
Improving Crowdsourced
Software Inspection:

Development of an Experimental
Process Support Platform

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Peter Penzenstadler, BSc.
Matrikelnummer 01127770

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: MSc., PhD Marta Reka Sabou

Wien, 8. Oktober 2018
Peter Penzenstadler Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Improving Crowdsourced
Software Inspection:

Development of an Experimental
Process Support Platform

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Peter Penzenstadler, BSc.
Registration Number 01127770

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Assistance: MSc., PhD Marta Reka Sabou

Vienna, 8th October, 2018
Peter Penzenstadler Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Peter Penzenstadler, BSc.
Herndlgasse 20/18, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. Oktober 2018
Peter Penzenstadler

v

Danksagung

An dieser Stelle möchte ich allen Menschen danken die mich während meines Studiums
und dem Verfassen dieser Arbeit unterstützt haben.

Als erstes möchte ich meinem Betreuer Professor Stefan Biffl für die Möglichkeit danken
diese Diplomarbeit zu schreiben. Ein großes Dankeschön ergeht an Marta Sabou, die
mich während dieser Zeit, mit ihrer positive Einstellung und dem richtigen Feedback zur
richtigen Zeit, begleitet hat.

Hier möchte ich mich auch Dankbar für meine Familie und alle meine geliebten Menschen
zeigen, die mich auf diesem Weg begleitet haben. Ohne euch wäre das alles nicht möglich
gewesen. Danke and meine Mutter, meinen Vater und meinem Bruder, dafür das ihr mir
Stärke und Stabilität gegeben habt und mich bei jeder Entscheidung unterstützt habt.
Danke an meine Freundin die mir in schwierigen Zeiten zur Seite gestanden ist und mir
immer gesagt hat das ich das schaffe.

Danke an alle meine Freunde dafür das ihr mich immer daran erinnert habt das ich auf
euch zählen kann wann immer ich euch brauche und das Leben mit Freunden mehr Spaß
macht. Hier ist nicht genug Platz um meine Dankbarkeit für euch alle auszudrücken
aber seid versichert, dass ich für jeden Menschen der mich auf dieser Reise begleitet hat
Dankbar bin.

vii

Acknowledgements

At this point I want to thank all the people who supported me during my studies and
during the writing of this thesis.

First I want to thank my advisor Professor Stefan Biffl for the opportunity to write this
diploma thesis. A big thank you goes to Marta Sabou, for supporting me during this
whole time with her positive attitude and by giving me the right feedback and advice
when I needed it most.

This is also where I want to be grateful for my family and loved ones, who were with
me all along this journey and without them this would not be possible. Thanks to my
mother, father and brother, for always being there for me and giving me strength and
stability during all this time and supporting me in every decision I make. Thanks to my
girlfriend for standing by my side when times where tough and for ensuring me that I
can do this.

Thanks to my friends for reminding me that I can always count on you in times when I
need you and that life is also about enjoyment and company. There is not enough room
to express my gratefulness to all of you, but be assured that I am thankful for everyone
who walked with me on this journey.

ix

Kurzfassung

Taxonomien und Wissensgraphen in Wissensmodellierung und Extended Entity Relation-
ship (EER) Diagramme in der Software Entwicklung, sind Formen von Konzeptionellen
Modellen und dienen als Basis zu Entwicklung von Informations-Systemen. Die Verifizie-
rung dieser Konzeptionellen Modelle gegenüber ihrem Referenzsystem (Spezifikation) ist
wesentlich um zu verhindern, dass defekte Model Elemente in den Software Entwicklungs-
zyklus gelangen, da diese Modelle oft direkt zur Ableitung und Generierung von Software
Artefakten, zum Beispiel in der Model-getriebenen Software Entwicklung, herangezogen
werden.

Sabou, Winkler et. al, schlagen einen generischen Ansatz zur Verifizierung von Konzep-
tionellen Modellen (VeriCoM) vor, bei dem die traditionellen Software Inspizierungen mit
Hilfe von Human Computation und Crowdsourcing erweitert werden. Die Performance
von VeriCoM wurde mit Crowdsourced Software Inspection (CSI) Experimenten an
einem Software Entwicklungs-Anwendungsfall getestet, bei dem die Korrektheit eines
EER Diagramms in Bezug auf seine textuelle Spezifikation überprüft wurde. Diese Expe-
rimente folgten einem hauptsächlich manuell ausgeführten wissenschaftlichen Experiment
Prozess, welcher sehr Zeit aufwändig, Fehler anfällig, nicht skalierbar und insgesamt nicht
für größere Gruppen von Experiment-TeilnehmerInnen geeignet war. Daher entstand
die Notwendigkeit für die Automation dieses Experiment Prozesses durch ein Software
Programm.

Der Kern dieser Arbeit liegt in der Analyse des CSI-Experiment Prozesses und der detail-
lierten formalen Definition der benötigten Daten Modelle und Algorithmen zur Automa-
tisierung von VeriCoM. Diese Daten Modelle und Algorithmen werden zur Entwicklung
eines Prototypen einer CSI-Plattform herangezogen. Diese CSI-Plattform unterstützt die
CSI-Experimente zur Validierung von VeriCoM. Während eines Tests des Prototypen
unter Live-Bedingungen im Rahmen eines CSI-Experiments, wurde gezeigt, dass die
entwickelte CSI-Plattform die Arbeitslast des Experiment Administrations-Teams stark
reduzierte und die anschließende Umfrage zeigte zufriedene Experiment-beteiligte. Daher
kann die Formale Definition von VeriCoM und der entwickelte CSI-Plattform Prototyp
als Startpunkt für ein ausgereiftes Softwaresystem zur Automatisierung von VeriCoM
und andere Experimenten innerhalb der CSI-Domäne herangezogen werden.

xi

Schlüsselwörter
Crowdsourced Software Inspection, Human Computation & Crowdsourcing, Verifizierung
von Konzeptionellen Modellen, Prozess Analyse, Formale Definition, Software Entwicklung

Abstract

Taxonomies and knowledge graphs in Knowledge Engineering and Extended Entity
Relationship (EER) diagrams in Software Engineering, are forms of conceptual models
and the basis for the development of information systems. Verifying these conceptual
models against their frame of reference is crucial to prevent defective model elements
from entering the Software Development Life Cycle, as these models can be directly
used to create software artefacts and source code, by means of Model-Driven Software
Engineering techniques. Enhancing traditional Software Inspection practices with Human
Computation and Crowdsourcing, Sabou, Winkler et. al proposed a generic approach
to Verify Conceptual Models (VeriCoM). The performance of VeriCoM was tested with
Crowdsourced Software Inspection (CSI) experiments on a Software Engineering use case,
verifying the correctness of an EER model with respect to a textual system specification.
These experiments followed a mostly manually performed scientific experiment-process,
which was very time-consuming, error prone, not scalable and overall not applicable for
a larger crowd of participants. Thus, the need for automation of this experiment-process
through a software tool arose.

The core work of this thesis consists of an analysis of the CSI-Experiment process and the
detailed formal definition of the data model and algorithms needed to automate VeriCoM.
These data models and algorithms are used to develop a CSI-Platform prototype which
supports the experiments to validate VeriCoM. During a test under live conditions within
a CSI-Experiment, the CSI-Platform greatly reduced the workload of the experiment
administrations team and the subsequent evaluation questionnaire showed satisfied
stakeholders. Therefore the formal definition of VeriCoM and the developed CSI-Platform
can act as a starting point for the development of a full-fledged software system to
automate VeriCoM and other experiments within CSI.

Keywords
Crowdsourced Software Inspection, Human Computation & Crowdsourcing, Verifying
Conceptual Models, Process Analysis, Formal Definition, Software Engineering

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Problem description . 1
1.2 Research Questions . 5
1.3 Methodology . 5
1.4 Contributions and Expected Results 8
1.5 Outline . 9

2 Background and Related Work 11
2.1 Software Inspection . 11
2.2 Human Computation and Crowdsourcing (HC&C) 13
2.3 Crowdsourcing in Software Engineering (CSE) 13
2.4 Crowdsourced Software Inspection (CSI) 15
2.5 Crowdsourced Model Verification . 16

3 CSI-Experiment Process Analysis & Requirements Elicitation 19
3.1 CSI-Experiment Process Analysis . 20
3.2 The VeriCoM Approach . 22
3.3 CSI-Experiment Stakeholders . 26
3.4 Requirement Analysis Method . 27
3.5 Status Quo of the CSI-Experiment process 29
3.6 CSI-Platform Requirements . 31

4 Data Model Design and Algorithm Development 35
4.1 Data Model . 35
4.2 Algorithms . 45

5 Implementation 59
5.1 Architecture and technology stack . 59

xv

5.2 VeriCoM - Algorithm implementation 62
5.3 Feedback Service - Module . 68
5.4 User Interface . 71

6 Evaluation of the CSI-Platform prototype 77
6.1 Experiment Spring 2018 . 78
6.2 Comparison of unsupported experiment process vs. CSI-Platform sup-

ported process . 79
6.3 CSI-Platform Evaluation - Interviews 82

7 Conclusion and Future Work 91
7.1 Answers to Research Questions and Discussion 91
7.2 Limitations . 93
7.3 Future work and Learning Analytics Platform (LEAP) 94

List of Figures 97

List of Tables 99

List of Algorithms 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Problem description

Successful software development relies on well-elaborated system specifications and
concisely formalised requirements as a foundation to craft conceptual models. These
models can be directly used to create software artefacts and system parts, e.g. source
code and test cases, by Model-Driven Software Engineering (MDSE) approaches [6].
Defects in these conceptual models have high impact on the derived code-base and on
subsequent software development stages. To reduce the likelihood of defective model
elements entering the Software Development Life Cycle (SDLC) and with that the source
code, inspection methods need to be applied and the conceptual model needs to be
verified. Software Inspection is a primarily human-based measure to check alignment of
the designed conceptual software artefacts, e.g. Extended Entity Relationship (EER)
models, with a corresponding frame of reference, e.g. specification documents such as
requirement sheets and system specifications [3]. To inspect complex software models
and overcome human limitations of cognitive focus, it is key to inspect small isolated
components and provide them to a group of inspectors [17].

Based on traditional best-practice Software Inspection and enhanced by Human Com-
putation and Crowdsourcing (HC&C) methods, Sabou, Winkler et al. presented the
Crowdsourced Software Inspection (CSI) process [29]. CSI is an approach in the context of
Software Engineering to inspect conceptual software models with the help of the expertise
of an inspector crowd. During this inspection the inspectors check whether the concep-
tual model correctly and completely represents the description within a requirements
document (i.e. frame of reference) [10]. Figure 1.1 illustrates the CSI-Process work-flow.

Starting the CSI-process is a preparation and planning phase (1), where reference
documents and the corresponding software artefact (e.g. a conceptual model) are
collected from the author and given to the CSI management team. In the following

1

1. Introduction

Figure 1.1: Crowdsourced Software Inspection (CSI) process [29].

inspection phase, the difference of CSI compared to the traditional inspection process,
becomes clearer. There is a clear division between the Text Analysis phase (2) and the
Model Analysis phase (3). During Text Analysis, the reference document is examined
to identify "Expected Model Elements" (EMEs), i.e. textually described concepts in the
reference document, e.g. "A customer can order a menu item.", which should be correctly
represented in the model. EMEs are then used as input for the Model Analysis phase
and serve as reference to the specification and guidance for the workers performing the
analysis. EMEs allow to split up the verification of a model into multiple small task that
can be distributed to a crowd of workers which individually contribute to the verification
of the whole model in a distributed and parallel fashion. For the Model Analysis (MA)
phase, the workers receive a set of EMEs (one after the other) and check whether these
are depicted correctly in the model. If they identify a erroneous representation they file
a defect report describing the flaw. Output of the Model Analysis phase is a collection of
defect reports which are aggregated and evaluated in the Follow-up phase(4). Finally
this collection of defect reports should ideally identify all the defects contained in the
model and can be used to guide the review and correction of the model.

Another form of conceptual models are ontologies, taxonomies and knowledge graphs,
which represent the domain of the information systems in Knowledge Engineering (KE)
[16]. Several knowledge management tasks of KE, and especially in Semantic Web,
require human contribution [5]. To ensure correctness of ontologies, ontology verification
is performed, which "compares the ontology against the ontology specification document
(i.e. frame of reference)" [22].

The problem of verifying conceptual models shows high relevance in at least two research
areas with different approaches to successfully tackle the problem in their specific field.
Reaching into both Knowledge Engineering and Software Inspection to gather and
analyse the differences and commonalities of these approaches, can lead to an exchange
of experience between communities [23]. Thus, a generic approach to Verify Conceptual
Models (VeriCoM) is introduced by Sabou, Winkler et al. [23]. VeriCoM offers a

2

1.1. Problem description

generic formalization of the problem, that can be applied across the fields of KE and SI.

Within the scope of a controlled experiment Sabou, Winkler et al. applied the generic
VeriCoM-approach to a Software Engineering use case to test its applicability. CSI-
Experiments were conducted under the VeriCoM-approach with the focus to evaluate
the Model Analysis performance of an expert crowd, i.e., evaluation of defect detection
effectiveness, efficiency, and false positives, compared to the traditional pen&paper
Software Inspection approach [29]. To analyse VeriCoM, the Text Analysis phase is
performed by the experiment administrators themselves to identify EMEs an to introduce
gold standard defects (true defects - TD) into the model during the experiment setup.
This experiment setup, illustrated in Figure 1.2a, also extends the original Model Analysis
phase (see Figure 1.1 (3)) and introduces 2 subtasks, namely (1) Model Analysis (MA) and
(2) Defect Validation (DV). In the Model Analysis task of the experiment, participants
were presented a textual scenario description for context information, a corresponding
EER model and a (expected) model element. Participants had to decide whether the
model element was relevant and modelled correctly, or report a defect. The second
subtask, Defect Validation (DV), was fed by legacy defect reports, scenarios and models
from previous experiments together with true defect introduced by the experiment
administration team. Goal was to match defect reports with true defects to validate
their correctness. The resulting defect reports of VeriCoM have been compared to the
output of the pen&paper approach. After aggregation and analysis of the defect reports
by the CSI-Experiment team in the Follow-up phase, VeriCoM showed promising and
comparable results.

The experiments that validated VeriCoM, rely on an complex experimental process (see
Figure 1.2b). This process consists of three consecutive steps. In the experiment setup
step, the experimental data (EMEs, scenarios, conceptual models, etc.) together with
the legacy data from previous experiments are selected and prepared. The experiments
are then conducted with the help of the online crowdsourcing-tool FigureEight (FE)
(f.k.a. CrowdFlower (CF)), which managed the (crowd-)workers, participating in the
experiments. The selected experimental data is uploaded to FE and the crowdsourcing-
jobs are created. FE schedules the crowdsourcing-jobs, distributes their tasks to the
workers and collects their judgements together with corresponding meta-data (e.g. task-id,
participant-id, trust-rating, etc.). After each workshop within an experiment round, the
resulting data is collected and stored in a database. The experiment took place in a
university setting, with students forming the expert-crowd and therefore also had an
educational goal; to support students in developing model inspection skills. Therefore, in
the last step, the resulting data is processed and evaluated, and students receive feedback
on their model analysis performance through e-mail.

Major drawback of the described CSI-Experiment process is that it is mostly performed
manually by the experiment administration team, with the exception of using FE for
coordinating the expert crowd. The following shortcomings emerged:

• Handling of experiment data was cumbersome.

3

1. Introduction

(a) CSI-Experiment setup 2017/autumn.

(b) Underlying experiment process.

Figure 1.2: CSI-Experiment setup and underlying process.

• Manual aggregation of results was inefficient.

• Manually conducted evaluation was time-consuming.

• Feedback for participants was moderate which restricted the benefit for the teaching
purpose the experiments were intended to have.

Overall the CSI-Experiment process was slow, error-prone and not scalable. This hampers
both further scientific investigations within this experiment family and potential industrial
uptake. Another limiting factor is FE, which doesn’t support the design and creation of
task specifically tailored to the problem of verifying conceptual models.

Therefore, the core of this thesis was to thoroughly analyse the CSI-Experiments under
VeriCoM, to elicit requirements for software development and to formally define the

4

1.2. Research Questions

data models and algorithms needed, to overcome the drawbacks of the current approach.
Furthermore a prototype software tool, called the CSI-Platform, is designed and imple-
mented, to support the CSI-Experiments and to test the developed data models and
algorithms by automating cumbersome and time-consuming experiment tasks.

1.2 Research Questions

The research questions defined in this section, guide the analysis of the CSI-Experiment
process and the development of the CSI-Platform.

• RQ1: Which parts of the Crowdsourced Software Inspection experiment process
benefit the most from software tool support? The CSI-Experiment process will be
thoroughly analysed and parts which are in need of software tool support will be
identified.

• RQ2: What are the requirements for the software platform? To meet the key user
(i.e. experiment administrators) expectations for the platform, requirements need
to be defined that represent the key users needs.

• RQ3: How can the CSI domain model be defined in a generic way? The domain
model of the CSI-Experiment process and the supporting platform need to be
defined in a generic way in order to allow for the extension of the platform, the
connection to different crowdsourcing-engines (other than FE) and the creation of
a Learning Analytics Platform (LEAP, see Section 7.3) planned in the future.

• RQ4: Did the developed platform meet the expectations of the experiment adminis-
tration team? Validation and verification of the developed platform is key to learn
whether or not the intended users are accepting the presented solution.

1.3 Methodology

Apart from literature research the methodological approach follows a Software Develop-
ment Life Cycle (SDLC) [20].

• M1: Literature research: To get a clear overview of the current state of Software
Quality Assurance and Inspection methods, a literature research was conducted.
Starting with the basics of Software Inspection (SI), on to Human Computation
and Crowdsourcing (HC&C) and its current applications in software engineering
(Crowdsourcing in Software Engineering - CSE), to finally investigating current
appliances of HC&C methods to SI in the Crowdsourced Software Inspections (CSI).
As the field of CSI is considered a novel approach in software model inspection, the
experiments of Winkler, Sabou et al. [24] will act as a foundation for this work.

5

1. Introduction

• M2: Process Analysis & Requirements Engineering: As a groundwork for
improving the CSI experiment process, a thorough understanding of the study
procedure and its individual steps is required to identify candidates which would
benefit the most from software tool support. Therefore a comprehensive analysis
of the currently applied CSI-Experiment process will be conducted. For each of
the candidate process steps a requirements elicitation will be performed to derive
functional and non-functional requirements for the software prototype. These
requirements will then be translated into design artefacts and features of the
developed software platform.

• M3: Model design: In the design phase of this work, the domain model of
the CSI-Experiment process is formalized and the key concepts are defined and
described in detail. The existing data models, artefacts and concepts designed
for the expert sourcing experiment, described in [24], are well developed and
sufficient for a scientific evaluation of CSI performance. However, some adaptations,
extensions and improvements need to be made to allow for a well-designed software
architecture of the supporting platform and the automation of certain process
stages. This redesign will include the introduction of typed objects, adaptable
interfaces for existing and newly created domain entities and services, a generic
interface to connect to crowdsourcing-engines and enable automated evaluation
and feedback for experiment participants. The design phase is directly linked to
the implementation phase of the thesis.

• M4: Implementation: Taking the resulting new design artefacts and data
models of the previous step, a prototypical implementation of a CSI-Platform will
be presented. The focus of this prototype will lie on supporting the moderator
before, during and after conduction of experiments, through improved management
of experiment data and automated result evaluation. It should also be capable of
connecting to a variety of crowd sourcing engines and therefore be independent of
FE. To speed up the development process a Spring Boot based web application
generator (JHipster1 [19]) will be used, which derives a software scaffold from the
introduced data models and allows to focus on crowdsourcing service API integration,
outcome evaluation and feedback provision, by reducing tool configuration effort
to a minimum. The utilization of this tool is also a showcase for the usage of
model-driven engineering techniques in practice, as it derives a completely usable
software prototype from a designed EER-diagram.

• M5: Testing: To test the implemented prototype, it will be deployed during a
CSI-Experiment under live conditions. The experiment will be held as part of the
university course of "Software Quality Assurance" and will be conducted by Sabou
& Winkler in a similar setup as described in [24] with student experts. This test
run should prove the prototype’s applicability in a real test environment and will
act as a foundation for the evaluation phase of this thesis.

1JHipster: http://www.jhipster.tech/

6

1.3. Methodology

Figure 1.3: Research questions aligned with methods, contributions and chapters.

• M6: Evaluation: Based on the outcome of the planned experimental application
of the new prototype, a detailed comparison between experiment execution with
and without the supporting platform will be drawn. The evaluation should clarify
which parts of the process benefited from tool support in regards to improvements
in speed of evaluation, efficiency, scalability and error reduction. Also novel features,
enabled by the prototype, e.g. immediate student feedback, will be evaluated. To
gather feedback from the experiment administration team, a workshop, including a
questionnaire to gather improvement suggestions, will be held after the experiment
to present the experiment-support offered by the software tool to all the people
involved during the conducted experiment.

By following this methodology the impacts of the CSI-Platform on the CSI-Experiment
process can be observed.

Figure 1.3 aligns the research questions (RQx) with the performed methodology to
address the specific question and shows the contributions made, as well as the chapters
of the thesis where they are described.

7

1. Introduction

1.4 Contributions and Expected Results
Overall goal of the thesis is to support and improve the CSI experimental process. The
following results are expected (Cx - Contribution):

• C1: Analysis of the CSI-Experiment process and requirements elicita-
tion: To understand how the CSI experiment process can be improved, a thorough
analysis of each process step has to be performed, evaluating their potential for
improvement and automation. Based on the outcomes of the analysis, a set of
functional and non-functional requirements for the software prototype should be
derived. These requirements should cover the needs of the main stakeholders of the
experiment process (i.e. the experiment management team) and act as a starting
point for the software design and implementation phase. Another result of this
analysis phase should be a clear definition and vision for the software platform that
is to be developed and also highlight potential future extensions of the platform.

• C2: Design of models and artefacts for the prototype solution: A complete
formal definition of VeriCoM and its application to the software engineering use
case is desired, together with the creation of all need objects and types from the CSI
domain. Based on the findings during process analysis and requirements definition,
artefacts, which represent the desired software platform in an abstract way, have to
be designed. The existing experiment context and data model definitions this thesis
builds upon, have been designed specifically for the FigureEight crowdsourcing
service. Therefore, to become applicable in industry and to allow for connection to
different crowdsourcing platforms in future experiments, CSI-process data structures
for model analysis and defect validation have to be generalized to generic model
structures. These should be detached from the FE environment and adaptable
to other crowdsourcing engines. Additionally, new elements and services for an
automated evaluation of the experiment results are part of this design.

• C3: Prototypical implementation of the CSI-Platform for supporting
CSI-Experiments: Practical outcome of this thesis is the implementation of a
CSI-Platform, which enhances various steps of the CSI-Experiment process through
automation. The web application should aid with conducting CSI-Experiments, like
the ones performed in [29, 24]. The platform should support the experiment process
shown in Figure 1.1 by providing services to manage input data for the crowdsourcing
jobs (1), triggering crowdsourcing experiments and automatic collection of output
data (2), statistical evaluation methods and automated result analysis for experiment
administrators, as well as providing a personalized e-mail report to the student-
crowd, which is solving the crowdsourcing tasks (3). Furthermore, comprehensive
performance information on overall group output, efficiency, accuracy and agreement
on defect verification between the workers is measured and presented by the
platform.
Generation of experiment input data will not be in the scope of this thesis.

8

1.5. Outline

• C4: Support CSI-Experiments with automated evaluation: During the
preparation for this thesis, the second round of CSI-Experiments has already been
conducted by Winkler, Sabou et al.[24]. While the evaluation of the first experiment
round was done manually, which took a lot of effort and time, the second round
already benefited from a proof of concept (PoC) implementation of a supporting
evaluation platform. This PoC has already been developed by the author specifically
for the CSI-Experiment in fall of 2017 and showed promising results. Goal of this
work is to further expand the capabilities of this PoC and provide a full-fledged
experiment support tool for future experiments, which are already planned within
this experiment-family.

• C5: Evaluation of improvements to the CSI-Experiment process enabled
by the CSI-Platform: Experiment process parts, which are candidates for im-
provement through automation (identified during the analysis), will be evaluated in
terms of efficiency and effectiveness and compared to how work on the respective
part was conducted prior to the development of the supporting software platform.
Being part of this evaluation is the capturing of the satisfaction level of the ex-
periment administrators with the developed platform. Also a list of suggestions
for improvements and possible requirements for planned future work should be
outcome of this evaluation.

1.5 Outline
The rest of the thesis is structured in the following way. Chapter 2 describes the
current state of the art of Verifying Conceptual Models (VeriCoM) and its background
rooted in Software Inspection as well as Human Computation and Crowdsourcing. A
detailed analysis of the CSI-Experiment process and the VeriCoM-approach, followed by
a subsequent requirements elicitation for the CSI-Platform, is performed in Chapter 3.
The identified requirements for the CSI-Platform are then used to design the data models
and algorithms, which are described in Chapter 4. These data models are then used in
Chapter 5 for the concrete implementation of the CSI-Platform prototype. The developed
prototype was then tested during the CSI-Experiment in spring 2018 and a comparison
to previous experiment runs is drawn in Chapter 6, together with an evaluation of the
satisfaction of the experiment management with the developed CSI-Platform. Chapter 7
draws a conclusion to the thesis and gives suggestions for future work.

9

CHAPTER 2
Background and Related Work

This chapter covers the background of Crowd-sourced Software Inspection (CSI) and
places it within the field of Software Inspection. Section 2.1 describes the origin of
Software Inspection and the original approach proposed by Michael Fagan. Section
2.2 defines the terms Human Computation and Crowdsourcing and addresses their
relationship. Applications of Crowdsourcing within the Software Engineering context
is described in 2.3. The application of Crowdsourcing techniques to perform Software
Inspection is detailed in Section 2.4, while Section 2.5 addresses the field Crowdsourced
Model Verification.

2.1 Software Inspection
Software Inspections (SI), originally developed by Michael Fagan in 1976, are a systematic
approach to examine a program or software design artefact in detail [17]. They are tools to
verify conceptual design models and to obtain and improve code quality through a guided
verification process with well-defined roles for inspection practitioners [7]. This structured
approach to software inspection has been well accepted by the software development
industry as the key methods to assure the creation of high quality software artefacts [3].
The minimal group of key roles in this approach are moderators, which lead and manage
the inspection and a group of inspectors, which perform the inspection tasks [3, 7].
Goal of software inspection is to verify correctness, completeness and conformance of
the developed product to its corresponding requirements and specification documents.
Inspection methods should already be applied in the design phase of the program on the
conceptual models, to assure a concise foundation for writing the program code.

The traditional software inspection process proposed by Fagan [7], consists of five steps:

1. Inspection Planning: a structured and well planned approach to inspect a piece
of software, leads to a repeatable process that can be incorporated into routinely

11

2. Background and Related Work

applied quality assurance measures by the development team. Therefore the
inspection team needs to be composed, the software part to inspect needs to be
prepared and the inspection needs to be scheduled.

2. Individual Defect Detection: Each team member inspects the prepared software
piece and its related conceptual model artefacts individually and tries to identify
defects.

3. Team meetings: In the planning phase, team meetings need to be scheduled to
collect, discuss and aggregate individual defect reports.

4. Rework by the authors: With all the individual defect reports aggregated, the
respective authors of the piece of software get presented the collection of the
identified defects, to rework and re-factor their code to mitigate the defects.

5. Inspection Closure: After the defects have been fixed, the inspection has to be
reviewed, the improvements are archived and the inspection is closed by the team.

Software Inspection faces several challenges that need to be overcome to ensure that the
software models meet the desired level of quality [27].
As software projects grow larger and conceptual domain models become more complex,
the pressure on reviewers increases as smaller details become harder to inspect while
inspection time increases. This becomes more immanent, as researchers agree that a
slower review process yields better results, with a suggested optimum reviewing rate
of one page per hour per participant [21, 8]. Therefore a policy of divide and conquer
compensates for limitations on review time frame and handling details of large conceptual
models [17]. By having each inspector examine small isolated components, chances are
increased, that a) nothing is overlooked and b) that the correctness of each component
implies the correctness of the whole product [3].
The second challenge for the quality assurance (software inspection) team of a software
project is, that there are limited ways of cost-effective coordination of the inspection
teams [27].
Third, while best-practice reading techniques systematically guide the inspection team
through textual specification and code, there is only limited available support for inspect-
ing design models.
Those challenges underlines the need for software tool support to manage the inspection
teams and to guide them through the inspection of models, in order to achieve systematic
coverage of large specification documents and conceptual models [30].

Fagan states that the manner in which inspection data is categorized and presented in the
inspection process is an important factor to attain improvements and can lead to initial
and ever-improving error reduction [7]. Parnas et al. also state that customizing the
inspection process can provide benefits, therefore enhancing SI with Human Computation
and Crowdsourcing methods promises to be a reasonable approach [17].

12

2.2. Human Computation and Crowdsourcing (HC&C)

2.2 Human Computation and Crowdsourcing (HC&C)
The terms Human Computation and Crowdsourcing (HC&C) are often used interchange-
ably, despite the fact that they describe two different paradigms with a shared overlap
in their fields of use [18]. Human Computation can be defined as: ". . . a paradigm for
utilizing human processing power to solve problem that computer cannot yet solve." [28].
Whereas crowdsourcing redirects a job traditionally performed by a designated worker
(e.g. employee of a company, researcher etc.) to an outsourced, undefined and generally
large group of people in an open call format [9]. In other words, Human Computation
replaces computers with humans, while crowdsourcing replaces traditional human workers
with members of the public [18].

Application of HC&C techniques, allow for large complex problems to be split up into
smaller, more easily solvable tasks, which can be distributed to a suitable population of
contributors and enable coordination and aggregation of the individually resolved tasks
[30]. Therefore HC&C techniques are applied in a wide variety of use-cases such as object
recognition, object classification and image interpretation. These are examples of tasks
where humans still out-perform computers.

As software specifications are often written by people without expertise in software
development, the specification text is most of the time written in natural language
that vaguely describes the intended software use case, it is hard to be interpreted
automatically by algorithms. Also, knowledge about the field of use is required to
correctly inspect the textual specification with respect to the modelled software artefact.
Adapting an algorithm to fit one use case (e.g. a booking service for a restaurant) is
very time consuming and of limited use if the domain changes. Human workers (e.g. a
group of experts) on the other hand, excel in being able to adapt to changing domains
and understanding the desired functionality that lies behind the specification and the
respective domain model. Therefore they out-perform algorithms by consistently finding
defects in abstract descriptions and models.
Inspection of larger specification documents and software artefact by single inspectors
however, can lead to fatigue and a reduction of effective defect detection. To compensate
for this limitations of human inspectors, HC&C techniques can be applied to distribute
the workload onto multiple inspectors.

Enriching Software Inspection with HC&C mechanisms therefore seems to be a promising
approach, to reduce cognitive fatigue of single inspectors, improve coverage of large
models and speed up the inspection process by parallelization of tasks [30].

2.3 Crowdsourcing in Software Engineering (CSE)
The advent of micro tasking platforms such as Amazon Mechanical Turk 1 (AMT)
or FigureEight2 (FE) (f.k.a. CrowdFlower(CF)) and their usage within the Software

1Amazon Mechanical Turk: https://www.mturk.com/
2FigureEight: https://www.figure-eight.com/

13

2. Background and Related Work

Engineering (SE) context have helped the novel research area of Crowdsourced Software
Engineering (CSE) to surface [24]. CSE is defined as "the act of undertaking any external
software engineering tasks by an undefined, potentially large group of online workers in
an open call format" [11, 12]. Three different models of CSE can be distinct [11]:

• Peer production: Open source development is the most prominent example of
peer production. Tens of thousands of people contribute to the development
of a collectively scoped software projects under common goals, in order to gain
experience and reputation within the SE community. Linux 3, Apache, Rails and
Firefox 4 are examples for successful crowd developed software projects. Also
StackOverflow 5, the most prominent forum for developers to share their expertise,
can be counted as a peer produced knowledge base for software development.

• Competitions: Competitions recently became very popular in software development
and are similar to traditional outsourcing. A client defines and requests work from
platforms like TopCoder 6 (i.e. platform for rapid software prototypes) or 99designs
7 (i.e. crowd-sourced visual designs), an receives results from the winner(s) of a
competing crowd. Competitions are managed by a co-pilot which decomposes the
request into multiple competitive task and selects the winning entry.

• Microtasking: This model distinguishes itself by its high scalability. Large complex
tasks are split into sets of self-contained microtasks, which can be quickly solved
by a large group of distributed workers and then composed into a solution for the
original task. Quality is insured by asking multiple workers to complete the same
task and selecting the solution voted the highest.

Choosing the right model for a given project depends in different properties of the project
and the desired results, e.g. needed crowd size (e.g. small, large), time to solve each
(micro)task (e.g. minutes, days), required contributor expertise, incentive mechanism
used motivate contribution (intrinsic, extrinsic) or the needed context to solve a task(none,
extensive) [30].

The CSE community shows increasing interest in applying crowdsourcing and micro
tasking techniques in all phases of the software development life cycle (SDLC) and
contributions to the phases planning and analysis (17 papers), design (4 papers), im-
plementation (26 papers), testing (22 papers), and maintenance (26 papers) could be
observed by a recent survey from Mao et al. [12]. Software inspection, however, is weakly
addressed, which is why this work focuses on this aspect of software development. Benefits
of CSE and its application in Software Inspection in comparison to traditional inspection
methods are, e.g. increased scalability, improved coordination and control, increased

3Linux: https://www.linuxfoundation.org/projects/
4Firefox: https://developer.mozilla.org/en-US/
5StackOverflow: https://stackoverflow.com/
6TopCoder: https://www.topcoder.com/
799designs: https://www.99designs.com/

14

2.4. Crowdsourced Software Inspection (CSI)

coverage and the inclusion of non-necessarily expert contributors, which perform well
defined small task units in parallel to accelerate the inspection process [29].

2.4 Crowdsourced Software Inspection (CSI)

Crowdsourced Software Inspection adapts the traditional Software Inspection process
and extends it with the capabilities which are offered by crowdsourcing platforms, e.g.
FigureEight, to introduce human computation mechanisms to the traditional inspection
process. Special focus was put on the Preparation and Software Inspection phases (i.e.,
inspection planning, individual defect detection and team meeting) of the original SI
approach introduced by Fagan et al. [29]. These phases were customized in order to
allow for the application of crowdsourcing techniques. Goal of CSI is, to be able to split
up complex software models, which are hard to analyse and demand a high amount of
cognitive focus, into small inspection tasks of isolated components, that can be distribute
and solved by a possibly large group of inspectors.

To be able to split up the task of analysing a conceptual model into isolated components,
the model needs to be dissected into the elements which make up the model, called
model elements (ME). These MEs represent entities, entity attributes, relationships, and
relationship attributes from the model (e.g. an EER model [26]). Hereby Expected Model
Elements (EMEs) are a concept introduced by Winkler et al. as: "key concepts that can
be expected in the model under inspection based on inputs from reference documents,
i.e., software requirements and specifications" [30]. EMEs are therefore derived from the
frame of reference, i.e. the specification document.

The CSI-Process consists of four phases (see Figure 1.1):

1. Preparation and Planning phase: Reference documents and review artefacts, e.g.
the textual specification and EER model, are prepared, the scope of the inspection
is defined and the crowdsourcing environment is set up by the CSI management.

2. Text Analysis phase: The reference document is analysed and EMEs are derived.

3. Model Analysis phase: The identified EMEs are used for inspection of the model
and found flaws are filed as a defect reported.

4. Follow-up phase: Defect reports are aggregated and evaluated and are used to later
review and fix the identified defects.

In the Model Analysis (3) phase, EMEs are presented to the CSI crowd-workers which
individually contribute to the verification of the whole model in a distributed and parallel
fashion. They are tasked to judge, whether the representation of the EME in the designed
model is correct. After the CSI workers completed their tasks, the judgements are
aggregated and analysed by the CSI management team in the Follow-up phase (4).

15

2. Background and Related Work

The CSI management benefits from improved coordination and control over the inspection
team members, tasks and results, an increased coverage of potentially large and diverse
artefacts, as well as an accelerated inspection process due to the parallelization of small
tasks [29]. The main problem however, is the manual work performed when aggregating
and evaluating the defect reports in the Follow-up phase of the process. Infrastructure and
automation through software to support the CSI process are lacking, which, if developed,
would make experiments within this experiment family faster, less cumbersome and easier
to run and would allow for industry adoption of the CSI-process.

2.4.1 FigureEight (f.k.a CrowdFlower)

The crowdsourcing engine FigureEight is used to manage the crowd of workers par-
ticipating in the experiments to verify VeriCoM. The platform allows the creating of
crowdsourcing jobs of different predefined types, e.g. Sentiment Analysis, Search Rel-
evance, Data Categorization, Data Collection & Enrichment, Data Validation, Image
Annotation, Transcription, Content Moderation and also offers tools to create custom
jobs. This custom job creation tool was used to create the Model Analysis and Defect
Validation jobs for the CSI-Experiments.
Besides job creation, FigureEight automatically manages the distribution of tasks to
workers, the scheduling of jobs, the collection of judgements of workers, offers job moni-
toring and different statistical evaluation methods regarding the analysis of contributions.
It also adds a "trust"-rating to workers, indicating how trustworthy a workers judgements
on his tasks are.
FigureEight is not a free service and has increasing costs based on the supported worker
crowd and the amount of judgements that can be gathered. This is a major drawback
when using the service in a CSI-Experiment. It also limits the applicability within
a university context and therefore a replacement for FigureEight has to be found or
developed.

2.5 Crowdsourced Model Verification
Verification of conceptual models by utilizing human computation capabilities of both, field
experts and layman crowds, has been part of research efforts across the fields of Knowledge
Engineering and Software Engineering. Related work exploring and successfully applying
Crowdsourced Model Verification is shown in Table 2.1 and discussed in this section [23].

In [1], Acosta et al. compare the contributions of experts and a layman crowd on
evaluating the quality of triples from Linked Data Knowledge Graphs. The goal is to
identify quality issues appearing frequently in DBpedia ([2]) triples. Experts were allowed
to choose between three strategies of data selection when starting to work on their
expert-sourcing task: (a) random suggestion of data, (b) data from a selected class, or
(c) manually selected data. One predefined quality issue, picked from a taxonomy of
issues, was assigned to the evaluated triple. Crowdsourcing was performed in a two
staged experiment with randomly selected data. First one of three possible issues (i.e.,

16

2.5. Crowdsourced Model Verification

Table 2.1: Overview of related work.

Paper Evaluated
Elements

Frame of Refer-
ence

Defect Types

Acosta et al. 2016
- Expert [1]

Data Triples Human Knowledge Defect Taxonomy

Acosta et al. 2016
- Crowd [1]

Data Triples Human Knowledge 3 or 2 defects

Mortensen et al.
2015; 2016 [13, 14]

Subsumption
Relations

Human Knowledge Binary

Wohlgenannt et al.
2016 [32]

Terms, Rela-
tions

Human Knowledge Binary

Sun et al. 2016
[25]

Taxonomy N/A N/A

Winkler et al.
2017 [30]

EER Model System Specification Open ended

Sabou et al. 2018
[23]

EER Model System Specification Multiple Defect Types

value, link, datatype) is selected by the workers, then in the second stage, workers solve
dedicated jobs for individual quality issues and specify whether a corresponding triple is
correct/incorrect. Verifying the correctness of subsumption relations in large, domain
specific ontologies such as SNOMED and the Gene Ontology, Mortensen et al. report on
their findings on crowd-sourced ontology verification with the help of CrowdFlower. Tasks
for the workers contain the relation that has to be evaluated for correctness and a field to
provide an explanation of their choice. The authors experiment showed that crowds have
a comparable agreement rate with a baseline expert evaluation for SNOMED and can
act as a scalable assistance in ontology engineering. Wohlgenannt et al. aimed to bring
crowdsourcing closer to ontology engineers by developing an extending plugin for the
Protégé ontology editor ([15]) [32]. Sun et al. [25] aimed to evaluate taxonomies in terms
of how well they support user navigation [23]. In the field of Software Engineering, the
works on the verification of conceptual models is limited to the works of Sabou, Winkler et
al. [23, 30], in which they evaluate EER diagrams with respect to a textual specification
document. During the first experiments, workers provided free-text descriptions of defect,
which led to overly complex aggregation and the later introduction of defect types.

2.5.1 VeriCoM approach

An application of Crowdsourced Model Verification is the verification of conceptual
domain models with respect to a textual specification. Therefore Sabou et al. introduced
the generic Verifying Conceptual Models (VeriCoM) approach, described in detail in
Section 3.2. VeriCoM is a generic approach that can be applied to a variety of Model
Verification tasks. In [23] VeriCoM is applied to a Software Engineering (SE) use case

17

2. Background and Related Work

Figure 2.1: VeriCoM applied to a SE use case [23].

with an EER diagram as the conceptual model and a specification document as the frame
of reference. Figure 2.1 described the process of the conducted experiments in paper
[23] and its phases. Text Analysis was performed by the CSI-Experiment administration
team, while the focus of the experiment was to analyse the performance of the Model
Analysis phase of VeriCoM, compared with the traditional pen & paper approach. After
Text Analysis, i.e. identification of Model Elements and definition of Defect Types, the
input data was prepared and mapped to their corresponding part of the specification
document, called Scenario. These Scenarios together with their ME and the EER model
were used to create and execute the Human Computation (HC) tasks. These HC tasks
were performed by the crowd workers, which filed a set of Defect Reports for each defect
identified during Model Analysis. In the next phase these Defect Reports were aggregated
into a list of defects and evaluated by the CSI-Experiment administration team. The
steps of VeriCoM and a formal definition of all the variables and functions of Figure 2.1
can be found in Section 3.2.

18

CHAPTER 3
CSI-Experiment Process Analysis

& Requirements Elicitation

Addressing Research Questions RQ1 and RQ2 lays the foundation for improving the
CSI-Experiment process (see Figure 1.1). To identify requirements which improve the
process, a thorough understanding of the study’s procedure and its individual steps is
needed. Therefore an analysis of the CSI-Experiment process is performed (see Section
3.1). The CSI-Experiment process is applied to test an approach to Verify Conceptual
Models (VeriCoM) proposed in [23] by Sabou et. al. and described further in Section
3.2. VeriCoM is conceptualized in a generic way and is therefore applicable in a variety
of model inspection use cases. In [23] the VeriCoM approach is applied to a Software
Engineering (SE) use case, where, given a textual specification document, an EER model
is checked for correctness and completeness. This SE use case forms the basis of the
CSI-Experiment and the developed CSI-Platform described in this paper.

The stakeholders of the envisioned platform and their different interests and desired
functionalities for such a platform are defined in Section 3.3. Section 3.4 describes how
process candidates in need of tool support have been detected through workshops with
experiment administrators and involvement in the running of the experiments in autumn
2017. The status quo of the CSI-Experiment process was examined and major issues
and drawbacks of the unsupported process steps are formalized in section 3.5. Based
upon these drawback, parts in need of automation and software tool support have been
identified and requirements for the CIS-Platform are derived in Section 3.6.

Outcome of this process analysis and requirements elicitation is a specification for the CSI-
Platform, which is used to support experiments performed with the VeriCoM approach.
This specification of functional and non-functional requirements is later used for the
design 4 and implementation 5 of the CIS-Platform.

19

3. CSI-Experiment Process Analysis & Requirements Elicitation

Table 3.1: Conducted experiments to verify VeriCoM.

Experiment Tasks Description
Exp. 2016 Autumn Text Analysis, Model

Analysis (free text)
Identification of model elements and
Model Analysis with free text descrip-
tion of defects.

Exp. 2017 Spring Text Analysis, Model
Analysis (free text)

Identification of model elements and
Model Analysis with free text descrip-
tion of defects.

Exp. 2017 Autumn,
Exp. 2018 Spring

Model Analysis (de-
fect types), Defect
Validation

Model Analysis with guiding questions
and defect types. Validation of defects
from previous experiments.

3.1 CSI-Experiment Process Analysis

During the course of the development of VeriCoM, several rounds of experiments have
been performed to verify the crowd-sourced inspection approach (see Table 3.1). The
experiments have been gradually improved with each experiment round. Up until spring
2017 the tasks performed in the experiments included Text Analysis (identification of
model elements in the specification text) and Model Analysis (verification of a model
diagram) with a free text description of defect reports. Because these free text descriptions
were hard to analyse and required manual work, defect types were introduced and the
Defect Validation task replaced Text Analysis to be able to align legacy defect reports to
the new defect types. Section 3.1.1 described the experiment performed in Autumn 2017,
which marked the entry point for the development of the CSI-Platform.

3.1.1 CSI-Experiment: Experiment 2017 Autumn

In autumn of 2017 an experiment was conducted to evaluate the VeriCoM approach. The
experiments should (a) investigate the feasibility of VeriCoM and (b) compare the defect
detection performance of this new process to the traditional best-practice pen-and-paper
(P&P) software inspection process [29].
During the study preparation the study material (i.e., textual specification, FE configura-
tion, task guidance tutorials and questionnaires) has been organized and the crowdsourcing
engine FE has been set up. The overall experiment was set in a university context and
was split up into 4 workshops to allow for a better coordination of the participating
students and to mitigate the spacial constraints of the university infrastructure.
For each workshop, the group of participants was split in to three groups i.e., A, B and
C. Groups A and B performed Model Analysis applying VeriCoM, while C applied the
traditional P&P process and functioned as a control group. Before the Model Analysis
phase, each participant had to fill out a online questionnaire, capturing the previous
experience of the participants and other relevant data e.g., e-mail addresses to send the
feedback mails to. Also a 30 min. tutorial explained the crowdsourcing tool and the

20

3.1. CSI-Experiment Process Analysis

Figure 3.1: Guiding questions for the Model Analysis task.

tasks ahead.

Model Analysis

During the Model Analysis (a.k.a. Model Verification, Defect Detection) task, the
participants had to analyse the conceptual model with respect to the textual specification
and identify defects.
The input data for this task was split into 12 batches with 10 emes per batch and
for each batch a FigureEight job was created. The created jobs contained the same
context information (i.e., a restaurant specification), but focused on different parts of the
specification called scenarios (e.g., accepting of orders, buying of ingredients, etc.).
Each student of group A and B was assigned to three jobs at random. During each job,
the students had to answer the guiding questions to the presented model element and file
defect reports (see Figure 3.1). Overall the students had a maximum of 60 minutes to
finish the three jobs.

Defect Validation

The Defect Validation task was feed by legacy defect reports from precious experiments.
This task was created to incorporate the legacy defect reports, i.e. free-text defect reports,
into the new definition of defect reports (see Section 4.1.5), by matching them with
predefined TrueDefects (i.e., validating them with respect to the gold standard defects)
and assigning them the same defect type as the TrueDefect they matched with. This
allows for them to be treated in the same way as the defect reports filed in the new
experiment rounds.
Therefore, the students got presented, the model element (ME) for which the defect
report was filed and the textual description of the defect report. By answering the
guiding questions (see Figure 3.2), the students had to first validate the defect report,

21

3. CSI-Experiment Process Analysis & Requirements Elicitation

Figure 3.2: Guiding questions for the Defect Validation task.

Figure 3.3: The VeriCoM Approach [23].

i.e., analyse whether the defect report indeed reported a defect and second compare the
description with the description of the TrueDefect for the same ME.

3.2 The VeriCoM Approach

In the paper [23] a generic approach for Verifying Conceptual Models (VeriCoM) is
proposed, fulfilling the need for a structured and formalized examination of Crowd-
sourced Model Inspection (CSI) and verification with respect to a textual specification.
Central element of VeriCoM is the Expected Model Element (EME), which enables
the selection of core areas of a model, which are in need of inspection, thus reducing
the amount of evaluated domain model elements and their relations for each individual
human computation task. This enables the separation of the model and the textual

22

3.2. The VeriCoM Approach

(a)

(b)

Figure 3.4: Model verification task containing (a) the model element, evidence scenario
and model and (b) questions for verification guidance [23].

specification, into distinct scenarios encapsulating a specific set of EMEs. The focus of
human workers can then be guided towards certain model areas, reducing the amount of
cognitive workload for each worker. The main stages of this approach are depicted in
Figure 3.3.

1. Data Preparation: The process starts with pairing the conceptualized model M,
which should be verified, with it’s corresponding textual specification Spec. The
conceptual model hereby can be an entity relationship model ERM, a class diagram,
a use case diagram, or any other kind of diagram, preferably specified in UML1.
The specification is written in natural language and describes the desired functional
and non-functional requirements and concepts of the model. Also the verification
focus, that is, which model element(ME) types should be verified is defined. The
focus can be laid on domain concepts MEC and/or their relations MER.

a) Identification of EME: The specification mentions elements, which are
expected to appear in the conceptual model M, these need to be identified.

1http://www.uml.org/

23

3. CSI-Experiment Process Analysis & Requirements Elicitation

This can be achieved by manually performed search, human computation and
crowdsourcing or via natural language processing techniques, depending on the
size of the specification. Combinations of those processes can also lead to the
desired results. Ideally the specification is written as a structured user story,
e.g. in the form of "As a 〈role〉 , I can 〈capability〉, so that 〈receive benefit〉.",
which can potentially improve automated EME detection.

b) Identification of evidence for the EME in the specification: To map
evidence EV for an eme to its occurrence in the specification Spec, an assign-
ment function ϕ is required. ϕ should generate a set of evidences which suffice
the properties of being (a) representative for each eme; (b) small enough to be
applicable for human computation tasks and (c) capable of transporting the
necessary context information to workers. Such a function can be implemented
manually for smaller specifications, while again natural language processing
techniques can deliver significant time saving benefits for larger and more com-
plex specification texts. Automatic detection of relevant evidence(s) requires
a decision on how to chose the evidence for a given eme. Included options are:
(a) assigning the evidence where the eme is first mentioned; (b) choose the
evidence (e.g., a paragraph) that most often mentions the eme; or (c) selecting
all evidences which mention the eme, instead of a single representation.

c) Definition of Defect Types: Defects can be of different type. These include
the two domain independent defect types SUPERFLOUS (i.e. EME’s which
are modelled, but not relevant) and MISSING (i.e. relevant EME’s, which
can not be found in the model). Besides these, a number of additional defect
types should be defined in this step. Defect types ease the aggregation process
and significantly improve evaluation speed. Task interfaces that guide workers
towards identifying a specified defect type also reduce the amount of free-text
defects, which need to be aggregated manually. An example for such a defect
type would be WRONG_KEY, representing the defect of a wrongly chosen
key attribute of an domain object, e.g. a non-unique name-attribute, which
does not identify a customer. Defect Types which where defined for the
CSI-Experiments are described in section 4.1.4.

2. Task Design and Execution: Detection of the different defect types defined in
the previous step, can be guided through a thoughtful task design. This structured
approach to detect defects of different type based on emes and their relevant
evidence from the specification, can be tailored to the needs of the domain. The
here proposed task design contains an underlying decision tree, depicted in figure
3.5, which guides the worker through the exercise, to identify a defect of a specific
type, by asking questions about the eme and its appearance within the model.

a) Relevance: The first judgement asked from the worker, is whether the eme
and its evidence are relevant in the context of the scenario and therefore should
be present in the model or not. This question not only helps to identify defects

24

3.2. The VeriCoM Approach

Figure 3.5: Decision tree underlying task design.

within the model, but can also shine light on the worker and its understanding
of the scenario. Purposefully incorporated irrelevant emes with fake evidence
can be used as control questions. Worker who continuously judge such emes
wrong, can be given a lower weight in the overall judgement aggregation.

b) Representation: Next the workers attention is guided to the model itself
and the location of the eme therein. The possible decision can be of one of
three cases: (a) the eme or (b) a synonymous representation of the eme is
present in the model; (c) the eme is missing from the model M. At this point,
the two domain independent defect types superfluous and missing are already
fully described. Identifying a non-relevant eme in the model states that a
superfluous eme has been modelled. On the other hand, if a relevant eme can
not be found in the model, a missing defect is reported. Non-relevant emes
that are not in M lead to the conclusion that the model is correct, with regards
to the eme in question. Locating a relevant eme, or a synonym thereof, in
the model doesn’t provided judgement about the correctness of the modelled
element, which needs to be decided in the next question.

25

3. CSI-Experiment Process Analysis & Requirements Elicitation

c) Correctness and Interpretation: In this part of the evaluation process, the
worker is asked, whether the appearing relevant emes (or their synonyms) are
correctly modelled in M. If incorrect modelling is detected, workers file a defect
report, either as free text or an application domain specific typed defect. Each
individual judgement for an eme and its evidence, is collected as individual De-
fect Reports (DR), which are of a specific Defect Type. This can be formalized
as quadruples for each worker as (Wx) : DR(eme,Ev(eme, Spec),Wx, Dtype).

3. Aggregation: Taking the defect reports for an eme by n workers as input, an
aggregation can be performed to identify a final defect type, agreed upon by the
majority of workers. For each defect type reported for that eme, we compute an
agreement coefficient (ACoeff) as the inter-rater agreement on that defect type.
The defect type with the highest ACoeff is considered the final defect type for
the eme. If the opinion of the workers is tied between multiple defect types the
defect is label as Undecided. This highlights the importance of defect types, as
free-text defects have to be aggregated manually or performed within a secondary
human computation task. The output of this aggregation step are Aggregated Defect
Reports denoted as: ADR(eme,Ev(eme, Spec), ACoeff,W1..n, Dtype).

4. Evaluation: To check whether the defect detection process satisfies various per-
formance metrics, an evaluation step is performed, to identify possible necessary
improvements. In the case that previously defined True Defects (TDs) (i.e., known
defects) are present, they could be matched with the collected defects ADRs and
recall and precision metrics could be computed. In the absence of such gold standard
defects, manual computation of the precision metrics can be performed, but no
recall values can be computed. Due to the time intensity of the manual evaluation,
a threshold value for the ACoeff should be considered, to reduce the number of
ADRs. The output of this stage consists of verified defect reports, possibly aligned
to a true defect (TDk) : V DR(eme,Ev(eme, Spec), ACoeff, TDk,W1..n, Dtype).

The VeriCoM approach is conceptualized in a generic way and is therefore applicable
in a variety of model inspection use cases. In [23] the VeriCoM approach is applied to
a Software Engineering (SE) use case, where, given a textual specification document,
an EER model is checked for correctness and completeness. This SE use case forms the
basis of the CSI-Experiment and the developed CSI-Platform described in this paper.

3.3 CSI-Experiment Stakeholders

Identification of the core users of the envisioned CSI-Platform, is key to understand their
different needs as well as desired platform features and functionalities. Definition of
requirements, which are beneficial for software developers, reference these stakeholders in
their user-stories and with that, bind the requirement to a specific user group. For the
CSI-Platform the identified user groups include:

26

3.4. Requirement Analysis Method

• System-administrators: Responsible for system development and maintenance, this
group consists of software engineering experts, who want to operate the system and
provide a continuous service to the other stakeholders.

• Experiment-administrators: This group of users is composed of the scientific research
staff and responsible for designing, running and evaluating the CSI-Experiments.
Their key tasks are:

– to define the experiment specification
– to create the conceptual model
– to identify model elements (if done manually)
– to split specification into scenarios
– to apply the evidence function (if done manually)
– to define gold standard defects (i.e. TrueDefect)
– to define domain specific defect types
– to schedule and prepare workshops
– to create tasks for each workshop
– to execute the workshops
– to trigger output aggregation and evaluation

Experiment-administrators are the stakeholders benefiting the most from software
tool support and addressing their needs is key for a successfully developed CSI-
Platform.

• Workshop-administrators: Supporting the execution of a workshop, workshop-
administrators gather participant information, brief and monitor the workers before
and during the workshops and distribute them to the designated jobs in groups.

• Worker/Student/Participant: Workshop participants use the platform to get feed-
back on their performed tasks and to obtain information on the performance of
their colleagues from the same workshop. This insight should improve their learning
experience and enhance their Software Inspection and Model Analytics skills.

3.4 Requirement Analysis Method

To gather insight in the experiment process, briefing workshops have been held with the
experiment administrators before testing the first prototype during the experiment run
in autumn 2017. This section describes how information about the experiment process
has been gathered.

27

3. CSI-Experiment Process Analysis & Requirements Elicitation

Within the first meetings to elaborate the needs of the experiment team, the crowd-
sourced software inspection process was described and the experiment setup was analysed
in detail, to get an overview of the current status as well as the vision and the desired
outcome of the experiments. The goal of the CSI-Experiments is, to compare the novel
VeriCoM-approach with the traditional pen and paper method. Therefore the experiment
setup was designed to split up the group of participants into two groups, one performing
the traditional pen and paper model inspection, to function as a control group and
the other group testing the approach based on human computation and crowdsourcing.
Following VeriCoM each performed step of the experiment was further analysed:

• Data Preparation: To enable the usage of crowdsourcing methods, a database
schema was developed by the experiment team for the first experiments held in
autumn of 2016. This database schema contained the basic entities and relations
to describe the experiment setup, but was in need of enhancement to allow for the
development of a supporting software tool.

• Task Design and Execution: The design of the data model could be traced to the
usage of FigureEight (formerly CrowdFlower), as the database entities where loosely
bound to the utilization of the services offered by the FigureEight platform. This
boundedness to FigureEight, underlines the need for the definition of independent
and generic data types, to allow connection to different crowdsourcing platforms
and to enable the creation of a software prototype for the CSI-Experiments.

• Aggregation: Following the steps of VeriCoM, the data aggregation procedure was
analysed next. This procedure is a purely manual step and is very time consuming
due to the lack of a coherent type definition for the reported defects and the
non-existent tool support. Each defect report was delivered in a free text format
and had to be read and interpreted by a member of the experiment team. To
overcome this issue, the free text defect reports of the earlier experiments served as
input for the newly created defect validation task first introduced in the experiment
of autumn 2017. Goal of the defect validation task was to align the free text defect
reports with a predefined set of gold standard defects (also see Table 3.1).

• Evaluation: Examining the follow up evaluation step showed, that it was also
done manually with the help of spread sheets. This step showed great potential
for improvement through definition and introduction of common defect types for
defect reports and automated evaluation (i.e. alignment of defect reports with
gold standard defects) as well as computation of performance metrics. Again,
no automated evaluation of the aggregated datasets was in place to reduce the
workload of the experiment administrators.

• Feedback: During interviews with the experiment team, the desire to provide
feedback for students on their performance during a workshop was stated. Giving
individual feedback was not possible in the past, because computation of student
performance metrics would have been a time consuming manual task. Providing

28

3.5. Status Quo of the CSI-Experiment process

this individual feedback with a software tool would be very valuable for students and
would enhance their learning outcome through participation in a CSI-Workshop.

With the VeriCoM process steps analysed and the major drawbacks identified, a proof of
concept prototype of the CSI-Platform was developed and tested during the experiment
run of autumn 2017. Goal of the test run was to get further insights into VeriCoM and
to test applicability of the software automation support under live conditions.
At the beginning of the experiment, FigureEight jobs were defined and the datasets were
assigned to the jobs. With the lack of a substitution for FigureEight, this first step was
considered not to be in need of tool support in the first draft of the CSI-Platform. This is
also true for task execution and distribution of tasks to the worker-crowd, as FigureEight
services are adequate for the execution of the experiment jobs.
The focus of the prototype solution was on the most time consuming parts of VeriCoM,
namely the interpretation of defect types and the aggregation and evaluation of defect
reports. The developed prototype was able to identify the defect type base on the answers
given by the workers and was capable of downloading and storing the data in a database
for later analysis. Also a first version of student feedback was provided in the form of
an individual email with performance metrics, including defect detection precision and
recall.

Overall the proof of concept implementation showed promising results and participating
in the management of the experiment, gave detailed insight in the required features and
functionalities of a full fledged CIS-Platform. A detailed listing of the status quo of
the CIS-Experiment process prior to autumn 2017 and the process steps selected for
improvement, can be found in Section 3.5.

3.5 Status Quo of the CSI-Experiment process
Elaboration of the status quo of the CSI-Experiment process prior to this thesis, follows
the VeriCoM approach and its consecutive steps. This section describes each of these
steps and highlights major issues and drawbacks of VeriCoM without software tool
support. These drawbacks (Dxx) are then translated into functional and non-functional
requirements for the CSI-Platform in Section 3.6.

1. Data Preparation:

• D11 - The data-model is only visualized in the form of database tables and
excel spreadsheets.
• D12 - Data can only be accessed through SQL-queries.
• D13 - Preparation of datasets is managed with excel spreadsheets.
• D14 - Selection of datasets for the experiments is cumbersome due to the lack
of a user interface.

29

3. CSI-Experiment Process Analysis & Requirements Elicitation

• D05 - Data model is FigureEight specific.

2. Task Design and Execution

• D21 - Tasks have to be designed with a FigureEight specific domain language.
• D22 - Distribution of participants to jobs requires the usage the TISS-platform

2, which is not integrated into FigureEight.
• D23 - Execution of the crowdsourcing jobs and collectable judgements are

limited in the free version of FigureEight.
• D24 - The user interface of FigureEight is slow and not optimal for the

CSI-Experiments.
• D25 - No automatic download of workshop results.
• D26 - Manual conversion of workshop results into data objects of the CSI-

Experiment domain.

3. Aggregation

• D31 - No automatic interpretation of defect types, only free text descriptions.
• D32 - Free text descriptions can only be interpreted vaguely.
• D33 - Aggregation of data is done manually, which makes it slow and time

consuming.
• D34 - Manually aggregating defect reports is inefficient and does not scale for

larger participant groups.
• D35 - Error-prone process, as data entries can be easily overlooked and distort

the following statistical evaluation.

4. Evaluation

• D41 - Manually matching defect reports with gold standard defects(i.e. deter-
mination of defect correctness) is inefficient and error-prone.

• D42 - Computing performance metrics manually for different workshops re-
quires many SQL-queries to the database.

• D43 - Lack of data visualization.
• D44 - Under-performing workers can not be filtered out.

5. Student-Feedback

• D51 - No feedback for students participating in the workshops.
• D52 - Low learning outcomes.
• D53 - Workshop performance of students can not be reviewed.
• D54 - No integration with existing e-learning platforms.

2https://tiss.tuwien.ac.at/

30

3.6. CSI-Platform Requirements

Table 3.2: VeriCoM 1.: Requirements for the Data Preparation step

1. Data Preparation:
Requirement Drawback User Story
R11 D11 As an experiment administrator, I can access a visual

representation (user interface, combined-tables, diagrams,
etc.) of the data-model, so that I can easily see rela-
tionships between entities and get an overview of the
experiment setup.

R12 D12, D13 As an experiment administrator, I can create, read, update
and delete (CRUD) data entities through a user interface,
so that I can prepare the experiment datasets with a
uniform interface.

R13 D14 As an experiment administrator, I can combine data en-
tries into dataset, so that I am able to select specific
datasets for experiments and tasks.

R14 D15 As an experiment administrator, I want to have an inde-
pendent data-model tailored to the CSI-Experiment use
case and generic enough, so that i can use crowdsourcing-
services other than FigureEight.

3.6 CSI-Platform Requirements

Analysing the drawbacks identified in Section 3.5 allows for the elicitation of requirements
for the envision CSI-Experiment support platform. Comprehensive system requirements
are the basis for a software development project, which addresses functional and non-
functional system specifications and incorporates the needs of key stakeholders. These
requirements are translated into user-stories in the for of "As a 〈role〉, I can 〈capability〉,
so that I 〈receive benefit〉.". The defined user-stories can then be taken up by a software
developer to produce the desired feature that fulfils the stakeholders needs.

Based on the drawbacks (Dxx) identified in Section 3.5, requirements (Rxx) have been
derived and translated into a user-story. The requirements stated in the Tables 3.2,3.3,
3.4, 3.5 and 3.6, display the requirement elicitation for each step of VeriCoM (except 5.
student feedback), together with the drawback they have been derived from.
Only the most important requirements have been defined and the requirements in the
tables do not represent a complete list of the desired features for the CSI-Platform. Within
the software prototype the user-story candidates which improve the CSI-Experiment
process the most (i.e. reduce manual work, improve time consumption etc.), have
been included and implemented in the platform. Therefore only a selection of the
defined requirements have been directly implemented as the platform represents an early
prototype and some requirements have to be addressed in future work (see Section 7.3).

Within this chapter the CSI-Experiment process was analysed and its application in the

31

3. CSI-Experiment Process Analysis & Requirements Elicitation

Table 3.3: VeriCoM 2.: Requirements for the Task Design and Execution step

2. Task Design and Execution:
Requirement Drawback User Story
R21 D21 As an experiment administrator, I want to be able to

design tasks independent the FigureEight specific domain
language, so that I can tailor the tasks to better fit the
CSI-Experiments.

R22 D22 As an experiment administrator, I want to integrate an
external (existing) platform into the experiment process,
so that management of participant is easier.

R23 D23 As an experiment administrator, I can execute many jobs
and collect many judgements, to increase the amount of
data for the evaluation step.

R24 D24 As an experiment administrator, I can work with a fast
reacting and responsive user interface.

R25 D25 As an experiment administrator, I can download and
export workshop results in the form of .csv-files.

R26 D26 As an experiment administrator, I am able to import .csv-
files and the platform automatically created corresponding
data object, so that I can easily transfer and process
(legacy) data.

Table 3.4: VeriCoM 3.: Requirements for the Aggregation step

3. Aggregation:
Requirement Drawback User Story
R31 D31, D32 As an experiment administrator, I receive an automatic

interpretation of worker answers into defect types, so that
manual interpretation of free text descriptions is reduced
to a minimum.

R32 D33 As an experiment administrator, I can access automati-
cally aggregated data with predefined aggregation options,
so that manual aggregation becomes obsolete.

R33 D34 As an experiment administrator, I want automatic aggre-
gation to be scalable to large sets of data, so that I can
improve the quality of evaluation results through working
with large groups of participants.

R34 D35 As an experiment administrator, I want to have a thor-
oughly tested aggregation algorithm, so that I can be sure
that the statistical evaluation is correct.

32

3.6. CSI-Platform Requirements

Table 3.5: VeriCoM 4.: Requirements for the Evaluation step

4. Experiment result evaluation:
Requirement Drawback User Story
R41 D41 As an experiment administrator, I want to be able to

automatically match a selected set of defect reports (per
workshop(s) / worker) with gold standard defects, so that
I can determine if a defect report is correct and so that I
can evaluate different sets of data.

R42 D42 As an experiment administrator, I want to automatically
compute performance metrics for different selected sets of
data (without manual SQL-queries to the database), so
that I can compare different workshops with each other.

R43 D43 As an experiment administrator, I want to have a visual
representation of the workshop performance metrics, so
that I can easily see all necessary metrics on one dash-
board.

R44 D44 As an experiment administrator, I want to filter out under-
performing workers of the evaluation, so that I can reduce
distortion of the statistical evaluation.

Table 3.6: 5.: Requirements for the Student-Feedback step

5. Student-Feedback:
Requirement Drawback User Story
R51 D51 As an experiment-/workshop-administrator, I want to pro-

vide feedback (e.g. in the form of e-mail) to the students
participation in the workshops, to enhance their learning
experience.

R52 D52, D53 As an experiment-/workshop-administrator, I want to be
able to see the performance (i.e. number of correctly iden-
tified defects, detection precision, recall, group agreement
etc.) of all students of an experiment run, so that I can
improve the task design/tutorials/teaching, if necessary.

R53 D53 As a workshop participant/student, I want have a graph-
ical overview of my performance during a workshop, so
that I can see how I performed and where I still need to
improve my skills.

R54 D54 As a experiment-/workshop-administrator/ workshop par-
ticipant/student, I want to have an integration of the new
support platform into existing (commonly used) e-learning
platform, so that I can access the platform from a well
known site.

33

3. CSI-Experiment Process Analysis & Requirements Elicitation

form of VeriCoM was described. Through participation in introduction workshops and
the CSI-Experiment of autumn 2017 and the development of a proof of concept prototype,
the stakeholders of the experiments were identified together with the difficulties and
drawbacks they have to face while performing the experiments without software tool
support. Based upon these drawback requirements have been defined which should be
addressed by the CSI-Platform. The identified requirements offer an answer to research
question RQ2. The requirements elicitation shows shortcomings in the data model and
the need for automation in the aggregation and evaluation phases of VeriCoM, as well as
the wish for automated student feedback. In Chapter 4 the identified requirements are
used to defined and enhance the data model and to formalize algorithms to automate
VeriCoM process steps.

34

CHAPTER 4
Data Model Design and
Algorithm Development

This chapter summarises the design-phase of the software development life-cycle (SDLC
[20]) for the CSI-Platform. It takes into account the requirements for VeriCoM, identified
in the previous Chapter 3 and consists of a detailed description of the most important data
model elements (Section 4.1), the definition and formalization of developed algorithms,
the result-converter and interpreter (Section 4.2.1), as well as the components for defect
report aggregation (Section 4.2.2), experiment evaluation (Section 4.2.3) and student
feedback-provision (Section 4.2.4).

4.1 Data Model

Following VeriCoM, the designed data models incorporate the formalizations made in
paper [23] and expand them with additional types needed for software development and
also modelling their relations to each other.
The core elements of VeriCoM are described in the following sub-sections. Figure
4.1 shows the Extended-Entity-Relationship(EER)-diagram of the data model for the
VeriCoM-approach. To explain the concepts and their applications in the data model, a
running example is provided for the formalized elements.

4.1.1 M - Domain Model, and Spec - Specification

A conceptual domain model (M) consists of a collection of model elements (me) of
different types. The complete set of model elements (ME) contains all the elements
the conceptual domain model is comprised of, i.e. M = ME =

⋃
nME1 . . .MEn,

where ME1 . . .MEn describe the sets of model elements of different types, such that

35

4. Data Model Design and Algorithm Development

Figure 4.1: VeriCoM approach data model.

M =
⋃

nMEn. M = MEC
⋃
MER, describes the minimal union of at least the two

model element set MEC , the model element concepts in a domain, and MER, their
relations.

The verification of a conceptual domain model (M), with respect to a frame of reference
(FR) is formally defined as a function (γ), which, if applied to the model (M) and the
frame of reference (FR) leads to the identification of defects (D).

γ(M,FR)→ D (4.1)

A Frame of Reference (FR) is a knowledge source complementary to the domain model
M, e.g. a system specification that describes (approximately) the same domain knowledge
as the model. The focus of the CSI-Experiment lies on the verification of models guided
by one form of a FR, a textual specification (Spec).

4.1.2 EME - Expected Model Element

Expected Model Elements (emes) build the core concept of the crowd-sourced model
inspection and function as a reference point to the EER model (i.e., graphical repre-
sentation of M), the given answers of the workers during the human computation task
and the types derived from the task results. They describe a certain model element (e.g.
entities, attributes, relationships and relationship attributes), which is mentioned in the
textual specification Spec and is expected to be found during model inspection in the

36

4.1. Data Model

EER model diagram. A representative evidence (EV) from Spec has to be assigned to
each eme (apart from superfluous emes), which is formally a function ϕ defined as:

ϕ(EME,Spec)→ EVEME,Spec (4.2)

The set EME overlaps, but must not be identical with the set of model elements in M.
The intersection of the expected and the actually modelled model elements contains
all those emes for which an equivalent model element me exists (i.e., the same as or a
synonym of eme denoted with ≈) [23].

EME ∩ME = {eme|∃me ∈ME ∧ eme ≈ me} (4.3)

An example for the inequality of the two set EME and ME would be superfluous emes, i.e.
elements which are not relevant according to the specification but nevertheless modelled.
These emes can be defined as a measure of checking the experience level of workers.
References to emes are used by other classes of the data model to be able to aggregate
and match different objects, e.g. a defect reported by a worker for an eme and the
corresponding TrueDefect (i.e. gold standard defect) for the same eme. A detailed
description of aggregation and matching with TrueDefects (i.e. evaluation of correctness)
can be found in Sections 4.2.2 and 4.2.3.

EMEType

Each eme is of a certain EMEType, which specifies the building block of the model
diagram the eme describes (e.g, entity, attribute, etc.). The following EMETypes have
been defined for an EER diagram:

EMETypes = {ENTITY,ENTITY_ATTRIBUTE,RELATIONSHIP,
RELATIONSHIP_ATTRIBUTE,RELATIONSHIP_MULTIPLICITY}

(4.4)

The defined EMETypes correspond to the following elements of a model:

• ENTITY - An entity mentioned in the specification, e.g. customer.

• ENTITY_ATTRIBUTE, - An attribute-field of an entity, e.g. customer.accountBalance.

• RELATIONSHIP - A relationship between two entities, e.g. (customer + has +
account).

• RELATIONSHIP_ATTRIBUTE - An attribute of an entity relation, e.g. (shop-
pingList + contains + ingredient).price.

• RELATIONSHIP_MULTIPLICITY - The multiplicities of the relationship e.g. (food-
Item(1..n) + isPartOf + setMenu(0..n)).

37

4. Data Model Design and Algorithm Development

An advantage of typed emes is, that they can be used to further guide the worker through
model inspection, as emes of certain type, can have a specific set of predefined defects,
which the worker can choose from. For example, when a worker has to evaluate an eme
of type RELATIONSHIP_MULTIPLICITY, the task can be designed to give "Wrong
relationship multiplicity." as a predefined choice for reporting a defect. Also, EMETypes
further clarify the DefectType (see section 4.1.4) of a reported defect. Table 4.1 shows
examples of emes with their corresponding type.

Table 4.1: EME example

EME ID Text EMEType
EME05 order ENTITY
EME22 order.advancePaymentAmountReceived ENTITY_ATTRIBUTE
EME23 order.canceled? ENTITY_ATTRIBUTE
EME24 order.dateAndNumber ENTITY_ATTRIBUTE

4.1.3 Sc - Scenario

The textual specification Spec for a conceptual domain model M can be split up into
different parts, called Scenarios in the VeriCoM context. These scenarios can be comprised
of single sentences or text paragraphs of the original specification and are defined manually
by the experiment administration team. A scenario sc should describe a part of the
model and its contained model elements in detail, i.e. there should be evidence for certain
model elements expected to be present in the conceptual domain model. Let Eveme,Spec

be a relevant evidence for an eme within a specification Spec as an arbitrary long text
chunk from Spec where the eme is mentioned [23], then a scenario consists of the textual
concatenation (represented by

∑
) of one or multiple evidences for emes. A Scenario sc

can therefore be formalized as:

sc =
n∑
1
Evemen,Spec. (4.5)

The function ϕ (4.2) can also be formalized more specifically in the context of a scenario.
Let ϕsc be the function assigning each eme to the scenario where it is mentioned.

ϕsc(EME,Sc)→ EVEME,Sc (4.6)

While reading the scenario description the focus of a worker is already guided to a
particular area of the model, which eases detection of defects for the emes in this area.
Evidence for an eme within a scenario, is modelled as a reference table, respectively
assigning the emes to those scenarios, for which evidence was found in their scenario-
description.

38

4.1. Data Model

The set of scenarios (Sc) has to completely describe the whole textual specification (Spec)
and additionally offer descriptive text to guide the worker during model inspection.

Sc =
{
sc|sc ⊂ Spec ∧

⋃
sc = Spec

}
. (4.7)

However, Sc has to minimally include all the evidences EV for all the emes mentioned
in Spec (EVEME,Sc = EVEME,Spec). Table 4.2 shows an example scenario and some
evidences for corresponding emes within this scenario.

Table 4.2: Scenario with evidences for emes example.

Type ID Text
Scenario Sc1 During an order, the customer

composes for his guests a selec-
tion of set menus or individual
food items listed in the menu.
During the order the customer
has to declare when the meal
should take place and whether
the meal will be eaten at the
restaurant or will be taken out.
For any order beyond 150.- Euro,
an advance payment of around
10% has to be provided. For
each order taken, the customer
receives an order number, which
he can use to cancel the order.
An advance payment expires, if
the related order is cancelled.

EV(order) EV(EME05,Sc1) "During an order,..."
EV(order.advancePayment-
AmountReceived)

EV(EME22,Sc1) "For any order beyond 150.-
Euro, an advance payment of
around 10% has to be provided."

EV(order.canceled?) EV(EME23,Sc1) "An advance payment expires, if
the related order is cancelled."

EV(order.dateAndNumber) EV(EME24,Sc1) "..,the customer receives an or-
der number„..."

4.1.4 TD - TrueDefect

To evaluate the VeriCoM approach within a controlled experiment by a crowd of workers,
the conceptual model has to be seeded with a predefine set of defects, purposefully
modelled to be found by the workers, to test their skills and also to provide means of

39

4. Data Model Design and Algorithm Development

measuring and evaluating their inspection performance. Therefore a set of TrueDefects
(TD) has been defined for defective elements in the model. These TD are triples connecting
an eme with its evidence and assigning a predefined defect type (Dtype).

TD (eme,Ev(eme, Spec), Dtype) . (4.8)

The defect type is assigned based on how the corresponding eme was erroneously modelled
and the type of the eme. An example for a TrueDefect is given in Table 4.3.

DefectType

A DefectType further specifies the kind of defect that is being reported for an eme.
TrueDefects, DefectReports (DR) (described in Section 4.1.5) as well as AggregatedDe-
fectReports (ADR) (see Section 4.1.6) have a DefectType.
Grouping defects by type allows for (a) evaluation of correctness of a DefectReport by
trying to match it with a TrueDefect and (b) aggregation of various DefectReports, stated
for the same eme by different workers, into AggregatedDefectReports. Formally the set of
DefectTypes is defined as:

DefectTypes = {MISSING,SUPERFLUOUSE,SUPERFLUOUS_EME,
SUPERFLUOUS_SYN,WRONG,WRONG_SYN,WRONG_RELM,

WRONG_RELM_SYN,NO_DEFECT,UNDECIDABLE}
(4.9)

While the DefectTypes MISSING and SUPERFLUOUS, assigned to elements of the sets
ME \ EME and EME \ME respectively, are domain independent, other defect types
defined here are specific to EER-diagrams. The defect types present in the conceptual
model of VeriCoM include:

• MISSING - model element is mentioned in the specification and relevant but not
present in the conceptual model.

• SUPERFLUOUS, SUPERFLUOUS_EME, SUPERFLUOUS_SYN - element is not rele-
vant for the model but depicted as an eme or a synonymous representation thereof.

• WRONG, WRONG_SYN, - describes a defect which is not categorized and in need of
further textual description by the worker.

• WRONG_KEY, WRONG_KEY_SYN - defect for an eme (or a synonymous representa-
tion) of type ENTITY_ATTRIBUTE, which has been wrongly chosen to be a key
attribute.

• WRONG_RELM, WRONG_RELM_SYN - defect for an eme (or a synonymous represen-
tation) of type RELATIONSHIP_MULTIPLICITY, for which the multiplicities have
been modelled incorrectly.

40

4.1. Data Model

• NO_DEFECT - a DefectReport which states no defect, i.e. a correctly modelled
element.

• UNDECIDABLE - this type is exclusively for AggregatedDefectReports and states that
there was no agreement between workers on a defect type during the aggregation
process.

Table 4.3: TrueDefect example.

TD EME Ev(eme, Spec) Dtype Description
D21 EME22 EV(EME22, Sc1) MISSING order.advancePaymentAmountRe-

ceived: attribute is MISSING.

TDN - TrueDefectNeighbourhood

During the first test-run of the CSI-Experiment, workers correctly reported defects on
related emes, rather than the eme in question. This led to the notion of a neighbourhood
around a TrueDefect (TD), referring to a defect of an eme with a similar name or within a
close context to the original eme which was asked to be evaluated. Reporting a defect for
an eme within its TrueDefectNeighbourhood (TDN), should therefore also be counted as
a correctly stated defect report. This TrueDefectNeighbourhood is defined manually by
the experiment task designers, as knowledge of the specification scenarios and its entity
relations is required. The function µ assigns an eme with a corresponding TrueDefect td
to its TrueDefectNeighbourhood.

µ(eme, td)→ TDNeme,td (4.10)

TrueDefectNeighbourhood come with a "relevance" value attached, describing their prox-
imity to the original eme.
An example for such a neighbourhood relation would be the entity attribute "cus-
tomer.name" and its corresponding entity "customer". Defects reported for the eme
"customer" already mentioning a defect for the true defect "customer.name" should also be
counted as correct. Table 4.4 shows the TrueDefectNeighbourhood for the eme "customer".

Table 4.4: TrueDefectNeighbourhood example.

TDN TDN(EME) TD TD(EME)
TDN1 EME01 - customer D11 EME12 - customer.name
TDN2 EME01 - customer D12 EME11 - customer.contactAddress
TDN3 EME01 - customer D13 (Superfluous) no corresponding eme - cus-

tomer.phoneNumber

41

4. Data Model Design and Algorithm Development

4.1.5 DR - DefectReport

The set of DefectReports (DR) is an interpreted version of the answers of a worker
during the human computation task of an experiment workshop. A DR is formalized as a
quadruple, connecting an eme and its evidence to a defect type, based on the judgements
of a worker (Wx):

DR (eme,Ev(eme, Spec),Wx, Dtype) [23]. (4.11)

As mentioned, a DefectReport is of a specific DefectType (see Section 4.1.4), with the type
"NO_DEFECT", stating that the eme in question was judged to be correctly modelled.
Defect reports of this type can therefore be filtered out during the aggregation step of
VeriCoM.
Two example defect reports can be seen in Table 4.5, where the first table entry (DR01)
describes a missing eme, while the second entry (DR02) states a correctly modelled entity.

Table 4.5: DefectReport example.

ID EME Ev(eme, Spec) Worker Wx Dtype

DR01 EME22 - order.
advancedPayment-
AmountReceived

Ev(EME22, Sc1) W1 MISSING

DR02 EME23 - order.
cancelled?

EV(EME23, Sc1) W2 NO_DEFECT

When the defect type "WRONG" is derived from the experiment results, an additional
textual description of the defect is required and manual evaluation, either through the
experiment administrators or a follow-up human computation task, is necessary, to (a)
determine whether the description matches a TrueDefect, (b) a new defect, unanticipated
during model conceptualization, has been found or (c) a more specific defect type can be
assigned to the DefectReport.

4.1.6 ADR - AggregatedDefectReport / FDR - FinalDefect

Multiple DefectReports for the same eme, reported by n workers (W), can be aggregated
to an AggregatedDefectReport (ADR), defined as:

ADR(eme,Ev(eme, Spec), ACoeff,W1..n, Dtype)[23] (4.12)

in the VeriCoM approach in Section 3.2.

For each AggregatedDefectReport ADR the defect type of that report Dtype, is aggre-
gated and an agreement coefficient ACoeff is computed as the inter-rater agreement on
that defect type. This ACoeff determines the final defect type and can be subject to

42

4.1. Data Model

a optional filter, which only considers the defect types where the worker’s agreement
was above a certain threshold value. If there was a tie between two or multiple defect
types (or optionally the threshold was not surpassed), then the designated defect type
UNDECIDEABLE is assigned to the AggregatedDefectReport. A detailed definition of the
the defect type aggregation and the computation of ACoeff, is described in Section 4.2.2
and Algorithm 4.2. Table 4.6 shows an ADR example together with the defect reports
that were taken as input for the aggregation function.

Table 4.6: AggregatedDefectReport example.

DefectReports for EME22
ID EME Ev(eme, Spec) Worker Wx Dtype

DR01 EME22 Ev(EME22, Sc1) W1 MISSING
DR02 EME22 Ev(EME22, Sc1) W2 MISSING
DR03 EME22 Ev(EME22, Sc1) W3 NO_DEFECT
DR04 EME22 Ev(EME22, Sc1) W4 SUPERFLUOUS
AggregatedDefectReport for EME22
ID EME Ev(eme, Spec) ACoeff Worker Wx Dtype

ADR01 EME22 EV(EME22, Sc1) 0.5 W1...4 MISSING

Defect reports given as a free-text description or of type WRONG with additional free-
text description, have to be aggregated manually or by a follow-up human computation
task (see DefectValidation in Section 3.1.1).

Note that in the following sections an AggregatedDefectReport (ADR), especially in
Chapter 5, is often referred to as a FinalDefect (FDR) which should be seen as a synony-
mous representation of the same object (ADR = FDR).

4.1.7 VDR - VerifiedDefectReport

VerifiedDefectReports (VDR) mark the output of the final Evaluation-step of the VeriCoM
approach. Within the Evaluation-step, ADRs are matched with the set of predefined
TrueDefects. A VDR is therefore formally defined as:

V DR(eme,Ev(eme, Spec), ACoeff, TDk,W1..n, Dtype)[23]. (4.13)

Table 4.7 depicts such a match between TD D21 and ADR01 for the eme EME22.

43

4. Data Model Design and Algorithm Development

Table 4.7: AggregatedDefectReport example.

TrueDefect for EME22
TD EME Ev(eme, Spec) Dtype Description
D21 EME22 EV(EME22, Sc1) MISSING order.advancePaymentAmountRe-

ceived: attribute is MISSING.
Aggregated-/VerifiedDefectReport for EME22
ID EME Ev(eme, Spec) ACoeff TDk Worker Wx Dtype

ADR01 EME22 EV(EME22, Sc1) 0.5 W1...4 MISSING
VDR01 EME22 EV(EME22, Sc1) 0.5 D21 W1...4 MISSING

4.1.8 Enums

In order to represent the answers to the guiding questions (see Figure 3.4) in a coherent way,
which is independent of the platform used for crowdsourcing, enumeration types(enums)
had to be defined. These enums are used to represent worker judgements on fields which
have more than one possible answer. This eases the interpretation of incoming results of
FigureEight, as theses enum values have been incorporated in the designed jobs.

ModelAnalysis Answer-Types

The answer values for FigureEight jobs of type ModelAnalysis have been defined for two
reasons. First, to represent the three possibilities of the IsModelled-question, with its
additional value "SYNONYM" and second, to help workers with their judgement on
the defect type, which they want to report, by giving them a set of choices based upon
common defects for the type of eme they got presented. For example if they should judge
a relationship between two entities, a common error would be incorrect multiplicities. If
that error is the case, they can directly report it, by choosing this answer without the
need to add explicit description. This reduces the amount of free-text defects that are
reported and improves later aggregation. If the answer "DEFECT_OTHER" is chosen,
they can report a free-text report, in case the predefined possibilities do not reflect the
error in the model.

The following answer-type sets have been defined:

IsModelledAnswer = {TRUE,FALSE, SY NONYM} (4.14)

DefectJudgementAnswers = {DEFECT_NOT_A_V ALID_KEY,
DEFECT_INCORRECT_MULTIPLICITY,

DEFECT_OTHER,DEFECT_NOT_A_V ALID_KEY_SY N,
DEFECT_INCORRECT_MULTIPLICITY_SY N,DEFECT_OTHER_SY N}

(4.15)

44

4.2. Algorithms

DefectValidation Answer-Types

For the DefectValidation jobs the answer-types represent the answers of the workers to
the task questions. The following answer-types have been defined:

IsTrueDefectAnswer = {Y ES_TRUE_DEFECT,NOT_TRUE_DEFECT,
NO_INCOMPLETE,CANNOT_DECIDE}

(4.16)

DefectMeaningAnswer = {Y ES_SAME_MEANING,

NO_DESCRIBES_DIFFERENT_DEFECTS,UNCLEAR}
(4.17)

In this section the data model for VeriCoM has been defined. All necessary entities to verify
a conceptual domain model M with respect to a textual specification Spec and the usage of
expected model elements EMEs have been formalize. Also defect types for DefectReports,
TrueDefects and the newly introduced concept of the TrueDefectNeighbourhood have
been described and their relations to each other have been depicted. These entities
and relations are detailed in the form of a running-example, which showcases some real
example values for each of the introduced entities. Furthermore enum-types for the
answers to the tasks ModelAnalysis and DefectValidation are defined. This data model
answers the first part of research question RQ2 and forms the basis for VeriCoM as well
as the developed algorithms to automate the VeriCoM process steps.

4.2 Algorithms
This section describes the developed algorithms for the CSI-Platform in detail. These
algorithms build upon the data models defined in Section 4.1 and are used to convert and
interpret results from FigureEight 1 into domain objects (see Section 4.2.1), to aggregate
the DefectType of DefectReports (see Section 4.2.2), to evaluate CSI-Experiments (see
Section 4.2.3) and to provide feedback to students (see Section 4.2.4).

4.2.1 Result-Conversion and Interpretation Algorithms

The developed CSI-Platform uses the services of FigureEight for the management of
the crowdsourcing tasks. Human computation jobs are created and distributed to the
workshop participants by FigureEight and the results are automatically downloaded as
.csv-reports. These reports contain the answers of the participants to all the questions
they have been asked during their human computation tasks in a raw tabular format.
Therefore components for conversion and interpretation into CSI-Platform domain objects
have been developed. Figure 4.2 depicts the designed entities and their relations.

1https://make.figure-eight.com/

45

4. Data Model Design and Algorithm Development

Figure 4.2: Interpretation/Conversion of FigureEight job reports into defect reports.

To determine the defect type of the defect report created during the conversion process,
the Algorithm 4.1 was defined.This algorithm mirrors the decision tree defined in Figure
3.5 and differentiates additionally defined defect types.
First the output type is set to NO_DEFECT, referencing the state when a worker does
not want to report a defect for the given model element. The tree of if-statements starts
in the order of the guiding questions with the check if a relevant eme was modelled
and consecutively modelled correctly (1-4). If the element is incorrectly represented,
the defect judgement of the worker is analysed. This defect judgement can be one of 3
distinct enum values (see Section 4.1.8, not taking into account synonym values), which
correspond to the type of the eme that was in question. In each case statement the defect
type that reflects the answer is assigned to the return variable type (5-15). Likewise,
the defect types for a synonymous representation of the modelled element are assigned
in the second "else-if"-branch (16-29). If a relevant model element is absent, the defect
type "MISSING" is returned (30). In the last branch the types for superfluous elements
are assigned (33-36) and the resulting type is returned (37). Note that the defect types
for synonyms are differentiated, but are not distinctly counted in the later evaluation of
defects reported within a workshop. Instead they count to their original defect type, e.g.
DefectType.WRONG_KEY_SYN counts to DefectType.WRONG_KEY and so forth.
For the further aggregation, evaluation and feedback generation steps, only DefectReports
are consulted.

4.2.2 Aggregation - Defect type aggregation

Multiple DefectReports for the same eme, are aggregated into a single AggregatedDefec-
tReport (ADR) with a specific DefectType, that is defined through aggregation of the
types of the initial defect reports (see Figure 4.3).

46

4.2. Algorithms

Algorithm 4.1: Interpretation of ModelAnalysisJudgements into DefectTypes
Input: A ModelAnalysisJudgement judgement
Output: A DefectType type

1 type← DefectType.NO_DEFECT ;
2 if judgement.isRelevant == true then
3 if judgement.isModelled == true then
4 if judgement.isCorrect == false then
5 switch judgement.defectJudgement do
6 case DEFECT_NOT_A_V ALID_KEY
7 type← DefectType.WRONG_KEY ;
8 end
9 case DEFECT_INCORRECT_MULTIPLICITY

10 type← DefectType.WRONG_RELM ;
11 end
12 case DEFECT_OTHER
13 type← DefectType.WRONG;
14 end
15 endsw
16 else if judgement.isModelled == synonym then
17 if judgement.isCorrect == false then
18 switch judgement.synDefectJudgement do
19 case DEFECT_NOT_A_V ALID_KEY_SY N
20 type← DefectType.WRONG_KEY_SY N ;
21 end
22 case DEFECT_INCORRECT_MULTIPLICITY_SY N
23 type← DefectType.WRONG_RELM_SY N ;
24 end
25 case DEFECT_OTHER_SY N
26 type← DefectType.WRONG_SY N ;
27 end
28 endsw
29 else
30 type← DefectType.MISSING;
31 end
32 else
33 if judgement.isModelled == true then
34 type← DefectType.SUPERFLUOUS_EME;
35 else if judgement.isModelled == synonym then
36 type← DefectType.SUPERFLUOUS_SY N ;
37 return type;

47

4. Data Model Design and Algorithm Development

Figure 4.3: Aggregation data model.

The type of the ADR is the type, which the majority of the experiment participants
agreed upon, i.e. reported a defect, for a certain eme with the specific type. Let ψ be
the function to determine the aggregation of the defect types DT1...n for the EME emei

into a single aggregated defect type Temei , formalized as:

ψemei(DTemei,1...n)→ Temei . (4.18)

Algorithm 4.2 showcases the implementation of the defect type aggregation function ψ.
The algorithm takes the array of DefectReports, for which the defect type should be
aggregated, as input, alongside the array of all the DefectTypes defined for the applied
domain (see section 4.1.4) and an occurrence-Map, with the DefectTypes as key and an
integer value as an occurence-counter. As output-parameter a DefectType T is returned.
In the first part of the algorithm (row 1-7), the occurrences of each DefectType t within
the DefectReport-array are counted. Then the maximum value of the occurrences-Map
maxOccurences is determined (8) and its corresponding key is assign to T (9). Now the
entry with the maximum value is removed from the map and it is checked if another
entry with the same value is present in the map after the removal. If that is the case, i.e.
workers could not decide between two or more DefectTypes, then the returned type T is
set to DefectType.UNDECIDEABLE (10-14).

Determination of defect type occurrences of the above mentioned algorithm can be
encapsulated into a separate utility function. This can be useful, as the computation of
the agreement coefficient(ACoeff) for the defect type T can then use the occurrences-
Map, precisely its maximum value maxOccurrence, and the number of DefectReports n
as input parameters. The ACoeff is defined as:

ACoeffT = maxOccurrenceT

n
. (4.19)

48

4.2. Algorithms

Algorithm 4.2: DefectType aggregation
Input: An array of DefectReports DR for an eme, An array of DefectTypes DT, A

Map<DefectType, int> occurences
Output: An aggregated DefectType T

1 for each t ∈ DT do
2 for each dr ∈ DR do
3 if dr.type == t.type then
4 occurences(t) + +;
5 end
6 end
7 end
8 maxOccurence← occurences.max();
9 T ← occurences.getKey(maxOccurence);

10 occurences.removeEntry(maxOccurence);
11 if occurences.max() == maxOccurence then
12 T ← DefectType.UNDECIDEABLE;
13 end
14 return T ;

The ACoeff is a value between 0 and 1, which measures the ratio of the defect report
type mentioned most often for a given eme and all reported defects for that eme.

4.2.3 Experiment Evaluation Components

For the evaluation step of the VeriCoM approach, i.e. the check whether a given
aggregated defect report ADR also corresponds to a predefined TrueDefect, a component
was designed, that aligns the given reports with the respective TrueDefect and created a
VerifiedDefectReport VDR for each ADR that could be matched (see Figure 4.4). The
resulting sets of matched and unmatched defect reports, is then used to evaluate the
performance of the workers during the workshops of an experiment round. The evaluation
of previous experiments on crowd-sourced software inspection can be found in the papers
[23] and [29].
A formal definition of the evaluated sets and the performance metrics for workshops are
described next.

49

4. Data Model Design and Algorithm Development

Figure 4.4: Evaluation data model.

Statistics for experiments

At the end of an CSI-Experiment (i.e. during VeriCoM) run, a number of DefectReports
have been filed by the experiment participants. Not all of those reports state a defect in the
model though, as the DefectReports of type "NO_DEFECT" describe a correctly modelled
entity in the conceptual model. Also, after aggregation, a discord between workers on
the type of a defect, which leads to no clear majority, aggregates to a DefectReport of
type "UNDECIDEABLE". Both these types of defects, need to be filtered out from the
evaluation and lead to a set of clearly stated defects by the workers. This total set of
AggregatedDefectReports (ADR) for a workshop is defined as totalDefects:

totalDefects = {a ∈ ADR|a.type 6= NO_DEFECT ∧ a.type 6= UNDECIDEABLE}
(4.20)

Note that the above defined set, doesn’t give information about the correctness (i.e. a
matching TrueDefect exists) of the reports in the set. Therefore, the set of TruePositives
(TP), i.e. AggregatedDefectReports within the set of totalDefects, which have a matching
TrueDefect (TD) of the same type, is formalized as:

TP = {a ∈ totalDefects|∃t ∈ TD s.t. a.emeId = t.emeId ∧ a.type = t.type}. (4.21)

Equally the set of FalsePositives FP, is defined as the complementary set

FP = totalDefects \ TP. (4.22)

Analysing these sets provides insight into the capability of the workers to correctly
identify defects in a conceptual model and are used as input for the overall workshop

50

4.2. Algorithms

performance metrics. For every experiment each of the held workshops is evaluated
separately and then in combination, to see if there exists evidence for the correlation
between the number of judgements and the number of undecided defect, true positives
and false positives.

Workshop performance metrics

Two performance metrics, precision and recall, have been defined for a workshop. Work-
shop precision pws, i.e. the proportion of TruePositives within a workshop (TPws) to the
reported defects in (totalDefectsws) is formalized as:

pws = |TPws|
|totalDefectsws|

. (4.23)

Computation of the recall value of TrueDefects within a workshop, requires the number of
distinctly mentioned TrueDefects (matchedTDws) within the set of TruePositives. This
can be formalized as a subset of TPws which contains each corresponding TrueDefect
exactly once, i.e., matchedTD ⊆ TP .

With the value matchedTD computed, the workshop recall rws, can be computed as
the ratio between matchedTD and the overall number of TrueDefects TD, which where
present in the scenarios of the workshop:

rws = matchedTDws

|TD| (4.24)

4.2.4 Student Feedback Components and Algorithms

Automated feedback generation for students was elaborated in requirement R41 and R42
(defined in Table 3.6) to improve the learning outcome during the workshops.
Figure 4.5 shows the ER-model of the designed feedback-components. A Worker partici-
pates in a number of workshops and can receive feedback for those workshops. During a
workshop a worker reports DefectReports (DR) and ValidatedDefectReports (ValDR)
for the two task T1-ModelAnlysis and T2-DefectValidation respectively. These DR and
ValDR are evaluated and incorporated in the received feedback. The FeedbackService
manages the creation of Feedback, aligns the workshops and their participating workers
and calls other services to compute statistical values like precision and recall (see Section
5.3 for more details).

51

4. Data Model Design and Algorithm Development

Figure 4.5: Feedback ER-model.

With all the needed statistical input computed and the feedback generated, the service
to send feedback mails can be called, to deliver each participant valuable information
about its contributions during the workshops.
The following sections will explain the formalization of the values, present in the feedback
mail, in detail.

Correct Defect determination

As stated in Requirement R31 and R42 (see Table 3.5 and Table 3.6), there is a need
for automatic determination of correctness of a reported defect. A DefectReport for
an eme DReme is considered correct if there exists a TrueDefect defined for the same
eme TDeme with the same defect type, i.e., DReme.type = TDeme.type. This set of
correct defects matched with TrueDefects is describes as M1. The notion of correctness
has been further expanded to additionally include defect reports with a different type
as their corresponding TrueDefect (M2). Furthermore the neighbourhood relations of
TrueDefect were also taken into account and a defect report was also considered correct
if it mentions a TrueDefect within the TrueDefectNeighbourhood (see Section 4.1.4) of
the actual TrueDefect in question (M3).

We define the set of correct defect reports CDR as follows:
Let DR be the set of all DefectReports reported by all workers of a workshop; let TD be

52

4.2. Algorithms

the set of all TrueDefects and let TDN be the TrueDefectNeighbourhood defined for a
TrueDefect t;

The sets of matches between DefectReports and TrueDefects M1, M2 and M3, are defined
as follows:

• M1: DefectReports d with the same emeId and DefectType type as a TrueDefect t.

M1 = {d|d ∈ DR,∃t ∈ TD s.t. t.emeId = d.emeId ∧ t.type = d.type} (4.25)

• M2: DefectReports d with the same emeId as a TrueDefect t, without the reports
of M1.

M2 = {d|d ∈ DR \M1,∃t ∈ TD s.t. t.emeId = d.emeId} (4.26)

• M3: DefectReports with the same emeId as an element n of TrueDefectNeighbour-
hood with relevance rel = 1, excluding the reports of M1 and M2.

M3 = {d|d ∈ DR\(M1∪M2),∃n ∈ TDN s.t. n.emeId = d.emeId∧n.rel = 1}
(4.27)

A DefectReport d ∈ DR is considered to be in the set of CDR, i.e.correct, when it is
contained in one of the defined matching sets M1, M2, or M3:

CDR = {d ∈M1 ∪M2 ∪M3}. (4.28)

Participant/Student feedback

To enhance the learning experience during an experiment run, workshop participants
receive feedback with relevant performance metrics (requirement R41 of Table 3.6). These
metrics consist of quality measures and group agreement values for the two distinct tasks
T1-ModelAnalysis and T2-DefectValidation. The array of defined performance indicators,
for the two tasks include:

1. T1 - ModelAnalysis:

a) Reported defects / reported newly discovered defects
b) Defect detection precision
c) TrueDefect recall
d) Group agreement on the type of a defect report

2. T2 - DefectValidation:

a) Number of validated defect reports

53

4. Data Model Design and Algorithm Development

b) Workshop average of validated defect reports

c) Group agreement on validation

d) Workshop average of group agreement on validation

These metrics are formally defined and further detailed in the following sections.

Feedback for T1-ModelAnalysis

For the task of model analysis an array of performance indicators have been defined.
Quantitative measures like the number of defects reported, indicate whether the worker
participated actively during the workshop or not. Outliers which contributed far below
average, should not be considered in further experiment evaluation or weighted less than
the rest of the workers.
New reported defects are defined as defects of an eme, for which no TrueDefect was defined
and a textual defect description was given by the participants. This can either mean that
the defect report is incorrect, or that the worker found a defect not anticipated by the
task designers. These new defects need to be evaluated manually and the conceptual
model needs to be checked for correctness.

Defect detection precision: Let DRw be the set of defect reports filed by a worker
w and let CDRw be the set of correct defect reports defined in Section 4.2.4, with
CDRw ⊆ DRw, then the defect detection precision for the worker pw can be computed
as the proportion:

pw = |CDRw|
|DRw|

(4.29)

This precision value gives an indication of the participants understanding of model
inspection and can be directly used to filter out under-performing workers when analysing
and evaluating a workshop.

TrueDefect recall: The set of identified TrueDefects (i.e. a correct defect report was
filed for the same EME) is defined as iTDw and is a subset of TD (iTDw ⊆ TD). The
TrueDefect recall can then be computed as the proportion of the identified true defect of
a worker, to all the true defects:

rw = |iTDw|
|TD| . (4.30)

Additionally the set TDw denotes the TrueDefects that where presented to the worker
during model analysis. In other words, the worker was asked to inspect an eme for which
a corresponding gold standard defect was defined.

54

4.2. Algorithms

r2w = |iTDw|
|TDw|

. (4.31)

This additional definition refines computation of the recall and eliminates TrueDefects for
emes which where not shown to the worker. Measuring these two different recall values
gives exposure to the effectiveness and completeness of a software inspection carried out
by a crowd of workers. Note that during the experiments of autumn 2017 (detailed in [23])
and spring 2018 only the recall value rw was computed and considered for evaluation.

DefectType group agreement: With each given judgement, a defect report of a
specific type is reported. Identifying the agreement within the group of participants on
the type of the defect, gives insight into the group consensus about the given eme. Also,
if agreement for a newly discovered unanticipated defect was high, it is a good indicator
that the model has been designed with an error.

Let mDR be the defect report of the type which was reported by the majority of workers
and let mw be the group agreement value for a worker (majority value) for a single defect
report. The set of defect reports for which a worker was in the majority regarding the
defect type Mw, is defined as:

Mw = {mw|mw ∈ DR,mw.eme = mDR.eme ∧mw.type = mDR.type}. (4.32)

The respective percentage agreement value is computed as:

aw = |Mw|
|DRw|

. (4.33)

Feedback for T2-DefectValidation

The task T2-DefectValidation is used to determine, whether a given textual description
of a defect from a previous experiment round, corresponds to a TrueDefect. To measure
performance within this task, the number of validated defect reports is counted to measure
worker activity during a workshop. For this task the agreement between workers plays a
major role, as it impacts the final type of the defect report in question.

DefectValidation-Agreement algorithm: Algorithm 4.3 displays how it is deter-
mined, if a judgement of a worker was in the majority with the judgements of the group
on the same task. As input values for the algorithm the ValidatedDefectReport a of the
worker, needs to be supplied together with all the other reports V for the same task.
Also the arrays for the two answer possibilities to the task questions and corresponding
mappings to count the answers are needed as input. Output is a boolean value, indicating
whether the worker gave the same answers as the majority or not (1).
First for each report given, the answers for each answer type are counted (2-13). This

55

4. Data Model Design and Algorithm Development

part of the algorithm should be implemented separately and the resulting HashMaps
should be saved and used further once they have been computed. Then the majority for
the two questions is determined (14-15). If the worker answered with IsTrueDefectAn-
swer.YES_TRUE_DEFECT on the first question then he was also presented with a
second question and he needs to be in the majority in both questions (16-19). Else it is
sufficient if he is in the group majority for the first question (20-22).
The agreement value is then computed analogous to the agreement of task T1 in section
4.2.4.

Algorithm 4.3: DefectValidation-agreement algorithm
Input: A ValidatedDefectReport a, All ValidatedDefectReports for the same task

V, An array of IsTrueDefectAnswers isTDAnswers, An array of
DefectMeaningAnswers meaningAnswers, A
HashMap<IsTrueDefectAnswer, int> answersTD, A
HashMap<DefectMeaningAnswer, int> answersDM

Output: A boolean value isInMajority
1 isInMajority ← false;
2 for each v ∈ V do
3 for each i ∈ isTDAnswers do
4 if v.answerIsTD == i.answer then
5 answersTD(i) + +;
6 end
7 end
8 for each m ∈ meaningAnswers do
9 if v.answerDefectMeaning == m.answer then

10 answersDM(m) + +;
11 end
12 end
13 end
14 majorityIsTrueDefect← answersTD.majority();
15 majorityDefectMeaning ← answersDM.majority();
16 if majorityIsTrueDefect == IsTrueDefectAnswer.Y ES_TRUE_DEFECT

then
17 if a.anwerIsTD == majorityIsTrueDefect &&

a.answerDefectMeaning == majorityDefectMeaning then
18 isInMajority ← true;
19 end
20 else if a.anwerIsTD == majorityIsTrueDefect then
21 isInMajority ← true;
22 return isInMajority;

In this section, algorithms for the CSI-Platform and VeriCoM are addressed. Specifically
the algorithms for the conversion of FigureEight results into domain model entities, the

56

4.2. Algorithms

aggregation of defect types, the evaluation of experiment results and the creation of
student feedback have been formalized and defined in pseudo-code. Also the performance
metrics for the student feedback have been formally defined. These algorithms are part
of the answer to research question RQ2 and build the basis for the implementation of the
CSI-Platform prototype described in Section 5.

57

CHAPTER 5
Implementation

Building upon the classes and components defined in the design Chapter 4, a detailed
description of the technology stack and software architecture with its subordinate modules
(see Section 5.1) is given in this chapter. Furthermore a depiction of the VeriCoM-approach
algorithm implementation, which forms the basis for the VeriCoM evaluation step, is
provided in Section 5.2. In Section 5.3 the feedback service module is described. Also an
overview of user interface elements of the CSI-Platform can be found in Section 5.4.

5.1 Architecture and technology stack
The software architecture of the CSI-Platform was designed as a layered 3-tier architecture,
consisting of a controller-layer, a service-layer and a repository-layer. Each layer is only
allowed to call the interfaces of the layer below to separate concerns [4]. Figure 5.1
shows the architecture of the CSI-Platform with its different modules, the connection to
FigureEight, as well as the main technologies used for the implementation. The technology
stack was taken over from JHipster1, a development platform to generate Spring Boot2 +
Angular 3 Web applications. The application was intended to be written in Java where
Spring is the go-to framework for dependency injection and fast development of the
server-side of web applications. As a frontend framework to develop the User Interface
(UI), Angular was chosen as it is easy to learn and offers the ability to structure the
UI into components. JHipster allows to generate a pre-configured and well tested web
application skeleton with a combination of those two frameworks, keeping additional
configuration time to a minimum. JHipster follows a Model-driven Software Engineering
(MDSE) approach, were the domain model of the application can act as a blue-print to
generate basic code structures, e.g. model entities, repositories, services, REST-controller,

1https://www.jhipster.tech/
2https://spring.io/projects/spring-boot
3https://angular.io/

59

5. Implementation

unit tests, etc., and a basic UI. Therefore JHipster was a good choice to generate the
infrastructure of the web application and to focus on the development and implementation
of algorithms for VeriCoM.

5.1.1 Code Modules:

The source code of the implemented CSI-Platform was split up into different modules (i.e.
java packages), which group a self-contained set of classes and services together. The
modules mirror the VeriCoM process steps and additionally separate some helper classes
into their own module. Each module is composed of interface classes, which expose
the offered services, and their respective implementation classes. This way the different
architectural layers stay detached. The following modules have been created:

• csvreaders: Services to read in .csv-files, e.g. the results from FigureEight.

• domain: Domain model entities.

• converters: Converter-classes to convert non-domain objects, e.g. CSVRecords
(i.e. one column of a .csv-file from FigureEight that represents multiple different
domain objects), into their respective domain objects.

• repository: The repository layer of the architecture, offering several options to
read data from the database.

• dbpopulators: Populator classes to populate the database with the converted
domain objects.

• api.figureeight: FigureEight API client responsible for sending requests to the
REST-API offered by FigureEight.

• interpreter: Interpreter classes to interpret results from VeriCoM and determining
the defect type of an defect report based upon the answers given by the participant.

• aggregation: Services to aggregate DefectReports into AggregatedDefectReports
(FinalDefects).

• evaluation: Services to match AggregatedDefectReports to their corresponding
TrueDefect and to compute the performance metrics for each workshop.

• feedback: Services to provide feedback to students, i.e. computing the performance
metrics for each worker and creating the feedback e-mail.

These modules assure a separation of concerns and structure the program in a way that
is similar to VeriCoM. Note that the CSI-Platform is a prototype and changes in the
requirements may result in the need to re-factor the modules. Details of the implemented
classes which concern VeriCoM are presented in Section 5.2.

60

5.1. Architecture and technology stack

Figure 5.1: CSI-Platform implementation architecture.

61

5. Implementation

5.1.2 FigureEight API-connection:

The connection to the FigureEight API is implemented as a Http-Client that performs
REST-Request to the exposed FigureEight endpoints. The received Http-Response
contains the requested resources in the JSON format 4. The FigureEight endpoints allow
to remotely create and manage crowdsourcing jobs, request monitoring information about
the jobs, request worker judgements and the download of job-Results in the form of a
.csv-file. The latter is used as the input for the VeriCoM algorithm implementation.
It is also possible to configure a remote-hook, which sends live-updates of the jobs to
the requesting client. This allows for a live-monitoring of worker performance during a
workshop. This feature was not implemented in the CSI-Platform however, but should
be considered for future work.

5.2 VeriCoM - Algorithm implementation
The generic VeriCoM approach, described earlier in Section 3.2, is the basis for the
processes implemented in the CSI-Platform. The support for VeriCoM trough the
platform developed in this paper, focused on the Aggregation & Evaluation part of the
approach, which was identified as the most time consuming portion. The following
subsections detail the implementation of this parts in the CSI-Platform.

5.2.1 Conversion & Interpretation - Modules

Preceding the actual VeriCoM steps aggregation and evaluation, specified in Figure
3.3, the algorithm implementation requires an additional conversion and interpretation
step. Classes and interfaces created for this step are based upon the generic definition of
Section 4.2.1 and are depicted in Figure 5.2. The Conversion & Interpretation modules
address requirement R26 (see Table 3.3), which states the need to import .csv-files and
the creation of domain objects.

Output data of the FigureEight-API is a .csv-file for each Job that has been worked
on during an experiment. Each type of Job thereby produces it’s own output file,
which has to be distinctly converted and interpreted. The "Results"-classes are the first
classes of the CSI-domain, containing the answers to the jobs T1-ModelAnalysis and
T2-DefectValidation in their corresponding "Judgement"-classes, respectively. They are a
direct representation of the answer given in FigureEight and are not interpreted, i.e. they
do not have a defect type assigned to them yet. Each of the "Results"-classes is linked
to the Workshop and TaskInstance in which they have been created. Converters and
interpreters for ModelAnalysisResults and DefectValidationResults have been developed
respectively. To interpret the given answers of task T1-ModelAnalysis into its correlating
defect types, the ModelAnalysisResultInterpreter makes use of the DefectTypeInterpreter
class. This DefectTypeInterpreter takes a ModelAnalysisJudgement, i.e. the answers to
the guiding questions, and by means of Algorithm 4.1 determines a defect type and assigns

4https://www.json.org/

62

5.2. VeriCoM - Algorithm implementation

Figure 5.2: Interpreter-module class diagram.

it to the DefectReport. The ValidatedDefectReport of task T2, contains an interpretation
of the questions that had been answered by the worker.

Outcome of the conversion and interpretation step, are DefectReport’s for ModelAnaly-
sisResult’s and ValidatedDefectReport’s for DefectValidationResult’s. Furthermore, each
column of the .csv-files from FigureEight, represents multiple entities of the CSI-Platform
domain model. Therefore an interpretation of each .csv-column into their respective
domain entities has to be performed. The interpretation of each of these entities is
described in detail in the following sections. These entities function as input for the
aggregation- and feedback-components in the following process-steps.

ModelAnalysisResult Interpretation

As depicted in figure 5.3 one of the human computation jobs, which is run in FigureEight
during the CSI-Experiment, is Model Analysis. During the Model Analysis job, workers
are presented a Scenario, a ModelElement(ME) as well as a conceptual model-diagram
and they have to decide whether the ME is modelled correctly in the model. Guiding

63

5. Implementation

their analysis is a series of questions further described in Section 3.2. Answers to the
questions are represented as boolean values in case of a binary-choice questions or defined
as Strings representing values of Enumeration-Types, introduced in Section 4.1.8, in case
of more than two options to answer a question.

ModelAnalysisResults are downloaded from FigureEight as .csv-files (see Table 5.1), with
columns containing the meta-data of the task together with the dataset of the question,
e.g.: task_id, taskinstance_id, worker_id, eme_id, scenario_id, etc. and
columns representing the answers to the guiding-questions e.g: relevant, modelled,
correct .

Table 5.1: ModelAnalysisResult csv-record example.

task_id taskinstance_id worker_id eme_id
t_12345 ti_12345 w_12345 DS62_Gr1_EME12 _EntA
scenario_id relevant modelled correct
S02 true true true

The ModelAnalysisResultConverter takes this .csv-file as input and generates the
following Java objects:

• ModelAnalysisResult: wrapper class, representing one task carried out by a
worker

• ModelAnalysisJudgement: answers to the guiding-questions, i.e. the judge-
ment about the correctness of the model element

• ModelAnalysisDescription: further descriptive text

• TaskInstance: the FigureEight task instance

• Workshop: the workshop in which this result was attained

In the consecutive interpretation step carried out by the ModelAnalysisResult-
Interpreter, ModelAnalysisResults and their respective ModelAnalysisJudgements
are further refined. Taking a ModelAnalysisJudgement as input, the DefectType-
Interpreter defines the DefectType, determined by the answers to the guiding
questions and the decision-tree in Figure 3.5. The interpretation of the judgements into
the defect type is depicted in detail in Algorithm 4.1

Outcome of the interpretation of a ModelAnalysisResult is a DefectReport with
a specific DefectType. These DefectReports represent the human computation task
carried out by a worker and are further used in the aggregation- and evaluation-step and
to provide feedback about the workers performance in the workshop.

64

5.2. VeriCoM - Algorithm implementation

Figure 5.3: ModelAnalysisResult interpretation process.

Figure 5.4: DefectValidationResult interpretation process.

DefectValidationResult Interpretation

Similar to the ModelAnalysisResult, the DefectValidationResult represents
the outcome of the Defect Validation part of the CSI-Experiment. Figure 5.4 depicts the
analogous conversion and interpretation process. In this second experiment task workers
had to decide whether a given DefectReport from a previous experiment run has
the same meaning as the corresponding TrueDefect of the same model element. The
answers to these tasks are mapped by the DefectValidationResultConverter
to the values of IsTrueDefectAnswer and HasDefectSameMeaningAnswer. Also
the respective TaskInstance is generated. Output of this interpretation step is a
ValidatedDefectReport instance containing the code of the initial DefectReport,
the matched TrueDefect and the DefectValidationJudgement of the worker.
ValidatedDefectReport’s are then further used to provide feedback about the
agreement among workers judging the same defect report across one workshop.

65

5. Implementation

5.2.2 Aggregation - Module

Requirement R32 (see Table 3.4), states the need for automated aggregation of Defec-
tReports, to reduce the previous time intense process of manual aggregation. Therefore
components for aggregation have been defined in Figure 5.5.

Figure 5.5: Aggregation-module class diagram.

The designed classes for the aggregation-module, consist of the interface AggregationSer-
vice, its implementation the DefaultAggregationService and the FinalDefectAggregator.
The AggregationService, encapsulates the core functionality, i.e. the method to aggregate
all given DefectReports into FinalDefects with the previous application of filter predicates.
The DefaultAggregationService streams over all emes defined in the EMERepository and
calls the FinalDefectAggregator, to generate an aggregated defect report (FinalDefect)
and to determine its aggregated defect type (see Algorithm 4.2).

To analyse the result of the task T1-Model Analysis, DefectReports reported for the same
eme by n workers are grouped together and aggregated into a single FinalDefect,
which represents the AggregatedDefectReports (ADR) formalized in Section 4.1.6, and
contains the DefectType agreed-upon by the majority of workers who judged that
eme. If there is a tie between multiple defect types, the FinalDefect gets assigned
the DefectType.UNDECIDEABLE. The degree of agreement between workers on the
type of a FinalDefect is denoted in the computed agreement coefficient. A detailed
formal definition of the agreement coefficient and algorithm to determine the inter-rater
agreement on the defect type is provided in Section 4.2.2.
As can be seen in Figure 5.6, a filter-predicate for the defect reports can be additionally
passed to the aggregation service. This filter-predicate can be used to further refine the
defect reports, for example to restrict aggregation to selected workshops. Predicates can

66

5.2. VeriCoM - Algorithm implementation

Figure 5.6: Aggregation of DefectReports to a FinalDefect.

Figure 5.7: Evaluation of FinalDefects and TrueDefects to VerifiedDefectReports.

be defined as static-members of components, so they can be easily defined for common
filter cases, e.g. filter defect reports per worker. These predicates can then be applied in
other methods. The "filterCode"-field of a FinalDefect denotes the applied filter-predicate
as a String.

5.2.3 Evaluation - Module

Evaluation of FinalDefects, aggregated in the Aggregation-step, happens by aligning
them to TrueDefects (see Section 4.1.4), i.e. known defects in the model, defined for
the same eme and with the same defect type (see figure 5.7). This alignment results in
VerifiedDefectReport, which (in general) comprise a subset of FinalDefects.
The quality of the defect detection process (Model Analysis) is described by the two values,
precision and recall. The first defines the proportion of matched VerifiedDefectReport

67

5. Implementation

Figure 5.8: Evaluation-module class diagram.

to unmatched FinalDefects (also see Formula 4.23), while the later denotes the ratio
of VerifiedDefectReport matched to distinct TrueDefects, i.e. the defects which could
be identified in the model, over the total number of TrueDefects in the model (also see
Formula 4.24). Together both indicate whether human computation yields promising
results in model verification.

Figure 5.8 depicts the implemented classes for the evaluation module. The Evaluation-
Service interface abstracts the implementation of the methods done in the DefaultE-
valuationService. Within the "evaluateAll()"-method, the service tries to match the
given FinalDefects with their corresponding TrueDefect (if present) and creates a set of
VerifiedDefectReports. Filter predicates can be handed to the method to further refined
the evaluation. Computation of performance metrics is handled by the WorkshopStatis-
ticService within the feedback-module described in Section 5.3.

5.3 Feedback Service - Module

The components for providing automated feedback to the students participating in the
experiment are grouped in the package "feedback" together with the services needed to
compute the statistical performance metrics (see Figure 5.9). This module addresses
requirements R51 and R52 described in Table 3.6.

Entry point to generate feedback, is the interface "FeedbackService", which provides
basic functionality to return feedback for all workshops, a specific workshop or a single
participant. The FeedbackService is responsible for calling the services that compute

68

5.3. Feedback Service - Module

Figure 5.9: Feedback-module class diagram.

the statistical performance values for a given workshop and each participating worker.
Given a Workshop instance, the FeedbackService creates a Feedback instance for each
participant in that workshop. The service therefore delegates the computation of the
needed values for an informative feedback to multiple other services, depicted in Figure
5.10. These supporting services have the following functions:

• The WorkshopStatisticService is responsible for computing the statistical metrics
of a workshop. To be able to compute average values across a workshop, it
needs to delegate the computation of worker specific performance values to the
WorkerStatisticService.

• DefectReports and ValidatedDefectReports which share the same workshop-code
are gathered from the database, are grouped by workshop-participant and sent to
the WorkerStatisticService, which in turn uses provider-classes like the DefectA-
greementProvider, to further delegate value computation.

69

5. Implementation

Figure 5.10: Feedback generation with Workshop- and Worker-statistic.

• The DefectQualityService is used to elaborate the correctness of a given set of defect
reports. This algorithm is explained in detail in Section 4.2.4.

• The FeedbackJudgementService takes a computed WorkshopStatistic and Worker-
Statistic and judges whether a worker performed above or below the average of the
other participants in his workshop.

The computation of a WorkerStatistic is split into two parts, one for each part of the
CSI-Experiment.

1. Model Analysis - defect detection precision: As a qualitative measure for Model
Analysis, a precision value is calculate as the proportion of correctly identified
defects of the worker over all his reported defects. To automatically determine
which DefectReport was correct, the DefectQualityService creates three matching
sets of DefectReports M1, M2 and M3, which are defined in Section 4.2.4. When a
DefectReport of a worker can be found in one of those sets, i.e. it could be matched
to a true defect or is in the neighbourhood of a true defect, then it is considered a
correct defect report.

70

5.4. User Interface

2. Defect Validation - defect validation agreement: ValidatedDefectReports from the
second part of the experiment, are analysed whether the judgement of a participant
correlates with the majority of judgements for the same defect report. As a result,
a percentage value, representing the fraction of defect validation judgements, which
align with the majority of the workshop participants, is returned.

All worker precision, recall and agreement values have to be computed in order to build
averages over the whole workshop. Therefore, this step is computationally intensive and
WorkerStatistics are only computed once and then persisted in the database.

With all the individual statistical values for a worker computed, also the overall averages
of identified defects, newly discovered defects (i.e. erroneous elements of the model not
anticipated by the experiment creators), worker precision/recall and validated defect
reports for the workshop can be determined. Each participant is then given feedback
based on his performance in relation to the average workshop result. These statistics are
then further assembled in a Feedback instance, which is sent via the MailService to their
respective CSI-workers.
The generated WorkshopStatistic is also displayed in the workshop-dashboard of the user
interface (see Section 5.4).

5.4 User Interface

To address the requirements R11, R12 and R13 (see Table 3.2), a graphical user interface
(UI) was developed to abstract from the database access via SQL-queries to interactions
via the UI. The UI is suitable for users without SQL-database expertise and allows
the whole experiment administration to quickly work with data models of the CSI-
Experiments. The UI offers CRUD-functionality for all the entities of the data model
defined in Chapter 4 and allows to export .csv-files for further analysis of the data (see
Section 5.4.1). Furthermore, prototype overview dashboards have been developed to
administer and analyse CSI-Experiments and workshops (see Section 5.4.2).

71

5. Implementation

5.4.1 Data Model Visualization

Figure 5.11: EME user interface.

To allow for customizing and editing of the CSI-Experiment data, the data model was
visualized with a UI, which offers CRUD-functionality for each data model entity. Figure
5.11 depicts the UI for EMEs, showing their fields "Eme Id", "Eme Text", "Eme Type",
"Eme Group", the "Old Eme Text" functioning as a reference to old data sets in case
of changes, and a reference to the Scenarios in which the EME is mentioned. The
reference to the Scenarios was especially important, because it allowed the experiment
administrators to filter and create crowdsourcing jobs with all EMEs from a specific
scenario and therefore reduced data preparation time.

Figure 5.12: DefectReport user interface.

The UI for DefectReports is shown in Figure 5.12. It represents the answer of a worker to
a single ModelAnalysis task within a crowdsourcing job. This view also allows to quickly
change the DefectType if a revision of the DefectReport is necessary in case the worker
created a DefectReport of type "WRONG".

72

5.4. User Interface

Figure 5.13: FinalDefect (AggregatedDefectReport) user interface

The FinalDefects (i.e., AggregatedDefectReports) table is displayed in Figure 5.13.
Each row represents a FinalDefect with its corresponding fields, e.g. "Eme Id","Eme
Text", "Scenario Id" i.e., the EME and Scenario for which the FinalDefect was reported.
"Filter Code" represents the codes of the workshops, which were taken into account to
aggregate the FinalDefect. "Defect Report Size" is the sample size of DefectReports for
the aggregation and "Distinct Defect Types Size" is the number of different DefectTypes
within the samples. Finally "Agreement Coeff" is the rate of agreement between the
workers on the reported defect and its type, i.e. "Final Defect Type".

Figure 5.14: WorkshopStatistic user interface.

The UI for WorkshopStatistics data model is shown in Figure 5.14. The table displays the
computed performance indicators, e.g. the number of reported defects, the average number
of reported defects per worker, the average precision and the number of participants, for
one or multiple selected workshops in a row.

73

5. Implementation

5.4.2 Experiment Administration Dashboard

Figure 5.15: CSI-Experiment results overview.

For the CSI-Experiment administration team the evaluation of the experiment results
was limited due to the lack of software tool support. The Administration dashboard
(see Figure 5.15) offers an overview over the performed CSI-Experiments, the conducted
workshops of that experiment and the accrued results. Note that the screen-shots
already display an early prototype of the LEAP-UI which has been developed out of the
CSI-Platform.

Figure 5.16: CSI-Experiment results.

Figure 5.16 shows a representation of the experiment results. The results can be filter

74

5.4. User Interface

by workshop and by a selection of TrueDefects, which should be taken into account
when computing the results. Also a hit/miss-matrix, representing the amounts a certain
TrueDefect has been discovered within a workshop is offered in this overview.

Figure 5.17: Overview over Workshop "WS1".

Figure 5.17 displays the meta-data of a workshop, including the Scenarios and EMEs
the workshop was about, the crowdsourcing jobs that have been performed within this
workshop, as well as the workshop participants. Overall the UI allows for a better insight
in the structure of the CSI-Experiments and coherent access point for the administration
team.

Based upon the defined data model and algorithms of Chapter 4, the corresponding
implementation of the CSI-Platform prototype has been addressed in this chapter. First
the technology stack and the architecture was described together with the tool used for
rapid prototyping, JHipster. For each of the VeriCoM-steps, the developed classes and
processes were explained in detail, addressing the created Services and their function.
Finally important parts of the user interface have been shown to exemplify the look
and feel of the CSI-Platform prototype. This prototype was used to support the CSI-
Experiment of spring 2018 and the evaluation of this test run is presented in Chapter
6.

75

CHAPTER 6
Evaluation of the CSI-Platform

prototype

With the CSI-Platform designed and implemented, the applicability of the prototype
in the context of a live CSI-Experiment scenario was tested and evaluated in line with
research question RQ.4 (see Section 1.2). Figure 6.1 depicts the time-line of the de-
velopment of the CSI-Platform, from the starting point of the thesis up to the final
evaluation workshop. The CSI-Experiment in which the first prototype was tested was
the experiment of autumn 2017, which already showed promising results (see Section
3.4). Based on the insights that were gained through this test run, drawbacks from
the previous approach have been identified and corresponding requirements have been
derived to further refine the prototype and tailor it to the needs of future experiments
(see Section 3.5 and Section 3.6). This refined prototype was then again tested and
evaluated during the CSI-Experiment of spring 2018, where a thorough comparison of the
improvements in the experiment process with respect to the previous approach (without
software support) has been drawn in Section 6.2. The test setup of the CSI-Experiment
of spring 2018 is described in Section 6.1 and details the application of the prototype
during the Crowd-sourced Software Inspection.

77

6. Evaluation of the CSI-Platform prototype

Figure 6.1: CSI-Platform Evaluation method and time-line.

After the last workshop of the experiment-run of spring 2018, a workshop for the
experiment administrators was conducted, to clarify the improvements through the
CSI-Platform for all the main stakeholders of the CSI-administrator group and to gather
feedback for future improvements on the platform (see Section 6.3).
This feedback and suggestions for future improvements have been further used to draw
a conclusion on the research question RQ.4 and to describe the envisioned Learning
Analytics Platform (LEAP) in Section 7.3.

6.1 Experiment Spring 2018
The CSI-Experiments of Spring 2018 benefit from the support of the CSI-Platform. The
experiment was conducted in an university setup with students participating as workers to
perform the software inspection human computation tasks. The overall experiment setup
consisted of the same tasks as the experiment of Autumn 2017, depicted in Figure 1.2a.
The participants were split into two groups, the first performing the crowd-sourcing tasks,
guided by the FigureEight crowd-sourcing engine, while the second group functioned as
a control group, which performed classical software inspection with pen and paper. This
control group, together with the control groups from previous experiments, function as a
base line for the comparison of the classical approach and the VeriCoM approach.

The participant group which performed the crowd-sourced software inspection, had to
perform the task Model Analysis (MA) and Defect Validation (DV). MA was improved
through an automated suggestion concerning the defect type which the participant wants
to report. This suggestion was made based on the answers to the guiding questions and
eased automated aggregation of defect reports. DV, i.e. pairing a defect report with its

78

6.2. Comparison of unsupported experiment process vs. CSI-Platform supported process

corresponding TrueDefect, was performed on legacy defect reports, which didn’t have
defect types assigned to them.

After each of the CSI-Experiment workshops, the results from the participants of the
FigureEight (FE) human computation tasks were automatically downloaded, converted,
interpreted, aggregated and evaluated. Each student received feedback and was informed
about their performance through a generated e-mail.
The pen & paper group was evaluated manually and also received feedback via e-mail.
Comparing the best-practice pen & paper approach and the VeriCoM approach, gave
insight about the performance of a crowd vs. a single participant regarding: verification
time and verification accuracy. The results of this experiment can be found in paper [23].

6.2 Comparison of unsupported experiment process vs.
CSI-Platform supported process

Data preparation, result aggregation and evaluation of the CSI-Experiments before
the experiment of autumn 2017, were manually performed tasks by the experiment
administrators. These task were very time intensive, cumbersome and didn’t scale for a
larger group of participants. The developed software prototype provided functions to
automate those tasks and additionally offered new functionalities to improve the overall
process.
For each VeriCoM process step and the student feedback step, the identified drawbacks
and requirements from Chapter 3 are used as guidance for the comparison. Comparison
of the experiment process improvements through the CSI-Platform with respect to the
previous unsupported approach is done by aligning the drawbacks (Dxx) of each step
with the requirements (Rxx) that fixed them.
Note that the comparison doesn’t aim to compare participant performance and does
not give insight whether the VeriCoM-approach should be preferred over the classical
pen and paper approach, but rather compares the unsupported manual CSI-Experiment
evaluation process with its software supported counterpart.

• VeriCoM 1.: Data Preparation - The preparation of the crowdsourcing tasks
for VeriCoM was a manually performed task. To gather the wanted data object, e.g.
model elements, emes, scenarios, TrueDefects etc., SQL-knowledge was required
to query the database for the entities. This meant writing difficult SQL-queries
to filter the desired entities from the pool of the existing ones, which lead to a
restriction of the user base to database-experts. As some of the experiment-staff
were not database-experts, the workload for those who were increased. Some of
the experiment-administrators therefore performed a workaround by filtering a
generated .csv-file, containing all the entities, manually and copy&pasting together
the selected entities.
With the new visualized database in the form of a intuitive user interface (UI), this
workaround is no longer necessary and the experiment-administrators can select

79

6. Evaluation of the CSI-Platform prototype

Table 6.1: VeriCoM 1.: Data Preparation improvements.

Experiment Autumn 2017 Experiment Spring 2018: CSI-
Platform

D11, D12: SQL-expertise required to cre-
ate datasets

R11, R12: Intuitive UI for easy dataset
creation

D13: Manually filtered .csv-files R13: Select and filter datasets through
the UI

D14: Copy&Paste desired entities into
.csv-file

R13: Automated .csv-file creation

D15: Data model dependent on Fig-
ureEight

R15: Independent generic data model
with adaptable interfaces.

the desired data entities and create a .csv-file which can be directly uploaded to
FigureEight to create crowdsourcing tasks (see Table 6.1).

• VeriCoM 2.: Task Design and Execution (FigureEight interaction) - In
experiment runs previous to software support, the interaction with FigureEight was
performed via the FigureEight web-interface. After each workshop the experiment-
administrators had to manually download the results of each FE-Job (up to 15 jobs
per workshop) and copy them into a .csv-file where it would the be later analysed.
These files would then be interpreted, converted into domain object and persisted
into the database by a staff member.
With the CSI-Platform these steps were automated and generalized, so that it is
now possible to use different crowdsourcing engines. Automation of FE-interaction,
interpretation and conversion, lead to a significant reduction of time consumption,
reduction of errors in the interpretation of results and overall less workload for the
experiment staff members (see Table 6.2). Note that execution of crowdsourcing
jobs and distribution to workers was still managed over FE.

Table 6.2: VeriCoM 2.: Task Design and Execution: Download, Interpretation and
Conversion of FigureEight results.

Experiment Autumn 2017 Experiment Spring 2018: CSI-
Platform

D25: Manual download of FigureEight
results.

R24, R25: Automated download through
UI.

D26: Manual interpretation of free-text
defect reports.

R26: Defect type interpretation algo-
rithm.

D26: Domain objects manually extracted
from .csv-files

R26: FE results automatically converted
into domain objects and persisted in
database.

80

6.2. Comparison of unsupported experiment process vs. CSI-Platform supported process

• VeriCoM 3.: Aggregation - Aggregation of defect reports was the part which
benefited the most from software support (see Table 6.3). This part was performed
manually, which made it time consuming, error-prone and not scalable for larger
groups of participants. For each eme the corresponding free-text defect reports had
to be gathered and the defect type reported by the majority of workers had to be
aggregated. With the introduced defect types interpreted from the answers to the
guiding questions, the aggregation was automated and is now scalable to a large
set of input data.

Table 6.3: VeriCoM 3.: Aggregation improvements

Experiment Autumn 2017 Experiment Spring 2018: CSI-
Platform

D31, D32, D33: Free text defect reports
were manually aggregated.

R31, R32: Automated scalable aggrega-
tion of defect reports with defect types.

D34, D35: Inefficient and error-prone pro-
cess

R33, R34: Multiple tested aggregation
methods with filter options.

• VeriCoM 4.: Evaluation and Experiment/Workshop Statistics improve-
ments - Evaluation of defect reports, i.e. aligning them with their corresponding
TrueDefects and computing performance metric, was another VeriCoM process
step relying heavily on manual work (see Table 6.4). Free-text defect reports were
interpreted and matched with their presumed TrueDefect counterpart. With the
introduction of defect types this step was automated to provide instant evaluation
of defect reports and computation of performance metrics.
Statistical performance values of a single workshop or an entire experiment run,
had to be computed by manually collecting the desired data and analysing excel-
spreadsheets. This task can now be performed with the UI, which offers a visual-
ization of defined performance metrics like precision, recall and worker-agreement
in various tables and graphs. Additionally the input data can be filtered to analyse
only distinct workshops of an experiment run or combine different workshops to
compare them.

81

6. Evaluation of the CSI-Platform prototype

Table 6.4: VeriCoM 4.: Evaluation and Experiment/Workshop Statistics improvements

Experiment Autumn 2017 Experiment Spring 2018: CSI-
Platform

D41: Manual interpretation of free-text
defect reports.

R41: Automated interpreta-
tion/evaluation.

D41: Matching TrueDefects to defect re-
ports cumbersome and error-prone.

R41: Automated TrueDefect matching.

D42: Manual collection of experi-
ment/workshop data.

R42: Intuitive UI, with filter options.

D42: Manual statistics computation via
excel-spreadsheets.

R42: Algorithms for Automated compu-
tation of performance metrics; precision,
recall averages, agreement etc. with filter
options.

D43: Lack of visualization of the workshop
performances.

R43: Workshop dashboard.

• 5. Feedback for students/participants - Previous to the CSI-Platform, there
was no feedback or performance indicators for students/workshop-participants,
which limited their learning experience through the workshop.
Now a detailed feedback-mail with different performance metrics for each of the
workshop-tasks is generated and sent to the students and the platform offers
an overview dashboard where they can compare themselves with the average
performances of other workshop participants. This can enhance their learning
outcome and can improve their model analysis skills.

Table 6.5: 5. Student/Participant feedback improvements.

Experiment Autumn 2017 Experiment Spring 2018: CSI-
Platform

D51, D52: No performance feedback for
participants.

R51, R52: Automated feedback-mail with
performance metrics to enhance learning
outcome.

D53: No possibility to review results. R52, R53: UI with detailed performance
overview and ability to compare results of
other participants.

6.3 CSI-Platform Evaluation - Interviews
The evaluation of the CSI-Platform was done via an interactive workshop/interview
session with the experiment-administrators. Within the course of this workshop, the
functionality offered by the CSI-Platform was explained to the experiment-administrators
in the from of presentation slides and a live demo of the platform’s user interface. Each

82

6.3. CSI-Platform Evaluation - Interviews

step of the experiment process and its supporting features of the software prototype have
been explained in detail, followed by a questionnaire about the current process-step to
determine the perceived improvement.

Note that the goal of this workshop was primarily not to gather a quantitative score
on the stakeholders perceived satisfaction with the CSI-Platform, but rather to foster
discussion about the prototype and to clarify a common vision for the LEarning Analytics
Platform (LEAP) which is planned to be developed in the future (see Section 7.3).

6.3.1 Interview Method and Question Structure

The questionnaire was comprised of one section for each of the CSI-Experiment pro-
cess/VeriCoM steps. The interviewees witnessed a detailed presentation about the
supporting feature of the software prototype before each section and then had time to
answer the questions within this section and give detailed feedback. For each process-
step/stage the stakeholders were asked to give their assessment on:

• "How import was software support for this stage?" (Sx_Q_I),

• "How satisfied are you with the software support?" (Sx_Q_S),

• "What are possible future improvements/extensions?" (Sx_Q_F).

Each question was given a code based on their section Sx and the type of question, i.e.
Q_I for the importance of software support, Q_S for the satisfaction with the support
and Q_F for suggested future improvements. The first two questions had to be rated
between 1 (not important/not satisfied) and 5 (very important/very satisfied), followed
by a text filed to specify their desired future improvements/extensions to the platform.

The complete questionnaire is depicted in the following sub-sections in the way, that first
the questionnaire section with its corresponding descriptions is shown, together with the
received answers, followed by the suggested future improvements.

6.3.2 S1 - Modelling CSI-Experiment Domain

The first section about modelling the CSI-Experiment domain marked an exception in
the section structure, with an additional question before the ones mentioned above. The
stakeholders first had to answer: "How did the definition of the CSI-experiment domain
model help to clarify the overall experiment structure? (If applicable please specify.)"
(S1_Q_D), with a score between 1 representing "All the parts were already known."
and 5 "There were a lot of parts which have now been clarified.". Also a subsequent
textual specification to their answers was requested. This question had the purpose to
draw attention to the domain model design and the naming conventions defined for the
CSI-experiment process, as it lacked a clear definition of names and types, which lead to
misunderstandings. Some of the stakeholders didn’t have insight in the domain model
therefore this question was optional.

83

6. Evaluation of the CSI-Platform prototype

Table 6.6: Answers to S1 - Modelling CSI-Experiment Domain.

Question Clarification/Importance/Satisfaction
S1_Q_D For 3 interviewees, the domain model definition clarified parts of the

overall experiment structure, while 1 claimed that most parts are now
clearer.

S1_Q_I This step was considered to be important and very important by two
stakeholders each.

S1_Q_S The satisfaction level was equal to the importance with two stakeholders
stating satisfied and very satisfied each.

The first core task before starting the implementation of the support platform and
conducting the CSI-Experiments of autumn 2017, was the creation of an in-depth model
of the experiment domain, i.e., creation of a domain model and relations, definition of
DefectTypes and decision tree, definition of Enumeration types (see Section 4.1). This
also includes the relation between all the stakeholders and systems involved (Tuwel,
FigureEight/CrowdFlower, CSI-Platform, database, evaluation-paper etc.).

Questions:

Table 6.6 shows the results of the questions about the designed CSI-Experiment domain
model. The given answers are discussed in detail below.

• S1_Q_D: How did the definition of the CSI-Experiment domain model help to
clarify the overall experiment structure? (If applicable please specify.)
Specification on S1_Q_D:

– "Most of the entities became clearer in the experimental team."
– "Overall experiment process is now well-structured."
– "Some of more in-depth concepts can still be added, but the major concepts
were well captured."

– "Clarification of experiment data aggregation step."

The answers to Question S1_Q_D together with their textual specification, show
that the designed domain model and the structural naming conventions, clarified
the overall concepts and entities used in the CIS-experiment context. It was also
mentioned that communication within the experiment administration team was
improved and misunderstandings were reduced. This answers can be directly linked
to research question RQ1 and show that a clear definition of the domain model
improves the CSI-experiment process overall.

• S1_Q_I: How important was support for this stage? Supporting the domain model
design was seen as important even if some of the parts of the domain model were

84

6.3. CSI-Platform Evaluation - Interviews

already defined a in depth refinement of the existing entities and the relations
between them was well-received.

• S1_Q_S: How satisfied are you with the support? The overall domain model pre-
sented to the stakeholders shed light on some newly desired features and encouraged
a more structural approach to new CSI-experiment rounds, with the definition of a
domain model for future experiment use cases.

• S1_Q_F: What are possible future improvements/extensions?
Structuring the domain model with certain new experiment use cases in mind, was
mentioned as a future improvement for this design phase. Also a distinct separation
of the data model and their processing components was requested. It was also
stated that the capturing of synonyms within the conceptual model is a desired
feature. While synonymous model elements are already captured there have been no
evaluation functions defined for them to separately evaluate them. The automated
creation of crowdsourcing job was another request from the stakeholders.
During the presentation the question arose, whether it would be possible to map
the old experiment data, as well as the defect reports captured with the pen and
paper approach, to the current data model. This is technically possible as the
current design of defect reports can also be applied for the pen and paper approach.
To achieve the mapping a defect report has to be created and the manually given
description has to be interpreted (with the help of human computation) and the
according defect type has to be assign. Then those defect reports can be evaluated
in the same way as the ones created through crowd sourcing.

6.3.3 S2 - Data Preparation - VeriCoM Step 1

In this step the CSI-Platform helped to assign EMEs to Scenarios, to create TrueDefects,
to visualize data and to allow for the export of .csv-files that could be uploaded to
CrowdFlower/FigureEight.

Questions:

Table 6.7 shows the results of the questions for the VeriCoM Data Preparation step. The
given answers are discussed in detail below.

• S2_Q_I: How important was support for this stage? The importance for software
support for the data preparation step was considered very high, as previously this
step could only be performed through direct database access via SQL-queries.

• S2_Q_S: How satisfied are you with the support? The stakeholders were somewhat
satisfied with the offered support for this step. This could be due to the fact that
the user interface was not final during the course of the CSI-Spring-Experiment
and the preparation of data was done by the author on request of the stakeholders.

85

6. Evaluation of the CSI-Platform prototype

Table 6.7: Answers to S2 - Data Preparation.

Question Importance/Satisfaction
S2_Q_I The importance of the data preparation step was highlighted and was

considered very important by 3 main stakeholders and important by
another.

S2_Q_S Satisfaction with the offered solution ranged from high to medium. This
could be due to the fact that the UI was not final during the time of the
experiment.

Table 6.8: Answers to S3 - Task Design and Execution.

Question Importance/Satisfaction
S3_Q_I This step was considered very important by 3 of the main stakeholders,

while one did consider it somewhat important with the explanation that
he current FigureEight platform does an acceptable job.

S3_Q_S Three interviewees were satisfied and one was very satisfied with the
offered support through the CSI-Platform.

• S2_Q_F: What are possible future improvements/extensions?
As Question S2_Q_S already captured, the improvement of the user interface, to
make data preparation available for the experimental team and not just experts.
This was again mentioned as a desired feature for the next iteration of the soft-
ware prototype. Versioning, automated consistency checks, automated creation of
crowdsourcing jobs and a more flexible creation of new model elements and emes
to incorporate different kind of inspection approaches, were also requests for the
future work on this topic.

6.3.4 S3 - Task Design and Execution - VeriCoM Step 2

In this step the CSI-Platform supported the automatic download of finished jobs and
participant data, and provided a definition for a generic domain model for the connection
to FigureEight. (Job execution and Task design was out of scope for the first prototype.)

Questions:

Table 6.8 shows the results of the questions for the VeriCoM Data Preparation step. The
given answers are discussed in detail below.

• S3_Q_I: How important was support for this stage? As the created prototype in
this paper doesn’t cover crowdsourcing task design and job execution, FigureEight
was used for this process step. The experiment team however appreciated the
automatic download and saving of finished job reports and participant data.

86

6.3. CSI-Platform Evaluation - Interviews

Table 6.9: Answers to S4 - Interpretation and Conversion.

Question Importance/Satisfaction
S4_Q_I This step was considered to be in need of software support, with 3 exper-

iment administrators stating high importance and 1 stating importance.
S4_Q_S The offered support was received as very satisfying and satisfying by 2

stakeholders each.

• S3_Q_F: What are possible future improvements/extensions? The replacement of
FigureEight as the crowdsourcing engine was considered a future improvement and
is further described in Section 7.3.

6.3.5 S4 - Interpretation and Conversion - Intermediate step

In this intermediate step the CSI-Platform automatically interpreted a DefectType based
upon the answers given to the guiding questions by a workshop participant and the
raw-data (.csv-file) from FigureEight was converted into DefectReports.

Questions:

Table 6.9 shows the results of the questions for the intermediate Interpretation and
Conversion step. The given answers are discussed in detail below.

• S4_Q_I: How important was support for this stage? The intermediate step for
interpretation and conversion of FigureEight domain entities into domain model
elements was considered very important, as there now is a clear separation of those
two domains.

• S4_Q_S: How satisfied are you with the support? The generic implementation of
the interpretation and conversion step was satisfiying although the implications for
future iterations of the prototype could not directly be shown in practice. However
it was acknowledged, that this conversion-layer was very important for to allow for
aggregation and evaluation and is a core component for future iterations of the
software.

• S4_Q_F: What are possible future improvements/extensions?
In the future LEAP platform, the participant data has to be anonymized and be
conform to the EU General Data Protection Regulation (DSGVO 1). This means
that it will be no longer possible to use FigureEight as it would expose personal
student data to a third party, therefore an adaptable conversion layer built upon
the current infrastructure was considered as a future improvement.

1https://www.iitr.us/eudatap.html

87

6. Evaluation of the CSI-Platform prototype

Table 6.10: Answers to S5 - Aggregation.

Question Importance/Satisfaction
S5_Q_I Supporting the Aggregation step of VeriCoM was unanimously seen as

very important.
S5_Q_S Three of the main stakeholders were very satisfied with the support offered

by the CSI-Platform and one stakeholder was satisfied.

6.3.6 S5 - Aggregation - VeriCoM Step 4-1

In this step the CSI-Platform provided automatic aggregation of DefectReports into
AggregatedDefectReports (FinalDefect) with the aggregation of DefectTypes based on
majority rating.

Questions:

Table 6.10 shows the results of the questions for the Aggregation step of VeriCoM. The
given answers are discussed in detail below.

• S5_Q_I: How important was support for this stage? Aggregation of experiment
data was a manual and very time consuming error prone task and was therefore
considered in desperate need of automation through software support.

• S5_Q_S: How satisfied are you with the support? The experiment team was
very satisfied with the implemented aggregation algorithm and the replacement of
manual aggregation.

• S5_Q_F: What are possible future improvements/extensions?
Live-feedback, i.e. UI elements showing the aggregation during the workshop runs
was a desired extension of the current functionality of the aggregation module,
with different views on the performance of the participants, e.g. a 0/1-matrix
depicting the currently reported defects which correspond to true defects. Also
new sorting functionality, e.g. sorting by ascending or descending ACoeff-values
and the flexible definition of aggregation strategies, was mentioned together with
filtering out under-performing participants.

6.3.7 S6 - Experiment Evaluation - VeriCoM Step 4-2

In this step the CSI-Platform provided automatic evaluation of DefectReports, (i.e.
matching with TrueDefects, generation of VerifiedDefectReports), statistical evaluation
of experiments, computation of performance metrics.

Questions:

Table 6.11 shows the results of the questions for the Evaluation step of VeriCoM. The
given answers are discussed in detail below.

88

6.3. CSI-Platform Evaluation - Interviews

Table 6.11: Answers to S6 - Evaluation.

Question Importance/Satisfaction
S6_Q_I Supporting the Evaluation step of VeriCoM was unanimously seen as

very important.
S6_Q_S Three of the main stakeholders were very satisfied with the automated

experiment evaluation methods, offered by the CSI-Platform and one
stakeholder was satisfied.

Table 6.12: Answers to S7 - Student-Feedback.

Question Importance/Satisfaction
S7_Q_I Providing feedback to students was stated to be very important by two

stakeholders and important by the other two
S7_Q_S The developed solution satisfied three of the main stakeholders with one

being very satisfied.

• S6_Q_I: How important was support for this stage? The evaluation of the experi-
ment results (i.e. matching defect reports with true defects) and the computation
of performance metrics, was another core task which was previously performed
manually and was very error prone. Software support was therefore considered very
important.

• S6_Q_S: How satisfied are you with the support? The experiment team was very
satisfied with the implemented features and the offered software support.

• S6_Q_F: What are possible future improvements/extensions?
For the evaluation new evaluation metrics have been considered as future improve-
ments and also the before mentioned 0/1-matrix should be a feature in the LEAP
platform specification. Also the false positives for a set of defect reports should be
analysed.

6.3.8 S7 - Student-Feedback

The CSI-Platform supported the automatic generation of Student-Feedback-mails with
performance metrics such as: precision, recall, workshop averages, workshop agreement
on defect type.

Questions:

Table 6.12 shows the results of the questions on the feedback for students which was
automatically created by the CSI-Platform. The given answers are discussed in detail
below.

89

6. Evaluation of the CSI-Platform prototype

• S7_Q_I: How important was support for this stage? Feedback for students was
a completely new functionality and was mentioned as important, while it doesn’t
directly affect the experiment outcome but is an important benefit for the partici-
pating students.

• S7_Q_S: How satisfied are you with the support? The newly implemented feature
was satisfying as a first draft of the feedback mechanisms and can be seen as a
baseline to build upon for the LEAP platform.

• S7_Q_F: What are possible future improvements/extensions?
To increase the learning outcome of the participating students, various graphical
representations of their performance were describe for future improvements. This
includes live feedback and the scope of tasks the student worked on, as well as
considering the TrueDefectNeighbourhoods in the defect analysis together with a
depiction of all the correct and incorrect judgements of the worker. Also a flexible
description of parameterized student feedback e-mails was desired.

The evaluation of the CSI-Platform showed that by defining common naming conventions
and a concise data model, VeriCoM and the communication between the experiment
administration team as a whole improves. The support for each of the VeriCoM steps, that
was offered by the CSI-Platform, was broadly well received. Especially the automation of
the most time consuming steps of VeriCoM, i.e. aggregation of defect reports, evaluation
of the experiment workshops and provision of student feedback, were mentioned the most
beneficial for the experiment team. This verifies the research question RQ4 and shows
that the CSI-Platform can act as a prototype for further improvements on supporting
VeriCoM.

90

CHAPTER 7
Conclusion and Future Work

Building upon the works and publications of Sabou, Winkler et al. [23, 29, 30, 31],
a thorough investigation of Software Inspection (SI) processes, in particular the im-
provement of traditional best-practice approaches through Human-Computation and
Crowdsourcing (HC&C) techniques has been conducted. Literature research has been
performed to illustrate the emergence of Crowdsourced Software Inspection (CSI) out of
SI by application of HC&C techniques.
For the generic problem of the Verification of Conceptual Models, the VeriCoM-
approach was presented and applied on a Software Engineering use case. To motivate
the importance of VeriCoM and to highlight the benefits of crowdsourcing applied in this
domain, experiments have been performed to verify this approach.
These experiments followed a strict scientific experiment-process, which was mostly
performed manually and was very time-consuming, error prone, not scalable and overall
not applicable for a larger crowd of participants. Therefore the need for a software tool to
support this experimental process arose. This thesis focused on the detailed formalization
of the data model and algorithms to automate the VeriCoM-steps and to implement a
prototype for such a software support tool, the CSI-Platform.

7.1 Answers to Research Questions and Discussion

The development of the CSI-Platform prototype was performed in consecutive software
development process steps. In the following, the contributions and results of this work to
the respective research questions are discussed, together possible limitations and lessons
learned:

• RQ1: Which parts of the Crowdsourced Software Inspection experiment process
benefit the most from software tool support?

91

7. Conclusion and Future Work

First the CSI-Experiment process and VeriCoM were analysed through introduction
workshops and participation in the experiment in autumn 2017. After gaining
insight into the VeriCoM approach, drawbacks of the CSI-experiments conducted
without software support, i.e. experiments before autumn 2017, have been identified
(see Section 3). These drawbacks showed major shortcomings in the most time
consuming parts of VeriCoM, the aggregation and evaluation steps. These were
natural candidates for automation through the CSI-Platform. Also the domain
model, which evolved over the course of several experiments, needed to be redesigned
and enhanced to allow for automation. Furthermore the connection to FigureEight
as the crowdsourcing tool needed to be abstracted in order to be able to replace it
with a more fitting solution tailored to VeriCoM in the future.

• RQ2: What are the requirements for the software platform?
Based on the identified drawbacks, functional and non-functional requirements for
the CSI-Platform prototype have been defined for each step of VeriCoM (see Chapter
3.6. These requirements were then later addressed during the implementation of the
CSI-Platform. While not all requirements were implemented in the prototype they
are still valuable starting points for further refinement of the CSI-Platform to adapt
it to the needs of future experiments. Requirements elicitation was performed based
upon experiences from different experiment rounds, which was satisfying for the
CSI-Experiment Spring 2018, but gave only limited insights in the requirements for
LEAP (see Section 7.3). An expansion and adjustment of the current requirements
to be fitting for LEAP should therefore be considered as future work.

• RQ3: How can the CSI domain model be defined in a generic way?:
The design of the data model and algorithms showed the importance of thoroughly
formalized data model types and concise naming of entities (see Chapter 4). Defect
types were introduced to mitigate the insufficient textual description of defect
reports, which hampered the application of automated aggregation and evaluation
algorithms. Included in this design phase were also, the definition and computation
of the evaluation metrics, the determination of defect report correctness and the
formalization of the student feedback metrics. During the analysis of VeriCoM, the
approach was still under development which lead to various changes in naming and
the designed data model as well as the database schema. Also, legacy data from
previous CSI-experiments was in an incoherent state, reflecting the evolution of the
approach. A lesson to be learned from this is to regularly plan refactoring sessions
to make sure that the data model is still suitable for the next experiment phase.
In the implementation Chapter 5, the developed software prototype for VeriCoM
was detailed based upon the abstract definitions presented in the previous design
chapter. The implemented classes and their interfaces were described, together with
a generic interface to communicate with the crowdsourcing engine FigureEight. This
generic definition allows for the implementation of newly developed crowdsourcing
engines other than FigureEight. While the developed prototype incorporated

92

7.2. Limitations

features that reduced work for the experiment administration, it did not offer a
finished version of a user interface.

• RQ4: Did the developed platform meet the expectations of the experiment adminis-
tration team?
To verify that the developed CSI-Platform met the needs of the CSI-Experiment
administration team, the prototype was tested under live conditions during the
experiment run of spring 2018. This test-run showed that the CSI-Platform fits
the desired specification of a platform to support VeriCoM. Only minor bugs were
found and fixed during the first workshop of the experiment. However, as said
above, the user interface was not complete and the platform still had to be operated
by the developer in order to assure a successful experiment run. This limited the
experience of the administration team, whom where not able to work with the
CSI-Platform themselves. After the experiment of spring 2018 was conducted, a
questionnaire was handed to the administration team to evaluate how satisfied
they were with the provided CSI-Platform and to gather further suggestions for
improvement. The questionnaire showed that the CSI-Platform was well received
and the offered support met the expectations of the experiment team. Due to the
limitations stated above, the developed CSI-Platform should only be considered
as a prototype. This prototype showed different needs and requirements for the
Learning Analytics Platform (LEAP), which is mentioned as future work in
Section 7.3.

As a conclusion to the developed CSI-Platform prototype, it can be said that the designed
data model and algorithms as well as the elicited requirements supported the VeriCoM
experiments and are a good starting point for the development of future experiment
support platforms such as LEAP.

7.2 Limitations
The application of the CSI-Platform during CSI-Experiments is bound to internal and
external limitation factors, as well as by the definition of the VeriCoM approach itself.
Addressing these limitations helps to understand the methodology of the thesis itself and
identifies candidates for future work within this topic.
VeriCoM was applied to a Software Engineering use case as a representative case of
verifying conceptual models. The use case focused on the verification of EER model with
respect to a textual specification. Thus the CSI-Platform was implemented with this
premise. Verifying knowledge graphs from the field of Knowledge Engineering would
require an adaptation of the domain model parts which are specific to the current CSI-
Experiment setup. Also, the CSI-Platform was tailored to the design of the current
crowdsourcing tasks Model Analysis and Defect Validation. While the domain model was
designed to be in some way detached from the task design, e.g. by separating judgements
from their containing classes, a major change in the overall task structure, would required

93

7. Conclusion and Future Work

an adaptation of the domain model. For the evaluation part of the thesis there is to
say that, there was no questionnaire for the students participating in the experiment,
which could have identified their satisfaction with the received feedback. This data would
be interesting to gather in future iterations. The gathering of experiment data from
FigureEight was also not completely automatized and required a manual trigger to start
the download of the results. To automatize this step and to move from downloading the
whole final results in on batch, to gathering live results during the experiments would
improve the overall process. These are some limitations of the current work which should
be addressed in future iterations within this experiment family.

7.3 Future work and Learning Analytics Platform
(LEAP)

Goal of this thesis was to support CSI-Experiments performed with the VeriCoM-approach
through a software platform, the CSI-Platform. While the developed CSI-Platform
offered many features to support VeriCoM and reduced the workload for the experiment
administration team, it should still be considered a prototype. The core work of the
thesis was to formally define the data model and algorithms needed to help automate the
VeriCoM steps. This was achieved to a degree that satisfied the experiment management.
As was to be expected and intended by the given questionnaire, suggestions for future
improvements and the vision for a new Learning Analytics Platform (LEAP) emerged.

The defined data model is sufficient for VeriCoM and extendible for similar use case
within this domain, however to cover other Crowdsourced Software Inspection use cases,
it still needs to be enhanced and refined to allow for a flexible definition of new data items
tailored to these new kinds of inspection approaches. This could include the creation of
a user interface to make data model preparation accessible for non-expert experiment
team members.

To improve the monitoring of participant(student)-performance, live-feedback during
the experiment workshops was mentioned by the experiment team as another desired
functionality for the future. Also new performance indicators, rating of participants,
new aggregation strategies, filter/sorting options and more evaluation metrics should be
developed in the future.

FigureEight was used as a crowdsourcing engine for the course of the conducted ex-
periments. While FE offered sufficient methods to perform the CSI-Experiments for
VeriCoM, a more tailored crowdsourcing solution would bring with it greater control
over the experiment tasks. Furthermore, replacing the commercial platform FE with a
custom solution would reduce the costs for the conduction of the experiments and could
be integrated into LEAP.

The vision of LEAP is to provide an online platform for professors, researchers, teachers
and students to conduct (crowdsourcing) experiments, university courses and workshops
in the fields of Software Inspection, HC&C, Semantic Web and Learning Analytics.

94

7.3. Future work and Learning Analytics Platform (LEAP)

LEAP should be a platform for researchers and students to work together, learn and get
feedback on performed experiments and task. It should be adaptable enough to allow for
different kinds of experiments and tasks from different university courses. Experiment
administrators should benefit from improved experiment/job management, while students
receive instant feedback on their performance and their learning progress within each
course on a dashboard. With insight on this learning progress, teachers can offer tutorials
and tasks to specifically target deficits and support students in their learning outcome.
The future development of LEAP would therefore be a great benefit for all those involved
and the next step for the CSI-Platform.

95

List of Figures

1.1 Crowdsourced Software Inspection (CSI) process [29]. 2
1.2 CSI-Experiment setup and underlying process. 4
1.3 Research questions aligned with methods, contributions and chapters. . . 7

2.1 VeriCoM applied to a SE use case [23]. 18

3.1 Guiding questions for the Model Analysis task. 21
3.2 Guiding questions for the Defect Validation task. 22
3.3 The VeriCoM Approach [23]. 22
3.4 Model verification task containing (a) the model element, evidence scenario

and model and (b) questions for verification guidance [23]. 23
3.5 Decision tree underlying task design. 25

4.1 VeriCoM approach data model. 36
4.2 Interpretation/Conversion of FigureEight job reports into defect reports. . 46
4.3 Aggregation data model. 48
4.4 Evaluation data model. 50
4.5 Feedback ER-model. 52

5.1 CSI-Platform implementation architecture. 61
5.2 Interpreter-module class diagram. 63
5.3 ModelAnalysisResult interpretation process. 65
5.4 DefectValidationResult interpretation process. 65
5.5 Aggregation-module class diagram. 66
5.6 Aggregation of DefectReports to a FinalDefect. 67
5.7 Evaluation of FinalDefects and TrueDefects to VerifiedDefectReports. . . 67
5.8 Evaluation-module class diagram. 68
5.9 Feedback-module class diagram. 69
5.10 Feedback generation with Workshop- and Worker-statistic. 70
5.11 EME user interface. 72
5.12 DefectReport user interface. 72
5.13 FinalDefect (AggregatedDefectReport) user interface 73
5.14 WorkshopStatistic user interface. 73
5.15 CSI-Experiment results overview. 74

97

5.16 CSI-Experiment results. 74
5.17 Overview over Workshop "WS1". 75

6.1 CSI-Platform Evaluation method and time-line. 78

98

List of Tables

2.1 Overview of related work. 17

3.1 Conducted experiments to verify VeriCoM. 20
3.2 VeriCoM 1.: Requirements for the Data Preparation step 31
3.3 VeriCoM 2.: Requirements for the Task Design and Execution step 32
3.4 VeriCoM 3.: Requirements for the Aggregation step 32
3.5 VeriCoM 4.: Requirements for the Evaluation step 33
3.6 5.: Requirements for the Student-Feedback step 33

4.1 EME example . 38
4.2 Scenario with evidences for emes example. 39
4.3 TrueDefect example. 41
4.4 TrueDefectNeighbourhood example. 41
4.5 DefectReport example. 42
4.6 AggregatedDefectReport example. 43
4.7 AggregatedDefectReport example. 44

5.1 ModelAnalysisResult csv-record example. 64

6.1 VeriCoM 1.: Data Preparation improvements. 80
6.2 VeriCoM 2.: Task Design and Execution: Download, Interpretation and

Conversion of FigureEight results. 80
6.3 VeriCoM 3.: Aggregation improvements . 81
6.4 VeriCoM 4.: Evaluation and Experiment/Workshop Statistics improvements 82
6.5 5. Student/Participant feedback improvements. 82
6.6 Answers to S1 - Modelling CSI-Experiment Domain. 84
6.7 Answers to S2 - Data Preparation. 86
6.8 Answers to S3 - Task Design and Execution. 86
6.9 Answers to S4 - Interpretation and Conversion. 87
6.10 Answers to S5 - Aggregation. 88
6.11 Answers to S6 - Evaluation. 89
6.12 Answers to S7 - Student-Feedback. 89

99

List of Algorithms

4.1 Interpretation of ModelAnalysisJudgements into DefectTypes 47

4.2 DefectType aggregation . 49

4.3 DefectValidation-agreement algorithm 56

101

Bibliography

[1] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, F. Flöck, and J. Lehmann.
Detecting linked data quality issues via crowdsourcing: A dbpedia study. Semantic
Web, (Preprint):1–33, 2016.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In The semantic web, pages 722–735. Springer, 2007.

[3] A. Aurum, H. Petersson, and C. Wohlin. State-of-the-art: software inspections after
25 years. Software Testing, Verification and Reliability, 12:133–154, 2002.

[4] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-
Wesley Professional, 2003.

[5] A. Bernstein, J. M. Leimeister, N. Noy, C. Sarasua, and E. Simperl. Crowdsourcing
and the semantic web (dagstuhl seminar 14282). In Dagstuhl Reports, volume 4.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[6] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software engineering in
practice. Synthesis Lectures on Software Engineering, 1:1–182, 2012.

[7] M. Fagan. Design and code inspections to reduce errors in program development.
In Software pioneers, pages 575–607. Springer, 2002.

[8] T. Gilb, D. Graham, and S. Finzi. Software inspection, volume 253. Addison-Wesley
Reading, 1993.

[9] J. Howe. Crowdsourcing: A definition. 2006.

[10] O. Laitenberger and J.-M. DeBaud. An encompassing life cycle centric survey of
software inspection. Journal of systems and software, 50(1):5–31, 2000.

[11] T. D. LaToza and A. van der Hoek. Crowdsourcing in software engineering: Models,
motivations, and challenges. IEEE software, 33:74–80, 2016.

[12] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the use of crowdsourcing in
software engineering. Journal of Systems and Software, 126:57–84, 2017.

103

[13] J. M. Mortensen, E. P. Minty, M. Januszyk, T. E. Sweeney, A. L. Rector, N. F.
Noy, and M. A. Musen. Using the wisdom of the crowds to find critical errors in
biomedical ontologies: a study of snomed ct. Journal of the American Medical
Informatics Association, 22(3):640–648, 2014.

[14] J. M. Mortensen, N. Telis, J. J. Hughey, H. Fan-Minogue, K. Van Auken, M. Du-
montier, and M. A. Musen. Is the crowd better as an assistant or a replacement in
ontology engineering? an exploration through the lens of the gene ontology. Journal
of biomedical informatics, 60:199–209, 2016.

[15] M. A. Musen. The protégé project: a look back and a look forward. AI matters,
1(4):4–12, 2015.

[16] J. Z. Pan, G. Vetere, J. M. Gomez-Perez, and H. Wu. Exploiting linked data and
knowledge graphs in large organisations. Springer, 2017.

[17] D. L. Parnas and M. Lawford. The role of inspection in software quality assurance.
IEEE Transactions on Software Engineering, 29:674–676, 2003.

[18] A. J. Quinn and B. B. Bederson. Human computation: a survey and taxonomy
of a growing field. In Proceedings of the SIGCHI conference on human factors in
computing systems, pages 1403–1412. ACM, 2011.

[19] K. S. P. Reddy. Introducing jhipster. In Beginning Spring Boot 2, pages 279–287.
Springer, 2017.

[20] N. B. Ruparelia. Software development lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35:8–13, 2010.

[21] G. W. Russell. Experience with inspection in ultralarge-scale development. IEEE
software, 8(1):25–31, 1991.

[22] M. Sabou and M. Fernandez. Ontology (network) evaluation. In Ontology engineering
in a networked world, pages 193–212. Springer, 2012.

[23] M. Sabou, D. Winkler, S. Biffl, and P. Penzenstadler. Verifying Conceptual Domain
Models with Human Computation: A Case Study in Software Engineering. In The
sixth AAAI Conference on Human Computation and Crowdsourcing, 2018.

[24] M. Sabou, D. Winkler, and S. Petrovic. Expert sourcing to support the identification
of model elements in system descriptions. In International Conference on Software
Quality, pages 83–99. Springer, 2018.

[25] Y. Sun, A. Singla, T. Q. Yan, A. Krause, and D. Fox. Evaluating task-dependent
taxonomies for navigation. In HCOMP, pages 229–238, 2016.

[26] B. Thalheim. Extended entity-relationship model. In Encyclopedia of Database
Systems, pages 1083–1091. Springer, 2009.

104

[27] G. H. Travassos, F. Shull, J. Carver, and V. Basili. Reading techniques for oo design
inspections. Technical report, 2002.

[28] L. Von Ahn. Human computation. In Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, pages 1–2. IEEE Computer Society, 2008.

[29] D. Winkler, M. Sabou, S. Petrovic, G. Carneiro, M. Kalinowski, and S. Biffl.
Improving model inspection processes with crowdsourcing: Findings from a controlled
experiment. In European Conference on Software Process Improvement, pages 125–
137. Springer, 2017.

[30] D. Winkler, M. Sabou, S. Petrovic, G. Carneiro, M. Kalinowski, and S. Biffl. Improv-
ing model inspection with crowdsourcing. In Proceedings of the 4th International
Workshop on CrowdSourcing in Software Engineering, pages 30–34. IEEE Press,
2017.

[31] D. Winkler, M. Wimmer, L. Berardinelli, and S. Biffl. Towards model quality
assurance for multi-disciplinary engineering. In Multi-Disciplinary Engineering for
Cyber-Physical Production Systems, pages 433–457. Springer, 2017.

[32] G. Wohlgenannt, M. Sabou, and F. Hanika. Crowd-based ontology engineering with
the ucomp protege plugin. Semantic Web, 7(4):379–398, 2016.

105

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem description
	Research Questions
	Methodology
	Contributions and Expected Results
	Outline

	Background and Related Work
	Software Inspection
	Human Computation and Crowdsourcing (HC&C)
	Crowdsourcing in Software Engineering (CSE)
	Crowdsourced Software Inspection (CSI)
	Crowdsourced Model Verification

	CSI-Experiment Process Analysis & Requirements Elicitation
	CSI-Experiment Process Analysis
	The VeriCoM Approach
	CSI-Experiment Stakeholders
	Requirement Analysis Method
	Status Quo of the CSI-Experiment process
	CSI-Platform Requirements

	Data Model Design and Algorithm Development
	Data Model
	Algorithms

	Implementation
	Architecture and technology stack
	VeriCoM - Algorithm implementation
	Feedback Service - Module
	User Interface

	Evaluation of the CSI-Platform prototype
	Experiment Spring 2018
	Comparison of unsupported experiment process vs. CSI-Platform supported process
	CSI-Platform Evaluation - Interviews

	Conclusion and Future Work
	Answers to Research Questions and Discussion
	Limitations
	Future work and Learning Analytics Platform (LEAP)

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

