
Minimizing Wiggles in Storyline
Visualizations

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Masterstudium Software Engineering & Internet Computing

eingereicht von

Theresa Fröschl, BSc
Matrikelnummer 00826841

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg

Wien, 4. September 2018
Theresa Fröschl Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Minimizing Wiggles in Storyline
Visualizations

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Masterstudium Software Engineering & Internet Computing

by

Theresa Fröschl, BSc
Registration Number 00826841

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg

Vienna, 4th September, 2018
Theresa Fröschl Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Theresa Fröschl, BSc
Ernsdorf 108, 2134 Staatz-Kautendorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. September 2018
Theresa Fröschl

v





Kurzfassung

Storyline Visualizations sind einfache 2-dimensionale Illustrationen über die Handlungen
von Filmen oder Büchern die nur aus den horizontal verlaufenden Lebenslinien der
Charaktere der Geschichte und den Interaktionen der einzelnen Charaktere miteinander
bestehen. Diese Interaktionen stehen im Fokus einer Storyline Visualization.

Aktuelle wissenschaftliche Arbeiten haben ihren Fokus auf der Optimierung von Storyline
Visualizations durch die Minimierung von Kreuzungen zwischen den Linien der Charaktere.
Diese Diplomarbeit knüpft an diese Vorarbeit an und behandelt vertikale Sprünge entlang
der Charakterlinien. Solche Höhensprünge werden im Zusammenhand mit Storyline
Visualizations als Wiggles bezeichnet. Ziel ist es die Qualität und Lesbarkeit von Storyline
Visualizations zu verbessert indem Wiggles minimiert werden. Um diese Wiggles zu
reduzieren werden zuerst Optimierungs-Metriken definiert, um die Qualität einer Storyline
Visualization in Zahlen ausdrücken zu können. Insgesamt haben wir vier solcher Metriken:
die Gesamthöhe aller Wiggles (total wiggle height), die Anzahl aller Wiggles (number of
wiggles), die Höhe des höchsten Wiggles (highest wiggle) und die Anzahl aller paarweisen
Kreuzungen (number of pairwise crossings). Diese Metriken bilden die Grundlage für die
Zielfunktionen von Wiggle-Minimierungen.
Mit einer kombinatorischen Sichtweise auf unser Optimierungsproblem beschreibt diese
Arbeit zwei Lösungsmodelle um die vertikale Anordnung der Charakterlinien für jeden
Zeitpunkt zu variieren um die beste Lösung mit den kleinsten möglichen Werten für
unsere Metriken zu produzieren. Das erste Modell beschreibt ein ganzzahliges lineares
Programm (ILP) für Wiggle-Minimierung, das zweite Modell beinhaltet die Formulierung
eines maximalen Erfüllbarkeitsproblems (Max-SAT) zur Wiggle-Minimierung.

Basierend auf unseren beiden Lösungsmodellen wurden Experimente durchgeführt um die
unterschiedlichen Variationen der möglichen Zielfunktionen bezüglich Wiggle-Minimierung
auszutesten. Die Evaluierung dieser Experimente zeigt deutlich, dass die Minimierung
der Gesamthöhe aller Wiggles die besten Resultate bezüglich unserer Metriken erzielt.
Die Minimierung von Wiggles reduziert auch die Anzahl der Kreuzungen innerhalb
einer Storyline Visualization. Durch eine kombinierte Optimierung von Wiggles und
Kreuzungen kann die Anzahl der Kreuzungen weiter reduziert werden, allerdings meist
auf Kosten der anderen Wiggle-Metriken.

vii





Abstract

Storyline visualizations are abstract 2-dimensional drawings of storylines, which shows
the lifelines of the characters of the storyline as horizontal lines and interactions between
those characters by bundles of the corresponding character lines. The focus lies on
illustrating the interactions of the characters within the storyline.

Recent scientific work had its focus on optimizing storyline visualizations by minimizing
crossings. This thesis examines line wiggles as another important quality criteria of
storyline visualizations and how such wiggles can be minimized to generate storyline
visualizations with good legibility. To minimize wiggles we start defining optimization
metrics for total wiggle height, number of wiggles, highest wiggle and number of pairwise
crossings which can be used to formulate objective functions for optimizations of storyline
visualizations.
Considering our optimization problem as a combinatorial problem we formulate two
solution models for optimizing storyline visualizations based on changing the vertical
order of the character lines to minimize one or more of our optimization metrics. The
first solution model contains an Integer Linear Programming (ILP) approach; the second
solution model describes a Max-SAT formulation.

Following experiments based on our two solution models with different objective formu-
lations show that the minimization of the total wiggle height produces the best results
regarding our four optimization metrics and that wiggle minimizations also reduces cross-
ing within a storyline visualization. With multi-objectives for combined minimization of
wiggles and crossings the number of crossings can be further reduced, but very likely at
the expense of at least one of the wiggle metric values.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

2 Problem Definition 5
2.1 Definition of Storyline Visualizations . . . . . . . . . . . . . . . . . . . 5
2.2 Definition of Wiggles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Optimization metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Literature Review 9

4 Preliminaries 13
4.1 Integer Linear Programming (ILP) . . . . . . . . . . . . . . . . . . . . 13
4.2 Maximum Satisfiability Problem (Max-SAT) . . . . . . . . . . . . . . 14

5 Solution Models 17
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Max-SAT Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Implementation 41

7 Experiments and Result Analysis 43
7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Experiments with ILP Formulation . . . . . . . . . . . . . . . . . . . . 50
7.3 Experiments with Max-SAT Formulation . . . . . . . . . . . . . . . . 69

8 Conclusion 75

xi



List of Figures 77

List of Tables 79

Bibliography 81



CHAPTER 1
Introduction

The aim of storyline visualizations is to give an overview of all interactions between the
entities of a storyline. The plot of the storyline comes second and arises only from the
context of the visualization.
Recent scientific research about storyline visualizations was mainly inspired by a webcomic
by Munroe about movie narrative charts [26] shown in Figure 1.1.

Figure 1.1: Movie narrative chart of Star Wars (xkcd 657)

Following the style of the webcomic by Monroe such storyline visualizations are 2-
dimensional drawings of a set of x-monotone curves going from left to right along a
timeline. Every character of the storyline is represented by one of the horizontal lines.
The focus lies on the interactions between the characters, which we refer to as meetings
of characters. A meeting of a subset of all characters is illustrated by vertical proximity
of the corresponding character lines.

To obtain storyline visualizations with good legibility where it is easy to follow every
character line the vertical ordering of the lines along the timeline is crucial. The current
literature names three quality criteria for storyline visualizations to identify and generate
storyline visualisations with good legibility. These quality criteria are crossings, line
wiggles and white-space gaps [23, 36]. Therefore optimal storyline visualizations should
contain minimal amounts of crossings, wiggles and white space.

1



1. Introduction

After several attempts in the literature about optimizing only the number of crossings
in storyline visualizations [17, 21, 37, 38] this thesis focus on minimizing the wiggles
in storyline visualizations. In other words, instead of focusing on the minimization
of crossings between two or more character lines we focus on minimizing unnecessary
vertical jumps of the character lines between two successive time points within a storyline
visualization.

In the following thesis we start by defining storyline visualizations and wiggles in more
detail, followed by the definition of four optimization metrics for total wiggle height,
number of wiggles, highest wiggle and number of crossings which we will use to formulate
concrete objective functions for wiggle minimization and for evaluating the quality of
resulting storyline visualizations.

By looking at our optimization problem from a combinatorial point of view we create
two solution models for minimizing wiggles. Our first solution model contains an Integer
Linear Programming (ILP) model and for our second optimization method we create a
Maximum Satisfiability (Max-SAT) formulation. Both solution models include comparable
variables and constraints to describe correct storyline visualizations and enable us to
formulate objective functions for at least two different wiggle minimization objectives.
Our first wiggle minimization objective contains the minimization for the total wiggle
height, which is simply the sum of the height of all wiggles in the complete storyline
visualization. Our second wiggle minimization objective contains the minimization of
the number of wiggles, which is represented by the sum of all wiggle occurrences in the
storyline visualization.
Furthermore the ILP formulation extends these two wiggle minimization objectives with
a third wiggle objective function for minimizing the maximum wiggle height and the
additional possibility of formulating multi-objectives. Such a multi-objective combines
one of the three wiggle minimization objectives with the minimization of the number of
pairwise crossings within storyline visualizations.

By analysing the results from experiments based on our two solutions models we evaluate
the generated storyline visualizations from both solution models. Our performed experi-
ments comprise all our different objective alternatives for wiggle minimization, which
enables us to compare the quality of the resulting storyline visualizations regarding our
optimization metrics produced by different objective variations.

The thesis is structured the following way:

• Chapter 2 is about the basic definition of the research problem this thesis examines
and provides a detailed definition of storyline visualizations and wiggles in storyline
visualizations. The chapter also contains the definition of our optimization metrics
we use for formulating objective functions for wiggle minimization and for evaluating
the quality of storyline visualizations.

2



• Chapter 3 summarizes previous scientific research work about storyline visualizations
in the style of the webcomic by Monroe [26] and comparable visualizations which
have their focus on illustrating relations between entities along a timeline. The
chapter also examines the current state of the art in the literature regarding
optimizations of storyline visualizations.

• Chapter 4 gives a short overview of the theoretical foundation needed for our two
solution models in the next chapter.

• Chapter 5 starts with a general section about all required variables and constraints
for both of our solution models so that they produce correct and comparable storyline
visualizations. Furthermore this chapter contains also a detailed description of the
concrete ILP and Max-SAT formulations.

• Chapter 6 names all technologies used for the implementation of both solution
models and gives a short overview of the created software project.

• Chapter 7 contains the description and analysis of all experiments performed for
both of our solutions models. The chapter contains also an evaluation of the
storyline visualization results from different alternative objective functions for
optimizing storyline visualizations.

• Chapter 8 summarizes the evaluation of wiggle minimization in storyline visualiza-
tions based on our two solution models.

3





CHAPTER 2
Problem Definition

2.1 Definition of Storyline Visualizations
The kind of storyline visualizations we examine in this thesis is inspired by the webcomic
of movie narrative charts by Monroe [26]. Figure 1.1 shows a part of this webcomic. Such
a storyline visualization is a 2-dimensional drawing with focus on the interactions of the
entities of the storyline over time. These entities are illustrated by x-monotone curves.
The interactions are represented by vertical proximity of the corresponding entity curves.

In the webcomic these entities are the characters of the movie and the interactions are
the scenes the associated characters share. To distinguish between different character
lines, colours of different shades and labels at the beginning of the lines are used.

We will follow this style of storyline visualizations in the following chapters and refer to
the x-monotone curves of the visualization as character lines and to the interactions as
meetings between a set of characters which we refer to as members of the meeting. An
example of storyline visualizations within this thesis is shown in Figure 2.1.

Figure 2.1: Example of a storyline visualization

Because we use storylines of movies for our experiments in Chapter 7 we will refer to
movie data as instances for generating storyline visualizations where a meeting represents
a scene in the movie containing at least one character.

5



2. Problem Definition

Meetings are identifiable by bundles of character lines and by the light grey coloured
boxes we draw behind the bundled character lines. Parallel meetings which share time
points are possible and allowed, because although only one scene can be shown at once
on a screen, all other characters which are not shown in the current scene don’t just stop
existing. Most of the time it is known from the context of a storyline where all characters
are currently and which other characters are with them. To visually separate such parallel
meetings we require at least one blank line between the meetings. A character is only
allowed to be member of at most one meeting per time point.

The start time point of a character can be derived by the start time point of the first
meeting along the timeline the character is a member of, and the end time point of a
character by the last meeting the character is a member of. We allow gaps along the
lifeline of the characters for storylines where the whereabouts of certain characters is not
known from the context of the storyline. During these gaps the character line ends and
starts again when the corresponding character restarts appearing in meetings.

In optimized storyline visualizations the character lines are driven to be as straight as
possible. An optimal character line is represented as a straight horizontal line. It is
natural in a movie or any other narrative that characters interact with various other
characters. Also a meeting can’t continue forever and has to end at a certain point along
the timeline. Then the bundled characters have to separate from each other to form new
bundles for new meetings. Thus after every end of a meeting at least one character has
to break out from its horizontal flow to join one ore more other characters for the start
of a new meeting. Such a beak out forms a wiggle.

2.2 Definition of Wiggles
A wiggle is a change of direction along a character line which start at a specific time
point and ends at the very next time point. For this short period the horizontal character
line becomes a rising or dropping line. After this quick jump along the y-axis the line
finds back into it’s horizontal flow.

Such wiggles can be observed for one line alone, or for a bunch of parallel lines together.
In both cases the behaviour stays the same. Storyline visualizations with many wiggles
can degrade the legibility of the visualizations because it gets harder to follow single lines
when they constantly change their directions.

In the literature different perspectives and presentations can be found for wiggles. Not
always is there a visual difference between straight horizontal line segments and the rising
or dropping line segments depending on the goal of the corresponding literature work.

A high contrast in visual characteristics between wiggles and horizontal line segments
can be found in Tanahashi and Ma [36] and Liu et al. [23] where wiggles are drawn as
thin and lightly coloured lines connecting horizontal static line segments of the storyline
visualization. With this different representation wiggles are more seen as connecting
elements of interaction sessions and less part of the character lifelines.

6



2.3. Optimization metrics

A different point of view of line wiggles where the focus lies more on emphasizing wiggles
is described in the works of Bereg et al. [9, 10] where wiggles are named as moves within a
line of a tangle. A tangle describes a sequence of permutations where each element is only
allowed to change its position by at most 1 between two consecutive permutations. The
goal is to get all elements ordered at the end of the sequence. The moves get illustrated
as thickened lines and both the beginning and the ending corner of a move got marked
with circles around them.

Another important point to mention is that it is usually recommended in line visualizations
to smooth corners to enhance the readability of the visualization. Then the corners
appear more rounded and the border between the horizontal line and the wiggle becomes
a blur. With this it is easier for the human eye to follow the flow of the lines despite the
changes of directions [9, 36, 40].

For our storyline visualizations we will keep the style of the line during the rising or
dropping line pieces and round the corners at the start and end of a wiggle. During a
meeting we forbid the appearance of wiggles, which reduces wiggles for a bundle of lines
together.

2.3 Optimization metrics

To be able to evaluate storyline visualizations and compare different solutions for the
same storyline instance with each other we have to define metrics to describe the quality
of storyline visualizations in numbers. These metrics should describe the properties of
storyline visualizations and enfold the optimization criteria about crossings, line wiggles
and white-space gaps from Tanahashi and Ma [36] and Liu et al. [23] and further criteria
used for wiggle minimizations in this thesis.

For our optimization metrics we use the same properties of storyline visualizations as we
will use for defining concrete objective functions for our optimizations later. Thus we
define the following four metrics on which we will determine the quality of the experiment
results in Section 7:

twh total wiggle height: sum of the height of all wiggle of all characters

hw height of highest wiggle: the height of the highest wiggle in the complete visualization

wc wiggle count: number of all wiggles of all characters

cc pairwise crossings count: sum of all crossings between two characters

In the following chapters we will focus only on this four metrics to describe and evaluate
storyline visualizations.

7



2. Problem Definition

2.4 Expected Results
The aim of this thesis is to investigate the minimization of line wiggles in storyline
visualizations, which can be formulated into the following research questions:

Q1 Which methods can be used to optimize storyline visualizations by minimizing
wiggles and how can an appropriate solution model be formulated to automatically
generate storyline visualizations with minimized wiggles?

Q2 What effect has the minimization of wiggles in storyline visualization on the other
optimization metrics and how does the quality of such visualizations differ from
similar ones with additional crossings minimization?

To answer the first research question we will formulate two different solution models based
on the same theoretical variables and constraints. For the choice of the solution models
we will take two different methods, which were already used for optimizing storyline
visualizations by minimizing crossings.
For the second research question we will discuss the results from experiments based on
the two solution models. In addition we will use our optimization metric cc to construct
a multi-objective function were we minimize also crossings next to wiggles. With such a
multi-objective we want to investigate if it is necessary to optimize multiple metrics at
once, or if it is sufficient to focus only on one metric to obtain good quality results of
storyline visualizations.

2.5 Contribution
The contribution of this thesis to scientific research is to investigate the minimization of
line wiggles in storyline visualizations. The minimization of wiggles complements the state
of the art literature regarding the minimization of crossings in storyline visualizations,
the theoretical discussion of wiggle minimization and the combined optimizations of
storyline visualizations for multiple optimization metrics.

A poster on our work describing the ILP model for total wiggle height minimization from
Section 5.2 has been published at the 25th International Symposium on Graph Drawing
and Network Visualization (GD 2017).1

1 Theresa Fröschl and Martin Nöllenburg. Minimizing Wiggles in Storyline Visualizations. In
International Symposium on Graph Drawing and Network Visualization (GD 2017), volume
10692 of LNCS, pages 585––587. Springer, 2017.

8



CHAPTER 3
Literature Review

There are different approaches in the literature to define, compute, optimize and rep-
resent storyline visualizations. A new boom of scientific research regarding storyline
visualizations was started by a webcomic by Monroe [26] shown in Figure 1.1. Research
work inspired by this narrative movie chart had its focus mainly on creating optimal
visualizations of data containing relationships between entities connected with a timeline.

Before the webcomic by Monroe there has already been scientific research about drawings
of temporal data containing a timeline as base component. LifeLines by Plaisant et
al. [30] was probably one of the first with focus on visualizing dynamic temporal data for
a static diagram. The goal with LifeLines was to visualize personal history of medical
records and to provide a possibility to present and explore this data within one diagram.
With this kind of drawings it should also be possible to visualize different personal history
data like court records, biographical data or professional history. The authors continued
their work and developed an interactive tool written in Java to enable the user to explore
real clinical data in more detail [31].

A few years later it was the webcomic by Monroe [26] that inspired research work to
focus on optimizing storyline visualizations detached from a specific temporal data set
or a specific context of the data set. The definition of such storyline visualizations got
more generic and although storyline data from movies and books were still used to draw
result images, it was no longer the goal to find a suitable visualization technique for a
specific context. The new goal was to optimize the visualization of information that was
based on points in time and where entities exist and interact with each other along this
timeline. Certain papers had their focus more on visualization criteria and others more
on computing optimized storyline visualizations based on defined metrics.

Ogawa and Ma [28] picked up the idea of storyline visualization from Monroe to create a
static picture of version control system data, more specifically the interactions between the
developers over time and how they worked together in their software projects. The authors

9



3. Literature Review

defined general rules for the aesthetic layout of their visualizations. This rules included
the clustering of developers during the interactions, the visual separation of different
clusters, the reduction of position changes along the y-axis of the tubes representing
the developers and the reduction of crossings between the tubes. The authors also got
inspirations for their visualizations from metro map drawings and therefore decided to
use bold colors and thick lines for the developers.

In the same year Kim et al. [20] created TimeNets to visualize relationships in families
over time, also partly motivated by Monroe. Here the goal was to have a different view
of genealogical data than with ancestor charts. With an additional timeline complex
relationships like divorce, remarriage, out-of-wedlock births, and polygamy in families
and their development could be visualized. TimeNets showed families more as networks
of relationships than as trees. The individual members of the family were visualized as
horizontal lines, which converged to show marriage and diverged again if they divorce.
Vertical connections between the entities were used to illustrate parent-child-relationships.

Based on the work of Ogawa and Ma [28], Tanahashi and Ma [36] continued the dis-
cussion of general aspects of storyline visualizations. The authors discussed the main
aspects of well-designed storyline visualizations and defined quality criteria for storyline
visualizations which lead to the formulation of the three main optimization metrics for
crossings, line wiggles and white-space gaps. All later attempts of optimizing storyline
visualizations in other papers are leaned upon this optimization metrics. Furthermore
the paper describes the data of a storyline as a set of interaction sessions. Each of this
interaction sessions is described by a starting time point, a concrete duration and a set
of characters. These interaction sessions were then used as input for a genetic algorithm
that was composed of three computation steps. First the interaction sessions were laid
out, followed by rearranging the lines. The last step included the removal of white space.
The result contained the computed layout of the interaction sessions.

In a successor work Tanahashi et al. [34] used the theoretical foundation from Tanahashi
and Ma [36] and continued their research work by constructing a framework for creating
storyline visualizations from streaming data where the constant data flow was dealt with
and the storyline visualization was updated accordingly to the data flow.

Meanwhile Chen et al. [13] followed a very different approach for visualizing storylines.
Like the movie narrative chart by Monroe [26] the goal here was to summarize the
complete storyline of a movie with only one static picture which should be visually
pleasing and informative. But differently from the storyline visualizations discussed in
this thesis the authors used video shots to summarize the content of the movie and merged
them together into one picture. The results of such an automatic storyline extraction
looks very different to our storyline visualizations.

StoryFlow by Liu et al. [23] describes a storyline visualization system for a stepwise
generation of storyline visualizations with regards to the optimization metrics from
Tanahashi and Ma [36]. For the optimizations StoryFlow followed a hybrid strategy
of discrete and continuous optimization methods in a layout pipeline containing four

10



steps. In the first step a relationship tree got generated, then the relationships and lines
got ordered following by an alignment and the last steps included a layout compaction.
Moreover StoryFlow allowed real-time user interactions to manipulate the storyline
visualization manually and enabled the users to add and delete entities, interaction
sessions or locations, change the position of entities and interaction sessions, straightening
the character lines and bundle a group of interaction sessions together. With these user
interactions the user could influence the automatically generated storyline visualizations.

Muelder et al. [25] used storyline representations for visualizing large dynamic network
graphs. The authors focused here on a bottom-up approach together with a static
timeline so that the user could explore the dynamic data and select different foci for the
visualization.

Later works started laying their focus mainly on minimizing crossings for optimizing
storyline visualizations and neglected the other optimization criteria of line wiggles and
white-space gaps in favor of minimizing crossing. Furthermore the optimization problem
was more considered from a combinatorial optimization point of view. Kostitsyna et
al. [21] sought to find the minimum number of crossings necessary in a particular storyline
visualization. Therefore an event graph illustrating the interaction sessions was used
where the vertices represented the characters and the edges represented the interactions
between the characters. With this event graph the authors defined a lower bound for
crossings and provided a formal prove for the NP-hardness of the crossing minimization
problem in storyline visualizations.

Gronemann et al. [17] followed the approach of Kostitsyna et al. [21] of focusing on the
minimization of crossings and formulated an integer linear programming (ILP) model for
crossing minimization of storyline visualizations. A base for this ILP model was formed
with the multi-layer crossing minimization (MLCM) problem under tree constraints
(MLCM-TC) where every time point was constructed as layer for all characters active at
this time point. The goal of this ILP model was to find a permutation for every layer
such that the crossings of the lines connecting consecutive layers were at its minimum.

A slightly different problem definition for crossing minimizations can be found in van
Dijk et al. [37] where the authors examined the minimization of block crossings. A block
crossing in storyline visualizations is defined as a crossing of two arbitrary large sets of
parallel character lines. The paper describes the structure of a storyline as hypergraph
and defines a group hypergraph for groups of characters, which have at least one meeting
together. The authors defined a greedy algorithm and an approximation algorithm to
find permutations for the groups of characters over all time points with a minimized
amount of block crossings.

Van Dijk et al. [38] continued the work from van Dijk et al. [37] for minimizing block
crossings with a SAT-based algorithm and improved their results. For the SAT-based
approach they described the optimization goal for a storyline S with an integer λ for
which a solution with a permutation sequence of exactly λ elements had to be found.
By minimizing the number for λ an optimal solution with a minimal amount of block

11



3. Literature Review

crossings could be found.

Dang et al. [14] developed the visualization technique TimeArcs that also had its focus on
relationships between entities during a specific time period. With TimeArcs users should
be enabled to recognize patterns over time with regards to changing relationships between
the entities. The evolutions of the entities over time were visualized and clustering of
the corresponding entities also highlighted the relationships. These two characteristics
were included in the storyline visualizations discussed in this thesis as well. TimeArcs
supported also user interactions so that one data set could be viewed with different levels
of detail. One main difference of TimeArcs to storyline visualizations after Monroe [26]
was that TimeArcs enabled concurrent relationships of entities, thus one entity could be
included in multiple relationships at the same time point.

Ogawa and Ma [28] and Tanahashi and Ma [36] named wiggles as optimization criteria
for storyline visualizations. But aside from the theoretical description and the discussion
about suitable layouts for wiggles there is still research work missing for optimizing
storyline visualizations by minimizing wiggles only. If wiggles were incorporated in the
optimizations of storyline visualizations before, they were always combined with the
minimization of crossings and white-space gaps.

Considering wiggle minimization from a combinatorial optimization point of view the
optimization problem can be related to minimizing corners or moves in permutation
diagrams in Bereg et al. [9, 10]. Such permutations diagrams visualize tangles, a sequence
of permutations for an unordered series of natural numbers until the identity permutation
is reached and the numbers are ordered in an ascending sequence. From one permutation
to the next one every element is only allowed to change its position by 1, e.g. there are only
swaps by two neighboring elements allowed. Illustrating the path of each of the numbers
through the complete tangle results in a drawing comparable to storyline visualizations.
In both works [9, 10] the authors name as research goal the minimization of moves within
a tangle diagram. These moves relate to line wiggles in storyline visualizations and can
therefore be used as base to formulate a definition for wiggles in storyline visualizations.

12



CHAPTER 4
Preliminaries

This chapter contains basic definitions and explanations needed for the solution models in
Chapter 5.2 and Chapter 5.3. The intention of this chapter is to give a short introduction
in the theoretical concepts and solution approaches and to provide additional references
to further readings, which go more into detail.

4.1 Integer Linear Programming (ILP)

This section gives a short overview of the Integer Linear Programming (ILP) problem
and related problems. For more details see [12, 27, 41] on which the following description
and definitions are based on.

In general, the linear programming problem deals with finding a maximal or minimal
solution for a linear cost function or objective function where the potential values of the
variables in the cost functions are restricted by certain equality and inequality constraints.
Because this thesis concerns a minimization problem and any minimization problem can
be transformed into a maximization problem by a negation of the objective function this
section only contains explanations to minimization problems.

Given a m by n matrix A, an n-dimensional row vector (or 1 by n matrix) c which is our
cost vector, an m-dimensional column vector (or a m by 1 matrix) b, and an n-dimensional
column vector (or a m by 1 matrix) x for our decision variables or unknowns. The
formulation in 4.1 shows a general linear program with the objective to minimize the
linear cost function

∑n
i=1 cixi. This linear cost function is subjected to the linear equality

and inequality constraints expressed by Ax ≥ b and x ≥ 0.

min {cx : Ax ≥ b, x ≥ 0} (4.1)

13



4. Preliminaries

Without specific restrictions a linear program contains continuous variables. If we require
some but not all variables to be integers, we get the problem formulation for a (Linear)
Mixed Integer Program (MIP) shown in 4.2 with a m by n matrix A, a m by p matrix
G, an n-dimensional row cost vector c, a p-dimensional row vector h, an n-dimensional
column vector x of continuous variables and a p-dimensional column vector y of integer
variables.

min cx + hy

Ax + Gy ≥ b

x ≥ 0, y ≥ 0 and y ∈ Zp

(4.2)

By adding the restriction that all variables have to be integers we get an Integer Linear
Program (ILP) shown in 4.3, again with A as m by n matrix, c as n-dimensional cost
vector, b as m-dimensional vector and an n-dimensional vector x of integer variables.

min cx

Ax ≥ b

x ≥ 0 and x ∈ Zn

(4.3)

If the integer variables are used to represent logical relationships they can be further
restricted to 0-1 values. With this further restriction we obtain a 0-1 or Binary Integer
Program (BIP, 0-1 MIP or 0-1 IP) shown in 4.4 with the same matrix A and vector b
from before and the decision variable vector x which is only allowed to contain values of
0 or 1.

min cx
Ax ≥ b
x ∈ {0, 1}n

(4.4)

A concrete assignment for all decision variables in x that satisfies all constraints is called
a feasible solution or feasible vector. The set of all feasible solutions is called feasible
set. A feasible solution where the cost function or objective function is at its minimum
is called an optimal (feasible) solution, this means for a optimal solution the costs are
minimized. The value of the cost function corresponds then to the optimal cost.

4.2 Maximum Satisfiability Problem (Max-SAT)
In this section the Maximum Satisfiability Problem (Max-SAT) and its difference to the
SAT problem is explained. For further details have a look at [7, 18, 19, 22] which were
used as foundation for this section.

14



4.2. Maximum Satisfiability Problem (Max-SAT)

In short, the satisfiability problem, called SAT, can be described with only one sentence
from Kroening and Strichman [22]: "A formula is satisfiable if there exists an assignment
of its variables under which the formula evaluates to true."
An assignment describes a mapping of all variables in a formula to concrete values of the
corresponding domain. Because we use propositional logic in this thesis, a variable can
either be true (1) or false (0).

The Maximum Satisfiability Problem is based upon the SAT problem but takes into
account that certain real world problems don’t necessarily require all constraints to be
satisfied. For example a combinatorial optimization problem where the objective requires
the minimization of a cost function has most likely many acceptable solutions where the
objective is not at its optimum. Thus the goal for a Max-SAT formulation is not to find
a solution that satisfies all constraints but to find one where the maximum amount of
satisfied constraints is reached.

To be still able to define feasible solutions for a Max-SAT formulation we distinguish
between hard and soft constraints. The set of clauses belonging to hard constraints
are necessary to be satisfied to obtain a feasible solution. Clauses belonging to soft
constraints on the other hand can be violated by some solutions. An optimal solution
satisfies all hard constraints and a maximum amount of soft constraints.

Max-SAT formulations are usually expressed in conjunctive normal form (CNF). A
formula in CNF can be seen as a set of clauses that are connected by conjunction. A
clause is defined as a disjunction of literals and a literal are either simply Boolean variables
or negated Boolean variables.

15





CHAPTER 5
Solution Models

In this section we will describe two concrete solution models for optimizing storyline
visualizations by minimizing wiggles. This section also serves as answer to research
question Q1.
At first, in Section 5.1 we get a general overview of all variables and constraints necessary
to meet all requirements of correct storyline visualization, which have to be incorporated
into both solution models.

Next, in Section 5.2 an Integer Linear Programming (ILP) formulation is described
with three different objectives for wiggle minimization: total wiggle height minimization,
maximum wiggle height minimization and the minimization of the number of wiggles.
Furthermore the ILP solution model contains also the possibility of minimizing crossings
as second objective by formulating a multi-objective together with one of the three wiggle
minimization objectives.

Lastly, Section 5.3 treats our second solution model, a Maximum Satisfiability (Max-SAT)
formulation for minimizing the total wiggle height and minimizing the number of wiggles
in storyline visualizations. This formulation is build upon the ILP model and should
illustrate the solution approach from the ILP model with a different solution method to
allow the comparison of the results produced by both solution models.

5.1 General
Before we start creating our solution models it is necessary to formally describe the
structure of storyline visualizations we want to optimize. In this section we will describe
the variables and constrains for both solution models so that both models produce results
with the same properties and restrictions.

For knowing the height of a wiggle the absolute position of each character is needed
within the storyline visualization. Therefore we will build our solution models upon a

17



5. Solution Models

matrix representation of the storyline. Corresponding to the currently used storyline
data the concrete height and width of the storyline visualization matrix can be computed
at the beginning of the optimization computations. The width of the matrix matches the
number of time points of the storyline, so we have one column for every time point. The
height of the matrix corresponds to the needed slots by the characters of the storyline.
By knowing how many meetings are active at any time point and by knowing how many
members each meeting contains the number of necessary slots can be easily determined.
The result is am by p matrix for a storyline with m slots and p time points. By comparing
the occupied slots of a specific character from one time point to the next, wiggles can be
detected and the height of such a potential wiggle can be calculated.

Every storyline visualization with n characters, m slots and p time points can be
defined as a quadruple (I,J,T,M) where I = {i1, i2, ..., in} stands for a set of characters,
J = {j1, j2, ..., jm} describes a set of slots, T = [1, p[ is the interval of all time points and
M = {(Ie, Je, Te)} is a set of triples containing all meetings.

For a meeting e = (Ie, Je, Te) with k characters and l time points is Ie = {i1, i2, ..., ik} a
set of k characters, Je = {j1, j2, ..., jk} a set for k consecutive slots and Te = [t1; tl[ an
interval of l consecutive time points where the meeting takes place. We call all characters
in Ie members of meeting e and all time points in which character i is member in any
meeting active time points of i.

For both solution model descriptions we will stick with this denominations of the storyline
data variables.

The following list of properties outlines all necessary variables and constraints for both
solution models:

P1 matrix for storing the storyline visualization

P2 variables for storing the position of the characters

P3 variables for potential occurrences of wiggles regarding a specific character and
time point or variables holding the exact height of a potential wiggle regarding a
specific character and time point

P4 constraint to make sure that a character occupies exactly one slot at every active
time point

P5 constraint to make sure that a slot can only be occupied by at most one character
at once at every time point

P6 representation of a meeting as a set of characters

P7 constraint to make sure that all members of a meeting keep their position from the
start of the meeting till the end of the meeting, no character is allowed to change
its position over the lifetime of the meeting

18



5.2. ILP Formulation

P8 constraint to make sure that all members of a meeting occupy consecutive slots, no
empty lines between the members are allowed

P9 constraint to make sure that there is at least one blank line between different
meetings that share at least one time point along their lifetime such that the slot
above and below any meeting is held empty and cannot be occupied by characters
from other meetings (containing the exception that this only applies when the
meeting is not positioned at the very top or very bottom of the matrix)

P10 formulation for minimizing the total wiggle height over all characters and all time
points of the storyline visualization

P11 formulation for minimizing the total number of wiggles over all characters and all
time point of the storyline visualization

To prevent unnecessary many variables the movie data get condensed so that only time
points are included into the visualization matrix at which at least one meeting starts or
ends. With the constraint that members of a meeting are not allowed to change their
position during the lifetime of the corresponding meeting it is not needed to consider
time points where nothing is allowed to change and therefore wiggles can not occur. Thus
such time points can get excluded from the optimizations at the very beginning without
an effect on the solution.

5.2 ILP Formulation
As first optimization approach for minimizing wiggles in storyline visualizations we
construct an Integer Linear Programming (ILP) model. The decision to use ILP to
optimize storyline visualizations was inspired by a paper of Gronemann et al. [17] where
an ILP model was used for minimizing pairwise crossings in storyline visualizations.

5.2.1 Character position variables and constraints

For creating the ILP model we start with the position variables of the characters within
the visualization matrix. The result of the optimizations should be represented by one m
by p matrix for m slots (rows) and p time points (columns) which contains all concrete
positions of the characters at every time point and corresponds to Property P1. We
assign each character a unique natural number as identifier starting by the number zero.
Figure 5.1 shows an example of a resulting storyline visualization with condensed time
points and the associated matrix representation.

Because a character requires the possibility to occupy one of all slots at all its active
time points, it is necessary to have position variables for all this potential positions of
the character. To make it easier we take the assumption that every character has all
time points of the storyline as active time points, thus we can use the index values of our
matrix as time point values.

19



5. Solution Models

We receive n layers of binary variables of our matrix, one for each of our n characters.
One layer contains all possible positions for the corresponding character. This variables
denoted with the letter x are shown in Equation 5.1 and correspond to Property P2. A
character i (with 0 ≤ i < n) occupies a specific slot j (with 0 ≤ j < m) at a specific time
point t (with 0 ≤ t < p) if the corresponding position variable xt

i,j is set to 1, otherwise
it holds value 0. An example of a matrix with concrete position variables is shown in
Figure 5.2. Figure 5.2a shows the positions of all characters for the example storyline
visualization and Figure 5.2b shows the position variables layer for character 4.

(a) Example of an optimized storyline visualization

(b) Taken positions of all char-
acters

(c) Colored matrix represen-
tation of the storyline

Figure 5.1: Different views of one storyline visualization

xt
i,j =

{
1, if character i uses slot j at time point t
0, otherwise. (5.1)

To comply with the condition of Property P5 that a slot j can only be occupied by at
most one character i for one time point t we add the constraint shown in Equation 5.2
which makes sure that for slot j and time point t there is at most one corresponding
character position variable xt

i,j evaluating to 1 over all n characters. The constraint is
also satisfied if no character occupies a specific slot j at a specific time point t.

n−1∑
i=0

xt
i,j ≤ 1, for 0 ≤ j < m, 0 ≤ t < p (5.2)

20



5.2. ILP Formulation

(a) Positions of all characters
with highlighted character 4

(b) Maxtrix of position vari-
ables of character 4

Figure 5.2: Matrix representation of the positions of character 4

5.2.2 Wiggle variables

Next we have to define variables for retaining knowledge about wiggle occurrences and
the height of a wiggle to conform Property P3. To hold the information of a wiggle
occurrence binary variables are sufficient. To retain the height of a wiggle we require
integer variables. Every character can have for every time point at most one wiggle,
because a character is only allowed to occupy at most one slot at every time point. Thus
for counting the number of all potential wiggles of a character we need an array of binary
variables with the size of all time points of the storyline visualization. The height of a
potential wiggle can be captured into a similar array of the same length but for integer
variables. Of course we only need one of this variable types according to our current
optimization objective. We denote such a wiggle variable with the letter z and according
to our current objective function this variable zt

i (for 0 ≤ i < n and 0 ≤ t < p− 1) is a
binary variable or an integer variable.

(a) Wiggle height variables of
all characters with highlighed
character 4

(b) Variable array for wiggle
occurrences and variable ar-
ray for wiggle heights of char-
acter 4

Figure 5.3: Variables for describing wiggles

By comparing the occupied slots of character i from one time point t to the next time
point t+ 1 we can find out if the character changes its position or stayed in the same
slot and save this information in variable zt

i . If zt
i is a binary variable and a wiggle is

found for character i we set it to 1, if no wiggle is found for character i we set it to 0.

21



5. Solution Models

If zt
i is an integer variable it holds the difference of the indices of the occupied slots at

time point t and time point t+ 1 for character i. Figure 5.3 shows an example of wiggle
variables within a storyline visualization and the difference of our two variable types for
one character. Figure 5.3a shows the integer wiggle variables for all characters mapped
into our visualization matrix and Figure 5.3b shows the corresponding wiggle variable
arrays for character 4.

5.2.3 Meetings representation

The set of members of a meeting and the positions of these members within the visual-
ization matrix represent a meeting. In Figure 5.1a meetings are illustrated by light gray
areas behind the member lines over the complete lifetime of the meeting.

When it comes to meetings it is more about the constraints, which restrict the possibilities
of potential positions of the members. We remember the constraints regarding meetings
from Section 5.1. Regarding Property P6 meetings are seen as sets of characters, which
belong together during the lifetime of the meeting, which we use as starting point for our
following concrete constraint formulations. No member is allowed to change its position
during the lifetime of the meeting such that a meeting can always be illustrated as a
rectangle surrounding all character lines representing the members over the complete
lifetime of the meeting (Property P7). All members of the meeting have to occupy
consecutive slots and no empty lines are allowed inside this block of slots describing
the position of the meeting (Property P8). The next slot above and below should be
held empty to mark the border of the meeting (Property P9). Without these empty
lines it would be hard to distinguish two different meetings from each other and this two
meetings could be misinterpreted as one meeting.

To create appropriate formulas for this constraints we take an arbitrary meeting e with k
members and a lifetime of l time points: (Ie, Je, Te) with Ie = {i1, i2, ..., ik} as set of k
members, Je = {j1, j2, ..., jk} as set of k consecutive slots and Te = [t1; tl[ as interval for
l time points.

First we have to make sure that every member of meeting e occupies exactly one slot
per time point in Te. We already have defined in Equation 5.2 that an arbitrary slot j
can be occupied by at most one character per time point. But this constraint does not
include the condition that character i has to occupy a slot at all for time point t. The
constraint in Equation 5.2 would also be satisfied if no character reserves slot j in which
case the sum would evaluate to 0.

However for meeting e we need all members so show themselves. Therefore we need
the additional formula shown in Equation 5.3 which makes sure that every member of
meeting e occupies exactly one slot for all time points in Te. This constraint complies
Property P4.

22



5.2. ILP Formulation

m−1∑
j=0

xt
i,j = 1, for all t ∈ Te, i ∈ Ie (5.3)

In order to implement the next constraints for meetings, which include the borders of
the slot block reserved by the members of the meeting we have to know more about
this borders. In other words we need information about the first slot (i.e. the slot with
the lowest index value) and the last slot (i.e. the slot with the highest index value) of
this block of slots representing the meeting position. We call the first slot of a meeting
position the minimal slot je

min and the last slot of the meeting position the maximal slot
je

max of meeting e and add them as new integer variables to our ILP model. Because it is
forbidden for all members of e to change their position during the lifetime of meeting e
we only need two integer variables for the borders of e, they have to stay the same for all
time points in Te.

All members of meeting e have to take a slot within the boundaries created by je
min

and je
max of e. Thus every slot je

i taken by an arbitrary member i of meeting e has to
have a higher or equal index value than the value of the minimal slot je

min of e. At the
same time member i also has to have a lower or equal index value than the value of the
maximal slot je

max of e. A member i has taken slot je
i if xt

i,je
i
evaluates to 1 for all time

points t in Te. This two conditions are shown in Equation 5.4 and in Equation 5.5.

je
min ≤

{
je

i , if xt
i,je

i
= 1, 0 ≤ je

i < m, ∀i ∈ Ie, ∀t ∈ Te

undefined, otherwise.
(5.4)

je
max ≥

{
je

i , if xt
i,je

i
= 1, 0 ≤ je

i < m, ∀i ∈ Ie, ∀t ∈ Te

undefined, otherwise.
(5.5)

With these restrictions we have defined the borders of a meeting position and connected
them with the members of the meeting so that the members occupy slots between the
minimal slot and the maximal slot. But we are still missing the constraint that no empty
lines are possible inside of this block so that the members are forced to take consecutive
slots within the boundaries of the meeting position. We can forbid empty lines within a
meeting position by restricting the distance between the maximal slot and the minimal
slot of a meeting, which has to be the amount of all members (which is k in our arbitrary
meeting) minus one. This condition is shown in Equation 5.6 and completes Property
P8.

je
max − je

min = k − 1 (5.6)

23



5. Solution Models

Figure 5.4 shows an example of a meeting and all associated variables of the meeting.

(a) Highlighted meeting e at
time point 4

(b) Concrete values for vari-
ables of meeting e

Figure 5.4: Example meeting e within a storyline visualization and concrete variables to
describe the meeting and the meeting position

In Section 5.1 we mentioned to remove all time points from the storyline visualization
input data where neither a meeting starts nor ends and therefore no changes within the
visualization are expected or welcomed. This means that in the best case Te of meeting
e can be reduced to the start and end time point and because the end time point is
considered exclusive we only have to create the meeting constraints for the start time
point of the meeting.

We only need for a meeting e additional time points between the start time point and
the end time point in the compressed version of Te if another meeting starts or ends
at that additional time points during the lifetime of e. This reduces the amount of
necessary meeting variables. For such longer meetings with time points between start
time point and end time point in the compressed Te we have to create the additional
constraint in Equation 5.7 which describes that during the complete lifetime of meeting
e all members of e have to occupy the same slot for all time points in Te. With this
formula the members of e have no longer the possibility to swap their position among
each other along the time points in Te and remain as horizontal lines until the meeting
ends, which complies Property P7.

xt1
i,j = xt2

i,j , ∀t1, t2 ∈ Te, ∀i ∈ Ie, 0 ≤ j < m (5.7)

We remain to create the constraint for Property P9 that adds at least one blank line
between different meetings such that these meetings are visualized separately. For that
we can again use our defined borders of two different meetings that share at least one
time point. By comparing the minimal slots and maximal slots of these two meetings we
can easily find out which one is placed above or below the other one.

Lets assume that meeting e1 is placed above meeting e2 at time point t, than the maximal
slot je1

max of e1 and the minimal slot je2
min of e2 have to be at least two slots apart. We

24



5.2. ILP Formulation

save this information about the comparison of the relative position of the two meetings e1
and e2 in the addition binary variable ve1,e2 . The variable ve1,e2 therefore has value 1 if
meeting e1 is above meeting e2 and value 0 if e1 is placed below e2. This new comparison
variable is shown in Equation 5.8.

ve1,e2 =
{

1, if je2
min − je1

max ≥ 2
0, otherwise. (5.8)

For one time point t we have to compare all distinct pairs of meetings which are present
at t so that for two meetings e1 and e2 we end up with two binary comparison variables
ve1,e2 and ve2,e1 . The formula in Equation 5.9 adds the restriction that exactly one of
these two variables has to be set to 1 which completes Property P9.

ve1,e2 + ve2,e1 = 1 (5.9)

This completes all constraints needed for our ILP model for minimizing the total wiggle
height and to minimize the number of wiggles in storyline visualizations.

5.2.4 ILP objective formulation

For our ILP objective formulation we only need our character position variables we
denoted with the letter x and our wiggle variables we denoted with the letter z. Because
the only difference between minimizing the total wiggle height and minimizing the number
of all wiggles is the variable type of the wiggle variables we can describe both objectives
with only one formula. The objective function can be formulated by creating the sum
over all z variables of all characters. This resulting objective formulations correspond to
Property P10 and Property P11 and are illustrated in Equation 5.10 and Equation 5.11
with the following bounds: 0 ≤ i < n, 0 ≤ j < m, 0 ≤ t < p. The constraints in Equation
5.11 make sure that the wiggle variables are set with the correct values if a wiggle occurs.

minimize
n−1∑
i=0

p−2∑
t=0

zt
i (5.10)

subject to
m−1∑
j=0

j
(
xt

i,j − xt+1
i,j

)
≤ zt

i

m−1∑
j=0

j
(
xt+1

i,j − xt
i,j

)
≤ zt

i

0 ≤ zt
i

(5.11)

25



5. Solution Models

5.2.5 Maximal wiggle height

Additionally, our ILP model allows us to easily formulate another alternative objective
for wiggle minimization, which has its focus on minimizing the global maximum height
for wiggles in storyline visualizations.

This maximum height over all wiggles is easily represented by an integer variable wmax

with 0 ≤ wmax < m − 1 and holds the value for the highest wiggle in a storyline
visualization. Every wiggle height variable zt

i for a character i (for 0 ≤ i < n) at a time
point t (0 ≤ t < p − 1) has to be lower or equal to wmax. This constraint is shown in
Equation 5.12.

wmax ≥ zt
i , 0 ≤ i < n, 0 ≤ t < p− 1 (5.12)

The alternative objective formulation only contains the minimization of this maximum
wiggle height variable wmax described in Equation 5.13.

minimize wmax (5.13)

By minimizing the maximum wiggle height variable the height of all wiggles of the
visualization get reduced as well which should produce a result of a storyline visualization
which doesn’t contain high jumps along the character lines.

5.2.6 Crossing minimization as second objective

Beside the minimization of wiggles the ILP formulation contains also the basis for
adding a second objective of minimizing pairwise crossings in storyline visualizations. By
minimizing crossings together with wiggles we want to prevent the creation of crossings
in favor of smaller or fewer wiggles in storyline visualizations.

Gronemann et al. [17] already created an ILP model for minimizing pairwise crossings.
In their ILP model crossings are detected by comparing the relative positions of two
characters to each other for two consecutive time points t and t+ 1. If the position of the
first character is above the position of the second character at time point t and below at
time point t+ 1 a crossing is found.

We can take this approach of finding crossings between character lines and use our
character position variables to create also binary comparison variables for the position
of two characters for a specific time point. Gronemann et al. [17] used the letter x for
denoting their position comparison variables, but because we already use the letter x for
our character position variables we denote our new variables with the letter y.

Thus, one binary variable yt
a,b (for 0 ≤ a, b < n and 0 ≤ t < p) evaluates to 1 if character

a is placed above character b at time point t, otherwise it evaluates to 0. Formula 5.14
describes how to determine if character a is above character b. Therefore we use the

26



5.2. ILP Formulation

character position variables to find the occupied slots of the particular character by
summing up all multiplications of the slot index value with the value of the corresponding
position variable, which results in the index value of the occupied slot. The value of
the difference of this two slot values tells us which character is above the other one and
enables us to set variable yt

a,b accordingly.

yt
a,b =

 1, if
(

m−1∑
j=0

j xt
b,j

)
−

(
m−1∑
j=0

j xt
a,j

)
≥ 1 holds

0, otherwise.
(5.14)

By comparing the positions of two characters one character always has to be above the
other one, i.e. only yt

a,b or yt
b,a can hold value 1, the other one has to have value 0. Thus

we add the constraint in Equation 5.15. It is similar to the constraint in Equation 5.9 we
added for the meetings position variables.

yt
a,b + yt

b,a = 1 (5.15)

With these new variables we can now detect crossings between two characters. To do
that we first have a look at all possible cases that occur by creating the sum of the two
variables yt

a,b and yt+1
a,b for the same character pair a and b but two different time points

t and t+ 1. If the result of this sum is 1 we found a crossing between the corresponding
character pair. Is the result 0 or 2, the relative position of the character pair to each
other does not change. All three cases are illustrated in Equation 5.16.

yt
a,b + yt+1

a,b = 1, if a and b cross from time point t to t+1
yt

a,b + yt+1
a,b = 0, if b is above a in both time points

yt
a,b + yt+1

a,b = 2, if a is above b in both time points
(5.16)

To be able to formulate our second objective which is the sum of all crossings we need
another set of binary variables shown in Equation 5.17 where ct

a,b (with 0 ≤ a, b < n and
0 ≤ t < p− 1) evaluate to 1 if for characters a and b a crossing is found from time point
t to time point t+ 1, and 0 otherwise.

ct
a,b =

{
1, if yt

a,b + yt+1
a,b = 1

0, otherwise. (5.17)

Similar to the objectives regarding wiggle minimization our second objective can now be
formulated by minimizing the sum over all crossing variables for all time points. Earlier
we took the assumption that each character is present at all time points. But with

27



5. Solution Models

our ILP model we do not explicitly prohibit gabs along a character line. This means a
character does not have to be present from the very beginning of the storyline or has
to stay to the very end of the storyline. Also a character can disappear and come back
a few time points later, i.e. the character line of the corresponding character ends and
starts again. These concessions are necessary to preserve the plot of the movie on which
the visualization is based on, e.g. if a character dies in a movie it is necessary that the
character line ends as well.

Thus we can only create y variables of a character pair where each of the two characters
occupies a slot for the corresponding time point. With the constraint in Equation 5.3
that makes sure that every member of a meeting is present during the complete lifetime
of the meeting we can derive all active time point of a character from all meetings the
character is a member of. For every time point t we only need to compare the position of
two characters where both have t in their set of active time points. We can describe all
characters which are active at time point t with the set It and are now able to formulate
our second objective for crossing minimizations shown in Equation 5.18.

minimize
p−2∑
t=0

∑
∀(a,b)∈It, a6=b

ct
a,b (5.18)

5.3 Max-SAT Formulation

Next to the ILP approach in Gronemann et al. [17] for optimizing storyline visualizations
a different method was used in van Dijk et al. [38] where the authors developed a
SAT formulation for minimizing block crossings. This work motivated the creation of a
Max-SAT formulation as second solution model for wiggle minimization.

This section describes all components of the Max-SAT formulation whose objectives for
minimizing wiggles in storyline visualizations are similar to the objectives in the ILP
formulation. Using our ILP model as foundation we create a Max-SAT formulation for
which a Max-SAT solver can be used to minimize the total height of all wiggles or to
minimize the number of all wiggles.

The Max-SAT formulation takes over the character position variables as they are from
the ILP formulation we denoted with the letter x. Because these position variables are
binary variables this take-over is totally fine for SAT.

Since we used in our ILP model integer variables for our wiggle height variables we have
to describe the height of wiggles differently in our Max-SAT formulation by only using
binary variables. Furthermore all properties described in Section 5.1 regarding a correct
storyline visualization based on our matrix representation have to be formulated again
by following a SAT-based approach. This requires also a different representation of the
meetings, which we will discuss in more detail in the following.

28



5.3. Max-SAT Formulation

All clauses emerging from formulas needed for securing a correct result of storyline
visualizations are to be seen as hard clauses for the Max-SAT solver. All clauses
belonging to the current objective form the set of soft clauses. To create an objective
for minimizing the total wiggle height or the number of all wiggles a formulation has to
be found which describes a set of clauses where the maximal amount of satisfied clauses
correspond to a minimized objective.

5.3.1 Wiggle height

Because we take over the character position variables denoted with the letter x from the
ILP model shown in 5.1, which conforms Property P1 and Property P2 we can move
on to our wiggle height variables that need a different representation for the Max-SAT
formulation.

We recall the wiggle height variables in the ILP model which are denoted with the letter z.
This variables are integer variables, thus they cannot be used in the Max-SAT formulation
like in the ILP model. But we can encode these integer variables into arrays of binary
variables.

In the literature several approaches can be found for encoding integer variables into
binary variables. One of them is called order encoding [3, 6, 16] where the domain of
the integer variable is used to introduce an array of binary variables which contains one
binary variable for each possible value of this domain. The order encoding is sometimes
also called ladder or regular encoding.

In our case the domain of a integer wiggle variable zt
i for a character i (with 0 ≤ i < n)

and a time point t (with 0 ≤ t < p) is the interval [0,m− 2] of all possible wiggle height
values for a storyline visualization with m slots. By doing order encoding we create for
every integer variable zt

i an array of m binary variables where one binary variable zt
i,f

(with 0 ≤ f < m) evaluates to 1 if the index value f is smaller than the primary integer
variable zt

i , i.e. zt
i,f is 1 iff f < zt

i . By summing up all zt
i,f variables for one specific i and

t we get the value for our associated integer variable zt
i from our ILP model.

A slightly different encoding approach is direct encoding in Walsh [39] where each possible
value f in [0,m− 1] gets again a corresponding propositional variable zt

i,f . The difference
here is that for a specific i and t only one zt

i,f (for 0 ≤ f < m) where f = zt
i holds is set

to 1. Thus the index value f holds the value of our former integer variable.

Both approaches would require the same amount of variables and clauses for our following
SAT formulas. Because with order encoding after Abío and Stuckey [3] the calculation
of the total wiggle height only requires a sum over all binary wiggle variables zt

i,f we
will follow this approach for binary encoding of our wiggle variables. Our new binary z
variables are described in Equation 5.19 and comply Property P3.

zt
i,f =

{
1, if f < zt

i , for 0 ≤ i < n, 0 ≤ t < p, 0 ≤ f < m− 1, 0 ≤ zt
i < m

0, otherwise. (5.19)

29



5. Solution Models

With the transferred position variables of the characters (denoted by the letter x in
Equation 5.1) from the ILP model to the Max-SAT formulation and our binary encoded
wiggle variables we can start creating a propositional formula for describing the character
lines along the timeline of storyline visualizations. Considering a position of character i
at time point t for slot j the corresponding position variable xt

i,j can be either true or
false. To find a wiggle we have to find the occupied slots j1, j2 by character i for time
point t (xt

i,j1) and time point t + 1 (xt+1
i,j2

). Because the formula we want to create is
a hard formula (i.e. the formula always has to evaluate to true for a correct storyline
visualization) we have to include all possible cases regarding the position for a character
from one time point to the next one.

To simplify matters we start describing the formula by considering only one arbitrary slot
j. For this slot the formula has to evaluate to true for all combinations of truth-values
for the position variables of character i for the time points t and t+ 1.

This means the formula we want to build has to evaluate to true for character i, slot j
and the two consecutive time points t and t+ 1 for the following four cases:

C1 i occupies j at time point t and t+ 1
C2 i occupies j only at time point t
C3 i occupies j only at time point t+ 1
C4 i occupies j neither at time point t nor at time point t+ 1

All four cases represent acceptable states for the position of a character along the timeline.
C1 and C2 describe the positive position for our character i at time point t, because
if one of this two cases apply then we have found the occupied slot j at time point t.
For all other slots h (h 6= j) at time points t for which we know that character i does
not occupy h we have C3 and C4. Thus for slot h were xt

i,h evaluates to 0, we can just
negate this position variable to obtain an acceptable formulation for C3 and C4: ¬xt

i,h.
But for C1 and C2 we have to differ between the position of i at time point t+ 1. For
both cases xt

i,j evaluates to true. For C1 the position of character i stays the same, so
we can say xt

i,j ∧ x
t+1
i,j evaluates to true as well. C2 includes a position change which can

be expresses with the formula xt
i,j ∧ ¬x

t+1
i,j .

By creating a disjunction of all four cases we obtain the following formula shown in 5.20.

¬xt
i,j ∨

(
xt

i,j ∧ xt+1
i,j

)
∨
(
xt

i,j ∧ ¬xt+1
i,j

)
(5.20)

With C2 we have found the start of a wiggle. The next step is to find the end of a wiggle
for slot h with h 6= j for time point t + 1. To correctly describe a wiggle we have to
distinct between an ascending and a descending wiggle. For an ascending wiggle it is
only necessary to consider slots with an index smaller than slot j, thus h ∈ [0, j − 1] .
For a descending wiggle only slots with a higher index than j are necessary to consider,
so that h ∈ [j + 1,m− 1]. Aside from the different bounds of slot h the formula for both
cases has the same form, hence we will describe only the case for an ascending wiggle in

30



5.3. Max-SAT Formulation

detail. For the formula describing a descending wiggle only the bounds for slot h at time
point t+ 1 have to be changed.

Again, to simplify matters we start by taking an arbitrary slot h with h ∈ [0, j − 1]. We
have now again two cases to cover. In the first case ¬xt+1

i,h evaluates to true, i.e. character
i does not occupy slot h at time point t+ 1. In the second case xt+1

i,h evaluates to true,
i.e. i occupies h at t+ 1. If the second case applies we have found the end of the wiggle
at time point t + 1. But we are not only interested in finding the end position of the
wiggle; we also want to know the exact height of it. Thus, if xt+1

i,h evaluates to true, then
all binary wiggle variables zt

i,f (∀f ∈ [0, j − h− 1]) for character i and time point t have
to evaluate to true. This can be expressed with the conjunction of the corresponding set
of wiggle variables:

∧j−h−1
f=0 zt

i,f .

The result of the sum for all wiggle variables
∑m−2

f=0 zt
i,f holds the integer value of the

corresponding wiggle.

Thus for time point t+ 1 we get formula 5.21 for an ascending wiggle starting at slot j
at time point t and end at slot h at time point t+ 1.

¬xt+1
i,h ∨

(
xt+1

i,h ∧
〈 j−h−1∧

f=0
zt

i,f

〉)
(5.21)

Now we can set all our little formulas parts together to one formula to describe the flow
of a character line. For that we start by considering all possible slots h for time point
t+ 1 if a wiggles is found for character i from time point t to time point t+ 1. This is
shown in 5.22 which also contains both cases for an ascending wiggle and a descending
wiggle.

[
xt

i,j ∧ ¬xt+1
i,j ∧

〈 j−1∧
h=0

(
¬xt+1

i,h ∨
(
xt+1

i,h ∧
〈 j−h−1∧

f=0
zt

i,f

〉))〉]

∨
[
xt

i,j ∧ ¬xt+1
i,j ∧

〈
m−1∧

h=j+1

(
¬xt+1

i,h ∨
(
xt+1

i,h ∧
〈 h−j−1∧

f=0
zt

i,f

〉))〉] (5.22)

Finally, we are now able to describe our character lines in Formula 5.23 including all four
cases we specified above for a character position going from one time point to the next.
This formula also contains the conjunction over all characters and all time points and
represents therefore all character lines of the complete storyline visualization.

31



5. Solution Models

n−1∧
i=0

p−1∧
t=0

m−1∧
j=0

[
¬xt

i,j ∨
[
xt

i,j ∧ xt+1
i,j

]

∨
[
xt

i,j ∧ ¬xt+1
i,j ∧

〈 j−1∧
h=0

(
¬xt+1

i,h ∨
(
xt+1

i,h ∧
〈 j−h−1∧

f=0
zt

i,f

〉))〉]

∨
[
xt

i,j ∧ ¬xt+1
i,j ∧

〈
m−1∧

h=j+1

(
¬xt+1

i,h ∨
(
xt+1

i,h ∧
〈 h−j−1∧

f=0
zt

i,f

〉))〉]]
(5.23)

As last step two limit cases have to be considered regarding ascending and descending
wiggles. An ascending wiggle is only possible if it starts at a slot j > 0 and a descending
wiggle is only possible if it starts at a slot j < m − 1. This means for slot j = 0 only
descending wiggles are possible and for slot j = m− 1 only ascending wiggles are possible.
Adjustments according to this limit cases and further simplifications results in Formula
5.24, which is our final formula for wiggle height calculation.

n−1∧
i=0

p−1∧
t=0

[〈
m−1∧
j=1

(
¬xt

i,j ∨ xt+1
i,j ∨

〈 j−1∧
h=0

(
¬xt+1

i,h ∨
〈 j−h−1∧

f=0
zt

i,f

〉)〉)〉

∧
〈

m−2∧
j=0

(
¬xt

i,j ∨ xt+1
i,j ∨

〈 m−1∧
h=j+1

(
¬xt+1

i,h ∨
〈 h−j−1∧

f=0
zt

i,f

〉)〉)〉] (5.24)

To be able to use a Max-SAT solver the formula is needed in conjunctive normal form
(CNF). Formula 5.25 shows the transformed formula of 5.24 in CNF.

n−1∧
i=0

p−1∧
t=0

[〈
m−1∧
j=1

j−1∧
h=0

j−h−1∧
f=0

(
¬xt

i,j ∨ xt+1
i,j ∨ ¬xt+1

i,h ∨ zt
i,f

)〉

∧
〈

m−2∧
j=0

m−1∧
h=j+1

h−j−1∧
f=0

(
¬xt

i,j ∨ xt+1
i,j ∨ ¬xt+1

i,h ∨ zt
i,f

)〉] (5.25)

5.3.2 Character position constraints

Although we took over the character position variables from our ILP model we still need
propositional formulas for the Max-SAT formulation regarding our character position
constraints described in section 5.1. We are still missing the constraint of Property P5
that a slot can only be occupied by at most one character at once and the constraint
of Property P4 that a character occupies exactly one slot per active time point. Again

32



5.3. Max-SAT Formulation

we can take our ILP model as inspiration to add both restrictions to the Max-SAT
formulation.

For Property P5 we have to make sure that we only have at most one character per
slot and per time point. We call such a constraint an at-most-one (AMO) constraint
from Gent and Nightingale [16]. Therefore we need a formula which forbids that for
a character i1, a second character i2 (with i1 6= i2 and 0 ≤ i1, i2 < n), a slot j (with
0 ≤ j < m) and a time point t (with 0 ≤ t < p) the corresponding position variables xt

i1,j

and xt
i2,j both evaluate to true, i.e. if one of the two position variables is set to true the

other one has to be set to false to satisfy the formula.

This restriction is shown in Formula 5.26 and has to be applied to all time points t, all
slots j and all distinct character pairs i1 and i2. Unnecessary clauses can be eliminated
by only considering character pairs for a time point t when both characters have t in
their set of active time points, i.e. both characters are member of a meeting at time
point t. This set of characters is represented by the set It for time point t.

p−1∧
t=0

m−1∧
j=0

∧
∀i1,i2∈It,i1 6=i2

(
¬xt

i1,j ∨ ¬xt
i2,j

)
(5.26)

For the constraint of Property P4 we have to make sure that a character i is present
whenever i is a member in a meeting. So again, we need for every character the set of
active time points Ti. For this property we need an exactly-one (EO) constraint which
is a combination of an at-least-one (ALO) and an at-most-one (AMO) constraint from
Gent and Nightingale [16]. An ALO constraint is build by a disjunction of all position
variables xt

i,j for all j ∈ J . For the AMO constraint we take the same approach from
before. For every pair of slots j1 and j2 only one corresponding position variable for
one specific i and t is allowed to evaluate to true, i.e. ¬xt

i,j1 ∨ ¬x
t
i,j2 has to hold. Both

constraints have to be combined by conjunction to obtain our EO constraint shown in
Formula 5.27.

∧
t∈Ti

[ ∧
∀j1,j2∈J,j1 6=j2

(
¬xt

i,j1 ∨ ¬x
t
i,j2

)
∧
( ∨

j∈J

xt
i,j

) ]
(5.27)

5.3.3 Meetings representation

Again, we describe meetings in the Max-SAT formulation as set of positions occupied
by the members of a meeting (Property P6). To guarantee a correct representation
of storyline visualizations we have to create all meeting constraints for the Max-SAT
formulation, which we also defined for the ILP model. These constraints include that
all members of a meeting have to be positioned one below the other, such that there is
no empty line and no other character from another meeting between them (Property

33



5. Solution Models

P8). Furthermore it has to be ensured that every member of the meeting occupies a slot
and keeps this position at every time point the meeting takes place (Property P7). For
virtual distinction between different meetings an empty line directly above and below a
meeting position is needed (Property P9).

Because the meeting representation in our ILP model contains again integer variables it
is not possible to just take over all meeting variables to the Max-SAT formulation to
use them in propositional formulas. To prevent unnecessary many new binary variables
by binary encoding all integer variables for describing meetings from our ILP model we
will follow a slightly different approach for describing meeting positions in the Max-SAT
formulation.

Thus we introduce new binary variables for all possible meeting positions and denote
them with the letter s. One variable st

e,w (with 1 ≤ w ≤ m− k + 1 and 0 ≤ t < p) for
a meeting e describes a set J t

e,w of length k of specific slots which can get occupied by
the k members of e at time point t. The time point t stands here for an arbitrary time
point during the lifetime of the meeting. Such a position variable st

e,w can be compared
to a character position variable xt

i,j with the difference that a character position variable
contains only one slot while a meeting position variable describes a set of k slots. The
index value w of variable st

e,w helps to identify a set of specific slots for which the meeting
position variable stands for.
For any active time point t of meeting e with k members and a visualization matrix with
m slots (k ≤ m holds) we have m− k + 1 different set of slots and therefore m− k + 1
different possibilities to position e inside the matrix. Thus for meeting e we can now
define the set St

e = {st
e,1, .., s

t
e,m−k+1} = {J t

e,1, .., J
t
e,m−k+1} which contains all possible

meeting positions for e at time point t. This set of meeting position variables complies
Property P6.

These meeting position variables can be used to create all necessary restrictions regarding
meetings. Additionally we also need to make sure that only one st

e,w ∈ St
e evaluates to

true, i.e. the meeting is only allowed to have exactly one position.

But before we can start creating meeting constraints it remains to connect the position
variables of all members of e to the meeting position variable st

e,w. Hence for every variable
st

e,w we have to create a propositional formula which includes the position variables of all
members of the meeting and then create an equivalence relation between this formula
and the corresponding meeting position variable.

For one slot jr ∈ J t
e,w we need exactly one member i ∈ Ie = {i1, .., ik} for which the

position variable xt
i,jr

evaluates to true. This can be done with the same approach used
in 5.27 where we created an exactly-one (AO) constraint. The clause

(
xt

i1,jr
∨ xt

i2,jr
∨

... ∨ xt
ik−1,jr

∨ xt
ik,jr

)
has to evaluate to true which means that at least one character has

to occupy slot jr. By creating a conjunction over all clauses for all jr ∈ J t
e,w we have our

constraint that every slot of a specific meeting position has to be occupied by at least
one member of the meeting.

34



5.3. Max-SAT Formulation

With 5.27 we make sure that a character i occupies exactly one slot for every active time
point of i corresponding to Property P4 and with 5.26 we ensure that a slots can only
be occupied by at most one character for any time point, which complies Property P5.
Hence we can say that if the conjunction of our new clauses evaluates to true, then every
member of the meeting occupies exactly one slot within the corresponding set of slots.
This formula for one st

e,w is shown in 5.28 where the symbol = is used for expressing
equality between the position variable and the formula describing the position of the
meeting. With this equality relation between them we ensure that both always have to
evaluate to the same truth value.

st
e,w =

(
xt

i1,j1 ∨ ... ∨ x
t
ik,j1

)
∧
(
xt

i1,j2 ∨ ... ∨ x
t
ik,j2

)
∧ ... ∧

(
xt

i1,jk
∨ ... ∨ xt

ik,jk

)
=

∧
j∈Jt

e,w

( ∨
i∈Ie

xt
i,j

)
(5.28)

For the constraint that every line above and below a meeting position has to be held
empty we can extend the formula in 5.28. An empty line above and below meeting e
at an arbitrary time point t during the lifetime of e means that no character is allowed
to take slot j1−1 or slot jk+1 at time point t. Thus, for all characters i ∈ I the position
variables xt

i,j1−1 and xt
i,jk+1

have to evaluate to false. Because we already know that the
members of e cannot occupy the slots j1−1 and jk+1, since they already have to occupy a
position within the boundaries of these two slots, it is sufficient for our current constraint
that we only consider characters which are not a member of meeting e. All not-members
of meeting e form the set I ′e which contains all characters of the storyline visualization
which are not a member of meeting e. We can describe a not-member of e as i′ ∈ I ′e or
i′ /∈ Ie.
For an empty line above st

e,w we add the condition for every character i′ ∈ I ′e that xt
i′,j1−1

has to evaluate to false for all t ∈ Te. For an empty line below st
e,w the variable xt

i′,jk+1
has to evaluate to false for all i′ ∈ I ′e and for all t ∈ Te.

If the meeting is positioned at the very top of the visualization matrix the constraint for
an empty line above the meeting position does not apply, as well as for an empty line
below the meeting position if the meeting is positioned at the very bottom of the matrix.

These two restrictions can be simply added by conjunction to formula 5.28, which is
shown in Formula 5.29.

st
e,w =

[ ∧
j∈Jt

e,w

( ∨
i∈Ie

xt
i,j

) ]
∧
[ ∧
∀i′∈I

′
e

(
¬xt

i′,j1−1 ∧ ¬xt
i′,jk+1

) ]
(5.29)

Because we need all our formulas in CNF to be able to use Max-SAT solvers we have to
replace our equality operator in 5.29 with the alternative form where the equality x = y

35



5. Solution Models

gets replaced by the expression (¬x ∨ y) ∧ (x ∨ ¬y). The construction in 5.30 shows this
alternative form for equality from Formula 5.29.

[
¬st

e,w ∨
(〈 ∧

j∈Jt
e,w

( ∨
i∈Ie

xt
i,j

)〉
∧
〈 ∧
∀i′∈I′e

(
¬xt

i′,j1−1 ∧ ¬xt
i′,jk+1

)〉) ]

∧
[

st
e,w ∨ ¬

(〈 ∧
j∈Jt

e,w

( ∨
i∈Ie

xt
i,j

)〉
∧
〈 ∧
∀i′∈I′e

(
¬xt

i′,j1−1 ∧ ¬xt
i′,jk+1

)〉) ] (5.30)

Next we translate Formula 5.30 to CNF and end up with our result shown in 5.31 for
connecting our meeting position variables to our character position variables.

[ ∧
∀j∈Je,w

〈 ( ∨
∀i∈Ie

xt
i,j

)
∨ ¬st

e,w

〉 ]

∧
[ ∧
∀i′∈I′e

((
¬xt

i′,j1−1 ∨ ¬st
e,w

)
∧
(
¬xt

i′,jk+1 ∨ ¬st
e,w

))]

∧
[ ∧
∀i′∈I′e

〈 ∧
i1∈Ie

...
∧

ik∈Ie

(
¬xt

i1,j1 ∨ ... ∨ ¬x
t
ik,jk

∨ xt
i′,j1−1 ∨ st

e,w

)〉]

∧
[ ∧
∀i′∈I′e

〈 ∧
i1∈Ie

...
∧

ik∈Ie

(
¬xt

i1,j1 ∨ ... ∨ ¬x
t
ik,jk

∨ xt
i′,jk+1 ∨ st

e,w

)〉]
(5.31)

If we can neglect the conditions that at least one line above and below the meeting
position has to be held empty we get for Formula 5.31 a much simpler version in 5.32.
But this formula only applies if there is no line left above and below the current meeting
position or if the meeting contains all characters of the storyline.

[ ∧
∀j∈Je,w

( ∨
∀i∈Ie

xt
i,j

)
∨ ¬st

e,w

]

∧
[ ∧

i1∈Ie

...
∧

ik∈Ie

(
¬xt

i1,j1 ∨ ... ∨ ¬x
t
ik,jk

∨ st
e,w

)] (5.32)

Now, we have complied Property P8 with our new meeting representations and the
meeting constraint that all members occupy consecutive slots without gaps between
them and Property P9 with the constraint regarding the empty lines above and below a

36



5.3. Max-SAT Formulation

meeting. But we are still missing two meeting constraints for which the meeting position
variables come in handy and which would be much more difficult to formulate if we would
have held on to the meeting variables from the ILP formulation.

For the first constraint we have to make sure that the meeting has exactly one position
variable st

e,w ∈ St
e evaluating to true for an arbitrary active time point t ∈ Te. The

second constraint contains the condition that a meeting has to hold its position along
the complete lifetime of the meeting. This also includes that all members have to keep
their position as well to meet Property P7.

The first constraint can now be easily realized by a conjunction of an at-least-one (ALO)
and an at-most-one (AMO) formula shown in 5.33. This formula is similar to 5.27 which
we have created for ensuring that each character occupies exactly one slot for each active
time point.

[ ∨
∀s∈St

e

s

]
∧

[ ∧
∀s1,s2∈St

e,s1 6=s2

(
¬s1 ∨ ¬s2

) ]
(5.33)

To make sure the position of meeting e is always the same for all time points t ∈ [ts, te[
of e we enforce that all position variables which are associated with the same set Je,w of
slots but different time points have to evaluate to the same truth value. We recall the
compression of the time points for the visualization described in section 5.1 where all
time points got removed where neither at least one meeting starts or ends. This also
reduced the amount of meetings for which this constraint is needed. We are only left
with meetings containing at least one addition compressed time point between start and
end time point of the meeting (the end time point is exclusive).

Because of the transitivity of an equality relation it is sufficient for one specific Je,w to
enforce the same truth value for meeting position variable sts

e,w for the start time point ts
of e with all other variables st

e,w for ts < t < te. Formula 5.34 shows this constraint in
CNF.

∧
∀t∈]ts,te[

((
¬sts

e,w ∨ st
e,w

)
∧

(
sts

e,w ∨ ¬st
e,w

))
(5.34)

5.3.4 Max-SAT Objective formulation

All formulas described before are required to get a correct storyline visualization similar
to the ones generated with the ILP model. For the objective of our Max-SAT formulation
we need clauses that don’t necessarily have to evaluate to true for a correct storyline
visualization. For total wiggle height minimization the number of positive z variables
which hold the height of each wiggle has to be minimized. Therefore we can formulate

37



5. Solution Models

this objective of wiggle height minimization for the Max-SAT formulation the following
way:

p−1∧
t=0

n−1∧
i=0

m−1∧
j=0

¬zt
i,j (5.35)

Every negated z variable forms one soft clause within the formulation and the more of
this soft clauses evaluate to true the better is the solution for the storyline visualization.
This completes Property P10 for our Max-SAT formulation.

Next to wiggle height minimization we require a second wiggle objective regarding
Property P11, which describes the minimization of the number of all wiggles in storyline
visualizations. This second objective can easily be expressed in our Max-SAT formulation
by small changes for our wiggle variables we denoted with the letter z.
Because we are no longer interested in the actual height of a wiggle, we can reduce the
number of z variables. Thus, we only need one binary variable for every character at
every time point instead of an array of binary variables of the length of the highest
possible wiggle. This one variable should hold the information if a character i changes
its position from time point t to time point t+ 1. If this is the case we have a wiggle at
time point t for character i. With this reduction of the wiggle height variables we loose
the information about the exact height of a wiggle, but this also means simplifications of
our formula, which describes the detection of wiggles.

An arbitrary wiggle variable zt
i evaluates to true if the storyline visualization has a wiggle

at time point t for character i, otherwise it evaluates to false, shown in 5.36.

zt
i =

{
1, if a wiggle occurs for character i at time point t
0, otherwise. (5.36)

We can use our previous Formulas 5.23 and 5.24 as base to create a slightly different
formula for detecting wiggles. After inserting our changed wiggle variables we receive
Formula 5.37, which misses the calculation of the height of a potential wiggle. Because
we only want to know the sum of all wiggles we can neglect the height of wiggles and also
don’t have to distinguish between ascending and descending wiggles, or pay attention to
our previous limit cases of wiggles which start or end at the very top or the very bottom
of the visualization matrix.

n−1∧
i=0

p−1∧
t=0

m−1∧
j=0

[
¬xt

i,j ∨
(
xt

i,j ∧ xt+1
i,j

)

∨
(
xt

i,j ∧ ¬xt+1
i,j ∧

〈 ∧
∀h∈[0,m[,h6=j

(
¬xt+1

i,h ∨
(
xt+1

i,h ∧ zt
i

))〉)] (5.37)

38



5.3. Max-SAT Formulation

With further transformation we get Formula 5.38, which shows our new wiggle detection
formula in conjunctive normal form (CNF). It’s easy to see that this formula contains
fewer clauses as our previous CNF formula in 5.25 for wiggle detection.

n−1∧
i=0

p−1∧
t=0

m−1∧
j=0

∧
∀h∈[0,m[,h6=j

(
¬xt

i,j ∨ xt+1
i,j ∨ ¬xt+1

i,h ∨ zt
i

)
(5.38)

As last step for our second objective it remains to adapt our objective formula in 5.35
regarding the reduced number of wiggle variables. These adjustments are very easy. We
just have to remove the conjunctions over all slots. Formula 5.39 shows our altered soft
formula describing our alternative objective of minimizing the number of wiggles.

p−1∧
t=0

n−1∧
i=0

¬zt
i (5.39)

All other formulas remain unchanged for the second objective.

39





CHAPTER 6
Implementation

Both solution models were programmed in Java into separated subprojects of one software
project. With the support tool Maven as build tool and for dependency management the
project can easily be compiled, packaged and executed. The complete project consists of
four subprojects. The first subproject contains the basic code required in all other three
subprojects to read and process movie data files from Tanahashi and Ma [36] provided at
[35]. The second subproject contains the implementation of the ILP model from Section
5.2 of this thesis. The third project consists of the implementation of the Max-SAT
formulation from Section 5.3 of this thesis. The fourth project contains a web interface
for viewing storyline visualizations generated by the subprojects of the ILP model or
the Max-SAT formulation. The complete code is provided at a public git repository at
Github.1

The implementation of the ILP model uses the Gurobi Java library to create all concrete
variations of the ILP model and objective functions we described in Section 5.2 and
Section 7.2. With Maven the subproject can be packaged into a JAR file for running
experiments on the ILP model and generate storyline visualizations. For performing
optimizations on storyline visualizations the parameters for defining the specific objective
can be added when the JAR gets executed.

The implementation of the Max-SAT formulation was mainly developed to serve as
adapter between the Max-SAT formulation in Section 5.3 and Max-SAT solvers used
for the experiments in Section 7.3. The subprojects supports the creation of input files
in standard WCNF format [1] for Max-SAT solvers and creates storyline visualizations
from the resulting variable assignments computed by a Max-SAT solver.

To be able to visualize storyline visualizations generated during the experiments in
Chapter 7 a simple web interface was included into the software project, which was
1 https://github.com/theresa77/wiggle-minimization

41



6. Implementation

written in JavaScript. The visualizations were realized using the D3 JavaScript library.
Furthermore the interface enables the user to download the image of particular storyline
visualizations as PNG or SVG.

42



CHAPTER 7
Experiments and Result Analysis

This section contains the description and analysis of all performed experiments based on
the solution models in Section 5.

The goal of the experiments and the analysis of the resulting solutions is to evaluate
all possible objectives for wiggles minimization and combinations of wiggle and crossing
minimization which serves as answer to research questionQ2. The performed experiments
should gain insight about which specific objective function produces the best solutions
regarding wiggle minimization.

The quality of each resulting storyline visualization solution from an experiment can be
determined by the concrete values of the corresponding optimization metrics twh, hw, wc
and cc which were defined in Section 2.3. All four metrics are equally meaningful for
the evaluation of the solution quality and for the comparison with other solutions, thus
none of the metrics can outrank one of the other three, e.g. the number of wiggles is not
more important that the number of crossings. The smaller the metric values the better
is the quality of a solution. By comparing two solutions with each other one solution is
superior to the second solution if it has at least three smaller metric values than the other
solution. If both solutions have each two smaller metric values than the other solution
then none of them is superior or inferior to the other solution.

The bigger part of the following experiments is based on the ILP model from Section 5.2,
because the implementation of the ILP model allows more alternative objective functions
than the implementation of the Max-SAT formulation.
The experiments based on the Max-SAT formulation from Section 5.3 will be mainly
used for the comparison and evaluation of the two solutions models and to identify pros
and cons between the two optimization methods.

Table 7.1 gives an overview of all concrete objective functions for the experiments. We
have three single-objectives for wiggle minimization and three multi-objective variations
with different weighting strategies. By combining every wiggle objective with every

43



7. Experiments and Result Analysis

multi-objective variation we obtain in total twelve objective variations for every movie
data instance we use. Due to the extended length of the nominations of all objective
functions, we use abbreviations which are also shown in Table 7.1. The ILP model
allows the formulation of all specified objective functions in the table. The Max-SAT
formulation allows only the two single-objectives mtwh and mnrw for wiggle minimization
marked by *.

concrete objective short cut
single wiggle minimization

minimize total wiggle height* mtwh
minimize maximum wiggle height mmwh
minimize number of wiggles* mnrw

multi-objective with same weighting (sw)
same weighting for total wiggle height and crossing count mtwh sw
same weighting for maximum wiggle height and crossing count mmwh sw
same weighting for wiggle count and crossing count mnrw sw

multi-objective with higher wiggle weighting (hww)
higher weighting for total wiggle height than for crossing count mtwh hww
higher weighting for maximum wiggle height than for crossing count mmwh hww
higher weighting for wiggle count than for crossing count mnrw hww

multi-objective with higher crossing weighting (hcw)
higher weighting for crossing count than for mtwh mtwh hcw
higher weighting for crossing count than for mmwh mmwh hcw
higher weighting for crossing count than for mnrw mnrw hcw

Table 7.1: Overview of all objective functions supported by the ILP model. Objective
formulations supported by the Max-SAT formulation are marked by *.

Combined wiggle and crossing minimization objectives are only possible within the
ILP model, which we will refer to as multi-objectives. The concrete formulation of
our multi-objectives are inspired by the weighted sum method [24]. A multi-objective
formulation is represented by a linear function where our two single-objectives, one for
wiggle minimization and one for crossing minimization, get multiplied by an integer
weight. The minimization of the sum of both weighted single-objectives represents
the complete multi-objective. A general formulation of our multi-objective functions is
shown in Equation 7.1 where wobj represents one of the wiggle minimization objective
variations from Equation 5.10 or Equation 5.13 and cobj represents the objective for
crossing minimization from Formula 5.18.

minimize a · wobj + b · cobj (7.1)

For the concrete values of the weights a and b we use three different weighting variations.

44



The first multi-objective weighting contains an equal weighting between the wiggle and
the crossing objective, i.e. both objectives are weighted by one. In the following we
will refer to this uniform weighting of both single-objectives as same weighting with the
abbreviation sw. For the second weighting variation for a multi-objective the single-
objective for wiggle minimization receives a higher weighting than the single-objective for
crossing minimization which we will call higher wiggle weighting with the abbreviation
hww. The third and last multi-objective variation contains a higher weighting of the
crossing objective over the wiggle objective which we will refer to as higher crossing
weighting with the abbreviation hcw.

To ensure that a different effect is received for multi-objectives with a higher weighting for
of the two single-objectives, we calculate the worst case for the current wiggle objective and
use this as weight for the higher weighted single-objective. This worst case objective value
depends on the currently used movie instance and gets therefore calculated during the
initialization of the objective function. If our current wiggle objective is the minimization
of the number of wiggles the worst case is calculated with the assumption that whenever a
character is allowed to change its position than it produces a wiggle. Because a character
is only allowed to change its position if it is a member at a new meeting for the current
time point, we can just sum up the number of members for every new meeting for all time
points. A different worst case gets calculated if our current wiggle objective considers
the height of wiggles. Here we start with the same assumption that every characters
is driven to always make the highest possible jump if a jump is allowed. Thus, for the
worst case regarding the wiggle heights we sum up all highest possible wiggles for all
characters of a new meeting at every time point.

Inception snippet Inception Star Wars snippet Star Wars
character count 7 10 10 14
time points 197 490 33 200
compr. time points 27 71 8 50
min required slots 7 12 16 17
meetings count 41 116 20 93

Table 7.2: Key data of used movie instances

We use two different movie data instances for our experiments from Tanahashi and Ma
[36] which are provided at [35]. The first instance contains the movie Inception (2010)
and the second instance contains the movie Star Wars (1977). Because both movie
instances require too many variables and constraints within our two solution models to
obtain a solution for every objective function in Table 7.1, we add two small snippets
from the beginning of each movie as additional movie instances for our experiments which
require much less resources during the optimizations. Table 7.2 gives an overview of the
key data of our four movie instances. The table also illustrates the main distinctions
between the movies Inception and Star Wars. The movie Inception has much more time
points than the movie Star Wars and storyline visualizations for Inception will be wider

45



7. Experiments and Result Analysis

than visualizations for Star Wars. On the other hand requires the movie Star Wars more
slots and therefore more height for the resulting storyline visualization.

To embrace the evaluation of the results from the experiments and to support the
conclusion of this thesis in Section 8 we formulate the following list of evaluation questions
which will be answered during the experiments analysis in Section 7.2 and Section 7.3:

E1 Considering all four optimization metrics individually for a particular movie data
instance, what are the best and worst solutions (i.e. for which solution has the
considered metric the smallest or highest value)?

E2 Considering all metrics at once, what are the best and worst solutions (i.e. are
there solutions where more than one metric has its smallest or highest value over
all solutions for the current movie instance)?

E3 By comparing the results after one hour and after ten hours for every objective,
are there observable effects (positive of negative) for the three (or two for multi-
objectives) metric values not included into the objective while minimizing one (or
two for multi-objectives) of the metrics (e.g. has the minimization of the number
of wiggles a negative effect on the number of crossing)?

E4 By comparing the results per objective with and without an initial instance, which
approach produces better results regarding the metrics?

E5 Which of the alternative objectives for wiggle minimization did produce the best or
worst solutions regardless of a possible combination with crossing minimization?

E6 By comparing the solutions for minimizing only wiggles and minimizing wiggles
combined with the number of crossings, which approach produces better solutions
regarding the resulting values for the optimization metrics and did the combined
objectives produce solutions with less crossings?

E7 By comparing the results for the different alternatives for multi-objectives, is there
an observable difference in the quality of the results between the different weighting
approaches for wiggle and crossing minimizations (e.g. did the higher weighting
of wiggles or crossings produce solutions with lower metric values than uniform
weighting)?

E8 Considering the individual objective definitions over all movie instances, does the
quality of the corresponding solutions differ between the movie instances?

E9 By comparing the solutions for one movie instance over all used Max-SAT solvers,
how much does the quality of the solutions differ between the solvers?

E10 By comparing the solutions from the experiments based on the ILP formulation
and the solutions based on the Max-SAT formulation, how does the quality differ
between the results from these two solution models?

46



7.1. Setup

7.1 Setup

To be able to compare the solutions from different experiments we used a consistent
setup for all our experiments. Therefore all experiments where executed using the grid
engine at the Algorithms and Complexity Group institute [4] where version 6.2u5 of the
Sun Grid Engine (SGE) is currently installed. Furthermore all experiments used the
same node with an Intel Xeon E5-2640 v4 (2.40GHz 10-core) processor.

All experiments for both solution models got a timeout of ten hours. If no solution was
found after these ten hours the calculation got terminated without a solution.

For the experiments based on the ILP model we used as linear programming solver the
Gurobi Optimizer version 7.0 [29]. To improve the runtime of the ILP solving and the
quality of the solutions with Gurobi a specific set of Gurobi parameters were set for the
implemented RGBModel which were identified in advance during pre experiments. The
integer parameter MIPFocus was set to 3 to lay more focus on moving the objective
bound during the optimization. The integer parameter Method for selecting different
algorithms for the root was set to 3 to select the concurrent solver. The integer parameter
Presolve was set to value 2 to select an aggressive presolve level. All ILP experiments
were started using five threads for a job at the grid engine and to control the number
used threads during the ILP solving the Gurobi integer parameter Threads was set to 5.
For all other RGBModel parameters the default values were used. Furthermore we used
Gurobi callbacks whenever a new solution during the calculations was found.

All experiments based on the ILP model were also executed twice, at first without
pre-initialization of the model variables and the second time with an initial solution for
the particular movie instance. As initial instance the solution from the genetic algorithm
after 1500 generations from Tanahashi and Ma [36] was used. The implementation of
this genetic algorithm can be found at [35]. Because we only needed the initial solutions
to create a different starting point for the optimizations the implementation of the
genetic algorithm without optimizing pre-computations was used for generating the initial
solutions.

For the experiments without initial solution we computed the height of our visualization
matrix by calculating the minimal amount of necessary slots. With such a minimal
amount of slots we can still place all meetings at all time points below each other with
one blank line between them and without too much empty lines above, below or between
the meetings. For the experiments with an initial solution the height of our visualization
matrix is given by the initial solution. Because all initial solutions require more slots than
the minimal amount of necessary slots we also require more variables and constraints for
the corresponding ILP model instances.

The concrete values for the required number of variables and constraints for the different
objective functions are summarized in several tables. Table 7.4 lists the key values for the
Inception snippet instance, Table 7.5 for the complete Inception movie instance, Table
7.6 for the Star Wars snippet instance and Table 7.7 for the complete Star Wars movie

47



7. Experiments and Result Analysis

instance. The different weighting variations of multi-objectives have no effect on the
number of variables and constraints.

For the experiments based on the Max-SAT formulation the four Max-SAT solvers LMHS
[32, 33], Loandra [11], MaxHS [8, 15] and Maxino [5] from the 2017 Max-SAT Evaluation
[2] were used. The decision of choosing these four solvers was made after pre-experiments
with small movie instances where the four selected solvers were the most promising ones.
All four Max-SAT solvers accept the same input files containing all required variables
and constraints regarding the specific movie instance in the standard WCNF format [1].
An overview of the different input files with the number of variables and clauses can be
found at Table 7.3.

wiggle obj no. of variables no. of hard clauses no. of soft clauses
Key data of concrete SAT instance for Inception snippet

mtwh 1796 28284 687
mnrw 1208 20836 99

Key data of concrete SAT instance for Star Wars snippet
mtwh 2831 3168876 1025
mnrw 1871 3096236 65

Table 7.3: Key data of concrete Max-SAT instances

wiggle obj constraints variables
wiggle minimization - no initial variable assignment

mtwh 1656 2494 int (2223 binary)
mmwh 1656 2495 int (2223 binary)
mnrw 1656 2305 int (2223 binary)

wiggle minimization - with initial variable assignment
mtwh 6066 8332 int (8061 binary)
mmwh 6066 8333 int (8061 binary)
mnrw 6066 8143 int (8061 binary)
multi-objective (sw/hww/hcw) - no initial variable assignment
mtwh 2266 3138 int (2867 binary)
mmwh 2266 3139 int (2867 binary)
mnrw 2266 2949 int (2867 binary)
multi-objective (sw/hww/hcw) - with initial variable assignment
mtwh 6676 8976 int (8705 binary)
mmwh 6676 8977 int (8705 binary)
mnrw 6676 8787 int (8705 binary)

Table 7.4: Concrete Gurobi ILP model instance of Inception snippet instance

48



7.1. Setup

short cuts constraints variables
wiggle minimization - no initial variable assignment

mtwh 11018 14290 integer (13348 binary)
mmwh 11018 14291 integer (13348 binary)
mnrw 11018 13580 integer (13348 binary)

wiggle minimization - with initial variable assignment
mtwh 42172 51697 integer (50755 binary)
mmwh 42172 51698 integer (50755 binary)
mnrw 42172 50987 integer (50755 binary)
multi-objective (sw/hww/hcw) - no initial variable assignment
mtwh 15400 18778 integer (17836 binary)
mmwh 15400 18779 integer (17836 binary)
mnrw 15400 18068 integer (17836 binary)
multi-objective (sw/hww/hcw) - with initial variable assignment
mtwh 46554 56185 integer (55243 binary)
mmwh 46554 56186 integer (55243 binary)
mnrw 46554 55475 integer (55243 binary)

Table 7.5: Concrete Gurobi ILP model instance complete Inception instance

short cuts constraints variables
wiggle minimization - no initial variable assignment

mtwh 2620 2468 integer (2348 binary)
mmwh 2620 2469 integer (2348 binary)
mnrw 2620 2388 integer (2348 binary)

wiggle minimization - with initial variable assignment
mtwh 4840 4418 integer (4298 binary)
mmwh 4840 4419 integer (4298 binary)
mnrw 4840 4338 integer (4298 binary)
multi-objective (sw/hww/hcw) - no initial variable assignment
mtwh 3754 3692 integer (3572 binary)
mmwh 3754 3693 integer (3572 binary)
mnrw 3754 3612 integer (3572 binary)
multi-objective (sw/hww/hcw) - with initial variable assignment
mtwh 5974 5642 integer (5522 binary)
mmwh 5974 5643 integer (5522 binary)
mnrw 5974 5562 integer (5522 binary)

Table 7.6: Concrete Gurobi ILP model instance of Star Wars snippet instance

49



7. Experiments and Result Analysis

short cuts constraints variables
wiggle minimization - no initial variable assignment

mtwh 17172 18931 integer (18045 binary)
mmwh 17172 18932 integer (18045 binary)
mnrw 17172 18231 integer (18045 binary)

wiggle minimization - with initial variable assignment
mtwh 55712 58988 integer (58102 binary)
mmwh 55712 58989 integer (58102 binary)
mnrw 55712 58288 integer (58102 binary)
multi-objective (sw/hww/hcw) - no initial variable assignment
mtwh 25060 26979 integer (26093 binary)
mmwh 25060 26980 integer (26093 binary)
mnrw 25060 26279 integer (26093 binary)
multi-objective (sw/hww/hcw) - with initial variable assignment
mtwh 63600 67036 integer (66150 binary)
mmwh 63600 67037 integer (66150 binary)
mnrw 63600 66336 integer (66150 binary)

Table 7.7: Concrete Gurobi ILP model instance of complete Star Wars instance

7.2 Experiments with ILP Formulation
In this section the evaluation questions from above will be answered for all experiments
based on our ILP model from Section 5.2. We start with the answering of the Questions
E1 to E7 for each movie instance individually, followed by the answer of Evaluation
Question E8 concerning all four movie instances at once.

7.2.1 Evaluation of Inception snippet

The resulting metric values of the Inception snippet instance are shown in Table 7.8. We
will consider mainly the solutions after ten hours, because we expect the solutions after
ten hours to be superior to the solutions after one hour.

Answer to E1: The best value for metric twh is 39 and for metric wc it is 26, both belong
to the solution of single-objective mtwh without initial solution (shown in Figure 7.1).
The best value for metric hw is 2 and is associated with the multi-objectives mmwh sw
(shown in Figure 7.2) and mmwh hcw, both without initial solution. The best value for
metric cc is 5 and corresponds to the multi-objectives mmwh sw (shown in Figure 7.2)
and mtwh hcw (shown in Figure 7.3) without initial variable assignment. The worst value
733 for metric twh as well as the worst value 27 for metric hw and the worst value 51 for
metric cc are corresponding to the single-objective mnrw with initial variable assignment
which is shown in Figure 7.4. The highest result for metric wc holds value 65 and belongs
to single-objective mmwh with initial variable assignment shown in Figure 7.5.

50



7.2. Experiments with ILP Formulation

Figure 7.1: Inception snippet solution for objective mtwh with best results of metrics twh
and wc (twh:39, hw:6, wc:26, cc:10)

Figure 7.2: Inception snippet solution for objective mmwh sw with best results of metrics
hw and cc (twh:72, hw:2, wc:52, cc:5)

Figure 7.3: Inception snippet solution for objective mtwh hcw with best result of metric
cc (twh:42, hw:5, wc:28, cc:5)

Figure 7.4: Inception snippet solution for objective mnrw with worst results of metrics
twh, hw and cc (twh:733, hw:27, wc:47, cc:51)

Figure 7.5: Inception snippet solution for objective mmwh with worst result of metric wc
(twh:225, hw:6, wc:65, cc:36)

51



7. Experiments and Result Analysis

Answer to E2: We have two solutions where each holds two smallest metric values over
all ten hour solutions. The first is the solution of single-objective mtwh (Figure 7.1) and
the second of multi-objective mmwh sw (Figure 7.2). Both of these two objectives didn’t
have an initial variable assignment. The worst solution for all metrics together is the
solution for single-objective mnrw with initial variable assignment (Figure 7.4). The
solution has the highest values for three metric values.

Answer to E3: Altogether we have twelve cases where an effect for metrics not included
into the objective function is observable between the solution after one hour and the
solution after ten hours. For five of these cases there are only negative effects, i.e. the not
included metric values increased. For one case we have a combination of a positive effect
and a negative effect, i.e. one not included metric increased while another not included
metric decreased. The remaining six cases contain only positive effects for metrics not
included into the objective function, i.e. the not included metrics only decreased together
with the metrics corresponding to the specific objective function.

Answer to E4: It is clearly recognizable that almost all objectives connected to experi-
ments without initial variable assignment produced better solutions than the experiments
for the same objectives but with an initialization of the variables. The only exceptions
are multi-objective mmwh hww, where we didn’t get any solutions, and multi-objective
mnrw hww where none of the two solutions (one with and one without initialization) is
superior to the other solution.

Answer to E5: We consider first every objective function block on its own to find the
best wiggle objective for the specific block. Over all experiment blocks we obtain wiggle
objective mtwh as most efficient, i.e. mtwh produced more best solutions within each
block than the other two wiggle objectives. The other two wiggle objectives mmwh and
mnrw are equally efficient and therefore there is no obvious worst wiggle objective for
the Inception snippet instance.

Answer to E6: Both, the best solution and the worst solution over all solutions are
corresponding to single-objectives. The quality of the solutions between single-objectives
and multi-objectives does not differ very much, the quality of the solutions depends more
on a potential initial solution used at the beginning of the optimization. The smallest
values for cc are all corresponding to multi-objectives. Comparing each single-objective
with the associated multi-objectives, once with initial variable assignment and once
without initialization, it is clear that the additional minimization of crossings had a
positive effect on the number of crossing for this movie instance without a serious negative
effect for the corresponding wiggle metric values.

Answer to E7: Regarding metric cc there aren’t essential differences between the solutions
for the multi-objectives with uniform weighting and with a higher crossing weighting.
The values for cc corresponding to the multi-objectives with highest wiggle weighting
were slightly higher as for higher crossing weighting, but still lower as for the associated
single-objectives. Thus, for the Inception snippet a higher weighting of wiggles or crossings
doesn’t produce essentially better results for the corresponding higher weighted metric.

52



7.2. Experiments with ILP Formulation

1 hour 10 hours
time twh hw wc cc time twh hw wc cc

wiggle minimization - no initial variable assignment
mtwh 1048s 40 6 28 9 5431s 39 6 26 10
mmwh 2146s 114 3 62 30 2146s 114 3 62 30
mnrw N/A N/A N/A N/A N/A 8561s 62 6 29 24

wiggle minimization - with initial variable assignment
mtwh 2837s 50 5 29 12 8118s 47 6 26 12
mmwh 936s 251 8 70 47 31381s 225 6 65 36
mnrw 629s 733 27 47 51 629s 733 27 47 51

multi-objective with same weighting (sw) - no initial variable assignment
mtwh N/A N/A N/A N/A N/A 14821s 47 4 34 6
mmwh 337s 63 2 47 10 9502s 72 2 52 5
mnrw 3047s 55 3 31 8 3047s 55 3 31 8

multi-objective with same weighting (sw) - with initial variable assignment
mtwh 1899s 78 5 40 12 29770s 77 5 42 12
mmwh 752s 262 7 62 12 7078s 219 6 64 12
mnrw 952s 278 21 31 10 952s 278 21 31 10
multi-objective with higher wiggle weighting (hww) - no initial variable assignment

mtwh 2205s 47 6 32 10 26769s 42 5 28 8
mmwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mnrw 2893s 81 5 36 21 16920s 73 5 35 15
multi-objective with higher wiggle weighting (hww) - with initial variable assignment
mtwh 2135s 80 5 41 12 33643s 79 5 42 12
mmwh 457s 171 5 59 12 457s 171 5 59 12
mnrw 1571s 408 22 36 11 10924s 176 19 31 10
multi-objective with higher crossing weighting (hcw) - no initial variable assignment
mtwh N/A N/A N/A N/A N/A 7652s 42 5 28 5
mmwh 1845s 65 2 50 6 1845s 65 2 50 6
mnrw N/A N/A N/A N/A N/A 20203s 51 4 31 7
multi-objective with higher crossing weighting (hcw) - with initial variable assignment
mtwh 3277s 85 7 39 11 34256s 62 5 34 7
mmwh 2109s 124 5 58 9 2109s 124 5 58 9
mnrw 624s 248 20 33 8 25057s 255 23 31 8

Table 7.8: Solutions of Inception snippet instance from experiments based on the ILP
model. Smallest metric values are displayed in bold. N/A indicates that no solution was
found after the associated computation time.

53



7. Experiments and Result Analysis

7.2.2 Evaluation of Inception

Table 7.9 shows all results for the complete Inception movie instance which we will use
in the following to answer the evaluation questions for this instance.

Answer to E1: The smallest value for metric twh is 249, the smallest value for metric
wc is 95 and the smallest value for metric cc is 92, all three correspond to the solution
for single-objective mtwh with initial variable assignment which is shown in Figure 7.6.
The best result for metric hw has value 7 which appears in three solutions. The first
solution corresponds to single-objective mmwh without initial solution shown in Figure
7.8, the second solution to the multi-objective mmwh sw without initial solution and the
third solution to the multi-objective mmwh hww without initial solution shown in Figure
7.7. The highest result after ten hours for metric twh has value 2831 and the highest
result value for metric wc is 265, both correspond to the same solution for multi-objective
mmwh hcw with initial variable assignment which is shown in Figure 7.9. The worst
solution for metric hw holds value 47 and belongs to the solution of single-objective mnrw
with initial variable assignment shown in Figure 7.10. The highest value of metric cc is
247 and corresponds to the solution of single-objective mmwh without initial variable
assignment which is shown in Figure 7.8.

Answer to E2: The best solution for all metric values together is the result for single-
objective mtwh shown in Figure 7.6, because it contains the smallest values for three
metrics. The worst solution for the complete Inception movie is with two highest metric
values the solution for multi-objective mmwh hcw shown in Figure 7.9.

Answer to E3: By comparing the results after one hour and after ten hours for every
objective, only two cases with one negative effect exist where metrics increased which were
not included into the corresponding objective function. All other ten cases with observable
effects were all positive effects, which means that not included metrics decreased together
with the metrics belonging to the current objective function.

Answer to E4: For the complete Inception movie the experiments with an initial variable
assignment did produce much more solutions. A lot of experiments without an initial
solution didn’t even find one solution after ten hours. Relating to the quantity of solutions
for this movie instance an initial variable assignment is the better choice. However,
comparing the quality of the solutions, most of the resulting storyline visualizations from
the experiments without initial variable assignment are superior to the solutions of the
experiments, which started with initial variable assignments.

Answer to E5: The selection of the best wiggle objective depends on what’s more
important, quantity and quality of solutions. If the quantity of the solutions is more
important, than wiggle objective mmwh was obviously the best one over all experiment
blocks, just because it was the only wiggle objective where at least one solutions was
found after ten hours. If the focus lies more on the quality of the solutions and we only
consider experiment blocks for which at least one solution was found for each wiggle
objective, the wiggle objective mtwh produced the best solutions.

54



7.2. Experiments with ILP Formulation

Fi
gu

re
7.
6:

In
ce
pt
io
n
so
lu
tio

n
fo
r
ob

je
ct
iv
e
m
tw
h
w
ith

be
st

re
su
lt
of

m
et
ric

s
tw
h,

wc
an

d
cc

(t
w
h:
24

9,
hw

:1
5,

w
c:
95

,c
c:
92

)

Fi
gu

re
7.
7:

In
ce
pt
io
n
so
lu
tio

n
fo
r
ob

je
ct
iv
e
m
m
wh

hw
w

w
ith

be
st

re
su
lt
of

m
et
ric

hw
(t
w
h:
46

3,
hw

:7
,w

c:
20

8,
cc
:1
01

)

Fi
gu

re
7.
8:

In
ce
pt
io
n
re
su
lt
fo
r
ob

je
ct
iv
e
m
m
wh

w
ith

w
or
st

re
su
lt
of

m
et
ric

cc
(t
w
h:
67

5,
hw

:7
,w

c:
23

1,
cc
:2
47

)

55



7. Experiments and Result Analysis

Figure
7.9:

Inception
solution

for
objective

m
m
wh

hcw
w
ith

w
orst

results
ofm

etrics
twh

and
wc

(tw
h:2831,hw

:34,w
c:265,

cc:106)

Figure
7.10:

Inception
solution

for
objective

m
nrw

w
ith

w
orst

result
ofm

etric
hw

(tw
h:1639,hw

:47,w
c:115,cc:243)

56



7.2. Experiments with ILP Formulation

1 hour 10 hours
time twh hw wc cc time twh hw wc cc

wiggle minimization - no initial variable assignment
mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh N/A N/A N/A N/A N/A 5811s 675 7 231 247
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

wiggle minimization - with initial variable assignment
mtwh 2220s 581 28 112 129 35703s 249 15 95 92
mmwh 0s 2482 38 261 121 0s 2482 38 261 121
mnrw 3583s 2213 47 159 223 32666s 1639 47 115 243

multi-objective with same weighting (sw) - no initial variable assignment
mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh 3048s 675 7 242 186 32986s 607 7 226 128
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

multi-objective with same weighting (sw) - with initial variable assignment
mtwh 3556s 1247 34 211 111 35227s 746 28 181 100
mmwh 1810s 2619 33 264 110 30103s 2492 24 260 96
mnrw 3465s 2144 41 180 107 24767s 1669 39 143 98
multi-objective with higher wiggle weighting (hww) - no initial variable assignment

mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh N/A N/A N/A N/A N/A 29219s 463 7 208 101
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
multi-objective with higher wiggle weighting (hww) - with initial variable assignment
mtwh 3562s 1075 31 196 108 28594s 565 13 161 101
mmwh 720s 2615 33 263 113 21196s 2488 27 259 106
mnrw 3225s 2021 44 184 107 32868s 1610 38 149 102
multi-objective with higher crossing weighting (hcw) - no initial variable assignment
mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh N/A N/A N/A N/A N/A 35633s 583 9 237 113
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
multi-objective with higher crossing weighting (hcw) - with initial variable assignment
mtwh 3512s 1562 34 231 111 29050s 929 24 183 107
mmwh 2311s 2866 35 267 111 20464s 2831 34 265 106
mnrw 2891s 2059 30 191 98 34203s 1537 36 139 95

Table 7.9: Solutions of Inception instance from experiments based on the ILP model.
Smallest metric values are displayed in bold. N/A indicates that no solution was found
after the specific computation time.

57



7. Experiments and Result Analysis

Answer to E6: By looking only at the best and the worst solution from Question E2
the single-objective experiments produced better solutions than the multi-objective
experiments. But the quality of the best solutions from multi-objectives is altogether not
worse than the solutions from the single-objective experiments. Even though the smallest
value for metric cc belongs to a solution of a single-objective experiment the average
value for metric cc is lower for the multi-objective solutions than for the single-objective
solutions.

Answer to E7: There are no significant differences between the qualities of the solutions
between the alternative multi-objectives. The average values for metric cc between the
multi-objective experiment blocks are quite equal, thus higher weighting of the crossing
count did not result in better results regarding metric cc. Also the higher weighting of
the specific wiggle objective didn’t produce solutions with much smaller wiggle metric
values.

7.2.3 Evaluation of Star Wars snippet

All results for the optimization metrics of the experiments based on the Star Wars snippet
movie instance are summarized in Table 7.10. This section contains the answers for
Evaluation Questions E1 to E7 for this movie instance.

Answer to E1: The smallest result value for metric twh is 19 and the smallest value for
metric wc is 10, both correspond to the solution of the single-objective mtwh without
initial variable assignment which is shown in Figure 7.11. Value 10 for metric wc also
appears within the solution for single-objective mnrw with initial variable assignment
shown in Figure 7.14. The best result for metric hw is 3 and appears in 6 out of 8
experiments for wiggle objective mmwh. Considering all other metrics as well the solution
regarding the multi-objective mmwh sw without initial variable assignment can be seen
as best solution over all 6 solutions which is shown in Figure 7.12. The best result of cc
has also value 3 and corresponds to the two multi-objectives mtwh hcw and mnrw hcw,
both with initial variable assignment. Again, by considering all other metric values as
well the first of this two solutions has smaller metric values than the second which is
shown in Figure 7.13. The worst solution for metric twh holds value 141 and the worst
value for metric hw is 25, both belong to the solution for single-objective mnrw with
initial variable assignment and the corresponding visualization is shown in Figure 7.14.
The highest value for metric wc is 30 and is associated to the single-objective mmwh with
initial variable assignment shown in Figure 7.14. Lastly, the highest value for metric cc
is 37 and corresponds to single-objective mnrw without initial variable assignment and is
shown in Figure 7.16.

Answer to E2: The best solution for all four metric values together is again the solution
for the single objective mtwh without initial variable assignment with the smallest values
for the two metrics twh and wc, the corresponding image is shown in Figure 7.11. The
worst solution with the highest values for metric twh and metric hw corresponds to the
single-objective mnrw with initial variable assignment and is shown in Figure 7.14.

58



7.2. Experiments with ILP Formulation

Figure 7.11: Star Wars snippet solu-
tion for objective mtwh with best result
of metrics twh and wc (twh:19, hw:6,
wc:10, cc:5)

Figure 7.12: Star Wars snippet solution
for objective mmwh sw with best result
of metric hw (twh:31, hw:3, wc:20, cc:4)

Figure 7.13: Star Wars snippet solution
for objective mtwh hcw with best result
of metric cc (twh:21, hw:5, wc:12, cc:3)

Figure 7.14: Star Wars snippet solution
for objective mnrw with worst result of
metrics twh and hw (twh:141, hw:25,
wc:10, cc:34)

Figure 7.15: Star Wars snippet solution
for objective mmwh with worst result of
metric wc (twh:63, hw:3, wc:30, cc:13)

Figure 7.16: Star Wars snippet solution
for objective mnrw with worst result of
metric cc (twh:79, hw:13, wc:11, cc:37)

59



7. Experiments and Result Analysis

1 hour 10 hours
time twh hw wc cc time twh hw wc cc

wiggle minimization - no initial variable assignment
mtwh 832s 24 6 11 8 26630s 19 6 10 5
mmwh 527s 44 3 26 10 527s 44 3 26 10
mnrw 2422s 76 11 13 37 12046s 79 13 11 37

wiggle minimization - with initial variable assignment
mtwh 806s 25 8 11 9 7519s 20 5 11 6
mmwh 150s 63 3 30 13 150s 63 3 30 13
mnrw 14s 141 25 10 34 14s 141 25 10 34

multi-objective with same weighting (sw) - no initial variable assignment
mtwh 1731s 28 6 15 5 1731s 28 6 15 5
mmwh 505s 31 3 20 4 505s 31 3 20 4
mnrw 826s 58 12 16 21 826s 58 12 16 21

multi-objective with same weighting (sw) - with initial variable assignment
mtwh 1010s 27 7 15 5 1010s 27 7 15 5
mmwh 147s 73 7 27 5 147s 73 7 27 5
mnrw 123s 64 12 13 5 123s 64 12 13 5
multi-objective with higher wiggle weighting (hww) - no initial variable assignment

mtwh 2113s 33 6 17 5 6103s 31 6 19 5
mmwh 1740s 48 5 21 9 15835s 38 3 21 8
mnrw 2358s 31 5 12 5 5096s 29 5 11 6
multi-objective with higher wiggle weighting (hww) - with initial variable assignment
mtwh 183s 30 7 16 5 11928s 27 7 15 5
mmwh 1629s 80 6 27 5 13769s 41 3 23 4
mnrw 569s 69 13 13 5 569s 69 13 13 5
multi-objective with higher crossing weighting (hcw) - no initial variable assignment
mtwh 1283s 29 6 14 5 1283s 29 6 14 5
mmwh 550 48 3 26 7 550s 48 3 26 7
mnrw 1228s 30 7 12 7 1228s 30 7 12 7
multi-objective with higher crossing weighting (hcw) - with initial variable assignment
mtwh 275s 30 7 16 5 8165s 21 5 12 3
mmwh 47s 107 7 29 5 47s 107 7 29 5
mnrw 383s 63 10 13 5 19379s 57 11 13 3

Table 7.10: Solutions of Star Wars snippet instance from experiments based on the ILP
model. Smallest metric values are displayed in bold.

60



7.2. Experiments with ILP Formulation

Answer to E3: For more than half of the experiments we didn’t get a different solution after
ten hours which we hadn’t already after one hour for the current movie instance. Therefore
there are less recognizable effects on result values for the optimization metrics where the
corresponding metric was not included into the objective function. Altogether we have
ten experiments with effects on metric values not included into the current objective.
Seven effects are only positive with decreasing metric values. For one experiment we
have a combination of a positive effect and a negative effect on another metric. The
remaining two experiments with effects included only increasing values for metrics not
included into the objective function.

Answer to E4: There are not very essential differences in the solutions for the individual
objective functions with and without initial variable assignments. For most cases the
results without an initial variable assignment have slightly smaller metric values, but the
differences are mostly rather minor.

Answer to E5: The best wiggle objective over all objective function blocks is mtwh which
produced the best solutions for 6 out of 8 blocks. The other two wiggle objectives mmwh
and mnrw are equally efficient.

Answer to E6: The Star Wars snippet instance is the first movie instance where the
smallest values for metric cc is connected to a solution for a multi-objective with higher
crossing weighting. All in all is the average value for cc definitely lower for the multi-
objective solutions than for the results of single-objective experiments.

Answer to E7: The higher weighting of crossings had clearly improved the values for
metric cc. A positive effect on the wiggle metrics for higher wiggle weighting is not that
obvious, here we have only minor improvements of the wiggle metric values. Apart from
that is the quality between the solutions corresponding to multi-objectives rather similar.

7.2.4 Evaluation of Star Wars

Table 7.11 summarizes all results for the complete Star Wars movie instance which we
will use to answer the Evaluation Questions E1 to E7 for the movie instance.

Answer to E1: The best result for metric twh is 271, the best result for metric hw is 9 and
the best solution for metric cc is 76, all three correspond to the solution of multi-objective
mtwh hcw without initial variable assignment which is shown in Figure 7.17. The smallest
value for metric wc is 93 and belongs to the solution of single-objective mnrw with initial
variable assignment with the associated image in Figure 7.18. The worst result for metric
twh after ten hours has value 2402 and belongs to single-objective mmwh with initial
variable assignment, shown in Figure 7.19. The highest value of metric hw is 54 and
the highest value of metric cc is 259 which both correspond to the same solution of
single-objective mnrw with initial variable assignment shown in Figure 7.18. Lastly, the
worst result for metric wc is 231 and belongs to the solution for multi-objective mmwh
sw with initial variable assignment and corresponds to the image in Figure 7.20.

61



7. Experiments and Result Analysis

Answer to E2: The solution for multi-objective mtwh hcw without initial variable as-
signment can be named as the best solution for the complete Star Wars instance which
contains three smallest metric values. The associated image is illustrated in Figure 7.17.
Although the solution for the single objective mnrw with initial variable assignment
shown in Figure 7.18 holds the smallest values for metric wc it also corresponds to the
highest results for the two metrics hw and cc and is therefore the worst solution for all
metric values together for the movie instance.

Answer to E3: The bigger part of the solutions for the Star Wars movie instance is
corresponding to experiments with initial variable assignment. Thus, changes of the
metric values from one hour to ten hours can only be observed for experiment with
initial solutions. All in all is the number of positive effects on metrics, which were not
included into the specific objective function predominant. From eleven experiments with
at least one observable effect, only one experiments contained a negative effect where a
metric values increased and two experiments, which contained one decreasing and one
increasing metric. The remaining eight experiments included only positive effects where
the other metric values stayed the same or decreased together with the metrics which
where incorporated into the corresponding objective function.

Answer to E4: Since there are only two solutions found by experiments without an initial
solution this question cannot be answered as it should be. For big movie instances it is
definitely advisable to apply initial variable assignments, even though the best solution is
connected to an experiment without the use of an initial solution. With the right choice
for the objective function a result with an acceptable quality can still be found like the
solution after ten hours for single-objective mtwh with initial variable assignment shown
in Figure 7.21.

Answer to E5: Considering only experiment blocks which used initial solutions at the
beginning of the computations the two wiggle objectives mtwh and mnrw are both
connected to the best results and are therefore equally efficient. The worst solutions per
block are produced by the third wiggle objective mmwh.

Answer to E6: The quality of the solutions for single-objectives and multi-objectives is
quite equal. The average values for metric twh and metric wc are smaller for solutions
corresponding to single-objectives and the average value for metric cc is smaller for
solutions of multi-objective experiments.

Answer to E7: Comparing the solutions for the different multi-objective weighting
strategies no significant difference in the quality of the solutions is recognizable.

62



7.2. Experiments with ILP Formulation

Fi
gu

re
7.
17

:
St
ar

W
ar
s
so
lu
tio

n
fo
r
ob

je
ct
iv
e
m
tw
h
hc
w

w
ith

be
st

re
su
lt
of

m
et
ric

s
tw
h,

hw
an

d
cc

(t
w
h:
27

1,
hw

:9
,w

c:
14

2,
cc
:7
6)

63



7. Experiments and Result Analysis

Figure
7.18:

Star
W
ars

solution
for

objective
m
nrw

w
ith

best
result

ofm
etric

wc
and

w
orst

result
ofm

etrics
hw

and
cc

(tw
h:1324,hw

:54,w
c:93,cc:259)

64



7.2. Experiments with ILP Formulation

Fi
gu

re
7.
19

:
St
ar

W
ar
s
so
lu
tio

n
fo
r
ob

je
ct
iv
e
m
m
wh

w
ith

w
or
st

re
su
lt
of

m
et
ric

tw
h
(t
w
h:
24

02
,h

w
:4
4,

w
c:
21

4,
cc
:2
17

)

65



7. Experiments and Result Analysis

Figure
7.20:

Star
W
ars

solution
for

objective
m
m
wh

sw
w
ith

w
orst

result
ofm

etric
wc

(tw
h:2376,hw

:27,w
c:231,cc:184)

66



7.2. Experiments with ILP Formulation

Fi
gu

re
7.
21

:
St
ar

W
ar
s
so
lu
tio

n
fo
r
ob

je
ct
iv
e
m
tw
h
(t
w
h:
44

5,
hw

:2
0,

w
c:
10

0,
cc
:1
67

)

67



7. Experiments and Result Analysis

1 hour 10 hours
time twh hw wc cc time twh hw wc cc

wiggle minimization - no initial variable assignment
mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

wiggle minimization - with initial variable assignment
mtwh 3253s 670 22 119 211 34097s 445 20 100 167
mmwh 2s 2402 44 214 217 2s 2402 44 214 217
mnrw 3598s 1699 54 119 294 24694s 1324 54 93 259

multi-objective with same weighting (sw) - no initial variable assignment
mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

multi-objective with same weighting (sw) - with initial variable assignment
mtwh 3419s 1976 32 206 213 35542s 1286 26 183 199
mmwh 2426s 2667 36 225 202 32816s 2376 27 231 184
mnrw 3533s 2331 48 188 186 35504s 2010 45 149 175
multi-objective with higher wiggle weighting (hww) - no initial variable assignment

mtwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mmwh N/A N/A N/A N/A N/A 35894s 673 12 199 226
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
multi-objective with higher wiggle weighting (hww) - with initial variable assignment
mtwh 3242s 2141 35 207 215 35607s 1415 28 198 213
mmwh 3523s 2098 34 206 215 36000s 1392 27 191 201
mnrw 3401s 2222 44 190 207 34250s 2225 47 164 199
multi-objective with higher crossing weighting (hcw) - no initial variable assignment
mtwh N/A N/A N/A N/A N/A 35779s 271 9 142 76
mmwh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
mnrw N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
multi-objective with higher crossing weighting (hcw) - with initial variable assignment
mtwh 3491s 2117 36 209 211 36000s 1444 25 192 192
mmwh 2910s 2503 30 226 198 32310s 2216 28 228 180
mnrw 3457s 2710 52 200 200 28642s 2184 52 159 172

Table 7.11: Solutions of Star Wars instance from experiments based on the ILP model.
Smallest metric values are displayed in bold. N/A indicates that no solution was found
after the specific computation time.

68



7.3. Experiments with Max-SAT Formulation

7.2.5 Evaluation over all movie instances

Answer to E8: The best solutions over all movie instances got produced by the wiggle
objective mtwh for minimizing the total wiggle height. Regarding the minimization of the
highest wiggle mmwh the experiments without an initial variable assignment did generate
better results for the corresponding metric hw. The initial solutions used for the initial
variable assignments contained much more slots than the associated ILP model instances
without the use of an initial solution. Thus the experiments with the initial variable
assignments allowed higher character jumps within the visualization matrix which got
reflected in the resulting values of metric hw. For the two smaller movie instances of
Inception and Star Wars the use of initial variable assignments didn’t result in better
solutions. However, for the complete movie instances we got much more solutions for
the experiments by applying an initial solution. Lastly, mostly the multi-objective did
produce better results for the corresponding metric cc of crossings count. By minimizing
two metrics instead of one we got more solutions because if the minimization of one
objective got stuck we still had a second objective to focus on.

7.3 Experiments with Max-SAT Formulation

In the following subsections we will analyze the results from the experiments based on
our Max-SAT formulation from Section 5.3 for the Inception snippet instance and the
Star Wars snippet instance and compare them to the solutions from the experiments
based on our ILP formulation. We will analyze our results from our Max-SAT experiment
again by answering our evaluation questions from the beginning of this chapter. Because
the experiments based on the Max-SAT formulation didn’t allow the extensive variations
for wiggle objectives, multi-objectives, initial variable assignments and multiple solutions
for every experiment we can only answer the Evaluation Questions E1, E2, E5 and E9
per movie instance and Question E8 for both instances together in this section.

7.3.1 Evaluation of Inception snippet

The results for all Max-SAT experiments for the small Inception movie instance are
summarized in Table 7.12. Based on this table we will answer the evaluation questions
from above.

Answer to E1: For all four Max-SAT solvers we got for both objectives the optimal
solutions which also means that our smallest result values for the metrics twh and wc are
the optimal values for the two metrics of the Inception snippet instance. The smallest
value for metric twh is 39, which is also the smallest value of the metric from the ILP
experiments. The smallest value for metric hw is 3 which is slightly higher as the
corresponding smallest result for the metric from the ILP experiments. For metric wc the
smallest and also optimal value is 23 which is lower than the best result for the metric from
the ILP experiments. For metric cc the smallest result from the Max-SAT experiments is
8 which is higher than the best result for the metric from the ILP experiments. All in all

69



7. Experiments and Result Analysis

is the difference between the smallest metric values from the Max-SAT experiments and
the smallest metric values from the ILP experiments quite small.
The difference between the highest metric values from Max-SAT and ILP are much higher.
The highest result from Max-SAT for metric twh is 60, for metric hw it is 6, for metric
wc it is 27 and for metric cc is is 24. All this four worst metric results are much lower
than the worst metric values from the ILP experiments.
Comparing the average metric values for the Inception snippet instance from both solution
models we get three out of four average metric values from the Max-SAT experiments
which are smaller than the corresponding average values from the ILP experiments. Only
for the metric cc we got a better average result for the ILP model.

Answer to E2: The best storyline visualization solution with three smallest metric values
was produced by the Max-SAT solver Loandra with the objective mtwh and is shown in
Figure 7.22. The worst solution got produced by Max-SAT solver Maxino for objective
mnrw with three highest metric values over all Max-SAT experiment results and is shown
in Figure 7.23.

Answer to E5: Over all solutions of the Max-SAT solvers the wiggle objective mtwh did
produce better results for the other three metrics hw, wc and cc which were not included
into the objective than the objective mnrw which mostly only provided the smallest value
for its objective metric wc.

Answer to E9: All used Max-SAT solvers did calculate for both objectives the same
optimal value for the corresponding metric which was directly incorporated into the
current objective. The minimal value of metric twh with the corresponding objective
mtwh is 39. For objective mnrw the associated minimized metric wc holds value 23. All
metrics not part of the current objective did vary between the different Max-SAT solvers.
The biggest variations are recognizable for metric twh and metric cc while the other two
metrics hw and wc vary very little. Comparing the metric values of all solutions and the
time for the different solvers with each other none of the Max-SAT solver can be named
as the best or worst solver for the Inception snippet instance.

Figure 7.22: Best solution of Inception snippet for Max-SAT with objective mtwh from
Max-SAT solver Loandra (twh:39, hw:3, wc:27, cc:8)

Figure 7.23: Worst solution of Inception snippet for Max-SAT with objective mnrw from
Max-SAT solver Maxino (twh:60, hw:6, wc:23, cc:24)

70



7.3. Experiments with Max-SAT Formulation

wiggle obj time twh mwh wc cc
max-sat solver LMHS
mtwh 1m 45s 559ms 39 5 27 8
mnrw 2s 205ms 60 6 23 23
max-sat solver Loandra
mtwh 25m 39s 913ms 39 3 27 8
mnrw 388ms 58 5 23 24
max-sat solver MaxHS
mtwh 54s 412ms 39 5 25 8
mnrw 9s 483ms 56 6 23 20
max-sat solver Maxino
mtwh 1m 8s 900ms 39 5 25 8
mnrw 578ms 60 6 23 24

Table 7.12: Solutions of Inception snippet movie instance from experiments based on the
Max-SAT formulation. Smallest metric values are displayed in bold.

7.3.2 Evaluation of Star Wars snippet

Table 7.13 contains all results of the Max-SAT experiments for the Star Wars snippet
instance. N/A in the table indicates that no solution was found after ten hours. With
this table of metric values we are again able to answer the evaluation questions from
above.

Answer to E1: Again we got for almost all Max-SAT solvers and objectives the same
optimal metric value for the metric currently incorporated into the objective. We got
for metric twh the value 19 as smallest value which is also the smallest value for the
ILP experiments. The best result for metric hw holds value 6 which is higher than the
smallest value for the metric from the ILP experiments. Metric wc has value 8 as best
result value which is smaller than the best result for wc produced by the corresponding
ILP experiments. The best value for metric cc is 3 which is equal to the best result for
the metric from the ILP experiments.
The highest result for metric twh has value 41, for metric hw the worst solution holds
value 12, for metric wc the highest value is 12 and for metric cc it is 22. All of these four
worst results for the metrics are still much better than the highest metric values from
the ILP experiments.
By the comparison of the average values for all four metrics between the two solution
models we have smaller average values for the two metrics twh and wc from the Max-SAT
experiments. For the remaining two metrics hw and cc we got better average result values
from the ILP experiments.

Answer to E2: The best solution over all experiments for the Star Wars snippet instance
got produced by Max-SAT solver MaxHS containing three smallest metric values with
mtwh as objective. The corresponding image is shown in Figure 7.24. As worst solution

71



7. Experiments and Result Analysis

over all solutions for the movie instance we got two solutions for objective mnrw from
the Max-SAT solvers Loandra and Maxino which have exactly the same values for all
four metrics. Because the solver Loandra needed slightly longer to produce the solution
we name it as the worst solution with three highest metric values. Figure 7.25 shows the
associated image of the worst solution.

Answer to E5: It is clear to see that the objective for minimizing the total wiggle height
mtwh produced better solutions than the objective for minimizing the number of wiggles
mnrw. Objective mtwh delivered three out of four best metric values. Only for metric wc
objective mnrw produced a better result.

Answer to E9: With the exception of the experiment of Max-SAT solver LMHS with
objective mtwh where we didn’t get a solution within ten hours, all other experiments
delivered the same minimal value for the metric currently directly incorporated into the
objective formulation. For the solutions of objective mtwh the corresponding minimized
metric twh has value 19 and for the solutions of objective mnrw the corresponding
minimized metric wc has value 8. For the metrics, which were not incorporated directly
in the current objective formulation, we got more variations for the resulting metric
values. None of the four solvers can be named as the best choice for the Star Wars
snippet instance, only the Max-SAT solver LMHS is clearly the worst solver for the
current movie instance.

wiggle obj time twh hw wc cc
max-sat solver LMHS
mtwh N/A N/A N/A N/A N/A
mnrw 15m 1s 196ms 33 10 8 17
max-sat solver Loandra
mtwh 24m 12s 276ms 19 6 10 5
mnrw 9s 418ms 41 12 8 22
max-sat solver MaxHS
mtwh 1h 41m 35s 375ms 19 6 12 3
mnrw 2m 12s 595ms 33 10 8 17
max-sat solver Maxino
mtwh 1h 29m 24s 676ms 19 6 11 4
mnrw 9s 309ms 41 12 8 22

Table 7.13: Solutions of Star Wars snippet movie instance from experiments based on
the Max-SAT formulation. Smallest metric values are displayed in bold. N/A indicates
that no solution was found after ten hours.

72



7.3. Experiments with Max-SAT Formulation

Figure 7.24: Best solution of Star Wars
snippet for Max-SAT with objective mtwh
from Max-SAT solver MaxHS (twh:19,
hw:6, wc:12, cc:3)

Figure 7.25: Worst solution of Star Wars
snippet for Max-SAT with objective mnrw
from Max-SAT solver Loandra (twh:41,
hw:12, wc:8, cc:22)

7.3.3 Evaluation over all movie instances

Answer to E8: For both movie instances the resulting solutions for objective mtwh are
superior to the solutions for objective mnrw regarding the optimization metrics.

7.3.4 Overall comparison of ILP and Max-SAT experiments

Finally for this chapter it remains to answer Evaluation Question E10:

The best wiggle objective for both solution models was mtwh for minimizing the total
wiggle height which produced the smallest metric values irrespective of the solution
model. By comparing the best solutions for the individual movie instances between the
ILP formulation and the Max-SAT formulation, none of the two formulations produced
storyline visualizations where the best results from both solution models have a distinct
difference regarding the quality. Therefore both optimization approaches can produce
solutions of similar quality.

By comparing the worst solutions from both formulations the difference in the solution
qualities is more apparent. This difference is even then visible if we only consider solutions
from the ILP experiments connected to the single objectives mtwh and mnrw without
initial variable assignment. This can be explained by the fact that all solutions we got
from our Max-SAT experiments finished the computation with an optimal value of the
metric incorporated into the current objective. For none of the ILP experiments we have
the certainty that we computed the optimal solution for a specific objective function.
Therefore it is understandable that ILP produces more solutions, which are inferior to
the solutions for the Max-SAT experiments.

Each of the formulations has an advantage over the other solution model. All solutions
produced by Max-SAT solvers have a much lower runtime than the solutions from the
ILP experiments. The ILP model on the other hand enables to formulate multi-objectives
and initial variable assignments for big movie instances.

73





CHAPTER 8
Conclusion

Both solutions models for ILP and Max-SAT from Chapter 5 are suited for minimizing
wiggles in storyline visualizations.

Our wiggle objective variations for minimizing the total wiggle height (mtwh), minimizing
the number of wiggles (mnrw) and minimizing the maximum wiggle height (mmwh)
can all be used for producing good quality solutions of storyline visualizations. But the
quality of a found solution depends on more factors than just the choice of the wiggle
minimization objective. The currently used movie instance and a potential combination
with crossing minimization can also be significant for the quality of a solution.

Though, without considerations of instance properties or potential multi-objective combi-
nations, we can name the wiggle minimization objective mtwh for minimizing the total
wiggle height as the best choice for wiggle minimization in storyline visualizations. This
wiggle minimization objective produced good quality storyline visualizations for all of
our four movie instances and both solution models.

The comparison of the solutions for the wiggle objective for minimizing the maximum
wiggle height (mmwh), with initial variable assignment and without initial variable
assignment, has shown that it is more efficient to reduce the maximum height of wiggles
by reducing the number of slots of the visualization matrix instead of formulating an
objective for minimizing the maximum wiggle height. If only the minimal number of
necessary slots is used then it is no longer possible for characters to make high jumps.
Our experiments with initial variable assignments required much more slots, because our
initial solutions contained high wiggles, which was a disadvantage for maximum wiggle
height minimization just because we had the possibility for high wiggles. By reducing
the slots at the beginning we erase the possibility for high wiggles.

A big disadvantage of wiggle minimization is the necessary knowledge about the absolute
positions of all characters and meetings within the visualization matrix. For wiggle
minimization we need the absolute position of the characters for determining the exact

75



8. Conclusion

height of wiggles so that we are able to minimize the total wiggle height or minimize the
maximum wiggle height. If we would only consider relative positions of characters and
meetings we would require much less variables and constraints as with absolute positions,
but we would also only be able to calculate the number of all wiggles. The knowledge
about the exact heights of the wiggles would be lost.

Comparisons of absolute positions of characters and meetings at every time points
entail also disadvantages for movie instances with a higher number of parallel meetings.
Especially in our Max-SAT formulation we have much more variables and clauses if a
movie instance has more characters and parallel meetings and requires therefore more
height in the visualization matrix. This gets evident by comparing the concrete Max-SAT
instances in Table 7.3 for our two snippets of the movies Inception and Star Wars from
Table 7.2. The Max-SAT instance of the Star Wars snippet has much more variables
and constraints, because it has more parallel meetings and more meeting with a higher
number of members than the Inception snippet instance, even though the Star Wars
snippet has less time point than the Inception snippet.

During the analysis of our experiments based on our two solution models we also observed
that the number of crossings get reduced along with the wiggles during the minimization of
wiggles in storyline visualizations. More direct crossing minimizations could be achieved
with a multi-objective of a combined wiggle and crossing minimization. With such
a multi-objective we obtained solutions with even less crossings than the solutions of
single-objectives for wiggle minimization only. Nonetheless did the single-objectives for
wiggle minimization calculate more solutions which were superior to the solutions from
multi-objectives.

For small movie instances the Max-SAT formulation did produce the solutions much faster
than the ILP formulation. But for big movie instances the required number of variables
and constraints would get too high for the Max-SAT formulation. The ILP formulation
with the possibilities of initializing all variables and constraints at the beginning of the
computation makes it easier to generate solutions for big movie instances.

Although we weren’t able to calculate the optimal solutions in the ILP experiments within
ten hours for none of our movie instances, we still generated good quality solutions for
large movie instances by applying initial solutions at the beginning of the computations.
With our Max-SAT formulation we could only use small snippets of our movie instances
for which we got optimal solutions for almost all used Max-SAT solvers.

For future work about optimizing storyline visualizations further development for wiggle
minimization with focus on more efficiency regarding big movie instances can be done.
Optimization approaches for minimizing wiggles based on algorithms are still missing as
well. Also the question if the wiggle minimization problem is NP-hard has not yet been
answered in the current literature. Furthermore the realization of a user study is still open
which incorporates storyline visualizations produced by different optimization methods
and different objective functions. Such a user study should enable the comparison and
evaluation of the legibility of different storyline visualization solutions.

76



List of Figures

1.1 Movie narrative chart of Star Wars (xkcd 657) . . . . . . . . . . . . . . . . 1

2.1 Example of a storyline visualization . . . . . . . . . . . . . . . . . . . . . 5

5.1 Different views of one storyline visualization . . . . . . . . . . . . . . . . . 20
5.2 Matrix representation of the positions of character 4 . . . . . . . . . . . . . 21
5.3 Variables for describing wiggles . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Example meeting e within a storyline visualization and concrete variables to

describe the meeting and the meeting position . . . . . . . . . . . . . . . 24

7.1 Inception snippet solution for objective mtwh with best results of metrics twh
and wc (twh:39, hw:6, wc:26, cc:10) . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Inception snippet solution for objective mmwh sw with best results of metrics
hw and cc (twh:72, hw:2, wc:52, cc:5) . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Inception snippet solution for objective mtwh hcw with best result of metric
cc (twh:42, hw:5, wc:28, cc:5) . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Inception snippet solution for objective mnrw with worst results of metrics
twh, hw and cc (twh:733, hw:27, wc:47, cc:51) . . . . . . . . . . . . . . . . . 51

7.5 Inception snippet solution for objective mmwh with worst result of metric wc
(twh:225, hw:6, wc:65, cc:36) . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.6 Inception solution for objective mtwh with best result of metrics twh, wc and
cc (twh:249, hw:15, wc:95, cc:92) . . . . . . . . . . . . . . . . . . . . . . . 55

7.7 Inception solution for objective mmwh hww with best result of metric hw
(twh:463, hw:7, wc:208, cc:101) . . . . . . . . . . . . . . . . . . . . . . . . 55

7.8 Inception result for objective mmwh with worst result of metric cc (twh:675,
hw:7, wc:231, cc:247) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.9 Inception solution for objective mmwh hcw with worst results of metrics twh
and wc (twh:2831, hw:34, wc:265, cc:106) . . . . . . . . . . . . . . . . . . 56

7.10 Inception solution for objective mnrw with worst result of metric hw (twh:1639,
hw:47, wc:115, cc:243) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.11 Star Wars snippet solution for objective mtwh with best result of metrics twh
and wc (twh:19, hw:6, wc:10, cc:5) . . . . . . . . . . . . . . . . . . . . . . 59

7.12 Star Wars snippet solution for objective mmwh sw with best result of metric
hw (twh:31, hw:3, wc:20, cc:4) . . . . . . . . . . . . . . . . . . . . . . . . . 59

77



7.13 Star Wars snippet solution for objective mtwh hcw with best result of metric
cc (twh:21, hw:5, wc:12, cc:3) . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.14 Star Wars snippet solution for objective mnrw with worst result of metrics
twh and hw (twh:141, hw:25, wc:10, cc:34) . . . . . . . . . . . . . . . . . . 59

7.15 Star Wars snippet solution for objective mmwh with worst result of metric wc
(twh:63, hw:3, wc:30, cc:13) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.16 Star Wars snippet solution for objective mnrw with worst result of metric cc
(twh:79, hw:13, wc:11, cc:37) . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.17 Star Wars solution for objective mtwh hcw with best result of metrics twh, hw
and cc (twh:271, hw:9, wc:142, cc:76) . . . . . . . . . . . . . . . . . . . . . 63

7.18 Star Wars solution for objective mnrw with best result of metric wc and worst
result of metrics hw and cc (twh:1324, hw:54, wc:93, cc:259) . . . . . . . . 64

7.19 Star Wars solution for objective mmwh with worst result of metric twh
(twh:2402, hw:44, wc:214, cc:217) . . . . . . . . . . . . . . . . . . . . . . . 65

7.20 Star Wars solution for objective mmwh sw with worst result of metric wc
(twh:2376, hw:27, wc:231, cc:184) . . . . . . . . . . . . . . . . . . . . . . . 66

7.21 Star Wars solution for objective mtwh (twh:445, hw:20, wc:100, cc:167) . . 67
7.22 Best solution of Inception snippet for Max-SAT with objective mtwh from

Max-SAT solver Loandra (twh:39, hw:3, wc:27, cc:8) . . . . . . . . . . . . 70
7.23 Worst solution of Inception snippet for Max-SAT with objective mnrw from

Max-SAT solver Maxino (twh:60, hw:6, wc:23, cc:24) . . . . . . . . . . . . 70
7.24 Best solution of Star Wars snippet for Max-SAT with objective mtwh from

Max-SAT solver MaxHS (twh:19, hw:6, wc:12, cc:3) . . . . . . . . . . . . 73
7.25 Worst solution of Star Wars snippet for Max-SAT with objective mnrw from

Max-SAT solver Loandra (twh:41, hw:12, wc:8, cc:22) . . . . . . . . . . . 73

78



List of Tables

7.1 Overview of all objective functions supported by the ILP model. Objective
formulations supported by the Max-SAT formulation are marked by *. . . 44

7.2 Key data of used movie instances . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Key data of concrete Max-SAT instances . . . . . . . . . . . . . . . . . . 48
7.4 Concrete Gurobi ILP model instance of Inception snippet instance . . . . 48
7.5 Concrete Gurobi ILP model instance complete Inception instance . . . . . 49
7.6 Concrete Gurobi ILP model instance of Star Wars snippet instance . . . . 49
7.7 Concrete Gurobi ILP model instance of complete Star Wars instance . . . 50
7.8 Solutions of Inception snippet instance from experiments based on the ILP

model. Smallest metric values are displayed in bold. N/A indicates that no
solution was found after the associated computation time. . . . . . . . . . 53

7.9 Solutions of Inception instance from experiments based on the ILP model.
Smallest metric values are displayed in bold. N/A indicates that no solution
was found after the specific computation time. . . . . . . . . . . . . . . . 57

7.10 Solutions of Star Wars snippet instance from experiments based on the ILP
model. Smallest metric values are displayed in bold. . . . . . . . . . . . . 60

7.11 Solutions of Star Wars instance from experiments based on the ILP model.
Smallest metric values are displayed in bold. N/A indicates that no solution
was found after the specific computation time. . . . . . . . . . . . . . . . 68

7.12 Solutions of Inception snippet movie instance from experiments based on the
Max-SAT formulation. Smallest metric values are displayed in bold. . . . . 71

7.13 Solutions of Star Wars snippet movie instance from experiments based on the
Max-SAT formulation. Smallest metric values are displayed in bold. N/A
indicates that no solution was found after ten hours. . . . . . . . . . . . . 72

79





Bibliography

[1] MaxSAT Evaluation 2017. Input format (accessed 2018-09-04). http://mse17.
cs.helsinki.fi/rules.html#input.

[2] MaxSAT Evaluation 2017. Participating solvers (accessed 2018-09-04). http:
//mse17.cs.helsinki.fi/descriptions.html.

[3] Ignasi Abío and Peter J Stuckey. Encoding Linear Constraints into SAT. In
International Conference on Principles and Practice of Constraint Programming,
volume 8656 of LNCS, pages 75–91. Springer, 2014.

[4] Algorithms and Complexity Group TU Wien. Grid Engine (accessed 2018-09-04).
https://www.ac.tuwien.ac.at/students/grid-engine/.

[5] Mario Alviano. Maxino. MaxSAT Evaluation 2017: Solver and Benchmark Descrip-
tions, page 10.

[6] Carlos Ansótegui and Felip Manyà. Mapping Problems with Finite-Domain Variables
to Problems with Boolean Variables. In International conference on theory and
applications of satisfiability testing, volume 3542 of LNCS, pages 1–15. Springer,
2004.

[7] Josep Argelich and Felip Manyà. Exact Max-SAT solvers for over-constrained
problems. Journal of Heuristics, 12(4-5):375–392, 2006.

[8] Fahiem Bacchus. MaxHS v3. 0 in the 2017 MaxSat Evaluation. MaxSAT Evaluation
2017: Solver and Benchmark Descriptions, page 8.

[9] Sergey Bereg, Alexander E Holroyd, Lev Nachmanson, and Sergey Pupyrev. Drawing
Permutations with Few Corners. In International Symposium on Graph Drawing,
volume 8242 of LNCS, pages 484–495. Springer, 2013.

[10] Sergey Bereg, Alexander E Holroyd, Lev Nachmanson, and Sergey Pupyrev. Rep-
resenting Permutations with Few Moves. SIAM Journal on Discrete Mathematics,
30(4):1950–1977, 2016.

81

http://mse17.cs.helsinki.fi/rules.html#input
http://mse17.cs.helsinki.fi/rules.html#input
http://mse17.cs.helsinki.fi/descriptions.html
http://mse17.cs.helsinki.fi/descriptions.html
https://www.ac.tuwien.ac.at/students/grid-engine/


[11] Jeremias Berg, Tuukka Korhonen, and Matti Järvisalo. Loandra: PMRES Extended
with Preprocessing Entering MaxSAT Evaluation 2017. MaxSAT Evaluation 2017:
Solver and Benchmark Descriptions, page 13.

[12] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization,
volume 6. Athena Scientific Belmont, MA, 1997.

[13] Tao Chen, Aidong Lu, and Shi-Min Hu. Visual storylines: Semantic visualization of
movie sequence. Computers & Graphics, 36(4):241–249, 2012.

[14] Tuan Nhon Dang, Nick Pendar, and Angus Graeme Forbes. TimeArcs: Visualizing
Fluctuations in Dynamic Networks. In Computer Graphics Forum, volume 35, pages
61–69. Wiley Online Library, 2016.

[15] Jessica Davies and Fahiem Bacchus. MaxHS: A fast and robust MaxSAT solver
(accessed 2018-09-04). http://www.maxhs.org.

[16] Ian P Gent and Peter Nightingale. A New Encoding of AllDifferent into SAT. In
International Workshop on Modelling and Reformulating Constraint Satisfaction,
pages 95–110, 2004.

[17] Martin Gronemann, Michael Jünger, Frauke Liers, and Francesco Mambelli. Crossing
Minimization in Storyline Visualization. In Yifan Hu and Martin Nöllenburg, editors,
Graph Drawing and Network Visualization (GD 2016), volume 9801 of LNCS, pages
367–381. Springer, 2016.

[18] Pierre Hansen and Brigitte Jaumard. Algorithms for the maximum satisfiability
problem. Computing, 44(4):279–303, 1990.

[19] Yuejun Jiang, Henry Kautz, and Bart Selman. Solving Problems with Hard and
Soft Constraints Using a Stochastic Algorithm for MAX-SAT. In 1st International
Joint Workshop on Artificial Intelligence and Operations Research, page 20, 1995.

[20] Nam Wook Kim, Stuart K Card, and Jeffrey Heer. Tracing genealogical data with
TimeNets. In Proceedings of the International Conference on Advanced Visual
Interfaces, pages 241–248. ACM, 2010.

[21] Irina Kostitsyna, Martin Nöllenburg, Valentin Polishchuk, André Schulz, and Darren
Strash. On Minimizing Crossings in Storyline Visualizations. In International
Symposium on Graph Drawing and Network Visualization, volume 9411 of LNCS,
pages 192–198. Springer, 2015.

[22] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2016.

[23] Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. StoryFlow:
Tracking the Evolution of Stories. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2436–2445, 2013.

82

http://www.maxhs.org


[24] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimization, 26(6):369–
395, 2004.

[25] Chris W Muelder, Tarik Crnovrsanin, Arnaud Sallaberry, and Kwan-Liu Ma. Ego-
centric storylines for visual analysis of large dynamic graphs. In Big Data, 2013
IEEE International Conference on, pages 56–62. IEEE, 2013.

[26] R Munroe. Xkcd# 657: Movie narrative charts (accessed 2018-09-04). https:
//xkcd.com/657/, 2009.

[27] George L Nemhauser and Laurence A Wolsey. Integer and Combinatorial Optimiza-
tion. Wiley, 2014.

[28] Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Proceedings of
the 5th international symposium on Software visualization, pages 35–42. ACM, 2010.

[29] Gurobi Optimization. Gurobi Optimizer version 7.0 (accessed 2018-09-04). http:
//www.gurobi.com.

[30] Catherine Plaisant, Brett Milash, Anne Rose, Seth Widoff, and Ben Shneiderman.
Lifelines: Visualizing Personal Histories. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 221–227. ACM, 1996.

[31] Catherine Plaisant, Richard Mushlin, Aaron Snyder, Jia Li, Dan Heller, and Ben
Shneiderman. Lifelines: Using Visualization to Enhance Navigation and Analysis of
Patient Records. In The Craft of Information Visualization, pages 308–312. Elsevier,
2003.

[32] Paul Saikko, Jeremias Berg, and Matti Järvisalo. Lmhs: A SAT-IP Hybrid MaxSAT
Solver. In International Conference on Theory and Applications of Satisfiability
Testing, volume 9710 of LNCS, pages 539–546. Springer, 2016.

[33] Paul Saikko, Tuukka Korhonen, Jeremias Berg, and Matti Järvisalo. LMHS in
MaxSAT Evaluation 2017. MaxSAT Evaluation 2017: Solver and Benchmark
Descriptions, page 16.

[34] Yuzuru Tanahashi, Chien-Hsin Hsueh, and Kwan-Liu Ma. An Efficient Framework
for Generating Storyline Visualizations from Streaming Data. IEEE transactions on
visualization and computer graphics, 21(6):730–742, 2015.

[35] Yuzuru Tanahashi and Kwan-Liu Ma. Design Considerations for Optimizing
Storyline Visualizations: Data and Resources (accessed 2018-09-04). https:
//old.datahub.io/dataset/vis-storyline-visualizations.

[36] Yuzuru Tanahashi and Kwan-Liu Ma. Design Considerations for Optimizing Story-
line Visualizations. IEEE Transactions on Visualization and Computer Graphics,
18(12):2679–2688, 2012.

83

https://xkcd.com/657/
https://xkcd.com/657/
http://www.gurobi.com
http://www.gurobi.com
https://old.datahub.io/dataset/vis-storyline-visualizations
https://old.datahub.io/dataset/vis-storyline-visualizations


[37] Thomas C van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Markfelder,
Alexander Ravsky, Subhash Suri, and Alexander Wolff. Block Crossings in Story-
line Visualizations. In International Symposium on Graph Drawing and Network
Visualization (GD 2016), volume 9801 of LNCS, pages 382–398. Springer, 2016.

[38] Thomas C van Dijk, Fabian Lipp, Peter Markfelder, and Alexander Wolff. Computing
Storyline Visualizations with Few Block Crossings. In International Symposium on
Graph Drawing and Network Visualization (GD 2017), volume 10692 of LNCS, pages
365–378. Springer, 2017.

[39] Toby Walsh. SAT v CSP. In International Conference on Principles and Practice
of Constraint Programming, volume 1894 of LNCS, pages 441–456. Springer, 2000.

[40] Colin Ware. Information visualization: perception for design. Elsevier, 2012.

[41] Laurence A Wolsey. Integer Programming. Wiley, 1998.

84


	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Definition
	Definition of Storyline Visualizations
	Definition of Wiggles
	Optimization metrics
	Expected Results
	Contribution

	Literature Review
	Preliminaries
	Integer Linear Programming (ILP)
	Maximum Satisfiability Problem (Max-SAT)

	Solution Models
	General
	ILP Formulation
	Max-SAT Formulation

	Implementation
	Experiments and Result Analysis
	Setup
	Experiments with ILP Formulation
	Experiments with Max-SAT Formulation

	Conclusion
	List of Figures
	List of Tables
	Bibliography

