 17728.0, 1

Poland, 52.2296756, 21.0122287, 24824.0, 60742.0, 0

Portugal, 38.7222524, -9.1393366, 8443.0, 17615.0, 1

Romania, 44.4325, 26.103889, 16311.0, 19279.0, 0

Soviet Union, 55.755826, 37.6173, 179571.0, 510243.0, 0

Spain, 40.4167754, -3.7037902, 28063.0,61429.0, 2

Sweden, 59.3293235, 18.0685808, 7014.0, 47478.0, 1

Switzerland, 46.9479222, 7.4446085, 4694.0, 42545.0, 1

United Kingdom, 51.5073509, -0.1277583, 50127.0, 347850.0, 1

Yugoslavia, 44.816667, 20.466667, 16298.0, 25277.0, 0

Shell Program:
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#./run_all.sh -- in the console

python program.py distloc

python program.py distpop

python program.py distgdp

python program.py distpercapitagdp

python program.py distmaxminpercapitaratio
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A.2 Simultanous Coalition Formation

import copy

import sys

import time

import itertools as itt

import numpy as np

from geographiclib.geodesic import Geodesic

from scipy.spatial import distance

class coalition:

def __init__(self ,

name ,

lat ,

lng ,

pop ,

gdp ,

regime):

self.name = name

self.lat = lat

self.lng = lng

self.pop = pop

self.gdp = gdp

self.regime = regime

# End of constructor

# Read text file
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in_f = open("input_western_europe.txt", "r")

coalitions = []

for line in in_f:

# Allow comments in the text file

if "#" in line:

continue

# split by "," and remove extra whitespace

[name , lat , lng , pop , gdp , regime] = [x.strip() for x in

line.split(",")]

# Create coalition object and add to list

coalitions.append(coalition(name ,

float(lat),

float(lng),

float(pop),

float(gdp),

int (regime)))

# End of reading coalitions from file

i=0

for country in coalitions:

print i,country.name

i=i+1

# Calculate Partition
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def all_partitions(l):

try:

newitem = l[0],

except IndexError:

yield ()

else:

for part in all_partitions(l[1:]):

yield (newitem ,) + part

for i, cluster in enumerate(part):

yield part[:i] + (newitem + cluster ,) + part[i+1:]

def powerset(s):

s = tuple(s)

return itt.chain.from_iterable(itt.combinations(s, i)

for i in range(1, len(s)+1))

def phi_for_cluster(indices , dist):

mask = np.zeros(dist.shape[0], bool)

mask[list(indices)] = True

dist_part = dist[mask , :]

return dist_part[:,mask].sum() + (1 - dist_part [:,~mask]).

sum()

def best_partition(dist):

num_countries = dist.shape [0]

countries = tuple(range(num_countries))

cluster_list = np.array([set(indices) for indices

in powerset(countries)])

phic = {tuple(sorted(cluster)): phi_for_cluster(cluster ,

dist)

for cluster in cluster_list}
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A.2 Simultanous Coalition Formation

phi = lambda p: sum(phic[cluster] for cluster in p)

best = min(all_partitions(countries), key=phi)

return best , phi(best)

def distloc(A, B):

distloc = Geodesic.WGS84.Inverse(A.lat , A.lng , B.lat , B.lng)

return (distloc['s12']/1000)

def max_geodist(l):

max_geodist = 0

for i in coalitions:

for j in coalitions:

if distloc(i,j) > max_geodist:

max_geodist = distloc(i,j)

return max_geodist

print "max geodist", max_geodist(coalitions)

def max_popdist(l):

max_popdist = 0

for i in coalitions:

for j in coalitions:

if distloc(i,j)*abs(i.pop -j.pop) > max_popdist:

max_popdist = distloc(i,j)*abs(i.pop -j.pop)

return max_popdist

print "max popdist", max_popdist(coalitions)

def max_gdpdist(l):

max_gdpdist = 0
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for i in coalitions:

for j in coalitions:

if distloc(i,j)*abs(i.gdp -j.gdp) > max_gdpdist:

max_gdpdist = distloc(i,j)*abs(i.gdp -j.gdp)

return max_gdpdist

print "max geodist", max_gdpdist(coalitions)

def max_gdppercapitadist(l):

max_gdppercapitadist = 0

for i in coalitions:

for j in coalitions:

if distloc(i,j)*abs((i.gdp/i.pop)-(j.gdp/j.pop)) >

max_gdppercapitadist:

max_gdppercapitadist = distloc(i,j)*abs(i.gdp/i.pop

-j.gdp/j.pop)

return max_gdppercapitadist

print "max gdpdist", max_gdppercapitadist(coalitions)

def max_maxmingdppercapitadist(l):

max_maxmingdppercapitadist = 0

for i in coalitions:

for j in coalitions:

if distloc(i,j)*max((i.gdp/i.pop),(j.gdp/j.pop))/min((i.gdp

/i.pop),(j.gdp/j.pop)) > max_maxmingdppercapitadist:

max_maxmingdppercapitadist = distloc(i,j)*max((i.

gdp/i.pop),(j.gdp/j.pop))/min((i.gdp/i.pop),(j.

gdp/j.pop))
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return max_maxmingdppercapitadist

print "max maxmindist", max_maxmingdppercapitadist(coalitions)

geodist = []

#normalized distance

geodist = [[round(distloc(i,j)/max_geodist(coalitions) ,2) for i

in coalitions] for j in coalitions]

geodist = np.array(geodist)

print "goedist matrix"

print geodist

best , phi = best_partition(geodist)

print "Best partition:", best

print "Score:", phi

popdist = []

#normalized distance

popdist = [[round((abs(i.pop -j.pop)*distloc(i,j))/max_popdist(

coalitions) ,2) for i in coalitions] for j in coalitions]

popdist = np.array(popdist)

print "popdist matrix"

print popdist
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best , phi = best_partition(popdist)

print "Best partition:", best

print "Score:", phi

gdpdist = []

#normalized distance

gdpdist = [[round((abs(i.gdp -j.gdp)*distloc(i,j))/max_gdpdist(

coalitions) ,2) for i in coalitions] for j in coalitions]

gdpdist = np.array(gdpdist)

print "gdpdist matrix"

print gdpdist

best , phi = best_partition(gdpdist)

print "Best partition:", best

print "Score:", phi

gdppercapitadist = []

#normalized distance

gdppercapitadist = [[round((abs(i.gdp/i.pop -j.gdp/j.pop)*distloc

(i,j))/max_gdppercapitadist(coalitions) ,2) for i in

coalitions] for j in coalitions]
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gdppercapitadist = np.array(gdppercapitadist)

print "gdppercapita matrix"

print gdppercapitadist

best , phi = best_partition(gdppercapitadist)

print "Best partition:", best

print "Score:", phi

maxmingdppercapitadist = []

#normalized distance

maxmingdppercapitadist = [[round(distloc(i,j)*max((i.gdp/i.pop)

,(j.gdp/j.pop))/min((i.gdp/i.pop),(j.gdp/j.pop))/

max_maxmingdppercapitadist(coalitions) ,2) for i in coalitions

] for j in coalitions]

maxmingdppercapitadist = np.array(maxmingdppercapitadist)

print "maxmingdppercapitadist matrix"

print maxmingdppercapitadist

best , phi = best_partition(maxmingdppercapitadist)

print "Best partition:", best

print "Score:", phi
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