FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Reproduzierbarkeit von Deep
Learning Datenanalysen

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Business Informatics

eingereicht von

Bojan Cavié, BSc
Matrikelnummer 01251071

an der Fakultat fur Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Wien, 4. Oktober 2018

Bojan Cavi¢ Andreas Rauber

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Reproducibility of Deep Learning
Data Analyses

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur
in

Business Informatics
by

Bojan Cavié, BSc

Registration Number 01251071

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber

Vienna, 4" October, 2018

Bojan Cavi¢

Andreas Rauber

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 - Tel. +43-1-58801-0

= www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Bojan Cavi¢, BSc
LiebenstraBe 33/2/15 1120 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. Oktober 2018

Bojan Cavié

Danksagung

Ich bedanke mich bei Ao.univ.Prof. Dr. Andreas Rauber fiir die Anregung zum Thema
und dariiber hinaus fiir die intensive Betreuung und Hilfe.

Ein grofles Dankeschon gebiihrt allen meinen Freunden fiir ihren Glauben an mich und
ihr Verstdndnis wihrend der Erstellung dieser Arbeit.

Schliefllich méchte ich mich bei meinen Eltern, Briidern und meiner ganzen Familie
bedanken, die mich wihrend der Erstellung dieser Diplomarbeit aber auch wéhrend der
ganzen Studienzeit unterstiitzt haben. Bedanken méchte ich mich auch, dass sie immer
an mich geglaubt und nie an mir gezweifelt haben. Diesen Erfolg widme ich ihnen.

vii

Acknowledgements

I would like to thank Ao.univ.Prof. Dr. Andreas Rauber for the suggestion on the subject
of this thesis and for the intensive assistance and help.

A big thank you to all my friends for their belief in me and their understanding while
creating this work.

Finally, I would like to thank my parents, brothers, and my family, who supported me
during the creation of this thesis, but also throughout the entire study period. I would
also like to thank you for always believing in me and never doubting me. I dedicate this
success to you.

X

Kurzfassung

Deep Learning floriert in den letzten Jahren und wird dank der derzeit verfiigharen
Rechenleistung von Computersystemen immer mehr eingesetzt. Groie IT-Unternehmen
wie Google oder Facebook nutzen Deep Learning Algorithmen in ihrem Tagesgeschéft.
Dabher ist die Reproduzierbarkeit von Forschungsarbeiten, die Deep Learning Algorithmen
beinhalten, ein entscheidender Faktor. Diese Masterarbeit konzentriert sich auf die
Analyse des Einflusses verschiedener Betriebssysteme sowie verschiedener Deep Learning
Frameworks. Zu diesem Zweck wird das gleiche Deep Learning Modell in drei sehr
populéren Frameworks (TensorFlow, Theano und Deeplearning4J) erstellt und ausgefiihrt.
Dariiber hinaus werden verschiedene Versionen dieser Frameworks berticksichtigt, da
einige von ihnen moglicherweise wichtige Methoden auf andere Weise implementieren.
Danach wird das Modell auf sieben Betriebssystemversionen ausgefiihrt. Zusétzlich
werden verschiedene Versionen der verwendeten Ausfithrungsplattform (Python und Java)
beriicksichtigt. Die erhaltenen Modellergebnisse werden analysieren und testen, ob die
Ergebnisse durch den Ausfiihrungskontext beeinflusst werden.

X1

Abstract

Deep Learning is thriving in recent years and finding increasing deployment thanks to
the currently available processing power of computer systems. Big I'T companies like
Google or Facebook use Deep Learning algorithms in their daily business. Therefore, the
reproducibility of research based upon Deep Learning algorithms is a crucial factor. This
master thesis will focus on analyzing the influence of different operating systems as well
as different Deep Learning frameworks. For this purpose, the same Deep Learning model
is constructed and executed in three very popular frameworks (TensorFlow, Theano and
Deeplearning4J). Further, different versions of these frameworks are considered as maybe
some of them may implement crucial methods in a different way. Afterwards, the model
is executed on seven operating system versions. Additionally, different versions of the
used execution platform (Python and Java) will be considered. Finally, this thesis focuses
on analyzing all obtained model results and testing if the results are significantly different
when changing the execution context.

xiii

Kurzfassung

Abstract

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

Motivationl e

Problem statement
Research questions

Contents

Methodological approach|. oo
Structure of the workl L

2 State of the art
2.1 Literature studieso
2.2 Comparison and summary of existing approaches|

3 Methodology

3.1 Experiment design| L o
3.2 Used concepts|. L
3.3 Methods and Models
3.4 MNIST Data Setl e
3.0 _Environments Lo
3.6 Operating Systems|
3.7 Analysis Methods
3.8 Summary e e
4 Results
4.1 Deep Learning Model Implementation
4.2 Frameworkl
4.3 Execution Platform/. o 0L
4.4 Operating System|o
4.5 FEquivalence Classes|. o o
4.6 Statistical analysis| Lo oo

xi

xiii

B IS, B NCRI

©o ©

15
15
16
19
22
23
28
30
32

33
33
36
39
42
45
47

XV

4.7 Summary . . .

5 Conclusion and future work

A Implementation

A.1 Converting IDX to CSV| oo
A.2 Data preperation for Python frameworks/.
A.3 Data preperation for Java framework

A.4 TensorFlowl . .
A5 Theanol e

A.6 Deeplearning4J
List of Figures
List of Tables

Bibliography

60

61

65
65
66
67
68
71
77

81

83

85

CHAPTER

Introduction

1.1 Motivation

Computer science is a very young discipline, but indispensable for our society. The
involvement of information technology in almost every area of life has been triggered
by the so-called digital revolution and has led to the information age in which we now
live [Sch18]. The scientific research in computer science can be regarded as the center
of innovation for new digital technologies. It is common practice that some research is
built upon already existing research which try to further develop the underlying idea
of the topic. The effectiveness and performance of scientific research can on one hand
be validated by theoretic properties of algorithms or methods, or on the other hand by
experimentation. A major challenge scientists face today concerns the reproducibility
of computer science experiments, as most computational experiments are specified only
informally in papers, where experimental results are briefly described [FFR16].

Reproducibility concern of scientific research has been steadily rising in recent years as
numerous results of experiments could not be replicated [GEFIL6, [Aarl5] . It is important
to note that terms such as reproducibility, replicability or reliability have led to confusion
as they are not standardized. According to a U.S. National Science Foundation (NSF)
subcommittee on replicability in science, reproducibility is the ability of a researcher
to duplicate the results of a prior study by using the same materials as the original
researcher |[GFI16]. But reproducible results are not just beneficial to other researchers,
they are also beneficial to the initiator of the research, as by making an experiment
reproducible the researcher is forced to document execution pathways and makes them
analyzable. Another advantage is that reproducible experiments can help to get familiar
with the problem and tools that were used [FER16].

1.

INTRODUCTION

As, Deep Learning is thriving in the last years and is employed more and more, the
reproducibility of research studies considering Deep Learning algorithms is a crucial
factor. The reproducibility of Deep Learning algorithms can be influenced by many
factors, not only by the Deep Learning architecture with its hyperparameters. Therefore,
the whole execution stack needs to be considered.

The execution stack considers the following parameters:

e underlying hardware
e operating system

e execution platform

Deep Learning framework

Deep Learning model

dataset

Thereby, every parameter can have an influence on the result of a Deep Learning algo-
rithm, as every operating system or framework may implement the same functionality
in a different way, e.g. different implementation of core OS libraries. Knowing this,
this master thesis will put the reproducibility factor in the center of the investigation
in regard to the execution stack. Therefore, this study will explain what happens with
results of research studies based on Deep Learning algorithms when they are reproduced
on different operating systems, execution platforms and using different Deep Learning
frameworks.

1.2 Problem statement

Beside the fact that Deep Learning models are computationally intensive, an interesting
thing about these models is that they, as opposed to standard data analysis models,
contain many test data points and probably a small change of the model could lead to
a different output that is statistically significant. Research studies that consider the
reproducibility of Deep Learning algorithms mostly concentrate on a concrete definition
of the underlying neural network implementation [DRF18]. Even if an exact definition of
the neural network architecture is important, the complete execution stack should be
considered. Different parameters can have an influence on Deep Learning model results,
including the operating system version, execution platform version or the Deep Learning
framework version.

1.2. Problem statement

Therefore, the goal of this thesis is to develop and implement Deep Learning experiments
and analyze effects when reproducing them concentrating on the whole execution stack.
All investigated experiment changes are structured according to a model called PRIMAD
[FFR16]. The PRIMAD model has the aim of categorizing various types of reproducibil-
ity, where PRIMAD stands for — (P)latform, (R)esearch Objective, (I)mplementation,
(M)ethod, (A)ctor and (D)ata. This thesis will be built upon on the PRIMAD model
where aspects such as the Platform, Operating System and the Implementation are
changed while others remain constant. Constants that are kept fixed throughout the
experiments are the Deep Learning model with all of its parameters except the random
number initialization, the used dataset and the hardware.

The first problem that is covered in this master thesis analyzes the influence of different
Deep Learning frameworks while reproducing the same model. Implementing a Deep
Learning model in different environments requires changing the parameters, dependencies
and libraries used in each environment respectively. Also, every framework uses a different
syntax which has to be adapted from framework to framework. Follow up experiments
analyze the influence of different framework versions as well as a different execution
platform. For some of the frameworks and execution platforms, changing the version
requires an adoption of code. The Deep Learning model is adapted to fit the respective
version.

The second problem that is covered in this master thesis analyzes the influence of
the operating system on the results. In this master thesis, the model is tested on Win-
dows, Linux and Mac OS in different versions. Each operating system is run on a virtual
machine, except for the original system (Mac OS High Sierra). It is possible that a
change of the experiment configuration can lead to significantly different results, which
in fact, should not occur as this would require future studies to expose the complete
setup used for the performed experiment. Key aspect of this investigation will analyze if
a different configuration will lead to statistically significant results.

The main challenges faced in this master thesis are:
1. The implementation of the same Deep Learning model in different Deep Learning
frameworks as well as for different framework versions.
2. Preparation of the input dataset to be usable in every Deep Learning framework.
3. Set up of required environments for all operating systems.

4. Analysing the results for all possible setup combinations.

1.

INTRODUCTION

1.3 Research questions

The main purpose of this master thesis is to investigate if certain parameters of the
execution stack have a statistical significant influence on Deep Learning model results
while reproducing them. It is important to note that the random seed is a crucial
parameter for the reproducibility of those kind of algorithms, as without its specification
the Deep Learning model, or in general Machine Learning algorithms, would always
deliver slightly different results. This study focuses on following research questions:

1. Is it possible to build the same Deep Learning architecture in different frameworks?

2. Is the performance difference of the same Deep Learning model statistically signifi-
cant when using:

a) different frameworks?

b

)
) different framework versions?
c) different execution platform versions?
)
)

d

€

different operating systems?

different operating system version?

3. Does the random seed have an impact on Deep Learning model results?

Another goal of this study is to encourage the Deep Learning community to concern
reproducibility of experiments as crucial factor. When publishing certain results, it
should be possible for other researchers to reproduce those and facilitate the verification
of published results and increase trustwortheness. In fact, to be able to arrange this, an
exact documentation of the whole experiment is needed, starting from model specific
characteristics, such as the Deep Learning architecture, and ending with global informa-
tion, such as the operating system and its version.

To which level of detail these aspects need to be documented (especially regarding the
description of the Deep Learning architecture and the data preparation) is, however,
not a focus of this study. Insights into this aspect of reproducibility (i.e. the ‘actor’
dimension of the PRIMAD model) is increasingly studied in dedicated reproducibility
tracks of conferences. Furthermore, the potential impact of different hardware (such as
Intel vs. AMD, training the model on GPUs) was not evaluated.

1.4. Methodological approach

1.4 Methodological approach

The methodological approach used for this thesis is experimentally oriented and comprises
following parts:

In the first step, the experiments are defined. Each experiment differs from the others by
changing one parameter from the execution stack. This results in a tree like structure
where one branch defines one experiment and the whole tree comprises all possible
combinations of parameter settings. The input dataset is constant across all experiments.
The different Deep Learning frameworks and their different versions are other parameters
of the execution stack. The execution stack parameters that are changed for this thesis
are:

1. Deep Learning framework as well as different versions of these frameworks,

2. the execution platform, i.e. different Java Virtual Machines, Java Development Kit
versions and Python stacks,

3. the operating system and different versions of these operating systems.
Frameworks that were explored for this thesis are:

i) TensorFlow!,
ii) Theano?,
iii) Deeplearning4J?.
Also, the operating systems with their different versions and the execution platform are
parameters of the execution stack. Different operating systems are installed on the same

hardware while using Mac OS High Sierra as base operating system. For this master
thesis seven different operating systems are explored and installed on virtual machines:

"https://www.tensorflow.org
http://deeplearning.net /software/theano/
3https://deeplearning4j.org

1.

INTRODUCTION

e Mac
— Mac OS High Sierra
e Linux

— Linux Fedora 25
— Linux Mint 18.3
— Linux Ubuntu 16.04

e Windows

— Windows 7
— Windows &
— Windows 10

As platforms progress during the years certain code implementation progress as well.
As already mentioned, different execution platforms are considered in this thesis. For
Python-based Deep Learning frameworks version 2.7.14 and 3.5.4 are considered. And
for the only framework using Java (i.e. Deeplearning4J) the JDK versions, 7 and 8
are considered. Besides the standard Oracle JVM? that is used almost everywhere, the
ZULU JVMP|is also considered in this master thesis. The execution stack is represented
in Figure [1.1. All possible combinations are shown in this representation. A total of
519 (19 configurations that are run once on seven operating systems + 19 equivalence
classes that are run 20 times + 6 DL4J runs with more epochs = 133 + 380 + 6 =
519) experiments are conducted to analyze the influence of various parameters to Deep
Learning results.

The output of every experiment is a log file. The file contains model metrics, i.e. accuracy,
precision, recall and Fl-score and general system information such as used framework,
operating system and the used random seed. In the third step, the results of the
experiments are statistically analyzed. For this analysis, Python and the Python package
SciPy® is used. All network implementations, dataset, trained models and raw results
are available on Zenodo’| (DOI: 10.5281/zenodo.1414542).

“https://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html?intcmp=3170
Shttps://www.azul.com/downloads/zulu/

Shttps://www.scipy.org

"https:/ /zenodo.org

1.5. Structure of the work

1.5 Structure of the work

In Chapter |1, the motivation for this master thesis is stated and the goal defined. Also, the
problem that should be solved is described in this Chapter. Further, the methodological
approach to solve the problem is outlined. In Chapter |2, studies that as main focus have
the same type of problem are analyzed and a brief history of reproducibility in general is
given. Chapter 3| focuses on the execution of every experimental scheme in detail. In
this Chapter the used concepts, data models and experimental methods that are used for
the experiments are described. First, a detailed explanation of the used Deep Learning
model is provided as well as the dataset that is used. Second, the operating systems,
the execution platforms and the Deep Learning frameworks are stated. In the last part
of this section, the analysis methods that are used are discussed. Chapter 4| comprises
the statistical analysis of results obtained from all conducted experiments. Furthermore,
the results of this statistical analysis are explained. Finally, Chapter 5| summarizes and
provides a critical reflection. A part of this section discusses possible future work that
can be taken to further investigate reproducibility in Deep Learning.

1. INTRODUCTION

Data

Deep Learning
Model

/ ~
[

= e

B =

o]

Platform Version
m

>

1
|
Com

N

[

S

Execution Platform Execution Platform “ ’
_4 =

Operating System W
4

HARDWARE

CPU: 2.8 GHz Intel Core i7
RAM: 16 GB 2133 MHz LPDDR3

Figure 1.1: Execution stack that underlies the experiments.

CHAPTER

State of the art

2.1 Literature studies

Reproducibility of research does not only concern the discipline of computational science,
but science in general. The first scientist that rose awareness about reproducibility in
science was Robert Boyle in the 1660s. To make his research reproducible he tried to
build it up on three pillars in his work. First, he gave detailed explanation of used
equipment and materials. Second, many of his experiments were conducted in public and
later on the names and qualifications of witnessing scientists were published along with
the results. Third, besides the used methods, he described his experiments’ circumstances
and settings, failures and much more [Sha84].

Reproducibility of computational research does not only concern one computational
science discipline, researchers across a range of computational science disciplines have
been calling for reproducibility. As in that way, a minimum standard for assessing the
value of scientific claims can be obtained [LGGS07, Rob05]. Reproducible research is
essential as it is sometimes the only way to validate results. Researchers from various
fields, such as geoscience, neuroscience, bioinformatics, applied mathematics, psychology,
and computer science are calling for data and code to be made available to facilitate the
reproduction of published computational results [Sto12].

In [FFR16] the author claims that the standard of reproducibility calls for the data
and the computer code that were used to analyze the data to be made available to
others. The article suggests a reproducibility standard, to fill the gap in the scientific
evidence-generating process between full replication of a study and no replication. A
number of possibilities between these two end points is possible, see Figure [2.1L

2.

STATE OF THE ART

10

Reproducibility Spectrum
Publication +

Publication . Full
only Code Wnkec ard replication
Code executable

SCat code and data

Not reproducible < _ Gold standard

Figure 2.1: Reproducibility standard [Penli]

The basis of this standard is a detailed log file which in theory, every computational
experiment should maintain. In case, these computer codes are available a greater level of
detail regarding the analysis can be guaranteed as opposed to experimental descriptions
using natural language [Penll]. The article states, that the biggest barrier to reproducible
research is the lack of integrated culture, but to develop such a culture it will require
time and sustained effort from the scientific community. Peng says, that journals can
play an important role. For example, the Biostatistics journal, has already implemented
a reproducibility policy, where authors can submit their code or data to the journal
for posting and requesting a ‘reproducibility review’, in which an associate editor for
reproducibility runs the submitted code on the data and then verifies if the code produces
the published results.

Another paper published in 2015 [Boel5| says that, reproducibility seems more straight
forward than replicating physical experiments, hence the complex and rapidly changing
nature of computer environments makes such work a serious challenge. The paper deals
with the fact that code developed for one research project cannot be successfully executed
or extended by subsequent researchers. Beside cultural challenges, there are four technical
challenges that can contribute to impede reproducibility. The first challenge deals with
installing or building software to run the research code. The second challenge concerns
missing documentation that is needed to install or run code associated with research.
Another challenge are updates, which can change the results generated by the code. The
last challenge regards the entry barriers of learning new tools and approaches, such as
workflow systems or virtual machines. The solution to all these challenges given in paper
is DOCKER', an open source framework that builds on many long- familiar technologies
from operating systems research [Boeld].

https://www.docker.com

2.1. Literature studies

In [NGPQ9] reproducible descriptions of neuronal network models are addressed. The
description of neuronal network models is the main focus of this study. An unstandardized
model description practice not only hinders the critical evaluation of network models but
also their re-use. In this study 14 research papers proposing neuronal network models
where analyzed, where widely varying approaches of model descriptions where observed
as well as a great variation of graphical representations. The authors believe that a good
model description practice together with other initiatives on data-, model-, and software
sharing may lead to a more promising exchange of ideas among scientist. With this goal
in mind the study proposed guidelines for the organization of publications, a checklist for
model descriptions, templates for tables and guidelines for diagrams of networks.

[DRF18] also focuses on reproducibility of neural network models. In this study it is
shown that an uncertainty about only two components of the neural network model and
no precise description of the training process, it is not possible to reproduce the original
experimental results [DREF1§]. The study emphasizes that the three most important
elements in artificial neural network models are:

e the structure of the nodes,
e the topology of the network and,

e the learning algorithm [Roj96].

Hence, reproducible research should convey these three aspects in such detail, that the
model architecture can be implemented identically to the original model. Therefore,
an explicit description of the neural network structure, a detailed description of the
training process and access to the data. The study attempts to reproduce the Gated
Self-Matching Network [WYW 17| and uses the SQuAD dataset. The re-implemented
neural network could not even achieve performance close to the original results. Even
if the original research provides insights into the architecture of the model it is missing
information to implement and train the model [DRE1S].

For this thesis, the report” Reproducibility of Data-Oriented Experiments in e-Science”
[FFR16] is one of the most important fundamentals. The report documents the program
and the outcomes of Dagstuhl Seminar held in Dagstuhl, Germany, from the 24th to the
29th of January of 2016, where experts from various sub-fields of computer science took
part to create a joint understanding of the problems of reproducibility of experiments. It
discusses the reproducibility of experiments in e-Science and points out that experimental
results depend on the input data, settings for input parameters, and potentially on
characteristics of the computational environment where the experiments were designed
and run. One result of the seminar was the PRIMAD model with the aim of categorizing
various types of reproducibility.

11

2.

STATE OF THE ART

12

PRIMAD stands for — (P)latform, (R)esearch Objective, (I)mplementation, (M)ethod,
(A)ctor and (D)ata. For example, to test the portability, stability, or platform-independence
of the experiment (R), (M), and (I) can be fixed and the platform (P) can be changed to
(P?). By changing some of these variables, different kind of knowledge can be gained, see
Figure 2.2,

55|37

o[2| % |2 @

212153 o

3l ol2|2 -

2l w| B O

el ® 8 |F g

%"_
@

Repeat - - - - - - Determinism
Param. Sweep X - - - - - Robustness / Sensitivity
Generalize) x - - - - Applicability across different settings
Port - - | x - - - Portability across platforms, flexibility
Re-code . Correctness of implementation,

o R S e I flexibility, adoption, efficiency
Validate Correctness of hypothesis, validation via

L f e s different approach
Re-use N _)) . Apply code in different settings,

Re-purpose

Independent x . Sufficiency of information, independent
(orthogonal) verification

Figure 2.2: PRIMAD Model: Reproducibility of Data-Oriented Experiments in e-Science

[FER16]

In the following various aspects of an experiment that can be changed are discussed.

Platform: By changing the platform, the independency or the portability of an ex-
periment can be tested. In that way, a wider adoption or higher stability may be
gained.

Research Objective: Changing the hypothesis may be regarded as re-using or re-
purposing an earlier experiment. This, may allow science to progress faster.

2.2. Comparison and summary of existing approaches

Implementation: The correctness of the previous implementation can be verified by
changing the actual implementation. Higher efficiency, higher adoption, or a broader
set of execution platform are some advantages that may be gained by changing the
implementation. But, an implementation change may incur a platform change as well.

Method: To be able to validate the correctness of a hypothesis a different method can
be used. By changing the method, one should keep in mind that also an implementation
change will incur, and probably also a platform change.

Actor: Changing the actor is orthogonal to all other changes, allowing independent
verification of characteristics and also whether the provided information is sufficient to
achieve independent verification.

Data: Data can be sub-divided into raw input data and parameters. By changing
input data already made statements can be verified across a larger part of the input
space. A change of parameters allows the determination of robustness of sensitivity of an
experiment.

2.2 Comparison and summary of existing approaches

As discussed in the previous section, there are many studies that try to address the
problem of reproducibility. Many of them focus on creating an overall standardized
understanding of what reproducible research is and how to achieve it. As discussed
in [DRF18] a study concerning Deep Neural Network has to include a comprehensive
documentation of all necessary information needed to reproduce the original results and
even by missing only one or two details could lead to totally different results.

For this master thesis the PRIMAD model is used to describe which part of the experi-
mental execution stack is changed while the others, including the research objective, the
data and the implementation remain the same. This master thesis will raise interest in
reproducible research especially in the Deep Learning community.

13

CHAPTER

Methodology

In this Chapter, the methodology and concepts used in this master thesis are described
in detail. Beginning with describing the experimental procedure in Section 3.1. To
understand what is happening in this study an overview of Deep Learning is given in
Section 3.2, but with main focus on the concepts and theories that are essential for the
Deep Learning model that is used for this study.In Section 3.3, the Deep Learning model
underlying this study is discussed in detail. Section 3.4 describes the dataset that is used
for training and testing the model. Section 3.5| describes the execution platforms and
frameworks that are used as well as their versions and possibly important changes from
different versions. In Section 3.6, different operating systems are discussed and described.
Finalizing all with a detailed description of the statistical methods used for analysis in
Section [3.7.

3.1 Experiment design

In order to be able to analyze the influence of different factors, such as the operating system
or Deep Learning framework, on different Deep Learning results an exact experimental
scheme was designed. The process that is followed during all experiments can be seen in
Figure 3.1. First, the same Deep Learning architecture is built in all three frameworks
including their respective versions, with same hyperparameters and random seed. Further,
framework specific adaptions are considered. Each experiment or framework uses the
same dataset as input. The dataset it split into a training set with 60.000 examples and
a test set with 10.000 examples. The first step regarding the input data is to convert it
into a format that is usable by all three frameworks. The original dataset is using the
IDX file format, which is a simple format for vectors and multidimensional matrices of
various numerical types'.

Thttp://yann.lecun.com/exdb/mnist/

15

3.

METHODOLOGY

16

Summarizing
identical
results to
equivalence
classes

20 Runs for
each
equivalence
class

Single run for
all conf.

DL Model Statistical

analysis

Dataset
(MNIST)

Figure 3.1: Experimental process

In order to be able to use this dataset in all frameworks it needs to be converted program-
matically into the CSV file format (the used code is listed in Appendix |A.1). Second,
for a specific operating system the model is run once with all possible configurations in
accordance to Figure |1.1. Third, if configurations delivered the exact same results they
are summarized to equivalence classes. Afterwards, a representative from each equivalence
class is chosen and run 20 times where only the random seed is changed to understand
the statistical variance caused by merely changing the input data representation order in
the training process. Finally, the results from all representatives are statistically analyzed
to infer if they originate from the same distribution.

3.2 Used concepts

In this Section, the general concepts that are used in this master thesis are discussed.
The concepts in general are not crucial for the end result of the thesis but are necessary
to establish the same experimental setup and understanding. Main focus of this Section
is the description of the term ‘Deep Learning’ in general to be further able to understand
the Deep Learning model which builds the basis for this master thesis.

3.2. Used concepts

3.2.1 Deep Learning

Even if the term Deep Learning seems to be relatively new, the underlying concepts and
techniques existed for decades. The basis of Deep Learning are artificial neural networks.
Artificial neural networks are inspired by biological neural networks that form animal
brains.

Deep learning models are generally composed of multiple processing layers with the goal to
learn representations of data, where each layer transforms the representation at one level
into a representation at a higher, slightly more abstract level. These transformations are
achieved by composing simple non-linear modules. Hence, higher layers amplify aspects
of the input data that are important and suppress irrelevant aspects. It is important to
notice, that these layers of features are not designed by humans but are learned from data
using learning procedure [Sch15]. Mostly, a fixed-sized input is mapped to a fixed-sized
output, where units that are not in the input or output layer are called hidden units.
According to [Sch15], hidden layers can be seen as distorting the input in a non-linear
way so that categories become linearly separable by the output layer. An important
algorithm that Deep Learning models are using is the Backpropagation algorithm. In
general, this algorithm tells the model how to change its internal parameters that are
used to compute the representation in each layer from the representation in the previous
layer [Schi15].

Of, course there exist different types of neural networks and basically, they can be divided
into two groups, single-layer networks and multi-layer networks. As the name already
says, single-layer networks consist of only one layer and is the simplest kind of a neural
network. Probably, the most famous and even the first model that could actually learn
the categories defining weights was the perceptron [Ros58]. This kind of neural network
has a threshold activation functions and were applied to classification problems, in which
the inputs were usually binary images of characters [CBBHB95]. On the other side,
multi-layer networks consist of multiple layers of units which are interconnected. This

means, that each neuron in one layer is directly connected to neurons of subsequent layers.

Nowadays, mostly multi-layer networks are used as more promising architectures can
be build which in most cases lead to better results. Besides classifying neural networks
regarding their number of layers, they can also be divided into feed-forward- and recurrent
neural networks.

Feed-forward neural networks obtained this name, because information flows through
all connections without feedback connections or cycles in which outputs of the model
are fed back into itself [GBC16]. Graphically such a network can be represented by a
directed acyclic graph, shown in Figure 3.2l On the other side, when feedback connections
are included then the neural network is called a recurrent neural network and can be
represented by a directed graph, as shown in Figure 3.3.

17

3. METHODOLOGY

Hidden
layer

Output

= L]
< H
= =]
B 8
Figure 3.2: Example feed-forward neural network [QD11]
Input _
laver Hidden Output
- layer laver
& bt
5 =
=
o,
= =
A S

Figure 3.3: Example recurrent neural network [QD09]

Convolutional Neural Networks

The Deep Learning model underlying this master thesis is a so-called convolutional
neural network. Convolutional neural networks (CNN) belong also to the class of feed-
forward neural networks and are used for processing data that has a known grid-like
topology [GBC16]. Convolutional neural networks have been successfully applied for image
classification tasks. Convolutional neural networks combine three architectural ideas,
respectively local connections, shared weights and sub-sampling or pooling [LBBH9S].

18

3.3. Methods and Models

Convolutional neural networks are typically structured in stages, where the first few
stages are composed of convolutional layers and pooling layers. As [Sch15] describe, units
in a convolutional layer are organized in feature maps, within each unit is connected to
feature maps of the previous layer through a set of weights. The weighted sum is then
passed through a non-linear function. It is very important that all units in a feature map
share the same weights. The idea behind pooling-, or sub-sampling-layers is to merge
semantically similar features into one [Sch15]. With local connections elementary visual
features such as edges or corners can be extracted. These features are then combined by
the subsequent layers to be able to detect higher-order features [LBBHOS].

A typical convolutional neural network for recognizing handwritten characters is the
popular LeNet model created by Yann Lecun, shown in Figure 3.4/ [LBBH9S].

C3:f. maps 16@10x10
INPUT cg feature maps S4: f. maps 16 @5x5
30vap 6@28x28

82:f. maps
6@14x14

FuIIconnJlection ‘ Gaussian connections
Convelutions Subsampling Convolutions Subsampling Full connection

Figure 3.4: LeNet-5 architecture [LBBHIS)|

3.3 Methods and Models

The convolutional neural network model architecture that is used in this master thesis
is based on the popular LeNet-5 architecture in regard to the number of layers, the
types of layers and the kernal sizes of each layer.. This architecture is a very popular
convolutional neural network mostly used for image processing. LeNet-5 comprises 7
layers, without the input layer, with two convolutional layers, two sub-sampling layers
and three fully connected layers, including the output layer. The original LeNet-5 model
uses images with 32 x 32 pixels and the model used in this thesis uses images with 28 x
28 pixels as the official MNIST dataset contains images with 28 x 28 pixels.

19

3.

METHODOLOGY

20

The architectural design of the model is shown in Figure [3.5.

Conv. 2: Pool. 2: Full. 1: Full. 2: Output:
8x8x12 Axax12 120 84 10

INPUT Conv. 1:
28x28 24x24x4

Figure 3.5: Convolutional neural network archtecture of model that is used in this thesis

3.3.1 Computations within a layer

The output of each layer is calculated as a dot product between the input vector and the
weight vector, to which a bias is added. The weighted sum, denoted a; for unit ;, is then
passed through a sigmoid squashing function f to produce the state of unit 7, denoted by
Xj.

Xy = f(ai) (31)

The original LeNet-5 model uses as squashing function a scaled hyperbolic tangent:

f(a) = Atanh(Sa) (3.2)

The downside of this squashing function is that it is mostly more time consuming with
gradient descent [KSH12]. As the goal of this master thesis is not to propose a model
that achieves a small error rate, the non-saturating nonlinearity f(x) = max(0, x) is used.
This non-linearity is called Rectified Linear Units, or ReLUs. Deep convolutional neural
nets with this activation function train several times faster than equivalents with tanh
units and is thus widely used in current Deep Learning settings [KSH12].

The output layer uses a softmax non-linearity to predict the probability distribution
over classes given in the dataset [KGBI14]. Besides the activation function, the weights
are also important. They should be initialized in a way that promote learning. Wrong
weight initialization can probably make gradients too large or too small, which can make
it difficult to update the weights in the long run. Small weights could lead to small
activations, whereas large weights may lead to the opposite. The model specified for this
thesis uses the Xavier weight initialization, where the weights are normal distributed and
following standard deviation is used:

3.3. Methods and Models

U(W) = 2/(l‘in + $0ut) (33)

Where xi, is the number of units in the previous layer and xq,t is the number of units
in the following layer. The purpose of this weight initialization is to maintain same
distribution of activations, meaning that they are not too small or too large [GB10].

The optimization of the weights is done according to the Stochastic Gradient Decent, or
SDG, algorithm. SDG is a simplification of the Gradient Descent algorithms which goal
it is to minimize the empirical risk E;(fy), that measures the training set performance,
using gradient descent (GD). Each iteration updates the weights w on the basis of the
gradient of Ey (fy) with the following formula:

1 n
W41 = Wy — "}/ﬁ Z VWQ(Zi, wt), (34)
i=1

where 7 is an adequately chosen gain and Q(zi,wy) is the loss function, 1(3,y), that
measures the cost of predicting ¥ when the actual answer is y. When the initial estimate
wo is close to the optimum and when the gain « is sufficiently small, this algorithm
achieves linear convergence [Bot10]. SDG does not compute the gradient of E, (fy) exactly,
but tries to estimate this gradient for each iteration on the basis of a single randomly
picked data point z, according to this formula:

w1 = wy — Yt VwQ (21, wy). (3.5)

The stochastic process depends on the examples that are randomly picked at each iteration
[Bot10].

3.3.2 Explaination of each layer

Figure 3.5 shows the principal archtitecture of the convolutional neural network that
is used in this master thesis. The first layer is a convolutional layer with four feature
maps, where each feature map is of size 24x24, where a feature map is defined as the
output of the previous layer [GBCI16]. Each unit in each feature map is connected to a
5x5 neighborhood in the input. Which means that every unit in this layer receives inputs
from a set of units located in a neighborhood of the previous layer. In that way neurons
can extract elementary feature such as corners or edges. These features are combined by
subsequent layers in order to detect higher-order features [LBBH98]

The second layer is a sub-sampling layer with four feature maps of size 12x12. Each unit
in each feature map is connected to a 2x2 neighborhood in the corresponding feature
map of the first layer. Note, that the sub-sampling layer divides the size of the first layer
in half.

21

3.

METHODOLOGY

22

The third layer is again a convolutional layer, but now with 12 feature maps of size 8x8
and where each unit is connected to a 5x5 neighborhood of the previous layer.

The fourth layer is a sub-sampling layer with 12 feature maps of size 4x4. Each unit is
connected to a 2x2 neighborhood of the third layer. Similar to the second layer, this
layer also divides the size of the previous layer in half.

The last three layers are fully connected layers. Fully connected means that every neuron
in one layer is connected to every neuron in the previous layer. The first fully connected
layer gets as input 4*¥4*12 = 192 units and outputs 120. The next fully connected layer
reduces then the number from 120 to 84. The final layer minimizes the number of units
to ten, the number of different classes of the dataset.

3.3.3 Hyperparameters

As every Deep Learning model needs some specific parameters to be specifies for training
purposes, the model used in this master thesis specifies the following parameters:

Random Seed, important for reproducibility,

Epochs that the model is trained,

Batch Size, the number of samples that are going to be propagated through the
network,

Learning Rate with which the model is trained.

3.4 MNIST Data Set

MNIST? is a freely available dataset of handwritten digits (digits from 0-9) and has
become a standard for testing Machine- and Deep Learning algorithms [Den12].

The MNIST, Modified NIST set, dataset was constructed from the National Institute of
Standards and Technology’s, or NIST’s, Special Database 3 (SD-3) and Special Database
1 (SD-1). These databases contain binary images of handwritten digits, where NIST
originally used SD-3 as training set and SD-1 as test set. SD-1 contains 58.527 digit
images written by 500 different writers from high-school students. For the MNIST dataset,
SD-1 was split, where characters written by the first 250 writers went into the MNIST
training set and the characters written by the remaining 250 writers went into the MNSIT
test set. Further, the MNIST training set was filled with enough examples from SD-3 to
create a training set of 60.000 examples. The MNIST test set contains 10.000 examples,
where 5.000 are from SD-1 and the other 5.000 from SD-3 [LBBH9S]|. All black and white
images are size normalized and centered in a fixed size image at the center of the image
with 28 x 28 pixels each[Denl2).

http://yann.lecun.com/exdb/mnist/

3.5. Environments

N~ -\ &
BANND ~—=J e
o RN SN0\
LQOPraxnNDQIxn
SN WP &~~~ N
QDN oW

NOS QOO LWV —

R o vV XN

X
>
il
6
=
0Q

Figure 3.6: MNIST examples [LBBH9S)|

3.5 Environments

In this Section details about the environmental setup that form the foundation for the
experiments are provided. As the aim of this master thesis is to examine the reproducibility
of Deep Learning results considering different environments, it is essential that for every
operating system the same execution platform as well as the same frameworks are installed.
Of course, the same versions are as well important. Every experiment is done using the
same Hardware, with a 2,8 GHz Intel Core i7 processor and 16 GB 2133 MHz LPDDR3
RAM. As base operating system MacOS High Sierra is used. On top of this the other
operating systems are set up in Virtual Machines using Oracle’s VirtualBox®.

3.5.1 Execution Platform

In this Section the execution platforms that are needed by the Deep Learning frameworks
are discussed. Two different execution platforms are used within this master thesis,
respectively Python and Java. For every execution platform, two different versions are
installed. As already mentioned, three different Deep Learning frameworks are tested
where two are using Python and the third one Java as execution platform.

Shttps://www.virtualbox.org

23

3. METHODOLOGY

Packages Version
numpy 1.14.1
pandas 0.22.0
scikit-learn 0.19.1

scipy 1.0.0

Table 3.1: Python 2.7.14 and Python 3.5.4 packages

Python 2.7.14 Python 3.5.4 Description
print print() print function syntax changed
xrange() range() range function changed

Table 3.2: Comparison of Python 2.7.14 and Python 3.5.4

Python

Python is regarded as general-purpose, high-level programming language with the overall
goal of code readability. A major advantage is that it allows programmers to express
concepts in fewer lines of code than in other programming languages [vR18]. In this
master thesis, the two frameworks that are built upon Python are implemented for
Python 2.7.14 as well as for Python 3.5.4. Further, the Deep Learning model is trained
with specific parameters mentioned in the Section |3.3.3. Important evaluation metrics,
such as accuracy, recall, precision and F1-score, are calculated with the Python package
‘scikit-learn™. In order, to be able to install different python version on one operating
system without getting a mess, the package management system Anaconda 3° is used.
With the help of Anaconda, the environmental setup can be done in a clear and structural
way, without having the fear of unexpected side-effects as all packages are encapsulated
in a specific environment. Important packages that are used for all experiments using
Python as execution platform are listed in Table |3.1.

Different Version of Python As already mentioned, the Python frameworks are
tested with two different Python versions, respectively Python 2.7.14 and Python 3.5.4.
As one goal of this master thesis is to analyze if different execution platform versions
have influence on the Deep Learning model, it is clear that the same code needs to be
adapted to fit the different Python versions. The adaptions that are needed to migrate
code from Python 2.7.14 to Python 3.5.4 are listed in Table [3.2.

“http://scikit-learn.org/stable/
®https://www.anaconda.com/download/

24

3.5. Environments

Java

Java is one of the most used programming languages worldwide and is considered as a
general-purpose, concurrent, class-based and object-oriented language. Additionally, its
design principle is to be simple enough that many programmers can achieve fluency in
the language [GJSB00]. The third Deep Learning framework that is used in this master
thesis is using Java as its execution platform. The Deep Learning model is trained with
the same parameters as the Python model. Fortunately, the framework possesses built in
functions that calculate evaluation metrics, so that no further package is needed. Similar
to the Python experiments, two different Java versions are tested, respectively Java 7
(JDK 1.7.0_80) and Java 8 (JDK 1.8.0_171). Regarding these two versions no adaptions
are needed to migrate the code from one version to another. Besides the standard Java
Virtual Machine from Oracle®, another JVM is tested in this master thesis. Zulu &’
is an open source Java Virtual Machine that is built upon OpenJDK 1.8.0_172. Zulu
leverages all the latest advances in OpenJDK and open source community support. An
advantage of Zulu is that no coding changes are required as it is compliant with the Java
SE standards.

3.5.2 Deep Learning Frameworks

In this Section the Deep Learning frameworks that are used in this master thesis are
discussed and explained in detail. Three Deep Learning frameworks are used in this
thesis, where two are using in Python and the other one Java.

TensorFlow

TensorFlow is currently one of the most popular Deep Learning frameworks and has
been developed by Google’s Machine Intelligence research organization. TensorFlow is
an open source library for numerical computation using data flow graphs to represent
computation shared state and operations that mutate that state. Therefore, it maps the
nodes of a dataflow graph across many machines in a cluster and within a machine across
multiple computational devices, including CPUs and GPUs. A strength of TensorFlow
is its flexible architecture, that in case enables the computation on one or more CPUs
or GPUs as well as on heterogeneous environments, such as desktops PCs, servers or
mobile devices [ABCT16]. Besides the ability to develop and execute Deep Learning
models, TensorFlow can be used in general as well for Machine Learning tasks. Another
advantage of TensorFlow is the active community as well as a detailed and comprehensive
documentation.

Chttps://docs.oracle.com/javase/6/docs/technotes/guides/vm /index.html?intcmp=3170
"https:/ /www.azul.com/downloads/zulu/

25

3. METHODOLOGY

Different Version of TensorFlow: For this master thesis three different Versions of
TensorFlow are used. The three Versions are:

e TensorFlow 1.4.0,
e TensorFlow 1.5.0,
e TensorFlow 1.6.0.
As for the different Python versions, some minor changes need to be done to the model

to be able to migrate it to the different versions of TensorFlow. The changes regarding
this specific model are listed in Table 3.3.

TensorFlow 1.4.0 TensorFlow 1.5.0 TensorFlow 1.6.0 Description
tf.nn.softmax tf.nn.softmax tf.nn.softmax function that
_cross__entropy _cross__entropy _cross__entropy defines

_ with__logits _ with_ logits_ v2 _ with_ logits_ v2 the loss function

was changed
and renamed

Table 3.3: Different versions of TensorFlow

Theano

The second Python framework is very popular and used by a huge community. Theano
aims to improve execution time and development time of Deep Learning algorithms but
also of Machine Learning applications [BBL™11]. Theano is a library that enables the
definition, optimization and evaluation of mathematical expressions that involve multi-
dimensional arrays and has been developed by MILA lab from the University of Montreal.
With Theano it is possible to attain speeds rivaling hand-crafted C implementations for
problems that involve large amounts of data.

Different Version of Theano: Two different Theano versions are considered in this
thesis, Theano 0.9.0 and Theano 1.0.0. To transform the model from one version to the
other only a minor change need to be done. This change is listed in Table 3.4

Theano 0.9.0 Theano 1.0.0 Description

T.nnet.conv.conv2d() T.nnet.conv2d() change of the input parameter
names from image_ shape to
input__shape

Table 3.4: Different versions of Theano

26

3.5. Environments

Deeplearning4J

The Deep Learning framework that uses the Java programming language is Deeplearning4J.
The reason for the choice of this framework is that it uses a totally different technology
stack than the other two frameworks and that probably every operating system implements
that technology stack in a different way. Deeplearning4J is the first distributed Deep
Learning library written for Java and Scala. It is designed to be used in business
environments on distributed GPUs and CPUs, as it is integrated with Hadoop and Spark.
To bridge the gap between Python and JVM, DL4J can import neural net models from
major frameworks via Keras, TensorFlow, Theano and Caffe [Teal§].

Different Versions of Deeplearning4J: Three different Deeplearning4J Versions
are used in this master thesis. The three versions are:

e DL4J 0.7.1,

e DL4J 0.8.0,

e DL4J 0.9.1.

Some minor changes need to be done in order to migrate the model to the different
versions of Deeplearning4J. The changes are listed in Table 3.5.

DL4J 0.7.1 DL4J 0.8.0 DL4J 0.9.1 Description
activation("relu") activation activation Activation func-
(Activation.RELU) (Activation.RELU) tion changed from
String to Enum
CSVRecordReader CSVRecordReader CSVRecordReader CSV delimiter
(numLinesToSkip, (numLinesToSkip, (numLinesToSkip, changed from

(String) delimiter)

(String) delimiter)

(Char) delimiter)

Table 3.5: Different versions of Deeplearning4J

String to Char

27

3. METHODOLOGY

3.6 Operating Systems

In this Section the operating systems that are used for the experiments are discussed.
The reason for testing multiple operating systems is that every operating system may
implement things, such as the random number generation, in a quite different way which
may lead to different Deep Learning results. In total seven operating systems are set up
and tested in this master thesis. The following operating systems are considered:

i) Mac

a) Mac OS High Sierra 10.13.5
ii) Linux

a) Linux Fedora 25

b) Linux Mint 18.3
¢) Linux Ubuntu 16.04

iii) Wlndows
a) Windows 7

b) Windows 8
¢) Windows 10

Only official ISO files are used to install the operating systems. To be able to install
these different operating systems on a single machine, Oracle VirtualBox®| is used, except
for Mac OS High Sierra which serves as the base operating system. In order to be able to
conduct the experiments the following steps are considered for every operating system:

Shttps://www.virtualbox.org

28

3.6. Operating Systems

For the Python frameworks:

e download and install the package manager system Anaconda 3,

create different Anaconda environments,

install all needed frameworks and required packages in the Anaconda environments,

download and install JetBrains PyCharm?,

import the code as well as the dataset to PyCharm.
For the Java framework:

e download and install Oracles Java 7'° and Java&'l]
e download and install Zulu JVM,
e download and install JetBrains IntelliJ'?,

e import the code as well as the dataset to IntelliJ.

After every operating system is set up, the experiments are conducted, and the results
are written to a JSON file, where besides model specific metrics also global parameters,
such as the operating system and the framework, are recorded. The detailed structure of
this file is discussed in section [3.7.1. Afterwards, the results are statistically analyzed.
The analytical methods used in this thesis are discussed in the next sub-section.

“https://www.jetbrains.com/pycharm/

POhttp:/ /www.oracle.com/technetwork /java/javase/downloads/jre7-downloads-1880261.html
Yhttps://www.java.com/de/download /faq/java8.xml

2https://www.jetbrains.com/idea/

29

3.

METHODOLOGY

30

3.7

In this Section the metrics that every model execution delivers as well as the statistical
analysis method that is used to compare the different model results are described.

Analysis Methods

3.7.1 General

In order to be able to compare model results the following metrics are captured for every

model run:

As there were many experiments executed during this master thesis, a log file is created
for every model run. The log file has the same structure regardless of the operating
system, frameworks or any other parameter that is changed during the experiments. In
Listing 3.1 the log file for TensorFlow 1.4.0 on Max OS High Sierra and Python version

Accuracy, the number of correct predictions from the model divided by the total

number of predictions.

Precision, the ratio of correctly predicted positive observations to the total number

of positive predicted observations.

Recall, the ratio of correctly predicted positives to all observations in the actual

class.

F1-Score, the weighted average of precision and recall.

2.7.14 is shown.

{

"Normal Model Run": {

"Recall": 0.9714587183336663,
"F1-Score": 0.9712320621858522,
"Precision": 0.9716708526959671,
"Accuracy": 0.9717

"System Configuration": {

"Framework ": "TensorFlow 1.4.0",
"Seed": 10,

"OS": "Mac OS X",
"PythonVersion": "2.7.14"

Listing 3.1: Example log file

3.7. Analysis Methods

3.7.2 Two-Sample Kolmogorov-Smirnov Test

The main part of this master thesis deals with the question if the different results
that every experiment delivers are from the same distribution. In order to show if the
differences between distributions of the experiments are statistically significant, the
Two-Sample Kolmogorov-Smirnov Test is used. In this Section this statistical test is
described in detail.

The Two-Sample Kolmogorov-Smirnov Test is mainly used to test if two data samples come
from the same distribution [Jr.51]. This test is a variation of the One-Sample Kolmogorov-
Smirnov Test and belongs to the supremum class of empirical distribution function (EDF)
statistics. EDF statistics in general are based on measuring the discrepancy between
the empirical and hypothesized distributions. The supremum class of EDF statistics is
based on the largest vertical difference between hypothesized and empirical distribution
[RW11]. The Kolmogorov-Smirnov statistic is defined as,

D = sup | Fn(z) — F(z)] (3.6)

The test statistic is computed as the maximum of DT and D™. DT is the largest vertical
distance between the EDF and the distribution function in the case the EDF is greater
than the distribution function. D~ is the largest vertical distance when the EDF is less
than the distribution function [Insi2].

In the case of the Two-Sample Kolmogorov-Smirnov Test, two empirical distribution
functions are compared instead of comparing an empirical distribution function to a
hypothesized distribution function [RW11]. The equation for the computation of the test
statistic is described in [You77] and shown in equation 3.7.

D= sup |Fy1(z) — Fpa(x)] (3.7)

Fin1(x) and Fpo(x) are the empirical distribution functions of the two samples and these
two empirical distribution functions are computed at each point in both samples. The
empirical distribution function is defined as a set of independent ordered observation
X1, ... , Xp with a common distribution function and where F «(x) is a step function that
takes a step of height 1 at each observation [Ins12].

The hypotheses underlying the Two-Sample Kolmogorov-Smirnov Test are:

e Hy: The two samples come from the same distribution.

e H,: The two samples do not come from the same distribution.

31

3.

METHODOLOGY

32

If the test statistic D exceeds the 1-a quantile as given by the table of quantiles for
this test, then the null hypothesis (Hyp) is rejected at the level of significance o and the
alternative hypothesis (H,) is accepted [RW11]. For this master thesis the statistical
analysis of the experiments was done in Python. The Two-Sample Kolmogorov-Smirnov
Test statistics were computed with the Python package Scipy'®.

3.8 Summary

In this Chapter the experimental design were discussed. Further, the used concepts
were part of this Chapter, where a short introduction to Deep Learning was given,
especially Convolutional Neural Networks that underly the model that is used in this
master thesis. Additionally, the MNIST dataset was presented. An important part of
this Chapter was the description of the Deep Learning model, considering its architecture
and computations within each layer. Other parts of this Chapter regarded the technical
setup, considering used execution platforms, Deep Learning frameworks and operating
systems. The Chapter were finalized by explaining the methods that are used to analyze
the results that are received from every model run.

Bhttps://www.scipy.org

CHAPTER

Results

In this Chapter the results from the experiments are presented and organized in Sections
where each Section corresponds to the research question that the respective experiments
tries to answer. Section [4.1) deals with the question if is even possible to build the
same Deep Learning model in the three frameworks that are used for this master thesis.
The experiments that are described in Sections [4.244.4] follow a top-down approach in
accordance to the execution stack diagram, shown in Figure [1.1. Section 4.2 tries to
answer the question if the framework version has an effect on the model results as well
as if the framework per se has an effect on the model results. Section [4.3| deals with
the question if the execution platform has an influence on the results. Section 4.4 take
the operating system version and the operating system in general into account. The
experiments described in Sections 4.2-4.4/ are conducted as preparation for the experiments
conducted in Section 4.5, where same results are grouped into equivalence classes and
then this equivalence classes are statistically analyzed with the help of the Two-Sample
Kolmogorov-Smirnov Test.

4.1 Deep Learning Model Implementation

In order to be able to analyze results of different Deep Learning models, it must in
the first place even be possible to build the same Deep Learning model in different
Deep Learning frameworks. This Section describes the implementation of the Deep
Learning model, specified in Section [3.3.2, for the three Deep Learning frameworks that
are described in Section |3.5.2. For the implementation the operating system is negligibly
as the frameworks that are used in this master thesis are selected in accordance to the
used operating systems as well as the execution platforms. In general, the implementation
of the same Deep Learning model in the three frameworks is possible without problems,
but some parameters, such as the weight initialization, need more detailed analysis.

33

4. RESULTS

Precisely, for Theano and Tensorflow the distribution of the random initialization needed
to be specified for the weights (Listing 4.1 and Listing 4.2), whereas DL4J uses standardly
normal distributed random initialization.

1 #Weight initialization according to Xavier Glorot and Yoshua Bengio
2 fan in = np.prod(filter shape[1:])
3 fan_out = (filter_shape[0] * np.prod(filter__shape[2:]) //
! np.prod(poolsize))
5 W_bound = np.sqrt (2. / (fan_in + fan out))
6 self W = theano.shared (
7 np.asarray (
8 rng.normal (size=filter__shape, scale=W_bound),
9 dtype=theano.config. floatX
10),
11 borrow=True
12)
Listing 4.1: Implementation of the Xavier Weight initialization in Theano 0.9.0

1 #Weight initialization according to Xavier Glorot and Yoshua Bengio

2 initializer = tf.contrib.layers.xavier_initializer_conv2d (uniform=False ,
seed=seed)

convl W = tf.get_variable("W1", shape=(5, 5, 1, 4), initializer=
initializer)

Listing 4.2: Implementation of the Xavier Weight initialization in Tensorflow 1.4.0

In general, the implementation of the model in the two Python frameworks need more
research and lead to more lines of code than the implementation of the model in the
Java framework. The implementation of the first convolutional layer in DL4J is shown
in Listing 4.3. In contrast to the Python frameworks, the Java frameworks defines the
Weights for the whole neural net and not additionally for every layer.

1 // Layer 1: Convolutional Layer: Input = 28x28x1. Output = 24x24x4

2 .layer (0, new ConvolutionLayer.Builder (5, 5)

3 .nln (1)

4 .stride (1, 1)

5 .padding (new int []{0,0})

6 .nOut (4)

7 //RELU Activation function

8 .activation ("relu")
9 .build ())

Listing 4.3: Implementation of the first convolutional layer in DL4J 0.7.1

In Listing 4.4/ the implementation of the first convolutional layer in Tensorflow 1.4.0
is shown. In Listing |4.5| the same implementation is shown for Theano 0.9.0. Note,
that the implementation in Theano needs more lines of code compared to the other two
frameworks.
1 #Layer 1: Convolutional Layer: Input = 28x28x1. Output = 24x24x4
2 convl_W = tf.get_variable("Wl", shape=(5, 5, 1, 4), initializer=
initializer)

34

YOt e W N =

4.1. Deep Learning Model Implementation

convl_b = tf.Variable(tf.zeros(4))

convl = tf.nn.conv2d(x, convl W, strides=[1, 1, 1, 1], padding="VALID’) +
convl b

#RELU Activation function

convl = tf.nn.relu(convl)

Listing 4.4: Implementation of the first convolutional layer in Tensorflow 1.4.0

#The bias is a 1D tensor — one bias per output feature map
b_values = np.zeros ((filter _shape[0],), dtype=theano.config.floatX)
self.b = theano.shared (value=b_values, borrow=True)

#Definition of the Convolutional Layer
conv_out = conv2d (

input=input ,

filters=self .W,

filter _shape=filter__shape ,

image_ shape=image_ shape,

subsample=(1, 1),

border mode=’valid’

)
#RELU Activation function
conv_out = T.nnet.relu(conv_out + self.b.dimshuffle(’x’, 0, 'x’, 'x’))

Listing 4.5: Implementation of the first convolutional layer in Theano 0.9.0

The implementation of the sub-sampling layer looks similar in all three frameworks and
is shown in Listings 4.6| - |4.8 As can be seen, the same parameters are needed to define
this layer in all three frameworks.

N =

- W

Yt

//Layer 2: Pooling Layer: Input = 24x24x4. Output = 12x12x4

.layer (1, new SubsamplingLayer.Builder (SubsamplingLayer.PoolingType .MAX)
.kernelSize (2,2)

.stride (2,2)

.padding (new int []{0,0})

.build ())

Listing 4.6: Implementation of the sub-sampling layer in DL.4J 0.7.1

#Layer 2: Pooling Layer: Input = 24x24x4. Output = 12x12x4
convl = tf.nn.max_pool(convl, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding="VALID ")

Listing 4.7: Implementation of the first convolutional layer in Tensorflow 1.4.0

#Definition of Pooling Layer
pooled__out = pool.pool_2d(
input=conv_ out ,
ws=poolsize ,
ignore__border=True,
stride=(2,2),
pad=(0,0)

Listing 4.8: Implementation of the first convolutional layer in Theano 0.7.1

35

4.

REsuLTS

36

The implementation of the model in all three frameworks as well as the code that is used
to train and evaluate the model is shown in Appendix Al

4.1.1 Conclusion

The implementation of the neural network in the used frameworks is possible. In order to
implement the neural network, the used methods need to be analyzed in detail to be able
to configure the model appropriately. In our case, the Xavier weight initialization needed
detailed analysis as the weight initialization method of Deeplearning4J standardly uses
normal distributed weights. On the other hand, the method used in Tensorflow standardly
uses uniform distributed weights, which can be changed to normal distribution by defining
the parameter appropriately. For Theano the Xavier weight initialization has to be done
by calculating them in accordance to equation 3.3, The implementation in DL4J was the
least complicated as all needed methods are predefined. The implementation in DL4J
resulted in 55 lines of code. The implementation in Tensorflow resulted in 54 lines of code.
The implementation in Theano resulted in 187 lines of code. Theano needed more lines
of code as every layer type that was used (convolutional layer, sub-sampling layer, fully
connected layer and output layer) were implemented as separate class to facilitate the
concrete model definition and to produce clean code. The biggest difference to the other
frameworks is the definition of the weights. As already said, to initialize the weights no
predefined method can be used. So, the calculations needed to be implemented on our
own. All the other elements are pretty much the same, just different names are used to
call the methods.

4.2 Framework

The first experiments that are conducted focused on one specific framework and its
different versions that are considered in this master thesis. The different versions of
the frameworks are tested by running the Deep Learning model with the exact same
hyperparameters and dataset. Important to note is that the same random seed is used
for every framework version. By testing the framework versions (the 'Implementation’
dimension of the PRIMAD model is changed in this case), the highest stage of the
execution stack is tested, as shown in Figure |4.1. The configuration for TensorFlow
is shown in Table [4.1. All the other execution stack parameters are fixed, only the

framework version is changed!

By regarding the different TensorFlow framework versions results in Table 4.2), it shows
that the results of the version 1.6.0 differ slightly in comparison to version 1.4.0 and
version 1.5.0. Table [4.3. shows the configuration for the next framework, Theano.

4.2. Framework

Deep Learning
Model

LeNet-5

T

= —mmm

W

Figure 4.1: Execution stack stage that is tested, the framework versions

L Ll
=

- 2

PRIMAD
Research goal classifying MNIST data
Method LeNet-based Deep Learning model
Implementation script in TensorFlow 1.4.0, 1.5.0 and 1.6.0

Platform Python 2.7.14, Mac OS High Sierra

Input data MNIST

Parameter Seed = 10, Epochs = 10, Batch size = 100, Learning rate = 0.01

Actor Bojan Cavié

Table 4.1: Example configuration for framework version testing, in this case for TensorFlow
on Mac OS High Sierra

Version 1.4.0 1.5.0 1.6.0
Accuracy 0,97170 0,97170 0,97210
Precision 0,97167 0,97167 0,97206
Recall 0,97146 0,97146 0,97188
F1-Score 0,97123 0,97123 0,97166

Table 4.2: Results for different TensorFlow versions on Mac OS High Sierra

Version TF 1.4.0 TF 1.5.0 TF 1.6.0 TH 0.9.0 TH 1.0.0

Accuracy 0,07170 0,97170 0,97210 0,97640 0,97700
Precision 0,07167 097167 097206 0,97618 0,97681
Recall 0,07146 097146 097188 0,97634 0,97696

F1-Score 0,97123 0,97123 0,97166 0,97617 0,97681

Table 4.4: Results for different Tensorflow and Theano versions on Mac OS High Sierra

37

4. RESULTS
PRIMAD
Research goal classifying MNIST data
Method LeNet-based Deep Learning model
Implementation script in Theano 0.9.0 and 1.0.0

Platform Python 2.7.14, Mac OS High Sierra

Input data MNIST

Parameter Seed = 10, Epochs = 10, Batch size = 100, Learning rate = 0.01

Actor Bojan Cavié

38

Table 4.3: Example configuration for framework version testing, in this case for Theano
on Mac OS High Sierra

The two Theano versions show also slightly different results, as can be seen in Table 4.4,
even if everything else is configured in the same way. This count only for Mac OS High
Sierra. The results on other operating systems yield the same results for different Theano
versions.

The last framework that that is tested, is DeeplLearning4J. The configuration of the
parameters is shown in Table 4.5.

PRIMAD
Research goal classifying MNIST data
Method LeNet-based Deep Learning model
Implementation java program in DL4J 0.7.1, 0.8.0 and 0.9.1

Platform JDK 8, Mac OS High Sierra

Input data MNIST

Parameter Seed = 10, Epochs = 10, Batch size = 100, Learning rate = 0.01

Actor Bojan Cavi¢

Table 4.5: Example configuration for framework version testing, in this case for DeepLearn-
ing4J

This framework is quite interesting as it uses a completely different execution platform
which may be implemented in every operating system in another way. Even if these
experiments is run on the same operating system, every framework version shows different
results, as shown in Table |4.6.

By regarding all the framework versions, it shows that only TensorFlow version 1.4.0 and
1.5.0 deliver the same results, the other versions, independent of the framework, compute
different results.

4.3. Execution Platform

Version TF 1.4.0 TF 1.5.0 TF 1.6.0 TH 0.9.0 TH 1.0.0
Accuracy 0,97170 0,97170 0,97210 0,97640 0,97700
Precision 0,97167 0,97167 0,97206 0,97618 0,97681
Recall 0,97146 0,97146 0,97188 0,97634 0,97696
F1-Score 0,97123 0,97123 0,97166 0,97617 0,97681
Version DL4J 0.7.1 DL4J 0.8.0 DL4J 0.9.1
Accuracy 0,9711 0,9705 0,9695
Precision 0,9710 0,9706 0,9696
Recall 0,9709 0,9703 0,9693
F1-Score 0,9710 0,9705 0,9692

Table 4.6: Results for different Tensorflow, Theano and DL4J versions on Mac OS High
Sierra

4.3 Execution Platform

Experiments at a lower stage of the execution stack diagram concentrate on the execution
platform. Hereby, two different versions of Python and Java are considered. The selection
of the execution platform versions considered the compatibility of the different frameworks,
as not all frameworks support the same execution platform. Considering this obstacle,
the Python-based frameworks used Python version 2.7.14 and 3.5.4. On the other hand,
the Java framework used JDK version 1.7.0_80 and 1.8.0_171. Additionally, besides the
standard Java Virtual Machine by Oracle another JVM is tested, as already mentioned
in Section [3.5.1L The execution stack configuration for this experimental scheme is shown
in Table |4.7 and Figure 4.2 shows the stage of the execution stack that is tested. The
execution platform corresponds to the platform in the PRIMAD model.

PRIMAD
Research goal classifying MNIST data
Method LeNet-based Deep Learning model
Implementation script in TensorFlow 1.4.0

Platform Python 2.7.14 and Python 3.5.4, Mac OS High Sierra
Input data MNIST
Parameter Seed = 10, Epochs = 10, Batch size = 100, Learning rate = 0.01

Actor Bojan Cavi¢

Table 4.7: Example configuration for testing different execution platform versions, here
Python

The results for this configuration are shown in Table 4.8. The experiments report that
the execution platform does not have any influence on the model results on Mac OS High
Sierra for Tensorflow and Theano. The execution stack configuration for the analysis of
the different Java Virtual Machines is shown in Table [4.9.

39

4.

REsuLTS

40

/ Data

Deep Learning
Model

= LLELLJ.LL=

Framework

Execution Platform “

Figure 4.2: Execution stack stage that is tested, the execution platform

Execution Platform

Execution Platform Python 2.7.14 Python 3.5.4

Accuracy 0,97170 0,97170
Precision 0,97167 0,97167
Recall 0,97146 0,97146
F1-Score 0,97123 0,97123

Table 4.8: Tensorflow 1.4.0 results for different execution platform versions on Mac OS
High Sierra

The investigation for the Java-based framework shows that neither the JDK version nor
the JVM have an influence on the Deep Learning model results, see Table |4.10L

A reason that the different JVM’s deliver the same results is probably that Zulu is built
on OpenJDK where one development contributor is Oracle. All experiments considering
the execution platform lead to the fact that the execution platform does not have any
influence on the results. No matter which Java VM was being used, the results were
always identical to the differences observed for the different DL4J versions shown in
Table 4.6, We can thus consider - at least for Mac OS High Sierra - the different VM

4.3. Execution Platform

PRIMAD
Research goal classifying MNIST data
Method LeNet-based Deep Learning model
Implementation java program in DL4J 0.8.0
Platform JDK 8 (Oracle JVM) and JDK 8 (Zulu JVM), Mac OS High Sierra
Input data MNIST
Parameter Seed = 10, Epochs = 10, Batch size = 100, Learning rate = 0.01
Actor Bojan Cavi¢

Table 4.9: Example configuration for testing different JVM’s

Execution Platform Java 8 (Oracle) Java 8 (Oracle) Java 8 (Zulu)

Accuracy 0,9705 0,9705 0,9705
Precision 0,9706 0,9706 0,9706

Recall 0,9703 0,9703 0,9703
F1-Score 0,9705 0,9705 0,9705

Table 4.10: DL4J 0.8.0 results for different jvm’s on Mac OS High Sierra

types to form one equivalence class.

PRIMAD
Research goal classifying MNIST data
Method LeNet-based Deep Learning model
Implementation script in TensorFlow 1.4.0
Platform Python 3.5.4
Windows 8 and Windows 10
Input data MNIST
Parameter Seed = 10, Epochs = 10, Batch size = 100, Learning rate = 0.01
Actor Bojan Cavi¢

Table 4.11: Example configuration for testing different operating system version

41

4.

REsuLTS

42

4.4 Operating System

Another parameter that is tested is the operating system. The assumption for the
experiments is that the operating system does not have influence on the results. An
example configuration for experiments considering different operating system is shown
in Table 4.11| (the "Platform’ dimension of the PRIMAD model is changed in this case).
Figure 4.3 shows the corresponding stage in the execution stack diagram. As already
mentioned, seven operating systems are analyzed (Mac OS High Sierra, Linux Fedora
25, Linux Mint 18.3, Linux Ubuntu 16.04, Windows 7, Windows 8 and Windows 10).
As every operating system implements some functionalities in another way, different
results are most likely to happen. The execution of the experiments leads to the results
described in Table 4.14.

attorm verson J

=

Operating System @

Figure 4.3: Execution stack stage that is tested, the operating system versions

-

4.4. Operating System

Operating System Execution Platform Framework | Accuracy Precision Recall F1-Score
TF 1.4.0 0,97170 0,97167 0,97146 0,97123
TF 1.5.0 0,97170 0,97167 0,97146 0,97123
Python 2.7.14 TF 1.6.0 0,97210 0,97206 0,97188 0,97166
TH 0.9.0 0,97640 0,97618 0,97634 0,97617
TH 1.0.0 0,97700 0,97681 0,97696 0,97681
TF 1.4.0 0,97170 0,97167 _ 0,07146 _ 0,97123
Python 3.5.4 TF 1.5.0 0,97170 0,97167 0,97146 0,97123
TF 1.6.0 0,97210 0,97206 0,97188 0,97166
TH 0.9.0 0,97640 0,97618 0,97634 0,97617
Mac OS High Sierra TH 1.0.0 0,97700 0,97681 0,97696 0,97681
DL4J 0.7.1 0,9711 0,9710 0,9709 0,9710
Java 7 (Oracle) DL4J 0.8.0 0,9705 0,9706 0,9703 0,9705
DL4J 0.9.1 0,9695 0,9696 0,9693 0,9692
DL4J 0.7.1 0,9711 0,9710 0,9709 0,9710
Java 8 (Oracle) DL4J 0.8.0 0,9705 0,9706 0,9703 0,9705
DL4J 0.9.1 0,9695 0,9696 0,9693 0,9692
DL4J 0.7.1 0,9711 0,9710 0,9709 0,9710
Java 8 (Zulu) DL4J 0.8.0 0,9705 0,9706 0,9703 0,9705
DL4J 0.9.1 0,9695 0,9696 0,9693 0,9692
TF 1.4.0 0,97140 0,97142 0,97116 0,97093
TF 1.5.0 0,97140 0,97142 0,97116 0,97093
Python 2.7.14 TF 1.6.0 0,97170 0,97166 0,97145 0,97122
TH 0.9.0 0,97640 0,97618 0,97634 0,97617
TH 1.0.0 0,97640 0,97618 0,97634 0,97617
TF 1.4.0 0,97140 0,97142 0,97116 0,97093
Python 3.5.4 TF 1.5.0 0,97140 0,97142 0,97116 0,97093
TF 1.6.0 0,97170 0,97166 0,97145 0,97122
TH 0.9.0 0,97640 0,97618 0,97634 0,97617
Linux Fedora 25 TH 1.0.0 0,97640 0,97618 0,97634 0,97617
DL4J 0.7.1 0,9701 0,9701 0,9699 0,9700
Java 7 (Oracle) DL4J 0.8.0 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 0,9692 0,9694 0,9690 0,9689
DL4J 0.7.1 0,9701 0,9701 0,9699 0,9700
Java 8 (Oracle) DL4J 0.8.0 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 0,9692 0,9694 0,9690 0,9689
DL4J 0.7.1 0,9701 0,9701 0,9699 0,9700
Java 8 (Zulu) DL4J 0.8.0 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 0,9692 0,9694 0,9690 0,9689
TF 1.4.0 0,97140 0,97142 0,97116 0,97093
TF 1.5.0 0,97140 0,97142 0,97116 0,97093
Python 2.7.14 TF 1.6.0 0,97170 0,97166 0,97145 0,97122
TH 0.9.0 0,97640 0,97618 0,97634 0,97617
TH 1.0.0 0,97640 0,97618 0,97634 0,97617
TF 1.4.0 0,97140 0,97142 0,97116 0,97093
Python 3.5.4 TF 1.5.0 0,97140 0,97142 0,97116 0,97093
TF 1.6.0 0,97170 0,97166 0,97145 0,97122
TH 0.9.0 0,97640 0,97618 0,97634 0,97617
Linux Mint 18.3 TH 1.0.0 0,97640 0,97618 0,97634 0,97617
DL4J 0.7.1 0,9701 0,9701 0,9699 0,9700
Java 7 (Oracle) DL4J 0.8.0 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 0,9692 0,9694 0,9690 0,9689
DL4J 0.7.1 0,9701 0,9701 0,9699 0,9700
Java 8 (Oracle) DL4J 0.8.0 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 0,9692 0,9694 0,9690 0,9689
DL4J 0.7.1 0,9701 0,9701 0,9699 0,9700
Java 8 (Zulu) DL4J 0.8.0 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 0,9692 0,9694 0,9690 0,9689

43

4. RESULTS

TF 1.4.0 | 0,07140 0,97142 0,97116 0,97093
TF 1.5.0 | 0,97140 0,97142 0,97116 0,97093
Python 2.7.14 TF 1.6.0 | 0,97170 0,97166 0,97145 0,97122
TH 0.9.0 | 0,97640 0,97618 0,97634 0,97617
TH 1.0.0 | 0,97640 0,97618 0,97634 0,97617
TF 1.4.0 | 0,07140 0,97142 0,97116 0,97093
TF 1.5.0 | 0,97140 0,97142 0,97116 0,97093
TF 1.6.0 | 0,97170 0,97166 0,97145 0,97122
TH 0.9.0 | 0,97640 0,97618 0,97634 0,97617
Linux Ubuntu 16.04 TH 1.0.0 | 0,97640 0,97618 0,97634 0,97617
DL4J 0.7.1 | 0,070 _ 0,0701 _ 0,9699 _ 0,0700
Java 7 (Oracle) | DL4J 0.8.0 | 09706 0,9707 0,9704 0,9706
DL4J 0.9.1 | 0,9692 0,9694 0,9690 0,9689
DL4J 0.7.1 | 0,070 _ 0,0701 _ 0,9699 _ 0,0700
Java 8 (Oracle) | DL4J 0.8.0 | 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 | 0,9692 09694 0,9690 0,9689
DL4J 0.7.1 | 0,0701 00701 _ 0,9699 _ 0,0700
Java 8 (Zulu) | DL4J 0.8.0 | 0,9706 0,9707 0,9704 0,9706
DL4J 0.9.1 | 0,9692 09694 0,9690 0,9689

TH 0.9.0 | 0,07640 0,97618 0,97634 0,97617

TH 1.0.0 | 0,97640 0,97618 0,97634 0,97617

TF 1.4.0 | 0,07210 0,07204 0,07187 0,07163

TF 1.5.0 | 0,97210 0,97204 0,97187 0,97163

TF 1.6.0 | 0,97200 0,97198 0,97176 0,97153
TH0.9.0 | 0,97640 0,97618 0,97634 0,97617
TH 1.0.0 | 0,97640 0,97618 0,97634 0,97617
DL4J 0.7.1 | 0,0706 00704 0,703 0,0704

Python 3.5.4

Python 2.7.14

Python 3.5.4

Windows 7 Java 7 (Oracle) | DL4J 0.8.0 | 09694 09695 0,9692 0,9694

DL4J 0.9.1 | 09700 09701 0,9698 0,9697

DL4J0.7.1 | 00705 09704 0,9703 _ 0,9704

Java 8 (Oracle) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694

DL4J 0.9.1 | 09700 09701 0,9698 0,9697

DL4J 0.7.1 | 0,9705 0,704 0,0703 _ 0,9704

Java 8 (Zulu) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694

DL4J 0.9.1 | 0,9700 09701 0,9698 0,9697

Python 2.7.14 | TH 090 [097640 0,97618 0,97631 097617

TH 1.0.0 | 0,97640 097618 0,97634 0,97617

TF 1.4.0 | 0,97210 0,97204 0,97187 0,97163

Python 3.5.4 TF 1.5.0 | 0,97210 0,97204 0,97187 0,97163

TF 1.6.0 | 0,97200 0,97198 0,97176 0,97153

TH 0.9.0 | 0,97640 097618 0,97634 0,97617

TH 1.0.0 | 0,97640 097618 0,97634 0,97617

Windows 8 DL4J 0.7.1 | 0,9705 00704 0,9703 _ 0,9704

Java 7 (Oracle) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694

DL4J 0.9.1 | 0,9700 09701 0,9698 0,9697

DL4J0.7.1 | 00705 09704 0,9703 _ 0,9704

Java 8 (Oracle) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694

DL4J 0.9.1 | 09700 09701 0,9698 0,9697

DL4J0.7.1 | 00705 09704 0,9703 _ 0,9704

Java 8 (Zulu) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694

DL4J 0.9.1 | 09700 09701 0,9698 0,9697

Python 2.7.14 | L0900 [097640 097618 097634 0,97617

TH 1.0.0 | 0,97640 097618 0,97634 0,97617

TF 1.4.0 | 0,97210 0,97204 0,97187 0,97163

Python 3.5.4 TF 1.5.0 | 0,97210 0,97204 0,97187 0,97163

TF 1.6.0 | 0,97200 0,97198 0,97176 0,97153

TH 0.9.0 | 0,97640 097618 097634 0,97617

TH 1.0.0 | 0,97640 0,97618 0,97634 0,97617

) DL4J0.7.1 | 00705 09704 0,9703 _ 0,9704
Windows 10

Java 7 (Oracle) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694
DL4J 0.9.1 | 0,9700 09701 0,9698 0,9697
DL4J0.7.1 | 0,0706 00704 0,9703 0,0704
Java 8 (Oracle) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694
44 DL4J 0.9.1 | 0,9700 09701 0,9698 0,9697
DL4J 0.7.1 | 0,07056 0,704 0,703 0,0704
Java 8 (Zulu) | DL4J 0.8.0 | 0,9694 0,9695 0,9692 0,9694
DL4J 0.9.1 | 0,9700 0,701 0,9698 0,9697

Table 4.14: Results for all operating systems including different versions of the execution
platform and Deep Learning framework

4.5. Equivalence Classes

Experiments that were conducted in this Section show that the operating system version
does not have influence on the results, but the operating system itself does have an
influence as can be observed from Table [4.14.

4.5 Equivalence Classes

Considering the results from Section 4.2 - 4.4, it shows that different Deep Learning
frameworks never produce identical results, but different framework versions sometimes
do. Tensorflow 1.4.0 and 1.5.0 produce the same results across all operating systems.

Tensorflow 1.6.0 produces different results in comparison to Tensorflow 1.4.0 and 1.5.0.

The two different Theano versions that are considered in this master thesis produce
always identical results, except on Mac OS High Sierra. Different DeeplearnigdJ versions
always produce different results. Further, different operating system versions always
produce the same results, so specific versions have no impact, but different operating
system types produce never identical results. This observations lead to the possibility
to group identical results in so-called equivalence classes. Further, for every equivalence
class a representative configuration is chosen for further investigation. In the Tables |4.15
-14.17 all equivalence classes are displayed. The colored execution stack configuration is
the representative that is used for further investigation. In Section 4.4 is explained that
different operating system versions do not have influence on the Deep Learning results,
this enable us to group the operating system versions to the overall operating system.

Equivalence class Execution Stack
TensorFlow 1.4.0, Python 2.7
TensorFlow 1.5.0, Python 2.7

MacOS-M1 TensorFlow 1.4.0, Python 3.5
TensorFlow 1.5.0, Python 3.5
TensorFlow 1.6.0, Python 2.7
MacOS-M2 TensorFlow 1.6.0, Python 3.5
Theano 0.9.0, Python 2.7
MacOS-M3 Theano 0.9.0, Python 3.5
Theano 1.0.0, Python 2.7
MacOS-M4 Theano 1.0.0, Python 3.5
DL4J 0.7.1, Java 7
MacOS-M5 DL4J 0.7.1, Java 8
DL4J 0.8.0, Java 7
MacOS-M6 DL4J 0.8.0, Java 8
MacOS. M7 DL4J 0.9.1, Java 7

DL4J 0.9.1, Java 8

Table 4.15: Equivalene classes: Mac OS High Sierra

45

4. RESULTS

Equivalence class Execution Stack
TensorFlow 1.4.0, Python 2.7
TensorFlow 1.5.0, Python 2.7

Linux-L1 TensorFlow 1.4.0, Python 3.5
TensorFlow 1.5.0, Python 3.5
. TensorFlow 1.6.0, Python 2.7
Linux-1.2 TensorFlow 1.6.0, Python 3.5
Theano 0.9.0, Python 2.7
. Theano 0.9.0, Python 3.5
Linux-L3 Theano 1.0.0, Python 2.7
Theano 1.0.0, Python 3.5
. DL4J 0.7.1, Java 7
Linux-T.4 DL4J 0.7.1, Java 8
) DL4J 0.8.0, Java 7
LinweL5 DL4J 0.8.0, Java 8
LinwseL6 DL4J 0.9.1, Java 7

DL4J 0.9.1, Java 8

Table 4.16: Equivalene classes: Linux Fedora 25 & Linux Mint 18.3 & Linux Ubuntu
16.04

Equivalence class Execution Stack

. TensorFlow 1.4.0, Python 3.5
Windows-W1 TensorFlow 1.5.0, Python 3.5
Windows-W2 TensorFlow 1.6.0, Python 3.5
Theano 0.9.0, Python 2.7
Theano 0.9.0, Python 3.5

Windows-W3 Theano 1.0.0, Python 2.7
Theano 1.0.0, Python 3.5
. DL4J 0.7.1, Java 7
Windows-W4 DL4J 0.7.1, Java 8
. DL4J 0.8.0, Java 7
Windows-W5 DL4J 0.8.0, Java 8
Windows W6 DL4J 0.9.1, Java 7

DL4J 0.9.1, Java 8

Table 4.17: Equivalene classes: Windows 7 & Windows 8 & Windows 10

46

4.6. Statistical analysis

4.6 Statistical analysis

In order to be able to statistically analyze the influence of the certain configurations,
every equivalence class representative is run 20 times with a different random seed, but
for every equivalence class the same 20 random seeds are used! In this way a distribution
of 20 different results is produced which then can be further analyzed and tested. By
specifying the experimental scheme in that way, where only the random seed is changed,
it resulted in minimal variations of the other parameters where only the random seed
could probably have an influence on the model output.

4.6.1 Evaluation Criterion

The statistical analysis is conducted with the Two-sample Kolmogorov-Smirnov Test.
Hence, every equivalence class is tested in comparison to the others for the same operating
system. Further, equivalence classes from different operating systems are tested against
each other. For Mac OS High Sierra seven equivalence classes are tested, which resulted
in 21 Two-sample Kolmogorov-Smirnov test executions. For Windows and Linux six
equivalence classes are investigated, with 15 Two sample Kolmogorov-Smirnov test
executions per operating system. Every model execution delivers four different values as
result, accuracy, precision, recall and the F1-Score. For the Two-sample Kolmogorov-
Smirnov Test, the 20 accuracy values of each equivalence class are used. The null
hypothesis (Hp) underlying this test suggest that the distributions gathered from the
experiments (C; and Cs) are from the same distribution.

[] Ho: C1 = Cz

e Hy: C; #Cy
In case to facilitate the conclusion the d-value is used. with a significance level alpha, of
0.05. D-values above the critical value (d_ crit = 0,43) are regarded as significant, which
results in rejecting the null Hypothesis (Hy) and accepting the alternative hypothesis.
On the other hand, when the d-value is smaller than d_ crit the null hypothesis is not

rejected. Cruical for the acceptance or rejection of the hypothesis is the critical value
(d__crit), which is calculated (for significance level aplha of 0.05) as follows:

1 1
it =1 —4/—=+—=0,4 4.1
d_crit , 36 — 4/ 20 + 50 0,43 (4.1)

47

4.

RESsuLTS

48

4.6.2 Mac OS High Sierra Analysis

In this Section the statistical analysis of the seven equivalence classes that are received
as result from Mac OS High Sierra are described.

Equivalence class M1 M2 M3 M4 M5 M6 M7
M1 0.10 0.25 0.30 0.20 0.25 0.30
M2 0.10 0.25 030 0.20 0.30 0.35
M3 0.25 0.25 0.15 0.20 0.15 0.25
M4 0.30 0.30 0.15 0.20 0.15 0.25
M5 0.20 0.20 0.20 0.20 0.15 0.35
Meé6 0.25 0.30 0.15 0.15 0.15 0.25
M7 0.30 0.35 0.25 0.25 0.35 0.25

Table 4.18: d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Mac OS

High Sierra

Equivalence class M1 M2 M3 M4 M5 M6 M7

M1 0.99999 0.49734 0.27527 0.77095 0.49734 0.27527
M2 0.99999 0.49734 0.27527 0.77095 0.27527 0.13495
M3 0.49734 0.49734 0.96548 0.77095 0.96548 0.49734
M4 0.27527 0.27527 0.96548 0.77095 0.96548 0.49734
M5 0.77095 0.77095 0.77095 0.77095 0.96548 0.13495
Meé 0.49734 0.27527 0.965648 0.96548 0.96548 0.49734
M7 0.27527 0.13495 0.49734 0.49734 0.13495 0.49734

Table 4.19: p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Mac OS

High Sierra

4.6. Statistical analysis

Accuracy Distribution

0.978 1
0.976 1

0.974 1 —‘7

0.972 1

T L
MU L

0.966 -

0.964 1

Figure 4.4: Boxplot for equivalence classes obtained for Mac OS Hiegh Sierra

All equivalence classes are statistically tested against each other, e.g. equivalence class 1

is tested with the Two-sample Kolmogorov-Smirnov test against equivalence class 2-6.

Table 4.18 contains the d-values from all 2-Sample KS-Tests conducted for the seven

equivalence classes on Mac OS High Sierra, whereas Table |4.19| contains the p-values.

Figure [4.4 shows boxplots for every equivalence class. By regarding the result of the
2-Sample KS Test of equivalence class 1 and 2, it shows that the 20 accuracy results from
these equivalence classes originate from the same distribution as the d-value is smaller
than the critical value, d_ crit (0.10 < 0.43).

With a p-value of 0.99999 and a d value of 0.10 the null hypothesis is retained with
high confidence. These two equivalence classes are, in fact, two different versions of the
same Deep Learning framework (Tensorflow 1.4.0 and Tensorflow 1.6.0). By investigating
equivalence classes 3 and 4, which as well represent the two versions of Theano, the
p-value is also quite high, 0.96548. The d-value amount 0.15. Finally, the conclusion is
the same as for the first test, Hy is retained.

49

4.

REsuLTS

50

The two Python frameworks with its versions deliver results that are not identically but
originate from the same distribution. The last three equivalence classes represent the
three versions of the Java framework. The Two-sample KS test for class 5 and 6 delivers
a p-value of 0.96548 and a d-value of 0.15. Obviously, the results originate from the same
distribution. Interestingly, the p-value resulting from testing equivalence class 5 and 7 is
drastically smaller than the previous one, namely 0.13495. The d-value adds up to 0.35,
which is also smaller than the critical value, d_ crit. Even if the p-value is smaller than
the others, the null hypothesis is retained as it is not smaller than the significance level
alpha (0.05). But it shows that there is a discrepancy of results for these two versions of
the framework. The d-value for the test of equivalence classes 6 and 7 is 0.25 which leads
to a p-value of 0.49734.

From table |4.19 results from statistically testing the different frameworks can also be
derived. All d-values as well as p-values considering these tests are higher than the
significance level alpha and smaller than the critical value, d__crit, but mostly smaller
than the tests of the different framework versions.

One of the smallest p-values is resulting from testing equivalence class 2 and 7. Equivalence
class 2 is represented by Tensorflow 1.6.0, whereas equivalence class 7 is represented by
DL4J 0.9.1. The obtained p-value is 0.13495 and the test statistic 0.35. This result shows
the comparison of TensorFlow 1.6.0 and Deeplearning4J 0.9.1. Equivalence class 2 and 4
represents the comparison of TensorFlow 1.6.0 and Theano 1.0.0, resulting in a p-value of
0.27527. Further, this p-value yield the retainment of the null hypothesis. By comparing
all seven equivalence classes that are obtained for Mac OS High Sierra, it shows that
there are no significant differences.

4.6. Statistical analysis

4.6.3 Linux Analysis

In this Section the statistical analysis of the six equivalence classes that are received as
result from the three Linux-based operating systems are described. Contrary to Mac
OS High Sierra, the Linux based operating systems classifying six equivalence classes as
both Theano versions deliver the same results. All p-values are shown in Table |4.21] and
the corresponding d-values are shown in Table |4.20. Figure |4.5/ shows the distribution of
each equivalence class in the form of boxplots.

Equivalence class L1 L2 L3 L4 L5 L6

L1 0.15 0.20 0.20 0.35 0.35
L2 0.15 0.25 0.20 0.35 0.40
L3 0.20 0.25 0.20 0.25 0.25
L4 0.20 0.20 0.20 0.40 0.45
L5 0.35 0.35 0.25 0.40 0.15
L6 0.35 0.40 0.25 0.45 0.15

Table 4.20: d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems

Equivalence class L1 L2 L3 L4 L5 L6
L1 0.96548 0.77095 0.77095 0.13495 0.13495
L2 0.96548 0.49734 0.77095 0.13495 0.05914
L3 0.77095 0.49734 0.77095 0.49734 0.49734
L4 0.77095 0.77095 0.77095 0.05914 0.02321
L5 0.13495 0.13495 0.49734 0.05914 0.96548
L6 0.13495 0.05914 0.49734 0.02321 0.96548

Table 4.21: p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems

The first two equivalence classes represent different TensorFlow versions. Class one
represents the first two TensorFlow versions, 1.4.0 and 1.5.0, and equivalence class two
TensorFlow 1.6.0. The Two-sample Kolmogorov-Smirnov test for these two equivalence
classes yield a p-value of 0.96548 and a d-value of 0.15. As the d-value is not greater
than d__crit (=0.43) the null hypothesis is retained.

51

4. RESULTS

Accuracy Distribution

1 O
0.976 1
0.974 A ‘

0.972 4

0.970 1
0.968 A ‘

0.966

L1 L2 L3 L4 L5 L6

Figure 4.5: Boxplot for equivalence classes obtained for Linux-based systems

This concludes that the TensorFlow framework version within this configuration do not
have a significant influence. As already mentioned, the two Theano versions behave
identically on Linux Fedora 25, Linux Mint 18.03 and Linux Ubuntu 16.04. More
interesting are the results of the last three equivalence classes which represent the
three versions of the Java-based Deep Learning framework. The p-value for comparing
equivalence class 4 and 5 is 0.05914 and the d-value is 0.40. This d-value is slightly
smaller than the d_crit (= 0.43), which leads to retaining the null hypothesis but
confidently concluding that the results are from the same distribution is risky. When
testing equivalence classes 2 and 6 a p-value of 0.05914 and a d-value of 0.40 is obtained.
Further, a p-value of 0.13495 is yielded for equivalence classes 2 and 5 as well as a d-value
of 0.35.

52

4.6. Statistical analysis

Even more interesting results were achieved for equivalence class 4 and 6. The 2-Sample
KS-Test yield a p-value of 0.02321 and a d-value of 0.45. By considering a significance
level alpha of 0.05 and the d_ crit of 0.43, the null hypothesis Hy is discarded in this
case and the alternative hypothesis H, is accepted, concluding that the results from
these equivalence classes do not originate from the same distribution! Considering the
associated Figure |4.5, the inhomogeneous distribution is apparent. Even more interesting
is the fact that, the statistical test returns a d-value of 0.15 for the equivalence classes 5
and 6, whereas when comparing these two equivalence classes with equivalence class 4
the d-value increases and in one case is even greater than d_ crit.

53

4. RESULTS

4.6.4 Windows Analysis

In this Section the statistical analysis of the six equivalence classes that are received
as result from the three Windows based operating systems are described. Here also six
equivalence classes are analyzed as here as well both Theano versions deliver the same
results. The p-values of all 2-Sample KS-Tests are summarized in Table 4.23 and the
d-values in Table 4.22. Figure 4.6/ shows the distribution of each equivalence class in the
form of boxplots.

Equivalence class W1l W2 W3 W4 W5 W6

Wi 0.20 0.25 020 0.35 0.35
W2 0.20 0.20 0.20 0.35 0.35
W3 0.25 0.20 0.25 0.25 0.25
W4 0.20 0.20 0.25 0.35 0.30
W5 035 035 0.25 0.35 0.15
W6 035 035 0.25 030 0.15

Table 4.22: d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Windows-
based systems

Equivalence class W1 W2 W3 W4 W5 W6
W1 0.77095 0.49734 0.77095 0.13495 0.13495
w2 0.77095 0.77095 0.77095 0.13495 0.13495
W3 0.49734 0.77095 0.49734 0.49734 0.49734
W4 0.77095 0.77095 0.49734 0.13495 0.27527
W5 0.13495 0.13495 0.49734 0.13495 0.96548
Wé6 0.13495 0.13495 0.49734 0.27527 0.96548

Table 4.23: p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Windows-
based systems

The analysis for the first two equivalence classes yield a p-value of 0.77095 and d-value of
0.20. Even if the p-value is not as high as for the tests on the other operating systems,
there is no doubt that the results originate from the same distribution.

54

4.6. Statistical analysis

Accuracy Distribution

0.978 1
0.976 1

0.974 1

0.972 1

0.970 1
0.968 -

0.966 -

Figure 4.6: Boxplot for equivalence classes obtained for Windows-based systems

Similar to the analysis of the Linux-based operating systems, equivalence classes 5 and
6 (DL4J 0.8.0 and DL4J 0.9.1) show the highest p-values. The analysis of equivalence
classes 4 and 5 deliver a p-value of 0.13495 and a d-value of 0.35. Further, a p-value
of 0.27527 is retrieved for testing equivalence class 4 with equivalence class 6. But, not
only the analysis of these two among themselves result in lower score, also comparing
the other equivalence classes with these two results in lower scores in comparison to the
other classes. When comparing the first two equivalence classes with the last two, the
p-value is always the same, 0.13495.

The statistical analysis with the help of the Two-Sample Kolmogorov-Smirnov test showed
some interesting insights, where the different framework versions show a higher cohesion of
results than across different frameworks. This impression account across all investigated
operating systems. Further, the statistical analysis of the Java framework lead to the con-
clusion that this framework seems to be more unstable than the Python frameworks. The
instability is observed on all operating systems, where the Deeplearning4J versions 0.8.0
and 0.9.1 show lower results than observed for other frameworks. Even when testing these
two versions with version 0.7.1 it shows lower scores. As a result, further investigations
are conducted for this framework versions which are described in Section 4.6.6.

55

4.

REsuLTS

56

4.6.5 Cross-operating system equivalence class testing

In order to investigate if the operating system type has an influence on the results when
reproducing the Deep Learning experiment, all 19 equivalence classes are tested against
each other. Table 4.24] summarizes the results of this statistical analysis.

The Two-Sample Kolmogorov-Smirnov Test for equivalence class 1 on Mac OS and Linux
yields a d-value of 0.10. The same results are obtained when testing equivalence class 1
from Mac OS and equivalence class 1 from Windows. This means that the first equivalence
class on all operating systems deliver nearly the same results and the operating system
do not have a significant influence. As already mentioned, equivalence class 3 deliver
exactly the same results for all operating systems. When comparing equivalence class
4 from Mac OS,(represented by Theano 1.0.0) with equivalence class 3 (represented by
Theano 0.9.0) from other operating systems only small fluctuations of results occur. The
d-values is 0.15 in both cases and the null hypothesis is retained.

In some cases the d-value is 0.40 and therefore near the critical value d_ crit (0,43). Even
when a d-value of 0.40 is not significant, a confident conclusion that these results originate
from the same distribution is risky. This d-value is obtained when testing following
equivalence classes against each other:

e M2 and L6

e M2 and W6

e M5 and L5

e M5 and L6

e M5 and W5

e [L1 and W6

e [.2 and L6

e [L4 and W5
So, by testing each equivalence class against each other no significant results are obtained,
except when testing L4 against L6 (DL4J 0.7.1 and DL4J 0.9.1 on Linux-based operating

systems). This analysis concludes that the results from the equivalence classes originate
from the same distribution and showing that the random seed does not have an impact.

4.6. Statistical analysis

sura)sAs Suryerado sSoIoR $oSSR[D 20Ud[eATNDo Surreduiod 10J 1S9, AOUITUG-A0I0F0WOY] ojdUIeS-0MT, 91} JO SoN[eA-p :Jg'§ o[qe],

g1’0 0€0 G20 ¢9¢0 ¢€0 gro g9ro o0€0 920 ¢ €0 Ovo STO0 g0 0€0 0€0 SO0 O0vo S€0 9IM
S1'0 ge'o ¢gco ¢<€0 ge0 o010 ¢S1r0O0 OVO <%0 Ovo <0 010 90 O0ov0o G20 Gco <€0 0€0 SM
0€'0 g€0 gc0 0c0 020 <€0 9€0 <910 GO0 020 O0C0 O0€0 020 <9T0 0€0 920 9r0 S10 M
g¢'0 Gco0 <20 0¢0 Gc0 9c0 920 020 0 g¢0 0c0 <920 ¢SI'0 0c¢0 €10 0 ¢c’0 G20 EM
Ge'o g¢0 0c0 020 0c0 0€0 ¢€0 0c¢0 0CO0 020 ¢ST0 ¢9€0 020 <ST0 G0 020 <9r0 910 M
Ge'0 G€0 0c0 G20 0co 0€0 ¢G€0 0c0 S0 &S10 OrT0 ¢€0 S20 S0 ¢G€0 G¢co O0ro o0r1o IM
G1'o 010 ¢€0 G20 0€0 0€0 ¢ro gv¥o <0 Oyo ¢<€0 010 S0 O0F0o G20 G0 O0vo G€0 91
GT'0 910 ¢9€0 920 ¢9€0 G€0 ST0 oy'0 g0 g€0 ¢g€0 ¢S1r0o 00 OFVO0 G20 920 <9€0 S€0 a1
o0 Oro <10 020 020 020 <SP0 O0vo 020 0c0 020 9€¢0 0CO 010 920 00 020 S10 V1
g¢'0 9co <920 0 0¢0 G9c0 920 920 020 g¢’0 0c0 <920 ¢SI'0 0cC0 <10 0 gc’0 G20 €1
ge'o Oo¥o o0g¢0 920 00 <910 OV0 <90 00 920 GI'0 g9¢0 0€0 920 9c0 ¢Gg0 020 G910 c1
OF'0 9€0 020 020 ST'0 OT0 S€0 S0 0c¢0 00 €10 Ge'0 0C0 00 0€0 0co <10 010 T
Ggr'o 010 0€0 G920 ¢€0 ¢€0 O0ro <ro <€o0 Gco ¢C€0 ¢9€o gg'0 G9¢0 <90 Gg0 g0 0€0 LIN
gg0o g9c0 00 910 OO G20 S0 o0€0 00 <910 0€0 00 STo gT'0 9T'0 <910 0€0 920 9N
oeo o¥o ¢ro 0c0 <10 S0 Oovo ovyo 01’0 0¢0 S0 020 S€0 <ST0 0¢'0 0c0 0¢0 020 SIN
oeo ¢gco o0€0 910 <90 g9€0 g0 90 g0 9T0 g0 0€0 g0 STO0 0TO g1°'0 0€0 0€0 YIN
g¢'0 Gco0 <20 0 0¢0 Gc0 S¢c0 920 020 0 gc0 0c0 <920 ¢SI'0 0co <10 ¢c’0 G20 SN
oo ¢9¢0 <910 G920 <ST0 010 OVO 90 0C¢0 g0 0C0 ¢ST0 ¢9€0 0€0 0c0 0€0 420 01°0 SIN
GEO0 0€0 ¢S1'0 920 <ST0 010 S€0 S€0 Sr10 S0 910 Oro 0€0 €S0 0c0 O0€0 Sc0 010 IIN
I9M SM M EM M TM 971 ST V1 €1 ¢l T LN 9N SIN PIN €N CIN IIN sse[o by

o7

4.

REsuLTS

58

4.6.6 Variance Analysis

This Section concentrates on further investigating some Deep Learning frameworks,
mainly the Java framework highlighted an unstable behavior on all operating systems.
Therefore, the variance of the equivalence classes are considered, because it measures
how far a set of numbers are spread out from their average value. The variances for all
equivalence classes is shown in Table 4.25.

MacOS Linux Windows
Eq. class Variance Eq. class Variance Eq. class Variance
M1 6.8068452E10°6 L1 7.878472E10° W1 7.82315E10°
M2 6.6792363E1076 L2 6.0394577E106 W2 7.3227266E107°6
-6
ﬁi 649902414196133511096 L3 6.0044913E10°6 W3 6.0044913E106
M5 5.3235867E1076 L4 5.7844845E10°6 W4 5.290602E10
M6 7.767228E10°6 L5 8.51474E10 W5 8.266827E10
M7 8.854833E10° L6 9.105658E10°° W6 9.10261E10°

Table 4.25: Variances calculated for accuracy for every equivalence class per operating
system type

The variances for equivalence classes across all operating systems show a similar result,
where version 0.8.0 and 0.9.1 of Deeplearning4J shows the highest variances, which
confirm the assumption that these versions are more unstable than the others in this
master thesis. Further investigation consider the three Deep Learning Java framework
versions run on Linux-based systems, as on this operating systems in one case a significant
results was obtained. For further investigation the training epochs are considered as
important factor, as the model may need more training time to deliver more stable
results.

The hypothesis for this analysis is that more training epochs lead to more stable results
and a smaller variance and in a not significant result when conducting the Two-Sample
Kolmogorov-Smirnov test, meaning that the obtained results originate from the same
distribution. The Deep Learning model implemented in these three mentioned frameworks
is therefore trained with 10 epochs, 20 epochs and 30 epochs and afterwards the variance
is calculated.

4.6. Statistical analysis

Framework DL4J 0.7.1
Epochs 10 20 30
Variance 5.7844845E10° 3.6443123E10¢ 2.7409424E107°6
Framework DL4J 0.8.0
Epochs 10 20 30
Variance 8.51474E10% 5.2851583E106 2.80472E10
Framework DL4J 0.9.1
Epochs 10 20 30
Variance 9.105658E10® 5.8445016E10¢ 3.2947432E107°°

Table 4.26: Variances calculated for most unstable frameworks, where the model was
trained with different number of epochs

As shown in Table [4.26, the variances decrease when the model is trained longer.

10 Epochs 30 Epochs
Equivalence class L4 L5 L6 L4 L5 L6
L4 0.40 0.45 0.20 0.25
L5 0.40 0.15 | 0.20 0.20
L6 0.45 0.15 0.25 0.20

Table 4.27: d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems, considering the Java-based Framework and its different versions when
training the model with 30 Epochs

10 Epochs 30 Epochs
Equivalence class L4 L5 L6 L4 L5 L6
L4 0.05914 0.02321 0.77095 0.49734
L5 0.05914 0.96548 | 0.77095 0.77095
L6 0.0231 0.96548 0.49734 0.77095

Table 4.28: p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems, considering the Java-based Framework and its different versions when
training the model with 30 Epochs

Table 4.27 shows the d-values for the model implemented in the different versions of
DL4J and trained for 30 epochs. Table 4.28 shows the corresponding p-values. As we
already observed, when testing equivalence class 4 and 6 when trained for 10 epochs
the d-value (0.45) is significant. Now, when the model is trained 30 epochs, the d-value
decreases to 0.25. Concluding that more training epochs lead to a more stable behavior
of the mentioned frameworks.

59

4.

REsuLTS

60

4.7 Summary

In this Chapter the results of the experiments were discussed. One research question
was if it is even possible to construct the same Deep Learning model in different Deep
Learning frameworks. In this master thesis it is showen that this is possible but a clear
specification of the model should be available as a small uncertainty about configuration
could lead to a different model which may lead to different results.

Further, the performance of the Deep Learning model were analyzed when changing a
specific execution stack parameter while the other remained the same. Fortunately, all
results were not significantly different except for testing equivalence class 4 and 6 on
Linux. This significant result resulted from the fact that the model were not trained for
too long and the variance were respectively big. Further investigation were conducted
considering these equivalence classes where it is shown that the variance is lower when
training the model for longer epochs. Additionally, the Two-Sample Kolmogorov-Smirnov
test showed no significantly different result. Finally, the equivalence classes were analyzed
across different operating systems revealing no significant differences.

CHAPTER

Conclusion and future work

Reproducibility of scientific research is very important for scientists as it enables the
researchers to conduct the same experiments and proof that the original results are
trustworthy. Nevertheless, enabling reproducibility is easier said than done. The reason
for this is that a lot of information is needed, beginning from the data that was used in
the original study, access to used program code, configuration data and more. Of course,
the researchers that publish the original study need to provide this information. The
goal of this master thesis was to investigate if certain execution stack parameters have
an impact on the reproducibility of a specific Deep Learning model. The execution stack
parameters that were investigated are:

e Deep Learning framework and different framework versions

e Execution platform and different execution platform version

e Operating system types and different operating system versions
The basic Deep Learning model architecture that was used in this thesis is the famous
LeNet-5 [LBBH98|] which is mainly used for image classification. The model was repro-
duced in three Deep Learning frameworks (TensorFlow, Theano and Deeplearning4J).
Furthermore, different versions of these frameworks were considered. Additionally, differ-

ent execution platforms as well as different operating systems were considered. Operating
system that were used in this master thesis are:

61

d.

CONCLUSION AND FUTURE WORK

62

i) Mac

a) Mac OS High Sierra 10.13.5
ii) Linux

a) Linux Fedora 25

b) Linux Mint 18.3
¢) Linux Ubuntu 16.04

iii) WIndows

a) Windows 7
b) Windows 8
¢) Windows 10

A part of the thesis concentrated on testing if those factors have influence on the obtained
metrics when running the model. By analyzing different framework versions, it turned
out that not all versions deliver the same result, but the differences are in the most cases
not significant, except for one configuration. On Linux the comparison of Deeplearning4J
0.7.1 and Deeplearning4J 0.9.1 yield a p-value that is below the significance level alpha.
Also, comparing Deeplearning4J 0.7.1 with Deeplearning4J 0.8.0 and TensorFlow 1.6.0
with Deeplearning4J 0.9.1 lead to almost significant differences. Yet, a more detailed
analysis of these framework versions where the model is trained with more epochs showed
that a well trained model result in none siginificant d-values, meaning the obtained
result originate from the same distribution. Further, different frameworks achieve slightly
different results, which are not questionable in fact. Identical results are achieved when
using different execution platform versions, regardless if it is Python or Java. Even a
different Java Virtual Machine lead to same results. Additionally, different operating
system versions do not affect Deep Learning model results. Finally, the operating system
has an influence on Deep Learning model results, but the results are not statistically
significant as they originate from the same distribution.

Fortunately, except for one configuration, no significant result were obtained by the
statistical analysis. All necessary information to facilitate reproducibility should be done
from the very beginning of the study. This allows others to validate certain results,
which is really important in scientific research. In fact, an exact description of the Deep
Learning model is needed as small uncertainties of some model configurations may lead
to different results [DRF18].

In order to make reproducibility of scientific research easier the PRIMAD model was used,
as it enables the researcher to document the configuration to reproduce the conducted
experiments. Due to the fact that Machine Learning and especially Deep Learning as
part of it is currently widely used in scientific research, close attention should be placed
on reproducibility of the research as a lot of factors can influence results.

Therefore, the PRIMAD model can be a useful tool enabling detailed specification of
experiment configurations, including all necessary data for reproducing the study and
increasing trustworthiness. As data science and big data are coming more and more,
Deep Learning may be considered as important tool. And even if the idea behind Deep
Learning is not new, the current opportunity to execute those computationally intensive
calculations on high-end hardware and at low costs will demand for reproducible research
studies.

Due to the fact that this thesis focused on investigating on certain execution stack
parameters, without focusing on the underlying hardware, opens the door for future
research. The Deep Learning model was run on CPUs. Deep Learning models are
normally run on GPUs which speeds up the model execution. Future research regarding

the hardware on which Deep Learning models are executed would be very interesting.

Further, all operating system were run in virtual machines, except for Mac OS High Sierra
which served as the base operating system. Possible VM effects were not investigated in
this master thesis and open the door for further investigations. The Deep Learning model
that was used in this thesis is not the biggest and most complex. It would be interesting
if more complex Deep Learning models, which use more complicated calculations, would
deliver the same result as the model used in this thesis.

63

APPENDIX

Implementation

Converting IDX to CSV

PATH = "Dataset/"
def convert (imgf, labelf, outf, startPoint, endPoint):

f = open(imgf, "rb")
o = open(outf, "w'")

1 = open(labelf, "rb")
f.read (16)

l.read (8)

images = []

for i in range(startPoint, endPoint):
image = [ord(l.read(1))]
for j in range (28x%28):
image . append (ord (f.read (1)))
images .append (image)
for image in images:
o.write(",".join(str(pix) for pix in image)+"\n")
f.close ()
o.close ()
l.close ()

#converting train images + labels
convert (PATH + "train—images—idx3—ubyte", PATH + "train—labels —idx1—

ubyte" ,

PATH + "mnist_train.csv", 0, 60000)
#converting tet images + labels

convert (PATH + "t10k—images—idx3—ubyte", PATH + "t10k—labels —idx1—

ubyte" ,

PATH 4+ "mnist_test.csv', 0, 10000)
Listing A.1: Code for converting original MNIST data into CSV file format.!

"https://pjreddie.com/projects/mnist-in-csv/

65

A. IMPLEMENTATION

A.2 Data preperation for Python frameworks
1
2 #preparing images
3 def preparelmages(path, fw="tensorflow"):
4

#H#HE preparing images FHH#

6 # fetching training data

7 data = pd.read_csv(path, header=None)

8

9 # seperate images from data

10 images = (data.iloc[:, 1:].values).astype(’float32’) # all pixel

values of images

12 # reshaping train data

13 if fw = "tensorflow":

14 images = images.reshape (images.shape[0], 28, 28, 1)
15 if fw = "theano":

16 images = images.reshape (images.shape[0], 1, 28, 28)
17

18 # scaling data

19 images = images / 255

20

21 return images

22

23 #preparing lables of corresponding images
24 def prepareLables(path):

25 # fetching training data

26 trainData = pd.read_csv(path, header=None)

27

28 #seperate lables from data

29 lables = trainData.iloc [:, 0].values.astype(’int32’) # get lables

31 ##+# preparing lables ###

32 # One—hot encoding lables

33 def dense_to_one_hot(labels_dense, num_ classes):

34 num__labels = labels__dense.shape[0]

35 index_ offset = np.arange(num_labels) * num_ classes

36 labels_one__hot = np.zeros ((num_labels, num_ classes))

37 labels__one_hot. flat [index__offset + labels_dense.ravel()] =1
38 return labels one hot

40 # get number of classes

41 num_ classes = np.unique(lables).shape[0]
42

43 lables = lables.astype(np.uint32)

14

45 return lables

Listing A.2: Methods used to prepare the dataset for further use. The first method
prepares the images while the second method prepares the labels.

66

10

N NNNN
B NI

Y U W

L

A.3. Data preperation for Java framework

A.3 Data preperation for Java framework

public static DataSetlterator prepareData(String path, int batchSize)
throws IOException, InterruptedException {

//read csv file

final int numLinesToSkip = 0;
final char delimiter = ’,7;
final int labellndex = 0;

final int numClasses = 10;

//csv record readers

RecordReader reader = new CSVRecordReader (numLinesToSkip, delimiter);

//initialize recordreader

reader . initialize (new FileSplit(new ClassPathResource(path).getFile()))

)

//create data iterator for training and testing
DataSetIterator data = new RecordReaderDataSetlIterator (reader,
batchSize, labellndex , numClasses);

//normalize data

//scale data from 0-255 to 0—1

DataNormalization scaler = new ImagePreProcessingScaler (0,1);
scaler . fit (data);

data.setPreProcessor (scaler);

return data;

}

Listing A.3: Methods used to prepare the dataset for further use.The method prepares

the required format and returns a DataSetIterator object.

67

A.

IMPLEMENTATION

68

1

2 def LeNet(x, one_hot_lables, learningRate, seed):

w

SIS

29
30
31
32
33
34
35
36
37
38
39
40

42
43

A.4 TensorFlow

#LeNet model configuration

#Weight initialization according to Xavier Glorot and Yoshua Bengio
initializer = tf.contrib.layers.xavier_initializer_conv2d (uniform=False ,

seed=seed)

#Layer 1: Convolutional Layer: Input = 28x28x1.

convl_W = tf.get_variable("W1l", shape=(5, 5, 1, 4),

)

convl b = tf.Variable(tf.zeros(4))

convl = tf.nn.conv2d(x, convl W, strides=[1, 1, 1,

convl b

#RELU Activation function
convl = tf.nn.relu(convl)

#Layer 2: Pooling Layer: Input = 24x24x4. Output

i convl = tf.nn.max_pool(convl, ksize=[1, 2, 2, 1],

padding="VALID ")

#Layer 3: Convolutional Layer: Output = 8x8x12

conv2_ W = tf.get_variable("W2", shape=(5, 5, 4,
initializer)

conv2 b = tf.Variable(tf.zeros(12))

conv2 = tf.nn.conv2d(convl, conv2 W, strides=[1, 1, 1,

+ conv2 b

3 #RELU Activation function

conv2 = tf.nn.relu(conv2)

; #Layer 4: Pooling Layer: Input = 8x8x12. Output
7 conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1],

padding="VALID ")

#Flatten Layer Input = 4x4x12. Output = 192
fc0 = flatten (conv2)

#Layer 5: Fully Connected Layer: Input = 192. Output
initializer=initializer)

fcl W = tf.get_variable("W3", shape=(192, 120),
fcl b = tf.Variable (tf.zeros(120))
fcl = tf.matmul(fcO, fc1_W) + fcl_b

#RELU Activation function
fcl = tf.nn.relu(fcl)

Output = 24x24x4
initializer=initializer

1], padding='VALID’) +

12x12x4
strides=[1, 2, 2, 1],

initializer=

1], padding='VALID")

4x4x12
strides=[1, 2, 2, 1],

120

#Layer 6: Fully Connected Layer: Input = 120. Output = 84
fc2. W = tf.get_variable("W4", shape=(120, 84), initializer=initializer)

fc2_b = tf.Variable (tf.zeros(84))
fc2 = tf.matmul(fcl, fc2 W) + fc2 b

A.4. TensorFlow

45 #RELU Activation function

46
47

fc2 = tf.nn.relu(fc2)

48 #Layer 7: Fully Connected Layer: Input = 84. Output = 10

49
50

fc3. W = tf.get_variable('"W5", shape=(84, 10), initializer=initializer)
fc3_ b = tf.Variable (tf.zeros(10))
logits = tf.matmul(fc2, fc3 W) + fc3_b

51

52

53 #Define Loss Function — Cross Entropy

54 cross_entropy = tf.nn.softmax_cross_entropy_with_ logits(labels=
one_hot_lables, logits=logits)

55 loss__operation = tf.reduceimean(crossientropy)

56 #Define Weight Optimization Algorithm — SDG

57 optimizer = tf.train.GradientDescentOptimizer (learning rate=learningRate)

58 training_operation = optimizer.minimize (loss_operation)

59

60 return logits , training_ operation

Listing A.4: Model implementation in TensorFlow 1.4.0

1

2 #function to execute normal model (train: 60k; test: 10k)

3 def normalModel (trainlmages, trainLables, testImages, testLables, nEpochs
, batchSize, seed, learningRate):

4

5 # set random seed for reproducibility

6 tf.set_random_seed(seed)

7 np.random. seed (seed)

8

9 # confusion matrix filename

10 confusionMatrixFileName = "Output/CM/
tensorflow NormalModelConfusionmatrix for seed {}.txt".format (seed)

11

12 # placeholder variables for batches of input images and batches of
output labels

13 x = tf.placeholder (tf.float32, (None, 28, 28, 1))

14 y = tf.placeholder (tf.int32, (None))

15 one_hot_y = tf.one_hot(y, 10)

16

17 # create model and training operation

18 logits , training operation = model.LeNet(x, one_hot_y, learningRate,
seed)

19

20 #dictionary object for results

21 results = {}

22

23 #number of examples in train set

24 num_ examples = len (trainlmages)

25

26 with tf.Session () as sess:

27 sess.run(tf.global_ variables_ initializer ())

28 Print " skkkokskskokskoskokokskokkskokokkokok Train model sokoskosok sk sk ok sk ok sk ok skokokokoskok ok

29 for i in xrange(nEpochs):

start__time = time.time ()

A.

IMPLEMENTATION

70

36
37
38
39

63

65

for offset in xrange (0, num_examples, batchSize):
end = offset + batchSize
batch x, batch y = trainlmages[offset:end], trainLables[offset:
end |
sess.run(training operation, feed dict={x: batch_x, y: batch_y})
print "Completed epoch {} in {:.3f} seconds".format((i + 1), (time.
time () — start_time))

#Get the predictions

prediction = tf.argmax(logits , 1)

y_pred = sess.run(prediction, feed dict={x: testImages, y: testLables
9

#true values

y_true = testLables

#Calculate metrics

accuracy = accuracy_score(y_true, y_pred)

precision = precision_score(y_true, y_pred, average=’macro’)
recall = recall_score(y_true, y_pred, average='macro’)

f1 = f1_score(y_true, y_ pred, average='macro’)

print "sskckskokskokskokkoksokkokkokkkx valuate model soskokskokskokskokskok sk ok kokokkokok ok
print "Accuracy: {:.5f}".format(accuracy)

print "Precision: {:.5f}".format(precision)

print "Recall: {:.5f}".format(recall)

print "Fl1-Score: {:.5f}".format(f1)

Print " skseskokskokoskokskokokskokokskok B inishied soskoskok sioskok sk skokok skokok skok oskok ok !

#put metrics into dictionary

results ["Accuracy"] = accuracy
results ["Precision"] = precision
results["Recall"] = recall
results ["F1-Score"] = f1

reset graph
tf.reset__default__graph ()

return results

Listing A.5: Method to train and test model (Tensorflow)

TR W N =

6

25
26
27
28
29
30
31
32
33
34

36
37
38
39
4(
41
42
43
44

46
47

A5,

Theano

A.5 Theano

def createTheanoModel (x, batchSize, seed):

#Define input dimensions
layerl_input = x.reshape ((batchSize, 1, 28, 28))

Layer 1: Convolutional Layer: Input = 28x28x1. Output = 24x24x4 +
Layer 2: Pooling Layer: Input = 24x24x4. Output = 12x12x4

layerl = LeNetConvPoolLayer (

seed ,

input=layerl_input ,

image_shape=(batchSize, 1, 28, 28),

filter shape=(4, 1, 5, 5)

)

Layer 3: Convolutional Layer: Output = 8x8x12 +

s # Layer 4: Pooling Layer: Input = 8x8x12. Output = 4x4x12

layer2 = LeNetConvPoolLayer (

seed ,

input=layerl .output,
image_shape=(batchSize, 4, 12, 12),
filter _shape=(12, 4, 5, 5)

)

4 # Flatten Layer Input = 4x4x12. Output = 192

layer3 input = layer2.output.flatten (2)

Layer 5: Fully Connected Layer: Input = 192. Output = 120
layer3 = HiddenLayer (

seed ,

input=layer3_ input ,

n_in=12 x 4 x 4,

n_out=120,

)

5 # Layer 6: Fully Connected Layer: Input = 120. Output = 84

layer4 = HiddenLayer (

seed ,
input=layer3.output,
n_in=120,

n_out==84,

)

Layer 7: Fully Connected Layer: Input = 84. Output = 10
logits = ModelOutputSoftmax (input=layer4.output, n_in=84, n_out=10, rng=
seed)

#Parameter (weights + bias) —> needed for gradient computation
params = logits.params + layer4.params + layer3.params + layer2.params +
layerl .params

71

A. IMPLEMENTATION

49 return logits , params

Listing A.6: Model implementation in Theano 0.9.0

1 #Definition of Convolutional Layer 4+ Pooling Layer

2 class LeNetConvPoolLayer(object):

4 def __init__ (self, rng, input, filter_shape, image_ shape, poolsize=(2, 2)):
6 assert image shape[l] = filter_ shape[1]

7 self.input = input

9 #Weight initialization according to Xavier Glorot and Yoshua Bengio
10 fan in = np.prod(filter shape[1l:])

11 fan_out = (filter__shape[0] * np.prod(filter__shape[2:]) //

12 np.prod(poolsize))

13 W_bound = np.sqrt (2. / (fan_in + fan out))

14 self W = theano.shared (

15 np.asarray (

16 rng.normal (size=filter__shape, scale=W_bound) ,

17 dtype=theano. config . floatX

18),
19 borrow=True

20)

21

22 #The bias is a 1D tensor — one bias per output feature map

23 b__values = np.zeros ((filter__shape[0],), dtype=theano.config.floatX)
24 self.b = theano.shared (value=b_values, borrow=True)

25
26 #Definition of the Convolutional Layer
27 conv_out = conv2d (

28 input=input ,

29 filters=self .W,

30 filter__shape=filter_shape,
31 image_shape=image_shape,
32 subsample=(1, 1),

33 border__mode=’valid’

34)

35

36 #RELU Activation function

37 conv_out = T.nnet.relu(conv_out + self.b.dimshuffle(’'x’, 0, 'x’, 'x’))
38

39 #Definition of Pooling Layer
40 pooled__out = pool.pool_2d(
41 input=conv__out,

42 ws=poolsize ,

43 ignore__border=True,

14 stride=(2,2),

15 pad=(0,0)

46)

48 #O0utput result of Layers
149 self.output = pooled_out

72

A5,

Theano

51 #Store parameters of this layer
52 self.params = [self.W, self.b]
53

54 #Keep track of model input

55 self.input = input

Listing A.7: Convolutional and Pooling layer implementation in Theano 0.9.0

1 #Define Fully Connected Layer
2 class HiddenLayer (object):
def __init__ (self, rng, input, n_in, n_out):

self.input = input

7 #Weight initialization according to Xavier Glorot and Yoshua Bengio
8 W_values = np.asarray (

9 rng.normal(size=(n_in, n_out), scale=np.sqrt (2. / (n_in + n_out))
10),

11 dtype=theano. config. floatX

12)

13 W = theano.shared (value=W_values, name="W’, borrow=True)

15 #The bias is a 1D tensor — one bias per output feature map
16 b_values = np.zeros((n_out,), dtype=theano.config.floatX)
17 b = theano.shared (value=b_values, name='b’, borrow=True)

18

19 self W=W

20 self.b = b

21

22 #Calculate output of Layer

23 lin_output = T.dot(input, self.W) 4+ self.b

24 # Output result of Layer with RELU activation function
25 self .output = (T.nnet.relu(lin_output))

26 #Parameters of the model

27 self .params = [self W, self.b]

Listing A.8: Fully connected layer implementation in Theano 0.9.0

1 #Definition of Output Layer, Error calculation + Loss Function
2 class ModelOutputSoftmax (object):

3

4 def __init__ (self, input, n_in, n_out, rng):

6 #Weight initialization according to Xavier Glorot and Yoshua Bengio
7 W_values = np.asarray (

g rng.normal(size=(n_in, n_out), scale=np.sqrt (2. / (n_in + n_out))

9),

10 dtype=theano.config. floatX

11)

12 W = theano.shared (value=W_ values, name='W’, borrow=True)

13 self W=W

14 #The bias is a 1D tensor — one bias per output feature map

15 self.b = theano.shared (

16 value=np. zeros (

73

A. IMPLEMENTATION

17 (n_out,) ,

18 dtype=theano.config.floatX

19),

20 name='b’

21 borrow=True

22)

23 self.p_y_ given _x = T.nnet.softmax (T.dot(input, self W) 4+ self.b)
24 #Symbolic description of how to compute prediction as class whose
25 #Probability is maximal

26 self.y_pred = T.argmax(self.p_y_given x, axis=1)

28 #Parameters of the model
20 self.params = [self W, self.b]

30

31 #Keep track of model input
32 self.input = input

33

34 #Method to calculate the errors made by model

35 def errors(self, y):

36 # check if y has same dimension of y_pred

37 if y.ndim != self.y_pred.ndim:

38 raise TypeError (

39 'y should have the same shape as self.y pred’,

40 (’y’, y.type, ’y_pred’, self.y_ pred.type)

41)

42 # check if y is of the correct datatype

43 if y.dtype.startswith (’int’):

44 # the T.neq operator returns a vector of 0s and 1s, where 1
45 # represents a mistake in prediction

46 return T.mean(T.neq(self.y_pred, y))

47 else:

48 raise NotIlmplementedError ()

49 #Definition of the Loss Function

0 def cross_entropy (self, y):

1 return —T.mean(T.log(self.p_y_ given x)[T.arange(y.shape[0]), y])

ot

ot

Listing A.9: Output layer implementation in Theano 0.9.0

1 def createDataSet (img, 1bl, batchSize):
2 #change type of images to theano.float
3 img = img.astype (theano.config.floatX)
4 #create shared variable for images

5 set_x = theano.shared (img)

6 #create shared variable for lables

7 #train set

8 set_y = theano.shared(lbl)

9 set_y = set_y.flatten ()

10 set_y = T.cast(set_y, ’int32")

11 #get number of train batches

12 n_batches = img.shape[0] / batchSize
13

14 return set_x, set_y, n_ batches

1

74

16

17
18
19
20
21
22

35

45
46
A7
49

A.5. Theano

def normalModel(trainImages, trainLables, testImages, testLables, nEpochs

, batchSize, seed, learningRate):

set random seed for reproducibility
SEED = np.random.RandomState (seed)

confusion matrix filename
confusionMatrixFileName = "Output/CM/
theano NormalModelConfusionmatrix for seed {}.txt".format (seed)

placeholder variables for batches of input images and batches of
output labels

x = T.tensor4(’x’) # the data is presented as rasterized images
y = T.ivector(’y’)

allocate symbolic variables for the data

index to a [mini]batch

index = T.lscalar ()

build actual model
logits , params = model.createTheanoModel (x, batchSize , SEED)

define loss function
loss = logits.cross_entropy (y)

define weight optimization — SDG
grads = T.grad(loss , params)

updates = |
(param_i, param_1i — learningRate * grad_ i)
for param_1i, grad_ i in zip(params, grads)

]

#dictionary object for results
results = {}

#create datasets

train_set_x, train_set_y, n_train_batches = createDataSet (trainlmages,
trainLables , batchSize)
test_set_x, test_set_y, n_test_batches = createDataSet(testImages,

testLables , batchSize)

#train operation
train_model = theano.function (
[index],
logits.errors(y),
updates=updates ,
givens={
x: train_ set_ x[index * batchSize: (index + 1) * batchSize],
y: train_set_y[index * batchSize: (index + 1) % batchSize]

P

#evaluation operation
predictions = theano.function (

75

A. IMPLEMENTATION
64 [index],
65 outputs=logits.y_pred,
66 givens={

76

67
68
69
70

N

i B B e B B B |

N O Ut e W

~
o3}

79
80
81
82

83
84
86
87

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

x: test set x[index x batchSize: (index + 1) x batchSize]

}
)

Print " sksokokskoskokskoskokkoskokokkokokskokok Train model skok sk koskosk ok skok ko oskokkok sk ok ok "
for i in xrange(nEpochs):

start__time = time.time ()

error = 0

for j in xrange(n_train_batches):

error += train_model(j)

print "Epoch: {}; Score: {}".format((i + 1), (error / n_train batches
))

print "Completed epoch {} in {:.3f} seconds".format((i + 1), (time.
time () — start_time))

print "sskckskorskokskokkoksokkokkokkkx . valuate model sskokskorskokskokskok sk ok kokokkokokk
#concatenate predictions into one variable

y_pred = np.concatenate ([predictions(p) for p in range(n_test_batches)
#ground truth values

y_true = testLables

#Calculate metrics

accuracy = accuracy_score(y_true, y_pred)

precision = precision_score(y_true, y_pred, average=’macro’)
recall = recall_score(y_true, y_ pred, average='macro’)

f1 = f1_score(y_true, y_pred, average='macro’)

print results in dictionary

print "Accuracy: {:.5f}".format(accuracy)

print "Precision: {:.5f}".format(precision)

print "Recall: {:.5f}".format(recall)

print "Fl1-Score: {:.5f}".format(fl)

print " skskokskorskokskorskokskokokok ok Binished ko skorskok ok oskokskokoskokskok ko

#put metrics into dictionary

results ["Accuracy'"] = accuracy
results ["Precision"] = precision
results ["Recall"] = recall
results ["F1-Score"] = f1

return results

Listing A.10: Method used to train and test the actual model. Further, the results are
printed to the console. Note, method ¢reateDataSetprepares the dataset for further use.

1
2
3
4
5

46
47
48
49
50
51

A.6. Deeplearning4J

A.6 Deeplearning4J

public MultiLayerConfiguration createModel (){

MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder ()
//Random seed for reproducibility

.seed (this.seed)

//Weight initialization according to Xavier Glorot and Yoshua Bengio
.weightInit (WeightInit .XAVIER)

//Use stochastic gradient descent as an optimization algorithm
.optimizationAlgo (OptimizationAlgorithm .STOCHASTIC GRADIENT DESCENT)
.iterations (1)

//Specify the learning rate

.learningRate(this.learningRate)

Clist ()

// Layer 1: Convolutional Layer: Input = 28x28x1. Output = 24x24x4
.layer (0, new ConvolutionLayer.Builder (5, 5)

.nln (1)

.stride (1, 1)

.padding (new int []{0,0})

.nOut (4)

//RELU Activation function

.activation (Activation .RELU)

.build ())

//Layer 2: Pooling Layer: Input = 24x24x4. Output = 12x12x4

.layer (1,new SubsamplingLayer.Builder (SubsamplingLayer.PoolingType .MAX)
.kernelSize (2,2)

.stride (2,2)

.padding (new int []{0,0})

.build ())

//Layer 3: Convolutional Layer: Output = 8x8x12

.layer (2, new ConvolutionLayer.Builder (5, 5)

//Note that nIn need not be specified in later layers

.stride (1, 1)

.padding (new int []{0,0})

.nOut (12)

//RELU Activation function

.activation (Activation .RELU)

.build ())

//Layer 4: Pooling Layer: Input = 8x8x12. Output = 4x4x12

.layer (3 ,new SubsamplingLayer.Builder (SubsamplingLayer.PoolingType .MAX)
.kernelSize (2,2)

.stride (2,2)

.padding (new int []{0,0})

.build ())

//Layer 5: Fully Connected Layer: Input = 192. Output = 120
.layer (4 ,new DenseLayer.Builder ().activation (Activation .RELU)
.nOut(120) . build ())

//Layer 6: Fully Connected Layer: Input = 120. Output = 84

.layer (5, new DenseLayer.Builder ().activation (Activation .RELU)
.nOut (84) . build ())

//Layer 7: Fully Connected Layer: Input = 84. Output = 10

//With Cross Entropy as Loss Function

7

A.

IMPLEMENTATION

78

.layer (6, new OutputLayer.Builder (LossFunctions.LossFunction .MCXENT)
.nOut (10)

.activation (Activation .SOFTMAX)

.build ())

.setInputType (InputType.convolutionalFlat (28,28,1)) //See note below
.backprop(true) //use backpropagation to adjust weights

.pretrain (false).build () ;

return conf;

Listing A.11: Model implementation in DL4J 0.9.1

public static HashMap<String , String> normalModel(String trainPath, String
testPath , int nEpochs, int batchSize, int seed, double learningRate ,
String filename) throws IOException, InterruptedException {
//save results in HashMap object
HashMap<String , String> results = new HashMap<String , String >();

//dataset creation

final short trainSetIndex = 0;

final short testSetIndex = 1;

DataSetIterator trainData = DataPreperation.prepareData (trainPath ,
batchSize) ;

DataSetIterator testData = DataPreperation.prepareData (testPath
batchSize) ;

//build and configure model

Lenet lenet = new Lenet(batchSize, nEpochs, seed, learningRate);
MultiLayerConfiguration conf = lenet.createModel () ;
MultiLayerNetwork model = new MultiLayerNetwork (conf);

model. init () ;

model. setListeners (new ScorelterationListener (100));

log.info ("Train model ...");
for (int i = 0; i < nEpochs; i++){
Stopwatch stopwatch = Stopwatch.createStarted () ;
model. fit (trainData) ;
log.info ("Completed epoch {} in {} seconds", (i+1), stopwatch.elapsed
(TimeUnit .SECONDS)) ;
trainData.reset () ;
}

log.info ("Evaluate model ...");

Evaluation eval = model.evaluate (testData);
log.info (eval.stats());

model = null;

//put fold metrics into HashMap

results.put("Accuracy", Double.toString (eval.accuracy()));
results.put("Precision", Double.toString(eval.precision()));
results.put("Recall", Double.toString(eval.recall()));

A.6. Deeplearning4J

results.put("F1-Score", Double.toString(eval.fl()));
log.info("****************Exanuﬂe finished sk sskskokokokokooxk ko ') 5

return results;

}
Listing A.12: The method is used to train and test the model. Further, the results are

printed to the console.

79

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.9
3.6

4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

Execution stack that underlies the experiments. 8
Reproducibility standard [Penll] 10
PRIMAD Model: Reproducibility of Data-Oriented Experiments in e-Science

IFERL6] . . . o o oo 12
Experimental process|. oo 16
Example feed-forward neural network [QD11) 18
Example recurrent neural network [QD09] 18
LeNet-5 architecture [LBBHOS| 19
Convolutional neural network archtecture of model that is used in this thesis 20
MNIST examples [LBBHOS| 23
Execution stack stage that is tested, the framework versions 37
Execution stack stage that is tested, the execution platform| 40
Execution stack stage that is tested, the operating system versions 42
Boxplot for equivalence classes obtained for Mac OS Hiegh Sierra 49
Boxplot for equivalence classes obtained for Linux-based systems 52
Boxplot for equivalence classes obtained for Windows-based systems| . . . 55

81

3.1
3.2
3.3
3.4
3.9

4.1
4.2
4.4
4.3
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.14
4.15
4.16
4.17
4.18

4.19

List of Tables

Python 2.7.14 and Python 3.5.4 packages
Comparison of Python 2.7.14 and Python 3.5.4
Different. versions of TensorFlowl
Different versions of Theanol
Different versions of DeeplearningdJ|

Example configuration for framework version testing, in this case for Tensor-
Flow on Mac OS High Sierra],
Results for different TensorFlow versions on Mac OS High Sierra]
Results for different Tensorflow and Theano versions on Mac OS High Sierra
Example configuration for framework version testing, in this case for Theano
on Mac OS High Sierra]
Example configuration for framework version testing, in this case for DeepLearn-
ingdJ | Lo
Results for different Tensorflow, Theano and DL4J versions on Mac OS High
SIEITAl . . v v o e e e e e e e e e e e
Example configuration for testing different execution platform versions, here
Python
Tensorflow 1.4.0 results for different execution platform versions on Mac OS
High Sierral
Example configuration for testing different JVM’s
DL4J 0.8.0 results for different jvm’s on Mac OS High Sierra)
Example configuration for testing different operating system version

Results for all operating systems including different versions of the execution
platform and Deep Learning framework|
Equivalene classes: Mac OS High Sierral
Equivalene classes: Linux Fedora 25 & Linux Mint 18.3 & Linux Ubuntu 16.04
Equivalene classes: Windows 7 & Windows 8 & Windows 10|
d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Mac OS
High Sierral
p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Mac OS
High Sierral

24
24
26
26
27

37
37
37
38
38
39
39
40
41
41
41
44
45
46
46
48
48

83

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

84

d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems
p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems L
d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Windows-
based systems|.
p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Windows-
based systems|
d-values of the Two-Sample Kolmogorov-Smirnov Test for comparing equiva-
lence classes across operating systems |
Variances calculated for accuracy for every equivalence class per operating
Ssystem type |o Lo
Variances calculated for most unstable frameworks, where the model was
trained with different number of epochso
d-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems, considering the Java-based Framework and its different versions
when training the model with 30 Epochs/.
p-values of the Two-Sample Kolmogorov-Smirnov Test executed for Linux-
based systems, considering the Java-based Framework and its different versions
when training the model with 30 Epochs

o1

o1

54

54

o7

o8

99

99

29

[Aarl5)

[ABCT16]

[BBLT11]

[Boel5]

[Bot10]

[CBBHBY5]

[Den12]

Bibliography

Joanna E; Anderson Christopher J; Attridge Peter R; Attwood Angela;
Axt Jordan; Babel Molly; Bahnik Stepan; Baranski Erica; Barnett-Cowan
Michael; Bartmess Elizabeth; Beer Jennifer; Bell Raoul; Bentley Heather;
Beyan Leah; Binion Grace; Borsboom Denny; Bosch Annick; Bosco Frank
A.; Bowman Sara D.; Brandt Mark J; Braswell Erin; Brohmer Hilmar; Della
Penna Nicolas Aarts, Alexander A; Anderson. Estimating the reproducibility
of psychological science. Science, 349(6251), 2015.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. Tensorflow: A
system for large-scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 265—283,
Savannah, GA, 2016. USENIX Association.

James Bergstra, Olivier Breuleux, Pascal Lamblin, Razvan Pascanu, Olivier
Delalleau, Guillaume Desjardins, Tan Goodfellow, Arnaud Bergeron, Yoshua
Bengio, and Pack Kaelbling. Theano: Deep learning on gpus with python.
In Big Learn workshop, NIPS’11, 2011.

Carl Boettiger. An introduction to docker for reproducible research. SIGOPS
Operating Systems Review, 49(1):71-79, January 2015.

Léon Bottou. Large-scale machine learning with stochastic gradient descent.
In International Conference on Computational Statistics, pages 177-186,
2010.

J. Chris Bishop, C.M. Bishop, G. Hinton, and P.N.C.C.M. Bishop. Neu-
ral Networks for Pattern Recognition. Advanced Texts in Econometrics.
Clarendon Press, 1995.

Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web|. IEEE Signal Processing Magazine,
29(6):141 — 142, 2012.

85

[DRF18]

[FFR16]

[GB10]

[GBC16]

[GFI16]

[GJSBOO]

[Ins12]

[Jr.51]

[KGB14]

[KSH12]

[LBBHOS|

[LGGS07]

86

Alexander Diir, Andreas Rauber, and Peter Filzmoser. Reproducing a neural
question answering architecture applied to the squad benchmark dataset:
Challenges and lessons learned. In Gabriella Pasi, Benjamin Piwowarski, Leif
Azzopardi, and Allan Hanbury, editors, Advances in Information Retrieval,
pages 102-113, Cham, 2018. Springer International Publishing.

Juliana Freire, Norbert Fuhr, and Andreas Rauber. Reproducibility of Data-
Oriented Experiments in e-Science (Dagstuhl Seminar 16041). Dagstuhl
Reports, 6(1):108-159, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Artificial Intelligence and Statistics,
volume 9, pages 249 —256, 2010.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Steven N. Goodman, Daniele Fanelli, and John P. A. Ioannidis. What
does research reproducibility mean? Science Translational Medicine,
8(341):341ps12, 2016.

J. Gosling, B. Joy, G. Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley Java series. Addison-Wesley, 2000.

SAS Institute. Base SAS 9.8 Procedures Guide: Statistical Procedures,
Second Edition. SAS Institute, 2012.

Frank J. Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal
of the American Statistical Association, 46(253):68-78, 1951.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolu-
tional neural network for modelling sentences. 52nd Annual Meeting of the
Association for Computational Linguistics, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEFE,
86(11):2278-2323, 1998.

Christine Laine, Steven N. Goodman, Michael E. Griswold, and Harold C.
Sox. Reproducible research: Moving toward research the public can really
trust. Annals of Internal Medicine, 146(6):450-453, 2007.

http://www.deeplearningbook.org

[NGPOY]

[Penl1]

[QDOY)

QD11]

[Rob05]

[R0j96]

[Rosb8]

[RW11]

[Sch15]

[Sch18]

[Sha84]

[Sto12]

[Teal§]

Eilen Nordlie, Marc-Oliver Gewaltig, and Hans Ekkehard Plesser. Towards
reproducible descriptions of neuronal network models. PLOS Computational
Biology, 5(8):1-18, 08 2009.

Roger D. Peng. Reproducible research in computational science. Science,
334(6060):1226-1227, 2011.

Ramon Quiza and J Davim. Computational modeling of machining systems.
In Intelligent machining: Modeling and optimization of the machining
processes and systems, pages 173-213, 01 2009.

Ramon Quiza and J Davim. Computational methods and optimization. In
Machining of Hard Materials, pages 177-208, 01 2011.

Gentleman Robert. Reproducible Research: A Bioinformatics Case Study.
Statistical Applications in Genetics and Molecular Biology, 4(1):1-25, Jan-
uary 2005.

Raul Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag,
Berlin, Heidelberg, 1996.

F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386-408,
1958.

Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of shapiro-
wilk , kolmogorov-smirnov , lilliefors and anderson-darling tests. Journal of
Statistical Modeling and Analytics, page 21-33, 2011.

Jiirgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85 — 117, 2015.

Steven E. Schoenherr. The digital revolution, July 2018.
https://web.archive.org/web/20081007132355/http:
//history.sandiego.edu/gen/recording/digital.htmll

Steven Shapin. Pump and circumstance: Robert Boyle’s literary technology.
Social Studies of Science, 14(4):481-520, 1984.

Victoria Stodden. Reproducible research for scientific computing: Tools and
strategies for changing the culture. Computing in Science & Engineering,
14(4):13-17, 2012.

Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-source
distributed deep learning for the jvm, apache software foundation license
2.0, July 2018. http://deeplearning4j.org.

87

https://web.archive.org/web/20081007132355/http://history.sandiego.edu/gen/recording/digital.html
https://web.archive.org/web/20081007132355/http://history.sandiego.edu/gen/recording/digital.html
http://deeplearning4j.org

[VR18]

[WYW+17]

[You77]

88

Guido van Rossum. Python (programming language), July 2018. http:
//colenak.ptkpt.net/_lain.php?_lain=3721l

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated
self-matching networks for reading comprehension and question answering.
In the Association for Computational Linguistics annual meeting (ACL),
2017.

IT Young. Proof without prejudice: use of the kolmogorov-smirnov test for
the analysis of histograms from flow systems and other sources. Journal of
Histochemistry & Cytochemistry, 25(7):935-941, 1977.

http://colenak.ptkpt.net/_lain.php?_lain=3721
http://colenak.ptkpt.net/_lain.php?_lain=3721

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Research questions
	Methodological approach
	Structure of the work

	State of the art
	Literature studies
	Comparison and summary of existing approaches

	Methodology
	Experiment design
	Used concepts
	Methods and Models
	MNIST Data Set
	Environments
	Operating Systems
	Analysis Methods
	Summary

	Results
	Deep Learning Model Implementation
	Framework
	Execution Platform
	Operating System
	Equivalence Classes
	Statistical analysis
	Summary

	Conclusion and future work
	Implementation
	Converting IDX to CSV
	Data preperation for Python frameworks
	Data preperation for Java framework
	TensorFlow
	Theano
	Deeplearning4J

	List of Figures
	List of Tables
	Bibliography

