
Semi-Automatic Engineering of
Topic Ontologies from a

Common-Sense Knowledge
Graph

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Katinka Böhm, BSc
Matrikelnummer 0826017

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof.Dr.techn. Maria Magdalena Ortiz de la Fuente, MSc

Wien, 27. August 2018
Katinka Böhm

Maria Magdalena Ortiz de la
Fuente

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Semi-Automatic Engineering of
Topic Ontologies from a

Common-Sense Knowledge
Graph

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Computational Intelligence

by

Katinka Böhm, BSc
Registration Number 0826017

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof.Dr.techn. Maria Magdalena Ortiz de la Fuente, MSc

Vienna, 27th August, 2018
Katinka Böhm

Maria Magdalena Ortiz de la
Fuente

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Katinka Böhm, BSc
Biberhaufenweg 100/39

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. August 2018
Katinka Böhm

v





Acknowledgements

I would first like to thank the people at the WTM research group of the University of
Hamburg for giving me the inspiration and idea for this thesis.

Most of my thanks goes to my thesis advisor Magdalena Ortiz of the Faculty of Informatics
at the Vienna University of Technology, who gave me the possibility and support to
transform a first idea into this academic work. She guided my research and always took
the time out of her busy schedule to listen to my questions and offer advice whenever I
needed it.

Finally, I must express my very profound gratitude to my parents and my whole family,
for providing me with unfailing support and continuous encouragement throughout my
years of study and through the process of researching and writing this thesis. This
accomplishment would not have been possible without them. Thank you.

“This work was conducted using the Protégé resource, which is supported by grant
GM10331601 from the National Institute of General Medical Sciences of the United
States National Institutes of Health.”

vii





Kurzfassung

Durch die Nachfrage im Bereich Künstliche Intelligenz und Semantic Web Technologien
haben sich Semantische Netzwerke, Wissensgraphen und Ontologien, die die Organisation
und Modellierung von Wissen ermöglichen, stark verbreitet. Neben dem bekannten Goo-
gle Knowledge Graphen existieren weitere Wissensgraphen wie ConceptNet, Freebase,
YAGO, OpenCyc und DBPedia, die durch Informationsextraktion aus unterschiedlichen
Internetquellen riesige Mengen an strukturiertem Allgemeinwissen frei zur Verfügung
stellen. Jedoch machen fehlerhafte Inhalte und eine Vielfalt an Wissen die automatische
Weiterverarbeitung zu einer Herausforderung. Nachdem Wissensgraphen, im Gegensatz
zu formalen Ontologien, nicht auf wohldefinierter Syntax und Semantik basieren, kön-
nen sie auch nicht ohne weiteres für Aufgaben eingesetzt werden, die korrektes und
nicht-triviales logisches Schließen verlangen. Wir vertreten die These, dass existierende
Wissensgraphen genutzt werden können, um kleine bis mittelgroße themenspezifische
Ontologien aufzubauen, die Fakten zu alltäglichen Themen beinhalten. In dieser Arbeit
stellen wir eine einfache aber effektive Methode vor, um relevantes Wissen aus einem
Wissensgraphen zu extrahieren und beschreiben ein interaktives, schrittweises Verfahren,
das es ermöglicht vorschlagsunterstützt innerhalb kurzer Zeit eine Themen-Ontologie in
Beschreibungslogik (Description Logic) zu erstellen. Wir haben das Verfahren in dem
kleinen Kommandozeilentool CN2TopicOnto implementiert, das Anfragen an ConceptNet
schickt und basierend auf den Ergebnissen, Konzepte vorschlägt. Die Vorschläge können
vom Anwender genutzt werden um Axiome zu formulieren, die von einfachen Inklusionen
zwischen Konzepten bis zu Axiomen der erweiterten Bescheibungslogik reichen. Um den
Nutzen unseres halbautomatischen Tools zu veranschaulichen, präsentieren wir einige
unserer mit CN2TopicOnto erstellten Ontologien zu den ausgewählten Themen Tiere,
Früchte, Fahrzeuge und Naturkatastrophen.

ix





Abstract

With the advancements in artifical intelligence and semantic web technologies, structures
to organize and model data, such as semantic networks, knowledge graphs, and ontologies,
have become widespread. A well-knwon example is the Google Knowledge Graph, but
there are many other projects, such as ConceptNet, Freebase, YAGO, OpenCyc and
DBPedia, that are openly available, and, as the result of knowledge extraction and data
mining techniques, contain vast amounts of organized common-sense and general world
knowledge on different topics. However, the quality of the knowledge they contain varies,
and irrelevant and possibly flawed contents coexist with meaningful knowledge, making
them harder to grasp. They also lack a formal logic-based semantics, as enjoyed by
ontologies, and therefore they cannot be readily exploited for tasks that require correct
and non-trivial reasoning.
We claim that the vast work invested into knowledge graphs can be leveraged to build,
small- to middle-sized, topic-specific ontologies of every-day domains. We describe
a simple, yet effective method that extracts thematically relevant knowledge from a
knowledge-graph and, in a stepwise procedure, provides suggestions that help to in-
teractively build a Description Logic (DL) topic ontology with moderate efforts. We
present an implementation of our method in the semi-automatic CN2TopicOnto tool
that systematically queries ConceptNet and suggests suitable concept names to the user,
who can use them to create axioms in a simple command-line interface. The supported
axioms range from plain inclusions between classes, to complex ontological axioms in
expressive DLs. With our proof-of-concept prototype it is possible to build ontologies on
different everyday topics in reasonable time. To demonstrate its usefulness we describe
some illustrative ontologies on the topics animals, fruits, vehicles and natural disasters
that were created with CN2TopicOnto.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Preliminaries 5
2.1 DL Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Syntax and Semantics of ALCIO . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Syntax and Semantics of ALC . . . . . . . . . . . . . . . . . . . 7
2.2.2 ALCIO, an Example of an Expressive DL . . . . . . . . . . . . 8
2.2.3 Range Restriction and Disjointness Axioms . . . . . . . . . . . 9

3 Topic Ontologies over Knowledge Graphs 11
3.1 Topic Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 The Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Topic Ontologies Linked to Knowledge Graphs . . . . . . . . . . . . . 15

3.2.1 Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Linking the Ontology with the Knowledge Graph . . . . . . . . 18
3.2.3 The Central Taxonomy . . . . . . . . . . . . . . . . . . . . . . 18

4 Ontology Construction 23
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Supported Axioms . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Construction Process . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Step 1: Building the Central Taxonomy . . . . . . . . . . . . . . . . . 26
4.2.1 A provisional 5-level Taxonomy . . . . . . . . . . . . . . . . . . 26
4.2.2 Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Step 2: Adding Complex GCIs . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Adjusting Information over Hierarchy Levels . . . . . . . . . . 36
4.3.2 Disjunctive Axioms, Dynamic Extensions and Reverted Axioms 39
4.3.3 Range Restrictions and Concept Disjointness . . . . . . . . . . 45

xiii



4.3.4 The IsA Role . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.5 The TMPRelated Role . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Step 3: Clean-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 The CN2TopicOnto Tool 61
5.1 ConceptNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Requirements and HOWTO . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 HOWTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Adjusted Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 ConceptNet Weights and the Employed Threshold Function . . 68
5.3.2 Surjectivity of the Naming Function onto . . . . . . . . . . . . 69

5.4 ConceptNet Relation and Request Types . . . . . . . . . . . . . . . . . 69
5.4.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Complex GCIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Ontology Engineering 73
6.1 Top-down and Bottom-Up Approach . . . . . . . . . . . . . . . . . . . 75
6.2 Equivalence and Normalization . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Modeling Choice: Concept or Individual . . . . . . . . . . . . . . . . . 77

7 Topic Ontology Examples 81
7.1 Animal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Fruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4 Natural Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusion 93

List of Figures 97

List of Tables 99

List of Algorithms 101

Bibliography 103



CHAPTER 1
Introduction

With the increasing development and expansion of the Semantic Web, and the rapid
growth of domain-specific data, knowledge-representation and reasoning systems, like
ontologies, semantic networks, knowledge graphs and structured databases, have become
irreplaceable tools to organize and model data. As a result, there has been an increasing
effort to formally define requirements and standards for such types of structured knowledge.
Ontologies and knowledge graphs are two prominent ways to organize knowledge that
have different purposes and objectives.

In the most general sense, an ontology is a descriptive system that is used to formally model
a complex domain. It is a sharable domain conceptualization that offers interchangeability
of information through well-defined formalisms which allow for automated inference- and
reasoning support. Together with a reasoning engine they form a complete system that
incorporates artificial intelligence algorithms to solve reasoning problems. Ontologies are
extensively used for scientific classifications, especially in biology and medicine [JG11]
where large standardized and structured vocabularies are needed. They help scientists
manipulate and organize their experimental data, and build the backbone for many
industry applications.

The current standard for ontology representation is the Web Ontology Language (OWL)
which is widely used to serialize and exchange ontologies on the Web. OWL is a
family of standardized knowledge representation languages that are built on W3Cs XML
standard Recourse Description Framework (RDF). There exist three different levels of
expressiveness; OWL Lite, OWL DL, and OWL Full. The semantics of the first two are
based on Description Logics, a family of logics that are decidable fragments of first-order
logic. The newest version, OWL2, extends the previous specifications to provide different
syntaxes and semantics. The OWL2 Direct Semantics are compatible with the model
theoretic semantics of the SROIQ Description Logic. There exist three different profiles:
OWL2 EL, OWL2 QL, and OWL2 RL, all syntactic restrictions of OWL DL with the
purpose of trading expressive power for computational benefits [Gro12].

1



1. Introduction

Another popular way to store organized knowledge are knowledge graphs. A knowledge
graph is a graph-based domain representation for knowledge management. After the
introduction of its Knowledge Graph in 2012, Google has established the term and it
has since been picked up and used generically for different architectures and applications.
There is no agreed upon definition, as knowledge graphs are often used synonymously to
semantic networks. Frequently knowledge graphs themselves are described as ontologies
and vice versa.

Two defining characteristics for knowledge graphs were listed by Paulheim [Pau17] as
follows: a knowledge graph (1) describes real world entities and their interrelations,
organized in a graph, and (2) covers various topical domains.

Another definition in Färber et al.[FBMR18] distinctly links knowledge graphs to RDF
triples of the form (s, p, o) that join subjects (s) to objects (o) with the use of predicates
(p).

Most systems referred to as knowledge graphs, (semi-)automatically extract and integrate
information from multiple external sources through data mining techniques, and apply
some form of reasoning to further enrich the initial knowledge [EW16]. As a result, most
of them contain a lot of encyclopedic knowledge, such as knowledge about well-known
people, dates and geographical locations.

Examples of big knowledge graphs include DBPedia, Freebase, OpenCyc, Wikidata,
YAGO [FEMR15, FBMR18] and ConceptNet [SH12], which plays a prominent role in
this thesis. ConceptNet can be considered a knowledge graph according to the two
definitions we gave above: It has its foundation in MITs Open Mind Common Sense
crowdsourcing project [HSA+10] and therefore stores knowledge, expressed by humans,
on various topics; and encodes its statements in approximately 28 million annotated
triples using JSON-LD (a JSON format extension of the RDF data model).

Mere ontologies often differ from knowledge graphs in the amount of terminological,
or schematic knowledge they contain. While the former aim to provide axioms on a
structural level, the latter contain a higher magnitude of instance-level statements [Pau17].
This finding is compatible with the fact that most knowledge graphs focus on explicit
general knowledge that does not allow for gradual interpretation, such as Albert Einstein
was born in 1879 or London is a city. Exemptions are ConceptNet and OpenCyc, which
store common-sense facts, such as the knowledge that fire is hot or a car is parked in
a parking lot. Common-sense knowledge tends to be susceptible to sentiment and is
oftentimes conditional or dynamic, which increases the complexity and defeasibility of
existing models. Implicit knowledge is frequently completely overlooked or not properly
integrated, which results in incorrect reasoning that becomes significantly harder to
backtrack and correct the larger models become.

As knowledge graphs cover a broader scope and prioritize quantity of data over well-
defined semantics, often possibly irrelevant and imprecise facts coexist with relevant
knowledge and knowledge domains are interrelated in unpredictable ways. As a result
they cannot be readily exploited for tasks that require non-trivial reasoning. On the other

2



end of the spectrum, many high-quality ontologies exist that focus on highly specialized
domains, like life-sciences and health care [HSG15], such as the well-known SNOMED CT
[Don06]. Tailored for experts and manually curated and extended over years, they are far
too large and complex to allow a non-expert to get an understanding of the domain they
describe. Small, manageable and freely-available ontologies, describing non-technical
every-day topics, are hard to come by. Hand-crafted toy examples, like the Manchester
Pizza Ontology1 and the DAML Wine Ontology2 exist, but they only cover two out of
many possible every-day topical domains.

Overall the distinctions between semantic networks, knowledge graphs and ontologies are
not very clear. For this thesis we will stick to a strict, formal Description Logic-based
definition of an ontology, as introduced in the next section, and a very broad definition of
a knowledge graph as a set of possibly annotated triples. Each triple forms a statement
and all triples together induce an abstract graph representation. We presuppose the
existence of an evaluative weight as a measurement of correctness respectively certainty
of each statement. Many knowledge graphs compute such weights from distributional
similarities in text. Content-wise, we target common-sense and broad general knowledge
over encyclopedic knowledge, but want to emphasize that the distinction relating thereto
is not clear-cut either.

We make the following contributions in this thesis:

• We present a method to interactively build Description Logic topic ontologies with
moderate efforts, by leveraging knowledge from knowledge graphs. The constructed
topic ontologies are comprehensive sets of axioms on a chosen topic of interest, and
should be able to answer the following competency questions with the help of an
off-the-shelf reasoner:
– What (common-sense) properties does a specific concept have?
– Which properties are shared by different concepts? Which concepts share a

common property?
– Are there characteristics that possibly define a concept based on its elements or

subsumed concepts?
For this we claim that the vast amount of structured data that exists in knowledge
graphs can be leveraged to make suggestions which help to quickly construct a small-
to middle-sized topic ontology. We claim that such ontologies can be valuable for
illustrative and didactic purposes, as well as in research, for example, for testing
proof-of-concept prototypes.

• To prove our claim we implemented an algorithm in Python as a simple command-line
tool that we call CN2TopicOnto, which extracts knowledge from ConceptNet to suggest
concept names, and allows the user to interactively define axioms using both suggested
and self-defined concepts and roles. Different knowledge domains can be quickly
1https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes
2https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine

3

https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes
https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine


1. Introduction

explored by simply changing the defined topic at the start of the construction process.
Axioms are added in consecutive steps and range from plain concept inclusions to
inclusions with complex ALCIO concepts. For the task, we identify suitable relations
in ConceptNet that are likely to encode ontological knowledge relevant to the user,
and establish adequate orderings and thresholds to process suggestions in a convenient
way that does not overwhelm the user. Resulting ontologies have the benefit of being
adaptable and arbitrarily extendable, both with our tool and with existing ontology-
editing tools. This makes them susceptible to further improvement and refinement so
that they can be used as a starting point for engineering larger high-quality ontologies.
This reduces the effort needed to develop them from scratch.

• In Chapter 6 we discuss some related work and research in the field of ontology
engineering. Using our method, we give a view on the process of knowledge elicitation
and ontology construction from the perspective of ontology engineering. For this we
examine good concept hierarchy design and briefly present established design methods
such as ontology normalization, and the adequate modeling of modifying concepts,
which are concepts that describe adjectives or adverbs.

• We illustrate the usefulness of our simple prototype by describing some illustrative
ontologies on topics such as vehicles, fruits and animals. We compare multiple sample
ontologies by providing statistics on axiom count, vocabulary size, and approximate
time spent engineering them with our tool.

• We discuss some difficulties regarding the use of ConceptNet for knowledge extraction
for our tool and describe methods to alleviate arising issues. We briefly analyze the
type of ontologies that our algorithm produces, and their boundaries for common-sense
knowledge, from a Description Logic perspective, and discuss possible uses as well as
further improvements and extensions that could be implemented in the future.

4



CHAPTER 2
Preliminaries

Description Logics (DL), as a fragment of classical first order logic, are a family of
languages for Knowledge Representation and Reasoning [BN03, BHLS17]. As such, they
form the formal foundation of OWL.
This section provides some preliminaries and gives an overview of the required DL
formalisms. At first we introduce the main components of a DL ontology. Then we
formally define the syntax and semantics of the basic DL ALC, followed by the relevant
constructors that are needed to extend ALC to ALCIO.

2.1 DL Ontologies
An ontology is defined by a set of formulas, which follow a well-defined syntax and
semantics. The two building blocks of a DL ontology are Concepts (often called Classes)
and Roles (also called Relations or Properties). Both are used to build axioms, the
statements that are true within the ontology. The domain elements of an ontology
are called individuals (sometimes instances). Individuals are subject to the restrictions
defined by the axioms. Ontology axioms are split into two types, which are stored as the
terminological component (TBox) and the assertional component (ABox). In what follows
we introduce a DL vocabulary and formally define how it is used to build a DL ontology.

Definition 2.1.1 ((DL) Vocabulary).
The basic vocabulary contains countably infinite, pairwise disjoint sets

(a) NC , of concept names,
(b) NR, of role names,
(c) NI , of individual names.

With the vocabulary we define atomic and basic concepts as the most primitive building
blocks of an ontology.

5



2. Preliminaries

Definition 2.1.2 (Atomic and Basic Concepts).
We call a concept name A ∈ NC , atomic concept. An atomic concept is a unary predicate
that defines a subset of domain elements that share a common property. A basic concept
B is an atomic concept or a nominal {a} where a ∈ NI . Basic concepts are the main
building blocks of an ontology.

Examples: Student, Fruit, AutomatedVehicle, {london}, {the times newspaper}

Definition 2.1.3 (Roles).
A role name R ∈ NR is a binary predicate that defines the relation between a pair of
elements of the concepts.

Examples: PartOf, HasAnatomicalPart, Contains, HasColor, WorkEnvironmentOf

Concept and role constructors, such as u,t,¬ and ∩,∪, .− are then used to build more
complex concepts and roles.

Examples: Animal t Biped, RomanceNovel t HistoryNovel, ∃HasSpecies.MammalSpecies,
Car u ∀ HasColor.{red} and HasPart−, EnrolledIn ∪ Attends, ¬HasFeature

Throughout the thesis we will use A to denote atomic concepts and B to denote basic
concepts. We will use C,D to denote general concepts that possibly contain constructors.

Definition 2.1.4 (TBox).
The TBox defines concepts and roles and constraints the relationships between them.
There are two main kinds of terminological axioms:

• General concept inclusions (GCIs): C v D

• Definitions: A ≡ C, where A has to be an atomic concept

The TBox T is then defined as a set of terminological axioms. Each axiom contains a
lefthandside (LHS) and a righthandside (RHS) respectively.

We differentiate between two types of GCIs, I. atomic concept inclusions (ACIs) A v A′,
where A and A′ are atomic concepts, and II. complex GCIs that contain constructors
and role quantification (∀, ∃).

Intuitively, a TBox contains schema information that introduces the vocabulary and the
rules of the world.

Examples: Elephant v ∃ HasSpecies.MammalSpecies,
Spoon t Knife t Fork v Cutlery,
Watercraft ≡ Vehicle u ∃ UsedOn.Watersurface,
GreenApple ≡ Apple u ∀ HasColor.Green

6



2.2. Syntax and Semantics of ALCIO

Definition 2.1.5 (ABox).
The ABox A consists of concept and role membership assertions that assign a single
individual a ∈ NI to an atomic concept A, denoted A(a), or semantically link a pair of
individuals (a, b) through a role predicate R, denoted R(a, b).

Intuitively, the ABox contains factual information and can be seen as a partial description
of the world.

Examples: Car(toyotacorolla), HistoryNovel(warandpeace),
HasPart(apple, appleseed), O�erForSale(ikea, pax)

We can now define a DL ontology. Note that in DL terminology, the terms knowledge
base (KB) and ontology are often used interchangeably.

Definition 2.1.6 ((DL) Ontology).
A (DL) ontology or KB O, is a pair (T ,A), where the TBox T is a finite set of GCIs
and the ABox A is a finite set of (concept and role) membership assertions.

For simplicity whenever we use the term ontology, we refer to a DL ontology.

We will denote all names that are effectively part of an ontology O the effective vocabulary
and refer to the respective sets through NC(O), NR(O) and NI(O).

2.2 Syntax and Semantics of ALCIO

DLs are a hierarchy of decidable logics with increasing expressive power and computational
complexity. They range from Lightweight DLs, with very restricted expressiveness, to
expressive DLs, that can model more complex domains but have higher computational
complexity. The basic DL language is called ALC. We shortly summarize the ALC
syntax and define respective semantics, before introducting the extentions needed for
ALCIO.

2.2.1 Syntax and Semantics of ALC

Let NC , NR and NI be countably infinite, pairwise disjoint alphabets of concept names,
role names, and individuals.

Concepts C obey the grammar C → > | ⊥ | A | {a} | ¬C | C uD | C tD | ∃R.C | ∀R.C,
where A ∈ NC is an atomic concept, D is a concept, a ∈ NI , and R ∈ NR.

An interpretation I = (∆I , ·I) consists of

• a non-empty set ∆I called domain

• an interpretation function ·I

7



2. Preliminaries

The interpretation function ·I maps every concept C to CI , where CI ⊆ ∆I , every role
R to RI , where RI ⊆ ∆I ×∆I , and every individual a to aI , where a ∈ ∆I .

The interpretation function is then extended to all concepts through

>I = ∆I ,
⊥I = ∅,

(¬C)I = ∆I\CI ,
(C uD)I = CI uDI ,
(C tD)I = CI tDI ,
(∀R.C)I = {a1 | ∀a2 ∈ ∆I .(RI(a1, a2)→ a2 ∈ CI},
(∃R.C)I = {a1 | ∃a2 ∈ ∆I .(RI(a1, a2) ∧ a2 ∈ CI},

We define satisfiability in an ontology O = (T ,A).

Definition 2.2.1 (Satisfiability).
Assume an interpretation I. Then I satisfies a GCI C v D if CI ⊆ DI , and I satisfies
an assertion C(a), respectively R(a1, a2) if a ∈ CI , respectively (a1

I , bI) ∈ RI .

As a consequence, I satisfies a TBox T if it satisfies every GCI in T , and I satisfies a
ABox A if it satisfies every assertion in A.

An interpretation I is called a model of an ontology O = (T ,A), if it satisfies A and T .
With the notion of satisfiability, we now define entailment.

Definition 2.2.2 (Entailment).
Assume an ontology O and concepts C,D. Then O entails the axiom C v D, written
O � C v D, if and only if the axiom C v D holds in O.

An axiom C v D holds in O, if CI ⊆ DI in every model of O.

2.2.2 ALCIO, an Example of an Expressive DL

For ALCIO, ALC is extended with the concept constructor for nominals O and the role
constructor for inverses I.

Nominals O

With nominals O it holds that, if a1, . . . , an are individuals, then {a1, . . . , an} is a concept
with the interpretation {a1, . . . , an}I = {a1

I , . . . , an
I}.

Not that basic concepts {a} are nominals over one individual a ∈ NI .

With nominals it is possible to describe concepts as sets of individuals.

Examples: {asia, africa, north america, south america, antarctica, europe, australia} ≡ Con-
tinent, {red, green, blue, yellow} v Color

8



2.2. Syntax and Semantics of ALCIO

Inverses I

With inverses I it holds that if R is a role, then R− is a role, where (R−)I = {(a2, a1) |
(a1, a2) ∈ RI}

Note that the following equivalence holds: C v ∃R−.D ≡ ∀R.C v D.

Examples: HasPart− = PartOf, StudentOf− = TeacherOf

Other common extentions are (qualified) number restrictions ((Q)NR), self concepts
and role inclusions (H). Those build the basis of the DLs SHIQ and SHOIQ that are
related to the OWL languages.

2.2.3 Range Restriction and Disjointness Axioms

We further define two types of axioms that will be relevant for the ontologies discussed
in this thesis.

Definition 2.2.3 (Range Restriction).
A range restriction for a role R and a concept C can be expressed as

∃R−.> v C (2.1)

We denote this with the short form Ran(R,C).

Definition 2.2.4 (Disjointness).
Disjointness of concepts C,D can be expressed as

C uD v ⊥ (2.2)

We denote this with the short form Disj(C,D).

A set of concepts C = {C1, . . . , Cn} is called disjoint if and only if all Ci are pairwise
disjoint, that is

Ci u Cj v ⊥ for all Ci 6= Cj ∈ C (2.3)

9





CHAPTER 3
Topic Ontologies over Knowledge

Graphs

In this thesis we introduce a construction method for topic ontologies. For this we provide
a formal definition of a topic ontology. Additionally we explain some general notions
that are important for the construction process and establish required terminology. The
presented notions are independent from the chosen DL. In the next chapter we will
provide a technique for building topic ontologies in ALCIO based on those notions.

Throughout the thesis, all relation triples that originate from a knowledge graph, in
particular ConceptNet, are displayed in cursive font as (Concept1, Relation, Concept2) and
we use sans serif font for DL expressions, for example Concept1 v ∀ RoleName.Concept2.

3.1 Topic Ontologies
We define a Topic Ontology as a DL ontology that is modeled around a specific topic.
The topic specifies the area of interest and thereby the domain. All contained axioms
revolve around the topic.

Definition 3.1.1 (Topic Ontology).
A topic ontology is a pair X = 〈T , tc〉 where tc is a concept name that we call the topic
concept and T is the TBox of a DL ontology, where tc occurs in T .

According this definition the Manchester Pizza Ontology is an example of a topic ontology,
where tc = Pizza 1. Other examples are the refined OWL version of the DAML Wine
Ontology 2 and LUBM (Lehigh University Benchmark)[GPH05], a university domain
ontology that can be used to evaluate systems and their reasoning capabilities.

1https://protege.stanford.edu/ontologies/pizza/pizza.owl
2https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine

11



3. Topic Ontologies over Knowledge Graphs

For our tasks purpose the tc is a single or compound word that is chosen in advance
and defines the domain expected to be covered by the constructed ontology. It acts as
a starting point for the effective vocabulary and axioms of X , and should be a general
term that covers a sufficient area.
Topic concepts that fulfill those requirements and were used in the example ontologies
we constructed are vehicle, fruit, animal, university and fast food. The respective topic
ontologies contain information about types of vehicles, varieties of fruits, species of
animals, and typical fast-food items. They express associated colors and behavioral
characteristics. The university ontology models parts of a typical administration hierarchy
and includes representations of well-known universities.

3.1.1 The Taxonomy

The general definition of a taxonomy is a classification schema for concepts, terms
or artifacts. Most taxonomies are hierarchical and obey a single type of parent-child
relationship, such as whole-part or genus-species [webb].

The topic ontologies we build have large taxonomies, hence they provide a fitting skeletal
structure and are interesting to examine.

For our purpose we consider the taxonomy of an ontology to be the subset of TBox
axioms that includes only ACIs. As such it defines a hierarchy of named concepts, such
that O � A(x)⇒ O � B(x) holds for an individual x and concepts A,B. It is subject to
the supposition that A is a more specialized concept of B.

Definition 3.1.2 (Taxonomy).
The taxonomy Tax of an ontology O is defined as

Tax(O) = {A v B ∈ T | A,B atomic concepts other than >}.

NC(Tax) is the set of all concept names occurring in Tax.

While it directly follows that O � A v B if A v B ∈ Tax(O), the converse is not true.
In what follows, we define the closure of v over Tax. This allows for weaker statements
about concept subsumptions that hold within the taxonomy.

Definition 3.1.3 (Closure of v over Tax).
We define v*

Tax(O) as the reflexive transitive closure of vTax(O)= {(A,B) | A v B ∈
Tax(O)} over the taxonomy Tax of O.

Corollary 3.1.1.

A v*
Tax(O)B ⇔ Tax(O) � A v B (3.1)

A v*
Tax(O)B and B v*

Tax(O)A⇔ Tax(O) � A ≡ B (3.2)

12



3.1. Topic Ontologies

Definition 3.1.4 (Concept Equivalence).
Let O be an ontology with atomic concepts A,B ∈ Tax(O).
Then A and B are called (semantically) equivalent if and only if Tax(O) � A ≡ B.

We use v*
Tax(O) to navigate the taxonomy of O, and establish the concept names that

are most relevant to the topic. For our purpose Definition 3.1.2 of a taxonomy suffices,
as we do not use it for entailment or reasoning, but for syntactic traversal of axioms.

Definition 3.1.5 (Graph Representation of Tax).
A taxonomy Tax can be visualized as a directed graph GTax = (V, E), with a set V of vertices
where V := NC(Tax) and E, a set of directed edges (arcs) such that (A,B) ∈ E ⇔ A v B ∈ Tax.

Figure 3.1 shows selected parts of GTax of the Animal Ontology. All graphical taxonomy
visualizations in this thesis were done with the Protegé plug-in OwlViz. An is-a arc
between concepts A and B is equivalent to A v B. Black arrowheads indicate that
further concepts exist that are not displayed. Purple and green arrows emphazise the
incoming and outgoing connections for the highlighted topic concept.

Definition 3.1.6 ((Immediate) Subclass).
Let O be an ontology with atomic concepts A,B ∈ Tax(O), such that O 2 A ≡ B.
A is called an (immediate) subclass of B in O ⇔ A v B ∈ Tax(O).

(Immediate) subclasses correspond to direct successors (also called children) in GTax.

Definition 3.1.7 ((Immediate) Superclass).
Let O be an ontology with atomic concepts A,B ∈ Tax(O), such that O 2 A ≡ B.
B is called an (immediate) superclass of A in O ⇔ A v B ∈ Tax(O).

(Immediate) superclasses correspond to direct predecessors (also called parents) in GTax.

Definition 3.1.8 (Ancestors and Descendants).
Let O be an ontology with atomic concepts A,B ∈ Tax(O), such that O 2 A ≡ B.
If A v*

Tax(O)B then B is called an ancestor of A and A is called a descendant of B.

An ancestor B′ of A is greater than B ⇔ B v*
Tax(O)B

′ and B′ 6= B.
A descendant A′ of B is smaller than A ⇔ A′ v*

Tax(O)A and A′ 6= A.

Remarks.
• The greatest ancestor of any ontology taxonomy is the concept Top (>, Thing). It is
the concept that subsumes every other concept by default. For reasons of simplicity,
we do not consider A v > part of Tax for any A ∈ NC(O) and assume > to not be
part of NC(Tax).
• Tax(O) is hierarchical if descendants are more specialized concepts than their ancestors.
• Atomic concepts that have no further subclasses correspond to leafs in GTax.
• An atomic concept can have more than one immediate superclass. Therefore Tax

defines a poly-hierarchy and the graph GTax in general does not have a tree-structure.

13



3. Topic Ontologies over Knowledge Graphs

Definition 3.1.9 (Levels of an Ontology Taxonomy).
The topmost level (level 1) of Tax is the set of all atomic concepts from NC(Tax)
that do not have further superclasses. A concept A is on level n of the taxonomy if
maxi(level(Bi)) = n− 1 for all immediate superclasses Bi of A.
In case of a cycle in Tax, all atomic concepts Ai that are part of the cycle are considered
to be on the same level, namely mini(level(Ai)).

We also say that an atomic concept A is k levels lower/downwards with respect to
another concept B if there exist exactly k − 1 concepts Ai ∈ NC(Tax) with {A v
A1, A1 v A2, . . . , Ak−1 v B} ⊆ Tax, building a path in GTax. Comparably B is k level
higher/topwards with respect to A.

Definition 3.1.9 assigns a unique level to each atomic concept, but also allows to talk
about all atomic concepts that occur on a specific level w.r.t. another concept. Note that
in the second case, one concept can be on more than one level w.r.t. another concept,
dependent on the structure of Tax, as multiple connecting paths may exist in GTax. The
following example should make the distinction clearer.

Figure 3.3: Subgraph of Figure 3.2. Unique taxonomy levels of the displayed subpart of
the Animal Taxonomy are depicted in orange.
Consider the Animal Ontology in Figure 3.2. Six concepts, namely Creature, Sand, Part,
Habitat, Species and Biped are at the topmost level of the taxonomy. Figure 3.3 shows the
subgraph with respective (unique) levels annotated in orange next to each concept. As can
be seen HerdAnimal and HoofedAnimal are assigned level 3 and Cows is assigned level 5,
even though Cowsv HerdAnimal, Cowsv HoofedAnimalmakes Cows an immidiate subclass
of both HerdAnimal and HoofedAnimal. The concept Cattle pushes Cows one level lower
in the overall taxonomy. Cows is then two levels lower than Mammal, but simultaneously
two and three levels lower w.r.t the concept Animal, based on the existence of paths
Animal-HerdAnimal-Cows, Animal-HoofedAnimal-Cows and Animal-Mammal-Cattle-Cows.

14



3.2. Topic Ontologies Linked to Knowledge Graphs

3.2 Topic Ontologies Linked to Knowledge Graphs

To build topic ontologies, our approach exploits an existing knowledge graph to generate
thematic suggestions that match the topic. Here we introduce the notion of knowledge
graph that we employ, and formalize the method we use to link concept names that occur
in the topic ontology to the knowledge graph for information extraction.

Definition 3.2.1 (Knowledge Graph).
We assume a knowledge graph K to be a triple K = (G, `, ω), where G = (N,E) is a
directed graph with nodes N and a set E of connecting edges. Nodes are labeled through
the labeling function ` such that `(n) is a short description of the entity n. Edges e ∈ E
are labeled by relation types r ∈ R, where R is a fixed finite set defined by K. We presume
that at least a kind of subsumption relation (is-a) exists.

If there is an edge e = (n, n′) ∈ E with label `(e) = r, we call the triple (n, r, n′) ∈ K an
assertion, in which n ∈ N is the start entity, and n′ ∈ N the end entity. Assertions are
a priori assumed to be non-symmetric and non-transitive. A weight function ω assigns
an associated weight ω(a) ∈ R to each assertion a that measures connection strength,
respectively correctness.

Remark.
With this definition a taxonomy graph GTax can itself be viewed as a minimal knowledge-
graph with one relation type R = {v}. Each node n ∈ NC(Tax) is then identified with
`(n) = n.

Definition 3.2.2 (Request).
Let n ∈ N be an entity and r ∈ R a relation type in K. We define requests of three types
(s=start, e=end, b=bidirectional) over K:

Reqe(n, r) = {(n′, ω(a)) | a = (n, r, n′) ∈ K}
Reqs(n, r) = {(n′, ω(a)) | a = (n′, r, n) ∈ K}
Reqb(n, r) = Reqe(n, r) ∪Reqs(n, r)

(3.3)

3.2.1 Suggestions

Suggestions are extracted from the entity labels of the knowledge graph and are intended
to help during the ontology construction process. We define a filtered request R̃eq(n,Re`)
for a given set Re` of pairs (r, t), where r is a relation type and t a request type, as
the union over multiple requests filtered by a threshold function Θ. The function Θ
guarantees that results that originate from assertions with high weights are favored while
limiting suggestions to a manageable amount.

Definition 3.2.3 (Filtered Request).
Let n ∈ N be a entity from K and Re` = {(r, t) | r ∈ R and t ∈ {s, t, b}}. For a given

15



3. Topic Ontologies over Knowledge Graphs

threshold function Θ we define

R̃eq(n,Re`) =
⋃

(r,t)∈Re`
{(n′, ω(a)) ∈ Reqt(n, r) | ω(a) ≥ max

(r,t)∈Re`
Θ(Reqt(n, r))} (3.4)

From a filtered request we obtain a set of concept names that we call suggestions. A
naming function onto converts the labels into a more concise form, so that they can be
immediately selected as concept names to build axioms. In what follows we introduce a
naming function and provide some details on the threshold function Θ.

3.2.1.1 The Naming Function onto

The naming function is a conversion function between K and the ontology vocabulary.

Definition 3.2.4 (Naming Function).
A naming function onto is a function that takes a node n in K and returns a concept
name A ∈ NC .

Different conversion techniques are possible, dependent on the entity encoding of the
knowledge graph. We assume the knowledge graph to have representative node labels, so
that these can be utilized by onto, but any other transformation method that generates
matching concept names serves the purpose.

If labels are frequently composed of a few words, a conversion with onto could apply
CamelCase to receive concept names, as follows. For each n ∈ K the label `(n) is
extracted and the subsequent steps are applied: at first all articles are removed; then
all individual words are capitalized; at last white spaces are removed. Following this
method, `(n) = "A romance novel" is converted to onto(n) = RomanceNovel. In fact this
is the method that was implemented in the CN2TopicOnto tool.
We want to note as a downside that it is possible for onto to be surjective, if distinguishing
filler words are removed from the labels during the process.

3.2.1.2 The Threshold Function Θ

In accordance with Definition 3.2.2 a request returns a set of tuples (n, ω(a)) where ω is
the weight of the underlying assertion a. After a request is sent, Θ is applied to remove
elements with low weight in cases where a lot of elements with high weight exist. Cut-off
points are added at selected limits to ensure that, if existent, at least a certain amount
of results are retained by doing the following:

The function Θ assigns a real number to each individual request Reqt(n, r) for an entity
n and a request type r, and t ∈ {s, t, b}, based on a set of fixed pairs (ki,mi) where
ki ∈ R define weight cut-off points and mi ∈ Z define respective cardinality limits.
If Reqt(n, r) returns a set of tuples (n, ω(a)) then |{(n, ω(a)) | ω(a) ≥ ki}| is the cardinality
of the subset of Reqt(n, r), whose elements’ weight is greater (or equal) to ki. If this
cardinality is greater (or equal) to the respective mi, then the assumption is that the

16



3.2. Topic Ontologies Linked to Knowledge Graphs

request returns enough results of high confidence (according to ω) to disregard those
with lower ω-values. As a result all n with ω lower than ki are cut off.
The function Θ assigns the maximum ki, for which the subset cardinality exceeds the
cardinality limit. This assures that assertions with high weight are valued over assertions
with low weight, but also guarantees a certain number of results.

An example of a very simple threshold would be,

Θ(Reqt(n, r)) =
{

1 if |{(n′, ω(a)) | ω(a) ≥ 1}| ≥ 3
0 else

(3.5)

with a single pair (1, 3) assigned. In this example, if more than three respective assertions
that contain n′ and have weight greater or equal to one exist, then the assigned Θ is 1.
As a result all assertions that have lower weight than 1 will be cut-off and not considered
as relevant. If less than three assertions with weight greater or equal to one exist, then
the threshold is set to 0 and all assertions are included (assuming the knowledge graph
assigns no negative weights).

The pairs (ki,mi) need to be selected based on the weight distribution of the knowledge
graph. Ifmi increases with increasing ki then more results with high confidence are needed
to increase Θ, whereas if mi decreases with increasing ki, results with low confidence are
more likely to be cut off. However in the second case, constraints can easily become too
restrictive, such that high confidence results are required to retain any results at all. For
this reason a constraint might be desirable to ensure that some results are kept in any
case.
The function and specific values (ki,mi) used in our implementation are explained in
section 5.3.1 together with other specifics of ConceptNet.

We now formally define S(n,Re`) as the set of suggestions:

Definition 3.2.5 (Suggestions).
Let R̃eq(n,Re`) be the filtered request for an entity n and a set Re` and onto a naming
function. Then

S(n,Re`) = {onto(n′) | (n′, ω(a)) ∈ R̃eq(n,Re`)}. (3.6)

S(n,Re`) is a set of concept names that are associated with the entity n through a
thematically connected group of relation types, defined in Re`. Choosing appropriate
sets Re`, based on the employed knowledge graph is an important preliminary step to
guarantee that good suggestions can be extracted.

Figure 3.4 shows an example of a filtered request using ω̂, the threshold function Θ that
is employed in CN2TopicOnto, to obtain possible subclasses of the entity animal with
the subset relation type IsA. For clarity, in this example we identify a node n with its
label `(n).

17



3. Topic Ontologies over Knowledge Graphs

Θ(Reqs(‘animal’, IsA)) = 2.0
R̃eq(‘animal’, {(IsA, s)}) = {(‘a rabbit’, 2.82842712474619), (‘A beaver’, 2.0),

(‘A ferret’, 2.0), (‘A primate’, 2.0), (‘a rodent’, 2.0), . . . }
S(‘animal’, {(IsA, s)} = { Beaver, Ferret, Primate, Rabbit, Rodent, . . . }

Figure 3.4: Requests to obtain suggestions for subclasses with `(n) = ‘animal’

3.2.2 Linking the Ontology with the Knowledge Graph

Any concept name that is suggested through S(n,Re`) for some n,Re` can be added to
the ontology. We define a mapping that, if a concept name is added to NC(O), links it
back to the respective knowledge graph node; the node with whose label it was created
by onto.

Definition 3.2.6 (KG-Mapping).
Let X be a topic ontology and NC(X ) the set of its atomic concepts.
A bijective mapping φ from a subset ÑC ⊆ NC(X ) to entities Ñ ⊆ N of K is called a
K-mapping.

In a KG-mapping A ∈ NC(X ) and φ(A) are assumed to share a similar semantic meaning.

We now extend Definition 3.1.1 of a topic ontology to incorporate the K-mapping.

Definition 3.2.7 (Topic Ontology over K).
A topic ontology over K is a triple X = 〈T , tc, φ〉, where 〈T , tc〉 has been extended with
a KG-mapping φ such that

(a) tc has to occur in T
(b) φ(tc) is defined

For the construction, the topic ontology is initialized with T = {tc v >} and some
associated φ(tc). Then requests for φ(tc) are sent to the knowledge graph to successively
receive suggestions that are conceptually related to tc. The more connected tc is within
the knowledge graph, the more concept suggestions can be offered. If a suggestion is
added to the ontology, new requests are sent to receive respective further suggestions.
This way the ontology is expanded in an iterative fashion.

3.2.3 The Central Taxonomy

To allow for an expansion of the ontology in a structured way, a few further definitions
are necessary.

Definition 3.2.8 (Central Taxonomy).
Assume a topic ontology X = 〈T , tc, φ〉 and its taxonomy Tax(X ).
We consider a subset CT ⊆ Tax of ACIs where

18



3.2. Topic Ontologies Linked to Knowledge Graphs

(a) tc ∈ NC(CT )
(b) GTax is connected
(c) φ(A) is defined for every A ∈ NC(CT )

This set is called the central taxonomy of X . We call the set of atomic concepts NC(CT )
the central concepts CC.

The term expresses the notion that all concepts in CC are centered around the topic
concept. As such the central concepts are assumed to have close semantic resemblance
to the topic concept tc. Intuitively the tc represents the semantical "center", as it is
surrounded by concepts with more general meaning and concepts that are more restrictive.

Building an initial central taxonomy will be the first step of the topic ontology construction
process. The central taxonomy builds the initial ’skeleton’ of Tax and will later be
expanded with further axioms. We introduce a queue representation of the taxonomy
that will be useful for the structured navigation of CT .

3.2.3.1 A Flat Representation of the Taxonomy

The iteration order queue (IOQ) is a limited representation of the taxonomy structure,
with the only requirement that all ancestors of a concept A get listed previous to A.
Algorithm 3.1 describes the queue building process for an arbitrary ontology. We use it
on CT of a topic ontology X = (T , tc, φ) to generate a queue for the contained central
concepts. We refer to this queue as QCT (X ).

The algorithm starts at level 1 and collects all concepts that have no further ancestors.
Then with each queue update, the first element is popped, while a subset of its children is
added to the queue. Added subsets only include those concepts that were not processed
yet and whose parents were all already appended to the queue in a previous step.
If the respective taxonomy graph is connected then the queue will always list concepts
with more general semantic meaning previous to concepts that describe a more specific
set of individuals.

If the initial central taxonomy is very large, navigation becomes exhaustive. As a
mitigation we define a smaller subset of selected central concepts CCsel that are contained
in CT but do not branch out as far in GTax. Those concepts will always be offered to the
user to use in axioms.

Definition 3.2.9 (Selected Central Concept).
Let CT (X) be the central taxonomy of X = (T , tc, φ).
A ∈ CCsel ⇔

(a) A v tc
(A is an immidate subclass of tc)

(b) tc v*CT (X )A
(A is an ancestor of tc)

19



3. Topic Ontologies over Knowledge Graphs

Algorithm 3.1: Iteration Order Queue algorithm
Input: A subset T ′ of Tax(O) of an ontology O
Output: An ordered queue R, in which all ancestors of a concept A ∈ NC(T ′)

appear previous to A
1 Q = { };
2 R = { };
3 if Q = { } then

/* Ancestors(x) returns all ancestors of x in T ′ */
4 forall A ∈ NC(T ′) with Ancestors(A) = { } do
5 Q = Q∪ {A};
6 end
7 end
8 while Q 6= { } do
9 ` = Q.popleft( );

10 R = R∪ {`};
11 add = true;

/* SubClasses(x) returns all subclasses of x in T ′ */
12 forall x ∈ SubClasses(`) do

/* SuperClasses(x) returns all superclasses of x in T ′ */
13 forall y ∈ SuperClasses(x) do
14 if y 6= ` and y /∈ Q ∪R then
15 add = false;
16 break;
17 end
18 end
19 if add == true then
20 Q = Q∪ {x};

/* Equiv(x) returns all concepts equivalent to x in T ′ */
21 forall z ∈ Equiv(x) do
22 Q = Q∪ {z};
23 end
24 end
25 end
26 end

20



3.2. Topic Ontologies Linked to Knowledge Graphs

(c) ∃A′ s.t. A′ v tc and A′ v*CT (X )A
(A is an ancestor of an immediate subclass of tc)

(d) ∃B′ s.t. tc v*CT (X )B
′ and A v B′

(A is an immediate subclass of an ancestor of tc)

The importance of CCsel will become clearer when the complete topic ontology building
process is described in the next chapter.

For now we have introduced all necessary terminology. Equations (3.7) and (3.8) recap
the new denominations and their relation. Vertical alignment indicates the connection
between sets of terminological axioms (3.7) and contained vocabulary (3.8).

Remark. Let X = (T , tc, φ).

CT (X ) ⊆ Tax(X ) ⊆ T (3.7)
tc ∈ CCsel ⊆ CC ⊆ NC(Tax) ⊆ NC(X ) (3.8)

21



3. Topic Ontologies over Knowledge Graphs

Selected parts of Tax of the Animal topic ontology. Bold text indicates concept
names that are connected to tc in GTax. We will call this part of Tax the central
taxonomy in the future (see Definition 3.2.8).

Figure 3.1: GTax of selected parts of the Animal Ontology.

T = {Animal v Creature, HerdAnimal v Animal, HoofedAnimal v Animal,
WarmBloodedAnimal v Animal, Mammal v Animal, Crustacean v Animal,
Elephant v HerdAnimal, Cows v HerdAnimal, Elephant v Mammal,
Cattle v Mammal, Cows v HoofedAnimal, Cows v Cattle, Bull v Cows,
Cow v Cattle, Crab v Crustacean, Bird v WarmBloodedAnimal,
Bird v Biped, AnimalSpecies v Species, ArthropodSpecies v AnimalSpecies,
BirdSpecies v AnimalSpecies, MammalSpecies v AnimalSpecies,
LandBody v Habitat, WaterBody v Habitat, Forest v LandBody,
BeachArea v LandBody, TropicalForest v Forest, RainForest v Forest,
MammaryGland v AnatomicalPart, AnatomicalPart v BodyPart, BodyPart v Part}

Figure 3.2: Selected parts of Tax of the Animal ontology.
22



CHAPTER 4
Ontology Construction

In this chapter we look more closely at the actual process of constructing a topic ontology.
We start with a general overview of the process and its basic steps, and list all the axiom
types that are generated. Later sections describe each individual step in detail and take
the reader through the complete construction procedure. Finally, in Sections 4.3.2 to 4.3.5
we illustrate the construction process of all the different types of supported axioms with
the help of examples.

4.1 Overview
We assume to have a common-sense or general-knowledge knowledge graph K, as defined
in Definition 3.2.1, with labeled node entities denoted as n ∈ N . Semantic assertions a link
two entities through one of multiple relation types r ∈ R to form the contained knowledge.
By exploiting assertions, our algorithm constructs a topic ontology X = (T , tc, φ) on a
general-knowledge topic, which is defined by the seeding concept name tc. The process
is semi-automatic, in the sense that suggestions for concept names are extracted and
refined automatically, but the user has to confirm and build the axioms that are then
added to T . As a result T contains axioms which convey common-sense knowledge about
the topic domain and permit further reasoning with standard DL algorithms.

Axioms are defined in a stepwise process. Requests Reqt(n, r), t ∈ {s, e, b} to K extract
those entities n′ that form assertions a = (n, r, n′) and hold information related to the
topic. As detailed in section 3.2.1 the naming function onto subsequently transforms
entity labels into sets of suggestions S(n,Re`). Suggestions are grouped into sets Re`
based on different subject areas and assist during the ontology construction process. The
mapping φ is automatically expanded as concept names in X are linked to respective
K entities for iterative information extraction. If an axiom is defined it is added to X ,
and all associated concept, individual and role names are created as part of the effective
vocabulary.

23



4. Ontology Construction

The workflow we propose resembles the process of hand-engineering ontologies in which
knowledge elicitation is heavily supported by the suggestions. The KG-mapping offers
the possibility to generate onward suggestions and explore the knowledge graph further
whenever concept names are added as central concepts.

4.1.1 Supported Axioms

Suggestions can be used to formulate different types of axioms. At the moment the
following axiom types are supported for a topic ontology X = (T , tc, φ):

A1 v B1 or B1 v A1 (AxSub)
A1 ≡ A2 (AxEquiv)
A1 v

⊔
k

Bk t
⊔
j

∃Rj .(Bj1 t . . . tBjn) (AxDisjun)

A1 v ∀HasPart.A1Part (AxAllPart)
∃R−.> v ⊔

i

Ai (AxRan)

A1 uA2 v ⊥ (AxDisj)

where Ai are atomic concepts and Bi are basic concepts, i.e. atomic or nominals.

A deliberate choice was made to only support a limited selection of axiom types that
seem natural for capturing a lot of knowledge contained in a knowledge graph. The
permitted axioms include concept inclusions with disjunctions of form (AxDisjun). In
such axioms it is possible to have the right-hand-side contain descriptive characteristics
that express common-sense knowledge about individual concepts and their properties.
To fully support ALCIO some concept constructors, for example negation (¬), are
missing, which is a consequence of knowledge graphs not employing respective semantics.
Therefore negated statements are infrequent or inconclusive and we did not consider their
inclusion integral for the moment. If needed they can be added later in an ontology editor
of choice. Universal axioms are not supported fully, but (AxAllPart) is a custom axiom
that can be added for the relation HasPart. Similarly inverses are for the present only
captured through the use of HasPart− ≡ PartOf. Nominal constructions over individuals
on the other hand are directly supported, as they are suitable for human-perceived
impressions about things, such as physical states (i.e. colors, material), as well as for
named entities, which are an integral part of many knowledge graphs. Axioms (AxRan)
and (AxDisj) allow for range restrictions and disjointness, respectively, which is important
for engineering conclusive ontologies.

4.1.2 Construction Process

The building process of X = (T , tc, φ) consists of three consecutive steps:

Step 1: Building the Central Taxonomy (see Section 4.2)
NC(X ) is initialized with tc. Then CT , the central taxonomy linked to tc,

24



4.1. Overview

is created as an initial subset of T . To do this axioms of types (AxSub)
or (AxEquiv) are added by selecting from sets of suggestions to determine
suitable sub- and superclasses. Inapplicable suggestions can be saved for later
use.

Step 2: Adding complex GCIs (see Section 4.3)
In four consecutive substeps, C1 ,C2 ,C3 and C4 , T is expanded. The first
three focus on relations which are likely to be relevant in several domains and
which form thematic contexts. Our approach incorporates the following three
contexts:

C1 part-whole relations: meronym relations of the form “X is part of Y”
and “Y has X as part” ;

C2 relations that indicate typical locations, either geographical or functional;
and

C3 active or passive object capabilities: a range of suggestions for applica-
tions and defining characteristics, such as colors or shapes.

Suggestions S(n,Re`), for some n are proposed for each context and the
user can create axioms, such as (AxAllPart). Dynamic extensions allow for a
quick way to add axioms (AxSub) and introduce individuals. Under specific
conditions axioms (AxRan) and (AxDisj) are automatically added.
In the last substep,

C4 suggestions are formed from generic relation types and are not themati-
cally restricted.

Suggestions that were saved for later use during Step 1 are available to be
used.
In this step the creation of axioms is not limited. This allow the user to add
axioms of his own choice and to personalize the ontology.

Step 3: Clean-Up (see Section 4.4)
A postprocessing step that removes redundant relations and allows to further
modify and restructure the taxonomyof T . In particular it is possible to add
ACIs, (AxSub) and (AxEquiv), between concept names added in Step 2, and
introduce new concept names into the taxonomy.

During Step 1 an initial CT is constructed as the skeleton of T . Afterwards the queue
QCT is utilized to iterate through the concepts that were previously added to CT . This
way in Step 2 suggestions are presented for one concept Ã ∈ CC at the time. The user can
add axioms that contain Ã by selecting and completing axiom patterns. This way the
knowledge about Ã is expanded. It is possible to immediately add ACIs for new concept
names and appropriately place them into the taxonomy. When needed, individuals and
nominals can be created on the spot. We will subsequently refer to these forms of ontology

25



4. Ontology Construction

expansion as dynamic extensions. Through dynamic extensions axioms are created that
relate to Ã more loosely. We consider those to be axioms that do not contain Ã itself.
We will continue to use Ã to refer to the atomic concept that is currently dealt with.

By enforcing the presentation order induced by QCT , an incentive is given to specify
axioms that hold for more general concepts first. Those will then be naturally inherited
by all existing subclasses.
If CT is large, it becomes infeasible to propose every Ã ∈ CC. As a remedy CCsel
defines the set of concepts that are considered more important for expansion. This way
suggestions for deeply nested concepts from CC are not proposed by default. If a proposed
Ã ∈ CC has descendants that are in CC\CCsel, they can be navigated to, one level at a
time, to request corresponding suggestions.

The construction of the central taxonomy and expansion with axioms follows a similar
structure to the editing process that Protegé offers with its Asserted Class Hierarchy 1

and Class Descriptions2. Through the taxonomy a class hierarchy is defined that can
optionally be extended whenever new concept names are added. Each time a concept
name Ã is proposed, axioms can be added that contain Ã, similar to the Class Descriptions
that associate further axioms with each concept name.

The example in Figure 4.2 illustrates the construction flow and the different steps that
are involved. For the sake of the example the presentation and selection of suggestions
is not shown. The selection of suggestions and creation of axioms will be explained in
detail in the next sections.

4.2 Step 1: Building the Central Taxonomy

The central taxonomy is the main part of the ontology concept name hierarchy and
comprises concept names that are strongly correlated to the topic. By Definition 3.2.8,
CT includes the topic concept tc and contains exclusively ACIs A1 v A2 for A1, A2 ∈ NC .

Upon creation, the ontology X is initialized with NC = {tc} which implies T = {tc v >}.
The mapping sets φ(tc) = n where n is the entity in K whose label `(n) can be identified
with tc. ACIs are then iteratively built based on tc by extracting suggestions for suitable
sub- and superclasses from K. To achieve an adequate hierarchical structure for the
initial central taxonomy two separate substeps are needed, in which at first a provisional
taxonomy is created and subsequently modified to refine the structure.

4.2.1 A provisional 5-level Taxonomy

During the first step the relation type ris−a ∈ R that defines the is-a connection in K
is used. It should represent a hyponym-hyperonym or subsumption relation. With this
relation type we define the first two sets Re`v = {(ris−a, s)} and Re`w = {(ris−a, e)}

1http://protegeproject.github.io/protege/views/class-hierarchy/
2http://protegeproject.github.io/protege/views/class-description/

26

http://protegeproject.github.io/protege/views/class-hierarchy/
http://protegeproject.github.io/protege/views/class-description/


4.2. Step 1: Building the Central Taxonomy

Minimal example of the construction of X = (T , Fruit ,φ). Bold text indicates CT
and respective concept names. Underlined text indicates Tax.

• Initialization with tc =Fruit:
NC(X ) = {Fruit}
NR(X ) = NI(X ) = { }

T = { }

• Building the central taxonomy CT (Step 1):
NC(X ) = {Produce, Fruit, Lemon, Apple, Banana, CitrusFruit, GoldenDeliciousApple}
NR(X ) = NI(X ) = { }

T = Tax = CT = {Fruit v Produce, Apple v Fruit, Banana v Fruit,
Lemon v CitrusFruit, CitrusFruit v Fruit,
GoldenDeliciousApple v Apple}

Figure 4.1: GCT (X )

• Calculating the iteration order queue:
QCT = {Produce, Fruit, Apple, Banana, CitrusFruit, (GoldenDeliciousApple), (Lemon)}
Indicated by the brackets, GoldenDeliciousApple and Lemon are not part of CCsel
and will only be proposed if requested.

• Traversing QCT and adding axioms for each Ã ∈ CC (Step 2):

Produce v ∃BoughtAt.Supermarket
FruitJuice v ∃MadeFrom.Fruit, FruitJuice v Juice (dynamic extension: subclass)
AppleJuice v ∃MadeFrom.Apple, Apple v ∃Contains.Fibre
Banana v ∃Contains.Sugar

CitrusFruit v ∃HasTaste.{sour}, {sour} v Taste (dynamic extension: individual)

27



4. Ontology Construction

• Modifying the taxonomy (Step 3):
The atomic inclusions Sugar v FoodComponent and Fibre v FoodComponent are
added.

• The final result:
NC(X ) = {Produce, Fruit, Lemon, Apple, Banana, CitrusFruit, GoldenDe-

liciousApple, Supermarket, FruitJuice, AppleJuice, Juice, Fibre,
Sugar, Taste}

NR(X ) = {BoughtAt, MadeFrom, Contain, HasTaste}
NI(X ) = {sour}

T = {Fruit v Produce, Apple v Fruit, Banana v Fruit,
Lemon v CitrusFruit, CitrusFruit v Fruit,
GoldenDeliciousApple v Apple, FruitJuice v Juice,
Sugar v FoodComponent, Fibre v FoodComponent, {sour} v Taste,
Produce v ∃BoughtAt.Supermarket, FruitJuice v ∃MadeFrom.Fruit,
AppleJuice v ∃MadeFrom.Apple, Apple v ∃Contain.Fibre,
Banana v ∃Contain.Sugar, CitrusFruit v ∃HasTaste.{sour}}

Figure 4.2: Example of the process flow illustrating Step 1 to Step 3 during the construc-
tion of the Fruit ontology.

that generate suggestions for possible sub- and superclasses, respectively. Additionally we
define a set Re`∼= that generates suggestions that might be suitable as either subclass or
superclass from a relation r ∈ R. In our implementation we use the ConceptNet relation
RelatedTo that is used in knowledge graph assertions where no appropriate relation type
was identified. Relations such as AssociatedWith or SimilarTo are possible alternatives.

Every time suggestions are presented, concept names can be selected to create ACIs
following choice by index (see Section 5.2.3). Three different choices are possible: 1. select
suggestions by choosing wanted suggestions or by deleting unwanted suggestions, 2. choose
suggestions to move from sub- to superclass (or vice versa), or 3. add suggestions to the
saved suggestions for later use. For those suggestions no axioms are added.

The provisional 5-level taxonomy is built as follows:

(a) Suggestions S(φ(tc),Re`v) are prompted. For each selected A = onto(n) ∈
S(φ(tc),Re`v), an axiom A v tc is added to T , and φ is extended with φ(A) = n.
For each moved A, tc v A is added instead.

(b) Analogously, suggestions in S(φ(tc),Re`w) are prompted, axioms tc v A are added
for the selected A = onto(n), and φ is extended with φ(A) = n. For each moved A,
A v tc is added instead.

28



4.2. Step 1: Building the Central Taxonomy

(c) Next, suggestions in S(φ(tc),Re`∼=) are prompted and two selections are possible:
choose those to treat as in in (a), and those to treat as in(b).

(d) For each A1 ∈ NC(CT ) introduced in items (a) to (c), items (a) and (b) are repeated,
adding axioms A1 v A2 and A2 v A1 for A2 in S(φ(A1),Re`w) respectively
S(φ(A1),Re`v), and extending φ accordingly.

In the Fruit example in Figure 4.2 Banana, Lemon and Apple are among the suggested
subclasses S(φ(Animal),Re`v), while Produce is recommended as superclass through
S(φ(Animal),Re`w). GoldenDeliciousApple is then proposed as subclass of Apple by
S(φ(Apple),Re`v) as suggestions for existing concept names are recursively generated in
(d). Analogously CitrusFruit is suggested as a superclass for Lemon by S(φ(Lemon),Re`w).
The axiom Fruit v CitrusFruit is not directly induced through the suggestions, but can
be added in the subsequent modification step that is described in Section 4.2.2.

In case a cyclic dependency is created within Tax, the cycle is recognized and after
additional confirmation all concept names that take part in the cycle are explicitly
made semantically equivalent by replacing all subsumptions with respective equivalences
A1 ≡ A2 (AxEquiv). If the user does not confirm the detected cycle, the inclusion that
was added second is retracted.

For the general case we assume that concept names are all different and that at least one
ACI is added in items (a) to (d). Furthermore the resulting taxonomy is assumed to be
acyclic.
Under those assumptions, the process corresponds to an upwards and downwards expan-
sion of Tax where for each new concept A there exists an undirected path with at most
length two to tc in GTax. Thereby the result of the first step is a provisional taxonomy
with five levels in which the center concept is located on the third level. An illustration
of the five level taxonomy is depicted in Figure 4.3, which shows a larger taxonomy on
vehicles.

4.2.2 Modification

The modification step tries to enforce a narrower and deeper structure on GCT by
encouraging the user to add additional ACIs to CT that enhance the existent information
and reduce the number of concepts on the topmost level.
It is reasonable to assume that the information in the underlying knowledge graph is
incomplete. Hence concepts that are situated on one level of the provisional taxonomy will
not semantically belong to the same hierarchical level, because important connections are
not captured byK. To illustrate this using the example in Figure 4.2, the set of suggestions
S(φ(Lemon),Re`w) includes CitrusFruit and Fruit, while S(φ(CitrusFruit),Re`w) does not
include Fruit, despite a citrus fruit obviously being a fruit.
To correct this, this step allows to modify the provisional result by extending T with
additional ACIs between the available concept names in CT . Through this process CT is
restructured and additional levels are created.

29



4. Ontology Construction

In the mentioned case the user can decide to expand T = {Fruit v >, Lemon v Fruit,
Lemon v CitrusFruit} with CitrusFruit v Fruit. The ACI Lemon v Fruit is removed, as it
is now redundant, and Lemon is thereby moved from level 1 to level 2 w.r.t. Fruit.

A complete example of a provisional taxonomy with tc =Vehicle, and the final result after
modification are illustrated in Figure 4.5.

For the modification step Algorithm 4.1 is applied to Tax(X ) for tc. The algorithm
iterates over each named concept A ∈ NC(CT ) and collects for each A a set SA of
suggestions for possibly missing inclusions. SA contains all B,B′, such that A v∗T B
and A v∗T B′ (all ancestors of A), but neither B v∗T B′ nor B′ v∗T B (B and B′ occur
on different branches of GCT ). It is possible that B v∗T B′ for some B,B′ ∈ SA, as
constraints are caclulated for each pair B,B′ at a time. For each pair (B,B′) ∈ SA × SA
selected by the user, B v B′ is added to CT .
Subsets SA′ of SA for some A that was already dealt with are not proposed again. Not
that sets may still differ in one concept name only, which is the one that induces new
potential axioms. All ACIs, where it holds that X � B v B′ for B,B′ ∈ SA for the
current SA are listed in addition, so that the user knows that they are already in T and
need not be added again. Every time a new ACI is added, lines 21-23 in Algorithm 4.1
make sure that ACIs that follow from reasoning are removed to minimize the redundancy
in Tax for presentation.

After all axioms are added the reasoner HermiT is run once. This step is not necessary,
but provides for a nicer graphical representation of Tax in Protegé or similar tools. The
resulting T is now considered the initial taxonomy and all contained atomic concepts
build the basis for further axiom specifications.

30



4.2. Step 1: Building the Central Taxonomy

Figure 4.3: A 5-level taxonomy before modification.

Figure 4.4: The same taxonomy after modification and reasoning.

Figure 4.5: A comparison between a taxonomy graph before and after modification. Both
figures show the same selected part of a topic ontology created with CN2TopicOnto with
the topic concept Vehicle. 31



4. Ontology Construction

Algorithm 4.1: Taxonomy Modification algorithm
Input: Tax(O) of an ontology structure O and an atomic concept C
Output: A modified Tax′(O) such that Tax′(O) � A v B if Tax(O) � A v B for

atomic concepts A and B.
1 Psaved = { }
2 forall A ∈ SubClasses(C) ∪ SuperClasses(C) ∪ {C} do
3 SA = { }
4 if |Ancestors(A)|≥ 2 then
5 SA = {A};
6 get all combinations (B1, B2), B1 6= B2 with B1, B2 ∈ Ancestors(A);
7 if B1 /∈ Ancestors(B2) and B2 /∈ Ancestors(B1) then
8 SA := SA ∪ {B1, B2}
9 end

10 if |SA > 1| and SA * SA′ for any SA′ ∈ Psaved then
/* print options to the user */

11 print SA
12 forall combinations of (S1, S2) ∈ SA do
13 if S1 ∈ Descendants(S2) then
14 print "S1 is already a descendant of S2"
15 end
16 if S2 ∈ Descendants(S1) then
17 print "S2 is already a descendant of S1"
18 end
19 end

/* user choice */
20 ask the user for a ordered pair of concepts (Ã, B̃) ∈ SA

/* remove redundant ACI */
21 forall E ∈ Descendants(Ã) ∩Descendants(B̃) do
22 Tax := Tax\{E v B̃}
23 end

/* add new ACI */
24 if Ã /∈ Descendants(B̃) and B̃ /∈ Descendants(Ã) then
25 Tax := Tax ∪ {Ã v B̃}
26 end
27 if B̃ ∈ Descendants(Ã) then
28 Tax := Tax ∪ {Ã ≡ B̃}
29 end
30 end
31 end

/* Psaved stores all lists and makes sure none is presented twice */
32 add SA to Psaved
33 end
34 return Tax

32



4.3. Step 2: Adding Complex GCIs

A =Tractor
SA = {WheeledVehicle, AgriculturalVehicle, Conveyance, PhysicalObject, LandVehicle,
Vehicle, Object, Machine, MotorVehicle, Truck}

The following ACIs are already implied:
Truck v Conveyance, Vehicle v Conveyance, Truck v WheeledVehicle, Truck v Vehicle,
Truck v MotorVehicle, Truck v PhysicalObject, Truck v Object, Truck v Machine,
Vehicle v PhysicalObject, Vehicle v Object, Vehicle v Machine, PhysicalObject v
Object,

User Selections and respective axioms that are added to T :
(AgriculturalVehicle, Vehicle) adds AgriculturalVehicle v Vehicle,
(LandVehicle, Vehicle) adds LandVehicle v Vehicle,
(WheeledVehicle, Vehicle) adds WheeledVehicle v Vehicle,
(WheeledVehicle, LandVehicle) adds WheeledVehicle v LandVehicle and removes the
now redundant WheeledVehicle v Vehicle
(MotorVehicle, Vehicle) adds MotorVehicle v Vehicle

Figure 4.6: Modification algorithm example for Figure 4.3

4.3 Step 2: Adding Complex GCIs

During substeps C1 ,C2 ,C3 suggestions are grouped based on the subject of the knowledge
they express. We refer to those substeps as suggesting general relations. The term refers
to two different notions:

1. a domain-independent relation, such as HasPart or PartOf,

2. a set Re`, that expresses one general aspect of the topic domain

An example of item 2 is the set Re` = {AtLocation, HasLocation, LocatedNear} of Con-
ceptNet relation types. All associated assertions form triples that capture information
about possible locations. However without rigid semantics, the individual assertions
often capture substantially different meanings. For example, the assertion (handbrake,
AtLocation, car) expresses a statement of physical place, while (SanFrancisco, AtLocation,
California) describes geographical information between two individuals. Even further
(seed, AtLocation, apple) is a linguistically reasonable statement, but would be better
expressed syntactically as a meronym relation (appleseed, PartOf, apple). In DL ontolo-
gies role names are typically more precise than in knowledge graphs to appropriately
handle contextual discrepancies. As meaningful role replacements for the above cases,
HasVehicleComponent or HasGeographicalLocation, LocatedInState could be chosen.

The number of relation types in contrast to roles, accounts for one of the fundamental
design differences between knowledge graphs and engineered ontologies. Good ontologies

33



4. Ontology Construction

incorporate distinct and fitting role names on a case to case basis. Generic relations are
in general not preferential for DL models as they dilute semantics and easily lead to error
prone and unmanageable reasoning. To accommodate the creation of distinctive and
contextualized role names, we introduced S(n,Re`) over sets of relation types, where
Re` can have more than one element.

The process we propose integrates part-whole, locations and capabilities as three different
general relations. Appropriate subsets Re` need to be selected and assigned to each
category in advance. We have chosen those three categories based on the premise that they
represent information that is typically captured in many knowledge graphs. Additionally
associated information is significant in a wide range of domains, such that manifold topic
ontologies can be built. We will use Re`part, Re`loc and Re`cap to denote the abstract
sets of relation types for each general relation, respectively. We want to emphasize
that the choice of general relations and sets may be adapted or extended based on the
underlying knowledge graph and expected ontology results.

During the construction process, each general relation is processed in succession. Once
confirmed one atomic concept Ã ∈ CCsel is proposed for expansion at a time, following
the order induced by QCT , and respective suggestions are provided. We now describe the
individual steps and process in more detail.

Step C1 : part-whole
Part-whole relations are frequently incorporated in ontologies and a lot of unintended
issues can arise with careless usage. Alan Rector presents a working draft, related to
the W3C design patterns 3, in which he addresses some of those issues, their origin in
linguistics and philosophy, and their ties to the research area of merology.
The main problem is that part-whole relations express a variety of information: from
physical parts ("A hand is part of an arm."), over geographical regions (Vienna is a
part of Austria.), to functional parts (A CPU is part of a computer.). Winston et al.
present a classification of six types of meronymic relations [WCH87]. A possible solution
is defining a role hierarchy in an relational RBox that distinguished between the differing
meanings. Such a hierarchy might look like this 4:

R ={isStructuralPartOf v isPartOf, isFunctionalPartOf v isPartOf,

isSubdivisionOf v isStructuralPartOf, isComponentOf v isStructuralPartOf}

An often overlooked issue is based on the assumption that part-whole relations generally
are transitive and invertible (HasPart vs.PartOf). There exist cases though, where transitiv-
ity might produce unwanted reasoning results. For example membership is often expressed
as a part-whole relation, as the example "Books are part of a library. The Main Library
is part of the city infrastructure." shows. With transitivity {Library v ∃HasPart.Book,

3https://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
4adapted from slides by Alan Rector [Rec]

34

https://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/


4.3. Step 2: Adding Complex GCIs

CityInfrastructure v ∃ HasPart.MainLibrary, Library v MainLibrary} would imply, that City-
Infrastructure v HasPart.Book, which is not very intuitive. In the end the correct choice
resides with the ontology designer, who needs be aware of the common pitfalls.

To offer flexibility we select the role names HasPart and PartOf by default, but offer the
option to define a role name of choice that better captures the required type of part-whole
relation.
In detail the algorithm proceeds as follows:

The user is asked whether s/he wants to create HasPart and PartOf relations. If the answer
is positive, then for each Ã ∈ NC(CT ) the two sets S(φ(Ã),Re`part) and S(φ(Ã),Re`part−)
of suggestions are retrieved, where Re`part− uses the reciprocal request types to retreive
the backwards assertions.

For each Ã ∈ NC(CT ), we define the following combined set of suggestions

SÃ :=
⋃

φ(A)=n′

A v*
CT (X )A

S(n′,Re`part). (4.1)

Section 4.3.1 explains the intuition behind the choice of SÃ.

The system asks if the user wants suggestions s of the form ‘Ã has part s’. If the answer
is yes, then the algorithm iterates over all elements in the queue QCT that are part of
CCsel, skipping those Ã for which SÃ is empty, and in each iteration proceeds as follows:

1. It asks if the user wants suggestions of parts of Ã. If the answer is no, then it
moves to the next concept in the queue. If further subclasses of Ã exist that are
not part of CCsel the user can decide to view those before moving to the next item
in QCT . If all subclasses have been proposed the progression returns to the order
given by the queue. It is important to note that concepts are only prompted once
and will be skipped if they were already dealt with.

2. If the answer to view suggestions is yes, then the user is prompted with the
suggestions in SÃ. He or she can select from the list, or type fresh concept names,
and the axiom

Ã v ∃HasPart.(B1 t · · · tBn)

is added, where (B1, . . . , Bn) is the list of the selected and typed concept names.
This step can be repeated to create as many analogous axioms

αi = A v ∃HasPart.(Bi
1 t · · · tBi

ni
)

as desired, with different disjunctions (Bi
1 t · · · tBi

ni
).

3. The user is given the option of automatically adding an axiom Ã v ∀HasPart.ÃPart
with ÃPart a fresh concept name. Additionally axioms of the form Bk v ÃPart for
each Bk, 1 ≤ k ≤ n, that is part of the disjunction are added to T .

35



4. Ontology Construction

4. The user is offered the option of jumping to step C4 (user-specified roles) with the
current suggestions. If s/he does, s/he will then come back to this step.

After the whole queue has been processed, the user is asked if s/he wants suggestions s
of the form ‘s has part A’. If the answer is yes, then the role inclusion PartOf− is defined
as the inverse of HasPart, and the process is repeated, using the role PartOf and the
following combined set of suggestions for each Ã ∈ NC(CT ):

S ′Ã :=
⋃

φ(A)=n′

A v*
CT (X )A

S(n′,Re`part−). (4.2)

Step C2 : locations
Suggestions for possible or typical locations are generated with S(φ(A),Re`loc) and
S(φ(A),Re`−loc). They might include distinct, physical locations (kitchen, church), as
well as more abstract locations (nature, dream), which can be hard to represent. The
easiest to represent are geographical locations, such as countries or cities, as respective
suggestions can be neatly integrated into the taxonomy or transformed into individuals.

The user can first select to get suggestions s of the form ‘Ã at location s’ and ‘Ã is possible
location of s’. Iteration through QCT and the process of adding axioms in each case is
the same as detailed in step C4 (topic-specific roles), where role names are specified by
the user.

Step C3 : capabilities
Suggestions for object capabilities are generated with S(φ(A),Re`cap) and S(φ(A),Re`−cap).
Capability is used as a broad term to pool properties of concepts that are linked to de-
scriptive characteristics and action-related features of concepts. This includes suggestions
for actions that can be performed by (active) or upon (passive) the current concept Ã.
Possible relations that fit into Re`cap are HasShape, HasColor, evokesEmotion, Causes,
CapableOf, hasRevenue.

Same as in C1 and C2 the user can select to get suggestions s of the form ‘Ã capable of
s’ and ‘Ã is capability of s’. The process is then analogue to C2 .

4.3.1 Adjusting Information over Hierarchy Levels

If knowledge graph content is automatically gathered from different resources or through
text mining of text written by humans, assertions can be semantically correct, but differ
in their level of precision. Both triples (Spatula, TypeOf, Tool) and (Spatula, TypeOf,
Hand-held Kitchen Utensil) are correct, but the second is more precise than the first.
Unless the knowledge graph is carefully revised, it is prone to contain multiple assertions
that convey the same fundamental information, but are expressed through different
entities. Oftentimes multiple occurences are deliberate as they increase information

36



4.3. Step 2: Adding Complex GCIs

content and do not necessarily induce inconsistencies. Especially ConceptNet, that was
used for our implementation of CN2TopicOnto, contains multi-word, human-like phrases
and as such produces assertions which differ a lot in expressivity.
As a result suggestions extracted for a concept might not be restricted to this concept,
but applicable to a more general concept as well. Conversely multiple sub-variants can
exist for the same concept, that differ in verbalization, specificity or spelling.
For example a Bicycle might have as a part a Wheel as well as a BycicleWheel. Compound
words can be more intuitive for some concepts and not for others. While Unicycle and
Tricycle are similar concepts to Bycicle, a UnicycleWheel or a TricycleWheel are a lot less
common and likely to be included in a knowledge graph.
Even if a type of Vehicle has as part a Wheel it might not be suggested a WheeledVehicles
due to missing information in the knowledge graph.In a DL ontology it is simple to
retrospectively add an axiom WheeledVehicle ≡ Vehicle u ∃HasPart.Wheel.
One challenge for the representation of common-sense knowledge is the distinction between
universally true facts and intuitive or likely true statements. For a knowledge graph it is
reasonable to state that a Vehicle has as part a Wheel, as this is true in the majority of
cases, but in a strict environment this statement leads to semantical incorrectness if a
Boat or Ship are considered subclasses of Vehicle. Allowing inconsistencies and forgoing
completeness are design choices that common-sense knowledge graphs need to make to
keep information simple and preserve processability for large amounts of data.

For our algorithm we considered two different approaches to rectify assertions that lead to
consistency in reasoning or promote ambiguity of concept names. The first approach has
the user verify for each axiom before creation, that it does not apply to an existing, more
general superconcept of Ã in the taxonomy and offers the option to change and adapt
suggestions for individual cases. This produces a lot of redundant inquiries. Therefore we
chose an alternative approach and propose the pooling of suggestions for central concepts
in CC, to always propose general as well as specific options for each concept. This way
the user can select from a wide variety of appropriate ones.

In a preprocessing step suggestions for all descendants of a concept are unified. For the
atomic concept (̃A) the resulting list of suggestions

S̃(φ(Ã),Re`s) :=
⋃

φ(A)=n′

A v*
CT (X )A

S(n′,Re`s) (4.3)

is presented for s ∈ {part, loc, cap}. With this approach higher-level concepts have very
exhaustive lists of suggestions, while suggestions become better and more precise for
specific concept. To account for inheritance, suggestions that were already selected in an
axiom for a concept Ã are not suggested for respective subconcepts anymore.
Instead, under three different conditions, some basic concepts are kept in a separate list
of suggestions that might be suitable for specification:

1. If an GCI is added, whose LHS is Ã and whose RHS is a disunction B1 t · · · tBn
of basic concepts then the individual concepts B1, . . . , Bk are added to the list.

37



4. Ontology Construction

2. If an axiom contains ∃Rj .(Bj1t . . .tBjn) and further axioms B`1 v Bjk , . . . , B`m v
Bjk , 1 ≤ k ≤ n are created through dynamic extensions then B`1 , . . . , B`m are
added to the list.

3. The basic concept B1 on the LHS of an axiom B1 v Ã is added to the list.

Suggestions suitable for specification might fit into more specific axioms for a subclass of
Ã.

For example, assume Ã =Produce. Upon creating Producev ∃SoldAt.(MarkettStoretShop)
it is possible to specify concept names GroceryStore, FurnitureStore and FarmersMarket
through dynamic extensions with subclasses. This extends T with {GroceryStore v Store,
FurnitureStore v Store, FarmersMarket v Market}. Now Market, Store, Shop as well as
GroceryStore and FurnitureStore are removed from the general suggestions for each sub-
concept of Produce. They now appear as suggested for specification and can be selected
to build an axiom Fruit v ∃SoldAt.(GroceryStore t FarmersMarket) if CT contains Fruit
v Produce, because Fruit as a subclass, is then queried after Produce.

For Ã =Animal, if an inverse axiom Savannah v ∃ NaturalHabitatOf.Animal is created,
Savannah is listed again for specification for all further subclasses of Animal. This way a
more specific axiom Savannah v ∃ NaturalHabitatOf.Lion can also be added. Lion is here
assumed to be a subclass of Animal.

Step C4 : user-specified roles

During this step suggestions are kept very general and the user has the option to create
axioms freely. All constructions listed under Section 4.1.1 are supported, with the
exception of (AxAllPart).
Again the queue QCT is iterated and for each Ã the user is optionally prompted with
suggestions S(φ(A),Re`sp), where Re`sp is a set of very general relation types such as
RelatedTo, AssociatedWith, SimilarTo. Suggestions that were saved during step 1 (saved
suggestions) are also proposed.

Then role and concept names can be inserted and used to create GCIs as follows:

1. The user is asked if s/he wants to add a new axiom containing Ã. If not, the
algorithm moves to the next item. Again central concepts that are not proposed by
default as part of CCsel can be viewed and explicitly selected.

2. If yes, the user is prompted to enter a set of relation names (R1, . . . , Rm), which may
include IsA or TMPRelated. Each such selection creates one axiom that contains
exactly the role names contained in the set. Once entered, role names are saved
and can be chosen through the auto-complete function for future prompts.

3. Following, m three-part prompts are issued, one for each Rj , 1 ≤ j ≤ m, in which
the user can select concept names or individuals with auto-complete, or type fresh

38



4.3. Step 2: Adding Complex GCIs

names. The list for selection contains the suggestions S(φ(Ã),Re`sp), the saved
suggestions, and all individuals in NI(T ) (see dynamic extensions in Section 4.3.2.2
to add individuals). If a fresh string is entered, it is treated as a new concept name
and added to NC(T ). If an individual a is selected it is treated as a nominal {a}.
Let (Bj1 , . . . , Bjn) be the entered basic concepts for Rj . An input Ã.Rj .Bj1 . . . Bjn
is converted into ∃Rj .(Bj1 t · · · tBjn). If Rj = IsA, then the input is converted
into

⊔
k Bk, without an existential.

After all m prompts are completed, they are combined into the final axiom

Ã v
⊔
k

Bk t
⊔
j

∃Rj .(Bj1 t · · · tBjn)

which is added to T . Steps 1-3 can be repeated as often as wanted for each Ã to create
multiple axioms

βi = Ã v
⊔
k

Bi
k t

⊔
j

∃Rij .(Bi
j1 t · · · tB

i
jn)

4.3.2 Disjunctive Axioms, Dynamic Extensions and Reverted Axioms

In this part we explain in more detail how to create the different types of axioms with
the help of examples. The examples assume a command-line setting, as this is what was
used for the implementation of CN2TopicOnto. Text written in typewriter refers to
terminal input and output. Each example shows terminal input and the respective axiom
that is added to T below.
We illustrate how to introduce new concepts and roles, create individuals, and add range
restrictions and disjointness axioms. We also explain the purpose of the two special role
names, IsA and TMPRelated, which are by default included in NR(X ).

First we want to summarize the use of auto-complete, as it is used to quickly select basic
concepts and role names.

Auto-complete To simplify the creation of axioms, every time an input is expected,
the console auto-complete function (»TAB«) may be used to select Rj from NR(X ) or
Bij from a list of proposed basic concepts. We denote the lists of options, that is offered
for Ã, Auto(Ã). In an abstract sense Auto(Ã) is a list of propositions similar to the
suggestions, but further adjusted to the expected input.

There are three different cases in which Auto(Ã) changes based on the expected input:

Case 1: The input is expected to be an existing or new role name Rj .
Then Auto(Ã) = NR(X ).

Case 2: The input is expected to be an existing individual or a new or existing concept
name Bjk .

39



4. Ontology Construction

Then Auto(Ã) = NI(X ) ∪ S(φ(Ã),Re`) ∪ Rem, where

Rem = {A | A v*
Tax(X )A

′ for some A′ s.t. there is Ã v ∃TMPRelated.A′ ∈ T }
(4.4)

is the set of remembered concept names.
As a consequence any individual that was added to NI(X ) can be selected from
Auto(Ã) in the prompt for some Bjk .

Case 3: A range restriction Ran(Rj , Bjk) was enforced for some Bjk .
This case is explained in the section on range restrictions.

4.3.2.1 Basic Disjunctive Axioms

Axioms of type (AxDisjun), Ã v
⊔
k Bk t

⊔
j ∃Rj .(Bj1 , . . . , Bjn), are the most common

axioms we want to construct as they establish necessary conditions for Ã. The definition
conjoins multiple subforms.

We will focus on axioms of the following form that only contain existential components
for now:

Ã v
⊔
j

∃Rj .(Bj1 , . . . , Bjn) (AxDisjun-a)

where Bj1 , . . . , Bjn are basic concepts.

The following examples demonstrate how different axioms that fall under the scope of
(AxDisjun-a) are created. Simple Axiom: Ã v ∃R1.B1

This is the simplest axiom. It contains a single role name and a single concept name.

Example 1 (Simple Axiom):
relation name = MadeFrom
Pizza.MadeFrom.PizzaDough

1
2

Pizza v ∃ MadeFrom.PizzaDough

Example 2 (Simple Axiom):
relation name = Contains
Dictionary.Contains.WordDefinition

1
2

Dictionary v ∃ Contains.WordDe�nition

Note that a conjunction over multiple existentials can be achieved with multiple
Ã v ∃R1.B1, . . . , Ã v ∃R1.Bn, where each is a single simple axiom.

40



4.3. Step 2: Adding Complex GCIs

Example 3 (Simple Axioms):
relation name = HasGenre
HistoricalRomance.HasGenre.History

relation name = HasGenre
HistoricalRomance.HasGenre.Romance

1
2
3
4
5

HistoricalRomance v ∃ HasGenre.History
HistoricalRomance v ∃ HasGenre.Romance
or equivalently

HistoricalRomance v ∃ HasGenre.History u ∃ HasGenre.Romance)

Disjunctive Axiom 1: Ã v ∃R1.(B1 t . . . tBn)

To add a disjunction over multiple basic concepts, the inputs B1, . . . , Bn have to be
separated by blanks.

Example 4 (Disjunctive Axiom):
relation name = Contains
WrittenText.Contains.Character Word Sentence

1
2

WrittenText v ∃ Contains.(Character t Word t Sentence)

Disjunctive Axiom 2: Ã v
⊔
j ∃Rj .(Bj1 t . . . tBjn)

To add a conjunction with multiple existential restrictions, all occuring (R1, . . . , Rm)
have to be entered in succession, separated by blanks. Then m single prompts need to
be filled, one for each j where 1 ≤ j ≤ m.

Example 5 (Disjunctive Axiom):
relation name = HasIngredient Contains
Cake.HasIngredient.Sugar
Cake.Contains.SugarSyrup ArtificialSweetener

1
2
3

Cake v ∃ HasIngredient.Sugar t ∃ Contains.(SugarSyrup t Arti�cialSweetener)

The two role names HasIngredient and Contains induce the two prompts on line 2 and
line 3.

4.3.2.2 Dynamic Extensions

When an axiom for Ã is added that contains some atomic concept A ∈ NC , it is possible
to dynamically extend Tax with a set of axioms B1 v A, . . . , B` v A (AxSub).

ACIs added to Tax through dynamic extensions do not fulfill subrequirement of item (c)
in Definition 3.2.8 of the central taxonomy, and are not part of CT .

41



4. Ontology Construction

Dynamic extensions are the only way to add new individuals to NI(X ). If input is
selected from the suggestions, the concept name is automatically transformed into a
corresponding individual name that uses lower case letters.

Dynamic Extension: Subclass Ã v ∃R1.A1 and Ai v A1, 2 ≤ i ≤ `

To create subclasses Ai of A1 and add the respective ACIs to Tax, the suffix : is utilized.
It can be useful if suggestions are not suitable to be used in the main axiom, but should
be covered by the RHS. For example the axiom can introduce a new atomic concept Ai
and some suggestions are then selected as subconcepts of Ai.
A colon (:) after a concept name signalizes that further subclasses ought to be created
for this concept. Subsequently a y/n prompt verifies the axiom that is in the end added
to T .

Example 6 (Dynamic Extension: Subclass):
relation name = BoughtAt
Produce.BoughtAt.Store:
Enter subclasses for Store: GroceryStore Supermarket
Create an existential axiom for Produce? [y/n] y
Produce.BoughtAt.Store

1
2
3
4
5

Produce v ∃ BoughtAt.Store
GroceryStore v Store, Supermarket v Store

The prompt on line 4 verifies the axiom that is actually created. In this case it contains
the general concept Store.

Example 7 (Dynamic Extension: Subclass):
relation name = BoughtAt
Produce.BoughtAt.Store:
Enter subclasses for Store:GroceryStore HardwareStore
Create an existential axiom for Produce? [y/n] y
Produce.BoughtAt.GroceryStore

1
2
3
4
5

Produce v ∃ BoughtAt.GroceryStore
GroceryStore v Store, HardwareStore v Store

In this case the prompt on line 4 creates an axiom for the more specific concept Grocery-
Store. No axiom Produce v ∃ BoughtAt.Store is created.

Example 8 (Dynamic Extension: Subclass):
relation name = BoughtAt
Produce.BoughtAt.Store:

1
2

42



4.3. Step 2: Adding Complex GCIs

Enter subclasses for Store:GroceryStore Supermarket
HardwareStore
Create an existential axiom for Produce? [y/n] n

3
4
5

GroceryStore v Store, Supermarket v Store, HardwareStore v Store

In this case no axiom for Produce is created at all.

Dynamic Extension: Individual Ã v ∃R1.A1 and {ai} v A1, 1 ≤ i ≤ `

To create individuals ai the suffix () is utilized.
Adding double brackets () after a concept name A1 signals that axioms {ai} v A1 ought
to be created for some ai. Subsequently a y/n prompt decides if a complex axiom for
Ã with a nominal construction should be created. If yes, then a subset of individuals
B ⊆ {a ∈ NI(X )| {a} v A1 ∈ T } can be specified and the resulting axiom is added to T .

Example 9 (Dynamic Extension: Individual):
relation name = HasColor
Apple.HasColor.Color()
Enter instances for Color:red orange green blue
Create an existential axiom for Apple? [y/n] y
Apple.HasColor.red green

1
2
3
4
5

{red} v Color, {orange} v Color, {green} v Color, {blue} v Color,
Apple v ∃ HasColor.{red, green}

The prompt on line 4 adds the complex axiom with nominal construction. No axiom
Apple v ∃ HasColor.Color is created.

Example 10 (Dynamic Extension: Individual):
relation name = HasColor
Apple.HasColor.Color()
Enter instances for Color:red orange green blue
Create an existential axiom for Apple? [y/n] n

1
2
3
4

{red} v Color, {orange} v Color, {green} v Color, {blue} v Color,

In this case no axiom for Apple is created at all.

4.3.2.3 Disjunctive Axioms with Dynamic Extensions

The above constructions can be arbitrarily combined to add axioms through dynamic
extenstions for disjunctive axioms, as is shown in the following examples.

43



4. Ontology Construction

Example 11 (Combination):
relation name = InStorage InTemporalStorage
LibraryBook.InStorage.Shelf: Bookcase()
Enter subclasses for Shelf:Bookshelf

1
2
3

Enter instances for Bookcase:bc1 bc2 bc3 bc4
LibraryBook.InTemporalStorage.Table:
Enter subclasses for Table:PresentationTable RollingTable

relation name = InStorage
RomanceBook.InStorage.bc1 bc2

4
5
6
7
8
9

{bc1} v Bookcase,{bc2} v Bookcase,{bc3} v Bookcase,{bc4} v Bookcase,
LibraryBook v ∃ InStorage.(Shelf t Bookcase) t ∃ InTemporalStorage.(Table)
Bookshelf v Shelf, PresentationTable v Table, RollingTable v Table
RomanceBook v ∃ InStorage.{bc1, bc2}

Example 12 (Combination):
relation name = HighIn ContainSugar ContainVitamin
Fruit.HighIn.Fibre
Fruit.ContainSugar.Sugar:
Enter subclasses for Sugar:Monosaccharide Disaccharide
Fruit.ContainVitamin.Vitamin:
Enter subclasses for Vitamin:VitaminA VitaminB VitaminC
VitaminD VitaminE

1
2
3
4
5
6
7

Fruit v ∃ HighIn.Fibre t∃ ContainSugar.Sugar t∃ ContainVitamin.Vitamin
Monosaccharide v Sugar, Disaccharide v Sugar
VitaminA v Vitamin, VitaminB v Vitamin, VitaminC v Vitamin, VitaminD v Vitamin,
VitaminE v Vitamin,

Example 13 (Combination):
relation name = CanBeFoundIn CanBeFoundUnder
Crustacean.CanBeFoundIn.BeachArea() Sand Waterbody:
Enter instances for BeachArea:laguna beach malibu beach
Enter subclasses for Waterbody: Lake Ocean Pond River Sea
Crustacean.CanBeFoundUnder.Rock Stone

1
2
3
4
5

Crustacean v ∃ CanBeFoundIn.(BeachArea t Sand t Waterbody) t ∃ CanBeFoundUn-
der.(Rock t Stone)
{laguna beach} v BeachArea, {malibu beach} v BeachArea
Lake v Waterbody, Ocean v Waterbody, Pond v Waterbody, River v Waterbody,
Sea v Waterbody,

44



4.3. Step 2: Adding Complex GCIs

4.3.2.4 Reverted Axioms

So far Ã was fixed on the LHS of all axioms (AxDisjun). We call the axioms that have Ã
on the RHS reverted axioms.

Reverted Axiom: B1 v ∃R1.Ã

By attaching a minus - to the role name it is possible to invert the position of Ã in the
axiom, such that the RHS has the currently considered concept fixed, and the LHS can
be specified. At the current time no concept constructors or extensions are supported on
the LHS.

Example 14 (Reverted Axiom):
relation name = HasOffer-
x.HasOffer.ReadingMaterial, x = Library

1
2

Library v ∃ HasO�er.ReadingMaterial

In this example Ã = ReadingMaterial and Library is part of the suggestions S(φ(Ã),Re`−loc).

Example 15 (Reverted Axiom):
relation name = HasEngine-
x.HasEngine.DieselEngine, x = volvoC70D5 volvoC30D5

1
2

{volvoC70D5} v ∃ HasEngine.DieselEngine
{volvoC30D5} v ∃ HasEngine.DieselEngine
or equivalently

{volvoC70D5, volvoC30D5} v ∃ HasEngine.DieselEngine

Note that a disjunction over multiple concept names B1 t . . . t Bn v ∃R1.Ã, can be
achieved with multiple single axioms B1 v ∃R1.Ã, . . . , Bn v ∃R1.Ã.

4.3.3 Range Restrictions and Concept Disjointness

In this subsection we illustrate how range restriction axioms ∃R−1 .> v ⊔iAi and concept
disjointness axioms A1 uA2 v ⊥ are automatically added to T under certain conditions.

4.3.3.1 Range Restrictions

If a single role name R1 and a single atomic concept A1 are entered and individuals or
subclasses are created for A1 through dynamic extensions, a range restriction Ran(R1, A1)
is automatically set.
For Examples 6 to 10 this means that Ran(BoughtAt, Store) and Ran(HasColor, Color).
With this knowledge we can revisit Example 6, Example 7 and Example 9:

45



4. Ontology Construction

Example 16 (Range Restriction):
relation name = BoughtAt
Produce.BoughtAt.Store:
Enter subclasses for Store: GroceryStore Supermarket
Create an existential axiom for Produce? [y/n] y
Produce.BoughtAt.Store

1
2
3
4
5

Produce v ∃ BoughtAt.Store
GroceryStore v Store, Supermarket v Store
∃ BoughtAt−.> v Store

The axiom ∃ BoughtAt−.> v Store expresses the range restriction Ran(BoughtAt, Store).

Example 17 (Range Restriction):
relation name = BoughtAt
Produce.BoughtAt.Store:
Enter subclasses for Store: GroceryStore HardwareStore
Create an existential axiom for Produce? [y/n] y
Produce.BoughtAt.GroceryStore

1
2
3
4
5

Produce v ∃ BoughtAt.GroceryStore
GroceryStore v Store, HardwareStore v Store
∃ BoughtAt−.> v Store

Example 18 (Range Restriction):
relation name = HasColor
Apple.HasColor.Color()
Enter instances for Color:red orange green blue
Create an existential axiom for Apple? [y/n] y
Apple.HasColor.red green

1
2
3
4
5

Color(red), Color(orange), Color(green), Color(blue)
Apple v ∃HasColor.{red, green}
∃ HasColor−.> v Color

When the prompt is answered negatively, no axiom is created, but the range restriction
is still enforced.

Example 19 (Range Restriction):
relation name = HasColor
Apple.HasColor.Color()
Enter instances for Color:red orange green blue
Create an existential axiom for Apple? [y/n] n

1
2
3
4

Color(red), Color(orange), Color(green), Color(blue)
∃ HasColor−.> v Color

46



4.3. Step 2: Adding Complex GCIs

If a role name R1 ∈ NR(X ) with Ran(R1, A1) for some atomic concept A1 is entered, and
a range restriction on a (new) atomic concept A2 is put into effect, then Ran(R1, A1uA2).

The Effect of Range Restrictions on Auto-complete If a range restriction was
imposed (line 1-3 in Examples 16 to 18) and an existential axiom Ã v ∃R1.(B1t . . .tBn)
is being created (line 5 in Examples 16 to 18), Auto(Ã), the proposed input for all Bi,
1 ≤ i ≤ n changes to account for the range restriction on R1.

Assume a restriction Ran(R1, A1) is set. Then there are two different cases.

Case Individuals: If individuals were created (examples 16 and 17), the expected input
for the Bi, 1 ≤ i ≤ n, is a ∈ NI(X ) such that Ran(R1, A1) holds, therefore Auto(Ã) =
{a ∈ NI(X ) | {a} v A1}.
At this point is it only possible to add a ∈ NI(X ). If anything else, that is not part of
the effective vocabulary, is inserted, the user is warned that some input was invalid and
only existing individuals are added to the nominal construction.

Case Subclasses: If subclasses were created (example 18), the expected input for the
Bi, 1 ≤ i ≤ n, is A ∈ NC(X ) such that Ran(R1, A1) holds, therefore Auto(Ã) = {A ∈
NC(X ) | A v*

Tax(X )A1}.
Any input string is permitted. If it is not yet part of the effective vocabulary, it is
assumed to be a new concept name and it is added to NC(X ). A warning is displayed,
but in contrast to the individuals case, the axiom is created as specified.

We now assume that T already contains multiple axioms, including a range restriction
Ran(R1, A1). If R1 ∈ NR(X ) is now chosen as the relation name for a new axiom for any
Ã ∈ CC all individuals and concepts that are covered by the range of R1 are proposed as
the expected input. This means

Auto(Ã) = {a ∈ NI(X ) | A1(a)} ∪ {A ∈ NC(X ) | A v*
Tax(X )A1}.

Three different inputs are now possible for the user:

Input 1: Something from Auto(Ã) is selected. This is the expected case.

Input 2: One or multiple individuals a ∈ NI(X ) or concept names A ∈ NC(X ) that are
not in Auto(Ã) are entered. Then it will hold that X � A1(a) for all i and
X � A v*

Tax(X )A1 for all A.

Input 3: A completely new string that is not in NI(X ) or NC(X ) is entered. Then the
input is assumed to be a new concept name. It will hold that X � A v*

Tax(X )A1
for every newly entered atomic concept A .

To summarize: When a role name with a range restriction is selected, only individuals
and atomic concepts from X , that are compliant to the restriction, get proposed. However

47



4. Ontology Construction

any meaningful input is permitted. By restraining the proposed input, the user is made
aware of the restriction and the possible consequences for reasoning, if something different
is entered.

Example 20 (Range Restriction on Input):
relation name: HasModeOfTransportation
Vehicle.HasModeOfTransportation.ModeOfTransportation:
Enter subclasses for ModeOfTransp.: Air Land Water Space
Create an existential axiom for Vehicle? [y/n] n

relation name: HasModeOfTransportation
Rocket.HasModeOfTransportation.
Air Land ModeOfTransportation Space Water
Rocket.HasModeOfTransportation.Space Air

1
2
3
4
5
6
7
8
9

Air v ModeOfTransportation, Land v ModeOfTransportation,
Water v ModeOfTransportation, Space v ModeOfTransportation,
∃ HasModeOfTransportation−.> v ModeOfTransportation

Rocket v ∃ HasModeOfTransportation.(Space t Air)

Here lines 1-4 set the range restriction on HasModeOfTransportation. When creating
the axiom Rocket v ∃ HasModeOfTransportation.A the concept names and individuals
(here none) that get proposed by auto-complete for A (line 8), fulfill the previously set
restriction.

4.3.3.2 Concept Disjointness

Defining proper disjointness axioms between concepts, is a tedious task that rapidly
introduces logical contradictions. There are a few approaches that specifically aim to
learn and enrich ontologies with disjointness axioms. The most prominent ones are based
on inductive logic programming or association rule mining [FV11]. Semantic clarification
is a heuristic introduced by Schlobach [Sch05] that automatically adds appropriate
disjointness statements, such that the logical functionality is reintroduced to incoherent
ontologies. It makes use of the Strong Disjointness Assumption (SDA), which states that
“In a well-modeled terminology the direct siblings, i.e. children of a common parent in
the subsumption hierarchy should be disjoint.”. This is a strong statement that is hard
to conform to, especially in ontologies with ambiguous general-knowledge concepts where
the taxonomy structure is not apparent from the outset. As a solution we propose a
weaker form that selectively allows the addition of disjointness axioms.

To facilitate disjointness of atomic concepts, we automatically assume that atomic
concepts A2, . . . , A` that are dynamically added as subclasses of some atomic concept
A1 at the same time, are pairwise disjoint. A set of respective disjointness axioms
Disj(Ai, Aj) for i, j = 2, . . . , `, i 6= j is then added to T .

48



4.3. Step 2: Adding Complex GCIs

If there already exist atomic concepts A2, . . . , A` with Ai v A1, 2 ≤ i ≤ ` for some
atomic concept A1 and a new single axiom Ak v A1 is added with some atomic concept
Ak, then the choice can be made to additionally create Disj(Ak, Ai) for all i = 1, . . . , `.
This makes it possible to specify a number of disjoint concept names at the same time,
while keeping the freedom to deviate from the SDA and not add disjointness, by splitting
individual subconcept declarations over separate axiom construction steps.

Example 21 (Disjointness):
relation name: HasTopping
Pizza.HasTopping.PizzaTopping:
Enter subclasses for PizzaTopping: Pepperoni Olive Onion
Create an existential axiom for Pizza? [y/n] y
Pizza.HasTopping.PizzaTopping

relation name: HasTopping
Pizza.HasTopping.PizzaTopping:
Enter subclasses for PizzaTopping: MeatBasedTopping
Make Meat-BasedTopping disjoint from all existing
subclasses? (Olive, Onion, Pepperoni) [y/n] n
Create an existential axiom for Pizza? [y/n] n

relation name: HasTopping
Pizza.HasTopping.PizzaTopping:
Enter subclasses for PizzaTopping: Pineapple
Make Pineapple disjoint from all existing subclasses?
(Olive, Onion, Pepperoni, MeatBasedTopping) [y/n] y
Create an existential axiom for Pizza? [y/n] n

relation name: HasTopping
Pizza.HasTopping.PizzaTopping:
Enter subclasses for PizzaTopping: Corn Ham
Create an existential axiom for Pizza? [y/n] n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Pizza v ∃ HasTopping.PizzaTopping
Pepperoni v PizzaTopping, Olive v PizzaTopping, Onion v PizzaTopping
Pepperoni u Olive v ⊥
Olive u Onion v ⊥
Onion u Pepperoni v ⊥
∃ HasTopping−.> v PizzaTopping

Meat-BasedTopping v PizzaTopping

Pineapple v PizzaTopping
Pineapple u Olive v ⊥

49



4. Ontology Construction

Pineapple u Onion v ⊥
Pineapple u Pepperoni v ⊥
Pineapple u MeatBasedTopping v ⊥

Corn v PizzaTopping, Ham v PizzaTopping
Corn u Ham v ⊥

The axiom that is added on lines 21-24 highlights that disjointness is only enforced between
subconcepts that are created at the same time. This prevents the user from accidentally
introducing inconsistencies when multiple subclass axioms for the same concept are
created at different iteration steps. If all newly added concepts were assumed to be
disjoint from all already existing subclasses, it would hold that Disj(MeatBasedTopping,
Ham) in the example above. The set of disjointness axioms is kept minimal to assure
independence from the sequence in which axioms are added, with the downside of losing
some semantical information. Missing disjointness axioms can always be added in an
ontology editor at a later point.

4.3.4 The IsA Role

The IsA role name is predefined in NR(X ) and its semantics are equivalent to v. It is
used to integrate the generation of axioms

Ã v
⊔
i

Bi (AxDisjun-b)

into the general axiom creation process for Ã v
⊔
j ∃Rj .(Bj1 , . . . , Bjn) (AxDisjun-a) by

chosing Rj = IsA. The following convertion is applied

Ã v ∃ IsA.(Bj1 , . . . , Bjn) 7−→ Ã v
jn⊔
k=j1

Bk

No range restrictions are ever enforced on IsA.

The support of IsA allows for a retroactive extension of CT as (AxDisjun-a) becomes the
simple axiom Ã v B1 if i = 1 (AxSub).
Any entered atomic concept B1 is connected to tc in GTax by construction. To guarantee
that B1 ∈ NC(CT ), condition (c) needs to be fulfilled in Definition 3.2.8 of CT . This
requires φ(B1) to be defined. If B1 is selected from S(φ(Ã),Re`) for some set Re`, then
φ(B1) := `(n′) such that B1 = onto(n′).
If a completely new concept name B1 is entered, the mapping can not be reconstructed
from the suggestions. In this case it is possible to employ a search procedure that tries to
find the best matching node in K. The ConceptNet API, for example, offers the option
to search for a matching URI for a given string. This was applied in CN2TopicOnto to
propose a matching node to the user and extend the mapping in if a new concept name
is entered. If the mapping is not extended, then GCT possibly becomes disconnected.

50



4.3. Step 2: Adding Complex GCIs

This results in a reduction of the iteration order queue QCT , which in turn reduces the
number of concept names offered for expansion. On the flipside CT can be extended
indefinitely with this method, as newly added concepts are appended to QCT and also
prompted for expansion.

Example 22 (IsA):
relation name: IsA
Bulldozer.IsA.TrackedVehicle WheeledVehicle

1
2

Bulldozer v (TrackedVehicle t WheeledVehicle)

Example 23 (IsA):
relation name: IsA
Candy.IsA.SweetFood
There was no respective entity for SweetFood. We are trying
to find the most suitable.
Store /c/en/sweet food as respective CN id? [y/n] y

1
2
3
4
5

Candy v SweetFood
φ(SweetFood)=/c/en/sweet food

The most fitting entity for SweetFood in ConceptNet is searched and proposed to the
user.

Example 24 (IsA):
relation name: IsA
StoneFruit.IsA.Drupe

relation name: IsA-
x.IsA.StoneFruit, x = Drupe

1
2
3
4
5

StoneFruit ≡ Drupe

Adding both ACIs Ã v B1, and B1 v Ã, through a reverted axiom, creates the equivalence
Ã ≡ B1.

4.3.4.1 Complex Disjunctive Axioms with IsA

The following examples illustrate how all so far described creation methods can be
combined to construct complex disjunctive axioms Ã v

⊔
k Bk t

⊔
j ∃Rj .(Bj1 t . . .tBjn).

Example 25 (Complex Disjunction):
relation name: IsA MakeSick
Food.IsA.Edible
Food.MakeSick.Person

1
2
3

Food v (Edible t ∃ MakeSick.Person)

51



4. Ontology Construction

Example 26 (Complex Disjunction):
relation name: HasLivingState
Organism.HasLivingState.LivingState()
Enter instances for LivingState:alive dead
Create an existential axiom for Organism? [y/n] y
Organism.HasLivingState.alive

relation name: IsA HasLivingState
Animal.IsA.Organism
Animal.HasLivingState.dead

1
2
3
4
5
6
7
8
9

LivingState(dead), LivingState(alive)
Organism v ∃ HasLivingState.{alive}
∃ HasLivingState−.> v LivingState

Animal v Organism t ∃ HasLivingState.{dead}

Here {Animal v Organism}∈ CT and S(φ(Organism),Re`cap) contains the suggestion
Alive. In Example 26, adding a more specialized axiom for Animal prevents that "All
animals are alive" is reasoned from "All organisms are alive".

Example 27 (IsA):
relation name: HasComponent
Sushi.HasComponent.Rice

relation name: HasComponent IsA
Sushi.HasComponent.Fish:
Enter subclasses for Fish: Tuna Salmon
Create an existential axiom for Sushi? [y/n] y
Sushi.HasComponent.Fish
Sushi.IsA.NonFishSushi

relation name: HasComponent
TunaSushi.HasComponent.Tuna

1
2
3
4
5
6
7
8
9
10
11
12

Sushi v ∃ HasComponent.Rice

Sushi v (NonFishSushi t ∃ HasComponent.Fish)
Tuna v Fish, Salmon v Fish

TunaShushi v ∃ HasComponent.Tuna

In Example 27 a new atomic concept NonFishSushi is created to model that not all Sushi
need to have a Fish component.

52



4.3. Step 2: Adding Complex GCIs

4.3.5 The TMPRelated Role

In the examples presented until now there exist a few limitation that were not yet
addressed.

So far there is no way to add an axiom Ã v ∃R1.A1 and specify subclasses for A1 without
enforcing a range restriction. If we revisit the PizzaTopping example (Example 21), the
axiom ∃ HasTopping−.> v PizzaTopping might be too strict. What if a new concept
HamburgerTopping and an axiom Hamburger v ∃ HasTopping.HamburgerTopping is added?
Then it is necessary to relax the range restriction axiom to ∃ HasTopping−.> v Topping
and add new subclass axioms HamburgerTopping v Topping, PizzaTopping v Topping.

Another observation shows that there are a lot of redundant repetitions in the first lines
of every new input that have no impact on the changes to T .

Both of those problems can be addressed with the help of the role name TMPRelated.
The role TMPRelated is in NR(X ) by default and can be used as a wildcard to create
basic concepts without adding an associated axiom to the final ontology. This can be
relevant when suggestions should be part of the vocabulary, but are not suitable for an
axiom construction for the concept Ã that is currently addressed.

No range restrictions are ever enforced on TMPRelated.

Concept names that are created with TMPRelated are added to Auto(Ã) for any Ã ∈ CC,
as part of the rembered concepts Rem, as defined in equation (4.4).

All axioms where some Rj =TMPRelated are temporarily created and later removed
from T during the clean-up step, while basic concepts, as well as respective subclass and
nominal axioms, remain part of X .

In the following we describe some scenarios in which the use of TMPRelated is handy or
necessary.

Application Scenario 1

The revisited and extended PizzaTopping example (Example 21) as described above to
add further subconcepts of the new atomic concept Topping.

Example 28 (Scenario):
relation name: HasTopping
Pizza.HasTopping.Topping:
Enter subclasses for Topping: PizzaTopping
Create an existential axiom for Pizza? [y/n] y
Pizza.HasTopping.PizzaTopping

relation name: TMPRelated
Pizza.TMPRelated.PizzaTopping:

1
2
3
4
5
6
7
8

53



4. Ontology Construction

Enter subclasses for PizzaTopping: Pepperoni Olive Onion

relation name: HasTopping
Hamburger.HasTopping.HamburgerTopping
relation name: TMPRelated
Hamburger.TMPRelated.HamburgerTopping:
Enter subclasses for HamburgerTopping: Avocado Bacon Onion

9
10
11
12
13
14
15

Pizza v ∃ HasTopping.PizzaTopping
∃ HasTopping−.> v Topping

Pepperoni v PizzaTopping, Olive v PizzaTopping, Onion v PizzaTopping
Pepperoni u Olive v ⊥
Olive u Onion v ⊥
Onion u Pepperoni v ⊥

Hamburger v ∃ HasTopping.HamburgerTopping

Avocado v HamburgerTopping, Bacon v HamburgerTopping, Onion v Hamburger-
Topping
Avocado u Bacon v ⊥
Bacon u Onion v ⊥
Onion u Avocado v ⊥

Application Scenario 2

Soup is proposed as a suggestion for Ã =Chicken through S(φ(Chicken),Re`loc). Now
TMPRelated can be used to immediately create the atomic concept ChickenSoup as
a subclass of Soup and add an existential axiom for ChickenSoup. Furthermore the
suggestion of Soup might inspire to integrate other types of soup into the ontology as
well.

Example 29 (Scenario):
relation name = TMPRelated
Chicken.TMPRelated.Soup:
Enter subclasses for Soup: ChickenSoup EggDropSoup
NoodleSoup

relation name = HasIngredient-
x.HasIngredient.Chicken, x = ChickenSoup

1
2
3
4
5
6
7

ChickenSoup v Soup, EggDropSoup v Soup, NoodleSoup v Soup

ChickenSoup v ∃ HasIngredient.Chicken

54



4.3. Step 2: Adding Complex GCIs

With TMPRelated axioms do not need to be verified in a separate step and any concept
name added can be immediately placed within the hierarchy of Tax.

Alternatively it is possible to solely create the existential axiom and add ChickenSoup v
Soup later during the clean-up step. Both options achieve the same result, however using
TMPRelated as done in Example 29 allows to preemptively create concepts at the correct
place in the hierarchy before they are integrated into other complex axioms.

Examples 30 and 31 illustarte the alternative version of Example 29, where proper
placement in the taxonomy is done during the clean-up step.

Assume T = {Chicken v Food}.

Example 30 (Create Axiom):
relation name = TMPRelated
Chicken.TMPRelated.Soup

relation name = HasIngredient-
x.HasIngredient.Chicken, x = ChickenSoup

1
2
3
4
5

ChickenSoup v >, Soup v >
ChickenSoup v ∃ HasIngredient.Chicken

Example 31 (Clean-Up):
[’Food’,’ChickenSoup’, ’Soup’]
Those are classes at the top level at the moment (only
subclass of Thing).
Enter superclass(es): Soup
Enter subclass(es) for Soup: ChickenSoup EggDropSoup
NoodleSoup

1
2
3
4
5
6

ChickenSoup v ∃ HasIngredient.Chicken
ChickenSoup v Soup, EggDropSoup v Soup, NoodleSoup v Soup

Adding ACIs during the clean-up step is intended as a downstream measure to improve
CT for all atomic concepts that were added to NC(X ) by creating complex axioms.

Application Scenario 3

Asumme the following T was constructed.

T ={Body v ∃HasHeight.BodyHeight, {tiny} v BodyHeight, {average} v BodyHeight,
{tall} v BodyHeight}

At some later point, Short, which appears to be a suitable suggestion for a body height
description, gets suggested for some Ã ∈ CC. TMPRelated can now be used to add a
further nominal axiom for BodyHeight.

55



4. Ontology Construction

Example 32 (Scenario):
relation name = TMPRelated
A.TMPRelated.BodyHeight()
Enter instances for BodyHeight: short

1
2
3

{short} v BodyHeight

Application Scenario 4

TMPRelated can be utilized as a suggestion rendition function. Assume Juice was
suggested as a superconcept of Fruit during Step 1 when building the taxonomy (see
Section 4.2). Fruit v Juice is semantically incorrect, but Juice is a thematically fitting
concept name, therefore we store it in the saved suggestions. It is now suggested again in
C4 (user-specified roles) and can be selected for an axiom. Inspired by the suggestion of
Juice, we decide to add some specific types of juice to the ontology. Using TMPRelated
we are reminded that those concepts were added to NC(X ), as they are now contained in
Rem as remembered concepts.

Example 33 (Scenario):
relation name = MadeFrom-
x.MadeFrom.Fruit, x = Juice

relation name = TMPRelated
Fruit.TMPRelated.Juice:
Enter subclasses for Juice: AppleJuice GrapeJuice
OrangeJuice

1
2
3
4
5
6
7

Juice v ∃ MadeFrom.Fruit
AppleJuice v Juice, GrapeJuice v Juice, OrangeJuice v Juice,

Juice, as well as AppleJuice, GrapeJuice and OrangeJuice will be subsequently contained
in Auto(Ã) for any Ã ∈ CC. They can be used to create further axioms straightforwardly,
e.g. AppleJuice v ∃ MadeFrom.Apple.

4.4 Step 3: Clean-Up

In this step the ontology taxonomy Tax can be restructured to reduce the amount of
top-level concepts. Concept names that are selected from the suggestions or newly
introduced are always added at the top level unless specified otherwise, for example
through dynamic extensions or the use of IsA or TMPRelated. During this last step of the
construction process further ACIs, containing either existing or new atomic concepts, can
be added, to improve Tax. Simultaneously, redundant axioms are removed. An algorithm
starts at the top level and lets the user navigate through Tax, moving from one atomic

56



4.4. Step 3: Clean-Up

concept to the next.
This is done as follows:

1. Initially the concept A = > is selected and P> = {A | there is no B s.t. A v B}.

2. Then the user is asked if s/he wants to create a new ACI. If the answer is negative
the algorithm jumps to step 4.

3. If the answer is yes, then the user is prompted to input two sets {A1, · · · , Am} and
{B1, · · · , Bn} of atomic concepts, by either selecting from PA or by entering new
concept names. Then n ×m axioms Ai v Bj for 1 ≤ i ≤ m and 1 ≤ j ≤ n are
added to T and additionally:

• if Bj is new, then Bj v A is added and Ai v A is removed,
• if Bj ∈ NC(T ) and Bj v A 6∈ T then the user can choose to add the axiom
Bj v A.

While the first removes redundant axioms that are implied by T , the second gives
a choice to the user if ACIs that contain some Bj already exist in Tax. Then the
algorithm jumps to step 2 again and further ACIs can be added.

4. The user is asked if s/he wants to select any A′ ∈ PA and get a new set PA′ =
{A | A v A′ ∈ T }. If yes, the algorithm moves to step 2 with the new set PA′ .
If no, PA is displayed and the algorithm jumps back to step 2 with the current
set PA. In case of a negative answer and if A = > the algorithm terminates and
X = (T , tc, φ) is complete.

Example 34 (Clean-Up):
These are all concepts at the top level at the moment (only
subclass of Thing).
[ Action, Color, Container, Fuel, ModeOfTransportation,
Object, Part, Petrol, PublicTransport, ... ]

Do you want to nest concepts on the current level?[y/n] y
Define a new (atomic) concept inclusion?[y/n] y
Enter superclass(es): Fuel
Enter subclass(es) for Fuel: Petrol

1
2
3
4
5
6
7
8
9

Petrol v Fuel

Example 35 (Clean-Up):
These are all concepts at the top level at the moment (only
subclass of Thing).

1
2

57



4. Ontology Construction

[ Activity, CalorificValue, Condiment, Container,
HamburgerJoint, Meal, Restaurant, ... ]
Do you want to nest concepts on the current level?[y/n] n
Go to a deeper level for further nesting?[y/n] y

Those are subclasses of Thing that have further subclasses:
[ Activity, CalorificValue, Container, Restaurant, ... ]
Enter the concept you want to jump into: Container

» Moving into Container

These are all concepts that are subclasses of Container.
[ Box, Can, FoodContainer, Jar, PizzaBox, StyrofoamContainer ]

Do you want to nest concepts on the current level?[y/n] y
Define a new (atomic) concept inclusion?[y/n] y
Enter superclass(es): Box FoodContainer
Enter subclass(es) for Box FoodContainer: PizzaBox

Define a new (atomic) concept inclusion?[y/n] n
Go to a deeper level for further nesting?[y/n] n

« Moving out of Container and back into Thing

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Container v >, Box v Container,
PizzaBox v Box, PizzaBox v FoodContainer

Here the messages on lines 12 and 25 indicate the move to a new and back to the previous
PA after no further axioms are added and no new concept is chosen.

Example 36 (Clean-Up):
These are all concepts at the top level at the moment (only
subclass of Thing).
[ Blue, Property ]

Do you want to nest concepts on the current level?[y/n] y
Define a new (atomic) concept inclusion?[y/n] y
Enter superclass(es): Color
Enter subclass(es) for Color: Blue Red Green

1
2
3
4
5
6
7
8

Warning: Color already exists somewhere in the ontology.
Add an inclusion for the current level?[y/n] n

9
10

Property v >, Color v Property,
Blue v Color, Red v Color, Green v Color

58



4.4. Step 3: Clean-Up

Here, Color v Property was already in Tax. As Color was already in NC(Tax) but Property
not the current A for PA, a confirmation was asked on line 9.

As a last step in the clean-up process, all axioms in X that contain the temporal role
name TMPRelated are removed from T . This finalizes the topic ontology X = (T , tc, φ).

59





CHAPTER 5
The CN2TopicOnto Tool

This chapter introduces the CN2TopicOntotool as an implementation of the topic ontology
construction method described in chapter 4. CN2TopicOnto utilizes ConceptNet 5.5
[SCH17] as the underlying knowledge graph.
In this chapter we go into some detail on the implementation. In the first section we
introduce the ConceptNet data structure and go over some drawbacks of its design.
Subsequently we give requirements and a short HOWTO for CN2TopicOnto. Later
sections then include specifics to the implementation, such as the particular weight
function that was applied, and improvement strategies that were employed with regard
to the ConceptNet data.

5.1 ConceptNet

ConceptNet calls itself an open, multilingual knowledge graph. It was initially built as
part of the Open Mind Common Sense project at the MIT Media Lab and had its first
API launched in 2011. After multiple updates and structural changes it now contains
approximately 28 million assertion statements spread over 304 languages. English is one
of the 10 core languages with a vocabulary size of over 1.5 million different expressions.
The current version contains dictionary knowledge, integrated from DBPedia, Wiktionary
and WordNet, as well as common-sense knowledge, gathered through crowd-sourcing on
the internet. Intuitive and human word associations were collected through Verbosity, a
word game in which participants had to describe terms by filling in sentence patterns and
reversely guessed the correct term for the presented sentence patterns [SHS10][HSA+10].
Thus it represents human knowledge, often in the form of multi-phrase, complex, natural
language expressions.
The ConceptNet relation types capture common patterns from the different data sources.
They range from generic, such as UsedFor or HasA, to rather unusual, with HasFirst-
SubEvent, MotivatedByGoal. Figure 5.1 depicts the internal structure of the ConceptNet

61



5. The CN2TopicOnto Tool

Figure 5.1: Visualization of a ConceptNet assertion. [weba]

assertion (car, UsedFor, drive). Individual edges are first built from different sources and
then combined to a final assertion. Each edge has an assigned weight and a short surface
text that is associated with the relation type.

The following list summarizes some important design characteristics of ConceptNet. It
was slightly adapted from a list of observations made by Caro et al. [CRCB15].
Ambiguity. Everything is considered a "concept". There is no distinction between
concepts, named entities or individuals. (There exists an InstanceOf relation, extracted
from DBPedia, but it only covers a small fraction of the data.)
Often multiple entities exist that express the same semantic concept.
Example: (apple, CapableOf, fall from a tree) and (apple, CapableOf, fall off a tree)
No distinction between words and their different meanings.
Example: (orange, IsA, color) and (orange, IsA, citrus fruit)

Phrases. Many entities represent complete phrases. As a result, long entity names
that were coined by humans do not have further connections, due to their specificity.
Example: (passing university exams, HasPrerequisite, studying for classes)
Here studying for classes is an end node with no further connections, i.e. is not part of
any other assertion.

Specificity. It contains very specific semantic information that is difficult to integrate
in automated tasks.
Example: (knowledge, CapableOf, open human mind)

Completeness. It is not complete (due to the methodology used to build it), since

62



5.1. ConceptNet

semantic features are arbitrarily associated to only few of all the possible relevant
concepts.
Example: ConceptNet contains (jazz, IsA, styleof music) but not (rock, IsA, styleof music).

Correctness. It contains pragmatic statements which are not semantically correct,
but comprehensible and intuitive for humans.
Example: (cat, Antonym, dog), (sun, Antonym, moon)

Relativity. It contains human perception and not absolute knowledge.
Example: (dog, HasProperty, larger than cat) which is not universally true.

Additionally to ConceptNet there exist multiple freely-available knowledge graphs that
target general knowledge with varying depth. Examples of knowledge graphs that could
be considered for our method are DBpedia, Freebase, OpenCyc or YAGO [FEMR15,
FBMR18]. YAGO [SKW07] heavily relies on the Wikipedia categories and WordNet
to build its data hierarchy. Thus it contains a lot of non-conditional and encyclopedia
information, such as timeline data and geographical locations. Its newly released sister
network Webchild 2.0 [TdMW17] on the other hand is a collection of common-sense
knowledge with a focus on fine-grained relations, such as tastes, shapes and associated
emotions. All its data is automatically extracted from web content, which leads to a
high contextual variety of properties that are assigned to individual concepts, and a mix
between factual and stereotypical knowledge. WebChilds contents look very promising
for our method. However it suffers from that same drawback that all text mining
approaches exhibit; it only learns relations between concepts that co-occur in text [PR16].
Cyc [MCWD06] is often mentioned, as it is the only big logic-based ontology system.
Unfortunately only a small fraction of the complete network is publicly available as
OpenCyc. As such it has been criticized for being restrictive and formally inconsistent
[MCWD06].

We chose ConceptNet for our implementation, because it contains a lot of descriptive
assertions that link typical common-sense properties and actions to concepts. Through
its crowd-sourcing and gamification approach, it contains a lot of knowledge that is too
obvious to be explicitly stated in text. Furthermore knowledge is preserved as expressed
by humans in a playful setting.
The newest version incorporates semantic vector embeddings, that were calculated and
adjusted based on the ConceptNet data. Those embeddings have ranked very high in
the SemEval 2017 task and SAT-equivalent question answering [SL17]. This reinforces
our assumption that the information contained in the ConceptNet triples is a close
representation of human knowledge, as a big part of its content was constructed as well
as evaluated under human standards.
Its big variety in data and loose semantic structure makes ConceptNet an interesting
underlying knowledge-graph for our topic ontology construction method. Its contents
cover a wide range of topics and provide for interesting suggestions that keep the
exploration process engaging for the user without getting to technical.

63



5. The CN2TopicOnto Tool

5.2 Requirements and HOWTO
CN2TopicOnto uses the ConceptNet 5.5 REST API to obtain and filter the JSON-
LD objects that store its individual assertions. We chose Python as a programming
language due to its simplicity and compatibility with the ConceptNet documentation.
The ontology-oriented programming module owlready2 1 was employed to load and create
the OWL 2.0 files. It was designed for the construction of biomedical ontologies, but
provides all the means to dynamically create ontologies through Python methods [Lam17].
Additionally it can perform automatic classification via the reasoner HermiT.

To properly run the program Python3 and the latest version of owlready2 are required.

5.2.1 Settings

Before the program is executed for the first time, a target directory has to be set in the
settings.py document. All OWL files that are created during a run of CN2TopicOnto will
be created at this location. Note that files are prefixed with the respective topic concept
to make them easy to identify.

5.2.2 HOWTO

A complete run can be started with the command python3 main.py. The user is
prompted to enter a topic concept of choice. If files associated with that topic concept
already exist in the set directory, they will be automatically loaded. Otherwise ConceptNet
is queried for an entity that matches the chosen topic concept. If found the user needs
to confirm the CN entity ID that is then mapped to the topic concept by φ. If no
matching entity be found it will ask the user to choose something else. Afterwards Step
1 (Section 4.2: Building the Central Taxonomy), Step 2 (Section 4.3: Adding Complex
GCIs) and Step 3 (Section 4.4: Clean-Up) are run in succession. Step 2 is split into
two substeps, where the first comprises C1, C2, C3 (General Relations) and the second
contains C4 (User-Specified Roles), which results in a total of four substeps.

Alternatively each of the four substeps can be started individually. In this case two
optional parameters, startstep and endstep, need to be added to specify the individual
substeps that ought to be executed. As an example, python3 main.py 1 2 executes
the first and second substep in succession while python3 main.py 3 executes substep
3 and everything onwards.
After each substep the current ontology is saved in a separate OWL file in the chosen
directory. File names are generated automatically and refer to the corresponding substep
as well as the topic concept. For the program to run properly, at least the first substep
has to be completed in order to execute any subsequent substep.
The main purpose of saving and reloading ontologies is to have the option to stop the
process and continue at a later time. It also provides the possibility to exit and restart a
substep in case something went wrong or the user is not satisfied with some content that

1Documentation is available at https://pypi.python.org/pypi/Owlready2

64

https://pypi.python.org/pypi/Owlready2


5.2. Requirements and HOWTO

was created. When a substep is started and there already exists a file with the respective
name, then the contained ontology will be loaded automatically and its contents can be
further expanded. In order to start a substep from scratch the respective file has to be
deleted or moved first.

Those are the files created for tc = name:
Mapping φ: name dic tax map.json
Saved suggestions: name dic dump.json
Step 1 (run substep 1): name tax.owl
Step 2.1 (run substep 2): name GR.owl
Step 2.2 (run substep 3): name UR.owl
Step 3 (run substep 4): name clean.owl

The ontology files are in OWL/XML format and follow the W3C standards for knowledge
representation. They can be loaded with any ontology editor, such as Protégé, for a
graphical visualization of the constructed ontology. In such a setting can be used to make
further additions and enhancements. It is also possible to directly view newly added
axioms in the editor, as all changes are immediately saved.

5.2.3 User Input

Throughout the ontology construction process the user has to frequently decide which
concepts, roles and associated axioms should be created. Input is either done by answering
simple yes/no questions, by choosing atomic concepts from the suggestions or by entering
role names and individuals following the patterns explained in Section 4.3.2. A run can
be terminated at any time by typing exit.

We briefly summarize the two main input methods and provide an example for each:

Choice by Index The user is presented with a list of suggestions S(n,Re`), where
each suggestion s ∈ S(n,Re`) is assigned a numerical index. Elements are then selected
through their respective index i(s) ∈ I ⊆ N. By construction |S| = |I|. After each
prompt, indices are entered in a row and need to be separated by a blank character.
Order and repetition do not matter. It is possible to add any of the following tags at the
beginning of the line to invert the selection: -i, -I, not, NOT. If this is done and
Ĩ ⊆ I is the list of entered integers, then all i ∈ I\Ĩ are selected.
Questions and prompts are designed to ask for events that are likely to require the least
amount of input. If the underlying request is assumed to produce good suggestions, then
the user will be asked to delete any outliers. If the request is rather universal, then
the user will be asked to select the appropriate elements. The inverted selection is for
cases where suggestions do not match as well as expected and entering the reverse is less
cumbersome.

Choice by index occurs when the central taxonomy is build in Step 1.

65



5. The CN2TopicOnto Tool

Example (Choice by Index):

Possible subclasses of Animal
Beaver[0], Ferret[1], Primate[2], Rabbit[3], Rodent[4]
Which concepts do you want to delete? 4 2

1
2
3

This deletes Primate and Rodent from the list and the respective ontology concept names
will not be created.

Possible superclasses of Animal
LivingCreature[0], Organism[1], Preditor[2]
Which concepts do you want to delete? not 0

4
5
6

This will create a concept only for LivingCreature.

Those might be sub- or superclasses too:
Bear[0], Beast[1], Fox[2], LivingBeing[3], Skunk[4], Squirrel[5]
Choose subclasses of Animal: 0 2 4 5

7
8
9

The same selection can be achieved by:
9 Choose subclasses of Animal: -I 3 1

Entering nothing and leaving the input blank implies that nothing will be adapted,
deleted or chosen, dependent on the question asked. Similarly entering all selects
everything.

Choice by Input The user is presented with a list of, often alphabetically ordered,
suggestions S(n,Re`). Those suggestions are then used to build the different types of
axioms as explained in Section 4.3.2. Any string can be entered. Using «TAB» tries to
auto-complete the input based on the choices offered by Auto(Ã). Using auto-complete
offers a structured visualization of the, often extensive, list of choices.

Choice by input is used to create complex concepts and axioms during Step 2 and Step 3.
Note that if nothing is entered at any point, the partially complete axiom is discarded as
unfinished.

Example (Choice by Input):

Do you want suggestions to add axioms for Cake? [y/n] y1
[ Sweet, GoodForDessert, False, NiceToEat, Spongy, Yummy ]2
[ Birthday, Dessert, Food, Icing, Candles, Sweet, Frosting, Pastry,3
Desert, Birthdays, Baked ... ]4
Generate a (new) axiom? [y/n] y5

6
relation name: IsEatenFor7
Cake.IsEatenFor.8

66



5.3. Adjusted Functions

9 Bake Cream LayeredDessert
10 Baked Cylinder Layers
11 BakedDessert Delicious Lie
12 BakedGood Desert NiceToEat
13 Bakery Dessert Oven
14 Baking DessertFood Parties
15 Birthday Eating Party
16 BirthdayCandles Edible PartyFood
17 BirthdayConfection False Pastry
18 BirthdayDesert Flour Pie
19 BirthdayDessert Food Pudding
20 BirthdayFood ForBirthday Round
21 BirthdayParties ForBirthdays Slices
22 BirthdayParty Frosted Sponge
23 BirthdayPastry Frosting Spongy
24 BirthdaySweet Good Sugar
25 BirthdayTreat GoodForDessert Sweet
26 Birthdays Has SweetBread
27 Bread HasCandles SweetFood
28 Candles HasFrosting Tasty
29 CandlesIcing HasIcing Treat
30 Celebration Iced Wedding
31 Chocolate Icing Weddings
32 Circle IcingCandles WithCandles
33 Confection Item Yummy
34 Cookie Layered

Cake.IsEatenFor.Birthday Des35
Desert Dessert DessertFood36
Cake.IsEatenFor.Birthday Dessert Party Celebration37

All suggestions are presented as a nice view and are selected through auto-complete.
Line 35 and 36 show how starting an input with Des provides the remaining suggestions
Desert Dessert and DessertFood.

5.3 Adjusted Functions

This section describes the ConceptNet assertion weights and the specific threshold function
Θ that was implemented, as well as the implemented naming function onto. The final
subsection contains a tabular overview and some details on the different sets of request
types Re`v,Re`w,Re`∼=,Re`part,Re`loc and Re`cap that we used for our implementation.

67



5. The CN2TopicOnto Tool

5.3.1 ConceptNet Weights and the Employed Threshold Function

ConceptNet weights assertions based on how often respective contexts occur over different
sources. Thereby an assertion a from reliable source is assigned a weight of ω(a) = 1.
Weights are additive over different linguistic structures that lead to the same assertion,
consequently causing weights that are greater than 1. As a result, high weights are often
assigned to frequently used concepts. Observations lead to the assumption that ω(a) = 1
is the most prevalent for any assertion a, whereas assertions with weight strictly below
one or above two rarely occur. Because it is so frequent, the accurateness of assertions a
with ω(a) = 1 varies a lot. A correlation between weight and significance only becomes
visible, the more weights deviate from 1. This leads to our hypothesis that a statement
about the relevance of an assertion can only be made if its weight is strictly lower or
strictly greater than 1.
These observations motivate our choice for ki in the aggregate function ω̂, the specific
threshold function Θ that we employ. The mi were selected with the intention to preserve
ten suggestions with high weight per request, though we considered a value greater than
1 already relevant enough to justify the reduction of the limit to five. Ultimately we
decided on two cardinality limits, that induce two different cut-off points, one at 2 and
the other strictly above 1. Results with ω(a) < 1 for the respective assertion a are always
cut off.

Definition 5.3.1 (Threshold Function).
Let ω(a) be the weight of a ConceptNet assertion a = (n, r, n′) with two nodes n, n′ and
associated relation type r, and t ∈ {s, e, b} a request type.
Then we define the threshold function Θ for ConceptNet as

ω̂(Reqt(n, r)) =


2.0 if |{(n′, ω(a)) | ω(a) ≥ 2.0}| ≥ 10
1.1 if |{(n′, ω(a)) | ω(a) ≥ 1.1}| ≥ 5 and

|{(n′, ω(a)) | ω(a) ≥ 2.0}| < 10
1.0 else

(5.1)

Corollary 5.3.1.
For every entity n and set Re` it holds that, if |{(n′, ω(a)) ∈ Reqt(n, r) | ω(a) ≥ 1}| ≥ 5
for a single (r, t) ∈ Re` and onto |

R̃eq(n,Re`) is bijective, then |S(n,Re`)| ≥ 5.

Proof. We make two observations about S(n,Re`) and R̃eq(n,Re`) that hold for any n.

• Observation 1: |R̃eq(n,Re`)| ≤ |
⋃

(r,t)∈Re`Reqt(n, r)|

• Observation 2: |S(n,Re`)| = |R̃eq(n,Re`)| if onto |
R̃eq(n,Re`) is bijective.

Now three different cases can occur:

Case 1: max(r,t)∈Re` ω̂(Reqt(n, r)) = 2.0⇔ there exists some (r, t) ∈ Re` s.t. |{(n′, ω(a)) ∈
Reqt(n, r) | ω(a) ≥ 2.0}| ≥ 10. Then |R̃eq(n,Re`)| ≥ 10. From Observation 2

68



5.4. ConceptNet Relation and Request Types

it follows that |S(n,Re`)| ≥ 10 ≥ 5.

Case 2: max(r,t)∈Re` ω̂(Reqt(n, r)) = 1.1⇔ there exists some (r, t) ∈ Re` s.t. |{(n′, ω(a)) ∈
Reqt(n, r) | ω(a) ≥ 1.1}| ≥ 5. Again it follows that |S(n,Re`)| ≥ 5.

Case 3: max(r,t)∈Re` ω̂(Reqt(n, r)) = 1.0. From the assumption it holds that |{(n′, ω(a)) ∈
Reqt(n, r) | ω(a) ≥ 1}| ≥ 5 for some (r, t) ∈ Re`. It follows that |R̃eq(n,Re`)| ≥
5 and |S(n,Re`)| ≥ 5.

Intuitively corollary 5.3.1 states that with ω̂, at least five suggestions will be proposed
for any filtered request R̃eq(n,Re`) for a set Re`, if the underlying knowledge graph
contains enough reliable assertions whose entities represent concepts with sufficiently
different labels.

5.3.2 Surjectivity of the Naming Function onto

Due to the phrase-based nature of ConceptNet labels, we chose to remove filler words for
the transformation of entities into concept names. As a result, it is possible for onto to
map two different ConceptNet entities to the same concept name. If this is the case then
the concept name will be proposed to the user twice and the selection decides what φ−1

maps to. An alternative solution could be to choose one at random or, more sophisticated,
to save both and later unify relevant assertions for both entities.

5.4 ConceptNet Relation and Request Types

The choice and number of relation types accounts for one of the fundamental design
differences between knowledge graphs, and engineered ontologies. While the first contain
a fixed, limited set of relation types defined by textual schemata, the latter focus on
incorporating distinct and fitting role names on a case to case basis.
DBpedia, for example, automatically extracts its relation types (called properties) from
Wikipedia. As a result, they have been criticized as unclear and semantically overlapping
[FEMR15]. Similar to ConceptNet, which has a core set of 36 relation [SCH17], YAGO
defines 106 distinct relations, yet incorporates very generic ones such as has-Created. In
many knowledge graphs a discrepancy can be observed between small sets of relations that
are used a lot and a majority of relations which are only used once or twice [FBMR18].
This is reinforced by the fact that unrecognizable patterns are mapped to unspecific
relations, such as ConceptNets RelatedTo, which results in them being overrepresented.
As a consequence relation types can not be straightforwardly converted into role names.
For more granular and specific names, our method proposes the suggestions according to
the sets Re` defined in Table 5.1 and the user can add role names as needed. Section 5.4
provides some detail on the meaning of the used ConceptNet relation types.

69



5. The CN2TopicOnto Tool

Taxonomy (Step 1)

Re`v = {(IsA,s)}
Re`w = {(IsA,e)}
Re`∼= = {(RelatedTo,b)}∗

Complex GCIs (Step 2)

C1 Re`part = {(HasA,e), (PartOf,s)}
Re`part− = {(HasA,s), (PartOf,e)}

C2 Re`loc = {(AtLocation,s)},
Re`loc− = {(AtLocation,e)}

C3 Re`cap = {(CapableOf,e), (ReceivesAction,e)}
Re`cap− = {(CapableOf,s), (ReceivesAction,s)}

C4 Re`sp = {(HasProperty,b), (RelatedTo,b)}

Table 5.1: Categorized pairs of ConceptNet relation types and request types that were
used in the implementation of CN2TopicOnto.
∗ only applied to tc.

5.4.1 Taxonomy

To build the taxonomy, suggestions are proposed through Re`v = {(IsA, s)} and Re`w =
{(IsA, e)}. Additionally a second set of suggestions is proposed for the generation of sub-
or superclasses of tc through Re`∼= = {(RelatedTo, b)}.
The symmetric relation RelatedTo collects all types of associations that could not be
classified under a specific pattern. We observed that respective suggestions frequently
contain additional concepts names that were not properly captured by the subsumption
relation. The choice to only propose them for tc was made to increase the amount
of central concepts, while restricting the exponential growth of prompts to the user.
For additional optimization, the nountag /n, that was adopted from WordNet into
ConceptNet is included in some queries. It has shown to retrieve very good results for
domain specific subtypes, such as concept varieties (for example fruit types) or named
entities.

5.4.1.1 Optimization of Taxonomy Suggestions with Vector Embeddings

Together with the ConceptNet 5.5. knowledge graph, Rob Speer et al. released a
hybrid semantic space named ConceptNet Numberbatch. Its vector embeddings of
concepts (= terms) are learned from distributional semantics that are enhanced by
ConceptNets knowledge with a generalization of the retrofitting method [SCH17]. Num-
berbatch outperformed other systems in the recent SemEval-2017 Task for "Multilingual
and Cross-Lingual Semantic Word Similarity" [SL17] and ranked only a few percent lower
than humans on a corpus of SAT-style analogy questions [SCH17].

70



5.4. ConceptNet Relation and Request Types

Taxonomy (Step 1)

IsA A is a subtype or a specific instance of B; every A is a B. This is
the hyponym relation in WordNet.

RelatedTo∗ The most general relation. There is some positive relationship
between A and B, but ConceptNet can’t determine what that
relationship is based on the data. Symmetric Relation.

Complex GCIs (Step 2)

HasA B belongs to A, either as an inherent part or due to a social
construct of possession. HasA is often the reverse of PartOf.

PartOf A is a part of B. This is the part meronym relation in WordNet.

AtLocation A is a typical location for B, or A is the inherent location of B.
Some instances of this would be considered meronyms in WordNet.

CapableOf Something that A can typically do is B.

ReceivesAction [ No description ]

HasProperty A has B as a property; A can be described as B.

RelatedTo The most general relation. There is some positive relationship
between A and B, but ConceptNet can’t determine what that
relationship is based on the data. Symmetric Relation.

Table 5.2: Overview of the ConceptNet relation types implemented in CN2TopicOnto.
The rightmost column provides sources and semantic use of each relation type according
to the ConceptNet Wiki.1
1 https://github.com/commonsense/conceptnet5/wiki/Relations

The ConceptNet API offers access to the Numberbatch embeddings. It is possible to
query for a list of most related terms w.r.t Numberbatch embeddings for any concept, as
well as request a relatedness measure (in [−1, 1]) for a pair of concepts.

While semantic embeddings are not the focus of this thesis, we made an attempt to
optimize the taxonomy suggestions utilizing Numberbatch, to eliminate those suggestions
that do not score a relation to tc above a certain threshold. The objective was to remove
suggestions with an incorrect meaning for disambiguous concepts. In general polysemous
concept names are not considered good ontology engineering practice and designing them
is listed as number one of common pitfalls that can not be automatically detected by
ontology evaluation tools yet [PSG12].
Even for the small experimental domains we created, it was very hard to determine
an appropriate threshold. Further research would be needed to assess the rates of
false positives and true negatives in correlation to the frequency of occurrence of tc in

71

https://github.com/commonsense/conceptnet5/wiki/Relations


5. The CN2TopicOnto Tool

natural language and the chosen threshold. Nevertheless example data showed that some
thresholds worked well for specific domains. A run with theshold = 0.25 for the Fruit
topic ontology, worked well enough to remove ComputerBrand as a possible superclass
of Apple, as well as Bird and Animal for Kiwi. BirdFromNewZealand, despite being very
specific, was still suggested. For Date more than 30 suggestions that were related to the
temporal meaning of the concept were correctly removed as well as 8 references to Orange
as a color. In contrast the threshold for the Vehicle ontology had to be set much lower to
prevent the removal of many good suggestions.
The user can experiment with the Numberbatch optimization by setting the activation
tag and a threshold in the settings.py document.

5.4.2 Complex GCIs

For part-whole suggestions (Re`part) we selected the two relation types HasA and HasPart.
ConceptNet unfortunately does not distinguish between the different forms of meronym
relations. We noticed that corresponding assertions often express linguistic context, where
one single term is part of a coined term, as in cranberry is part of american cranberry.
Such suggestions are hard to filter out without removing false positives, as the example
of wheel is part of wheeled vehicle shows. A solution would be to remove all multi-word
suggestions that have an exact match with the concept name, which they are suggested
to have as part. On the downside this also removes any suggestion that was misclassified,
and could be suitable to integrate into the taxonomy retroactively, e.g. house is part of
house boat. After some consideration, we decided to only remove all concepts that are
already part of the taxonomy from those suggestions, to prevent incorrect ambivalence
between is-a and part-of.

For possible locations (Re`loc) we chose only one relation type, namely AtLocation. The
relation LocatedNear could be suitable, but was not considered because suggestions were
plenty.

Suggestions with Re`cap use CapableOf and ReceivesAction, and contain lots of complete
phrases. For example S(Water,Re`cap) include ExtinguishFire and FillBucket. While
phrases are not desirable for concept names, they can indicate fitting role names.

For the user-specified roles Re`sp, we selected imprecise relation types, namely HasProp-
erty and RelatedTo, which are used to assert descriptive adjectives and physical or
temporal states.

72



CHAPTER 6
Ontology Engineering

This chapter discusses some related work in the area of Ontology Engineering, a vast
research field that deals with decisions and activities that concern the ontology develop-
ment process [CFG06]. It comprises research on methods and methodologies for ontology
design and evaluation, and addresses the development of ontology languages and ontology
tools, such as WebOnto [Dom98], Protégé [Mus15] and OntoEdit [SEA+02].

There are many works proposing methods and tools to support ontology development
that are related to this work. We briefly discuss the ones we find most relevant.

As a first step, most methodologies emphasize purpose identification to make clear why
the ontology in being built and what competency questions it needs to be able to answer.
When building an ontology, the identification and integration of main concepts can
either be done with a top-down, a bottom-up, or through a mixed approach. Many
methodologies, such as the one by Grüninger and Fox [GF95] and the METHONTOLOGY
methodology [FLGPJ97], have their roots in knowledge-based system development [FL99,
CFG06]. Grüninger and Fox is a very formal method, that uses first-order-logic to
define terms and constraints for objects. METHONTOLOGY proposes an ontology life
cycle based on evolving prototypes that go through different stages, such as knowledge
acquisition, integration, and evaluation.

Next to methods and methodologies, multiple guidelines for proper ontology engineering
practices exist, for example the Stanford 101 Ontology Development Guide [NM01] or the
overview of common pitfalls [PSG12]. Alan Rector [Rec03] and Ulrike Sattler [BHLS17]
are established names in the field and their publications and course materials discuss
ontology engineering with DLs from a practical perspective.

Ontology Learning is a huge field in the area of machine learning, dedicated to automatic
improvement strategies that learn axiom schemata, such as class definitions, from existing
partial ontologies or instance data. Well-known methods are based on Inductive Logic
Programming and need positive and negative assertion examples to extract new hypotheses.

73



6. Ontology Engineering

For example DL-FOIL [FdE08] and OCEL [LH10] are algorithms that learn new concept
descriptions, and Fleischhacker et al. introduced a method to automatically learn
disjointness axioms [FV11]. As machine learning algorithms they learn patterns and
characteristics from examples, which presumes the availability of suitable initial ontologies.
A newly published approach employs learning via queries to an oracle [KLOW17].

Knowledge Elicitation (KE) [SB89], as an area of research itself, focuses on standardizing
strategies for humans to collect and structure knowledge in an approachable way, to bridge
the gap between domain experts and ontology engineers that have limited knowledge on
the domain, but need to construct an adequate representation. Methods, such as card
sorting and laddering [HD03] are traditional forms of KE techniques, that are employed
to structure domain knowledge. KE techniques are also used to develop competency
questions [RGROB08] which in turn are important to evaluate and ensure the quality of
an ontology.

Ontology Authoring tools, such as Protegé [Mus15], often come with integrated reasoning
extensions for debugging and consistency checking. They are essential for ontology
engineering, but suffer from complexity issues as content manipulation is oftentimes not
straightforward for people that are not proficient in logic. Competency Question-Driven
Ontology Authoring [RPM+14] is a method that tries to give feedback to the user, based
on patterns in natural language competency questions, to assure that the ontology models
the knowledge as expected. The Protegé plug-in OntoComp [BDRR11] supports ontology
completion by asking questions to check whether the considered ontology contains all
the relevant domain information. If information is missing, it extends the ontology
appropriately based on the user responses. Question-driven methods however require the
ontology engineer to be knowledgeable about the domain.

At last, Text2Onto [CV05] should be mentioned. It is a text processing framework that
learns concept names and term hierarchy from written text. It describes itself as an
ontology learning tool, but incorporates user interaction and is overall geared to simplify
the KE and submission process for the user. OntoGen [FGM07] achieves the same goal
by combining text-mining techniques on a user-provided text corpus with an efficient
user interface to reduce the time spent for the user to retrieve and structure relevant
contents. The method presented and implemented in this thesis follows a similar idea, as
it simplifies KE for non-expert users by providing suggestions, but in contrast suggestions
are extracted from triples of a common-sense knowledge graph instead of unstructured
text. We are not aware of any similar tool that takes advantage of existing knowledge
graphs to support the ontology engineering process.

Below we discuss some modeling techniques and challenges of ontology engineering
specifically in relation to the proposed ontology construction method and offers possible
solutions to aid with the decisions that need to be made during the construction of topic
ontologies with CN2TopicOnto.

74



6.1. Top-down and Bottom-Up Approach

6.1 Top-down and Bottom-Up Approach
The Stanford Ontology Development 101 Guide [NM01] states the following as one of the
fundamental principles of ontology design:

“There is no one correct way to model a domain — there are always viable
alternatives. The best solution almost always depends on the application that
you have in mind and the extensions that you anticipate.”

Our method for topic ontology construction supports the user with suggestions of fitting
concept names and restrains the types of available axioms, but the ultimate choices for
content and structure remain with the user. Therefore it mainly assists with KE and
proposes a broad structure determined by the relation types of the underlying knowledge
graph.

There are two main elicitation philosophies for the construction of an ontology hierarchy
from scratch [NM01][UG96]:

• Top-down development starts by defining the most general domain concepts that
should be included. Then more specialized subconcepts are added to further
categorize the existing concepts.

• A bottom-up approach, on the contrary, starts with definitions of the most specific
concepts and groups those into further (super)concepts based on common properties.

Mixed approaches combine both methods by defining the most salient concepts first and
generalizing and specializing them later as needed.

Standard manual KE techniques, such as card-sorting or laddering, have been developed
in the early 90s to help organize domain knowledge and categorize concepts. They require
the user to create physical cards for relevant concepts and subsequently sort them into the
desired categories. Wang et al. [WSSR06] released a plug-in for Protegé, that integrates
those manual processes into the ontology authoring tool and makes them more accessible
for users.

Our method for ontology construction that we introduced in Chapter 4 utilizes a mixed
approach in which the topic concept, as the “most salient” concept, is used as the sole
base for any further expansion of the ontology. All other concept names are explored and
added interactively during the construction process. Dynamic extensions with subclasses
are a built-in procedure to recognize and add new generalizing concepts throughout the
development process in a bottom-up fashion. As an example, assume that Africa, Paris,
Box, Crate are suggested as different possible locations for a concept. The taxonomy can
then be immediately extended with two superclasses, GeographicalLocation and Container,
that subsume Africa, Paris and Box, Crate respectively. Subsequently the hierarchy can be
extended with more specialized concepts for geographical locations, such as Continent and

75



6. Ontology Engineering

City. This way the process iterates between two steps: 1. KE in the form of suggestions,
and 2. creation and integration of concepts into the ontology.

Maintaining an overview may be challenging, as semantically similar concept names need
to be integrated into an existing (partial) taxonomy. Due to the gradual construction
process and the incompleteness of most knowledge graphs, the resulting concept hierarchy
will likely have mixed levels of generality. This means that subconcepts of the same
concept do not represent the same level of generality. The taxonomy modification step
is an attempt to alleviate such inhomogeneity, but nonetheless intermediate concept
categories might not be suggested and therefore never added to the taxonomy in the
first place. For example, while concepts such as NocturnalAnimal, AquaticAnimal and
ColdBloodedAnimal are suggested as subconcepts of Animal, not all immediate subclasses
end up being animal categorizations. One could even argue that a further distinction
is needed as the subtypes describe intrinsically different properties, i.e. active time,
habitat and thermophysiology. In an optimal categorization, each animal would be
subconcept of a concept partition into sibling concepts that group animals after a single
descriptive property. Such a categorization is not the purpose of the created topic
ontologies, as accurate and complete classifications quickly become infeasible. Instead
the user should at first aim to select the most defining and common-sense properties.
If further categorization is need, missing concepts (DiurnalAnimal, WarmBloodedAnimal)
and their φ-mapping can be added using the IsA role name.

6.2 Equivalence and Normalization

Equivalences of the form A ≡ C, where A is an atomic concept and C any concept, are
prevalent in well-designed ontologies and provide strict definitions for concept names.
Examples of such definitions are Herbivore ≡ ∀ HasFoodSource.Plant or CheeseBurger ≡
Burger u ∃ HasTopping.Cheese. Knowledge-graphs, in contrast to encyclopedias, are not
designed to provide closed definitions of concepts. For this reason our topic ontologies do
not embed definitions as axioms. Instead we want the user to be able to add necessary
conditions through GCIs (CheeseBurger v Burger, CheeseBurger v ∃ HasTopping.Cheese).
If needed, and after the topic ontology is finished, axioms can be extended or combined
to definitions in an ontology editor of choice.

The only type of equivalence axiom that we support is of the form A1 ≡ A2, where
A1, A2 ∈ NC . It is debatable if such axioms should be allowed in an ontology. The
Catalogue of Common Pitfalls [OOP] assembled by the Ontology Engineering Group
of the Technical University of Madrid, which is used as a basis for the OOPS! pitfall
scanner [PGS14], lists "creating synonyms as classes" as a common ontology engineering
error. The Ontology Development Guidelines [NM01] state that "Synonyms for the same
concept do not represent different classes." Our method still allows the user to create
equivalent concepts for synonyms, as the axiom Orca ≡ KillerWhale that is part of our
Animal example ontology, shows. We made this decision to cover two possible occurrences:
1. the user accidentally creates a cycle in the taxonomy of X where A1 v*

Tax(X )A2 and

76



6.3. Modeling Choice: Concept or Individual

A2 v*
Tax(X )A1 through multiple single ACIs that s/he adds at different points of the

construction process, or 2. the user does not remember that a conceptualization was
already added to the taxonomy and subsequently introduces a second concept name. He
or she can then add an equivalence axiom (using the IsA role) when the error is recognized.
By allowing synonym equivalences, different synonymous concept names can be initially
added and the decision on which name to keep, postponed for later. If one concept name
is later on deleted in an editor, corresponding axioms are not lost. Many systems allow
associating lists of synonyms to a concept, which would also be a retroactive solution
that can be straightforwardly applied in an ontology editor.

In connection with equivalence and concept definitions, we want to call attention to,
and briefly introduce, a mechanism called normalization. It was introduced by Alan
Rector [Rec03] as a method to achieve modularity for OWL or DL-based ontologies. The
essence of his proposal is that the primitive skeleton of an ontology, which he defines as
the part of the ontology that contains only concepts described by necessary conditions,
should consist of disjoint homogeneous trees. The primitive skeleton should clearly
distinguish between self-standing concepts, which are defined as things and intangible
notions, such as colors, and refining concepts, which are used to describe value types.
While self-standing concepts are always open and their list of children not exhaustive,
refining concepts define a closed partition of a concept into subconcepts, for example
as “small”, “medium” and “large”. Normalization is definition-driven in the sense that
it introduces definitions to link the independent branches of the untangled taxonomy
skeleton. For example, instead of having two axioms RedApple v Apple and RedApple v
Red, following normalization, Apple and Red should be self-standing concepts (Apple v
Fruit, Red v Color). Then RedApple is defined separately through an axiom RedApple ≡
Apple u ∃ HasColor.Red. Other examples are Mammal ≡ ∃ HasSpecies.MammalSpecies,
where MammalSpecies is one of multiple (non-exhaustive) subclasses of Species and
HotFood ≡ Food u ∃ HasLevelOfSpiciness.High. Here there different levels of spiciness
can build an exhaustive partition of a concept LevelOfSpiciness into subconcepts High,
Medium and Low. With such a structure, RedApple, Mammal and HotFood are not part
of the primitive skeleton of the respective ontology as they are more complex to describe.

We propose to keep the concept of normalization in mind when using CN2TopicOnto in
case it is not straightforward how conceptual notions should be separated and structured
when building and extending the taxonomy.

6.3 Modeling Choice: Concept or Individual

Defining a proper model is challenging in diversified domains that describe abstract con-
cepts. While it is easy to include statements such as Female(mary) or Physicist(albert einstein),
it is often not clear and up to the engineer to decide if a term is better treated as a
concept name or as an individual. Modifiers, which are adjective and adverbs that modify
other concepts, such as colors or sizes occur as suggestions across topics and can be
handled in different ways.

77



6. Ontology Engineering

There exist three main approaches:

• Model modifiers as new atomic concepts.
RedApple v Apple, GreenApple v Apple,
RedApple(a1)

Unless the domain is naturally partitionable into individual subconcepts this
approach introduces a lot of new artificial concept names.

• Model modifiers as individuals.
Color(red), Color(green), Apple(a1), Apple(a2),
HasColor(a1, red), HasColor(a2, green),
Apple v ∃HasColor.{red, green}, Banana v ∃HasColor.{yellow}
If it does not seem natural to have multiple individuals of a modifier, it is best to
group multiple modifiers and introduce them as individuals of one common atomic
concept.

• Model the modifiers with anonymous individuals.
Red v Color, Green v Color
Apple(a1)

Apple v ∃HasColor.(Red t Green)

As a downside of this approach, it can be unintuitive to construct instances of some
abstract modifying concepts. While it works well in Red(burgundy), it seems forced
for Black(black).

Note that for the topic ontologies we construct, an ABox assertion A(a) is expressed
through the TBox axiom {a} v A. With the exception of role membership assertions,
all axioms can be easily created through dynamic extensions. Figure 6.2 visualizes the
different approaches for the modifying concept Color.

Metamodelling [BN03] is an approach in which an entity is allowed to be both, a concept
and an individual, simultaneously. Thereby concepts may be defined as subsets of other
concepts. In the Animal ontology this would permit the instantiation of AnimalSpecies
with different concepts of species, such as Mammal and Fish. Then it is possible to state
that every concept that is an instance of AnimalSpecies exhibits a biological classification.
At the same time the information that Mammal and Fish are subclasses of Animal is not
lost. To pick up the color example: with metamodelling, individual colors may be coded
as concepts while making it possible to express that every object that has more than two
colors, is considered multicolor.
While metamodelling is not allowed in standard DLs, it is supported by OWL2, and
could be considered for integration into CN2TopicOnto in the future.

78



6.3. Modeling Choice: Concept or Individual

Apple

RedApple

a1

inst-of

is-a

GreenApple

is-a

(a) Modifiers as specialized concepts

Apple

a1

inst-of

Color

Red

inst-of

is-a

Green

is-a

HasColor

(b) Modifiers as anonymous individuals

Apple

a1

inst-of

a2

inst-of

Color

red

inst-of

green

inst-of

HasColor HasColor

(c) Modifiers as individuals

Figure 6.2: Modeling options for modifiers, adapted from slides by Ulli Sattler [Sat].

79





CHAPTER 7
Topic Ontology Examples

This chapter contains a statistical overview and excerpts from the topic ontologies
that we constructed with CN2TopicOnto. The full ontologies can be downloaded at
https://bitbucket.org/Tenebrumm/cn2topiconto.git.

The final topic ontologies have been revised and edited with Protégé 5.2.0 [Mus15].
Changes include the removal of axioms that were created by accident, minor changes in
role and concept names for more clarity (this may have caused the loss of some mappings),
and addition of axioms in extensions of DL that are not supported at the current time
(such as number restrictions and role hierarchies), if adequate.

Table 7.1 shows some parameters of the constructed topic ontologies. The numbers in
the first three columns refer to the amount of concept, role and individual names. The
fourth column shows the amount of logical axioms contained in T . Dom(φ) denotes the
domain of φ. The last column gives a rough estimate of the time it took to create each
ontology.

tc NC(X ) NR(X ) NI(X ) |T | |Dom(φ)| Time
Animal 671 67 50 1253 347 ∼6h
Vehicle 300 34 7 483 128 ∼5h
Fruit 312 35 0 568 125 ∼5h
NaturalDisaster 89 16 4 150 35 ∼1.5h
FastFood 109 20 0 200 22 ∼2.5h
University 153 15 5 233 46 ∼3h

Table 7.1: Statistics of constructed topic ontology examples.

We briefly describe the first four listed ontologies, namely Animal, Vehicle, Fruit and
NaturalDisaster, next. For each of them we give an informal description of its contents,

81

https://bitbucket.org/Tenebrumm/cn2topiconto.git


7. Topic Ontology Examples

list the role names, and provide a visualization of a selected part of the taxonomy together
with a few selected axioms. In the end some comments provide a few details and insights
that are specific to the respective topic ontology.

82



7.1. Animal

7.1 Animal

The Animal ontology is the largest among the example ontologies that we constructed,
with more than double the amount of atomic concepts and almost double the amount of
role names than the second biggest Vehicle ontology.

Contents:
animal species, animal groupings (cold-blooded, herd animal etc.), habitats, geographical
location, associated activities, colors, size, leg count, danger potential, animal sounds,

List of role names:
AbleToLayEgg, AidOfProfession, AidWithActivity, AssociatedWithActivity, BiologicalProces-
sOf, Build, CanBeFoundIn, CanBeFoundUnder, CanBeKeptIn, CapableOfNurse, CarriesPo-
tentialDisease, Cause, CausedBy, FormedOf, FoundInGeographicalLocation, HarvestedBy,
HasAnatomicalPart, HasBehaviourCharacterstic, HasBodyPart, HasBreed, HasCharacteris-
tic, HasCharacteristicAnatomicalFeature, HasForSale, HasGender, HasLateStage, HasLeg-
Number, HasLivingState, HasNaturalHabitat, HasNaturalPrey, HasOrigin, HasPart, HasPre-
ferredDrink, HasPreferredFood, HasPreviousStage, HasProfessionActivity, HasSenseOfHear-
ing, HasSenseOfSight, HasSenseOfSmell, HasSizeValue, HasSpecies, HasTypicalColor, HeldIn,
HeldOn, IsMemberOf, KeptForPurpose, KnownAs, LiveIn, LivesOn, MakeAnimalSound, Mark-
Territory, MeatOf, NaturalHabitatOf, PartOf, Possess, ProducedBy, SignOf, SimilarFeatureTo,
TransmitDisease, TypicalFoodOf, TypicallyHasBreed, UsableOn, UsedForFoodProductionOf,
UsedToBreed, UsedToHold, UsedToScare

Figure 7.1: CT of the Animal ontology. Deeply nested animal subspecies have been
omitted for space reasons.

83



7. Topic Ontology Examples

Animal

Animal v Creature,
Animal v ∀ HasPart.AnimalPart,
Animal v ∃ HasPart.Cell,
Animal v ∃ PartOf.Ecosystem,
Animal v ∃ PartOf.Nature,
Animal v ∃ HasSpecies.AnimalSpecies,
Animal v ∃ LiveIn.(Home t Wilderness t Zoo)

Herbivore

Herbivore v Animal,
Deer v Herbivore,
Herbivore v ∃ HasPrefFood.Plant,
Meadow v ∃ NaturalHabitatOf.Herbivore

HerdAnimal

HerdAnimal v Animal,
Cows v HerdAnimal, Elephant v HerdAnimal,

HerdAnimal v ∃ IsMemberOf.Herd

AquaticAnimal

AquaticAnimal v Animal,
Beaver v AquaticAnimal, Fish v AquaticAnimal,

AquaticAnimal v ∃ HasPrefFood.(Fish t Plankton t
WaterPlant),
AquaticAnimal v ∃ LiveIn.(Aquarium t Waterbody),
AquaticAnimal v ∃ AssociatedWithActivity.{swim},

Gills v ∃ PartOf.AquaticAnimal

Pig

Pig v Animal, Pig v FarmAnimal,
Pig v Mammal, Pig v Omnivore,
Pig v Quadruped,
Sow v Pig, Piglet v Pig, Boar v Pig,
DomesticatedPig v Pig,
Pig v ∃ HasBodyPart.Snout,
Pig v ∃ HasCharAnatomicalFeature.WiggleTail,
Pig v ∃ HasTypicalColor.(Brown t Pink),
Pig v ∃ LiveIn.Mud,
Pig v ∃ HasBehaviourChar.{smart},
Pig v ∃ HasSenseOfSight.{good},
Pig v ∃ MakeAnimalSound.{oink},
Pigsty v ∃ UsedToHold.Pig,
Pork v ∃ MeatOf.Pig

Dodo

Dodo v Bird, Dodo v ExtinctAnimal,
Dodo v ∃ FoundInGeographLocation.Mauritius

Feather

Down v Feather, GooseQuill v Feather,
DuckDown v Down, GooseDown v Down,
SwanDown v Down,
Bird v ∃ Possess.Feather

Figure 7.2: Selected axioms from the Animal ontology.

Comments:
Constructing the Animal ontology was a long time commitment, as the taxonomy grew
very fast and was on the verge of becoming infeasible to manage. Suggestions included an
excessive amount of biological and species-related terminology that were hard to relate
for a layperson.
In the end some well-thought-out restructuring was needed to find a satisfactory way to
model the different animal habitats and typical living locations.
There were a couple of nice opportunities to introduce number restrictions, which were
added retrospectively via Protégé, for example by defining the number of legs of an
animal, as in Quadruped v ∃ =4 Leg.
Typical activities were grouped and modeled as individuals of the concept Activity, the
same for BehaviourCharacteristics and AnimalSounds. This is why the vocabulary of the
Animal ontology, in comparison to the other ontologies, contains a large number of
individual names. Examples for axioms that contain individuals can be seen in Figure 7.2
in the bordered section for the concept Pig.

84



7.2. Vehicle

7.2 Vehicle

The Vehicle ontology contains exactly 300 atomic concepts and took almost as long to
construct as the Animal ontology.

Contents:
different forms of vehicles (air, land, space, water), vehicle groupings by usage (agricultural,
emergency etc.), vehicle groupings by type (electric, single-passenger, tracked etc.),
professions, vehicle parts (especially car parts), engine types, land surfaces and water
surfaces, events, colors, sizes, car brands

List of role names:
ArriveAtTime, DrivingAreaFor, EquippedWith, HasApplicationEnvironment, HasColor, Has-
Destination, HasEngine, HasForDisplay, HasForSale, HasModeOfTransportation, HasMotor,
HasPart, HasPreviousOwner, HasSize, HasWorkEnvironment, HasWorkVehicle, Involve, Landin-
gAreaFor, MadeFrom, MovedBy, Need, OptionalEquipmentOf, PartOf, StationedAt, Tow,
TransportationMeanOfChoiceInCountry, UsedForPark, UsedToMove, UsedToTransport, Used-
ToUnlock, UsedWithPurpose, Utilize, WorkEnvironmentOf, WorkVehicleOf

Figure 7.3: CT of the Vehicle Ontology. Some vehicles, for example all subclasses of Boat
and Automobile, have been omitted for space reasons.

85



7. Topic Ontology Examples

FireEngine

FireEngine v EmergencyVehicle,
FireEngine v Truck,
FireEngine v ∃ EquippedWith.Hose,
FireEngine v ∃ EquippedWith.WaterEngine,
FireEngine v ∃ HasColor.Red,
FireEngine v ∃ WorkVehicleOf.Fire�ghter,
FireStation v ∃ UsedForPark.FireEngine

SurfaceWatercraft

Boat v SurfaceWatercraft,
Ship v SurfaceWatercraft,
SurfaceWatercraft v Vessel,
SurfaceWatercraft v Vehicle,
SurfaceWatercraft v ∃ HasPart.(Propellor t
Rudder t Sail)

Tank

Tank v ArmoredCombatVehicle,
Tank v TrackedVehicle,
InfantryTank v Tank, HeavyTank v Tank,
FlamethrowerTank v Tank,
Tank v ∃ HasPart.Cannon,
Tank v ∃ HasPart.GunEnclosure,
Tank v ∃ StationedAt.MilitaryBase,
Tank v ∃ UsedWithPurpose.Security,
Tank v ∃ UsedWithPurpose.War,

Plane

Plane v Vehicle,
CommercialPlane v Plane, Jet v Plane,
Plane v ∃ HasPart.Wing,
Plane v ∃ HasPart.Cabin,
Plane v ∃ EquippedWith.AirplaneSeat,
Plane v ∃ EquippedWith.Lavatory,
Plane v ∃ EquippedWith.OverheadBin,
Plane v ∃
EquippedWith.EmergencyOxygenMask,
Plane v ∃ HasModeOfTransp.Air,
Plane v ∃ UsedToTransport.(Cargo t Luggage
t Person),
Plane v ∃ ArriveAtTime.(Late t Punctual),
Plane v ∃ WorkEnvironmentOf.FlightAttendant,
Plane v ∃ WorkEnvironmentOf.AirHostess,
Plane v ∃ WorkEnvironmentOf.Pilot,
Runway v ∃ LandingAreaFor.Plane,
Taxiway v ∃ DrivingAreaFor.Plane

WheeledVehicle

WheeledVehicle v Vehicle,
Automobile v WheeledVehicle,
FourWheeledVehicle v WheeledVehicle,
Truck v WheeledVehicle,
Unicycle v WheeledVehicle,
Car v WheeledVehicle,
WheeledVehicle v ∃ HasPart.Wheel,
WheeledVehicle v ∃ HasModeOfTransp.Land,
Skidder v TrackedVehicle t WheeledVehicle

Figure 7.4: Selected axioms from the Vehicle ontology.

Comments:
The suggestions revealed some interesting concepts that describe subclasses of vehicles,
such as UtilityVehicle and HumanPoweredVehicle. As a downside, the differentiation be-
tween some concepts was not very clear, for example between Car and Automobile.
The list of subconcepts of VehicleParts that was automatically created through the uni-
versal HasPart axiom is exhaustive and contains >30 concepts and further substructures.
Defining modes of transportation and correctly assigning the vehicles was challenging.
Interestingly a lot of different types of tanks were suggested, for example the CM11 and
the CM12 battle tank, while no specific types of cars were suggested. This might be
due to a larger amount of high-weighted assertions that contain car. Consequentially
the weight threshold function filters out suggestions that stem from assertions with
comparably lower weight.
A revised version of the ontology could extend the current structure and incorporate a
strict partition into one-, two-, three- and four-wheeled vehicles together with a concept
for wheel-less forms of transportation.

86



7.3. Fruit

7.3 Fruit

The Fruit ontology was the first ontology that we built with CN2TopicOnto. The idea
for this thesis project was initiated by the desire to have a small, manageable ontology
about different genera of fruit to train a human-like robot. Size-wise the final ontology is
as extensive as the Vehicle ontology, with 312 concepts names and 568 TBox axioms. In
contrast to the two previously presented topic ontologies, the Fruit ontology contains no
individuals.

Figure 7.5: CT of the Fruit ontology. Subclasses of Apple and Berry are displayed with
respective subclasses for exemplary purposes. Further subclasses for other fruits, such as
Grape or Banana exist in the complete version but were omitted for space reasons.

87



7. Topic Ontology Examples

CitrusFruit

CitrusFruit v Fruit, Lemon v CitrusFruit, Lime
v CitrusFruit, Orange v CitrusFruit,
CitrusFruit v ∃ HasTaste.Sour,
CitrusFruit v ∃ HighIn.CitricAcid,
CitrusFruit v ∃ TypGrownInLoc.SouthAfrica

Lime

Lime v CitrusFruit, Lime v SolidFood,
KeyLime v Lime,
Lime v ∃ HasColor.(Yellow t Green),
Lime v ∃ HasColor.YellowGreen,
Caipirinha v ∃ Contain.Lime,
Daiquiri v ∃ Contain.Lime,
Gimlet v ∃ Contain.Lime

Strawberry

Strawberry v Berry,
Strawberry v ∃ HasColor.Red,
Strawberry v ∃ HasTaste.(Sour t Sweet),
Strawberry v ∃ HighIn.VitaminC

Guacamole

Guacamole v Food,
Guacamole v Dip,
Guacamole v ∃ MadeFrom.Avocado,
Guacamole v ∃ TypicallyContain.Tomato,

Apple

Apple v EdibleFruit, Apple v Pome,
AdamsPearmainApple v Apple,
AmbrosiaApple v Apple, CrabApple v Apple,
BraeburnApple v Apple, CookingApple v Apple,
GalaApple v Apple, JazzApple v Apple,
GoldenDeliciousApple v Apple,
GrannySmithApple v Apple,
RedDeliciousApple v Apple,
Apple v ∃ HasPart.Peel,
Apple v ∃ HasPart.AppleCore,
Apple v ∃ HasPart.Stem,
Apple v ∃ GrowOnTree.AppleTree
Apple v ∃ HasShape.Round
Apple v ∃ TypicallyHasColor.Red
Apple v ∃ HasColor.(Green t Red t Yellow),

AppleOrchard v ∃ PlaceToGrow.Apple,
ApplePie v ∃ Contain.Apple,
To�eeApple v ∃ MadeFrom.Apple,

PineappleCake

PineappleCake v Cake,
PineappleCake v Food,
PineappleCake v FruitBasedFood,
PineappleCake v SweetFood,
PineappleCake v ∃ Contain.Pineapple,

Figure 7.6: Selected axioms from the Fruit ontology.

Contents:
different types of fruit, some vegetables, spices and herbs, basic food (bread, egg, meat
etc.), fruit- and vegetable-based foods (guacamole, pineapple cake etc.), drinks (alcoholic
drinks, juices), storage containers (bowl, can, jar etc.), food components (sugars, vita-
mins, fiber etc.), food states (fresh, preserved), locations (market, supermarket, etc.),
geographical locations, tastes (salty, sour, spicy etc.), shapes, colors, states (ripeness,
physical states, healthiness),

List of role names:
BoughtAt, ConsideredBestWhen, Contain, DependOn, FoundAtSection, GrowOnTree, Has-
Color, HasFoodState, HasPart, HasPhysicalState, HasShape, HasSize, HasStateOfHealth,
HasStateOfRipeness, HasSubdivision, HasTaste, HasTexture, HasTopping, HighIn, Induce,
KnownToEat, MadeFrom, MayBeContainedIn, MayContain, NotContentOf, PartOf, Place-
ToGrow, Sell, Stores, TypicalFoodOfAnimal, TypicallyConsidered, TypicallyContain, Typical-
lyGrownInLocation, TypicallyHasColor, TypicallyStoredIn

88



7.3. Fruit

Comments:
The Fruit ontology grew very rapidly. It was easy to interactively add other foods and
engaging to explore further suggestions. Interesting contents were the different types of
drinks and (mostly sweet) foods that were suggested because they have some fruit as a
key ingredient.
For some things, such as Avocado and Strawberry, the categorization was not distinct,
due to the fact that it is different from a biological and a layperson perspective. An
avocado is sometimes considered a fruit and other times a vegetable. Similarly tomatoes
can be classified as fruits or as vegetables.
There are two synonymous concept names, induced by the axiom StoneFruit ≡ Drupe.
Optionally one of them could be chosen to represent the corresponding concept.
Funny concepts that were suggested are Monkey for Banana and Popeye for Spinach. It
might be entertaining to explore other iconic people or animals that are associated with
certain foods.

89



7. Topic Ontology Examples

7.4 Natural Disaster

The Natural Disaster ontology is a rather small topic ontology whose main purpose was
to test how well our knowledge extraction method works for limited topic concepts. It
has 89 concept names and 150 TBox axioms.

Contents:
events that are categorized as natural disasters, meteorological phenomena, measurement
instruments and scales (seismograph, Beaufort scale, Richter scale), consequences (death,
destruction etc.), geographic locations,

Figure 7.7: CT of the Natural Disaster ontology. The graph displays the complete central
taxonomy.

90



7.4. Natural Disaster

Hurricane

Hurricane v Cyclone,
Hurricane v ∃ OccurOverOcean.(AtlanticOcean
t Paci�cOcean),
GulfOfMexico v ∃ TypGeogLocOf.Hurricane
Mexico v ∃ TypGeoLocOf.Hurricane
UnitedStates v ∃ TypGeoLocOf.Hurricane
Utah v ∃ TypGeoLocOf.Hurricane
WestVirginia v ∃ TypGeoLocOf.Hurricane

Storm

Storm v MeteorologicalEvent,
Blizzard v Storm, Cyclone v Storm,
Hailstorm v Storm, Rainstorm v Storm,
Storm v ∃ HasPart.StormCenter
Storm v ∃ Cause.CoolAir
Storm v ∃ CoOccurWith.Rain
Storm v ∃ CoOccurWith.Thunder
Storm v ∃ CoOccurWith.Lightning

BeaufortScale v ∃ UsedToMeasure.Storm

Famine

Famine v Disaster,
Famine v ∃ HasSpreadRate.SpreadRate,
Starvation v ∃ CoOccurWith.Famine,
Malnutrition v ∃ CoOccurWith.Famine

Earthquake

Earthquake v GeographicalPhenomenon,
Earthquake v NaturalDisaster,
DeepFocusEarthquake v Earthquake,
InterplateEarthquake v Earthquake,
IntraplateEarthquake v Earthquake,
MajorEarthquake v Earthquake,
StrongEarthquake v Earthquake,
Seaquake v Earthquake, Tremor v Earthquake,
Earthquake v ∃ Cause.Aftershock,
Earthquake v ∃ Cause.EarthTremor,
Earthquake v ∃ Cause.MainShock,
Earthquake v ∃ A�ect.GeographicalLocation,
RichterScale v ∃ UsedToMeasure.Earthquake
Seismograph v ∃ UsedToMeasure.Earthquake

Disaster

ChemicalDisaster v Disaster,
Ecodisaster v Disaster, Fire v Disaster,
Famine v Disaster, TrainWreck v Disaster,
ManMadeDisaster v Disaster,
NaturalDisaster v Disaster,
NuclearDisaster v Disaster,
Disaster v ∃ Cause.Distruction,
Disaster v ∃ HasDeathToll.Number,
Disaster v ∃ HasVictim.Person,

Figure 7.8: Selected axioms from the Natural Disaster ontology.

List of role names:
A�ect, Cause, CausedBy, CoOccurWith, ComprisedOf, HasDeathToll, HasPart, HasPhase,
HasSpreadRate, HasTypicalGeographicLocation, HasVictim, OccurOverOcean, PartOf, Re-
sultOf, TypicalGeographicLocationOf, UsedToMeasure

Comments:
The suggestions were a lot better and more extensive than expected. Although it is
arguable what constitutes a natural disaster the suggested concepts were fitting and not
too far fetched.
The measurement instruments and scales that were suggested are interesting, but a lot
of them are missing to form an exhaustive list.
The four individuals contained in the ontology are katrina (Hurricane), chernobyl (Nucle-
arDisaster), fukushima (NuclearDisaster), and tess (Typhoon). It would be nice to introduce
more individuals of well-known earthquakes, hurricanes or tsunamis that occurred in the
past decades to further extend the list. You could then define, for example, grave events
by using the number of victims and count the amount of people injured or killed during
each natural disasters.

91





CHAPTER 8
Conclusion

In this thesis we have explored a new method that exploits existing knowledge graphs to
semi-automatically generate manageable ALCIO topic ontologies. In the following we
summarize our findings and discuss extensions of our method and our implementation
that we consider interesting for future work.

• We have developed a stepwise procedure that successively expands the contents of an
ontology starting from a single topic concept. To achieve this we have, in Chapter 3,
defined the taxonomy as a core part of a topic ontology and introduced the notions of
central taxonomy and central concepts as the most relevant atomic concept inclusions
and atomic concepts associated with a topic.
In Chapter 4, we have formalized a universal method to extract appropriate knowledge
from a chosen knowledge graph, leveraging connection weights, to produce suggestions
for concept names corresponding to the topic. Through dynamic extensions we have
presented a technique to immediately introduce further relevant axioms to the TBox in
an intuitive way, whenever a concept name is added. The IOQ algorithm for traversing
the taxonomy that we developed in Chapter 3 is very simple, but provides a structured
way to navigate through the taxonomy that is tailored to the command-line setting
we chose for our implementation. We further adapted our construction process to
make it possible to interactively discover knowledge about a domain and indefinitely
extend the contents of a created ontology.
A major decision that went into our development process, was the selection of axiom
types that we wanted our system to support. We are aware that the current ones
only cover a fragment of the expressiveness of ALCIO and an even smaller part of
the capabilities of OWL. We especially opted to include disjointness axioms as they
can be used to make intuitive domain knowledge explicit, which is often forgotten for
common-sense, and role range restrictions to allow for restrictions on role names that
are used to express concept characteristics, such a colors or tastes.

93



8. Conclusion

• Before we chose ConceptNet for our implementation of CN2TopicOnto, we conducted
a lot of preliminary research to explore the contained knowledge as well as possible
drawbacks of the methodology used to built it. We have discussed our findings in
detail in Chapter 5. With parts, locations and capabilities, we have subsequently
defined sets of ConceptNet relation types that we deemed appropriate to represent an
initial subset of the domain knowledge that we were interested in.
Our results have shown that ConceptNet contains interesting general and common-
sense knowledge that, when transformed into suggestions, extends past what we
expect classical methods of knowledge elicitation to produce in a similar time frame.
This finding is easily explained by the years-long crowdsourcing efforts that went
into the construction of ConceptNet. While building sample ontologies, some fun
and interesting results showed up, such as “Popeye” when querying for spinach,
“pirates” for boat, or “wiggletail” for pig. We consider such knowledge to be especially
interesting, as it is universally prevalent among humans, but not generally valid.

Unfortunately, we discovered that the ConceptNet weight function leaves a lot to
be desired. The distribution process is rather obscure and its additive nature skews
weights in favor of popular concepts. In consequence, this resulted in a high variety of
suggestions for some concepts, which reduced their manageability and made it hard
to keep track of selected concept names. With our method to adjust information over
hierarchy levels and the support of Numberbatch vector embeddings, we have explored
two remedies to improve the suggestions. While we consider the outcomes in our few
tests an overall improvement, there was still a large difference in the individual results
and we recognize that further adaption is needed, especially when it comes to the
assessment of universal threshold values.

• To illustrate the usefulness of CN2TopicOnto, we have constructed six topic ontologies
on the topics animal, fruit, vehicle, natural disaster, fast food and university that
are available for download. In Chapter 7, we have presented selected parts for some
of those ontologies, and have shown that it is possible to construct ontologies with
100-600 concept names and 150-1200 TBox axioms using our tool within a couple of
hours. The ontology on natural disaster shows that our method also works for topic
concepts that cover only small domains.
In consideration of our example ontologies, we conclude that the axioms that we were
able to create are suitable to answer the competency questions that we posed in the
introduction. We hope that our constructed ontologies are an adequate demonstration
of the types of topic ontologies that can be created with CN2TopicOnto, and of
use to other researchers. In Chapter 6 of our work we have taken the issues that
occurred during the construction of our sample ontologies as a basis to discuss frequent
ontology engineering problems, and we have provided some guidelines that we hope
will assist possible users with the optimal application of our tool. Modeling common-
sense knowledge is hard, especially when it comes to modalities that distinguish
between necessary, possible and typical knowledge. In our examples we show how
modalities can be pushed into the role names, through roles, such as TypicallyFoundAt

94



and HasPreferredFood. Exploring lesser known DL extensions that introduce typicality
operators that can properly handle modalities, is definitely an interesting task to
consider for future work in this area.

We hope that our results are a motivation to explore further techniques to help users build
ontologies on a chosen topic domain, utilizing the vast amount of unstructured knowledge
that is available nowadays. We argue that manageable and understandable ontologies
are rare and that a method to quickly construct such ontologies is valuable to produce
customized, and customizable ontologies that can be leveraged for further research
purposes, such as testing proof-of-concept prototypes or employing query answering
techniques.

There are still many challenges to be faced when it comes to finding good models and
representations of common-sense everyday knowledge. Exploring the boundaries and
capabilities of DLs for modeling common-sense knowledge is an important task, which
has been considered in many research efforts. We hope that our method and small
implementation can be useful as means to detect common issues and illustrate frequent
mistakes.

Future Work There are multiple directions from a research and an implementation
perspective that are interesting to explore for future work.

• For the practical implementation a next step would be to extend the supported axioms
in CN2TopicOnto to a more expressive DL, for example SHOIQ. For this we would
need to find a way to support negation and establish a method to isolate respective
suggestions. An easier extension would be to allow for more axiom forms that contain
all-quantification, as our current version only supports ∀ in a very limited setting with
HasPart-axioms. Furthermore the axioms contained in our example ontologies have
shown that number restrictions and proper role hierarchies would be well suited for
our modeling purposes.

• An extension of our algorithm to more expressive DLs raises the question whether
a graphical user interface is necessary to maintain good user experience as decisions
and axiom configurations grow. We suggest a Protégé plug-in, because Protégé it
is a popular ontology engineering tool and its system for user input could be easily
adapted and extended for our method. Central concepts could still be proposed one
after another using the iteration order queue, but concepts would also be directly
selectable through the Protégé class hierarchy. Suggestions could be easily selected
from lists by clicking, and restrictions on axioms and selection of axiom types could
be realized through ticking boxes and drop-down menus. A GUI would in general
make the topic ontology creation process easier and the tool more attractive to use
for small experiments or tests.

• From a contextual aspect our method needs to be tested with other knowledge graphs,
in order to receive diversified results. From the mentioned knowledge graphs, WebChild

95



8. Conclusion

seems especially interesting, because it was recently published and has a lot of fine
grained properties, such as hasShape, hasSize and hasTaste, as sub-relations of the
hasProperty relation type. Furthermore it claims to be able to distinguish between
different word senses, which, if properly applied, gives WebChild a huge advantage
over ConceptNet when it comes to generating suggestions.

• As a last point for future work we want to mention the development of possible
improvement algorithms for topic ontologies that can be applied to a "finished"
ontology. We propose two different approaches:

1. Research axiom patters that can be (semi-)automatically applied to add new
axioms based on existing ones.
The property closure pattern

A v ∃R.B1, A v ∃R.B2 . . . A v ∃R.Bn ⇒ A v ∀R.(B1 tB2 t . . . tBn)

and the covering axiom pattern
A1 v B,A2 v B, . . . , An v B ⇒ B v (A1 tA2 t . . . tAn)

are examples of such patterns for Ai, Bi ∈ NC and R ∈ NR. Together with
user feedback both of those patterns could be used to raise awareness of missing
subconcepts that should be included in the ontology.

2. Exploit prevalent pre- and suffixes in (compound) concept names to generate
generalizing and specializing axioms with the help of user feedback. Rules could
roughly look as follows:
If A1 v A2 and A1 v ∃R.B and A1 and A2 share a suffix, then suggest a new
axiom A2 v ∃R.C, where C is entered by the user, or based on the prefix of A1.
To illustrate with an example, if Bookshelf v Shelf and Bookshelf v ∃ Store.Book
holds, then suggest to introduce a more general axiom Shelf v ∃ Store.C, where
C is entered by the user, for instance as C = Item. This is then a generalization
from Bookshelf to Shelf. Another similar axiom would be Kitchenshelf v ∃
Store.Kitchen(items). Detecting such axiom patterns could be especially useful, if
multiple semantically similar concept names exist (Container, Box, Can, Bowl),
but only few of them are used within a certain axiom form.
Another rule to generate new axioms could be:

If A1 v A2 and A1 v ∃R.B1 and A2 v ∃R.B2, then suggest a new axiom
B1 v B2.

As an example, if Automobile v ∃ HasEngine.Engine, Toyota v Automobile and
Toyota v ∃ HasEngine.InternalCombustionEngine, then InternalCombustionEngine
v Engine. This added axiom is again encouraged by the fact that InternalCom-
bustionEngine and Engine share the same suffix.
In general we consider the research area of improving small ontologies on common-
sense domains to be very interesting and want to keep it in mind it for future
work.

96



List of Figures

3.3 Tax levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Example request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Animal Tax graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Animal Tax example (small) . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Fruit CT graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Contruction process flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 A 5-level taxonomy before modification. . . . . . . . . . . . . . . . . . . . . 31
4.4 The same taxonomy after modification and reasoning. . . . . . . . . . . . . 31
4.5 Tax graph before and after modification. . . . . . . . . . . . . . . . . . . . . 31
4.6 Modification algorithm example . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 ConceptNet assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Modeling options for modifiers . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 Animal Tax (big) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Selected axioms from the Animal ontology . . . . . . . . . . . . . . . . . . 84
7.3 Vehicle Tax (big) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4 Selected axioms from the Vehicle ontology . . . . . . . . . . . . . . . . . . 86
7.5 Fruit Tax (big) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.6 Selected axioms from the Fruit ontology . . . . . . . . . . . . . . . . . . . 88
7.7 Natural Disaster Tax (big) . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.8 Selected axioms from the Natural Disaster ontology . . . . . . . . . . . . . . 91

97





List of Tables

5.1 Pairs of CN relation types and request types . . . . . . . . . . . . . . . . 70
5.2 Overview of the implemented CN relation types . . . . . . . . . . . . . . . . 71

7.1 Statistics of example ontologies . . . . . . . . . . . . . . . . . . . . . . . . . 81

99





List of Algorithms

3.1 IOQ algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Taxonomy Modification algorithm . . . . . . . . . . . . . . . . . . . . . 32

101





Bibliography

[BDRR11] Christian Brel, Anne-Marie Dery-Pinna, Philippe Renevier-Gonin, and
Michel Riveill. Ontocompo: A tool to enhance application composition. In
Human-Computer Interaction - INTERACT 2011 - 13th IFIP TC 13 Inter-
national Conference, Lisbon, Portugal, September 5-9, 2011, Proceedings,
Part IV, pages 588–591, 2011.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduc-
tion to Description Logic. Cambridge University Press, 2017.

[BN03] Franz Baader and Werner Nutt. Basic description logics. In The Description
Logic Handbook: Theory, Implementation, and Applications, pages 43–95.
2003.

[CFG06] Óscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez. Onto-
logical engineering: Principles, methods, tools and languages. In Ontologies
for Software Engineering and Software Technology, pages 1–48. 2006.

[CRCB15] Luigi Di Caro, Alice Ruggeri, Loredana Cupi, and Guido Boella. Common-
sense knowledge for natural language understanding: Experiments in un-
supervised and supervised settings. In AI*IA 2015, Advances in Artificial
Intelligence - XIVth International Conference of the Italian Association for
Artificial Intelligence, Ferrara, Italy, September 23-25, 2015, Proceedings,
pages 233–245, 2015.

[CV05] Philipp Cimiano and Johanna Völker. Text2onto. In Natural Language
Processing and Information Systems, 10th International Conference on
Applications of Natural Language to Information Systems, NLDB 2005,
Alicante, Spain, June 15-17, 2005, Proceedings, pages 227–238, 2005.

[Dom98] J. Domingue. Tadzebao and webonto: Discussing, browsing, and editing
ontologies on the web. volume 4 of KM, Banff, Canada, 1998. 11th Inter-
national Workshop on Knowledge Acquisition, Modeling and Management
(KAW’98).

[Don06] Kevin Donnelly. Snomed-ct: The advanced terminology and coding system
for ehealth. Studies in health technology and informatics, 121:279, 2006.

103



[EW16] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs.
In Joint Proceedings of the Posters and Demos Track of the 12th Interna-
tional Conference on Semantic Systems - SEMANTiCS2016 and the 1st
International Workshop on Semantic Change & Evolving Semantics (SuC-
CESS’16) co-located with the 12th International Conference on Semantic
Systems (SEMANTiCS 2016), Leipzig, Germany, September 12-15, 2016.,
2016.

[FBMR18] Michael Färber, Frederic Bartscherer, Carsten Menne, and Achim Rettinger.
Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago.
Semantic Web, 9(1):77–129, 2018.

[FdE08] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL concept
learning in description logics. In Inductive Logic Programming, 18th Inter-
national Conference, ILP 2008, Prague, Czech Republic, September 10-12,
2008, Proceedings, pages 107–121, 2008.

[FEMR15] Michael Färber, Basil Ell, Carsten Menne, and Achim Rettinger. A compar-
ative survey of dbpedia, freebase, opencyc, wikidata, and yago. Semantic
Web Journal, 1:1–5, 2015.

[FGM07] Blaz Fortuna, Marko Grobelnik, and Dunja Mladenic. Ontogen: Semi-
automatic ontology editor. In Human Interface and the Management of
Information. Interacting in Information Environments, Symposium on Hu-
man Interface 2007, Held as Part of HCI International 2007, Beijing, China,
July 22-27, 2007, Proceedings, Part II, pages 309–318, 2007.

[FL99] Mariano Fernández-López. Overview of methodologies for building ontolo-
gies. 1999.

[FLGPJ97] Mariano Fernández-López, Asunción Gómez-Pérez, and Natalia Juristo.
Methontology: from ontological art towards ontological engineering. 1997.

[FV11] Daniel Fleischhacker and Johanna Völker. Inductive learning of disjointness
axioms. In On the Move to Meaningful Internet Systems: OTM 2011 -
Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE
2011, Hersonissos, Crete, Greece, October 17-21, 2011, Proceedings, Part
II, pages 680–697, 2011.

[GF95] Michael Grüninger and Mark S Fox. Methodology for the design and
evaluation of ontologies. 1995.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: a benchmark for
owl knowledge base systems. J. Web Sem., 3(2-3):158–182, 2005.

[Gro12] W3C OWL Working Group. Owl 2 web ontology language: Document
overview. W3C Recommendation, December 11 2012.

104



[HD03] Ann M. Hickey and Alan M. Davis. Elicitation technique selection: How
do experts do it? In 11th IEEE International Conference on Requirements
Engineering (RE 2003), 8-12 September 2003, Monterey Bay, CA, USA.,
page 169, 2003.

[HSA+10] Catherine Havasi, Robert Speer, Kenneth C. Arnold, Henry Lieberman,
Jason B. Alonso, and Jesse Moeller. Open mind common sense: Crowd-
sourcing for common sense. In Collaboratively-Built Knowledge Sources
and Artificial Intelligence, Papers from the 2010 AAAI Workshop, Atlanta,
Georgia, USA, July 11, 2010, 2010.

[HSG15] Robert Hoehndorf, Paul N. Schofield, and Georgios V. Gkoutos. The role
of ontologies in biological and biomedical research: a functional perspective.
Briefings in Bioinformatics, 16(6):1069–1080, 2015.

[JG11] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based
and scalable ontology matching. In The Semantic Web - ISWC 2011 - 10th
International Semantic Web Conference, Bonn, Germany, October 23-27,
2011, Proceedings, Part I, pages 273–288, 2011.

[KLOW17] Boris Konev, Carsten Lutz, Ana Ozaki, and Frank Wolter. Exact learning
of lightweight description logic ontologies. Journal of Machine Learning
Research, 18:201:1–201:63, 2017.

[Lam17] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical on-
tologies. Artificial Intelligence in Medicine, 80:11–28, 2017.

[LH10] Jens Lehmann and Pascal Hitzler. Concept learning in description logics
using refinement operators. Machine Learning, 78(1-2):203–250, 2010.

[MCWD06] Cynthia Matuszek, John Cabral, Michael J. Witbrock, and John DeOliveira.
An introduction to the syntax and content of cyc. In Formalizing and
Compiling Background Knowledge and Its Applications to Knowledge Rep-
resentation and Question Answering, Papers from the 2006 AAAI Spring
Symposium, Technical Report SS-06-05, Stanford, California, USA, March
27-29, 2006, pages 44–49, 2006.

[Mus15] M.A. Musen. The protégé project: A look back and a look forward. AI
Matters. Association of Computing Machinery Specific Interest Group in
Artificial Intelligence, 1(4), June 2015. DOI: 10.1145/2557001.25757003.

[NM01] Natalya F. Noy and Deborah L. Mcguinness. Ontology development 101: A
guide to creating your first ontology. Technical report, 2001.

[OOP] Oops! ontology pitfall scanner! catalogue of common pitfalls. http:
//oops.linkeddata.es/catalogue.jsp. Accessed:2018-08-16.

105

http://oops.linkeddata.es/catalogue.jsp
http://oops.linkeddata.es/catalogue.jsp


[Pau17] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web, 8(3):489–508, 2017.

[PGS14] María Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen Suárez-
Figueroa. Oops! (ontology pitfall scanner!): An on-line tool for ontology
evaluation. Int. J. Semantic Web Inf. Syst., 10(2):7–34, 2014.

[PR16] Alina Petrova and Sebastian Rudolph. Web-mining defeasible knowledge
from concessional statements. In Graph-Based Representation and Reasoning
- 22nd International Conference on Conceptual Structures, ICCS 2016,
Annecy, France, July 5-7, 2016, Proceedings, pages 191–203, 2016.

[PSG12] María Poveda-Villalón, Mari Carmen Suárez-Figueroa, and Asunción Gómez-
Pérez. Validating ontologies with oops! In Knowledge Engineering and
Knowledge Management - 18th International Conference, EKAW 2012,
Galway City, Ireland, October 8-12, 2012. Proceedings, pages 267–281, 2012.

[Rec] Alan L. Rector. Foundations of the semantic web: On-
tology engineering (lecture slides). http://www.cs.man.
ac.uk/~rector/modules/CS646/Lecture-Handouts/
Lect-3-problems-and-patterns-2007.ppt.pdf. Accessed:
2018-10-02.

[Rec03] Alan L. Rector. Modularisation of domain ontologies implemented in
description logics and related formalisms including owl. In Proceedings of
the 2nd International Conference on Knowledge Capture (K-CAP 2003),
October 23-25, 2003, Sanibel Island, FL, USA, pages 121–128, 2003.

[RGROB08] Lila Rao-Graham, Han Reichgelt, and Kweku-Muata Osei-Bryson. Knowl-
edge elicitation techniques for deriving competency questions for ontologies.
In ICEIS 2008 - Proceedings of the 10th International Conference on Enter-
prise Information Systems, volume 2, pages 105–110, 01 2008.

[RPM+14] Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter,
and Robert Stevens. Towards competency question-driven ontology author-
ing. In The Semantic Web: Trends and Challenges - 11th International
Conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Pro-
ceedings, pages 752–767, 2014.

[Sat] Uli Sattler. Role modelling (lecture slides). http://studentnet.
cs.manchester.ac.uk/pgt/2015/COMP62342/slides/
Week4-RoleModelling.pdf. Accessed: 2018-16-08.

[SB89] Nigel Shadbolt and A Mike Burton. The empirical study of knowledge
elicitation techniques. ACM SIGART Bulletin, (108):15–18, 1989.

106

http://www.cs.man.ac.uk/~rector/modules/CS646/Lecture-Handouts/Lect-3-problems-and-patterns-2007.ppt.pdf
http://www.cs.man.ac.uk/~rector/modules/CS646/Lecture-Handouts/Lect-3-problems-and-patterns-2007.ppt.pdf
http://www.cs.man.ac.uk/~rector/modules/CS646/Lecture-Handouts/Lect-3-problems-and-patterns-2007.ppt.pdf
http://studentnet.cs.manchester.ac.uk/pgt/2015/COMP62342/slides/Week4-RoleModelling.pdf
http://studentnet.cs.manchester.ac.uk/pgt/2015/COMP62342/slides/Week4-RoleModelling.pdf
http://studentnet.cs.manchester.ac.uk/pgt/2015/COMP62342/slides/Week4-RoleModelling.pdf


[Sch05] Stefan Schlobach. Debugging and semantic clarification by pinpointing. In
The Semantic Web: Research and Applications, Second European Semantic
Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1,
2005, Proceedings, pages 226–240, 2005.

[SCH17] Robert Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An
open multilingual graph of general knowledge. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA., pages 4444–4451, 2017.

[SEA+02] York Sure, Michael Erdmann, Jürgen Angele, Steffen Staab, Rudi Studer,
and Dirk Wenke. Ontoedit: Collaborative ontology development for the
semantic web. In The Semantic Web - ISWC 2002, First International
Semantic Web Conference, Sardinia, Italy, June 9-12, 2002, Proceedings,
pages 221–235, 2002.

[SH12] Robert Speer and Catherine Havasi. Representing general relational knowl-
edge in conceptnet 5. In Proceedings of the Eighth International Conference
on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May
23-25, 2012, pages 3679–3686, 2012.

[SHS10] Robert Speer, Catherine Havasi, and Harshit Surana. Using verbosity:
Common sense data from games with a purpose. In Proceedings of the
Twenty-Third International Florida Artificial Intelligence Research Society
Conference, May 19-21, 2010, Daytona Beach, Florida, 2010.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In Proceedings of the 16th International Conference
on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007,
pages 697–706, 2007.

[SL17] Robert Speer and Joanna Lowry-Duda. Conceptnet at semeval-2017 task
2: Extending word embeddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on Semantic Evaluation,
SemEval@ACL 2017, Vancouver, Canada, August 3-4, 2017, pages 85–89,
2017.

[TdMW17] Niket Tandon, Gerard de Melo, and Gerhard Weikum. Webchild 2.0 :
Fine-grained commonsense knowledge distillation. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, System Demonstrations,
pages 115–120, 2017.

[UG96] Mike Uschold and Michael Gruninger. Ontologies: principles, methods and
applications. Knowledge Eng. Review, 11(2):93–136, 1996.

107



[WCH87] Morton E. Winston, Roger Chaffin, and Douglas Herrmann. A taxonomy
of part-whole relations. Cognitive Science, 11(4):417–444, 1987.

[weba] Conceptnet documentation. https://github.com/commonsense/
conceptnet5/wiki. Accessed: 2016-10.

[webb] The web graph database: What are the differences between a vocabu-
lary, a taxonomy, a thesaurus, an ontology, and a meta-model? http:
//infogrid.org/trac/wiki/Reference/PidcockArticle. Ac-
cessed: 2018-06-11.

[WSSR06] Yimin Wang, York Sure, Robert Stevens, and Alan L. Rector. Knowledge
elicitation plug-in for protégé: Card sorting and laddering. In The Semantic
Web - ASWC 2006, First Asian Semantic Web Conference, Beijing, China,
September 3-7, 2006, Proceedings, pages 552–565, 2006.

108

https://github.com/commonsense/conceptnet5/wiki
https://github.com/commonsense/conceptnet5/wiki
http://infogrid.org/trac/wiki/Reference/PidcockArticle
http://infogrid.org/trac/wiki/Reference/PidcockArticle

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	DL Ontologies
	Syntax and Semantics of ALCIO
	Syntax and Semantics of ALC
	ALCIO, an Example of an Expressive DL
	Range Restriction and Disjointness Axioms


	Topic Ontologies over Knowledge Graphs
	Topic Ontologies
	The Taxonomy

	Topic Ontologies Linked to Knowledge Graphs
	Suggestions
	Linking the Ontology with the Knowledge Graph
	The Central Taxonomy


	Ontology Construction
	Overview
	Supported Axioms
	Construction Process

	Step 1: Building the Central Taxonomy
	A provisional 5-level Taxonomy
	Modification

	Step 2: Adding Complex GCIs
	Adjusting Information over Hierarchy Levels
	Disjunctive Axioms, Dynamic Extensions and Reverted Axioms
	Range Restrictions and Concept Disjointness
	The IsA Role
	The TMPRelated Role

	Step 3: Clean-Up

	The CN2TopicOnto Tool
	ConceptNet
	Requirements and HOWTO
	Settings
	HOWTO
	User Input

	Adjusted Functions
	ConceptNet Weights and the Employed Threshold Function
	Surjectivity of the Naming Function onto

	ConceptNet Relation and Request Types
	Taxonomy
	Complex GCIs


	Ontology Engineering
	Top-down and Bottom-Up Approach
	Equivalence and Normalization
	Modeling Choice: Concept or Individual

	Topic Ontology Examples
	Animal
	Vehicle
	Fruit
	Natural Disaster

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

