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Abstract

In this thesis, we focus on stably stratified turbulent channel flow at high shear Reynolds
number Reτ . We performed an extensive campaign of pseudo-spectral direct numerical
simulations (DNS) of the governing equations (written under OB approximation) in
the shear Richardson number space Riτ = Gr/Re2

τ , where Gr is the Grashof number.
Specifically, we fix the Reynolds number Reτ = 1000 and we change Gr so to cover a broad
range of Riτ values. Our results of stratified turbulence indicate that the average and
turbulent fields undergo significant variations compared to the case of forced convection, in
which temperature is a passive scalar (Riτ = 0). In particular, we observe that turbulence
is actively sustained only near the boundaries, whereas intermittent turbulence, also
flavored by the presence of non-turbulent wavy structures (Internal Gravity Waves, IGW)
is observed at the core of the channel. Naturally, the interaction between turbulence and
stratification alters also the overall transfer rates of momentum an heat. We believe that
the present results may give an important contribution to future turbulence modeling in
this field.
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Kurzfassung

Im Rahmen dieser Diplomarbeit werden stabile turbulente Schichtenströmungen in einem
Kanal bei einer, mit der Schubspannungsgeschwindigkeit uτ gebildeten, Reynolds-Zahl
Reτ = 1000. Umfangreiche direkte numerische Simulationen der Grundgleichungen (unter
Verwendung der Oberbeck-Boussinesq Approximation) wurden mit Hilfe einer Pseudospec-
tralmethode für unterschiedliche Richardson-Zahlen Riτ = Gr/Re2

τ , mit der Grashof-Zahl
Gr, durchgeführt. Um einen großen Bereich an Richardson-Zahlen abzudecken, wird
bei konstanter Reynolds-Zahl die Grashof-Zahl variiert. Sowohl für das gemittelte, als
auch für das turbulente Strömungsfeld zeigen die Ergebnisse der geschichteten Turbulenz
stark unterschiedliches Verhalten im Vergleich zum Fall der erzwungenen Konvektion, bei
der sich die Temperatur passiv verhält. Im speziellen beobachten wir Aufrechterhaltung
der Turbulenz nur in Wandnähe, wobei intermittierende Turbulenz, beeinflusst von
der Anwesenheit nicht turbulenter welliger Strukturen (interne Schwerewellen), auch in
Kanalmitte auftritt. Natürlicherweise verursacht die Wechselwirkung zwischen Turbulenz
und Schichtung eine Veränderung von globalem Impuls- und Wärmeaustausch. Unserer
Ansicht nach liefern die Ergebnisse dieser Arbeit einen wichtigen Beitrag für zukünftige
Turbulenzmodelle im Bereich der Schichtenströmungen.
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1 Introduction

Turbulent stratified flows are of great interests due to their importance in industrial,
environmental and geophysical applications. Industrial applications in which turbulent
stratified flows commonly occur, include cooling in nuclear reactors [15], fluid motion in
heat transfer equipments [52], or fuel injection and combustion in gasoline engines [20].
Natural processes include the dynamics of the nocturnal atmospheric boundary layer
[37], mixing in rivers and continental shelf seas [70], or the transport of organic species
in the ocean [71].

The problem of stratified turbulence is fairly complex. In addition to the complexity of
turbulence itself, we have to also take the presence of buoyancy forces that do depend on
local density gradients into account. For a comprehensive determination of a turbulent
stratified flow, it is required to specify a number of parameters. These parameters include
the flow forcing and boundary conditions, the mean temperature gradient, and the fluid
properties like density, viscosity, thermal conductivity, thermal expansion coefficient and
specific heat. Other factors that may be important include concentration and salinity
gradients, rotational and multiphase flow effects, phase change, flow compressibility
and specific dependence of the fluid properties on the local temperature and pressure
field. Critical applications often involve many of these complicating factors at once [77].
For example, fuel injection and combustion in gasoline engines involves strong localized
variations of fluid properties, flow compressibility, multiphase flow effects and phase change
[20]. Stratified turbulence can be unbounded and homogeneous, as in the stratosphere or
in the deep ocean [32], [34], [55]. However, stratified turbulence can be also unbounded and
sheared, as for instance when the wind blows in the atmosphere or when deep currents stir
the ocean [11], [60], [61], and finally stratified turbulence can be bounded and sheared, as
in the terrestrial and oceanic boundary layers [37], [45], [71] or in industrial applications
[16]. When stratified turbulence is homogeneous, turbulence is not sustained by any
applied shear and decays following an evolution in which buoyancy forces influence the
largest flow scales first, and the smaller scales later, until the final turbulence collapse
is reached [61]. When stratified turbulence is forced by an applied uniform shear, its
dynamics is controlled by the gradient Richardson number Rig = N2/S2, with S the
value of the mean shear and N the Brunt-Väisälä frequency. Numerical and experimental
results [27], [58] indicate that if Rig ' 0.25 the turbulence neither grows nor decay. At
lower values of Rig turbulence grows, whereas at higher ones it decays. Finally, when
stratified turbulence is forced by an applied shear and at the same time influenced by
the presence of a boundary, its evolution is not only controlled by the mean strength

1



1 Introduction

of shear and stratification, but also by their distributions as a function of the distance
from the boundary [3]. In this work, we will have the case of wall-bounded stratified
turbulence. Wall-bounded stably stratified flows can be divided into two main categories,
which are commonly referred to as the weakly/moderately and the strongly stratified case
(or alternatively, weakly stable and very stable regimes [36]). In the weakly/moderately
stratified case, turbulence is actively sustained near the boundary, whereas intermittent
turbulence, also flavored by the presence of non-turbulent wavy structures (Internal
Gravity Waves, IGW [63]), is observed at larger distances. In this case, an equilibrium
regime is established between the production of turbulence by the mean shear and
the suppression of turbulence by the stable stratification so that the Monin-Obhukov
self similarity theory [40], [47] can be used. In the strongly stratified case, a global
turbulent state cannot be sustained. As a result the flow becomes intermittent, with
regions characterized by a complete turbulence suppressions, followed by regions in which
turbulence is reactivated. In this work, we will have the case of weakly/moderately
stratified turbulence.

In this work, wall-bounded stably stratified turbulence is described performing Direct
Numerical Simulations (DNS) of the continuity, Navier-Stokes and energy equations
under Oberbeck-Bussinesq (OB) approximation. The outline of this thesis is as following.
Chapter 2 documents the physical modeling and mathematical formulation of the problem.
The numerical approach and discretization of the equations are described in chapter 3.
In chapter 4, plan of the numerical experiments, velocity and temperature statistics,
qualitative behavior of the flow field and also the characterization of the flow state as a
function of stratification is presented. The main conclusions of the work are summarized
in chapter 5.
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2 Physical Modeling of the Problem

In this section we present the physical and mathematical models used to described
wall-bounded stably stratified turbulent flows. Specifically, in section 2.1 we introduce
the general compressible form of the governing equations (Non-Oberbeck-Boussinesq,
NOB). In section 2.2 will will introduce the Oberbeck-Boussinesq (OB) approximation
and provide a discussion on the ranges of validity of the OB approximation.

2.1 General Form of the Governing Equations

The most general starting point for the analysis of stably-stratified turbulence is rep-
resented by the complete system of continuity, momentum and energy equations for a
Newtonian fluid of variable properties and second viscosity equal to zero [6]. This set of
equations in dimensional form (denoted by the superscript ∗) is:

Dρ∗

Dt∗
+ ρ∗

∂u∗i
∂x∗i

= 0 , (2.1)

ρ∗
Du∗i
Dt∗

= −∂P
∗

∂x∗i
− ρ∗g∗δ∗3,i + µ∗

∂Γ∗ij
∂x∗j

+ Γ∗ij
∂µ∗

∂x∗j
, (2.2)

ρ∗c∗p
DT ∗

Dt∗
= λ∗

∂2T ∗

∂x∗j
2 + ∂λ∗

∂x∗j

∂T ∗

∂x∗j
+ β∗T ∗

DP ∗

Dt∗
+ µ∗Φ∗ , (2.3)

where u∗i is the ith component of the velocity vector, P ∗ is pressure, T ∗ is temperature
and g∗ is the gravitational acceleration. Note that

Γ∗ij = ∂u∗i
∂x∗j

+
∂u∗j
∂x∗i
− 2

3
∂u∗k
∂xk

δ∗ij, Φ = 1
2Γ∗ij

(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)
(2.4)

are the rate of strain tensor (Γ∗ij) and the rate of dissipation of mechanical energy due to
viscosity (Φ∗). The termophysical fluid properties are density ρ∗, viscosity µ∗, specific heat
c∗p, thermal conductivity λ∗ and thermal expansion coefficient β∗ = −1/ρ∗ (∂ρ∗/∂T ∗)p.
To fully specify the problem, suitable laws for the determination of the fluid properties

3



2 Physical Modeling of the Problem

as a function of temperature and pressure must be prescribed. These can be given in the
general form:

ρ∗ = ρ∗(T ∗, P ∗) (2.5)

c∗p = c∗p(T ∗, P ∗) (2.6)

µ∗ = µ∗(T ∗, P ∗) (2.7)

β∗ = β∗(T ∗, P ∗) (2.8)

λ∗ = λ∗(T ∗, P ∗) (2.9)

In most cases, such laws are inferred from available analytical expressions and correlations
derived from thermodynamics and/or experimental measurements [4], [42], [59], [74], [75].
Eqs. 2.1-2.3, complemented with explicit laws to particularize Eqs. 2.5-2.9, constitute
the general form of the governing equations. In connection with the following section,
and precisely to stress the difference with the commonly adopted Oberbeck-Boussinesq
(OB) approximation, this form is usually called Non-Oberbeck-Boussinesq (NOB).

2.2 Oberbeck-Boussinesq (OB) approximation

The Oberbeck-Boussinesq (OB) approximation [8], [46] is based on the assumption that
fluid density variations are small enough to be negligible in the continuity equation and
play a role only in the gravitational term of the momentum equation (i.e. where ρ∗ is
multiplied by the acceleration due to gravity g∗). The reason why is it possible to assume
a constant ρ∗ but in the gravitational term, is that the product ρ∗g∗ can produce large
effects even when relative density fluctuations with respect to the reference density ρ∗0
are very small (i.e. (ρ∗ − ρ∗0) /ρ∗0 � 1), since acceleration due to gravity is in general
much larger than any other local value of the fluid acceleration (i. e. |g∗| � |Du∗i /Dt∗|).
Further, in the OB approximation all thermophysical fluid properties are strictly constant
and uniform.

2.2.1 Governing Equations

The governing equations can be conveniently written in dimensionless form. Without
loss of generality, we refer to the case of a density stratified Poiseuille flow in a closed
channel, in which the stable stratification is maintained by keeping a positive density
difference ∆ρ∗ = ρ∗b − ρ∗t between the bottom (ρ∗b) and the top (ρ∗t ) walls. The OB form
of the governing balance equations in dimensional form and in tensor notation (repeated
index implies summation) reads as:

4



2 Physical Modeling of the Problem

∂u∗i
∂x∗i

= 0 , (2.10)

ρ∗
∂ui
∂t∗

= −ρ∗u∗j
∂u∗i
∂x∗j

+ µ∗
∂2u∗i
∂x∗j

2 −
∂p∗

∂x∗i
+
(
ρ∗ − ρ∗ref

)
g∗ + δ∗1,i, (2.11)

ρ∗c∗p
∂T ∗

∂t∗
+ ρ∗c∗pu

∗
j

∂T ∗

∂x∗j
= λ∗

∂2T ∗

∂x∗j
2 , (2.12)

where p∗ is the fluctuating kinematic pressure and δ∗1,i is the mean pressure gradient that
drives the flow. Variables are made dimensionless as follows:

ρ = ρ∗

ρ∗0
; µ = µ∗

µ∗0
; λ = λ∗

λ∗0
; cp =

c∗p
c∗p,0

;

x = x∗

h∗
; u = u∗

u∗τ
; t = t∗uτ

h∗
; p = p∗

ρ∗0u
∗
τ

2 ; T = T ∗ − T ∗0
∆T ∗/2 ;

where h∗ is the half-channel height and ∆T ∗ = T ∗H − T ∗C (T ∗H is the temperature of
the hot wall while T ∗C is the temperature of the cold wall). The reference velocity for
adimensionalization is the friction velocity u∗τ =

√
τ∗w
ρ∗0
, where τ ∗w is the shear stress at the

wall, whereas the reference temperature is the centerline temperature T ∗0 = (T ∗H + T ∗C) /2.
Note that subscript 0 is used to represent thermophysical fluid properties at the reference
temperature.

With the assumption of uniform thermophysical properties, the governing balance equa-
tions (Eq. 2.10-2.12) in dimensionless form read as:

∂ui
∂xi

= 0 , (2.13)

∂ui
∂t

= Si + 1
Reτ

(
∂2ui
∂xj2

)
− ∂p

∂xi
, (2.14)

∂T

∂t
= ST + 1

ReτPr

(
∂2T

∂xj2

)
. (2.15)

The S-terms contain the non-linear convective terms, the dimensionless mean pressure
gradient and the buoyancy term:

Si = −uj
∂ui
∂xj

+ δi,1 − δi,3
1
16

Gr

Re2
τ

T, (2.16)

ST = −uj
∂T

∂xj
. (2.17)
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2 Physical Modeling of the Problem

In the above equations, δi,3 is the Kronecker delta (used to account for the buoyancy
term in the wall-normal direction only), whereas

Reτ = ρ∗0u
∗
τh
∗

µ∗0
, P r =

µ∗0c
∗
p,0

λ∗0
, Gr = g∗β∗0∆T ∗(2h∗)3

(ν∗0)2 ,

are respectively the Reynolds number, the Prandtl number and the Grashof number,
defined in terms of the termophysical properties at the rference temperature T ∗0 . In
the definition of the Grashof number, β∗0 = − 1

ρ∗

(
∂ρ∗

∂T ∗

)
p
and ν∗0 = µ∗0

ρ∗0
are the thermal

expansion coefficient and the kinematic viscosity at the reference temperature. As
apparent, Eqs. 2.13-2.17 include buoyancy effects. However, the same equations can be
used to analyze neutrally-buoyant flows, simply assuming a vanishing Grashof number
(Gr = 0). It is worth mentioning that the term ( Gr

Re2
τ
) is equal to Richardson number

(Ri) and therefor in a neutrally-buoyant case Ri is equal to zero. Alternative definitions
of the Richardson number are used in literature to describe and parameterize the
dynamics of stratified turbulence. The different definitions of the Richardson numbers
are based on different definitions of the reference velocity scale used to write equations in
dimensionless form. Therefore, we have the centerline Richardson number (which takes
the centerline velocity uc as reference), the bulk Richardson number Rib (which takes the
bulk velocity ub as reference) and the gradient Richardson number Rig = N2/S2 (which
takes the Brunt–Väisälä frequency N and the mean shear rate S as reference parameters).
Although Riτ is customarily used for the characterization of the flow regimes in numerical
simulations of wall-bounded stratified flows [3], [21], [22], its use in experiments is much
more limited. Reasons are related to the difficulty in the determination of the shear
velocity uτ (that in turn requires the determination of the wall shear stress). Therefore, in
experiments the bulk Richardson number Rib is usually preferred, since the bulk velocity
is an easier quantity to access.

2.2.2 Range of validity of the approximate equations

A number of important aspects of the flow physics in the field of stably stratified flows [7],
[23], [68] was elucidated by employing the OB approximation (Eqs. 2.13-2.15). It should
be remarked here, however, that it represents a good approximation of the exact equations
(Eqs. 2.1-2.3) within certain ranges of variation of the main parameters only [25], [38],
[43], [44], [62], and its applicability beyond these ranges is not physically justified. To
understand it, we estimate the accuracy error introduced by the assumption of constant
density in the continuity equation by computing the ratio between the material derivative
of density ρ−1Dρ/Dt and the divergence of the velocity field ∂uj/∂xj [31], [67]. Upon
introduction of appropriate length (l0), velocity (u0) and temperature (∆T ) scales, we
get

ρ−1Dρ/Dt

∂uj/∂xj
= βDT/Dt

∂uj/∂xj
' β∆T (u0/l0)

u0/l0
= β∆T. (2.18)
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2 Physical Modeling of the Problem

To derive Eq. 2.18, u0 is considered small compared to the speed of sound c (i.e. the
Mach number Ma = u0/c < 0.3) and pressure changes in the fluid are considered slow
compared to acoustic pressure waves. Therefore, for the OB approximation to be valid,
β∆T � 1. However, this represents only a rough estimate. Precise boundaries for the
validity of the OB approximation were obtained by Gray and Giorgini [25] starting from
the full non-linear equations in compressible form and writing all the fluid properties as
a linear Taylor expansion of temperature and pressure, i.e.:

ρ = ρ0 [1− β0 (T − T0) + γ0 (P − P0)] ,
cp = cp0 [1− a0 (T − T0) + b0 (P − P0)] ,
µ = µ0 [1− c0 (T − T0) + d0 (P − P0)] ,
β = β0 [1− e0 (T − T0) + f0 (P − P0)] ,
λ = λ0 [1−m0 (T − T0) + n0 (P − P0)] .

where

a = 1
cp

∂cp
∂T

, b = 1
cp

∂cp
∂P

, c = 1
µ

∂µ

∂T
, d = 1

µ

∂µ

∂P
,

e = 1
β

∂β

∂T
, f = 1

β

∂β

∂P
, m = 1

λ

∂λ

∂T
, n = 1

λ

∂λ

∂P
,

β = −1
ρ

∂ρ

∂T
, γ = 1

ρ

∂ρ

∂P
,

are the fluid property coefficients and the subscript 0 denotes the reference state (T0, P0).

After retaining only the leading order terms of the resulting equations, Gray and Giorgini
[25] were able to derive a set of constraints for the OB approximation to be valid. These
constraints were written in the following form:

ε1 = β0∆T ≤ δ, ε2 = γ0ρ0gh ≤ δ,

ε3 = c0∆T ≤ δ, ε4 = d0ρ0gh ≤ δ,

ε5 = a0ρ0gh ≤ δ, ε6 = b0ρ0gh ≤ δ,

ε7 = m0∆T ≤ δ, ε8 = n0ρ0gh ≤ δ,

7



2 Physical Modeling of the Problem

ε9 = e0∆T ≤ δ, ε10 = f0ρ0gh ≤ δ,

ε11 = β0gh/cp0 ≤ δ,

ε12 = ε11T0/∆T ≤ δ,

where δ = 0.1 is a small enough number (i.e. giving a maximum error of 10% in the esti-
mate of the fluid property). That is to say, when δ ≤ 0.1, the value of each fluid property
can be safely approximated by its reference value. A further restrictive condition, i.e.
ε12 < 0.02, for the work done by pressure forces and the heat generated by viscous losses
to be negligible, has been recently proposed by Pons and Quéré [53]. Altogether, these
constraints set the boundaries for an explicit evaluation of the validity ranges of the OB
approximation. These are plotted in figure 2.1 for the case of air (Fig. 2.1a) and water (Fig.
2.1b) at reference temperature T0 = 15oC and pressure P0 = 105Pa. The two main param-
eters are the temperature difference ∆T and the characteristic size of the problem h. The
values of the thermophysical properties at the reference conditions are evaluated as in [25].
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Figure 2.1: A parameter space (∆T, h) of wall-bounded stably stratified turbulence with
the different numerical approach that can be used for its description. Panel
a): air; panel b): water (Reproduced with permission from Zonta and Soldati
[77]. Copyright 2018 by ASME)

In figure 2.1, the solid lines indicate approximately the point at which the basic Oberbeck-
Boussinesq model begins to fail, and more complex Non-Oberbeck-Boussinesq models
(both incompressible NOB or Low-Mach) must be used. The dashed line indicates the
point at which the thermodynamic Boussinesq model should be used. Specific indication
of the parameter (ε) that describes each threshold line is also explicitly given. The color
of each region indicates a specific numerical approach according to the following color-
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2 Physical Modeling of the Problem

code: Oberbeck-Boussinesq (green), Low-Mach number Approach (cyan), Incompressible
NOB (pink), thermodynamic Boussinesq (yellow). Some examples of the most suitable
approaches to be used for flows of interest in environmental and industrial applications are
provided in the following. In the nocturnal boundary layer, for example, h ' 102/103 m
and ∆T ' 5 oC. In this case, the Thermodynamic Boussinesq model would be appropriate.
However, if h > 103 m, a Low-Mach number approach would be recommended. In the
deep ocean, h ' 103 m and ∆T ' 2 oC, whereas in the upper ocean, h ' 102 m
and ∆T ' 10 oC [51]. In both cases, an Incompressible NOB approach is required. In
industrial heat transfer processes, typical sizes are h ' 1 m, whereas ∆T are usually
larger than in environmental applications. For air, temperature gradients can easily be
∆T = 10/100 oC while for water ∆T can achieve few tens, in particular for high heat
flux cooling technologies [1]. In these latter cases, a Low Mach number approach (air)
and an Incompressible NOB approach (water) is recommended.

For air, the most restrictive conditions are ε1 (variation of ρ with T ), ε2 (variation of
ρ with P ) and ε12 (pressure work term). For water, the most restrictive conditions are
ε9 (variation of β with T ), ε8 (variation of λ with P ) and ε12 (pressure work term).
Sometimes, when liquids are used as working fluids at a reference temperature different
from the commonly adopted T0 = 15oC, ε2 (variation of µ with temperature) can become
as important as ε9 (see for instance Zonta et al. [74], [75]) in determining the proper
thresholds for the validity of the OB approximation.

The widely used OB approximation is physically sound in the green area of Fig. 2.1 only.
The extended Boussinesq model (sometimes called thermodynamic Boussinesq model,
see [53]) accounting for the pressure-work term in the energy equation has a validity that
includes also the yellow region in Fig. 2.1. Outside these ranges, NOB approaches must be
used. While the low-Mach number approximation (also known as anelastic approximation
[5], [33], [48], cyan regions in Fig. 2.1) are required for air flows (since the most restrictive
condition is the dependence of ρ on T and P ), alternative solutions accounting for the
temperature or pressure variation of µ, β or λ [64], [75], [76] are adequate for water (and
other liquid) flows in many situations far from critical points (pink regions in Fig. 2.1).
The case of liquid flows close to critical conditions must be analyzed with a low-Mach
number approximation as well [4], [42], [59].

9



3 Methodology

3.1 An introduction to pseudospectral method

The partial differential equations that arise in applications can only rarely be solved in
closed form. Even when they can be, the solutions are often impractical to work with
and to visualize. Numerical techniques, on the other hand, can be applied successfully
to virtually all well posed partial differential equations. Broadly applicable techniques
include finite element (FE), finite volume (FV), finite difference (FD), and, more recently,
spectral methods. The complexity of the domain and the required levels of accuracy are
often the key factors in selecting among these approaches. Finite-element methods are
particularly well suited to problems in very complex geometries (e.g. 3D engineering
structures), whereas spectral methods can offer superior accuracies (and cost efficiencies)
mainly in simple geometries such as boxes and spheres (which can, however, be combined
into more complex shapes). FD methods perform well over a broad range of accuracy
requirements and (moderately complex) domains. Both FE and FV methods are closely
related to FD methods. FE methods can frequently be seen as a very convenient way to
generate and administer complex FD schemes and to obtain results with relatively sharp
error estimates. The connection between spectral methods, in particular the so-called
pseudospectral (PS) methods and FD methods is closer still.
Finite difference methods approximate derivatives of a function by local arguments (such
as du/dx ∼ [u(x + h) − u(x − h)]/2h, where h is a small grid spacing; these methods
are typically designed to be exact for polynomials of low order). This approach is very
reasonable: because the derivative is a local property of a function (which need not be
smooth), it seems unnecessary (and is certainly costly) to invoke many function values
far away from the point of interest. In contrast, spectral methods are global. A common
way to introduce them starts by approximating the function we want to differentiate as
a sum of very smooth basis functions:

u(x) ≈
N∑
k=0

akφk(x), (3.1)

where the φk(x) are for example Chebyshev polynomials or trigonometric functions. We
then differentiate these functions exactly. In the context of solving time-dependent PDEs,
this approach has notable strengths.
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3 Methodology

• For analytic functions, errors typically decay (as N increases) at exponential rather
than at (much slower) polynomial rates.

• The method is virtually free of both dissipative and dispersive errors.

– In the context of solving high-Reynolds number fluid flows, the low physi-
cal dissipation will not be overwhelmed by large numerical dissipation. For
convection-type problems, sharp gradients in a solution will not turn into
wavetrains because of dispersive errors (making different frequency components
propagate at different speeds).

• The approach is surprisingly powerful for many cases in which both solutions and
variable coefficients are nonsmooth or even discontinuous.

• Especially in several space dimensions, the relatively coarse grids that suffice for
most accuracy requirements allow very time- and memory efficient calculations.

However, the following factors can cause difficulties or inefficiencies when using spectral
methods:

• certain boundary conditions;

• irregular domains;

• strong shocks;

• variable resolution requirements in different parts of a large domain;

In some applications- where these disadvantages are not present or can somehow be
overcome - FE, FV, or FD methods do not even come close in efficiency. However, in
most areas of application the situation is not so clear-cut. At present, spectral methods
are highly successful in several areas: turbulence modeling, weather prediction, nonlinear
waves, seismic modeling and etc [18].

3.2 Numerical approach

In this section, the numerical approach developed for the solution of Eqs. (2.13)-(2.15) is
discussed. To lighten the form of the equations, a simplified notation will be use in the
following section (Sec. 3.3): x1, x2 and x3 represent the streamwise, the spanwise and the
wall normal-directions, whereas u1, u2 and u3 are the corresponding velocity components.
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3 Methodology

3.3 Solution Procedure

The present scheme solves for the balance equations of motion (Eqs. 2.13-2.15) through
the elimination of pressure. The pressure field can be removed upon taking the curl of
Eq. (2.14), to give:

∂ωk
∂t

= εijk
∂Sj
∂xi

+ 1
Re
∇2ωk, (3.2)

where ωk = εijk
∂uj
∂xi

is the k− th component of the vorticity vector. Note that the S−terms
in (3.2) have already been introduced in section 2.2.1. Taking twice the curl of Eq. (2.14)
and using Eq. (2.13) together with the vectorial identity ∇× (∇× v) = ∇(∇ · v)−∇2v,
a 4th-order equation in ui can be obtained:

∂(∇2ui)
∂t

= ∇2Si −
∂

∂xi

(
∂Sj
∂xj

)
+ 1
Re
∇4ui. (3.3)

Eqs. (3.2)-(3.3) can be written with respect to the normal components, i.e. for ω3 and u3:

∂ω3

∂t
= ∂S2

∂x1
− ∂S1

∂x2
+ 1
Re
∇2ω3. (3.4)

∂(∇2u3)
∂t

= ∇2S3 −
∂

∂x3

(
∂Sj
∂xj

)
+ 1
Re
∇4u3. (3.5)

These two equations are numerically solved for ω3 and u3. With ω3 and u3 known, u1
and u2 can be obtained by solving the following equations simultaneously:

∂u1

∂x1
+ ∂u2

∂x2
= −∂u3

∂x3
, (3.6)

∂u2

∂x1
− ∂u1

∂x2
= ω3. (3.7)

Eqs. (3.6) and (3.7) derive, respectively, from continuity and from the definition of
vorticity. Although not needed for time advancement of the solutions, pressure can be
obtained by solving a Poisson-type equation after all velocity components have been
found:

∇2p = ∂Sj
∂xj

. (3.8)

Once the velocity field is known, the temperature field can be obtained from the solution
of the energy balance equation:

∂T

∂t
= ST + 1

ReτPr

(
∂2T

∂xj2

)
. (3.9)
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A schematic representation of the algorithm is shown in Fig. 3.1.

Initialization

Time level : n
un

i , T n

Calculation of :
ωn+1

3 , un+1
3

Calculation of :
un+1

1 , un+1
2

Calculation of :
Tn+1

Update the solution :
un

i = un+1
i , T n = T n+1

Figure 3.1: Solver scheme
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3.4 Spectral Representation of Solutions

To represent the solution in space, finite Fourier expansion in the homogeneous (x1 and
x2) directions is used:

f(x1, x2, x3) =
N1
2∑
|n1|

N2
2∑
|n2|

f̂(k1, k2, x3)ei(k1x1+k2x2), (3.10)

where f̂ represents the Fourier coefficients of a general dependent function, i =
√
−1,

N1 and N2 are the number of Fourier modes retained in the series, and the summation
indices n1 and n2 are chosen so that −N1

2 + 1 ≤ n1 ≤ N1
2 and −N2

2 + 1 ≤ n2 ≤ N2
2 . The

wavenumbers k1 and k2 are given by:

k1 = 2πn1

L1
(3.11)

k2 = 2πn2

L2
, (3.12)

with L1 and L2 being the periodicity lengths in the streamwise and spanwise directions.
Because of the orthogonality of the Fourier functions, the Fourier transform f̂ can be
obtained as:

f̂(k1, k2, x3) = 1
N1N2

N1
2∑
|n1|

N2
2∑
|n2|

f(x1, x2, x3)e−i(k1x1+k2x2), (3.13)

where x1 and x2 are chosen to be the transform locations

x1 = n1

N1
L1 (3.14)

x2 = n2

N2
L2. (3.15)

In the cross-stream (wall-normal) direction x3, Chebyshev polynomials are used to
represent the solution,

f̂(k1, k2, x3) =
N ′3∑
n3=0

a(k1, k2, n3)Tn(x3), (3.16)

where the prime denotes that the first term is halved. The Chebyshev polynomial of
order n3 in x3 is defined as

Tn3(x3) = cos(n3 arccos(x3)), (3.17)
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3 Methodology

with −1 ≤ x3 ≤ 1. Orthogonality also exist for Chebyshev polynomials, which leads to
the following inverse transformation:

â(k1, k2, n3) = 2
N3

N ′3∑
n3=0

â(k1, k2, x3)Tn3(x3). (3.18)

In physical space the collocation points along the cross-stream direction are related to
Chebyshev indexes in the following way:

x3 = cos
(
n3π

N3

)
, (3.19)

The advantage of using Chebyshev polynomials to represent the solution in the cross-
stream direction is that such a representation gives very good resolution in the regions
close to the boundaries, because the collocation points bunch up there 1. In Fig. 3.2, a
representation of the first six polynomials is given. For in-depth discussion on Chebyshev
polynomials and their applications in numerical analysis, see Fox and Parker [19]. There-

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

z/H

Figure 3.2: The Chebishev polynomials Tr(x3) (with r = 0, ..6) in computational space
for −1 ≤ x3 ≤ 1.

fore, the spectral representation (in all three directions) of a generic dependent variable
takes the final form

f(x1, x2, x3) =
N1
2∑
|n1|

N2
2∑
|n2|

N ′3∑
n3=0

â(k1, k2, n3)ei(k1x1+k2x2)Tn3(x3), (3.20)

1In wall bounded flows, resolution close to the wall is very important, since large gradients of the
solutions occur there

15



3 Methodology

3.5 Discretization of the equations

3.5.1 Momentum equations

With the spectral representation given by Eq. (3.10), Eq. (3.5) can be written as:

∂

∂t

(
∂2

∂x2
3
− k2

)
û3 =

(
∂2

∂x2
3
− k2

)
Ŝ3

− ∂

∂x3

(
ik1Ŝ1 + ik2Ŝ2 + ∂

∂x3
Ŝ3

)

+ 1
Re

(
∂2

∂x2
3
− k2

)(
∂2

∂x2
3
− k2

)
û3,

(3.21)

where k2 = k2
1 + k2

2. Time advancement of Eq. (3.21) is done using a two-level explicit
Adams-Bashfort scheme for the convective terms and an implicit Crank-Nicholson method
for the diffusion terms. The time-differenced form of Eq. (3.21), based on the above
schemes, is(

∂2

∂x2
3
− k2

)
(ûn+1

3 − ûn3 )
∆t =3

2

(
∂2

∂x2
3
− k2

)
Ŝn3 −

1
2

(
∂2

∂x2
3
− k2

)
Ŝn−1

3

− ∂

∂x3
ik1(3

2 Ŝ
n
1 −

1
2 Ŝ

n−1
1 )

− ∂

∂x3
ik2(3

2 Ŝ
n
2 −

1
2 Ŝ

n−1
2 )

− ∂2

∂x2
3
(3
2 Ŝ

n
3 −

1
2 Ŝ

n−1
3 )

+ 1
Re

(
∂2

∂x2
3
− k2

)(
∂2

∂x2
3
− k2

)
(ûn+1

3 + ûn3 )
2 ,

(3.22)
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where superscripts n− 1, n and n+ 1 indicate three successive time levels. By defining
γ = ∆t

2 Re
we can rearrange Eq. (3.22):[

1− γ
(
∂2

∂x2
3
− k2

)](
∂2

∂x2
3
− k2

)
ûn+1

3 =

− k2(3
2 Ŝ

n
3 −

1
2 Ŝ

n−1
3 )∆t

− ∂

∂x3
ik1(3

2 Ŝ
n
1 −

1
2 Ŝ

n−1
1 )∆t

− ∂

∂x3
ik2(3

2 Ŝ
n
2 −

1
2 Ŝ

n−1
2 )∆t

+ (γ ∂
2

∂x2
3

+ (1− γk2))
(
∂2

∂x2
3
− k2

)
ûn3 .

(3.23)

Introducing β2 = 1+γk2

γ
and recalling that ∂û3

∂x3
= −ik1û1 − ik2û2 from continuity, we can

manipulate the last term on the RHS of Eq. (3.23):

− γ
(
∂2

∂x2
3
− β2

)(
∂2

∂x2
3
− k2

)
ûn+1

3 =

− k2(3
2 Ŝ

n
3 −

1
2 Ŝ

n−1
3 )∆t− k2(γ ∂

2

∂x2
3

+ (1− γk2))ûn3

− ∂

∂x3
ik1(3

2 Ŝ
n
1 −

1
2 Ŝ

n−1
1 )∆t− ∂

∂x3
ik1(γ ∂

2

∂x2
3

+ (1− γk2))ûn1

− ∂

∂x3
ik2(3

2 Ŝ
n
2 −

1
2 Ŝ

n−1
2 )∆t− ∂

∂x3
ik2(γ ∂

2

∂x2
3

+ (1− γk2))ûn2

.

(3.24)

By introducing the historical terms:

Ĥn
1 = (3

2 Ŝ
n
1 −

1
2 Ŝ

n−1
1 )∆t+ (γ ∂

2

∂x2
3

+ (1− γk2))ûn1 ,

Ĥn
2 = (3

2 Ŝ
n
2 −

1
2 Ŝ

n−1
2 )∆t+ (γ ∂

2

∂x2
3

+ (1− γk2))ûn2 ,

Ĥn
3 = (3

2 Ŝ
n
3 −

1
2 Ŝ

n−1
3 )∆t+ (γ ∂

2

∂x2
3

+ (1− γk2))ûn3 ,

(3.25)

Eq. (3.24) becomes:(
∂2

∂x2
3
− β2

)(
∂2

∂x2
3
− k2

)
ûn+1

3 = 1
γ

(k2Ĥn
3 + ∂

∂x3
(ik1Ĥ

n
1 + ik2Ĥ

n
2 )). (3.26)
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If we put Ĥn = k2Ĥn
3 + ∂

∂x3
(ik1Ĥ

n
1 + ik2Ĥ

n
2 ) we come to the final form of the equation:

(
∂2

∂x2
3
− β2

)(
∂2

∂x2
3
− k2

)
ûn+1

3 = Ĥn

γ
. (3.27)

Defining φ̂ =
(
∂2

∂x2
3
− k2

)
ûn+1

3 the above fourth-order equation becomes a system of two
second-order equations: (

∂2

∂x2
3
− β2

)
φ̂ = Ĥn

γ
, (3.28)

(
∂2

∂x2
3
− k2

)
ûn+1

3 = φ̂. (3.29)

These equations are solved with the following four boundary conditions:

ûn+1
3 (±1) = 0 (a)
∂ûn+1

3
∂x3

(±1) = 0 (b).
(3.30)

The lack of real boundary conditions for φ̂ can be circumvented by decomposing it into
three parts:

φ̂ = φ̂1 + Âφ2 + B̂φ3, (3.31)

where constants Â and B̂ are to be determined. These three individual components of φ̂
satisfy: (

∂2

∂x2
3
− β2

)
φ̂1 = Ĥn

γ
, φ̂1(1) = 0, φ̂1(−1) = 0;(

∂2

∂x2
3
− β2

)
φ2 = 0, φ2(1) = 0, φ2(−1) = 1;(

∂2

∂x2
3
− β2

)
φ3 = 0, φ3(1) = 1, φ3(−1) = 0.

(3.32)

Likewise ûn+1
3 can be splitted into:

û3 = û3,1 + Âu3,2 + B̂u3,3. (3.33)
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Once the solution of Eqs. (3.32) has been carried out, we can solve:(
∂2

∂x2
3
− β2

)
û3,1 = φ̂1, û3,1(1) = 0, û3,1(−1) = 0(

∂2

∂x2
3
− β2

)
u3,2 = φ2, u3,2(1) = 0, u3,2(−1) = 0(

∂2

∂x2
3
− β2

)
u3,3 = φ3, u3,3(1) = 1, u3,3(−1) = 0.

(3.34)

Finally the unknown constants Â and B̂ are determined applying the boundary conditions
of Eq. (3.30b) to ûn+1

3 written in terms of its components:

∂û3,1

∂x3
(1) + Â

∂u3,2

∂x3
(1) + B̂

∂u3,3

∂x3
(1) = 0,

∂û3,1

∂x3
(−1) + Â

∂u3,2

∂x3
(−1) + B̂

∂u3,3

∂x3
(−1) = 0.

(3.35)

With Â and B̂ determined, ûn+1
3 is fully known. The above systems of equations are

solved using a Chebyshev method so the solutions ûn+1
3 will be represented by Chebyshev

coefficients in the wall normal direction x3. Therefore, the solution ûn+1
3 will be be

function of k1, k2 and n3:
ûn+1

3 = ûn+1
3 (k1, k2, n3), (3.36)

where 0 < n3 < N3, N3 being the number of coefficients and collocation points in the
wall normal direction. Recalling Eq. (3.10), the solution in space will read as:

un+1
3 (x1, x2, x3) =

N1
2∑
|n1|

N2
2∑
|n2|

N
′
3∑

n3=0
ûn+1

3 (k1, k2, n3)ei(k1x1+k2x2)Tn3(x3), (3.37)

The other two velocity components will be determined through the normal vorticity
component ω̂3. Following a discretization procedure similar to that of Eq. (3.5), we can
write: (

∂2

∂x2
3
− β2

)
ω̂n+1

3 = −(ik1Ĥ
n
2 − ik2Ĥ

n
1 )

γ
, (3.38)

with boundary conditions:

ω̂n+1
3 = ik1û2 − ik2û1 = 0 x3 = ±1. (3.39)

Once vorticity is known, ûn+1
1 and ûn+1

2 can be determined from solving:

− ik2û
n+1
1 + ik1û

n+1
2 = ω̂n+1

3 , (3.40)

ik1û
n+1
1 + ik2û

n+1
2 = −∂û

n+1
3

∂x3
, (3.41)
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that come from the definition of ω̂3 and from continuity equation, respectively. Pressure
can be calculated by the transformed Poisson equation Eq. (3.8):(

∂2

∂x2
3
− β2

)
p̂n+1 = ik1Ŝ

n+1
1 + ik2Ŝ

n+1
2 + ∂Ŝn+1

3
∂x3

. (3.42)

Boundary conditions for p̂n+1 can be obtained by the transformed form of Eq. (2.11) in
the x3 direction applied at x3 = ±1.

The above scheme is used to evaluate the solutions in the Fourier-Chebyshev space for
k2 6= 0. The case k2 = 0 corresponds to the solution averaged over an x1 − x2 plane.
In this case the solution procedure is simpler: upon time discretization the x1 and x2
components of Eq. (2.14) in the Fourier-Chebyshev space after time discretization give:(

∂2

∂x2
3
− 1
γ

)
ûn+1

1 = −Ĥ1

γ
, (3.43)

(
∂2

∂x2
3
− 1
γ

)
ûn+1

2 = −Ĥ2

γ
, (3.44)

that can be solved by applying the following boundary conditions:

ûn+1
1 = ûn+1

2 = 0 x3 ± 1. (3.45)

Using the continuity equation, Eq. (3.41), with k1 = k2 = 0 and the condition ûn+1
3 (±1) =

0 one can show that ûn+1
3 = 0. To calculate p̂n+1 it is necessary to recall the transformed

momentum equation, Eq. (2.14), in the x3 direction for k2 = 0 and ûn+1
3 = 0: we have

p̂n+1 = −( ̂un+1
3 un+1

3 ).

3.5.2 Energy equation

Once the velocity field is given, then the thermal field can be computed solving Eq. (2.15).
The convective term ST is advanced in the time integration by the second order explicit
Adams-Bashfort scheme, while the implicit Crank-Nicolson method is used to advance
the diffusion term. The time differenced energy equation (Eq. 2.12) is therefore given by:

T̂ n+1
i − T̂ ni

∆T = 3
2 Ŝ

n
T −

1
2 Ŝ

n−1
T + 1

PrReτ

∂2

∂xj∂xj

(
T n+1
i + T ni

2

)
(3.46)

All n and n− 1 terms are grouped into the historical term

ĤT =
[
γT

∂2

∂z2 +
(
1− γTk2

)]
T̂ n + ∆T

(3
2 Ŝ

n
T −

1
2 Ŝ

n−1
T

)
, (3.47)
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where k2 = k2
1 + k2

2, γT = ∆t
2Pr·Reτ . Upon rearrangement the following differential equation

for the temperature field can be obtained:(
∂2

∂z2 −
1 + γ2

T

γT

)
T̂ = −ĤT

γT
, (3.48)

as an unknown for each Fourier wave number pair (k1, k2). Eq. (3.48) can be solved with
a Chebishev-Tau method to obtain the new temperature field.

3.6 Direct numerical simulation (DNS)

Turbulence is characterized by a broad range of spatial scales. At one extreme of the
scale domain we have the Kolmogorov length scale [54]

η =
(
ν3

0
ε

)1/4

, (3.49)

which is the smallest flow scale that can be observed in a turbulent environment without
being dissipated into heat by viscosity. Note that ε is the turbulent kinetic energy
dissipation rate. Direct Numerical Simulation (DNS) discretize the governing equations
on a spatio-temporal grid fine enough to resolve all the scales of the turbulent motion down
to the Kolmogorov scale η for Pr < 1 or by the Batchelor scale ηB = η/Pr for Pr > 1
[41], [54]. In unstratified wall-bounded turbulence, vertical scales are usually smaller
(but of the same order of magnitude) than horizontal scales. In stratified wall-bounded
turbulence, the scale separation becomes larger, with the vertical scales being usually
orders of magnitude smaller than the horizontal scales. This poses further constraints on
the computational cost of each simulation.

Since DNS computes turbulence without the aid of any model, it has the unique capability
to capture all the flow details and to quantify all terms in the fundamental energy and
momentum budgets, even those that cannot be experimentally measured. This is of specific
importance for strongly stratified flows, where vigorous local turbulence events and sharp
gradients of temperature and/or of material properties may lead to strong, spatially
and temporally localized mixing and transport that may be remarkably different from
the mean turbulence statistics. Many DNS studies of wall bounded stratified turbulence
have been performed in closed or open plane channels and using different computational
techniques. While simulations run in closed channels aim at mimicking internal flows
of interest for industrial applications [21], [29], [73], [75], simulations in open channels
and boundary layers [9], [10], [14], [17], [26], [35], [45], [70] are mostly motivated by
environmental and geophysical applications (terrestrial and oceanic boundary layers).
Despite some differences that may arise from the specific boundary conditions adopted,
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stratification in open channels and boundary layers is similar to that observed in closed
channels.

DNS of stably stratified channel turbulence was first performed by Iida et al. [29] for
weakly/moderately stratified conditions in a closed channel at shear Reynolds number
Reτ = 150, and by Nieuwstadt [45] for strongly stratified conditions in an open channel
flow at shear Reynolds number Reτ = 395. Few years later, the DNS studies of Flores and
Riley [17] and García-Villalba and del Álamo [21] have largely contributed to the physical
comprehension of the dynamics of wall-bounded stratified turbulence. One of the crucial
aspects raised by these DNS studies was the need of very large domains to properly
characterize the turbulent structures present in stratified channels. This is of specific
importance for strongly-stratified conditions, in which stratification effects fall well into
the near-wall region inducing localized relaminarization patterns and a corresponding flow
intermittency. The parameter range was further widened by subsequent works, increasing
both the Reynolds and the Richardson numbers [9], [13], [70] so to explore weakly and
strongly stratified conditions at values of Reτ and Riτ progressively closer to those
characterizing real applications. Recently, [26] has performed DNS of an open channel
flow at the unprecedented values of the Reynolds number Reτ = 103 and Richardson
number Riτ = 104 (a combination leading to a bulk Reynolds number of the order of
Re = 105), obtaining intriguing results on the phenomenon of global intermittency in the
strongly stable regime.

In this thesis we performed DNS for a turbulent flow of air in a plane close channel with
different constant wall temperatures, as sketched in figure 3.3. Setup parameters of our
simulations are described in more detail in section 4.1. We run different simulations using
a FORTRAN code which is parallelized with Message Passing Interface (MPI) and is
highly scalable. The number of Fourier collocation points in streamwise and spanwise
direction and also the number of Chebyshev polynomials in wall normal direction is
chosen to fulfill the requirements imposed by the DNS for all different simulations. The
time integration algorithm follows an implicit/explicit (IMEX) scheme. The nonlinear
term is discretized in time using either an explicit Euler scheme (for the first time step
only) either an Adams–Bashforth scheme (from the second time step on). For the implicit
part the Crank–Nicolson algorithm is used.To decompose the domain we used a 2D
domain decomposition which is shown in figure 3.4 (note that here N is the number of
processors).
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Figure 3.4: 2D domain decomposition
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4.1 Plan of the numerical experiments

In this thesis, stably stratified turbulent flow between two walls is simulated directly. The
fluid is driven by an imposed pressure gradient and the upper wall is kept at a constant
temperature which is larger than the constant lower wall temperature. We performed
DNS of thermally stratified flow for air and therefore Prandtl number is Pr = 0.71 for all
cases. All simulations are at shear Reynolds number Reτ = 1000. The reference geometry
consists of two infinite flat parallel walls. The x−, y− and z−axis point in the streamwise,
spanwise and wall-normal directions. The size of the channel is 4πh× 2πh× 2h in x, y
and z, respectively (as presented in figure 3.3). Buoyancy acts along the wall-normal
direction (z). Table 4.1 represents an overview of our simulations for different shear
Richardson numbers Riτ .

Case Riτ Reb Nuc Size Grid

S0 0 18850 29.8 4πh× 2πh× 2h 1024× 1024× 513

S1 6.25 19650 22 4πh× 2πh× 2h 1024× 1024× 513

S2 12.5 20170 18.4 4πh× 2πh× 2h 1024× 1024× 513

S3 25 20845 13.6 4πh× 2πh× 2h 1024× 1024× 513

Table 4.1: Overview of simulations at Reτ = 1000

In table 4.1 Reb is the bulk Reynolds number and is defined as :

Reb = ubh

ν

where ub is the bulk velocity. The centreline Nusselt number Nuc is also defined as :
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Nuc = qwh

λ(TW − T0)

where qw = λ∂〈T 〉/∂z is the mean heat flux and TW is the wall temperature. We recall
here that T0 is the reference temperature (centerline temperature). The time and space
averaging are computed after reaching statistically the steady state turbulence over a
sufficient long time window.

4.1.1 Velocity statistics

In figure 4.1 the mean streamwise velocity profiles, 〈u〉, are shown as a function of the
dimensionless wall-normal coordinate z− = z/h for different Riτ numbers. Brackets
represents averaging in time and in space over the homogeneous directions. Figure 4.1
clearly illustrates a flow acceleration for increasing stratification. The mean streamwise
velocity profiles collapse nicely in the near-wall region, whereas they are shifted towards
large values for increasing Riτ in the channel center. The increase of the centerline velocity
indicates an increase of the mass flow rate (i.e an increase of bulck velocity ub and bulk
Reynolds number Reb) and a coresponding decrease of both friction factor and Nusselt
number. Note that, for all simulations, the driving pressure gradient is held constant.
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Figure 4.1: Mean streamwise velocity profile for different Riτ numbers
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These observations clearly show that, stable stratification suppresses wall-normal mo-
mentum transport compared to the neutrally buoyant case, where temperature is a
passive scalar. Suppression of wall-normal momentum transport is the consequence of
the conversion of kinetic energy into potential energy occurring when a fluid particle is
displaced in the wall-normal direction within the flow field. Since the driving pressure
gradient is held constant among simulations, the viscous wall stress and, therefore, the
slope of the mean velocity profile in the case of stable stratification should be invariant
compared to those of the neutrally-buoyant case[75].

The root mean square (r.m.s.) of the fluid velocity fluctuations in all three directions
(streamwise, spanwise an wall-normal) are shown in figures 4.2,4.3 and 4.4. In the near-
wall region we observe a collapse for all three r.m.s of the velocity fluctuations. This
suggests that near-wall turbulence is preserved for all different Richardson numbers. A
very similar behavior was also observed in figure 4.1 for the mean streamwise velocity. As
shown in figures 4.2 and 4.3, the r.m.s of streamwise and spanwise velocity decrease in the
core region of the channel. Interestingly the r.m.s of the wall-normal velocity has a local
maximum that can not be detected in the neutrally-buoyant flow. The local maximum
of wall-normal velocity r.m.s associated distinctly with the effect of stratification in the
core region of the channel.
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Figure 4.2: RMS streamwise velocity profile for different Riτ numbers
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4.1.2 Temperature statistics

In figure 4.5, the mean temperature profiles are shown for neutrally-buoyant and stratified
cases. Stable stratification induces a sort of twofold effect on the temperature field
compared to the neutrally-buoyant case. With increasing the level of stratification, the
temperature gradient decreases at the wall (i.e. the Nusselt number) and simultaneously
the temperature gradient increases at core region of the channel. In particular, the
increased temperature gradient in the core of the channel indicates a tendency to form
a kind of thick interface in this region. This interface, in which temperature changes
more rapidly with depth than it does in the regions above or below, is usually called a
thermocline[75]. Note that, due to symmetry condition , the shear becomes zero at the
channel center where, as a consequence, buoyancy starts playing a dominant role.
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Figure 4.5: Mean temperature profile for different Riτ numbers

In figure 4.6, the root mean square of temperature fluctuations are shown for neutrally-
buoyant and stratified cases. We observe that the peak value increases, with increasing
the stratification level at core region of the channel.
The sequence of what we observed in figures 4.4 and 4.6 is a sort of consistent behavior
between wall-normal velocity and temperature fluctuations at the core region of the
channel. In particular, the internal gravity waves (IGW) involving w and T fluctuations
only dominate the core region of stratified channel [21] and as a consequence, the
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fluctuations in the core region of the channel may be associated with large-scale wavy
motions (IGW) rather than with turbulence structures [75].
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Figure 4.6: RMS temperature profile for different Riτ numbers

4.1.3 Velocity-temperature correlations

In figures 4.7 and 4.8 the correlations between velocity components and temperature
fluctuations are shown. These correlations are usually called turbulent buoyancy fluxes.
From figure 4.7, we can observe that the value of 〈w′T ′〉 decreases significantly with
increasing the level of stratification. We observed a remarkably different dynamics at the
core region of the channel for stratified cases compared to the neutrally-buoyant case.
The mean profiles and turbulent fluxes at the core region of the channel show a sort of
more non-turbulent behavior in comparison to the near-wall region.The magnitude of
temperature and wall-normal velocity fluctuations are noticeably large, as presented by
figures 4.4 and 4.6. Although, the correlation between these two fluctuations, in particular
〈w′T ′〉 , is vary slight, as indicated by figure 4.7. This means, that such fluctuations
are probably generated by internal gravity waves. We will deepen this discussion in
section 4.3.
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Figure 4.7: Turbulent buoyancy flux for different Riτ numbers
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Figure 4.8: Temperature-velocity fluctuations correlation for different Riτ numbers
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4.2 Characterization of the flow state as a function of
the stratification

Stratified flows can support a variety of types of wave motions that cannot be observed in
non-stratified flows. The reason is the tendency for wall-normal motion (the gravitational
acceleration acting along the wall-normal direction) to be suppressed: a fluid particle
that is displaced vertically by the wall-normal velocity fluctuations tends to be restored
by gravity to its original position; it may overshoot inertially and oscillate about this
position. The characteristic frequency of oscillation is called buoyancy frequency (or
Brunt–Väisälä frequency) and can be computed as [75]:

N =
(
− gβ ∂T

∂z

) 1
2

(4.1)
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Figure 4.9: Buoyancy frequency, N as a function of vertical coordinate for different Riτ
numbers

In figure 4.9, the dimensionless buoyancy frequency Nh/uτ is shown as a function of the
dimensionless wall-normal coordinate for different levels of stratification. We observe
a sharp reduction of the buoyancy frequency in the near-wall region followed by an
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approximately constant behavior in the buffer region of the channel. In the core region,
the buoyancy frequency increases again. This behavior his is due to the fact that inside
this region, internal gravity waves are dominating. In other words, the buoyancy effect
modifies selectively the flow structure of the core region, but not of the near-wall region.
With increasing the stratification, the peak value of the buoyancy frequency at the
channel center grows, indicating that a stronger stratification influences more vigorously
the structure of the core region. Such a behavior is directly linked to the significant
changes of the temperature profile in the center of the channel (figure 4.5).

To characterize the flow state as a function of stratification, we follow archival literature
([68] [30]) in the field and we used the gradient Richardson number Rig:

Rig = N2

S2 =
−gβ ∂T

∂z(
∂<w>
∂z

)2 (4.2)

where S is the shear rate. The gradient Richardson number is an important parameter,
as shown in previos studies of homogeneous stratified turbulence [56] [28] that indicated
Rig ' 0.25 as a critical value to understand the nature of the flow straucture. For
Rig ' 0.25, the turbulence neither grows nor decay. At lower Richardson numbers
turbulence grows, while at higher Richardson numbers turbulence decays. In particular in
linear stability analysis [39], Rig ≥ 0.25 is considered as a sufficient condition to obtains
flow laminarization. Tis criterion has also been confirmed experimentally [57] [50]. In
figure 4.10 the Rig is represented in logarithmic scale as a function of the dimensionless
wall-normal coordinate for different Riτ numbers. In previous works Armenio and Sarkar
[3], [66], García-Villalba and Álamo [21] and Zonta et al [75] observed a huge variation of
Rig across the channel. Their results showed that Rig varied from very low values close
to the wall to very large values close to the center of the channel. Figure 4.10 illustrates
that our results are in a good agreement with their finding, in the channel center with the
sharp increase of the slope of the profiles above Rig ≈ 0.25. This huge variation of Rig
along the wall-normal direction is due to the fact that in the core region ∂〈w〉/∂z → 0
and therefor Rig is very large, while in the near-wall region ∂〈w〉/∂z is large and Rig
becomes small. In the center of the channel, due to the symmetry condition ∂〈w〉/∂z = 0
and Rig diverges. Another important observation from figure 4.10 is that the regions
where Rig is bellow 0.25 are the turbulent regions, while the regions where Rig is above
0.25 are the regions where the turbulence is activity weakened and the internal gravity
waves are dominant.
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Figure 4.10: Gradient Richardson number Rig as a function of vertical coordinate for
different Riτ numbers

Another important dimensionless parameter is the flux Richardson number and is defined
as :

Rif = gβ〈T ′w′〉
〈u′w′〉∂〈w〉

∂z

(4.3)

It represents the ratio of buoyant destruction to shear production in the turbulent
kinetic energy equation[21]. In figure 4.11, the flux Richardson number is shown as a
function of gradient Richardson number. The profiles collapse on the solid purple line that
shows Rig = Rif , meaning that when Rig is below its critical value, the only parameter
characterizing the flow is Rig. A similar behavior was also found by García-Villalba and
Álamo [21]. For higher values of Rig, their data did not collapse and did not show a clear
dependence on Riτ .
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Figure 4.11: Flux Richardson number Rif as a function of gradient Richardson number
Rig for different Riτ numbers

In the framework of turbulence modeling, a further crucial parameter is the turbulent
Prandtl number PrT , which is defined as:

PrT = Rig
Rif

(4.4)

Alternatively, the turbulent Prandtl number PrT can also be defined as the ratio between
the turbulent eddy viscosity νT and the turbulent eddy diffusivity κT (i.e. ratio between
the turbulent momentum and heat fluxes). The behavior of the PrT as a function of the
level of stratification is a challenging topic in the field of turbulence modeling [24], [69]. In
figure 4.12, the turbulent Prandtl number is represented as a function of the dimensionless
wall-normal coordinate. For z− < 0.6, the turbulent prandtl number varies only slightly.
Our results for PrT are in good agreement with the results of García-Villalba and Álamo
[21]. The sharper variation of PrT for z− > 0.6 is still a matter of debate, in the sense
that the dependence of PrT on Riτ is not compleatly understood. This is also pointed
out by García-Villalba and Álamo [21].
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Figure 4.12: Turbulent Prandtl number Prt as a function of vertical coordinate for
different Riτ numbers
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Rig for different Riτ numbers

35



4 Results

In figure 4.13 the turbulent Prandtl number is represented as a function of gradient
Richardson number for different shear Richardson numbers. It seems that the assumption
of PrT ≈ 1, customarily done in turbulence modeling, is reasonable for Rig ≤ 0.25 only.
Our results agree fairly well with those of García-Villalba and Álamo [21].

4.3 Qualitative behavior of the flow field

In this section, the qualitative behavior of the flow field through instantaneous visualiza-
tion of the velocity and temperature field is presented in different sections of the channel.
Note that, according to the spatial directions, shown in figure 3.3, a x − z plane is a
streamwise section, a y− z plane is a cross section and a x− y plane is a horizontal plane
normal to the wall.

Figures 4.14-4.17 illustrate the instantaneous temperature field in a streamwise section at
the center of the channel for simulations S0, S1, S2 and S3 respectively. For simulation
S0 we observed the chaotic mixing which was expected for a neutrally-buoyant case.
With increasing the level of stratification, the turbulent structure is damped through
the buoyancy effects at the core region of the channel and finally in figure 4.17 for the
simulation S3 we detected clearly the internal waves at the center of the channel. These
results are consistent with what we observed in sections 4.1.1 and 4.1.2. Internal waves are
found only in a narrow region of the channel near the centerline. Figures 4.18-4.21 show
the instantaneous streamwise velocity on the same section and for the same Richardson
numbers of those for temperature. Here again, we observed a stronger turbulent structure
for simulation S0 at the core region of the channel as it is presented in figure 4.18, while
for the simulation S3, figure 4.21 shows a weaker turbulent structure at the center of
the channel. Increasing the extension of the dark red region at the center of the channel
from figure 4.18 to 4.21 indicated a flow acceleration with increasing the level of the
stratification, as already described in figure 4.1. Figures 4.22 and 4.23 illustrate the
instantaneous temperature field on a spanwise section at center of the channel for two
S0 and S3 simulations. The effect of buoyancy at the core region of the channel can be
clearly observed from figure 4.25. In this region the chaotic mixing due to turbulence is
damped because of the presence of the stratification compared to the neutrally-buoyant
case. Figures 4.24 and 4.25 show the streamwise velocity on a spanwise section in the
center of the channel. Figure 4.25 shows that turbulence structures in the near-wall region
are still visible at Riτ = 25. This means the stratification does not alter the near-wall
region (as also observed in section 4.1.1. The only observable effect of stratification on
the near-wall structures is the reduction of their extension in the wall-normal direction.
For a more detailed visualization of the flow structure in the near-wall region, we plotted
the streamwise velocity fluctuations in a horizontal plane parallel and near to wall at
z+ ∼ 10 in figures 4.26 and 4.27.
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Figure 4.14: instantaneous temperature field in a streamwise section at center of the
channel for Riτ = 0

Figure 4.15: instantaneous temperature field in a streamwise section at center of the
channel for Riτ = 6.25

Figure 4.16: instantaneous temperature field in a streamwise section at center of the
channel for Riτ = 12.5

Figure 4.17: instantaneous temperature field in a streamwise section at center of the
channel for Riτ = 25
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Figure 4.18: instantaneous streamwise velocity field in a streamwise section at center of
the channel for Riτ = 0

Figure 4.19: instantaneous streamwise velocity field in a streamwise section at center of
the channel for Riτ = 6.25

Figure 4.20: instantaneous streamwise velocity field in a streamwise section at center of
the channel for Riτ = 12.5

Figure 4.21: instantaneous streamwise velocity field in a streamwise section at center of
the channel for Riτ = 25
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Figure 4.22: instantaneous temperature field in a spanwise section at center of the channel
for Riτ = 0

Figure 4.23: instantaneous temperature field in a spanwise section at center of the channel
for Riτ = 25

Figures 4.26 and 4.27 show a very similar structure. The similarity of streaks represent that
turbulence remains active in the near-wall region even increasing the level of stratification,
which was also clearly shown in Figures 4.1 and 4.2. In such a case, our results show a
good agreement with García-Villalba and Álamo [21].
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4 Results

Figure 4.24: instantaneous streamwise velocity field in a spanwise section at center of
the channel for Riτ = 0

Figure 4.25: instantaneous streamwise velocity field in a spanwise section at center of
the channel for Riτ = 25

Figures 4.28 and 4.29 illustrate the temperature and wall-normal velocity fluctuations in
a horizontal plane parallel to the wall at the center of the channel. The black boxes are
set at the same position of the plane for both fluctuations fields.
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4 Results

Figure 4.26: instantaneous streamwise velocity fluctuations in a horizontal plane parallel
to the wall at z+ ∼ 10 for Riτ = 0

Figure 4.27: instantaneous streamwise velocity fluctuations in a horizontal plane parallel
to the wall at z+ ∼ 10 for Riτ = 25

′
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4 Results

Figure 4.28: instantaneous temperature fluctuations in a horizontal plane parallel to the
wall at center of the channel for Riτ = 25

Figure 4.29: instantaneous wall-normal velocity fluctuations in a horizontal plane parallel
to the wall at center of the channel for Riτ = 25

′

′
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4 Results

In figure 4.28, Inside the region delimited by the box, we observe a range of approximately
low values of temperature fluctuations. In the same region for the wall-normal velocity
fluctuations (figure 4.29), we observe a relatively higher range of value for this quantity.
This is also what we observed in section 4.1.3 from figures 4.4, 4.6 and 4.7. Figures 4.28
and 4.29 quantify that the large magnitude of temperature and wall-normal velocity
fluctuations can be due to the effect of buoyancy and IGW at the center of the channel,
while the the correlation between these two fluctuations remains small. A phase lag of π/2
between wall-normal and temperature fluctuations is also reported by García-Villalba
and Álamo [21] and Iida et al. [29].
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5 Conclusions and Future Work

In this thesis we focused on the effect of an imposed stable stratification on the dynamics
of a turbulent channel flow at high Reynolds number. To study this effect we performed
numerical experiments based on a extensive campaign of direct simulations of heat and
momentum transfer in turbulent channel flow under the OB approximation. Simulations
were run at Reynolds number Reτ = 1000 and for different Richardson numbers. Compar-
ison is made for the case of constant temperature boundary conditions. The temperatures
at the hot wall, TH , and at the cold wall, TC , were varied to generate temperature differ-
ences between walls (∆T ) while maintaining a constant average reference temperature
(T0). When compared to the neutrally-buoyant case (Riτ = 0), the statistical moments
for the fluid velocity obtained for stably stratified flows exhibit significant differences
throughout the entire channel, particularly in the core region of the channel. Specifically,
we find that turbulence is substantially affected by buoyancy in the core region of the
channel while the near-wall region retains its representative features. Near-wall turbulence
for the stratified cases is similar to neutrally-buoyant wall turbulence because shear still
dominates over buoyancy near the wall. Buoyancy effects dominate the central region of
the channel as the mean shear vanishes due to symmetry. Flow visualizations show that
internal gravity waves develop in this zone. With increasing the level of stratification,
turbulent buoyancy flux become negligible in this region and, as a consequence, the mean
velocity and temperature profiles show a sort of more non-turbulent behavior. This zone
acts as a barrier to the momentum and buoyancy exchange , splitting the channel into
two separate regions that could only through potential modes.

In terms of future works, some proposals could be recommended such as investigating the
flow field under the Non-Oberbeck-Boussinesq condition, arising when large temperature
gradients are present or when the typical size of the involved flow scales are large.
Further attention is required by physical situations in which the fluid density depends
on two scalar fields (double diffusive convection). These complex situations are ordinary
occurrences in oceans, where temperature gradient is the stabilizing factor and salinity
gradient produces instabilities. Different rates of temperature and salt diffusivity makes
the fluid dynamics particularly rich and hard to capture [49], [72]. Finally, the stratified
rotating Ekman layer could be investigated, which is crucially important for geophysical
and environmental applications. In such flow instance, buoyancy effects interact with
rotational effects to produce complex and hard to predict physics [2], [12], [65].
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