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Kurzfassung

Um eine Skalierbarkeit von modelierten neuronalen Schaltkreisen mit detalierten physika-
lischen Eigenschaften zu ermöglichen, werden neuartige Optimierungswerkzeuge benötigt.
In dieser Arbeit, entwickeln wir eine Hybrid Methode um die Parameter von neuronalen
Modellen für gegebene Objekte in einer überwachten Lernumgebung anzupassen. Die
entwickelte Methode basiert auf Algorithmen der zufällig initialisierten stochastischen
Gradientenverfahren.

Wir präsentieren ODYNN, ein Optimierungssystem für neuronale Netze. ODYNN wurde
entwickelt für die Simulation und Optimierung biologischer neuronaler Schaltkreismodelle.
Diese Modelle beschreiben weitläufiges verhalten neuronaler Prozesse und werden zum
Testen neurowissenschaftlicher Theorien verwendet. Durch verschiedene Funktionen,
wird es ermöglicht beliebig strukturierte neuronale Schaltkreise zu entwerfen und zu
optimieren um spezifisches verhalten zu bestimmen. Diese Funktionen beinalten unter
anderem der Möglichkeit Experimente mit verschiedenen realistischen Modellen, als
auch künstlich wiederkehrenden neuronalen Netzwerken (insbesondere Long Short Term
Memory) durchzuführen. Des Weiteren ist es möglich Kalziumwerte einfließen zu lassen.

Für eine gegebene neuronale Struktur und einem gegebenem neuronalen bzw. synaptischen
Model adaptiert ODYNN zuerst einen Random-Search Algorithmus und anschließend
einen Adaptive-Momentum Lernalgorithmus, der auf dem Gradientenverfahren basiert
um die Kalziumwerte der gewünschten eingegebenen/ausgegebenen Prozesse.

Des Weiteren führen wir Optimisierungen einzelner Neuronen durch für biophysikalisch
realistische, komplexe Neuronmodelle durch. Diese werden durch Partielle Differenti-
algleicheungen realisiert und untersuchen den Parameterraum um auf die neuronalen
Prozesse auf zelulärer Ebene zu folgern. Darüber hinaus optimieren wir die synaptischen
und neuronalen Parameter in kleinen neuronalen Schaltkreisen mithilfe des hybriden
optimierungs Ansatzes und können so die Leistung der Lernmodell zur Formulierung
beliebiger Prozesse einschätzen. Außerdem veranschaulichen wir, dass es mit ODYNN
möglich ist, effizient, innerhalb einer angemessenen Optimisierungsdauer für größerer neu-
ronaler Schaltkreis Parameterräume zu skalieren. Wir optimierern neuronale Schaltkreise,
wie den “Tap-Withdrawl”, ein neuronales System basierend auf dem Nervensystem eines
Erdwurms C.elegans, welches reflexartige Reaktionen als Antwort auf mechanische Sti-
mulationen induziert. Als auch den zur Fortbewegung des C. elegans Nematode, welcher

ix



verantwortlich ist um die Wanderwellen der Muskeln zu generieren, mit denen der Wurm
sich fortbewegt.



Abstract

Modeling neural circuits with detailed biophysical properties requires novel optimization
toolkits to enable scalability. In this study, we develop a hybrid method based on
random-initialization of stochastic gradient descent algorithm to tune the parameters of
neural circuit models, for a given objective in a supervised learning setting.

We present ODYNN, an optimization suite for dynamic neural networks. ODYNN is
designed for simulating and optimizing biological neural circuits to model multi-scale
behaviors exhibited by the neural dynamics, and to test neuroscience related hypotheses.
It is enhanced with features such as performing experiments with different biophysically
realistic neuronal models as well as artificial recurrent neural networks (in particular
Long Short Term Memory), incorporating calcium imaging data, to design arbitrarily
structured neural circuits and optimizing them to govern specific behaviors.

For a given neural circuit structure, a given neuronal and synaptic model, ODYNN adopts
a random search optimization step followed by an adaptive-momentum gradient-based
learning algorithm to learn the calcium imaging data of desired input/output dynamics.

We perform single neuron optimizations for biophysically realistic complex neuron models
which are realized by partial differential equations, and explore in their parameter space
to reason about neuronal dynamics at cell level resolution. We then perform synaptic
and neural parameter optimization in small neuronal circuits, by the hybrid optimization
approach and assess the performance by learning models to express arbitrarily chosen
dynamics. Furthermore, we demonstrate that ODYNN is able to scale up to the tuning
of larger neural circuits’ parameter spaces, efficiently, in a reasonable optimization
duration. We optimize neural circuits such as the tap-withdrawal, a neural system from
the nervous system of the soil worm, C. elegans, that induces reflexive response as a
result of mechanical input stimulations; and also the forward locomotion circuit of the
C. elegans nematode which is responsible for generating traveling waves into the muscle
cells to generate the worm’s forward crawling.
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CHAPTER 1
Introduction

One of the objectives of Neuroscience is to study and understand the emergent properties
of neurons and neural circuits. For this purpose, Caenorhabditis elegans (C. elegans), a
tiny worm of about 1 mm long, is of great interest. Indeed, due to its relatively simple
cell structure, it has been the first multicellular organism with a completely sequenced
genome, and is still the only one with a fully mapped connectome (neural connections)
[62]. C. elegans is most likely the world’s best-understood animal [8]. Its nervous
system consists of 302 neural cells and about 8000 synapses [61]. It expresses ability for
governing complex behaviors [63, 13, 54, 35], which makes it an attractive model organism
to investigate how behavior emerges from a small brain. The worm’s nervous system
has been analysed through multi-scale behavioral and computational experimentations
[29, 50], and attempts on modeling its emergent behavior have been conducted through
the openworm project [59]. Studies suggest that there exists an important need for a
neuron modeling toolkit which includes electro-physiological properties of the neural
circuits [50, 37].

Computational models of nervous systems based on neuronal models, such as Hodgkin-
Huxley [27], enable to perform neuronal behavior simulations while reasonably approxi-
mating biophysical dynamics of cells and circuits. A key challenge in such systems is
handling large scale model parameters when simulating larger circuits. The reason for this
challenge is the lack of experimental data [22, 40] to reduce the parameter space. Indeed,
despite the transparency of C. elegans, measuring biophysical properties experimentally
is not a trivial task [14].

It is therefore of most importance for such simulation infrastructure to be supplied
by an optimization suite to handle the large scale parameter spaces of the detailed
nervous system models. Such optimizations have been performed on single neurons using
evolutionary strategies [14, 60] or hybrid policies [11]. However, they are often specialized
in spiking neurons, while the majority of C. elegans neurons are shown to be non-spiking
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1. Introduction

[29]. Furthermore, they are not well-suited for high dimensional parameter spaces, i.e.
neural circuit optimization.

In the present study we propose the use of stochastic gradient descent algorithms [31] on
neuron and circuit optimization tasks. We develop a python API, which we call ODYNN,
implemented with state-of-the-art deep learning toolkits such as Tensorflow [4].

Currently, there exist relevant neuronal circuit simulators for the nervous system modeling.
These softwares include NEURON [25], GENESIS [28] and Brian [21]. They supply
various models and permit efficient simulation of complex neuronal circuits. ODYNN
API, in addition to providing the ability to simulate circuits with various neuronal models,
offers - similarly to BRIAN - a simple way to use user-defined models, and enables the
use of gradient based optimization by defining differentiable cost functions to address
the scaling issue of neuronal circuit optimization. We evaluate ODYNN’s simulation and
optimization performance by fitting neurons with calcium imaging data, and study the
abilities to recover biophysical parameters with noised simulated data among different
models. We also explore the feasibility of tuning neural circuits of various sizes. In
particular, we obtain promising results when optimizing the Forward Locomotion circuit
of C. Elegans.

On a higher level of abstraction, we train artificial recurrent neural networks, Long Short
Term Memory (LSTM) [26] to reproduce biological traces, and analyze their integration
in neural circuits.

Such optimization toolkit enables exploration of the neuronal dynamics within neural
circuits. Once one can design better neuronal models, biological experiments can be
performed in silico, thus dramatically reducing the costs and time of these processes.

The work is structured as follows: In chapter 2 we give an overview of previous works on
optimizing biophysical neural models. In chapter 3, we describe those models and present
the ones we utilize. We then discuss our solutions for simulation and optimization, and
present the ODYNN API. We represent the result of our experimentations in chapter 4
and, finally, we conclude our work in chapter 5.
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CHAPTER 2
State of the Art

Optimizing Biological Neural Networks (BNN) is a challenging task due to the high
degrees of nonlinearity and the large parameter spaces. Several approaches have been
experimented for this purpose, namely, hand tuning, parameter space exploration, evolu-
tionary strategies, bifurcation analysis and gradient-based techniques.

We introduce in this chapter precedent works and their strategies in a concise way.

When studying simple models or well known neurons, i.e. when the number of unknown
parameters is in a reasonable range, one can adopt hand-tuning [56, 43] based on
analytical solutions and biological insights. The advantage of this approach is that, unlike
algorithms, one quickly gets insights about the dynamics of the system given a parameter
set. This method is also reasonable when the objective is to explore the evolution of
behavior depending on the parameter values [44]. It is also straight forward to implement,
since no code needs to be written and brings fast feed back. However, as the number of
free variables grows, hand-tuning quickly becomes unfeasible.

Parameter space exploration uses computational power to automatically evaluate different
sets of parameters. It can be effected using a regular grid or random selection. This
can be useful for understanding the role of some particular variables [16], discovering
potential behaviors of a model, or classifying regions with respect to their outputted
behaviors [11, 47]. With this technique, one can characterize the space and gain more
insights on the expressive power of neural models [46, 20]. The main shortcoming is an
intensive computational cost, which exponentially increases with the amount of trainable
parameters.Moreover, for a neural circuit model as a dynamic system, one has to take
care of unstable regions which can easily get picked up by the search algorithm. On the
opposite, regions of interest might be missed.

More recently , evolutionary strategies such as genetic algorithms have been deployed
in the neuronal circuit optimization [60, 30, 6, 14]. Those methods are computationally
efficient and perform often very well at finding global optima. Nevertheless, they
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2. State of the Art

require choosing numerous algorithm parameters whose impact on the result can be
significant. Furthermore, they require one evaluation per individual, which can become
computationally very expensive if not parallelized.

Bifurcation analysis uses the mathematical theories on nonlinear dynamical systems
to map global neural dynamics to the parameter space. This permits the localization
of subspaces producing a desired dynamic [23]. It can also provide a definition of the
parameter space by identifying the transition regions between two types of activities [9].
Again, this approach becomes very costly with a high dimensional space, but mostly does
not take any time information into account.

Gradient-based optimization techniques (such as the back-propagation algorithm [52])
has recently showed tremendous success in finding local optimal solutions for artificial
feed-forward and recurrent neural networks [41, 55, 58]. For more biophysical-based
neural networks however, they have not been used in large scale yet. This is due to the
complexity of the biophysical models and their intrinsic and external feedback mechanisms,
which makes the gradient propagation paths non-homogeneous and therefore difficult to
train. Moreover, biophysical neuronal models are a subset of recurrent neural networks
which have shown to face difficulties during training due to the vanishing and exploding
gradient effects [10, 45].

Bhalla and Bower used gradient descent as a second step of a hybrid strategy to identify
good parameter sets for multi-compartment models of mitral and granule cells of the
olfactory bulb[11]. In order to calculate a gradient, they randomly sampled points for
several parameters. As a matter of fact, a disadvantage of this approach is the need to
determine the direction in parameter space in which the cost function decreases. Moreover,
there is high risk of getting stuck into local optima, especially when the objective function
is steep, which might be the case for such dynamic systems as BNNs. However, their key
advantage is their computational speed.

In this study, we show that with a careful initialization of a complex neuronal model
and a good design for the learning setting, one can tackle the gradient issues of a back-
propagation methodology for neuronal circuits and easily scale it to relatively large
neuronal circuits’ optimization.

We adopt Adam [31] (for adaptive moment estimation), a recent stochastic gradient
descent algorithm, for the first time for the optimization of complex neuronal circuits.
We equip our gradient-based optimization technique with a random search to get into
better parameter space regions. Random search strategies themselves have recently
shown competitive performance to their gradient-based counterpart [64, 53, 38]. We take
advantage of their performance as an initial step before performing gradient decent to
further improve the quality of the learned biophysical neural networks.

4



CHAPTER 3
Methods

In this chapter we introduce our step-by-step methodology to design our neuronal circuit
optimization suite. In Section section 3.1, we motivate the design and optimization of
neural circuits. In section 3.2, we introduced the existing neural and synaptic models,
and present the ones we selected for experiments shown in chapter 4. We then discuss
the need and challenges of optimization (section 3.3) and simulation (section 3.4) of such
circuits, together with our choices in these concerns. We finally describe ODYNN API in
section 3.5.

3.1 Neural circuit simulation and optimization
One of the key question of neuroscience is how complex behaviors emerge from neural
systems. For instance, C. elegans, with only 302 neurons, is capable of expressing
behaviors such as crawling, mating or food seeking [63, 13, 54, 35]. The worm’s nervous
system has been analysed through multi-scale behavioral analyses [29]; [50], and attempts
on modeling its emergent behavior have been conducted in the OpenWorm project [59].
For the latter, there is an important need for a neuron modeling toolkit to include
electro-physiological properties of the neural circuits [50, 37]. As explained in Section 3.2,
the biophysical neural models possess a great amount of free parameters, creating a need
for a suitable optimization suite to handle large parameter space. We aim at developing
such a toolkit to enable models to reproduce behaviors being observed in living animals,
and to test neuroscientific hypotheses.

The ultimate goal of the work we commence is graphically shown on figure 3.1. We
aim at providing a tool capable of reproducing a given neural circuit behavior, at the
condition of providing enough measurements from experiments. This tool should be able
to provide neuronal and synaptic models, and their optimizations.
Achieving this goal would allow neuroscientists to perform experiments in silico, thus
drastically reducing the cost and time required compared to in vitro experiments. This
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3. Methods

Sensory inputs

Muscles outputs

Neural circuit model

Figure 3.1: Overview of the work: Given a neural circuit which architecture is known,
model this circuit and, using recordings of sensory inputs, muscle and neuron activities,
search in the parameter space to reproduce the circuit’s observed behaviors.

would also lead to a greater understanding of neural circuits dynamics. Throughout this
chapter, we present our chosen methods to reach this objective.

3.2 Neuron and synapse models

We explain here how we model neuronal circuits. First, we present the most common
conductance-based models for biophysical neurons and the ones we select, and then
describe the synaptic transmission models.

Within a neural circuit, information underlies the state of the individual neurons, i.e. their
membrane potentials, ion concentrations and the state of their ion channels. A neuron is
delimited by its membrane. At each of its side are accumulated ions of different types and
electrical charges which create an electrical potential. Various ion channels are distributed
along the membrane and allow the ions to flow when they are open and activated. These
flows create electrical currents and modify the neural potential. Neurons interact with
each other via synapses generating currents which influence their potentials. Several math-
ematical models have been developed reproducing neural dynamics up to different degrees.
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3.2. Neuron and synapse models

3.2.1 Conductance based neuron models

This subsection describes well-known conductance-based models for neurons. We explain
their principles to familiarize the reader with biophysical models.

Integrate and Fire [5]

Cm

Iin

Inside Outside

V

(a) Electrical representation

(b) Typical voltage trace

Figure 3.2: Integrate and Fire model

Integrate and Fire is one of the simplest and earliest models, developed in 1907 [5]. It
can be visualized in figure 3.2a. The neuron membrane is represented as a capacitance
Cm, on which is applied an input current Iin, resulting in a change of the membrane
potential as follows [33]:

Cm
dV (t)
dt

= Iin(t) (3.1)

where Cm is the membrane capacitance, V the membrane potential and Iin(t) the input
current at time t.

This comes together with a certain threshold, Vthr, at which a delta function spike occurs,
the voltage is then reset to a certain resting value Vrest. An example is shown in figure
3.2b.
The model was developed after observing that a substantial number of neurons are spiking
(sudden peak of voltage following a strong enough stimulation). It takes advantage of
the fact that action potentials are very similar among different spiking neurons, and with
time within a particular one. Nevertheless, its main limitation is the lack of time memory,
since a potential reached below the threshold Vthr will remain even without any input
current (cf. figure 3.2b), which doesn’t happen in reality.

7



3. Methods

Cm

EL
gL

Iin

Inside Outside

V

IL

(a) Electrical representation

(b) Voltage trace with
threshold Vthr (Leaky
Integrate and Fire)

(c) Voltage trace with-
out threshold Vthr

(Leaky Integrate)

Figure 3.3: Leaky Integrate (and Fire) model

Leaky Integrate and Fire

As highlighted in figure 3.3a, Leaky Integrate and Fire adds a conductance gL in parallel
with the capacitor to overcome the time-memory problem. This conductance models
ion channels generating currents by letting ions flow through the neuron’s membrane. A
generator EL represents the reversal potential of the membrane, i.e. the resting potential.
We then obtain a classical RC circuit, leading to the following equation [33]:

Cm
dV (t)
dt

= Iin(t) + gL · (V (t)− EL) (3.2)

or equivalently,
τm
dV (t)
dt

= RLIin(t) + (V (t)− EL) (3.3)

τ being the time constant RL.Cm and RL the channel resistance.

Leaky Integrate

Leaky Integrate keeps the previous modeling of the neuron membrane. However, no
voltage threshold for firing is used. The effect of this threshold is exhibited in figures
3.3b and 3.3c. This permits modeling of non spiking neurons, such as the majority of
neuron classes found in C. elegans [29].
This model has shown good performances for imitating global real neuron behaviors.

Hodgkin Huxley [27]

As in the Leaky Integrate and Fire model, the membrane is represented by a capacitor, in
parallel with a conductance. Nevertheless, in addition to the passive leaky conductance
gL, several conductances are added in parallel, combined with their associated reversal
potentials. These new conductances model different types of ion channels, and typically
vary with time and voltage, thus leading to a greater complexity.
We show in figure 3.4a an example of a Hodgkin Huxley model which we will use later.
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3.2. Neuron and synapse models

Cm

GKsEKs

GKfEKf

GCa

EL
gL

ECa

Iin

Inside Outside

V

IKs

IKf

ICa

IL

(a) Electrical representation

(b) Possible voltage traces

Figure 3.4: Integrate and Fire model

Three additional channels are used : GCa, GKs and GKf . Unlike gL, those conductances
are not static and vary with time and voltage, we explain how in the next subsection.
Like previously, we obtain :

Cm
dV

dt
= Iin(t) +

∑
c

Ic(t, V ) (3.4)

where Iin is the input current and the Ic’s are the currents at the different conductances.

The Hodgkin Huxley model is very powerful and allow a precise modeling including real
biophysical parameters. The dynamic conductances results in a wide range of possible
behaviors depending on the chosen values for the parameters, we display some of them
in figure 3.4b .

3.2.2 Neuronal models developed in our experimentations

To enable fitting of real neural data, we need a first realistic model. Also, to investigate
the influence of the model complexity on optimization, we develop two simpler models.
Finally, we create a neuron model based on LSTM networks. We describe here these
models.

9



3. Methods

C. elegans Hodgkin Huxley

Because we want to fit real biological data, we need a complex and accurate model of C.
elegans neuron. Models such as the Fitzhugh-Nagumo [15] or the Morris-Lecar model
[42] (not described here) would not be sufficient, since such phenomenological models do
not provide a sufficient level of detail for the inner neuron mechanisms.

Active currents are found in C. elegans neurons, hence justifying the use of a Hodgkin-
Huxley type model [22].

Due to the small size of the C. elegans neurons, a single compartmental model is sufficient,
in accordance with earlier modeling studies [22][63].

We select a rather simple Hodgkin Huxley model used by OpenWorm [59], which is an
open source project aiming at modeling C. elegans. The model is displayed in figure
3.4a. It is composed of a leak channel together with two sodium (fast and slow) and one
calcium channel :

1. Leak channel for potassium, with constant conductance :

IL(t) = gL · (V − EL) (3.5)

2. ’Slow’ potassium channel :

Iks(V, t) = n(t, V )gks · (V − EK) (3.6)

3. ’Fast’ potassium channel :

Ikf (V, t) = p(t, V )4q(t, V )gkf · (V − EK) (3.7)

4. Boyle calcium channel :

Ica(V, [Ca2+], t) = e(t, V )2f(t, V )h([Ca2+])gCa · (V − ECa) (3.8)

The parameters n, p, q, e, f are voltage and time dependent activation rates (h varies with
the calcium concentration), they represent the activation and opening of ion channels.
At the exception of h, they behave following equations (3.9) and (3.10).
At a given voltage, one can compute their steady state in the form :

x∞ = 1

1 + e
−V −Vmid

Vscale

(3.9)

where the parameters Vmid and Vscale are called respectively the midpoint and the scale.
The steady state is thus a sigmoid centered on Vmid, where Vscale controls the slope of the
curve. The midpoint is the voltage at which a subunit is half open. The scale controls
the sensitivity as shown in figure 3.5, a positive scale leads to a subunit opening as the
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3.2. Neuron and synapse models

(a) Negative values (b) Positive values

Figure 3.5: Influence of the scale on rate steady states. Examples with a midpoint of -30
mV and different values for the scale.

voltage increases, a negative one induces the opposite behavior. A high value for the
scale gives raise to a very progressive slope, while a small one results in a fast and steep
evolution around the midpoint.

The rates tend to their steady state following :

dx

dt
= x− x∞

τx
(3.10)

where τx is their time constant.

Thus, for each of those 5 rates, three parameters have to be defined.

The variable h follows a different law (Eq. (3.11) and (3.12)). It depends on the sole
calcium concentration :

q = 1

1 + e
− [Ca2+]−[Ca2+]mid

[Ca2+]scale

(3.11)

h = 1 + (q − 1)α (3.12)

Here we have again three parameters : [Ca2+]mid, [Ca2+]scale and α

In order to fit calcium imaging data, the calcium concentration is modeled by a simple
pump system :

d[Ca2+]
dt

= ICa ∗ ρCa −
[Ca2+]
τCa

(3.13)
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3. Methods

with parameters ρCa and τCa.

In total, with the 3 parameters of each rate, the reversal potential of the 3 dynamic chan-
nels, the maximum conductance of the 4 channels, the calcium pump and the membrane
capacitance, this model contains 28 parameters.

Simple Hodgkin Huxley

Cm

GKEK

EL
gL

Iin

Inside Outside

V

IK

IL

Figure 3.6: Simple Hodgkin Huxley model

In order to study the impact of the model complexity, we select an arbitrary Hodgkin
Huxley model with a single dynamic channel and no concentration model :

Cm
dV

dt
= Iin(t) + a3bgK · (V − EK) (3.14)

where a and b follow the same voltage dependent behavior described in (3.9) and (3.10).
This model is represented in figure 3.6 and possesses 11 free parameters.

Leaky Integrate

Finally, we use a simple Leaky Integrate model, as its number of free parameter is small :
the membrane capacitance Cm, conductance gL and reversal potential EL sum up to 3
tunable parameters per neuron. This is the simplest model we could use.

Long Short-term Memory [26]

We also study the possibility of using artificial Recurrent Neural Networks (RNN) to
mimic biophysical neural behavior (i.e., using artificial neural networks for modeling
single biological neurons). LSTM, standing for Long Short Term Memory [26], are gated
RNNs that have shown tremendous performance in sequence modeling [57][18]. It might
be of interest to replace a neuron or a subpart of a circuit by such "black boxes". Indeed,
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3.2. Neuron and synapse models

they have proven efficient computation and powerful diversity of possible behaviors.
LSTM cells have been designed to allow long-term dependency and to tackle vanishing

Figure 3.7: Internal working of an LSTM cell. (image source [3])

gradient issues of RNNs and might be easier to optimize than biophysical models.

As shown on figure 3.7, an LSTM cell maintains, for each time step t, an internal state
ct (top horizontal line) and an output ht (bottom horizontal line), computed based on an
input xt, and previous state ct−1 and output ht−1. The cell is composed of a forget gate
(first σ on the left), multiplying each part of the state by a number between 0 and 1.
Another gate (second σ and tanh) is used to add new information to the state. Finally,
a last gate (last σ) decides which part of the state should be used for the output.

LSTM

LSTM

LSTM

LSTM

LSTM

Membrane potentialLSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Calcium  
concentrationLSTM

50 units

50 units
Input current

Figure 3.8: LSTM network modeling a biological neuron

To model a single biological neuron, we use a two layers LSTM network, depicted in figure
3.8. Each layer is composed of 50 LSTM cells. This model is meant to be equivalent to the
C. Elegans Hodgkin Huxley model we describe in 3.2.2. We interpret the output of the
first layer as the membrane potential, and the second one as the calcium concentration,
since in reality the calcium concentration depends on the membrane potential. In both
cases, because the output from an LSTM layer is contained in [-1,1], we scale its output
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in the following way :
V = 100 ∗ out1 − 60 (3.15)

[Ca2+] = 1000 ∗ out2 (3.16)

This way, we obtain a voltage range of [−160, 40] mV and [−1000, 1000] for the calcium con-
centration. We thus have a resting value of -60 mV and 0 Mol, as in the biophysical model.

3.2.3 Synapse models

Within a neural network, information propagates between neurons via chemical and
electrical synapses. We explain here how to model such transmission.

Chemical synapse

Neuron 1

Neuron 2

Iin

V1

Cm

Esyn
Gsyn

V2

Figure 3.9: Chemical synapse model

At a chemical synapse, two neurons interact with each other by the release of neurotrans-
mitters, from the pre-synaptic to the post-synaptic neuron. The synaptic current can be
represented as [33]:

Ii,j = Gsyn(Vj) · (Erev − Vi) (3.17)

where Erev is the resting potential of the synapse which determines its polarity, and
Gsyn(Vj) the dynamic conductance of the synapse.

As shown in figure 3.9, the chemical synapse is modeled by an additional ion channel
in the post-synaptic neuron, which conductance Gsyn(Vj) varies with the pre-synaptic
neuron’s potential, following the same law as in (3.9) [33]:

Gsyn(Vj) = gi,j

1 + e
Vj −Vmid

Vscale

(3.18)
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where gi,j is the maximum conductance of the synapse between neurons j and i.

Such a model has 4 free parameters : wi,j , Vmid, Vscale and Erev.

Electrical synapse (gap junction)

ggap

Neuron 1 Neuron 2

IinV1 V2

Figure 3.10: Electrical synapse model

A gap junction between neuron j and i is simply modeled as a static conductance (figure
3.10), hence using Ohm’s law, where gi,j is the conductance of the synapse :

Ii,j = gi,j · (Vj − Vi) (3.19)

Thus, it only needs the definition of one free parameter gi,j .

3.3 Optimization
Once we modeled a neuronal circuit with neural and synaptic models, we need to assign
values to the models’ parameters. We want to find the values so that the model reproduces
the behavior of the original circuit. For this, we use measurements that the model’s
simulation will have to fit.

Because the change of any single parameter can have a high impact on the final outcome,
we need an optimization technique. Several methods exist and have been applied to
neural models, such as genetic algorithms [30] [60] [6]. Although they have expressed
reasonable performance in small circuits with few neurons and synapses, they have shown
difficulty to scale, as the number of parameters increase. For this matter, we propose to
use stochastic gradient descent optimization. These algorithms are now widely used in
the field of Artificial Intelligence, in particular for Deep Learning. Their main advantage
is a low computational cost, at the price of a higher risk to get stuck in a local minima,
and the necessity to compute a gradient. To overcome these drawbacks, we use a hybrid
technique by associating random search with gradient descent.

3.3.1 Hybrid optimization

As described by algorithm 3.1, we opted for a hybrid optimization strategy. After defining
models and a circuit architecture, we initialize several sets of the circuit’s parameters with
random values. We then apply gradient descent to each of those sets in parallel. While
this parallelization requires a larger amount of memory, this allows to increase the speed
of computation and chances to find better sets of parameters. At every step, the cost
function (defined in 3.3.4) is evaluated and its gradient is computed via differentiation.
The cost function represents the distance towards the objective and should be minimized.
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Algorithm 3.1: Hybrid Optimization
Input: f(θ) : a cost function with parameter θ
C : a set of constraints for parameter θ
Output: Sets of parameters Θ minimizing the cost function

1 Θ← random population of parameters for f of size n;
2 while not Maximum-Iterations reached do
3 for i← 1 to n do
4 lossi ← f(Θ[i]) ; /* eq (3.20) */
5 gradi ← compute_gradient(f,Θ[i]) ; /* cf. algorithm 3.2 */
6 gradi ← clip_gradient(gradi);
7 Θ[i]← apply_gradient(gradi, Θ[i]) ; /* cf. algorithm 3.2 */
8 Θ[i]← apply_constraints(C, Θ[i]);
9 end

10 end
11 return Θ;

We limit the norm of the gradient to a maximum value to avoid brutal jumps in the
parameter space. Using this gradient, the parameters are updated following Adam
algorithm [31] (see 3.3.5). Finally, we apply constraints to our parameters. For this
purpose, we implement hard constraints as explained in 3.3.2

3.3.2 Parameters constraints

Hard constraints forbid parameters to take values outside of defined ranges. They
are appropriate to prevent values leading to unexpected or exploding outcomes in the
simulation. Hence, too small absolute values for parameters such as time constants
τi, scales V i

scale and membrane capacitance Cm lead to instability since they are used
as denominators in the models’ equations. Furthermore, some parameters like Cm
or any conductance gi have to be positive. Hard constraints also permit keeping the
parameters in a restricted range when knowledge is available on the given variables. For
this last purpose, soft constraints might perform better, as hard constraints can prevent
the gradient to keep its global direction. Indeed, soft constraints allow their violation.
However, they add a penalty in the cost function, thus making it more complex, and
adding parameters to define. Furthermore, with gradient descent and high dimensional
problem, it is not guaranteed that the final outcome does not violate such constraints.

3.3.3 Random initialization

Each parameter starts with a value drawn from a uniform distribution. The bounds will
be displayed in tables for each experiment. We select large ranges containing the values
used by OpenWorm [59] and respecting the defined constraints. We select those high
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3.4. Simulation

ranges in order to evaluate our methods’ performance when few or no insight is available
on the biophysical properties.

3.3.4 Cost function

For evaluating the quality of a model, one needs a function defining a loss, i.e. how
distant this model is from its objective. The goal of the optimization will be to minimize
it. Different kinds of cost functions have been used for biological neuron parameters
optimization. Mainly, the overlap in dV

dt versus V phase plane [6] ignores all time
information and feature extraction [11] is problematic since it is not differentiable. We
hence use a weighted Mean-Squared Error. This function is simple, differentiable and fast
to calculate. We add a possibility of weighting the neurons and the different measurements
(voltage and calcium concentration in our case).

Cost(θ) = 1
NT

∑
m

wm

N∑
n=0

wn
∑
t

dm,n(t, θ)2 (3.20)

where N is the number of neurons and T the number of time steps. wm represents the
weights associated to the different measurements (e.g. voltage, calcium concentration),
wn the weight of each neuron, and dm,n(t) is the difference between the measurement m
for the neuron n at time t of our current model and the objective trace.

3.3.5 Adam

Adam (for Adaptive Moment Estimation) [31] is a stochastic gradient descent algorithm.
It stores an approximation of the mean and uncentered variance of the past gradients,
respectively mt and vt in algorithm 3.2. This results in an adaptive learning rate for
each parameter. It performs well in high dimensional problems, is well suited for sparse
gradients, and compares favorably to other adaptive learning-method algorithms [51].
This is the algorithm we choose for our gradient descent strategy.

3.3.6 Tensorflow

We deployed our gradient-based optimization algorithms and our networks in Tensorflow
[4].

3.4 Simulation
For the computation of the cost function, one requires simulation of neural circuits. Such
simulations exist [19][24], nevertheless, a gradient needs to be computed for algorithm 3.1.
One could estimate it with sampling [11], yet this implies running numerous simulations
for each parameter, thus dramatically slowing down the process. Hence, the most efficient
way is to compute the gradient in an analytical manner, i.e. by differentiating the cost
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Algorithm 3.2: Adam optimizer
Input: α : Learning rate
β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates]
f(θ): Stochastic objective function with parameters θ
θ0: Initial parameter vector
Output: Parameter vector θ minimizing the cost function

1 m0 ← 0;
2 v0 ← 0;
3 t← 0;
4 while θt not converged do
5 t← t+ 1;
6 gt ← ∇θft(θt−1);
7 mt ← β1 ·mt−1 + (1− β1) · gt;
8 vt ← β2 · vt−1 + (1− β2) · g2

t ;
9 m̂t ← mt/(1− βt1);

10 v̂t ← vt/(1− βt2);
11 θt ← θt−1 − α · m̂t/(

√
v̂t + ε);

12 end
13 return θt;

function. Once a network is defined as a Tensorflow computational graph, we are enabled
to perform such differentiations.

3.4.1 Neuron simulation

In order to simulate a neuron, the differential equations introduced in 3.2 have to be
numerically solved. Because of the sigmoid functions in Eq. (3.18) and (3.9) and the
equations’ interdependence, they are nonlinear and thus not explicitly solvable.
With the approximation

dV

dt
≈ V (t+ ∆t)− V (t)

∆t , (3.21)

for a small time step ∆t, we use implicit Euler solver for the calcium concentration
and rate dynamics and hybrid (implicit-explicit) solver for the voltage. By inserting Eq.
(3.21), we get :

V (t+ ∆t) =
V (t)Cm

∆t + Iin(t) +
∑
c
gc
∑
xc

x
αxc
c Ec

Cm
∆t +

∑
c
gc
∑
xc

x
αxc
c

(3.22)

for Eq. 3.3 and 3.4,where for each channel c, gc is its conductance, xc a rate with its
associated exponent αxc , and Ec the reversal potential.

[Ca2+](t+ ∆t) = τCa
τCa + ∆t · ([Ca

2+](t)− ICa(t)ρCa∆t) (3.23)
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for Eq. 3.13

x(t+ ∆t) = ∆tτx
∆t+ τx

(
x(t)
∆t + x∞(V ) + ∆t

τx

)
(3.24)

for Eq. 3.10

In this way we obtain incremental equations that we update after each time step ∆t.
This leads to algorithm 3.3 for the step update of a neuron and 3.4 for a circuit.

Algorithm 3.3: Neuron step
Input: [v,X,IC] : Previous state of the neuron containing the voltage v, rates X

and ion concentrations IC
Iin : Input current
Output: Updated state [v′,X ′,IC ′]

1 for c in Channels do
2 Ic ← compute-current(v, X[c]);
3 end
4 v′ ← update-voltage(v,

∑
Ic, Iin); /* eq (3.22) */

5 for ic in IC do
6 ic′ ← update-concentration(ic, Iic) ; /* eq (3.23) */
7 end
8 for x in X do
9 x∞ ← compute-steady-state(x, v) ; /* eq (3.9) */

10 x′ ← update-rate(x, x∞) ; /* eq (3.24) */

11 end
12 return [v′,X ′,IC ′];

Algorithm 3.4: Circuit step
Input: S: Previous states of the neurons,
Iin : Input currents
Output: Updated states S’

1 for gi,j in GapJunctions do
2 Iin[i]← Iin[i] + gap-currenti,j(S[i], S[j]); /* eq (3.19) */
3 end
4 for si,j in Synapses do
5 Iin[i]← Iin[i] + syn-currenti,j(S[i], S[j]) ; /* eq (3.17) */
6 end
7 for n in Neurons do
8 S′[n]← neuron-stepn(S[n], Iin[n]) ; /* alg 3.3 */
9 end

10 return S′;
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The use of an implicit solver is important in case of stiff differential equations. It allows
an increased stability and the use of larger time steps. In figure 3.11, we compare our
equation (3.22) with equation (3.25) obtained with an explicit solver strategy for the
membrane potential :

V (t+ ∆t) = V (t) +
Iin(t) +

∑
c
Ic(t)

Cm
∆t (3.25)

As we can observe, given the same input current Iin(t), both solvers are sensibly equal for
small time steps. Nevertheless, the explicit solver quickly becomes unstable, for ∆t = 9
ms here, and explodes when the time step increases (∆t = 100ms). On the other side,
the implicit-explicit solver stays stable.

(a) ∆t = 7 ms (b) ∆t = 9 ms (c) ∆t = 100 ms

Figure 3.11: Influence of the time step ∆t on the voltage simulation for our hybrid solver
(Eq. (3.22)) in green and an explicit solver (Eq. (3.25)) in red

3.5 ODYNN API
In this section we present the ODYNN API - standing for Optimization of Dynamic
Neural Networks - which we developed and used for our experiments. It aims at providing
an optimization suite for biological neural circuits. ODYNN allows implementation of
different neuron models, definition of circuit architectures, simulation and optimization
of such circuits, and evaluation of the results. It can be downloaded via github (https:
//github.com/MarcusJP/ODYNN), and a documentation and tutorials are available
under odynn.readthedocs.io.
In this section we describe its main principles.

3.5.1 Development

Our API has been deployed in Python3 and Tensorflow 1.8, following the best practices
for developing a Python package [49]. It has been developed incrementally, fully tested
via unit-test and evaluated with continuous integration using Travis [2] and Codecov
[1]. It is available on github : https://github.com/MarcusJP/ODYNN as a python
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package and can be used under MIT license. The documentation was made with Sphinx
[12] and can be found at odynn.readthedocs.io together with tutorials in Jupyter
Notebook [32].

3.5.2 ODYNN’s Structure

Figure 3.12 represents the Unified Modeling Language (UML) class diagram of our API.
We describe here the main characteristics of its class structure.

We opted for object oriented programming to allow the use and comparison of different
models and methods. A first abstract class Optimizer (center-right) possesses a method
optimize (algorithm 3.1) allowing to optimize the parameters contained in an attribute ob-
ject which class implements the interface Optimized. For instance, classes to be optimized
have to define an access to their variable (attribute variables) and apply their constraints
in a method apply_constraints. This allows a common representation of all classes vowed
to be optimized, thus bringing a proper encapsulation between optimizing and optimized
objects. The classes NeuronOpt and CircuitOpt (below) implement Optimizer by defining
an appropriate loss (see Eq. (3.20)). As the name indicates, NeuronOpt is made for

<<Interface>> 
Neuron

- init_state
+ dt
+ ions
+ default_init_state
+ num 

+ plot_output()
+ calculate(i)
+ step() 

<<Interface>> 
BioNeuron

+ default_params 
+ parameter_names
- tensors: bool 
- constraints 

- update_rate()
- steady_state()
+ get_random()
+ plot_results()
+ parallelize() 

<<Interface>> 
NeuronTf

+ groups
+ trainable: boolean 

BioNeuronTf

<<Interface>> 
Optimized

+ init_params
+ variables
+ nums
+ ions 

+ build_graph()
+ apply_constraints()
+ settings 
+ plot_vars()
+ study_vars() 

NeuronOpt

optimize

<<Interface>> 
Optimizer

- optimized: Optimized 

- build_loss()
+ optimize()

Circuit

 - synapses
 - gaps
 + parameter_names
 + num
 + tensors: bool 

- inter_current()
+ step()
+ calculate() 
+ plot_output()

optimizeoptimize

1..*

contains

copy ions and 
default_init_state

NeuronLSTM Neurons

1..*

contains

Model

PyBioNeuron

CircuitTf

 - constraints 

+ get_random()
+ create_random() 

CircuitOpt

 - neur_weights Neurons

Circuits

Being optimized

Performing  
optimization 

Figure 3.12: ODYNN UML class diagram.

optimizing classes representing neurons.
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The left part of the diagram describes the hierarchy of our neural models.

The top left class Neuron defines the general structure a neuron class should follow
in order to be used in a circuit, mainly defining an initial state (attribute init_state),
declaring the ions which concentrations are modeled (attribute ions), the number of
neurons modeled by an instance (attribute num, for optimization or usage in a circuit)
or implementing algorithm 3.3 in a method step. The class Neuron also defines a general
way to plot outputs of an experiment. Furthermore, the class BioNeuron creates a way of
implementing a biological model (as presented in subsection 3.2.2). From there, we define
classes for each model, here represented as Model. A simple configuration file defines
which model is used, and two other classes, PyBioNeuron and BioNeuronTf, specialize
this model. The difference between them is that the first is implemented in Python, while
the second is fully implemented in Tensorflow, and implements NeuronTf (center-left).
PyBioNeuron exists only for simplicity and simulation, and doesn’t allow optimization.
The class NeuronTf is there to hide the nature of a neuron during optimization, by
providing a common interface. At the moment, three different classes can represent
neurons and be optimized :

• BioNeuronTf for biological models

• NeuronLSTM allows the abstraction of a neuron using LSTM cells, presented in
subsection 3.2.2

• Neurons is used when studying circuits and combines biological and artificial models
in a common architecture.

On the right side, the classes Circuit and CircuitTf are mostly the equivalent to Py-
BioNeuron and BioNeuronTf. Their structure is more simple but is probably going to
gain in complexity in order to allow the use of different synaptic models, similarly to
what is done for neurons.

The main strength of our API is its strong encapsulation. The latter gives the advantage
of being able to define a new model in a fast way. After creating a new class extending
the interface BioNeuron, namely defining the step() and get_random() (for random
parameters) methods, the default parameters and initial state, the whole API can be used
in the same way, and one can use the exact same code for simulation and optimization
amongst different models.

The main challenge of this architecture is the possibility of using different models in a
same circuit. This is due to the optimization limitations imposed by the gradient methods.
A pure search based optimization algorithm would be a possible solution for this with
the further computational costs. Moreover, One could define a general adaptable model
to be reduced to the variety of sub-models (e.g. setting all dynamic conductances of a
Hodgkin Huxley model to zeros leads to a simple Leaky Integrate), this is however not
very elegant nor efficient. This challenge will be the focus of our continued effort.
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3.5.3 How to perform optimization with ODYNN

In this section, We illustrate a simple example on how to perform an optimization run
using ODYNN. The code below performs the optimization of a single neuron. It generates
a voltage traces from a simulation and optimize 10 neural models to fit these traces. This
code plots the simulation features displayed on figure 3.13 and save them in the folder
defined by the folder variable. Among others, the evolution of the loss, parameters, and
curve comparisons will be saved and displayed.
This will allow analysis and reproduction of the results after the end of the optimization.
import numpy as np
from odynn import utils, nsimul, neuron, noptim
#This file defines the model we will use
from odynn.models import cfg_model

dt = 1.
folder = ’Example’

# Function to call to set the target directories for plots and saved files
dir = utils.set_dir(folder)

#Definition of time and 2 input currents
t = np.arange(0., 1200., dt)
i_inj1 = 10. * ((t>200) & (t<600)) + 20. * ((t>800) & (t<1000))
i_inj2 = 5. * ((t>200) & (t<300)) + 30. * ((t>500) & (t<1000))
i_injs = np.stack([i_inj1, i_inj2], axis=-1)

#10 random initial parameters
params = [cfg_model.NEURON_MODEL.get_random() for _ in range(10)]
neuron = neuron.BioNeuronTf(params, dt=dt)

#This function will take the default parameters of the used model if none is
given

train = nsimul.simul(t=t, i_inj=i_injs, show=True)

#Optimization
optimizer = noptim.NeuronOpt(neuron)
optimizer.optimize(dir=dir, train=train)
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(a) Plots generated by the simulation. From the top are displayed the voltage (black), the calcium
concentration (red), the different ion flows, the activations rates and the input current in blue.

(b) Plots generated for each step during the optimization, comparing the trained models with the
target data in red. From the top : voltage, calcium concentration and input current.

(c) Loss evolution of all trained models (top) and learning rate (down)

Figure 3.13: Various plots generated by a python script using ODYNN.
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CHAPTER 4
Results

In this section we present the results of our detailed experimentations realized by ODYNN.
Unless stated otherwise, optimizations were done with 700 iterations. The other settings,
such as the random initialization and constraint bounds, learning rate, time steps, number
of models and duration of the optimization will be indicated in tables in annex A. We
defined large ranges for constraints and initial parameter values to observe our approach
performance when no knowledge is available on the internal neural dynamics.

In every experiment, we used the same initial states for all neurons, described in table
4.1:

Table 4.1: Initial parameter values

V a b e f h p q n [Ca2+]
-60. 0 1 0 1 0 0 1 0 1e-7

For commodity, we will refer to our developed models detailed in 3.2.2 as LI for Leaky
Integrate (3.2.2), SHH for the simple arbitrary Hodgkin Huxley model (3.2.2) and CHH
for the model corresponding to C. Elegans’ neurons (3.2.2).

4.1 Fitting single neurons on calcium imaging data

In this experiment, we fit a biophysical model as well as an LSTM network with calcium
imaging data from the brain of C. elegans.

Calcium Imaging Dataset

We used calcium imaging recordings from [29]. The data contains several minutes of
recording from C. elegans’ interneuron AVA. This recording represents the the variation
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of a fluorescent indicator sensitive to the inner calcium concentration. The values are
derived from a Hill equation :

∆F
F
∝ [Ca2+]n

[Ca2+]n + kd
(4.1)

where ∆F
F is the increase in fluorescence, which is the data we have, and [Ca2+] is the

inner calcium concentration. The fluorescent indicator in the measured dataset at hand
was GCaMP5K. Its Hill coefficient n is 3.8, and the half-activation kd is 0.189 mMn [7]. In
order to perform our experiment, we used directly the indicator values, representative for
the intracellular calcium concentration. Indeed, as illustrated in figure 4.1, the shape is
very similar with different values of α. The main change is the amplitude, and our simple
calcium model (Eq. (3.13)) allows any scaling by multiplication of ρCa and dividing τCa
with the same number.

Figure 4.1: The fluorescent indicator (red) compared to the calcium concentration when
using different proportion factors (blue)

In order to fit this curve, an input current needs to be defined. As explained by Fuchs et
al. [17], in calcium imaging experiments [29][39] and electrophsiological measurements
[50], the AVA neurons activity depicts a switching behavior between two states. When
applied a ramp shaped input, the neuron produces a graded response [40]. This suggests
that the neurons receives a box shape input. Hence, we defined an ’on/off’ input current
based on the calcium imaging data, which was later convoluted with a Gaussian curve, as
in [17]. Since the value of the ’on’ current is still unknown, we conducted 5 experiments
with values in the range [0.5, 10] µA/cm2 which all fitted the curve in a similar way, we
depict here one of them.
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4.1.1 Fitting calcium imaging data with a C. Elegans Hodgkin
Huxley model

We trained 100 different CHH models in parallel. As explained in the methods, each
variable was drawn from a uniform distribution. The boundaries are indicated in table
A.1 (Min init and Max init). The time step ∆t=340 ms corresponds to the time between
two measurements. Interestingly, the optimization could handle such a large value. We
used a decreasing learning rate as follows:

l = 0.92bn/9c (4.2)

where n is the iteration index. A decreasing learning rate allows fast evolution at the
beginning of the optimization, when the behavior is most often completely distinct from
the fitted curves. With iterations, the trained model’s traces evolves towards its target,
and a smaller learning rate creates smaller change in the parameters, hence enabling a
more detailed fining.

We selected around 30 minutes of recordings and used one half for training our models
and the second half for testing.
Hard constraints were applied to each variable, which bounds are detailed in table A.1
(LB and UB).

The optimization lasted 32 minutes, although as can be observed in figure 4.2a, most
of the models already converged after 300 iterations. As shown in figure 4.2b, they are
divided in three categories depending on their final loss. Only the ones before the plateau
at around 21 could fit our target. The best model had a cost value of 1.03.
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Figure 4.2: Loss and parameter distribution for fitting calcium imaging data with C.
Elegans Hodgkin Huxley.

We selected the 41 models of the first category (before the plateau) and compared their
parameters in figure 4.2c. All parameters have been normalized by subtracting the mean
and dividing by the standard deviation :

xnorm = x− x̄
σx

(4.3)

Note that no global structure can be recognized among the different solutions. We display
the distribution of the different parameters values in figures 4.2d, 4.2e and 4.2f. Most
variables display a great variation, in particular the channel conductances. The calcium
channels depicts a lower deviation, since we are fitting the calcium concentration. The
41 best models traces are compared with the calcium imaging data in figure 4.3a and
we observe here the consequences of this variation, as they exhibit very different scales
related to their membrane potentials. Hence, fitting calcium imaging data is not enough
to extract the physiological parameters of a neuron.

In figure 4.3b we show one of the best results compared to the target curve. It was able
to capture parts of the phenomenon creating a bigger response when the neuron hasn’t
been simulated in a long time. However, we were unable to catch a proper long term
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4.1. Fitting single neurons on calcium imaging data

potentiation (elevation of the concentration without stimulation). This is presumably
due to the simplicity of our model when modeling calcium ions dynamics.
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Figure 4.3: Comparison of the results from the optimized biophysical model and the
fitted calcium imaging data

We performed the same experiment but changed only the initial maximal bound for the
time constants (τ ’s), dividing them by 10. The models were then unable to exhibit a
greater response after a long resting time. This demonstrates the sensitivity of gradient
descent to initial parameters.

4.1.2 Fitting calcium imaging data with LSTM networks

We used here the same data but utilized LSTM networks for fitting. We compared the
performances of two different architectures. The first one (figure 4.4a) is made of a single
layer of 50 LSTM cells, while the second one (figure 4.4e) is the one we present in 3.2.2,
possessing two layers of 50 units.

We used a smaller learning rate of 0.01 · 0.95bn/9c than for the biophysical models. In fact,
unlike biophysical models, all their parameters are bound between 0 and 1. Furthermore,
greater learning rates resulted in chaotic behaviors, where they produced high frequency
oscillation and couldn’t evolve anymore from this state.

We trained a single model at a time, since the tensorflow implementations didn’t allow
parallelization. Single cells or layers can be defined and support batch training, however
it is currently impossible to add dimensions to the parameters matrices, which would
allow parallel training.

Both architecture fitted well both the train and test data (figures 4.4b, 4.4f, 4.4c and
4.4g), and obtained a final MSE of respectively 0.79 and 0.64. Hence, they performed
better than the biophysical models. However, their membrane potentials had shapes
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4. Results

very similar to the calcium concentration curve. This observation is obvious for the
first architecture, while it is more interesting in the second case. The main difference
between them was the range of the potential values, the second architecture depicts a
more realistic one with voltage in [-65, -38] mV against [-60, -58] mV for the first one.
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Figure 4.4: Comparison of the two LSTM network architectures (two rows) for fitting
calcium imaging data.

4.2 Fitting single neurons on simulated data

In another experiment, we explored the possibilities of our algorithm to find parameter
sets by fitting outputs generated by these same sets.
We first hand tuned biophysical parameters for each model until their simulations
exhibited realistic or interesting behaviors. We then defined 10 different input currents
lasting for 1.2 s each, and separated them into train (5) and test (5) data. They can be
visualized in figure 4.6 as the blue curves. We ran a simulation using those 10 scenarios
on our target parameters, recorded the corresponding membrane potentials (and calcium
concentrations for the C. elegans model) and used them as target for our optimization.
Before the optimization, we added random noise on the records and input currents in
order to evaluate the robustness of our approach. For the latter, we used a Gaussian
distribution with standard deviation 1.5.
We performed this for each of the 3 biophysical models presented in chapter 3, each time
training 100 randomly initialized parameter sets.
The parameter used for the initial simulation are presented in tables in annex A.2 with
column ’Target’ and the parameters giving the best fit in column ’Best fit’.
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4.2. Fitting single neurons on simulated data

4.2.1 Fitting simulated data with Leaky Integrate

Our first optimization experiment was using the LI model. All solutions except one
exhibited a precise fitting (figure 4.5) and were able to find the initial parameters
reasonably accurate, at the exception of the reversal potential EL which shows a greater
variation. Indeed, the membrane capacitance Cm and the leakage conductance gL control
the reactivity and amount of current, and thus the speed at which the membrane potential
varies, which is robust to noise. EL only controls the resting state and can be blurred
with noise.
The best model had a final loss of 12.46 mV2 and its parameters written in table A.4 are
very close to the targets.
In figure 4.6, we represent a comparison of this best fit with the behavior of the target
model on the training and testing currents. Overall, the algorithm could fit the desired
curve and recover the initial parameters.
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Figure 4.5: Results for fitting simulated data with Leaky Integrate. The red stars over
the box plots indicate the value of the parameters producing the target data
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Figure 4.6: Comparison of the membrane potential of the best (blue) and target (red)
model with the different input currents (dark blue) when fitting simulated data with
Leaky Integrate
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4. Results

4.2.2 Fitting simulated data with a simple Hodgkin Huxley model

Our second experimentation studied the SHH model. Again, all models demonstrated
reasonably good fit to the target waveform (figure 4.7) and were able to find the proper
Cm and channel conductances values, while the reversal potentials were more varied
(figure 4.7d). Mainly, they all show the exact same shape, however slightly shifted in the
direction of the evolution, hence being more sensitive to inputs. The best parameter set
displayed in table A.5 is now far from the target model, although their behaviors are
almost identical, as highlighted in figure 4.8. Its final cost value was 104 mV2.
The different rate parameters values (figure 4.7e) are spread. This demonstrates that the
Simple Hodgkin Huxley model is already complex enough to exhibit the same behavior in
different regions of the parameter space, and a good fit does not imply similar parameters.
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Figure 4.7: Results for fitting simulated data with simple Hodgkin Huxley. The red stars
over the box plots indicate the value of the parameters producing the target data
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Figure 4.8: Comparison of the membrane potential of the best (blue) and target (red)
model with the different input currents (dark blue) when fitting simulated data with
simple Hodgkin Huxley

4.2.3 Fitting simulated data with C. elegans Hodgkin Huxley

The third experiment was conducted using the C. elegans Hodgkin Huxley model (CHH),
we fitted the voltage and calcium concentration, simultaneously . This time, all models
exhibited a reasonably accurate fit for the voltage, but a greater difficulty for the calcium
concentration (figure 4.9c). In fact, in this precise case, the values range for the potential
were higher and thus had a greater weight in the cost function. Once a model found a
good location in the parameter space to mimic the voltage, it could face an impossibility
to match the calcium dynamic without losing its fit on the potential. As a matter of fact,
gradient descent only allows temporary greater values for the loss.
All models were able to find the values for Cm and gL 4.9d). The other conductances
were most of the time completely distinct from the target ones, especially for the two
potassium channel which show inversion of conductances values. Because of the equal
constraints applied on the rate parameters and conductances, they were fully free and
found various settings of compensating each other to deliver similar behaviors, this is
particularly true for the two potassium channels using the same reversal potential EK .
The best parameters written in table A.6 are now far from the target model, despite
their very close behaviors highlighted in figure 4.10 and final loss of 5.17.
Hence, a greater complexity in the model leads to numerous possibilities leading to similar
reactions.
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Figure 4.9: Results for fitting simulated data with C. Elegans Hodgkin Huxley. The red
stars over the box plots indicate the value of the parameters producing the target data
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Figure 4.10: Comparison of the membrane potential (top) and calcium concentration
(middle) of the best (blue) and target (red) model with the different input currents (dark
blue) when fitting simulated data with C. Elegans Hodgkin Huxley

4.2.4 Fitting simulated data from C. elegans neural model with
LSTM

In another experiment, we tested the ability of the LSTM networks to mimic the same
simulated data from CHH. We used the two layers network described in the methods
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4.2. Fitting single neurons on simulated data

and trained it on the data from the previous experiment (4.2.3).
As we can see in figures 4.11b and 4.12, it nicely fitted both the train and test data,
in particular the voltage traces and obtained a loss of 6.14, similar to the biophysical
model’s score on the same data (5.17). The calcium concentration was not as precise
because the noise had more impact on it, since its range values were smaller but were
applied the same noise.
However, we can say that the LSTM network showed robustness to noise and could
surprisingly capture the behavior of our target model.
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Figure 4.12: Comparison of the membrane potential of the best (blue) and target (red)
model with the different input currents (dark blue) when fitting simulated data from C.
Elegans Hodgkin Huxley with LSTM networks

4.2.5 Fitting oscillatory behavior with C. elegans neural model

In the past experiments, our methods demonstrated strength in fitting noised simulated
data. However, one of our parameter sets for the CHH model exhibited an oscillatory
activity on some input current ranges only. We encountered high difficulty to match this
behavior. We had to restrict our cost function for voltage only and use a single train
data to succeed. Still, as we can see in figures 4.13a and 4.13b, out of the 100 models,
only one could oscillate properly. All the other models simply averaged the potential
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4. Results

during the oscillations (figure 4.13c.
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Figure 4.13: Loss and curves comparison for the oscillatory behavior
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Figure 4.14: Comparison of the membrane potential of the best (blue) and target (red)
model with the different input currents (dark blue) when fitting oscillating simulated
data with C. Elegans Hodgkin Huxley

4.3 Optimizing simple circuits with simulated data
We were able to successfully optimize the circuits shown in figure 4.15, i.e. both the
neural and synaptic parameters. We go through the details of the optimization pipeline
on a more challenging architecture in the next chapter.

Our procedure was similar to the previous section, we used the output of a simulation as
target for several models trained in parallel. The cost functions were calculated based on
the potential of a subset of neurons, respectively (for each architecture in figure 4.15),
neuron 1 for the first 4 architectures, neuron 4 for the fifth and and neurons 8 and 9 for
the last one.
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Figure 4.15: Simple architectures ODYNN could optimize. Each disk is a neuron.
Synapses are represented by triangles which bases are on the pre-synaptic neurons and
last angle on the post-synaptic one. Green is for excitatory and red for inhibitory.

In several experiments, we evaluated the possibilities of replacing some neurons by
LSTM networks for optimization. However, none of them were successful. We hold the
opinion that this happened because of both a vanishing gradient and too different form
of gradients between the biophysical and artificial parameters.

4.4 Optimizing the Tap Withdrawal circuit

The tap-withdrawal circuit is the part of C. elegans’ nervous system responsible for
the reflexive response of the animal to external mechanical stimulus. It has been well
studied, for instance for studying habituation [48]. More recently, it has been used for
deep reinforcement learning for robot control [34], where neurons were modeled with
Leaky Integrate.
We performed an experiment on this circuit to test the ability of our algorithm for scaling.
The network is illustrated in figure 4.16. It contains 9 neurons, 23 synapses and 6 gap
junctions, resulting in 350 free parameters with the CHH model.

As previously, we first selected arbitrary parameters and input currents applied to the
sensory neurons. We then ran our simulation and saved the membrane potentials of the
two command neurons AVA and AVB. Finally, we draw all parameters from uniform
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(a) Automatized circuit representation
from ODYNN
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(b) Circuit representation taken from
Wicks et al. [63]

Figure 4.16: Two alternative representations of the tap withdrawal circuit
Triangles are for sensory neurons, circles are inter neurons and hexagons (left only) are
for command neurons. Red and green stands for respectively inhibitory and excitatory
synapses. Yellow (left) or blue (right) lines model gap junctions.

distributions as usual and optimized them in order to fit the membrane potentials of AVA
and AVB. The parameters were constrained and initialized as in the previous experiments
for neurons, and as shown in table A.8 for synapses. We applied the same to all neurons
and synapses, except for parameter Esyn which depended on whether a synapse was
excitatory or inhibitory. We trained 50 models in parallel with a time step of 0.5 ms.
The dataset consisted of 3 train and test datas of 1.2 seconds each.
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Figure 4.17: Loss evolution and final values when optimizing the Tap Withdrawal circuit.

Total training time was 2 hours and a half. The evolution of the loss and the final values
are displayed in figure 4.17. As we can see, most models fit both to the train and test
data with a high precision. Out of 50, 38 have a final loss of less than 0.5 mV2.
We present on figure 4.18 a comparison of the best result and the initial simulation
on each neuron of the circuit. As we can see, although the fitted neurons AVA and
AVB match their target, the other neurons show a different behavior than in the initial
simulation. This shows freedom in the parameter space for producing a given behavior,
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4.5. Optimizing the Forward Locomotion circuit

in the sense that several solutions exist resulting in the wanted target waveforms for AVA
and AVB.
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Figure 4.18: Comparison of the initial simulation (red) and best result (cyan) on each
neuron with two different test input currents. The values are in mV.

We performed 5 experiments with time steps in the range [0.1, 1] ms, various parameter
values producing the simulated data, and different random seeds on this same circuit.
All of them had similar outcomes.

Hence for optimizing neuronal circuits deployed by a C. elegans Hodgkin Huxley model,
the ODYNN optimization suite is performant. However, this optimization only took into
account a subset of neurons and fitted arbitrary data, we perform in the next section an
optimization of all neurons of a larger circuit.

As previously, the optimization couldn’t handle the replacement of any subset of biophys-
ical models by LSTM networks.

4.5 Optimizing the Forward Locomotion circuit
The Forward Locomotion Circuit (FLC) is a large subpart of C. elegans’ nervous system,
originating the worm’s forward crawling [36]. The circuit contains 114 chemical synapses,
82 electrical synapses and 39 neurons, summing up to 1630 free parameters in a C.
elegans Hodgkin Huxley setting, and thus forms an interesting optimization challenge.
In [36], authors managed to obtain a crawling behavior of the worm by performing a
hand-tuning and genetic algorithms. The crawling behavior requires successive activation
and inactivation of neurons in a specific order. To reach this objective, they used a single
set of parameters shared among all neural cells and used a different chemical synaptic
model [47] than the one we designed, as they used a single time-constant synapse model,
resulting in a more progressive evolution of the synaptic conductance.

We performed 8 different experiments performing 1400 iterations with a learning rate
lr = 0.4 ·0.95b

n
9 c. We defined a smaller initial value than previously since the large number
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of parameters induces a higher sensitivity to changes. Indeed, because of the multiple
interconnections between neurons, each parameter change results in consequences all over
the circuit. The decreasing is also smoother for allowing a longer tuning, again because
of the high dimensionality. The constraints are displayed in table A.9. The only change
for this experiment is the lower upper bounds for the synaptic conductances (from 2 to
0.5), because higher upper bounds were leading to exploding behaviors. We opted for a
time step of 0.2 ms for the same reasons, and optimized each time 10 models in parallel.

Regarding the target data, we first collected the membrane potentials exhibited by the 39
neurons with the circuit parameters obtained by Lung et al. [36]. The data is displayed
in the first row of table 4.2. Moreover, we defined a more regular target by selecting
the membrane potential record of the first oscillating neuron DB1, and defining for each
neuron the target of its predecessor shifted by 64 ms. The curves were then applied
a gaussian noise of standard deviation 1 mV. We obtained in this way a more regular
shape, but with the same time shifting between consecutive neurons as in the original
data. This second target is shown in the second row of table 4.2. The reason for using
this redefined objective is that when optimizing a complex circuit towards an expected
behavior, one can not anticipate all precise variations of every neuron, and would most
likely define such a simple target at first.

For each target data, we compared the outcomes of the LI and CHH model. Furthermore,
in each setting, we conducted one full optimization, i.e. optimizing each parameters
separately, and a ’grouped’ one, where we used a single set of biophysical parameters
shared among all neurons. The latter allows to considerably reduce the dimensionality,
and is moreover the way OpenWorm [59], used by Lung in its experiment, perform
simulation. Namely, they ignore the particularity of each cell by using a single set of
parameters for every neuron.

Interestingly, grouping neurons did not have any impact on the duration of experiments.
This is because the computed gradients do not change, only parameters were being
updated by a combination of them. The optimization times are displayed in table A.4,
and were approximately 16 hours when adopting Leaky Integrate, and 29 hours for the
more complex model.

The best results of each experiment are compared graphically in table 4.2 together
with their final losses. In all settings, the models were able to reproduce the traveling
waves for the majority of neurons. The waves are more clearly defined when using the
redefined target, presumably because the output from [36] contains additional unexpected
behaviors induced by the successive hand tuning and optimizations applied. Reducing
the parameter space by using a single set of parameters showed better results for the
first target. Surprisingly however, this led to higher losses with the redefined target. As
a matter of fact, each neuron possessing different connections, it is presumably harder to
obtain a identical behavior for all of them with a single model. Overall, despite the higher
complexity, the CHH exhibited a higher capability of fitting over LI. Hence, although
it had 9 times more trainable variables per neuron, the gradient descent optimization
was able to take advantage of the more powerful expressiveness of this model. In general,
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4.5. Optimizing the Forward Locomotion circuit

Table 4.2: Comparison of the best results for each of the 8 experimental optimization of
the FLC. Each figure displays the evolution of the 39 neurons’ membrane potentials with
time. Each row corresponds to a neuron. Warmer colors encode higher values.

Target curves Leaky Integrate C. Eleg. Hodgkin Huxley
Full optim. Grouped Full optim. Grouped

from [36] loss=103 loss : 93.3 loss : 117 loss : 79.4

redefined loss : 119 loss : 124 loss : 90.4 loss : 99.2

we obtained the best outcome using a CHH model and grouping neurons. Although
the distance with the objective was not the lowest for the redefined data, this setting
provided the best defined traveling waves.

We compare this last outcome in a different manner in figure 4.19, where we ’unshifted’
the membrane potentials of the neurons. As we can see, the result displays the expected
period. However, some neurons exhibit different shapes and amplitudes, because of their
different connections.
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Figure 4.19: Comparison of the target data with the result when ’unshifting’ the traveling
waves. Each line represent the membrane potential of a neuron.
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CHAPTER 5
Conclusion

5.1 Summary

In this study, we introduced ODYNN, a novel optimization scheme for biological neural
circuits that takes advantage of both search and gradient based optimization methods. It
allowed us to perform numerous experiments with variety of neuronal models and circuit
architectures.

ODYNN was able to handle parallel optimization of large and complex neural circuits,
with large parameter spaces, i.e. up to 1630 parameters, and provide promising results.
Taking advantage of the computational graph of Tensorflow, it demonstrated the capability
of performing such tasks successfully and in a reasonable amount of time. The hybrid
solver strategy for solving the biophysical models’ dynamics exhibited stability with large
time steps, up to 340 ms for a single neuron.

Adam optimization performed well in fitting measurements for single neurons and different
circuit architectures. We showed that our approach is resistant to noise and that the
number of solutions for fitting membrane potentials recordings increases proportionally
to the complexity of the used model. Hence, it is necessary to perform more precise
physical measurements in order to catch the biophysical properties of a neuron. In the
same manner, circuits possess a high degree of freedom for producing a target behavior
for a subset of nodes. However, we demonstrated the possibility to fully optimize the
Forward Locomotion circuit of C. Elegans, consisting in 39 neurons, 114 chemical synapse
and 82 gap junctions.

Additionally, we analyzed the ability of LSTM networks to capture neuronal dynamics.
Those networks were able to mimic calcium imaging data, as well as measurements
from biophysical model simulations. They demonstrated capability of generalization by
adopting the appropriate behavior on unseen data.
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5.2. Open challenges

5.2 Open challenges
The purpose of this section is to explain the main limitations we encountered and
introduce open challenges and some directions to overcome them.

5.2.1 Finding biophysical parameters

As we explained, despite succeeding in fitting traces, stochastic gradient descent was
unable to find the biophysical parameters used to produce the target curves of the
optimization when dealing with Hodgkin Huxley models. In order to solve this problem,
evolutionary algorithms could be used, since they usually perform better in finding global
optima. However, the parameter space may simply contain several global optima. In the
latter case, we should study if some particular applied currents can differentiate them, as
well as a global way to distinguish similar sets of parameters. Another possibility would
be to perform more precise measurements on neural membrane to be able to fix some
parameters.

5.2.2 Fitting oscillatory behavior

The hybrid optimization we used showed an increased difficulty for mimicking oscillatory
behaviors. The reasons for this difficulty should be further investigated. Integrating
frequency in the cost function could help for this matter. The cost function should,
however, stay differentiable. Again, evolutionary algorithms might perform better in this
particular case.

5.3 Future work
For future work, we intend to test the presented algorithms on patch clamp data (voltage
and current recordings) for single neurons. We should also gather recordings on a circuit
scale to evaluate the capabilities of circuit tuning on real data and larger circuits.

Regarding ODYNN, we aim to develop a more complex structure for circuits in order
to incorporate different synaptic models. We are also considering to integrate other
optimization techniques in order to compare in a more detailed way their speed and
efficiency.

Implementing our own LSTM cell would allow us to parallelize the training of LSTM
networks, as we did for biophysical models, and to study their limiting behavior in circuit
tuning.
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APPENDIX A
Experimental settings

A.1 Fitting single neurons on calcium imaging data

A.1.1 Fitting calcium imaging data with a Hodgkin Huxley model
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A.1. Fitting single neurons on calcium imaging data

Table A.1: Experimental settings for fitting calcium imaging data with a Hodgkin Huxley
model

#Models Learn. rate ∆t #Train #Test Data length Duration
100 0.92bn/9c 340ms 1 1 33min 0.53 h

Parameter Min init Max init LB UB Unit
Cm 0.5 40 0.5 ∞ µF/cm2

ECa 0 40 -∞ ∞ mV
EK -80 -40 -∞ ∞ mV
EL -80 -40 -∞ ∞ mV
τCa 10 500 0.1 ∞ none
V e
mdp -30 0 -∞ ∞ mV

V e
scale 1.0 200.0 1.0 ∞ mV
τ e 1.0 2000.0 1.0 ∞ ms
V f
mdp -50 50 -∞ ∞ mV

V f
scale 1.0 200.0 -∞ -1.0 mV
τ f 1.0 2000.0 1.0 ∞ ms
gCa 0.1 10 1e-05 10.0 mS/cm2

gKf 0.1 10 1e-05 10.0 mS/cm2

gKs 0.1 10 1e-05 10.0 mS/cm2

gL 0.0001 0.5 1e-05 10.0 mS/cm2

αh 0.1 0.9 0 1 none
V h
mdp 1 100 -∞ ∞ mV

V h
scale 1.0 200.0 -∞ -1.0 mV
V n
mdp -50 50 -∞ ∞ mV

V n
scale 1.0 200.0 1.0 ∞ mV
τn 2000.0 10000.0 1.0 ∞ ms
V p
mdp -50 50 -∞ ∞ mV

V p
scale 1.0 200.0 1.0 ∞ mV
τp 1.0 2000.0 1.0 ∞ ms
V q
mdp -50 50 -∞ ∞ mV

V q
scale 1.0 200.0 -∞ -1.0 mV
τ q 1.0 2000.0 1.0 ∞ ms
ρCa 1e-5 10 1e-05 10 none

A.1.2 Fitting calcium imaging data with LSTM networks
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A. Experimental settings

Table A.2: Experimental settings for fitting calcium imaging data with a single layer
LSTM network (figure 4.4a)

#Models Learn. rate ∆t #Train #Test Data length Duration
1 0.01 · 0.95bn/9c 340ms 1 1 33min 0.3 h

Table A.3: Experimental settings for fitting calcium imaging data with a 2 layers LSTM
network (figure 4.4e)

#Models Learn. rate ∆t #Train #Test Data length Duration
1 0.01 · 0.95bn/9c 340ms 1 1 33min 25min

A.2 Fitting single neurons on simulated data

A.2.1 Fitting simulated data with Leaky Integrate

Table A.4: Experimental settings for fitting simulated data with Leaky Integrate

#Models Learn. rate ∆t #Train #Test Data length Duration
100 0.92bn/9c 1ms 5 5 1.2s 0.5 h

Parameter Min init Max init LB UB Target Best fit Unit
Cm 0.5 40 0.5 ∞ 1 1.0201392 µF/cm2

gL 1e-5 10 1e-9 10 0.1 0.099840015 mV
EL -70 -45 -∞ ∞ -60.0 -59.39891 mV

A.2.2 Fitting simulated data with a simple Hodgkin Huxley model
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A.2. Fitting single neurons on simulated data

Table A.5: Experimental settings for fitting simulated data with a simple Hodgkin
Huxley model

#Models Learn. rate ∆t #Train #Test Data length Duration
100 0.92bn/9c 1ms 5 5 1.2s 0.6 h

Parameter Min init Max init LB UB Target Best fit Unit
Cm 0.5 40.0 0.5 40.0 1.0 1.0462663 µF/cm2

EK -40 30 -∞ ∞ 30.0 28.679049 mV
EL -70 -45 -∞ ∞ -60.0 -49.92975 mV
V a
mdp -50 0 -∞ ∞ -30.0 -57.70183 mV

V a
scale 1.0 200.0 1.0 200.0 20.0 50.879784 mV
τa 1.0 1000.0 1.0 1000.0 500.0 733.7421 ms
V b
mdp -30 20 -∞ ∞ -5.0 -34.603146 mV

V b
scale -200.0 -1.0 -200.0 -1.0 -3.0 -48.160458 mV
τ b 1.0 1000.0 1.0 1000.0 30.0 101.292244 ms
gK 1e-5 10 1e-09 10.0 0.5 0.5530106 mS/cm2

gL 1e-5 10 1e-09 10.0 0.1 0.103595845 mS/cm2

A.2.3 Fitting simulated data with C. elegans Hodgkin Huxley
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A. Experimental settings

Table A.6: Experimental settings for fitting simulated data with C. elegans Hodgkin
Huxley

#Models Learn. rate ∆t #Train #Test Data length Duration
100 0.92bn/9c 1ms 5 5 1.2s 1 h

Parameter Min init Max init LB UB Target Best fit Unit
Cm 0.5 40 0.5 ∞ 20.0 20.335058 µF/cm2

ECa 0 40 -∞ ∞ 20.0 10.355236 mV
EK -80 -40 -∞ ∞ -60.0 -60.515057 mV
EL -80 -40 -∞ ∞ -60.0 -72.45788 mV
τCa 10 500 0.1 ∞ 110.0 120.05607 none
V e
mdp -30 0 -∞ ∞ -3.36 9.678116 mV

V e
scale 1.0 200.0 1.0 ∞ 6.75 8.948739 mV
τ e 1.0 200.0 1.0 ∞ 10.0 5.938851 ms
V f
mdp -50 50 -∞ ∞ 25.2 22.144915 mV

V f
scale 1.0 200.0 -∞ -1.0 -5.03 -21.890793 mV
τ f 1.0 200.0 1.0 ∞ 151.0 77.04556 ms
gCa 0.1 10 1e-05 10.0 3.0 2.4085476 mS/cm2

gKf 0.1 10 1e-05 10.0 0.07 9.705711 mS/cm2

gKs 0.1 10 1e-05 10.0 10.0 0.32655165 mS/cm2

gL 0.0001 0.5 1e-05 10.0 0.005 1e-05 mS/cm2

αh 0.1 0.9 0 1 0.282 0.8330167 none
V h
mdp 1 100 -∞ ∞ 6.42 71.03009 mV

V h
scale 1.0 200.0 -∞ -1.0 -1.0 -76.96787 mV
V n
mdp -50 50 -∞ ∞ 19.9 14.857346 mV

V n
scale 1.0 200.0 1.0 ∞ 15.9 35.30616 mV
τn 200.0 1000.0 1.0 ∞ 25.0 217.60043 ms
V p
mdp -50 50 -∞ ∞ -8.05 -28.896307 mV

V p
scale 1.0 200.0 1.0 ∞ 7.43 31.390028 mV
τp 1.0 200.0 1.0 ∞ 100.0 22.043167 ms
V q
mdp -50 50 -∞ ∞ -15.6 36.714428 mV

V q
scale 1.0 200.0 -∞ -1.0 -9.97 -125.18112 mV
τ q 1.0 200.0 1.0 ∞ 150.0 207.72289 ms
ρCa 1e-5 10 1e-05 10 0.23 2.0701041 none

A.2.4 Fitting simulated data from C. elegans neural model with
LSTM
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A.3. Optimizing The Tap Withdrawal circuit

Table A.7: Experimental settings for fitting simulated data from C. elegans neural model
with LSTM

#Models Learn. rate ∆t #Train #Test Data length Duration
1 0.01 · 0.95bn/9c 1ms 5 5 1.2s 0.42 h

A.3 Optimizing The Tap Withdrawal circuit

Table A.8: Experimental settings for the tap withdrawal circuit optimization.

#Models Learn. rate ∆t #Train #Test Data length Duration
50 0.92bn/9c 0.5ms 3 3 1.2s 2.5 h

Parameter Min init Max init LB UB Unit
Ggap 1e-7 2 1e-7 2 mS/cm2

Gsyn 1e-7 2 1e-7 2 mS/cm2

V syn
mdp -50 60 -∞ ∞ mV

V syn
scale 0.1 100 0.1 ∞ mV

Einhibitorysyn -120 -60 -120 -60 mV
Eexcitatorysyn -60 50 -60 50 mV

A.4 Optimizing the Forward Locomotion circuit

Table A.9: Constraints and initialization for the FLC optimization.

Parameter Min init Max init LB UB Unit
Ggap 1e-7 0.5 1e-7 0.5 mS/cm2

Gsyn 1e-7 0.5 1e-7 0.5 mS/cm2

V syn
mdp -50 60 -∞ ∞ mV

V syn
scale 0.1 100 0.1 ∞ mV

Einhibitorysyn -120 -60 -120 -60 mV
Eexcitatorysyn -60 50 -60 50 mV

Table A.10: Experimental settings for fully optimizing the FLC with Lung’s output,
Leaky Integrate

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 16.1 h
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A. Experimental settings

Table A.11: Experimental settings for fully optimizing the FLC with redefined output,
Leaky Integrate

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 16.3 h

Table A.12: Experimental settings for optimizing the FLC grouping neurons with Lung’s
output, Leaky Integrate

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 16.4 h

Table A.13: Experimental settings for optimizing the FLC grouping neurons with
redefined output, Leaky Integrate

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 16.6 h

Table A.14: Experimental settings for fully optimizing the FLC with Lung’s output, C.
Elegans Hodgkin Huxley

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 28.8 h
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A.4. Optimizing the Forward Locomotion circuit

Table A.15: Experimental settings for fully optimizing the FLC with redefined output,
C. Elegans Hodgkin Huxley

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 24.7 h

Table A.16: Experimental settings for optimizing the FLC grouping neurons with Lung’s
output, C. Elegans Hodgkin Huxley

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 28.8 h

Table A.17: Experimental settings for optimizing the FLC grouping neurons with
redefined output, C. Elegans Hodgkin Huxley

#Models Learn. rate ∆t #Train #Test Data length Duration
10 0.4 · 0.95bn/9c 0.2ms 1 0 5s 28.8 h
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