
Improving the Awareness of
Technology Updates by Web

Mining of Heterogeneous Online
Sources

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Maximilian Schrack, BSc
Matrikelnummer 9671372

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Univ.Prof. Stefan Biffl
Mitwirkung: Dr. Peter Frühwirt

Wien, 26. September 2018
Maximilian Schrack Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Improving the Awareness of
Technology Updates by Web

Mining of Heterogeneous Online
Sources

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Maximilian Schrack, BSc
Registration Number 9671372

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ.Prof. Stefan Biffl
Assistance: Dr. Peter Frühwirt

Vienna, 26th September, 2018
Maximilian Schrack Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Maximilian Schrack, BSc
Zollergasse 32/7, 1070 Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. September 2018
Maximilian Schrack

v

Kurzfassung

Der Prozess des Software Testings ist in den letzten Jahren komplexer geworden. Die
Applikationen müssen in unterschiedlichen Soft- und Hardware Umgebungen kompatibel
gehalten werden, die sich zudem laufend ändern. Dies kann zum einen die Kombination
aus Hardware, Software und Datenbank sein. Zum anderen muss Software heutzutage
oft mit Applikationen interagieren, um beispielsweise Informationen auszutauschen oder
weitere Verarbeitungsschritte in einem Prozess anzustoßen. Vor allem Schnittstellen zu
anderen Systemen stellen beim Überprüfen der Kompatibilität eine große Herausforderung
dar, da auf diese meist kein unmittelbarer Einfluss genommen werden kann und auch
Informationen über einen neuen Release von Herstellern oft nicht aktiv kommuniziert
werden. Dies kann vor allem dann eine Herausforderung darstellen, wenn eine Anpassung
an einer Schnittstelle vorgenommen wurde und somit die Kompatibilität mit anderen
Systemen nicht mehr gewährleistet ist. Aus der beschriebenen Problemstellung wurde die
Fragestellung dieser Arbeit abgeleitet: Inwieweit kann die Überwachung von Technologien
im Hinblick auf neue Releases automatisiert werden?

Um diese Fragestellung zu beantworten, haben wir ein System entwickelt, welches den
Domainexperten bei der Überwachung von Technologien auf Updates unterstützt. Dieses
System gewinnt aus verschiedenen Datenquellen Informationen, die jeweils unterschiedlich
analysiert werden. In Texten, die aus Emails, RSS feeds und von Twitter extrahiert wurden,
konnten mittels Natural Language Processing (NLP) Nachrichten über Technologie
Updates gefunden werden. Durch die Extraktion von konkreten Release Informationen
einer Online Enzyklopädie konnte ebenfalls den Prozess der Überwachung unterstützt
werden. Die Analyse der Daten der Suchmaschine hat ergeben, dass ein Technologie
Release einen Anstieg der Suchanfragen bewirken kann.

Im Rahmen der Arbeit wird aufgezeigt, dass sich die erschlossenen Datenquellen zur
Auffindung von Technologie Releases eignen. Da der von uns entwickelte Prozess darauf
aufbaut, dass ein Domainexperte die Einrichtung der Datenquellen und insbesondere
die Wahl der Suchwörter, nach denen gesucht wird und welche die Ergebnisse beeinflus-
sen können, vornimmt, konnte ein semi-automatisiertes System zur Überwachung von
Technologien entwickelt werden. Der größte Vorteil des Systems besteht darin, dass der
aufwändigste Teil der Technologie Überwachung - die Datenextraktion und Analyse -
automatisiert werden konnte.

vii

Abstract

The process of software testing has become more complex in recent years, especially since
applications often have to work in cooperation with other technologies and therefore
compatibility plays an essential role. On the one hand, a cooperation can be a connection
between hardware, an operating system, and a database. On the other hand, software
nowadays often has to interact with other systems, for example, to exchange information
or initiate further processing steps. Interfaces to other systems, in particular, repre-
sent a major challenge in verifying compatibility, as they usually cannot be influenced
directly and information about a new release from manufacturers is often not actively
communicated. Above all, this can be problematic if an interface has been changed and
the compatibility can no longer be guaranteed. From the described problem the main
question of this thesis was derived: To what extent can technology monitoring for new
releases be automated?

In order to answer this question, we have designed and implemented a system to support
the domain expert in the process of monitoring technologies for new updates. This system
extracts information from various data sources, each of which was analyzed differently.
Texts extracted from email newsletters, RSS feeds and Twitter were analyzed with NLP
and it turned out that it is capable of detecting release information in these texts. Online
encyclopedias, from which information about previously published updates as well as
preview versions of technologies could be obtained, can also help in detecting technology
updates. Furthermore, the analysis of the search engine data has shown, that a technology
release may cause an increase of the number of search requests extracted from Google
Trends.

In summary, it can be said that the mined data sources are suitable for the process of
detecting technology releases on release date as well as in advance. However, since the
process we have developed relies on a domain expert to undertake the setup of the data
sources, and in particular the choice of keywords that are searched and can influence the
results, a semi-automated system for monitoring technologies could be developed. To be
more precise, the biggest advantage of the developed system is that the otherwise very
complex process of data extraction and analysis could be automated.

ix

Contents

Kurzfassung vii

Abstract ix

1 Introduction 1
1.1 Problem Description and Motivation . 1
1.2 Research Goals and Questions . 2
1.3 Methodological Approach . 4
1.4 Structure of the Thesis . 6

2 State of the Art 9
2.1 Web Mining . 9

2.1.1 Definition . 9
2.1.2 Categorization . 10
2.1.3 Subtasks of Web Mining . 12
2.1.4 Challenges of Web Content Mining 13

2.2 Identification of trustable Online Sources 14
2.2.1 Assessment by Search Engines 14
2.2.2 Assessment by Web Users . 15

2.3 Search Engine Analysis . 18
2.3.1 Related Work . 18
2.3.2 Analyze Web Searches with Google Trends 19
2.3.3 Automated Access on Google Trends 21

3 Concepts of Text Analysis with NLP 23
3.1 Definition and Characteristics . 24
3.2 Levels of NLP . 25
3.3 Application Area . 28
3.4 Tools in Linguistic Analysis . 29

3.4.1 Sentence Delimiters and Tokenizers 29
3.4.2 Stemming/Lemmatizing and Tagging 30
3.4.3 Noun Phrase and Name Recognizers 30
3.4.4 Parsers and Grammars . 31

xi

4 Design of Models for detecting Technology Updates 33
4.1 Process Model for Technology Update Detection 33
4.2 Categorization Model for Online Data Sources 37
4.3 Decision Model for Technology Update Notification 38

4.3.1 Analysis of Data Sources with high Confidence Level 40
4.3.2 Analysis of Search Engine Data 40
4.3.3 Analysis of Data Sources with lower Confidence Level 41

5 Prototype Architecture and Design 43
5.1 System Architecture . 43
5.2 Database . 45
5.3 Data Extraction Methods . 48

5.3.1 Email . 48
5.3.2 RSS Feed . 49
5.3.3 Twitter . 50
5.3.4 Wikipedia . 51
5.3.5 Number of Search Results . 52
5.3.6 Number of Search Requests . 52

5.4 Application of NLP . 53
5.4.1 Task 1: Split Texts into Sentences 54
5.4.2 Task 2.1: Find Release Messages by Regular Expressions . . . 56
5.4.3 Task 2.2: Find Release Messages by NLP Tools 58

6 Data Source Discussion 61
6.1 Data Source: Technology News and Social Media (NLP) 61

6.1.1 Compare Regular Expression against NLP Tools 62
6.1.2 Appropriateness of the NLP Data Sources 67

6.2 Data Source: Online Encyclopedia . 68
6.3 Data Source: Search Engine (Results) 71
6.4 Data Source: Search Engine (Requests) 73

6.4.1 Moving Average . 73
6.4.2 Technologies with Weekend Trends 77
6.4.3 Uncommon Technologies . 78
6.4.4 Standard Deviation . 79
6.4.5 Number of high Jumps . 80
6.4.6 Compare statistical Approaches 82

7 Conclusion 85
7.1 Main Contributions . 85
7.2 Future Research . 90

A Appendix 93
A.1 Email Newsletter List . 93
A.2 RSS Feed List . 98

A.3 Wikipedia Data Extractions . 99
A.4 Twitter Account List . 103
A.5 List of Peaks found by analyzing Search Engine Data 105

List of Figures 107

Listings 109

List of Tables 111

Acronyms 113

Bibliography 115

CHAPTER 1
Introduction

1.1 Problem Description and Motivation
Today, a software product cannot be seen as a standalone application but is often part of
a big and complex hardware/software landscape and process environment. Upgrading
and releasing a technology in such an ecosystem without verifying the compatibility of
it’s interfaces to other technology products can be associated with high risk and, in the
worst case, affect the operational system’s functionality. [61]

Therefore, comprehensive and time-consuming compatibility checks, conducted before
the go-live of new software components, represent necessary quality assurance tasks.
These checks ensure that the newly released technology is still able to interact with its
environment and to minimize the possibility of undetected incompatibilities. [61, 60]

Independent Software Vendors (ISVs), which are more focused on developing software
rather than hardware [21], are a driving force in the field of software development. However
since the release cycle of software is steadily decreasing, keeping the company’s products
compatible to the system environment (e.g. underlying hardware, operating-, database-
and enterprise resource planning systems, . . .) forms a difficult task. This is especially
the case for interfaces, which are exchanging data with third-party products. Normaly,
the ISV’s customer base often uses a large number of heterogeneous hardware platforms,
as well as different versions of the ISV’s product and the software it is interfacing with.
This leads to a huge number of potential test scenarios and production environments the
product has to work in. [61]

To save time for the elongated process of testing and modifying the interface of the
ISV’s product to the updated third party application, the ISV’s goal is to detect new
technology releases as early as possible.

Acquiring and providing this information to the ISV’s testing and development team can
be an time consuming and resource intensive task, for common software products (e.g.

1

1. Introduction

Apache Tomcat, SAP, ...) and in particular for exotic ones (e.g CentOS, BS2000, ...),
which are often developed for specific requirements and thus are not replaceable.

Although numerous online resources aiming at providing near-time reports on upcoming
technology releases, interfaces of third party applications the ISV’s products are required
to interact with can change without notice [60]. To the best of our knowledge, there is
no automated or highly efficient way to conduct pro-active compatibility checks, which
monitor systems with regards to potentially upcoming releases. The presence of such
systems, however, is desirable since the compatibility check and eventually necessary
work can start earlier and therefore decreases the ISV’s time pressure of testing and
updating its product portfolio, especially in regard to maintenance contracts.

1.2 Research Goals and Questions

The overall goal of this thesis is to investigate the degree of automation of identifying or
predicting upcoming releases of previously defined technologies (e.g. operating-, database-
and enterprise resource planning systems). An automated release prediction would be a
great improvement for ISVs, since an earlier identification of a technology release would
relieve the ISV’s time pressure of testing its product portfolio for compatibility and
eventually necessary work.

Figure 1.1: Overview Research Questions

This thesis contributes three generic models for processing incoming information of
heterogeneous data sources: a categorization model for online data sources, which
consolidates information of the previously identified heterogeneous data sources, a decision
model, which processes the collected information from the categorization model to
generate an indicator for expressing the likelihood of upcoming releases and a process
model for technology update detection, which should manage the data flow and input of
compatibility experts.

The output of the models will be discussed by collecting and analyzing data via a
prototype. The discussion should illustrate, whether fully- or semi-automated prediction

2

1.2. Research Goals and Questions

of upcoming technology releases is possible. To achieve the overall goal of this thesis, we
address the following research questions:

RQ 1: What are promising data sources to detect technology updates?

We first have to identify different types of relevant and trustworthy online sources
(e.g. Rich Site Summary (RSS) feeds, email newsletters, websites, wikis, and so forth).
Afterwards, a feasibility analysis should demonstrate whether an automated extraction
method for each of these online sources can be developed. In order to consolidate and
save the extracted information from heterogeneous online sources in an appropriate way,
an categorization model for online data sources will be developed.

RQ 2: To what extent can text processing identify technology updates in
texts extracted from heterogeneous online sources?

Based on the extracted information from heterogeneous online sources found by answering
RQ 1, various approaches for text processing have to be examined to achieve the most
human-like interpretation of the extracted data. This provides the foundation for
developing a decision model for technology update notification, which computes the
likelihood of an upcoming technology update by analyzing and combining the extracted
information. In addition, the developed model should be capable of handling input by a
compatibility expert. This input should communicate the system, whether the calculated
update warning was reasonable or not. Furthermore, if the alert was false, the system
should be capable of adapting it’s parameters which indicated the update warning.

RQ 3: What are limitations of automating the release detection process?

RQ 3 sheds light on which steps of release detection of third party technologies can be
performed automatically. Consequently, the analysis of the limitations should point out,
which tasks still have to be performed manually by domain experts. First, we have to
analyze the general process of monitoring technologies for updates to develop an own
process model for technology update detection. In order to answer RQ 3, the capabilities
and the actual degree of automation of the developed models will be discussed. Therefore,
the categorization model for online data sources developed in RQ 1 and the decision
model for technology update notification developed to answer RQ 2 will be integrated in
the process model for technology update detection. The output is a prototype, which
will then collect and analyze data.

By answering these research questions, on the one hand this thesis contributes to the
research community of NLP by analyzing the potential of NLP to detect release messages
in extracted texts. On the other hand, by analyzing the data extracted from Google
Trends with various statistical methods, the results of this thesis contribute to the research
community which analyzes the potential of search engine data for trend detection.

3

1. Introduction

1.3 Methodological Approach
To address the research goals, the thesis’ methodological approach is divided into the
following six steps:

1. Literature Review
An initial literature review concerning the identification of trustable information, the
application of Web mining to gather this information and the consolidation of the
extracted data from heterogeneous data sources must be performed. Furthermore,
the various aspects of NLP for analyzing the keywords’ context of found texts must
be collected to complement the theoretical basis for the implementation work of
the thesis.

2. Identification of Data Sources
Afterwards, an extensive research of relevant and secure online information sources
will take place. Presumably, the result will be a collection of email newsletters,
Wikis, relevant forums, RSS feeds, and so forth. In addition, platforms (s.a. Google
Trends and Bing Trends) which offer analysis of search behaviour will be considered
as well. These online sources form a basis of data sets, which are proceeded in the
following steps.

3. Development of a generic Categorization-, Decision- and Process Model
For processing the incoming information of heterogeneous data sources, three models
must be developed:

• A Categorization Model for storing data from heterogeneous data sources.
This data model is expected to be based on a relational database.

• A Decision Model, which is capable of consolidating the stored data and in
turn outputting a software trend indicator. This indicator should point out,
whether an upcoming software release for a specified product was detected.

• A Process Model, which illustrates how the developed software trend frame-
work deals with detected software trends and which options of intervening for
domain experts are given.

4. Extraction of Data
Based on the previously identified data sources, different data extraction methods
will be evaluated and checked for suitability. Presumably, the set of data sources
will be collected by crawling websites, analyzing RSS feeds and email newsletters,
browsing wikis and considering search trends.

5. Prototypical Development of a Technology Trend Detection Platform
In order to answer the research questions 1, 2 and 3 properly, a prototypical system
will be developed which implements the concepts of the three generic models. The

4

1.3. Methodological Approach

prototype will then collect data from various online sources and analyze them by
different approaches. The prototype is developed in the form of a web application
and implements the models introduced before.

6. Data Source Discussion
Lastly, the applicability and capability of the prototype and its underlying categorization-
, decision- and process model will be evaluated. Therefore, we first will discuss
the various data sources of the categorization model to show their strengths and
weakness in terms of detecting (upcoming) technology releases. Second, the various
analysis methods of the decision model will be compared in order to show their
efficiency. And third, the analysis of the developed process model should elaborate,
whether a fully (or semi-) automated technology trend analysis is feasible.

Figure 1.2 shows an overview about the different work packages resulting from the
methodological approach. The basis of the implementation work is the list of requirements
derived from the research questions. The requirements form the input of the literature
review and the analysis process for the data sources, the decision model and the process
model.

Figure 1.2: Overview Work Packages

From the literature review, we will derive knowledge about various data sources and
analysis methods. In the online source analysis, we will then select various data sources,
for which we will design and implement suitable data extraction methods.

5

1. Introduction

The data source-, decision- and process model analyses will output three generic mod-
els, which will build - together with the data extraction methods - the basis for the
implementation work of the prototype. The prototype will then collect and analyze data
during its execution phase. In a last step, the results of the data analysis processes will
be evaluated to answer the three research questions.

1.4 Structure of the Thesis

The purpose of Chapter 2 is to investigate various disciplines in the field of information
retrieval. For this reason, the concept of Web mining is first illuminated in order to
gain an overview of the different aspects of information retrieval from online sources (see
Section 2.1). Next, we provide an insight into how Web pages can be tested for their
credibility and which quality factors play an essential role (see Section 2.2). Furthermore,
the analysis of search engines will be investigated to examine their potential for detecting
technology trends (see Section 2.3).

Chapter 3 complements the previous chapter. Here, the capabilities of NLP in terms of
analyzing information extracted from heterogeneous online sources to predict upcoming
technology releases will be examined. Therefore, we investigate the characteristics of
NLP as well as the different levels and their associated tools NLP systems have to work
with.

Chapter 4 documents the developed models which build the basis of the implementation
work of this thesis. Therefore, we first introduce the Process Model for Technology
Update Detection in Section 4.1, which pictures the overall process of finding technology
release information. Second, the Categorization Model for Online Data Sources, which
contains the different types of data sources harvested to gain information from the Web,
is introduced in Section 4.2. In the last Section of this Chapter, 4.3, we illustrate the
process of analyzing the gained data from the Web in more detail.

In Chapter 5, we show various aspects of the implementation work done to transform the
theoretical models from Chapter 4 into Java code. Therefore, we first describe both the
system architecture (see Section 5.1) and the database model (see Section 5.2). Second,
the different data extraction methods are explained by listings in Section 5.3. Section 5.4
shows the NLP tasks developed to extract release messages from the extracted natural
language.

In Chapter 6, we discuss the data sources’ potential of detecting technology releases in
order to answer the research questions properly. Therefore, the discussion is categorized
by data sources defined in the Categorization Model. First, we evaluate the data gained
from the analysis of natural language of email newsletters, RSS feeds and Twitter posts
by applying the developed NLP pipeline in Section 6.1. Second, the data source category
Online Encyclopedia is analyzed in Section 6.2. Third, the capabilities of detecting an
(upcoming) technology release by analyzing the number of search results extracted from
Google Search are investigated in Section 6.3. In a last step, we evaluate the correlation

6

1.4. Structure of the Thesis

between a change in the search volume, gained from Google Trends, and actual technology
releases in Section 6.4.

In Chapter 7, we summarize our findings by first, answering the research questions
in Section 7.1. In this Sections, we further discuss the differences and similarities to
related work and point out the threats to validity. In Section 7.2, we introduce the next
investigation steps by discussing the future research.

In the appendix (see Chapter A), we show the various findings structured by data sources.
In Section A.1, newsletters we have gained data from are listed together with the amount
of emails we received during the evaluation phase. In Section A.2, the list of RSS feeds
we have extracted texts from are illustrated. In Section A.3, the release information
extracted from Wikipedia is listed. Section A.4 gives insights into the amount of Tweets
the prototype has extracted from Twitter. In the last Section of the appendix, A.5, the
found peaks from analyzing the number of search requests extracted from Google Trends
are listed.

7

CHAPTER 2
State of the Art

This chapter provides an overview of various disciplines of computer science necessary to
achieve an (semi-) automated prediction of technology updates.

Therefore, we first give insights on the different aspects of Web Mining, which describe
the process of gathering information from online sources in more detail (see Section 2.1).
Next, we provide a brief overview on how search engines and Web users assess the quality
and credibility of online sources (see Section 2.2). This is especially important to dig out
the right online sources for Web mining. In addition to mining online sources (e.g. blogs,
RSS feeds, email newsletters, etc.), the analysis of trends in search engines is intended to
provide information on whether a technology release is to be expected (see Section 2.3).
After extracting the information, the next step is to analyze the gathered content. This
can be done by NLP, which is investigated in a separate chapter (see Chapter 3) because
of its scope and complexity.

2.1 Web Mining
This section gives an overview about how the tools of Web mining can be used to extract
information from online sources to gain knowledge about a specific topic. Therefore,
we first compare various definitions of Web mining (see Section 2.1.1) and categorize
the different use cases of Web mining (see Section 2.1.2). We further investigate the
according subtasks (see Section 2.1.3) and the challenges Web mining has to face (see
Section 2.1.4). To conclude this section, we provide insights on tools currently available
on the market and compare the advantages and disadvantages (see Section 2.1.3).

2.1.1 Definition

Web mining is defined as the process of discovering and extracting useful information
from online sources and is also known as Web harvesting, Web framing and Web scraping

9

2. State of the Art

[31, 39]. Since the idea of Web mining is based on data mining, Srivastava et. al. describe
Web mining as "(. . .) the application of data mining techniques to extract knowledge
from Web data, including Web documents, hyperlinks between documents, usage logs of
websites, etc." [52, p. 399]. Etzioni describes Web mining more technical as process of
automatically extracting information from Web documents/services and, at the same
time, unveiling general patterns at specific Web pages as well as across multiple pages
to discover potentially useful data or knowledge from online sources [18]. Berent et. al.
focus in their paper more on the categorization of Web mining and define it as follows:

“Web mining is the application of data mining techniques to the content, structure, and
usage of Web resources. This can help to discover global as well as local structure within
and between Web pages. (..) Web mining is an invaluable help in the transformation from
human understandable content to machine understandable semantics.“ [4, p. 266]

2.1.2 Categorization

According to the definition of Web mining from Etzioni [18], Srivastava et. al. [52] and
other works, such as [39], [41] and [33], Web mining can be categorized in the following
three not clear-cut types: Web content mining, Web structure mining and Web usage
mining.

Figure 2.1: Categories of Web mining (based on [52])

10

2.1. Web Mining

• Web Content Mining
Web content mining describes the process of discovering useful data or knowledge
by extracting or mining information from websites or Web website documents.
This process is also called Web text mining, since text is the most widely analyzed
content type on the Web [5]. It focuses on two different aspects: Information
Retrieval (IR) and Database (DB) [11]. While the goal of IR is to assist or enhance
the finding or filtering of useful information based on user profiles, the DB point of
view tries integrate the data from the Web in a model so further queries can be
performed.
Content data can be seen as collection of facts, which are designed to be contained
by websites. So websites may contain content in the form of (unstructured) text,
structured records (e.g. lists and tables), images, video or audio [52]. Usually IR
and NLP is used to gather these useful content data [5].

• Web Structure Mining
Web structure mining can target two slightly different purposes. On the one hand,
it aims to analyze the underlying hyperlink (short link) structure of the Web
to discover a structural summary in the form of a model. The focus lies on an
important aspect of Web mining: link information. The gathered model can be
used to explore the relationship and similarities between websites [33]. Furthermore,
a kind of trust level can be derived from Web structure mining, since websites that
are linked to by a lot of other websites are usually offering high quality or at least
interesting content [39].
On the other hand, Web structure mining can also try to discover the structure of
the Web documents themselves and is then called Web document structure mining
[41]. Here, the goal is usually to extract Document Object Models (DOMs) to
gather useful information based on the tree structure format of Hypertext Markup
Language (HTML) and Extensible Markup Language (XML) documents [52].

• Web Usage Mining
Web usage mining is the process of collecting and analyzing the data generated
by the website’s users. As a result of the users browsing activities, data such as
cookies, mouse clicks, browser logs, registration data, sessions, Web server access
logs and so forth can be automatically generated and stored by Web servers to
perform further analysis such as discover activity patterns, measure the website’s
management and the user behavior. Besides that, Bing Lui mentions in [39] the
issue of pre-processing the correct click stream data to collect the right data for
the later mining. Kosala und Blockeel distinguish Web usage mining from Web
structure and content mining as follows:
“While the Web content and structure mining utilize the real or primary data on
the Web, Web usage mining mines the secondary data derived from the interaction
of the users while interacting with the Web.“ [33, p. 4]

11

2. State of the Art

Since the empirical part of this thesis researches on the content extraction from heteroge-
neous online sources, the following sections focus more on Web content mining.

2.1.3 Subtasks of Web Mining

There are many tasks which are related to Web mining, such as . . . TODO: Quelle. The
following four can be seen as the summarizing and general tasks [33, 19]:

Figure 2.2: Subtasks of Web Mining (based on [33])

1. Resource Finding

In a first step, the data must be retrieved from antecedently selected online sources
such as RSS feeds, email newsletters and content from HTML websites (e.g. blogs,
wikis, . . .). This involves the tasks of identifying useful information, which requires
tools for navigating and searching on websites, as well as reading and indexing to
enable further analysis. This can be accomplished by utilizing Web crawlers.

2. Information Selection and Pre-processing

In this step, information gathered via the retrieving process is selected and pre-
processed automatically which means that some kind of transformation take place.
These transformations could be pre-processing tasks such as removing stop words1,
stemming and identifying phrases in the training corpus to match the desired data
representation. This task is usually performed by content parsers and adaptive
wrappers.

3. Generalization

Typically machine learning or data mining is used to discover general patterns in
the extracted data.

4. Analysis

In the last step, the mined patterns are further assessed to achieve a validation and
interpretation.

1Classification of words can be an important tasks in several applications of data mining. Therefore,
a removal of the most common words (called stop words), such as “the“ and “and“, often takes place to
facilitate the process of identifying the significant parts of documents, since these word do not contribute
useful meaning to the topic. [35]

12

2.1. Web Mining

2.1.4 Challenges of Web Content Mining

The Web offers a nearly unlimited amount of data/information in various types and it is
still growing. This information is created not by one, but millions of people and machines
around the world, which leads to heterogeneity and thereby problems for Web mining on
different levels [39]:

• Redundancy of Web Content
Due to the diverse authorship and the sheer amount of Web pages, the Web is a
place where information is often available redundantly. This means that the same
or similar piece of information may appear in multiple pages, but differs in the way
of expression or wording [12]:

– Same content - different expression
As already indicated above, the Web offers many ways of expressing content,
such as tables, unstructured or semi structured text, multimedia data (e.g.
pictures, videos, audio files, Graphics Interchange Formats (GIFs)) and so
forth [39]. Taking into account this representation heterogeneity of content
(especially multimedia data) can be a tough challenge during various Web
mining tasks [19].

– Same content - different wording
The next issue is closely linked to the previous point. Due to the diverse
authorship of content published on the Web, same or similar information can
be worded in completely different ways. This poses problems, especially when
integrating information from multiple websites in a data model [39]. The
utilization of NLP (see Chapter 3) can remedy the situation to interpret the
context of text by a machine.

• Contrariness of Web Content
Associated with the huge amount of different authorships, multiple websites can
provide information which is slightly or completely contrary to each other. In this
case, a fully automated decision on which sources provide the truthful content can
be a difficult task. [19]

• Impermanence and dynamic of Web Content
Since the Web is a high dynamic place, the information on websites changes
constantly and a guarantee of permanence in terms of content storage is not given
(“sites appear and disappear“ [12, p. 1]), monitoring and keeping up with changes
can be an important issue for various applications of Web mining. [39, 12]

In summary, it can be said that the heterogeneity, redundancy and the contrariness of
content from online sources is caused by the diversity of authorship. These characteristics
make the gathering of useful information from online sources - the overall goal of Web
mining - a tough task. [39, 19].

13

2. State of the Art

2.2 Identification of trustable Online Sources
The identification and selection of credible online sources are crucial steps to gain
meaningful and valid information through a subsequent Web mining (see Section 2.1). An
opinion about the credibility of a website can be formed either manually by a Web user
or automatically by a machine (e.g. search engines). Since the selection of suitable online
sources for the empirical part of this work will be done manually, we just give a brief
overview of the automated evaluation of web pages and will then discuss various quality
factors for online information. The collected information about how the credibility of
online information can be measures, is intended to help in the selection of suitable online
sources. These sources serve as data bases for the prediction of upcoming technology
updates.

2.2.1 Assessment by Search Engines

This chapter is intended to provide an overview of how search engines rank their results.
This is deliberately kept short as the search for suitable sources of information for the
empirical part of this thesis will be done manually.

The main goal of search engines is to find the best web pages that match a search query
and rank them using different factors [40]. There are many search engines worldwide, but
just four share over 98% of the market (see Figure 2.3). Google2 is clear market leader
with 79%. Bing3, a search engine developed by Microsoft, and Baidu4, a search engine
developed for the Chinese market, each possess about 7% market share. The formerly
very popular search engine Yahoo5 currently has only a market share of about 4% [46]).

Figure 2.3: Desktop Search Engine Market Share (Data from [46])
2https://www.google.com
3https://www.bing.com/
4http://www.baidu.com/
5https://www.yahoo.com/

14

https://www.google.com
https://www.bing.com/
http://www.baidu.com/
https://www.yahoo.com/

2.2. Identification of trustable Online Sources

Search Engines aim to find the best results suited to the user’s needs. Therefore, a
ranking algorithm has to be implemented, which is to provide matching search results
on the basis of various factors. These algorithms are based on a retrieval model and are
often not accessible to the public. Part of this retrieval model is usually some kind of
link analysis. Links are not only an important part of the Web, since they connect Web
pages, but also help search engines to understand relationships between websites. [13]

Larry Page and Sergey Brin [6] laid the foundations for the analysis of links and their
quality when they developed the algorithm PageRank at Standford University. Their
algorithm measures the popularity of websites by not only determining links that are
leading to it, but by considering the popularity of the linking websites as well [32].
However, according to Matt Cutts [14], Google’s ranking algorithm comprises nowadays
over 200 signals, and PageRank is just one of them. He divided these signals broadly
into two categories:

• Trust is an assessment on a web page’s authority and reputation.

• Relevance is an assessment on how well a web page matches a particular query and
how topical it is.

He further mentions that the challenge on finding the best results is on the one hand to
show web pages with high reputation and high level of trust, and on the other hand the
web page has to offer the content in regard to the query the user typed in. [14]

In summary, it can be said that a high ranking of a web page may be an indication that
it provides qualitative-appealing content to a given search criteria.

2.2.2 Assessment by Web Users

Various factors can be considered when a user forms an opinion about a web page and
its content. In the previous section, we gave a short overview of how search engines
assess the quality and credibility of websites. In return, this section gives an overview of
various criteria for measuring the quality of websites manually that have been tested in
the course of studies or suggested by previous research activities.

The Technology Acceptance Model (TAM) from Davis [15] is an often cited model which
aims to not only predict the user acceptance of information systems, but explain why a
system may be unacceptable. The model is based on two particular beliefs:

• Perceived usefulness measures the degree, to which a user can increase their perfor-
mance by using a specific information system.

• Perceived ease of use measures the degree, to which a user can operate the system
without problems.

15

2. State of the Art

Jeong and Lambert [29] have tested a framework evaluating the content quality on lodging
websites based on the TAM. Their study suggested that among perceived ease of use and
perceived accessibility, the perceived usefulness and attitudes appeared to be the most
meaningful indicators.

Cao et. al. [7] have developed a conceptional framework for measuring the quality
of e-commerce websites, which is based on the TAM as well (see Figure 2.4). They
measure quality of a website by system quality, service quality, information quality and
attractiveness. However, they admit that this also depends to the website (e.g. social
media, news, web shop, . . .) itself.

Figure 2.4: Framework for evaluating Website Quality (based on [7, p. 648])

Johnson and Misic [30] introduced a metric for benchmarking various websites of schools
and professional organizations. The benchmarking attributes are divided into three
categories: (1) functional/navigation issues, (2) content and style, and (3) contact
information. Among the first category, they mentioned factors, such as ease of finding
the website, navigating throughout the website, ease of returning to the main page and
loading speed. Date of last update, the effective use of color and graphics, the consistency
in color and style and wording are important factors of the second category. The third
category comprises factors, such as offering information about the websites maintainers,
authors of the content and contact information (i.e. phone number and E-mail address).

Mich et. al. [44] developed a model to evaluate the website quality as well. In their work,
the following categories are relevant in regard to the empirical part of this work:

• The category Content should evaluate the value of information and links as well as
the quality of information, its sources and authors.

• The category Location observes factors, such as using intuitive Uniform Resource
Locators (URLs), providing contact information and forcing community building.

16

2.2. Identification of trustable Online Sources

• The category Management should ensure that the information is up-to-date and
the latest change date is evident.

• The category Usability comprises attributes in regard to the accessibility (i.e.
hardware and software requirements and people with disabilities) and navigability
(i.e. the websites structure and download speed).

Ethier et. al. [16] categorize the research on website quality in various groups. One
of them focuses on “functional and navigational issues (speed and ease of navigation),
content and style (currency and presentation), and contact information“ [16, p. 628],
while another focuses on system, information and service quality.

Wathen and Burkell [59] examined the process of how users form an opinion on the
credibility of information on web pages (see Figure 2.5). They proposed a model which
represents the judgment on credibility as an iterative process. After entering a website,
the user makes immediate judgment about the appearance, interface design, download
speed, organization of the website, and so on and questions like Does this web page make
a professional impression? and Is the information quickly and easily accessible? arise.
When these criteria are satisfied, the user moves to the next evaluation level. Otherwise,
he or she will probably leave the page, but this can differ among users. On the second
level of evaluation, the provided information and thereby factors such as trustworthiness,
currency, competence, and level of detail are considered to assess the website’s credibility.
Again, questions arise, such as Is the website providing the information I am looking
for?, Do I believe the presented information? and Can I tailor the information to my
situation?. In a last step, the content evaluation take place which includes task such as
comparing the information to previous knowledge.

Figure 2.5: Model of how User judge the Credibility of Websites (based on [59, p. 144])

17

2. State of the Art

Metzger summarizes in [43] the skills users need to judge on the credibility of online
information, which is also confirmed by up to date academic websites (e.g. [47, 37, 36]).
She described in her literature review the five quality criteria as follows: (1) Accuracy
measures the reliability and the error rate of a website. (2) Authority refers to the people
who authored the content, their credentials, and qualifications, and which person or
organization is providing the website. Whether a website is recommended by a trusted
source can also be included in the evaluation. (3) Objectivity refers to the task of
determining the purpose of the website. In the course of this, the questions should be
examined as to whether the content is a fact or an opinion and whether a commercial
interest exists. (4) Currency should establish whether the provided content is up to date.
And (5) Coverage refers to the task of verifying the comprehensiveness of the website’s
content.

After the analysis of previous work, the conclusion can be drawn that website quality is
first, “an unclear and complex concept that has multiple dimensions“ [16, p. 629] and
second, a concept, which does not have a unified definition [1, 16]. Thus, the above
mentioned criteria of the different authors cannot be considered as generally valid and
applicable to all types of websites and applications, but should be adapted according to
the website itself and the reason for the evaluation.

2.3 Search Engine Analysis
In Section 2.2.1, we have already introduced the various definitions and tasks of search
engines. Furthermore, it was shown that Google dominates the global search engine
market and Bing takes second place in that ranking [46]. In this section, we will first
show that the analysis of search engines can help to predict certain events (see Section
2.3.1). In addition, since Google is - to other knowledge - the only search engine operator
offering an analysis of the trends for the English-speaking region, we will investigated the
analysis capabilities of Google Trends both manually (see Section 2.3.2) and automated
(see Section 2.3.3).

2.3.1 Related Work

Already in 2005, papers were published on the topic of search engine analysis. For
example, Ettredge et. al. showed in [17] the potential of tracking Web searches to predict
the unemployment rate in the United States by the assumption that Web user reveal
their concerns, needs, interest, and so on via their behavior on the Web.

The analysis of search engines was used not only for the prediction of economic statistics
but was also relevant for the medical field. For example, Ginsberg et. al. [20] and
Polgreen et. al. [48] have shown in the field of epidemiology that using Web searches
may help to predict influenza-like illness in a population, since the relative frequency of
certain search queries can correlate with physician visits where a influenza-like symptoms
are diagnosed.

18

2.3. Search Engine Analysis

The financial sector has discovered the potential for analyzing search queries as well, as
the paper of Preis et. al. [50] demonstrates. They have found patterns that may predict
stock market movements based on the changes happen in Google query volumes.

The above examples have shown that by analyzing Web searches, in certain cases a model
for prediction can be created. As far as we know, no paper has been published to show
the capabilities of predicting technology updates by analyzing search engines. This open
research question will be answered in the empirical part of this thesis. Since Google is
the only search engine operator offering an analysis of the trends for the English-speaking
region, the analyzing capabilities of Google are now further investigated.

2.3.2 Analyze Web Searches with Google Trends

As Google is, according to our knowledge, the only search engine operator which allows
an analysis of Web searches for free, this chapter examines the capabilities of this analysis
both directly on the Web and via Application Programming Interface (API).

Google provides an analysis tool that shows the trend towards different topics or search
terms, called Google Trends6. More specific, the number of queries for a search term in
a particular geographic region and time range is divided by the total number of search
queries for the same region and time range. To achieve a meaningful result, the maximum
number of queries in the specified time period is normalized to 100. [9, 22]

The UI is designed simple (see Figure 2.6) and works as follows:

Figure 2.6: Screenshot Google Trends Search Parameters

the user first enters a keyword, which he or she wants to have analyzed. Second, (1)
the location (e.g. worldwide, Austria, Germany, New Zealand, . . .), (2) the time range,
(3) the category (e.g. Autos & Vehicles, Computer & Electronics, Science, . . .), and (4)
the medium (Web Search, Image Search, News Search, Google Shopping and YouTube
Search) can be specified optionally. Furthermore, Google Trends enables a comparison
of multiple keywords and combines the amount of Web searches in one graphic. For

6https://trends.google.com/trends/

19

https://trends.google.com/trends/

2. State of the Art

example, if a user would like to compare the hype about the new software releases of
iOS7 and Android8, he or she can do that as shown in Figure 2.6. The user enters the
keywords “iOS update“ and “Android update“ into the designated fields and select a
worldwide analyzation for the past five years for all categories with medium Web Search.

The output of Google Trend’s analysis can be seen in Figure 2.7. In the course of the
analysis, we added the agenda, the dates on the abscissa, and the notes to the peaks of
both graphs. The word “Note“ on the abscissa near Feb. 2016 is placed by Google and
hints that they have applied improvements to their data collection system on 1.1.2016.

Figure 2.7: Modified Screenshot Google Trends

This graph shows the relative amount of searches for the keyword “iOS update“ (blue
graph) and “Android update“ (red graph). Usually, Apple is releasing their software
update for iOS in September, which correlates with the amount of search queries on
Google (see periodic peaks in September of the blue graph). Android has a similar update
cycle, which means that every year between August and November there is an increase
in search queries as well(see peaks of the red graph). From the comparison of the two
graphs it can be deduced that the interest in iOS updates at the time of the release
is many times higher than that of Android. However, outside of the release time the
interest in Android updates is higher.

In the blue graph, several small peaks can be seen which indicate an increased interest in
an iOS update. This could be a reference to an increased occurrence of rumors, which in

7iOS is a mobile operating system, developed by Apple for their smartphones (iPhone) and tablets
(iPads).

8Android is a mobile operating system developed by Google. It is usually used for touchscreen
devices, such as smartphones and tablets and has often customized interfaces by various manufactures
(e.g. Samsung TouchWiz, HTC Sense, Huawei EMUI, LG UX, Sony Experia UI, . . .).

20

2.3. Search Engine Analysis

turn can indicate an upcoming update. Thus, analyzing the trends in search engines can
support the process of predicting upcoming technology updates.

2.3.3 Automated Access on Google Trends

In the section above, the usage of Google trends via its interface was demonstrated.
This section provides information on how Google Trends can be accessed and used
automatically without using the Web interface. Unfortunately, Google does not provide
an official API9, but the access via a GET request10 is possible. If we would like to
request the same example as above (searching for the terms “iOS Update“ and “Android
update“ worldwide in the past 5 years for all categories in the medium Web Search, the
following GET request is created:

www.trends.google.com/trends/explore?date=today %205-y&q=iOS%20
update ,Android %20 update

The GET request contains the parameter date with value today 5-y for the past 5 years
and the parameter q with value iOS update,Android update for the search query. The
parameter for the geographic region “Worldwide“, the category “All categories“ and the
medium “Web Search“ are not represented in the request, since these are default values.
In contrast to this, the search for the keywords “WatchOS update“ and “Android Wear
update“ in the past 90 days for the region “United Staes“, the category “Computers &
Electronics“ and the medium “Youtube search“ looks as follows:

www.trends.google.com/trends/explore?cat=5& date=today %203-m&geo=
US&gprop=youtube&q=WatchOS %20update ,Android %20 Wear %20 update

In addition to the parameters described above, the parameter “cat“ with value “5“ for the
category “Computers & Electronics“ and the parameter “gprop“ with value “youtube“
for the medium were added.

Besides the GET request, a few unofficial APIs are available, all of which provide similar
access to the functionality of Google Trends:

Patrick Trasborg has developed the google-trends-api11, which provides an API layer to
Google trend’s data. It is part of the npm12 project and therefore developed in JavaScript.
It offers various methods, such as interestOverTime to retrieve the numbers of search
queries relative to the highest point on the chart for the given geographic region and time
period; interrestByRegion to get the regions where the search term was most popular for

9APIs enable other operating systems or applications to access functionality via a predefined request
by providing an (documented) interface. [55]

10GET is one of the two Hypertext Transfer Protocol (HTTP) request methods (the other is POST)
and is designed to request data from a specified resource (e.g. URL of a Web server). [58]

11https://www.npmjs.com/package/google-trends-api
12npm is a package manager for JavaScript and is used by the open-source JavaScript runtime

environment NodeJS by default.

21

https://www.npmjs.com/package/google-trends-api

2. State of the Art

the given time period and relatedQueries to get the queries searched by Users who also
searched for the defined query. [57]

John Hugue is providing a API for accessing Google Trend as well, called pytrends. The
API is developed in Python and allows an automated download of reports. The main
feature is the login script to Google. [23]

Marco Tizzoni has developed a Java based solution for accessing Google Trend, which
provides classes to authenticate to Google’s services, parsing the Character-separated
Values (CSV) Files requested from Google Trends and supporting Proxy configuration to
avoid Google’s query limits. [56]

In summary, it can be said that the automated access to Google Trends is limited to a
few unofficial APIs and the possibility that Google Trends accept GET requests with
easily adjustable parameter structure. The empirical part of this work will show the
extent to which these analytical possibilities contribute to the prediction of technology
releases.

22

CHAPTER 3
Concepts of Text Analysis with

NLP

In the previous chapter, we looked at various aspects of information retrieval from
heterogeneous online sources and therefore have presented Web Mining as a central
anchor point of information acquisition. We further investigated the process of how
credible and relevant information sources can be assessed and how capable search engine
analysis is for predicting certain events. All these points provide us raw data, which must
be further processed under certain aspects in order to generate knowledge.

In this context, we investigate NLP, which is intended to help the processing of the
extracted information and to further support the prediction of technology updates.
Therefore, we first give an overview about common definitions and characteristics of NLP
(see Section 3.1) found during the literature review and compare it against each other.
In Section 3.2, we show the different level of analysis which can be performed by NLP
tools and where they reach their limits. Various application areas of NLP are presented
in Section 3.3. The last Section of this chapter investigates four major tools in linguistic
analysis (see Section 3.4):

• Sentence delimiters and tokenzizers (3.4.1)

• Stemming/lemmatizing and tagging (3.4.2)

• Noun phrase and name recognizers (3.4.3)

• Parsers and grammars (3.4.4)

23

3. Concepts of Text Analysis with NLP

3.1 Definition and Characteristics
NLP aims to analyze and convert human language, such as English, German, or Greek, into
a more formal representation (e.g. first order logic, parse trees, etc.). This should enable
computers to perform specific language interpretation tasks easier. Kumar describes
it further on a meta level as “the scientific study of languages from computational
perspective.“ [34, p. 1]. James F. Allen focuses in his definition more on the NLP pipeline.
He assumes a computer system, which takes text, spoken language or keyboard input as
input to analyze, understand or produce language. This should be done to fulfil task,
such as building a knowledge database, generating summaries, translating into another
language or maintaining a dialog with a user [2].

Figure 3.1: NLP System Pipeline (based on [34, p. 10])

An all-embracing definition of NLP including its various characteristics is provided by
Elisabeth Liddy:

“Natural Language Processing is a theoretically motivated range of computational tech-
niques for analyzing and representing naturally occurring texts at one or more levels of
linguistic analysis for the purpose of achieving human-like language processing for a range
of tasks or applications.“ [38, p. 2]

Based on the definitions introduced above, the following characteristics of NLP can be
derived [38, p. 2]:

• The text phrase “range of computational techniques“ is intended to show that there
are various methods and techniques for analyzing language.

• By “naturally occurring texts“ is meant that the text must be spoken or written
and is formulated in a language, understandable to people.

• NLP can be performed on different levels of language processing (see Section 3.2),
which is revealed by “levels of linguistic analysis“.

• Since human performance is desired with NLP (“human-like language processing“),
it can be seen as a discipline of Artificial Intelligence (AI).

24

3.2. Levels of NLP

In addition to the characteristics of NLP, Kumar notes in [34] two different NLP
systems: a natural language generation system, which is able to convert information
stored in a database into human readable language and a natural language understanding
system, which is capable of converting human language into a more formal representation
interpretable by a machine. However, many NLP tasks require both generating and
understanding.

3.2 Levels of NLP
The analysis of NLP is divided into several parts, such as phonological, morphological,
lexical, syntactical, semantic, discourse and pragmatic analysis. The aim of this section
is to introduce these analysis levels. Further, it is shown, which tasks can be performed
by NLP systems easily and where they reach their limits. The following list comprises
these tasks in more detail [34, 38]:

Figure 3.2: Levels of NLP

• Phonological Analysis
Phonology is the science which deals with the analysis of the spoken language. In
particular, acoustic waveforms are taken as input and after processing, a string of
words is outputted. It is usually used for recognizing and generating speech. Since
the prototype of this thesis is only analyzing text from the Web (and no audio),
this level is not dealt with further.

25

3. Concepts of Text Analysis with NLP

• Morphological Analysis
Morphology is one of the most important components of NLP and deals with
the analysis of words. A word can be decomposed into its components, called
morphemes. They represent the smallest meaningful units of a language elements
and if it forms the essential part of the word, it is also called stem. In English, for
example, a morphological analysis might look as follows:

Word: Search –> stem “search“
Word: Magnetize –> stem “magnet“, suffix “ize“
Word: Depersonalize –> prefix “de“, stem “person“, suffix “al“, “ize“

Table 3.1: Morphological Analysis of Words (based on [34, p. 17])

This morphological analysis allows people to divide unknown words into their parts
in order to understand them. An NLP system makes use of exactly the same process
to gain meaning about a word (e.g. adding the suffix -ed to a verb, indicates that
the action has taken place in the past).

• Lexical Analysis
In this stage, validity of words is checked with the help of a lexicon/dictionary,
which is a collection of all valid words of a language. The process is as follows: Each
word of a sentence is scanned and analyzed by looking up at a predefined dictionary.
After the word was found in the dictionary, all relevant linguistic information is
gained, such as the type of the word. For example, a lexical analysis of the word
“run“ may point out that it is a verb.

• Syntactical Analysis
In this phase, the sentences underlying grammatical structure is analyzed to unveil
the relationship between the containing words. For this process, both a grammar
and a parser are required. The grammar provides information about the formal
requirements of a language, while the parses analyzes the sentence based on this
grammar. Since the order and dependency of word influence the meaning of a
sentence in most languages, the syntax contributes to understand a sentence. An
example on how a parser works is presented in Section 3.4.4. According to Ela
Kumar, Context Free Grammar (CFG) is the most common choice for syntactical
analysis and is also called phrase structure grammar or definite clause grammar
[34].
CFG is a formal grammar and consists of non-terminals, terminals, a starting
symbol and a set of production rules, which dictate how a valid string should look
in the specified language. Non-terminals are symbols, which can be replaced by
non-terminal as well as terminal symbols with the help of the grammar’s production
rules. Although they can occur on both left and right-hand side of production rules,
they are not part of the resulting formal language and thereby must be replaced by

26

3.2. Levels of NLP

terminal symbols. Terminal symbols are elementary elements of a formal language,
which may replace non-terminal symbols by applying certain production rules and
cannot be further replaced. [34]

• Semantic Analysis
This phase of natural language analysis tries to determine the possible meanings of
a sentence. This is done by not only considering the word itself but its meaning
in regard to the sentence and thereby the corpus. For example, the noun “nail“
describes both a part of a finger and a sharp piece of a particular material (e.g.
metal) which can be used for construction purposes. If information from the rest
of the sentence is required to clearly identify the meaning of a word, the semantic
and not the syntactic analysis must be used. There are different approaches to
accomplish a semantic analysis, as mentioned by Liddy:
“A wide range of methods can be implemented to accomplish the disambiguation,
some which require information as to the frequency with which each sense occurs in
a particular corpus of interest, or in general usage, some which require consideration
of the local context, and others which utilize pragmatic knowledge of the domain of
the document.“ [38, p. 8-9]

• Discourse Analysis
The aim of discourse analysis is to understand the meaning of the author by not
only looking at a single sentence but understanding the properties of a text. This
should form connections between sentences and, for example, enable the system to
match pronouns to the entities they refer. For example, the sentence “The teacher
points at the student to let her answer the question“ suggests that the student
has raised her arm in order to answer the teacher’s question. Understanding this
context can be a tough tasks for NLP systems.

• Pragmatic Analysis
In this phase, a relationship between language and context of use is established.
Therefore, a NLP system must be capable of identifying references to people and
things, which is a complex task and required pragmatic or world knowledge. For
example, in the following two sentences, it is necessary to ask a kind of knowledge
base to determine the correct referencing of the word they (based on [38, p. 9]):
Two teachers honour a group of pupils as they appreciate their performance
Two teachers honour a group of pupils as they performed outstanding at a contest.
These two examples are intended to show that the understanding of a sentence can
be a complex task for a system, although it is usually easy for a human being. [38]

27

3. Concepts of Text Analysis with NLP

3.3 Application Area

Since NLP deals with the processing of natural language in written or oral form, there is a
very broad and cross-sectoral application area, such as machine translation, Cross-Lingual
Information Retrieval (CLIR), AI, and speech recognition [10]. However, the application
areas of NLP can be categorized according to the following characteristics [27]:

Reproduce vs. transform. NLP systems of the category Reproduction are mainly used
for reproducing or reinstating linguistic phenomenon, whereas systems of the category
Transformation are specialized in the translation of texts into another representation
form.

Recognize vs. generate. NLP system can also be divided into recognizing and
generating applications. On the one hand, Recognition unites application areas, which
focus on recognizing or analyzing linguistic inputs. On the other hand, systems of the
category Generation are concerned with generating or synthesize linguistic output.

Figure 3.3: NLP Applications (based on [28])

However, applications are not always attributable to just one of the four dimensions. For
example, while machine translation first performs recognition in the source language to
create the base for generating it into the target language, document categorization and

28

3.4. Tools in Linguistic Analysis

clustering requires first a recognition of content types before generating the clusters of
categories. [27]

Thus, applications can also be a mixture of two or more categories. In line with the
above-described categorizations of the application areas of NLP, a graphic is given, which
lists examples for the respective categories:

For example, the aim of Information Extraction (IE) is to extract certain elements
of information, such as names, locations, dates and so forth, by finding, tagging and
extracting these elements in a text. Another example is Question Answering systems,
which provides appropriate answers to user queries. These answers are selected by
processing the user queries. A higher-value application is the summarization, where NLP
systems try to short a text automatically without losing substantial content. [38]

3.4 Tools in Linguistic Analysis
In Section 3.2, we already discussed the possible phases in which a NLP system can
operate. In this section, various methods are presented together with examples to explain
the different functions of linguistic analysis in more detail.

Linguistic analysis is one of the basic instruments of NLP systems and is usually proceeded
in layered fashion. This means that a document is first subdivided into paragraphs, the
paragraphs subsequently into sentences and these sentences into individual words, which
are then further processed according to the application [27]. The following tools can be
used to enable the above-described processing of text:

3.4.1 Sentence Delimiters and Tokenizers

Before the analysis of texts can begin, they have to be divided into sentences. Detecting
the beginning and the end of a sentence is the task of a Sentence delimiter. The
identification of a sentence can be more difficult than initially assumed, since the symbol
for the end of a sentence “.“ can also be used for other purposes, such as “M.Sc.“, “Mag.“,
“Dr.“ and so on. Further, a sentence can also be ended by “?“, “!“. The same applies to
the beginning of sentences, since words which are not at the beginning of a sentence can
be capitalized as well. Therefore, various mechanisms can be applied to make a correct
decision, such as regular expressions1. [27, 3]

Tokenizers have a similar task to sentence delimiters. They are used to decompose a
stream of characters into meaningful units called token. Again, the task of a tokenizer
seems to be simple, since only a separation by spaces must take place. However, this
does not apply to all languages (e.g. words in Chinese or Japanese are note separated
by spaces). Furthermore, tokenizers may have to fulfil even more complex tasks. For
example, processing dates (e.g. “2017-09-29 13:00“ vs. “13h 29.9.2017“), monetary
amounts (e.g. “e10.33“ vs. “10.33“), or composed words, as they are used in German

1Regular Expression are used to identify specific strings in a text by using a pattern. [8]

29

3. Concepts of Text Analysis with NLP

(e.g. “ Straßenverkehrsordnung“), may represent a difficult task [27]. However, the
processing of noun compounds (e.g. people’s names or city names), can be an even more
complex task. For example, the geographic locations “New York“, “New Zealand“ or
“St.Veit an der Glan“, are difficult to process due to the division by spaces and points.
Improvements can be achieved by applying name recognizers (see Section 3.4.3). [3]

3.4.2 Stemming/Lemmatizing and Tagging

Stemmers are used to perform a morphological analysis of a word, which is described
under Section 3.2. The goal at stemming is to find the root form of a word (e.g. grow
is the root form of grew, grown, growing, and - of course - grow). This can be done by
either considering a dictionary/lexicon to look up for a word’s stem which is somewhat
expensive, or applying a heuristic stemmer, which removes certain pre- or suffixes to
discover the root form (e.g. removing “-ed“,“-ing“,“-ness“). The first variant is commonly
referred to as lemmatizing, the second one to as stemming. Furthermore, stemmer could
be used to decompose compounded terms. For example, “Straßenverkehrsordnung“ might
be stemmed into “ Straße#Verkehr#Ordnung“, so the parts of the compounds can be
further analyzed. [27, 42, 3]

Part-of-speech (POS) taggers are responsible for the assignment of suitable tags (e.g.
noun, verb, or adjective) to words and are therefore based on tokenizers and sentence
delimiters. For example, if we would like to tag the sentence “Visiting grand parents
can be exhausting“, we are not able to tag the word “Visiting“ correctly, since the given
information from the example is not sufficient (it can be tagged either as adjective or
verb). In order to tag the word properly, the context of the word has to be considered.
This can be done by either considering some rules, such as “If an unknown term is
preceded by a determiner and followed by a noun, it is to be marked as a verb“ [27, p.
15], or following a stochastic approach, which relies on training with a data set and is
then based on frequency information or probabilities. [27, 3]

3.4.3 Noun Phrase and Name Recognizers

The main goal of noun phrase extractors is to identify base noun phrases and - if available
- its left modifiers (i.e. adjectives and delimiters on the left side of the noun). Name
finders go one step further and try to assign the identified nouns to a class, such as places,
companies, people, and so forth [27]. Applying such a name finder to the sentence,

“The Sony Centre from Berlin was bought by the real estate company Centre Oxford
Properties and the investment company Madison International Realty for 1.1 billion
dollars last month.“

may lead to the following tagging:

30

3.4. Tools in Linguistic Analysis

Word Tag
Sony Center Place
Berlin Place
Centre Oxford Properties Company
Madison International Realty Company
1.1 billion dollars Amount of money
last month Date

Table 3.2: Tagging Words by a Name Finder (based on [27, p. 16])

The sentence offers a challenge for the name finder, since the word “Oxford“ of the
company name “Centre Oxford Properties“ also represents a city in England. In order to
avoid groping in this case, a name finder must eliminate some degree of intelligence. [27]

3.4.4 Parsers and Grammars

The task of parsers is to scan a sentence and make checks in regard to syntactical and
semantic analysis. This is done by the help of a grammar, which basically defines how
well-formed sentence are structured by parts of speech [27]. For example, a sentence’s
structure can be shown in a tree representation:

Figure 3.4: Example of a parser application (based on [34, 28])

The sentence is first divided into noun and verb phrase. These two phrases can be further
split into article, adjective and noun for the noun phrase and verb and adverb for the verb
phrase. This analysis can be helpful in determining whether a sentence corresponds to
the underlying grammatical rules. Furthermore, semantic analysis can also be proceeded
in order to learn more about the content. [34, 28]

31

CHAPTER 4
Design of Models for detecting

Technology Updates

In order to answer the research questions of this thesis sufficiently, we need on the one
hand a data pool and on the other hand analysis approaches to transform these data
into knowledge. To collect and process the data, we needed to develop a prototype (see
Section 4. This prototype is based on three generic models, which are introduced in the
following sections.

First, we give an overview about how the proposed process of predicting technology
updates looks like by introducing the Process Model for Technology Update Detection
(see Section 4.1). Afterwards, we show how heterogeneous data sources are categorized in
the Categorization Model for Online Data Sources (see Section 4.2) to collect information
about technologies. This information is processed by the Decision Model for Technology
Update Notification (see Section 4.3), which analyzes the previously extracted data and
checks, whether enough information about an upcoming technology release was found.

4.1 Process Model for Technology Update Detection
In this section, we sketch the developed process of finding information about upcoming
technology releases. Therefore, we describe the various subtasks in detail to give an
understanding about how complex each step is and where a domain expert is still
necessary.

Figure 4.1 gives an overview about the release prediction process, which can roughly be
divided into two main tasks. First, the domain expert has to set up the system by (1)
defining a technology and associated keywords, (2) identifying trustable online sources
and developing data extraction methods, and (3) configuring the data export. The second
main task consists of data mining and analysis which is done by the system.

33

4. Design of Models for detecting Technology Updates

Figure 4.1: Process Model for Technology Update Detection

The following list comprises the subtasks of the process described in more detail:

34

4.1. Process Model for Technology Update Detection

1. Define Keywords
Before the search for suitable online sources can start, the domain experts has to
create a keyword list (Define Technology related Keywords). These keywords are
used in the next step to discover appropriate online sources. For example, if the
system should predict an upcoming release of a new Microsoft Windows or Apple
iOS version, the keywords might be defined as follows:

Technology Microsoft Windows Apple iOS

Keywords

Microsoft Windows
Windows
Windows 11
Win

Apple iOS
iOS
iOS 12
iPhone

Table 4.1: Example of Keyword List

However, the focus during the selection of suitable keywords should be placed on
the quality of keywords rather than the quantity.

2. Identify trustable Online Sources
After the domain expert has defined the keywords, he or she has to search for
trustable online sources, which are later harvest to receive release information.
The selection process should consider quality and credibility aspects, which were
introduced in Section 2.2. The output of this step is a list of selected online data
sources.

3. Implement Data Extraction Methods
For each data source, the domain expert or a programmer has to develop the data
extraction methods in order to gain data automatically. The complexity of this
task highly depends on the selected data sources.

4. Configure Data Export
In the last step of the setup process, the domain expert has to configure the various
aspects of the system, including how often the system should extract data. After
this step, the system is configured properly and is ready to gain data.

5. Mine identified Data Sources automatically
After the setup process is finished, the system uses the developed data extraction
methods to gain information from the various online sources. Again, the duration
of this task depends on the selected data sources but should be much faster than
performing the data extraction manually. The output of this task is the extracted
information saved in the database.

35

4. Design of Models for detecting Technology Updates

6. Decide, whether relevant Information was detected
In this step, the system analyzes the extracted data by using the Decision Model for
Technology Update Notification (see Section 4.3). The four inputs - (1) extracted
text phrases, (2) number of search requests (3) number of search results and (4)
release information from online encyclopedias - are building the basis for calculating
the Release Prediction Indicator.
Before the calculation of the indicator starts, the system checks for updates on
the online encyclopedia pages and RSS feeds/Twitter accounts, which are labeled
as release channel. If one of these sources indicates a new software release, the
system informs the domain expert directly. If that is not the case, the decision
model processes the obtained data and decides, whether the extracted information
contains a relevant indication for an upcoming technology release. Is that the case,
again the system informs the domain expert (see step 8). If the extracted data
does not indicate an upcoming technology release, the system has to obtain more
information from other online sources (see step 7).

7. Wait for new Information
If the calculated indicator of the previous step has shown that there is still no
indication of an (upcoming) technology release, the system waits until new informa-
tion is provided by the online sources. If new information is available, the system
continues at step 5 by extracting data.

8. Inform Domain Expert
In contrast to the previous step, the system informs the domain expert about a
possible technology update, if the calculation of the Release Prediction Indicator
has passed a certain threshold. The domain expert has to decide, whether the
information found actually indicates an upcoming technology release. If this is the
case, the domain expert accepts the result and the process reaches its final stage -
a new technology update was found (New Technology Release discovered). If the
indicator incorrectly implied a technology release, the update warning gets rejected
and the confidence level of the data source has to be adjusted (see next step).

9. Adjust Confidence Level of Data Source
If the domain expert denied the update warning, the system adjusts the confidence
level of the data source. In more detail, at the beginning of the data extraction
process the system assigns each data source an initial confidence level. For trustable
online sources, like online encyclopedias or RSS feeds, which are hosted from a
manufacture and just posts about new releases, the confidence level is fixed. For
other data sources, like social media platforms or technology news, the system
assigns a midrange value and over time, the confidence level gets adjusted according
to the feedback of the domain expert. On the one hand, if the information published
by the data source is valid, the confidence level rises. On the other hand, if the
data source published an incorrect information, the confidence level decreases. This

36

4.2. Categorization Model for Online Data Sources

mechanism should filter dubious and not trustworthy data sources to improve the
overall accuracy of the information presented to the domain expert.

4.2 Categorization Model for Online Data Sources
This section gives an overview about the selected heterogeneous data sources from which
data was gained from in order to find information about (upcoming) technology releases.
This information builds the basis for an in depth data source analysis.
The mined online sources can roughly be divided into four categories: (1) Technology
News, which includes conservative online sources, (2) Social Media, which represents a
more dynamic environment, (3) Online Encyclopedias, which provide concrete release
information and (4) Search Engine, which provides information about the number of
search results as well as the number of search requests to find trends. Figure 4.2 is a
visual representation of the Categorization Model. In the following list, each category is
described in more details:

Figure 4.2: Categorization Model for Online Data Sources

Technology News. The Internet contains thousands of websites that report on technolo-
gies. We take advantage of this and mine selected Internet sources to obtain information
of previously defined technologies. For the development of this prototype, we focus on
two types of technology news sources: email newsletters and RSS feeds. Companies use
email newsletters to inform their customers and business partners as well as interested
persons about their activities, services and products. As email newsletters, RSS feeds
are another method for spreading information.

37

4. Design of Models for detecting Technology Updates

Social Media. Since more and more companies refrain from sending newsletters, but
relying on communication via social media platforms, we decided to extract information
from Twitter1. Twitter is a social media platform founded in 2006 [26]. It allows its users
to publish messages called Tweets, which are restricted to 280 characters2. To collect
Tweets, we have created a Twitter account and subscribed to those Twitter accounts that
eventually will publish release information about technologies chosen for the evaluation.

Online Encyclopedias. Our third category for retrieving release information is online
encyclopedias. We decided to extract data from Wikipedia, since this platform offers
release information uniformly. Thus, we do not have to implement individual data
extraction methods for different data sources.

Search Engine. We have shown in Section 2.3 that with the help of analyzing search
behaviour, a model of prediction can be created in certain cases. We further investigated
the capabilities of Google Trends to analyze these behaviours (see Sections 2.3.3 and
2.3.2), since Google is - to our knowledge - the only search engine operator which provides
such extensive analysis options. With the help of Google Trends and Google Search, we
focused on two indicators:

• The first indicator is the Number of Search Requests. We obtain the total number
of search requests for predefined keywords on a daily basis from Google Trends. An
increase of keyword related search requests indicates that interest in the technology
is rising. This can be due to various events, some of which may point to a
technology update, such as a company announcing a product release, rumours
about a technology update occured in the press, and so on.

• We further obtain the Number of Search Results, which represents the second search
engine indicator. Assuming that the number of Web sites reporting an update
may indicate an upcoming technology release, the total number of search results
delivered from Google Search is obtained too.

4.3 Decision Model for Technology Update Notification

This section shed light on how the collected data from heterogeneous data sources
are processed in order to find information about new releases and how the system
decides, whether enough information was found to send a warning message to the domain
expert. Before the process of calculating the release indicator can start, each configured
data sources is checked for new information. To distinguish data sources based on
their credibility and quality, each data source receives an initial confidence level. This
confidence level may change over time. Changes are applied whenever information from
a data source is presented to the domain expert and he or she decides whether the

1https://twitter.com/
2Before November 7, 2017, Tweets were restricted to 140 characters. [51]

38

https://twitter.com/

4.3. Decision Model for Technology Update Notification

information is valid. After the extraction of new information is done, the system is able
to process the workflow of calculating the release indicator.

After the release indicator was calculated, the system decides, whether enough information
about an (upcoming) technology release was collected to inform the domain expert. If
this is the case, all findings for a specific technology are summarized in a warning message.
This message will be sent to the domain expert and he or she decides, whether the
warning was justifiable. If this is not the case, the system has to collect more data and
then go through the analysis workflow again. The process of calculating the release
indicator is performed for every keyword and is roughly divided into three parts (see
Figure 4.3).

Figure 4.3: Decision Model for Technology Update Notification

39

4. Design of Models for detecting Technology Updates

4.3.1 Analysis of Data Sources with high Confidence Level

First, the system analyzes information extracted from data sources with a high confidence
level. In our system, there are three types of data sources, which receives a confidence
level of 100%: (1) Release information extracted from Wikipedia, (2) RSS feeds, which
only exists for publishing new release notes, and (3) Twitter accounts, which also just
publish tweets about new technology releases. Whenever one of the mentioned data
sources publishes new information, the domain expert is informed directly. Since the
system just monitors for changes in this analysis step, the analysis is not based on a
specific data processing approach but was developed by ourselves.

4.3.2 Analysis of Search Engine Data

In a second step, data extracted from the search engine Google are analyzed. The
extracted data are time series, which is why the system analyzes the data by several
statistical approaches. On the one hand, the goal is to find out, if there is a correlation
between the search engine user’s behaviour and a particular technology release (i.e.
number of search requests). On the other hand, an increasing amount of reports about a
technology might indicates the announcement or release of a new update (i.e. number of
search results).

The analysis of the number of search results is quite simple, since there is just one value
per extraction from Google Search. Our assumption is that a distinct increase in the
number of search results in compare to the previously extracted values may indicate a
technology release.

The analysis of the number of search requests, which are gained from Google Trends as
a CSV file, is more complex, since we gain 90 data points per data extraction and the
data points are normalized. Due to the complexity of this data analysis, we discuss the
process in more detail:

Google provides trend data from the behaviour of their search engine users via Google
Trends. The extracted data are time series, for which a custom start and end date can
be configured. The obtained measuring points are normalized with 100. Thus, the day
with the highest number of search request is represented by 100 and the day with the
lowest number of search requests is represented by 0.

To achieve a human like detection of trends in the Google Trends data, we decided to use
several statistical parameters in the analysis process of the number of search requests,
which are listed below:

• Moving Average

The first analysis step is based on the concept of the moving average. The moving
average represent the average of the past n data points. It is calculated by adding
all values from the selected data pool and then dividing the sum by the number of

40

4.3. Decision Model for Technology Update Notification

values. This process is then repeated with a different data pool and the resulting
averages are compared against each other.
Since Google Trends offers normalized data, we adjusted the process of the moving
average as follows: we first calculate the average of all data points per data extraction
and second, try to detect a trend while comparing the calculated averages.
For example, if we have extracted the CSV file from Google Trends (which contains
the amount of search requests for the past 90 days normalized by 100) for a
specific keyword for the past 30 days, we end up with 30 averages and each average
represents 90 values. We then analyze the trend of the averages over the extracted
time period. If the average decreases from one day to the next day over 15 percent,
a noticeable increase of search requests are detected. This is the case, since an
increase of search requests relativizes values from the days before.

• Standard Deviation
The standard deviation is analyzed with the same procedure but aims at a different
goal. Since the Google Trend data for keywords from the technology area often
have a high standard deviation, the occurrence of a higher demand for a technology
leads into a new maximum, relativizes the values from the days before and shrinks
the standard deviation.

• Total Number of Jumps
In addition to the moving average and the standard deviation, we further analyze
the number of jumps that are present for each data extraction. Again, if the
prototype detects a significant decrease in the number of jumps from previously
extracted time series, an update warning is created. This method was developed by
ourselves, since the moving average and the standard deviation were to sensible on
time series from uncommon technologies. We discuss this problem further under
6.4.3 and 6.4.5.

4.3.3 Analysis of Data Sources with lower Confidence Level

This step in the analysis process is dedicated to analyze information gathered from
data sources with lower confidence level. These data sources are either emails, RSS
feeds or twitter accounts. The extracted information is text written in natural language.
Therefore, the analysis is done by NLP, which is further described in Section 5.4. The
goal is to find sentences that actually report about a technology release.

41

CHAPTER 5
Prototype Architecture and

Design

In this chapter, we document various aspects of the implementation work of this thesis,
which have been done in order to implement the three generic models introduced in
Chapter 4.

Therefore, we first describe the system’s architecture and technology stack (see Section
5.1), which both building the basis of the development process. We then describe the
structure of the database by explaining the purpose of the entities and their relationships
using an entity relationship model (see Section 5.2), which represents both the structure
of the database and the model classes.

Second, we document the implementation of the various data extraction methods for
the different data sources defined in the Online Source Data Model (see Section 4.2) in
Section 5.3.

Third, due to the complexity of analyzing the natural language data extracted from email
newsletters, RSS feeds and Twitter posts, we describe the implementation of the NLP
pipeline as well as the main challenges occurred during the development process of the
NLP tasks in Section 5.4.

5.1 System Architecture
In this section, we describe both the system architecture and the technology stack of the
developed prototype.

Before we started implementing the prototype, we had to choose the programming
language for the backend. From the three developed models, we derived a list of tasks
which had to be developed and integrated in the prototype. After a comprehensive

43

5. Prototype Architecture and Design

market research, we found supporting Java libraries for all tasks, which is why we have
selected Java as a base for the prototype.

In order to achieve a quick implementation of the basic functionalities, we used jHipster1

to set up the Web application. jHipster allows developers to generate, develop and deploy
a web application. The database structure can be configured in the JDL Studio2, which
outputs a model in form of a JDL file. This model is not only used to generate the
database structure but creates the code for CRUD3 functionalities for both the frontend
and backend. When creating a web application with jHipster, you will be guided through
a step-by-step tutorial, which allows for project specific adjustments. After applying the
JDL file to the web application, the basic structure of the web application is set up.

The system architecture together with parts of the technology stack is sketched in Figure
5.1 and can roughly be divided into three areas: frontend, backend and the database
server.

The implementation of the frontend was done in Angular 4 and was designed with
bootstrap. Yarn4 was used for frontend dependency management.

The backend is developed in Java 8 and is a Spring Boot5 application. The Maven6

configuration handles the build, test and run of the application. The communication to
the backend is handled by the controller classes, which are able to receive and answer
to Representational State Transfer (REST) calls. The communication to the database
is handled by Spring Data JPA7 repositories. The service layer is not only responsible
for forwarding requests from the controllers to the persistence layer and vice versa, but
extracts data from various heterogeneous data sources. The extraction methods for each
data source are different and are described under Section 5.3 in detail. The backend
is secured by Spring security8, which supports both authentication and authorization,
protects against attacks and is integrated with Spring Web MVC. Spring Web MVC is
used in this project to provide RESTful web services.

We choose PostgreSQL9 as a database server because it can be used commercially for
free and still provides all the functionalities required for this project. The database runs
in a docker container, which allows independency between the infrastructure and the
application. In Section 5.2, we describe the entities of the database in more detail.

1http://www.jhipster.tech/
2https://start.jhipster.tech/jdl-studio/
3CRUD is a acronyms for Create Read Update Delete and described the basic interactions with the

persistence layer.
4https://yarnpkg.com/
5https://projects.spring.io/spring-boot/
6https://maven.apache.org/
7http://projects.spring.io/spring-data-jpa/
8http://projects.spring.io/spring-security/
9https://www.postgresql.org/

44

http://www.jhipster.tech/
https://start.jhipster.tech/jdl-studio/
https://yarnpkg.com/
https://projects.spring.io/spring-boot/
https://maven.apache.org/
http://projects.spring.io/spring-data-jpa/
http://projects.spring.io/spring-security/
https://www.postgresql.org/

5.2. Database

Figure 5.1: System Architecture

5.2 Database
The entity relationship model shown in Figure 5.2 represents both the structure of the
database and the model classes. At the beginning of each software prediction process, the
domain expert has to define a technology he or she would like to observe. The selected
technology is then saved in the entity Technology.

After that, for each technology the domain expert has to define Keywords which might
represent the name or version number of the next release. The keywords should be defined
carefully, since the their quality can have an impact on the results of the prediction
process.

Since the prototype is capable of sending emails in case of discovering a technology
release, the user can create a list of Contacts and link them to certain technologies.

For the setup process, the user further has to define the different types of data sources:

• Email
The prototype receives emails from a predefined email address once a day and saves
them in the entity Email. If an email has already been received from the same
sender, the sender is already stored in the entity EmailSender and the email will
be linked to the entry. If no email was previously received by the sender, a new
entry will be created in the entity EmailSender.

45

5. Prototype Architecture and Design

• RSS Feed

In the entity RSSFeed, the name and the URL of the RSS feeds to be observed are
configured. On a daily basis, the prototype checks the RSS feeds for new entries
and saves them in the entity RSSFeedEntry. The domain expert is also capable of
marking a RSS feed as release channel, if it just announces new technology releases
for a specific technology.

• Twitter

A predefined Twitter account is used to subscribe to other Twitter accounts which
might post about a new technology release and is saved in the entity TwitterAccount.
The related Twitter accounts are visited once a day to extract the new Tweets. New
tweets are saved in the entity Tweet and are linked to the according TwitterAccount
entity. Twitter accounts can be tagged as release channel as well (see description of
entity RSS Feed).

• Wikipedia

The domain expert further defines Wikipedia pages, which offer release information,
including “Latest release“ and “Preview release“, and are linked to a Technology.
This information is saved in the entity WikiData. Every time the release information
is updated, the new release version is saved in the entity WikiDataExtraction.

The keywords further refer to the NumberOfSearchResults, which is extracted directly
from Google Search and the NumberOfSearchRequests, which is gained from Google
Trends. Both the number of search results and the number of search requests are
extracted on a daily basis.

If the analysis process of the prototype detects relevant information, a warning is created
and saved in the entity UpdateWarning. The update warnings are further analyzed
by a process, which consider the reason why the warning was created. If the update
prediction process of the Decision Model for Technology Update Detection discovers a new
technology release, all related update warnings are bundled in the entity WarningMessage
and emails will be sent to contacts which relate to the technology.

The entity ConfidenceLevel saves the level of trustworthiness of an online source (types
are saved in EntityType. Each data source receives an initial confidence level, which may
get adjusted by the feedback of the domain expert.

The enum ProcessStatus is used to show the status of an extracted RSSFeedsEntry, Tweet
or Email. The status may change over time and depends on whether the data source
contains information relevant to a new technology release.

The enum UpdateWarningStatus indicates the status of the entity UpdateWarning.

46

5.2. Database

Figure 5.2: Database Model

47

5. Prototype Architecture and Design

5.3 Data Extraction Methods

In the course of the development of the prototype different data extraction methods were
implemented to gather information. In this section, we present these methods by listing
code snippets showing the use of the data extraction technologies.

5.3.1 Email

The emails are received from the email server via POP310. The code of the Java
implementation is shown in Listing 5.1. First, the properties for the email server have to
be defined. Second, a Session with these properties and a Store object for connecting to
the server is created. Third, a Folder object from the Store is created to open the inbox
in read-only mode. Finally, new emails are received and stored in the database.

Properties properties = new Properties ();
properties.put("mail.pop3.host", emailHostValue);
properties.put("mail.pop3.port", "995");
properties.put("mail.pop3.ssl.enable", "true");
// Set property values for session
Session session = Session.getDefaultInstance(properties);
// Create POP3 store object and connect with the server
Store store = session.getStore("pop3s");
store.connect(emailHostValue , emailAddress , emailPassword);
// Create folder object and open it in read -only mode
Folder folder = store.getFolder("INBOX");
folder.open(Folder.READ_ONLY);
for(Message message : folder.getMessages ()){

// Check whether Email content is plain text or html
String messageContent = processMessageContent(message);
Email email = new ...
emailService.save(email);

}
folder.close(false);
store.close();

Listing 5.1: Receiving Emails from a Mail Server via POP3

Before the email content can be saved in the database, it has to be treated separately
(see Listing 5.1, call of method processMessageContent(...)), because emails can contain
parts with different content types. The Listing 5.2 shows that the content of a message
from type text/plain or text/html can be extracted without further processing. If the
message content is from type multipart, the content must be cast to MultiPart and then
each part can be extracted separately.

10Post Office Protocol version 3 (POP3) is an internet protocol to retrieve E-mails from a server.

48

5.3. Data Extraction Methods

private String processEmailContent(Message message){
String messageContent = "";
String type = message.getContentType ();
if (type.contains("multipart")) {

Multipart multiPart = (Multipart) message.getContent ();
for (int i = 0; i < multiPart.getCount (); i++) {

MimeBodyPart part = (MimeBodyPart)
multiPart.getBodyPart(i);

messageContent =
Jsoup.parse(part.getContent ().toString ()).text();

}
}else if (type.contains("text/plain") ||

type.contains("text/html")) {
Object content = message.getContent ();
messageContent =

Jsoup.parse(content.toString ()).text();
}
return messageContent;

}

Listing 5.2: Process Email content based on Content Type

5.3.2 RSS Feed

The extraction of RSS feeds is implemented with the help of the Java framework ROME.
The ROME framework is able to parse various types of syndication feeds, which is used
to process the RSS feeds. First, the URL of the feeds is specified and then the feed’s
content can be read by using the SyndFeedInput class. Before a new entry is created in
the database, it is checked whether the entry already exists. This procedure is represented
by the Listing below:
rssFeedService.findAll ().forEach(rssFeed -> {

URL feedSource = new URL(rssFeed.getUrl ());
SyndFeedInput input = new SyndFeedInput ();
SyndFeed feed = input.build(new XmlReader(feedSource));
feed.getEntries ().forEach(syndEntry -> {

if(rssFeedEntryService.findByUri(syndEntry.getUri ())
== null){
RSSFeedEntry rssFeedEntry = new ...
rssFeedEntryService.save(rssFeedEntry);

}
});

});

Listing 5.3: Iterate through RSS Feeds to find new Entries

49

5. Prototype Architecture and Design

5.3.3 Twitter

Twitter offers an API11 to access its functionalities and content. We used the unofficial
Java library Twitter4J12 to handle the communication between Twitter and the prototype,
because it offers both extracting the friend list and receiving Tweets. We have created
a Twitter account in order to collect data for the evaluation part of this thesis. We
subscribed to other Twitter accounts which publish content about technologies. Before
the Twitter API can be used, an app must be created at the Twitter developer console13.
After the app was successfully created, Twitter offers an individual consumer key, a
consumer secret, an access token and an access token secret to handle the communication
with its API. The following Listing shows the creation of an object of the class Twitter,
which used the four parameters mentioned before:
ConfigurationBuilder cb = new ConfigurationBuilder ();
cb.setDebugEnabled(true)

.setOAuthConsumerKey(consumerKey)

.setOAuthConsumerSecret(consumerSecret)

.setOAuthAccessToken(accessToken)

.setOAuthAccessTokenSecret(accessTokenSecret);
TwitterFactory tf = new TwitterFactory(cb.build());
Twitter twitter = tf.getInstance ();

Listing 5.4: Create an Object of Class Twitter

In order to receive Tweets from the subscribed Twitter accounts, the prototype claims the
friend list. Since the Twitter API only allows a maximum response length of 20 entries,
a PagableResponseList and a Courser are used to load additional results. This is done
by the following code snippet:
List <User > userCollection = new ArrayList <User >();
PagableResponseList <User > users =

twitter.getFriendsList(accountID , -1);
do{

long courser = users.getNextCursor ();
for(User user : users){

userCollection.add(user);
}
users = twitter.getFriendsList(accountID , courser);

}while(users != null && users.size() != 0);

Listing 5.5: Get Friend List for a Twitter Account

The resulting friend list is then investigated to find new Tweets. Therefore, the system
checks, whether the friend is already saved as an entry in the database. After that,

11https://developer.twitter.com/en/docs/api-reference-index
12https://github.com/yusuke/twitter4j
13https://apps.twitter.com/

50

https://developer.twitter.com/en/docs/api-reference-index
https://github.com/yusuke/twitter4j
https://apps.twitter.com/

5.3. Data Extraction Methods

the account’s HomeTimeLine is claimed, which contains the latest 20 Tweets. The
HomeTimeLine is then iterated and new Tweets are stored in the database, as can be
seen in the Listing below:
users.forEach(user -> {

TwitterAccount twitterAccount =
twitterAccountService.findByAccountID(user.getId());

if(twitterAccount == null)
twitterAccount = new ...

twitter.getUserTimeline(user.getId()).forEach(status -> {
Tweet tweet = new ...
tweetService.save(tweet);

});
});

Listing 5.6: Receive all Tweets from an User List

5.3.4 Wikipedia

The extraction of release information from Wikipedia starts by receiving the technology
related Wikipedia page via a BufferedReader. This BufferedReader reads the content by
using an InputStream, created from an URLConnection. The page is then scanned line
by line, until the defined release information is found. The information is then trimmed
from unnecessary information by the method extractReleaseInformation(...) and saved in
the variable releaseInformation. The described procedure is shown in the listing below:
URL url = new URL(wikiData.getUrl ());
InputStream is = url.openConnection ().getInputStream ();
BufferedReader br = new BufferedReader(new

InputStreamReader(is));

String line = null;
String releaseInformation = "";
while ((line = br.readLine ()) != null) {

if (line.contains(wikiData.getName ())){
releaseInformation = extractReleaseInformation(br);
break;

}
}

Listing 5.7: Extract Release Information from Wikipedia

When the current release version was found, it is compared with the one previously
extracted. If the comparison shows a delta, it will be saved in the database and an
UpdateWarning will be created.

51

5. Prototype Architecture and Design

5.3.5 Number of Search Results

The extraction of the number of search results from Google Search was implemented
with the help of the Java library Jsoup. Jsoup enables the download of Web pages
by entering the URL and UserAgent. After the document is extracted via the Jsoup
framework, the value is extracted from the div which contains the number of search
results. Since the value contains additional information (e.g. „About 15.200.000 results
(0,35 seconds)“), the extracted text has to be trimmed to receive the actual number by
calling the method extractNumberFromElement(...). This number is then saved in the
database. Since Google checks, whether requests are sent from an system automatically14,
after each iteration the prototype waits randomly between 25 and 100 seconds to prevent
being tagged as an automated service by Google. The described procedure of extracting
the number of search results from Google Search is listed below:

List <Keyword > keywords = keywordService.findAll ();
keywords.forEach(keyword -> {

String url = "https ://www.google.com/"+
"search?q=\""+keyword.getName ()+"\"";

Document document = Jsoup
.connect(url)
.userAgent (...)
.get();

Element element =
document.select("div#resultStats").first();

Long number = extractNumberFromElement(element);
NumberOfSearchResults nsr = new ...
numberOfSearchResultsService.save(nsr);
waitRandomly ();

});

Listing 5.8: Receive the Number of Search Results from Google Search

5.3.6 Number of Search Requests

The information about the number of search requests are received from Google Trends,
which functionalities are discussed in Section 2.3.2. Since Google Trends does not provide
an API for extracting the normalized number of search requests, the prototype uses
Selenium15 to download the CSV file. The procedure works as follows: before the
prototype is able to open the browser, the WebDriver must be set. Then, for each
keyword selenium opens the browser and visits the URL. The URL contains the search
parameters and looks as follows:

https://trends.google.com/trends/explore?date=today%{}203-m&q=keyword

14https://support.google.com/websearch/answer/86640?hl=en
15http://www.seleniumhq.org/

52

https://trends.google.com/trends/explore?date=today%{}203-m&q=keyword
https://support.google.com/websearch/answer/86640?hl=en
http://www.seleniumhq.org/

5.4. Application of NLP

The first GET parameter date has the value today 3-m which means that the CSV
file should contain the numbers of search requests for the last 3 months. The second
parameter q contains the keyword.

After the site is loaded, the button for downloading the CSV file is clicked by selenium.
The downloaded file is then processed by the method importCSVData. This method
saves the numbers of search requests per day in the database. Again, the prototype waits
randomly to avoid getting marked as automated service by Google. The following listings
shows the selenium tasks:

System.setProperty("webdriver.chrome.driver", path);
WebDriver driver = new ChromeDriver ();
keywords.forEach(keyword -> {

driver.get(keyword.getURLGoogleTrend ());
// wait for the line chart div
WebElement element = (new WebDriverWait(driver , 30)).

until(ExpectedConditions.elementToBeClickable(
By.cssSelector("div.fe-line -chart -header -title")));

// select csv download button and click it
driver.findElement(

By.cssSelector("button.widget -actions -item.export")).click();
// wait until the download has finished
Thread.sleep (15000);
importCSVData(keyword , ZonedDateTime.now());
waitRandomly ();

});
driver.quit();

Listing 5.9: Receive the Number of Search Requests from Google Trends

5.4 Application of NLP
In the previous section (see 5.3), we described, among other things, how the system
extracts information from email newsletters, RSS feeds and Twitter posts. These three
data sources have in common that they provide information in the form of natural
language. In order to find information about an (upcoming) technology release in natural
language, NLP is used to perform automated processing and analysis. In this section, we
describe the three-stage NLP pipeline, which is designed to detect technology releases.

Before we started implementing the NLP pipeline, we thoroughly analyzed the extracted
texts. The goal was to find as many variations as possible of how to communicate
(upcoming) technology releases. The NLP pipeline resulting from the formulations is
split into three stages. First, the prototype splits texts into sentences (see Task 1 in
Section 5.4.1). Second, these sentences are analyzed by regular expression (see Task 2.1
in Section 5.4.2). In Task 2.2, the sentences are analyzed by using certain NLP tools (see

53

5. Prototype Architecture and Design

Section 5.4.3). In a third stage, the prototype tries to match the found release messages
to certain keywords. If a keyword is detected in one of the release messages, an update
warning will be created. Figure 5.3 illustrates the NLP pipeline:

Figure 5.3: NLP Pipeline

Due to the complexity of the tasks 1, 2.1 and 2.2, we describe them further in the
following sections.

5.4.1 Task 1: Split Texts into Sentences

The basis for the analysis via NLP are the texts extracted from the data sources email,
RSS feeds and Twitter. These data sources often do not provide individual sentences,
but longer texts. In order to analyze these texts to find potential release messages, we -
in a first step - split them into single sentences. The theoretical part of this work has

54

5.4. Application of NLP

already shown that a division into sentences sounds trivial, but is not easy to implement
(see Section 3.4.1). This task was especially difficult due to the domain and the selected
data sources. We have split the sentence delimiting into four subtasks:

1. First, the prototype removes special characters, such as emojis, no-break spaces16

or zero width spaces17, since both regular expressions and NLP tools cannot gain
further information from them.

2. Second, the prototype splits the texts by identifying URLs.

3. Third, the prototype detects sentences by punctuation characters (i.e. “.“, “?“, “!“).

4. Finally, the prototype tries to detect sentences, which do not end with a punctuation
character.

To fulfil all these steps, we had to implement an own sentence delimiter, since the one
from Apache OpenNLP was not capable of handling the context specific exceptions.
The following list comprises the main challenges we had to face while implementing the
sentence delimiter:

• Detecting URLs
We tried using URL detectors from various sources but ended up implementing
our own one which suits the context of the thesis. The prototype detects URLs by
using the following regular expression:
(http[s]?:[/][/]) ?(www [.])?[a-z,A-Z,0-9,-,\\.]+[.]
(-- various domains --){1 ,2}[^ ,;]*

Listing 5.10: Regular Expression for detecting URLs

This regular expression is capable of detecting URLs, which may start with the
protocol (i.e. http and https) and/or www, having a valid domain name, end with a
top level domain (such as .com, .org, .at, and so forth) and might contain a further
path, which does not contain a space, comma or semicolon.

• Handling Version Numbers
The sentence delimiter from Apache OpenNLP splits texts by punctuation charac-
ters, no matter in which context they appear. This is a problem in the context of
this thesis, since one of the goals is to identify sentences which reports an (upcoming)
release and they probably contain a version number as well. Version numbers differ
from technology to technology, but often contain a full stop (e.g. NodeJS 9.10.1,
PostgreSQL 10.4, Perl 5.27.11 or Python 3.7.0b5). Thus, the sentence delimiter
checks, in which context the full stop is used to prevent splitting texts in between
version numbers.

16Unicode no-break space: U+00A0
17Unicode for zero width space: U+200B

55

5. Prototype Architecture and Design

• Detecting Sentences without a Punctuation Character
During the analysis of the extracted texts we found that sentences often do not
end with a punctuation character. To illustrate this problem, Figure 5.4 shows a
screenshot from a newsletter we have received during the evaluation process. The
email reports on the release of a beta version of iOS 12.

Figure 5.4: Screenshot: Email Newsletter OS X Daily from 5.6.2018

The prototype receives this email (see Section 5.3) and saves it in the database.
Unfortunately, nowadays emails are often formatted in HTML, which can make
the extraction of the pure text a difficult task.
As can be seen in the screenshot, the headline of the article says “Download iOS 12
Beta 1 Now“, which indicates the release of a new beta version of Apple’s operating
system and is therefore very interesting for our investigation. However, since the
headline does not end with a punctuation character, it is merged with the text
below and we end up with “Download iOS 12 Beta 1 Now Posted: 04 Jun 2018
...“. To capture this and similar cases (e.g. “Read more“, “View this“, or “Click
here“), we have developed regular expressions that are capable of handling these
issues and split the extracted texts accordingly.

5.4.2 Task 2.1: Find Release Messages by Regular Expressions

After the texts has been delimited into sentences, the prototype searches for release
phrases by making use of various regular expressions. Task 2.1 is split into 3 subtasks:

1. First, the prototype applies three regular expressions to find release messages. If a
sentences matches to one of them, it is marked as potential release message.

2. In a second step, the prototype excludes potential release messages, if they con-
tain certain keywords. This exclusion process is again done by matching regular
expressions containing keywords, such as “weekly newsletter“, “podcast“, “book“
or “sponsor“.

3. In a final step, the remaining sentences are examined for technologies. If one of the
technologies to be monitored is in one of the release messages, an update warning
is generated.

56

5.4. Application of NLP

In the following listing, we explain the regular expressions from the first subtask in more
detail:

• Regular Expression 1: Version Number + Release Phrase
The first regular expression looks up for sentences, which on the one hand contain
a version number (e.g. 4.0.7), and on the other hand contain some kind of release
phrase (e.g. “is out“, “is here“, “is available, “has been released“, etc.), which is
behind the version number. Table 5.1 comprises a list of release messages extracted
from Twitter, which fulfil the restrictions of the first regular expression:

Date Username Tweet
31.07.2017 @rails Rails 5.0.5 is out!
03.08.2017 @php.net PHP 7.2.0 Beta 2 released.
09.01.2018 @PythonInsider Python 3.7.0a4 is available for testing
21.03.2018 @java Today #java 10 will be released!
19.04.2018 @MySQL MySQL 8.0 GA is here!
26.04.2018 @fedora Fedora 28 will be released on May 1st, hit-

ting its original scheduled release (...)
09.05.2018 @springcentral Spring Cloud Data Flow 1.5 RC1 released!
04.06.2018 @Linux_Mint Linux Mint 19 Tara MATE – BETA Re-

lease

Table 5.1: Tweets captured by Regular Expression 1

• Regular Expression 2: Release Phrase + Version Number
The second regular expression looks up again for a version number. But, in contrast
to the first regular expression, here the release phrase has to be in front of the
version number. Table 5.2 shows Tweets which are matching the described pattern:

Date Username Tweet
06.07.2018 @official_php Next in today’s set of releases: #PHP

7.1.7.
05.02.2018 @IBMZ Get all the details on the new release of

z/OS Connect EE V3.0.5
27.02.2018 @springcentral We are pleased to announce the release of

#SpringCloudDataFlow 1.4.0.M1.
27.04.2018 @angular We’ve just released AngularJS 1.7.0-rc.0.
05.05.2018 @postgresql (...) guidance to upcoming releases, such

as PostgreSQL 11 Beta 1:
31.05.2018 @java New #Gradle Releases Version 4.7 with

#Java10 runtime support

Table 5.2: Tweets captured by Regular Expression 2

57

5. Prototype Architecture and Design

• Regular Expression 3: Release Phrase
In contrast to the regular expressions introduced before, the third one focuses
more on the different types of release phrases, rather than finding concrete version
information. Table 5.3 comprises a list of Tweets, which are fulfilling the pattern
matching the third regular expression.

Date Username Tweet
20.02.2018 @IBMcloud For the first time ever, @SQLServer is now

available on #Linux operating systems.
23.02.2018 @springcentral New Spring for Apache Kafka and Spring

Integration Kafka releases are available.
28.02.2018 @AndroidDev In the next release of Android, we plan to

improve user and developer (...)
21.03.2018 @nodejs Happy @nodejs Current Release Day
29.03.2018 @SQLServer We are excited to announce the March re-

lease of #SQL Operations Studio is now
available.

11.04.2018 @ubuntu With only two weeks to go until Ubuntu
18.04, here are the latest updates (...)

Table 5.3: Tweets captured by Regular Expression 3

5.4.3 Task 2.2: Find Release Messages by NLP Tools

After the texts have been split into sentences and the sentences have been analyzed by
regular expressions, the prototype then uses certain NLP tools to detect further release
messages.

Before we started implementing the NLP tasks with certain NLP tools, we had to
choose a NLP system that met our needs and was easy to integrate into the prototype.
The following systems were shortlisted: GATE18, The Standford CoreNLP19, Natural
Processing Toolkit (NLTK)20 and Apache OpenNLP21.

We decided to implement the NLP tasks with Apache OpenNLP, because this system
offers all features we need for our investigation. Furthermore, it can be easily integrated
via Maven into a Java backend. The following list comprises the used NLP tools, which
functionality is demonstrated by applying them to this example sentence: “Apache
Tomcat 8.5.23 has been released“22.

18https://gate.ac.uk/
19https://stanfordnlp.github.io/CoreNLP/
20https://www.nltk.org/
21https://opennlp.apache.org/
22Tweet from Twitter user @TheApacheTomcat on 03.10.2017

58

https://gate.ac.uk/
https://stanfordnlp.github.io/CoreNLP/
https://www.nltk.org/
https://opennlp.apache.org/

5.4. Application of NLP

• Tokenizer
The tokenizer was used to separate the sentences into single words. For our
purpose, the SimpleTokenizer, offered by Apache OpenNLP, has been applied. It
separates character streams by whitespaces. Furthermore, punctuation characters
are separated from the last word of a sentence, which is a bonus.
The first column of Table 5.4 shows the tokens, after applying the SimpleTokenizer
to the example sentence. For more information about how tokenizers work, see
Section 3.4.1.

• POS Tagger
After tokenizing the sentences into words, the POS tagger then assigns suitable
tags23 according to the type of the word (e.g. noun, verbs, or articles) to the
words. The second column of Table 5.4 shows the tags assigned to the tokens of the
example sentence. For more information about how POS taggers work, see Section
3.4.2.

• Lemmatizer
In a last step, the lemmatizer analysis the tokens together with its assigned POS
tags to find the root form of the words (e.g. “release“ is the root form of “released“).
The third column of Table 5.4 shows the results of the lemmatizer. If the lemmatizer
is not able to find a suiting root form of a word, it returns “0“. For more information
about lemmatizing sentences, see Section 3.4.2.

Token Tag Lemmatize
apache RB (Adverb) 0
tomcat RB (Adverb) 0
8 CD (Cardinal number) 0
. . 0
5 CD (Cardinal number) 0
. . 0
23 CD (Cardinal number) 0
has VBZ (Verb, 3rd person singular present) have
been VBN (Verb, past participle) be
released VBN(Verb, past participle) release

Table 5.4: Apache OpenNLP: Tokenizer, Part-of-Speech Tagger and Lemmatizer

The above listing describes the application of the tokenizer, POS tagger and lemmatizer.
The implementation in Java by using Apache OpenNLP looks as follows:

23A list of tags can be found under http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_
treebank_pos.html (visited on 16.06.2018)

59

http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

5. Prototype Architecture and Design

// initialize Tokenizers
SimpleTokenizer st = SimpleTokenizer.INSTANCE;
// initialize Part -of-Speech Tagger
POSModel pm = new POSModel(is);
POSTaggerME pt = new POSTaggerME(pm);
// initialize Lemmatizer
DictionaryLemmatizer dl = new DictionaryLemmatizer(is);

// 1. step: Tokenize sentence
String [] tokens = st.tokenize(sentence);
// 2. step: Tagging tokens
String [] posTags = pt.tag(tokens);
// 3. step: Lemmatize tokens together with tags
String [] lemmatizedTokens = dl.lemmatize(tokens , posTags);

Listing 5.11: Applying NLP Tools from Apache OpenNLP

Before we apply the several NLP tools to a sentence, we had to initialize the tokenizer,
POS tagger and lemmatizer. We can then apply the tools to the sentence, which we
already described in the bullet list above.

60

CHAPTER 6
Data Source Discussion

In the previous chapters, we introduced the design and the implementation of the
prototype in detail. Particularly important here were the three models, namely (1) the
Process Model for Technology Update Detection (see Section 4.1), (2) the Categorization
Model for Online Data Sources (see Section 4.2), and (3) the Decision Model for Technology
Update Notification (see Section 4.3), which build the prototype’s basis. To answer the
question of whether automated detection of technology releases (in advance) is possible
by harvesting online sources, in this chapter we will discuss the evaluation of the data
sources.

In order to evaluate the prototype sufficiently, we first discuss the findings related to the
data sources from the Categorization Model. More specific, the evaluation of the data
source Technology News and Social Media are discuss together under one Section 6.1,
since both are analyzed by NLP. The data source Online Encyclopedia is investigated in
Section 6.2. The last data source, Search Engine Data, is split into two sections. Under
Section 6.3, we discuss the extraction of the number of search results from Google Search.
Section 6.4 shows the various statistical functions which were implemented to analyze
the number of search requests extracted from Google Trends.

6.1 Data Source: Technology News and Social Media
(NLP)

In this section, we are going to evaluate the data source Technology News, which is
represented by email newsletters and RSS feeds, and Social Media, which is represented
by Twitter. These two data sources are combined under one evaluation process, since
both are offering data in form of natural language and therefore were analyzed by NLP.

Therefore, we first discuss the NLP pipeline (see Section 6.1.1) in two ways: (1) Qualitative
by showing the weaknesses of both analyzing sentences via regular expressions and NLP

61

6. Data Source Discussion

tools. In more detail, we point out the limitations of both approaches by evaluating the
false positive and false negative diagnoses. (2) Quantitative by comparing the number
of found release messages and the accuracy of both approaches. In a second step, we
investigate the three data sources (email newsletters, RSS feeds and Twitter) to point
out their advantages and disadvantages (see Section 6.1.2).

6.1.1 Compare Regular Expression against NLP Tools

In Section 5.4, we described the two types of NLP processing developed (regular expres-
sions and NLP tools) together with examples for actual release messages found by each
approach. In this section, we compare the NLP analysis via regular expressions against
the analysis via NLP tools to show, which approach leads into a more accurate result set
of release relevant messages.

Regular Expression

The analysis process via regular expressions focuses not on finding individual release
related words, but on concrete release phrases. Before the regular expressions can be
applied, the prototype splits the texts in single sentences. After that, three different
regular expressions for three types of communicating an (upcoming) release are used to
identify release messages.

The first regular expression searches for release messages, which contain a concrete version
number (e.g. “5.0.1“) followed by a release phrase (e.g. “has been released“, “is here“,
etc.). The second regular expression searches for a version number and a release phrase
too. However, in this case the release phrase has to be in front of the version number
(e.g. “announcing the release of ...“). The third regular expression investigates for release
messages, which do not contain a version number but some kind of release phrase.

In Section 5.4.2, we already mentioned some examples of Tweets which were found by
applying the regular expressions and are actual release messages. For that reason, we
now focus more on the weaknesses of applying regular expressions by analyzing the false
positive and false negative analyses.

Although the prototype is looking for concrete release phrases, there may be false positive
diagnoses due to the fact that formulations about releases can be used in another context
as well. Table 6.1 comprises examples of sentences which the prototype has assigned a
false positive diagnose while using regular expressions.

The first example contains the release phrase “is now available“, which was used to
communicate the release of a security guide. The second example uses the release phrase
“to announce that our next“ to report about a meetup and the Tweet in the third row
reported about a nearly published episode by using the release phrase “is out“. The
forth Tweet reported about a release of the operating system Debian by using the release
phrase “was released“. Unfortunately, it did not report about an update released a few
days ago but in 1996, which is why it should not be marked as a release message relevant
to the current time.

62

6.1. Data Source: Technology News and Social Media (NLP)

Date Username Tweet
21.02.2018 @SUSE A comprehensive #security guide for #SAPHANA is

now available (...)
12.06.2018 @angular We are excited to announce that our next meetup will

be on June 27th
13.02.2018 @RedHatNews Episode 4 of Command Line Heroes is out (...)
28.03.2018 @debian Debian 1.2 (Codename Rex) was released in 1996.

Table 6.1: Tweets found by Regular Expressions with False Positive Diagnose

In contrast to the Tweets from Table 6.1, a similar formulation can also be used for
actual release messages. Table 6.2 comprises a list of Tweets which used the same or
similar release phrases as the Tweets from Table 6.1, but are actual release messages:

Date Username Tweet
04.04.2018 @RedHatNews Fedora 28 Beta is now available.
12.03.2018 @springcentral We are pleased to announce the release of #Spring-

CloudDataFlow 1.4.0.RC1.
20.12.2017 @gradle Gradle 4.4.1 is out.
08.06.2018 @fedora The 4.17 Linux kernel was released earlier this week.

Table 6.2: Tweets found by Regular Expressions with True Positive Diagnose

The first Tweet of Table 6.2 reported about the release of a new beta of the operating
system Fedora by using the release phrase “is now available“. The second example shows
the use of the release phrase “to announce the release“ for reporting about a new version
of a Spring product. The third Tweet stated that a new version of Gradle has been
released, which was done by using the release phrase “is out“. And the last example
communicated an update to the Linux kernel by using the release phrase “was released“.

In addition to the false positive diagnoses, regular expressions may also apply a false
negative diagnose, due to special cases or unusual formulations. Table 6.3 comprises a list
of Tweets, which were not marked as release messages by the use of regular expressions,
but are actual containing information about a release:

The first example was not detected as release message, since the word release is not
separated from the version number and the second part of the sentence uses the phrase
“we are giving“, which is quite unusual and not part of one of the regular expressions.
The second example reported about an upcoming release of Apache Lucene, but the
keyword for the release phrase was packed into other words (i.e.“Multi-Release-JAR“) and
therefore not detected by the regular expressions. And the third false negative example
was not detected by the regular expressions, since the Tweet just containes the word
“release“, but not a release phrase.

63

6. Data Source Discussion

Date Username Tweet
02.03.2018 @springcentral On the heels of Spring Boot 2.0.0.RELEASE we are

giving you @SpringCloud Stream 2.0.0.RC2.
09.02.2018 @java Apache #Lucene 7.3 will use the Multi-Release-JAR

feature (...)
21.05.2018 @plantepostgres Andrew Dunstan: PostgreSQL Buildfarm Client Re-

lease 8 (...)

Table 6.3: Tweets found by Regular Expressions with False Negative Diagnose

From the Tweets of the Tables 6.1 and 6.2 we can conclude that the same or similar
release phrases can be used for both reporting about an actual release and communicating
about a subject not related to a technology release, which may lead into false positive
diagnoses. Furthermore, from Table 6.3 we can conclude that information about releases
may be communicated in various formulations. Covering most of the different types
of these formulations is associated with constant extensions. However, each extension
has the potential of increasing the number of false positive diagnoses, which should be
considered too.

NLP Tools

The investigation via NLP tools focuses more on concrete occurrences of release related
words, rather than release phrases. After the extracted texts are split into single sentences,
the prototype prepares the search for release related words by tokenizing, tagging and
lemmatizing the sentences. The output of these tasks is a sentence split into words,
and for each word, the root form together with its tag (e.g. adverb (RB), verb in
past participle (VBN), etc.) was computed (see Section 5.4.3 for an example). Since
the prototype should detect information about an (upcoming) technology release, it
then searches for specific verbs, such as “update“, “release“, “publish“, “announce“ and
“available“, as well as nouns, such as “update“, “release“ and “version“ in their root form.

Similar to the analysis via regular expressions, analyzing sentences which may contain
release messages can lead to the same problems: false positive and false negative diagnoses.

In contrast to the analysis per regular expressions, the NLP tools just analysis one word
and its root form. This leads into a situation where the context, in which the release
word is used, may differ from a release message. Table 6.4 comprises a list of Tweets,
which are detected by the application of NLP tools, but do not report about a release:

The first example was detected by the prototype, since it contains the word “announced“.
However, the tweet did not report about an upcoming SAP release but reported about
financial results. The second example contains the release keyword “updated“. This
keyword was not used in the context of announcing a new release, but communicating an
edit of a collection of applications for Ubuntu. The last example was detected by the
prototype, since the sentence contains the word “update“. Unfortunately, the keyword

64

6.1. Data Source: Technology News and Social Media (NLP)

was not related to the technology, but to a video which reports about localization and
internationalization for two projects.

Date Username Tweet
30.01.2018 @sapnews SAP today announced preliminary financial results for

the fourth quarter and full-year 2017:
02.03.2018 @ubuntu It’s Friday, so we’ve updated the Featured Applications

& Editor’s Picks in #Ubuntu Software
16.04.2018 @nodejs 3-minute update on the internationalization and local-

ization of the @electronjs and @nodejs projects.

Table 6.4: Tweets found by applying NLP Tools with False Positive Diagnosis

In addition to that, using NLP tools for finding release messages by just one word can
lead into false negative diagnoses too. Table 6.5 shows some examples, which were not
detected by the NLP tools, but actually containing release relevant information:

Date Username Tweet
14.02.2018 @springcentral Spring Cloud Task 2.0.0.M3 is out!
11.03.2018 @RedHatNews #RedHat Satellite 6.3 & #RedHat #CloudForms 4.6

are here.
08.06.2018 @MySQL My slides for my talk: “OMG MySQL 8.0 is out!“

Table 6.5: Tweets not captured by applying NLP Tools

The first example of Table 6.5 reported about an update for Spring Cloud Task, which
was communicated by the release phrase “is out“. Since the NLP tools just search for
single words related to the release context, this type of release phrase cannot be detected
by the developed NLP pipeline. Both the second Tweet, which communicated an update
of two systems from RedHat and the third Tweet, which indirectly reported about a new
version of MySQL, haven’t been detected for the same reasons mentioned before.

The approach of analyzing single words of sentences via NLP Tools to find release
messages faces the same problem as the approach of regular expressions: words which
communicate a release are not just reserved for this context, which can lead to false
positive diagnoses as mentioned in Table 6.4. Furthermore, since the developed NLP
pipeline just analyzes single words, releases phrases, such as “is out“ or “are here“, cannot
be detected.

From analyzing the Tweets found by the NLP tools we conclude that this approach can
detect release messages. But, on the one hand, release related keywords are used in
another contexts, which can result in a false positive diagnose. On the other hand, false
negative diagnoses are possible as well, since the NLP tools just analyze single words.

65

6. Data Source Discussion

Evaluation of the extracted Texts

After comparing the two approaches in a qualitative way by analyzing their limitations
and weaknesses, we continue the comparison in a quantitative way by analyzing their
found release messages.

In order to compare the two approaches, we collected 22002 Tweets from 61 Twitter
accounts between January and June 2018. The extracted 22002 Tweets were split into
42.490 individual sentences by the developed sentence delimiter. From these 42.490
sentences, 746 contain information about an (upcoming) release.

Table 6.6 summarizes the application of the two approaches. In the first row, we
compare the number of messages which were marked as release messages by the respective
approaches. The analysis via regular expressions has marked 988 sentences as release
message, the analysis via NLP tools has marked 1709.

From the 988 sentences detected by the first approach, 722 are actually reporting about
a release, which leads to a false positive rate of 27 % (266 false positive diagnosis from
988 sentences marked as release message) and a false negative rate of 3 % (24 of 746
actual release messages were not detected).

From the 1709 sentences detected by the second approach, 704 are actually release
messages, which leads to a false positive rate of 59% (1005 false positive diagnosis from
1709 sentences marked as release message) and a false negative rate of 6% (44 of 746
actual release messages were not detected).

Approach 1:
Regular
Expression

Approach 2:
NLP Tools

#Release Messages found 988 1709
#Actual Release Messages 722 704
False Positive 266 1005
False Negative 24 44

Table 6.6: Compare Regular Expressions and NLP Tools

In summary, it can be said that by the application of NLP, release messages can be
detected. However, a 100% accurate result cannot be achieved, since both concrete
release phrases and just single release related words can be used in other contexts as well.
Our evaluation has shown that with the help of regular expressions, the prototype was
capable of finding 96.7% of the actual release messages, while the approach of NLP tools
lead to a success rate of 94.3%. A much larger difference has been found in the evaluation
of the false positive rate: the analysis via regular expressions has a false positive rate of
27%, whereas the analysis via NLP tools of 59%.

66

6.1. Data Source: Technology News and Social Media (NLP)

6.1.2 Appropriateness of the NLP Data Sources

In this section, we compare the extracted information from those data sources of the
Categorization Model (see Section 4.2) which offer data in natural language. For each data
source, we analyze the simplicity of extracting the information, as well as its timeliness
and quality. During the evaluation phase of this thesis, the prototype extracted data in
form of natural language from the following three data sources:

• Email
Receiving data via email for further text processing was easy to implement (see
Section 5.3.1). Listing 5.1 shows, how emails can be received via POP3 by a Java
application. However, processing emails which do not consists of plain text, but
rather complex HTML and JavaScript content, is more difficult and described in
Listing 5.2. In contrast to social media platforms, emails come with the advantage
that the number of accesses and data extractions from the inbox is not limited.
Another advantage of email newsletters is that they are still widespread and
sometimes specialized in one technology. This can lead to very detailed reports
of news in the area of a single technology. However, this advantage comes with a
disadvantage: since there is no limitation in terms of text length, the key messages of
an article can by distributed over various sentences or even worst paragraphs, which
makes the automatic text processing and especially understanding the relations
between sentences a difficult task.
With the nearly unlimited length of texts in an email newsletter comes another
disadvantage: as described in Section 5.4.1, emails can be formatted in a way that
they contain a list of articles, where each element consists of a headline, a short
description of the article, a link to the website and some meta information (e.g.
see Figure 5.4). This can cause a problem, since headlines and other text blocks
may not end with a punctuation character. However, the implementation of a
good sentence delimiter provides the basis for efficient and accurate text processing,
which is why the described circumstance makes the implementation of a sentence
delimiter for splitting texts into single sentences a tough task.

• RSS Feeds
Just like email newsletters, extracting RSS feed entries is easy to implement. In
Section 5.3.2 we have shown, how the prototype extracts entries from RSS feeds by
the help of the Java framework ROME. And as before, there are no limitations in
regard of the accessibility and the amount of extractions from a RSS feed.
Since RSS feeds are offered in XML, they are better structured than emails and
therefore do not have the problem of implementing an accurate sentence delimiter.
Furthermore, there are RSS feeds which are just used for communicating new
releases, such as https://www.postgresql.org/versions.rss. This can make the
process of detecting a new release an easy task. However, they are also not limited

67

https://www.postgresql.org/versions.rss

6. Data Source Discussion

in terms of text length, which can lead to a distributed key message over multiple
sentences and thus, the understanding of the key message via automatic text
processing a complicated task.
RSS feeds come with another disadvantages: for an accurate evaluation of the
prototype, we searched for RSS feeds for 68 products from 40 manufactures. But
we were not able to find more than 18 RSS feeds which reported about the products
of these 40 manufactures. It seems that manufactures focus more on email and
newer communication media, such as social media platforms, rather than RSS feeds.
Furthermore, the found RSS feeds mostly report about established manufacturers,
such as Oracle, Microsoft or RedHat (for a full list, see Attachment A.2), and not
about newer technologies.

• Twitter
Twitter was chosen to represent the category social media. Before we could start
with the implementation of the data extraction, we had to create a Twitter account
and unlock it for data extraction via an API by creating an app at the Twitter
developer console. The implementation of the data extraction method was quite
easy thanks to the API Twitter4J (see Section 5.3.3).
Since tweets are limited to just 280 characters, Twitter has two distinct advantages
over email newsletters and RSS feeds: first, limiting Tweets to 280 characters forces
the user to write short texts and to focus on the main message. Thus, user usally
write in short messages and do not produce much overhead. Second, since the key
message cannot be distributed over multiple sentences, the implementation of the
automatic text processing is easier.
Another advantage of social media platform is the community, which allows inter-
action between people. This interaction can lead to more up-to-date information
and enables a discussion about (upcoming) releases, which may help in detecting
technology updates earlier. The main disadvantage of using Twitter as a data
source is its limitation to requests for standard users.

In summary, it can be said that each data source comes with advantages as well as
disadvantages. However, our evaluation has shown that due to its compromised content
on 280 characters and the huge community, Twitter is the most suitable data source of
the developed Categorization Model in order to gain natural language to detect release
messages.

6.2 Data Source: Online Encyclopedia
The development of the prototype aimed to create a system that monitors predefined
technologies to detect the release of new updates as early as possible. However, not every
technology generates the same amount of content or is not equally relevant to the public
and domain experts. This can lead to the situation that the analysis of extracted Web

68

6.2. Data Source: Online Encyclopedia

content via NLP (see Section 6.1) and the analysis of the number of search requests (see
Section 6.4) do not find information about an upcoming technology release, especially if
we look for minor updates.

In order to cover these cases as well, the extraction of release information from Wikipedia,
which represents the category online encyclopedia, has been integrated into the Cate-
gorization Model of the prototype. Wikipedia often offers an info box in their articles,
where the users can find a selection of properties of the suspect. Figure 6.1 shows the
info box of the Wikipedia page from Python1, while Figure 6.2 shows the info box of the
Wikipedia page from iOS2.

The comparison of these two info boxes shows that the information within the info boxes
can differ significantly and depends on the subject. Even the information about a release
is sometimes named differently. For example, the two screenshots show five different
release information: stable release, preview release, initial release, latest release and latest
preview.

Figure 6.1: Screenshot Wikipedia: Python Figure 6.2: Screenshot Wikipedia: iOS

For this reason, the extraction of the information was designed so that the domain expert
specifies the link to the Wikipedia page (e.g. https://en.wikipedia.org/wiki/Perl)
and further defines, which fields should be extracted by the prototype (e.g. „Latest
preview“). The prototype then visits the Wikipedia page on a daily basis, extracts
the defined field and compares it against the previously extracted information. If the
prototype detects a change, the new value is saved in the database and an update warning
is created.

We have selected 68 technologies to evaluate the prototype. From these 68 technologies,
51 have a Wikipedia page which info boxes provided release information. The entire

1https://en.wikipedia.org/wiki/Python_(programming_language)
2https://en.wikipedia.org/wiki/IOS

69

https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/IOS

6. Data Source Discussion

extraction history can be found in the attachment under A.3.

The evaluation of the data source Wikipedia will be accompanied by two examples:
the extraction of the field Stable release from the Wikipedia page of NodeJS3 and the
extraction of the fields Stable release and Preview release from the Wikipedia page of
Python4.

For the extraction of the release information of NodeJS, we have configured the URL
and the field „Latest release“. During the evaluation period from January to June 2018,
the prototype was capable of detecting 13 changes, which are listed in Table 6.7.

Release Type Extracted Value
Stable release 9.4.0 & 8.9.4 (LTS) / January 10, 2018
Stable release 9.5.0 & 8.9.4 (LTS) / January 31, 2018
Stable release 9.6.1 & 8.9.4 (LTS) / February 22, 2018
Stable release 9.7.1 & 8.9.4 (LTS) / March 2, 2018
Stable release 9.8.0 & 8.10.0 (LTS) / March 7, 2018
Stable release 9.10.1 & 8.11.1 (LTS) / March 29, 2018
Stable release 9.11.1 & 8.11.1 (LTS) / April 5, 2018
Stable release 10.0.0 & 8.11.1 (LTS) / April 24, 2018
Stable release 10.1.0 & 8.11.1 (LTS) / May 8, 2018;
Stable release 10.1.0 / May 8, 2018;
Stable release 10.2.1 / May 24, 2018
Stable release 10.3.0 / May 29, 2018
Stable release 10.4.0 / June 6, 2018
Stable release 10.4.1 / June 12, 2018

Table 6.7: Wikipedia: Extraction of Field Stable Release (January - June 2018)

From this example we can deduce that the monitoring of the release information can
detect both minor (e.g. change from 9.4.0 to 9.5.0) and major (e.g. change from 9.11.1 to
10.0.0) releases. The example further demonstrated that the prototype must be capable
of handling changes in the way the release information is formulated.

The second example shows the extraction of the release information for Python. In
contrast to the first example, we were able to extract the field Preview release in addition
to the field Stable release. The extracted values are listed in Table 6.8.

According to the field Stable release, the current stable version of Python is 3.6.5., which
coincides with the official website of Python5. As mentioned before, the Wikipedia page
of Python offers information about the preview release of version 3.7.0 as well. The

3https://en.wikipedia.org/wiki/Node.js
4https://en.wikipedia.org/wiki/Python_(programming_language)
5https://www.python.org/downloads/, visited on 12.06.2018

70

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.python.org/downloads/

6.3. Data Source: Search Engine (Results)

information about the preview releases are also correct, as the release schedule6 on the
official website of Python shows.

Release Type Extracted Value
Stable release 3.6.4 / 19 December 2017
Preview release 3.7.0a4, 3.5.5rc1, 3.4.8rc1 / 2018
Preview release 3.7.0b1 / 2018
Stable release 3.6.5 / 28 March 2018
Preview release 3.7.0b3 / 29 March 2018
Preview release 3.7.0b4 / 2 May 2018
Preview release 3.7.0b5 / 30 May 2018

Table 6.8: Wikipedia: Extraction of Fields Latest Release and Preview Release (January
- June 2018)

From the second example we can deduce that the field Preview release can offer information
about an upcoming release, which further helps detecting such technology releases before
they get released.

In summary, it can be said that Wikipedia is a good place to extract uniform release
information without having to build Web crawlers for various Web sites. The actuality of
the release information depends heavily on the Wikipedia community as they are respon-
sible for making adjustments. On the one hand, if a page provides release information,
such as latest release or stable release, it serves as a last anchor point in the process of
detecting technology releases. On the other hand, if the Wikipedia page offers release
information like the Latest preview or Preview release, this data source may help in the
process of detecting technology releases before the actual release date.

6.3 Data Source: Search Engine (Results)

The number of search results is a value, which is displayed after performing a search on
Google and it indicates, how many search results were found. We have integrated it into
the prototype’s Categorization Model for Online Data Sources (see Section 4.2), because
of the initial idea that an increasing number of search results indicates a rising interest
in the technology. The values are extracted with the help of the Java library Jsoup and
is described under Section 5.3.

To examine the established theory, we have collected this value over a period of four
months at regular intervals for 94 keywords. The analysis of the resulting time series
has shown that the number of search results apparently depends on many factors and is
therefore not suitable for trend detection. As an example, we introduce the analysis results
for the keyword Microsoft Windows in more detail in order to justify the exclusion of this

6https://www.python.org/dev/peps/pep-0537/, visited at 12.06.2018

71

https://www.python.org/dev/peps/pep-0537/

6. Data Source Discussion

data source for the detection of technology trends. Table 6.9 displays selected values to
illustrate the unexpected behaviour. It shows that the number of search results increases
within 5 days by over 100 times (compare values from 05.03.2018 and 10.03.2018).

Date Number of Search Results
24.02.2018 6.520.000
02.03.2018 11.400.000
04.03.2018 108.000.000
05.03.2018 5.570.000
10.03.2018 640.000.000
12.03.2018 23.600.000

Table 6.9: Analysis of Number of Search Results for Keyword Microsoft Windows

Figure 6.3 displays a graphical representation of the number of search results for the
same keyword, extracted between February and May 2018. The same findings, namely
the arbitrariness of the number of search results, can be drawn.

Figure 6.3: Number of Search Results for Keyword Microsoft Windows (112.02.2018 -
13.05.2018)

After further investigations we found several Google support pages (e.g. [53], [54]) which
state that the number of search results displayed by Google Search is not an actual, but
an estimated amount. Further, the sources mention a request parameter rc, „to request
an accurate result count for up to 1M documents, but it might introduce high latency“
[54]. However, we could not achieve more accurate results by using this parameter.

Since the extracted values of the other keywords show similar results, we conclude that
the number of search results displayed by Google Search cannot be used to identify trends
for technologies due to its unexpected behaviour.

72

6.4. Data Source: Search Engine (Requests)

6.4 Data Source: Search Engine (Requests)

In addition to the number of search results extracted from Google Search, the prototype
is also capable of extracting the number of search requests, which is gained from Google
Trends. Google Trends offers the possibility to analyze the search behaviour, more
precisely the number of search requests for specific keywords and by defining some meta
data, as described in Section 2.3.2.

Our assumption for the data source was that an imminent update or the announcement of
a new release of a technology influence the search behaviour of people, who are interested
in this topic. More specific, we assume that the amount of people who are searching for
a technology increase and therefore the number of search requests too. This is why the
number of search requests was integrated in the prototype’s Categorization Model for
Online Data Sources (see Section 4.2).

For the evaluation of this part of the prototype, we extracted the Google Trends data
over five months for 126 keywords. Each day, the prototype extracted a CSV file per
keyword containing the number of search requests for the past 90 days. Google Trends
offers normalized data which means that the values range from 0 to 100.

We developed various statistical approaches to analyze the number of search requests.
First, we discuss the analysis of the moving average (see Section 6.4.1). Then, the analysis
process of technologies containing a weekend trend (see Section 6.4.2) as well as the
analysis process of uncommon technologies (see Section 6.4.3) are further investigated.
Based on the section about uncommon technologies and their problem of a high amount
of null values, we then introduce the analysis of the number of jumps in Section 6.4.5.
The last analysis method for the number of search requests is the standard deviation,
introduced in Section 6.4.4.

6.4.1 Moving Average

During the analysis of the extracted CSV files containing the number of search requests
we found that a significant change of the average over a time period can be a good
indicator for news about an (upcoming) technology release. The process of analyzing the
averages is described by giving two examples:

The analysis of the exported number of search requests has shown that for wide spread
technologies a kind of basic noise exists. For example, the graphical illustration for the
search term iOS 11 in the period from 13.12.2016 to 13.03.2017 looks as follows:

73

6. Data Source Discussion

Figure 6.4: Number of Search Requests for Keyword iOS 11 (13.12.2016 - 13.03.2017)

If we repeat the data extraction for the keyword iOS 11 but move the time period two days
forward (15.12.2016 - 15.03.2017), a significant increase of search requests is displayed
(see Figure 6.5). This may indicate an accumulation of news about an upcoming release of
iOS 11. In any case, this sudden increase relativizes the background noise, which causes
the graph to change very clearly. The average moves from 52,6 (13.12.2016 - 13.03.2017)
to 21,9 (15.12.2016 - 15.03.2017) due the fact that the exported data from Google Trends
are normalized and a significant increase of search requests causes a decrease of the
number of search requests tracked before. The prototype is capable of detecting such
significant changes and creates an update warning which is then forwarded to the domain
expert.

Figure 6.5: Number of Search Requests for Keyword iOS 11 (15.12.2016 - 15.03.2017)

The next two graphs are again the result of the same data extraction process, but here
the first graph (see Figure 6.6) represents the number of search requests before the official
announcement of iOS 11 (03.03.2017 - 03.06.2017), while the second graph (see Figure
6.7) illustrates the data after the announcement (05.03.2017 - 05.06.2017). Once again,
the data collected before (and especially the rise on 13th of March 2017) are relativized
by the increase on the 5th of July 2017 and the average has further decreased from 29 to
3,5.

74

6.4. Data Source: Search Engine (Requests)

Figure 6.6: Number of Search Requests for Keyword iOS 11 (03.03.2017 - 03.06.2017)

Figure 6.7: Number of Search Requests for Keyword iOS 11 (05.03.2017 - 05.06.2017)

From this example, two things can be derived: on the one hand, the number of search
requests increased significantly about four months before the official announcement. From
this it can be deduced that the analysis of the search behaviour may detect a technology
release at an early stage. On the other hand, the official announcement of a new release
can also be detected.

The second example shows the Google Trends data for the keyword Java 10 and should
illustrate the difference between a more widely discussed technology like iOS 11 and
a more uncommon one like Java 10. Figure 6.8 shows the number of search requests
until two days before the official release of Java 10 (19.09.2017 - 19.03.2018). As before,
the graph shows some basic noise including a weekend trend (for more information see
Section 6.4.2). A high increase of search requests before the release (as we saw for the
keyword iOS 11) was not present.

75

6. Data Source Discussion

Figure 6.8: Number of Search Requests for Keyword Java 10 (19.09.2017 - 19.03.2018)

Java 10 was released on the 20th of March 20187. The six month extract for the keyword
after the announcement looks as follows:

Figure 6.9: Number of Search Requests for Keyword Java 10 (21.09.2017 - 21.03.2018)

Once again, a huge increase of the number of search requests caused a relativization
of the averages tracked before. The average decreased from 75,5 to 29. The second
example shows that a release increases the interest in the technology and thus reflects in
an increasing search behaviour. But, in contrast to the first example, there was no clear
increase of search requests ahead of the release, which would have indicated an upcoming
release.

In summary, it can be said that the analysis of the normalized data extracted from
Google Trends might be helpful to discover a temporary increase of search requests for
specific search terms. This may be an indication for an (upcoming) technology release or
an accumulation of news about the technology.

Our evaluation has shown that we achieve the most accurate results if an update warning
is created, when the current average is 85% or less then the moving average from data

7https://www.oracle.com/corporate/pressrelease/Java-10-032018.html

76

https://www.oracle.com/corporate/pressrelease/Java-10-032018.html

6.4. Data Source: Search Engine (Requests)

extractions happened before. Further, we do not take keywords into account, which fulfil
the restriction with 85% but contain more than 15% zero values, due to the fact that
a higher amount of zero values impairs the analysis of the moving average (for more
information see Section 6.4.3). In case of many null values, the prototype is performing
an analysis of the number of jumps between various data points (see Section 6.4.5). As
already suggested by the restriction of zero values, the analysis of the moving average
makes more sense for technologies that involve a high search volume.

6.4.2 Technologies with Weekend Trends

The evaluation process of the prototype has focused on technologies which are interesting
to ISVs because of the defined research goals (see Section 1.2). These technologies have
in common that they are usually more interesting for domain experts than for private
individuals. This can lead to the phenomenon that most of the searches are done during
the week. A graphical representation of such a technology can be seen in Figure 6.10. It
shows the Google Trends data for the keyword Ubuntu from 01.03.2018 to 30.05.2018.
The number of search queries is significantly higher during the week than at the weekend,
which leads to a graph similar to a sinusoid.

Figure 6.10: Number of Search Requests for Keyword Ubuntu (01.03.2018 - 30.05.2018)

Since such keywords are showing an extreme increase every Monday, there would always
be an update warning at the beginning of a week. But the prototype is capable of
detecting graphs with weekend trends by calculating the average value of weekdays and
weekend days. If there is a significant difference between these two averaging values, a
weekend trend is detected, and the graph is handled differently.

Here, the analysis does not focus on the percentage change but on a reduction of a
concrete value. Our evaluation process has shown that a decrease by 10 leads to the
most accurate results. Again, we skip data extractions which contain more than 15%
zero values for the same reason explained in Section 6.4.1.

The analysis of Figure 6.10, however, offers a second insight. At the end of April 2018,
the working day values are higher than the values of the weeks before. This is due the

77

6. Data Source Discussion

fact that Ubuntu has release the newest version of its operation system at 26.04.2018,
called Ubuntu 18.04 Bionic Beaver8, which has caused an increase in search requests.

The release of the new Ubuntu version is even more visible if the expected release version
is added to the keyword. The Google Trend data extraction for the keyword Ubuntu 18
and the same time period as above leads into the following graph:

Figure 6.11: Number of Search Requests for Keyword Ubuntu 18 (01.03.2018 - 30.05.2018)

From the analysis of keywords with weekend trend it can be derived that a more precise
keyword (Ubuntu vs. Ubuntu 18) may raise the chance of detecting a clearer trend in
the data extracted fromm Google Trends.

6.4.3 Uncommon Technologies

In the last two sections, we focused on more common technologies (e.g. Microsoft
Windows, Java and PostgreSQL). These technologies are widely used and therefore
provide a sufficient number of search requests to analyze the average. However, especially
ISVs often use technologies, which are not widely used and the analysis of the averages
can be a problem, as we demonstrate be the following example. Figure 6.12 illustrates the
Google Trends data for the keyword BS2000 9, which is a mainframe operating system
developed by Fujitsu.

The chart clearly shows that for the keyword BS2000, Google Trends provides a lot of
zero values. These zero values indicate barely existing interest in the keyword. For data
extraction like this, none of the previously presented analysis methods can by performed
due to the fact that the normalized data points a highly sensible on just a small increase
of search requests. This sensibility is also shown by the high number of jumps from high
to low values. Thus, these kinds of data extractions usually cannot be used to identify
new technology trends. However, the prototype has another method of analyzing time
series (see Section 6.4.5), which is capable of handling lots of zero values.

8https://www.digitalocean.com/community/tutorials/what-s-new-in-ubuntu-18-04
9http://www.fujitsu.com/emeia/products/computing/servers/mainframe/bs2000/

78

https://www.digitalocean.com/community/tutorials/what-s-new-in-ubuntu-18-04
http://www.fujitsu.com/emeia/products/computing/servers/mainframe/bs2000/

6.4. Data Source: Search Engine (Requests)

Figure 6.12: Number of Search Requests for Keyword BS2000 (28.02.2018 - 30.05.2018)

6.4.4 Standard Deviation

Besides the analysis of the moving average, the prototype is also capable of analyzing
the standard deviation. Similar to the analysis of the average, the standard deviation is
calculated for every time series extracted from Google Trends.

The analysis process monitors the changes in the standard deviation across the time
series of extraction points. As before, a significant decrease of the standard deviation
over time indicates an increase of the search volume, which may be an indicator for an
(upcoming) technology release.

The standard deviation analysis described above is now explained by an example: Fedora
2810, an open-source Linux distribution, was released on the 1st of May 201811. The
data extraction from Google Trends for the keyword Fedora 28 before the release looks
as follows:

Figure 6.13: Number of Search Requests for Keyword Fedora 28 (25.01.2018 - 25.04.2018)

10https://getfedora.org/
11https://fedoraproject.org/wiki/Releases/28/Schedule

79

https://getfedora.org/
https://fedoraproject.org/wiki/Releases/28/Schedule

6. Data Source Discussion

The average for the period from 25.01.2018 to 25.04.2018 is 26. The standard deviation
is 22. The high value of the standard deviation can be attributed to a lack of a clear
trend, which causes high jumps between the days.

Figure 6.14 shows the Google Trends data for the period from 01.02.2018 to 01.05.2018
(release day). The number of search requests changed drastically and so was the graph.
The average decreased from 22 to 9,8 and the value of the standard deviation dropped
from 22 to 11,9.

Figure 6.14: Number of Search Requests for Keyword Fedora 28 (01.02.2018 - 01.05.2018)

An in-depth analysis of the extracted values has shown that a decrease of the standard
deviation by 20% or more is an accurate threshold for identifying such significant changes.
The same threshold has to be fulfilled by the standard deviation of the following two
data extractions, to guarantee a clear trend change. Again, uncommon technologies with
more than 15% zero values are not considered due to the reasons explained in Section
6.4.3.

6.4.5 Number of high Jumps

Besides the analysis of the moving average and the standard deviation, the prototype is
also capable of calculating and analyzing the distance between the various data points
from a 90 days extraction. Our expectation was that if the number of jumps decreases
significantly, the number of search requests must have increased due to the fact that the
extracted data from Google Trends are normalized by 100. The analysis of the number
of high jumps was implemented, since the moving average and standard deviation ignore
data extractions, which contain more than 15% zero values. This can lead into a problem,
especially if the keyword contains a technology and a version number which currently
does not exists. Since the version number was not mentioned before, not many people
are searching for it which leads into a lot of zero values in the Google Trends extraction.
The following example should illustrate the approach of calculating the distance between
data points.

80

6.4. Data Source: Search Engine (Requests)

Figure 6.15 shows the Google Trends extraction for the keyword Windows Server 2019
for the period from 20.12.2017 to 20.03.2018. The orange dashed lines illustrate the
distance, which is summed up to gain the total number of jumps between the data points.
The graph does not reveal any clear trend.

Figure 6.15: Number of Search Requests for Keyword Windows Server 2019 (20.12.2017 -
20.03.2018)

On 20.03.2018, Microsoft released the preview of Windows Server 201912. Figure 6.16
shows the number of search requests for the day after the announcement of the preview.
Again, the dramatic increase in search requests relativized the number of search requests
that have been tracked before. The average of total jumps from the extractions before
was 1258. The current number of jumps was 205, which was a decrease of about 85%.

Figure 6.16: Number of Search Requests for Keyword Windows Server 2019 (21.12.2017 -
21.03.2018)

The analysis of the number of jumps has shown that a reduction of 20 percent or more
clearly indicates an increased volume of search queries. The analysis has also shown that

12https://cloudblogs.microsoft.com/windowsserver/2018/03/20/introducing-windows-server-2019
-now-available-in-preview/

81

https://cloudblogs.microsoft.com/windowsserver/2018/03/20/introducing-windows-server-2019
-now-available-in-preview/

6. Data Source Discussion

this is true, even with 80% of zero values. Thus, analyzing the total number of jumps
can be used in addition to the analysis of the moving average and the standard deviation,
and is especially useful for unknown keywords, which Google Trends data contains more
than 15% zero values.

6.4.6 Compare statistical Approaches

In the last section of the evaluation part, we discuss the various results derived from
applying the statistical approaches to the Google Trends data.

Table 6.10 compiles a list of keywords, for which the prototype has detected an increase
of search request during the evaluation phase. Overall, through both the moving average
and total number of jumps the prototype was capable of detecting nine peaks each.
By applying the moving average for keywords which follow a weekend trend, and by
calculating the standard deviation, five peaks could be detected by both analysis methods.

Keyword MA MAW TNoJ SD
Android P X X
BS2000
Fedora 28 X X X
iOS X
iOS 12 X X
Java 10 X X X
MacOS X X X
MySQL 8 X X X X
NodeJS X
Ubuntu X
Ubuntu 18 X X X
WatchOS 5 X X
Windows Server 2019 X X
WordPress 5 X
z/OS

Table 6.10: Google Trends Analysis via various Statistical Approaches; Moving Average
(MA), Moving Average Weekend Trend (MAW), Total Number of Jumps (TNoJ), Standard
Deviation (DV)

The moving average (MA) has detected two peaks, which have not been detected by
other approaches: iOS and NodeJS. From this fact, we deduce that analyzing the moving
average is especially helpful, if we do not guess the next version number but still want to
monitor the technology.

In addition to the moving average, through the special treatment for data extractions
which show a weekend trend (MAW), we were able to detect for both the keyword Ubuntu

82

6.4. Data Source: Search Engine (Requests)

and WordPress 5 a peak. From this we deduce that handling data extractions with a
weekend trend differently may lead into additional acquisition of information.

Analyzing the total number of jumps (TNoJ) is especially helpful, if the system should
monitor technologies, for whom the domain expert guessed the next version number.
Searching for technologies together with its potential next version numbers can cause a
lot of null values, which can be best processed by this analysis method.

Analyzing the data extraction from Google Trends by the standard deviation (SD) has
shown that this method succeeds, if the keyword contains the next version number.

In summary, it can be said that by analyzing the Google Trends data with the moving
average, the moving average with special treatment for weekend trends, and the total
number of jumps, releases can be detected. The found peaks by the standard deviation is
a subset of the peaks found by analyzing the total number of jumps. All found increases
were attributed to concrete releases. However, each of them was a major and no minor
release. Furthermore, for uncommon technologies, such as BS2000 or z/OS, the analysis
of the number of search requests is not a suitable method to detect technology updates.

83

CHAPTER 7
Conclusion

Technologies today have to function in different environments and communicate with
different systems, which is why they can no longer be considered as an atomic unit but
should be viewed holistically. This aspect can be especially important if an ISV wants
to or has to guarantee the compatibility of a system with its environment because of
maintenance contracts. It can be a very time- and cost-intensive task to check whether
systems of the technology’s environment have changed and therefore are no longer
compatible. From this circumstance, the main question for this work was derived:

To what extent can the check for technology releases be automated by a system?

In this chapter, we first discuss the main contribution of this thesis by answering the
three research questions, comparing the findings against related work, and pointing out
the similarities and differences in Section 7.1. Forthcoming research is in turn discussed
in Section 7.2.

7.1 Main Contributions
RQ 1: What are promising data sources to detect technology updates?

In order to answer RQ 1, we first identified suitable data sources to build the basis of
the data analysis methods. The result was the Categorization Model for Online Data
Sources, which defines four different data sources: Technology news, social media, online
encyclopaedias and search engines. Technology news, which includes email newsletters
and RSS feeds, as well as Twitter, which represent the social media category, are analyzed
using NLP. These data sources have been integrated in the data model to find concrete
release messages. From Wikipedia (online encyclopedia), we were able to extract concrete
release information, such as stable release or latest preview, in a unified way. For search
engine category, we extracted two different types of data: (1) the number of search results
from Google Search and (2) the number of search requests from Google Trends. The

85

7. Conclusion

assumption for the search engine data was that if a new technology is released, both the
amount of search results and search request increase.

The evaluation of the data analysis methods was performed for each data source indepen-
dently and has shown that one has to distinguish between minor and major releases when
analyzing the data sources. Data sources from the categories technology news, social
media and online encyclopedia were capable of detecting both minor and major releases,
whereas the number of search requests extracted from Google Trends was just capable of
detecting major releases. We developed different analysis methods for the data sources:

Information extracted from the data source categories technology news and social media
were analyzed via NLP. The developed NLP pipeline contains two approaches for detecting
release messages, which are further compared in RQ 2. Overall it can be said that the
analysis of natural language via NLP can aid in detecting technology releases on release
date and in advance.

Release information from Wikipedia pages were monitored for changes (see Section 6.2). If
the monitored pages offer release information such as “Stable release“ or “Latest release“,
this data source built the last anchor point in the process of detecting technology releases.
However, if a page provides information, such as “Latest preview“ or “Preview release“,
online encyclopaedias can help detecting upcoming releases as well.

In addition, by analyzing the number of search request extracted from Google Trends with
various statistical approaches (see Section 6.4), it is possible to detect an increasing number
of people who are searching for a specific technology. As has been shown in Sections
6.4.2, 6.4.5 and 6.4.4, this increase can correlate with actual release announcements.
Furthermore, it can also indicate upcoming releases, as was demonstrated by the example
in Section 6.4. The comparison of the four statistical analyzing approaches has shown
analyzing Google Trends data can help in finding major, but not minor releases (see
Section 6.4.6).

In contrast to the findings above, the evaluation of the number of search results extracted
from Google Search has shown that this data source cannot be used to detect (upcoming)
technology releases. The assumption here was that the amount of web pages reporting of
a technology increases, if a new release was announced. However, as the evaluation in
Section 6.3 has shown, the number of search results appears to depend on various other
factors and can fluctuate substanially, even over two powers of ten within a few days.
This unexpected behaviour matches statements from Google, which point out that the
number of search results displayed be Google Search is an estimated value and not the
exact number of search results.

Summarizing, the data sources selected for our Categorization Model (except the number
of search results) can help in both detecting releases at release date as well as in
advance. Furthermore, the precision of predictions highly depends on the popularity of
the technology, the involved community and whether it is a minor or major release.

86

7.1. Main Contributions

RQ 2: To what extent can text processing identify technology updates in
texts extracted from heterogeneous online sources?

In order to answer RQ2, we first investigated the extracted data gained from emails, RSS
feeds and Twitter to find texts which contain information about (upcoming) releases.
The resulting collection of release messages represented the basis for designing and
implementing a NLP pipeline (see Section 5.4).

The starting point for NLP tasks is a single sentence, which is why the first task of
the NLP pipeline is sentence delimiting. Implementing a proper sentence delimiter
was a difficult task and numerous challenges were encountered during development:
distinguishing between a dot used in versions number and a dot marking the end of
a sentence, and detecting sentences, which do not end with a punctuation character.
However, after the successful implementation of the sentence delimiter, we developed two
approaches to find release messages through text processing.

The first approach leveraged regular expression to detect release phrases. The second
approach aimed at applying certain NLP tools to find concrete release words, such as
“publish“, “refresh“, “update“.

In Section 6.1, we evaluated the NLP pipeline in two distinct ways. On the one hand, we
compared the two approaches of detecting release messages qualitative and quantitative
in Section 6.1.1. On the other hand, we compared the data sources which extract natural
language (i.e. emails, RSS feeds and Twitter posts) in terms of simplicity of the extraction
process, as well as its timeliness and quality in Section 6.1.2.

The comparison of the two approaches towards detecting release messages has shown
both deliver similar results in terms of identified release messages, however, the false
positive rate is significantly higher for the NLP toolkit.

The basis of the evaluation of the NLP pipeline consisted of 22.002 Tweets, which contained
746 actual release messages. By the use of regular expressions, the NLP pipeline was
capable of detecting 722 of the 746 (96.8%) actual release messages. However, in total
988 Tweets were marked as release messages, resulting in a false positive rate of 26%.
The approach of using NLP tools was able to detect 704 of the 746 (94.4%) actual release
messages, but achieved a higher false positive rate of 59% (1709 marked Tweets).

Summarizing, by applying NLP to texts extracted from various online data sources, we
are capable of detecting release messages. However, an accuracy of 100% cannot be
achieved, as words and phrases used in reports about releases can appear in different
contexts as well.

RQ 3: What are limitations of automating the release detection process?

In order to answer RQ3, we discuss the degree of automation in the developed Process
Model for Technology Update Detection (see Section 4.1) as well as the importance of
a domain expert in this system. In the developed system, four main tasks still have to
be done by the domain expert: (1) defining technology related keywords, (2) identifying

87

7. Conclusion

accurate online sources, (3) implementing data extraction methods and (4) giving the
system feedback on whether calculated update warnings were valid.

According to the Release Prediction Process Model, the first task for the domain expert
is to define technology related keywords. The selection of keywords has a direct impact
on the findings of the data analysis methods, regardless on the evaluated data source. For
example, if the domain expert correctly suspects the next version number, the number of
search requests extracted from Google Trends can deliver clearer results, as seen in the
example presented in Section 6.4.2.

In a second step, the domain expert has to identify suitable online sources from which
data is to be collected. The number of identified data sources, as well as their quality
in terms of accuracy and timeliness have a significant impact on the overall results of
the system. For example, selecting relevant email newsletters, RSS feeds and Twitter
accounts can lead into better prediction performance of the system. The accuracy of the
system can also be increased by defining the correct release information of Wikipedia
(e.g. “Latest preview“, “Preview release“, etc.).

The third and most time-consuming task the domain expert is required to perform
manually is implementing the data extraction methods for the selected data sources.

The last step the domain expert is involved in, is at the end of the release detection
process. After the system has found sufficient witnesses of an (upcoming) release, it
creates an update warning which is sent to the domain expert. He or she must then
decide, whether the update warning is justifiable. The feedback is in turn utilized to
adjust the confidence level of the data sources causing the warning.

The other tasks of the Process Model, including information extraction from data sources,
analyzing the findings and calculating the release prediction indicator, are automatically
performed by the system. This - in contrast to the general monitoring approach where
the data sources are checked manually - is the most notable advantage of the developed
system.

In summary it can be said that the data mining and analysis step of the Process Model
can be performed by a system automatically. However, setting up the system by defining
precise keywords, selecting a sufficient amount of data sources which provide qualitative
content, and giving the system feedback on its findings are tasks, which we were not able
to implement without human interaction. Thus, the developed system provides a semi-
but no fully-automated release detection.

Similarities and Differences to Related Work

By answering RQ 1, we have shown that there are several data sources available which
can be used to detect technology releases at release date as well as in advance, and that
precision highly depends on the popularity of the monitored technology. By answering
RQ 2, we have shown that by extracting natural language from various data sources,
such as emails, RSS feeds and Twitter posts, we can identify information on (upcoming)
releases by processing them via NLP. And, by answering RQ 3, we have shown that

88

7.1. Main Contributions

our developed Release Prediction Process Model is not capable of detecting technology
releases in a fully automated manner. In the following, we proceed to compare the
findings of this thesis to related work.

Due to the analysis of the number of search requests extracted from Google Trends,
we were able to reveal a correlation between major software releases and an increase in
search requests. That the analysis of the search volumes on Google is suitable for the
prediction of certain events, coincides with the researched publications introduced in
Section 2.3.1. For example, Preis et al. found patterns that may predict stock market
movements based on the search behaviour of user of Google Search [50], while Ettredge
et al. demonstrated the potential of predicting the unemployment rate in the United
States by investigating their behaviour on the Web [17]. However, to the best of our
knowledge there is no published work investigating the correlation between software
releases and search behaviour of search engine users. By analyzing Google Trends for
various technologies, we have shown this data source may help in the process of predicting
upcoming major technology releases.

The evaluation of our NLP pipeline has shown analyzing natural language extracted from
various online sources via NLP is a suitable tool for finding release messages in texts
automatically. To the best of our knowledge, this is the first research which investigated
the potential of NLP for detecting release message from natural language. However,
since the analysis of natural language is not always clear, the same sentence can lead
to different interpretations. Also, the prior knowledge and background of a person can
influence the decision making process as to whether it is a release message. Both factors
can influence the evaluation of the developed NLP pipeline.

The following publications are linked to the subject of software release prediction in
different ways. Their approach, however, focuses more on analyzing data from the
development process itself to predict a release date. K. Power introduced in [49] an
approach of predicting the likely delivery window of a release in an agile environment by
considering the size of the current backlog and the acceptance rate to the date. Papers,
such as [24] and [25], concentrating more on software reliability in the prediction process.
They proposed the Generalized Software Reliability Model, which successfully predicted
the releases of open source software by analyzing the number of faults. Furthermore,
Mockus and Weiss conducted an analysis of the risk outgoing from software changes
[45]. Here, the focus lies on predicting the failure probabilities caused by changes in the
development. However, these publications have in common that their analyses are based
on internal factors of the development process, including the amount of issues and the
size of the backlog, and so forth, which are normally not accessible to the public. In
contrast, our approach is based solely on data which is available to the general public
(e.g. email newsletters, social media platforms and Google Trends data).

Finally, applications such as FileHippo App Manager1, Baidu App Store2, and Heimdal3,
1https://filehippo.com/
2http://pcappstore.baidu.com/
3https://heimdalsecurity.com/

89

https://filehippo.com/
http://pcappstore.baidu.com/
https://heimdalsecurity.com/

7. Conclusion

which scan for installed programs and check if the latest versions of these programs are
installed, are worth mentioning. However, these products only scan for installed software
components and not for specified technologies and keywords. Furthermore, they focus
more on installing previously released software updates rather than predicting upcoming
technology releases.

7.2 Future Research
The result of this thesis is a system, which is capable of extracting data in various
forms from various data sources. The evaluation of this system has shown, that email
newsletters, RSS feeds and Tweets from Twitter are suitable for finding concrete release
messages with the help of NLP. The evaluation of online encyclopaedias has shown that
the quality and timeliness of the release information highly depends on the community
but can help by detecting technology releases on release date and in advance. The
evaluation of the number of search requests has shown that Google Trends data can help
in the process of detecting (upcoming) major software releases by analyzing the search
volume. However, the future research will focus on the following limitations:

• Expand the Analysis of the Search Engine
The analysis of the number of search requests is currently focused on a 90-day
window, with which we were able to detect major but no minor changes. By
changing this time period to 30 or 10 days, it might be possible to detect minor
updates as well.

• Connect further Data Sources
The data source category technology news currently only comprises emails and
RSS feeds. In the future, we plan to investigate further data sources, such as blogs,
manufacturer websites, as well as other social media platforms, including YouTube
and Facebook. Extracting data from question and answer sites, like Stackoverflow4,
or social news sites, like Reddit5, may provide useful content in terms of release
prediction as well. A more technical approach could also be considered. For
example, if a system, which should be monitored for changes, offers an API, the
latter could be automatically tested for changes.

• Improve NLP Pipeline by Feedback Loop
The feedback loop of the domain expert, when he or she denied a calculated update
warning, can be improved too. The domain expert, for example, could mark the
part of the sentence, which leads to a incorrect software warning. This feedback
then can be integrated into the NLP pipeline and the false positive rate would
decrease by time. This will help to improve the accuracy of the NLP process.

4https://stackoverflow.com/
5https://www.reddit.com/

90

https://stackoverflow.com/
https://www.reddit.com/

7.2. Future Research

Furthermore, it would be conceivable to leave the field of release detection and test the
developed data analysis methods in other environments, since the prediction and trend
recognition is also interesting for other areas. For example, current interest in various
stocks, cryptocurrencies or funds could be analyzed to develop and adjust appropriate
investment strategies.

In summary, it can be said that the developed system is - together with its data sources -
capable of detecting release information in natural language and deriving trends from
search engine data. However, there are many other fields in which the idea of combining
news analyzed by NLP and the search behaviour of search engine users, analyzed by
various statistical models, may succeed in detecting trends.

91

APPENDIX A
Appendix

A.1 Email Newsletter List

Name Email Address #
Adam @ Versioning versioning@sitepoint.com 120
ADMIN Update info@admin-magazine.com 34
AIX EXTRA - IBM Systems Mag-
azine

aixextra@e.ibmsystemsmag.com 13

Anand Sanwal anand.sanwal@cbinsights.com 147
Android Weekly contact@androidweekly.net 36
Assaf Arkin assaf@labnotes.org 31
Awesome iOS newsletter@libhunt.com 373
Azeem Azhar Exponential View azeem.azhar@exponentialview.co 44
Benedict Evans list@ben-evans.com 27
blog@cakesolutions.net blog@cakesolutions.net 57
CA Technologies info@emea-ca-mail.com 7
Center for Data Innovation updates@datainnovation.org 39
Cisco engage@b2me.cisco.com 4
Cisco Press ciscopress@e.ciscopress.net 3
Claudia Remlinger claudia.remlinger@neo4j.com 5
Cloud & Data Center Update DataCenterUpdate@newsletter

.windowsitpro.com
29

Computerworld Applications Alert computerworld_resources@
cwresources.computerworld.com

133

Computerworld Online Resources online@computerworldmedia.com 79
CRM Buyer newsdesk@ectnews.com 229
CSS Layout News me@rachelandrew.co.uk 37

93

A. Appendix

DashingD3js.com sebastian@dashingd3js.com 6
Data Elixir lon@dataelixir.com 36
Dave Verwer dave@iosdevweekly.com 34
DB Weekly dbweekly@cooperpress.com 32
Designer News hello@designernews.co 28
Design Systems Weekly designsystems@designsystems

.curatedmail.co
27

Devops Weekly gareth@morethanseven.net 35
dotNET Weekly info@dotnetweekly.com 29
Dr Heinz M. Kabutz heinz@javaspecialists.eu 36
DZone Weekly Digest mailer@dzone.com 379
Eclipse Foundation newsletter@eclipse.org 10
Editorial at SDxCentral newsletter@sdxcentral.com 183
EdSurge Feedback@edsurge.com 7
EdSurge feedback@edsurge.com 115
Ember Weekly info@emberweekly.com 35
ES.next News hello@esnextnews.com 34
Eugen eugen@baeldung.com 16
eWebDesign Newsletter Issue #215 newsletter@ewebdesign.com 65
Exasol Xperience 2018 events@exasol.com 5
FeedBurner Email Subscriptions noreply+feedproxy@google.com 498
Freek Van der Herten freek@spatie.be 18
Front=2DEnd Front hello@frontendfront.com 35
Frontend Focus frontend@cooperpress.com 36
Gamedev.js Weekly contact@gamedevjsweekly.com 37
Golang Weekly contact@golangweekly.com 34
Google no-reply@accounts.google.com 7
Hack Design contact@hackdesign.org 11
Hack Design lessons@hackdesign.org 33
Hacker Newsletter kale@hackernewsletter.com 31
Hacking UI holla@hackingUI.com 35
Hadoop Weekly info@dataengweekly.com 19
Hadoop Weekly info@hadoopweekly.com 11
HP Business HP@us.mail.hp.com 48
IBM Code vmdaniel@ibmdeveloperworks

.messages3.com
93

IBM i EXTRA - IBM Systems
Magazine

ibmiextra@e.ibmsystemsmag.com 11

IBM Systems Magazine mainframedigital@e
.ibmsystemsmag.com

14

IBM Systems Magazine powersystemsdigital@e
.ibmsystemsmag.com

29

94

A.1. Email Newsletter List

IBM Systems Magazine Webinars webinars@e
.ibmsystemsmag.com

103

IDG Connect IDGConnect@idgconnect-
resources.com

62

Infinite Red newsletters@infinite.red 10
InfoQ newsletter@mailer.infoq.com 60
InfoWorld Online Resources online@infoworldmedia.com 21
IT Business Edge Breach Concerns contentupdates@itbusinessedge.com 258
IT Management Daily newsletters@itbusinessedge.com 287
ITPro ITProToday@enews.itprotoday.com 186
ITPro Today ITProToday@newsletter

.winsupersite.com
165

ITPro Update ITProUpdate@newsletter
.windowsitpro.com

35

ITwhitepapers Applications Alert online_resources@online
.itwhitepapers.com

56

ITWhitepapers Applications Alert online@itwhitepapersmedia.com 11
Jack jack@jack-clark.net 33
Jakob Nielsen alertbox@nngroup.com 35
Jakub Chodounský jakub@csharpdigest.net 36
Jakub Chodounský jakub@reactdigest.net 35
Jakub Chodounský jakub@programmingdigest.net 35
Java Magazine Java@oracleemail.com 4
JavaScript Weekly jsw@peterc.org 34
JDedwardsERP.com info@jdedwardserp.com 7
JSter info@survivejs.com 16
KBall at ZenDev kball@zendev.com 40
Laravel Daily info@laraveldaily.com 15
Laravel News hello@laravel-news.com 38
Linux.com no-reply@engage.linux.com 4
Linux.com no-reply@linux.com 28
Linux Foundation Events no-reply@linuxfoundation.org 5
Linux Journal Newsletter ljnews@linuxjournal.com 17
Linux Update info@linux-magazine.com 24
Mainframe EXTRA - IBM Systems
Magazine

mainframeextra@e
.ibmsystemsmag.com

21

Mainframe Marketplace - IBM
Systems Magazine

mainframemarketplace@e
.ibmsystemsmag.com

8

Marcelo Ballve marcelo.ballve@cbinsights.com 35
Mark Needham at Neo4j devrel@neo4j.com 18
Mark Thomas markt@apache.org 20
Markus Eisele at Lightbend m@lightbend.com 3

95

A. Appendix

Mattias Geniar m@ttias.be 12
Microsoft Microsoft@e-mail.microsoft.com 17
Microsoft Azure Team azurenewsreply@microsoft.com 8
MIT Technology Review newsletters@technologyreview.com 298
MIT Technology Review promotions@technologyreview.com 48
Mobile Dev Weekly mobile@cooperpress.com 33
Morning Cybersecurity morningcybersecurity@politico.com 117
MSSQLTips newsletter@mssqltips.com 174
MyFavouriteMagazines future@mail.

myfavouritemagazines.co.uk
14

Neo4j Events emeaevents@neo4j.com 4
Neo4j Webinars webinar@neo4j.com 6
Node Weekly node@cooperpress.com 35
NoSQL Weekly rahul@nosqlweekly.com 38
npm Inc wombat-jenn@npmjs.com 35
objc.io mail@objc.io 4
Oracle MySQL replies@oracle-mail.com 36
O’Reilly Media oreilly@post.oreilly.com 325
O’Reilly Next:Economy Newsletter reply@oreilly.com 169
Oren Ellenbogen oren@softwareleadweekly.com 39
OSNews Newsletter news@news.nl00.net 252
Outlook Update OutlookUPDATE@newsletter

.windowsitpro.com
29

Phaser World support@phaser.io 22
Pony Foo publisher@ponyfoo.com 38
Postgres Weekly postgres@cooperpress.com 31
Power Systems Extra powerextra@e.ibmsystemsmag.com 9
Power Systems Marketplace - IBM
Systems Magazine

powersystemsmarketplace@e
.ibmsystemsmag.com

8

Product Design Weekly by
Atomic.io

designweekly@atomic.io 31

Publisher publisher@linuxjournal.com 7
Pycoders Weekly admin@pycoders.com 34
Python Weekly rahul@pythonweekly.com 38
Rachel Nabors weekly@animationatwork.com 16
Rachel Schallom rschallom@gmail.com 23
React Newsletter tyler@tylermcginnis.com 36
Red Hat email@engage.redhat.com 19
Responsive Design Weekly justin@responsivedesign.is 38
Rod Trent ITDevConnections@tech

.pentontech.com
8

Ruby Weekly rw@peterc.org 36

96

A.1. Email Newsletter List

SAP Flash sap@mailsap.com 43
SAP PRESS info@news.sap-press.com 83
SDxCentral research@sdxcentral.com 7
SDxCentral content@sdxcentral.com 6
SDxCentral webinars@sdxcentral.com 16
Security Update SecurityUpdate@newsletter

.windowsitpro.com
33

Sharepoint Pro Update SharePointPro@newsletter
.sharepointpromag.com

37

Sidebar hello@sidebar.io 251
SitePoint Front-end newsletters@sitepoint.com 21
SitePoint Team support@sitepoint.com 62
Smashing Magazine newsletter@smashingmagazine.com 23
Sophia Shoemaker us@fullstack.io 60
SQLServerCentral.com subscriptions@sqlservercentral.com 215
SQL Server Pro Update SQLServerProUPDATE@newsletter

.sqlmag.com
34

SUSE einfo@suse.com 11
SUSE news@suse.com 5
Swift Weekly swiftweekly@getrevue.co 28
TechRadar newsletter@techradar.com 43
The Gradle Team newsletter@gradle.com 5
The Modern Software Factory info@na-ca-mail.com 37
The React Newsletter maurice@theproblemsolver.nl 38
This Week in Rails newsletter@rubyonrails.org 21
Toolbox General toolbox@enews.zdb2bmail.com 8
Toolbox Content content@email.toolbox.com 21
Toolbox Alerts alerts@email.toolbox.com 81
Toolbox Updates updates@email.toolbox.com 46
Toolbox Events events@email.toolbox.com 10
Twitter Info info@twitter.com 44
Twitter Notify notify@twitter.com 7
TypeScript Weekly hello@typescript-weekly.com 33
UI Movement ramy@uimovement.com 34
Umar Hansa dev-tips@umaar.com 11
Violeta Georgieva violetagg@apache.org 8
Vue-newsletter vuenewsletter@getrevue.co 36
WDRL by Anselm Hannemann mail@wdrl.info 31
Webdesigner Depot no-reply@webdesignerdepot.com 22
Web Design Weekly wdw@jakebresnehan.com 31
WebOps Weekly peter@webopsweekly.com 34
Web Tools Weekly submissions@webtoolsweekly.com 34

97

A. Appendix

Windows IT Pro WindowsITPro@tech.pentontech.com 20
WinInfo Daily Update WinInfoDaily@newsletter

.winsupersite.com
12

wpMail.me hello@wpmail.me 37
ZDNet Tech Today - US newsletters@zdnet.online.com 303

Table A.1: List of Email Newsletters

A.2 RSS Feed List

Name URL #
Android https://blog.google/products/android/rss/ 25
Apple Release Feed https://developer.apple.com/news/releases

/rss/releases.rss
59

Arch Linux https://www.archlinux.org/feeds/news/ 13
Debian https://www.debian.org/News/news 7
Fedora https://fedoramagazine.org/feed/ 58
Fujitsu BS2000 OSD http://ts.fujitsu.com/ps2/press/feed

/rss.aspx?id=178
6

HP HP-UX https://news.hpe.com/rss.xml 61
Linux Mint https://blog.linuxmint.com/?feed=rss2 16
Microsoft Data Plat-
form Insider

https://blogs.technet.microsoft.com
/dataplatforminsider/feed/

25

Microsoft Windows
Server

https://blogs.technet.microsoft.com
/windowsserver/feed/#

18

Oracle Application https://blogs.oracle.com/oraclepartners
/applications/rss

24

Oracle Database https://blogs.oracle.com/oraclepartners
/database-7/rss

22

Oracle Engineered Sys-
tems

https://blogs.oracle.com/oraclepartners
/engineered-systems-2/rss

5

Oracle Industries https://blogs.oracle.com/oraclepartners
/industries/rss

9

Oracle Middleware https://blogs.oracle.com/oraclepartners
/middleware/rss

13

Oracle OPN Program https://blogs.oracle.com/oraclepartners
/opn-program/rss

34

Oracle Server and Stor-
age Systems

https://blogs.oracle.com/oraclepartners
/server-and-storage-systems/rss

16

Perl http://feeds.feedburner.com/PerlNews 10
PostgreSQL https://www.postgresql.org/versions.rss 31
Python http://planetpython.org/rss20.xml 599

98

A.3. Wikipedia Data Extractions

RedHat JBoss https://www.redhat.com/en/rss/press-releases 36
Ruby https://www.ruby-lang.org/en/feeds/news.rss 22
Spring Release Feed https://spring.io/blog/category/releases.atom 44
Ubuntu https://insights.ubuntu.com/feed 89

Table A.2: List of RSS Feeds

A.3 Wikipedia Data Extractions

Technology Release Type Value
Android Latest release 8.1.0 "Oreo" / December 5, 2017
Apache Tomcat Stable release 9.0.8 (May 3, 2018)
Arch Linux Latest release Rolling release / installation medium

2018.01.01
Arch Linux Latest release Rolling release / installation medium

2018.02.01
Arch Linux Latest release Rolling release / installation medium

2018.03.01
Arch Linux Latest release Rolling release / installation medium

2018.04.01
Arch Linux Latest release Rolling release / installation medium

2018.05.01
Arch Linux Latest release Rolling release / installation medium

2018.06.01
C# Stable release 7.2 / November 15, 2017
C# Stable release 7.3 / May 7, 2017
C# Preview release 8.0
C++ Stable release ISO/IEC 14882:2017 / 1 December 2017
Debian Latest release 9.3.0 (Stretch) (December 9, 2017)
Debian Latest release 9.4 (Stretch) (March 10, 2018)
Django Stable release 2.0.5 (2 May 2018)
Django Stable release 2.0.6 (1 June 2018)
Ember Stable release 3.0.0 / February 14, 2018
Ember Stable release 3.1.0 / April 13, 2018
Fedora Latest release 27 / 14 November 2017
Fedora Latest release 28 / 1 May 2018
Fujitsu BS2000 OSD Latest release BS2000/OSD v10.0 / 2016
Gradle Stable release 4.4.1 / December 20, 2017
Gradle Stable release 4.5 / January 24, 2018
Gradle Stable release 4.5.1 / February 5, 2018
Gradle Stable release 4.6 / February 28, 2018

99

A. Appendix

Gradle Stable release 4.6 (February 28, 2018)
Gradle Stable release 4.7 (April 18, 2018)
Gradle Stable release 4.8 (June 4, 2018)
HP HP-UX Latest release 11i v3 Update 16 / May 2017
IBM AIX Latest release 7.2 / October 5, 2015
IBM DB2 Stable release Db2 Data Server (11.1) / April 12, 2016
IBM Informix Stable release 12.10.xC7 / June 15, 2016
IBM OS400 Latest release 7.3 / April 15, 2016
IBM WebSphere Stable release 9.0 / June 24, 2016
IBM z/OS Latest release Version 2.3 (V2R3) / September 29, 2017
Ingres Stable release 11.0 / April 21, 2017
iOS Latest release 11.2.5 (15D60) (January 23, 2018)
iOS Latest release 11.2.6 (15D100) (February 19, 2018)
iOS Latest release 11.3.1 (15E302) (April 24, 2018)
iOS Latest release 11.3 (15E216/15E218) (March 29, 2018)
iOS Latest release 11.4 (15F79) (May 29, 2018)
Kubernetes Stable release 1.10.1 / April 12, 2018
Kubernetes Stable release 1.10.3 / May 21, 2018
Kubernetes Stable release 1.10.4 / June 6, 2018
Laravel Stable release 5.6.20 / May 2, 2018
Linux Mint Latest release Linux Mint 18.3 "Sylvia" / 27 November

2017
MacOS Latest release 10.13.3 (17D47/17D2047) (January 23,

2018)
MacOS Latest release 10.13.3 (17D102/17D2102) (February 19,

2018)
MacOS Latest release 10.13.4 (17E199) (March 29, 2018)
MacOS Latest release 10.13.4 (17E202) (April 24, 2018)
MacOS Latest release 10.13.5 (17F77) (June 1, 2018)
Maven Stable release 3.5.2 / 24 October 2017
Maven Stable release 3.5.3 / 8 March 2018
Microsoft SQL
Server

Stable release SQL Server 2017 / October 2, 2017

Microsoft Windows Latest release 1709 (10.0.16299.248) (February 13, 2018)
Microsoft Windows Latest release 1709 (10.0.16299.251) (March 5, 2018)
Microsoft Windows Latest release 1709 (10.0.16299.334) (March 22, 2018)
Microsoft Windows Latest release 1803 (10.0.17134.1) (April 30, 2018)
Microsoft Windows Latest release 1803 (10.0.17134.48) (May 8, 2018)
Microsoft Windows Latest release 1803 (10.0.17134.81) (May 20, 2018)
Microsoft Windows Latest release 1803 (10.0.17134.81) (May 23, 2018)
Microsoft Windows Latest release 1803 (10.0.17134.112) (June 12, 2018)
Microsoft Windows Latest preview RS4 (10.0.17093) (February 7, 2018)

100

A.3. Wikipedia Data Extractions

Microsoft Windows Latest preview RS4 (10.0.17101) (February 23, 2018)
Microsoft Windows Latest preview RS4 (10.0.17112) (February 23, 2018)
Microsoft Windows Latest preview RS4 (10.0.17115) (March 6, 2018)
Microsoft Windows Latest preview RS5 (10.0.17627.1000) (March 21, 2018)
Microsoft Windows Latest preview RS5 (10.0.17639) (April 4, 2018)
Microsoft Windows Latest preview RS5 (10.0.17655) (April 25, 2018)
Microsoft Windows Latest preview RS5 (10.0.17661) (May 3, 2018)
Microsoft Windows Latest preview RS5 (10.0.17666) (May 9, 2018)
Microsoft Windows Latest preview RS5 (10.0.17672) (May 16, 2018)
Microsoft Windows Latest preview RS5 (10.0.17682) (May 31, 2018)
Microsoft Windows Latest preview RS5 (10.0.17686) (June 6, 2018)
Microsoft Windows
Server

Latest release 1709 (10.0.16299) / 17 October 2017

Microsoft Windows
Server

Latest preview RS4 (10.0.17035) / 15 November 2017

MySQL Stable release 5.7.21 / 15 January 2018
MySQL Stable release 8.0.11 / 19 April 2018
NEO4j Stable release 3.3.0 / October 24, 2018
NEO4j Stable release 3.3.3 / February 12, 2018
NEO4j Stable release 3.3.5 / April 11, 2018
Net-SNMP Stable release 5.7.3 / December 8, 2014
NodeJS Stable release 9.4.0 & 8.9.4 (LTS) / January 10, 2018
NodeJS Stable release 9.5.0 & 8.9.4 (LTS) / January 31, 2018
NodeJS Stable release 9.6.1 & 8.9.4 (LTS) / February 22, 2018
NodeJS Stable release 9.7.1 & 8.9.4 (LTS) / March 2, 2018
NodeJS Stable release 9.8.0 & 8.10.0 (LTS) / March 7, 2018
NodeJS Stable release 9.10.1 & 8.11.1 (LTS) / March 29, 2018
NodeJS Stable release 9.11.1 & 8.11.1 (LTS) / April 5, 2018
NodeJS Stable release 10.0.0 & 8.11.1 (LTS) / April 24, 2018
NodeJS Stable release 10.1.0 & 8.11.1 (LTS) / May 8, 2018
NodeJS Stable release 10.1.0 / May 8, 2018
NodeJS Stable release 10.2.1 / May 24, 2018
NodeJS Stable release 10.3.0 / May 29, 2018
NodeJS Stable release 10.4.0 / June 6, 2018
NodeJS Stable release 10.4.1 / June 12, 2018
Oracle GlassFish Stable release 5.0.0 / 21 September 2017
Oracle Java Stable release 8.0.1610.12 (Update 161) (January 16,

2018)
Oracle Java Stable release 8.0.1610.12 (Update 161) (January 16,

2018)
Oracle Java Stable release 8.0.1710.11 (Update 171) (April 17, 2018)
Oracle Java Stable release Java 8 (LTS): 8.0.1610.12 (Update 161)

101

A. Appendix

Oracle Linux Latest release 7.4 / 8 August 2017
Oracle Linux Latest release 7.5 / 17 April 2018
Oracle MySQL Stable release 5.7.21 / 15 January 2018
Oracle MySQL Stable release 8.0.11 / 19 April 2018
Oracle MySQL Preview release 8.0.4 rc / 23 January 2018
Oracle NoSQL
Database

Stable release 18.1 / 20 April 2018 (2018-04-20)

Oracle NoSQL
Database

Stable release 4.5 / 24 August 2017 (2017-08-24)

Oracle WebLogic Stable release 12c R2 (12.2.1) / 26 October 2015
Perl Stable release 5.26.1 / September 22, 2018
Perl Stable release 5.26.2 / April 14, 2018
Perl Preview release 5.27.7 / December 20, 2017
Perl Preview release 5.27.10 / March 20, 2018
Perl Preview release 5.27.11 / April 20, 2018
PHP Stable release 7.2.4 / March 28, 2018
PHP Stable release 7.2.5 / April 26, 2018
PHP Stable release 7.2.6 / May 24, 2018
PostgreSQL Stable release 10.1 / 9 November 2017
PostgreSQL Stable release 10.2 / 8 February 2018
PostgreSQL Stable release 10.3 / 1 March 2018
PostgreSQL Stable release 10.4 / 10 May 2018
Python Stable release 3.6.4 / 19 December 2017
Python Stable release 3.6.5 / 28 March 2018
Python Preview release 3.7.0a4, 3.5.5rc1, 3.4.8rc1 / 2018
Python Preview release 3.7.0b1 / 2018
Python Preview release 3.7.0b3 / 29 March 2018
Python Preview release 3.7.0b4 / 2 May 2018
Python Preview release 3.7.0b5 / 30 May 2018
RedHat Enterprise
Linux

Latest release 7.4, 6.9, 5.11 / August 1, 2017

RedHat Enterprise
Linux

Latest release 7.5, 6.9, 5.11 / April 10, 2018

RedHat JBoss Preview release 7.1 beta / June 29, 2017
RedHat JBoss Stable release 7.1 / December 13, 2017
Redis Stable release 4.0.7 / January 24, 2018
Redis Stable release 4.0.8 / February 2, 2018
Redis Stable release 4.0.9 / March 26, 2018
Ruby Stable release 2.5.0 (December 25, 2017)
Ruby Stable release 2.5.1 (March 28, 2018)
SAP Sybase Stable release 16.0
Spring Stable release 5.0.2 / November 27, 2017

102

A.4. Twitter Account List

Spring Stable release 5.0.3 / January 23, 2018
Spring Stable release 5.0.4 / January 23, 2018
Spring Stable release 5.0.5 / April 3, 2018
Spring Stable release 5.0.6 / May 8, 2018
Sun Solaris Latest release 11.3 / October 26, 2015
SuSE Linux Enter-
prise Server

Latest release 12SP3, 11SP4 / September 7 2017

Swift Stable release 4.0 / September 19, 2017
Swift Stable release 4.1 / March 29, 2018
Swift Stable release 4.1.1 / May 4, 2018
Swift Stable release 4.1.2 / May 31, 2018
WordPress Stable release 4.9.5 / 2018-04-03
WordPress Stable release 4.9.6 / 2018-05-17
WordPress Stable release 4.9.7 / 2018-05-26

Table A.3: List of Wikipedia Information Extractions

A.4 Twitter Account List

Name User name #
Actian Corporation @ActianCorp 220
Android @Android 145
Android Developers @AndroidDev 225
Angular @angular 61
Apache Maven @ASFMavenProject 120
Apache Tomcat @TheApacheTomcat 55
Canonical Ltd @Canonical 62
EmberJS @emberjs 28
Exasol @ExasolAG 138
Fedora Project @fedora 181
Fujitsu Global @Fujitsu_Global 549
GlassFish @glassfish 30
GNOME @gnome 158
Google @Google 1247
Gradle @gradle 77
HP @HP 57
HPE @HPE 296
HPE News @HPE_News 201
IBM @IBM 473
IBM Cloud @IBMcloud 608
IBMDb2 @IBMDb2 397
IBM News Room @IBMNews 369

103

A. Appendix

IBM Power Systems @IBMPowerSystems 654
IBM Service Mgmt @IBMServiceMgmt 436
IBM WebSphere @IBMWebSphere 265
IBM Z @IBMZ 747
Java @java 1203
Kubernetes @kubernetesio 78
Linux @Linux 23
Linux.com @LinuxDotCom 386
Linux Inside: The Ideal Blog
for Sysadmins & Geeks

@tecmint 509

Linux Mint @Linux_Mint 30
Linux Today @linuxtoday 217
Linux User & Developer @LinuxUserMag 166
Microsoft SQL Server @SQLServer 476
MySQL @MySQL 185
Neo4j @neo4j 1269
Node.js @nodejs 504
openSUSE Linux @openSUSE 322
Oracle @Oracle 789
php.net @php_net 23
php.net @official_php 20
Planet PHP @planetphp 124
Planet PostgreSQL @planetpostgres 316
PostgreSQL @postgresql 205
Python Insider @PythonInsider 35
Python Software @ThePSF 299
Red Hat, Inc. @RedHatNews 1161
Ruby on Rails @rails 32
SAP @SAP 664
SAP HANA @SAPInMemory 163
SAP News @sapnews 314
Scala @scala_lang 114
SpringCentral @springcentral 440
SUSE @SUSE 950
The Debian Project @debian 84
The Linux Foundation @linuxfoundation 1176
The Perl Foundation @perlfoundation 58
Ubuntu @ubuntu 409
Windows @Windows 1332
Windows Server @windowsserver 127

Table A.4: List of Twitter Accounts data was extracted from

104

A.5. List of Peaks found by analyzing Search Engine Data

A.5 List of Peaks found by analyzing Search Engine Data

Date Keyword Type #Null Decrease total Decrease %
18.02.2018 Android P MA 0 40 to 32 20%
07.03.2018 Android P TAoJ 0 920 to 615 33%
02.05.2018 Fedora 28 MA 12 25 to 7 72%
03.04.2018 Fedora 28 TAoJ 9 1972 to 1517 23%
02.05.2018 Fedora 28 SD 12 21 to 13 38%
09.06.2018 iOS MA 0 74 to 56 24%
09.06.2018 iOS 12 MA 0 50 to 5 91%
09.06.2018 iOS 12 TAoJ 0 959 to 189 80%
25.03.2018 Java 10 MAW 0 71 to 39 45%
24.03.2018 Java 10 MA 0 72 to 48 34%
24.03.2018 Java 10 TAoJ 0 1005 to 776 23%
11.06.2018 MacOS MAW 0 74 to 42 44%
09.06.2018 MacOS MA 0 75 to 44 41%
10.06.2018 MacOS TAoJ 0 675 to 513 24%
11.05.2018 MySQL 8 MAW 2 43 to 25 41%
20.04.2018 MySQL 8 MA 0 47 to 30 36%
24.04.2018 MySQL 8 TAoJ 2 1889 to 1367 28%
20.04.2018 MySQL 8 SD 0 21 to 15 29%
04.05.2018 Nodejs 10 MA 14 29 to 24 17%
30.04.2018 Ubuntu MAW 0 84 to 72 14%
19.04.2018 Ubuntu 18 MA 0 40 to 34 15%
23.04.2018 Ubuntu 18 TAoJ 0 1747 to 1006 42%
26.04.2018 Ubuntu 18 SD 0 21 to 11 46%
09.06.2018 WatchOS 5 TAoJ 34 1902 to 265 86%
15.06.2018 WatchOS 5 SD 12 23 to 15 33%
25.03.2018 Windows

Server 2019
TAoJ 70 1419 to 281 80%

10.06.2018 Windows
Server 2019

SD 14 17 to 13 23%

20.02.2018 WordPress 5 MAW 1 47 to 35 26%
Table A.5: Analysis Results of Search Engine Data

105

List of Figures

1.1 Overview Research Questions . 2
1.2 Overview Work Packages . 5

2.1 Categories of Web mining (based on [52]) 10
2.2 Subtasks of Web Mining (based on [33]) 12
2.3 Desktop Search Engine Market Share (Data from [46]) 14
2.4 Framework for evaluating Website Quality (based on [7, p. 648]) 16
2.5 Model of how User judge the Credibility of Websites (based on [59, p. 144]) 17
2.6 Screenshot Google Trends Search Parameters 19
2.7 Modified Screenshot Google Trends . 20

3.1 NLP System Pipeline (based on [34, p. 10]) 24
3.2 Levels of NLP . 25
3.3 NLP Applications (based on [28]) . 28
3.4 Example of a parser application (based on [34, 28]) 31

4.1 Process Model for Technology Update Detection 34
4.2 Categorization Model for Online Data Sources 37
4.3 Decision Model for Technology Update Notification 39

5.1 System Architecture . 45
5.2 Database Model . 47
5.3 NLP Pipeline . 54
5.4 Screenshot: Email Newsletter OS X Daily from 5.6.2018 56

6.1 Screenshot Wikipedia: Python . 69
6.2 Screenshot Wikipedia: iOS . 69
6.3 Number of Search Results for Keyword Microsoft Windows (112.02.2018 -

13.05.2018) . 72
6.4 Number of Search Requests for Keyword iOS 11 (13.12.2016 - 13.03.2017) 74
6.5 Number of Search Requests for Keyword iOS 11 (15.12.2016 - 15.03.2017) 74
6.6 Number of Search Requests for Keyword iOS 11 (03.03.2017 - 03.06.2017) 75
6.7 Number of Search Requests for Keyword iOS 11 (05.03.2017 - 05.06.2017) 75
6.8 Number of Search Requests for Keyword Java 10 (19.09.2017 - 19.03.2018) 76

107

6.9 Number of Search Requests for Keyword Java 10 (21.09.2017 - 21.03.2018) 76
6.10 Number of Search Requests for Keyword Ubuntu (01.03.2018 - 30.05.2018) 77
6.11 Number of Search Requests for Keyword Ubuntu 18 (01.03.2018 - 30.05.2018) 78
6.12 Number of Search Requests for Keyword BS2000 (28.02.2018 - 30.05.2018) 79
6.13 Number of Search Requests for Keyword Fedora 28 (25.01.2018 - 25.04.2018) 79
6.14 Number of Search Requests for Keyword Fedora 28 (01.02.2018 - 01.05.2018) 80
6.15 Number of Search Requests for Keyword Windows Server 2019 (20.12.2017 -

20.03.2018) . 81
6.16 Number of Search Requests for Keyword Windows Server 2019 (21.12.2017 -

21.03.2018) . 81

108

Listings

5.1 Receiving Emails from a Mail Server via POP3 48
5.2 Process Email content based on Content Type 49
5.3 Iterate through RSS Feeds to find new Entries 49
5.4 Create an Object of Class Twitter . 50
5.5 Get Friend List for a Twitter Account 50
5.6 Receive all Tweets from an User List . 51
5.7 Extract Release Information from Wikipedia 51
5.8 Receive the Number of Search Results from Google Search 52
5.9 Receive the Number of Search Requests from Google Trends 53
5.10 Regular Expression for detecting URLs 55
5.11 Applying NLP Tools from Apache OpenNLP 60

109

List of Tables

3.1 Morphological Analysis of Words (based on [34, p. 17]) 26
3.2 Tagging Words by a Name Finder (based on [27, p. 16]) 31

4.1 Example of Keyword List . 35

5.1 Tweets captured by Regular Expression 1 57
5.2 Tweets captured by Regular Expression 2 57
5.3 Tweets captured by Regular Expression 3 58
5.4 Apache OpenNLP: Tokenizer, Part-of-Speech Tagger and Lemmatizer . . 59

6.1 Tweets found by Regular Expressions with False Positive Diagnose 63
6.2 Tweets found by Regular Expressions with True Positive Diagnose 63
6.3 Tweets found by Regular Expressions with False Negative Diagnose . . . 64
6.4 Tweets found by applying NLP Tools with False Positive Diagnosis 65
6.5 Tweets not captured by applying NLP Tools 65
6.6 Compare Regular Expressions and NLP Tools 66
6.7 Wikipedia: Extraction of Field Stable Release (January - June 2018) . . . 70
6.8 Wikipedia: Extraction of Fields Latest Release and Preview Release (January

- June 2018) . 71
6.9 Analysis of Number of Search Results for Keyword Microsoft Windows . . 72
6.10 Google Trends Analysis via various Statistical Approaches; Moving Average

(MA), Moving Average Weekend Trend (MAW), Total Number of Jumps
(TNoJ), Standard Deviation (DV) . 82

A.1 List of Email Newsletters . 98
A.2 List of RSS Feeds . 99
A.3 List of Wikipedia Information Extractions 103
A.4 List of Twitter Accounts data was extracted from 104
A.5 Analysis Results of Search Engine Data 105

111

Acronyms

AI Artificial Intelligence.
API Application Programming Interface.

CFG Context Free Grammar.
CLIR Cross-Lingual Information Retrieval.
CSV Character-separated Values.

DB Database.
DOM Document Object Model.

GIF Graphics Interchange Format.

HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

IR Information Retrieval.
ISV Independent Software Vendor.

NLP Natural Language Processing.

POP3 Post Office Protocol version 3.
POS Part-of-speech.

REST Representational State Transfer.
RSS Rich Site Summary.

TAM Technology Acceptance Model.

URL Uniform Resource Locator.

XML Extensible Markup Language.

113

Bibliography

[1] A. M. Aladwani and P. C. Palvia. Developing and validating an instrument for
measuring user-perceived web quality. Information & management, 39(6):467–476,
2002.

[2] J. F. Allen. Natural language processing. In Encyclopedia Encyclopedia of Computer
Science, 4th Ed., pages 1218–1222. John Wiley and Sons Ltd., 2003.

[3] C. Barrière. Natural Language Understanding in a Semantic Web Context. Springer,
2016.

[4] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web mining. In The
Semantic Web—ISWC 2002, pages 264–278. Springer, 2002.

[5] V. Bharanipriya and V. K. Prasad. Web content mining tools: a comparative
study. International Journal of Information Technology and Knowledge Management,
4(1):211–215, 2011.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1-7):107–117, 1998.

[7] M. Cao, Q. Zhang, and J. Seydel. B2c e-commerce web site quality: an empirical
examination. Industrial Management & Data Systems, 105(5):645–661, 2005.

[8] C. Chapman and K. T. Stolee. Exploring regular expression usage and context in
python. In Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 282–293. ACM, 2016.

[9] H. Choi and H. Varian. Predicting the present with google trends. Economic Record,
88:2–9, 2012.

[10] G. G. Chowdhury. Natural language processing. In Annual review of information
science and technology, volume 37, pages 51–89. Wiley Online Library, 2003.

[11] R. Cooley, B. Mobasher, and J. Srivastava. Web mining: Information and pat-
tern discovery on the world wide web. In Tools with Artificial Intelligence, 1997.
Proceedings., Ninth IEEE International Conference, pages 558–567. IEEE, 1997.

115

[12] R. Cooley, B. Mobasher, and J. Srivastava. Overview of web content mining tools.
In The International Journal of Engineering And Science (IJES), volume 2, pages
106–110. CoRR, 2013.

[13] W. B. Croft, D. Metzler, and T. Strohman. Search engines: Information retrieval in
practice, volume 283. Addison-Wesley Reading, 2010.

[14] M. Cutts. Can you explain what google means by “trust“? https://www.youtube.
com/watch?v=ALzSUeekQ2Q, 2011. [Online; accessed 12-October-2017].

[15] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. User acceptance of computer
technology: a comparison of two theoretical models. Management science, 35(8):982–
1003, 1989.

[16] J. Éthier, P. Hadaya, J. Talbot, and J. Cadieux. B2c web site quality and emotions
during online shopping episodes: An empirical study. Information & Management,
43(5):627–639, 2006.

[17] M. Ettredge, J. Gerdes, and G. Karuga. Using web-based search data to predict
macroeconomic statistics. Communications of the ACM, 48(11):87–92, 2005.

[18] O. Etzioni. The world-wide web: Quagmire or gold mine? Communications of the
ACM, 39(11):65–68, 1996.

[19] W. Gatterbauer. Web harvesting. In Encyclopedia of Database Systems, pages
3472–3473. Springer, 2009.

[20] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and
L. Brilliant. Detecting influenza epidemics using search engine query data. Nature,
457(7232):1012–1014, 2009.

[21] G. I. Glossary. Isv (independent software vendor). http://www.gartner.com/
it-glossary/isv-independent-software-vendor, 2017. [Online; accessed 01-
August-2017].

[22] Google. How trends data is adjusted. https://support.google.com/trends/answer/
4365533?hl=en&ref_topic=6248052, 2017. [Online; accessed 17-October-2017].

[23] J. Hogue. pytrends. https://github.com/GeneralMills/pytrends, 2017. [Online;
accessed 17-October-2017].

[24] K. Honda, H. Washizaki, and Y. Fukazawa. A generalized software reliability model
considering uncertainty and dynamics in development. In International Conference
on Product Focused Software Process Improvement, pages 342–346. Springer, 2013.

[25] K. Honda, H. Washizaki, and Y. Fukazawa. Predicting release time based on
generalized software reliability model (gsrm). In Computer Software and Applications
Conference (COMPSAC), 2014 IEEE 38th Annual, pages 604–605. IEEE, 2014.

116

https://www.youtube.com/watch?v=ALzSUeekQ2Q
https://www.youtube.com/watch?v=ALzSUeekQ2Q
http://www.gartner.com/it-glossary/isv-independent-software-vendor
http://www.gartner.com/it-glossary/isv-independent-software-vendor
https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052
https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052
https://github.com/GeneralMills/pytrends

[26] T. Inc. Twitter turns six. https://blog.twitter.com/official/en_us/a/2012/
twitter-turns-six.html, 2012. [Online; accessed 12-February-2018].

[27] P. Jackson and I. Moulinier. Natural Language Processing for Online Applications:
Text retrieval, extraction and categorization. Second revised edition. Natural Language
Processing. John Benjamins Publishing Company, 2007.

[28] P. Jackson and F. Schilder. Natural language processing: Overview. In Encyclopedia
of Language & Linguistics (2nd edn.), volume 8, pages 503–517. Elsevier Ltd., 2006.

[29] M. Jeong and C. U. Lambert. Adaptation of an information quality framework to
measure customers’ behavioral intentions to use lodging web sites. International
Journal of Hospitality Management, 20(2):129–146, 2001.

[30] K. L. Johnson and M. M. Misic. Benchmarking: a tool for web site evaluation and
improvement. Internet Research, 9(5):383–392, 1999.

[31] R. Kay. Web harvesting. Computerworld, 38(25):44, 2004.

[32] J. B. Killoran. How to use search engine optimization techniques to increase website
visibility. IEEE transactions on professional communication, 56(1):50–66, 2013.

[33] R. Kosala and H. Blockeel. Web mining research: A survey. ACM SIGKDD
Explorations Newsletter, 2(1):1–15, 2000.

[34] E. Kumar. Natural Language Processing. I.K. International Publishing House Pvt.
Ltd., 2011.

[35] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massiv Datasets, chapter
1. Data Mining, pages 1–19. Cambridge University Press, 2011.

[36] C. Library. How do i evaluate websites? https://www.ccri.edu/library/help/
evalsites.html, 2016. [Online; accessed 11-October-2017].

[37] C. U. Library. Evaluating web pages: Questions to consider: Categories. http:
//guides.library.cornell.edu/evaluating_Web_pages, 2017. [Online; accessed
11-October-2017].

[38] E. D. Liddy. Natural language processing. In Encyclopedia of Library and Information
Science (2nd edn.). Marcel Decker, Inc., 2001.

[39] B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Data-
Centric Systems and Applications. Springer Berlin Heidelberg, 2011.

[40] C.-J. Luh, S.-A. Yang, and T.-L. D. Huang. Estimating google’s search engine
ranking function from a search engine optimization perspective. Online Information
Review, 40(2):239–255, 2016.

117

https://blog.twitter.com/official/en_us/a/2012/twitter-turns-six.html
https://blog.twitter.com/official/en_us/a/2012/twitter-turns-six.html
https://www.ccri.edu/library/help/evalsites.html
https://www.ccri.edu/library/help/evalsites.html
http://guides.library.cornell.edu/evaluating_Web_pages
http://guides.library.cornell.edu/evaluating_Web_pages

[41] S. K. Madria, S. S. Bhowmick, W. K. Ng, and E.-P. Lim. Research issues in web data
mining. In DataWarehousing and Knowledge Discovery, pages 303–312. Springer,
1999.

[42] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press., 2008.

[43] M. J. Metzger. Making sense of credibility on the web: Models for evaluating online
information and recommendations for future research. Journal of the Association
for Information Science and Technology, 58(13):2078–2091, 2007.

[44] L. Mich, M. Franch, and L. Gaio. Evaluating and designing web site quality. IEEE
MultiMedia, 10(1):34–43, 2003.

[45] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, 2000.

[46] NetMarketShare. Desktop search engine market share. https://www.
netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0,
2017. [Online; accessed 12-October-2017].

[47] T. U. of Edinburgh. How to evaluate website content. http://www.ed.
ac.uk/information-services/library-museum-gallery/finding-resources/
library-databases/databases-overview/evaluating-websites, 2017. [Online;
accessed 11-October-2017].

[48] P. M. Polgreen, Y. Chen, D. M. Pennock, F. D. Nelson, and R. A. Weinstein. Using
internet searches for influenza surveillance. Clinical infectious diseases, 47(11):1443–
1448, 2008.

[49] K. Power. Metrics for understanding flow. Agile Software Development Conference
(Agile 2014), 2014.

[50] T. Preis, H. S. Moat, and H. E. Stanley. Quantifying trading behavior in financial
markets using google trends. Scientific reports, 3, 2013.

[51] A. Rosen. Tweeting made easier. https://blog.twitter.com/official/en_
us/topics/product/2017/tweetingmadeeasier.html, 2017. [Online; accessed 12-
February-2018].

[52] J. Srivastava, P. Desikan, and V. Kumar. Web mining – concepts, applications and
research directions. In Studies inFuzziness and Soft Computing, volume 180, pages
275–307. Springer, 2005.

[53] G. Support. The count of the number of search results is incorrect. https://support.
google.com/gsa/answer/2672285?hl=en, 2018. [Online; accessed 25-May-2018].

118

https://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0
https://www.netmarketshare.com/search-engine-market-share.aspx?qprid=4&qpcustomd=0
http://www.ed.ac.uk/information-services/library-museum-gallery/finding-resources/library-databases/databases-overview/evaluating-websites
http://www.ed.ac.uk/information-services/library-museum-gallery/finding-resources/library-databases/databases-overview/evaluating-websites
http://www.ed.ac.uk/information-services/library-museum-gallery/finding-resources/library-databases/databases-overview/evaluating-websites
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://support.google.com/gsa/answer/2672285?hl=en
https://support.google.com/gsa/answer/2672285?hl=en

[54] G. Support. Estimated vs. actual number of results. https://support.google.com/
gsa/answer/6329272#91428, 2018. [Online; accessed 25-May-2018].

[55] TechTerms. Api definition. https://techterms.com/definition/api, 2016. [Online;
accessed 17-October-2017].

[56] M. Tizzoni. j-google-trends-api. https://github.com/elibus/
j-google-trends-api, 2017. [Online; accessed 17-October-2017].

[57] P. Trasborg. google-trends-api. https://www.npmjs.com/package/
google-trends-api, 2017. [Online; accessed 17-October-2017].

[58] W3Schools. Http methods: Get vs. post. https://www.w3schools.com/tags/ref_
httpmethods.asp. [Online; accessed 18-October-2017].

[59] C. N. Wathen and J. Burkell. Believe it or not: Factors influencing credibility
on the web. Journal of the Association for Information Science and Technology,
53(2):134–144, 2002.

[60] I. Yoon, A. Sussman, A. Memon, and A. Porter. Direct-dependency-based software
compatibility testing. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE, pages 409–412. ACM, 2007.

[61] I. Yoon, A. Sussman, A. Memon, and A. Porter. Effective and scalable software
compatibility testing. In Proceedings of the 2008 international symposium on Software
testing and analysis, pages 63–74. ACM, 2008.

119

https://support.google.com/gsa/answer/6329272#91428
https://support.google.com/gsa/answer/6329272#91428
https://techterms.com/definition/api
https://github.com/elibus/j-google-trends-api
https://github.com/elibus/j-google-trends-api
https://www.npmjs.com/package/google-trends-api
https://www.npmjs.com/package/google-trends-api
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp

	Kurzfassung
	Abstract
	Introduction
	Problem Description and Motivation
	Research Goals and Questions
	Methodological Approach
	Structure of the Thesis

	State of the Art
	Web Mining
	Definition
	Categorization
	Subtasks of Web Mining
	Challenges of Web Content Mining

	Identification of trustable Online Sources
	Assessment by Search Engines
	Assessment by Web Users

	Search Engine Analysis
	Related Work
	Analyze Web Searches with Google Trends
	Automated Access on Google Trends

	Concepts of Text Analysis with NLP
	Definition and Characteristics
	Levels of NLP
	Application Area
	Tools in Linguistic Analysis
	Sentence Delimiters and Tokenizers
	Stemming/Lemmatizing and Tagging
	Noun Phrase and Name Recognizers
	Parsers and Grammars

	Design of Models for detecting Technology Updates
	Process Model for Technology Update Detection
	Categorization Model for Online Data Sources
	Decision Model for Technology Update Notification
	Analysis of Data Sources with high Confidence Level
	Analysis of Search Engine Data
	Analysis of Data Sources with lower Confidence Level

	Prototype Architecture and Design
	System Architecture
	Database
	Data Extraction Methods
	Email
	RSS Feed
	Twitter
	Wikipedia
	Number of Search Results
	Number of Search Requests

	Application of NLP
	Task 1: Split Texts into Sentences
	Task 2.1: Find Release Messages by Regular Expressions
	Task 2.2: Find Release Messages by NLP Tools

	Data Source Discussion
	Data Source: Technology News and Social Media (NLP)
	Compare Regular Expression against NLP Tools
	Appropriateness of the NLP Data Sources

	Data Source: Online Encyclopedia
	Data Source: Search Engine (Results)
	Data Source: Search Engine (Requests)
	Moving Average
	Technologies with Weekend Trends
	Uncommon Technologies
	Standard Deviation
	Number of high Jumps
	Compare statistical Approaches

	Conclusion
	Main Contributions
	Future Research

	Appendix
	Email Newsletter List
	RSS Feed List
	Wikipedia Data Extractions
	Twitter Account List
	List of Peaks found by analyzing Search Engine Data

	List of Figures
	Listings
	List of Tables
	Acronyms
	Bibliography

