
Monero Cross-Chain Traceability
Empirical Analysis of Privacy Implications from

Currency Hard-Forks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Abraham Hinteregger, BSc MSc
Matrikelnummer 01025914

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Dr. Bernhard Haslhofer

Wien, 19. September 2018
Abraham Hinteregger Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Monero Cross-Chain Traceability
Empirical Analysis of Privacy Implications from

Currency Hard-Forks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Abraham Hinteregger, BSc MSc
Registration Number 01025914

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Dr. Bernhard Haslhofer

Vienna, 19th September, 2018
Abraham Hinteregger Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Abraham Hinteregger, BSc MSc
Harmoniegasse 1/4, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. September 2018
Abraham Hinteregger

v

Acknowledgements

At first, I would like to thank my advisors, Prof. Günther Raidl and Dr. Bernhard
Haslhofer for making this work possible by offering their advice and constructive guidance.
Furthermore, I would like to express my gratitude to my colleagues at the Austrian
Institute of Technology, for their help, organizational and technical support, interesting
conversations as well as for introducing me to the intricacies of the “Italian Way of Life”.
I would also like to thank Christian Feuersänger for making TikZ as great as it is. Finally,
I would like to thank Nina and my family for their support, advice and greatness in
general.

vii

Kurzfassung

Bitcoin wurde anfänglich als sichere Methode für anonyme internationale Überweisungen
wahrgenommen. Im Laufe der Zeit wurden jedoch Methoden entwickelt, die durch Analyse
der öffentlich einsehbaren Transaktionshistorie eine wesentliche Einschränkung der Privat-
sphäre der Marktteilnehmer ermöglichten. Als Reaktion darauf kam es zur Entwicklung
von alternativen Kryptowährungen mit einem verstärkten Fokus auf Privatsphäre und
Sicherheit, von denen Monero der Vertreter mit der höchsten Marktkapitalisierung ist.
Anfang 2017 haben mehrere Forscher in zwei unabhängigen Publikationen die Unverfolg-
barkeit von Monero Transaktionen empirisch analysiert und Methoden und Heuristiken
vorgestellt, mit denen für einen Großteil der Geldflüsse bis zu diesem Zeitpunkt die
Quelle eindeutig bestimmt werden konnte. Infolgedessen wurden mehrere Änderungen
vorgenommen um die Unverfolgbarkeit von Transaktionen weiterhin zu gewährleisten. Der
Beitrag dieser Arbeit besteht aus zwei Punkten: Wir entwickeln eine neue Methode für die
Bestimmung der Quelle von Geldflüssen, die Informationen von der Transaktionshistorie
von Forks der ursprünglichen Währung verwendet. Wir verwenden diese Methode um
den Einfluss auf die Unverfolgbarkeit von zwei Forks im Frühling 2018 (MoneroV &
Monero Original) zu quantifizieren. Weiters untersuchen wir, ob die Maßnahmen gegen
bisher veröffentlichten Heuristiken ihr Ziel erreichen. Die Verwendung unserer Methode
ermöglicht es uns, für 73 321 Transaktionsinputs (statt für 25 256) im Zeitraum von April
bis August 2018 die Quelle zu identifizieren. Wir vergleichen die Ergebnisse dieser Analyse
mit den Resultaten der Heuristiken um deren Genauigkeit abzuschätzen. Wir finden,
dass die Gegenmaßnahmen ihr gewünschtes Ziel erreicht haben und die Treffsicherheit
der Heuristiken maßgeblich beeinträchtigt wurde. Da die Unverfolgbarkeit für einen sehr
großen Teil der Transaktionen zum derzeitigen Standpunkt gegeben ist, bleiben Verfahren
mit denen andere Kryptowährungen erfolgreich analysiert werden konnten für Monero
nach wie vor nicht anwendbar.

ix

Abstract

While Bitcoin has been initially hailed as a method to anonymously exchange money,
researchers made significant strides in analyzing its public transaction history. This lead
to the development of cryptocurrencies with a focus on privacy. Monero (based on the
CryptoNote protocol) is currently the privacy-coin with the highest market-capitalization.
In 2017, Monero’s untraceability guarantees were analyzed in two independent publi-
cations. They found that a majority of the transaction made up to that point were
traceable, raising some doubts concerning the veracity of the Monero’s privacy claims.
Following these publications several improvements to Monero’s protocol have been rolled
out. The contribution of this work is twofold: First, we introduce an additional tracing
method, which is based on currency hard forks and apply it to measure the privacy-loss
stemming from two Monero forks in spring 2018 (MoneroV & Monero Original) Ad-
ditionally, we evaluate the effective of the countermeasures by analyzing the accuracy
of the heuristics employed in previous publications on a recent export of the Monero
blockchain. We find that our additional method enables us to trace 73 321 transaction
inputs (up from 25 256 using established methods) in the time-frame between April and
August 2018. Based on the inputs traced with existing as well as our new method, we
estimate the accuracy of previously proposed heuristics. Our results suggest that the
countermeasures were effective and reduced the accuracy of the heuristics significantly.
As most of the transactions remain untraceable, methods applied for the analysis of other
cryptocurrencies are still not applicable to Monero’s transaction data.

xi

Contents

Acknowledgements vii

Kurzfassung ix

Abstract xi

Contents xiii

I Cryptocurrency Analytics: Theoretical Background 1

1 Introduction 3

2 Cryptocurrencies 5
2.1 Bitcoin . 6

2.1.1 Peer to peer network . 6
2.1.2 Blocks & Blockchain . 7
2.1.3 Mining . 8
2.1.4 Transactions . 9
2.1.5 Blockchain Splits & Forks . 10

2.2 Monero . 13
2.2.1 Ring Signatures: Untraceable Transactions 14
2.2.2 Stealth Addresses: Unlinkable Transactions 14
2.2.3 RingCT Confidential Transactions: Hidden amounts 16
2.2.4 Infinite Supply . 16
2.2.5 Major Changes to the Protocol 16
2.2.6 Spring 2018 Monero forks . 18

3 Bitcoin Analytics Techniques 19
3.1 Multiple Input Heuristic . 21
3.2 Change heuristics . 22

3.2.1 Shadow Heuristic . 22
3.2.2 Optimal Change Heuristic . 23

3.3 Transaction Fingerprinting . 23

xiii

4 Monero Analytics Techniques 25
4.1 Iterated 0-Mixin Removal . 26
4.2 Intersection Removal . 27
4.3 Guess Newest Heuristic . 28
4.4 Output Merging Heuristic . 28

5 Exploiting Hard Forks for Monero Traceability Analysis 29
5.1 Cross-Chain Analysis: Theory . 29
5.2 Cross-Chain Analysis: Application . 30
5.3 Multi Chain Intersection Removal . 31
5.4 Mitigation Strategies . 32

II Empirical Analysis of Monero Traceability 33

6 Monero Traceability with Cross-Chain Analysis 35
6.1 Dataset . 35
6.2 Results . 38
6.3 Adoption of Cross-Chain Analysis Mitigation Tools 40
6.4 Spent and Risky Outputs . 44

7 Updated Evaluation of Existing Methods 45
7.1 Revisiting the Guess Newest Heuristic 45
7.2 Revisiting the Output Merging Heuristic 46
7.3 Intersection Sets . 48

8 Discussion 51

List of Figures 53

List of Tables 54

Bibliography 55

Part I

Cryptocurrency Analytics:
Theoretical Background

1

CHAPTER 1
Introduction

In 2008, Satoshi Nakamoto published his whitepaper on Bitcoin, a digital currency
which uses a decentralized consensus protocol (Nakamoto Consensus) to establish
a global storage with decentralized validation, the so-called Blockchain, where the
Bitcoin transaction history is stored. Initially, it seemed like Bitcoin enabled pri-
vate, anonymous transactions and has been adopted for various black markets. Since
then, Blockchain analysis techniques such as the multiple input heuristic and change
heuristics ([Reid and Harrigan, 2013, Androulaki et al., 2013, Nick, Jonas David, 2015,
Haslhofer et al., 2016]. . .) have been developed which allowed to identify real-world
entities behind sets of addresses, annulling the privacy mechanism of Bitcoin. These
shortcomings have led to the developments of alternative cryptocurrencies with a stronger
focus on privacy, such as Monero. Monero’s aim is to employ cryptographic methods to
provide a private, untraceable and fungible cryptocurrency. This is accomplished with
different strategies, such as concealed transaction amounts (confidential transactions),
hiding of sender and recipient addresses (stealth addresses) and obscuration of the trans-
action graph (ring signatures, [Noether et al., 2016]). Nevertheless, analysis techniques
have been proposed by [Kumar et al., 2017] and [Möser et al., 2018], which reveal parts
of the transaction graph. This is accomplished via identification of known decoys the
ring signatures and by exploiting differences between patterns arising from user behavior
and from the rather simple decoy sampling techniques. Since then, Monero’s developers
made changes (more members for ring signatures and better sampling techniques) to
address these vulnerabilities.

In the second part of this work we will try to answer the following questions:

• What was the privacy impact from two Monero hard forks (MoneroV, Monero
Original) in spring 2018?

• Were the improvements to the protocol aimed at the tracing-heuristics used by
[Kumar et al., 2017] and [Möser et al., 2018] effective?

3

1. Introduction

For this purpose we perform a traceability analysis (extended with our newly proposed
method for analyzing currency hard forks) on a recent export (August 2018) of the
Monero blockchain. We will quantify the privacy impact by analyzing the transaction
data of Monero, MoneroV and Monero Original in the months following the hard forks.
Based on the data obtained in our traceability analysis we will estimate the performance
of the tracing-heuristics on recent transactions.

In Chapter 2, we will explain how Bitcoin, the blockchain and the underlying P2P network
function and operate. Subsequently, we will introduce the key features of Monero, a
cryptocurrency based on the CryptoNote protocol.

In Chapter 3 we will present the state of the art in blockchain analysis for Bitcoin and
the applicability of these methods to Monero, followed by an overview of the techniques
specific to Monero in Chapter 4.

In Chapter 5 we propose a new Monero-specific analysis technique, which exploits
information gains from currency hard forks. This is an attack vector that the Monero
community has already been aware of, but we’re not aware of any previous work that
analyzed its impact.

In Chapter 6 we present the results of our traceability analysis. The ground-truth data
obtained in this analysis is then used to evaluate the performance of the heuristics
proposed by [Kumar et al., 2017] and [Möser et al., 2018] for recent transactions, the
results of which will be presented in chapter Chapter 7. Additionally, we will expand
slightly on the analysis found from [Wijaya et al., 2018].

In the last and final chapter we will then summarize and discuss our results.

Other Contributions and Reproducibility
The toolchain which has been developed for this analysis is released under MIT license on
GitHub1. All graphs and statistics contained in this work can be reproduced by following
the steps of the provided README. For this purpose, all plots reference the query and
the CSV files on which they are based.

As Monero’s untraceability is based on the sampling of decoy inputs for each real
transaction input, it is important that the decoys are not references to outputs which are
known to be spent, as they would not contribute to the size of the anonymity set of the
real input. To prevent the sampling of spent outputs as decoys, the blackballing tool has
been released together with Monero v.0.12, though most users lack a database of known
spent outputs. To address this, we publish a list of known spent transaction outputs and
outputs which are at risk of being identified as spent (see Section 6.4).

1[Hinteregger, 2018b]: https://github.com/oerpli/MONitERO

4

https://github.com/oerpli/MONitERO

CHAPTER 2
Cryptocurrencies

In 2008, Satoshi Nakamoto published a whitepaper [Nakamoto, 2008] that introduced
Bitcoin, the first decentralized digital currency. In the whitepaper, Nakamoto introduced
a distributed ledger called Blockchain, which solved the problem of double-spending
without a central authority. This was combined with a proof of work algorithm known
from Hashcash ([Back, 2002]), where the goal of the method was to combat spam by
adding a computationally intensive workload to emails (resulting in a cost, similar to
stamps) which could be verified efficiently (i.e. cheaply).

While the blockchain technology delivered on establishing a shared consensus and trust
in the currency, its public nature enabled cryptocurrency analytics which lead to doubts
concerning the privacy offered via its pseudonymous addresses. Additionally, during
several boom (and bust) cycles, the scalability of the currency has been tried, tested and
found out to be in need of improvement.

Over the years, various alternative-currency projects (sometimes referred to as altcoins)
were introduced, usually with the goal to address a specific or multiple shortcoming of
existing offerings, such as:

• Privacy concerns (Monero, ZCash)

• High transaction fees (Litecoin)

• Environmental impact of mining (Gridcoin)

• No dog on the logo (Dogecoin)

In this chapter, we will first explain the key features of Bitcoin to introduce the most
important shared concepts of cryptocurrencies. This is followed with a section about

5

2. Cryptocurrencies

Monero, a cryptocurrency based on the privacy-oriented CryptoNote protocol. There we
will highlight its features and key differences to the baseline, set by Bitcoin.

Even though these cryptocurrencies use cryptographic methods (thus the name) ex-
tensively to provide trust and privacy, we do not currently know about efforts to use
cryptographic approaches for linking or tracing transactions. The cryptographic methods
are therefore presented briefly, but proving correctness of the approach and implementa-
tion is out of the scope of this work and therefore assumed. Finding eventual flaws is left
as an exercise to the reader.

2.1 Bitcoin
As Bitcoin was the first cryptocurrency of its kind we will first give a brief overview
how the different parts work in its implementation. Basically, there are two components
which work together to ensure the operational capability of Bitcoin:

• A peer to peer (P2P) network of nodes which exchange packets of (transaction-)
data and ensure their integrity.

• An append-only data-storage system—called Blockchain—that ensures decentralized
consensus and trust, a necessity for a currency.

2.1.1 Peer to peer network

The actors participating in the decentralized Bitcoin network are called nodes. Each
node connects to some subset of the other nodes and exchanges messages with them.
Some of the message types are:

• version & verack: Used when connecting to peers. Node A sends a message with
its version to another node B. This peer then responds with verack if it accepts
connections from clients with that version.

• inv: If the node gains knowledge of a new block/transaction it sends out a list of
transactions/blocks.

• getdata: If a node gets relayed a transaction or block it does not yet know about via
inv from a peer, it requests the data of the block with a getdata-message. If it consid-
ers the transaction/block valid it propagates the existence of the transaction/block
to its peers (with inv).

• tx & block: Send a transaction or block as response to a getdata message.

While all nodes that participate in the network use the messaging protocol to receive or
relay transactions and blocks, only a subset of the nodes, the so-called miners, also try
to find new blocks on their own.

6

2.1. Bitcoin

Block 0

Hash: 000019d668

Prev: 0000000000

Nonce: 208323689

Time: 2009-01-03

Merkle R.: 4a5e3

TX Merkle Tree

TX0: 4a5e321e4b

Block 1

Hash: 0000839a8e

Prev: 000019d668

Nonce: 257339468

Time: 2009-01-09

Merkle R.: 0e3e2

TX Merkle Tree

TX0: 0e3e2357e8

Block 2

Hash: 0000d11457

Prev: 0000839a8e

Nonce: 188941879

Time: 2009-01-12

Merkle R.: f4f8a

TX Merkle Tree

TX0: b1fea52486

TX1: f4184fc596

Figure 2.1: Blockchain: Blockchain with genesis block and the first two blocks. Each
block consists of a header which references the root of a Merkle tree (dashed) that
contains the transactions included in the block. Each block has a coinbase transaction
(TX0). In this example, block 2 is the first block with a “real” transaction. Each block
references its preceding block with a hash of its header (the dotted part).

2.1.2 Blocks & Blockchain

The blockchain is a decentralized data structure that stores the state (i.e. current currency
distribution) by storing all transactions that happened until now. It consists of blocks
(see Figure 2.1), each of which consists of the header and a set of transactions.

2.1.2.1 Block Header

The header contains the following data:

• Version: This number specifies the validation rules that the block adheres to.

• Timestamp: The time when the miner started mining this block. As miners operate
on the whole world and their communication may have some latency, timestamps
of consecutive blocks are not ordered. Each block must have a timestamp that is
higher than the timestamp of the preceding 11 blocks though.

• Difficulty: New blocks are accepted, when the hash of their header is below a
certain threshold. This threshold is saved in encoded form on the block and is
based on the hashing power of the network and is updated every 2016 blocks.

• Nonce: As the other fields of the header are determined by other factors, miners
vary the value of this field until the hash of the block header passes the target
threshold.

7

https://blockchain.info/de/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://blockchain.info/de/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b
https://blockchain.info/de/block/00000000839a8e6886ab5951d76f411475428afc90947ee320161bbf18eb6048
https://blockchain.info/de/tx/0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098
https://blockchain.info/de/block/00000000d1145790a8694403d4063f323d499e655c83426834d4ce2f8dd4a2ee
https://blockchain.info/de/tx/b1fea52486ce0c62bb442b530a3f0132b826c74e473d1f2c220bfa78111c5082
https://blockchain.info/de/tx/f4184fc596403b9d638783cf57adfe4c75c605f6356fbc91338530e9831e9e16

2. Cryptocurrencies

• Merkle root of transaction hashes: The transactions included in the block are
referenced in the leaves of a Merkle tree (see Section 2.1.2.2). The hash of the
root node (called Merkle root) depends on all the transactions in the tree as well
as on their order and (ignoring collisions) is uniquely determined by them and is
included in the block header. This ensures that the included transactions cannot
be modified after the block has been accepted.

• Hash of the previous block header: Establishes a linear order from the most recent
block back to the Genesis block2, ensuring that none of the previous blocks have
been tampered with, as this would invalidate the reference.

If a node would try to send a modified (and thus invalid) block to its peers, those peers
would not relay it further as they would notice the integrity violation.

2.1.2.2 Transactions

It is critical that the transaction cannot be altered after they’ve been added to the
blockchain (else it would be possible to modify account balances by e.g. swapping out
transaction outputs). Additionally, it should be computationally inexpensive to check
whether a specific transaction is in a block. For this purpose, Merkle trees (also called
hash trees) are used. A Merkle tree is a binary tree where data is stored in the leaves
and each node is labelled with a hash that is either derived from the data (in case of leaf
node) or from the hash values of its two direct ancestors. This allows adding verifying
transactions in O(log n) time and enables efficient verification of transactions, as not the
whole tree but only the path from root to the transaction of interest as well as the hashes
of the other branches must be synchronized.

2.1.3 Mining

21 000 000

15 000 000

10 000 000

5 000 000

0

To
ta
la

m
ou

nt

0 1 2 3 4 5 6 7
·106

50

25

12.5
6.25. . .

Block height

Em
iss

io
n

BTC Emission/Block
Total supply

Figure 2.2: Bitcoin Emission: For Bitcoin, emission per block is halved every 210 000
blocks and will reach 0 at block 6 930 000. Total supply at that point is 20 999 999 BTC.

2https://blockchain.info/de/block-height/0

8

https://blockchain.info/de/block-height/0

2.1. Bitcoin

Each block has a unique hash that is generated by applying a hash function to its header.
This hash must fulfill a difficulty criterion, i.e. it must be lower than some value3. For
this purpose, a field called nonce is included in the block header which can be varied
until the hash of the block header fulfills the requirements. If a miner finds a nonce that
results in the block header fulfilling the difficulty criterion, it publishes the existence of
this new valid block to its peers (see section 2.1.1).
Nodes are incentivized to expend resources to find valid blocks by two mechanisms:

• Transaction fees: The fees assigned by Bitcoin users to transactions, which are
included in a block, are added to the block reward.

• Block reward: Each block contains a transaction, called coinbase transaction to an
address that can be provided by the miner (usually their own address). Initially
this reward has been 50 BTC but halves every 210 000 blocks. Due to this there is
an upper bound of 20 999 999.9769 BTC in circulation, calculated as follows4:∑32

i=0 210 000
⌊

50·108

2i

⌋
108

Both, the emission rate and the total supply at a given block height can be seen in
Figure 2.2.

If at some point all bitcoins have been mined, the transaction fees remain the only
incentive for miners to continue finding new blocks.

2.1.4 Transactions

Bitcoins are transferred from one actor to another via transactions. Each transaction
consists of one or more inputs (except coinbase transactions) and one or more outputs,
as can be seen in Figure 2.3. Each input of a transaction is a reference to a yet unspent
output of another transaction (abbreviated as UTXO) as well as a signature as proof
of ownership (to make sure that people don’t spend assets that don’t belong to them).
Outputs consists of two parts: the desired amount and a script which contains the
hash of the public address of the recipient. When an output is referenced in another
transaction, the sender has to make sure that output-script combined with the signature
he provides evaluates to true and thus confirms that he’s authorized to use the associated
coins. After this, the referenced output is spent and cannot be used as input in another
transaction. The sum of the amounts associated with the inputs must be at least the
sum of the amounts of the outputs, the (positive) difference between the two sums is the
fee, a reward for the miner of the block that contains the transaction. There are ways to
create transactions that provide different methods of verifying ownership, but these are
uncommon and not relevant for this work.

3A higher difficulty corresponds to a higher amount of leading zeros in the hash.
4The factor 108 is to calculate from BTC to Satoshi and back again.

9

2. Cryptocurrencies

TX Hash: be83f7760b5f1a91

Version no: 1

#Inputs: 2

#Outputs: 2

TX Hash/Index: ba7521ec/2

Signature: 3045022100c...

TX Hash/Index: 888e0464/1

Signature: 30440220244...

Outputs:

0: Value: 1.99713455

Recipient addr: 126uLE1GDFxj

scriptPubKey: ...OP_CHECKSIG

1: Value: 6.00255800

Recipient addr: 16jaR3vF4TH3

scriptPubKey: ...OP_CHECKSIG

Figure 2.3: Schema of a BTC transaction: Each transaction has some number of
inputs and outputs. Inputs are references to TX outputs (TX hash & index of output)
and for each input a signature is provided, which is used to prove that the input signer
is authorized to spend the referenced output. Each output has an index, a value, a
recipient address and a scriptPubKey, which is used to verify the signature provided by
the spender.

2.1.5 Blockchain Splits & Forks

If run on a single node, the blockchain would be similar to a (reversed) linked list, where
each block points to its predecessor. In practice, the blockchain may look like a tree,
where at some points multiple elements may have the same predecessor. These splits
may happen due to different reasons and are classified into the following categories:
Blockchain forks, hard forks and soft forks.

2.1.5.1 Blockchain fork

A chain fork happens when two miners find a new valid block on the same blockchain
height at almost the same time5. After a chain split occurs, the following mechanism
ensures that after some time, the two branches of the blockchain are combined to a single
blockchain again6. Per definition, if a fork occurs and there are two competing chains,
the one with the higher sum of difficulty (“the longer chain”) is the valid one (in case
of equal total difficulty, the one that was received earlier is preferred). Miners that get
relayed two candidate chains are incentivized to mine on the valid chain, as transactions
(including the reward for mining) on the stale chain are lost. In Figure 2.4 a blockchain
fork with an orphaned fork of length 2 is illustrated.

5If the first of the two blocks is found at time t1 and the second at time t2, where t1 < t2, the
difference ∆t = t2 − t1 is smaller than the time needed for the first block to be propagated in the P2P
network to the second miner.

6Assuming that more than half of the mining power is not compromised.

10

https://blockchain.info/de/tx/be83f7760b5f1a91ebe8666e719cd0b7e8c66d1ceb9d151c401f41934b1cebe9
https://blockchain.info/de/tx/ba7521ec534fb14f8da39dc3460281e8db98aa4d016226f252b301616f0721e1
https://blockchain.info/de/tx/888e046478c9b004c4f45e24851052989ebdf666b61369524a9ca69a1bc5aa91
https://blockchain.info/address/126uLE1GDFxjjV5enHZzSGHJHiupH67FmA
https://blockchain.info/address/16jaR3vF4TH3ZdHJeRfVW8a5VYH2NbvbSB

2.1. Bitcoin

0 1 . . . n

n + 1 n + 2

n + 1 n + 2 n + 3 n + 4 . . .

Figure 2.4: Blockchain fork: At blockchain height n two new blocks are found in a
short time span and thus two blocks at height n + 1 exist. One chain progresses faster
and thus gets continued, the two blocks on the other chain become orphaned blocks and
any transactions included in them that are not yet part of the main-chain are added to a
block of the main-chain.

0 1 . . . n

n + 1

n + 1 n + 2

n
+

3

n + 3 n + 4 . . .

Figure 2.5: Soft fork: Up to block height n, all blocks are mined with the old rules
(). Then, a majority of nodes activate the new client version which rejects blocks
issued with earlier versions. Clients with the old version accept blocks which adhere to
the new rules () and may mine some valid blocks (n + 1 and n + 3 in the image),
though these blocks are quickly orphaned, as the majority of miners reject them and the
chain with the updated rules () progresses faster.

0 1 . . . n

n + 1 n + 2 . . .

n + 1 n + 2 n + 3 n + 4 . . .

Figure 2.6: Hard fork: Up to block height n, all blocks are mined with the old rules
(). Then, the block rules from the hard fork are activated on nodes with the new
client version and nodes using the pre-fork rules reject the new blocks (). If a
majority of the miners uses the updated client, the blockchain with the updated rules
progresses faster. Clients using the old version may choose to continue mining on the old
blockchain.

11

2. Cryptocurrencies

2.1.5.2 Hard & Soft forks

A soft fork is a change to the protocol that introduces additional restrictions, e.g. to
the maximum size of the block or the transaction format. If not all nodes switch to the
version of the software that implements the soft fork, there are two competing protocols at
the same time: the legacy version and the soft-forked version. While all nodes recognize
blocks mined with the soft-forked version as valid blocks, blocks mined with the legacy
version may be rejected by nodes running the soft-forked software. This is illustrated
in Figure 2.5. A well-known example of a feature rolled out with a soft fork is SegWit
(short for Segregated Witnesses) which has been activated on August 24th, 2017.

A hard fork loosens some restrictions, which results in legacy blocks being compatible
with the hard forked blockchain but not the other way around. If a majority of users
upgrade, the hard forked blockchain progresses faster. If some users choose to continue
mining with the old rules, the old blockchain can be continued. A case where the majority
of users upgrade to the new client is illustrated in Figure 2.6. Depending on the split
of users between the versions of the software, both soft and hard forks may pan out
differently7. A well-known example of a Bitcoin hard fork is the introduction of Bitcoin
cash, which increased the maximum block size from 1MB to 8MB.

2.1.5.3 Alternative history attacks

A transaction in a blockchain can only be valid if the outputs that are spent in the
transaction have not been spent before. To ensure integrity of the blockchain, nodes verify
that a transaction does not try to spend outputs which already have been spent, before
they include the transaction in the blockchain. For this verification, all transactions up
to the current block height as well as transactions already included in the current block
are considered.

A malicious user (MU) could try to double spend some output by issuing two transactions:
one which transfers some amount to a merchant and another which invalidates the first
transaction (if it reaches the node which mines the next block first). To prevent this very
simple exploit, users usually wait until a transaction has been confirmed in the blockchain
as valid, before accepting it. If a MU has considerable hashing power at its disposal, they
could issue the transaction and then mine several blocks with an additional unpublished
transaction that invalidates the transfer to the merchant. After the merchant has waited
for the transfer to be confirmed (by being included in the blockchain) the MU publishes
the alternative branch of the blockchain, which, if it is longer than the other branch at
that point, is considered the valid chain, which invalidates and rolls back the transfer to
the merchant. As a safeguard against this kind of attack, it is usually advised to not
only wait until a transaction is included in the blockchain, but also to wait for n (with
n = 6 being a common choice) confirmations, which means that if a transaction has been
included in some block, n blocks have been added to the same branch of the blockchain.
If a MU controls more than 51% (or even less, see [Eyal and Sirer, 2014]) of the hash

7More details can be found at [Light, 2017].

12

2.2. Monero

rate of the network, such an attack cannot be prevented, even with a high confirmation
threshold for accepting transfers.

2.1.5.4 Airdrop

Altcoin developers may want to accelerate adoption of their currency by distributing it
among some active users to gain mindshare and free advertising. This can be accomplished
by hard forking the blockchain of an existing currency at some arbitrarily chosen height.
Then, all users that have unspent outputs from pre-fork transactions can spend those
outputs on both blockchains, as nodes on each chain only verify if the outputs have not
yet been spent on their blockchain, which consists of the original blockchain up to the
fork and either its direct continuation or the forked chain, but not both. The funds that
owners of the original currency gain due to this is referred to as airdrop.

2.2 Monero
Monero is a cryptocurrency with heavy focus on privacy, based on the CryptoNote
protocol introduced in [Van Saberhagen, 2013]. Its aim is to improve upon Bitcoin in
the following areas:

• Linkability: As the recipient address of each Bitcoin transaction output is known,
it is possible to infer that two transactions that spend outputs belonging to the
same address were issued by the same user.

• Traceability: As it is possible to follow the trace of a bitcoin via its transactions,
it is also possible to determine if a coin has been involved in “suspicious activity”.
Exchanges could blacklist funds that are flagged in this way.

• Limited supply: There are doubts concerning the viability of the mining market,
when the block reward is comprised of only transactions fees, as the incentive
structure could lead to large mining syndicates creating alternative histories if they
miss transactions with a large block reward8.

Linkability and Traceability are addressed with cryptographic methods, which hide
the real transaction inputs (untraceable transactions), recipient addresses (unlinkable
transactions) and amounts (confidential transactions). The first is realized with adding
decoys to each output spent in a transaction, the second with using one-time public keys
instead of addresses and the third with confidential transactions, called RingCT.

The “problem”9 with limited supply is solved with a lower bound on the block reward.

The following subsections provide more details on these methods.
8More details can be found at http://weuse.cash/transparent-emission/.
9We are not aware of a consensus whether a limited supply is beneficial or not. See https://

bitcointalk.org/index.php?topic=753252.msg12440450#msg12440450 for some arguments.

13

http://weuse.cash/transparent-emission/
https://bitcointalk.org/index.php?topic=753252.msg12440450#msg12440450
https://bitcointalk.org/index.php?topic=753252.msg12440450#msg12440450

2. Cryptocurrencies

2.2.1 Ring Signatures: Untraceable Transactions

A Bitcoin transaction has one or more TXOs as input which are spent after they’ve been
used once. It is therefore possible to trace a bitcoin from its origin (as output of a coinbase
transaction) to its current address by following the transaction history. In contrast, each
Monero transaction input references a set of possible TXOs, of which only one is spent
in the transaction. Furthermore, it is (in theory) very hard for anyone except the creator
of the transaction to identify the TXO that is really used in the transaction. For this
purpose, one-time ring signatures and key images are used. Key images are uniquely
determined for each transaction output and are used to prevent double spending (each
key image may only occur once on the blockchain). The ring signature ensures that the
key image provided by the issuer of the transaction is in fact generated from the private
key of one of the referenced outputs. This is accomplished with a protocol, based on the
traceable ring signatures introduced in [Fujisaki and Suzuki, 2007]. Therefore, (usually)
only the creator of the transaction can identify the TXO which has been spent. While
beneficial for privacy, this leads to some technical difficulties: the blockchain cannot be
pruned as it is usually not possible to identify outputs that have been verifiable spent
and can thus be removed (outputs can be referenced in Bitcoin transactions only once,
whereas Monero outputs can be referenced arbitrarily often).

2.2.2 Stealth Addresses: Unlinkable Transactions

Each Bitcoin address is an unambiguous identifier for incoming transactions. Whenever
two separate transactions are sent to the same address, it is possible to say with certainty
that both transactions have the same recipient. If a Bitcoin user does not want separate
transactions to be linkable, they must provide unique destination addresses for each
transaction and be careful not to spend outputs which have been sent to separate addresses
in a common transaction, as this would reveal that the two addresses are owned by the
same entity (see Section 3.1).

Monero solves this problem by using unique destination keys that are derived from
the recipients address and random data from the sender. These destination keys are
generated as follows (Bobs private key is (a, b) and his public key is (A, B) = (aG, bG)
where G is the base point of the elliptic curve10):

1. Alice wants to pay Bob and uses his public key (A, B).

2. Alice generates a random number r and computes a one-time public key P =
Hs(rA)G + B (where Hs is a hash function), which is used as destination key for
the transaction

3. Alice adds the value R = rG to the transaction11. R is used for the Diffie-Hellman-
Merkle key exchange ([Diffie and Hellman, 1976]).

10For more details see [Hankerson et al., 2006]
11As the random value r can be reused for multiple destination keys Pi, only one R must be included

in a transaction, even if there are multiple outputs.

14

2.2. Monero

Bob is then able to redeem the funds sent to him by using his private key (a, b) and
applying the following steps:

1. For every passing transaction:

a) Bob uses the R included in the transaction to calculate P ′ = Hs(aR)G + B =
Hs(a · r ·G)G + B

b) If Bob is the recipient of the address, P = P ′ (this follows from Hs(rA) =
Hs(r · aG) = Hs(a · rG))

2. Bob then calculates the one-time private key p = Hs(aR) + b. He can than sign
a transaction with p and it is possible to verify that the output belongs to him
because P = pG = (Hs(aR) + b)G = Hs(aR)G + B.

As transactions are sent to one-time public keys derived from the public address of the
recipient and random data, it is not possible for third parties to determine who the
recipient is (without cooperation by either the sender or the recipient, see Section 2.2.2.1).
Furthermore, this prevents address reuse, as each TXO is associated with a unique public
key.

In practice, there are a few exceptions to this12 that most likely stem from bugs in
some wallet software that are probably fixed by now, as the most recent occurrence of a
duplicate public key has been in October 2016.

If two public keys collide, only one of the affected outputs can be spent, as they then
also share their private spend key p which may only be used once to prevent double
spending. Sending monero to an already existing public key thus burns the associated
amount of the output. It is therefore unlikely that a malicious user would deliberately
create public key collisions (by issuing multiple transactions with the same random value
r) as it would result in the loss of the MUs funds without disclosing information about
the target of the transaction.

Theoretically, a public key collision could occur by random chance, though it is rather
unlikely that this happens13.

2.2.2.1 View keys

As only one part (a) of the private key ((a, b)) must be used to identify transactions
belonging to a public address, it is possible to share a (the so-called view key) to allow
third parties to monitor transactions involving an address. This can be used to comply
with regulations or to provide accountability that would otherwise be lost due to the use
of stealth addresses.

12See https://git.io/fNLuD for a complete list of all public keys that occur multiple times on
the Monero blockchain and https://git.io/fNLaU for a list of all the occurrences.

13The problem is analogous to the birthday paradox. [Luigi1111, 2016] calculates that it would take
roughly 2126(=

√
#possible keys) attempts to have a 50% chance of a collision.

15

https://git.io/fNLuD
https://git.io/fNLaU

2. Cryptocurrencies

2.2.3 RingCT Confidential Transactions: Hidden amounts

Confidential transactions hide the denomination of outputs (therefore also inputs) and
the total output of transactions. This leads to better privacy in several ways:

1. Only transaction outputs with matching denominations can be used as mixins for a
transaction. The set of mixin candidates may therefore be smaller than desired for
outputs with a very unusual denomination (some empirical analysis of this can be
found in [Kumar et al., 2017]). Hiding the denomination allows to use any other
output as mixin, thus solving this problem.

2. If someone would offer goods of questionable legality for some price c, law enforce-
ment could look specifically for transaction with that output amount.

3. Some address clustering schemes use heuristics related to input and output sizes
to identify addresses or transactions belonging or involving to the same actor(s)
(e.g.: [Quesnelle, 2017]). Hiding the denominations removes this as possible attack
vector.

2.2.4 Infinite Supply

Whereas Bitcoin and most of the cryptocurrencies derived from it only have a finite
supply of (slightly below) 21 million coins, Monero has an infinite supply, as the emission
per block has a lower bound of 0.6 monero (0.3 monero per minute with 2 minute block
time). Due to this lower bound the total amount does not converge, as can be seen in
Figure 2.7.

The block reward (excluding transaction fees) Bn in tacoshi14 for block i is based on Ci,
the cumulative emission up to block i and can be calculated as follows :

Cn =
n−1∑
i=0

Bi

Bn = max
(

0.6× 1012,

{
(264 − 1− Cn)× 2−20 for n ≤ 1009827
(264 − 1− Cn)× 2−19 for n > 1009827

)

The changed exponent for n > 1009827 is due to the changed block time (see Section 2.2.5)
and is also the reason for the discontinuity in Figure 2.7.

2.2.5 Major Changes to the Protocol

Since its initial release, Monero has been continuously developed to improve privacy and
additional features. While some changes (for example a different sampling of mixins in

14Tacoshi is a reference to the smallest possible unit of Bitcoin, called Satoshi. It is named after
Monero developer TacoTime. Sometimes it is called Piconero, a portmanteau of Monero and the SI-prefix
pico for 10−12.

16

2.2. Monero

21 000 000

15 000 000

10 000 000

5 000 000

0

To
ta
la

m
ou

nt

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·106

18

10

5

0.6

Block height

Em
iss

io
n

Emission/Block
Total supply

Figure 2.7: Monero Emission: For MONERO, emission follows a smooth curve with a
lower bound of 0.6. Notice the jump at block height 1 009 827, where the block reward
and block time have been doubled. When the minimum block reward has been reached,
total supply grows linearly without bound.

transactions) could be rolled out with updated clients and were compatible with nodes
running on older versions of the software, other updates were distributed as hard forks
and made it necessary to update the client (see Figure 2.6).

In Table 2.1 the major changes with relevance to linking are listed. A dash in the columns
Fork and Block # marks changes that were rolled out via updates to the client, the
date is then the release date of the specified client version. Otherwise the fork version
and block number from when the fork happened, are provided (empty fields refer to the
last value in the same column), in which case the date refers to the timestamp of the
block where the fork took place. The changes to the distribution of mixins primarily
affect tracing-strategies that employ temporal analysis (e.g. the guess newest heuristic,
see Section 4.3). As for this work only deterministic strategies were employed, our
methods were unaffected by changes to the mixin-distribution.

0 1 . . . 1 545 999 1 546 000 . . . 1 651 728
. . .

1 564 965 . . . 1 651 346
. . .

. . . 1 647 778

Figure 2.8: Spring 2018 Monero Forks: Illustration of the blockchains used for the
empirical part this work. The Monero (XMR) blockchain went from the genesis block (0)
up to block number 1 546 599, where a scheduled hard fork (to prevent ASIC mining)
took place. Disagreement in the community lead to the forked currency Monero Original
(XMO), continuing the Monero v6 compatible blockchain. At block height 1 564 965 the
currency has been forked again, this time resulting in MoneroV (XMV).

17

2. Cryptocurrencies

Table 2.1: Table of versions and forks of Monero that affect tracing inputs. Some changes
were rolled out with a new client version (mostly improved mixin-sampling methods) and
were compatible with older clients. Other changes made a hard fork necessary, in which
case the fork version and block are provided.

Fork Block # Date Client Changes that affect tracing

- - 2016-01-01 v0.9.0 Mixins sampled from triangular distribution
v2 1 009 827 2016-03-22 - Ringsize ≥ 3

- block time doubled (from 60s to 120s)
- - 2016-12-13 v0.10.1 Sample ≈25% of inputs with age ≤5 days
v4 1 141 317 2017-01-05 - RingCT enabled
- - 2017-09-07 v0.11.0 More mixins with age ≤1.8 days (instead of 5)
v6 1 400 000 2017-09-16 - Ringsize ≥ 5

- RingCT only
- - 2018-03-24 v0.12.0 Mitigation against key-reuse-attacks from forks
v7 1 546 000 2018-04-06 - Ringsize ≥ 7

- New Hash algorithm (to prevent ASIC mining)
- Enforce input sorting

2.2.6 Spring 2018 Monero forks

In spring 2018, the Monero blockchain split up into (at least) three separate blockchains.
One was the original Monero blockchain, which forked at block height 1 546 600 to
introduce the new ASIC resistant hashing algorithm. This lead to Monero Original (note
the capitalization), as parts of the Monero community did not agree with the direction
and preferred the previous, ASIC-minable algorithm15. While this fork initially had
some support, due to miners not wanting to lose their investment into special purpose
hardware, in the weeks following the forks activity on the network fizzled out and apart
from updated logos and names in the readmes, no observable development took place.

In February 2018 MoneroV was announced16, which forked from the Monero blockchain
at block height 1 564 965 (2018-05-03, later than initially planned), though the client and
network were only released at height 1 565 244 (on 2 005), resulting in a “pre-mine” of
≈5.8%. The team behind MoneroV started their project with the intention of adapting
Monero to make it adhere to Austrian economics (i.e.: capping the available supply
at 256 000 000 XMV), and promising several improvements and features, which would
address some of the shortcomings of Monero.

15Technically, there is also Monero Classic and Monero 0, both with the same goal, Monero-client
version and blockchain as Monero Original. While we refer to Monero Original in this work, Monero
Original/Classic/0 would be more precise.

16https://bitcointalk.org/index.php?topic=2947912.0

18

https://bitcointalk.org/index.php?topic=2947912.0

CHAPTER 3
Bitcoin Analytics Techniques

Since its inception, Bitcoin has gained a reputation as the currency of choice for var-
ious dealings of questionable legality (see [Foley et al., 2018, Paquet-Clouston, 2017,
Christin, 2013, Gwern Branwen, 2011]). Naturally, privacy was a concern for people
involved in illegal activities, though other users may also value privacy, even if they
have nothing to hide. Through the use of pseudonymous addresses, Bitcoin facilitates
some level of anonymity for its users, though the blockchain as a public record of all
transactions allows everyone to link transactions to and from a person, assuming that
their address is known.

Therefore, it was often advised to use multiple addresses to counteract this very simple
analysis, which then lead to the employment of more advanced approaches for the
deanonymization of blockchain based cryptocurrencies. In [ShenTu and Yu, 2015], the
different deanonymization-approaches were categorized as follows:

1. Analysis of the P2P Network: It is possible to observe the communication of nodes
in the network and analyze messages sent between them to obtain information
about e.g. the origin (network address) of a new transaction.

2. Analysis of the Transaction Chain: As all transactions can be obtained from public
blockchain data it is possible to infer some knowledge from certain patterns.

3. Eavesdropping: If addresses or transactions are mentioned in public fora or on
social media it is possible to connect the author to those addresses or transactions.17

For all three approaches some techniques exist to impede deanonymization to some extent,
e.g.:

17Famous case: Silkroad https://en.wikipedia.org/wiki/Ross_Ulbricht

19

https://en.wikipedia.org/wiki/Ross_Ulbricht

3. Bitcoin Analytics Techniques

1. Employing alternative routing technologies, such as the TOR network, The Invisible
Internet (I2P) and Transaction Remote Release (TRR) is a possible way to prevent
the first kind of attack.

2. Coin-mixing services or Coin-Joins (see section 3.1) allow users to hide the origin
of their coins, which makes following the chain of transactions harder.

3. Regularly switching addresses allows adversaries to only link a subset of the
transactions a person has been involved in to his real identity.

Nevertheless, the public nature of the Bitcoin transaction history via its blockchain
limits the privacy of its users. This lead to the development of privacy-minded altcoins,
such as Monero or ZCash, with the goal of bringing real anonymity to cryptocurrency
transactions.

As this work is focused on deanonymization via analysis of the transaction chain, we
will first provide an overview of the available approaches for Bitcoin. For these methods,
their applicability to Monero is also explored. We will not cover methods that exploit
analysis of the P2P network (e.g. [Biryukov et al., 2014]), or the bloom filter vulnerability
presented in [Nick, Jonas David, 2015]. We also will not go into methods that combine
data from sources other than transaction-data on the blockchain ([Haslhofer et al., 2016,
Goldfeder et al., 2017, Ermilov et al., 2017]). This is followed with deanonymization
methods aimed specifically at Monero, followed by a chapter dedicated to a new method
we propose and analyze subsequently.

As each Bitcoin transaction—including involved addresses and amounts—is recorded on
the public blockchain, it is possible to build the address graph, where nodes represent
addresses and weighted arcs represent the coins going from one address to another in a
transaction. As Bitcoin users may have multiple addresses, several nodes in the network
may represent the same user. It would therefore be of interest to find all the addresses
belonging to the same user and combine them into clusters, where each cluster represents
a real-world entity. This graph, derived from the address graph, is called the entity
graph (see e.g. [Reid and Harrigan, 2013, Haslhofer et al., 2016]). This is illustrated in
Figure 3.1.

For this purpose, clusters of addresses in the address graph which belong to the same
user must be found. Sets of addresses belonging to the same user could be provided
by the users themselves, e.g. via tagging services18, though this would help only in a
minority of cases. Therefore, several techniques have been developed which use different
technical means (see enumeration in Chapter 3) to produce sets of addresses belonging
to a user, though we only focus on blockchain analysis in this work. In this section, we
briefly explain the most common heuristics employed for this.

18For example https://blockchain.info/tags

20

https://blockchain.info/tags

3.1. Multiple Input Heuristic

1

2

3

4

5

6

A

A

A

A

B

C

A B

C

Figure 3.1: Address clustering: From addresses to real-world entities: Leftmost graph
depicts currency flows (arcs) between six addresses (nodes), a so-called address graph.
Given that four of the addresses (1-4) belong to the same entity A (determining this is
usually the challenging part), it is possible to identify two arcs (from 1 and 2 to 4) as
“change” (), as seen in the middle. Merging the nodes belonging to the same entity
(loops arising from change can be discarded) results in the entity graph, depicted on the
right.

A1

A2

A3

TX1

TX2

TX3

A1

A2

A3

TX1

TX2

TX3

A1

A2

A3

TX1

TX2

TX3

Figure 3.2: Multiple input heuristic: If a Bitcoin transaction spends unspent transac-
tion outputs belonging to different addresses (TX1 and TX2), it is usually assumed that
the issuer of the transaction is the owner of all of the associated addresses (visualized
in the center). The multi-input heuristic then merges address-sets with non-empty
intersection, resulting in clusters containing addresses belonging to one entity and its
associated transactions.

3.1 Multiple Input Heuristic

The multiple input heuristic is one of the first heuristics that has been used to analyze
the Bitcoin blockchain. The idea has already been mentioned in the Bitcoin whitepaper
[Nakamoto, 2008, Section 10: Privacy]. It assumes that a transaction is signed by a
single user (or entity), hence the signing user is the owner of all of the transaction inputs,
or more explicitly, their associated addresses. This allows to identify transactions in
which a user has been involved, even if the user chose different addresses for each of them.
This is illustrated in Figure 3.2. The resulting clusters can then be used to derive the
entity-graph (see Figure 3.1).

This heuristic may overestimate cluster sizes if the underlying assumption (that it is signed
by a single entity) is wrong. This may be the case if a user gives another user access to
his assets (giving someone the private key corresponding to the public address instead of
sending him the associated assets via a transaction), or for multi-user transactions which
may occur via coin mixing or joining (see e.g. [Ruffing et al., 2014, Bissias et al., 2014,
Ziegeldorf et al., 2015, Valenta and Rowan, 2015, Maxwell, 2016, Möser and Böhme, 2016]).

21

3. Bitcoin Analytics Techniques

Applicability to Monero: Monero transaction outputs are addressed to one-time
public keys derived from a random value generated during the creation of a transaction
and the recipients address. Assuming that neither the sender nor the recipient of a
transaction disclose his or her private information19, the following differences concerning
the applicability of this heuristic to Monero apply:

• It is not possible to identify two outputs that belong to the same entity, when they
haven’t been spent yet.

• Even if it is known that one or multiple addresses belong to the same entity, it is
not possible to determine the transaction outputs which belong to the entity.

As each one-time public key only occurs once on the blockchain it is in theory possible to
create clusters of these public keys that belong to the same user, though in practice (if
the hashing method does not have vulnerabilities) it gives no additional insights.

3.2 Change heuristics
As each transaction output is fully spent in a transaction when it is referenced as
transaction input, Bitcoin transactions usually have at least two outputs:

1. The desired transfer to the destination address

2. The change sent to a change address, where the remaining coins (those not sent to
the destination or used as a fee) from the transaction inputs are sent to

The change address is provided by the creator of the transaction (i.e. the owner of the
inputs) to redeem the difference between the sum of the inputs and the desired output
(as this difference would else be lost as transaction fee). Several methods to incorporate
these change-addresses for address clustering have been proposed.

3.2.1 Shadow Heuristic

Using the same change address for multiple transaction would enable linking these
transactions as well as all their inputs to the same user. To prevent this, wallets generate
a new change address, called “shadow address” for each transaction.

[Androulaki et al., 2013] introduced a heuristic that identifies these “shadow-addresses”,
usually referred to as “shadow heuristic”, which works as follows: If a transaction has two
output addresses, Rn and Ro, such that Rn is a new address and Ro has already appeared
in previous transactions, it’s assumed that Rn is a change address and belongs to the owner
of the inputs and Ro does not. This heuristic has been refined in [Meiklejohn et al., 2013],

19The private information of the sender is the random value used to create the one-time public key,
for the recipient it would be his private view-key.

22

3.3. Transaction Fingerprinting

to prevent false positives that would, according to them, collapse the entire graph into
large “superclusters”. Their approach was to only classify an address as change address,
if it occurs only twice on the blockchain (once, when the change is payed out and once
when it is redeemed).

3.2.2 Optimal Change Heuristic

This heuristic was introduced in [Nick, Jonas David, 2015] and is based on the fact that
Bitcoin wallets usually try to minimize the amount of spent outputs (as not doing so
would increase the transaction size and fees). The desired amount of the transaction
would therefore not be reached, when not all the inputs were part of the transaction.
The change of the transactions is therefore smaller than the smallest input, as otherwise
the smallest input would have not been included in the transaction.

Applicability to Monero: While address clustering does not make sense for Monero
(see Section 3.1), identifying change outputs of a transaction could still be useful to model
currency flows on the network. To do this, one could proceed as follows: Assuming a
transaction A has outputs A1 to Am, some of which are spent in transaction B, resulting
in outputs B1 to Bm. If another transaction now redeems a set Bi∀i ∈ CI together with
the remaining outputs from A (or a subset of them), one can assume that (at least) these
outputs of B are change outputs. In practice, this method could only be applied if a
significant amount of outputs could be linked to the transaction where they are spent.
Furthermore, as transaction values are hidden since the v6 hard fork in September 2017
(see Table 2.1), even the currency flows could at most be analyzed in a binary variable.
The optimal change heuristic cannot be applied at all since then.

3.3 Transaction Fingerprinting
While all (valid) transactions must comply with the format specified by the Bitcoin
protocol, there is some leeway (e.g. wallets handle UTXO-choice and change addresses in
different ways) which results in some differences which may enable recognizing different
transactions from the same user.

Applicability to Monero: We are currently not aware of any efforts to use transaction
fingerprints for analyzing Monero transactions. Additionally, since the v7 hard fork in
April 2018 (see Section 2.2.5), transaction inputs must be ordered by their key image,
which prevents leaking any information in the case of transactions using idiosyncratic
input-orders20

20Previously, inputs were ordered according to size, though the roll-out of RingCT transactions
prevented this as the amounts were hidden.

23

CHAPTER 4
Monero Analytics Techniques

The application of cryptographic methods (see Section 2.2.2) makes analyzing the Monero
blockchain more challenging. Due to the unlinkability, it is neither possible to determine
which transactions were issued by the same entity, nor is it possible to identify the owner
of an output (i.e. the public key where the funds have been sent to). Nevertheless, when
two outputs are spent in the same transaction, one could assume that they belonged
to the same entity. To prevent this kind of analysis, Monero transactions reference sets
of transaction outputs, where only one output is really spent and the others are only
referenced as a disguise, so-called mixins. This obscures the transaction graph and is
referred to as untraceability.

In 2014, the Monero Research Lab published a note [Noether and Mackenzie, 2014] that
outlined possible attack vectors against untraceability, mainly stemming from a malicious
user (MU) disclosing his inputs with 0-mixin transactions and thus reducing the size of
the anonymity set of inputs in transactions that used inputs from the MU as mixins.
Additionally, they considered that this could occur naturally, as users are incentivized
by lower fees to choose a small amount of mixins. If users opt to choose 0 mixins for
a transaction they deem “uncritical”, they not only forfeit on the privacy of their own
transaction, but also compromise the privacy of all transactions that uses or used their
exposed output as a mixin.

For this purpose, the mandatory minimal ringsize (ringsize = #mixins+1, the “+1”
stemming from the real input) has been gradually increased (the most recent increase to
a ringsize of 7 has been agreed upon during the developer meeting in March 201821 and
rolled out to the client with the Lithium Luna release22.

In January 2017 Monero introduced a new type of transaction, called RingCT, which
also hides the output amount. As RingCT transactions can only use other RingCT

21https://monerobase.com/wiki/DevMeeting_2018-03-04
22https://github.com/monero-project/monero/releases/tag/v0.12.0.0

25

https://monerobase.com/wiki/DevMeeting_2018-03-04
https://github.com/monero-project/monero/releases/tag/v0.12.0.0

4. Monero Analytics Techniques

O1

O2

O3

O4

R1

R2

R3

R4

O1

O2

O3

O4

R1

R2

R3

R4

O1

O2

O3

O4

R1

R2

R3

R4

Figure 4.1: 0-Mixin and Intersection Removal: On the left, a few TXOs (O1-O4)
and rings (R1-R4) are depicted, as found on the blockchain. Edges represent references
of TXOs in a ring. R1 only references one O1, which must therefore its real input (),
whereas all other references to O1 must be mixins () and can therefore be removed.
Intersection removal can be applied if n rings contain n distinct TXO references. This
is the case (for n = 2) at R3 & R4 which both reference O3 & O4. O3 and O4 are
therefore spent (), though it is not known where exactly. In the center, all edges are
marked according to their status derived by these methods, on the right the state after
the traceability analysis is depicted.

transactions as input, the risk of using already exposed inputs as mixins was reduced
as a side effect, as at the time of their introduction (January 2017) there was already a
mandatory minimum mixin policy in place (with a minimum ringsize of 3).

In this chapter we present several approaches found in the literature to reduce the ringsize
of transactions. To simplify terminology, input in the following subsections refers to a
reference to a transaction output which may or may not be spent in the transaction. A
set of inputs referenced together in a transaction, where one input is real and the others
are mixins, is called a ring.

If some members of a ring are identified as mixins, we refer to the number of remaining
inputs as effective ringsize. Obviously, if the effective ringsize of is reduced to 1, the sole
remaining input must be the real one.

4.1 Iterated 0-Mixin Removal

A Monero transaction with a ringsize of 1 (i.e. 0 mixins) is trivially linked, as the sole
input must also be the real one. Matching those inputs to the rings where they are spent
with absolute certainty enables the removal of these inputs from other rings, reducing
their size by 1 each time. This method is illustrated (together with Intersection Removal)
in Figure 4.1. If a ring has only one input left after such a reduction, it is again possible
to identify the remaining input as real. This chain reaction has already been considered
in [Noether and Mackenzie, 2014], though they most likely underestimated the impact
from this. In 2017, two independent studies ([Möser et al., 2018, Kumar et al., 2017])
analyzed all Monero transactions and found that they could identify the real input of in
majority of them.

26

4.2. Intersection Removal

1 2 3 4 5 6
4 5 6 1 2 3

7 8
7 8

7 8
7 8

Strange example Sudoku

1 2 3 4 5 6
4 5 6 1 2 3

7 8
7 8

7 8
7 8

Valid partial solution

8 7
8 7

9
9

Figure 4.2: Intersection Removal for Sudokus: In the Sudoku given on the left, 7,8,
and 9 must be in the third row in the upper left box. None of these digits can therefore
appear in the other two boxes intersecting the third row. Additionally, using the 7s
and 8s in the rest of the Sudoku, one can infer where the blue 7s and 8s should go,
determining the position of the green 9s.

4.2 Intersection Removal
The problem of matching transactions to their real inputs from a set of candidate inputs
is similar to finding the correct value for a cell in a Sudoku puzzle given its candidate
values. The strategy outlined in section 4.1 would be the most straightforward case,
where a certain cell C has only one candidate digit, which can then be removed from all
cells in the row/column/boxes containing C.

The method can be generalized as follows (considering only n = 1 one would get the same
method as outlined in Section 4.1): If n rings reference the same set S = {I1, . . . , In} of
n inputs, each of these inputs has been spent, though it is likely impossible to determine
where exactly (assuming that the owners of the outputs do not reveal where they spent
them). It is therefore possible to remove all Ii ∈ S from all other rings as all of them
are spent. Figure 4.1 illustrates this method (together with 0-Mixin Removal). This
generalized method is essentially the Sudoku method called “intersection removal”, where
a digit that must occur e.g. in a certain row inside a box, may be removed from the
candidate sets of all intersections of that row with other boxes. See Figure 4.2 for an
example of this.

In April 2018, [Wijaya et al., 2018] proposed an attack on Monero privacy using a scheme
based on a similar idea: An attacker could take n transaction outputs, where n is the
current minimum ringsize, to create a transaction with n outputs and n inputs, where
each input references the same n outputs. Doing this several times could lead to a large
number of transaction outputs that have provably been spent and would reduce privacy,
if they were sampled as mixin. They remark that RingCT transactions with their hidden
amounts make this kind of attack easier, as all denominations can be attacked at once
(though this also increases the pool of legitimate outputs available).

27

4. Monero Analytics Techniques

TX1 O1

TX2
O2

O3

TX3 O4

R1

R2

TX4

O5

O6

TX1 O1

TX2
O2

O3

TX3 O4

R1

R2

TX4

O5

O6

Figure 4.3: Output Merging Heuristic: A transaction (TX4) references two out-
puts (O2,O3) from another transactions (TX2) in two distinct rings (R1,R2). The
Output Merging Heuristic then assumes that those are the real inputs (). The other
ringmembers (O1 and O4) are thus marked as mixins ().

4.3 Guess Newest Heuristic
In the first years of Monero’s existence, mixins have been sampled uniformly from all
transaction outputs with the correct denomination. As most transaction outputs are
usually spent within a few days after they have been received23 it is possible to guess
which input is real and which are mixins based on their age. [Kumar et al., 2017] and
[Möser et al., 2018] both use a very simple heuristic that assumes that for any ring, the
most recent input is the real one. To prevent this kind of traceability analysis, the mixin
sampling routine has been revised several times, first by sampling from a triangular
distribution and later by also enforcing several inputs from the so-called recent zone,
which has been initially defined as “less than five days old” and (as a reaction to the
previously mentioned publications) since September 2017 is constrained to outputs that
are “less than 1.8 days old”. For more information about all the changes related to mixin
sampling please refer to Section 2.2.5.

4.4 Output Merging Heuristic
As mixins were chosen from the (usually large) set of eligible transaction outputs,
[Kumar et al., 2017] assumed that it is rather unlikely that a transaction has two inputs
which reference transaction outputs from the same transaction. They therefore assume
that, if this happens, it is because a single entity is the recipient of multiple outputs and
this recipient decides to spend both or more of them at the same time (see Figure 4.3).
Strategies to avoid these attack vectors have been developed by GitHub user @kenshi84
in Dec. 2016 and accepted in January 201724, though only as option (if the “print-ring-
members” switch is set to true in the Monero wallet software, users are warned if they
try to spend outputs that stem from the same transaction or from multiple transactions
from similar blockchain heights).

23Using the data from the empirical part of this work, we find that from 2014 to 2017, ≈ 40% of
outputs were spent less than 24h after they’ve been received.

24https://github.com/monero-project/monero/pull/1492

28

https://github.com/kenshi84
https://github.com/monero-project/monero/pull/1492/commits/f1dde1a4293f6ae11398c7a8912e0dc75a5dc910#diff-cb82e0aa6db499004305bf35f0eaafbcR1973
https://github.com/monero-project/monero/pull/1492

CHAPTER 5
Exploiting Hard Forks for

Monero Traceability Analysis

If a currency hard fork occurs (see Section 2.1.5), the blockchain splits up into two
paths. Users that owned currency before the fork may then choose to redeem their funds
(see Section 2.1.5.4) on both chains, either because they decide to use both versions of
the currency or because they want to “cash out” on one or both currencies. Irrespective
of their motivations, their transactions on the forked chain can reveal information,
which, in the case of CryptoNote based currencies such as Monero, may compromise
the untraceability guarantee. In this chapter, we will explain how information from two
blockchains with a common history can be used to identify mixins in transaction inputs.
In the next chapter we will quantify the effectiveness of this method, which we call (due
to a severe lack of creativity) cross-chain analysis.

5.1 Cross-Chain Analysis: Theory
Each time a Monero transaction output r is spent, it is embedded in a ring R, together
with a (possibly empty) set M of other outputs (the mixins), and a ring signature and a
key image are calculated. The ring signature can be used to confirm that the key image
is in fact generated from one of the referenced transaction outputs and that it is not only
a random character sequence, i.e.:

R =M ∪ {r} r is the real input and M is a set of mixins
RS =f(R) The ring signature depends on the elements of R

key image =g(r) The key image depends only on the real input

c(RS, g(x)) =
{
> if x ∈ R

⊥ else.
Confirms that key image belongs to a ring member

29

5. Exploiting Hard Forks for Monero Traceability Analysis

The key image, which is used to prevent double spending as each key image may only
occur on the blockchain once, is the key to our approach.

If a hard fork occurs, there are two distinct blockchains, L (legacy) and F (fork), with
some shared history, up to block height s. The blocks of the L blockchain are called
Li(i ∈ IL), the blocks on the forked blockchain are called Fi(i ∈ IF). It follows that
Fi = Li,∀i ≤ s, i.e. the blocks from the origin up to the split height are identical. If a
transaction output from the shared part of the blockchain is not yet redeemed at the
time of the split, it may be redeemed on both chains, e.g. in block Ff for f > s and Ll

for l > s. This is because nodes on either chain only verify that the key image of the
output has not been on the part of the blockchain accessible by them (which is either
Fi, ∀i ∈ IF or Li, ∀i ∈ IL).

If a ring RF on the blockchain F and a ring RL on the blockchain L have the same key
image, the following observations apply:

• The real input must be in the intersection of the two rings25, i.e. r ∈ (RF ∩RL).

• If RF 6= RL, elements in RF − RL and RL − RF (i.e. the symmetric difference
RF ⊕RL) are identified as mixin (this applies to all inputs that reference transaction
outputs from transactions in blocks after the split).

• If the intersection only contains one element (r), the real input is identified.

In each case another heuristic may apply, e.g. if a ring has only one member left, the
remaining member must be the real one. Additionally, if a real output is identified, all
other references (on the same chain) to this output must be mixins and can be marked
as such.

Figure 5.1 illustrates how these different heuristics can work together.

5.2 Cross-Chain Analysis: Application
Cross-chain analysis as described above results in a possible information gain for each key
image that occurs on two separate chains. As there were two forks in close succession, we
not only looked for common key images between the main-chain and each fork, but also
between the two forks. Combining all this, we applied our cross-chain analysis method
as follows:

1. Repeat the following steps until convergence:

a) Identify all rings with identical key images. For each key image, where this
results in a set of rings with at least two elements, set all ring members as
mixin that do not appear in all of those rings.

25Or a collision occurred, which is rather unlikely. See Footnote 13

30

5.3. Multi Chain Intersection Removal

. . . 0:{b c} 1:{b c} 2:{a b c} 3:{a d e f} 4:{v w x} . . .

. . .4:{x y z}3:{a e f g}

. . .

. . . 0:{b c} 1:{b c} 2:{a b c} 3:{a d e f} 4:{v w x} . . .

. . .4:{x y z }3:{a e f g}

. . .

Figure 5.1: Tracing methods applied in this work: The upper part of the image
is an illustration of the blockchain, two blocks before and the first two blocks after a
hard fork. Each block contains one ring, in the format "〈key image (0-9)〉{〈ring members
(a-z)〉}". The first two rings (0,1) have the same two members, i.e. intersection removal
can be applied to mark these inputs (b, c) as mixin (black) in ring 2, leaving only input
a, which is therefore the real (green) input. From the two rings with key image 3, input
a can be therefore removed as it is spent. Additionally, d and g can also be ruled out as
they are not part of the intersection {a, d, e, f} ∩ {a, e, f, g}. The intersection of the two
rings with key image 4 consists of only one element, x, which is therefore the real input.

b) For each chain, separately run Zero Mixin Removal (and possibly other
heuristics) until convergence.

c) Propagate information gains from one chain to the other two chains. For this,
if an output has been identified as real input for a transaction, set all references
to this output in rings with a different key image as mixin. Propagation of
information between rings with shared key images is covered by a), therefore
this is already sufficient.

5.3 Multi Chain Intersection Removal
Theoretically, it would be possible to extend the intersection removal algorithm (see Sec-
tion 4.2) for cross-chain analysis as follows:

1. For each key image (on all blockchains), take the set of all referenced outputs which
are not yet deduced as mixin.

2. For each set of referenced non-mixin outputs, count the number of distinct key
images

3. If both sets have the same size, we’ve found an intersection.

In practice, this is very unlikely to happen and, as expected, we did not find any
multi-chain intersections in our dataset.

31

5. Exploiting Hard Forks for Monero Traceability Analysis

5.4 Mitigation Strategies
Starting in February 201826, Monero developers implemented several features which
enable users to mitigate risks stemming from the analysis method outlined in Section 5.1.
These changes were merged and released before the hard forks with client version v0.12
and enabled users to:

• Use the same input sets for transaction on both chains.

• Mix post-split inputs with post-split mixins only.

• Stop using outputs as mixins that are known to be spent.

Ideally, users would redeem their pre-fork funds in a transaction on the Monero blockchain
and employ the first feature to create an identical transaction (with the same inputs and
ring members) on the forked chain. This prevents to remove ring members that are not
part of both rings with a common key image.

The second feature reduces the chance to sample mixins that are revealed due to other
users not employing the first feature. To prevent users from suffering a loss of privacy due
to the first two measures not being sufficient, the third feature allows users to permanently
prevent the wallet software from using certain transaction outputs as mixins (this is
referred to as “blackballing”).

In Section 6.3 we try to evaluate the adoption of these mitigation strategies for outputs
spent on a forked chain. In Section 6.4 we provide three sets of outputs which are
either proven to be spent or at risk of being identified as spent and should therefore be
blacklisted from the mixin-sampling.

26See https://github.com/monero-project/monero/pull/3322/files for details.

32

https://github.com/monero-project/monero/pull/3322/files

Part II

Empirical Analysis of Monero
Traceability

33

CHAPTER 6
Monero Traceability with

Cross-Chain Analysis

6.1 Dataset
To obtain the dataset used in this work we used the most recent release of the Monero
daemon27 to obtain the Monero blockchain from its genesis block up to (and including)
block number 1 651 346 (timestamp: 2018-08-31 23:58:15). Additionally, we used the
MoneroV daemon28 to sync the MoneroV blockchain up to block number 1 647 778
(2018-08-31 23:46:43) as well as the Monero Original daemon29 to sync the Monero
Origin/Classic blockchain up to block 1 651 728 (2018-08-31 23:59:45). We then used the
transactions-export tool30 to export the transaction data from all three blockchains and
imported it to a PostgresSQL database, where all analysis methods and queries were
implemented. We released this toolchain as the MONitERO project on GitHub31.

Most likely due to a bug in the wallet software, several transaction outputs had public
keys that occurred multiple times32. For each of these public keys we removed all but the
oldest output (according to the timestamp of the block where its transaction is included).
All statistics and results in this work are based on this cleaned dataset. In Table 6.1 we
list several statistics from our dataset, containing all transactions from Monero, MoneroV
and Monero Original up to August 31th, 2018. The values for the two forks are based
on those parts of the dataset that are unique on their blockchains33. Note that we did

27 https://github.com/monero-project/monero/releases/tag/v0.12.2.0
28 https://github.com/monerov/monerov/commit/d3cd9144a1b824aeeb4e2334cf086c962b83f26e
29 https://github.com/XmanXU/monero-original/releases/tag/v0.11.3.0
30 https://github.com/moneroexamples/transactions-export/
31 https://github.com/oerpli/MONitERO
32 https://github.com/oerpli/MONitERO/blob/master/csv/reused_pubk.csv
33 Technically, all XMR transactions from block 1 up to the fork-height would also be in the XMO

and XMV transaction history.

35

https://github.com/monero-project/monero/releases/tag/v0.12.2.0
https://github.com/monerov/monerov/commit/d3cd9144a1b824aeeb4e2334cf086c962b83f26e
https://github.com/XmanXU/monero-original/releases/tag/v0.11.3.0
https://github.com/moneroexamples/transactions-export/
https://github.com/oerpli/MONitERO
https://github.com/oerpli/MONitERO/blob/master/csv/reused_pubk.csv

6. Monero Traceability with Cross-Chain Analysis

Table 6.1: Dataset statistics: As the Monero (XMR), MoneroV (XMV) and Monero
Original (XMO) blockchains share some parts, the values from the two forks (XMV &
XMO) only refer to data unique to their blockchain. “Last block” refers to the last block
used for the analysis in this work. XMR∗O and XMR∗V are subsets of the full XMR data
set, restricted to the time spans from the XMO and XMV forks.

XMR XMO XMR∗O XMV XMR∗V
First TX date 2014-04-18 2018-04-06 ⇐ 2018-05-03 ⇐
Last TX date 2018-08-31 2018-08-31 ⇐ 2018-08-31 ⇐
First block 1 1 546 600 1 546 600 1 564 966 1 564 966
Last block 1 651 346 1 651 728 1 651 346 1 647 778 1 651 346

Transactions 4 955 908 146 475 771 287 146 215 603 413
Coinbase TXs 1 651 347 105 729 104 747 82 814 86 381

TX outputs 28 878 846 198 618 1 859 970 450 773 1 456 810
Rings (TX inputs) 24 760 168 244 965 1 528 763 212 919 1 182 727
Nontrivial rings 12 538 632 241 464 1 516 342 212 919 1 175 486
Ring members 70 767 723 1 243 479 11 563 837 1 701 036 9 014 131

include the coinbase TX of the genesis block as its output has been referenced in multiple
inputs (4× as mixin and 180× unknown). Rings refer to transaction inputs, consisting of
one real input and some (0− 4500 in our dataset) mixins. Nontrivial rings refer to those
with at least 1 mixin.

Figure 6.1 shows the monthly number of transactions, for various types of transactions.
The rate of coinbase transactions (CB TXs) halves between March and April 2016, due
to the doubled block time (since March 22nd, see Section 2.2.5). RingCT transactions
overtake regular transactions between Dec. 2016 and February 2017. Virtually all
transactions were RingCT half a year before they were made mandatory on September
22nd, 2017. In Figure 6.2 the monthly number of transaction inputs and outputs as
well as their per-transaction averages are plotted. In the first few months of Monero’s
existence there has been a huge number of inputs and outputs. This spike is to a large
part due to different denominations (e.g. 912 542 distinct values, in June 2014 alone).
After this, the number of inputs and outputs per transaction more or less stabilize (at
≈ 12 and ≈ 20), up to the introduction of RingCT. After the introduction of RingCT
transaction, the average number of inputs and outputs decrease (as splitting up into
denominations is not necessary anymore) to ≈ 2.2 and ≈ 2.6, which is in the same range
as the values observed on the Bitcoin blockchain.

36

6.1. Dataset

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

1

2

·105

2014 2015 2016 2017 2018

C
ou

nt

#All TXs #RingCT TXs
#CB TXs #Non-CB TXs

SQL: https://git.io/f45pc, CSV: https://git.io/f45pG

Figure 6.1: Monero TX-type statistics: Number of transactions of different types
(Coinbase, Non-Coinbase, RingCT and total) issued per month.

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

1

2

3

4
·106

2014 2015 2016 2017 2018

#
In
pu

ts
/O

ut
pu

ts

#Inputs Avg #Inputs per non-CB TX
#Outputs Avg #Outputs per non-CB TX

0

20

40

60

80

Av
g.

#
In
pu

ts
/O

ut
pu

ts

SQL: https://git.io/f45pc, CSV: https://git.io/f45pG

Figure 6.2: Monero (avg.) Inputs/Outputs statistics: Number of TX inputs and
outputs per month (left y axis, solid lines) and their per-transaction averages (right y
axis, dashed lines).

37

https://git.io/f45pc
https://git.io/f45pG
https://git.io/f45pc
https://git.io/f45pG

6. Monero Traceability with Cross-Chain Analysis

6.2 Results

We applied 0-Mixin-Removal (Section 4.1), Intersection Removal (Section 4.2) and the
Cross-Chain analysis (Section 5.2) to our dataset to classify ring members as follows:

• real: If the ringmember that is spent in an input is identified, it gets marked as real

• spent: If an intersection set is found, it is (unless the key image of the output is
known, e.g. via cross-chain analysis) impossible to know which output is spent in
which input, though each output must be spent.

• mixin: Decoy ringmembers that are not spent in that transaction.

• unknown: If no information is available for this ringmember.

In the following sections, ringsize refers to the number of outputs referenced by an input,
as it appears on the blockchain (before removing mixins etc.) and effective ringsize
refers to the size of the anonymity set after the traceability analysis (i.e. not counting
mixins). If an input has an effective ringsize of 1 (one non-mixin ringmember which
would therefore be a real ringmember) we refer to that input as traced.

Over the whole dataset, we have 70 767 723 Monero ringmembers in 24 760 168 rings,
12 538 632 of which are nontrivial (rings with mixins, i.e. a ringsize over 1). We found
16 433 958 real, 16 270 257 mixin and 13 240 spent ringmembers. These values and the
corresponding values for MoneroV and Monero Original can be found in Table 6.2.

Average (effective) ringsize statistics over time are plotted in Figure 6.3. Additionally,
the percentage of inputs which use the minimal allowed ringsize34,35 is plotted ([]).
Figure 6.4 shows the number of total inputs and nontrivial inputs over time. With the
introduction of mandatory mixins these two bars almost converge. The shaded parts of
both barcharts show the number of inputs/nontrivial inputs that can be traced. The
percentage of traced nontrivial inputs is also plotted ([]). Note the small peak in
April and May 2018, which results from cross-chain analysis. For the 1 565 858 transaction
inputs in 685 608 (non-coinbase) transactions that have been issued since 2018-04-01, this
new approach enabled the identification of 73 321 real ringmembers, compared to the
25 256 identified real ringmembers without it. The number of identified mixins in this
time span has also more than doubled, from 203 251 to 544 131.

In Figure 6.5 the monthly ringsize and effective ringsize distributions from Monero are
plotted. Additionally, (as in Figure 6.3) the average ringsize ([]) and effective ringsize
([]) are plotted on the xy-plane (ringsize, date). Figure. 6.6 is identical, except that
inputs with a ringsize of 1 are excluded.

34Or a smaller one, if not enough possible mixins of the same denomination are available.
35The minimal allowed ringsize depends on the block. Values can be found in Table 2.1.

38

6.2. Results

Table 6.2: Traceability results: (RM found in an intersection set are spent)

XMR XMO XMR∗O XMV XMR∗V
Nontrivial rings 12 538 632 241 464 1 516 342 212 919 1 175 486
Ring members (RM) 70 767 723 1 243 479 11 563 837 1 701 036 9 014 131

Traced nontrivial rings 4 212 422 50 861 56 456 7 671 27 844
Identified mixin RM 16 270 257 230 128 497 570 49 035 295 107
Identified real RM 16 433 958 54 362 68 877 7 671 35 085
Identified spent RM 13 240 0 0 0 0

Table 6.3: XMR Traceability results (TXs between 2018-04-01 to 2018-08-31):

XMR
Nontrivial Rings 1 565 858
Identified real rm. w/o new method 25 256
Identified real rm. with new method 73 321
Identified mixin rm. w/o new method 203 251
Identified mixin rm. with new method 544 131

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

2

4

6

8

10

2014 2015 2016 2017 2018

(E
ffe

ct
iv
e)

R
in
gs
iz
e

Avg. ringsize Avg. effective RS % of inputs /w min. RS

0

20

40

60

80

100

%
of

in
pu

ts
w
ith

m
in
.
R
S

SQL: https://git.io/f45pc, CSV: https://git.io/f45pG

Figure 6.3: Ringsize statistics: Average ringsize and effective ringsize of transaction
inputs over time (left y axis) and share of inputs (in %) that were created with the
mandatory minimum ringsize (right y axis)

39

https://git.io/f45pc
https://git.io/f45pG

6. Monero Traceability with Cross-Chain Analysis

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

0.5

1

1.5

2

2.5

·106

2014 2015 2016 2017 2018

#
In
pu

ts

all Inputs
nontrivial inputs
% of nontrivial inputs traced

0

20

40

60

80

100

N
on

tr
iv
ia
li
np

ut
s
tr
ac
ed

(%
)

SQL: https://git.io/f45pc, CSV: https://git.io/f45pG

Figure 6.4: Traceability statistics: Bar chart of monthly number of all inputs and
nontrivial (ringsize > 1) inputs (left y axis). In both cases, the traced inputs (inputs
where the real spent output is known) are shaded. The percentage of nontrivial inputs
which can be traced is plotted as a dashed line (right y axis). In 2014, most of the
inputs were in transactions with a ringsize of 1 and were therefore trivially traced. With
increasing mandatory minimum ringsizes, the percentage of traceable nontrivial inputs
dropped continuously and since the introduction of RingCT, only a tiny amount can be
traced. The (small) peak in April 2018 is due to our newly proposed method.

6.3 Adoption of Cross-Chain Analysis Mitigation Tools

We try to estimate the adoption of the tools released with Monero v0.12 (see Section 5.4),
just before the most recent hard forks, which we analyze in this work. For this purpose
we look at the key images of inputs which occur on the Monero blockchain and on one
of the forked chains. We find that for XMO there are 56 663 such inputs, whereas for
XMV 6734 matching key images are found. For these inputs we then compare their
ring members on both chains and find that 6 497 XMO inputs (11.5%) and 1 231 XMV
inputs (18.3%) have matching ring members, which means that in those cases users
either correctly applied the tools or used other methods to ensure correct redemption of
their funds. This can be seen in Figure 6.7, where a histogram of the ringsizes from the
matching inputs for XMO and XMV is plotted. The green part in both cases symbolizes
the amount of inputs which were issued with identical ring members on the Monero
blockchain as on the fork-blockchain.

Note that for this purpose we are generous with the term correct, as we count outputs
which have been spent in a ring of e.g. size 5 on the Monero Original blockchain and then
with a ringsize of 7 on the Monero blockchain, where 5 of the ring members are identical

40

https://git.io/f45pc
https://git.io/f45pG

6.3. Adoption of Cross-Chain Analysis Mitigation Tools

1 2 3 4 5 6 7 8 9>9 2014-04
2015-01

2016-01

2017-01

2018-01
0

0.5

1

Ringsize

D
en
sit

y

Average ringsize
Effective avg ringsize

SQL: https://git.io/fCxI3, CSV: https://git.io/flJ1X

1 2 3 4 5 6 7 8 9 >9 2014-04
2015-01

2016-01

2017-01

2018-01
0

0.5

1

Effective ringsize

D
en
sit

y

Figure 6.5: Ringsize distributions over time: The upper image shows the original
ringsize distributions, the lower image the effective ringsizes (after removing identified
mixins) . The time measurement (in months) starts at the first block of the Monero
blockchain (April 2014). All values are calculated using monthly aggregates. Average
from original and effective ringsize basically converge at the introduction of mandatory
ringsizes of ≥5.

41

https://git.io/fCxI3
https://git.io/flJ1X

6. Monero Traceability with Cross-Chain Analysis

1 2 3 4 5 6 7 8 9>9 2014-04
2015-01

2016-01

2017-01

2018-01
0

0.5

1

Ringsize

D
en
sit

y
Average ringsize
Effective avg ringsize

SQL: https://git.io/fCxI3, CSV: https://git.io/flUOZ

1 2 3 4 5 6 7 8 9 >9 2014-04
2015-01

2016-01

2017-01

2018-01
0

0.5

1

Effective ringsize

D
en
sit

y

Figure 6.6: Ringsize distributions over time (excluding trivial inputs): Same as
Figure 6.5 but excluding inputs with a ringsize of 1, which are trivially traced

42

https://git.io/fCxI3
https://git.io/flUOZ

6.3. Adoption of Cross-Chain Analysis Mitigation Tools

1 5 6 7 8 9 ≥10
0

10 000

20 000

30 000

40 000

3 501

40 651

9 848

1 656 181 48 8850 0 0

6 433

217 0 87

Ringsize

C
ou

nt

XMO Inputs
XMV Inputs

Spent correctly

SQL: https://git.io/f4Q9Z, CSV: https://git.io/f4Q9G

Figure 6.7: Adoption of CCA-mitigation tools: Histogram of TX inputs which occur
on the Monero and the forked blockchain (matching keyimg, i.e. redeeming the same TX
output). The shaded region is the amount of inputs which are issued correctly with same
mixins on both chains (see definition in Section 6.3). Note the lower minimum ringsize
of 5 on the XMO blockchain. Transactions with a ringsize of 1 spend old (pre-RingCT)
dust-outputs and are trivially correct.

to those on the forked chain and two additional arbitrary mixins. In mathematical terms,
if RF is the ring for a given key image on the forked blockchain and RM the ring on the
Monero blockchain, we define an TX input to be redeemed correctly, if RF ∩RM = RF .
Our reasoning for this is that users may have accidentally issued a transaction with the
old client after the fork date, resulting in a transaction on the XMO blockchain and then
chose to make the best out of it by taking the ring from this transaction as basis and
add additional mixins to fulfill the higher minimum ringsize on the Monero blockchain.

43

https://git.io/f4Q9Z
https://git.io/f4Q9G

6. Monero Traceability with Cross-Chain Analysis

6.4 Spent and Risky Outputs
Since v0.12, the Monero wallet allows users to prevent outputs from being sampled as
decoy. The tool has some built-in heuristics that determine some of the public keys that
should be avoided. Though, as only the Monero blockchain is considered, outputs that
are exposed by being spent incorrectly on a forked chain cannot be identified. For this
purpose we release three sets of public keys as CSV files on Zenodo36:

• Spent outputs: Outputs that have been provably spent.

• Risky outputs: Outputs that are referenced in an input with an effective ringsize
∈ {2, 3} and are therefore at an elevated risk of being identified as spent.

• Referenced on fork: Outputs that were referenced on either the MoneroV or the
Monero Original blockchain and are therefore risky as they could be identified after
an additional transaction on the Monero blockchain.

36[Hinteregger, 2018a]: https://zenodo.org/record/1304032

44

https://zenodo.org/record/1304032

CHAPTER 7
Updated Evaluation of Existing

Methods

As the Monero development team issued several changes (higher mandatory ringsize and
improved mixin sampling) to the transaction protocol to address the concerns raised by the
2017 publications on traceability, we evaluate heuristics applied by [Kumar et al., 2017]
and [Möser et al., 2018] using the results from our own traceability analysis.

Additionally, we take another look at some of the results from [Wijaya et al., 2018].

7.1 Revisiting the Guess Newest Heuristic

In their analysis, [Kumar et al., 2017] and [Möser et al., 2018] found that most of the
time (for the data they analyzed), the real transaction output that is spent in a transaction
is the newest one, resulting in the Guess Newest Heuristic (GNH) Since then, the mixin
sampling has been changed (see Section 2.2.5), so we decided to check whether applying
the GNH is still admissible. We looked at all transactions and estimated the accuracy by
looking at the status (real, mixin or unknown) of the ringmember that references the
most recent transaction output. We found that in 2018, the most recent output is the
real input in only 12.1% of the inputs where data is available (13 175 of 109 199). This is
similar for transactions after the most recent hard fork (where we identified the real input
mostly via cross-chain analysis). Though we think that these results are biased, as the
cross-chain analysis technique primarily leads to the identification of rings where pre-fork
(i.e. “old”) outputs are spent. In Figure 7.1 our results from the analysis of the GNH
are plotted. The stacked bar charts show the distribution and total number of newest
ringmembers with a given status. If there are multiple (ex-aequo) newest ringmembers,
we take all of them into account.

45

7. Updated Evaluation of Existing Methods

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

1.2

2.4

3.6

4.8

6

·105

2014 2015 2016 2017 2018

#
O
ut
pu

ts
w
ith

gi
ve
n
st
at
us

Mixin Unknown Real Accuracy

0

20

40

60

80

100

A
cc
ur
ac
y
%

SQL: https://git.io/fCxTS, CSV: https://git.io/fWbX3

Figure 7.1: Performance of GNH (see Section 4.3) over time: After January 2017
the number of identified mixins and real inputs plummet and the accuracy is estimated
based on a small sample. As the (crudely estimated) accuracy plummets for recent
transactions we do not employ the Guess Newest Heuristic in our analysis.

We believe that the GNH should only be used with caution for transactions after January
2017. While the heuristic may have been admissible up to that date, we did not employ
it at all for the results presented in Chapter 6. Our reasoning for this decision was that
even at the time where it has been correct in most cases, it could produce false positives
which could lead to more false positives for recent transactions, which we wanted to
avoid.

7.2 Revisiting the Output Merging Heuristic
[Kumar et al., 2017] introduced the Output Merging Heuristic (OMH) which looked at
transactions using multiple inputs, where at least two rings reference two distinct outputs
from the same transaction.

They found that this heuristic produces correct results in almost all cases, where the
ground truth is known (via 0-Mixin Removal), though for transactions with a higher
ringsize, the status of the ringmembers identified with the OMH as being real were
unknown increasingly often (e.g. for the current minimum ringsize of 7, the split was
≈ 40 : 60 between true positive and unknown positive).

We applied their heuristic to our dataset and found similar results for older transac-
tions, though for more recent transactions the false positive rate increased. While
[Kumar et al., 2017, page 12] found an overall split between true positive/unknown posi-

46

https://git.io/fCxTS
https://git.io/fWbX3

7.2. Revisiting the Output Merging Heuristic

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

0.2

0.4

0.6

0.8

1
·105

2014 2015 2016 2017 2018

#
In
pu

ts

Wrong (Out) Unknown (Out) Correct (Out) Accuracy (Out)
Wrong (In) Unknown (In) Correct (In) Accuracy (In)

0

20

40

60

80

100

2014 2015 2016 2017 2018

A
cc
ur
ac
y
%

SQL: https://git.io/fNf1t, CSV: https://git.io/fNf1m

Figure 7.2: Performance of OMH (see Section 4.4) over time: Outputs are created
at time out and spent at time in. Left bar for each month uses out-time for aggregation,
right bar uses in.

tive/false positive rate of 87.3/11.9/0.8(%), we find 50.3/46.8/2.8(%) (when not counting
inputs without mixins) for the total dataset.

In Figure 7.2 we plot the results from applying the OMH to our dataset. As there are two
timestamps whenever the OMH applies (one from the transaction where the outputs are
created and another from the transaction where they are spent together), we analyzed
both aggregation methods. We calculated the monthly accuracy twice and found rather
large fluctuations, though as the accuracy is based on the very small set of ringmembers
for which the real status is known, we do not think that this represents more than just
random fluctuations. Overall, there do not seem to be any systematic differences between
the two aggregation techniques, hence we will only use the timestamp from the combining
transaction (where the outputs are spent, labeled “(In)” in Fig. 7.2) for our other figures
and measurements related to OMH.

[Kumar et al., 2017] found that with increasing ringsize the share of unknown positives
increased while false positives stayed flat (Fig. 11 in their publication). We looked at the
status of the ringmembers identified by the OMH as real input for different ringsizes, once
for all transactions in the dataset and once for transactions issued since 2018-01-01. The
results can be seen in Figure 7.3. We find that on our dataset (blockheight ≤ 1 651 346)
the heuristic produces more false positives than they found in theirs (blockheight ≤
1 240 503). Also the increase of unknown positives with higher ringsizes vanishes, as this
result from [Kumar et al., 2017] is due to their ground-truth being only based on 0-Mixin

47

https://git.io/fNf1t
https://git.io/fNf1m

7. Updated Evaluation of Existing Methods

2 3 4 5 6 7 8 9 100

25

50

75

100

Ringsize

Sh
ar
e
(%

)
Correct 2018 only
Unknown 2018 only
Wrong 2018 only

SQL: https://git.io/fNf1t, CSV: https://git.io/fNfjN

Figure 7.3: Performance of OMH by ringsize: Higher rate of misclassification for
recent transactions. No obvious relation between true/unknown/false positive rate and
ringsize for ringsizes ≥ 5.

Removal whereas we also used cross-chain analysis, a method that (usually) does not
depend on ringsizes.

7.3 Intersection Sets

While [Wijaya et al., 2018] only look at rings of size n which occur n times, our approach
also finds rings which are identical after some mixins are removed (i.e.: m rings with
ringsizes n1, . . . nm and for ring i ni −m mixins are removed, resulting in m identical
rings with an effective ringsize of m). We refer to the first kind as trivial intersections
and to the second kind as nontrivial intersections. We compared the intersection sets we
found (when restricting our data to the blocks up to height 1 470 000) with those found
by [Wijaya et al., 2018] and found similar but not identical numbers. Like them, we find
the first trivial intersection in block 47 410 (intersection of size 2, second ring in block
47 416) and the last one in block 1 401 899 (two distinct intersection sets, each of size 5,
both transactions in the same block) and the transaction issued by [Wijaya et al., 2018]
in block 1 468 439.

Apart from that, we find 1 302 (compared to their 1 244) trivial intersections and 3 005
ring duplicates (2 947) in 901 (885) different transactions.

In Figure 7.4 the number of duplicated rings per month are plotted. The huge peak in
September 2014 is from 745 unique intersection sets, each with one mixin, combining
dust outputs (in 209 separate transactions). While we do not think that these results

48

https://git.io/fNf1t
https://git.io/fNfjN

7.3. Intersection Sets

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08

0

500

1,000

1,500

2014 2015 2016 2017 2018

#
In
te
rs
ec
tio

n
Se

ts

trivial
nontrivial

SQL: https://git.io/fWSzC, CSV: https://git.io/fWhYN

Figure 7.4: Intersection sets found in dataset: Monthly aggregates of intersection
sets (IS). Trivial IS are identical input rings, whereas nontrivial IS are input rings with a
shared subset (the intersection) and some non-shared mixins. Each occurrence of a ring
is counted once.

suggest that there has been a targeted effort for a Monero Ring Attack, the possibility is
there.

Currently the blackball-tools recognize and block outputs referenced in trivial intersection
sets (N identical rings of size N)37. While this approach may recognize some provably
spent outputs, it must be noted that attackers could easily circumvent this by creating
only slightly more sophisticated intersection-sets. For example, they could take 2N
outputs (A1 . . . AN , B1 . . . BN) and create 2N different rings of size N + 1 as follows:

{(A1, . . . , AN , Bi)|1 ≤ i ≤ N} ∪ {(B1, . . . , BN , Ai)|1 ≤ i ≤ N}

We believe that this attack vector is somewhat academic. Nevertheless, the Monero
developers and users should be aware that the mitigation strategies implemented so far
are not entirely sufficient.

37Merged in this PR: https://github.com/monero-project/monero/pull/3428

49

https://git.io/fWSzC
https://git.io/fWhYN
https://github.com/monero-project/monero/pull/3428

CHAPTER 8
Discussion

We analyzed traceability of Monero with the methods proposed by [Kumar et al., 2017]
and [Möser et al., 2018] as well as with our own method which exploits currency hard
forks. Our new method enabled the identification of the real spent output of 73 321 out
of 1 565 858 transaction inputs in the 685 608 (non-coinbase) transactions that have been
issued since 2018-04-01 (improved from 25 256). The number of identified mixins in this
time span has also more than doubled, from 203 251 to 544 131.

Taken together, the status (real or mixin) of 617 452 out of 11 826 525 ring members in
this time frame has been identified, which amounts to 5.22%. (compared to 228 507 and
1.93% without fork analysis). Considering this, we think that there is no huge threat to
untraceability stemming from currency hard forks. While it is possible to identify the
mixins of a transaction input if the tools provided for securely redeeming airdrops (for
creating identical rings on both chains) are not used, the chain reaction from iteratively
removing known mixins converges after very few iterations, due to the high enough
ringsize.

We therefore conclude that the currently used minimum ringsize of 7 is sufficient to
prevent a large chain reaction of identified transaction inputs. Looking at the differences
between MoneroV and Monero Original, we find more data that supports this: While
the number of transaction inputs (rings) on both fork-blockchains differs by a factor of
approximately 1.15 (XMO: 244 965; XMV: 212 919), the number of traced (nontrivial)
inputs differs by a factor of almost seven (XMO: 54 362; XMV: 7 671). While this may
seem like a case in point for the necessity of a higher ringsize, the data suggests that
this is mostly due to the higher amount of incorrectly redeemed pre-fork outputs on the
XMO blockchain (50 273 vs 5 506).

We think that redeeming the airdropped funds correctly (with identical rings on both
chains) should be sufficient to prevent the identification of mixins. As usage of the
cross-chain mitigation tools has been abysmal despite the fact that they have been

51

8. Discussion

advertised heavily on e.g. /r/Monero before the release of MoneroV, we would suggest
that the clients should advise users ahead of time on how to employ these tools if there
is a fork coming up.

Based on the real outputs which have been identified using the methods mentioned above,
we analyzed the performance of existing heuristics. We conclude that temporal analysis
in the form of the guess newest heuristic should only be applied with caution for recent
transactions. While up to 2016 this simple heuristic has been correct in a large majority
of cases, the accuracy since then has plummeted and doesn’t seem to outperform random
guessing for recent transactions (estimated on at least partly traced inputs). This could
be due to a biased sample (as most of these inputs were identified via identical key images
on the forked chains), the small sample on which the accuracy measurement is based
on (as can be seen in Figure 7.1), though we have no hypothesis that would explain
this behavior. The performance of the output merging heuristic for recent transaction
also seems worse than for earlier transactions. The larger problem for this heuristic is
the prevalence of RingCT transactions with less inputs and outputs. This leads to less
transactions that merge multiple outputs from the same transaction, resulting in fewer
possible applications of the heuristic.

52

https://www.reddit.com/r/Monero/

List of Figures

2.1 Schematic illustration of a blockchain . 7
2.2 Bitcoin emission curve . 8
2.3 Schema of a BTC transaction . 10
2.4 Illustration of blockchain fork . 11
2.5 Soft fork illustration . 11
2.6 Hard fork illustration . 11
2.7 Monero emission curve . 17
2.8 Illustration of Monero blockchain and its forks 17

3.1 Address graph to entity graph transformation 21
3.2 Multiple input heuristic . 21

4.1 0-Mixin & Intersection Removal . 26
4.2 Example Sudoku & Intersection Removal Strategy 27
4.3 Output Merging Heuristic . 28

5.1 Example of tracing methods applied in this work 31

6.1 Monthly transaction type statistics . 37
6.2 Monthly (Avg.) Inputs/Outputs statistics 37
6.3 Monthly Ringsize statistics . 39
6.4 Monthly input tracing statistics . 40
6.5 (Effective) Ringsize distributions per month 41
6.6 (Effective) Ringsize distributions per month excluding trivially traced inputs 42
6.7 Analysis of mitigation tool adoption . 43

7.1 Guess Newest Heuristic: Performance over time 46
7.2 Output Merging Heuristic: Performance over time 47
7.3 Output Merging Heuristic: Performance as function of ringsize 48
7.4 Number of Intersection sets over time . 49

53

List of Tables

2.1 Major changes to Monero . 18

6.1 Dataset statistics . 36
6.2 Traceability results . 39
6.3 Traceability results (XMR TXs between 2018-04-01 and 2018-08-31) . . . 39

54

Bibliography

[Androulaki et al., 2013] Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T., and
Capkun, S. (2013). Evaluating user privacy in bitcoin. In International Conference on
Financial Cryptography and Data Security, pages 34–51. Springer.

[Back, 2002] Back, A. (2002). Hashcash-a denial of service counter-measure.

[Biryukov et al., 2014] Biryukov, A., Khovratovich, D., and Pustogarov, I. (2014).
Deanonymisation of clients in Bitcoin P2p network. arXiv:1405.7418 [cs], http:
//arxiv.org/abs/1405.7418. arXiv: 1405.7418.

[Bissias et al., 2014] Bissias, G., Ozisik, A. P., Levine, B. N., and Liberatore, M. (2014).
Sybil-resistant mixing for bitcoin. In Proceedings of the 13th Workshop on Privacy in
the Electronic Society, pages 149–158. ACM.

[Christin, 2013] Christin, N. (2013). Traveling the Silk Road: A measurement analysis
of a large anonymous online marketplace. In Proceedings of the 22nd international
conference on World Wide Web, pages 213–224. ACM.

[Diffie and Hellman, 1976] Diffie, W. and Hellman, M. (1976). New directions in cryp-
tography. IEEE transactions on Information Theory, 22(6):644–654.

[Ermilov et al., 2017] Ermilov, D., Panov, M., and Yanovich, Y. (2017). Au-
tomatic Bitcoin Address Clustering. In 2017 16th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), pages 461–466. DOI:
10.1109/ICMLA.2017.0-118.

[Eyal and Sirer, 2014] Eyal, I. and Sirer, E. G. (2014). Majority Is Not
Enough: Bitcoin Mining Is Vulnerable. In Financial Cryptography and
Data Security, Lecture Notes in Computer Science, pages 436–454. Springer,
Berlin, Heidelberg, ISBN: 978-3-662-45471-8 978-3-662-45472-5,
DOI: 10.1007/978-3-662-45472-5_28, https://link.springer.com/
chapter/10.1007/978-3-662-45472-5_28.

[Foley et al., 2018] Foley, S., Karlsen, J. R., and Putnin, š, T. J. (2018). Sex, Drugs,
and Bitcoin: How Much Illegal Activity Is Financed Through Cryptocurrencies?
SSRN Scholarly Paper, Social Science Research Network, Rochester, NY, https:
//papers.ssrn.com/abstract=3102645.

55

http://arxiv.org/abs/1405.7418
http://arxiv.org/abs/1405.7418
https://dx.doi.org/10.1109/ICMLA.2017.0-118
https://openlibrary.org/search?isbn=978-3-662-45471-8
https://openlibrary.org/search?isbn=978-3-662-45472-5
https://dx.doi.org/10.1007/978-3-662-45472-5_28
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_28
https://link.springer.com/chapter/10.1007/978-3-662-45472-5_28
https://papers.ssrn.com/abstract=3102645
https://papers.ssrn.com/abstract=3102645

[Fujisaki and Suzuki, 2007] Fujisaki, E. and Suzuki, K. (2007). Traceable Ring Signa-
ture. In Public Key Cryptography – PKC 2007, Lecture Notes in Computer Sci-
ence, pages 181–200. Springer, Berlin, Heidelberg, ISBN: 978-3-540-71676-1
978-3-540-71677-8, DOI: 10.1007/978-3-540-71677-8_13, https://
link.springer.com/chapter/10.1007/978-3-540-71677-8_13.

[Goldfeder et al., 2017] Goldfeder, S., Kalodner, H., Reisman, D., and Narayanan, A.
(2017). When the cookie meets the blockchain: Privacy risks of web payments via
cryptocurrencies. arXiv:1708.04748 [cs], http://arxiv.org/abs/1708.04748.
arXiv: 1708.04748.

[Gwern Branwen, 2011] Gwern Branwen (2011). Silk Road: Theory & Practice - Gw-
ern.net. https://www.gwern.net/Silk-Road.

[Hankerson et al., 2006] Hankerson, D., Menezes, A. J., and Vanstone, S. (2006). Guide
to elliptic curve cryptography. Springer Science & Business Media.

[Haslhofer et al., 2016] Haslhofer, B., Karl, R., and Filtz, E. (2016). O Bitcoin Where
Art Thou? Insight into Large-Scale Transaction Graphs. In SEMANTiCS (Posters,
Demos, SuCCESS).

[Hinteregger, 2018a] Hinteregger, A. (2018a). Monero: Public Keys of spent TXOs. DOI:
10.5281/zenodo.1304033, https://zenodo.org/record/1304033. type:
dataset.

[Hinteregger, 2018b] Hinteregger, A. (2018b). oerpli/MONitERO: Version 1.0. DOI:
10.5281/zenodo.1318980, https://zenodo.org/record/1318980.

[Kumar et al., 2017] Kumar, A., Fischer, C., Tople, S., and Saxena, P. (2017). A Trace-
ability Analysis of Monero’s Blockchain. In Foley, S. N., Gollmann, D., and Snekkenes,
E., editors, Computer Security – ESORICS 2017, Lecture Notes in Computer Science,
pages 153–173. Springer International Publishing, ISBN: 978-3-319-66399-9.

[Light, 2017] Light, J. (2017). The differences between a hard fork, a soft fork, and a
chain split, and what they mean for the. . . . https://medium.com/@lightcoin/
769273f358c9.

[Luigi1111, 2016] Luigi1111 (2016). Understanding Monero Cryptography, Privacy
Part 2 – Stealth Addresses. https://steemit.com/monero/@luigi1111/
understanding-monero-cryptography-privacy-part-2-stealth-addresses.

[Maxwell, 2016] Maxwell, G. (2016). CoinJoin: Bitcoin privacy for the real world.
https://bitcointalk.org/index.php?topic=279249.0.

[Meiklejohn et al., 2013] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., Mc-
Coy, D., Voelker, G. M., and Savage, S. (2013). A fistful of bitcoins: characterizing
payments among men with no names. In Proceedings of the 2013 conference on Internet
measurement conference, pages 127–140. ACM.

56

https://openlibrary.org/search?isbn=978-3-540-71676-1
https://openlibrary.org/search?isbn=978-3-540-71677-8
https://dx.doi.org/10.1007/978-3-540-71677-8_13
https://link.springer.com/chapter/10.1007/978-3-540-71677-8_13
https://link.springer.com/chapter/10.1007/978-3-540-71677-8_13
http://arxiv.org/abs/1708.04748
https://www.gwern.net/Silk-Road
https://dx.doi.org/10.5281/zenodo.1304033
https://zenodo.org/record/1304033
https://dx.doi.org/10.5281/zenodo.1318980
https://zenodo.org/record/1318980
https://openlibrary.org/search?isbn=978-3-319-66399-9
https://medium.com/@lightcoin/769273f358c9
https://medium.com/@lightcoin/769273f358c9
https://steemit.com/monero/@luigi1111/understanding-monero-cryptography-privacy-part-2-stealth-addresses
https://steemit.com/monero/@luigi1111/understanding-monero-cryptography-privacy-part-2-stealth-addresses
https://bitcointalk.org/index.php?topic=279249.0

[Möser and Böhme, 2016] Möser, M. and Böhme, R. (2016). Join Me on a Market for
Anonymity. In Workshop on Privacy in the Electronic Society.

[Möser et al., 2018] Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H.,
Srivastava, S., Hogan, K., Hennessey, J., Miller, A., Narayanan, A., and
Christin, N. (2018). An Empirical Analysis of Traceability in the Monero
Blockchain. Proceedings on Privacy Enhancing Technologies, 2018(3):143–163,
DOI: 10.1515/popets-2018-0025, https://content.sciendo.com/view/
journals/popets/2018/3/article-p143.xml.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

[Nick, Jonas David, 2015] Nick, Jonas David (2015). Data-Driven De-Anonymization in
Bitcoin. Master’s thesis, ETH Zürich.

[Noether and Mackenzie, 2014] Noether, S. and Mackenzie, A. (2014). A note on chain
reactions in traceability in Cryptonote 2.0. Research Bulletin. Monero Research Lab,
(MRL-0001).

[Noether et al., 2016] Noether, S., Mackenzie, A., and Monero Core Team (2016). Ring
Confidential Transactions. Research Bulletin. Monero Research Lab, (MRL-0005).

[Paquet-Clouston, 2017] Paquet-Clouston, M.-C. (2017). Are Cryptomarkets the Future
of Drug Dealing? Assessing the Structure of the Drug Market Hosted on Cryptomarkets.

[Quesnelle, 2017] Quesnelle, J. (2017). On the linkability of Zcash transactions.
arXiv:1712.01210 [cs], http://arxiv.org/abs/1712.01210. arXiv: 1712.01210.

[Reid and Harrigan, 2013] Reid, F. and Harrigan, M. (2013). An Analysis of
Anonymity in the Bitcoin System. In Security and Privacy in Social Net-
works, pages 197–223. Springer, New York, NY, ISBN: 978-1-4614-4138-0
978-1-4614-4139-7, DOI: 10.1007/978-1-4614-4139-7_10, https://
link.springer.com/chapter/10.1007/978-1-4614-4139-7_10.

[Ruffing et al., 2014] Ruffing, T., Moreno-Sanchez, P., and Kate, A. (2014).
CoinShuffle: Practical Decentralized Coin Mixing for Bitcoin. In Computer
Security - ESORICS 2014, Lecture Notes in Computer Science, pages 345–
364. Springer, Cham, ISBN: 978-3-319-11211-4 978-3-319-11212-1,
DOI: 10.1007/978-3-319-11212-1_20, https://link.springer.com/
chapter/10.1007/978-3-319-11212-1_20.

[ShenTu and Yu, 2015] ShenTu, Q. and Yu, J. (2015). Research on Anonymization and
De-anonymization in the Bitcoin System. arXiv:1510.07782 [cs], http://arxiv.
org/abs/1510.07782. arXiv: 1510.07782.

[Valenta and Rowan, 2015] Valenta, L. and Rowan, B. (2015). Blindcoin: Blinded,
accountable mixes for bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 112–126. Springer.

57

https://dx.doi.org/10.1515/popets-2018-0025
https://content.sciendo.com/view/journals/popets/2018/3/article-p143.xml
https://content.sciendo.com/view/journals/popets/2018/3/article-p143.xml
http://arxiv.org/abs/1712.01210
https://openlibrary.org/search?isbn=978-1-4614-4138-0
https://openlibrary.org/search?isbn=978-1-4614-4139-7
https://dx.doi.org/10.1007/978-1-4614-4139-7_10
https://link.springer.com/chapter/10.1007/978-1-4614-4139-7_10
https://link.springer.com/chapter/10.1007/978-1-4614-4139-7_10
https://openlibrary.org/search?isbn=978-3-319-11211-4
https://openlibrary.org/search?isbn=978-3-319-11212-1
https://dx.doi.org/10.1007/978-3-319-11212-1_20
https://link.springer.com/chapter/10.1007/978-3-319-11212-1_20
https://link.springer.com/chapter/10.1007/978-3-319-11212-1_20
http://arxiv.org/abs/1510.07782
http://arxiv.org/abs/1510.07782

[Van Saberhagen, 2013] Van Saberhagen, N. (2013). Cryptonote v 2. 0. https://
cryptonote.org/whitepaper.pdf.

[Wijaya et al., 2018] Wijaya, D. A., Liu, J., Steinfeld, R., and Liu, D. (2018). Monero
Ring Attack: Recreating Zero Mixin Transaction Effect. Technical report, https:
//eprint.iacr.org/2018/348.

[Ziegeldorf et al., 2015] Ziegeldorf, J. H., Grossmann, F., Henze, M., Inden, N., and
Wehrle, K. (2015). Coinparty: Secure multi-party mixing of bitcoins. In Proceedings of
the 5th ACM Conference on Data and Application Security and Privacy, pages 75–86.
ACM.

58

https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://eprint.iacr.org/2018/348
https://eprint.iacr.org/2018/348

	Acknowledgements
	Kurzfassung
	Abstract
	Contents
	Cryptocurrency Analytics: Theoretical Background
	Introduction
	Cryptocurrencies
	Bitcoin
	Peer to peer network
	Blocks & Blockchain
	Mining
	Transactions
	Blockchain Splits & Forks

	Monero
	Ring Signatures: Untraceable Transactions
	Stealth Addresses: Unlinkable Transactions
	RingCT Confidential Transactions: Hidden amounts
	Infinite Supply
	Major Changes to the Protocol
	Spring 2018 Monero forks

	Bitcoin Analytics Techniques
	Multiple Input Heuristic
	Change heuristics
	Shadow Heuristic
	Optimal Change Heuristic

	Transaction Fingerprinting

	Monero Analytics Techniques
	Iterated 0-Mixin Removal
	Intersection Removal
	Guess Newest Heuristic
	Output Merging Heuristic

	Exploiting Hard Forks for Monero Traceability Analysis
	Cross-Chain Analysis: Theory
	Cross-Chain Analysis: Application
	Multi Chain Intersection Removal
	Mitigation Strategies

	Empirical Analysis of Monero Traceability
	Monero Traceability with Cross-Chain Analysis
	Dataset
	Results
	Adoption of Cross-Chain Analysis Mitigation Tools
	Spent and Risky Outputs

	Updated Evaluation of Existing Methods
	Revisiting the Guess Newest Heuristic
	Revisiting the Output Merging Heuristic
	Intersection Sets

	Discussion
	List of Figures
	List of Tables
	Bibliography

