
Simulating Cardiac Dynamics
using Maxeler DataFlow

Super-computing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Lilly Maria Treml, BSc.
Matrikelnummer 01528458

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dr. Ezio Bartocci
Mitwirkung: Dipl.-Ing. Haris Isakovic

Wien, 9. Oktober 2018
Lilly Maria Treml Ezio Bartocci

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Simulating Cardiac Dynamics
using Maxeler Dataflow

Super-computing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Medical Informatics

by

Lilly Maria Treml, BSc.
Registration Number 01528458

to the Faculty of Informatics

at the TU Wien

Advisor: Dr. Ezio Bartocci
Assistance: Dipl.-Ing. Haris Isakovic

Vienna, 9th October, 2018
Lilly Maria Treml Ezio Bartocci

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Lilly Maria Treml, BSc.
Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. Oktober 2018
Lilly Maria Treml

v

Danksagung

An dieser Stelle möchte ich all jenen danken, die durch ihre fachliche und persönliche
Unterstützung zum Gelingen dieser Diplomarbeit beigetragen haben. Beginnend bei
meinen Betreuern Ezio Bartocci und Haris Isakovic die mir mit ihrem Wissen beistanden.
Darüber hinaus möchte ich auch Ivan Milankovic von Maxeler Technologies meinen Dank
aussprechen, der sich Zeit und Mühe genommen hat alles zu testen was ich ihm gesendet
habe. Auch möchte ich mich bei meinen Freunden und meiner Familie bedanken, die mir
jederzeit beigestanden haben und an mich geglaubt haben.

vii

Acknowledgements

At this point I would like to thank all those who contributed to the success of this diploma
thesis with their professional and personal support. Starting with my supervisors Ezio
Bartocci and Haris Isakovic who helped me with their knowledge. In addition, I would
also like to thank Ivan Milankovic of Maxeler Technologies, who has taken the time and
effort to test everything I have sent him. Also, I would like to thank my friends and
family, who were always by my side and believed in me.

ix

Kurzfassung

In der heutigen Zeit sind Computer basierte Simulationen ein wichtiges Werkzeug zur
Erforschung verschiedenster Phänomene im kardiologischen Bereich. Diese Simulationen
reichen von der Untersuchung einzelner Ionen-Kanäle bis hin zur Prognostizierung von
Herzarrhythmien. Aufgrund der Komplexität der zugrundeliegenden mathematischen
Funktionen, brauchen diese Simulationen ein hohes Maß an Rechnerleistung.

In dem letzten Jahrzehnt wurde daher ein hoher Aufwand betrieben, Computer basierte
Herzsimulationen zu beschleunigen, indem man parallele Algorithmen verwendet, die
sowohl handelsübliche Multi-Core CPUs als auch Many-Core GPUs ausnutzen. Diese
Algorithmen wurden hauptsächlich in imperativen Programmiersprachen entwickelt, wel-
che die Kontrollstruktur des Programmes vorschreiben. In dieser Arbeit untersuche ich
Hardware basierte Beschleuniger, bereitgestellt von Maxeler Dataflow Technology, zur
Verringerung der Simulationszeit elektrischer Aktivität in einem Kabel aus Myozyten.
Diese Technologie basiert auf dem Datenfluss-Paradigma, in welchem Datenverarbei-
tungselemente, genannt Pipelines, gleichzeitig arbeiten und so verbunden sind, dass die
Ausgabe eines Elements die Eingabe für das Nächste ist. Zusätzlich vergleiche ich die Vor-
und Nachteile des untersuchten Ansatzes mit aktuellen State-Of-The-Art Technologien,
wie CPU und GPU, in Bezug auf Leistung und Ressourcenverbrauch.

xi

Abstract

Nowadays, computer-based simulation is an important tool to study various phenomena
in cardiac biology ranging from investigating the properties of single ion channels to
predict the onset of cardiac arrhythmia.

Due to the complexity of calculations, these simulations are generally computationally
expensive and resource intensive. In the last decade, there has been a great effort to
accelerate computer-based cardiac simulation by implementing efficient parallel algorithms
that leverage multi-cores CPU and many-cores GPUs currently available also in common
personal computers. These algorithms are generally developed using imperative languages
dictating the control flow of the program. In this work I am investigating the use of
hardware-based accelerators provided by Maxeler Dataflow Technology to improve the
simulation time of the electrical activity of a homogenous 1D cell cable and an isolated
single cell. This technology relies on dataflow paradigm, in which the data processing
elements, called pipelines, operate concurrently and are connected in a way that the
output of one element is the input for the following/next one. In my work I am additionally
comparing the advantages and disadvantages of the proposed approach with the current
state-of-the-art based on CPU and GPU regarding performance and resource utilization.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 1
1.3 Methodological Approach . 2
1.4 Structure of the Work . 3

2 Background 5
2.1 Cardiac Arrhythmia . 5
2.2 Simulation of Cardiac Electrophysiology 5
2.3 State Of The Art . 10
2.4 Maxeler Technology . 16

3 Maxeler Implementation 25
3.1 Single Cell . 25
3.2 Homogenous 1D Cable . 30

4 Results 35
4.1 Alternative Implementation . 35
4.2 Evaluation . 36

5 Conclusion and Future Work 53
5.1 Conclusion . 53
5.2 Future Work . 54

List of Figures 57

List of Tables 59

Appendix A: Maxeler Isolated Single Cell 61

xv

Appendix B: Maxeler Minimal Model Homogeneous 1D Cable 83

Acronyms 93

Bibliography 95

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

To provide early diagnosis of cardiac arrhythmia computer simulation of the cardiac
electrophysiology is used. Despite several approaches of implementations and develop-
ment of different models, real-time simulation for large models is still not possible yet.
Considering these facts, a new approach to come closer to real-time simulation of cells
will be presented in this thesis.
The overall aim of this work is to analyze the advantages and disadvantages of the
Maxeler Technology implementation in comparison to GPU and CPU State of the Art
implementations. Further the specific technical attributes of Maxeler Technology are
used to optimize the implementation and analyzed regarding possible trade-offs.
Additionally several formal models of cardiac cells, will be implemented using Maxeler
Dataflow Computing technology and also be analyzed with regard to speed and resource
efficiency.

1.2 Aim of the Work

The aim of this work is to gather information about the advantages and disadvantages
of using Maxeler Technology to simulate cardiac cells. Therefore a given model of the
cardiac electrophysiology, using Reaction-Diffusion-Equation to describe the electrical
stimuli, will be re-implemented using Maxeler Dataflow.

This will allow a detailed analysis of the resource efficiency and probable speed optimiza-
tion of the implemented simulation. Furthermore, to get statistically relevant results, the
values will be compared to known values of GPU and CPU implementations. Thus, the
following research questions will be answered:

1

1. Introduction

• How to compute the solution of partial differential equations using Maxeler Tech-
nology and finite differences?

• What are the overall disadvantages and advantages of using GPU instead of CPU
to simulate cardiac cells?

• What are the overall disadvantages and advantages of Maxeler Technology compared
to GPU/CPU?

• Does the usage of Maxeler Technology show significant improvements in speed and
resource efficiency compared to other technologies?

• Is there a trade-off between precision and efficiency when using Maxeler and if so,
what is the trade-off?

• What are the differences in the models used?

Possible ideas for further research, especially regarding real-time simulation, will be
suggested in this work. Additionally this thesis will provide the relevant background in-
formation regarding Maxeler Technology, cardiac arrhythmia and other implementations.

1.3 Methodological Approach

1. Literature Review
Available research to provide relevant background information to back up this
research approach.

2. Maxeler Technology
The GPU-based implementation needs to be re-implemented using Maxeler Tech-
nology.
To achieve this, there will be several steps of the implementation. First, the equation
will be implemented using Maxeler. The next step is the simulation of an isolated
single cell. Based on this simulation, we will implement a cable of cells.
Further several models of isolated single cells will be implemented, which will be
used for further analysis.
This implementation will be run and tested on a Maxeler VM, which simulates
a Maxeler machine. As the Maxeler VM only provides to test and evaluate the
computation, we will use a real Maxeler for performance testing.

3. Analysis
The analysis consists of several parts, first the difference between the techniques
used for simulations (CPU, GPU, Maxeler).
Another part will be the analysis of using different cardiac models using an isolated
single cell to evaluate the accuracy using Maxeler Technology. We will focus here
also on the feature to use non-standard precision and compare those to CPU

2

1.4. Structure of the Work

implementations using single and double precision. Furhter, we will analyse the
performance and resource usage of an homogeneous 1D cell cable.

1.4 Structure of the Work
As the topic of this thesis includes medical and technical terms and procedures, the
reader will be provided with the necessary preknowledge.
First, since the simulation of cardiac cells, primarily aims to provide a possibility for
early diagnosis of cardiac arrhythmia, we provide an overview of the medical definition
of cardiac arrhythmia. Subsequently, the simulation of cells will be explained gradually.
Therefore, this work also provides an overview of cell-to-cell communication. Following
the biological preliminaries, we introduce the reader to the theoretical and mathematical
background.

Additionally, we introduce the reader to state-of-the-art technology. Furthermore, as
we aim to provide a comparison of the different technologies, a detailed introduction to
Maxeler Technologies concludes the background section.

After establishing all necessary preliminaries we present discuss the implementation using
Maxeler Technologies. Furthermore, to ensure a clean implementation and full exploit of
the Maxeler features, the implementation will be done gradually, starting with a single
cell and building up to a 1D cable.

As mentioned before, we set the Maxeler implementation in comparison to known state-
of-the-art implementations. The reader will therefore be introduced to the experimental
set up and afterwards we present and discuss the results regarding performance and
memory efficiency.

The work is then concluded with a brief overview of future work and related projects.

3

CHAPTER 2
Background

2.1 Cardiac Arrhythmia
In a healthy heart the rhythm of the myocardial electrical impulses are controlled
by the sinus node. There are several diseases which can disturb those signals and
produce abnormalities or perturbations in the heartbeat. Those deviations are known as
cardiac arrhythmias. Due to the many underlying conditions, which can cause cardiac
arrhythmias, treatment needs to be personalized accordingly. Besides medication to
control the arrhythmias, the most common adjunctive therapy are implantable pacemakers
and defibrillators. These devices inherently present a highly invasive procedure. Therefore
their durability and confidence are basic requirements in the trial phases [19]. By
simulating cardiac electrophysiology, those devices can be tested ex vivo for different
types of arrhythmias. Furthermore simulating cardiac arrhythmias, can provide deeper
insight of the underlying complex processes and diseases.

2.2 Simulation of Cardiac Electrophysiology

2.2.1 Overview of Cell-to-Cell Communication in Cardiac Cells

Generally communication between cells is carried out by electric impulses, due to changes
in cellular ion concentrations. The most important ions in this process are potassium
(K+) and sodium (Na+). Usually, the concentration of Na+, Ca2+ and Cl- are higher in
extracellular fluids, which leads to a potential difference between inside and outside of
the cell. This difference is referred to as membrane potential. Furthermore the stable
state of the ion concentration is called "ion homeostasis" [7].

During resting state the membrane is permeable to K+ which results in a resting potential
between -90 and -80mV. In response to stimulation, the membrane potential can change
rapidly due to active ion channels. To activate the ion channels a depolarization between

5

2. Background

Figure 2.1: Action Potential of a Cardiac Cell [1]

-70 and -60mV is needed [7]. This activation triggers a feedback process, which is split into
four phases, were the fourth phase represents the resting state, see Figure 2.1. The initial
phase is characterized by a rapid upstroke, about 100mV for a millisecond. This upstroke
is provoked by an external stimulus, which leads to the opening of Na+ ion channels and
therefore to the depolarization of the cell. In the first phase the cell repolarizes for a
short time, as the K+ start to open. Further, Ca2+ channels start to open, this results
in the second phase. This phase is called plateau phase and is a distinctive feature of
cardiac cells. The plateau is formed due to the stream of Ca2+ ions into the cell and K+

ions outwards and lasts about 200ms [7]. During the plateau phase the Ca2+ channels
slowly start to close and lead to the third phase. In this phase only the K+ channels are
open, which leads to the restoration of the resting membrane potential of -90mV. When
the resting potential is met, the K+ return to their initial closed state and the cell is
back at its resting state and consequently in phase four [7].

2.2.2 Cardiac Models

In 1952 Hodgkin and Huxley [23], were the first to model the propagation of an action
potential in nerve fibers, using a giant squid axiom. This breakthrough in describing
the basic electrochemical processes in cells through mathematical models enabled more
research of mathematical models for human tissue. One of the first methods adapting
the model presented by [23] to fit cardiac cells was presented by D. Noble [30] in 1962
using Purkinje fibers.

Modern models to describe cell electrophysiology either adapt these models or simplify
them, depending on the tissue simulated, and respectively electrical characteristics. This
results in a broad range of complexity, as the models use more or less state variables to
describe the processes. In this thesis, we mainly use the Minimal Model introduced by [9].
To compare the applicability and accuracy of Maxeler we further use the Beeler-Reuter

6

2.2. Simulation of Cardiac Electrophysiology

Model introduced by [6] as well as the Karma Model introduced by [25]. The differences
between each model will be shortly elaborated in this chapter.

Beeler-Reuter Model

The Beeler-Reuter Model is a generic model and also the first ventricular model. It uses
four ionic currents and eight state-variables to calculate them [6]. The according equation
by [6] to calculate the voltage variable is presented in Equation 2.1, where Cm is the
membrane capacitance.

∂u

∂t
= 1
Cm

(ik1 + ix1 + iNa + is − istim) (2.1)

The equations introduced by [6] for the four currents are shown in Equation 2.2. Where
ik1 represents the time dependent outward potassium current, ix1 the time dependent
activated outward current, iNa the inward sodium current and finally is the slow inward
current, which is mainly carried by calcium. The subtracted current istim represents an
outside stimulus.

ik1 = p1{exp[p2(u+p3)]−1}
exp[p4(u+p5)]+exp[p6(u+p5)] + p7(u+p8)

1−exp[p9(u+p8)]

ix1 = x1p10{exp[p11(u+p12)]−1}
exp[p13u]

iNa = p14m3hj + p15(u− p16)

is = p17df(u− p18 − p19 ln(Ca))

(2.2)

The model uses 63 different parameters [11] which are labeled pi within the equations.
Further, the calculation of the gate variables x1, m, h, j, d and f according to [6] is
presented in Equation 2.4. As stated by [6], these variables are calculated in the same
manner, only differing in related parameters (Ci). Therefore they are generalised with
the label y. Finally, Equation 2.3 shows the differential equation by [6] to calculate the
intracellular Ca2+ concentration.

∂Ca

∂t
= p20is + p21(p22 − Ca) (2.3)

∂y
∂t = αy(1− y)− βyy

where
αy, βy = C1 exp[C2u]+C3(u+C4)

exp[C5(u+C4)]+C6

(2.4)

7

2. Background

Karma Model

Derived from the model introduced by [30] this model eliminates two of the four state-
variables and was developed to show spiral wave breakup due to alternans. The remaining
variables are then used to describe the voltage within the cell and an according gate
variable. The gate variable "v" represents the slow sodium inactivation and the slow
potassium activation combined by a Heaviside function [25]. The according equations
introduced by [25] are shown in Equation 2.5.

∂u
∂t = D∇u− u+ [γ − (v

v∗)
xm]h(u)

∂v
∂t = ε[Θ(u− 1)− v]

where
h(u) = ([1− tanh(u− 3)]u

2) or (u2 − δu3)/α

(2.5)

The variable parameters in the equation are then: xm which describes the sensitivity of
the wave front, ε which relates the maximum ADP to the time scale of the upstroke and
finally v* which controls the APD pulse dynamics [25].

As this model only uses two state variables to describe the internal currents, the physi-
ological properties which can be described are restricted. In contrast to the other two
models used, this model is not considered a ventricular model but as Purkinje cell model,
as it was derived from [30].

Minimal Model

This model is a simplified model to simulate different types of cardiac cells in humans and
uses the minimal number of differential equations to do so. The number of differential
equations needed, is reduced by using four state variables. These variables are then used
to calculate an overall sum of the transmembrane currents in human myocytes. These
are represented in three main categories: fast inward, slow inward and slow outward
currents [9].

The equations according to [9] are shown in Equation 2.6. The state variable u represents
the voltage of the cell, by summation of three currents [9]. Those currents represent the
currents regarded for calculation in the cell. Where jfi is the fast inward current, jso

the slow outward current and jsi the slow inward current [9]. The calculation for those
currents according to [9] are shown in Equation 2.7.

∂tu = ∇(D̃∇u)− (jfi + jso + jsi)
∂tv = (1−H(u− θv))(v∞ − v)/τ−v −H(u− θv)v/τ+

v

∂tw = (1−H(u− θw))(w∞ − w)/τ−w −H(u− θw)w/τ+
w

∂ts = (1− tanh(ks(u− us)))/2− s)/τs

(2.6)

8

2.2. Simulation of Cardiac Electrophysiology

Jfi = −vH(u− θv)(u− θv)(uu − u)/τfi

Jso = (u− uo)(1−H(u− θw))/τo +H(u− θw)/τso

Jsi = H(u− θw)ws/τsi

(2.7)

In every equation the H stands for a standard Heaviside function. The constants used
can either be looked up in [9] or directly in the code, as some adaptations were made.

Despite the simplicity of the model, it is still accurate enough to generate pseudo EEG
data and can be used to simulate important electro physical properties, like the action
potential duration (APD) and the conduction velocity (CV). Further, it is possible to
simulate large-scale tissue, with a combination of different types of cells [9].

However, the models has limitations. As it only considers a sum of the currents in
myocytes, the simulation of intra cellular calcium waves is not possible, as well as
the change in membrane potential of an isolated cell and particular ion channels [9].
Still, it can be used to simulate mutated tissue (like Brugada Syndrome) or effects of
pharmalogical agents [9].

2.2.3 Further Dynamics

As shown in the previous chapter, there are many forces and variables in systems biology.
Those forces and variables can be generalized by using basic principles of electrical circuits
to describe changes of currents. One of those generalizations are Reaction-Diffusion
systems. Those systems describe changes of concentration over space and time. More
precisely the Diffusion Term is a partial differential equation, which describes the spatial
distribution over time and the reaction term the concentration change inside the cell.
The reaction terms according to each model, were presented in the previous section and
can be used for a single cell implementation. In a cell cable of variable dimension, the
diffusion term is used to calculate the propagation of the cell.

The following chapter provides necessary mathematical insights in the calculation of the
diffusion term and alternative time stepping methods.

Diffusion Term

Basically when applying the diffusion equation, these two key assumptions need to be
satisfied [24]:

1. We assume a linear relation between gradient and flux.

2. The diffusing substance must not be changed.

Those two assumptions are satisfied by the passive propagation of voltage in cells, as well
as heat propagation [24]. According to citejackson2006molecular, by using these basic
principles, the diffusion equation can be derived from Fick’s law and expressed as shown

9

2. Background

c A
bT

Table 2.1: Representation of a Runge-Kutta method

in Equation 2.8. Where C is the concentration, D the proportionally constant (diffusion
constant) and ∇2 is the Laplacian operator from Equation 2.9 according to [24].

∂C

∂t
= D∇2C (2.8)

(δ2/δx2) + (δ2/δy2) + (δ2/δz2) (2.9)

Numerical Integration Methods

Many times differential equations are used to predict a value in the foreseeable future.
To solve the time depended equations, numerical integration methods can be used, which
can further influence the performance of the computation. In this work, we use the
Euler Method. This method was published in Euler’s three volume work from 1768 to
1770 [10]. The basic principle of this method is inspired by particle movements. This
movement is within a timespan, so short that the velocity v0 does not change. With a
nearly constant v0, the new position of the particle is approximately δt multiplied by
v0 [10]. Due to its simplicity, the Euler method is not accurate enough for higher order
problems. One class of methods used for the solution of high order problems would be
the Runge-Kutta methods. These implicit and explicit methods adapt the Euler method
in means of performing several stages within a time step. When using explicit methods,
the computed stages can be combined to a higher order approximation at the end of each
time step. Whereas implicit methods require to solve the equations for every time step
for all stages simultaneously [33]. As stated in [5] as well as [33] the choice of integration
method can influence the performance. The representation according to [10] of these
methods is generally a table, as shown in Table 2.1. Where c is a vector indicating
the position within the steps, A represents the dependencies within a matrix and bT

represents the final result dependencies as derivatives [10].

2.3 State Of The Art

Next to models, the simulation of human cells requires high performance technology.
Especially when a real-time simulation is needed. State of the art simulation include
besides parallel and sequential CPU based, several parallel implementations based on

10

2.3. State Of The Art

GPU for a variation of cell types. GPU implementations prove to be 5-40 times more
efficient over parallel CPU implementations, depending on the algorithm used [32][5].

In this work we provide a hardware based solution to accelerate the simulation. Therefore,
we also introduce the reader to similar technologies, in particular Field Programmable
Gate Array (FPGA). For this reason we also discuss the state-of-the-art related to this
technology.

In the following we first introduce the reader to the GPU and FPGA technology and
then we discuss the related work concerning the use of this technologies in simulation of
cardiac dynamics

2.3.1 GPU

Architecture

As mentioned before, CPUs are designed to run a high variety of programs, even purely
serial ones. Therefore the architecture includes a complex logic and large caches for
these operations. GPU architectures instead are designed to perform mostly arithmetic
operations, with a small cache [12]. The implementation of simulations on GPUs are
focused on NVIDIA GPUs, as these provide a computing platform to perform general
computing on GPUs, called Compute Unified Device Architecture (CUDA). Another
option to implement GPU based applications, is to use OpenCL (Open Computing
Language). This programming language is a C-based open source project created by
AMD, IBM, Intel and NVIDIA. In contrast to CUDA, this programming language is
device and platform independent. Nevertheless, in this work we use CUDA for the GPU
simulation and therefore focus on this language. We will therefore provide an overview
of the programming model using CUDA in the next subsection.

Programmable GPUs are called general purpose graphics processing unit (GPGPU). Using
a Peripheral Component Interconnect Express (PCIe) bus, it is possible to execute data
transfers between CPU and GPU. These buses provide, depending on the PCIe version a
high bandwidth per lane, e.g. 500MB/s for PCIe 2.0, PCIe 3.0 provides twice as much
[34]. Usually the GPU requires the most bandwidth of all peripherals in the system,
therefore the design is laid out for a 16-lane PCIe slot. A general schematic of the
PCIe hardware architecture, is shown in Figure 2.2 [34]. The actual architecture further
depends on the system setup. The setup sketched in Figure 2.2 assumes a single discrete
GPU, while other setups can include multiple GPU clusters or integrated GPUs.

CUDA Programming Model

Compute Unified Device Architecture (CUDA) is both, a general-purpose parallel-
computing architecture and a programming model, which enables interactions between
CPU and GPU. Generally when developing in CUDA, CPU is referred to as "host"
while the GPU is referred to as "device". For obvious reason, CPU and GPU work most
efficient with separate memories, as shown in Figure 2.2. These are usually only accessible

11

2. Background

Figure 2.2: PCIe Architecture

to the according processing unit. Therefore CUDA provides several methods to allow
interactions between host and device on different levels. First would be the Pinned Host
Memory. This memory is part of the CPU memory which can be directly accessed by the
GPU, but cannot be moved [34]. Secondly, CUDA provides Command Buffers, which
are managed by the CUDA drivers. These buffers are used to send commands to the
GPU [34]. As these command buffers are streamed asynchronous between CPU and
GPU CUDA provides a method to synchronize both. These last methods also enables
the CPU to track the progress of the GPU commands [34].

Besides those interactions, CUDA keeps the separation between CPU and GPU regarding
memory resources. Therefore, it is distinct between device memory, host memory and
shared memory [34]. Additionally to gain optimal performance result, the device memory
itself is segmented in different levels according to [34]. The topmost level provides the
global memory. It holds global load and store instruction and can be programmatically
accessed by pointers. The next level below would be the constant memory. This cached,
read only memory (ROM) is used to optimize broadcasts between multiple threads. The
local memory holds local variables which cannot be fit into registers, parameters and
subroutine addresses. To improve data access in up to three dimensions in a spatial
locality, the texture memory is used. This memory is a cached ROM and uses arrays.
Additionally, the shared memory enables fast data exchange between threads within a
block [34].

Moreover the necessary computations in CUDA are implemented in form of kernels. These
kernels are launched asynchronously, therefore the developer has to explicitly handle
synchronization between host and device to avoid errors. Once a kernel is launched, it
runs as grid of blocks. Inside each block runs a set of threads, as shown in Figure 2.3.
Each block gets assigned to a Streaming Multiprocessor (SM), which can maintain the

12

2.3. State Of The Art

Figure 2.3: Schematics Grid of Blocks of Threads according to [5]

context for multiple blocks [34].

To fully exploit the parallel architecture, those blocks should be divided into 2D or 3D
grids [12].

Processing Power

Nowadays simulations tend to use GPU over CPU, as modern GPU technologies allows
improved programmability and provides a high computation power, as stated in [17], [32]
For example, standard GPUs using NVIDIA Pascal architecture, provide a processing
power ranging from 27.6 GFLOPs1 (NVIDIA GT 1030) up to 257.1 GFLOPs (NVIDIA
GTX 1080). Certainly, high power GPUs provide a higher performance, like the NVIDIA
GeForce Titan V with 6144.0 GFLOPs.

In comparison to this, modern CPUs using, e.g. Intel Coffee-Lake architecture, have a
processing power of 307.2 GFLOPs (Intel Core i7-8700) [16]. For high computation, Intel
also offers more powerful CPUs, the X-Series, which provides up to 1152 GFLOPs (Intel
Core i9-7980XE) [16].

1In computer science, the processor performance is measured in floating point operations per second
(FLOPS). GFLOP = GigaFLOPS = 109 FLOPS

13

2. Background

Figure 2.4: Architecture of a FPGA [26]

2.3.2 FPGA

Architecture

A Field Programmable Gate Array (FPGA) is a programmable hardware chipset. Inside
logic blocks, predefined logical gates (e.g.: AND, nAnd, FlipFlops etc.) are used to create
necessary arithmetic. Those logic blocks are then connected via switches to other logic
blocks or I/O blocks, as seen in Figure 2.4. The detailed setup of a FPGA chipset depends
on the chip type and the manufacturer [14]. The I/O blocks generally are configured to
be used as both, input and output, the specific definition of the pins has to be performed
by the developer. Additionally FPGA can be distinguished by structure and split into
four classes: Symmetric arrays, Series array, Sea-of-gates, Hierarchical Programmable
Logic Device (PLD) [27].

To store the configuration, basically two options are available. The first option is to use
flash memory, whilst this option has the advantage of persistence, flash memory requires
more space on the chip and has a cost disadvantage. In contrast to the first option stands
the usage of Static RAM (SRAM). As this type of memory will reset on disconnecting
the power source, additional concepts to load the configuration on startup are needed,
like special EEPROMs. [14]

Besides I/O and logic blocks, an FPGA has several other basic elements, which will
be explained shortly according to [14]. First the Phase Locked Loop (PLL) and Clock
Manager. Usually the clock frequency of a FPGA is fixed. Using those components, the
frequency can be adapted to the application. Secondly, the FPGA provides Embedded

14

2.3. State Of The Art

Memory, which is dedicated on chip memory. Additionally, provide Signal Processing
blocks optimized operations for signal processing. FPGA also contain a specific infrastruc-
ture for signal transport and routing. Finally, FPGA can be connected to several chips
and communicate. To enable fast communication for such serial connections, transceiver
elements can be used.

VHDL Programming Model

Designing FPGA always means designing a hardware circuit board. This, in combination
with the highly complex architecture, is prone to fatal errors and eventually destroying
the chip as a result. To avoid such errors, several tools for the generation of FPGA code
are available. The code generated is either Very High speed Integratd Curcuits Hardware
Description Language (VHDL) or Verilog. This work will focus on VHDL. Basically the
concept of VHDL consists of three parts. The first part is the modelling of the circuit
itself. This model can now either be processed by a synthesis program or verified via
simulation. Those simulations, or test benches, decrease the error probability and show
eventual problems beforehand [4]. One tool to generate and simulate VHDL is Matlab
Simulink, which is also well represented in literature.

2.3.3 Related Work

Simulation of human tissue is a well discussed topic, especially when finding new tech-
nology or improve existing implementations. Studies and research clearly tend to the
usage of high parallel solutions, which shows the foreseeable future of computational
biology. Due to this tendency, GPUs became a highly important technology in this field,
as they provide the perfect architecture and tools for parallel computing. In [12] several
biological systems are implemented using GPU, to show the general applicability of GPU
in biological system computation regarding the advantages and disadvantages compared
to CPU. Although it shows that most biological models are fit for parallel architecture,
it also demonstrates that the performance varies heavily depending on the underlying
model in GPU.

Besides the general usage, GPUs are also used to accelerate cardiac cell simulation.
Several papers compare CPU and GPU implementations regarding resource usage and
elapsed time of the performed calculations to estimate the performance of each devices.
The research conducted in [32], shows that the usage of GPUs in cardiac cell and tissue
simulation is superior to CPU in most cases. Additionally [29] arrived to the same
conclusion. Both studies compare the usage of CPU clusters to GPU clusters in different
settings. They show, that the bottleneck of CPU implementations are the ordinary
differential equations, as those are inherently parallel. Partial differential equations on
the other hand, are the bottlenecks of GPU implementations.

To avoid those bottlenecks, several mathematical approaches to redesign the modelling
can be taken. In [3] the usage of high finite elements in model simulation proofs to be
more efficient compared to using linear finite elements. The study was conducted using

15

2. Background

sequential CPU implementations, but also states, that the usage of parallel computing
could provide even more efficient simulations. Based on [3] it should be possible to
implement as a GPU application.

Another technology used to accelerate simulations are Field Programmable Gate Array
(FPGA). As FPGAs are hardware solutions, designing those represents a challenge. To
simplify the implementation of hardware solutions, Matlab Simulink offers a tool to
design hardware implementations and generate HDL code. Moreover, FPGAs in cardiac
simulation can be used to verify ECG signals as for example presented in [13]. When
verifying ECG data, the signals are evaluated by an algorithm, to check for abnormalities.
In [13] the FPGA implements the verifier to detect abnormal ECG signals. The signals
are streamed into the FPGA circuit and the output flags normal or abnormal signals
accordingly. But also full voltage clamp simulations are performed using FPGA as for
example in [31]. Further, [13] as well as [31] use Matlab Simulink to design and implement
the FPGA solution.

Although modern GPUs proof to be superior over CPUs, most complete simulation
environments are CPU based, written in Phyton, C or C++. An example for such
simulation environments would be Brian[20] and GENESIS [8], which simulate neuronal
behavior.

2.4 Maxeler Technology

2.4.1 Introduction to Maxeler Dataflow

This chapter provides an overview of the technological terms used in this thesis and also
give basic understanding of the technology itself.

Control Flow vs. Data Flow

Dataflow sets the focus on the optimal movement of data inside an application and highly
parallelized computation [28]. The application in dataflow is typically represented as
"dataflow graph". This graph is an abstract image of how the data inside the application
moves, for an example see graph 2.5. Basically a dataflow graph has three actors:

Tokens Tokens are representation of the data inside the application. Those tokens are
stored in the memory of the computing element. How the tokens are allocated in
the memory depend on the underlying concept of the dataflow application [22].

Operators Operators represent the function performed on the data. These can be either
numerical or logical functions [22].

Arcs Arcs represent the path of the data. If the arc points towards an operation, it is
called an "input arc", if it carries the result of an operation, it is called an "output
arc" [22].

16

2.4. Maxeler Technology

x

⊗
z

y

Figure 2.5: Example for a simple Dataflow Graph

The example graph 2.5 shows two input tokens x and y. Those tokens represent a
value, for example two integers. The input arc of the operator are symbolized by arrows
pointing to the operator node. In this example the operation performed on the tokens is
a multiplication, as the asterisk in the node states. The operator has one output arc,
which carries the output token z, the result of the multiplication [22].

In contrary to this approach stands control flow. Control flow applications are inherently
sequential, as the instructions move sequentially through the processor and occasionally
read or write onto the memory [28].

Example: 3-Point Moving Average The following example, derived from an example in
[28], illustrates the difference between control flow and data flow programming for a
better understanding. The example consists of a side-by-side pseudo implementation of a
moving 3-point average filter in control flow and data flow. To line out the differences,
the code snippets will be segmented and explained per segment.

Overall, the two programs will calculate the 3-point average over an integer array of ten
elements.

Input In control flow, the array is used as it is, therefore to access the individual values,
a loop is needed, see Listing 2.1. In contrast, the data flow program buffers the
array on chip and streams the array element wise into the program body, as can be
seen in Listing 2.2 [28].
array = [1 ,5 , 6 , 13 , 12 , 5 , 8 , 3 , 10 , 2] ;
f o r (i<array) {

. . do something
}

Listing 2.1: Array Representation in Control Flow [28]

x = io . input (" array ") ;
Listing 2.2: Array Representation in Data Flow [28]

Calculation As seen in Listing 2.3,in control flow the elements can be accessed at the
neighboring locations during run-time, using indices.

17

2. Background

array = [1 ,5 , 6 , 13 , 12 , 5 , 8 , 3 , 10 , 2] ;

f o r (i<array−1) {
prev = array [i −1] ;
next = array [i +1] ;
r e s [i] = (prev + next + array [i]) / 3 ;

}
Listing 2.3: Calculation Body in Control Flow [28]

In data flow, a window into the stream is needed to access non-current values. To
do so, offset expressions are used. To access past values a negative offset is needed
and for future values a positive offset, as shown in Listing 2.4 [28].

x = i o . instream (" array ") ;
prev = stream . o f f s e t (x , −1);
next = stream . o f f s e t (x , 1) ;

r e s = (x + prev + next) / 3 ;
Listing 2.4: Calculation Body in Data Flow [28]

Boundaries Using control flow, the elements in the array can be accessed at any
arbitrary location by using the correct index. Therefore, the boundaries can be
calculated at runtime at the correct index, as shown in Listing 2.5 [28].

array = [1 ,5 , 6 , 13 , 12 , 5 , 8 , 3 , 10 , 2] ;

r e s [0] = (array [0] + array [1]) / 2
f o r (i =1; i<s i z e −1) {

prev = array [i −1] ;
next = array [i +1] ;
r e s [i] = (prev + next + array [i]) / 3 ;

}
r e s [s i z e −1] = (array [s i z e]+ array [s i z e −1])/2

Listing 2.5: Boundary Inclusion Control Flow [28]

In data flow, it is not possible to create a 2-point average at runtime depending
on current position of the stream. Therefore all adders and dividers have to be
implemented at compile time, to add them to the data flow logic [28]. The decision,
which adder and divider to use, is done at run time, by evaluating logical conditions
and counters, which keep track of the current stream position, as shown in Listing
2.6. The conditions in the pseudo code are evaluated with the ternary if-operator
[28].

x = i o . instream (" array ") ;

18

2.4. Maxeler Technology

prevOrig = stream . o f f s e t (x , −1);
nextOrig = stream . o f f s e t (x , 1) ;

count = con t r o l . counter . add () ;

aboveLowerBound = count > 0 ;
belowUpperBound = count < s i z e − 1 ;
withinBounds = aboveLowerBound & belowUpperBound ;

prev = aboveLowerBound ? prevOr ig ina l : 0 ;
next = belowUpperBound ? nextOr ig ina l : 0 ;

d i v i s o r = withinBounds ? 3 : 2 ;

r e s = (x + prev + next)/ d i v i s o r ;
Listing 2.6: Boundary Inclusion in Data Flow [28]

Output After finishing the calculation in control flow, the result array is filled and can
be returned or further processed. The full pseudo code example in control flow
derived from examples in [28], is shown in Listing 2.7.

array = [1 ,5 , 6 , 13 , 12 , 5 , 8 , 3 , 10 , 2] ;

r e s [0] = (array [0] + array [1]) / 2
f o r (i =1; i<s i z e −1) {

prev = array [i −1] ;
next = array [i +1] ;
r e s [i] = (prev + next + array [i]) / 3 ;

}
r e s [s i z e −1] = (array [s i z e]+ array [s i z e −1])/2

return r e s ;
Listing 2.7: 3-point Moving Average Control Flow [28]

In data flow, the output is also a stream. In this example, it is assumed, that the
data flow program consumes one input item per pass and produces one output item
per pass. Based on this, the data flow program, will stream out the results value by
value. The full pseudo code example in data flow derived from examples in derived
from [28] is shown in Listing 2.8 [28].

x = i o . instream (" array ") ;
prevOrig = stream . o f f s e t (x , −1);
nextOrig = stream . o f f s e t (x , 1) ;

19

2. Background

count = con t r o l . counter . add () ;

aboveLowerBound = count > 0 ;
belowUpperBound = count < s i z e − 1 ;
withinBounds = aboveLowerBound & belowUpperBound ;

prev = aboveLowerBound ? prevOrig : 0 ;
next = belowUpperBound ? nextOrig : 0 ;

d i v i s o r = withinBounds ? 3 : 2 ;

r e s = (x + prev + next)/ d i v i s o r ;

i o . outstream (" r e s " , r e s) ;
Listing 2.8: 3-point Moving Average in Data Flow [28]

Maxeler Technology Dataflow Engines (DFE)

To achieve better performance with data flow computing Maxeler Technology exploits
loop level parallelism in a spatial and pipelined way. Thereby combining traditional
synchronous data flow, vector and array processes [28]. This concept is based on the
usage of Dataflow Engines (DFEs). These engines deploy the data flow concept on many
levels of abstraction, using a set of different components, see Figure 2.6 [28].

Figure 2.6: Architecture of a DFE) [28]

Kernel A DFE can have one or more kernels. These Kernels perform the computation
on the data streams.

20

2.4. Maxeler Technology

Large Memory in Maxeler DFE (LMem) A DFE has two kinds of memory, the
LMem is one of them. It can hold several gigabytes of data off chip [28].

Fast Memory in Maxeler DFE (FMem) The second memory type is the FMem. It
can hold several megabytes and has a high bandwidth for data transfer on chip [28].

Manager The manager coordinates how the data moves within the DFE [28].

Simple Live CPU (SLiC) This component connects the DFE with the CPU. There-
fore the data can be prepared in the CPU and the calculations are performed
separately in the Kernel of the DFE [28].

MaxCompiler This special compiler is part of the MaxelerOs. It generates the dataflow
code from the implementation in the Kernels and the Manager. This dataflow code
is then loaded into the CPU application via the SLiC [28].

Furthermore the MaxelerOS provides an Integrated Development Environment (IDE)
designed for the implementation of DFE based applications. This IDE, called MaxIDE
is based on the Eclipse IDE and has integrated support for the Maxeler programming
language MaxJ. This programming language is used to configure the Kernels and the Man-
ager. Furthermore MaxJ is a Java based language, which extends the basic functionalities
with operator overloading semantics [28].

Basically those two components are classes in the implementation. An application can
have several Kernels. These Kernels can have several input and output streams from and
to the CPU. Usually the input from the CPU is a large data array. This array will be
stored as buffer on the on chip memory. These buffers will then be streamed into the
Kernel [28]. The computation of the values is then performed, as soon as the needed
value is valid. After the finished computation, the result is streamed back to the CPU on
the output stream [28].

The Manager class holds the configuration how and when data is streamed between the
DFE and the CPU.

Although an DFE can have several Kernels, even the same instanced several times, it
only has one Manager [28].

While using data flow programming, it is important to know which parts of the application
should be reimplemented in a Kernel and which need to be implemented in the CPU. All
read and write operations to and from the host are slow and should be performed at the
same point. Additionally MaxJ has special data types, which enable the optimization
while the data flow code is generated. This will be explained in more detail in Chapter 3,
as each implementation step will be illustrated.

21

2. Background

2.4.2 Technical Attributes

Pipelined Streaming to Exploit High Parallelism

The communication and data transfer on chip and off chip is a key feature for better
performance. As there are several kinds of memory in use, the communication between
the components differs. On one hand and we have streams from and to the CPU, as
mentioned before. The data is generated in the CPU code and the SLiC automatically
sets the array as input stream when calling the DFE. Now we differ between two ways
of data movement. The first is the programmer’s view, as the name states, this view
describes how the programmer sees the data movement through the kernel [28]. After a
certain amount of time, called a tick, the Kernel takes a new value of the input stream.
Then the computations are performed on the data. As soon as all the computations are
completed, the result is written onto output in the same tick [28].

To exploit parallelism the reality of the data movement is different. Supposed each
computation node in the data flow graph needs one clock cycle to produce an output. In
this case, as soon as an input for an computation node is available an output is produced.
Using this pipelined style of streaming an operation can be performed parallel on several
values in the stream [28]. Considering this style a latency regarding available input and
output values should be expected, but due to the automatic management of MaxCompiler
the latency can be disregarded [28].

Additionally, these streams do not necessarily need to connect the CPU and the DFE.
A Kernel can have several input and output streams, which either connect to the CPU
or another Kernel. As mentioned before, these connections are set and controlled in
the Manager, the following example illustrates these in detail. Assuming an application,
which repeatedly performs the same computation on a single, giant dataset [28]. To
increase the parallelism of the application the input stream can, for example, be split
between several Kernels. Therefore, the Kernel class is instanced several times inside the
Manager [28]. Using the Manager the input stream is then split between the identical
instances of the Kernel. Consequently, this would result in two output streams. In order
to avoid this, the output stream of each Kernel is joined together in the Manager again.
This concept results in a highly parallel computation, as the stream itself are synchronous,
but the computation inside the Kernel is asynchronous [28].

Dataflow Variable Types

As mentioned before, Maxeler Technology uses the Java based programming language
MaxJ. An addition in this language to the basic Java functionalities are special variable
types, as variables are basically the entry point for the streams. By using the data
flow variable types, it is possible to represent any number in any binary format wanted.
This allows a fine tuning of the value precision and optimization to the bit level of the
application [28]. Furthermore the declaration of the input and output variables is used
to generate the SLiC.

22

2.4. Maxeler Technology

The standard types for numerics used in computation (integer, floating point, etc.) are
offered by the MaxCompiler as DFEVars. Variables from type DFEVar are represented
by an object of DFETypes and usually get their specific datatype assigned automatically
[28]. To ensure an uniform data typeset inside the application, the DFEType can be set
globally for all DFEVars. Doing so, the programmer is in full control of the variable
precision and the bits needed. Furthermore, even if the type is set globally, DFETypes
can be casted during the flow. Nevertheless typecasting is high in resource costs, therefore
the use of these operation should be minimized.

2.4.3 Possible Advantages and Disadvantages

One of the most outstanding characteristics of Maxeler Dataflow technology is the broad
area of application. Based on this research further work can be conducted, not only for
cardiac cells but also neural models. Furthermore, the high parallel technology used in
Maxeler can accelerate the calculation of giant datasets, as the technology performs best
with a high number of data.

On the other hand, redesigning an algorithm into Maxeler Dataflow requires a deeper
understanding of the technology and therefore a long period of familiarization. Addition-
ally, to exploit the full potential of Maxeler, it is necessary to design the application as
optimal as possible.

Despite the complexity of Maxeler, it still offers a lot of advantages. As mentioned before,
the precision can be set by the user. This might also influence the performance and
resource usage of the application.

23

CHAPTER 3
Maxeler Implementation

This chapter will explain the implementation in Maxeler in detail. Therefore, we will
focus on the Maxeler specific code in this chapter and do not discuss the model specific
calculations in details, as the mathematical foundation was given in Chapter 2. The code
examples used are from the Minimal Model implementation. We provide in Appendix A
the full code of each model of the isolated single cell implementation and in Appendix
B the full code of the homogeneous 1D cell cable . All implementations regarding this
project are also available on Bitbucket1.

Additionally, the project was created using MaxCompiler version 2017.2.1 and later on
migrated to the latest MaxCompiler version 2018.2.1. The latest version separates the
application in projects. These can either be from the type C-SLiC or Maxeler DFE. The
configuration of these projects regarding MaxFiles and their generation, can be done
using the Maxeler IDE.

3.1 Single Cell
DFE Part

As mentioned previously dataflow programs can be represented as graphs. Figure 3.1
shows a simplification of the dataflow graph for the single cell implementation. The
calculation block is model specific and therefore only indicated, as the actual graph
generated by Maxeler takes each operation within the calculation into account.

Further, we implemented several versions of the single cell, for different test cases. For
example, we provide the option to generate the stimulus on CPU side using a Heaviside
function and different spacing settings and stimulation times. This generated array of
stimulus flags (1 if active, 0 if inactive) can then be streamed into the DFE as input.

1https://bitbucket.org/lily93/thesis-src/

25

https://bitbucket.org/lily93/thesis-src/

3. Maxeler Implementation

Figure 3.1: Simplified Dataflow Graph Single Cell

Doing so we provide the opportunity to simulate and evaluate different signals. To
compare the accuracy between Maxeler and CPU we omitted this feature, which results
in a graph without input.

The implementation consists of two loops. The first loop is the Kernel-loop itself, this
loop starts with the first execution of code and ends when the Kernel finishes executing.
The Kernel execution and therefore the created loop-length is managed and optimized by
Maxeler. Therefore it is recommended to use the autoloop offset feature of Maxeler, to
obtain controls for this loop, see Listing 1. Further optimization used within the design
will be discussed in more detail later on.

The second loop present in the design, is the time dependency of the single cell calculation.
This loop is more important for the calculation, as the results depend on previous values.
This dependency is shown as backwards edge in Figure 3.1. Using the controls of the

26

3.1. Single Cell

OffsetExpr loopLength = stream.makeOffsetAutoLoop("loopLength");
DFEVar loopLengthVal = loopLength.getDFEVar(this, dfeUInt(11));

Listing 1: Autoloop offset

CounterChain chain = control.count.makeCounterChain();
final DFEVar nx =io.scalarInput("num_iteration", dfeUInt(32));

DFEVar step = chain.addCounter(nx, 1);//counter for number of steps;
//

DFEVar loopCounter = chain.addCounter(loopLengthVal, 1); //counter
for validation of values;↪→

DFEVar dt = io.scalarInput("dt", dfeFloat(11,53));
dt = dt.cast(calculationType);
//DFEVar stim_in = io.input("stim_in",scalarType,loopCounter ===

(loopLengthVal-1));↪→

Listing 2: Preparation

DFEVector<DFEVar> statevars = vectorType.newInstance(this);
DFEVar ui = step===0? One : statevars[0];

Listing 3: Wrapper for State Variables

Kernel-loop we stream the calculated values back to the start of the calculation.

To do so, we need counters for each loop present to obtain some control. This is shown in
Listing 2, where we use a counter chain to create a nested loop consisting the Kernel-loop
and the time loop. We obtain the necessary constants set on CPU side as inputs, which
is also shown in Listing 2.

The counter objects, automatically count from 0 to the given maximum value, then
it wraps and restarts from 0. It is also possible to specify the wrapping behavior and
increment of the counter if needed. Also, the example shows that we control the input
array with the Kernel-loop, as we only need to read a new value after the Kernel finishes.

Since we prepared the controls for the design, we now need to establish the prerequisites
for the backwards edge. As stated before, we stream the calculated values back to the
top for further usage. To achieve this, we create source less streams at the beginning of
the loop. These streams basically behave like input streams, but are not connected to the
CPU. In our case we use a DFEVector to achieve this, as shown in Listing 3 DFEVectors
are basically which is basically a wrapper for DFEVariables. A multiplexer is then used
to choose between the carried value of the backwards edge and the initial value for t0.

27

3. Maxeler Implementation

DFEVar uOffset = stream.offset(ui, -loopLength);
statevars[0] <== uOffset;

Listing 4: Creating Stream Offset

io.output("u_out", statevars[0], scalarType,loopCounter ===
(loopLengthVal-1));↪→

Listing 5: Controlled Stream to CPU

KernelBlock k = addKernel(new
MinimalModelKernel(makeKernelParameters(s_kernelName)));↪→

DFELink y1 = addStreamToCPU("u_out");

y1 <== k.getOutput("u_out");

Listing 6: Creating Link Kernel-CPU

At the end of the loop, after the implementation of the model specific state variable
calculation, the streams need to be connected to the top of the loop. To do so, we create
an offset according to the loopLength within the stream, see Listing 4. These are then
connected to the source less stream within the DFEVector and conclude the backwards
edge. Naturally, all these operations are done for each state variable, as we generalize
the Maxeler properties, the examples refer to the voltage variable u.

Finally, we stream the values back to the CPU. Here we also use the Kernel-loop control,
as we only want to write valid results to the stream, as shown in Listing 5.

This concludes the Kernel implementation of the DFE part. The Manager implementation
takes care about the data movement between DFE and CPU. First, we need to define a
Link between the Kernel and the DFE, which is done in the Manager constructor, shown
in Listing 6.

We define the scalar inputs set by the CPU and the streams within the Engine Interface,
as shown in Listing 7.

The Manager calls the constructor and builds the MaxFile according to the build
configuration in the main method.

28

3.1. Single Cell

private static EngineInterface interfaceDefault() {
EngineInterface ei = new EngineInterface();

InterfaceParam length = ei.addParam("length", CPUTypes.INT);
InterfaceParam dt = ei.addParam("dt", CPUTypes.DOUBLE);
InterfaceParam num_iteration = ei.addParam("num_iteration",

CPUTypes.INT);↪→
InterfaceParam lengthInBytes = length *

CPUTypes.FLOAT.sizeInBytes();↪→
InterfaceParam loopLength =

ei.getAutoLoopOffset(s_kernelName, "loopLength");↪→
ei.ignoreAutoLoopOffset(s_kernelName, "loopLength");
ei.setTicks(s_kernelName, length * loopLength);

ei.setScalar(s_kernelName, "dt", dt);
ei.setScalar(s_kernelName, "num_iteration", num_iteration);

ei.setStream("u_out", CPUTypes.FLOAT, lengthInBytes);

return ei;
}

Listing 7: Creating Link Kernel-CPU

3.1.1 SLiC Part

Basically this project, contains the configuration and initialization of the DFE. The
simulation parameters are therefore parsed from a file and necessary memory is allocated.
The stimulus is then generated according to the parameters using a function, shown in
Listing 8.

29

3. Maxeler Implementation

void take_step(float *stim_in, const int time,int stimNum, int * stimTimes) {

int sizeBytes = (stimNum) * sizeof(float);
float t1 = 0.0;
float t2 = 0.0;

for(int i = 0; i<time; i++){

t1+=dt;
t2+=dt;

for(int j = 0; j<stimNum; j++){
float c1 = t1-stimTimes[j];
float c2 = t2-(stimTimes[j]+1);
stim_in[i] += heavisidefun(c1) * (1 -

heavisidefun(c2));↪→
}

}

}

Listing 8: Single Cell Take Step

After preparing the data needed for the DFE, the according MaxFile needs to be loaded.
Using the functionalities provided by the Advanced SLiC, Listing 9 shows how to load
the MaxFile into the C-Code.

Furthermore, the scalar inputs and streams are set using a DFE specific action Enum.
Hereby, the name used in the Manager Class must be consistent with the names used in
the Enum, as the names in the MaxFile are generated using the ones within the Manager.

After loading the MaxFile and setting the actions, the DFE can be started by calling the
built-in run function.

To avoid memory leaks, the memory allocated at the beginning is freed at the end of the
function. The DFE is unloaded via a built-in function call.

3.2 Homogenous 1D Cable
Based on the previous implementation, we used the Minimal Model by [9] to create
a homogenous 1D cable. As the values are not only time-dependent but also space-
dependent we need to add another loop to the existing design, as shown in Figure 3.2.

The constants and parameters used in the single cell implementation introduced pre-
viously stay the same, only additional parameters for the spacial properties are added.

30

3.2. Homogenous 1D Cable

max_file_t *myMaxFile = MinimalModelDFE_init();
max_engine_t *myDFE = max_load(myMaxFile, "local:*");

MinimalModelDFE_actions_t actions;

actions.param_length = num_iteration;
actions.param_dt = dt;
actions.param_num_iteration = num_iteration;
//actions.outstream_stim_out = stim;
actions.outstream_u_out = u_out;
actions.outstream_v_out = v_out;
actions.outstream_w_out = w_out;
actions.outstream_s_out = s_out;

MinimalModelDFE_run(myDFE, &actions);

free(u_out);
u_out = NULL;
free(v_out);
v_out = NULL;
free(w_out);
w_out = NULL;
free(s_out);
s_out = NULL;
free(stim);
stim = NULL;
max_unload(myDFE);

Listing 9: Single Cell SLiC Maxeler Call

Furthermore, we add two integers as constant to the MaxFile, one to declare the maximum
number of cells allowed and one to fix the number of cells of the stimulus. In this way, we
can allocate enough memory to hold an arbitrary amount of cells below the maximum.
These constants, are defined in the Manager, shown in Listing 10. Within the Kernel,
the values are passed as parameters.

Figure 3.2 also visualizes the neighborhood dependency of the diffusion term. Due to this
dependency, we need to preserve the values over multiple Kernel ticks. To achieve this we
leverage the on-chip FMem of the DFE. So, at the beginning of the loop we allocate the
memory within the FMem with the maximum amount of cells. We allocate a memory
block for each state variable and additionally two variables holding the current time,
which are used to calculate the stimulus, see Listing 11. We need to read the values at
the correct position within the memory block. Therefore we generate an address using
the Java’s MathUtils.bitsToAddress(int size) and the maximum cell number. Additionally,
the counter of the current cell serves as base for the address, so we automatically track
the cells within the time-loop.

31

3. Maxeler Implementation

public static void main(String[] args) {
EngineParameters params = new EngineParameters(args);
CellCableDFEManager manager = new

CellCableDFEManager(params);↪→

manager.createSLiCinterface(interfaceDefault());
manager.addMaxFileConstant("X", X);
manager.addMaxFileConstant("duration", duration);
manager.build();

}

Listing 10: Adding Constants to MaxFile

Memory<DFEVar> uMem = mem.alloc(scalarType, X);
Memory<DFEVar> wMem = mem.alloc(scalarType, X);
Memory<DFEVar> vMem = mem.alloc(scalarType, X);
Memory<DFEVar> sMem = mem.alloc(scalarType, X);
Memory<DFEVar> t1Mem = mem.alloc(scalarType, X);
Memory<DFEVar> t2Mem = mem.alloc(scalarType, X);

DFEVar uFromMem =
uMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

DFEVar vFromMem =
vMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

DFEVar wFromMem =
wMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

DFEVar sFromMem =
sMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

DFEVar t1FromMem =
t1Mem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

DFEVar t2FromMem =
t2Mem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

Listing 11: FMem Allocation and Read

32

3.2. Homogenous 1D Cable

Figure 3.2: Simplified Dataflow Graph 1D Cable

DFEVar prevNeigh = stream.offset(carriedU, -1);

DFEVar neighbourAdress = cellNumAddress+1;
DFEVar nextNeigh = initCondition? 0.0:

uMem.read(neighbourAdress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

Listing 12: Diffusion Term Access Neighboring Cells

It is worthy to notice that the values in the allocated memory block are undefined until
written to. Therefore, we create an additional source less stream for the voltage variable
to access valid previous values. After the initial t0 we use the values read from the
memory for the state variables. The neighboring values are then used in the diffusion
term to calculate the spacial propagation of the wave. We stated before, that we use a
source less stream to access previous values, to access future values, we read the next
value from the memory block, as shown in Listing 12.

The calculation stays the same as in the single cell, we only put some optimization
operations in place. To run a design on a real DFE we have to meet some constraints
regarding timing and logic utilization. Within the calculation we used two Maxeler
functions to optimize the design, which are shown in Listing 13.

The first optimization functionality creates deeper pipelines for the operations chosen.
In our case we want to deepen the pipeline for all operations. The default for the first
parameter of this function is 1.0, which creates fully pipelined operations. As we need to
be careful with the latency in our design, due to the backwards edge, we decreased it to
0.5. Secondly, we try to add more registers to variables which are used frequently in the

33

3. Maxeler Implementation

optimization.pushPipeliningFactor(0.5, PipelinedOps.ALL);

tvm = (u > EPI_THVM) ? EPI_TV2M : EPI_TV1M;
twm = EPI_TW1M + (TW2M_TW1M_DIVBY2)*(1+tanh(EPI_KWM*(u- EPI_UWM)));
tso = EPI_TSO1 + (TSO2_TSO1_DIVBY2)*(1+tanh(EPI_KSO*(u- EPI_USO)));
ts = (u > EPI_THW) ? EPI_TS2 : EPI_TS1;
to = (u > EPI_THO) ? EPI_TO2 : EPI_TO1;

optimization.popPipeliningFactor(PipelinedOps.ALL);

tvm = optimization.pipeline(tvm);
twm = optimization.pipeline(twm);
tso = optimization.pipeline(tso);
ts = optimization.pipeline(ts);
to = optimization.pipeline(to);

Listing 13: Optimization Code

DFEVar memOffset = stream.offset(cellNumAddress, -loopLength);

uMem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))), uOffset,
(loopCounter === (loopLengthVal-1)));↪→

io.output("u_out", u, scalarType,loopCounter === (loopLengthVal-1));

Listing 14: Writing Results

calculation.

These optimization techniques also influence the accuracy of the calculations. Using too
much optimization might improve the performance, but it may lead to wrong results.

At the bottom of the outer-loop we again create an offset for each variable, as in the single
cell. Then we write the values to the FMem as well as the CPU when they are meeting
the validity constraint, as shown in Listing 14. To write to the FMem an additional offset
is used, which holds value of the cell counter, to ensure we write to the right location in
the allocated memory block.

34

CHAPTER 4
Results

4.1 Alternative Implementation

The aim of this work is the evaluation of using Maxeler Dataflow Computing in contrast
to existing State-Of-The-Art technologies. We have compared our implementation of
Maxeler with two alternative implementations in GPU and CPU. Further, to guarantee
correct results, the alternative implementations are based on reviewed papers. The whole
source code of this project can be accessed on BitBucket1.

4.1.1 CPU Implementation

The implementation was done in C and is completely sequential CPU. In contrast to data
flow and parallel programming, the data is accessible directly, therefore no streaming
is needed. Further, to reduce unnecessary memory usage, most functions perform the
operation directly on the array values, using pointer arithmetic. Another difference is,
as the CPU implementation is using the control flow concept; the data dependency is
implemented using for-loops. The cable structure makes the state variables dependent
on time and the next neighboring cells, therefore iteration over time and each cell is
necessary. For validating and evaluating the values computed, the results are printed to
a file.

4.1.2 GPU Implementation

For the comparison and experiments, the code in [5] was adapted to gain similar properties.
These adaptions are needed, as the original code considers a 2D cable, whereas the Maxeler
implementation considers a 1D cable. One of the models used in [5] is the same 4-variable
model by [9] used in this work. The model is implemented using CUDA for Nvidia

1https://bitbucket.org/lily93/thesis-src/

35

https://bitbucket.org/lily93/thesis-src/

4. Results

GPUs. Further, in the original code, model-specific optimization techniques were used, to
enable maximal performance gains. These techniques include the splitting of differential
equations amongst several kernels. Further, the careful leverage of available memory
levels in CUDA can also influence the performance. In the adapted design, we use the
built-in CUDA function to achieve the maximum potential occupancy as we increase the
number of elements in several tests.

4.2 Evaluation
The implementation of the isolated single cell and homogenous cell cable in Maxeler
provide a new approach to influence the implementation of cardiac dynamics. To
establish a scientific reference, the implementation was compared to state-of-the-art
implementations in several aspects. More precisely, we used the isolated single cell to
evaluate the correctness and model accuracy of the implementations. Further, we use the
cell cable to evaluate the performance with respect to known technologies. For additional
testing, the Maxeler code was compiled and tested on a DFE at the Maxeler Institute,
as the TU Wien only provides a simulator so far.

In [5] a spiral wave protocol is used for initialization of the state variables. To produce
a similar environment for the other alternative implementations, the last parameter
specifies if the spiral wave protocol initialization should be used, or the binary protocol
used in the single cell. Although, using the spiral wave protocol omits the usage of the
stimulus, as the cells are already stimulated to generate a wave form.

To compare the cell cable implementations, we focus on resource usage and elapsed time
of each device.

General Validity

Due to the differences regarding the scientific analysis implemented in the various
resources, the correctness of the calculation is not as easy to evaluate. Nevertheless,
the Matlab Code by [21] was extended by implementing the diffusion term. The results
of this calculation, were then again compared to the results of the Maxeler and CPU
execution. Figure 4.1 shows the propagation of a stimulus at t0 for 2ms in a cable of 50
cells, which equals a length of approximately 1cm.

For this evaluation, Maxeler and CPU use single precision, whereas Matlab uses per
default double precision. On the base of this we can conclude, that the calculation of the
partial differential equations using Maxeler Technology is overall correct. We assume
this, as the signal computed with Matlab, CPU and Maxeler are widely equal. Further
differences will be discussed in detail in the following section.

Precision

In this work, we have used the 4-variable model by [9] for most of the tests. To evaluate
the applicability of Maxeler Technologies to different models, we have also implemented

36

4.2. Evaluation

Time (MS)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Le
ng

th
 o

f t
he

 C
ab

le
 (

C
M

)

0

0.2

0.4

0.6

0.8

1
CPU: Minimal Resister Model cells

0

0.5

1

Time (MS)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Le
ng

th
 o

f t
he

 C
ab

le
 (

C
M

)

0

0.2

0.4

0.6

0.8

1
Matlab: Minimal Resister Model cells

0

0.5

1

Time (MS)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Le
ng

th
 o

f t
he

 C
ab

le
 (

C
M

)

0

0.2

0.4

0.6

0.8

1
Maxeler: Minimal Resister Model cells

0

0.5

1

1.5

Figure 4.1: Comparison: Matlab, CPU and Maxeler Cell Cable

the 8-variable model by [6](Beeler Reuter Model) and the 2-variable model by [18] (Karma
Model). All four models use the Euler Method as time step integration. By decreasing
the step size (dt in ms), the calculated values of the model get more accurate, as more
points in time can be simulated. This also results in a higher computation load, as the
number of needed iterations increases with decreasing step size. To estimate the optimal
step size several methods are possible. One of these methods is the least square method.
This method of parameter fitting, estimates the optimal time step for a specific model,
by minimizing the sum of squared residuals, as shown in Equation 4.1

S =
i=1∑
n

r2
i (4.1)

A residual is defined as the difference between the actual value and the value predicted
by the model: ui − ûi.
As the reference values represent points within two steps, the formulation is adapted to
include the step size, resulting in Equation 4.2. The original calculation is then later
used to evaluate the precision in Maxeler.

r2
i =

(
u(t̃i)dt− [u(t̃j)dt2 − u(t̃j+1)dt2]

)2
(4.2)

For this work, the datasets are computed values of the voltage state-variable of the
isolated single cell within a whole cycle. More precisely, we compute the least square
error between the values of a chosen step size and the results of two transient steps with
half the step size, as illustrated in Figure 4.2.

37

4. Results

dt

u(t0) dt
2 u(t1)

Figure 4.2: Double Step Method

695 700 705 710 715 720 725

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

1.075 CPU u(dt): 0.100000
CPU u(dt): 0.050000
CPU u(dt): 0.025000
CPU u(dt): 0.012500
CPU u(dt): 0.006250
CPU u(dt): 0.003125

Figure 4.3: Overlapped Plotted Signals (Zoomed)

Using this method, the most accurate step size can be estimated, as shown in Figure 4.4,
Figure 4.3 shows the approximation of the overlapping signals of the Minimal Model.

The accuracy of the computation and therefore the optimal step size also depends on the
model used. As mentioned before, we tested the accuracy using three different cardiac
models. For the Karma and the Minimal Model, we started with a dt of 0.1ms, while
the Beeler-Reuter Model could only produce valid values starting by a dt of 0.025ms.
The respective step sizes were then decreased and compared using the least square error
method explained previously. The errors were then plotted against the step size used
as reference. Figure 4.7 presents the error for the Minimal Model, Figure 4.6 for the
Karma Model and Figure 4.5 for the Beeler-Reuter Model. As these figures show, the
error approaches 0 with decreasing step size. In Figure 4.8 we have plotted the error
curve of the Karma Model versus the error curve of the Minimal Model, as these Models
use the same start step size. The scale of the error indicates, that a smaller step size is
needed, when using a higher number of differential equations.

The errors according to Model and dt are further shown in Table 4.1.

However, each time we reduce the step size of a half we double the number of iterations.
The optimal step size should balance computation load and accuracy. To bypass the
increased computation load, some features of Maxeler can be leveraged. As mentioned

38

4.2. Evaluation

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CPU u(dt): 0.100000
CPU u(dt): 0.050000
CPU u(dt): 0.025000
CPU u(dt): 0.012500
CPU u(dt): 0.006250
CPU u(dt): 0.003125

Figure 4.4: Overlapped Plotted Signals

Karma Model Minimal Model Beeler Reuter Model
0.1 vs. 0.05 0.000216981 0.000140867 -nan
0.05 vs. 0.025 2.73066e-05 1.48384e-05 -nan
0.025 vs. 0.0125 3.40385e-06 1.70065e-06 0.35568
0.0125 vs. 0.00625 4.27584e-07 2.03606e-07 0.0225861
0.00625 vs. 0.003125 5.32403e-08 2.49297e-08 0.00267601
0.003125 vs. 0.0015625 6.68467e-09 3.0784e-09 0.000326343
0.001563 vs. 0.000781 8.35661e-10 3.82951e-10 4.03099e-05

Table 4.1: LSE Per Model and Step Size

before, this technology enables setting the variable precision itself. Generally floating
point describes a method to represent real numbers, by approximating the number
using the exponential format: x = s · m · be. Basically, the format uses a sign bit s,
exponent e and mantissa m and a bias b. Depending on the size (in bits) of mantissa and
exponent the range and magnitude of the underlying real number can be approximated.
Further, the width of the mantissa defines the precision of the represented number. In
the C-programming language the IEEE 754 floating point format is used, which uses a
bias of 2 [35]. Further, this format defines single and double precision for the according
C data types float and double. The single precision is a 32bit representation and splits
into an 8bit exponent and a 24bit mantissa, where 23bits are explicitly stored and one
bit is used as significant bit [35]. In the double-step experiments above, we use double
precision. The double precision in IEEE 754 has an overall size of 64bits, using 11bits for

39

4. Results

dt (ms)
10-2

er
ro

r
(m

s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
LSE BEELER REUTER MODEL

Figure 4.5: Least Square Error: Beeler-Reuter

the exponent and 53 for the mantissa including the significant bit [35].

To evaluate the accuracy of the Maxeler computations we computed the voltage variable
for each model and decreased the bit size of the floating point representation on Maxeler
side. The computed values were then transformed back to an IEEE representation, which
can be processed on CPU side by using the typecast method in Maxeler. Using the
least square error calculation of the form ui − ûi, we have then computed the error by
model and bit size between the computations of the double precision C of the double-step
experiment before using the same dt. As we want to keep the accuracy of the different
models, we choose a dt of 0.1

64 (0.001563), as this results in the smallest error within the
experiments before. We have used 64bit according to the IEEE 754 representation, with
an 11bit exponent and a 53bit mantissa. As shown in Table 4.2, the error in all models
is nearly negligible. Although it is evident that the Maxeler computation is not exactly
as precise as the C implementation. We conclude, this is due to different methods in
rounding and Maxeler uses partly fixed point representation to accelerate the calculation.
When decreasing the precision to 56bit, we have used one representation with an 11bit
exponent and a 45bit mantissa, as well as a representation with an 8bit exponent and
a 48bit mantissa. As these are not IEEE conform floating point types, we have used

40

4.2. Evaluation

dt (ms)
10-2 10-1

er
ro

r
(m

s)

×10-4

0

0.5

1

1.5

2

2.5
LSE Karma Model

Figure 4.6: Least Square Error: Karma

Karma Model Minimal Model Beeler-Reuter Model

64bit (11,53) 7.45323e-27 5.84172e-27 4.16243e-23
56bit (11,45) 2.73089e-16 1.89358e-18 5.12611e-15
56bit (8, 48) 6.04859e-19 7.93174e-20 9.53619e-17
40bit (8,40) 4.37402e-09 2.47023e-10 2.4158e-06
32bit (8,24) 0.00211634 0.000375366 667.813
20bit (8,12) 1.49361e+06 722628 5.40494e+09

Table 4.2: LSE CPU vs. Maxeler varying Floating Point

41

4. Results

dt (ms)
10-2 10-1

er
ro

r
(m

s)
×10-4

0

0.5

1

1.5
LSE Minimal Model

Figure 4.7: Least Square Error: Minimal

Maxeler’s typecasting method to convert the results. Furthermore, we need to fit the
bits of the representations accordingly to the data type, as we will create an overflow or
underflow otherwise. Therefore, we have used IEEE 754 double precision on the CPU
side for the streams, as single precision results in an overflow.

The error between the 64bit CPU computation and the converted 56bit representation is
still within a negligible range.

Starting with the 48bit (8bit exponent, 40bit mantissa) representation, we switched
to single precision on CPU side, as using double precision results in an underflow and
non-valid numbers. Although the results will be rounded to a valid single precision
representation, the error is still relatively small.

The 32bit representation is again according to the IEEE standards using an 8bit exponent
and a 24bit mantissa. As we use double precision for comparison, the error is now
significantly higher than before. Basically the representation size was cut in half, which
leads to a loss in precision on a larger scale. Especially the Beeler-Reuter Model shows
an high error between the different precisions.

42

4.2. Evaluation

dt (ms)
10-3 10-2 10-1

er
ro

r
(m

s)

×10-4

0

0.5

1

1.5

2

2.5
LSE KARMA VS MINIMAL MODEL

2 Variable Karma Model
4 Variable Minimal Model

Figure 4.8: Least Square Error: Karma VS Minimal

The last test only uses a 20bit representation with an 8bit exponent and a 12bit mantissa.
The IEEE half-precision standard defines a 5bit exponent and an 11bit mantissa, this
results in an error within Maxeler, as some library functions need at least 20bits for their
fixed point operations. Therefore we halved the mantissa size of the 32bit representation
to create a 20bit floating point type. Due to the size and type conversion, the calculated
results with the 20bit floating point type are invalid. This is shown in Figure 4.9, as
the values do not approximate the initial value as supposed to. We have overlapped the
values of the 20bit computation with the double precision of the CPU as well as the single
precision of Maxeler. The curve created by the single precision of Maxeler nearly matches
the double precision of the CPU, but it is evident that the 20bit precision is invalid.
These invalid values are most likely due to a truncation within the type conversion.

Additionally Table 4.2 shows, that the Minimal Model by [9] has the smallest error. The
Karma Model by [25] still has a relatively small error, whereas the Beeler-Reuter Model
by [6] exceeds both with a magnitude of 103.

We have also computed the least square error for the double precision in CPU and
Maxeler, to estimate the accuracy within the cable. The overall error is 0.886ms within

43

4. Results

Time in milliseconds
0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4
Karma Model

CPU
Maxeler 32bit
Maxeler 20bit

Time in milliseconds
0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5
Minimal Model

Maxeler 32bit
CPU
Maxeler 20bit

Time in milliseconds
0 100 200 300 400 500 600 700 800 900 1000

-100

-50

0

50
Beeler-Reuter Model

CPU
Maxeler 32bit
Maxeler 20bit

Figure 4.9: 20Bit Precision Maxeler vs. 32Bit Precision Maxeler vs. 64Bit Precision CPU

the simulator using 256 cells, 2ms simulation time and a stimulus at t0. This is significantly
higher as in the single cell implementation, the cable code is based on. It is also interesting
to note, that the error is the same for single and double precision. Therefore, we assume
the error is most likely caused by the read/write operations on the FMem in Maxeler
to retrieve past results. We tried different settings to access those values, but the error
remains higher than in the single cell. Further, we know that the design for the cable is
not optimal yet and needs more improvement to achieve more accurate calculations and
even better performance. Besides the overall error, we have calculated the least square
error per cell, which is represented for the first 50 cells in Table 4.3. The error decreases,
as the voltage value decreases, also, the highest error is within the first few cells, which
supports the assumption that the read/write operation on the FMem are faulty.

Performance

In this work, we also want to provide insights of the performance of Maxeler Technology.
To do so, several aspects have been considered. First we have compared the performance of
the Maxeler implementation to state-of-the-art CPU and GPU, using the implementations
presented in the previous section. Secondly we want to test what the maximum number
of cells is we can fit on the Maxeler chip. The evaluated performance aspects include
the elapsed time of each technology in single and double precision. Before discussing
the experiments in detail, a quick survey of the technical specification of the hardware
we used. The tests for CPU were performed using an Intel® Xeon® Processor E5-1650
with approximately 153.6 GFLOPS according to [15]. As stated before, we use a Nvidia
GPU for computation and evaluation, specifically a Nvidia GTX 1080. This GPU has

44

4.2. Evaluation

Error (double) Error (single)

1 0,0167969151309800 0,0167966950861100
2 0,0154203464744700 0,0154202625567400
3 0,0208988732982000 0,0208977765592000
4 0,0286829759507301 0,0286821124827301
5 0,0436149882650100 0,0436123127200100
6 0,0778836336627777 0,0778803260058655
7 0,140781528526321 0,140776635410311
8 0,210837307600424 0,210826195943424
9 0,244888703586280 0,244876914539315
10 0,0642377885430561 0,0642359667852288
11 0,0175840114192383 0,0175837206008926
12 0,00453843488561558 0,00453838384733089
13 0,000551844764177748 0,000551840573578065
14 6,41268019342880e-05 6,41263690064864e-05
15 7,19906169253803e-06 7,19902963565275e-06
16 7,83560989223594e-07 7,83557870449281e-07
17 8,23814225766203e-08 8,23812589531544e-08
18 8,30441744568466e-09 8,30441142468528e-09
19 7,97092498415700e-10 7,97091956377211e-10
20 7,24807990301287e-11 7,24807054454869e-11
21 6,22344789548838e-12 6,22345007066092e-12
22 5,03644050072605e-13 5,03644050131583e-13
23 3,83853918268983e-14 3,83854030115307e-14
24 2,75522737974811e-15 2,75522751057722e-15
25 1,86351402203399e-16 1,86351705745980e-16
26 1,18877989074805e-17 1,18878279392810e-17
27 7,16114747844688e-19 7,16115696095940e-19
28 4,07908020910658e-20 4,07909296800315e-20
29 2,20027996295321e-21 2,20028652924478e-21
30 1,12558573760112e-22 1,12558649925758e-22
31 5,46921159317134e-24 5,46924398175680e-24
32 2,52793548864371e-25 2,52794377226583e-25
33 1,11312852312921e-26 1,11313038193081e-26
34 4,67620945846979e-28 4,67621079762535e-28
35 1,87674406333610e-29 1,87674724275388e-29
36 7,20560272477178e-31 7,20561704641875e-31
37 2,64999375190809e-32 2,64999477021351e-32
38 9,34689937925274e-34 9,34697864581466e-34
39 3,16561964737889e-35 3,16562244033944e-35
40 1,03061693170021e-36 1,03062775602653e-36
41 3,22900023783121e-38 3,22901129818564e-38
42 9,74583710489656e-40 9,74585478628063e-40
43 2,83637143904863e-41 2,83643969528066e-41
44 7,96825124647610e-43 7,96833751927583e-43
45 2,16251466233565e-44 2,16252941250123e-44
46 5,67487692058170e-46 5,67495264779772e-46
47 1,44116356854242e-47 1,44117592322828e-47
48 3,54475548457387e-49 3,54481562810316e-49
49 8,45104306355951e-51 8,45121004163940e-51
50 1,95433490769663e-52 1,95437236455486e-52

Table 4.3: Per Cell Error for the first 50 Cells with 2ms Simulation Time

approximately 8.873 GFLOPS in single precision according to [2]. Further, we were able
to use a Maxeler card provided by Ivan Milankovic from Maxeler Technologies. The card
model is a MAX5C card and uses a Xilinx VU9P FPGA.

To run a DFE project, it needs to be compiled first, to generate the MaxFile according
to the design described with the Manager and the Kernel. The compiled and generated
MaxFile is then loaded and run via the SLiC. This compilation can take several hours and
depends heavily on the design, optimization techniques in place and precision. Therefore,
this process was used to evaluate the effect of different precisions within Maxeler and to
test the maximum number of cells. We started with 1million cells for 32bit, 48bit, 56bit
and 64bit. This value is set within the Manager, as discussed in Chapter 3 to allocate
the BRAM we use for the dependency implementation.

Figure 4.12 shows the hardware compilation results for the project using single precision
and a maximum of 1million cells. Furthermore, when compiling the 64bit version of

45

4. Results

Figure 4.10: Error 64bit Maxeler 1Million Cells
.

Figure 4.11: Error 64bit Maxeler 600 000 Cells
.

Figure 4.12: Successful Build 32Bit Maxeler 1million cells

the cell cable, we had to reduce the maximum cell count, as the design would require
more resources than available, the according error message is presented in Figure 4.10.
The error in Figure 4.11 was the result of reducing the maximum cell count to 600 000.
Therefore, we have reduced the cell count once more and where able to successfully
build the 64bit version with 500 000. We also got insights how the precision affects the
compilation time. As the 32bit version not only can fit more cells on the chip, but also
was faster than the 64bit. We have also tried to build the designs with 48bit and 56bit,
which failed, due to the same reason as the 64bit version. Further, the runtime of the
DFE is not affected by the bit size of the floating point type used, as the runtime of the
design only depends on the data amount and frequency of the Kernel-ticks. Therefore we
did not proceed to build the 48bit and 56bit project.

The second part of the evaluation is to compare our Maxeler design to given State-
Of-The-Art implementations. This evaluation consists of several test cases. First, we
have simulated the cable using CPU in single and double precision for 2ms, a step-size
of 0.0125ms and the maximum of 1million cells. We then run the simulation on the
32bit and the 64bit version of the Maxeler design to gain a general insight about the
performance. Note, that we have a different maximum using double precision in Maxeler
and therefore one result less. The times are presented in Table 4.4. Evidently, the
Maxeler implementation is slower than expected. Using the 32bit version of our design for
the cable, we cut the double precision using CPU in half, but cannot compete with the
times of the single precision. Still, both the single precision in Maxeler and the double
precision have better times than the double precision in CPU.

It is evidently that the Maxeler is not as efficient as we assumed. Concluding on these

46

4.2. Evaluation

Cell Count CPU (single) CPU (double) Maxeler (single) Maxeler (double)

28 16 293 64 103
29 25 380 127 207
210 40 738 254 413
211 63 1415 508 826
212 82 2806 1016 1652
213 150 5628 2032 3306
214 300 11375 4066 6615
215 606 22512 8135 13232
216 1128 45030 16274 26466
217 2257 90524 32535 52919
218 4508 180414 65082 105838
219 9010 329860 130125

Table 4.4: Comparison Computation Time (MS) with increasing Cell Number 2ms
Simulation Time

results, the design for the simulation of a cell cable using Maxeler presented in this
work is not optimal. The runtime performance of a DFE heavily depends on the data
amount, the design and the frequency of the Kernel-tick. Due to these results and
some revision of the generated dataflow graphs, we discovered the bottleneck within the
Maxeler design. As mentioned in Chapter 3 we have used the "autoloop offset" to loop
back the data into the Kernel. Further, we already know that using the "autoloop offset"
can result in performance deficiencies, which we clearly underestimated. After examining
the generated graphs and the MaxFile, we have noticed, that we only produce a value
every 155th Kernel tick within the 32bit design and ever 252th Kernel tick within the
64bit design. To fully leverage the acceleration of Maxeler, it is necessary to produce a
valid result every Kernel tick. As we were not able to redesign the implementation and
maintain a similar accuracy we tried to focus on the data amount and the frequency to
achieve an acceleration. Therefore we rerun the tests, with a reduced maximum number
of cells in the 32bit and 64bit version. Additionally we have increased the frequency
within the Manager. The results of this test case where then compared to the times of
the GPU, the according times are presented in Table 4.5.

Using a higher stream frequency, increases the values outputted by the Kernel. The
design still cannot compete with GPU and CPU but we decreased the runtime of the
Maxeler design significantly. Additionally, we have improved the resource utilization, as
we use less cells for allocation. The final build results for the improved design are shown
in Figure 4.13 for the 32bit design and Figure 4.14 for the 64bit design.

We have used the 2ms simulation to estimate the general speed of our design. To compare
the general performance of Maxeler with a large dataset, we have used the improved
design and increased the simulation time to 1000ms, reusing the other parameters. These

47

4. Results

Cell Count Maxeler (single) Maxeler (double) GPU (single) GPU (double)

28 53 86 7.88899 4.74992
29 106 172 10.7437 7.00208
210 211 344 15.2052 10.2452
211 423 688 21.0274 13.8904
212 847 1376 30.761 21.3341
213 1693 2753 47.5963 37.3473

Table 4.5: Comparison Computation Time (MS) with increasing Cell Number 2ms
Simulation Time (improved)

Figure 4.13: Build Results 32Bit Maxeler 10 000 cells

Figure 4.14: Build Results 64Bit Maxeler 10 000 cells

simulations were also performed on CPU and GPU to compare all three technologies
regarding computation performance. The results are presented in Table 4.6. For a better
visualization we compared the results in a bar graph, presented in Figure 4.15 for the
single precision and Figure 4.16 for the double precision test.

As shown in Figure 4.16 the Maxeler design failed to compute valid values with 213 cells.

Cell Count Maxeler (single) Maxeler (double) GPU (single) GPU (double) CPU (single) CPU (double)

28 26462 43028 2224.2 2168.96 2571 2021
29 52927 86047 2937.91 2968.86 4826 3636
210 105859 172121 4417.29 4680.35 9666 7272
211 211718 344253 6047.39 6439.36 19331 14547
212 423382 688513 9602.48 10046.6 38660 29151
213 846828 16179 17624 77303 58299

Table 4.6: Comparison Computation Time (MS) with increasing Cell Number 1s Simula-
tion Time

48

4.2. Evaluation

Number of Cells
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
la

ps
ed

 T
im

e
(M

S
)

103

104

105

106

Maxeler
CPU
GPU

Figure 4.15: Performance Comparison Single Precision

Additionally, we have measured the calculation time of the single cell. This should give
insights, how the base design is affected by the usage of the "autoloop offset". First, the
build results for the single cell in 32bit are presented in Figure 4.18 and for the 64bit
result in Figure 4.17. We then examined the generated MaxFile to receive the values
of the loop length of each design. For the 32bit design the loop length is 255 and for
the 64bit 304. These are not only higher than for the cell cable, but also means we only
produce a value once the Kernel loop counter reaches this value.

For the evaluation of the isolated single cell, we simulated the cell for 1 cycle (1000ms)
and started with the same step size as in the experiments for the cell cable, 0.0125ms.
Then we decreased the step size to achieve a higher computation load, as the number of
iteration increases with decreasing step size. The run time of both designs compared to
CPU are presented in Table 4.7.

As presented in Table 4.7, the isolated single cell, which is also the basis for the cell cable,
does not perform well either. This leads to the conclusion of revising the isolated single
cell and reorganize our data flow. Thereby we can improve the design without using
"autoloop" and accelerate the design. Based on the improved isolated single cell, we then

49

4. Results

Number of Cells
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
la

ps
ed

 T
im

e
(M

S
)

103

104

105

106

Maxeler
CPU
GPU

Figure 4.16: Performance Comparison Double Precision

Figure 4.17: Build Results 64Bit Maxeler Isolated Single Cell

Figure 4.18: Build Results 32Bit Maxeler Isolated Single Cell

50

4.2. Evaluation

DT Maxeler (single) Maxeler (double) CPU (single) CPU (double)

0.0125 204 244 20 14
0.00625 409 487 35 25
0.003125 817 974 55 42

Table 4.7: Performance Single Cell Evaluation

can build an improved 1D homogeneous cell cable.

51

CHAPTER 5
Conclusion and Future Work

5.1 Conclusion

In this work we wanted to provide insights regarding the applicability of Maxeler Technolo-
gies for simulating cardiac dynamics. Therefore we re-implemented known state-of-the-art
algorithms for different models as single cell and one as 1D cell cable in data flow. We
have tested those implementations in the simulator as well as a real DFE regarding
different aspects. The conducted experiments should provide a survey of disadvantages
and advantages regarding Maxeler in comparison to Stat-Of-The-Art technologies. First
we successfully implemented three different models as single cell using Maxeler Dataflow
Technology. We then compared the accuracy of those models with CPU and proved a
sufficient precision with several floating point types. We could also estimate the applica-
bility and the efficiency using different models, according to the error. As a model with
higher complexity will produce a higher error compared to CPU. This provides several
advantages, like setting the accuracy arbitrarily in the implementation.

In the first experiments, we used the simulator provided by Maxeler Technologies. We
then discovered that the simulator should not be used to compare performance and
resource usage. Since, the simulator will assume an infinite amount of resources but will
run in a time out error when the actual resources are exhausted or the computation load
is too high. Therefore we have used the simulator for general tests and to experiment
with the precision. As presented in the previous chapter, the accuracy within Maxeler
Technology is quite good, if the chosen precision does not differ too much from the
reference. For example, using double precision in CPU and Maxeler has a neglectable
error. Whereas mixing single precision and double precision results in a quite high error.
Choosing a too small bit size results in completely wrong calculation results. Although,
these features can be leveraged in different points of the calculation. For example, using
a smaller precision to accelerate calculations can be a performance advantage.

53

5. Conclusion and Future Work

We know now that the design of a data flow application requires deep knowledge of the
underlying algorithm. Acquiring this knowledge can be a disadvantage, as extensive
code reviews are necessary to create an optimal design. Additionally, accessing previous
values within a calculation can be problematic. Maxeler Technology provides different
ways to access values of past ticks and even CPU site-data, but the programmer needs
to know exactly how to access those values. Otherwise, the calculations will not be
correct or even result in undefined behavior. The design presented in this work for the
cell cable is definitely not optimal. Due to the use of the "autoloop offset" generated by
Maxeler, we have created a computation bottleneck, which compromises the acceleration.
Although the performance of the design does not prove to be as expected, we successfully
created a simulation of a simple 1D homogenous cell cable and an isolated single cell
in Maxeler. Compared to State-Of-The-Art technologies, our design does not prove to
be more efficient, but at least as precise and not necessarily less efficient. Based on the
results, we conclude there is more research necessary regarding the usage of Maxeler to
simulate cardiac dynamics.

5.2 Future Work

To fully evaluate if Maxeler Dataflow Technology is applicable to use in cardiac simulation
further research is needed. In this work we presented an approach to simulate a 1D cable
using data flow. An important part of researching cardiac dynamics is the simulation
of more complex cell structures. Therefore future work includes the implementation
of multidimensional structures, even tissue with different cell types. Additionally, we
have only compared the Maxeler implementation to GPU and CPU. The implementation
of cardiac dynamics using FPGA is a challenge due to its complexity. Therefore it
was omitted in this work, but as this technology is also State-Of-The-Art in simulation
acceleration, a comparison would be interesting.

The design of the Maxeler implementation is still not perfect, especially due to the
dependencies within the cell cable. Therefore the design has to be optimized to achieve
more an accurate and accelerated simulation. The essential bottleneck within the
design is the "autoloop offset" we have used to connect the depended parts within the
design. Restructuring the data flow of the computed values and omitting this offset
will accelerate the design drastically. The runtime of the cable design can be calculated
by number_of_cells ∗ number_of_iterations ∗ loopLength, omitting the loopLength
in this equation, would result in an acceleration of 155 times within the 32bit design
and 252 times within the 64bit design. In combination with an increased number of
pipelines, which means more parallelism within the design, we can even achieve an higher
acceleration of the design. This requires a whole reimplementation and redesign of the
implementation presented in this work.

Moreover, we only used the Minimal Model by [9] for the cell cable. In this work we
already tested different Models using a single cell implementation, to evaluate the accuracy
and applicability of Maxeler. Based on this, a multidimensional implementation of a

54

5.2. Future Work

cable or even tissue using different models should be possible using an improved design.
These can give further insights of the performance of Maxeler DFE, as the computation
load changes with the number of state-variables.

55

List of Figures

2.1 Action Potential of a Cardiac Cell [1] . 6
2.2 PCIe Architecture . 12
2.3 Schematics Grid of Blocks of Threads according to [5] 13
2.4 Architecture of a FPGA [26] . 14
2.5 Example for a simple Dataflow Graph . 17
2.6 Architecture of a DFE) [28] . 20

3.1 Simplified Dataflow Graph Single Cell . 26
3.2 Simplified Dataflow Graph 1D Cable . 33

4.1 Comparison: Matlab, CPU and Maxeler Cell Cable 37
4.2 Double Step Method . 38
4.3 Overlapped Plotted Signals (Zoomed) . 38
4.4 Overlapped Plotted Signals . 39
4.5 Least Square Error: Beeler-Reuter . 40
4.6 Least Square Error: Karma . 41
4.7 Least Square Error: Minimal . 42
4.8 Least Square Error: Karma VS Minimal 43
4.9 20Bit Precision Maxeler vs. 32Bit Precision Maxeler vs. 64Bit Precision CPU 44
4.10 Error 64bit Maxeler 1Million Cells . 46
4.11 Error 64bit Maxeler 600 000 Cells . 46
4.12 Successful Build 32Bit Maxeler 1million cells 46
4.13 Build Results 32Bit Maxeler 10 000 cells 48
4.14 Build Results 64Bit Maxeler 10 000 cells 48
4.15 Performance Comparison Single Precision 49
4.16 Performance Comparison Double Precision 50
4.17 Build Results 64Bit Maxeler Isolated Single Cell 50
4.18 Build Results 32Bit Maxeler Isolated Single Cell 50

57

List of Tables

2.1 Representation of a Runge-Kutta method 10

4.1 LSE Per Model and Step Size . 39
4.2 LSE CPU vs. Maxeler varying Floating Point 41
4.3 Per Cell Error for the first 50 Cells with 2ms Simulation Time 45
4.4 Comparison Computation Time (MS) with increasing Cell Number 2ms

Simulation Time . 47
4.5 Comparison Computation Time (MS) with increasing Cell Number 2ms

Simulation Time (improved) . 48
4.6 Comparison Computation Time (MS) with increasing Cell Number 1s Simula-

tion Time . 48
4.7 Performance Single Cell Evaluation . 51

59

Appendix A: Maxeler Isolated
Single Cell

Minimal Model

Manager Class Minimal Model
package minimal.model.cell;

import com.maxeler.maxcompiler.v2.build.EngineParameters;
import com.maxeler.maxcompiler.v2.managers.custom.DFELink;
import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.CPUTypes;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.EngineInterface;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.InterfaceParam;
import com.maxeler.platform.max5.manager.MAX5CManager;

public class MinimalModelManager extends MAX5CManager {

public static final String s_kernelName = "MinimalModelDFEKernel";

public MinimalModelManager(EngineParameters arg0) {
super(arg0);
KernelBlock k = addKernel(

new
MinimalModelKernel(makeKernelParameters(s_kernelName)));↪→

DFELink y1 = addStreamToCPU("u_out");
y1 <== k.getOutput("u_out");
DFELink y2 = addStreamToCPU("v_out");
y2 <== k.getOutput("v_out");

DFELink y3 = addStreamToCPU("w_out");
y3 <== k.getOutput("w_out");

DFELink y4 = addStreamToCPU("s_out");
y4 <== k.getOutput("s_out");

//DFELink y5 = addStreamToCPU("stim_out");
//y5 <== k.getOutput("stim_out");

61

}

public static void main(String[] args) {
EngineParameters params = new EngineParameters(args);
MinimalModelManager manager = new

MinimalModelManager(params);↪→

// Instantiate the kernel

manager.createSLiCinterface(interfaceDefault());
manager.build();

}

private static EngineInterface interfaceDefault() {
EngineInterface ei = new EngineInterface();

InterfaceParam length = ei.addParam("length", CPUTypes.INT);
InterfaceParam dt = ei.addParam("dt", CPUTypes.DOUBLE);
InterfaceParam num_iteration = ei.addParam("num_iteration",

CPUTypes.INT);↪→
InterfaceParam lengthInBytes = length *

CPUTypes.FLOAT.sizeInBytes();↪→
InterfaceParam loopLength =

ei.getAutoLoopOffset(s_kernelName, "loopLength");↪→
ei.ignoreAutoLoopOffset(s_kernelName, "loopLength");
ei.setTicks(s_kernelName, length * loopLength);

ei.setScalar(s_kernelName, "dt", dt);
ei.setScalar(s_kernelName, "num_iteration", num_iteration);

//ei.setStream("stim_out", CPUTypes.DOUBLE, lengthInBytes);
ei.setStream("u_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("v_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("w_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("s_out", CPUTypes.FLOAT, lengthInBytes);

return ei;
}

}

62

Kernel Class Minimal Model

package minimal.model.cell;

import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Optimization.PipelinedOps;
import com.maxeler.maxcompiler.v2.kernelcompiler.op_management.MathOps;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.KernelMath;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
import

com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;↪→
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVector;
import

com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVectorType;↪→

public class MinimalModelKernel extends Kernel {

static final DFEType scalarType = dfeFloat(8, 24);
static final DFEType calculationType = dfeFloat(8, 24);
static final DFEVectorType<DFEVar> vectorType =
new DFEVectorType<DFEVar>(calculationType, 4);

//Constants
DFEVar TVP = constant.var(calculationType, 1.4506); //The same

with Flavio's paper↪→
DFEVar TV1M = constant.var(calculationType, 60) ;//The same

with Flavio's paper↪→
DFEVar TV2M = constant.var(calculationType, 1150) ;//The same

with Flavio's paper↪→

DFEVar TWP =constant.var(calculationType, 200.0); // We have
TWP1 and TWP2 = TWP in Flavio's paper↪→

//#define TW1P 200.0
//#define TW2P 200.0

DFEVar TW1M = constant.var(calculationType, 60.0); //The same
with Flavio's paper↪→

DFEVar TW2M =constant.var(calculationType, 15); //The same
with Flavio's paper↪→

DFEVar TS1 = constant.var(calculationType, 2.7342); //The
same with Flavio's paper↪→

DFEVar TS2 = constant.var(calculationType, 16); //The same
with Flavio's paper↪→

DFEVar TFI = constant.var(calculationType, 0.11); //The same
with Flavio's paper↪→

DFEVar TO1 = constant.var(calculationType, 400); //The same
with Flavio's paper↪→

DFEVar TO2 = constant.var(calculationType, 6); //The same
with Flavio's paper↪→

63

DFEVar TSO1 = constant.var(calculationType, 30.0181); //The same
with Flavio's paper↪→

DFEVar TSO2 = constant.var(calculationType, 0.9957); //The same
with Flavio's paper↪→

DFEVar TSI = constant.var(calculationType, 1.8875); // We have
TSI1 and TSI2 = TSI in Flavio's paper↪→

//#define TSI1 1.8875
//#define TSI2 1.8875

DFEVar TWINF = constant.var(calculationType, 0.07); //The same
with Flavio's paper↪→

DFEVar THV = constant.var(calculationType, 0.3); //EPUM //
The same of Flavio's paper↪→

DFEVar THVM = constant.var(calculationType, 0.006); //EPUQ //
The same of Flavio's paper↪→

DFEVar THVINF = constant.var(calculationType, 0.006); //EPUQ //
The same of Flavio's paper↪→

DFEVar THW = constant.var(calculationType, 0.13); //EPUP //
The same of Flavio's paper↪→

DFEVar THWINF = constant.var(calculationType, 0.006); //EPURR //
In Flavio's paper 0.13↪→

DFEVar THSO = constant.var(calculationType, 0.13); //EPUP //
The same of Flavio's paper↪→

DFEVar THSI = constant.var(calculationType, 0.13); //EPUP //
The same of Flavio's paper↪→

DFEVar THO = constant.var(calculationType, 0.006); //EPURR //
The same of Flavio's paper↪→

//#define KWP 5.7
DFEVar KWM = constant.var(calculationType, 65); //The same of

Flavio's paper↪→
DFEVar KS = constant.var(calculationType, 2.0994); //The same

of Flavio's paper↪→
DFEVar KSO = constant.var(calculationType, 2.0458); //The same

of Flavio's paper↪→
//#define KSI 97.8
DFEVar UWM = constant.var(calculationType, 0.03); //The same

of Flavio's paper↪→
DFEVar US = constant.var(calculationType, 0.9087); //The same

of Flavio's paper↪→
DFEVar UO = constant.var(calculationType, 0); // The same

of Flavio's paper↪→
DFEVar UU = constant.var(calculationType, 1.55); // The same

of Flavio's paper↪→
DFEVar USO = constant.var(calculationType, 0.65); // The same

of Flavio's paper↪→
DFEVar SC = constant.var(calculationType, 0.007);
//#define WCP 0.15

DFEVar WINFSTAR = constant.var(calculationType, 0.94); // The
same of Flavio's paper↪→

64

DFEVar TW2M_TW1M = constant.var(calculationType, -45.0);
DFEVar TSO2_TSO1 = constant.var(calculationType, -29.0224);

DFEVar TW2M_TW1M_DIVBY2 = constant.var(calculationType, -22.5);
DFEVar TSO2_TSO1_DIVBY2 = constant.var(calculationType, -14.5112);

final DFEVar Zero = constant.var(calculationType, 0.0);
final DFEVar One = constant.var(calculationType, 1.0);

public MinimalModelKernel(final KernelParameters parameters) {
super(parameters);

//create autoloop offset to create backwards edge for
calculation↪→

OffsetExpr loopLength =
stream.makeOffsetAutoLoop("loopLength"); //↪→

DFEVar loopLengthVal = loopLength.getDFEVar(this,
dfeUInt(11));↪→

CounterChain chain =
control.count.makeCounterChain();↪→

final DFEVar nx =io.scalarInput("num_iteration",
dfeUInt(32));↪→

DFEVar step = chain.addCounter(nx, 1);//counter for
number of steps;↪→

//
DFEVar loopCounter = chain.addCounter(loopLengthVal,

1); //counter for validation of values;↪→
DFEVar dt = io.scalarInput("dt", dfeFloat(11,53));
dt = dt.cast(calculationType);

// DFEVar stim_in =
io.input("stim_in",scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→

DFEVector<DFEVar> statevars =
vectorType.newInstance(this);↪→

DFEVar ui = step===0? One : statevars[0];
//initCondition? 0.0 : carriedU;↪→

DFEVar vi = step===0? One : statevars[1];
DFEVar wi = step===0 ? One : statevars[2];
DFEVar si = step===0? Zero : statevars[3];

DFEVar tvm, vinf, winf;
DFEVar jfi, jso, jsi;
DFEVar twm, tso, ts, to, ds, dw, dv;

optimization.pushPipeliningFactor(1.0,PipelinedOps.ALL);↪→

tvm = (ui > THVM) ? TV2M : TV1M;

65

twm = TW1M + (TW2M_TW1M_DIVBY2)*(1+tanh(KWM*(ui-
UWM)));↪→

tso = TSO1 + (TSO2_TSO1_DIVBY2)*(1+tanh(
KSO*(ui- USO)));↪→

ts = (ui > THW) ? TS2 : TS1;
to = (ui > THO) ? TO2 : TO1;

vinf = (ui > THVINF) ? Zero : One;
winf = (ui > THWINF) ? WINFSTAR: (1.0-ui/

TWINF);↪→
winf = (winf > One) ? One : winf;

dv = (ui > THV) ? -vi/ TVP : (vinf-vi)/tvm;
dw = (ui > THW) ? -wi/ TWP : (winf-wi)/twm;
ds = (((1+tanh(KS*(ui- US)))/2) - si)/ts;

//winf = (*ui > 0.06) ? 0.94: 1.0-*ui/0.07;
//twm = 60 + (-22.5)*(1.+tanh(65*(*ui-0.03)));
//dw = (*ui > 0.13) ? -*wi/200 : (winf-*wi)/twm;

//tvm = (*ui > THVM) ? TV2M : TV1M;
//one_o_twm = segm_table[0][th] * (*ui) +

segm_table[1][th];↪→
//vinf = (*ui > THVINF) ? 0.0: 1.0;
//winf = (*ui > THWINF) ? WINFSTAR *

one_o_twm: (segm2_table[0][th2] * (*ui) +
segm2_table[1][th2]);

↪→
↪→
//if (winf >one_o_twm) winf = one_o_twm;
//dv = (*ui > THV) ? -*vi/ TVP : (vinf-*vi)/tvm;
//dw = (*ui > THW) ? -*wi/ TWP : winf - *wi *

one_o_twm;↪→
//ds = (((1.+tanh(KS*(*ui- US)))/2.) - *si)/ts;

optimization.popPipeliningFactor(PipelinedOps.ALL);

//Update gates

vi = vi +dv*dt;
wi = wi + dw*dt;
si = si+ ds*dt;

//Compute currents
jfi = (ui > THV) ? -vi * (ui - THV) * (UU -

ui)/ TFI : Zero;↪→
/*if (*ui > THV){

if (((*vi - dv*dt) > 0.0) && *vi <
0.0001){↪→

66

printf("vi=%4.20f, ui=%f,
jfi=%f\n", *vi, *ui, jfi);↪→

}
}*/

jso = (ui > THSO) ? 1/tso : (ui- UO)/to;
jsi = (ui > THSI) ? -wi * si/ TSI : 0.0;

ui = ui - (jfi+jso+jsi)*dt;
// optimization.popDSPFactor();

DFEVar uOffset = stream.offset(ui, -loopLength);
DFEVar vOffset = stream.offset(vi, -loopLength);
DFEVar wOffset = stream.offset(wi, -loopLength);
DFEVar sOffset = stream.offset(si, -loopLength);

// DFEVar stimOffset = stream.offset(stim,
-loopLength);↪→

statevars[0] <== uOffset;
statevars[1] <==vOffset;
statevars[2] <== wOffset;
statevars[3] <== sOffset;

io.output("u_out", ui.cast(scalarType),
scalarType,loopCounter === (loopLengthVal-1));↪→

io.output("v_out", statevars[1].cast(scalarType),
scalarType,loopCounter === (loopLengthVal-1));↪→

io.output("w_out", statevars[2].cast(scalarType),
scalarType,loopCounter === (loopLengthVal-1)) ;↪→

io.output("s_out", statevars[3].cast(scalarType),
scalarType,loopCounter === (loopLengthVal-1));↪→

}

/***
*
* @param x value to check

* @return heaviside(x) returns the value 0 for x < 0, 1 for
x > 0, and 1/2 for x = 0.↪→

*/

protected DFEVar heavisidefun(DFEVar x) {

// //check if the value is below or above zero
DFEVar c = x<0.0? constant.var(dfeBool(), 1) :

constant.var(dfeBool(), 0);↪→
//

// //check if the value is zero

67

DFEVar z = x===0.0? constant.var(dfeBool(), 1) :
constant.var(dfeBool(), 0);↪→

//
// //assign values regarding to checks - first if

value is below or above zero↪→
DFEVar ret = c?constant.var(scalarType, 0.0) :

constant.var(scalarType, 1.0);↪→
//

// //if x is zero, z is true, as c would not consider
this case, we can disregard the value of c if z is true↪→

ret = z? constant.var(scalarType, 0.5) : ret;

return ret;

}

protected DFEVar tanh(DFEVar x) {
//tangens hyperbolicus: 1-(2/(e^(2*x)+1))

DFEVar v = KernelMath.exp(2*x);
DFEVar approximation = 1- (2/(v+1));
return approximation;

}

}

68

Karma Model

Manager Class Karma Model
package karma.model.cell;

import com.maxeler.maxcompiler.v2.build.EngineParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelConfiguration;
import com.maxeler.maxcompiler.v2.managers.custom.CustomManager.Config;
import com.maxeler.maxcompiler.v2.managers.custom.DFELink;
import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.CPUTypes;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.EngineInterface;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.InterfaceParam;
import com.maxeler.platform.max5.manager.MAX5CManager;

public class KarmaManager extends MAX5CManager{
private static final String s_kernelName = "KarmaKernel";
public KarmaManager(EngineParameters arg0) {

super(arg0);
KernelBlock k = addKernel(

new
KarmaKernel(makeKernelParameters(s_kernelName)));↪→

addStreamToCPU("u_out") <== k.getOutput("u_out");
addStreamToCPU("v_out") <== k.getOutput("v_out");

//config.setDefaultStreamClockFrequency(50);
}

public static void main(String[] args) {
EngineParameters params = new EngineParameters(args);
KarmaManager manager = new KarmaManager(params);
KernelConfiguration con = manager.getCurrentKernelConfig();

// Instantiate the kernel

manager.createSLiCinterface(interfaceDefault());

manager.build();
}

private static EngineInterface interfaceDefault() {
EngineInterface ei = new EngineInterface();

InterfaceParam length = ei.addParam("length", CPUTypes.INT);
InterfaceParam dt = ei.addParam("dt", CPUTypes.DOUBLE);
InterfaceParam num_iteration = ei.addParam("num_iteration",

CPUTypes.INT);↪→

69

InterfaceParam lengthInBytes = length *
CPUTypes.FLOAT.sizeInBytes();↪→

InterfaceParam loopLength =
ei.getAutoLoopOffset(s_kernelName, "loopLength");↪→

ei.ignoreAutoLoopOffset(s_kernelName, "loopLength");
ei.setTicks(s_kernelName, length * loopLength);

ei.setScalar(s_kernelName, "dt", dt);

ei.setScalar(s_kernelName, "num_iteration", num_iteration);

ei.setStream("u_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("v_out", CPUTypes.FLOAT, lengthInBytes);

return ei;
}

}

70

Kernel Class Karma Model

package karma.model.cell;

import com.maxeler.maxblox.funceval.MathPow;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Optimization.PipelinedOps;
import com.maxeler.maxcompiler.v2.kernelcompiler.RoundingMode;
import com.maxeler.maxcompiler.v2.kernelcompiler.op_management.MathOps;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.KernelMath;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
import

com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;↪→
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFix;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFix.SignMode;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEFloat;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFERawBits;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVector;
import

com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVectorType;↪→
import com.maxeler.maxcompiler.v2.utils.MathUtils;

public class KarmaKernel extends Kernel {
static final DFEFloat scalarType = dfeFloat(8, 24);
static final DFEFloat calculationType = dfeFloat(8, 24);

final DFEVar TAUE =constant.var(calculationType, 2.5);
final DFEVar TAUN = constant.var(calculationType, 250);
final DFEVar ONE_O_TAUE =constant.var(calculationType, 0.4);
final DFEVar ONE_O_TAUN = constant.var(calculationType, 0.004);
final DFEVar EH =constant.var(calculationType,3);
final DFEVar EN = constant.var(calculationType, 1);
final DFEVar ESTAR = constant.var(calculationType, 0.8); //1.5415
final DFEVar EPS = constant.var(calculationType,0.01); //TAUE/TAUN
final DFEVar RE = constant.var(calculationType, 1.204);

//VARIED BETWEEN 0.5 AND 1.4↪→
final DFEVar EXPRE = constant.var(calculationType, 0.299991841);

//EXP(-RE)↪→
final DFEVar M = constant.var(calculationType, 10);
final DFEVar GAMMA = constant.var(calculationType, 0.0011);
final DFEVar ONE_O_ONE_MINUS_EXPRE = constant.var(calculationType,

1.428554778);↪→

public KarmaKernel(final KernelParameters parameters) {
super(parameters);

// Input
//create autoloop offset to create backwards edge for

calculation↪→
OffsetExpr loopLength =

stream.makeOffsetAutoLoop("loopLength"); //↪→

71

DFEVar loopLengthVal = loopLength.getDFEVar(this,
dfeUInt(11));↪→

CounterChain chain = control.count.makeCounterChain();
final DFEVar nx =io.scalarInput("num_iteration",

dfeUInt(32));↪→

DFEVar step = chain.addCounter(nx, 1);//counter for number of
steps;↪→

//↪→
DFEVar loopCounter = chain.addCounter(loopLengthVal, 1);

//counter for validation of values;↪→
DFEVar dtIn = io.scalarInput("dt", dfeFloat(11,53));
DFEVar dt = dtIn.cast(calculationType);

DFEVar carriedU = calculationType.newInstance(this);
DFEVar carriedV = calculationType.newInstance(this);

DFEVar u = step===0? 1.5 : carriedU;
DFEVar v = step===0? 0 : carriedV;

optimization.pushPipeliningFactor(1.0, PipelinedOps.ALL);
DFEVar dfunc = pow(v, 10);
DFEVar rfunc = 1.428554778 - v;

DFEVar hfunc = (1-tanh(u-EH)) * u* u * 0.5;
DFEVar ffunc = -u + (ESTAR-dfunc) *

hfunc;↪→
DFEVar h = (u > EN).cast(calculationType);

//(a -n)*h - (1-h)*n
//a*h -n*h - (n - n*h)

DFEVar gfunc = 1.428554778*h - (v);
DFEVar de = ffunc * ONE_O_TAUE;
DFEVar dn = gfunc * ONE_O_TAUN;

DFEVar uNext = u + dt*de;
DFEVar vNext = v + dt*dn;
optimization.popPipeliningFactor(PipelinedOps.ALL);

DFEVar uOffset = stream.offset(uNext, -loopLength);
DFEVar vOffset = stream.offset(vNext, -loopLength);

carriedU<== uOffset;
carriedV<==vOffset;

DFEVar uout = uNext.cast(scalarType);
DFEVar vout = vNext.cast(scalarType);
//optimization.popEnableSaturatingArithmetic();

io.output("u_out", uout, scalarType,loopCounter ===
(loopLengthVal-1));↪→

72

io.output("v_out", vout, scalarType,loopCounter ===
(loopLengthVal-1));↪→

}

DFEVar pow (DFEVar a, int b) {
DFEVar temp;

if (b == 0)
return constant.var(calculationType, 1);

temp = pow(a, (b / 2));
if ((b % 2) == 0)

return temp * temp;
else

return a * temp * temp;
}

protected DFEVar tanh(DFEVar x) {
//tangens hyperbolicus: 1-(2/(e^(2*x)+1))

optimization.pushPipeliningFactor(0,
PipelinedOps.ALL);↪→

optimization.pushEnableSaturatingArithmetic(true);
x = (2*x);
DFEVar v = KernelMath.exp(x);

DFEVar approximation = 1- (2/(v+1));
optimization.popPipeliningFactor(PipelinedOps.ALL);
optimization.popEnableSaturatingArithmetic();

return approximation.cast(calculationType);

}

}

73

Beeler-Reuter Model

Manager Class Beeler-Reuter Model

package beelerreuter.model.cell;

import com.maxeler.maxcompiler.v2.build.EngineParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.managers.custom.CustomManager;
import com.maxeler.maxcompiler.v2.managers.custom.CustomManager.Config;
import com.maxeler.maxcompiler.v2.managers.custom.DFELink;
import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.CPUTypes;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.EngineInterface;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.InterfaceParam;
import com.maxeler.maxcompiler.v2.managers.standard.Manager;
import com.maxeler.maxcompiler.v2.managers.standard.Manager.IOType;
import com.maxeler.platform.max5.manager.MAX5CManager;

public class BeelerReuterManager extends MAX5CManager{
private static final String s_kernelName = "BeelerReuterKernel";
public BeelerReuterManager(EngineParameters arg0) {

super(arg0);
KernelBlock k = addKernel(

new
BeelerReuterKernel(makeKernelParameters(s_kernelName)));↪→

DFELink y1 = addStreamToCPU("u_out");
y1 <== k.getOutput("u_out");
DFELink y2 = addStreamToCPU("x1_out");
y2 <== k.getOutput("x1_out");

DFELink y3 = addStreamToCPU("m_out");
y3 <== k.getOutput("m_out");

DFELink y4 = addStreamToCPU("h_out");
y4 <== k.getOutput("h_out");

DFELink y5 = addStreamToCPU("j_out");
y5 <== k.getOutput("j_out");

DFELink y6 = addStreamToCPU("d_out");
y6 <==k.getOutput("d_out");

DFELink y7 = addStreamToCPU("f_out");
y7 <== k.getOutput("f_out");

DFELink y8 = addStreamToCPU("ca_out");
y8 <== k.getOutput("ca_out");

//config.setDefaultStreamClockFrequency(50);
}

74

public static void main(String[] args) {
EngineParameters params = new EngineParameters(args);
BeelerReuterManager manager = new

BeelerReuterManager(params);↪→

// Instantiate the kernel

manager.createSLiCinterface(interfaceDefault());
manager.build();

}

private static EngineInterface interfaceDefault() {
EngineInterface ei = new EngineInterface();

InterfaceParam length = ei.addParam("length", CPUTypes.INT);
InterfaceParam dt = ei.addParam("dt", CPUTypes.DOUBLE);
InterfaceParam num_iteration = ei.addParam("num_iteration",

CPUTypes.INT);↪→

InterfaceParam u = ei.addParam("u_in", CPUTypes.FLOAT);
InterfaceParam ca = ei.addParam("ca_in", CPUTypes.FLOAT);
InterfaceParam h = ei.addParam("h_in", CPUTypes.FLOAT);
InterfaceParam x1 = ei.addParam("x1_in", CPUTypes.FLOAT);
InterfaceParam j = ei.addParam("j_in", CPUTypes.FLOAT);
InterfaceParam d = ei.addParam("d_in", CPUTypes.FLOAT);
InterfaceParam f = ei.addParam("f_in", CPUTypes.FLOAT);
InterfaceParam m = ei.addParam("m_in", CPUTypes.FLOAT);

InterfaceParam lengthInBytes = length *
CPUTypes.FLOAT.sizeInBytes();↪→

InterfaceParam loopLength =
ei.getAutoLoopOffset(s_kernelName, "loopLength");↪→

ei.ignoreAutoLoopOffset(s_kernelName, "loopLength");
ei.setTicks(s_kernelName, length * loopLength);

ei.setScalar(s_kernelName, "dt", dt);

ei.setScalar(s_kernelName, "u_in", u);
ei.setScalar(s_kernelName, "ca_in", ca);
ei.setScalar(s_kernelName, "h_in", h);
ei.setScalar(s_kernelName, "x1_in", x1);
ei.setScalar(s_kernelName, "j_in", j);
ei.setScalar(s_kernelName, "d_in", d);
ei.setScalar(s_kernelName, "f_in", f);
ei.setScalar(s_kernelName, "m_in", m);

ei.setScalar(s_kernelName, "num_iteration", num_iteration);

ei.setStream("u_out", CPUTypes.FLOAT, lengthInBytes);

75

ei.setStream("x1_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("m_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("h_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("j_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("d_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("f_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("ca_out", CPUTypes.FLOAT, lengthInBytes);

return ei;
}

}

76

Kernel Class Beeler-Reuter Model
package beelerreuter.model.cell;

import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Optimization;
import com.maxeler.maxcompiler.v2.kernelcompiler.Optimization.PipelinedOps;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.KernelMath;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
import

com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;↪→
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.memory.Memory;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVector;
import

com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVectorType;↪→
import com.maxeler.maxcompiler.v2.utils.MathUtils;
import com.maxeler.statemachine.statements.SimPrintf;

public class BeelerReuterKernel extends Kernel {
static final DFEType scalarType = dfeFloat(8, 24);
static final DFEType calculationType = dfeFloat(8, 24);
static final DFEVectorType<DFEVar> vectorType =

new DFEVectorType<DFEVar>(calculationType, 8);

//Constants
final DFEVar EPI_TVP = constant.var(calculationType, 1.4506);

final DFEVar GS = constant.var(calculationType, 0.09);
final DFEVar ENA = constant.var(calculationType, 50);
final DFEVar GNAC = constant.var(calculationType, 0.003);
final DFEVar GNA = constant.var(calculationType , 4);

final DFEVar Zero = constant.var(calculationType, 0.0);
final DFEVar One = constant.var(calculationType, 1.0);

BeelerReuterKernel(KernelParameters parameters) {
super(parameters);

//time given by cpu

77

//create autoloop offset to create backwards edge for
calculation↪→

OffsetExpr loopLength =
stream.makeOffsetAutoLoop("loopLength"); //↪→

DFEVar loopLengthVal = loopLength.getDFEVar(this,
dfeUInt(11));↪→

CounterChain chain = control.count.makeCounterChain();
final DFEVar nx =io.scalarInput("num_iteration",

dfeUInt(32));↪→

DFEVar step = chain.addCounter(nx, 1);//counter for number of
steps;↪→

//
DFEVar loopCounter = chain.addCounter(loopLengthVal, 1);

//counter for validation of values;↪→
DFEVar dt = io.scalarInput("dt", dfeFloat(11,53));
dt = dt.cast(calculationType);

// DFEVar stim_in = io.input("stim_in",scalarType,loopCounter
=== (loopLengthVal-1));↪→

DFEVector<DFEVar> valueVector = vectorType.newInstance(this);
DFEVar currentU = step===0 ? io.scalarInput("u_in",

calculationType): valueVector[0];↪→
DFEVar currentCa = step===0 ? io.scalarInput("ca_in",

calculationType) : valueVector[1];↪→
DFEVar currentX1 = step===0 ? io.scalarInput("x1_in",

calculationType): valueVector[2];↪→
DFEVar currentM = step===0? io.scalarInput("m_in",

calculationType) :valueVector[3];↪→
DFEVar currentF = step===0? io.scalarInput("f_in",

calculationType): valueVector[4];↪→
DFEVar currentH = step===0? io.scalarInput("h_in",

calculationType) : valueVector [5];↪→
DFEVar currentD = step===0 ? io.scalarInput("d_in",

calculationType): valueVector[6];↪→
DFEVar currentJ = step===0? io.scalarInput("j_in",

calculationType) :valueVector[7];↪→

optimization.pushPipeliningFactor(0, PipelinedOps.ALL);

DFEVar ax1 = dt *((5.0*Math.pow(10,-4)) *
KernelMath.exp(0.083 * ((currentU) + 50.0)) /
(KernelMath.exp(0.057 * ((currentU) + 50.0)) + 1.0));

↪→
↪→

78

DFEVar bx1 = dt * (0.0013 * KernelMath.exp(-0.06 *
((currentU) + 20.0)) / (KernelMath.exp(-0.04 *
((currentU) + 20.0)) + 1.0));

↪→
↪→

DFEVar am = dt* (-((currentU) + 47.0) /
(KernelMath.exp(-0.1 * ((currentU) + 47.0)) - 1.0));↪→

DFEVar bm = dt *(40.0 * KernelMath.exp(-0.056 *
((currentU) + 72.0)));↪→

DFEVar ah = dt * (0.126 * KernelMath.exp(-0.25 *
((currentU) + 77.0)));↪→

DFEVar bh = dt *(1.7 / (KernelMath.exp(-0.082 *
((currentU) + 22.5)) + 1.0));↪→

DFEVar aj = dt * (0.055 * KernelMath.exp(-0.25 *
((currentU) + 78.0)) / (KernelMath.exp(-0.2 *
((currentU) + 78.0)) + 1.0));

↪→
↪→
DFEVar bj = dt * (0.3 / (KernelMath.exp(-0.1 *

((currentU) + 32.0)) + 1.0));↪→

DFEVar ad = dt * (0.095 * KernelMath.exp(-0.01 *
((currentU) - 5.0)) / (KernelMath.exp(-0.072 *
((currentU) - 5.0)) + 1.0));

↪→
↪→
DFEVar bd =dt * (0.07 * KernelMath.exp(-0.017 *

((currentU) + 44.0)) / (KernelMath.exp(0.05 *
((currentU) + 44.0)) + 1.0));

↪→
↪→

DFEVar af = dt * (0.012 * KernelMath.exp(-0.008 *
((currentU) + 28.0)) / (KernelMath.exp(0.15 *
((currentU) + 28.0)) + 1.0));

↪→
↪→
DFEVar bf = dt *(0.0065 * KernelMath.exp(-0.02 *

((currentU) + 30.0)) / (KernelMath.exp(-0.2 *
((currentU) + 30.0)) + 1.0));

↪→
↪→

currentX1 = (currentX1) + (ax1 * (1.0 -
(currentX1)) - bx1 * (currentX1));↪→

currentM = (currentM) + (am * (1.0 - (currentM)) -
bm * (currentM));↪→

currentH = (currentH)+ (ah * (1.0 - (currentH)) -
bh * (currentH));↪→

currentJ = (currentJ) + (aj * (1.0 - (currentJ)) -
bj * (currentJ));↪→

currentD = (currentD) + (ad * (1.0 - (currentD)) -
bd * (currentD));↪→

currentF = (currentF) + (af * (1.0 - (currentF)) -
bf * (currentF));↪→

DFEVar es = (-82.3 - 13.0287 *
KernelMath.log((currentCa), calculationType));↪→

DFEVar is
=0.09*(currentD)*(currentF)*((currentU)-es);↪→

79

currentCa = currentCa
+dt*(-0.0000001*is+0.07*(0.0000001-(currentCa)));↪→

DFEVar xik1 = (KernelMath.exp(0.08 * ((currentU) +
53.0)) + KernelMath.exp(0.04 * ((currentU) +
53.0)));

↪→
↪→

DFEVar xik2 = (1.0 - KernelMath.exp(-0.04 *
((currentU) + 23.0)));↪→

xik1= (xik1 === Zero)? 0.001: xik1;
xik2 = (xik2 ===Zero)? 0.001: xik2;
DFEVar ik1 = (0.35 * (4.0 * (KernelMath.exp(0.04 *

((currentU) + 85.0)) - 1.0) / xik1 + 0.2 * ((currentU)
+ 23.0) / xik2));

↪→
↪→

DFEVar gix1 = (0.8 * (KernelMath.exp(0.04 *
((currentU) + 77.0)) - 1.0) /KernelMath.exp(0.04

* ((currentU) + 35.0)));
↪→
↪→
DFEVar ix1 = (gix1 * (currentX1));
DFEVar ina = ((GNA * (currentM) * (currentM) *

(currentM) * (currentH) * (currentJ) + GNAC) *
((currentU) - ENA));

↪→
↪→
currentU = currentU -(dt * (ik1 + ix1 + ina +

is));↪→
optimization.popPipeliningFactor(PipelinedOps.ALL);
DFEVar uOffset = stream.offset(currentU,

-loopLength);↪→
DFEVar caOffset = stream.offset(currentCa,

-loopLength);↪→
DFEVar jOffset = stream.offset(currentJ,

-loopLength);↪→
DFEVar hOffset = stream.offset(currentH,

-loopLength);↪→
DFEVar x1Offset = stream.offset(currentX1,

-loopLength);↪→
DFEVar fOffset = stream.offset(currentF,

-loopLength);↪→
DFEVar mOffset = stream.offset(currentM,

-loopLength);↪→
DFEVar dOffset = stream.offset(currentD,

-loopLength);↪→

valueVector[0] <== uOffset;
valueVector[1] <== caOffset;
valueVector[2] <==x1Offset;
valueVector[3] <== mOffset;
valueVector[4] <== fOffset;
valueVector[5] <== hOffset;
valueVector[6] <==dOffset;
valueVector[7] <==jOffset;

80

io.output("u_out", currentU.cast(scalarType),
scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("ca_out", currentCa.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("x1_out", currentX1.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("m_out", currentM.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("f_out", currentF.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("h_out", currentH.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("d_out", currentD.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→
io.output("j_out", currentJ.cast(scalarType),

scalarType,loopCounter ===
(loopLengthVal-1));

↪→
↪→

}

/***
*
* @param x value to check

* @return heaviside(x) returns the value 0 for x < 0, 1 for x > 0,
and 1/2 for x = 0.↪→

*/

protected DFEVar heavisidefun(DFEVar x) {

// //check if the value is below or above zero
DFEVar c = x<0.0? constant.var(dfeBool(), 1) :

constant.var(dfeBool(), 0);↪→
//
// //check if the value is zero

DFEVar z = x===0.0? constant.var(dfeBool(), 1) :
constant.var(dfeBool(), 0);↪→

//
// //assign values regarding to checks - first if value is

below or above zero↪→
DFEVar ret = c?constant.var(scalarType, 0.0) :

constant.var(scalarType, 1.0);↪→
//
// //if x is zero, z is true, as c would not consider this

case, we can disregard the value of c if z is true↪→

81

ret = z? constant.var(scalarType, 0.5) : ret;

return ret;

}

protected DFEVar tanh(DFEVar x) {
//tangens hyperbolicus: 1-(2/(e^(2*x)+1))

DFEVar v = KernelMath.exp(2*x);
DFEVar approximation = 1- (2/(v+1));
return approximation;

}

}

82

Appendix B: Maxeler Minimal
Model Homogeneous 1D Cable

Manager Class
package minimal.thritytwo.cable;

import com.maxeler.maxcompiler.v2.build.EngineParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.managers.custom.DFELink;
import com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.CPUTypes;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.EngineInterface;
import com.maxeler.maxcompiler.v2.managers.engine_interfaces.InterfaceParam;
import com.maxeler.maxcompiler.v2.managers.standard.Manager;
import com.maxeler.maxcompiler.v2.managers.standard.Manager.IOType;
import com.maxeler.platform.max5.manager.MAX5CManager;

public class CellCableDFE32Manager extends MAX5CManager{
private static final String s_kernelName = "CellCableDFE32Kernel";
private static final int X = 10000; // maximum number of values
private static final int duration = 5;
public CellCableDFE32Manager(EngineParameters arg0) {

super(arg0);
KernelBlock k = addKernel(

new
CellCableDFE32Kernel(makeKernelParameters(s_kernelName),
X, duration));

↪→
↪→

DFELink y1 = addStreamToCPU("u_out");
y1 <== k.getOutput("u_out");
DFELink y2 = addStreamToCPU("v_out");
y2 <== k.getOutput("v_out");

DFELink y3 = addStreamToCPU("w_out");
y3 <== k.getOutput("w_out");

DFELink y4 = addStreamToCPU("s_out");
y4 <== k.getOutput("s_out");

}

83

public static void main(String[] args) {
EngineParameters params = new EngineParameters(args);
CellCableDFE32Manager manager = new

CellCableDFE32Manager(params);↪→

manager.createSLiCinterface(interfaceDefault());
manager.addMaxFileConstant("X", X);
manager.addMaxFileConstant("duration", duration);
manager.setDefaultStreamClockFrequency(120);
manager.build();

}

private static EngineInterface interfaceDefault() {
EngineInterface ei = new EngineInterface();

InterfaceParam length = ei.addParam("length", CPUTypes.INT);
InterfaceParam dt = ei.addParam("dt", CPUTypes.FLOAT);
InterfaceParam ddt_o_dx2 = ei.addParam("ddt_o_dx2",

CPUTypes.FLOAT);↪→
InterfaceParam simTime = ei.addParam("simTime",

CPUTypes.INT);↪→
InterfaceParam nx = ei.addParam("nx", CPUTypes.INT);
InterfaceParam lengthInBytes = length *

CPUTypes.FLOAT.sizeInBytes();↪→
InterfaceParam loopLength =

ei.getAutoLoopOffset(s_kernelName, "loopLength");↪→
ei.ignoreAutoLoopOffset(s_kernelName, "loopLength");
ei.setTicks(s_kernelName, (length) * loopLength);

ei.setScalar(s_kernelName, "dt", dt);
ei.setScalar(s_kernelName, "ddt_o_dx2", ddt_o_dx2);
ei.setScalar(s_kernelName, "simTime", simTime);
ei.setScalar(s_kernelName, "nx", nx);

ei.setStream("u_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("v_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("w_out", CPUTypes.FLOAT, lengthInBytes);
ei.setStream("s_out", CPUTypes.FLOAT, lengthInBytes);

return ei;
}

}

84

Kernel Class

package minimal.thritytwo.cable;

import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;
import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters;
import com.maxeler.maxcompiler.v2.kernelcompiler.Optimization.PipelinedOps;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.KernelMath;
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.CounterChain;
import

com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.Stream.OffsetExpr;↪→
import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.memory.Memory;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEType;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.DFEVar;
import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVector;
import

com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.DFEVectorType;↪→
import com.maxeler.maxcompiler.v2.utils.MathUtils;

public class CellCableDFE32Kernel extends Kernel {

static final DFEType scalarType = dfeFloat(8,24);
static final DFEVectorType<DFEVar> vectorType =

new DFEVectorType<DFEVar>(scalarType, 4);
//Constants
final DFEVar EPI_TVP = constant.var(scalarType, 1.4506);
final DFEVar EPI_TV1M = constant.var(scalarType, 60);
final DFEVar EPI_TV2M = constant.var(scalarType,1150);
final DFEVar EPI_TWP = constant.var(scalarType,200);
final DFEVar EPI_TW1M = constant.var(scalarType,60);
final DFEVar EPI_TW2M = constant.var(scalarType,15);
final DFEVar EPI_TS1 = constant.var(scalarType,2.7342);
final DFEVar EPI_TS2 = constant.var(scalarType,16);
final DFEVar EPI_TFI = constant.var(scalarType,0.11);
final DFEVar EPI_TO1 = constant.var(scalarType,400);
final DFEVar EPI_TO2 = constant.var(scalarType,6);
final DFEVar EPI_TSO1 = constant.var(scalarType,30.0181);
final DFEVar EPI_TSO2 = constant.var(scalarType,0.9957);
final DFEVar EPI_TSI = constant.var(scalarType,1.8875);
final DFEVar EPI_TWINF = constant.var(scalarType,0.07);
final DFEVar EPI_THV = constant.var(scalarType,0.3);
final DFEVar EPI_THVM = constant.var(scalarType,0.006);
final DFEVar EPI_THVINF = constant.var(scalarType,0.006);
final DFEVar EPI_THW = constant.var(scalarType,0.13);
final DFEVar EPI_THSO = constant.var(scalarType,0.006);
final DFEVar EPI_THSI = constant.var(scalarType,0.13);
final DFEVar EPI_THO = constant.var(scalarType,0.006);
final DFEVar EPI_KWM = constant.var(scalarType,65);
final DFEVar EPI_KS = constant.var(scalarType,2.0994);
final DFEVar EPI_KSO = constant.var(scalarType,2.0458);
final DFEVar EPI_UWM = constant.var(scalarType,0.03);

85

final DFEVar EPI_US = constant.var(scalarType,0.9087);
final DFEVar EPI_U0 = constant.var(scalarType,0);
final DFEVar EPI_UU = constant.var(scalarType,1.55);
final DFEVar EPI_USO = constant.var(scalarType,0.65);
final DFEVar TW2M_TW1M_DIVBY2 = constant.var(scalarType,-22.5);
final DFEVar TSO2_TSO1_DIVBY2 = constant.var(scalarType,-14.5112);
final DFEVar WINFSTAR = constant.var(scalarType,0.94);
final DFEVar EPI_THWINF = constant.var(scalarType,0.006);

final DFEVar Zero = constant.var(scalarType, 0.0);
final DFEVar One = constant.var(scalarType, 1.0);

CellCableDFE32Kernel(KernelParameters parameters, int X, int
duration) {↪→

super(parameters);

//time given by cpu
final DFEVar dt = io.scalarInput("dt", scalarType);
final DFEVar ddt_o_dx2 = io.scalarInput("ddt_o_dx2",

scalarType);↪→
final DFEVar nx = io.scalarInput("nx", dfeUInt(32));
final DFEVar simTime = io.scalarInput("simTime",

dfeUInt(32));↪→

//create autoloop offset to create backwards edge for
calculation↪→

OffsetExpr loopLength =
stream.makeOffsetAutoLoop("loopLength"); //↪→

DFEVar loopLengthVal = loopLength.getDFEVar(this,
dfeUInt(8));↪→

CounterChain chain = control.count.makeCounterChain();
DFEVar step = chain.addCounter(simTime+1, 1); //counter for

simulation time..↪→
DFEVar cellNumAddress = chain.addCounter(nx, 1);//counter for

number of cells ; resets automatically when reaching X;
-> inner loop

↪→
↪→
DFEVar loopCounter = chain.addCounter(loopLengthVal, 1);

//counter for validation of values;↪→

Memory<DFEVar> uMem = mem.alloc(scalarType, X);
Memory<DFEVar> wMem = mem.alloc(scalarType, X);

86

Memory<DFEVar> vMem = mem.alloc(scalarType, X);
Memory<DFEVar> sMem = mem.alloc(scalarType, X);
Memory<DFEVar> t1Mem = mem.alloc(scalarType, X);
Memory<DFEVar> t2Mem = mem.alloc(scalarType, X);
DFEVar uFromMem =

uMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→
DFEVar vFromMem =

vMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→
DFEVar wFromMem =

wMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→
DFEVar sFromMem =

sMem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→
DFEVar t1FromMem =

t1Mem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→
DFEVar t2FromMem =

t2Mem.read(cellNumAddress.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→
DFEVar nextNeighAdd = cellNumAddress+1;
DFEVar uNext =

uMem.read(nextNeighAdd.cast(dfeUInt(MathUtils.bitsToAddress(X))));↪→

//create sourcless streams for variables

DFEVar carriedU = scalarType.newInstance(this);

//define initCondition - easier to read;
DFEVar initCondition = (step===0);

//init variables needed;

DFEVar ui = initCondition? 0.0 : uFromMem; //initCondition?
0.0 : carriedU;↪→

DFEVar vi = initCondition? 1.0 : vFromMem;
DFEVar wi = initCondition ? 1.0 : wFromMem;
DFEVar si = initCondition? 0.0 :sFromMem;

DFEVar t1 = step===0? 0.0 : t1FromMem;
DFEVar t2 = step===0? 0.0 : t2FromMem;
DFEVar t1Curr = t1+dt;
DFEVar t2Curr = t2+dt;

DFEVar active = dfeBool().newInstance(this);

optimization.pushPipeliningFactor(0.5,PipelinedOps.ALL);
DFEVar stimFlag = heavisidefun(t1Curr - 0)*(1 -

heavisidefun(t2Curr - 1)) + heavisidefun(t1Curr -
300)*(1 - heavisidefun(t2Curr - 301)) +
heavisidefun(t1Curr - 700)*(1 - heavisidefun(t2Curr -
701));

↪→
↪→
↪→
↪→

optimization.popPipeliningFactor(PipelinedOps.ALL);

active = (stimFlag===1)&(cellNumAddress<duration);//#

87

DFEVar stim = active? constant.var(scalarType,0.66) :
constant.var(scalarType, 0.0);↪→

DFEVar prevNeigh = stream.offset(carriedU, -1);
DFEVar nextNeigh = initCondition? 0.0: uNext;

optimization.pushPipeliningFactor(0.5,PipelinedOps.ALL);

DFEVar lap = cellNumAddress===0? ddt_o_dx2 *
(-2.0*ui + 2.0*nextNeigh) :↪→

cellNumAddress===(nx-1)? ddt_o_dx2 *
(-2.0*ui + 2.0*prevNeigh) :↪→

ddt_o_dx2

*
(prevNeigh
+
nextNeigh
-
2.0*ui);

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

optimization.popPipeliningFactor(PipelinedOps.ALL);

DFEVar tvm, vinf, winf;
DFEVar jfi, jso, jsi;
DFEVar twm, tso, ts, to, ds, dw, dv;

optimization.pushPipeliningFactor(0.5, PipelinedOps.ALL);
tvm = (ui > EPI_THVM) ? EPI_TV2M : EPI_TV1M;

twm = EPI_TW1M + (TW2M_TW1M_DIVBY2)*(1+tanh(EPI_KWM*(ui-
EPI_UWM)));↪→

tso = EPI_TSO1 + (TSO2_TSO1_DIVBY2)*(1+tanh(EPI_KSO*(ui-
EPI_USO)));↪→

ts = (ui > EPI_THW) ? EPI_TS2 : EPI_TS1;
to = (ui > EPI_THO) ? EPI_TO2 : EPI_TO1;

tvm = optimization.pipeline(tvm);
twm = optimization.pipeline(twm);
tso = optimization.pipeline(tso);
ts = optimization.pipeline(ts);
to = optimization.pipeline(to);

vinf = (ui > EPI_THVINF) ? Zero : One;
winf = (ui > EPI_THWINF) ? WINFSTAR: (1.0-ui/

EPI_TWINF);↪→
winf = (winf > One) ? One : winf;

vinf = optimization.pipeline(vinf);
winf = optimization.pipeline(winf);

dv = (ui > EPI_THV) ? -vi/ EPI_TVP : (vinf-vi)/tvm;

88

dw = (ui > EPI_THW) ? -wi/ EPI_TWP : (winf-wi)/twm;
ds = (((1.+tanh(EPI_KS*(ui- EPI_US)))/2.) - si)/ts;

dv = optimization.pipeline(dv);
dw = optimization.pipeline(dw);
ds = optimization.pipeline(ds);
optimization.popPipeliningFactor(PipelinedOps.ALL);

//winf = (*ui > 0.06) ? 0.94: 1.0-*ui/0.07;
//twm = 60 + (-22.5)*(1.+tanh(65*(*ui-0.03)));
//dw = (*ui > 0.13) ? -*wi/200 : (winf-*wi)/twm;

//tvm = (*ui > THVM) ? TV2M : TV1M;
//one_o_twm = segm_table[0][th] * (*ui) +

segm_table[1][th];↪→
//vinf = (*ui > THVINF) ? 0.0: 1.0;
//winf = (*ui > THWINF) ? WINFSTAR * one_o_twm:

(segm2_table[0][th2] * (*ui) + segm2_table[1][th2]);↪→
//if (winf >one_o_twm) winf = one_o_twm;
//dv = (*ui > THV) ? -*vi/ TVP : (vinf-*vi)/tvm;
//dw = (*ui > THW) ? -*wi/ TWP : winf - *wi * one_o_twm;
//ds = (((1.+tanh(KS*(*ui- US)))/2.) - *si)/ts;

//Update gates

vi += dv*dt;
wi += dw*dt;
si += ds*dt;

//Compute currents
optimization.pushPipeliningFactor(0.5, PipelinedOps.ALL);

jfi = (ui > EPI_THV) ? -vi * (ui - EPI_THV) * (EPI_UU -
ui)/ EPI_TFI : Zero;↪→

/*if (*ui > THV){
if (((*vi - dv*dt) > 0.0) && *vi < 0.0001){

printf("vi=%4.20f, ui=%f, jfi=%f\n", *vi,

*ui, jfi);↪→
}

}*/
jso = (ui > EPI_THSO) ? 1/tso : (ui- EPI_U0)/to;
jsi = (ui > EPI_THSI) ? -wi * si/ EPI_TSI : 0.0;

ui = ui - (jfi+jso+jsi-stim)*dt + lap;
optimization.popPipeliningFactor(PipelinedOps.ALL);

//generate offset for backward edge
DFEVar uOffset = stream.offset(ui, -loopLength);
DFEVar vOffset = stream.offset(vi, -loopLength);
DFEVar wOffset = stream.offset(wi, -loopLength);
DFEVar sOffset = stream.offset(si, -loopLength);
DFEVar t1Offset = stream.offset(t1Curr, -loopLength);
DFEVar t2Offset = stream.offset(t2Curr, -loopLength);

89

// At the foot of the loop, we add the backward edge

carriedU <== uOffset;

DFEVar memOffset = stream.offset(cellNumAddress,
-loopLength);↪→

uMem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))),
uOffset, (loopCounter === (loopLengthVal-1)));

↪→
↪→

vMem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))),
vOffset, (loopCounter === (loopLengthVal-1)));

↪→
↪→

wMem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))),
wOffset, (loopCounter === (loopLengthVal-1)));

↪→
↪→

sMem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))),
sOffset, (loopCounter === (loopLengthVal-1)));

↪→
↪→

t1Mem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))),
t1Offset, (loopCounter === (loopLengthVal-1)));

↪→
↪→

t2Mem.write(memOffset.cast(dfeUInt(MathUtils.bitsToAddress(X))),
t2Offset, (loopCounter === (loopLengthVal-1)));

↪→
↪→

//write to outputstreams;
io.output("u_out", ui, scalarType,loopCounter ===

(loopLengthVal-1));↪→
io.output("v_out", vi, scalarType,loopCounter ===

(loopLengthVal-1));↪→
io.output("w_out", wi, scalarType,loopCounter ===

(loopLengthVal-1)) ;↪→
io.output("s_out", si, scalarType,loopCounter ===

(loopLengthVal-1));↪→
io.output("stim_out", stim, scalarType,loopCounter ===

(loopLengthVal-1));↪→

}

/***
*
* @param x value to check

* @return heaviside(x) returns the value 0 for x < 0, 1 for x > 0,
and 1/2 for x = 0.↪→

*/

90

protected DFEVar heavisidefun(DFEVar x) {

// //check if the value is below or above zero
DFEVar c = x<0.0? constant.var(dfeBool(), 1) :

constant.var(dfeBool(), 0);↪→
//
// //check if the value is zero

DFEVar z = x===0.0? constant.var(dfeBool(), 1) :
constant.var(dfeBool(), 0);↪→

//
// //assign values regarding to checks - first if value is

below or above zero↪→
DFEVar ret = c?constant.var(scalarType, 0.0) :

constant.var(scalarType, 1.0);↪→
//
// //if x is zero, z is true, as c would not consider this

case, we can disregard the value of c if z is true↪→
ret = z? constant.var(scalarType, 0.5) : ret;

return ret;

}

protected DFEVar tanh(DFEVar x) {
//tangens hyperbolicus: 1-(2/(e^(2*x)+1))

DFEVar v = KernelMath.exp(2*x);
DFEVar approximation = 1- (2/(v+1));
return approximation;

}

}

91

Acronyms

APD action potential duration. 8, 9

CPU Central Processing Unit. 2, 10–16, 21, 22, 25–29, 34–37, 43–48, 50, 53, 54, 57

CUDA Compute Unified Device Architecture. 11–13, 36

CV conduction velocity. 9

DFE Dataflow Engine. 20–22, 25, 28, 30, 31, 33, 45, 46, 53, 57

DFEs Dataflow Engines. 20

EEPROM Electrically Erasable Programmable ROM. 15

FMem Fast Memory in Maxeler DFE. 20, 31, 32, 34, 44

FPGA Field Programmable Gate Array. 11, 14–16, 54, 57

GPU Graphics Processing Unit. 10–13, 15, 16, 35, 36, 44, 45, 47, 48, 54

IDE Integrated Development Environment. 21

LMem Large Memory in Maxeler DFE. 20

PCIe Peripheral Component Interconnect Express. 11

PLD Programmable Logic Device. 14

PLL Phase Locked Loop. 15

SLiC Simple Live CPU. 21–23, 25, 28, 30, 31, 45

SM Streaming Multiprocessor. 13

SRAM Static RAM. 14

VHDL Very High speed Integratd Curcuits Hardware Description Language. 15

93

Bibliography

[1] url: http://www.theeplab.com/B-The-Members-Center/C-Cardiac-
AnatomyPhysiology/F-Action-Potential/CF00-Action-Potential.
php.

[2] url: https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.
c2839.

[3] Christopher J Arthurs, Martin J Bishop, and David Kay. “Efficient simulation
of cardiac electrical propagation using high order finite elements”. In: Journal of
computational physics 231.10 (2012), pp. 3946–3962.

[4] Peter J Ashenden. The designer’s guide to VHDL. Vol. 3. Morgan Kaufmann, 2010.
[5] Ezio Bartocci et al. “Toward real-time simulation of cardiac dynamics”. In: Pro-

ceedings of the 9th International Conference on Computational Methods in Systems
Biology. ACM. 2011, pp. 103–112.

[6] GW Beeler and H Reuter. “Membrane calcium current in ventricular myocardial
fibres”. In: The Journal of physiology 207.1 (1970), pp. 191–209.

[7] Philip Bittihn. Complex structure and dynamics of the heart. Springer, 2014.
[8] J. M. Bower and D. Beeman. “GENESIS (simulation environment)”. In: Scholarpedia

2.3 (2007). revision #89006, p. 1383. doi: 10.4249/scholarpedia.1383.
[9] Alfonso Bueno-Orovio, Elizabeth M Cherry, and Flavio H Fenton. “Minimal model

for human ventricular action potentials in tissue”. In: Journal of theoretical biology
253.3 (2008), pp. 544–560.

[10] John Charles Butcher. Numerical methods for ordinary differential equations. John
Wiley & Sons, 2016.

[11] Fulong Chen et al. “Identification of the parameters of the Beeler-Reuter ionic equa-
tion with a partially perturbed particle swarm optimization”. In: IEEE Transactions
on Biomedical Engineering 59.12 (2012), pp. 3412–3421.

[12] Lorenzo Dematté and Davide Prandi. “GPU computing for systems biology”. In:
Briefings in bioinformatics 11.3 (2010), pp. 323–333.

[13] Mohamed G Egila et al. “FPGA-based electrocardiography (ECG) signal analysis
system using least-square linear phase finite impulse response (FIR) filter”. In:
Journal of Electrical Systems and Information Technology 3.3 (2016), pp. 513–526.

95

http://www.theeplab.com/B-The-Members-Center/C-Cardiac-AnatomyPhysiology/F-Action-Potential/CF00-Action-Potential.php
http://www.theeplab.com/B-The-Members-Center/C-Cardiac-AnatomyPhysiology/F-Action-Potential/CF00-Action-Potential.php
http://www.theeplab.com/B-The-Members-Center/C-Cardiac-AnatomyPhysiology/F-Action-Potential/CF00-Action-Potential.php
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://doi.org/10.4249/scholarpedia.1383

[14] C. Elias. FPGAs für Maker: Eine praktische Einführung in programmierbare
Logik. Dpunkt.Verlag GmbH, 2016. isbn: 9783864901737. url: https://books.
google.at/books?id=PXHwnQEACAAJ.

[15] Export Compliance Metrics for Intel Microprocessors Intel Xeon Processors. Tech.
rep. Revision 2. 2200 Mission College Blvd. Santa Clara, CA 95054-1537 USA: Intel
Corporation, July 2018.

[16] Export Compliance Metrics for Intel Microprocessors, Intel Core Processors. Tech.
rep. Revision 1. 2200 Mission College Blvd. Santa Clara, CA 95054-1537 USA: Intel
Corporation, Apr. 2018. url: https://www.intel.com/content/www/us/
en/support/articles/000005755/processors.html.

[17] Martin Falk et al. “Parallelized agent-based simulation on CPU and graphics
hardware for spatial and stochastic models in biology”. In: Proceedings of the 9th
International Conference on Computational Methods in Systems Biology. ACM.
2011, pp. 73–82.

[18] Flavio Fenton and Alain Karma. “Vortex dynamics in three-dimensional continuous
myocardium with fiber rotation: Filament instability and fibrillation”. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science 8.1 (1998), pp. 20–47.

[19] Du-guan Fu. “Cardiac arrhythmias: diagnosis, symptoms, and treatments”. In: Cell
biochemistry and biophysics 73.2 (2015), pp. 291–296.

[20] D. F. M. Goodman and R. Brette. “Brian simulator”. In: Scholarpedia 8.1 (2013).
revision #129355, p. 10883. doi: 10.4249/scholarpedia.10883.

[21] Radu Grosu et al. “From cardiac cells to genetic regulatory networks”. In: In-
ternational Conference on Computer Aided Verification. Springer. 2011, pp. 396–
411.

[22] Jayantha Herath et al. “Dataflow computing models, languages, and machines for
intelligence computations”. In: IEEE Transactions on Software Engineering 14.12
(1988), pp. 1805–1828.

[23] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of membrane
current and its application to conduction and excitation in nerve”. In: The Journal
of physiology 117.4 (1952), pp. 500–544.

[24] Meyer B Jackson. Molecular and cellular biophysics. Cambridge University Press,
2006.

[25] Alain Karma. “Spiral breakup in model equations of action potential propagation
in cardiac tissue”. In: Physical review letters 71.7 (1993), p. 1103.

[26] Tanaya Katakkar. Field Programmable Gate Arrays (FPGA). url: https://
www.engineersgarage.com/articles/field-programmable-gate-
arrays-fpga.

[27] Dietmar PF Möller. “Guide to computing fundamentals in cyber-physical systems”.
In: Computer Communications and Networks. Springer, Heidelberg (2016).

96

https://books.google.at/books?id=PXHwnQEACAAJ
https://books.google.at/books?id=PXHwnQEACAAJ
https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
https://doi.org/10.4249/scholarpedia.10883
https://www.engineersgarage.com/articles/field-programmable-gate-arrays-fpga
https://www.engineersgarage.com/articles/field-programmable-gate-arrays-fpga
https://www.engineersgarage.com/articles/field-programmable-gate-arrays-fpga

[28] Multiscale Dataflow Programming. Version 2015.1.1. Maxeler Technologies. Aug.
2015.

[29] Venkata Krishna Nimmagadda et al. “Cardiac simulation on multi-GPU platform”.
In: The Journal of Supercomputing 59.3 (2012), pp. 1360–1378.

[30] Denis Noble. “A modification of the Hodgkin—Huxley equations applicable to
Purkinje fibre action and pacemaker potentials”. In: The Journal of physiology
160.2 (1962), pp. 317–352.

[31] Norliza Othman, Nur Atiqah Adon, and Farhanahani Mahmud. “FPGA in-the-loop
simulations of cardiac excitation model under voltage clamp conditions”. In: AIP
Conference Proceedings. Vol. 1788. 1. AIP Publishing. 2017, p. 030105.

[32] Daisuke Sato et al. “Acceleration of cardiac tissue simulation with graphic processing
units”. In: Medical & biological engineering & computing 47.9 (2009), pp. 1011–1015.

[33] Raymond J Spiteri and Ryan C Dean. “On the Performance of an Implicit–Explicit
Runge–Kutta Method in Models of Cardiac Electrical Activity”. In: IEEE Trans-
actions on Biomedical Engineering 55.5 (2008), pp. 1488–1495.

[34] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu programming.
Pearson Education, 2013.

[35] Dan Zuras et al. “IEEE standard for floating-point arithmetic”. In: IEEE Std
754-2008 (2008), pp. 1–70.

97

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Background
	Cardiac Arrhythmia
	Simulation of Cardiac Electrophysiology
	State Of The Art
	Maxeler Technology

	Maxeler Implementation
	Single Cell
	Homogenous 1D Cable

	Results
	Alternative Implementation
	Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Appendix A: Maxeler Isolated Single Cell
	Appendix B: Maxeler Minimal Model Homogeneous 1D Cable
	Acronyms
	Bibliography

