
Local Search Methods for the
Particle Therapy Patient

Scheduling Problem

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Software Engineering/Internet Computing

eingereicht von

Thomas Hackl, BSc
Matrikelnummer 0927710

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Mitwirkung: Projektass. Dipl.-Ing. Johannes Maschler, BSc

Univ.-Ass. Dipl.-Ing. Martin Riedler, BSc

Wien, 13. August 2018
Thomas Hackl Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Local Search Methods for the
Particle Therapy Patient

Scheduling Problem

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Thomas Hackl, BSc
Registration Number 0927710

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl
Assistance: Projektass. Dipl.-Ing. Johannes Maschler, BSc

Univ.-Ass. Dipl.-Ing. Martin Riedler, BSc

Vienna, 13th August, 2018
Thomas Hackl Günther Raidl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Thomas Hackl, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. August 2018
Thomas Hackl

v

Danksagung

Ich möchte mich bei der EBG MedAustron GmbH1, Marie Curie-Straße 5, 2700 Wiener
Neustadt, Österreich, für die Zusammenarbeit und die finanzielle Unterstützung dieser
Arbeit bedanken.

1https://www.medaustron.at

vii

https://www.medaustron.at

Acknowledgements

I want to thank EBG MedAustron GmbH2, Marie Curie-Straße 5, 2700 Wiener Neustadt,
Österreich, for their cooperation and for partially funding this thesis.

2https://www.medaustron.at

ix

https://www.medaustron.at

Kurzfassung

Das Partikeltherapienpatientenplanungsproblem (PTPSP) entsteht in modernen Krebs-
therapieeinrichtungen, die eine Partikeltherapie anbieten, und besteht aus der Planung
von Therapien innerhalb eines Planungshorizonts von mehreren Monaten. Eine Besonder-
heit des PTPSP im Vergleich zur klassischen Strahlentherapieplanung besteht darin, dass
die Therapien nicht nur auf Tagesebene, sondern auch innerhalb der Tage geplant werden
müssen, da sich alle Therapien denselben Partikelstrahl teilen. In einer vorhergehenden
Arbeit führten Maschler et al. diese neuartige Problemstellung ein und präsentierten erste
Algorithmen, inklusive einer Iterated-Greedy-Metaheuristik (IG). In dieser Arbeit bauen
wir auf dem IG auf und tauschen zwei Hauptkomponenten aus: die Konstruktionsphase
und den lokalen Suchalgorithmus. Die resultierende Metaheuristik verbessert den beste-
henden Ansatz und liefert für alle betrachteten Benchmark-Instanzen wesentlich bessere
Ergebnisse. Außerdem präsentieren wir einen 2-Phasen-Ansatz, der mittels einer Variable-
Neighbourhood-Descent-Methode (VND) die Tages- und Zeitzuordnungen nacheinander
optimiert. Schlussendlich, verbessern wir unsere IG-Metaheuristik, indem wir die lokale
Suche durch eine VND ersetzen. Diese Methode liefert für alle Benchmark-Instanzen
noch bessere Ergebnisse.

Da die in der Praxis vorkommenden Probleminstanzen sehr groß sein können, ist eine
möglichst effiziente Dursuchung der Nachbarschaften bei der lokalen Suche notwendig.
Um den Aufwand der Suche zu reduzieren, definieren wir verschiedene Filter, die die
Nachbarschaften auf die vielversprechendsten Lösungen einschränken, wodurch kostspie-
lige Evaluierungen von wahrscheinlich schlechteren Lösungen vermieden werden. Die
eigentliche Evaluierung wird inkrementell durchgeführt, indem nur jene Terme der Ziel-
funktion neu ausgewertet werden, deren Werte sich geändert haben. Eine Schwierigkeit
bei diesem Ansatz besteht darin, dass alle Therapieeinheiten einer Therapie ungefähr zur
selben Uhrzeit stattfinden müssen. Zu diesem Zweck hängt die Zielfunktion von Variablen
ab, die für jede Therapie und Woche die sogenannte nominelle Startzeit repräsentieren.
Die Berechnung dieser Variablen ist jedoch recht aufwendig. Daher führen die VNDs
zuerst eine lokale Suche mit fixierten nominellen Startzeiten durch und berechnen im
Anschluss die nominellen Startzeiten mittels linearer Programmierung.

Wir haben die einzelnen Nachbarschaften auf 40 verschiedenen Benchmark-Instanzen
ausgewertet und mittels statistischer Methoden verglichen. Basierend auf den Ergebnis-
sen zeigen wir, welche Nachbarschaften für die Verwendung in unseren Metaheuristiken

xi

geeignet sind. Danach haben wir mit dem automatisierten Parameterkonfigurations-
programm irace Nachbarschaftskombinationen und alle anderen Parameterwerte für
unsere Metaheuristiken ausgewählt. Schließlich haben wir die Metaheuristiken auf den
Benchmark-Instanzen ausgewertet und die Ergebnisse mit statistischen Tests verglichen.

Teile dieser Arbeit wurden bereits veröffentlicht.

Abstract

The Particle Therapy Patient Scheduling Problem (PTPSP) arises in modern cancer
treatment facilities that provide particle therapy and consists of scheduling a set of
therapies within a planning horizon of several months. A particularity of PTPSP
compared to classical radiotherapy scheduling is that therapies need not only be assigned
to days but also scheduled within each day because all therapies share the same particle
beam. In an earlier work Maschler et al. introduced this novel problem setting and
provided first algorithms including an Iterated Greedy (IG) metaheuristic. In this work
we build upon this IG and exchange two main components: the construction phase and
the local search algorithm. The resulting metaheuristic enhances the existing approach
and yields substantially better results for all of the considered benchmark instances.
Moreover, we present a 2-Phase Approach (2PA) that uses a Variable Neighborhood
Descent (VND) to first optimize the day assignments and then the time assignments.
Finally, we improve our IG metaheuristic by replacing the local search algorithm with a
VND. This method provides even better results on all benchmark instances.

Since the problem instances occurring in practice can be very large, an efficient exploration
of the local search neighbourhoods is necessary. In order to reduce the computational
effort, we define various filters that limit the neighbourhoods to the most promising
solutions, thus, preventing expensive evaluations of solutions which are most likely worse.
The actual evaluation is done incrementally by re-computing only those terms of the
objective function whose values have changed. A difficulty with this approach is that all
daily treatments of a therapy have to start approximately at the same time. To that end,
the objective function depends on variables representing the so-called nominal starting
time of each therapy and week. The computation of these variables, however, is quite
costly. Therefore, the VNDs first perform a local search with fixed nominal starting
times, and compute the nominal starting times afterwards using linear programming.

We evaluated the individual neighbourhoods on 40 different benchmark instances and
compared them using statistical methods. Based on the results, we show which neigh-
bourhoods are suitable for being used in our metaheuristics. We then used the automated
parameter configuration tool irace to select neighbourhood combinations and all other
parameter values for our metaheuristics. Finally, we evaluated the metaheuristics on the
benchmark instances and compared the results with statistical tests.

Parts of this thesis were already published.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 3

3 Methods 9
3.1 Local Search . 10
3.2 Variable Neighbourhood Descent . 11
3.3 Iterated Greedy . 12
3.4 Linear Programming . 13
3.5 Statistical Evaluation . 14
3.6 Parameter Configuration . 14

4 Problem Formalization 17
4.1 Given Input Data . 17
4.2 Solutions, Feasibility, and Objective 19
4.3 Mathematical Model . 21
4.4 Computation of Nominal Starting Times 24

5 Neighbourhoods 27
5.1 Permuting Daily Treatments . 28
5.2 Moving Daily Treatments . 29
5.3 Moving Daily Treatments across Day Boundaries 30
5.4 Moving Therapies . 30
5.5 Shifting Therapies . 31

6 2-Phase Approach 35

7 Iterated Greedy Approach 37

xv

7.1 Local Search . 37
7.2 Destruction and Construction . 38
7.3 Improved Iterated Greedy . 39

8 Postprocessing 41

9 Computational Study 45
9.1 Local Search . 45
9.2 2-Phase Approach and Iterated Greedy 57

10 Conclusion 61

List of Tables 65

List of Algorithms 67

Bibliography 69

CHAPTER 1
Introduction

The Particle Therapy Patient Scheduling Problem (PTPSP) arises in radiotherapy used
for cancer treatment. In classical radiotherapy cancer treatments are provided by linear
particle accelerators that serve a dedicated treatment room exclusively. In contrast,
particle therapy uses beams that are produced by either cyclotrons or synchrotrons
that can serve up to five treatment rooms in an interleaved way. Several sequential
activities like the stabilization of patients not requiring the beam have to be performed
in the treatment room before and after each actual irradiation. Using several rooms
and switching the beam between the rooms thus allows an effective utilization of the
expensive particle accelerator and an increased throughput of the facility. We consider
the situation at MedAustron,1 a facility with three treatment rooms.

The goal of the PTPSP is to schedule several hundred patient therapies over the next
few months. Each therapy consists of up to 35 daily treatments (DTs) that have to be
assigned to different days, respecting a set of constraints: A therapy has to start in a
given time window, a lower and upper bound of days are allowed to pass between two
subsequent DTs, and a break of at least two consecutive days is required in each week.
Additionally, DTs should start roughly at the same time within each week. Each DT
requires different resources such as the particle beam, a room or an oncologist, where each
resource can only be used by a single DT at any point in time. A resource is available
only in predefined availability periods. A part of these time spans is considered extended
service time, in which the usage of the resource leads to extra costs.

A schedule assigns all DTs of a given set of therapies to days and determines their starting
times considering all operational constraints. A schedule’s quality is determined by an
objective function that is defined as a weighted sum of the therapies’ finishing days, the
amount of used extended availability time and the variation of the starting times of the
DTs.

1https://www.medaustron.at

1

https://www.medaustron.at

1. Introduction

It turns out that instances of the PTPSP occurring in practice are so large that the time
it takes to find a provably optimal schedule is not acceptable in general. Therefore, a
construction heuristic and two metaheuristics have been proposed for this problem in a
previous work [MRSR16]. The aim of this thesis is to study local search techniques and
to apply them within three metaheuristic frameworks: a 2-Phase Approach (2PA) and
two Iterated Greedy (IG) methods. Moreover, two arising subproblems are identified for
further improving obtained solutions that can be modeled and solved efficiently with a
linear programming approach.

The 2PA generates, on average, 25% better solutions than the reference metaheuristic
from [MRSR16]. The first IG approach from this thesis was also published in [MHRR17].
Its solutions are, on average, again 25% better than the solutions of 2PA. With the
second IG from this thesis we get a further improvement of 25% in solution quality
compared to the first IG. It improves its initial solutions, on average, by 74%.

The thesis is organized as follows. In Chapter 2 we review the related literature including
the metaheuristics from [MRSR16], which are used in the following chapters. Chapter 3
discusses the methods used in this work. In Chapter 4 a formal model for the PTPSP is
presented. The main part of the thesis is split into Chapter 5, 7 and 6, where we describe
the neighbourhood structures and two metaheuristics for solving the PTPSP. Chapter 8
introduces a Linear Programming (LP) model which is used to polish a schedule. In
Chapter 9 we discuss the computational experiments conducted on a set of test instances.
We conclude the thesis in Chapter 10 with a summary and an outlook on possible future
research directions.

2

CHAPTER 2
Related Work

A first attempt at automating the task of Radio Therapy Patient Scheduling (RTPS) has
been made in 1993 by Larsson [Lar93].

In 2006 Kapamara et al. [KSH+06] formulate this task as a Job Shop Problem (JSP),
where a number of patients having different priorities are to be assigned to a set of
machines such that an objective function is minimized while respecting certain constraints.
According to [KSH+06] JSPs are categorized along two dimensions: Firstly, a JSP can be
static or dynamic. Static problems have the number of jobs and their ready times known
in advance and fixed, whereas dynamic problems involve patients coming late to their
appointments, machine breakdowns and other unforeseen occurrences which influence the
schedule. Secondly, one can distinguish between a deterministic and stochastic variant
of the JSP. In deterministic problems all parameter values of a job, like its processing
times and due dates, are known beforehand, whereas in stochastic problems these values
may vary. The authors stated that the RTPS is best described as a stochastic dynamic
JSP due to the uncertainties and disturbances involved in the treatment process. In their
study the authors identified several possible objective functions which can be minimized
on their own or combined to a multi-objective function:

• the mean flow time of all jobs to the first definitive treatment,

• the mean flow time of all jobs,

• the difference between the above two objective functions and

• the number of jobs failing to meet the first due date.

Due to the fact that JSP is NP-hard, specialized exact approaches as well as heuristic
methods are developed. The authors compared several exact methods, like Branch &
Bound, as well as heuristic approaches, like Simulated Annealing, Tabu Search, Genetic

3

2. Related Work

Algorithms (GAs) and Greedy Randomized Adaptive Search Procedures (GRASPs),
and came to the conclusion that Tabu Search outperforms the others in the analysed
experiments.

In [PLSS06] Petrovic et al. split the process of booking incoming patients into two
phases: First the patients are prioritized according to the severity of the disease like in
[KSH+06]. Afterwards the required number of treatment sessions are booked for each
patient, starting from the patients with highest priority. Two greedy-like algorithms are
presented for this task: one which books a treatment forward starting from the earliest
feasible start date and another one that schedules a treatment backwards from the latest
feasible start date. The objective function incorporates the number of patients, the total
length of waiting time breaches of the patients and the number of interruptions. The
researchers made experiments showing that the forward booking strategy is superior with
palliative patients, while the backward booking method performs better with radical
patients.

In [PLR08] Petrovic et al. evaluate four different variants of GRASP for RTPS. In a
nutshell, this metaheuristc repeatedly constructs solutions using a randomized heuristic
and locally improves each obtained solution [GP10]. All four developed GRASP methods
have in common that the patients are first sorted by their due date, priority and the
required number of sessions. Afterwards, one of the following four approaches is applied
to schedule the patients from the ordered list. The Target Approach is similar to the
algorithm in [PLSS06] as it tries to schedule a treatment session at a specified target day
and moves it forward or backwards until all constraints are satisfied. In the Utilisation
Threshold Approach a threshold is defined for each radiation machine and patient priority,
s. t. no more patients of a particular priority can be scheduled on a certain machine if
the machine’s utilisation reaches the specified threshold. Experiments show that the best
schedules are produced if the threshold for routine patients is 90%, thus reserving 10%
of the time on the machine for urgent and emergency patients. The Schedule Creation
Day Approach limits the set of days a treatment can start on by defining the weekdays
that the first treatment session can be scheduled on for each patient priority. The best
results are observed if urgent and routine patients can be scheduled only on 3 days in a
week, while allowing emergent patients to be treated on any weekday. In the Maximum
Number of Days in Advance Approach a schedule is created for a patient a specified
maximum number of days before the patient’s due date. If this number is smaller for
routine patients than for emergent patients, then the latter ones have a better chance to
be scheduled earlier.

In contrast to the above methods which construct schedules from scratch, the steepest hill
climbing approach presented in [KP09] gets a complete, feasible schedule and optimises
it in an iterative way until a stopping criterion is fulfilled. In each iteration neighbours
of the current schedule are constructed by moving appointments to different days. A
schedule is accepted if it is feasible and the best schedule found in the current iteration. A
schedule’s objective value to be minimized is computed as a weighted sum of the patients’
lateness. The lateness of a patient is defined as the difference between the date the

4

patient’s details are referred to the centre and the targeted start of his or her treatment.
The weights depend on the patient’s priority and are set to 10, 5 and 1 for emergency,
palliative and radical patients, respectively. Applying the steepest hill climbing method
to a (generated) data set of more than 2000 patients showed that the waiting time can
be reduced considerably by combining a constructive heuristic and the presented steepest
hill climbing method.

In [PMP09] and [PMP11] Petrovic et al. present a GA for optimizing radiotherapy
schedules. A GA is a population-based metaheuristic that is inspired by natural selection
and genetics [Mit98]. The GA selects good solutions in each iteration and applies one of
two operators on them: The crossover operator combines two solutions by replacing a
part of the first solution with a part of the other solution. The mutation operator modifies
some solutions randomly. The authors encoded the schedules as strings of patient IDs,
which define the order in which the patients are to be irradiated. Two different objectives
are defined: minimisation of average waiting time and minimisation of average tardiness
of the patients. The authors applied their algorithm to real life data and measured a
reduction of the average waiting time and the tardiness by 35% and 20%, respectively.

Burke et al. [BLRP11] formulate the radiotherapy scheduling problem as a Mixed Integer
Linear Programming (MILP) model. A MILP model is a mathematical model consisting
of real or integer variables, linear equations and inequations constraining the variables’
domains and a linear objective function which is to be minimized [CCZ14]. Although
it seems too restrictive to model a problem as a set of linear relations, this approach
has the advantage that an optimal solution can be found. The variables of the proposed
model are integer variables defining whether or not a certain patient is scheduled on a
particular machine. The constraints in the model either represent parameters originating
directly from the problem instance like the number of sessions required for a particular
patient, or define the relationship between two variables like the equation stating that
two subsequent treatment sessions lie a certain number of days apart from each other.

The above approaches do not take into account the arrival distribution of the patients or
future events. Legrain et al. [LFLR15] address this issue by developing an approach that
combines stochastic optimization and online optimization.

The aforementioned contributions deal with constructing a schedule on a very coarse
level, meaning that each treatment session is only assigned to a day but not a time of
day. This simplification is reasonable only as long as every treatment room is served by
an individual linear accelerator because in this case the treatments in different rooms are
independent of each other and can be scheduled separately. However, a particle therapy
centre usually contains several treatment rooms that are served by the same accelerator
(a cyclotron or a synchrotron). In this scenario the start time of each treatment session
must be carefully chosen, such that the radiation of a patient in one room ends just
before the radiation of another patient in a different room is about to start and the beam
can be switched to this room without a relevant idle period. Maschler et al. [MRSR16]
propose a MILP model which can be used to model this problem. In theory, it is possible
to find a provably optimal solution for this model, but it turned out [MRSR16] that

5

2. Related Work

instances of the PTPSP occurring in practice are so large that the time it takes to do this
is not acceptable in general. Therefore the authors developed several heuristic methods
(TWCH, GRASP and IG) which will be explained until the end of this section.

The therapy-wise construction heuristic (TWCH) is a fast greedy heuristic to create
a schedule from scratch. It operates in two phases: In the day assignment phase the
heuristic selects one yet unconsidered therapy and assigns days to its DTs, i. e., treatment
sessions, in a sequential manner. For each DT, all days are considered that allow a
feasible allocation of the DT’s activities w. r. t. aggregated resource demands and still
available capacities and also admit the scheduling of the subsequent DTs at later days.
A DT is then always assigned to the day with the lowest estimated cost increase w. r. t.
the objective function. See [MRSR16] for a detailed explanation and a pseudo code. The
performance of the heuristic depends mostly on the order, in which the therapies are
selected. Different strategies were evaluated:

1. Therapies with more DTs have a higher priority.

2. Therapies with an earlier latest starting day for the first DT have a higher priority.

3. Therapies with a higher resource consumption for the first DT have a higher priority.

Experiments showed that strategy 2 yields the best results. In the time assignment phase
the working days are planned separately in a similar greedy-like fashion. To this end
a not yet scheduled DT is selected which has the highest priority accoring to one of
several priority functions. Then this DT is assigned to the earliest possible starting time
after all already assigned DTs, respecting the availabilities of all required resources. The
performance of this procedure depends to a high degree on the used priority function for
selecting the next DT. The following criteria were evaluated:

1. A DT with minimum induced idle time for the beam resource is considered next.

2. A DT is preferred which requires the resource that leaves its regular service window
first.

3. The ratio between the time the beam resource is required and the total processing
time of a DT is considered. DTs with a smaller ratio are prioritized.

It was shown that criterion 1 is superior on average. However, it frequently happened
that several DTs evaluate to the same priority value. In order to break such ties, a
lexicographic combination of all three criteria is used in the final algorithm: First criterion
1 is applied. In case of a tie, criterion 2 is used, and if a tie happens again, the last
criterion 3 is considered.

The second heuristic developed by Maschler et al. [MRSR16] is an implementation of
GRASP. The first iteration schedules all therapies using TWCH. All subsequent iterations

6

construct new schedules using a randomized version of TWCH’s day assignment, which
selects suboptimal DTs too with a definable probability, and TWCH’s time assignment.
Each iteration ends with a local improvement which repeatedly assigns new times to
the DTs by applying a randomized variant of TWCH’s time assignment, where also
suboptimal DTs are considered with a certain probability.

The third heuristic is called IG. In a nutshell, the general Iterated Greedy heuristic
improves a solution by iteratively destroying and recreating parts of the solution [RS07].
The IG algorithm presented in [MRSR16] works as follows. TWCH is used to create
an initial solution. The destruction operator removes a defineable amount of therapies
from the schedule. The construction step is then performed by reapplying TWCH’s day
assignment for the set of removed therapies. Finally, TWCH’s time assignment is applied
from scratch to all working days which have been modified. Additionally, the randomized
time assignment procedure from GRASP is used to further improve the obtained solution.

The three heuristics (TWCH, GRASP and IG) were tested on instance sets defining up
to 300 therapies. A statistical comparison of the results showed that IG finds the best
schedule on most instances.

Parts of this thesis were published in a recent publication by Maschler et al. [MHRR17].

7

CHAPTER 3
Methods

A combinatorial optimization problem is the problem of finding a solution minimizing
or maximizing a given objective function in a finite solution space. The PTPSP, which
is formally defined in Chapter 4, belongs to this problem class. The solution space of
a combinatorial optimization problem is given by a finite set S containing all feasible
solutions. The cost or quality of a solution in S is defined by an objective function
f : S → R. In the context of this thesis, a solution x1 ∈ S is considered better than
a solution x2 ∈ S if f(x1) < f(x2). Using this terminology, solving a combinatorial
optimization problem means minimizing the objective function [AKM07].

One can distinguish between exact and heuristic approaches for solving combinatorial
optimization problems. An exact approach finds a solution which is provably a global
minimum w.r.t. to the objective function if there is one. However, on real-world problems
exact approaches are often too slow, which limits their applicability. A LP model, for
example, can be solved very efficiently in polynomial time, but many combinatorial
problems are NP-hard meaning that they can in general not be solved exactly by a
deterministic polynomial time procedure. Heuristic methods, on the other hand, do not
guarantee to find the optimal solution. However, their strength is that they can find
sufficiently good solutions for many real-world problems which are too complex to be
exactly solved in a reasonable time.

Heuristic approaches can be classified, among others, into constructive and local search
algorithms [AKM07]. Constructive algorithms generate a solution by iteratively extending
a partial solution until a complete solution is obtained. Local search algorithms, on the
other hand, start with a complete solution and try to find better solutions by making
modifications to the current solution.

The next three sections in this chapter present three widely used heuristic approaches:
local search, variable neighbourhood descent and iterated greedy. The forth section
discusses linear programming, which is an exact approach. The last two sections are

9

3. Methods

dedicated to the statistical evaluation of optimization algorithms and to the process of
finding good parameter values for a parameterized optimization method.

3.1 Local Search
A local search algorithm starts with a complete solution created by a construction
method and tries to find better solutions by making modifications to the current solution.
Algorithm 3.1 depicts the high-level structure of a local search algorithm.

Algorithm 3.1: Local Search
1 x← initial solution;
2 repeat
3 choose an x′ ∈ N(x);
4 if f(x′) ≤ f(x) then
5 x← x′;
6 until stopping criteria satisfied;
7 return x;

Variable x ∈ S holds a solution from the solution space S. How the solutions are
represented, is an important design decision and cannot be defined in general because it
highly depends on the concrete problem to be solved.

Function N : S → 2S defines the neighbourhood structure that assigns a set of neighbours
N(x) ⊆ S to each solution x ∈ S. The set N(x) is called the neighbourhood of x. Usually
one specifies the neighbourhood structure not as a function but as a set of move operators
which construct new solutions by modifying certain parts of the current solution, yielding
a solution which has in general a slightly different objective value. The performance of a
local search depends to a large extent on the concrete definition of the move operators.
Ideally, the move operations construct only better solutions, s.t. no time is wasted by
evaluating worse solutions. Note that the globally best solution is usually not reachable
from any start solution. Hence, a local search, in general, finds only a local optimum w.r.t.
the neighbourhood structure. Some techniques for escaping local optima are discussed in
the remaining chapter.

There are different ways, called step functions, to choose x′ ∈ N(x):

Random neighbour: A random neighbour is selected.

Next improvement: N(x) is searched in a specific order, taking the first solution that
is better than x.

Best improvement: N(x) is searched completely and the best neighbour is selected.

The step function has great influence on the performance but no strategy is always better
than the other ones. At first glance, one might think that best improvement always

10

3.2. Variable Neighbourhood Descent

leads to the best objective value in the least number of iterations. However, it can be
shown [HM06] that there are optimization problems where next improvement produces
better solutions on some start solutions while best improvement performs better on other
start solutions. The random neighbour strategy is the least targeted and is often used in
more advanced algorithms to escape local optima. The local search method Simulated
Annealing (SA), for example, is based on Algorithm 3.1 but accepts a randomly selected
neighbour in Line 4 even if it is worse with a small probability. Another algorithm which
makes use of this idea is General Variable Neighbourhood Search (GVNS) [GP10]. This
method alternately finds a local optimum using next or best improvement, and selects a
random neighbour (possibly in a different neighbourhood) to escape it.

The local search ends as soon as a stopping criterion or a combination of several criteria
is fulfilled. The following stopping criteria are used in practice:

Minimum reached: If no better neighbour has been found using best or next Im-
provement, the search is aborted because the current solution must be locally
optimal.

Time limit: The search is stopped if a given time limit is exceeded. For more complex
heuristic search methods, one could define multiple time limits on different layers. If,
for instance, the local search is embedded into another method, then two separate
time limits could be defined for both methods. An example is the IG approach
which is discussed in Chapter 7. This method executes a local search in every
iteration before applying a destruction and construction operator. In order to
ensure that the IG executes enough iterations, one could, for example, set the
time limits of the local search and the whole IG to 10 seconds and 20 minutes,
respectively.

Solution quality: The search is terminated if the current solution is good enough, e.g.
its objective value is close enough to a known lower bound.

Total number of iterations: The procedure is stopped after a certain number of
moves.

Number of consecutive unsuccessful iterations: The search is stopped after a cer-
tain number of consecutive moves that did not improve the solution. This criterion
is especially useful for the random neighbour step function because the more con-
secutive unsuccessful iterations have passed the more likely it is to be already at a
local optimum.

3.2 Variable Neighbourhood Descent
VND is a method which is based on the idea of systematically changing several neighbour-
hood structures N1, . . . , Nlmax during a local search [GP10]. Algorithm 3.2 illustrates
this method.

11

3. Methods

Algorithm 3.2: Variable Neighbourhood Descent
1 x← initial solution;
2 l← 1;
3 repeat
4 find an x′ with f(x′) ≤ f(x′′), ∀x′′ ∈ Nl(x);
5 if f(x′) ≤ f(x) then
6 x← x′;
7 l← 1;
8 else
9 l← l + 1;

10 until l > lmax;
11 return x;

The method starts with the first neighbourhood structure N1. Line 4 finds the best
solution x′ in the current neighbourhood Nl(x) of x. If it is better than the current
solution x, the first neighbourhood structure N1 will be used in the next iteration again.
If it is worse, then x is already a local optimum with respect to the neighbourhood
structure Nl. Hence, the algorithm switches to the next neighbourhood structure Nl+1.
After termination the found solution is a local optimum with respect to all neighbourhood
structures.

It can make sense to replace the best improvement step function by next improvement in
line 4. This can speed up the convergence at the beginning of the search and lead to
a better final solution [HM06] for some optimization problems. Additionally the same
stopping criteria which are described for the local search can be applied here in order to
abort the search before reaching an optimum.

3.3 Iterated Greedy

Iterated Greedy is a metaheuristic which is used to improve the performance of a given
greedy construction heuristic [PP16]. As can be seen in Algorithm 3.3, IG consists of
two phases which are executed repeatedly until a stopping criterion is fulfilled. The
destruction phase removes random parts of the current solution yielding a partial solution.
The construction phase completes the partial solution using the given greedy heuristic.
Finally an acceptance criterion decides whether the new solution should become the next
incumbent solution.

Possible choices for the acceptance criterion include the following [PP16]:

• Next Improvement: The constructed solution x′′ is accepted if it is better than x.

• Random Walk: The constructed solution is always accepted unless it is infeasible.

12

3.4. Linear Programming

Algorithm 3.3: Iterated Greedy
1 x← initial solution;
2 repeat
3 x′ ← Destruction(x);
4 x′′ ← Construction(x′);
5 if acceptance criterion fulfilled then
6 x← x′′;
7 until stopping criteria fulfilled;

• Simulated Annealing like: A solution x′′ is always accepted if it is better than the
current solution x. Otherwise it is accepted with probability e−

f(x′′)−f(x)
T , where T

is a parameter called temperature.

3.4 Linear Programming

Many problems, which are solvable in polynomial time, can be modeled as LP problems
in a natural way. They can then be solved using the Simplex Method developed by
Dantzig [Dan16]. An explanation of this method would go beyond the scope of this thesis.
Though it is worth mentioning that there are programming libraries, such as CPLEX1

and GUROBI2, which are highly optimized for solving such tasks.

Linear Programming, which is also known as Linear Optimization, deals with optimizing
mathematical models composed solely of linear relations between the decision variables.
To be more precise, an LP model consists of a cost vector c = (c1, . . . , cn), a vector of
unknowns x = (x1, . . . , xn) and a linear cost function cTx =

∑n
i=1 cixi that we seek to

minimize over all vectors x, subject to a set of linear equality and inequality constraints.

Let M1, M2 and M3 be finite index sets for each of which we are given an n-dimensional
vector ai and a scalar bi, used to form the i-th constriant. And let N1 and N2 be subsets
of {1, . . . , n} indicating which variables xj are constraint to be nonnegative or nonpositive,
respectively. Then the set of constraints is given as:

ai
Tx ≥ bi ∀i ∈M1,

ai
Tx ≤ bi ∀i ∈M2,

ai
Tx = bi ∀i ∈M3,

xj ≥ 0 ∀j ∈ N1,

xj ≤ 0 ∀j ∈ N2.

1https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
2http://www.gurobi.com

13

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www.gurobi.com

3. Methods

Even though LP is too restrictive for most problems, it is sometimes possible to find
subproblems which can be modeled as an LP. Two important subproblems for the RTPS
solvable using LP are presented in Chapter 4 and 8.

3.5 Statistical Evaluation
To check if a certain heuristic method produces better solutions than another method for
the same optimization problem in a serious experimental way, one has to make use of
a statistical hypothesis test. In this work we use the Wilcoxon rank-sum test [Wil45].
The null hypothesis of this test states that two independent samples were selected from
populations having the same distribution. The alternative hypothesis says that the
probability distributions of both populations are shifted against each other. The test
assumes that the observations are independent of each other.

The comparison of two heuristic methods involves the following steps. First both heuristic
methods have to be applied to a set of test instances a certain number of times, yielding
two samples X and Y of objective values x1, . . . , xm and y1, . . . , yn. Then all values from
both samples are combined in a single list of m+n values and sorted by size. Afterwards,
each value is assigned a rank, which is just the value’s position in the list if all values are
different. Now the Wilcoxon rank sum statistic can be computed as

W = (sum of all X ranks)− (1 + 2 + · · ·+m).

This value W is then compared to critical values wα/2 and w1−α/2, where α indicates
the confidence level. The critical values for commonly used sample sizes are tabulated
in [WKW70]. The null hypothesis is rejected if W ≤ wα/2 or W ≥ w1−α/2 in case a
two-tailed test is used. For a one-tailed test, only one of the above conditions has to be
used.

3.6 Parameter Configuration
After deciding which heuristic to use for solving a certain optimization task, one faces the
problem of determining good parameter values for it. For example, the IG metaheuristic
uses a parameter defining the destruction rate. A GA metaheuristic has several parameters
like the population size, the crossover and the mutation rate. For a VND one has to
decide which neighbourhoods to use in which order.

The task of finding a good parameter configuration for a given heuristic is called parameter
tuning and follows the following steps:

1. The set of available problem instances is partitioned into a training set T and a
validation set V .

2. The heuristic’s parameters are tuned on the set T , meaning that a parameter
configuration θ from as set of available configurations Θ is found, with which the
heuristic generates the best solutions on average.

14

3.6. Parameter Configuration

3. The heuristic is applied on V using θ to see whether θ is a good choice on a new
data set too.

A brute-force approach for parameter tuning in Step 2 works by first executing the
heuristic with each parameter configuration on every instance in T and finding the best
configuration by comparing their performance on all test runs afterwards. The main
issue with this approach is that a lot of computational time is wasted with the worst
parameter configurations even though it is obvious after few test instances that they
cannot compete with other configurations.

A method which counteracts this problem is called Racing [MM97] [BSPV02]. The idea
of Racing is to evaluate different parameter configurations in sequence and to discard a
configuration as soon as enough statistical evidence is available that it is worse than the
best configuration found so far. In case of F-Race this statistical proof is made using the
Friedman test [BSPV02]. By excluding configurations early on, the other configurations
can be evaluated more often given a certain time budget. Thus, more statistical evidence
is gathered for the remaining configurations, which is needed in order to select the better
of two configurations if both are very similar regarding their performance.

Balaprakash et al. [BBS07] proposed iterated F-Race which is an extension of F-Race
that is suitable for very large configuration sets. It is an iterative procedure in which
each iteration first defines a probability measure over the parameter space using the best
configurations obtained from the previous iteration, then selects a subset of configurations
that are distributed according to the newly defined probability measure, and finally
applies F-Race on the selected configurations [BBS07]. The tool irace3 implements this
method and we used it to conduct the experiments in Section 9.

3http://iridia.ulb.ac.be/irace/

15

http://iridia.ulb.ac.be/irace/

CHAPTER 4
Problem Formalization

This chapter presents the formal model for the PTPSP, which is the basis for all following
algorithms. Section 4.1 describes the given input data. For example, the set of all
working days on which a therapy can be scheduled is given by the variable D′. Section 4.2
defines the solutions space by explaining how a solution is represented and what criteria a
solution must fulfill in order to be feasible. The requirement that every DT of a therapy
must be scheduled on a day in D′ is one of these criteria. Furthermore, several auxiliary
variables are defined here, which help to formalize the problem. Finally, the objective of
the PTPSP is described in an informal way in this section as well. The next section 4.3
defines the objective function to be minimized and lists all constraints for the variables it
contains in a formal way. Both, the objective function and the constraints, use all three
types of variables: variables defining a solution, auxiliary variables and input variables.
The last section 4.4 is dedicated to an LP which is used to compute the optimal values
of a particular subset of the auxiliary variables.

4.1 Given Input Data

We are given the following input data.

• Times are generally specified in Hunit units of an hour.

• Let D = {0, . . . , nD− 1} refer to the nD days that need to be considered within the
planning period in the given order. Moreover, D′ ⊆ D denotes the subset of working
days where the treatment centre is actually open. We refer to the weeks covered by
D by set V = {0, . . . , nV − 1}. Furthermore, let

⋃
v∈V D

′
v be the partitioning of D′

into nV subsets corresponding to the nV weeks.

17

4. Problem Formalization

For day d ∈ D′, let W̃d = [W̃ start
d , W̃ end

d) be the fundamental opening time, i.e.,
the time window in which anything must be scheduled, including extended times
outside of the regular business hours.

• Let R, implemented by R = {0, . . . , nR − 1}, denote the set of all (renewable)
resources. They include the following special ones:
rB: index of the beam resource
Rrooms: set of indices of the room resources

Each resource r ∈ R is available on a subset of the working days Dres
r ⊆ D′.

Moreover, each resource r ∈ R is associated for each day d ∈ Dres
r with a single

service window (time interval) Wr,d = [W start
r,d ,W end

r,d) ⊆ W̃d, where W start
r,d ≤W end

r,d

are the start and end times, respectively. In addition, resources have defined
extended service windows. For each r ∈ R and d ∈ Dres

r we are given Ŵr,d =
[Ŵ start

r,d , Ŵ end
r,d) ⊆ W̃d, where Ŵ start

r,d and Ŵ end
r,d denote the extended start and end

times, respectively, and Ŵ start
r,d ≤W start

r,d ≤W end
r,d ≤ Ŵ end

r,d holds. For some resources
the extended service window might be the same as the regular one on all days.
Therefore, we define the subset R̂ ⊆ R of resources with actual extended service
windows, i.e., R̂ = {r ∈ R | ∃d ∈ Dres

r (Ŵ start
r,d < W start

r,d ∨W end
r,d < Ŵ end

r,d)}.
Furthermore, for each resource r ∈ R and each day d ∈ Dres

r , we are given unavail-
ability time periods W r,d =

⋃
w=0,...,ωr,d−1W r,d,w with W r,d,w = [W start

r,d,w,W
end
r,d,w) ⊂

Ŵr,d, w = 0, . . . , ωr,d − 1, where W start
r,d,w and W end

r,d,w denote the start and end time
of the w-th unavailability period. All these periods are non-overlapping, and sorted
according to increasing time.
We, thus, assume the service times of all resources to be cropped according to the
general opening times W̃d. On the contrary, these general opening times are also
tightened based on the resource availabilities as far as possible, considering only
those time intervals in which any task might have a chance to be scheduled.
Unavailability periods are expected to neither start at the beginning of extended
resource availability periods nor to end directly at the end of extended resources
availability periods since otherwise the resources extended service window (and
possibly also the regular one) can be tightened accordingly.

• The set of therapies to be scheduled is given by T , implemented by the index set
T = {0, . . . , nT − 1}. Each therapy t ∈ T is associated with an ordered set of DTs
Ut implemented by the index set Ut = {0, . . . , τt − 1}. Last but not least, each DT
u ∈ Ut is associated with a sequence of activities. As all activities of each DT are
always to be performed without any breaks in-between, we can ignore the activities
here in our optimization, except that certain resources are only needed at certain
times.
For each therapy t ∈ T we are given

– a priority ϕpriority
t ≥ 0, which is typically 1,

18

4.2. Solutions, Feasibility, and Objective

– a minimal number ntwmin
t and a maximal number ntwmax

t of DTs per week,
– a minimal number δmin

t ≥ 1 and a maximal number δmax
t of days between two

consecutive DTs.

The subset T̃ ⊆ T shall denote therapies which are actually remaining parts of
larger therapies whose first parts have already been fixed or completed. For those,
we are additionally given

– S̃t,−1 the nominal starting time of the DT within the last already fixed week
for therapy t ∈ T̃ .

For each DT u ∈ Ut we are given

– an earliest starting day dmin
t,u ∈ D and a latest starting day dmax

t,u ∈ D,
– pt,u > 0 denotes the processing time for performing the DT,
– Qt,u ⊆ R denotes the set of resources required by the DT at some time,
– for each required resource r ∈ Qt,u, interval Pt,u,r = [P start

t,u,r , P
end
t,u,r) ∩ Z ⊆

[0, pt,u) ∩ Z denotes the time relative to the DT’s start in which resource r is
needed.

• Let δintraw denote a maximum intended time difference of the starting times of the
first activities of the DTs within the same week.

• Let δinterw denote a maximum intended time difference of the starting times of DTs
between two consecutive weeks.

4.2 Solutions, Feasibility, and Objective
A schedule (solution) is described by a tuple (Z, S), with

• Z = {Zt,u ∈ D′ | t ∈ T, u ∈ Ut} denoting the days on which all the DTs are
scheduled and

• S = {St,u ≥ 0 | t ∈ T, u ∈ Ut} denoting the starting times of the DTs at the
respective days.

To aid modeling we use the following further variables:

• Yt,v ∈ {0, 1} for t ∈ T, v ∈ V indicates with value one that therapy t takes place,
i.e., has at least one DT, in week v.

• Xt,d ∈ {0, 1} for t ∈ T, d ∈ D′ indicates with value one that therapy t has a DT at
day d.

19

4. Problem Formalization

• S̃t,v for each therapy t ∈ T and each week v ∈ V corresponds to the nominal
starting time of the DT within the whole week v when the treatment takes place
in this week. The actual starting times within the week should not differ by more
than a given tolerance δinterw (soft constraint).

• Sfirst
r,d and Slast

r,d for r ∈ R̂, d ∈ Dres
r denote the first, respectively last, time resource

r is needed at day d.

• σintraw
t,u corresponds for DTs u ∈ Ut of therapies t ∈ T̃ and DTs u ∈ Ut \ {0} of

therapies t ∈ T \ T̃ to the violation of the maximum intended time difference of the
starting times.

• σinterw
t,v corresponds for weeks v ∈ V of therapies t ∈ T̃ and v ∈ V \ {0} of therapies
t ∈ T \ T̃ to the violation of the maximum intended time difference of the starting
times of DTs between the two weeks v − 1 and v.

To be feasible, a schedule must fulfill the following requirements.

• For each therapy, all its DTs must be scheduled sequentially at different days in
the given order.

• For each therapy and for each week D′v of treatment except the last, the number of
treatments has to be larger than or equal to min(ntwmin

t , |D′v|).

• For each therapy, the number of treatments per week is not allowed to exceed
ntwmax
t .

• Consecutive DTs of the same therapy have to be separated by at least δmin
t and at

most δmax
t days. The times at these days are not considered hereby.

• For each DT u ∈ Ut, its resource requirements specified by Qt,u and Pt,u,r must be
fulfilled at the time the DT is scheduled.

The objective is to

• find a feasible schedule

• which minimizes usage of extended time outside of regular service windows of each
resource in R̂ at each day,

• minimizes the finishing day Zt,τt of each therapy t ∈ T , weighted by its priority ϕt,
and

• minimizes the violation of the “intraweek” and “interweek” soft constraints.

The individual optimization objectives are roughly prioritized according to the order in
which they are listed.

20

4.3. Mathematical Model

4.3 Mathematical Model
We now formulate a mathematical model that covers all aspects of the PTPSP using the
variables introduced above. Auxiliary function used(r, d, b) as well as constants Zearliest

t,τt
,

SL
t,u, SU

t,u, S̃L
t,v, and S̃U

t,v are described below.

min γextfront 1
Hunit

∑
r∈R̂

∑
d∈Dres

r

max
(
W start
r,d − Sfirst

r,d , 0
)

+

γextback 1
Hunit

∑
r∈R̂

∑
d∈Dres

r

max
(
Slast
r,d −W end

r,d , 0
)

+

γfinish
∑
t∈T

ϕpriority
t (Zt,τt

− Zearliest
t,τt

) +

γintraw 1
Hunit

∑
t∈T

∑
u∈Ut\{0}

σintraw
t,u +

γinterw 1
Hunit

∑
t∈T

∑
v∈V \{nV −1}

σinterw
t,v (1)

s.t. Zt,u − Zt,u−1 ≥ δmin
t ∀t ∈ T, ∀u ∈ Ut \ {0} (2)

Zt,u − Zt,u−1 ≤ δmax
t ∀t ∈ T, ∀u ∈ Ut \ {0} (3)∑

d∈D′
v

Xt,d ≥ min(ntwmin
t , |D′v|)

if Yt,v = Yt,v+1 = 1
∀t ∈ T, ∀v ∈ V \ {nV − 1} (4)

∑
d∈D′

v

Xt,d ≤ ntwmax
t if Yt,v = 1 ∀t ∈ T, ∀v ∈ V (5)

Xt,d +Xt,d′ ≤ 1 ∀t ∈ T, ∀v ∈ V,
∀d, d′ ∈ D′ : d ∈ max{D′v},
d′ ∈ min{D′v+1}, d′ − d = 2 (6)

used(r, d, b) ≤ 1b/∈W r,d
∀r ∈ R, ∀d ∈ Dres

r , ∀b ∈ Ŵr,d (7)

|St,0 − S̃t,0| − σintraw
t,0 ≤ δintraw if Zt,0 ∈ D′0 ∀t ∈ T̃ (8)

|St,u − S̃t,v| − σintraw
t,u ≤ δintraw if Zt,u ∈ D′v ∀t ∈ T, ∀v ∈ V,

∀u ∈ Ut \ {0} (9)

|S̃t,0 − S̃t,−1| − σinterw
t,0 ≤ δinterw if Yt,0 = 1 ∀t ∈ T̃ (10)

|S̃t,v − S̃t,v−1| − σinterw
t,v ≤ δinterw if Yt,v = Yt,v−1 = 1 ∀t ∈ T, ∀v ∈ V \ {0} (11)

Zt,u = d→ Xt,d = 1 ∀t ∈ T, u ∈ Ut (12)∑
d∈D′

Xt,d = τt ∀t ∈ T (13)

Xt,d ≤ Yt,v ∀t ∈ T, ∀v ∈ V, ∀d ∈ D′v (14)

Sfirst
r,d ≤ St,u + P start

t,u,r if Zt,u = d
∀r ∈ R̂, ∀d ∈ Dres

r , ∀t ∈ T,
∀u ∈ Ut | r ∈ Qt,u

(15)

21

4. Problem Formalization

Slast
r,d ≥ St,u + P end

t,u,r if Zt,u = d
∀r ∈ R̂, ∀d ∈ Dres

r , ∀t ∈ T,
∀u ∈ Ut | r ∈ Qt,u

(16)

dmin
t,u ≤ Zt,u ≤ dmax

t,u ∀t ∈ T, ∀u ∈ Ut (17)
SL
t,u ≤ St,u ≤ SU

t,u ∀t ∈ T, ∀u ∈ Ut (18)

S̃L
t,v ≤ S̃t,v ≤ S̃U

t,v ∀t ∈ T, ∀v ∈ V (19)

Ŵ start
r,d ≤ Sfirst

r,d ≤ Slast
r,d < Ŵ end

r,d ∀r ∈ R̂, ∀d ∈ Dres
r (20)

σintraw
t,0 ≥ 0 ∀t ∈ T̃ (21)
σintraw
t,u ≥ 0 ∀t ∈ T, ∀u ∈ Ut \ {0} (22)

σinterw
t,0 ≥ 0 ∀t ∈ T̃ (23)
σinterw
t,v ≥ 0 ∀t ∈ T, ∀v ∈ V \ {0} (24)

Function

used(r, d, b) := |{u ∈ Ut | t ∈ T, r ∈ Qt,u ∧ Zt,u = d ∧ b− St,u ∈ Pt,u,r}| (25)

provides the number of DTs that use resource r ∈ R on day d ∈ Dres
r at time b ∈ Ŵr,d

(must always be either 0 or 1 in a feasible solution).

• Objective function (1) minimizes the use of the extended time windows in the front
and the back of a regular service window, the number of days the treatments are
finished later than their earliest possible finishing days and the violation of the
“intraweek” and “interweek” soft constraints. The part of the objective function
that minimizes the number of days the treatments are finished later than their
earliest possible finishing days involves constants Zearliest

t,τt
, that represent the earliest

possible day treatment t can be finished and are defined as:

Zearliest
t,τt

=

d
min
t,1 +

(⌈
τt

ntwmax
t

⌉
− 1

)
(7− ntwmax

t) + (τt − 1) if δmin
t = 1

dmin
t,1 + (τt − 1)δmin

t otherwise.
(26)

Thus, only the days a treatment is finished later than Zearliest
t,τt

are considered.

Constants γextfront, γextback, γfinish, γintraw, and γinterw are the weights for the
components of the objective function. To model the practical scenario these
constants need to satisfy the following relations:

γextfront ≥ γextback > γfinish (27)
γintraw ≥ γinterw (28)

The following concrete values for the weight constants are assumed within the
context of this thesis:

22

4.3. Mathematical Model

– γextfront = 1
– γextback = 1
– γfinish = 0.01
– γintraw = 0.1
– γinterw = 0.1

• Inequalities (2) enforce that all DTs of a therapy t are scheduled in the correct
order and the minimal required time between two consecutive DTs is adhered.

• Inequalities (3) enforce that all consecutive DTs of each therapy t are scheduled
not more than the maximal allowed time δmax

t apart.

• Inequalities (4) guarantee that, except in the last week of a treatment, at least
ntwmin
t DTs are scheduled per week.

• Inequalities (5) guarantee that for all treatments t at most ntwmax
t DTs are scheduled

per week.

• Inequalities (6) ensure that if on a Saturday and on the following Monday DTs can
be scheduled, that for each treatment only one of both days is used. This assures
that for each treatment there is a break of at least two consecutive days per week.

• Inequalities (7) enforce that the resource consumption never exceeds the resource
availability at any time during the operating hours.

• Inequalities (8) and (9) represent the soft constraints that the starting times
of the activities should not deviate too much from the week’s nominal starting
times; deviations are determined by variables σintraw

t,u and penalized in the objective
function. The first treatment is not considered here and therefore excluded for
therapies that have not yet started.

• Inequalities (10) and (11) represent the soft constraints that then nominal times of
two consecutive weeks should not differ too much; deviations are determined by
variables σinterw

t,v and penalized in the objective function.

• Inequalities (12) and (13) link the Z variables with the X variables.

• Inequalities (14) link the X variables with the Y variables.

• Inequalities (15) force Sfirst
r,d to be less than or equal to the starting time of all

activities using resource r on day d.

• Inequalities (16) force Slast
r,d to be greater than or equal to the finishing time of all

activities using resource r on day d.

• The domains of the DTs’ days are given by (17).

23

4. Problem Formalization

• The domains of the starting times St,u of the DTs are given in (18), where the
bounds SU

t,u and SU
t,u can be calculated as the minimum and maximum times for

which all resources required by their activities are available:

SL
t,u = min{b | ∀r ∈ Qt,u, ∃d ∈ {dmin

t,u , . . . , d
max
t,u }(Ŵ start

r,d − P start
t,u,r ≤ b)} (29)

SU
t,u = max{b | ∀r ∈ Qt,u, ∃d ∈ {dmin

t,u , . . . , d
max
t,u }(b ≤ Ŵ end

r,d − P start
t,u)} (30)

Should the sets over which the minimum and maximum are determined be empty,
then the problem instance has no feasible solution.

• The domains of the nominal starting times of the DTs S̃t,v are given by (19),
where S̃L

t,v and S̃U
t,v can be calculated as follows for v ∈ V t = {v | ∃u ∈ Ut :

{dmin
t,u , . . . , d

max
t,u } ∩D′v 6= ∅} ⊆ V of weeks during which DTs of therapy t may be

provided:

S̃L
t,v = min{SL

t,u | u ∈ Ut ∧ (t ∈ T̃ ∨ u > 0) ∧ {dmin
t,u , . . . , d

max
t,u } ∩D′v 6= ∅} (31)

S̃U
t,v = max{SU

t,u | u ∈ Ut ∧ (t ∈ T̃ ∨ u > 0) ∧ {dmin
t,u , . . . , d

max
t,u } ∩D′v 6= ∅} (32)

For v /∈ V t bounds can be set to ±∞ since the corresponding variables have no
influence on the model.

• (20) restrict the domains of the variables Sfirst
r,d and Slast

r,d to be in the extended
service window (including the regular service window).

• Inequalities (21) and (22), and Inequalities (23) and (24) restrict the domain of the
σintraw
t,u and σinterw

t,u variables to be non-negative.

4.4 Computation of Nominal Starting Times
To compute the intraweek and the interweek part of the objective function, the PTPSP
model from Section 4.3 uses the auxiliary variables S̃t,v that correspond to the nominal
starting times of DTs. The optimal values for these variables can be calculated in
polynomial time by solving an LP model. This LP model contains all the elements of
the PTPSP model which are involved in the computation of the intraweek and interweek
soft constraints. It is defined for each therapy t separately and assumes that St,u and
Zt,u are fixed. It uses the following auxiliary variables:

Vt = {v ∈ V |Yt,v = 1}
Ut,v = {u ∈ Ut |Zt,u ∈ Dv} ∀v ∈ V
Vt = {(v, v′) ∈ Vt × Vt | v′ = v + 1}
Smin
t = min{St,u |u ∈ Ut}

24

4.4. Computation of Nominal Starting Times

Smax
t = max{St,u |u ∈ Ut}

The model’s decision variables are:

S̃t,v ∀v ∈ Vt
σintraw
t,u ∀u ∈ Ut \ {0}
σintraw
t,0 if t ∈ T̃
σinterw
t,v ∀v ∈ Vt \ {0}
σinterw
t,0 if t ∈ T̃

The function to be minimized is composed of those parts of the objective function 1
which contain the above decision variables:

min γintraw 1
Hunit

∑
u∈Ut\{0}

σintraw
t,u +

γinterw 1
Hunit

∑
v∈Vt\{nV −1}

σinterw
t,v

The decision variables are constrained by the following inequalities, which are also part
of the PTPSP model. Note that S̃t,−1 is considered as constant.

|St,0 − S̃t,0| ≤ σintraw
t,0 + δintraw if t ∈ T̃ ∧ Zt,0 ∈ D′0 (33)

|St,u − S̃t,v| ≤ σintraw
t,u + δintraw ∀v ∈ Vt,

∀u ∈ Ut,v \ {0} (34)
|S̃t,0 − S̃t,−1| ≤ σinterw

t,0 + δinterw if t ∈ T̃ ∧ Zt,0 ∈ D′0 (35)
|S̃t,v′ − S̃t,v| ≤ σinterw

t,v′ + δinterw ∀(v, v′) ∈ Vt (36)
σintraw
t,0 ≥ 0 if t ∈ T̃ (37)
σintraw
t,u ≥ 0 ∀u ∈ Ut \ {0} (38)
σinterw
t,0 ≥ 0 if t ∈ T̃ (39)
σinterw
t,v ≥ 0 ∀v ∈ Vt \ {0} (40)
Smin
t ≤ S̃t,v ≤ Smax

t ∀v ∈ Vt (41)

• Constraints (33) – (40) are part of the PTPSP model.

• Constraint (41) is derived from the PTPSP model constraint S̃L
t,v ≤ S̃t,v ≤ S̃U

t,v.

25

4. Problem Formalization

The absolute values used in constraints (33) – (36) can be linearized by splitting an
inequality of the form |x| ≤ y into x ≤ y and −x ≤ y. For instance, the constraints (33)
are linearized to

St,0 − S̃t,0 ≤ σintraw
t,0 + δintraw if t ∈ T̃ ∧ Zt,0 ∈ D′0 and

S̃t,0 − St,0 ≤ σintraw
t,0 + δintraw if t ∈ T̃ ∧ Zt,0 ∈ D′0.

The other constraints can be converted analogously.

26

CHAPTER 5
Neighbourhoods

This chapter presents the neighbourhood structures that serve as building blocks for
the two metaheuristics defined in Chapters 6 and 7. First the intra-day neighbourhood
structures are defined, which change the starting times S of DTs only but leave the day
assignments unchanged. Then the inter-day neighbourhood structures are explained,
which change Z by moving DTs to different days.

For modelling the intra-day neighbourhood structures, we exploit the fact that all DTs
on a day require the same beam resource B exactly once to define a unique sequence of
the DTs scheduled on a particular day. Let Gd = {(t, u) | t ∈ T, u ∈ Ut, Zt,u = d} be the
set of DTs assigned to day d ∈ D′. We then encode a solution into a sequence ((t, u)i)|Gd|

i=1
of DTs which is sorted by the times from which on they use the beam B, i.e., according
to St,u + P start

t,u,B. To evaluate the objective function we have to decode a sequence of DTs
to obtain an actual time assignment. Algorithm 5.1 shows this decoding for a given
working day d ∈ D′, its set of DTs Gd and a sequence ((t, u)i)|Gd|

i=1 . The procedure starts
by initializing the time marker Cr to the earliest time a resource r becomes available. In
the main loop each DT in the sequence is assigned to the earliest possible start time at
which all resources are available. First, at Line 3 the start time St,u is set to the earliest
time at which no required resource is used before the corresponding time marker. At
this time, the considered DT might still overlap with unavailability periods. If this is
the case, the DT is delayed in the inner while loop until all required resources become
available. At Line 7 the Cr time markers are set to the times when the corresponding
resources become free after the just scheduled DT.

Starting from a solution (Z, S), a set Ñ (Z, S), containing the neighbours of (Z, S) in
an encoded form, will be defined. For the intra-day neighbourhood structures, for
example, a neighbour is encoded as a permutation π : {1, . . . , |Gd|} → {1, . . . , |Gd|} on
the index set of ((t, u)i)|Gd|

i=1 , which changes the order of the DTs on day d. The inter-day
neighbourhoods employ different encodings for the neighbours, such as a tuple consisting

27

5. Neighbourhoods

Algorithm 5.1: Time assignment of a given sequence of DTs.
Input: A day d and a sequence ((t, u)i)|Gd|

i=1 of DTs
1 Cr ←W start

r,d ∀r ∈ R, d ∈ Dres
r ;

2 for (t, u)← (t, u)1, . . . , (t, u)|Gd| do
3 St,u ← maxr∈Qt,u(Cr − P start

t,u,r);
4 while ∃r ∈ Qt,u ∧ ∃W r,d,w ∈W r,d : [St,u + P start

t,u,r , St,u + P end
t,u,r) ∩W r,d,w 6= ∅

do
5 St,u := W

end
r,d,w − P start

t,u,r ;
6 end
7 Cr ← St,u + P end

t,u,r ∀r ∈ Qt,u;
8 end

of a therapy’s index together with a number stating how many days the therapy is shifted.
The final neighbourhood N (Z, S) is then derived from Ñ by mapping each encoded
neighbour to a solution (Z, S). How this is done depends on the encoding and is explained
for each inter-day neighbourhood structure separately.

Preliminary tests have shown that some neighbourhood structures produce neighbour-
hoods which are too big to be explored in a reasonable time. In order to reduce the
computational effort, filters will be introduced. A filter describes a subset N filter(Z, S) of
neighbours which will not be evaluated by the local search. A neighbourhood with applied
filter is then defined as N filtered(Z, S) = N (Z, S) \ N filter(Z, S). Different filters can also
be combined. Let P and Q be two filters. Then N (Z, S) \ (NP(Z, S)∪NQ(Z, S)) defines
a set of neighbours which are accepted by both filters. In other words, only the most
promising neighbours are kept for evaluation. Contrarily, N (Z, S)\(NP(Z, S)∩NQ(Z, S))
defines a set of neighbours which are accepted by at least one of the filters.

5.1 Permuting Daily Treatments
The first intra-day neighbourhood structure, abbreviated as N S1

c,d , considers permutations
of c DTs within day d. For instance, N S1

2,d(Z, S) contains all solutions resulting from
exchanging two DTs on day d. We further define N S1

2,D′ =
⋃
d∈D′ N S1

2,d in order to simplify
the definition of IG and the 2PA in the next chapters.

The set of encoded neighbours Ñ S1
c,d (Z, S) is formally defined as the set of all permutations

π : {1, . . . , |Gd|} → {1, . . . , |Gd|} of the DTs on day d with |{(m,n) ∈ π | m 6= n}| ≤ c. A
final neighbour is constructed by decoding ((t, u)π(1), ..., (t, u)π(|Gd|)) using Algorithm 5.1.

The following filter operations are employed to reduce the search space:

1. The adjacent filter causes the DTs’ starting times to change only slightly by
ensuring that only adjacent DTs change their places. To formalize this filter, let

28

5.2. Moving Daily Treatments

π ∈ Ñ S1
c,d (Z, S) and X = {m | (m,n) ∈ π,m 6= n}. Then this filter accepts the

neighbour if (maxX −minX) < c. An application of this filter makes sense if the
DTs are already in the right place regarding the resources’ availability periods,
but the way they are interleaved with each other could still be improved. As
for the intraweek and interweek softconstraints, we assume that the DTs of a
therapy already start at roughly the same time on a day. Therefore, if a DT is
moved to a very different starting time, we can expect the intraweek and interweek
softconstraints to be violated to a higher degree. Such changes are excluded by this
filter. The neighbourhood’s size is reduced considerably by this filter: For any day
d the neighbourhood NS1

2,d(Z, S) contains |Gd|(|Gd|−1)
2 solutions, which is quadratic

in |Gd|. The filtered neighbourhood contains only |Gd| − 1 solutions.

2. The gap filter rejects all DT permutations π that increase the number of times an
irradiation room is used in a row. The rationale of this definition is that the beam
is idle between two consecutive DTs taking place in the same irradiation room,
which may lead to an increased usage of the extended time windows.

3. The nominal starting time (NST) filter considers the S̃t,v values for all therapies t
scheduled on the considered day d, where v is the week of d, i.e. d ∈ Dv. It computes
the aggregated deviation of the DTs’ starting times from the corresponding nominal
starting times S̃t,v before the move as ∆ = Σ{max(0, abs(S̃t,v − St,u) − δintraw) |
t ∈ T, u ∈ Ut, (t, u) ∈ Gd}. Let (t, u)i be a DT from the sequence of DTs before the
move. Let further j = π(i) and (t′, u′) be the jth DT in this sequence. Then the
starting time S′t,u that (t, u) would have after the move is estimated as S′t,u = St′,u′ .
Based on this estimation, the aggregated deviation of the nominal starting times
from the starting times the DTs would approximately have after the move is
calculated as ∆′ = Σ{max(0, abs(S̃t,v − S′t,u)− δintraw) | t ∈ T, u ∈ Ut, (t, u) ∈ Gd}.
This filter then accepts the neighbour if ∆′ ≤ ∆.

5.2 Moving Daily Treatments
This intra-day neighbourhood structure, abbreviated as N S2

d , moves a DT to a different
place within a day d of the encoded solution. We further define N S2

D′ =
⋃
d∈D′ N S2

d in
order to simplify the definition of the 2PA and IG in the next chapters.

This neighbourhood structure is defined similarly to the insertion neighbourhood from
[PR14]. Let ((t, u)i)|Gd|

i=1 be the encoded solution of DTs on day d and π = (1, . . . , |Gd|)
its index sequence. The N S2

d neighbourhood of the encoded solution is the result of the
consideration of all pairs of positions j, k ∈ {1, . . . , |Gd|} of π, j 6= k, where the DT in
position j is removed from the encoded solution and inserted in position k. The resulting
index sequence after such a movement is

π(j,k) = (1, . . . , j − 1, j + 1, . . . , k, j, k + 1, . . . , |Gd|)

if j < k, or
π(j,k) = (1, . . . , k − 1, j, k, . . . , j − 1, j + 1, . . . , |Gd|)

29

5. Neighbourhoods

if j > k. The set of moves I is defined as

I = {(j, k) | j 6= k, 1 ≤ j, k ≤ |Gd| ∧ j 6= k − 1, 1 ≤ j ≤ |Gd|, 2 ≤ k ≤ |Gd|}

and the set of all encoded neighbours Ñ S2
d (Z, S) is defined as the set of all permutations

π(j,k) with (j, k) ∈ I. A final neighbour is constructed by decoding the reordered sequence
of DTs ((t, u)π(1), ..., (t, u)π(|Gd|)) on day d using Algorithm 5.1.

This neighbourhood structure supports the gap and NST filter from N S1
d . The adjacent

filter is not employed because instead of moving a DT to a neighbouring position, one
can use N S1

d to get the same DT sequence.

5.3 Moving Daily Treatments across Day Boundaries

The first inter-day neighbourhood structure, abbreviated as NZ1, moves a DT u of a
therapy t to a later (or earlier) day and re-assigns all daily treatments of t conflicting
with u to new days.

The set of encoded neighbours for a solution (Z, S) is defined as ÑZ1(Z, S) = {(t, u, r) |
t ∈ T, u ∈ Ut, r ∈ {0, 1}}, where r denotes the direction into which the DT (t, u) should
be moved.

A final neighbour is constructed by Algorithm 5.2. Suppose, the algorithm is called with
(t0, u0, r) where r = 1 indicating that the DT (t0, u0) should be moved to a later day.
Between Line 2 and 6, all DTs after (t0, u0), including (t0, u0) itself, are removed from
the schedule. Line 13 assigns DT (t0, u0) to the first working day which has all required
resources for it. In Line 15 all DTs which have been removed previously are assigned
to days after the newly assigned DT (t0, u0). Function check_constraint_ntwmin returns
false if Constraint 4 of the formal model is violated, which is the case if not enough DTs
are assigned to a week.

Function schedule_dt_after(Z, S, t, u, d) tries to assign the DT (t, u) to a day d′ >
d, minimizing (d′ − d) while respecting the constraints 2, 3, 5 and 6 of the formal
model as well as the resource requirements and availabilities. The function returns
d′ or −1 if the DT could not be assign to a day, s.t. a feasible schedule results. The
function schedule_dt_before(Z, S, t, u, d) is defined analogously but tries to assign DT
(t, u) to a day d′ < d, minimizing (d− d′) instead.

5.4 Moving Therapies

This neighbourhood structure, abbreviated as NZ2, moves whole therapies by moving
every DT of a therapy by at least n days, where n takes on all sensible values.

The set of encoded neighbours for a solution (Z, S) is defined as ÑZ2(Z, S) = {(t, n) ∈
T × Z \ {0} | dmin

t,0 − Zt,0 ≤ n ≤ dmax
t,0 − Zt,0}.

30

5.5. Shifting Therapies

Algorithm 5.2: Decoding a neighbour from ÑZ1

Input: An encoded neighbour (t0, u0, r)
1 d← Zt0,u0 ;
2 Upart ← {u ∈ Ut0 | (r = 0→ u ≤ u0) ∧ (r = 1→ u ≥ u0)};
3 for u ∈ Upart do
4 Zold

t0,u ← Zt0,u;
5 Zt0,u ← −1; // remove day assignment in solution

6 end
7 if r = 0 then
8 if schedule_dt_before(Z, S, t0, u, d) = −1 then return false;
9 for (u← u0 − 1;u ≥ 0;u← u− 1) do

10 if schedule_dt_before(Z, S, t0, u, Zold
t0,u + 1) = −1 then return false;

11 end
12 else if r = 1 then
13 if schedule_dt_after(Z, S, t0, u, d) = −1 then return false;
14 for (u← u0 + 1;u ≤ maxUpart;u← u+ 1) do
15 if schedule_dt_after(Z, S, t0, u, Zold

t0,u − 1) = −1 then return false;
16 end
17 end
18 if check_constraint_ntwmin(Z, S, t0) = false then return false;
19 return true;

A final neighbour is constructed by Algorithm 5.3. Assume the algorithm is called with
(t0, n) where n > 0, indicating that each DT of therapy t0 should be provided at least
n days later. The loop in Line 1 removes all day assignments of therapy t0 from the
schedule. Line 10 schedules the first DT of the therapy, s.t. it is provided exactly n days
later. The loop in Line 17 schedules the remaining DTs, s.t. they are provided at least n
days later. If n < 0, the last DT of the therapy is scheduled to an earlier day in Line 10.
Afterwards all remaining DTs are scheduled to earlier days in Line 12. The functions
occurring in this algorithm are explained in Section 5.3.

5.5 Shifting Therapies

In a nutshell, this neighbourhood structure, abbreviated as NZ3, moves whole therapies
t by assigning every ith DT, i ∈ Ut, of t to the (i+n)th DT’s day of t for a sensible range
of values for n. The first or last |n| DTs of the therapy are scheduled on the latest or
earliest days, respectively, s.t. all constraints are satisfied.

Let l = max(dmin
t,0 −Zt,0, −τt) denote the lower bound for n and u = min(dmax

t,0 −Zt,0, τt)
denote the upper bound. Then the set of encoded neighbours for a solution (Z, S) is
defined as ÑZ3(Z, S) = {(t, n) ∈ T × Z \ {0} | l ≤ n ≤ u}.

31

5. Neighbourhoods

Algorithm 5.3: Decoding a neighbour from ÑZ2

Input: An encoded neighbour (t0, n)
1 for u ∈ Ut0 do
2 Zold

t0,u ← Zt0,u;
3 Zt0,u ← −1; // remove day assignment in solution

4 end
5 if n < 0 then
6 u0 ← τt − 1;
7 else
8 u0 ← 0;
9 end

10 if schedule_dt(Z, S, t0, u0, Z
old
t0,u0 + n) = false then return false;

11 if n < 0 then
12 for u← u0 − 1;u ≥ 0;u← u− 1 do
13 dbefore ← Zold

t0,u + n+ 1;
14 d← schedule_dt_before(Z, S, t0, u, dbefore);
15 end
16 else
17 for u← u0 + 1;u < τt0 ;u← u+ 1 do
18 dafter ← Zold

t0,u + n− 1;
19 d← schedule_dt_after(Z, S, t0, u, dafter);
20 end
21 end
22 if check_constraint_ntwmin(Z, S, t0) = false then return false;
23 return true;

A final neighbour is constructed by Algorithm 5.4. Suppose, the algorithm is called
with (t0, n) where n = 1, indicating that each DT of therapy t0 (except for the last one)
should be assigned to the day of its subsequent DT. The loop in Line 2 removes all day
assignments of therapy t0 from the schedule. In Line 6 every DTs, except for the last
one, is assigned to the day of its subsequent DT. Finally, the loop in Line 18 assigns the
last DT to the next working day which provides the required resources. The functions
occuring in this algorithm are explained in Section 5.3.

32

5.5. Shifting Therapies

Algorithm 5.4: Decoding a neighbour from ÑZ3

Input: An encoded neighbour (t0, n)
1 Upart ← {u ∈ Ut0 | max(0,−n) ≤ u ≤ min(max(Ut0)− n,maxUt0)};
2 for u ∈ Ut0 do
3 Zold

t0,u ← Zt0,u;
4 Zt0,u ← −1; // remove day assignment in solution

5 end
6 for u ∈ Upart do
7 if schedule_dt(S, t0, u, Zold

t0,u+n) = false then return false;
8 end
9 Urest ← Ut0 \ Upart;

10 if n < 0 then
11 d← Zold

t0,0;
12 for (u← maxUrest;u ≥ 0;u← u− 1) do
13 d← schedule_dt_before(S, t0, u, d);
14 if d = −1 then return false;
15 end
16 else if n > 0 then
17 d← Zold

t0,τt0−1;
18 for (u← minUrest;u < τt0 ;u← u+ 1) do
19 d← schedule_dt_after(S, t0, u, d);
20 if d = −1 then return false;
21 end
22 end
23 if check_constraint_ntwmin(S, t0) = false then return false;
24 return true;

33

CHAPTER 6
2-Phase Approach

This chapter presents a heuristic search method for solving the PTPSP, which acts in
two phases. The first phase of the 2-Phase Approach (2PA) starts with a day assignment
created by TWCH and applies a VND method on it, which is composed solely of inter-day
neighbourhood structures. After reaching a local optimum, the second phase starts by
greedily assigning the DTs to starting times using TWCH’s time assignment phase.
Afterwards a VND which consists of the intra-day neighbourhood structures N S1

2,D′ and
N S2

2,D′ optimizes the DTs’ starting times without changing their day assignment. The
algorithm terminates when this VND reaches a local optimum.

An important aspect which has to be considered is that the S̃t,v values may become
suboptimal during a move operation and need to be readjusted by solving the LP model
4.4. If this is done before every solution evaluation, the objective function is guaranteed
to compute an accurate value. However, preliminary tests have shown that the local
search is by far too time consuming if new values for the S̃t,v variables are computed
for each evaluated neighbour. This is mainly due to the fact that each time the values
of the S̃t,v variables are updated, possible improvements can be found on days other
than the currently considered one. In order to reach sufficient performance of the local
search component, we have to limit the number of times the S̃t,v variables are computed.
We achieve this by including a pseudo neighbourhood structure S̃ as last considered
neighbourhood of the second VND. This S̃(Z, S) pseudo neighbourhood contains exactly
one neighbour resulting from a reevaluation of the model from Section 4.4. The S̃t,v
variables are updated only when the intra-day neighbourhood structures have reached a
local optimum on all days. If the recomputation improves the objective value, the first
intra-day neighbourhood structure from the VND is evaluated again.

A crucial aspect of the 2PA is the choice of neighbourhood structures and the order
in which they are used in the VNDs. Since we did not know with certainty which
neighbourhood structures perform best in this context, we made a decision on the basis
of statistical tests. Section 9.2 explains how this was done.

35

CHAPTER 7
Iterated Greedy Approach

This chapter presents an IG algorithm for solving the PTPSP. As explained in Chapter 3,
an IG algorithm starts with a solution created by a construction heuristic and repeatedly
applies a destruction and a construction phase to obtain better solutions. Frequently, a
local search algorithm is applied to the initial solution and after the construction phase to
further boost the performance. Preliminary results of this approach have been published
in [MHRR17]. Note, however, that γintraw and γinterw were both set to 0 in this paper,
instead of 0.1.

The initial solution of the proposed IG is computed using TWCH from [MRSR16], which
is explained in Chapter 2. The remaining components of the IG are discussed in the
following sections.

7.1 Local Search

The design of the neighbourhood used within the IG’s local search component depends on
several factors. As real world instances are expected to be quite large, the main challenge
is to find neighbourhoods that can be searched rather fast, still allowing to complete
a reasonable number of iterations of the IG, while improving the solution significantly
in most cases. To achieve this, we restrict ourselves to a local search method that is
only able to modify the starting times of DTs, i.e., the day assignment is considered
to be fixed. Hence, we are only able to improve on the objective function terms that
consider the use of extended service windows and the violation of the interweek and
intraweek soft constraints. The local search uses the neighbourhood structure N S1

2,D′ ,
which maps a solution to a set of all possible neighbours that result from exchanging
two DTs on some working day d ∈ D′. To accelerate the local search procedure we
restrict the neighbourhood structure to the most promising moves by applying the filters
adjacent and gap in such a way that a move is only evaluated if both considered DTs are

37

7. Iterated Greedy Approach

either adjacent in sequence ((t, u)i)|Gd|
i=1 or it is likely that an exchange produces a tighter

scheduled day.

Similar to the VND of the 2PA from Chapter 6, N S1
2,D′ is combined with a pseudo

neighbourhood structure S̃ in a VND-like way, which causes the S̃t,v variables to be
updated by reevaluating the model from Section 4.4.

7.2 Destruction and Construction

The destruction and construction phase of the IG from Maschler et al. [MRSR16] consists
of removing the DTs of randomly selected therapies from the schedule, followed by
applying TWCH’s day assignment for the removed therapies and solving TWCH’s time
assignment from scratch. However, w.r.t. the local search algorithm from Section 7.1
discarding the whole time assignment during destruction and construction is disadvan-
tageous since no parts of the old time assignment of an affected day are transferred to
the new one. We overcome this drawback by replacing TWCH’s day assignment with
an insertion heuristic which preserves the sequence of unchanged DTs and inserts the
removed ones in a greedy way.

Algorithm 7.1 shows the used destruction and construction phase in detail. It starts by
invalidating the day and time assignment of β · nT randomly selected therapies, where
β ∈ (0, 1] is the destruction rate. Afterwards, TWCH’s day assignment is applied to
reassign the DTs of the removed therapies to potentially new days. The insertion heuristic
for the time assignment, which is inspired by the NEH heuristic [NEH83], is defined in
the foreach loop at Line 3 and is applied for each working day. It starts by initializing Gd
to the set of DTs that have been assigned to day d and which have not been removed by
the destruction phase. Analogously, G′d is defined as the set containing all DTs assigned
to day d that have been removed and for which a new starting time has to be found.
As with the neighbourhood structures, a unique sequence ((t, u)i)|Gd|

i=1 , named s, can be
defined by sorting the DTs according to the time they first require the beam resource. In
each step a not yet considered random DT from G′d is inserted at all possible positions
of the sequence s and scheduled using Algorithm 5.1. All of these |Gd|+ 1 partial time
assignments are compared and finally the best one is kept. To this end a sequence is
considered better if the objective value, which depends on the extended time used and
the violation of the interweek and intraweek soft constraints, is smaller. In case of a
tie we prefer the option with the smaller makespan. The rationale behind the latter
criterion is that in particular after destruction many insertion points allow scheduling
the sequence without use of extended service windows. Preferring a smaller makespan
typically results in a tighter packed schedule and hopefully retains better options for the
still to be inserted DTs.

38

7.3. Improved Iterated Greedy

Algorithm 7.1: Destruction and construction phases.
Input: A solution (Z, S)

1 select a set T ′ of β · nT random therapies and remove their day and time
assignments;

2 apply TWCH’s day assignment for the set of removed therapies;
3 foreach d ∈ D do
4 Gd ← {(t, u) | t ∈ T \ T ′, u ∈ Ut, Zt,u = d};
5 G′d ← {(t, u) | t ∈ T ′, u ∈ Ut, Zt,u = d};
6 foreach (t′, u′) ∈ G′d do
7 let s be a sequence ((t, u)i)|Gd|

i=1 of Gd resulting by sorting the elements
according to St,u + P start

t,u,B;
8 best_obj←∞; best_MS←∞; s′best ← ();
9 for i← 1 to |Gd|+ 1 do

10 s′ ← ((t, u)1, . . . , (t, u)i−1, (t′, u′), (t, u)i, . . . , (t, u)|Gd|);
11 schedule s′ with Algorithm 5.1;
12 obj← objective value of the current partial solution;
13 MS← makespan of current day d;
14 if obj < best_obj ∨ (obj = best_obj ∧MS < best_MS) then
15 best_obj← obj; best_MS← MS; s′best ← s′;
16 end
17 end
18 schedule s′best with Algorithm 5.1;
19 Gd ← Gd ∪ {(t′, u′)};
20 end
21 end

7.3 Improved Iterated Greedy
Compared to the 2PA, the IG has the advantage of being able to escape local optima due
to the destruction and construction phase. However, it can be expected that the local
search phase of the IG is less effective than the VND of the 2PA because it uses only a
single neighbourhood to optimize a solution. So an obvious improvement to the IG is to
use a VND in the local search phase. To be precise, the improved IG works as follows.

We first generate a day assignment using the first phase of TWCH. This day assignment
is improved by a VND that is composed of inter-day neighbourhood structures. Then the
DTs are greedily assigned to starting times using the time assignment phase of TWCH.
Afterwards, the starting times are optimized by a VND which consists of intra-day
neighbourhoods.

The destruction and construction phase removes the DTs of randomly selected therapies,
which are then reassigned by applying TWCH’s day assignment. The day assignment
of these DTs is then improved using a VND that consists of inter-day neighbourhoods.

39

7. Iterated Greedy Approach

Then TWCH’s time assignment phase is applied, followed by a VND that optimizes the
starting times of the DTs. Note that the VNDs of the construction phase comprise the
same neighbourhood structures as the VNDs that are applied on the initial solution.
Section 9.2 shows how the neighbourhood structures were selected.

40

CHAPTER 8
Postprocessing

All neighbourhood structures use Algorithm 5.1 for assigning the DTs to starting times.
This method is designed to generate a tight schedule with as little use of extended time
as possible in an efficient way, which makes it a reasonable decoder for a local search
method. However, a schedule where each DT is scheduled as early as possible may not
be optimal due to the intraweek and interweek soft constraints which penalize a solution
where the DTs of a therapy do not start at roughly the same time. In this section, an
LP model is presented which is used to improve a given schedule by introducing breaks
between consecutive DTs. It is indended to be applied as a post-processing step.

We assume that a start solution is given by

• Z ′ = {Z ′t,u ∈ D′ | t ∈ T, u ∈ Ut} denoting the days when all the DTs are scheduled,

• S′ = {S′t,u ≥ 0 | t ∈ T, u ∈ Ut} denoting the starting times of the DTs on the
respective days, and

• S̃′t,v for each therapy t ∈ T and each week v ∈ V denoting the nominal starting
time of the DTs within the whole week v when the treatment takes place in this
week.

The idea of the model is to shift DTs s.t. their respective order w.r.t. the use of the
beam, specified by the input solution, does not change. Moreover, a DT’s position w.r.t.
unavailability periods of its required resources is not modified. Fixing all these properties
allows us to formulate a linear program which can be efficiently solved.

We formulate the model for a specific day d ∈ D′ in week v ∈ V : d ∈ Dv in terms of the
following additional sets and constants:

• T d = {t | t ∈ T, ∃u ∈ Ut, Z ′t,u = d}, denoting the therapies scheduled on day d.

41

8. Postprocessing

• Gd = {(t, u) | t ∈ T d, u ∈ Ut, Z ′t,u = d}, denoting the DTs on day d.

• Gd = {(t, u, t′, u′) | (t, u) ∈ Gd, (t′, u′) ∈ Gd, (∀(t∗, u∗) ∈ Gd : S′t∗,u∗ + P start
t∗,u∗,B ≤

S′t,u + P start
t,u,B ∨ S′t∗,u∗ + P start

t∗,u∗,B ≥ S′t′,u′ + P start
t′,u′,B)}, defining the successor for every

DT w.r.t. the beam resource.

• Wr,d denoting the set of all unavailability periods [W start
r,d,w,W

end
r,d,w) for resource

r ∈ R on day d.

• Kbefore
t,u,r = max

{Ŵ start
r,d

}
∪

W end
r,d,w

∣∣∣∣
[
W

start
r,d,w,W

end
r,d,w

)
∈ Wr,d,

W
start
r,d,w < S′t,u + P start

t,u,r

 for every (t, u) ∈

Gd and r ∈ Qt,u, denoting the end of the last unavailability period of resource r
before DT (t, u).

• Kafter
t,u,r = min

{Ŵ end
r,d

}
∪

W start
r,d,w

∣∣∣∣
[
W

start
r,d,w,W

end
r,d,w

)
∈ Wr,d,

W
start
r,d,w > S′t,u + P start

t,u,r

 for each (t, u) ∈

Gd and r ∈ Qt,u, denoting the start of the first unavailability period of resource r
after DT (t, u).

The model uses

• starting time variables St,u for each DT (t, u) ∈ Gd,

• variables σintraw
t,u for tracking the intraweek costs for each DT (t, u) ∈ Gd,

• variables Sfirst
r,d and Slast

r,d for tracking the first and last time, respectively, each
resource r ∈ R is used, and

• variables yt,u,r denote the release time of resource r ∈ R for each DT (t, u) ∈ Gd.

The model reads as follows:

min γextfront ∑
r∈R̂

max
(
W start
r,d − Sfirst

r,d , 0
)

+

γextback ∑
r∈R̂

max
(
Slast
r,d −W end

r,d , 0
)

+

γintraw ∑
(t,u)∈Gd

σintraw
t,u +

γscatter ∑
r∈Rscatter

ϕscatter
rSlast

r,d − Sfirst
r,d −

∑
(t,u)∈Gd,
r∈Qt,u

(P end
t,u,r − P start

t,u,r)

 (1)

42

s. t. |St,u − S̃′t,v| − σintraw
t,u ≤ δintraw ∀(t, u) ∈ Gd : u > 0 ∨ t ∈ T̃ (2)

Sfirst
r,d ≤ St,u + P start

t,u,r ∀(t, u) ∈ Gd, ∀r ∈ Qt,u (3)
Slast
r,d ≥ yt,u,r ∀(t, u) ∈ Gd, ∀r ∈ Qt,u (4)
St,u + P end

t,u,r ≤ yt,u,r ∀(t, u) ∈ Gd, ∀r ∈ Qt,u (5)
yt,u,r ≤ yt′,u′,r ∀(t, u, t′, u′) ∈ Gd, ∀r ∈ R \Qt′,u′ (6)
yt,u,r ≤ St′,u′ + P start

t′,u′,r ∀(t, u, t′, u′) ∈ Gd,∀r ∈ Qt′,u′ (7)
Kbefore
t,u,r ≤ St,u + P start

t,u,r ∀(t, u) ∈ Gd, ∀r ∈ Qt,u (8)
St,u + P end

t,u,r ≤ Kafter
t,u,r ∀(t, u) ∈ Gd, ∀r ∈ Qt,u (9)

SL
t,u ≤ St,u ≤ SU

t,u ∀(t, u) ∈ Gd (10)

Ŵ start
r,d ≤ Sfirst

r,d ≤ Slast
r,d ≤ Ŵ end

r,d ∀r ∈ R (11)
σintraw
t,u ≥ 0 ∀(t, u) ∈ Gd (12)

Ŵ start
r,d ≤ yt,u,r ≤ Ŵ end

r,d ∀(t, u) ∈ Gd,∀r ∈ R (13)

• (1) provides the objective function.

• (2) calculates the intraweek violation.

• (3), (4) set variables that track the earliest and latest time each resource is used.

• (5) sets release time for used resources.

• (6) set release time for unused resources.

• (7) sets a DT’s starting time, s. t. it does not use a previously used resource.

• (8), (9) ensure that the unavailability windows are respected.

• The remaining constraints impose domain restrictions; especially note the Sfirst
r ≤

Slast
r .

43

CHAPTER 9
Computational Study

This chapter shows the experimental results of local search using the individual neigh-
bourhood structures, the two-phase approach and the iterated greedy metaheuristic.

The benchmark instances were created in such a way to describe the expected situation
at MedAustron as well as possible. We use 40 benchmark instances which can be divided
into four groups of 100, 150, 200 and 300 therapies per instance, respectively. In the
following, an instance name encodes the number of therapies followed by a consecutive
number. Each therapy has to start within a window of 14 days and consists of up to 35
DTs, reflecting the duration of real particle therapies. Each DT requires as resources
at least the beam for a relatively short time interval and one of three irradiation rooms.
The beam and the three rooms are regularly available from W̃ start

d for 14 hours and have
an extended availability period of 10 hours. There are further resources, such as the
personnel, which are, however, sufficiently dimensioned to be not the primary reasons
of substantial use of extended service time. The first DT of each therapy needs to be
provided before noon on Monday or Tuesday. This constraint is modeled by introducing
an additional resource that spans half of the regular opening time on these two weekdays.
For more details on the instance generation, see [MRSR16].

9.1 Local Search

This section shows the performance of the local search method, defined by Algorithm 3.1,
using the neighbourhood structures defined in Chapter 5. We will show that the selection
of the neighbourhood structure has a great impact on the final solution’s objective value,
the number of moves which are needed to reach a local optimum as well as the total
runtime of the algorithm. We will also compare different step functions and show that
the next improvement step function with a randomized order of neighbours is superior to
the other ones.

45

9. Computational Study

0 1 2 3 4

next improvement

best improvement

3.7

3.7

% relative difference

Figure 9.1: Relative differences between the average objective value of TWCH and the
average objective values of a local search with both step functions using neighbourhood
structure N S1

2,d . All three filters are enabled. The values are calculated as 100% · (objT −
objL)/objT , where objT denotes the average objective value of TWCH and objL represents
the average objective value of one of the local search methods.

The initial solution for the local search method is generated with TWCH. Table 9.1
shows the average objective values for these initial solutions together with their standard
deviations on all instances over 30 runs. All experiments in this section are performed
without a time limit.

9.1.1 Intra-Day Neighbourhood Structures

Because local search can be used with both next and best improvement, we first have to
find out which step function is better w.r.t. our problem setting. To that end, we applied
the local search method first with next improvement and then with best improvement
using the neighbourhood structure N S1

2,d . We enabled all three filters in this experiment
because it turned out that a local search with N S1

2,d using the best improvement step
function may take over an hour to reach a local optimum if some of the filters are
disabled. When applying next improvement, the enumeration of the neighbours is also
randomized. Table 9.2 shows the performance of local search with both step functions
using neighbourhood structure N S1

2,d with all filters enabled. Figure 9.1 shows the relative
difference between the average objective values of these local search methods and the
average objective value of TWCH.

The test results show that a single move with the next improvement step function takes
much less time because each step searches in general only a small part of the neighbour-
hood, whereas the best improvement step function searches the whole neighbourhood
for the best solution in each step. A local search using the best improvement strategy
even exceeds an hour on the largest instances if all filters are disabled. And such long
convergence times are unacceptable if the neighbourhood to be explored is only a part of
a more complex heuristic search method like the 2PA or IG. A more thorough analysis of
individual runs has shown that randomizing the order of the neighbours helped to remove
a bias towards exchanges at the beginning of the days. This leads to shorter iteration
times, especially at the end of a local search run. Regarding the average objective values,
however, there is almost no difference. A Wilcoxon rank sum test with a significance

46

9.1. Local Search

Instance obj σ(obj) t [s]

100-01 151.36 5.16 0.30
100-02 209.27 13.30 0.30
100-03 98.70 4.15 0.30
100-04 171.57 6.29 0.40
100-05 164.75 8.41 0.30
100-06 130.85 6.08 0.30
100-07 132.00 6.34 0.30
100-08 179.88 6.03 0.30
100-09 97.06 6.38 0.30
100-10 164.35 5.72 0.40
150-01 226.93 8.08 0.60
150-02 367.83 8.97 0.60
150-03 276.50 7.22 0.60
150-04 217.41 6.86 0.60
150-05 191.88 9.67 0.50
150-06 394.33 10.37 0.60
150-07 342.74 9.10 0.50
150-08 342.38 6.09 0.60
150-09 306.89 9.82 0.50
150-10 250.77 9.62 0.60
200-01 373.13 10.45 0.90
200-02 368.83 6.55 0.80
200-03 285.77 7.20 0.90
200-04 345.90 9.54 0.80
200-05 318.00 9.03 0.90
200-06 288.30 9.57 0.90
200-07 221.67 7.35 0.80
200-08 226.95 9.24 0.80
200-09 231.98 8.48 0.80
200-10 501.41 9.01 0.80
300-01 335.84 10.49 1.70
300-02 542.20 16.30 1.70
300-03 353.66 13.43 1.60
300-04 576.11 16.46 1.70
300-05 340.53 8.66 1.60
300-06 375.81 9.77 1.70
300-07 296.57 9.08 1.60
300-08 307.13 10.96 1.60
300-09 258.59 6.73 1.60
300-10 310.35 10.45 1.50

Table 9.1: Average objective values obj of 30 runs, corresponding standard deviations
σ(obj), and median processing times for TWCH 47

9. Computational Study

Instance N S1
2,d (next improvement) N S1

2,d (best improvement)

obj σ(obj) Moves t [s] obj σ(obj) Moves t [s]

100-01 145.27 6.31 181.50 0.50 146.24 5.50 160.50 5.50
100-02 204.35 11.15 151.50 0.50 205.88 10.53 134.00 5.50
100-03 94.47 4.32 93.00 0.40 93.24 3.47 79.00 2.20
100-04 166.33 7.27 106.00 0.50 168.76 8.03 91.00 3.20
100-05 159.17 6.90 123.50 0.50 158.30 7.29 117.50 4.40
100-06 127.09 5.90 98.50 0.50 125.66 7.10 79.50 2.40
100-07 129.26 8.18 87.00 0.50 129.12 5.40 71.50 2.10
100-08 176.69 6.64 120.50 0.50 175.66 6.48 104.00 3.70
100-09 92.65 6.26 91.00 0.40 92.15 5.59 74.00 2.10
100-10 159.83 6.54 96.50 0.50 159.27 6.42 90.00 3.30
150-01 223.63 8.81 170.50 0.90 219.88 9.25 147.50 9.50
150-02 360.15 9.98 219.50 0.90 362.35 7.76 198.50 12.80
150-03 273.08 5.84 127.50 0.80 272.47 7.51 109.00 5.90
150-04 209.81 5.69 182.00 0.90 208.37 6.87 157.00 9.00
150-05 183.47 8.71 172.50 0.70 181.98 8.11 150.00 7.30
150-06 386.90 10.45 226.00 0.90 387.79 8.09 193.00 11.10
150-07 332.12 8.09 170.00 0.80 334.80 8.53 149.00 7.90
150-08 339.50 7.59 140.00 0.80 335.75 8.44 120.00 6.10
150-09 299.35 10.14 171.00 0.80 300.52 9.79 157.50 8.60
150-10 242.04 9.08 200.00 0.90 242.08 8.05 184.00 10.50
200-01 366.02 8.24 246.50 1.20 362.13 8.59 215.50 18.20
200-02 357.07 5.26 292.50 1.30 357.84 5.92 247.50 20.20
200-03 276.39 6.56 167.50 1.20 278.27 5.83 151.00 9.30
200-04 336.43 7.05 254.50 1.20 338.68 7.57 227.50 18.40
200-05 302.81 8.57 306.50 1.30 304.53 8.48 257.00 20.90
200-06 279.26 6.29 207.00 1.30 278.19 4.97 176.50 15.40
200-07 213.87 7.02 226.50 1.20 212.36 7.23 194.00 14.30
200-08 209.50 7.98 296.50 1.20 211.79 10.20 239.00 17.40
200-09 221.60 6.90 254.00 1.20 219.61 6.91 220.00 15.10
200-10 491.50 7.13 261.00 1.20 493.57 7.39 221.50 17.00
300-01 314.72 12.24 376.00 2.30 314.49 9.98 332.00 39.70
300-02 522.09 16.17 415.50 2.30 520.66 12.70 360.50 42.60
300-03 333.45 10.72 436.00 2.20 334.40 11.55 356.00 39.10
300-04 560.93 14.12 307.00 2.40 564.59 17.84 280.50 33.90
300-05 319.66 10.30 363.00 2.30 319.70 10.41 304.00 33.30
300-06 355.57 11.05 396.00 2.30 356.74 9.82 337.00 39.60
300-07 277.07 8.94 444.00 2.30 274.94 8.27 354.50 43.20
300-08 289.37 10.89 413.50 2.20 288.41 11.84 351.00 37.40
300-09 237.50 8.13 412.00 2.20 237.71 8.31 329.00 40.30
300-10 292.06 8.94 432.00 2.10 289.66 10.73 374.00 40.90

Table 9.2: Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median number of moves and median times for a local search with N S1

2,d
using next improvement and best improvement. All three filters are enabled. The initial
solutions were generated with TWCH.

48

9.1. Local Search

0 2 4 6 8 10 12

N S1
2,d

N S1
3,d

4.5

10

% relative difference

Figure 9.2: Relative differences between the average objective value of TWCH and the
average objective values of a local search with N S1

2,d and N S1
3,d . The values are calculated

as 100% · (objT − objL)/objT , where objT denotes the average objective value of TWCH
and objL represents the average objective value of one of the local search methods.

level of 95% shows that the best improvement step function indeed does not perform
significantly better. Because the objective values with both step functions are similarly
good, the running time is the decisive criterion. Therefore, the next improvement step
function with a randomized order of neighbours is used in all later experiments.

In Section 5.1 we described a more general neighbourhood structure to permute c DTs
within a day d, denoted as N S1

c,d . To see the effects of a large number of permuted DTs,
we have executed one local search with N S1

2,d and another one with N S1
3,d on the benchmark

instances and compared their results. It turned out that the neighbourhood size is too
large for the local search to converge with c = 3 in a reasonable time if no filter is used.
Hence, we limited the search space for both local search runs using the adjacent filter.
Table 9.3 shows the results for all benchmark instances. It can be seen that the solutions
generated with c = 3 are on average by 5% to 8% better, which is due to the fact that
N S1

3,d can generate solutions which are unreachable just by a DT exchange. However,
the computation time increases significantly with increasing c. Figure 9.2 depicts the
relative difference between the average objective values of the local search methods and
the average objective value of TWCH.

With regard to the filters, it can be expected that a local search that uses N S1
2,d without

any filter generates the best solutions. Indeed, Figure 9.3 as well as Table 9.4, which
summarize the influence of the filters on the performance of the local search, show that a
local search produced the best solutions on average for most instances if no filter was
used. Moreover, this table suggests that the solutions found by the local search which
uses the gap filter have very similar objective values than the ones produced by the
local search which does not utilize any filter. This impression can be observed by a
Wilcoxon rank sum test with a significance level of 95% showing that for only 8 out of 40
instances significantly better solutions can be found without using a filter. However, the
gap filter removes so many worse solutions from the search space that the local search
which uses this filter reaches a local optimum twice as fast for most instances. It can be
concluded that it is not advisable to use the neighbourhood structure N S1

2,d without any
filter if convergence time is a critical factor. When comparing the results of a local search

49

9. Computational Study

Instance N S1
2,d N S1

3,d

obj σ(obj) Moves t [s] obj σ(obj) Moves t [s]

100-01 145.54 7.11 224.00 0.80 137.81 5.85 419.00 22.30
100-02 200.15 13.18 192.00 0.80 189.54 10.32 422.50 28.50
100-03 92.37 3.47 125.00 0.60 91.57 4.05 265.50 26.10
100-04 168.63 7.84 150.50 0.70 159.62 6.95 357.50 27.80
100-05 156.04 5.88 161.00 0.70 148.43 6.17 413.50 22.40
100-06 125.19 7.02 150.00 0.70 121.90 7.06 339.00 30.00
100-07 127.14 8.25 120.00 0.70 120.86 5.94 364.00 24.80
100-08 173.52 4.90 179.00 0.70 165.45 5.62 483.00 34.90
100-09 90.33 4.67 145.00 0.60 82.54 6.00 399.50 34.80
100-10 158.95 4.11 130.00 0.70 153.79 5.12 305.50 24.10
150-01 221.07 7.34 228.50 1.20 211.21 7.67 517.50 47.50
150-02 358.63 7.18 284.00 1.40 345.55 9.12 598.00 55.20
150-03 269.19 7.14 179.00 1.20 260.06 5.25 391.50 39.80
150-04 206.20 6.79 235.50 1.20 196.81 6.57 560.00 59.20
150-05 180.45 8.26 266.50 1.20 159.94 5.72 717.00 52.30
150-06 383.25 8.39 288.50 1.30 362.14 8.73 692.50 67.20
150-07 329.86 9.94 243.00 1.20 316.34 9.24 676.50 66.90
150-08 335.27 6.64 207.00 1.20 326.33 7.74 540.50 55.20
150-09 297.48 9.46 265.00 1.20 281.56 7.98 648.50 77.90
150-10 238.27 9.04 274.00 1.30 228.74 7.62 531.00 56.20
200-01 359.41 12.24 342.00 1.80 343.91 11.26 696.00 76.80
200-02 356.21 6.37 363.50 1.90 342.10 6.06 806.00 93.60
200-03 274.53 5.90 263.50 1.70 259.02 6.42 784.00 95.70
200-04 335.56 11.08 377.50 1.90 317.96 5.86 798.50 92.50
200-05 303.21 9.56 411.50 1.90 284.11 7.06 951.00 116.80
200-06 280.97 6.65 263.00 1.80 270.06 7.44 576.00 102.40
200-07 212.41 8.90 317.50 1.80 198.17 7.58 763.00 90.80
200-08 205.86 7.37 413.00 1.70 192.59 8.82 942.00 105.00
200-09 218.71 7.60 317.00 1.70 202.62 7.48 737.00 75.20
200-10 490.59 7.31 326.50 1.80 467.86 7.95 737.50 93.50
300-01 310.45 8.49 570.00 3.30 288.22 12.55 1360.00 193.80
300-02 514.20 15.62 536.50 3.40 490.20 12.15 1320.50 198.50
300-03 330.03 8.93 634.00 3.20 301.07 10.40 1477.50 196.40
300-04 558.36 14.65 420.50 3.20 523.42 15.87 1168.00 172.60
300-05 320.93 9.60 520.00 3.20 294.82 9.64 1313.50 187.20
300-06 355.87 10.78 540.50 3.30 334.26 8.46 1382.00 210.70
300-07 271.72 8.14 600.00 3.20 249.54 9.66 1429.50 225.90
300-08 285.08 10.47 601.00 3.20 263.99 8.18 1411.50 198.40
300-09 236.66 8.71 607.00 3.20 211.43 5.46 1446.50 235.70
300-10 288.54 8.32 568.50 3.10 252.64 9.33 1572.50 205.40

Table 9.3: Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median number of moves and median times for a local search with N S1

2,d
and N S1

3,d . The adjacent filter is enabled, all others are disabled.

50

9.1. Local Search

0 5 10 15 20 25 30 35

no filter

gap

NST

adjacent

31

30.6

28.4

4.5

% relative difference

Figure 9.3: Relative differences between the average objective value of TWCH and the
average objective values of a local search with different filters enabled. The values are
calculated as 100% · (objT − objL)/objT , where objT denotes the average objective value
of TWCH and objL represents the average objective value of one of the local search
methods.

using the gap filter with the results of a local search using the NST filter by means of a
Wilcoxon rank sum test with a significance level of 95%, we observed that significantly
worse solutions were found when the NST filter was used for most instances. But the
difference in the objective values is relatively small. However, it takes the local search
with gap on average more than three times as long to converge than with the other filter
because the NST filter drops many more worse solutions than gap. In other words, the
improvement per time interval is larger with NST than with gap. This makes N S1

2,d with
enabled NST filter a good candidate for the first neighbourhood structure of a VND
because the first neighbourhood structure in a VND is used more often than the other
ones. With enabled adjacent filter, the local search provides almost no improvement
because the size of the filtered neighbourhoods is only linear in the number of DTs
per day and the filter nevertheless accepts many obviously bad solutions, especially on
schedules containing sequences of DTs from two alternating rooms.

Table 9.5 and Figure 9.4 compare the results of two versions of local search: One using
N S1

2,d and another one using N S2
d . In both cases, there is no filter applied. It can be seen

that it takes the version using N S2
d about twice as long to converge. That is mainly

because the neighbourhood N S2
d (Z, S), containing |Gd|(|Gd| − 1) solutions, is twice as

large as N S1
2,d(Z, S). Another observation we can make is that the local search method

that uses N S2
2,d finds significantly worse solutions. To understand the reason for that, one

must know that the DTs of the initial solutions of TWCH are already well interleaved
with regard to the room assignment. And on such solutions it is difficult to move a DT
to a different place on the same day without inducing idle time for the beam. Suppose,
for example, that every second DT is assigned to the same room and all resources are
available throughout the day for the sake of simplicity. Then almost every move would

51

9. Computational Study

Instance NS1
2,d (no filter) NS1

2,d (gap) NS1
2,d (NST) NS1

2,d (adjacent)

obj σ(obj) t [s] obj σ(obj) t [s] obj σ(obj) t [s] obj σ(obj) t [s]

100-01 107.73 5.36 19.40 110.76 4.89 8.70 112.34 5.72 2.70 145.54 7.11 0.80
100-02 151.08 8.15 21.50 150.09 6.74 10.40 154.81 8.21 3.40 200.15 13.18 0.80
100-03 68.57 2.61 16.90 69.44 2.77 6.90 71.98 3.30 2.50 92.37 3.47 0.60
100-04 127.49 5.69 19.90 129.28 5.56 8.50 131.70 7.06 2.70 168.63 7.84 0.70
100-05 123.28 6.13 19.70 124.32 6.81 9.80 130.63 6.95 2.40 156.04 5.88 0.70
100-06 94.04 5.16 20.40 95.65 5.51 8.20 95.65 4.85 3.00 125.19 7.02 0.70
100-07 92.49 4.79 20.40 92.57 3.63 8.90 93.63 6.03 2.90 127.14 8.25 0.70
100-08 138.69 4.47 19.90 141.03 5.74 9.80 145.08 4.83 2.80 173.52 4.90 0.70
100-09 58.48 5.22 18.60 59.90 4.78 7.60 62.22 4.57 2.40 90.33 4.67 0.60
100-10 124.74 4.68 19.50 124.11 4.87 9.00 128.96 4.69 2.60 158.95 4.11 0.70
150-01 163.59 7.49 37.90 165.68 6.25 15.80 170.18 7.02 5.30 221.07 7.34 1.20
150-02 287.47 5.97 40.30 284.63 6.55 19.70 298.05 6.26 6.20 358.63 7.18 1.40
150-03 215.73 6.80 37.10 216.71 4.74 14.50 224.30 6.32 4.90 269.19 7.14 1.20
150-04 144.92 5.31 38.00 146.17 5.95 16.60 151.78 6.03 5.20 206.20 6.79 1.20
150-05 125.83 5.27 30.60 127.33 6.34 13.50 133.66 5.01 4.70 180.45 8.26 1.20
150-06 314.04 5.80 36.80 316.27 6.37 17.90 329.14 7.13 4.70 383.25 8.39 1.30
150-07 279.07 6.34 35.00 279.89 8.14 14.60 281.11 7.47 5.10 329.86 9.94 1.20
150-08 273.61 6.33 43.40 270.33 8.20 18.70 275.21 6.28 6.40 335.27 6.64 1.20
150-09 242.49 6.55 40.30 243.23 7.88 18.20 247.78 7.14 6.00 297.48 9.46 1.20
150-10 170.27 6.12 39.10 171.94 7.05 17.00 178.53 4.71 5.30 238.27 9.04 1.30
200-01 288.65 8.84 45.20 289.30 9.29 20.30 299.13 5.16 6.90 359.41 12.24 1.80
200-02 286.44 3.67 47.10 284.89 4.23 20.80 292.26 4.34 6.60 356.21 6.37 1.90
200-03 203.00 4.70 47.50 203.87 5.95 19.90 209.42 5.71 7.00 274.53 5.90 1.70
200-04 240.05 5.95 50.30 240.14 6.66 23.10 248.22 5.51 7.60 335.56 11.08 1.90
200-05 219.95 4.52 48.20 220.06 7.17 20.80 229.98 5.88 6.90 303.21 9.56 1.90
200-06 202.48 3.52 56.20 202.32 4.35 22.40 205.37 4.66 8.50 280.97 6.65 1.80
200-07 141.00 4.19 47.60 142.28 6.44 20.10 146.72 6.78 6.80 212.41 8.90 1.80
200-08 142.65 5.62 44.00 145.24 5.37 18.40 149.88 6.94 6.40 205.86 7.37 1.70
200-09 150.38 5.87 40.10 153.53 7.03 18.00 157.73 8.31 5.70 218.71 7.60 1.70
200-10 400.52 7.63 48.50 401.13 7.33 22.20 420.82 8.24 7.70 490.59 7.31 1.80
300-01 176.47 5.52 71.70 179.22 5.34 29.90 187.69 7.61 11.60 310.45 8.49 3.30
300-02 396.17 14.35 76.50 393.13 11.51 37.30 407.53 13.72 12.10 514.20 15.62 3.40
300-03 195.71 8.66 68.30 201.03 7.72 30.10 205.18 11.72 10.90 330.03 8.93 3.20
300-04 401.58 13.42 87.40 404.67 11.65 35.90 413.98 11.35 13.60 558.36 14.65 3.20
300-05 170.27 4.46 78.30 171.35 5.46 32.20 184.58 6.14 12.50 320.93 9.60 3.20
300-06 236.89 8.74 75.60 240.51 7.67 33.70 247.90 9.16 11.60 355.87 10.78 3.30
300-07 150.40 5.47 72.80 153.44 6.05 31.70 159.95 7.21 11.40 271.72 8.14 3.20
300-08 161.03 4.67 71.10 162.06 5.79 30.50 169.53 6.44 11.20 285.08 10.47 3.20
300-09 134.52 5.33 70.30 135.98 5.63 29.40 138.81 4.09 10.80 236.66 8.71 3.20
300-10 173.58 6.19 67.20 176.63 6.40 30.20 183.25 7.49 10.50 288.54 8.32 3.10

Table 9.4: Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median execution times for a local search with N S1

2,d with different filters
enabled

52

9.1. Local Search

0 5 10 15 20 25 30 35

N S1
2,d

N S2
d

31

18.3

% relative difference

Figure 9.4: Relative differences between the average objective value of TWCH and the
average objective values of a local search with N S1

2,d and N S2
d . The values are calculated

as 100% · (objT − objL)/objT , where objT denotes the average objective value of TWCH
and objL represents the average objective value of one of the local search methods.

cause two of these DTs to adjoin each other, forcing the beam to be idle between the DTs.
In contrast, there are many ways to exchange two DTs in this example without inducing
idle time for the beam, such as exchanging two arbitrary DTs which are assigned to the
same room. Nevertheless, N S2

d is useful as part of a VND because it generates schedules
which cannot be found in the neighbourhoods of N S1

2,d .

9.1.2 Inter-Day Neighbourhood Structures

This section shows the experimental results of a local search with inter-day neighbourhood
structures. The inter-day neighbourhood structures change only the Zt,u variables of a
solution and ignore the St,u variables. This is done in order to improve the efficiency of
the local search by avoiding to recalculate the St,u variables using Algorithm 5.1. The
objective of the local search is to minimize

γext ∑
r∈R

∑
d∈D′

ηr,d + γfinish∑
t∈T

(Zt,τt − Zearliest
t,τt

), (1)

where ηr,d = max({St,u + P end
t,u,r −W end

r,d | t ∈ T, u ∈ Ut, r ∈ Qt,u, Zt,u = d} ∪ {0}) is the
used time of the extended availability period of a resource r on day d (see [MRR17]). All
other symbols in this formula are defined in Chapter 4. Since determining (1) requires the
exact starting times, the usage of the resources’ availability periods for a given candidate
set of DTs has to be estimated. To that end, the local search uses a modified version of
(1) that replaces ηr,d with a surrogate η̂r,d = max(0, λ̂r,d − hr,d), where λ̂r,d estimates the
required time and hr,d denotes the aggregated regular availability of resource r on day d.
We calculate λ̂r,d as in [MRR17], where the beam idle times, which occur e.g. when two
consecutive DTs require the same room, are taken into account.

Table 9.6 compares the results of three versions of local search with different inter-day
neighbourhood structures. Each row contains average figures for a particular group
of benchmark instances. Figure 9.5 shows the relative difference between the average
objective values of these local search methods and the average objective values of TWCH
for different numbers of therapies using the objective function (1). It is not obvious but

53

9. Computational Study

Instance N S1
2,d N S2

d

obj σ(obj) Moves t [s] obj σ(obj) Moves t [s]

100-01 107.73 5.36 882.50 19.40 128.31 7.93 478.50 27.60
100-02 151.08 8.15 963.50 21.50 174.49 10.13 575.00 30.80
100-03 68.57 2.61 620.00 16.90 82.89 3.55 357.00 22.20
100-04 127.49 5.69 798.00 19.90 146.65 6.93 456.50 27.70
100-05 123.28 6.13 799.50 19.70 137.33 7.61 474.00 29.90
100-06 94.04 5.16 726.50 20.40 111.19 5.42 438.50 30.30
100-07 92.49 4.79 863.50 20.40 114.58 4.29 422.00 27.50
100-08 138.69 4.47 860.00 19.90 156.62 6.19 486.50 27.00
100-09 58.48 5.22 771.50 18.60 77.49 4.28 442.50 25.80
100-10 124.74 4.68 764.50 19.50 138.57 5.61 415.00 27.20
150-01 163.59 7.49 1357.00 37.90 194.86 7.53 717.50 56.90
150-02 287.47 5.97 1494.00 40.30 317.66 7.71 880.00 64.10
150-03 215.73 6.80 1182.00 37.10 243.07 5.85 621.00 57.70
150-04 144.92 5.31 1323.00 38.00 175.07 6.76 825.00 58.40
150-05 125.83 5.27 1249.50 30.60 151.81 6.53 744.50 51.10
150-06 314.04 5.80 1364.00 36.80 343.26 7.85 906.00 61.50
150-07 279.07 6.34 1238.50 35.00 300.06 7.85 807.00 58.10
150-08 273.61 6.33 1349.00 43.40 308.62 6.18 639.00 60.50
150-09 242.49 6.55 1366.00 40.30 270.53 8.04 740.00 60.90
150-10 170.27 6.12 1418.00 39.10 206.76 6.66 721.50 57.90
200-01 288.65 8.84 1585.00 45.20 323.32 8.83 926.50 76.80
200-02 286.44 3.67 1718.00 47.10 316.31 3.59 1028.00 87.10
200-03 203.00 4.70 1648.00 47.50 245.85 5.31 775.50 76.30
200-04 240.05 5.95 2077.50 50.30 291.32 7.48 1081.50 90.00
200-05 219.95 4.52 2026.50 48.20 261.31 8.09 1133.50 89.60
200-06 202.48 3.52 1768.50 56.20 248.57 5.02 788.50 86.50
200-07 141.00 4.19 1794.00 47.60 176.18 8.92 953.50 78.90
200-08 142.65 5.62 1759.00 44.00 175.44 6.93 1089.50 77.00
200-09 150.38 5.87 1641.00 40.10 181.04 7.04 1019.50 77.10
200-10 400.52 7.63 1699.00 48.50 437.38 8.61 1029.50 92.70
300-01 176.47 5.52 2892.00 71.70 227.41 7.08 2024.00 165.40
300-02 396.17 14.35 2796.50 76.50 458.37 10.95 1606.50 155.50
300-03 195.71 8.66 3103.50 68.30 251.73 7.69 1979.00 152.20
300-04 401.58 13.42 2998.50 87.40 479.51 14.32 1619.00 165.20
300-05 170.27 4.46 3108.00 78.30 230.72 7.34 1968.00 162.20
300-06 236.89 8.74 2868.00 75.60 296.43 9.14 1632.50 154.90
300-07 150.40 5.47 3076.00 72.80 205.00 6.93 1924.50 157.00
300-08 161.03 4.67 2985.50 71.10 219.37 7.47 1877.00 154.20
300-09 134.52 5.33 2870.50 70.30 175.94 4.46 1885.00 157.80
300-10 173.58 6.19 2793.00 67.20 226.35 8.66 1748.50 144.50

Table 9.5: Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median number of moves and median times for N S1

2,d and N S2
d without a

filter

54

9.1. Local Search

0 10 20 30 40 50 60 70 80

100

150

200

300

65.8

49.8

47.7

31.6

29.3

40.7

45.2

48.1

26.6

38.9

44.6

48.2

% relative difference

NZ1

NZ2

NZ3

Figure 9.5: Relative differences between the average objective value of TWCH and
the average objective values of a local search with NZ1, NZ2 and NZ3 for different
numbers of therapies using the objective function (1). The values are calculated as
100% · (objT − objL)/objT , where objT denotes the average objective value of TWCH and
objL represents the average objective value of one of the local search methods.

a Wilcoxon rank sum test with a significance level of 95% indicates that NZ2 generates
significantly better solutions for half of the instances, while NZ3 performs better on only
8 instances. The local search that uses NZ3 performs better than NZ2 especially on the
largest instances with 300 therapies because for 5 of them it finds significantly better
solutions, while NZ2 produces better solutions only for two of them. However, the initial
solutions have only improved by a small percentage of 1% – 5% because TWCH is quite
good at distributing the therapies over the whole planning horizon.

A Wilcoxon rank sum test with a significance level of 95% indicates that a local search that
uses NZ1 generates significantly better solutions for most instances below 300 therapies
than a local search using one of the other two inter-day neighbourhood structures. This is
intuitively clear because NZ1 can stretch therapies, which is sometimes needed to reduce
extended time on certain days. Interestingly, a local search which utilizes one of the
other two neighbourhood structures performs statistically better on most large instances
with 300 therapies as well as on some instances with 150 and 200 therapies. This result
indicates that TWCH produces dense schedules which already contain stretched therapies
for large instances. On such initial solutions, NZ2 and NZ3 would preserve the distances
between two consecutive DTs. In contrast, NZ1 would either stretch or compress such
therapies, which may increase the therapy duration or the extended time on some working
days.

55

9. Computational Study

Instance NZ1 NZ2 NZ3

obj σ(obj) t [s] obj σ(obj) t [s] obj σ(obj) t [s]

100-01 6.43 0.17 4.20 14.22 0.78 1.60 14.79 0.49 1.50
100-02 8.21 1.11 6.00 21.36 0.44 1.40 21.62 0.31 1.20
100-03 5.53 0.11 3.30 7.26 0.38 1.00 7.38 0.40 1.10
100-04 8.43 0.56 7.40 16.40 0.36 1.60 16.27 0.30 1.70
100-05 7.02 0.25 5.10 12.96 0.48 1.60 13.13 0.43 1.50
100-06 6.62 0.10 4.30 11.53 0.50 1.70 12.12 0.22 1.30
100-07 6.01 0.21 4.70 13.67 0.80 1.20 13.56 0.69 1.20
100-08 7.81 0.95 6.80 23.60 0.79 1.60 26.56 0.52 1.30
100-09 5.98 0.24 3.70 6.45 0.25 1.10 6.44 0.21 1.10
100-10 6.97 0.13 5.40 15.14 0.44 1.80 16.06 0.28 1.30
150-01 13.80 1.20 20.60 16.43 0.69 6.00 16.21 0.42 5.30
150-02 18.23 1.26 22.60 33.16 0.81 6.10 34.84 0.81 5.50
150-03 31.19 1.57 19.40 29.53 0.46 5.20 30.25 0.41 5.00
150-04 12.16 0.23 13.60 13.32 0.36 5.10 13.65 0.28 5.10
150-05 10.79 0.17 11.10 8.85 0.25 4.10 9.20 0.31 3.90
150-06 47.62 2.80 26.80 58.66 0.88 6.50 60.82 0.66 5.20
150-07 41.21 1.51 23.80 44.89 0.71 6.20 45.98 0.51 5.10
150-08 32.91 1.99 23.70 36.55 0.67 6.00 38.05 0.70 5.60
150-09 30.12 3.14 24.90 38.37 0.69 5.10 39.85 0.77 5.10
150-10 12.99 0.51 21.50 16.72 0.47 6.00 16.51 0.34 5.20
200-01 27.36 2.21 70.70 21.42 0.57 14.20 21.80 0.62 13.00
200-02 25.78 1.30 66.90 35.69 0.64 11.20 35.66 0.60 13.90
200-03 18.33 0.15 29.30 21.15 0.56 14.10 21.23 0.46 15.60
200-04 18.16 1.85 62.70 21.55 0.72 14.00 22.13 0.81 16.00
200-05 15.31 0.28 47.80 14.29 0.40 11.00 14.63 0.44 14.90
200-06 19.09 0.58 60.50 26.25 0.65 14.00 27.17 0.56 13.70
200-07 15.14 0.20 40.10 15.37 0.51 10.80 15.14 0.36 12.60
200-08 13.18 0.25 28.50 12.33 0.36 10.70 11.97 0.28 10.60
200-09 14.40 0.21 35.70 12.57 0.27 9.90 12.65 0.32 11.70
200-10 57.02 2.41 60.80 53.89 0.76 16.30 54.87 0.84 13.20
300-01 13.84 0.33 100.30 12.23 0.29 29.40 12.22 0.27 31.70
300-02 49.69 4.52 265.40 31.28 1.11 49.00 32.16 1.00 53.00
300-03 21.51 0.58 123.30 15.70 0.46 39.30 15.96 0.40 39.60
300-04 36.34 3.16 234.10 34.54 1.84 43.90 34.88 2.06 48.60
300-05 13.80 0.30 98.30 12.01 0.30 31.80 11.90 0.29 31.40
300-06 26.27 0.42 142.50 17.67 0.56 44.90 17.54 0.37 47.10
300-07 14.03 0.33 114.00 10.82 0.27 31.70 10.32 0.24 32.60
300-08 14.07 0.58 105.30 10.75 0.33 38.70 10.48 0.32 32.60
300-09 13.63 0.51 107.90 10.69 0.24 31.90 10.22 0.19 36.10
300-10 20.71 0.55 137.20 14.24 0.38 37.10 13.96 0.26 31.90

Table 9.6: Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median execution times for NZ1, NZ2 and NZ3

56

9.2. 2-Phase Approach and Iterated Greedy

Instance size IG1 IG2 IG3

β nrta−noimp β β

100 0.106 b0.787 · |Gd|c 0.059 0.029
150 0.093 b0.705 · |Gd|c 0.028 0.016
200 0.053 b1.210 · |Gd|c 0.029 0.012
300 0.116 b1.761 · |Gd|c 0.015 0.007

Table 9.7: Parameter settings for IG1, IG2 and IG3 determined by irace. The parameters
include the destruction rate β as well as nrta−noimp determining the number of iterations
the randomized construction heuristic is executed each day with no improvement.

9.2 2-Phase Approach and Iterated Greedy
In this section we perform an experimental evaluation and comparison of the 2PA from
Chapter 6 with the IG approach from Chapter 7, and the simpler IG method from
[MRSR16]. The IG method from [MRSR16] will be called IG1 from here on, the IG
approach and its improved version from Chapter 7 will be denoted as IG2 and IG3,
respectively, in the remaining thesis. The IG method from [MRSR16] (IG1) differs from
IG2 in two aspects. First, it uses a randomized construction heuristic instead of a
more targeted local search method to improve the time assignments on individual days.
Secondly, its destruction and construction phase does not preserve the time assignments
of the therapies which were not removed from the schedule. All experiments in this
section were conducted with a time limit of 20 minutes because the IG approaches would
not detect whether a local optimum has been reached.

The strategy parameters of the metaheuristics were tuned using the automatic parameter
configuration tool irace in version 2.3. In detail, irace was applied separately on each
instance size to tune the destruction rate β and nrta−noimp for IG1 and IG2, where
nrta−noimp determines the number of iterations the randomized construction heuristic
is executed each day with no improvement. On this account, we generated for each
instance size five independent instances for tuning. Moreover, each irace run had a
computational budget of 1000 experiments. The resulting parameter configurations are
shown in Table 9.7.

The missing pieces in the definition of the 2PA and IG3 are the choice of neighbourhood
structures to be used in the VNDs and the order in which they are applied as well as
the value for β. Since we did not know with certainty which neighbourhood structures
perform best in this context, we decided to apply the Racing method in two consecutive
steps to find well performing sequences of neighbourhood structures for the VNDs in
2PA and IG3 as well as a suitable value for β.

The first step was dedicated to finding a sequence of neighbourhood structures for the
inter-day and intra-day VNDs in both metaheuristics. To that end, we defined 15 VNDs
which are composed of all possible sequences of up to 3 different inter-day neighbourhood

57

9. Computational Study

structures. We also defined 77 VNDs of different sequences of intra-day neighbourhood
structures with different filter combinations being enabled. We then applied irace once
on 2PA and IG3 to find for each of them an inter-day and intra-day VND which produces
better or equally good solutions than all the other VNDs on the tuning instances. Each
irace run had a computational budget of 10000 experiments. The resulting VNDs are
(NZ1,NZ3) and (N S1

2,D′ ,N S2
D′) for 2PA, where both the gap and NST filter are used in a

conjunction. For IG3 we found the inter-day VND (NZ3,NZ1), where the adjacent and
NST filter are used in a disjunction, as well as the intra-day VND (N S1

2,D′ ,N S2
D′), where

the gap and NST filter are applied disjunctively.

Afterwards we fixed the neighbourhood structures for both VNDs in IG3, and used irace
with a budget of 10000 to tune the destruction rate β. Since we expected that the optimal
destruction rate β depends on the number of therapies to be scheduled, we executed irace
separately on each instance size. The resulting destruction rate is shown in Table 9.7.

Table 9.8 depicts for IG1, 2PA, IG2 and IG3 averages of the final objective values obj and
the corresponding standard deviation σ(obj) over 30 runs for each of the 40 benchmark
instances. Note that at the end of each run the LP model from Chapter 8 is solved in order
to finetune the DTs’ starting times. We start by comparing IG1 with IG2. According
to a Wilcoxon rank sum test with a significance level of 95%, IG2 is significantly better
than IG1 on all 40 instances. On 33 instances the average objective values of IG2 are
smaller by more than 25% compared to those of IG1, and on 22 instances the average
objective values of IG2 are even halved compared to the ones from IG1. The main reason
for this performance improvement is the interplay between the construction phase of
IG2 and its local search procedure. On the one hand, the local search operator is, in
general, able to provide better results than the randomized construction heuristic of IG1.
However, encoding, decoding, and evaluating the solution is computationally demanding
and, hence, converging to a local optimum is time consuming, especially on strongly
perturbed solutions. On the other hand, the construction phase of IG2 is designed in
such a way that large parts of the sequence of the DTs are preserved while introducing
the removed DTs in a sensible but randomized way. Starting with a solution close to
a local optimum w.r.t. the N S1

2,D′ neighbourhood allows to reduce the time spent in the
local search procedure and, consequently, increases the total number of iterations.

When comparing 2PA with IG1, a Wilcoxon rank sum test with a signifance level of
95% indicates that 2PA is better on 39 out of 40 instances. However, IG2 produces
significantly better results than 2PA on 32 out of 40 instances, according to a Wilcoxon
rank sum test. With regard to the final objective values, 2PA produces on average about
25% better solutions. The relative difference between the final objective values of IG2
and 2PA is the same.

Most importantly, however, Table 9.8 clearly shows that IG3 dominates the other meta-
heuristics. A Wilcoxon rank sum test with a significance level of 95% indicates that IG3
produces significantly better solutions than IG2 on all 40 instances. Metaheuristic IG3
achieved the most improvement compared to IG2 on instance 150-01 with the average

58

9.2. 2-Phase Approach and Iterated Greedy

0 10 20 30 40 50 60 70 80

IG1

2PA

IG2

IG3

38.4

53.5

65.1

73.7

% relative difference

Figure 9.6: Relative differences between the average objective value of TWCH and
the average objective values of IG1, 2PA, IG2 and IG3. The values are calculated as
100% · (objT − objL)/objT , where objT denotes the average objective value of TWCH and
objL represents the average objective value of one of the metaheuristics.

objective value being smaller by 44% compared to the one of IG2. On average the
objective values of IG3 are smaller by 25% compared to those of IG2. The reason for IG3
performing better than IG2 is that it includes a better local search component, which
optimizes both the day and time assignments after the construction phase. As can be
seen in Figure 9.6, IG3 improves the initial solutions of TWCH on average by 74%, which
is about twice as much as the improvement of the reference method IG1 from [MRSR16].

59

9. Computational Study

Instance IG1 2PA IG2 IG3

obj σ(obj) obj σ(obj) obj σ(obj) obj σ(obj)

100-01 85.24 3.56 67.12 4.45 34.45 4.00 19.94 1.92
100-02 111.52 4.39 86.29 6.98 41.94 3.78 30.54 2.92
100-03 57.62 4.41 42.43 2.42 24.87 1.97 17.65 1.89
100-04 89.99 3.86 62.83 6.07 37.77 3.48 25.30 2.49
100-05 85.51 3.93 75.05 4.39 29.24 2.82 19.34 1.63
100-06 64.37 4.58 56.88 3.89 40.52 4.37 30.23 5.97
100-07 72.30 4.41 55.79 4.51 27.68 2.71 16.91 1.43
100-08 97.94 4.56 81.35 4.44 46.62 3.14 34.52 3.06
100-09 59.63 3.42 38.28 2.76 27.21 2.63 19.57 1.63
100-10 89.12 6.50 71.59 4.40 37.06 5.04 22.34 3.70
150-01 129.07 4.28 94.66 5.03 74.76 6.75 41.69 3.07
150-02 258.15 9.13 171.44 7.04 151.40 7.18 119.70 7.62
150-03 133.99 4.77 111.96 8.29 113.05 6.38 71.38 4.71
150-04 117.56 5.67 83.43 5.42 58.62 4.45 42.09 3.26
150-05 95.60 5.33 74.50 3.56 40.78 3.07 34.01 3.16
150-06 239.60 7.84 175.64 9.70 185.60 13.69 124.71 5.93
150-07 175.74 6.63 141.08 8.77 167.40 9.73 110.96 4.15
150-08 195.93 6.80 140.14 6.42 149.43 7.48 108.02 4.86
150-09 171.44 4.70 122.95 4.85 134.00 9.30 84.78 4.84
150-10 131.03 5.27 93.14 5.54 74.56 7.80 50.14 4.11
200-01 203.37 10.43 151.73 10.89 144.15 10.25 108.79 7.59
200-02 239.71 7.42 153.86 5.61 160.54 8.65 121.12 5.62
200-03 175.81 8.20 121.49 4.66 109.02 6.38 83.86 6.11
200-04 217.24 8.56 135.32 5.05 132.00 9.77 85.01 7.24
200-05 189.73 8.15 123.96 5.81 90.94 6.74 73.95 5.22
200-06 180.41 6.48 117.59 5.30 126.66 4.89 96.98 7.16
200-07 150.84 5.89 90.84 6.22 72.37 3.90 64.90 5.76
200-08 141.07 5.85 78.87 4.34 67.12 4.57 43.47 2.55
200-09 138.75 6.21 86.92 4.91 56.24 4.31 44.30 4.42
200-10 293.31 10.95 201.80 6.27 233.73 10.49 174.41 5.59
300-01 240.50 5.86 162.01 40.05 90.19 5.82 81.54 8.39
300-02 354.38 13.83 319.68 27.75 281.46 14.38 192.28 22.10
300-03 253.70 7.03 213.00 16.94 102.90 6.36 92.82 7.57
300-04 375.77 9.32 384.16 17.68 274.34 12.26 256.60 26.95
300-05 245.85 6.16 162.22 38.72 78.12 3.68 70.39 5.23
300-06 245.23 8.87 232.23 12.88 127.58 9.77 99.76 10.97
300-07 208.32 6.46 166.36 26.97 70.57 4.03 61.16 3.71
300-08 216.85 5.11 166.94 22.81 77.20 4.44 68.38 4.10
300-09 196.83 4.34 140.08 22.64 66.65 3.59 59.19 3.30
300-10 214.59 7.39 183.60 10.04 76.90 4.35 68.14 6.41

Table 9.8: Average objective values obj of 30 runs and corresponding standard deviations
σ(obj) for IG1, 2PA, IG2, IG3 with enabled postprocessing step

60

CHAPTER 10
Conclusion

This thesis considers the Particle Therapy Patient Scheduling Problem (PTPSP) in
which cancer therapies consisting of sequences of treatments have to be planned within a
planning horizon of several months. We presented five neighbourhood structures to be
used by local search methods for the PTPSP. We distinguished between intra-day and
inter-day neighbourhood structures. Two intra-day neighbourhood structures operate on
a sequence of daily treatments (DTs) on a certain day resulting from sorting the DTs by
the times from which on they use the beam. They change the order of the DTs by either
moving a DT to a different position in this sequence or by permuting a subset of DTs.
On instances occuring in practice, these neighbourhoods are too large to be explored in a
reasonable time. Therefore, we defined three filters which reduce the neighbourhoods to
considerably smaller subsets of promising solutions. The adjacent filter causes the DTs’
starting times to change only slightly by ensuring that only consecutive DTs change their
places. We showed that a local search using this filter converges exceptionally fast but
provides almost no improvement. The gap filter rejects all DT permutations that increase
the number of times an irradiation room is used in a row. A local search using this
filter proved to produce nearly as good solutions as a local search without a filter while
converging about twice as fast. The NST filter ensures that a move does not increase
the aggregated deviation of the DTs’ starting times from the corresponding nominal
starting times. A local search which utilizes this filter converges about three times as
fast as a local search using the gap filter while producing only slightly worse solutions.
The inter-day neighbourhood structures move DTs to different days without considering
the exact starting times of the DTs. One of them moves subsets of the DTs of a therapy,
whereas the other two move whole therapies. The first inter-day neighbourhood structure
has been shown to be more effective on sparse schedules of smaller instances, where it is
often possible to move a DT by one day without violating a constraint. In contrast, on
large instances the other inter-day neighbourhood structures are superior because they
do not try to stretch or compress therapies on a dense schedule where the therapies are

61

10. Conclusion

already well interleaved.

We further presented two metaheuristics for the PTPSP. The first metaheuristic, which we
called 2-Phase Approach (2PA), combines two Variable Neighborhood Descents (VNDs)
which act on different levels. The first VND uses inter-day neighbourhood structures
to optimize the day assignments of the DTs. The second VND consists of intra-day
neighbourhood structures which optimize the starting times of the DTs without changing
their day assignment. We showed that 2PA produces significantly better solutions than
the Iterated Greedy (IG) metaheuristic from a previous work [MRSR16] of Maschler et
al. on 39 out of 40 instances. The solutions are, on average, 25% better. The 2-Phase
Approach performs better than the IG approach because its inter-day neighbourhood
structures find promising day assignments in a very targeted and less random way than
IG’s destruction and construction phase.

The second metaheuristic is an IG method that enhances the IG from [MRSR16] of
Maschler et al. In contrast to the latter, the presented approach aims at preserving
the order of the non-removed DTs on the individual days. The resulting advantage is
that more information from the incumbent solution is maintained. Compared to the
previous IG our new IG metaheuristic provides significantly better results on all 40
benchmark instances. The superiority of the enhanced approach over the previous IG
can be explained by the interplay between its construction phase and the applied local
search technique: The local search method yields, in general, better results than applying
the randomized time assignment of the therapy-wise construction heuristic (TWCH).
However, due to the required encoding and decoding steps, evaluating neighbours is time
consuming. Hence, to ensure that the metaheuristic is able to perform sufficiently many
iterations it is important that the neighbourhood requires on average only a few steps
until it reaches a local optimum. To this end, we apply in the construction phase an
insertion heuristic that iteratively places the removed DTs into the permutation resulting
from sorting the DTs according to the times at which they use the beam. Compared
to 2PA the generated solutions are, on average, 25% better. We further improved our
IG approach by incorporating a VND in the construction and local search phase. This
improved IG generates significantly better solutions than all other approaches on all
instances. It produces solutions, which are, on average, again 25% better than the
solutions of IG and approximately 74% better than the initial solutions.

Our study can be continued in several directions. One way is to improve the presented
local search methods. For example, our problem instances have the property that all
therapies have to start on Monday or Tuesday. Furthermore, some resources are available
only in the morning. These two properties can be exploited by appropriate filters for
the inter-day and intra-day neighbourhood structures, respectively, which could improve
the performance of the local search. It can also be observed that the presented local
search methods work best for dense schedules, where it is not necessary to introduce
large lags between two consecutive DTs on a day. That is because the LP model of the
postprocessing step is not able to move a greedily assigned DT across an unavailability
period to a later time. This problem could perhaps be solved by defining a decoder that

62

can schedule a DT behind an unavailability period if this leads to a better objective
value. Another way to continue our study is to generalize the PTPSP formalization in
such a way that a DT consists of individual activities with separate time assignments.
The neighbourhood structures could then operate on the activity level instead of the DT
level.

63

List of Tables

9.1 Average objective values obj of 30 runs, corresponding standard deviations
σ(obj), and median processing times for TWCH 47

9.2 Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median number of moves and median times for a local search
with N S1

2,d using next improvement and best improvement. All three filters
are enabled. The initial solutions were generated with TWCH. 48

9.3 Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median number of moves and median times for a local search
with N S1

2,d and N S1
3,d . The adjacent filter is enabled, all others are disabled. 50

9.4 Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median execution times for a local search with N S1

2,d with
different filters enabled . 52

9.5 Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median number of moves and median times for N S1

2,d and
N S2
d without a filter . 54

9.6 Average objective values obj of 30 runs, corresponding standard deviations
σ(obj) as well as median execution times for NZ1, NZ2 and NZ3 56

9.7 Parameter settings for IG1, IG2 and IG3 determined by irace. The parameters
include the destruction rate β as well as nrta−noimp determining the number
of iterations the randomized construction heuristic is executed each day with
no improvement. 57

9.8 Average objective values obj of 30 runs and corresponding standard deviations
σ(obj) for IG1, 2PA, IG2, IG3 with enabled postprocessing step 60

65

List of Algorithms

3.1 Local Search . 10

3.2 Variable Neighbourhood Descent . 12

3.3 Iterated Greedy . 13

5.1 Time assignment of a given sequence of DTs. 28

5.2 Decoding a neighbour from ÑZ1 . 31

5.3 Decoding a neighbour from ÑZ2 . 32

5.4 Decoding a neighbour from ÑZ3 . 33

7.1 Destruction and construction phases. 39

67

Bibliography

[AKM07] E Aarts, J Korst, and W Michiels. Theoretical aspects of local search.
Monographs in Theoretical Computer Science. An EATCS Series. Springer,
New York, 2007.

[BBS07] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. Improvement
strategies for the f-race algorithm: Sampling design and iterative refinement.
In International workshop on hybrid metaheuristics, pages 108–122. Springer,
2007.

[BLRP11] Edmund K Burke, Pedro Leite-Rocha, and Sanja Petrovic. An integer linear
programming model for the radiotherapy treatment scheduling problem.
arXiv preprint arXiv:1103.3391, 2011.

[BSPV02] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp. A
racing algorithm for configuring metaheuristics. In Proceedings of the 4th
Annual Conference on Genetic and Evolutionary Computation, pages 11–18.
Morgan Kaufmann Publishers Inc., 2002.

[CCZ14] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer pro-
gramming, volume 271. Springer, 2014.

[Dan16] George Dantzig. Linear programming and extensions. Princeton university
press, 2016.

[GP10] Michel Gendreau and Jean-Yves Potvin. Handbook of metaheuristics, volume 2.
Springer, 2010.

[HM06] Pierre Hansen and Nenad Mladenović. First vs. best improvement: An
empirical study. Discrete Applied Mathematics, 154(5):802–817, 2006.

[KP09] Truword Kapamara and Dobrila Petrovic. A heuristics and steepest hill
climbing method to scheduling radiotherapy patients. In Proceedings of the
35th International Conference on Operational Research Applied to Health
Services (ORAHS), pages 12–17. Citeseer, 2009.

69

[KSH+06] T Kapamara, K Sheibani, OCL Haas, CR Reeves, and D Petrovic. A review
of scheduling problems in radiotherapy. In Proceedings of the Eighteenth
International Conference on Systems Engineering (ICSE2006), Coventry
University, UK, pages 201–207, 2006.

[Lar93] SN Larsson. Radiotherapy patient scheduling using a desktop personal
computer. Clinical Oncology, 5(2):98–101, 1993.

[LFLR15] Antoine Legrain, Marie-Andrée Fortin, Nadia Lahrichi, and Louis-Martin
Rousseau. Online stochastic optimization of radiotherapy patient scheduling.
Health care management science, 18(2):110–123, 2015.

[MHRR17] Johannes Maschler, Thomas Hackl, Martin Riedler, and Günther R Raidl.
An enhanced iterated greedy metaheuristic for the particle therapy patient
scheduling problem. In Proceedings of the 12th Metaheuristics International
Conference. Barcelona, Spain, 2017.

[Mit98] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[MM97] Oded Maron and Andrew W Moore. The racing algorithm: Model selection
for lazy learners. In Lazy learning, pages 193–225. Springer, 1997.

[MRR17] Johannes Maschler, Martin Riedler, and Günther R Raidl. Particle therapy
patient scheduling: Time estimation for scheduling sets of treatments. In
International Conference on Computer Aided Systems Theory, pages 364–372.
Springer, 2017.

[MRSR16] Johannes Maschler, Martin Riedler, Markus Stock, and Günther R Raidl.
Particle therapy patient scheduling: First heuristic approaches. In Proceed-
ings of the 11th Int. Conference on the Practice and Theory of Automated
Timetabling (to appear 2016), 2016.

[NEH83] Muhammad Nawaz, E Emory Enscore, and Inyong Ham. A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95,
1983.

[PLR08] Sanja Petrovic and Pedro Leite-Rocha. Constructive and grasp approaches to
radiotherapy treatment scheduling. In World Congress on Engineering and
Computer Science 2008, WCECS’08. Advances in Electrical and Electronics
Engineering-IAENG Special Edition of the, pages 192–200. IEEE, 2008.

[PLSS06] Sanja Petrovic, William Leung, Xueyan Song, and Santhanam Sundar. Al-
gorithms for radiotherapy treatment booking. In Proceedings of the 25th
Workshop of the UK Planning and Scheduling Special Interest Group (Plan-
SIG’2006), Nottingham, UK, 2006.

70

[PMP09] Dobrila Petrovic, Mohammad Morshed, and Sanja Petrovic. Genetic algo-
rithm based scheduling of radiotherapy treatments for cancer patients. In
Conference on Artificial Intelligence in Medicine in Europe, pages 101–105.
Springer, 2009.

[PMP11] Dobrila Petrovic, Mohammad Morshed, and Sanja Petrovic. Multi-objective
genetic algorithms for scheduling of radiotherapy treatments for categorised
cancer patients. Expert Systems with Applications, 38(6):6994–7002, 2011.

[PP16] Marco Pranzo and Dario Pacciarelli. An iterated greedy metaheuristic for the
blocking job shop scheduling problem. Journal of Heuristics, 22(4):587–611,
2016.

[PR14] Quan-Ke Pan and Rubén Ruiz. An effective iterated greedy algorithm for the
mixed no-idle permutation flowshop scheduling problem. Omega, 44:41–50,
2014.

[RS07] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. European Journal
of Operational Research, 177(3):2033–2049, 2007.

[Wil45] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
bulletin, 1(6):80–83, 1945.

[WKW70] Frank Wilcoxon, SK Katti, and Roberta A Wilcox. Critical values and
probability levels for the wilcoxon rank sum test and the wilcoxon signed
rank test. Selected tables in mathematical statistics, 1:171–259, 1970.

71

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Methods
	Local Search
	Variable Neighbourhood Descent
	Iterated Greedy
	Linear Programming
	Statistical Evaluation
	Parameter Configuration

	Problem Formalization
	Given Input Data
	Solutions, Feasibility, and Objective
	Mathematical Model
	Computation of Nominal Starting Times

	Neighbourhoods
	Permuting Daily Treatments
	Moving Daily Treatments
	Moving Daily Treatments across Day Boundaries
	Moving Therapies
	Shifting Therapies

	2-Phase Approach
	Iterated Greedy Approach
	Local Search
	Destruction and Construction
	Improved Iterated Greedy

	Postprocessing
	Computational Study
	Local Search
	2-Phase Approach and Iterated Greedy

	Conclusion
	List of Tables
	List of Algorithms
	Bibliography

