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Kurzfassung

Stress ist Teil des alltäglichen Lebens und beeinflusst die persönliche Gesundheit und
das Wohlergehen in ungünstigen emotionalen Zuständen wie innere Unruhe, Furcht
oder Zorn. Chronischer und unbehandelter Stress kann zu unheilbaren Krankheiten,
Beziehungsverschlechterungen sowie hohen ökonomische Kosten führen. Unter dem Be-
griff Stress versteht man nach Hans Selye „Die unspezifische Antwort des Körpers auf
jede Anforderung nach Veränderung.“. Diese unspezifische Antwort erschwert die Quan-
tifizierung von Stress. Stressforschung entwickelte verschiedene computerunterstützte
Techniken zur Erkennung von Stress für Vorteile in vielen Bereichen. Hauptsächlich
physiologische Parameter werden verwendet um Stress zu diagnostizieren. Die Sammlung
dieser Gesundheitsdaten mit Hilfe von Kontaktsensoren kann unpraktisch, besonders
für kontinuierliche Stresserkennung, sein. Kürzliche Studien versuchten dieses Problem
basierend auf nicht-invasiven Visual Computing-Techniken zu lösen. Die Erkennung von
Stress basierend auf Modellen von Gesichtsausdrücken zeigt vielversprechende Resultate.

Diese Diplomarbeit stellt eine Lösung zur Erkennung von Stress basierend auf Ge-
sichtsausdrücken vor. Das entwickelte System ermittelt Stress basierend auf extrahierten
Gesichtsmerkmalen von Videos. Stress assozierte Gesichtsmerkmale von Kopf, Augen
und Mund sowie die Herzrate von Gesichtsphotoplethysmographie werden verwendet
um Stress mittels Machine Learning Algorithmen zu erkennen. Eine Performance Eva-
luierung der entwickelten Lösung mit Vergleich von existierenden Herangehensweisen
in der Literature sowie an annotierten Daten wird durchgeführt. Des Weiteren werden
Anforderungen an Gesichtsbilddaten sowie die Einschränkungen der umgesetzten Lösung
diskutiert.
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Abstract

Stress is a part of everyday life and impacts a person’s health and well-being in less
favorable emotional states such as anxiety, fear or anger. Chronic and left untreated
stress can lead to incurable diseases, relationship deterioration and high economic costs.
Under the term stress ”the non-specific response of the body to any demand for change”,
defined by Hans Selye, is understood. This non-specific response makes it difficult to
quantify stress conditions. Stress research developed distinct computational techniques to
recognize stress for benefits in a wide range of fields. Mainly physiological parameters are
used to diagnose stress. Gathering this health data with the help of contact sensors can
be impractically, especially when monitoring a person continuously. Recent studies try
to solve this problem based on non-invasive visual computing techniques. The detection
of stress based on facial expression models offers promising results.

This thesis introduces a solution to detect stress based on a subject’s facial expressions.
The developed system determines human stress based on extracted facial features from
video data. Stress associated facial cues from head, eye, mouth as well as the heart
rate from facial photoplethysmography are used to predict stress by machine learning
algorithms. A performance evaluation of the developed solution with comparison of
existing approaches in literature as well as on annotated data is conducted. Moreover,
requirements on facial image data as well as limitations of the implemented system are
discussed.
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CHAPTER 1
Introduction

Stress plays a common role in the person’s subjective quality of life [1]. When talking
about stress, it is associated with the stressor. A stressor is an actual or perceived threat
to an organism, which then results in the response to the stressor, as the stress response.
Based on this mechanism, humans try to cope with stressors through different coping
responses [2, 3]. The interaction with stress can be either in a positive or a negative way
and plays a crucial role [4]. Negative coping with stress shows to significantly alter the
human immune responses and leads to a reduction of mental and physical tolerance to
diseases [5].

This significant connection between body and mind takes an active part in the
manifestation of stress. Physiological diseases as gastrointestinal distress, heart disease
and cancer are linked to unresolved lifestyle stresses. Further, it is shown that stressful
events can influence longevity through cardiovascular diseases, immuniological disorders
and consequences of normal aging. [6, 7, 5]

Besides individual negative health effects, stress can have an impact on human
relationships [8, 9] as well as on economic costs [10]. The known term ”burnout” describes
emotional and mental exhaustion which is associated with work stress [11, 12]. Especially
in Western countries and in Japan burnout significantly impacts modern society [13].

In order to help individuals, stress conditions and associated issues have to be
identified [14, 15]. Distinct stress responses such as body or behavioral signals are used
to measure stressful events [16, 17]. The different reactions to stress, due to experience,
age, gender etc., results in variable stress responses [18]. Computational techniques such
as machine learning (ML) methods, enable to model these stress conditions, despite
its complex nature [19, 20]. Furthermore, automated and continuous analysis of stress
conditions as well as the extraction of non-invasive stress signals can be performed by
computational approaches [18, 21, 17].
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1. Introduction

Table 1.1: Workers in the EU-27 reporting each individual symptom in percentage [26]

Symptom
Backache 24.7

Muscular Pain 22.8
Fatigue 22.6
Stress 22.3

Headaches 15.5
Irritability 10.5
Injuries 9.7

Sleeping Problems 8.7
Anxiety 7.8

Eyesight problems 7.8
Hearing problems 7.2
Skin problems 6.6
Stomach ache 5.8

Breathing difficulties 4.8
Allergies 4.0

Heart disease 2.4
Other 1.6

1.0.1 Motivation

Stress at work is present in Western countries, ranking as fourth reported individual
symptom impacting health in the European working conditions survey, as illustrated
in Table 1.1 [22, 23, 24]. In Austria, a study by an official representation of employees
assesses that 30% of all Austrian employees suffer from high mental stress with an increase
of mental stress from 9% to 13% in the years from 2010 to 2012 [25].

This situation reveals the importance to interpret stress responses and recognize
stress to diminish possible risks [23, 24]. In order to improve the quality of life and
prevent diseases, the control and suppression of stress is of interest [5]. Research on
stress shows benefits, such as increasing work productivity to benefiting the wider society
or improving day-to-day activities [18]. The measurement of stress provides potential
for psychological therapies [15], stress management and intervention [27, 28], human
interaction and affective computing [19, 29] as well as for stress monitoring [18].

Stress can be determined through the interpretation of distinct signals of the body [18].
Computational analysis of these measured body signals allows to detect stress [30].
With the use of these methods a technology-based evaluation of stress conditions can
be conducted without expert knowledge or self-reports [31, 32]. Techniques such as
machine analysis enable to analyze variable stress signals [18]. Furthermore, visual
computing methods allow to extract stress responses such as physiological signals [33],
body language [17] or facial expressions [32]. Hence, this enables the remote assessment
of stress conditions without the need of body contact sensors [19, 17, 34].

2



1.0.2 Aim

The aim of this thesis is to outline an approach to detect stress based on non-invasive
visual computing techniques. Focus of the presented approach is set on the use of facial
image/video data captured by digital cameras. The detection of stress from these facial
data is of particular interest due to the association of facial signs and expressions with
classification and analysis of stress [18, 35, 32]. Further, limitations of stress detection
approaches utilizing body contact sensors and techniques, such as accelerometer, skin
conductance, electrocardiogram, are addressed by the developed solution. Visual stress
detection approaches employ techniques to derive physical stress signals without the need
for equipment and tools [18]. The analysis of behavior [27], body language [17], facial
features and expressions [32, 1] by visual computing techniques enables to detect stress
remotely. Possible disadvantages from contact sensors, as obtrusiveness, limited mobility
and dexterity, uncomfortable or unnatural feelings for the wearer, can be avoided with the
utilization of a visual stress detection approach. Contact sensors measurements such as
electroencephalography (EEG), electrocardiogram (ECG), galvanic skin response (GSR),
energy expenditure (EE) etc., are in general tethered and require accurate placement as
well as knowledge of application [36, 37].

The main part of this thesis is the development of a non-invasive solution for the
detection of stress based on facial video data. A focus is set on visual extraction of stress
associated facial features, such as eye aperture [38], blinking [39], heart activity [33],
mouth [34] and head movements [40]. With the help of machine learning, a model
estimating human stress from these facial features is implemented. Limitations and
further improvements are discussed based on findings of facial stress signs and on results
from the implemented machine analysis. An overall comparison with existing research on
stress detection in the field of visual computing and annotated video data evaluates the
performance of the developed solution.

Besides the stress detection implementation, the impact of data quality on stress
analysis is discussed. Requirements concerning the recording of visual data, such as
resolution, lighting, angle of view, can influence the performance of stress detection.
To deal with this issue, specifications on data quality regarding visual algorithms are
presented.

1.0.3 Contributions

The extraction of stress associated features enables the detection of stress conditions
by computational methods [31]. Machine analysis is able to to estimate stress based
on derived features from body contact sensors as well as from visual sensors [30, 41].
Due to disadvantages of contact sensors, such as obtrusiveness [18], limited mobility and
more [19], this thesis focuses on the detection of stress with the help of visual computing
techniques. The following approaches are developed and outlined:

• A developed stress detection solution is presented, which enables to detect stress
from video sequences. Hence, obtrusive contact sensor measurements for subsequent

3



1. Introduction

stress detection are not required. Conditions of stress are identified in relation to a
subject’s non-stressed/neutral emotional state.

• A functional experiment protocol is developed to establish a facial stress database.
A facial video dataset of subjects in stress and non-stressed emotional states is
gathered and annotated.

• Requirements and technical specifications on data for stress and facial analysis are
discussed.

• The feasibility and performance of stress detection is assessed on the conducted
experiment data as well as on a second dataset. Results of machine analysis
are compared with approaches in current literature. Moreover, feature selection
highlights most contributing facial attributes for classification.

• A statistical analysis is applied on the extracted facial stress features. Further,
extracted features from stressed and non-stressed emotional states are compared.

1.0.4 Structure

The structure of this thesis is the following. In Chapter 2 a definition of stress as well as
features associated with stress are presented. Further, state-of-the-art stress detection
approaches based on distinct imaging modalities and techniques are outlined. Introduced
approaches using RGB imaging are sectioned into photoplethysmography (PPG)-based
and model-based solutions. The remaining stress detection approaches include thermal
imaging (TI) and hyperspectral imaging (HI)-based solutions.

Chapter 3 addresses stress and facial expression data. Data quality and data
acquisition are discussed due to the importance for stress detection. Factors influencing
data quality as well as face acquisition characteristics, such as specifications, data modality,
image resolution and robustness, are taken into consideration. Additionally, a comparison
of existing stress and facial expression databases is conducted.

In the methodology chapter 4 an experiment protocol for the acquisition of a stress
dataset as well as a stress detection solution is introduced. The setup, procedure and
stress inducing task for establishing this dataset is presented. Besides this experiment,
the implementation of a stress detection solution based on facial features is described.
These facial features characterize head, eye, mouth and heart rate from facial video.
Moreover, preprocessing steps such as face and landmark detection are depicted.

The implemented stress detection solution is evaluated by two distinct datasets in
Chapter 5. Outcomes of stress detection are presented and compared by classification
performance. Additionally, the individual features utilized for stress analysis are discussed.
The final chapter 6 summarizes findings of this thesis and possible limitations of the area
of research.
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CHAPTER 2
Related Work

Stress detection is of interest in distinct research fields such as biology [42], psychology [43],
neuroscience [44], medicine [45] or computer science [46]. The detection of stress can
be performed with a range of methods, such as questionnaires, hormone measurements,
physiological sensors, speech etc. [43, 18]. Obtaining these indicators of stress can require
body contact sensors or expert knowledge [47, 48]. As illustrated in Figure 2.2, stress
cues can be obtained using distinct measurement sources of the body [18]. Due to the
required knowledge to recognize stress states, research strives for an automatic detection
of stress by computational analysis [49, 18]. Furthermore, the non-intrusive remote
detection of stress with the use of visual methods is preferable over body contact sensors
in applications such as vehicle drivers, surgeons, pilots in flight, and more [18]. Current
visual approaches focus on stress detection over facial images [50, 20]. Depending on
the chosen approach, the optical stress detection solutions utilize RGB, thermal or
hyperspectral imaging [19, 20, 51]. The majority of these solutions are designed similar
to traditional automated facial expression analysis (AFEA) systems. AFEA systems
comprise, as illustrated in Figure 2.1 of face acquisition, facial feature extraction and
machine analysis [19, 20, 23]. In contrast to these AFEA systems, solutions implementing
machine analysis methods such as deep learning do not require handcrafted features
and differ from the common AFEA system [50]. Stress detection approaches using RGB
imaging distinguish stress based on photoplethysmography (PPG) or models of the
face [19, 20]. Thermal and hyperspectral imaging approaches detect stress based on
distinct light radiation patterns of the skin [23, 51].

2.1 Definition of Stress

Stress can be defined in distinct ways [52, 53]. One well known definition is by Hans
Selye who understood stress as ”the non-specific response of the body to any demand for
change” [2]. The term stress is linked with the trigger of stress conditions, the stressor,
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2. Related Work

Figure 2.1: Automatic facial expression analysis steps of image/video data. Pre-Processing
(Face acquisition) step, Feature Extraction based on distinct approaches, Machine Analysis
of Facial Actions by Action Unit (AU, atomic facial muscle actions) processing. [49]

as well as with the answer to the stressor, the stress response [54]. When someone
experiences stress, a temporarily physiological and/or psychological imbalance is caused
by the stressor [4]. The stressor has direct effect on the body and can be categorized
into physical/physiological or mental/emotional stressor [5, 54]. A physical/physiological
stressor impacts the body over external environmental conditions (e.g. heat, cold, noise)
or through internal demands on the body [54]. In contrast to the physical stressor,
the mental/emotional stressor effects the cognitive systems (thought processes) or the
emotional system through information input [54]. As Selye stated, due to the stressor,
the demand for change, a non-specific response is triggered. This response is of interest
in order to detect stress conditions and has been researched extensively [46]. Literature
of interest for this thesis focuses on the negative stress or distress, which can be harmful
and can cause negative consequences [46]. The detection of stress is based on the stress
response [46]. These responses can be assessed through physiological measurements as
well as from facial expressions (see Figure 2.2) [1]. Typical physiological stress responses
include:

• sweat production, increased heart rate and muscle activation [55]

• faster respiration and increased blood pressure [56]

• changes in speech characteristic [56]

• skin temperature changes [31]

• decreased heart rate variability [57]

• varying pupil diameter [46]

In addition to the listed physiological responses, facial stress responses can be notice-
able. Table 2.1 categorizes facial features associated with stress into head, eyes, mouth,
gaze and pupil characteristics. Head movements have shown to be more frequent [31],
more rapid [32] and there is greater head motion [40] when under stress. The eye region
features such as eye aperture, blink rate, eyelid response, gaze distribution and variation
as well as pupil size variation are researched. Blinking can be caused by internal and
external stimulus and typically increases with stress and anxiety [58, 32]. Moreover,
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Pupil

Diameter
Eye Gaze

Voice

EMG

BVP

GSR

HRV

Hand & 

Finger

Movements

Facial Movement

Gesture,

Interaction,

Behaviour

Physical Measure

Physiological Measure

Legend

EEG

Figure 2.2: Typical physiological and physical measures utilized to detect stress. The
usual measurement sources, electroencephalography (EEG), electromyography (EMG),
heart rate variability (HRV), blood volume pulse (BVP), galvanic skin reponse (GSR),
are shown in the figure. [18]

the gaze direction and gaze congruence changes depending on the level of stress [59].
Pupil size and ratio variations are associated with emotional, sexual or cognitive arousal
and are used as stress and anxiety indicator [60]. Lip movements are linked to stress
conditions [32], especially asymmetric movements characterize high stress levels [34].

2.2 Stress Detection Using RGB Imaging

Stress detection using RGB imaging as data source is widespread [15, 1]. RGB imaging
produces images which can be perceived by the human eye. Video recordings or images
for stress detection are mainly captured with the use of RGB cameras [15, 20]. This
imaging data is then processed to recognize a person’s stress state. As in the case of
affective computing and facial action coding system (FACS) 1 analysis, facial expressions
are a major research topic for the detection of stress [49, 20]. In order to gain insight into
facial expressions, model-based approaches representing a person’s face are used. Primary

1FACS; definition of 32 atomic facial muscle actions named action units (AUs) [49]
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2. Related Work

Table 2.1: Facial features associated with stress/anxiety categorized [1].

Head Eyes Mouth Gaze Pupil
Head Move-
ment

Blink rate Mouth shape Saccadic eye
movements

Pupil size vari-
ation

Skin color Eyelid response Lip deforma-
tion

Gaze spatial
distribution

Pupil ratio vari-
ation

Heart rate (fa-
cial PPG)

Eye aperture Lip corner
puller/depressor

Gaze direction

Eyebrow move-
ments

Lip pressor

facial features, including movements of eyes, lips, eyebrows and head are extracted from
these models for subsequent machine analysis [1, 20]. Besides model-based approaches
utilizing facial features, photoplethysmography (PPG)-based stress detection is conducted
in literature [19, 15]. With the advancements in PPG it is possible to derive a person’s
blood volume pulse (BVP) from RGB images [21]. This information can then be used
to detect stress states. Both model-based and photoplethysmography-based approaches
show promising results in the detection of stress [33, 1]. Depending on the evaluation
method, a high agreement with ground truth measurements or a classification accuracy
up to 91.68% for machine learning algorithms can be achieved [15, 1].

2.2.1 Photoplethysmography-based Stress Detection

The optical measurement technique for blood volume changes, photoplethysmography
(PPG), is used in clinical applications. The use of PPG requires a light source to
illuminate a tissue (e.g. skin) and a photo detector to capture subtle light intensity
changes associated with volume changes in the tissues blood vessels. With the help of
pulse wave analysis techniques, the blood volume pulse (BVP) can then be constructed
from the measured light intensity changes. [61]

Further research in PPG show that pulse measurements are also possible with
normal ambient light instead of dedicated light sources [62]. Poh et al. [21] illustrates
the potential of PPG by the use of ambient light and a low cost RGB camera achieving
high agreement with measurements from tested PPG sensors. Through the possibility
of measuring blood volume pulse (BVP) remotely in a non-invasive manner PPG gains
interest in visual stress detection [15, 33].

McDuff et al. [33] study discusses a remote detection of cognitive load such as
measuring stress in a workplace environment. A novel five band digital camera is used
in remotely capturing cognitive stress. The classification of stress follows a person-
independent algorithm integrating physiological parameters. Measuring physiological

8



2.2. Stress Detection Using RGB Imaging

stress indicators, such as the heart rate variability (HRV), is a main part of their study.
Their conducted work is based on the PPG advancements by Poh et al. [21]. A camera
sensor with five color bands (RGBCO), adding cyan and orange frequency, instead of the
traditional red, green and blue (RGB) band sensor, is employed for extraction of the HRV.
With the additional color sensor bands, the performance of remote PPG measurements
compared to a traditional RGB sensor is increased. This allows the remote capturing of
a subject’s physiological parameters as heart rate (HR), breathing rate (BR) and HRV.
In Figure 2.3 the automated method for capturing the HRV gets illustrated. In the first
step, the facial region of interest (ROI) is segmented and the color channel signals are
spacial averaged for each frame. An independent component analysis (ICA) then extracts
the BVP from the color data. The strongest BVP signal is then selected and used to
calculate a HRV spectrogram.

For the evaluation of the developed method, a stress inducing experiment protocol is
conducted. Participants are seated in front of a camera and facial images were captured.
The experiment comprises of phases at rest as well as under stress. A mental arithmetic
task induces stress through cognitive workload. In addition to the arithmetic task, the
subjects are told that they were competing against each other to enhance stress conditions.
While the experiment is taking place, reference measurement such as the subject’s contact
PPG signal, respiration as well as electrodermal activity is recorded with the aid of
external sensors.

The prediction of stress is done using the physiological parameters measured from
the camera PPG. As stress classifiers a Naive Bayes Model and a linear support vector
machine (SVM) are chosen. The input features consist of mean HR, mean BR and
distinct modes of the HRV. Testing is done after training the models with features from
9 out of 10 video sequences, which left one test sequence. Furthermore, training and
testing is done 10 times (person-independent), once for each participant. Results of
the predictions show an accuracy of 85% for the SVM and 80% for the Naive Bayes
Model. The physiological information used as input features influence depending on the
parameter classification. Whereas the BR is higher for 90% of the participant during
cognitive stress, the HR alone is not a strong predictor of stress or resting conditions.
Comparing all health input parameters (see Table 2.2), the SVM classifier provides with
85% the best accuracy. The best predictors for cognitive stress are BR and HRV.

In conclusion, McDuff et al. solution shows to remotely (at a distance of 3m) measure
physiological parameters with the use of a digital camera. Remote measurements close to
contact measurement and high classification accuracy suggest useful applications of their
technique. However rigid head movements, facial expressions and additional stressors
provide further research opportunities.

McDuff et al. [19] recent work evaluates the cognitive stress detection using a digital
camera. Motivation for their study is building a non-intrusive system, the so called
COGCAM, determining stress during computer work. In their conducted study a test
set-up with a digital camera as well as demanding computer tasks was defined (see
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Table 2.2: Overview of the classification accuracy for Naive Bayes Model and SVM with
different health input features [33].

Accuracy
(%)

Random HR BR HRV All

Naive Bayes 50 65 75 70 80
SVM 50 60 75 70 85

Figure 2.3: Illustration of an automated method used to recover a HRV spectrogram from
video sequences of a human face. 1) Detection of facial landmarks and segmentation of
face region of interest (ROI) (excluding the region around the eyes), 2) Spatial averaging
over time of each color channel from the ROI, 3) Calculating source signal via Independent
Component Analysis, 4) Selection of strongest blood volume pulse (BVP) signal and
inverting if necessary, 5) Interpolation of BVP signal, BVP peak detection, inter-beat
interval (IBI) calculation, 6) HRV spectrogram calculation. [33]
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Figure 2.4). Participants sit in front of a camera, while they are recorded completing
mentally demanding tasks such as a ball control task and a berg card sorting task. In the
ball control task the user’s goal is to keep the ball centered on the screen with the challenge
that the ball is drawn on it’s own to the edges of the screen. If a user failed centering
the ball and it reaches an edge, a loud audio buzzer rang. Additionally participants are
told that their performance is measured and compared to others for increasing stress
levels. The second berg card sorting task is a problem solving exercise by sorting cards
into one of four piles based on rules that are not explained to the participants. While
sorting cards, rules could randomly change without indication. Both, the berg card
sorting task and the ball control task, last three minutes ending automatically and are
sufficient challenging for participants.

A PPG signal from each video of the experiment is recovered and physiological
data as HR, BR and HRV (in different modalities) are calculated using the previous
approach from McDuff et al. [16]. The determination of stress is performed with a
Naive Bayes classifier, which is trained using independent physiological data from a
preliminary study [33]. Furthermore, the following seven physiological features are used
in the classification model: i) HR, ii) BR, iii) HRV low frequency (LF) normalized power,
iv) HRV high frequency (HF) normalized power, v) HRV LF/HF ratio, vi) HRV LF total
power, and vii) HRV HF total power. With the use of the extracted features the Naive
Bayes classifier reaches an accuracy of 86% for distinguishing between rest vs. cognitive
load state. Evaluating the different input parameters results suggest that the HRV was
the best predictor for cognitive load in comparison to HR and BR. Despite that the
preliminary study [33] states the BR as a powerful predictor, the different type of task
suggests to influence the prediction outcomes. Moreover, the mean predicted cognitive
stress of participants is assessed. As illustrated in Figure 2.5, 70% of the participants
show a higher mean predicted stress during both experiment tasks compared to the
resting periods. Especially during the ball task, stress conditions are significant higher
compared to the resting state.

Overall McDuff et al. work demonstrates the remote measurement of HR, BR and
HRV from data gathered by a digital camera during computerized tasks. With the
use of this data and person-independent prediction models, stress between rest periods
and cognitive demanding exercises can be differentiated. Furthermore, results suggest
a correlation between distinct stress inducing tasks and feature types on prediction
outcomes.

Bousefsaf et al. [15] introduces a framework for the detection of mental stress. A
lion’s share of their work builds on the non-invasive remote measurements of the heart
rate variability (HRV) via PPG. A subsequently conducted study by them shows the
feasibility of the detection of mental stress. Their developed framework consists of
image and signal processing (as illustrated in Figure 2.6). In the first step of their
presented framework, video data gets recorded using a HD camera capturing a subject’s
face. Afterwards, an automatic face detection with pan, tilt and zoom parameter (PTZ)
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Figure 2.4: a) Experiment set-up. Participants are completing tasks on a laptop while
sitting in front of a camera recording them. b) Screenshots of cognitive stress inducing
tasks performed on a laptop. [19]

Figure 2.5: Posterior probability prediction of cognitive stress. i) For each task and
participant. ii) Average probability (with 95% confidence intervals) for each task across
all participants. During the ball task the predicted stress is significant higher compared
to the rest period. Rest task, N=20; Ball task, N=30; Card task, N=30. [19]

calculation is performed for the following preprocessing. In the preprocessing step, a skin
detection mask for collecting pixels is employed and the pixels’ color space is converted
from RGB to CIE LUV2. The conversion of from the RGB color space to LUV provides a
better PPG signal due to reduction of light variations and head movements. With color
converted pixels then the U component, representing a red to green color indicator, is
calculated. A spatial averaging over the U pixel intensities from the skin detection with
further noise reduction and a custom algorithm results in an instantaneous heart rate
trace.

In an experiment with twelve students Bousefsaf et al. evaluate their proposed
framework. The participants are filmed during completion of the stress inducing Stroop
color word test [64]. Each stress test consists of an introduction session, two stress

2CIE LUV [63]

12



2.2. Stress Detection Using RGB Imaging

Figure 2.6: Framework overview. (a) Face detection and pan, tilt, zoom (PTZ) computa-
tion is performed. (b) Skin detection isolating pixels containing PPG information. (c)
Conversion of color space RGB to LUV. (d) U component calculation combined (AND)
with skin detection information. (e) Spatial averaging over U pixel intensities of a set of
frames, resulting into a single raw signal. [15]

sessions (SS) and relaxation sessions (RS) between. After the data is gathered, stress
analysis is applied on the relaxation session and stress session videos. The computed HRV
signals are then compared against electrodermal response ground truth measurements.
A typical example of their computed results is illustrated in Figure 2.7. The plotted
HRV stress curve is in close range with the electrodermal response (EDR) measurements.
In general, the experience shows that in stress conditions the HR increases, which also
influences the HRV. During relaxation the HRV inclines to be rhythmic, whereas under
stress HRV tends to be chaotic and disordered. To detect these stress vs. relaxation
rhythm fluctuations in HRV, Bousefsaf et al. compute the third derivative of the captured
HRV signal. The conducted remote measurements of HR and HRV indicate a powerful
approach for monitoring and evaluating mental stress of a person. Their use of an
affordable technology, a low-cost camera, for measuring physiological parameters provides
a feasible method to asses mental stress.
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Figure 2.7: Results of stress detection for two participants. The dashed lined plot
corresponds to the low-cost camera derived stress signal. The solid-line plot represents
the EDR trace. [15]

2.2.2 Model-based Stress Detection

Model-based approaches are particularly suited for the interpretation of faces in images
and are used in state-of-the-art literature [65, 66]. The goal of these approaches is to
create or fit a model in order to represent faces in video or image data optimally [65]. With
the use of a 2D or 3D facial model, the appearance of a face can be described. Further,
parameters derived from the model can be helpful to characterize pose, expression or
identity of the face [65]. These parameters can be obtained by facial feature extraction
methods such as deformation extraction or motion extraction methods [67]. Deformation
extraction methods (e.g. Active Appearance Model (AAM) [65]) rely on a reference image
to detect the facial changes (the deformations) [67]. Motion extraction methods directly
focus on the changes in the face due to facial expressions [67]. Facial modeling and
the derived information is used in a wide range of applications from video surveillance,
virtual reality, training programs, facial expression analysis and more [68, 69]. Solutions
in stress detection also employ model-based approaches to link facial expressions with
stress states [34, 32]. Moreover, extracted facial features such as movements of eyebrows,
lips and head as well as blinking, gaze etc., are of interest for stress detection [70].

In the work of Giannakakis et al. [1] a framework for the detection and analysis
of stress and anxiety states is introduced. Detection and analysis of these states are
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conducted through video-recorded facial cues and heart rate estimation. Further, an
experiment protocol for the collection of video material is defined. Participants are filmed
while being exposed to external and internal stressors visible on a computer monitor in
front of them. Distinct phases and tasks such as social exposure phase, emotion recall
phase, stressful images/mental tasks and a stressful videos phase, are completed by
subjects. After capturing neutral, stressed and relaxed video data from the participants
stress detection and analysis is performed. As a first step of stress detection, input data
gets preprocessed. Histogram equalization is applied for enhancing contrast before face
detection and facial region of interest (ROI) determination took place. For the facial
ROI detection active appearance models (AAMs) [65] are chosen.

With the AAM, stress indicators as eye and mouth related features as well as head
movements can be extracted from the video data. In the case of the eyes, a time series
of eye-aperture changes is detected using landmarks around the eyes, resulting in a
calculated mean aperture value as a feature. Additionally, as a second eye feature,
blinks per minute is extracted from the same eyes aperture time series. Mouth related
features are calculated using the optical flow algorithm. Stress indicators such as reduced
rhythmicity and fast mouth movements can be extracted from the optical flow maximum
magnitude signal. Head movement and head velocity are tracked using AAM with
landmarks preserving information under translation and rotation. As an additional
feature, the HR is calculated through facial PPG [21].

After feature extraction, stress detection with the use of machine learning algo-
rithms is performed. Distinct algorithms such as k-nearest neighbors (k-NN), Generalized
Likelihood Ratio, SVMs, Naive Bayes classifier and AdaBoost classify the data. The
classification is performed task-wise by differentiating between feature sets during neutral
and stress phases. The highest classifier accuracy with 91.68% is reached by the Adaboost
classifier, whereas other tested algorithms show an accuracy between 80% to 90%. These
results show a stress classification compared to related studies and approaches using
bio-signals. Giannakakis et al. conducted research shows that facial cues such as head
movements, heart activity, eye as well as mouth related features can be used to determine
stress and anxiety from video data.

Aigrain et al. [17] develop an automatic stress detection approach based on facial
and body activity features. Their solution allows to detect stress from RGB video and
depth data. The classification of stress and non-stress states is performed with the help of
SVMs. Feature extraction is applied on the data (Skeleton, Video of the body) provided
from a Kinect 3 and on additional RGB data (Video of the face) from HD camera. The
depth data enables the extraction of emotion associated features such as the quantity of
movement, high body activity and posture changes as well as the detection of self-touching.
The quantity of movement (QoM) is calculated as the displacement of each joint from
the skeleton (SQoM) and as RGB vector from the Kinect image data (IQoM). Both
calculations are applied frame-wise. For the extraction of the body activity and posture

3Microsoft Kinect; motion sensing input device
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changes the peaks of the QoM calculations are used. Self-touching is detected with the
help of the skeleton data and a custom skin detection algorithm for precise location
of the hands. A difference is made between hand self-touching and head self-touching.
Facial features include 12 AUs defined in the facial action coding system (FACS). These
AUs describe movements of eyebrows, lips, check, nose, chin and jaw. The detection of
the facial AUs is done with the method outlined by Nicolle et al. [71]. In the proposed
method, AUs are detected using regression based classification with SVMs. Features for
AU classification are shape-based with 49 facial landmarks as well as appearance-based
by extracting histogram of oriented gradients (HoG) descriptors [72]. The HoG descriptor
features provide additional information and even out possible landmark tracking error in
challenging conditions.

The evaluation of Airgrain et al. solution is performed on data from a stress
experiment conducted by them. Fourteen subjects are filmed while being in stressed
and non-stressed states. Afterwards the videos are labeled based on the subject’s self-
assessments. The classification of the videos is performed with the help of SVMs. Different
classifier parameters (kernel function, etc.) and features (body activity vs. facial) are
evaluated. A classifier accuracy of 77% shows the ability of their developed solution to
detect stress.

Metaxas et al. [34] implements a model-based dynamic face tracking system for the
detection of stress. Evaluation and development of their presented system is performed
with video data from a stress experiment of University of Pennsylvania NSBRI center.
Participants, taking place in the psychology study, experience high and low stress
situations while they are video recorded. The presented tracking system of Metaxas et al.
uses deformable model tracking, which fits a generic model to a subject’s face. In general
the initialized deformable face model updates accordingly to the movement of a given
subject’s face. These deformations are tracked by a set of n parameters q. A function Fi
that takes deformation parameters q, then finds from every point i of the surface model,
the according position pi 2.1 in the approach’s world frame.

pi = Fi(q) (2.1)

For fitting and tracking of the deformable model a 2D displacement algorithm, called
”image forces”, is used and transforms to n-dimensional displacement parameter space fg.
Image forces’s displacement can be described as the difference between where a point of
the model is situated and where it actually is on the image. Displacements in the new
displacement space can then be expressed as following 2.2:

q = fg + Finternal(q) (2.2)

where Finternal(q) is the result of internal forces or the elasticity of the model. Further
calculations of displacement and projection into image space results in face models as
illustrated in Figure 2.8.
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Figure 2.8: Illustration of the face model with left and right mouth corner movements [34]

With the help of the established model, stress detection can then be performed
within two stages. In the first stage, movement patterns in the region of eyebrows, mouth
and eyes are recognized tracking the nonrigid deformation components of a model’s
parameter vectors. Especially finding stress response patterns such as head-, eye- and
mouth- movements, blinking as well as negative facial expressions is necessary. One
important indicator is eye blinking, which is harder to detect due to missing model
information. A custom grayscale algorithm is implemented over the eye regions, the holes
in the deformable model, and observes the grayscale change rates of opened and closed
eye lids. For the second stress detection stage hidden Markov models (HMMs) process
the video signals for finding stress patterns. Hidden Markov models (HMMs) provide
benefits in segmenting input data implicitly, state-based detection of signals as well as
providing an inherent degree of variation. Training of the HMMs is done on hand-labeled
examples of stress video sequences e.g. rapid head movements, eye blinking and more.

The HMM classifies test data and detected stress responses from the facial track-
ing data. Evaluation of 25 datasets with one half of low-level stress sequences and
the other half with high-level stress sequences is done with two HMMs. Each level of
stress is analyzed by one specific HMM. Training and test data are split by 75% to
25%, which results in a correct classification of low/high stress conditions in all test
cases. Changing the training and test data ratio to 50% - 50% results in 12 out of 13
correct classifications. Generally speaking, the approach by Metaxas et al. provides a
method for detection of stress from dynamic data by using deformable models and HMMs.

Another work in the field of stress detection is conducted by Dinges et al. [32]. In
their study an optical computer recognition (OCR) for the detection of facial expressions
related with stress is developed. Main part of the OCR algorithm is based on a similar
approach published by Metaxas et al. [34] using deformable models. These deformable
models allow a representation of a subject’s face with the use of a statistical technique
called cue integration [73]. In the cue integration method numerous low-level visual
computing procedures extract two-dimensional information from a video-recording which
can then be transformed into the three-dimensional space. Tracking the created three-
dimensional surface, the deformable model (see Figure 2.9), translation and orientation
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of the face as well as movements of eyebrows, mouth etc. is possible. Further, with the
use of a deformable model, it is feasible to recognize facial features when under stress.

For the evaluation of their approach facial video data from participants exposed to
low-stressor and high-stressor scenarios is gathered. Distinct psychological test variations,
mainly workload tasks, are designed for triggering a subject’s stress. After each test,
a rating and assessment of alertness, physical and mental fatigue, exhaustion, stress
and other factors is done. In addition, stress reactions are registered using self reports,
salivary cortisol as well as HR. Main characteristic for the detection of stress through
the deformable model is the nonrigid deformation component of the model’s parameter
vector. This parameter vector represents movements of the eyebrow, mouth and nearby
regions. Furthermore, eye blinking is detected using the change of grayscale values when
opening or closing the eyes. Mouth movements, especially asymmetric lip movements,
are recognized using an image-based method instead of the deformable model.

The classification of stress signal is done with the use of HMMs. Based on the fre-
quency of emerging facial stress features the HMM decides when a subject is under stress
or not. The presence of stress is identified by which specific patterns e.g. eye blinking
together with rapid head movements occurs simultaneously. Not only the frequency is
decisive for the classification of stress, also the correlation was from importance. Results
of classification are compared to classification results from a human scorer. The scorer
identifies facial stress responses of the identical 60 video-recorded participants which are
provided to the OCR. 85% of the 60 study subjects’ facial expressions are categorized
correctly as low- vs. high-stressor conditions. In comparison the OCR reaches an initial
classification of 75% for the first 20 participants. After a second evaluation, due to
falsifying lighting, 15 of 17 (88%) participants’ stress states are identified correctly. As a
result of this, preliminary results suggest a possible accuracy of 75% to 88% of the OCR
algorithm. The described approach by Dingens et al. shows a robust 3D tracking of
facial expressions under stress inducing workload demands. Accuracy of OCR classifica-
tion shows a promising approach for detecting stress in comparison to human classification.

In the paper of Liao et al. [31], a human stress monitoring system using a dynamic
Bayesian network gets presented. The proposed dynamic Bayesian network (DBN)
is chosen due to the volatile, dynamic and user-dependent nature of human stress.
Physiological and behavioral parameters are considered recognizing stress states. A
developed monitoring system, visible in Figure 2.10, performs the automated stress
monitoring task.

As a starting point their proposed monitoring system extracts features from different
sensors monitoring participants sitting in front of a computer. Visual data in the
form of real-time videos is used to extract nine different physiological parameters as
Blinking Frequency, Average Eye Closure Speed, Percentage of Saccadic Eye Movement
(PerSac), Gaze Spatial Distribution (GazeDis), Percentage of Large Pupil Dilation
(PerLPD), Pupil Ratio Variation (PRV), Head Movement, Mouth Openness and Eyebrow
Movement. All these listed parameters are gathered by a sensor consisting of one wide-
angle camera focusing on the face, and two eye focusing narrow-angle cameras. Four
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Figure 2.9: Development of the deformable mask from generation 1 to 3 (A-C) used for
tracking facial features [32]

separate components analyze the captured video data by applying distinct techniques.
Eye detection and tracking is done using a combination of appearance based mean-shift
tracking and the bright pupil effect under infrared light sources [74]. With successful
eye tracking, eye lid movement parameters can be established. Further, eye-related
methods as an eye gaze estimation is performed by utilizing a computational dynamic
head compensation model [75]. This model allows an automated gaze tracking, while
moving the head in front of the camera. Besides tracking features of the eye, a facial
expression analysis is conducted. Facial features around the eyes and mouth are selected
and represented by Gabor Wavelets [76]. Detection of facial expressions is done with the
use of a flexible global shape model based on active shape models (ASMs) [77]. Face
poses can be identified by dynamically deforming the flexible shape model. Further, the
introduction of a multi-state face shape model and a confidence verification results in a
robust facial expression detection under variable conditions. In addition, to the mentioned
visual evidences of stress, physiological, behavioral and performance measurements are
gathered. An ”emotional” computer mouse (a normal mouse equipped with physiological
sensors) measures heart rate, skin temperature, Galvanic skin response (GSR) and finger
pressure. For the behavioral evidences mouse clicks and mouse pressure from fingers in
a time interval is measured during a user’s computer interaction. Performance data is
quantified by collecting math error rate, math response time, audio error rate, audio
response rate of a user’s responses from provided tasks.

After detection of facial features, a dynamic bayesian network (DBN) is integrated.
The DBN is built to consider different portions of features and dependencies to determine
the stress of a subject. One portion, the predictive portion, are the factors that alter
human stress which depends on the previous stress level, workload, environmental context,
individual subject’s traits as well as the goal a subject is pursuing. Another one, the
diagnostic portion, is represented by quantifiable measurements on physical appearance,
physiology, behaviors and performance. Both of these portions enable the DBN to
inference stress after a learning and active sensing step. Whereas the prediction of stress
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Figure 2.10: Components of the stress monitoring system [31].

derives from the predictive portion and the inference correction of the diagnostic portion.
In the learning step a domain expert is consulted to initialize the DBN’s conditional
probabilities, before the ”EM” learning algorithm [78] is applied. After the learning
phase, an active sensing technique, which rules out non-informative or contrary stress
evidences, is utilized. In the last step the inference engine classifies a subject’s stress as
output.

A conducted experiment by Liao et al. shows that there system can successfully
monitor human stress compared to a ground-truth. Five participants’ physiological states
are evaluated through Liao et al. monitoring system. Varying workload shall impact a
subject’s stress state throughout the experiment. During the experiment it is possible
to identify distinct signs of a person’s stress condition. With increasing stress levels,
participants show less blinking, closing the eyes faster, dilating the pupils more often as
well as focusing the eye gaze on the screen more often and remaining longer. Also head
movements and opening the mouth are more frequent when under stress. Results suggest
that the presented non-invasive approach shows a consistent inference of stress. Output
of their DBN using evidences of different modalities indicates predictions comparable
to psychological theories. However, the employed physiological sensors besides visual
sensors distinguish Liao et al. approach from previous outlined literature.

Bevilacqua et al. [20] research tries to distinguish between boring and stressful
emotions from facial cues. Their facial analysis tool shall be used as an assessment tool of
boredom and stress while playing games. The evaluation of their developed facial analysis
approach is done on video recordings from participants playing three different video
games. Facial analysis is mainly based on Eucledian distances between automatically
detected facial points. These distances are calculated from 68 facial landmarks resulting
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in seven features. Face Detection and the placement of landmarks are performed with a
constrained local neural field (CLNF) model [79]. Extracted features included mouth, eye
and head related features. In Figure 2.11 these features calculated from facial landmarks
are illustrated. Features F1, F2 are mouth related and describe the movement of the
mouth contour and mouth corners. Eye related features characterize the eye opening F3
as well as the eyebrow activity F4. The remaining head related features comprising of
face area F5, face motion F6 and facial COM F7 in general represent the movement of the
head as well as the overall movement of all facial landmarks (facial COM). Calculation
of the described features is based on the Eucledian distance between landmarks and on
area calculation with the use of Green’s Theorem [80].

In order to evaluate their developed approach an experiment inducing boredom and
stress is conducted. Participants are video recorded while playing video games. These
games provoke boredom at the beginning and stress at the end of the game. While
playing, the heart rate of participant is measured by a sensor. Depending on higher
changes of a participant’s heart rate, a game session is categorized as stressful. With
this information, the videos can be divided into boring (H0) and stressful (H1) game
interactions. For each video of both categories H0, H1 facial features are extracted.
Afterwards, an empirical analysis is conducted on these features with the use of the
paired two-tail t-test. Hypotheses for all features are formulated stating that the mean
value difference of a given feature for the sessions H0, H1 are greater than zero. Results
show a decrease of all features from H0 to H1. This decrease, the mean difference to it’s
mean value, is 10.7% for the outer mouth (F1), 11.8% for the mouth corner (F2), 10.4%
for the eye area (F3), 8.1% for eyebrow activity (F4), 9.4% for the face area (F5), 8.2%
for face motion (F6) and 11% for facial COM (F7). All feature except F6 and F7 show
statistically significant changes. These results support the initial hypotheses that the
mean value difference is greater than zero and as a consequence it can be distinguished
between boring and stressful states. In conclusion, the approach of Bevilacqua et al.
shows promising results in distinguishing between boredom and stress of players. Further
research of their solution consists of a new experiment with additional participants,
adding remote PPG [21] as a feature and creating a model to classify the emotional states
of boredom and stress of players.

2.3 Stress Detection Using Thermal and Hyperspectral
Imaging

In contrast to RGB imaging techniques, thermal and hyperspectral imaging captures
images in the non-visible spectrum. Depending on the used technology, light with a
bandwidth of 10nm for HI and 0.8 − 14µm for TI is captured [51, 81]. Both of these
techniques are used in a wide range of fields. TI devices are available for commercial
and industrial usage and can even be attached to smartphones [81, 50]. HI is primarily
used for material discrimination [51]. Application scenarios of HI range from food quality
control [82, 83] to detection/localization of cancer, diabetes or vascular diseases [84].
The possibilities of these imaging techniques are also of interest in psychology [85],

21



2. Related Work

(a) (b)

Figure 2.11: Facial landmarks and features. (a) The 68 detected facial landmarks. (b)
Facial features F1 to F6 visually represented. [20]

affective computing [86, 87] as well as in stress detection [23, 51]. As in the same case for
RGB imaging, the properties of being non-intrusive and being able to remotely measure
physiological signals makes TI and HI attractive for stress detection [23, 51]. Further,
with the measurement of the different light spectra non-visible signals, such as thermal
imprints as well as the oxygenation level of the blood, can be used to detect stress [88, 23].
Approaches in stress detection utilizing TI/HI mainly focus on detecting stress based on
these signal from facial data [85, 51]. Results of TI and HI approaches prove the feasibility
of detecting stress with classification accuracy ranging from 56.52% to 88.9% [50, 51].
At the time of writing most research is found on stress detection with TI (5 references),
whereas stress detection with HI shows to be a novel field of research with only two
references.

2.3.1 Thermal Imaging-based Stress Detection

The human temperature is of particular interest to medicine [89, 85]. Biological and
psychological triggers such as environmental changes, virus infections, are responded
by the body’s temperature control. In addition to these triggers, emotional reactions
are associated with the temperature control. However, for emotional reactions the
temperature control is more complex due to their different purpose and it has been shown
that emotional reactions carry their own thermal imprints. With the help of TI these
thermal imprints can be recorded and provide research opportunities for the detection of
stress, anxiety, empathy and more. Primary source of the captured thermal imprints is
the face due to the accessibility and ability to communicate. [85]

Research in the field of stress detection with the use of TI focuses primarily on
facial heat patterns [23, 41]. Especially, heat signatures in the upper face such as on the
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forehead, nostril and eyebrow regions are of interest [29, 50, 23]. The detection of stress
from these heat patterns is done mainly by handcrafted features [23, 41]. Solely in the
case of Cho et al. [50] a direct data analysis with the use of deep learning, instead of
traditional machine learning approaches, can be found at the time of writing.

Sharma et al. [23] work addresses a computer vision-based stress detection with
the use of temporal thermal spectrum (TS) and visible spectrum (VS) from video data.
Compared to approaches introduced in the previous Chapter 2.2, their approach makes
use of thermal patterns radiated from superficial blood vessels situated under the skin of
a person’s face. An afterward evaluation of their measurements is done using a SVM
with genetic algorithms (GAs).

The detection of stress by Sharma et al. is done by the analysis of video data. Before
data can be analyzed, a preprocessing is applied. In VS videos, faces are detected using
the Viola-Jones face detector [90]. Whereas for TS videos a face detection based on
eye coordinates and template matching algorithm is used. Facial regions (3x3 blocks)
are extracted from each frame in VS and corresponding TS modality. These extracted
regions are then used as facial blocks, illustrated in Figure 2.12. Each block consists of a
X,Y and T component, representing width, height, and time. With the video data in
block format, a feature extraction using local binary patterns top (LBP-TOP) on VS
data is applied. Local binary patterns (LBPs) show promising results for detecting facial
expressions [91]. In comparison to the VS, performing LBP-TOP on TS videos do not
offer as much information as in the VS case. Therefore a LBP-TOP-inspired method,
capturing dynamical thermal patters in histograms helps to extract suitable features out
of the TS data.

Feature extraction of the TS videos is done using the user-independent histogram
of the dynamical thermal pattern (HDTP) method. As each stress response can be
individual due to more or less subject’s tolerance for stressors, a normalization of stress
data was required. HDTP provides this kind of normalization by considering the overall
thermal state of a person in order to minimize the individual-bias in stress analysis. The
calculation of HDTP features requires at first a statistic (i.e. the standard deviation)
calculated for each facial region frame for a participant for a particular block for all the
videos. All statistics are then used to declare bins partitioning all these frames. A bin
can have continuous value ranges with a defined location from the statistic values. With
the help of the bins, it is possible to partition statistics for the facial region blocks. For
each bin there is a value representing the frequency of statistic values that falls within
the bin range interval. From these frequencies a histogram for each block can be formed
for subsequent machine analysis.

The classification of stress is conducted with the use of machine learning. Stress
is categorized using SVMs and GAs. Evaluating the classification of the SVMs, dif-
ferent results for input features of VS and/or TS videos are gathered. Depending on
input features derived from the LBP-TOP or HDTP algorithm the SVM perform better
or worse classifying. HDTP features for TS videos as input for the SVM improves

23



2. Related Work

(a) (b)

Figure 2.12: A facial region segmented into 3x3 blocks. (a) Block of the frame in the VS.
(b) Blocks of the corresponding frame in the TS [23]

stress detection measures. Whereas TSLBP−TOP features show the lowest classification
rate when provided as input for the SVM. Best classification results are reached using
V SLBP−TOP + TSHDTP features. Comparing classification results, obtained by the use
of distinct input features for the SVM, it occurs that the most impact on classification
have TSHDTP input features. Furthermore, providing features as input to the GA-SVM
show significantly better stress detection measurements as to the classic SVM. Overall a
classification rate of 86% could be reached with the use of GAs processing HDTP input
features for the SVM.

The paper of Mohd et al. [41] describes a vision-based measurement for recognizing
mental stress. Different parameters such as eyes blinking, thermal measurements from
three region of interests (ROIs) and blood vessel volume at supraorbital 4 area, are
considered in their approach. A new feature detection method using thermal and visual
imaging is presented by Mohd et al.. Subsequent stress detection of obtained features is
conducted with a SVM.

In their non-invasive stress detection, a measurement of mental stress through
thermal infrared and visual camera sensors is conducted. Temperature measurements
are considered based on research linking stress with increased blood flow in facial areas
and resulting heat. Thermal patterns in facial areas such as periocular 5, cheeks, nasal
and neck regions occur under different activities or emotions. Especially during mental
stress three ROIs are most affected. The presented feature extraction focuses on these
face regions by using distinct algorithms.

Initially their performed feature extraction selects faces of thermal images with the
Viola and Jones’s boosting algorithm [90] and a set of Cascade features as Haar-like

4supraorbital; region immediately above the eye sockets
5periocular; surrounding the eyeball within the orbit
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features. Afterwards, three ROIs are chosen from the detected faces based on a measured
face ratio. A mapping of temperature values to a specific ROI is done based on a
relationship between brightness of image values and temperature. In addition, a graph
cut algorithm removes falsifying ROI areas such as hair and glasses. Besides ROI selection,
a blood vessel detection is applied. Sustained stress shows an increased frowning of the
eyebrows, which again increases blood flow in vessels caused by contraction of eyebrows
related muscles. The detection of vessels is done after the use of a top-hat segmentation
method and a bilateral filter. Top-hat segmentation uses erosion and dilation operations
to segment the vessels. A bilateral filter then isolates the red range of pixels associated
with blood.

Facial feature extraction from visual image data is performed after face detection.
The Viola and Jones algorithm is executed and a set of Cascade structures with Haar-like
features are calculated. As a next step, the nose area (nostril mask) features are detected
by the assumption that the nose is in the center of the face. After that, eyes are located
by calculating the edges of the eyes. Eyes are considered as the brightest areas of the face.
With determination of the exact locations of eyes and iris, blinking as eye-related feature
is extracted. The ratio of white and black pixel in the eye selection mask determines,
based on a specific threshold, if the eye is opened or closed. Other features than thermal
and visual features are calculated using a developed method introduced by Mohd et
al.. Further, with the use of scale invariant feature transform (SIFT) facial features of
thermal and visual data are extracted. SIFT allows to map different views of the same
object. In the case of Mohd et al. method, the nostril area features are detected using
thermal and visual data and then match based on SIFT.

Obtained facial features through the presented techniques are evaluated using a SVM.
A preliminary experiment providing facial video data is conducted before evaluation. In
their experiment protocol participants undergo a stress test for two times. The second
stress test series shall provide more significant results. Further, a relaxation period
is planned at the beginning of each test. A Stroop color word test [64] is chosen to
raise a subject’s mental stress level. During completion of the stress test in front of a
monitor, facial video data is gathered. Moreover, ground truth in the form of heart rate
and salivary measurements is recorded. A SVM then analyzes the correlation between
stress and physiological features. Results of the SVM show an accuracy of 88.9% for the
detection of stress. The paper of Mohd et al. demonstrates the correlation of mental stress
with a person’s blood flow utilizing TI. Especially eyebrow movements corresponding to
the activation of the muscle on the forehead (corrugator muscle) can be proven.

In the approach by Puri et al. [29] the so called StressCam, a non-contact measurement
of users’ emotional states through TI, is introduced. StressCam tries to recognize stress
through capturing heat patterns of the face. A thermal camera, connected to a computer
and pointed towards the face of the user, is used for acquiring thermal images. The use
of a camera is suitable as a continuous monitoring device because it requires no physical
contact to the user. Physiological variables can be extracted from the facial thermal
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video through bio-heat modeling. StressCam is based on the knowledge that a person’s
blood flow in the forehead region is increased during stress. Typically the blood flow is
centered on the forehead at and above the corrugator or ”frowning muscle”, shown in
Figure 2.13). As a result of increased blood flow, a temperature change on the forehead
can be measured through a thermal imaging sensor. Due to that thermal video processing
is applied on a subject’s frontal vessels. The ROI on the forehead, including the frontal
vessels, are selected from a subject’s face. With the help of a tracking algorithm, this ROI
can then be tracked throughout a conducted experiment. A mean temperature calculation
for the 10% of hottest pixels in the tracked ROI, results in a forehead temperature signal.
An afterward bio-heat modeling allows to compute the blood flow of the frontal vessels
based on the forehead temperature signal.

The evaluation of the StressCam solution is done by inducing stress in twelve
participants. A computerized variant of the Stroop color word test [64] as stress test
is chosen. Participants undergo two sequential test sessions. In the first session, a
participant is equipped with a metabolic rate measurement device for estimating EE.
Measurements of EE is selected for validation of their stress detection approach. In
the second session of the experiment, a baseline part at rest and the Stroop stress test
is carried out. During this session thermal images of the subject’s face are captured.
Recording thermal images and measuring EE simultaneously is impracticable due to the
gas masks participants wear. Oxygen consumption, quantified through the gas masks,
indicate the EE.

Experiment results of the StressCam state that the presented thermal imaging
method correlates with ground truth EE data specifying stress. Puri et al. TI method
shows to be a viable method for monitoring a user during computer work. Further
applications of the StressCam can be in distinct areas e.g. identifying stress-inducing
questions in computerized testing, identify user interfaces that increase stress levels and
more.

In Cho et al. [50] paper a solution to detect stress from breathing patterns using
thermal imaging is presented. Temperature changes of the nostril are tracked with
a low cost thermal camera which then were used to identify the stress status of a
person. The evaluation of their solution is performed on a dataset collected from an
experiment inducing mental stress. The basis for their research is the connection between
stress and breathing [27, 92]. With the use of captured thermal videos insights into
this connection shall be gained. In the first step of their approach, a one-dimensional
respiration variability spectrogram (RVS) signal from the nostril ROI on the thermal
videos is recovered. The RVS is created by transforming a two-dimensional spectrogram
into one-dimensional sequences. This transformation is performed with the use of a power
spectral density (PSD) function [93], which identifies similarities between neighboring
signal patterns and creates a one-dimensional PSD vector. Stress detection with the
RVS signal is performed with the use of a convolution neural network (CNN). The
CNN enables direct analysis of the data without hand-crafting features [50]. However, a
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(a) (b)

Figure 2.13: (a) Subject’s forehead and ROI. (b) The frontal vessels (~10% hottest pixels
in ROI) marked in pink. [29]

problem in affective computing are generally the small dataset, which do not easily allow
the use of deep learning appraoches [50]. To this end the RVS data is augmented, which
artificially enlarges the dataset by applying label-preserving transformations [94]. The
architecture of the CNN is illustrated in Figure 2.14. In the first step of the CNN the RVS
image patches of 120×120 are resized to 28×28 with the use of a bi-cubic interpolation.
Afterwards, the interpolated patches are fed forward to the first convolution layer, which
filters the image using n kernels of size 5×5. The second convolution layer consists of j
kernels of size 5×5. The number of kernels is set along with the number of stress levels to
distinguish. Between the convolution layers two pooling layers with 2×2 averaging filters
are present. As activation function a sigmoid function is connected to each convolution
and fully connected layer. The target class is identified from each output neuron of the
final fully connected layer.

The evaluation of Cho et al. work is done with the data collected by a stress
experiment. Participants complete the stress inducing Stroop Color Word Test [64] as
well as mathematics tests with varying difficulty. Based on videos recorded from these
stress inducing experiment sessions and non-stressful sessions their developed solution
is evaluated. Ground truth in the form of stress level self reports are used as reference
to measure the classification performance. Target classes of the CNN algorithm for
multi-level stress detection are no-stress, low-stress level and high-stress level. For the
binary case it is no-stress and stress. The classification performance differs depending on
the multi-level or binary case. In the case of the multi-level stress detection, the highest
accuracy with 56.52% is reached with the CNN. In the binary case, the CNN reaches
an accuracy of 84.59%. Further, an evaluation is done on shallow learning methods
such as single layer neural network (NN). All accuracy measurements are performed
using leave-one-out cross validation. Overall the results are best for the CNN but not
significantly higher than compared to the single layer NN (84.59% vs. 77.31% (binary),
56.52% vs. 53.65% (multi-class)). All in all, Cho et al. approach shows the use of a novel
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Figure 2.14: Cho et al. [50] CNN architecture comprising of two convolution layers, two
pooling layer and one fully connected layer.

low-cost thermography based stress detection solution. Moreover, the system implements
automatic feature learning with the use of a CNN.

2.3.2 Hyperspectral Imaging-based Stress Detection

Similar to thermal imaging approaches, hyperspectral imaging-based stress detection
utilizes a distinct non-visible electro-magnetic spectrum [23, 50]. Hyperspectral imaging
is operating at a bandwidth of approximately 10nm and it’s power lies in material dis-
crimination. The property of material discrimination allows to determine for instance the
blood oxygenation by distinguishing between blood chromophores and body tissue. These
changes of the tissue oxygen saturation (StO2) values can be measured by hyperspectral
imaging (HSI). The StO2 correlates with the bound oxygen to the blood as well as with
the hormone adrenaline. In a response to the stressor adrenaline is secreted and facilitates
body reactions which lead to an substantial increase of the StO2. As a consequence, these
changes of oxygen content in the blood can than be measured from HSI as absorption
changes of the light. At the time of writing, only few approaches [88, 51] using HSI for
stress detection are found. [51]

Yuen et al. [88] pre-study to Chen et al. [51] work investigates the use of HSI for the
detection of stress. Their developed solution to detect stress is based on the oxygenation
of the blood in the human face tissue. The evaluation of their approach is performed
with a physical and an emotional stressor. At the beginning of the physical experiment
the subject sit on a chair while HSI baseline measurements were recorded. After baseline
measurements, the subject are asked to breath deep and slow for 10 times. The breathing
exercise are used to test the sensitivity of HSI. As a last step of the physical experiment,
the subject run extensively for five minutes. After each physical task, HSI measure-
ments, illustrated in Figure 2.15, are taken. In the case of the emotional stressor, the
subject undergo well-practiced experiment protocols such as interviews, public speeches
or quizzes. The evaluation of HSI for stress detection is conducted in comparison to the
baseline measurements. Results show a positive identification of stress of facial oxygen
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Figure 2.15: Results of stress detection by blood oxygenation measurements from HSI. The
experiment consists of task (a) sitting on a chair for baseline measurements (b) deep and
slow breaths for HSI sensitivity reference (c) subject ran for five minutes. The illustrated
HSI maps are shown in false colors with high (red) and low (blue) concentrations of
blood oxygenation. [88]

saturation measurements from HSI. Especially in the case of the physical stressors a
more prominently effect than the emotional one can be experienced.

The approach of Chen et al. [51] utilizes HSI for stress detection. With HSI the StO2
value are extracted as primary physiological feature. An afterward binary classification
determines the stress status of a person. In order to evaluate the HSI stress detection
method a Trier Social Stress Test (TSST) [95] study is performed. Besides stress detection,
Chen et al. evaluates HSI in regard of changing ambient temperature and perspiration.
For the measurement of stress Chen et al. uses the previously outlined content of StO2
in the blood of a person. Based on these measurements a spatial and spectral optical
absorption model is created.

The detection of stress is performed on TSST experiment data from 21 participants.
During the experiment HSI data is collected and represented as an image cube consisting
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Figure 2.16: ROC curve of a binary classifier [51].

of spatial coordinates/pixels (x, y) and the wavelength (λ) as spectral coordinate (z). In
addition to the image data, cortisol and HR ground truth measurements are conducted.
The gathered HSI data is not recorded continuously but rather sampled based on changes
of the HR. From each participant a map of StO2 is produced. Each map, similar to
Figure 2.15, is represented by the tissue oxygen saturation. In order to extract StO2
features, eleven ROIs are studied. Similar to the extracted forehead ROI in Puri et
al. [29] approach, the ROIs average StO2 levels are calculated and normalized for each
participant. After StO2 feature extraction a binary classifier is employed to determine the
stress state. As classifier scoring measurement the receiver operating characteristic (ROC)
curve with selection of different thresholds is chosen (see Figure 2.16). The classification
accuracy range from most conservative at (0, 0.619) with 80.95% to 88.1% at (0.1905,
0.9524).

All in all, Chen et al. conducts the first pilot study employing HSI for stress detection.
The strong material-discriminating ability of HSI allows to measure the tissue oxygenation
saturation values of the face. These StO2 values are proven as features to detect stress
with a binary classification accuracy up to 88.1%. Furthermore, the robustness of HSI
StO2 values in comparison to thermal imaging (TI) is proven by it’s independence of
perspiration and sudden changes in ambient temperature. Drawbacks or limitations of
their approach are high demands on processing power when obtaining data continuously
in real-time without a HR reference as recording indicator.

2.4 Comparison and Limitations

All of the presented approaches utilize facial images to remotely detect stress. Facial
images are used due to the fact that the face is not obscured and is open to interaction
and social communication [85]. Further, facial expressions are of interest for stress
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detection [96, 32]. Differences in the outlined stress detection approaches can be found
in the imaging modalities comprising of RGB, thermal and hyperspectral imaging. The
majority of visual stress detection approaches in the presented literature uses RGB imaging
with nine references, followed by thermal imaging with four references and hyperspectral
with two references. In Table 2.3 the different approaches with the conducted assessments
and outcomes are summarized.

The RGB imaging stress detection solutions use PPG and facial feature extraction
based on models of the face. PPG-based approaches show high classification accuracy with
80% and higher as well as high agreement with ground truth measurements. All of the
PPG solutions are based on the research of Poh et al. [21] which presents improvements
in the PPG signal extraction. Bousefsaf et al. [15] PPG-based solution converts RGB to
CIE LUV [63] to reduce noise. McDuff et al. [33] utilizes a RGBCO sensor, an extended
RGB sensor with cyan and orange color band, for an improved PPG signal. Additional
imaging approaches, detect stress with the help of facial models. These models allow to
track deformations and movements of the face [65]. Depending on the solution, mainly
eyes, eyebrows, mouth, gaze and the pupils are chosen as stress indicators. Differences can
be found in the methods for feature extraction. Giannakakis et al. [1] and Bevilacqua et
al. [20] use facial landmark tracking and Eucledian distances as features, wheras Metaxas
et al. [34] and Dinges et al [32] use deformable models to derive their features. Liao et
al. [31] extract facial features with the help of Gabor wavelets6, AAMs and physiological
sensors. Face detection is performed in the two-dimensional image space, only Dinges et
al. [32] implements three-dimensional tracking of facial expressions. Aigrain et al. [17]
takes advantage of depth data in combination with facial video data. Body activity
features, posture changes as well as self-touching are detected with the help of these
depth data. AUs associates with stress Aigrain et al. extract with the captured video
data. The performance of the model-based approaches are assessed by classification
algorithms, comparison to ground truth and empirical analysis. Results show a classifier
accuracy ranging from 75% to perfect classification, high correlation with ground truth
measurements as well as statistically proven differences between stress and non-stress
states.

The thermal imaging (TI) and hyperspectral imaging (HI) approaches are operating
in the non-visible light spectrum and measure facial heat patterns and the tissue oxygen
saturation. Cho et al. [50] and Puri et al. [29] detect stress solely through TI, whereas
Sharma et al. [23] and Mohd et al. [41] also extract additional features from RGB
imaging. Overall, the TI solutions show a classification performance of 56.52% to 88.9%
and correlation with ground truth measurements. The HI technique for the detection of
stress is a novel approach at the time of writing. In current literature only two references
can be found. Yuen et al. [88] and Chen et al. [51] show the feasibility of TI for stress
detection with agreements with ground truth measurement and classification accuracy
above 80.95%.

When comparing the distinct stress detection approaches by the outcomes, a high
stress detection performance is reached. Solutions utilizing RGB imaging such as PPG and

6Gabor wavelets [76]
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model based approaches, can easily be implemented due to the low-costs and widespread
use of RGB cameras. Recent developments of TI technologies lead to low costs of these
devices and make it attractive for stress detection [93, 50]. HI solutions for the detection
of stress in current literature are novel, this could be due to the high costs of TI devices
in comparison to RGB and thermal imaging devices [97, 98]. Besides the costs and
availability of imaging devices, PPG, TI and HI solutions do not require the facial
movement to detect stress. Whereas, model-based approaches identifying stress from
facial features are based on facial motions. Further, RGB-based approaches work best
in moderate stable ambient light conditions and struggle in varying conditions [93]. TI
and HI are not depending on lighting conditions. However, environmental changes can
impact the performance [51].

Limitations of the distinct approaches include data related problems such as noise
or artifacts, inconclusive labeling as well as the drawbacks of the different algorithms
and methods [1]. In the case of PPG, noise in the form of unusual BVP changes can
occur due to lighting variations or movements of the face [19]. Further, a low video
sampling rate can cause less precise PPG measurements [21]. The model-based solutions
can generate noise and artifacts due to misfitting of the model as well as pose and
illumination changes [99]. Further, the fitting of the model can vary depending on the
used algorithm as well as on the pre-trained face model [99]. Thermal imaging (TI)
techniques can suffer from sudden ambient and body temperature changes, which can bias
the results [51]. Besides technical limitations, the comparison of the different approaches
may be difficult due to diverse datasets and conducted stress experiments. A common,
open dataset on which benchmarking tests can be performed is not found in literature at
the time of writing. Moreover, the sample size of datasets can be to small to conclude
universal facial stress signs as Bevilacqua et al. [20] states.
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Table 2.3: Summary of the outcomes for each assessed approach. The approaches are
based on photoplethysmography (PPG), models, thermal imaging (TI) and hyperspectral
imaging (HI). Abbreviations: Electrodermal response (EDR), energy expenditure (EE),
tissue oxygen saturation (StO2).

Reference Approach Assessment Outcome
Bousefsaf et al. [15] PPG-based comparison to ground

truth
high agreement with
EDR

McDuff et al. [33] PPG-based Bayes, SVM accuracy of 85%
(SVM) and 80%
(Bayes)

McDuff et al. [19] PPG-based Bayes accuracy of 86%
Giannakakis et al. [1] model-based Generalized likelihood

ratio, k-NN, Bayes,
SVM, AdaBoost

accuracy of 80 to 90%

Aigrain et al. [17] model-based SVM accuracy of 77%
Metaxas et al. [34] model-based HMM accuracy of 92% and

perfect classification
Dinges et al. [32] model-based HMM and comparison

with human classifier
accuracy of 75% to
88%

Liao et al. [31] model-based comparison to ground
truth

high correlation

Bevilacqua et al. [20] model-based empirical analysis of
extracted features

statistically significant
differences between
boredom and stress

Sharma et al. [23] TI-based SVM accuracy of 86%
Mohd et al. [41] TI-based SVM accuracy of 88.9%
Puri et al. [29] TI-based comparison to ground

truth
correlation with EE

Cho et al. [50] TI-based CNN accuracy of 56.52% to
84.59%

Yuen et al. [88] HI-based comparison to ground
truth

agreement with StO2
measurements

Chen et al. [51] HI-based binary classifier accuracy of 80.95% to
88.1%
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CHAPTER 3
Stress Data

When talking about stress data physiological features of persons under stress are meant.
With these features the human stress response shall be represented. Stress data can
consist of captured facial features or other physiological signals recorded over distinct
sensors. Facial stress features can include movements of the head, eyebrows or lips as
well as blinking, gaze etc.. Physiological signals can comprise of ECG [30], EEG [100],
electrodermal activity (EDA) [31, 101], skin temperature [102], BVP [103] and more [46].
In the case of stress detection from facial data mainly video data is used [15, 34, 1, 23]. This
video data allows to capture a person’s facial expressions over a time series establishing
insights into the facial stress response [104]. Stress data plays an important role in the
detection of stress [46, 105]. Factors such as data acquisition and data quality can have an
impact on performance of stress analysis solutions [106]. Differences in stress data can be
found in the modality ranging from RGB [15], depth [17], thermal [23] or hyperspectral
imaging [51]. Furthermore, the data specifications can vary depending on the chosen
approach and settings. A standardized data definition for visual facial expression analysis
is not found at the time of writing. Besides image data, sensor information can be
gathered as ground truth measurement or additional data source. Depending on the type
of sensor, these data can vary in a wide range from previous mentioned ECG to skin
temperature, etc. [33]. In addition to the distinct feature types, the properties, quality
and acquisition characterize stress data.

3.1 Data Quality

Data quality in computer science influences the quality of the computed results and
the conclusions drawn from it [106]. The colloquial phrase ”garbage in, garbage out”
summarizes this principle by stating that flawed or nonsense input data produces nonsense
output data [107]. In order to evaluate the overall quality of data, the question:”What is
data quality?”, has to be answered. An accepted definition of data quality describes it
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as a ”fitness for purpose” measurement [106]. To assess the quality of data metrics can
be used for evaluation. Pipino et al. [108] defines objective and subjective data quality
assessments. Subjective assessments are characterized by the needs and experiences of
stakeholders working with the data. In contrast objective assessments, e.g. free-of-error-,
completeness- or consistency-metric, can be performed without the contextual knowledge
of the application. The ideal high quality data fulfills the criteria of being accurate,
complete, relevant, timely, sufficiently detailed, appropriately represented, and retains
sufficient contextual information to support decision making [109].

For the purpose of stress detection with the use of facial features we can estimate
the data quality by the needs of the chosen methods as well as the field of application.
Furthermore, the resulting data quality can be estimated by the process of data collec-
tion [46]. In the case of stress detection from facial data, the collection step consists (on
a technical sight) mainly of video recording and ground truth measurements. Despite
this simply sounding processes, aspects ranging from general technical specifications
to appearance of participants have to be taken into consideration. Additionally, the
recording environment can have an impact on quality. General speaking, controlled
laboratory environments provide advantages in terms of captured data quality over more
uncertain real world application scenarios [110, 111]. The quality of facial video data
in stress detection we can subjectively assess by data collection in existing literature
as well as in regard of chosen methods. As an ideal facial video data quality, we can
argue that requirements as lighting, view on the area of interest as well as clean and
crisp images are met. Moreover, for other imaging modalities e.g. thermal imaging other
factors such as the ambient temperature have to be taken into account [51]. Besides data
collection settings, the afterwards data processing methods can determine if the data
quality is sufficient. Robust computational methods may produce significant results on
bad data quality than sensitive methods [110]. Depending on the chosen method, this
factors can be taken into account when collecting data. For stress detection approaches
based on e.g. PPG highly varying lighting conditions or motion of the area of interest
can influence the outcome in an unwanted manner [16]. Other solutions such as AAMs
and landmark points can produce artifacts or noise due to fitting degradation on low
resolution images [112].

Further, the data quality from additional data signals, e.g. BVP, EDA etc., has to
be assessed. Due to distinct sensor quality the produced signals can differ. Especially the
accuracy of consumer devices is often unknown due to missing validation studies [113, 114].
To outline this in more detail, the study of Shcherbina et al. [114] evaluates commercial
wearable wristband devices in regard of HR and EE measurements for different physical
tasks. As these types of devices gain more and more popularity for physiological
monitoring this can be of interest [115, 116, 117]. Available consumer devices from the
year 2017 such as the Apple Watch, Samsung Gear S2 etc. show an median error rate
below 5% for HR and above 20% for EE measurements against the gold standard ECG
and gas analysis from indirect calorimetry. This example elaborates the varying sensor
accuracy and the significance on data quality. For the acquisition of data a trade-off
between factors such as the sensor accuracy and the impact on data quality can be made.
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In addition to the influence of monitoring devices properties, the overall background
or motivation of data collection can affect data quality. Research in other disciplines,
e.g. psychology or medicine, collect data for different purpose [118, 119]. This data
can also be of interest for other fields of research such as computer science. Despite
that the gathered data may be sufficient for the original aim of research, it can be
insufficient for the different fields of research due to the lack of precision, accuracy or
other requirements for technical analysis [120]. A more interdisciplinary approach of data
acquisition for collaborate research may result in better data quality for all stakeholders
as our experience shows with acquired data.

Another approach which can affect the data quality is data preprocessing. This
process can have an significant impact on the performance of data analysis algorithms
such as machine learning [121, 122]. Typical data preprocessing can include data cleaning,
normalization, transformation, feature extraction and selection, etc.. Depending on the
dataset, distinct preprocessing steps may be required to improve data quality and achieve
better results. Especially on real world non-academic datasets preprocessing can be
required [123].

3.2 Data Acquisition

In order to recognize stress by an automated computing approach data characterizing
stress conditions is necessary [46, 105]. These data is crucial in techniques such as machine
learning to find underlying information or patterns in it [124]. Due to the dependency
on this information, requirements on the design of a stress experiment protocol and the
resulting data quality have to be taken into consideration [106]. Testing procedures,
technical details, inducement of stress states as well as the ground truth measurement of
stress are main aspects of test specifications [33]. Based on these variables the quality
of captured video data can influence the performance of an implemented solution [107].
Moreover, the robustness of the developed system to detect facial expressions and acquire
the necessary data for stress detection is crucial. Environment aspects such as lighting,
shadows as well as the person’s appearance can influence results [21, 125]. In the following
sections, a definition of data and data quality in the context of this thesis, an overview of
requirements for the design of a stress test as well as on the quality of data is provided. A
special focus is set on technical specifications regarding the detection of facial expressions
through visual sensors. Limitations and comparison of different technologies shall help to
highlight possible benefits and drawbacks. Evaluation of technical details is conducted
based on available literature in the domain of visual computing and facial expression
analysis.

3.2.1 Specifications

Research on facial expressions focuses on establishing facial expression databases [126,
127, 128, 129]. These databases are established by either inducing emotional states e.g.
stress or by giving the subject’s instructions to perform facial displays [126, 19]. The
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technical specifications of the captured image material however varies. In Table 3.1
these differences are outlined. A comparison of data characteristics from facial stress
and facial action coding system (FACS) databases, such as sample size, data modality,
resolution, frames per second (FPS), ground truth measurements, gives an oversight.
Facial databases differ in the number of subjects recorded, which may influence the validity
of outcomes as Bevilacqua et al. [20] states. Stress databases, outlined in Table 3.1, are
smaller in comparison to the FACS databases with 5 to 35 participants vs. 19 to 182
participants. Data modalities of the sets include RGB, depth data (3D), thermal and
grayscale. The majority of stress analysis solutions performs detection on RGB imaging.
Image resolution of the different datasets varies from thermal spectrograms in the case of
Cho et al. [50] with a spatial resolution from 120×120 pixels to Bevilacqua et al. [20]
with a resolution of 1920×1080 pixels. Further, in datasets [17, 126] multiple images
and/or videos are captured with different resolution. The impact of image resolution is
discussed in Chapter 3.2.3. Further, the temporal resolution or frames per second (FPS)
column describes the sampling rate at which the videos are recorded. These sampling
rate determines how accurate a signal or facial expression can be reconstructed [130, 128].
Features such as Blinking, which is of interest in facial analysis, lasts about a third of a
second [131, 31]. Further, micro-expressions, a short facial movement revealing genuine
emotion, can last less than 0.04 seconds and be of very low intensity [132]. In order to
detect these subtle movements and get more details of the movement, a high sampling
rate (greater than 30 FPS) is preferred [128, 132, 133]. When comparing the temporal
sampling rate of the databases in Table 3.1, the FPS rate ranges from 20 to 200 FPS.
The high FPS rates, e.g. 200 FPS, are chosen to provide more detailed information of
facial muscle movements [128].

Besides video data, ground truth measurements are recorded to evaluate facial
analysis results or provide additional information for analysis [15, 1]. Typically, these
measurements are captured with the use of body contact sensors, psychological measure-
ments or self-reports [29, 50, 31]. Physiological signals, such as the GSR or electrodermal
response (EDR), BVP, electromyograms, electroenceohalograms, are captured by body
contact sensors (see also Figure 2.2) [18]. Bousefsaf et al. [15] and McDuff et al. [33]
compare their results against ground truth measurements from proven PPG devices
and/or the EDR. As illustrated in Figure 2.7, the results of PPG measurements are
compared against the EDR measurements from a body contact sensor [15]. For the
comparison of results against ground truth measurements the temporal resolution has to
be taken into account. Without synchronizing the data, e.g. interpolation, sampling, the
signals of two sensors with distinct temporal resolution can not be compared with the
same precision, e.g. 1 Hz contact PPG sensor measurements can not be compared with
30 Hz facial PPG measurements. In addition to ground truth measurement from sensors,
self-reports, psychology measurements and knowledge of experts (FACS coder) is part of
datasets. These measurements are mainly used for anotation of the data for machine
analysis [50, 128].
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Table 3.1: Facial expression databases and corresponding characteristics of image/video
recordings. Upper part of the table comprises of stress detection databases, lower part of
FACS databases.

Reference Sample
Size (Par-
ticipants)

Data
Modality

Resolution Frames
per Sec-
ond

Ground
truth mea-
surements

McDuff et
al. [33]

10 RGB 960x720 30 Contact
PPG, EDR

Bousefsaf et
al. [15]

12 RGB HD 30 EDR

Bevilacqua
et al. [20]

20 RGB 1920x1080 50 Heart Rate

Liao et
al. [31]

5 RGB N/A N/A Psychological
measure-
ments

Giannakakis
et al. [1]

23 RGB 526x696 50 Self-reports

Aigrain et
al. [17]

14 Depth,
RGB

640x480,
1440x1080

N/A Self-reports

Sharma et
al. [23]

35 RGB, Ther-
mal

640x480 30 Self-reports

Cho et
al. [50]

8 Thermal 120x120 N/A Self-reports

Puri et
al. [29]

12 Thermal 320x256 31 EE

Cohn-
Kanade [126]

182 RGB,
Grayscale

640x480,
640x490

30 FACS coder

Casme [127] 35 RGB 1280x720,
640x480

60, 60 FACS coder

CASME
II [128]

35 RGB 280x340 200 FACS coder

Sayette
GFT [129]

96 RGB 720x480 29.97 FACS coder

MMI (Part
I-III) [134]

19 RGB 720x576, 24 FACS coder

DISFA [135] 29 RGB 1024x768 20 FACS coder
SEMAINE
[136]

150 RGB,
Grayscale

780x500 49.97 FACS coder
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3.2.2 Data Modality

For the detection of facial expressions different data modalities can be used. Besides RGB
imaging, thermal and hyperspectral imaging data, three-dimensional images containing
depth information are of interest for facial expression recognition [132]. Three-dimensional
facial expression analysis is an open research field and is at an early stage [132]. The
majority of visual affect recognizer still use 2D images as input [137]. However, the rapid
progress in depth-based imaging technology is supporting 3D facial analysis [137]. Stress
detection approaches with the help of 3D facial expression analysis through depth data
are not found at the time of writing. Current 3D facial expression analysis literature is
focusing on facial action coding system (FACS) 1 analysis and basic emotion (e.g. anger,
happiness) recognition.

Several databases, including 3D static faces and image sequences, are established
due to the progress in 3D data acquisition. Distinct 3D data acquisition techniques
such as single image reconstruction, structured light, photometric stereo and multi-view
stereo are used to create these databases. Especially the advancements in structured
light scanning, stereo photogrammetry and photometric stereo allow the acquisition
of 3D facial structure and motion. Structured light scanning basically projects one or
more encoded light patterns onto the scene (e.g. the face) and then the deformations of
the patterns on the object’s surface is measured to extract shape information. Stereo
photogrammetry utilizes multiple cameras situated at multiple known viewpoints from
the subject to apply 3D facial reconstruction. The photometric stereo technique acquires
the facial 3D structure by capturing a set of images under different illuminations. [132]

The automatic detection of action units (AUs) can be performed on two and three-
dimensional data. However, AU detection from 2D illuminance images may have hit a
performance ceiling. Research suggests that 3D face data could help to overcome the
limits of 2D. Three-dimensional data enables true facial surface measurements, which
may help to differentiate better between subtle differences of AUs. Further, 3D data has
shown to be immune to illumination and in an extent to pose variations. Overall, the 3D
modality has significant advantages in AU detection and performs in general better than
2D when comparing the same feature extraction and classification algorithms. Especially
with increased pitch and yaw rotations of the face, the performance of AU recognizer
using 2D data drops compared to 3D data. This performance decrease is due to occlusion
effects and substantial distortion from out-of-plane rotations. Moreover, 3D data allows
better normalization and luminance data can be compensated for moderate out-of-plane
rotations. [138]

All in all, three-dimensional imaging has benefits over 2D data, such as immunity
to illumination, better performance under different head poses and occluded faces as
well as easier detection of out-of-plane movements of facial features [139]. Despite these
benefits over 2D data, experiments show that 3D data is not necessarily better than 2D
RGB data for facial analysis. Especially for the upper face regions 2D data show better
performance due to noise of 3D data acquisition [133]. The fusion of 2D and 3D data

1FACS; definition of 32 atomic facial muscle actions named AUs [49]
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improves the performance of facial analysis [133]. In addition to single 2D and 3D facial
analysis, the fusion of 2D and 3D data further improves facial analysis performance [133].

3.2.3 Image Resolution

The image resolution describes the number of pixels defined by the width and height
of an image [140]. To successfully extract features and detect expressions of the face a
minimum resolution of the captured data is required [110]. Depending on the recording
setup, aspects such as camera resolution, sensor size, focal length, distance to object as
well as the resolution of the face in the image have to be considered. In the case of facial
stress detection, an appropriate image resolution of the face is of importance. To calculate
the minimum object that can be seen in an image, the technical specifications of a camera
system are decisive. The following variables and formulas outline, how to calculate the
minimum viewable object for an image in order to detect e.g. a face accurately. [141]

With the following variables we can calculate the minimum viewable object for an
image:

• D; the distance from the lens to the subject

• AoV ; the angle of view of the lens

• PixelsWidth, PixelsHeight; pixel dimension of the target image

• angle of view from camera specification

To calculate the angle of view of a lens and the sensor following formula 3.1 can be
applied,

AoV = 2 ∗ arctan(SD/2 ∗ FL) (3.1)

whereas SD specifies the diagonal sensor dimension of the camera and FL describes
the focal length of the lens. The minimum viewable object can be interpreted as the
smallest size that will map onto a single pixel for a given field of view, or when stated as
a formula 3.2:

Minimum V iewable Object = Field of V iew/PixelsWidth (3.2)

For a given distance the total field of view 3.3 is:

Field of V iew = 2 ∗D ∗ tan(AoV/2) (3.3)

The minimum viewable object can be calculated for a specific camera in a test setup
with these formulas. Taking McDuff et al. [33] experiment as an example with a distance
of 3 meters from the lens to the subject, a resolution of 960×720 pixels and a focal length
of 50 mm. For the missing parameters as the sensor dimension we can take an estimation.
In this example the APS-C image sensor format of 25.1×16.7 mm is used. The calculation
of the angle of view results in AoV = 2 ∗ arctan(30.14/2 ∗ 50) or 33.55 degrees. With the
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Field of V iew = 2 ∗ 3 ∗ tan(0.58/2) or 1.79 m the Minimum Viewable Object for the 960
pixel wide image can be calculated. The result isMinimum V iewable Object = 1.79/960
or 0.00186 m (0.186 cm) small. This value of 0.186 cm can be interpreted as the distance
measured in the real world mapped onto 1 pixel in the image. To set this in the context
of facial expressions, we are interested how many pixels the human face occupies in an
image. The mean breadth and length of the German male face in Farkas et al. study [142]
is 13.3×18.2 cm. Assuming these dimensions for our example, a person’s face covers
approximately 72×98 pixels in a captured image.

In order to assess the calculated face dimension of our example, we can look at Tian
et al. [110] evaluation of face resolution for expression analysis. Their work evaluates
the accuracy of expression analysis in regard to facial images with different resolutions.
Table 3.2 illustrates results of their evaluation. In the left table description the following
face processes are stated: face acquisition, feature extraction, FACS AUs and basic
expressions. Each of these processes is specified in regard to the applied methods: face
detector (FD), head pose estimation (HPE), geometric feature extraction by feature
tracking (G1), geometric feature extraction by feature detection (G2) as well as appearance
based feature extraction (AP). In Table 3.2, values range from yes/no values to percentage
values. For the feature extraction process the values are yes or no if feature extraction
was possible for the specific resolution. The percentage values from the rest of the table
content describe the accuracy results of the used techniques for each different facial image
resolution. The empirical study of Tian et al. show that head detection and HPE is
able to detect faces in lower resolution than FDs. Furthermore, there is no difference in
expression recognition based on geometric or appearance based feature extraction when
the facial image resolution is higher than 72×96 pixel. Lower resolutions such as 36×48
pixel show better recognition rates when using appearance based features. In addition,
finer levels of facial expressions can not be reliably obtained with low resolution image as
36×48 pixel. Comparing our example with the facial image resolution of 72×98 pixels
with values in Table 3.2 from Tian et al., comparable results as in the fourth column
shall be achieved. In our example, the image resolution is sufficient to extract features
and detect expressions from the facial image data.

In addition to the image resolution of 2D data, a high image resolution of 3D
image data is preferred to capture movements in very small parts of the face [132]. The
acquisition of high resolution 3D data can depend on the used imaging technique [132].
Structured light imaging is able to record images in real-time or high speed and with low
costs as in most cases only a projector is needed [132]. A drawback of this high temporal
resolution is a lower image resolution [132]. Popular structured light capturing devices
such as the Microsoft Kinect 2 show low image quality and noise for facial analysis, which
has to be compensated with e.g. multiple scans and data fusion [143]. Besides structured
light, stereo cameras are utilized to capture 3D images or sequences [132]. These allow to
capture high resolution 3D facial databases [139, 144]. However, the amount of captured
data and the lower temporal resolution may make it unfeasible for applications such as
micro-expression analysis or real-time systems [132].

2Microsoft Kinect; motion sensing input device
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Table 3.2: Resulting effects of faces at different resolution. FD and HPE for face
acquisition describes face detector and head pose estimation. G1 for feature extraction
states geometric features extracted by feature tracking. G2 for feature extraction states
geometric features extracted by feature detection. AP for feature extraction indicates
appearance features extracted by Gabor wavelets. [110]

Face
Process

288x384
(Original) 144×192 72×96 36×48 18×24

Face
Acquisition

FD 100% 100% 100% 100% 0%
HPE 98.5% 98% 98.2% 97.8% 98%

Feature
Extraction

G1 Yes Yes Yes No No
G2 Yes Yes Yes Yes No
AP Yes Yes Yes Yes Yes

FACS
AUs

G1 90% 90.2% 89.9% N/A N/A
G2 71% 70.8% 72% 54.3% N/A
AP 90.7% 90.2% 89.6% 72.6% 58.2%

G1+AP 92.8% 93% 92.2% N/A N/A
G2+AP 91.2% 90.8% 90% 87.7% N/A

Basic
Expressions

G1 92.5% 91.8% 91.6% N/A N/A
G2 74% 73.8% 72.9% 61.3% N/A
AP 91.7% 92.2% 91.6% 77.6% 68.2%

G1+AP 93.8% 94% 93.5% N/A N/A
G2+AP 93.2% 93% 92.8% 89% N/A

3.2.4 Robustness

Under the term robustness, the ability of a software to keep an ”acceptable” behavior in
spite of exceptional or unforeseen execution conditions (such as invalid or stressful inputs,
unavailability of system resource etc.) is understood [145, 146]. The robustness of facial
analysis algorithms and computational methods is crucial and may impact the outcomes
of these solutions [51, 21]. The detection of faces in images is a fundamental task for
vision-based computer interaction [147]. Robust and efficient 3 algorithms are required to
enable face detection for distinct application and in environments with a variety of lighting
conditions [148]. Facial expression analysis and facial stress detection approaches utilize
face detection as one of the first steps of the processing pipeline [49, 1]. In computer vision,
face detection is a well studied topic and modern face detectors achieve high performance
in the detection of near frontal faces [149]. However, the detection of not near frontal
faces is difficult for widespread algorithms such as the Viola-Jones [90] or histograms of

3efficient; operating with a minimum consumption of resources [146]
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oriented gradients (HoG) [72] algorithm [149, 150, 151]. Especially when detecting faces
from distinct angles or partly occluded faces these algorithms fail [152]. Recent research
focuses on the detection of faces in unconstrained scenarios with factors such as extreme
pose, exaggerated expressions and large portions of occlusions [153]. Convolution neural
networks (CNNs) are used to address these problems and outperform algorithms as the
previous mentioned Viola-Jones and HoG [154, 155]. Further, facial analysis from 3D data
shows better performance under varying poses and illumination [138]. Despite the good
results of CNNs for face detection, research in facial stress detection and facial expression
analysis utilizes primarily appearance based methods such as the Viola-Jones or the
HoG algorithm [49, 1]. The popularity of these algorithms is due to public availability of
pre-trained models (e.g. in Matlab 4, OpenCV 5 or dlib 6), the computational simplicity
and the reliability for frontal face detection [49].

In addition to the detection of faces, the facial landmark detection is important
for facial stress detection and expression analysis [20, 99]. The goal of facial landmark
detection is to automatically detect the location of facial landmark points on video
or image data. Facial expression analysis or head pose estimation may rely on the
landmark detection algorithms. Due to that outcomes of these approaches can depend
on an accurate detection of landmarks. The performance of facial landmark detection is
affected by distinct factors. Facial appearance changes from distinct facial expression and
head poses can be significant. Further, environmental conditions such as illumination,
affects the appearance of the face on images. Facial occlusions by other objects or
self-occlusions due to extreme head poses can also lead to poor performance. The major
cause of failure for landmark detection from these error sources shows to be extreme head
poses (e.g. profile face). Significant head poses may lead to self-occlusion and missing
landmark points. Moreover, the limited training data with head poses may result in bad
performance for the detection of landmarks. Overall, face detection and facial landmark
detection achieve good performance but are still an unsolved problem. [99]

Besides facial detection and facial landmark detection, the robustness of photoplethys-
mography (PPG) based and thermal imaging (TI) based stress detection approaches is
affected by environmental factors. Varying lighting conditions, movements of the face, low
sampling rate as well as sudden ambient and body temperature changes may influence
the outcomes of these solutions [19, 21, 51].

3.3 Databases

Stress data is a crucial component in the detection of stress [46, 105]. Aspects such as data
quality and acquisition can impact outcomes of stress detection solutions [106, 19]. Despite
the central role of these data in research, only one open and accessible stress database [27]
can be found at the time of writing. The dataset of Healey and Picard [27] describes
stress condition, while real-world driving tasks. However, the database from Healey and

4Matlab, https://www.mathworks.com/products/matlab.html, last accessed 09.08.18
5OpenCV, https://opencv.org/, last accessed 09.08.18
6dlib, http://dlib.net/, last accessed 09.08.18
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Picard comprises of contact sensor measurements and does not contain subject’s facial
images. In facial expression analysis, open and accessible databases describing FACS
AUs [134] and basic emotions [126, 156], i.e. anger, disgust, fear, happiness, sadness and
surprise, can be found. Further, accessible databases include the Sayette GFT [129],
KDEF [157], DISFA [135], Bosphorus [158] and more7. Databases of stress conditions
including facial images are collected through stress experiment protocols [33, 41, 17].
Open and accessible facial stress databases however are not found at the time of writing.

7Comprehensive collection of public facial expression databases, https://www.behance.net/
gallery/10675283/Facial-Expression-Public-Databases, last accessed 03.10.18
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CHAPTER 4
Methodology

In order to detect a person’s stress state facial analysis can be used [20]. Visual computing
approaches allow to detect stress based on physiological signals or expressions derived
from facial images or videos [18]. Due to non-available open stress datasets at the time
of writing an own stress dataset is created. In the following experiment protocol chapter,
the setup of stress data acquisition is outlined. The implemented stress detection solution
is based on the research of Giannakakis et al. [1]. Figure 4.1 illustrates the developed
solution in more detail. The image preprocessing steps include contrast enhancement, face
detection and ROI determination. Afterwards, features from eyes, mouth, head and heart
activity are extracted with the help of Eucledian distances, the optical flow algorithm
and facial PPG. In the last machine learning step preprocessing and classification is
performed. Subjects’ facial data is identified as stressed or non-stressed based on the
features extracted from the previous extraction step.

Preprocessing

Contrast 
Enhancement

Facial ROI Detection

Facial Landmark 
Detection

Feature Extraction

8 Eyes
8 Mouth
8 Head
8 Heart Activity

Machine Learning

Preprocessing

Classification

Result:

Stressed

Non-Stressed

Image

Figure 4.1: Overview of the stress detection framework from facial videos.
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4.1 Experiment Protocol

In order to evaluate a person’s stress conditions by machine analysis it is necessary to
gather data of subjects in stressed and non-stressed states [46]. The main objective of
this experiment protocol is to record facial stress data to perform stress detection by
ML algorithms. In the conducted experiment, facial data from participants is recorded,
while they are in a neutral and stressed emotional state. The acquired data consists of
video sequences, heart rate measurements from a body contact sensor and self-reports
regarding stress conditions. For the inducement of stress the cold-pressor test [159] is
conducted. Overall, the experiment is designed functional and is not the main research
goal of this thesis. Limitations regarding psychological procedures have to be taken into
consideration.

4.1.1 Experiment Setup

Study participants are seated in front of a camera, which is placed at a distance of
approximately two meters. The camera is situated with it’s field of view (FOV) to
capture the frontal face of the subject. Next to the subject an ice bath is placed to
perform the cold-pressor test (CPT). The overall setup of the experiment is illustrated
in Figure 4.2. Ground truth measurements are captured with the help of a wristband,
monitoring the heart rate. The technical equipment includes a DSLR RGB camera 1 on
a tripod, a 50mm lens 2, a heart rate monitoring wristband 3 capable of exporting data
as well as equipment to conduct the stress inducing test. Ambient lighting and natural
lighting was used depending on the time of data acquisition. The video data is captured
with a resolution of 1280×720 pixels and frame rate of 50 FPS.

4.1.2 Experiment Procedure

The objective of the experiment is to induce affective states through a stressor. To this
end participants are asked to take part in a stress phase and neutral phase. Subjects
are invited to join the stress inducing experiment without the exact knowledge of
the experiment procedures. Further, the subjects are invited individually to prevent
information exchange about the experiment. These precautions are chosen to prohibit
mental or physical preparations and increase stress conditions through the uncertainty.
The experiments take place late in the morning and early afternoon to record the subjects
while they were alert. Sleepiness in the early morning and late afternoon may impact
facial expressions. At the beginning of the procedure, the subjects are asked to take place
on a chair and the heart rate monitoring wristband is applied. Afterwards, instructions

1Canon EOS 60D; https://www.usa.canon.com/internet/portal/us/home/products/
details/cameras/eos-dslr-and-mirrorless-cameras/dslr/eos-60d, last accessed 18.08.18

2Canon EF 50mm f/1.8 II; https://www.usa.canon.com/internet/portal/us/
home/products/details/lenses/ef/standard-medium-telephoto/ef-50mm-f-1-8-ii,
lastaccessed18.08.18

3Xiaomi Mi Band 2; https://www.mi.com/en/miband2/, last accessed 18.08.18
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Figure 4.2: Cold-pressor test experiment setup.

are given to the participants to not speak and look into the camera while completing the
stress phase (the CPT). During the experiment the subjects are alone in a room due to
unintended social interaction (e.g. speaking, noises) when the instructor is present. After
completion of the stress phase and time for resting, the second neutral phase is conducted.
In the neutral phase, the subject are asked to look into the camera without performing
any tasks or interaction. To get feedback from stress conditions, the subjects watch
the previously recorded stress videos of themselves and commented stressful moments.
Feedback and time of these stressful moments are noted for afterward annotation of the
data. At the end of the procedure the participants are informed about the general aim of
the experiment and their contribution.

4.1.3 Stress Phase

The stress inducing phase of the conducted experiment is performed with the help of the
so called cold-pressor test (CPT). This test is used in medicine [160], neuroscience [159]
and psychology [161]. Further, the CPT is one of the most frequently used stress protocol
in humans [161]. The CPT works as a physiological stressor and activates the major stress
systems of the body, the sympathetic nervous system and the hypothalamus-pituitary-
adrenal axis [159, 161]. Subjects performing the CPT are asked to put their left arm
in ice-cold water (0◦ to 1◦C) to elicit stress conditions. The participants are given the
instructions to submerge the arm for as long as possible, while looking into the camera.
Moreover, they are told to emerge their arm when reaching their pain threshold.
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4.2 Datasets

The first dataset is gathered in a conducted experiment with the help of 22 adults (10
women, 12 men). Participants are between the age of 18 and 52 (27.3±8.3 years). The
previously outlined experiment protocol is applied, which leads to videos in stressed
and non-stressed emotional states. Duration of video sequences range from 30 seconds
to 11 minutes with an average video duration of 3:05 minutes. Videos are recorded
at 50 FPS with a resolution of 1280×720 pixels. In addition to the videos, heart rate
(HR) measurements with the use of a wristband device and feedback of participants
are acquired. The annotations of the videos are applied frame-wise by assigning the
labels stressed or non-stressed, which leads to 210901 frames labeled as non-stressed and
41070 frames labeled as stressed. Indicators for data annotations are the acquired HR
measurements and feedback of the subjects. In Figure 4.3 example images of faces from
three female and three male participants under stress conditions are illustrated. Mouth
movement, eye movements and an overall stressed impression characterize these images.

A study conducted with 23 participants (7 women, 16 men) at the age of 45.1±10.6
years characterizes the second dataset [1]. Recorded videos in the dataset include subjects
in neutral, stress/anxiety and relaxed emotional states. These states are induced by
experimental phases including social exposure, emotional recall, stressful videos and
stressful image/mental task. Videos are captured with a resolution of 526×696 pixels and
at 50 FPS. The duration of these videos are between 0.5, 1 and 2 minutes. In contrast to
the first dataset, annotations in this dataset are applied for each video. Furthermore,
this dataset consists of facial landmarks due to privacy protection.

4.3 Data Preprocessing

Data preprocessing is performed on the captured video sequences and was done image-
wise. Video preprocessing includes histogram equalization for contrast enhancement,
color space conversion, tilting correction and ROI detection. The color conversion from
RGB to gray values and histogram equalization is applied to increase face and facial
landmark detection accuracy and speed. After these first preprocessing steps, face and
landmarks are detected. With the extracted landmarks, the tilting correction can be
calculated. This correction is performed in order to optimize subsequent ROI extraction.
For the tilted faces a rotation correcting the tilt is performed. To this end the bridge of
the nose is assumed to be a straight line. The angular offset between the nose bridge line
and a vertical line on the frontal plane, starting at the nose tip, are used for correction
of the tilted faces. Figure 4.4 illustrates the tilting correction in an example. Another
preprocessing step is the ROIs detection, which is required for afterward mouth and
heart activity feature extraction. Extracted ROIs comprise of mouth, upper and lower
mouth as well as a part of the forehead region. The mouth ROIs enable extraction of
mouth motions. The forehead ROI allows the extraction of heart rate activity as McDuff
et al. [33] describes. All ROI extraction is based on facial landmarks.
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Figure 4.3: Facial image examples of participants in stressed conditions from the video
sequences of the conducted experiment protocol.

4.4 Face Detection

In facial analysis face detection from image/video recordings is a fundamental step. For
automated facial expression analysis (AFEA) face detection is an essential preprocessing
step [49]. Face detection algorithms can be categorized into knowledge based, feature
invariant, template matching and appearance based. These distinct algorithms utilize
features, such as edges, colors, size, shape information as well as modelling and classi-
fication methods as Gaussians, ASMs, eigenvectors, shape templates, HMMs, support
vector machines (SVMs) and more [147]. Recent face detection is based on deep learning
approaches such as CNNs [154, 155]. For the detection of faces in this work, the histogram
of oriented gradients (HoG) algorithm, a popular appearance-based face detector is chosen.
The choice falls on the HoG algorithm due to the availability in common frameworks,
the computational simplicity, the performance and the frontal and near frontal faces in
the datasets [49, 72]. The face detection used in the developed solution implements a
HoG feature descriptors with linear classifiers and image pyramids as Felzenszwalb et
al. [162] describe.
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Figure 4.4: Tilting correction example image. The image is rotated clockwise by the
angular offset β with the assumption that the nose bridge is always vertical in relation
to the frontal plane.

4.4.1 Histogram of oriented gradients

The histogram of oriented gradients (HoG) descriptor is based, as the name suggests, on
local histograms of oriented gradients and shows good performance for object detection.
These histograms are normalized and computed over a dense grid of the image. The
general idea of the HoG descriptors is that local object appearance and shape can be
characterized by the distribution of local intensity gradients or edge direction. This
can even work without accurate knowledge of edge positions or corresponding gradient.
The implementation of the HoG method is done by dividing the image window into
small spatial regions (”cells”). For each cell then a local one-dimensional histogram of
gradient direction or edge orientation over the pixels of the cells will be calculated. The
histograms of the cells are accumulated, normalized and as combined feature vector used
for classification. [72]

Suleinman and Sze [163] outline the extraction of the HoG descriptor in an example.
In Figure 4.5 the steps of feature extraction are illustrated. The input image is divided
into 8×8 pixels patches (cells). On each of these pixels the horizontal and vertical gradient
is calculated with the gradient filter [−1 0 1]. Further, the orientation and magnitude
of the gradient are calculated from the horizontal and vertical gradients. From the
orientation and magnitude then a cell histogram consisting of 9 bins is generated. A cell
histogram represents the gradient orientations. As a next step, histogram normalization
is performed by the values of the neighboring cells. The normalization is applied over
a block of 2×2 cells and increases the robustness to lighting variations and to texture.
After accumulation of the blocks to a HoG feature vector (e.g. 36 values), a linear
SVM classifier can be trained to identify as object/non-object. Variations of the HoG
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Figure 4.5: Object detection algorithm based on HoG features [163]

descriptor extraction method can be in the cell size, overlapping cells, block size for
gradient normalization and other parameters. [163, 72]

4.4.2 Deformable Part Models

Felzenszwalb et al. [162] implement deformable part models for object detection given HoG
features with a linear classifier and image pyramids. Characteristics of the deformable
part models (DPMs) are its dense feature representation, it is a discriminative non-
probabilistic model, uses templates, has explicit structures and performs translation and
scale. In their approach a deformable part-based model was defined by a ”root” filter,
additional part filters and deformation models (see Figure 4.6). The so called root filter
is analogous to Dalal and Triggs filter, which uses a sliding window and is applied at all
positions and scales of an image [72]. In addition to the root filter, part filters allow to
extract features at distinct spatial resolution relative to the features captured by the
root filter. The part filter feature extraction is applied on a standard image pyramid and
allows to model visual appearance at different levels and resolution. The deformation
models represent the costs, which penalizes parts that are far away from where they are
supposed to be.
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(a) (b) (c)

Figure 4.6: Detection with the help of a person model. The model is characterized by (a)
a coarse root filter, (b) part filters in several resolutions and (c) the spatial deformation
model. Weights are defined by the filters for the HoG features. The visualization of
the deformation model represents the costs of placing the center of a part at distinct
locations relative to the root. [162]
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Figure 4.7: A feature pyramid constructed from different resolutions of the image pyramid.
A person is instantiated within the feature pyramid. At the top of the pyramid the root
filter is placed, the part filters are located at twice the spatial resolution of the placement
of the root. [162]

The root filter and the part filters characterize the deformable parts model. A
deformable parts model represents an object which can have multiple appearances due to
movable (deformable) parts. With deformable the configuration of the parts and how
they are positioned is meant, the parts are not deforming or changing their appearance.
For the detection of an entire object it is covered by the root filter. The part filters then
cover smaller parts of the object at higher resolution. As illustrated in Figure 4.7, the
root filter defines a detection window in which the part filters try to cover the smaller
parts at lower levels of the image pyramid.

As an example, we can consider to build a model of the face. The root filter can
model the face boundaries by coarse resolution edges and the part filters could characterize
details such as nose, mouth and eyes. A deformable parts model for an object with n
parts is formally defined by (F0, P1, ..., Pn, b). F0 is a root filter with n part models where
Pi is a model for the i-th part and b is a real-valued bias. To detect objects with the
help of the deformable parts model a score of the location of the root filter and the part
filters is calculated. A higher score represents a hypothesis that at the given location an
object is present. The calculation of the score is done given the following formula 4.1:

55



4. Methodology

score(p0, ..., pn) =
n∑
i=0

Fi ∗ φ(H, pi)−
n∑
i=0

di ∗ φd(dxi, dyi) + b (4.1)

A score is the sum of the filter scores, minus the deformation costs. In the formula,
the score is calculated over all locations, where p0 is the location of the root filter and p1
to pn are the part filters locations. Fi are the filters, φ(H, pi) are the HoG features at the
location and pyramid level pi. The second term of the formula describes the deformation
costs. The deformation parameters di is a four-dimensional vector and φd(dxi, dyi) is the
displacement of the part i relative to it’s anchor position. The bias b is characteristic for
all SVMs.

Object detection is performed on the overall score of a root location defined by the
root filter. The best possible placements of the parts is computed according to 4.2:

score(p0) = max
pi,...,pn

score(p0, ..., pn) (4.2)

As a result, the high-scoring root locations by computing also the scores of the parts
define the detections. These locations are found by a sliding-window approach calculating
the scores. Further, a distance transform step is performed for detection. With this step,
the contribution of the parts inside of the root detection window are included in the
score. The response of the distinct parts are calculated for each part filter i in the l-th
level of the feature pyramid.

Ri,l(x, y) = Fi ∗ φ(H, (x, y, l)) (4.3)

The response Ri,l 4.3 of a part filter is calculated with the formula above. The first
part Fi is the part filter. The second part of the formula φ(H, (x, y, l) is the HoG at the
place x,y at level l in the pyramid. These part responses are then transformed given the
following formula 4.4, where root is at (x, y).

Di,l(x, y) = max
dx,dy

(Ri,l(x+ dx, y + dy)− (di ∗ φd(dx, dy)) (4.4)

Given the root location (x, y) all possible displacements (dx, dy) of the part responses
and the possible deformation costs are calculated. For all the possible displacements
from the anchor position (x, y) the maximum score is selected. This calculation is done
for every part in parallel.

With the training of the model, the unknown model parameters β = (F0, ..., Fn, d1, ..., dn, b)
including root filter, part filters, deformation vectors and bias are learned. Positive train-
ing example with labeled bounding boxes are used for learning. Latent (unknown)
variables such as the locations of the parts of the object, are not labeled in the training
example and have to be learned. The classifier scores an example x by 4.5:

fβ(x) = max
zεZ(x)

β ∗ φ(x, z) (4.5)
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The zεZ(x) are the possible places the parts can be, where z are the latent values
and Z(x) are possible latent values for example x. The term φ(x, z) is the HoG for the
latent values z and an example x. Aim of the training is to identify the unknown variables
β. To this end an objective function is minimized, which is comparable to SVM learning.
The objective function is the following 4.6:

LD(β) = 1
2‖β‖

2 + C
n∑
i=1

max(0, 1− yifβ(xi)) (4.6)

The β value is similar to the w in SVMs, with the exception that β is a filter (vector),
consisting of root filter, part filters etc.. The last part of the formula max(0, 1− yifβ(xi))
is the standard hinge loss with a constant regularization term C. The training examples
D = (〈x1, y1〉, ..., 〈xn, yn〉) are labeled as yiε−1, 1 with -1 for a negative example with no
object and 1 positive example containing an object. At the beginning of training, a latent
SVM the β values are initialized by assuming that all parts are at a fixed location z. The
iterative optimization tries then to find the new best location z while β is fixed. This
step is similar to the detection step mentioned before. In the next iterative step then
z is fixed and β is optimized. This procedure is done until the iterative optimization
terminates. [162]

4.5 Facial Landmark Detection
Facial landmark detection is developed to automatically detect the locations of facial
landmark points. Distinct facial analysis task rely on facial landmark detection, hence
landmark detection is of importance. Algorithms for facial landmark detection can be
categorized into holistic methods, constrained local model (CLM) methods and regression-
based methods. Holistic methods explicitly build models which represent the global facial
appearance and shape information. CLMs utilize the global shape model but create local
appearance models. The regression-based methods implicitly describe facial shape and
appearance. Further, these methods do not explicitly build a global face shape model.
Besides these three categories, more recent techniques perform landmark detection with
deep learning and global 3D shapes. The best performing algorithms for facial landmark
detection are shown to be regression-based and deep learning-based regression methods.
Overall, there is a trend to use deep learning approaches for face detection and landmark
detection instead of traditional methods. [99]

The facial landmark detector utilized in the developed solution is based on deformable
part models with a pose estimator based on an ensemble of regression trees and a sparse
subset of pixel intensities [162, 164]. This facial landmark detector is chosen, as in the
case of the face detector, due to the availability in common frameworks and pre-trained
models [49]. The training of the landmark detector is performed on the iBUG 300-W
face landmark dataset [165]. This dataset consists of 300 Indoor and 300 Outdoor
facial images captured under totally unconstrained conditions. Large variations of the
images include identity, expression, illumination conditions, pose, occlusion, and face
size. Further, a large percentage of the images are partially-occluded and faces show a
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Figure 4.8: The 68 points mark-up annotation of the iBUG 300-W dataset [165]. Jaw
line, eyebrows, eyes, nose and mouth points are annotated. [166]

large variety of expressions besides more common ones, such as neutral, smile, surprise or
scream. Image annotations of the iBUG 300-W database are applied semi-automatic and
used the 68-points mark-up, illustrated in Figure 4.8. The detection of facial landmarks
in the implemented solution is performed frame-wise on image sequences and on frontal
or nearly frontal faces. Extracted landmark points are used for facial feature extraction.

4.6 Eye Related Features

Extracted features of the eye region comprise of eye aperture as well as the blinking rate.
Blinking of a person can occur due to reasons such as an internal or external reflex or
voluntarily [32]. Blinking also increases with emotional arousal including anxiety and
stress levels [39]. Further states affecting the blink rate can be psychological health issues
as well as environmental conditions (e.g. lighting, temperature) [167, 168]. Another eye
related feature is the eyelid closure, which is shown to be more significant in anxious
persons as compared with non-anxious individuals [38].

The extraction of the eye aperture and blinking rate is performed with the help of
facial landmarks. Especially the eyes surrounding landmarks 37 to 48 are of interest
for feature extraction. The eyeball is segmented using the six discrete landmark points
for each eye. To determine the eye aperture, two-dimensional coordinates (xi, yi) of
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the six landmarks are used. After calculation the aperture of both eyes, the mean is
calculated. Computation of the eyelid aperture is done with the area formula of the
simple polygon 4.7:

A = 1
2

N∑
i=1
|xiyi+1 − yixi+1| (4.7)

The area A is computed with N = 6 and the convention that xN+1 = x1, yN+1 = y1.
For machine analysis the eye aperture is also averaged as a total over all frames of a
video sequence as well as over a sliding window.

The second eye related feature is the blinking rate. Eye blinks can be seen as a
sudden aperture decrease in the eye aperture plot (see Figure 4.9). Blinking is detected
with the eye aspect ratio (EAR) as Soukupová and Čech [169] outline. In their method the
aspect ratio between height and width of the eye is computed. The following formula 4.8
outlines the calculation of the EAR

EAR = ‖p2 − p6‖+ ‖p3 − p5‖
2‖p1 − p4‖,

(4.8)

where p1, ..., p6 are the 2D landmark locations around the eyes. Figure 4.9 depicts
the landmarks and EAR for several frames of a video sequence. When an eye is open,
the EAR is constant and while closing an eye the EAR is getting near to zero. Further
characteristics of the EAR include the head pose insensitivity, fully invariant to uniform
scaling of an image and in-plane rotations. The EAR is computed for both eyes and
averaged. This is done due to that blinking is performed by both eyes synchronously.
Computation of the EAR is performed for each frame. A blink is then determined by a
threshold, if the EAR is below a specified value a blink is detected. The choice of the
threshold is chosen on manual inspection of the EAR signal. Similar to the described
blink detection from the EAR value, a threshold-based approach with the eye aperture
as input value is implemented. The threshold is chosen as the 15th percentile of the eye
aperture. Further, to prevent false positives of blink detection, a custom filter function
based on the average blinking duration of 100-400 ms is implemented [131, 1]. Closing
the eye for a longer period resulting in multiple detected blinks shall be filtered with
this function. The number of blinks per minute is additionally used as a feature for
classification.

4.7 Mouth Related Features

Mouth related features such as particular lip movements and deformations as well as
mouth opening, are linked to stress/anxiety conditions [32]. Asymmetric lip deformations
are shown to be more present under high stress levels [34]. Further, the frequency of
mouth openings can be associated with stress levels and higher cognitive workload [170].

To extract mouth related features the optical flow algorithm is used. With this
algorithm it is possible to extract movements from image objects between two consecutive
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Figure 4.9: Calculation of the EAR from eye landmarks. EAR is defined as a ratio of
height to width. In the picture below a graph of the EAR values for multiple frames is
illustrated, a blink is shown as a value close to zero. [169]

frames. As a feature the general mouth motion is extracted. The feature extraction is
applied after mouth ROI determination. For each frame then the maximum magnitude
or maximum velocity is calculated. The calculation of the mouth motion is performed
by using dense optical flow as Farnebäck [171] describes. Further features calculated
from the mouth movement include the mean, median and variance of mouth movement
over a sliding window, variance of time intervals (VTI) between adjacent motion peaks,
mean, median and variance of variance of time intervals (VTI) as well as the total mouth
movement of a video sequence. Moreover, these features were also calculated for the
upper and lower mouth. VTI between mouth motion peaks shall describe the reduced
rythmicity of lip movements during increased levels of stress [1].

4.7.1 Optical Flow

The optical flow method is developed by Horn and Schunck [172]. In general, the aim of
the optical flow algorithm is to describe motions in images. For two subsequent frames,
the two-dimensional vector or optical flow for each pixel is calculated. These vectors
describe the motions or displacements in the images from one frame to the next frame.
Figure 4.10 illustrates this in an example. The computation of the optical flow is done
pixel-wise and can be described as in 4.9:

f(x, y, t) = f(x+ dx, y + dy, t+ dt) (4.9)

The intensity of each pixel f(x, y, t) is calculated for two frames, in which the object
in the subsequent image at the time t+ dt moves by distance dx and dy. For a higher
temporal resolution it is assumed that the intensity or brightness of the pixels is constant
and the motion is smooth. With this brightness constancy assumption, we can describe
the small brightness with a Taylor series, which results in the optical flow equation 4.10.
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Figure 4.10: This example illustrates the optical flow for a ball moving in five consecutive
frames. The optical flow or displacement vector is shown by the arrow.4

fxu+ fyv + ft = 0 (4.10)

In the optical flow equation u and v are the change dx and dy over the time dt.
Further, fx and fy are image gradients and ft is the gradient along the time. These
gradients can be found, however to solve the optical flow equation with the two unknown
variable u and v several methods can be applied. The assumption of brightness constancy
and smoothness constraint are crucial. This constraints are included into the optical flow
formula 4.11 ∫ ∫

{(fxu+ fyv + ft)2 + λ(u2
x + u2

y + v2
x + v2

y}dxdy (4.11)

The double integral is used to calculate the optical flow for each pixel. In the first
part of the formula the brightness constancy is described. Ideally the brightness constancy
will be zero due to the previously outlined assumption. The second smoothness constraint
states that (nearly) all pixels are moving in a similar motion. With these constraints
it is possible to compute the optical flow by formulating it as a minimization problem.
This minimization problem can be solved by using variational calculus. Further different
methods to find the unknown variables and compute the optical flow can be used, e.g.
the method described by Lucas-Kanade [173]. [172]

The dense optical flow method is a variation of the optical flow and produces a
dense motion field able to capture spatially varying motions (e.g. lip movements). In
the approach Farnebäck [171] describes the velocity vector (optical flow) of each pixel
is computed with the help of a two-frame motion estimation algorithm. In order to
calculate the dense optical flow the neighborhood of each pixel is approximated with a
polynomial. This polynomial expansion is applied on two-frames. The neighborhood of
both frames is described by quadratic polynomials outlined in 4.12.

4Image from https://en.wikipedia.org/wiki/File:Optical_flow_example_v2.png,
last accessed 04.09.18
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f1(x) = xTA1x+ bT1 x+ c1 f2(x) = xTA2x+ bT2 x+ c2 (4.12)

These quadratic polynomials, where A is a symmetric matrix, b a vector and c a scalar,
is estimated from a weighted least square fit to the signal values in the neighborhood. The
two-frames characterized by quadratic polynomials are related by a global displacement
d. This relationship can be described with the the following equation 4.13

f2(x) = f1(x− d) (4.13)

and solving for displacement d results in 4.14

d = −1
2A

−1
1 (b2 − b1) (4.14)

The displacement d can be calculated from the coefficients A1, b1 and b2, if A1 is
singular. When implementing the dense optical flow, the polynomial expansion coefficients
(A1(x), b1(x), c1(x), A2(x), b2(x), c2(x)) are first calculated for the two frames and the
approximation for A(x) is made from 4.15.

A(x) = A1(x) +A2(x)
2 (4.15)

With the equations above and with 4.16:

∆b(x) = −1
2(b2(x)− b1(x)) (4.16)

the primary constraint 4.17 can be obtained, where d(x) is a spatially varying displacement
field. This equation 4.17 is solved over a neighborhood of each pixel.

A(x)d(x) = ∆b(x) (4.17)

4.8 Head Related Features
Head movements as indicator for stress are used in current literature [20]. During
stressful conditions reports, it is shown that head movements are more frequent and
rapid [31, 32]. Overall greater head motions are associated with stress [40]. In order
to extract head movements stable portions of the face such as nose landmark points
are tracked. These specific facial landmarks comprise of the points 28, 31 and 33-35
of the 68 points mark-up illustrated in Figure 4.8. With the selected landmarks it is
possible to determine translations, rotations and head movements. To extract the head
related features, the Eucledian distance is calculated for each frame. The first frame of
the analyzed video sequence is chosen as reference to compute the distances of the head.
Movement of the head is defined as in 4.18

movm = 1
5

5∑
k=1
‖pk − prefk ‖ (4.18)
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with the landmark points pk, k =1,...,5 and the Eucledian norm ‖.‖. In addition
to the head movement, the speed/velocity of the head motion is calculated as in the
following 4.19

velocity = 1
5

5∑
k=1
‖pk(t)− pk(t− 1)‖ (4.19)

where pk(t) is the landmark point at the time t. As in the case of the head movement,
the velocity is calculated frame-wise over a video sequence. Furthermore, head related
features such as the total mean head movement, total mean head velocity for sliding
windows are computed. These include also the head movement and velocity for the x
and y axis.

4.9 Heart Rate from Facial Video

The heart rate from facial video is extracted from camera-based photoplethysmography
(PPG) as Poh et al. [21] describe. Camera-based PPG measures variations in the reflected
light from the skin. These variations can be used to establish the underlying blood
volume pulse (BVP) for computation of the heart rate [21]. In the different color channels
of an image a mixture of the reflected plethysmographic signal is contained. Each color
sensor captures a mixture of the original signal source with slightly different weights.
These three sensor signals can be formulated as y1(t), y2(t) and y3(t), which describe the
amplitudes of the signal at the time t. The underlying source signals from each channel
are denoted by x1(t), x2(t) and x3(t). To compute the source signals an independent
component analysis (ICA) is employed. The ICA model assumes that the observed signals
are linear mixtures of the sources, i.e.,

y(t) = Ax(t) (4.20)

These linear mixtures are outlined in 4.20, where y(t) = [y1(t), y2(t), y3(t)]T , x(t) =
[x1(t), x2(t), x3(t)]T and the mixture coefficients aij are contained in the 3×3 matrix A.
With the ICA a demixing matrix W is approximated, which is the inverse of the original
mixture matrix A. The output of the ICA can be described as the following 4.21

x̂(t) = Wy(t) (4.21)

where an estimate of the vector x(t) contains the underlying source signal. ICA
assumes that the sources are independent and maximizes W, the non-Gaussianity of each
source. The maximization of W is performed by minimizing a given cost function.

The implementation of facial PPG is illustrated in Figure 4.11. As a first step of
extraction, the facial ROI is extracted for each frame of a video sequence. For each pixel
of the ROI the red, green and blue values is averaged separately resulting in a raw signal
yi(t), where i = 1, 2, 3 for each color channel. These average values are then normalized
with mean µi and standard deviation σi as following 4.22:
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Figure 4.11: Implementation of the facial PPG extraction. (a) Facial ROI is detected. (b)
For each frame the ROI image is split into the red, green and blue channels and spatially
averaged. (c) The constructed raw signals of the previous step is normalized. (d) ICA is
applied on the raw signals. (e) Results of the ICA are three independent and separated
source signals. In this example the BVP is visible in the second source signal. [21]
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y
′
i(t) = yi(t)− µi

σi
(4.22)

The normalized signal are then used as input for the ICA based on the joint
approximate diagonalization of eigenmatrices (JADE) algorithm [174]. The separated
source signals of the ICA are then transformed and filtered. The frequency with the
greatest power is then assumed to be the frequency of the heart rate. In order to smooth
the heart rate signal, an average of the previous five calculated heartbeats is computed.

4.10 Machine Learning

In the last machine learning (ML) step of the presented processing pipeline 4.1, data
preprocessing and classification of image data is performed. Preprocessing methods
are applied on the extracted features. These methods include calculation of additional
features, normalization, smoothing, filtering and imputation. Further, features are
averaged due to the different annotations of the datasets and to provide additional
information for machine analysis. Computation of these ”meta-features” are based on
the facial features described in the previous chapters. Created meta-features from these
facial features are the total calculation of a feature defined as the mean feature value over
all frames of a video. These total feature calculation are necessary to allow classification
of the dataset [1] due to the video-wise annotation. In the case of blinking, a mean value
of blinks per sliding window is calculated. Further calculated meta-features include mean,
VTI between adjacent motion peaks and the variance of features. These meta-features
are also calculated over sliding windows. A detailed overview of created meta-features is
given in Table 4.1.

In addition to the calculation of meta-features, facial features are filtered, smoothed
and imputed. Filtering is performed by simple thresholding and imputing the filtered
value with the mean value of previous feature values. Smoothing is done with the Savitzky
and Golay filter [175] on features showing high fluctuations and noise of landmark tracking.
Further, instances of the dataset are deleted, when the landmark detector is not able
to track the face and no features were extracted. Missing values are replaced by the
respective mean of the feature. Normalization of the features is done for each video
to allow comparison of the different values across subjects. As normalization method
min-max scaling, normalizing the feature values between the interval [0;1], is applied. To
balance imbalanced datasets for subsequent classification the more frequent non-stressed
instances are undersampled. For the classification of the data distinct ML algorithms are
employed and evaluated.

4.11 Implementation

The implementation of the developed stress detection solution is based on the processing
pipeline outlined in Figure 4.1. Core parts of the solution are preprocessing, feature
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Table 4.1: Meta-features calculated from eye, mouth, head and heart rate features.
Feature computed over a sliding window of 5**, 15* sec.

Eye Mouth Head Heart Rate
mean, median aper-
ture*

mean, median, vari-
ance of movement*

mean movement (x,
y-axis)*

median**

VTI between adja-
cent motion peaks

mean velocity (x, y-
axis)*

mean, median, vari-
ance of VTI*
mean, median, vari-
ance upper/lower
mouth VTI*

extraction and machine analysis. Image acquisition is not considered in the implemen-
tation. However, requirements on image data consist of RGB video files, frontal or
near frontal facial images as well as certain image quality standards. The different
processing steps are modularized and configurable over separate files. This leads to a
more flexible solution allowing to perform distinct data operations, such as filtering,
smoothing etc.. Further, extracted facial landmarks and features can be exported to files
and statistical measurements (e.g. mean, variance) of features can be calculated. This
file-based approach is chosen to provide flexibility in the use of different frameworks (e.g.
for ML). Moreover, extracted landmarks or features enable faster processing, as these
steps in the pipeline can be skipped. The specific solution was implemented in python
and used the popular frameworks OpenCV 5 and dlib 6 for image processing. Face and
facial landmark detection is performed with the provided algorithms in dlib. Image input,
contrast enhancement and extraction of features of the mouth is handled with the help of
OpenCV methods. Data preprocessing and analysis is performed with the scikit-learn 7

ML framework. In addition to the stress detection implementation, a video player is
developed to enable frame-wise data annotation of the captured stress dataset.

5OpenCV, https://opencv.org/, last accessed 01.09.18
6dlib, http://dlib.net/, last accessed 01.09.18
7scikit-learn, http://scikit-learn.org, last accessed 01.09.18
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CHAPTER 5
Results & Discussion

The evaluation of the developed stress detection solution is conducted on two datasets.
These datasets comprise of stress data gathered in a conducted experiment as well as
a dataset from [1]. Extracted features of the implemented solution such as eye, mouth,
head and heart rate related features are discussed. Statistical analysis with the help of
t-tests and box plots describe extracted features in more detail. Further, classification
performance of distinct machine learning algorithms are presented. Performance scores
and plots illustrate outcomes of ML algorithms. Moreover, a comparison of outcomes
with results of stress detection solutions in literature is conducted.

5.1 Eye Related Features
The eye related features are calculated on both datasets. Most important features
of the eyes comprise of eye aperture and blinking rate. To assess these features the
calculations of both datasets are presented. For the conducted stress experiments a
comparison between eye related features from videos of the stress and the non-stress
phase is performed. The total eye aperture as mean feature value over all frames for
each video is computed. In Figure 5.1 the box plot illustrates the distribution of the eye
aperture for stress and non-stress phase. In the case of videos from the stress phase the
mean eye aperture (±s.d.) is 274.9±74.9 pixels2 and for the non-stress phase 317.3±84.5
pixels2. The inter-quartile range of the two box plots overlaps, ranges are [196.4; 323.1]
for the stress phase and [243.3; 385.9] for the non-stress phase. Differences can be seen
for the non-stress data, where the box plot is situated higher than the box plot for the
stress phase. This suggests overall more closed eyes in the stress-phase compared to the
non-stress phase. A statistical significant difference of a decreased mean eye aperture in
the stress phase can be found (p < 0.05).

Evaluation of the eye aperture of the second dataset [1] is performed based on the
different stress inducing tasks in relation to the respective reference task. These distinct
elicitation tasks are outlined in the following:
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1. Social Exposure

1.1 Neutral
1.2 Self-description speech
1.3 Text reading

2. Emotional Recall

2.1 Neutral
2.2 Recall anxious event
2.3 Recall stressful event

3. Stressful images/Mental Task

3.1 Neutral/stressful images
3.2 Mental Task (Stroop)

4. Stressful videos

4.1 Neutral
4.3 Adventure/heights video
4.4 Home invasion video

In Table 5.1 the mean eye aperture for each task is presented. Further, the box plot
in 5.3 visualizes the mean eye aperture for each task with blue boxes representing the
neutral reference task and brown boxes the stress inducing tasks. A statistical significant
difference of the eye aperture between stress inducing tasks and corresponding neutral
task can not be found. However, a decrease in the eye apertures for the task 1.2 vs 1.2,
4.1 vs. 3.2 is illustrated in Figure 5.3.

The second eye related feature, the number of blinks per minute (BPM), is extracted
from the EAR signal. For blink detection a EAR threshold of 0.3 is chosen for the
conducted experiment data. This threshold is selected after manual inspection and
visualization of the EAR signal from the video data. The mean blink rate of the stress
phase from the conducted experiment videos is 39.9±20.1 BPM and of the non-stress phase
22.5±24.0 BPM. The increased blink rate in the stress phase is statistically significant
(p < 0.05) compared to the non-stress phase. In Figure 5.2 the differences of the blink
rate between the two phase is shown. The inter-quartile range of the two box plots are
[19; 57] for the stress phase and [4; 56] for the non-stress phase. The box plot for the
stress phase is situated higher than the plot for the non-stress phase, which illustrates
the differences in blinking behavior.

In the case of the second dataset, blink detection is performed based on the eye
aperture and the 15th percentile as threshold. This extraction method is chosen due to
the insufficient detection from the EAR signal. A statistically significant increased blink
rate is found for the tasks 1.2, 3.1, 3.2, 4.3 and 4.4 in comparison to the corresponding
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Figure 5.1: Box plot of the mean eye aperture (pixels2) for the stress and non-stress
phase.

reference task (p < 0.05). An illustration of the mean blink rate for each task can be
found in Figure 5.4. The box plots situated higher compared to the reference task show
statistically measurable differences. Overall, blinking detection by a simple threshold-
based approach has it’s limitations such as the strong requirements on the setup in regard
to face-camera pose (head rotation), motion and more [169]. An approach based on a
trained classifier for blink detection as outlined in [169] is preferable.

During the stress phase for the conducted experiment data a statistically decreased
eye aperture is found. In outcomes from Bevilacqua et al. [20] also a statistically
decreased eye aperture in the stress phase compared to the non-stress phase is present.
The percentage of the mean eye aperture change between stress and non-stress phase
is -13.3% for the conducted experiment data. Bevilacqua et al. states a percentage
change of the eye aperture between -2.6% and -8.9% for the work-load stress phases.
Furthermore, an increased eye blinking during the stress phase can be found, which is
also suggested in outcomes from [1].

5.2 Mouth Related Features

The mouth related features are extracted with the use of the optical flow as well as
with the calculation of the mouth area. Mouth motion is defined as the maximum
magnitude of the optical flow for the conducted experiment data. In the case of the
second dataset, mouth related features can not be extracted. The second dataset consists
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Figure 5.2: Box plot of the mean eyeblinks (in blinks per minute (BPM)) for the stress
and non-stress phase.

Figure 5.3: Box plot of the mean eye aperture for each emotional elicitation task (see 5.1).
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Table 5.1: Mean (±s.d.) of eye aperture and blink rate for each emotion inducement task
with corresponding reference (neutral) baseline.

Experimental Phase Eye Aperture Blink Rate
(pixels2) (blinks per minute)

Social Exposure
1.1 Neutral 435.1±67.0 55.5±27.54
1.2 Self-description speech 393.5±68.64 140.3±43.31*
1.3 Text reading 444.2±71.1 46.69±17.0
Emotional recall
2.1 Neutral 443.5±64.3 49.82±30.41
2.2 Recall anxious event 430.4±78.5 56.60±26.48
2.3 Recall stressful event 407.8±80.7 52.0±23.72
Stressful images/Mental
task
3.1 Neutral/Stressful im-
ages**

435.2±60.5 118.75±46.14*

3.2 Mental Task (Stroop)** 407.8±80.7 135.92±40.18*
Stressful videos
4.1 Neutral 430.1±77.1 58.78±31.54
4.3 Adventure/heights
video

433.6±73.7 88.02±34.35*

4.4 Home invasion video 425.5±73.6 129.9±56.79*
**Reference task 4.1 *p < 0.05

of facial landmarks and does not contain image data due to privacy protection. Hence,
the optical flow can not be extracted from this dataset. Extracted data from videos
of stress and non-stress phase are averaged for each video and phase. Results of the
conducted experiment data show a mean mouth movement of 8.17±2.34 for the stress
phase and 3.30±2.22 for the non-stress phase. Statistically significant increased mouth
movement is found between stress and non-stress phase (p < 0.05). In Figure 5.5 the
differences of mouth movements in the two phases is depicted. The inter-quartile range of
the two box plots are [6.68; 10.12] for the stress phase and [2.27; 5.40] for the non-stress
phase. The box plot of the stress phase is situated higher than the plot for the non-stress
phase emphasizing the discrepancy in mouth motion between the two phases. Further,
mouth related feature values are presented in Table 5.2. These mean values comprise
of mouth movement of upper and lower mouth, VTI between mouth motion peaks as
well as mean variance of (upper/lower) mouth movement. Due to the correlation of
upper and lower mouth movement as well as the overall more frequently occurring mouth
movements these values show statistically significant differences between the two phases.

Overall, results indicate an increased mouth movement in the stress phase compared
to the non-stress phase. Outcomes of Liao et al. [31] also state frequent mouth motion in
the form of mouth openings in stress conditions. Significant differences between mouth
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Figure 5.4: Box plot of the mean blink rate (in BPM) for each emotional elicitation task
(see 5.1).

related features in stressful and non-stressful events are found in [20]. In their work a
decrease of mouth movement during work-load (stressful state) is found. These differences
of mouth motion between the presented results and [20] may be due to the distinct stress
elicitation tasks (work-load vs. cold-pressor test). McDuff et al. [33] study shows distinct
outcomes for different stress inducing tasks. Furthermore, the higher VTI of mouth
motion peaks between stress and non-stress phase implies a reduced rhythmicity of lip
movements associated with stress as outlined in [1].

5.3 Head Related Features

The head related features comprise of head movement and head velocity. Head movement
and head velocity are calculated from Eucledian distances. Movement and velocity are
measured in pixels and pixels/frame between facial landmarks from video frames. Evalu-
ation of the head movement and head velocity is based on the mean movement/velocity
over all frames of videos from stress and non-stress phase. The extracted head movement
of the conducted experiment dataset demonstrates increased head motion of participants
in the stress phase. In comparison to the head movement in the non-stress phase, in-
creased head motion is statistically significant (p < 0.05). Mean head movement of videos
from the stress phase is 35.4±32.7 and 7.73±22.6 pixels for videos from the non-stress
phase. In Figure 5.8 the mean head movement is displayed in a box plot. The data of
head movement is illustrated for each phase. The inter-quartile range of the data in the
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Table 5.2: Mean (±s.d.) of mouth related features for stress and non-stress phase. All of
the values show statistically significant differences between the phases (p < 0.05)

.
Mouth Related Feature Stress Phase Non-Stress Phase
Mean Mouth Movement 8.17±2.34 3.3±2.22
Mean Variance Mouth
Movement

6.53±8.26 0.92±3.23

Mean VTI Mouth Move-
ment

16.35±1.99 13.33±1.2

Mean Upper Mouth Move-
ment

5.22±2.11 3.10±1.95

Mean Variance Upper
Mouth Movement

2.99±8.81 0.77±2.34

Mean VTI Upper Mouth
Movement

15.15±2.11 13.08±1.14

Mean Lower Mouth Move-
ment

4.71±1.57 2.55±1.65

Mean Variance Lower
Mouth Movement

3.68±5.27 0.85±2.26

Mean VTI Lower Mouth
Movement

16.89±2.3 12.84±1.12

Figure 5.5: Box plot of the mean mouth movement for the stress and non-stress phase.
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stress phase is [27.3; 64.0] and of the data in the non-stress phase is [2.90; 20.1]. The
box plot of the mean head movement of the non-stress phase is shorter in comparison
to the mean head movement of the stress phase. This suggests an agreement of head
movements in the non-stress phase. Further, the plot in the stress phase is situated
higher in comparison to the non-stress phase, which indicates more head movement in
the stress phase.

The head velocity has also statistically significant differences between videos from
stress and non-stress phases, where the velocity is increased in the stress phase. Mean
head velocity of videos from the stress phase is 0.99±1.44 and 0.61±0.56 pixels/frame of
videos from the non-stress phase. An illustration of the mean head velocity is displayed
in Figure 5.7. In the shown box plot the characteristics of the head velocity in the
individual phases is shown. The inter-quartile range of the head velocity in the stress
phase is [0.62; 1.62] and of the non-stress phase is [0.51; 0.89]. The box plot of the head
velocity of the non-stress phase is more compressed and overlaps with the head velocity
of the stress phase in the range of [0.62; 0.89]. This indicates a same head velocity for
the overlapping areas in both phases, which may results from non-movement periods of
the head. However, the distribution of the head velocity of the stress phase stretches
over a wider range when also comparing the whiskers of the data.

Results from the second dataset are outlined in Table 5.3. Statistically significant
differences between emotion elicitation task and reference task have been found for the
tasks 1.2, 1.3, 3.1, 3.2, 4.3 and 4.4 for the head movement in comparison the respective
reference task. Figure 5.8 illustrate the head movement for each task. For the head
velocity a statistically significant difference has been found for the 3.1 in comparison
to the reference task 4.1. The head velocity for each task is displayed as a box plot in
Figure 5.9.

The head movement of the stress phase are more prominent compared to the head
movement in the non-stress phase. Frequent head movements in stress conditions are also
reported in [31]. Furthermore, head movements tend to be increased in stress elicitation
tasks of [1]. Bevilacqua et al. [20] also evaluated the head movements between a stressful
(work-load) and non-stressful task. In their work, a decrease of head movement was
found in the stress inducing task. The distinct stress experiment of [20] compared to the
conducted stress experiment may lead to the different behavior of head movements. In
addition to the head movement, the head velocity is increased during the stress phase
compared to the non-stress phase. An elevated head velocity can be found for tasks by
Giannakakis et al. [1].

5.4 Heart Rate from Facial Video

The extracted heart rate is evaluated for the conducted experiment dataset. Heart rate
measurements for the second dataset are not established. The second datasets consists
of facial landmarks, image information required for facial PPG is not provided by this
dataset due to privacy protection. To compare the heart rate between the stress and
non-stress phase, a mean heart rate over all videos in the respective phase is computed.

74



5.4. Heart Rate from Facial Video

Figure 5.6: Box plot of the mean head movement (in pixels) for the stress and non-stress
phase.

Figure 5.7: Box plot of the mean head velocity (in pixels/frame) for the stress and
non-stress phase.

75



5. Results & Discussion

Figure 5.8: Box plot of the mean head movement for each emotional elicitation task
(see 5.3).

Figure 5.9: Box plot of the mean head velocity for each emotional elicitation task (see 5.3).
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Table 5.3: Mean (±s.d.) of head movement and head velocity for each emotion inducement
task with corresponding reference (neutral) baseline.

Experimental Phase Head Movement Head Velocity
(pixels) (pixels/frame)

Social Exposure
1.1 Neutral 10.53±10.1 1.49±2.13
1.2 Self-description speech 25.4±14.6* 1.20±0.60
1.3 Text reading 18.6±11.6* 1.33±0.32
Emotional recall
2.1 Neutral 8.27±11.03 0.76±0.33
2.2 Recall anxious event 17.15±20.0 0.94±0.59
2.3 Recall stressful event 17.3±19.93 0.95±0.92
Stressful images/Mental
task
3.1 Neutral/Stressful im-
ages**

20.96±11.6* 0.83±0.28

3.2 Mental Task (Stroop)** 19.35±12.43* 1.12±0.36*
Stressful videos
4.1 Neutral 8.41±9.0 0.78±0.33
4.3 Adventure/heights
video

16.81±14.7* 1.12±1.39

4.4 Home invasion video 18.5±16.6* 1.34±2.66
**Reference task 4.1 *p < 0.05

Measurements of the heart were filtered and smoothed to reduce noise and fluctuations
from facial PPG. In Figure 5.10 the distribution of the mean heart rate values from videos
of the two phases is illustrated. In the stress phase an elevated heart rate distribution can
be found with an inter-quartile range of [80.1; 94.2] versus [68.2; 85.5] for the non-stress
phase. Mean heart rate values for the stress and non-stress phase are 88.25±11.7 and
79.3±11.3 beats per minute (BPM). A statistically significant difference between the
mean heart rate in the stress and non-stress phase could not be found (p > 0.05). Overall,
the heart rate of participants ranged from 61.6 to 109.8 BPM.

Measurements, illustrated in Figure 5.10, indicate an elevated heart rate for the
stress phase. However, in comparison to the non-stress phase these are not statistically
significant. This agrees with outcomes are presented by McDuff et al. [19]. In their work,
the heart rate is also not significantly different. This suggests that the heart rate alone
may not be a discriminative indicator of stress.
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Figure 5.10: Box plot of the heart rate from facial PPG for the stress and non-stress
phase.

5.5 Classification Performance

Classification of stress detection categorizes data into stressed and non-stressed emotional
states. Features extracted from facial video data determine the outcomes of ML algorithms.
For the evaluation of datasets performance measurement such as accuracy, precision,
recall and F1 score are chosen. The datasets are assessed with the use of cross-validation
(CV) and train-test splits.

Achieved scores of CV for the conducted experiment dataset are presented in
Table 5.4. The highest accuracy reaches the Naive Bayes classifier with 77%, followed
by the SVM, Random Forest (RF), AdaBoost and k-NN. The F1 score, the harmonic
average of precision and recall, is best for Naive Bayes and SVM with 0.76. The poorest
performance is reached by the k-NN with an accuracy of 70% and a F1 score of 0.70.
Further evaluation is done by a split of 70% training and 30% test data. The ROC curve
in Figure 5.11 depicts the outcomes of the distinct ML algorithms. In the ROC curve
the relation between true positive and false positive rate is plotted. The dotted line
dividing the ROC plot in the diagonal represents equal amount of true positives and false
negatives and an area under the ROC curve (AUC) of 0.5. A AUC of 0.5 characterizes a
predictor making random guesses. Hence, the best results are located in the upper left
corner with a AUC of ideally one. Best performing classifier of the ROC plot in 5.11 is
the SVM with an AUC of 0.861 followed by RF and the AdaBoost classifier. A detailed
view on outcomes of the SVM is shown in Figure 5.12. In the confusion matrix the ratio
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of samples identified as false positives, false negatives, true positives and true negatives
are displayed. This enables a more detailed analysis of classification outcomes. In the
case of the SVM classification 25% of non-stressed instances are false positives and 14%
of stressed instances are false negatives. The falsely identification of non-stressed as
stressed instances leads to the major performance decrease. A perfect classification will
ideally reach 100% true positives and true negatives.

Table 5.4: Results of classification from the conducted experiment dataset for different
scores, evaluated with 10-fold CV.

Score Naive
Bayes

k-NN AdaBoost RF SVM

Accuracy 0.77 0.70 0.74 0.74 0.75
Precision 0.83 0.74 0.79 0.78 0.79
Recall 0.74 0.67 0.71 0.75 0.76
F1 0.76 0.70 0.71 0.75 0.76

In addition to classification results, a feature selection method is applied. Feature
selection allows to find features contributing most to the prediction outcomes. In this
work, the feature importance of ensemble ML algorithms i.e. Trees are used for feature
selection. The feature importance of tree classifiers is established by a relative rank
corresponding to depth of a feature used as decision node [176]. The calculation of feature
importance from an ensemble of trees leads to the top five feature importance ranking in
Table 5.5. Best ranked features comprise of mouth and head related features as well as
of heart rate from facial PPG.

Table 5.5: Feature importance ranking computed from an ensemble of tree classifier.

Feature Importance Ranking
1. Mean Lower Mouth Movement
2. Mean Mouth Movement
3. Mean Head Movement
4. Median Heart Rate
5. Mean Head Velocity (x-axis)

The evaluation of the second dataset [1] is performed on the distinct emotional
elicitation tasks. Classifiers such as k-NN, Naive Bayes, AdaBoost and SVM, distinguished
the data from stress inducing tasks and corresponding neutral reference task. To create
comparable results with outcomes of [1], the mean accuracy from 10-fold CV is chosen as
classification score. Outcomes of the developed solution and the values achieved from
Giannakakis et al. [1] are presented in Table 5.6. Accuracy values of the developed
solution differ depending on the emotional elicitation task. The accuracy values of the
first social exposure task are values between 72.5% (k-NN) and 77% (SVM) with a mean
difference of 11.5% to the results from [1]. The worst performance is achieved for the
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second emotional recall task with an accuracy ranging from 40% to 53.5%. These low
accuracies may be due to the missing mouth and heart rate features, which can not be
extracted from the facial landmark data. Feature selection conducted by Giannakakis
et al. shows that heart rate and mouth related features contribute most to prediction
outcomes of the emotional recall task. For the tasks 3 and 4 classifiers achieve accuracy
values between 71% and 82% with a respectively mean difference of 6.87% and 7.92%.
Overall, performance of task 1, 3 and 4 is better than those of task 2. This may be due
to the fact that feature selection determines extracted head velocity and head movement
as main contributing feature for these tasks [1].

Table 5.6: Average classification accuracy results for each task. The first accuracy value
is the performance achieved by the developed solution. The second value is the presented
value from [1].

Task k-NN Naive Bayes AdaBoost SVM
(%) (%) (%) (%)

1. Social Expo-
sure

74.0/85.5 76.5/86.0 72.5/91.6 77.0/82.9

2. Emotional
Recall

40.0/88.7 53.5/73.2 46.5/81.0 40.0/65.8

3. Stressful
images/Mental
task

76.0/88.3 78.0/83.4 78.5/87.2 82.0/83.1

4. Stressful
Videos

71.0/88.3 71.0/71.6 71.5/83.8 77.5/76.0

A comparison of outcomes of the developed solution with results in current literature
allows to assess overall performance. The most comparable approach for stress detection,
besides Giannakakis et al. [1] work, is the solution of Bevilacqua et al. [20]. Their model-
based solution also employs facial landmark tracking with features based on Eucledian
distance. However, a classification by ML algorithms is not employed in their approach.
In comparison to the model-based approaches by Aigrain et al. [17] and Dinges et al. [32]
with an accuracy of 77% and 75% to 88% respectively, the classification accuracy of
the developed solution reaches similar levels. Higher accuracy values ranging from
80% to 91.68% are achieved by [1]. Stress detection utilizing only facial PPG reaches
performance with a classification accuracy of 80% to 86%. Thermal and hyperspectral
imaging solutions classify stress and non-stress emotional states with an accuracy ranging
from 56.52% to 88.9%. A more comprehensive comparison of the distinct outcomes of
research in stress detection is outlined in Table 2.3.
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Figure 5.11: Results of classifiers from a 70/30 train-test split presented in a ROC plot.

Figure 5.12: Results of a SVM classifier from a 70/30 train-test split presented in a
confusion matrix.
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CHAPTER 6
Conclusion

In this thesis, a stress detection solution based on the analysis of facial signs from video
sequences was introduced. Stress related features from eyes, head and mouth as well as
the heart rate were assessed. Extraction of these features was based on computational
methods such as Eucledian distances, optical flow and facial PPG. A face and landmark
detection built the basis of feature extraction. Head and eye related features such as
head movement, head velocity, eye aperture and blinking were computed with the help
of facial landmarks. Moreover, selected ROIs allowed to determine the optical flow and
facial PPG to extract mouth movements and heart rate respectively.

Evaluation of the presented solution was based on two distinct datasets. Both of
these sets comprise of facial data from subjects in stressed and non-stressed emotional
states. The first dataset was gathered through an experiment protocol employing the
stress inducing cold-pressor test. The second dataset comprised of facial landmark data
from distinct stress elicitation and reference tasks. For each dataset facial features of
subjects in stressed and non-stressed/neutral emotional states were computed. Statistical
analysis allowed to compare extracted feature values between these states. Significant
differences, in the first dataset, could be found for eye, head and mouth related features.
The analysis of the second dataset resulted in statistically significant differences depending
on the stress elicitation task.

Further evaluation of the developed solution was focused on classification performance
of employed ML algorithms. The classifiers categorized data as stressed or non-stressed.
Prediction results have shown a classification accuracy of up to 77% in the analysis of
the first dataset. Moreover, a feature selection identified specific facial features, which
impact classification outcomes the most. In the case of the second dataset, outcomes
of classification differed depending on the stress elicitation task. Overall, classification
performance of both datasets is comparable with results in literature [17, 32].

Despite the ability to detect stress in this setting, limitations include the conducted
stress elicitation experiment as well as the nature of stress. The elicitation of stress
took place in a controlled laboratory environment, which impacts the generalizability of
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results. Real-life situation may differ in case of the stressor as well as in the intensity
of stress. Furthermore, environmental, physical or psychological conditions can impact
features utilized for stress detection [168, 167, 177].
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task with corresponding reference (neutral) baseline. . . . . . . . . . . . . . 71

5.2 Mean (±s.d.) of mouth related features for stress and non-stress phase. All
of the values show statistically significant differences between the phases
(p < 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Mean (±s.d.) of head movement and head velocity for each emotion induce-
ment task with corresponding reference (neutral) baseline. . . . . . . . . . 77

5.4 Results of classification from the conducted experiment dataset for different
scores, evaluated with 10-fold CV. . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Feature importance ranking computed from an ensemble of tree classifier. 79
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5.6 Average classification accuracy results for each task. The first accuracy value
is the performance achieved by the developed solution. The second value is
the presented value from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . 80
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Acronyms

AAM active appearance model. 15, 31, 36

AFEA automated facial expression analysis. 5, 51

AP appearance based feature extraction. 42, 43, 89

ASM active shape model. 19, 51

AU action unit. 7, 16, 31, 40, 42, 45

AUC area under the ROC curve. 78

BPM blinks per minute. 68, 70, 72, 87

BPM beats per minute. 77

BR breathing rate. 9, 11

BVP blood volume pulse. 8, 9, 32, 35, 36, 38, 63, 64, 87

CLM constrained local model. 57

CLNF constrained local neural field. 21

CNN convolution neural network. 26–28, 33, 44, 51, 86

CPT cold-pressor test. 48, 49

CV cross-validation. 78, 79, 89

DBN dynamic bayesian network. 19, 20

DPM deformable part model. 53

EAR eye aspect ratio. 59, 60, 68, 86

ECG electrocardiogram. 3, 35, 36

EDA electrodermal activity. 35, 36
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EDR electrodermal response. 13, 33, 38, 39, 89

EE energy expenditure. 3, 26, 33, 36, 39, 89

EEG electroencephalography. 3, 35

FACS facial action coding system. 7, 16, 38–40, 42, 45, 89

FD face detector. 42, 43, 89

FOV field of view. 48

FPS frames per second. 38, 48, 50

G1 geometric feature extraction by feature tracking. 42, 43, 89

G2 geometric feature extraction by feature detection. 42, 43, 89

GA genetic algorithm. 23, 24

GSR galvanic skin response. 3, 38

HDTP histogram of the dynamical thermal pattern. 23, 24

HF high frequency. 11

HI hyperspectral imaging. 4, 21, 22, 31–33, 89

HMM hidden Markov model. 17, 18, 33, 51

HoG histogram of oriented gradients. 16, 44, 51–54, 56, 57, 86

HPE head pose estimation. 42, 43, 89

HR heart rate. 9, 11, 13, 15, 18, 30, 36, 50

HRV heart rate variability. 9, 11, 13

HSI hyperspectral imaging. 28–30

ICA independent component analysis. 9, 63–65, 87

JADE joint approximate diagonalization of eigenmatrices. 65

k-NN k-nearest neighbors. 15, 33, 78, 79

LBP local binary pattern. 23

LBP-TOP local binary patterns top. 23, 24
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LF low frequency. 11

ML machine learning. 1, 48, 65–67, 78–80, 83

NN neural network. 27

OCR optical computer recognition. 17

PPG photoplethysmography. 4, 5, 8, 9, 11, 12, 15, 21, 31–33, 36, 38, 39, 44, 47, 63, 64,
74, 77–80, 83, 87, 89

PSD power spectral density. 26

RF Random Forest. 78

ROC receiver operating characteristic. 30, 78, 81, 86, 87

ROI region of interest. 24–27, 30, 47, 50, 60, 63, 64, 83, 86, 87

RVS respiration variability spectrogram. 26, 27

SIFT scale invariant feature transform. 25

StO2 tissue oxygen saturation. 28–30, 33, 89

SVM support vector machine. 9, 15, 16, 23–25, 33, 51, 52, 56, 57, 78, 79, 81, 87

TI thermal imaging. 4, 21, 22, 25, 26, 30–33, 44, 89

TS thermal spectrum. 23, 24

TSST Trier Social Stress Test. 29

VS visible spectrum. 23, 24

VTI variance of time intervals. 60, 65, 66, 71–73
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