
Diplomarbeit

Generalized Additive Models:
Background, Definitions, Extensions

Zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Statistik-Wirtschaftsmathematik

eingereicht von

Christopher Rieser, BSc MSc

Matrikelnummer 0815803

ausgeführt am Institut für Stochastik und Wirtschaftsmathematik
der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien

Betreuer: Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser

Wien, 31. August 2018:
Unterschrift Verfasser Unterschrift Betreuer

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Acknowledgements

I would like to express my sincere thanks to my supervisor Univ.-Prof. Dipl.-
Ing. Dr.techn. Peter Filzmoser for all his help in guiding me in the process of
finding the right topic and for all his comments, remarks and valuable time
spent on discussions and proofreading.
Furthermore, a very special thanks also goes to my mother Beatrice who has
supported me all these years and who has been of so much help. I’ve always
considered her a role model.
Also, much thanks goes to my girlfriend Marlene. Her understanding, en-
couragement and love was endless these last years.
At last, I also want to thank my father Daly and my two brothers Patrick
and Daniel. They have supported me a lot these last years.



Preface

This thesis gives an extensive overview of generalized additive models with
an outlook on their robustification. Chapter 1 shortly introduces the main
problems. Chapter 2 considers additive models and generalized linear models.
In Chapter 3 additive models and generalized linear models will be merged to
what is known as generalized additive models. Furthermore, we will discuss
one way of robustifying the latter and end with three illustrations of GAMs.



Contents

1 Some motivation 1

2 A recap of additive models and generalized linear models 3
2.1 Additive models . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 A Hilbert space approach and the backfitting algorithm 9
2.1.2 Smoothing splines and a penalized approach to AMs . 12

2.2 Generalized linear models . . . . . . . . . . . . . . . . . . . . 21
2.2.1 The exponential family . . . . . . . . . . . . . . . . . . 22
2.2.2 The maximum likelihood problem and the IRLS . . . . 25
2.2.3 Some inference results for GLMs . . . . . . . . . . . . . 31

3 Generalized additive models 34
3.1 GAMs and robust GAMs . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Penalized maximum likelihood . . . . . . . . . . . . . . 35
3.1.2 The P - IRLS algorithm . . . . . . . . . . . . . . . . . 38
3.1.3 Identifiability . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4 Degrees of freedom, smoothing parameters, confidence

intervals and the quasi-likelihood . . . . . . . . . . . . 47
3.2 Robust GAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 A robust GAM version for response outliers . . . . . . 59
3.3 An application of GAMs . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 A simulated Gaussian example . . . . . . . . . . . . . . 64
3.3.2 A simulated binomial example . . . . . . . . . . . . . . 68
3.3.3 A real world example . . . . . . . . . . . . . . . . . . . 72





Notation

N {1, 2, 3, ...}
N0 {0, 1, 2, ...}
H A Hilbert space
x A vector
X A matrix
X′ The transposed of matrix X
xi The i-th element of x
Xij ij-th Element of matrix X
X:,i The i-th column of X
Xi,: The i-th row of X
Xm:n,r:s Matrix consisting of elements xij,

with m ≤ i ≤ n and r ≤ j ≤ s
(xi): A vector with elements xi
(xij):,: A matrix defined by the elements xij
D A diagonal matrix∑

k akhk(·) A linear combination of the functions hk(·)∑d
k=0 akx

k Polynomial of degree d
|α| Abbreviation for α1 + ...+ αp
aα Abbreviation for aα1,...,αp

xα Abbreviation for xα1 · · · xαp∑
|α|≤d aαx

α Polynomial in p variables of degree d

Pd[x] The space of all polynomials of degree d
∇f The gradient of the function f
Hf The Hessian of the function f
L2(Ω) The space {f : Ω→ R |f is measurable ,

∫
f 2 <∞}

Y A random variable
y A realization of the random variable Y
E(X) The expectation of the random variable X
Var(X) The variance of the random variable X
Y |X Y conditional on X
E(Y |X) The conditional expectation of X conditional on Y
1A(·) The indicator function for a measurable set A



CHAPTER 1

Some motivation

In this chapter we will quickly motivate additive models and generalized lin-
ear models, denoted from now on as AM and GLM, as a generalization of a
simple linear model with Gaussian error. All considerations in this chapter
are heuristical and lack mathematical exactness. This is done on purpose to
highlight motivations.

Assume that we have observations

(y1, x11, ..., x1p), ..., (yn, xn1, ..., xnp)

and we suspect that these fulfill the linear relation

yi = a0 + a1xi1 + ...+ apxip + εi, (1.1)

for i ∈ {1, ..., n}, where a0, ..., ap are unknown parameters and εi are indepen-
dent Gaussian distributed variables with mean zero and unknown constant
variance - representing the error in a measurement. The goal would be then
to estimate the parameters.

Astonishingly, this simple model works quite well in some situations, however
there are two major drawbacks which we can directly see:

Firstly, as all the explanatory variables contribute in a linear way, no inter-
actions between variables or higher order terms, e.g. x2

1x
3
4, are considered.

This can result in a poor model, because many times interactions and higher
order terms are necessary to get good results. One natural extension would
therefore be to consider interactions and higher order terms, but this is com-
putationally very expensive and might not be feasible. Looking at the case of
a polynomial in p variables having degree d, i.e.

∑
|α|≤d aαx

α, where we have

1



used the multiindex notation, we can deduce that the number of coefficients
is equal to

(
p+d
d

)
. This number grows very quickly in d and p and for high

dimensions, higher order interactions are thus impossible to consider. Such
a situation is known as the curse of dimensionality.

Secondly, although the assumption of the errors being normally and inde-
pendently distributed, with constant variance - thus Y being normally and
independently distributed with constant variance - holds in many cases, there
are also many examples where this is simply not true and so this is a major
limitation of our model. Y could, for example, be Poisson or binomially dis-
tributed and, as we will see in Chapter 2, the model assumption (1.1) would
not make much sense.

In the following second chapter we will see a remedy for each of these two
problems by considering AMs and GLMs. After this we will unify, in the
third chapter, the latter two to what is known as generalized additive models
(GAM).

2



CHAPTER 2

A recap of additive models and generalized

linear models

Before we start to talk about AMs let us put the situation of Chapter 1 on
mathematical solid grounds.

Assume that we have a real valued random vector (Y |(X1, ..., Xp), X1, ..., Xp)
on some probability space (Ω,A,P). We would then like to be able to predict,
for each realization ω, Y |X(ω) ∈ R by some function of X(ω) - where we
used the abbreviation X = (X1, ..., Xp). This means that we want to find a
measurable function f : Ω→ R , such that f(X(ω)) gets ”close” to Y |X(ω).
One way to measure ”closeness” could be to take the Euclidean norm - on the
one hand as it is the natural norm to work with in R, and on the other as it
has good smoothness properties. Therefore we would like to find a function f
which minimizes the quantity (Y |X(ω)−f(X(ω)))2. As we are in the setting
of a probability space, we thus end up with the following problem; where we
omitted writing the conditional dependence of Y on X, hence only writing Y
instead of Y |X:

min
f∈H

E
((
Y − f(X)

)2)
. (2.1)

This problem only makes sense if we also assume that Y is in L2(Ω) and that
the space H is the space of all measurable functions f for which the quantity
f(X) is in L2(Ω).

It turns out, and it is not hard to show, that the function minimizing (2.1)
is given by E(Y |X). Doing the following

3



E
((
Y − f(X)

)2)
= E

(
E
((
Y − f(X)

)2∣∣X))
= E

(
E
((
Y − E(Y |X) + E(Y |X)− f(X)

)2∣∣X))
= E

(
E
((
Y − E(Y |X)

)2∣∣X))+ E
(
E
((

E(Y |X)− f(X)
)2∣∣X))

+ 2E
(
E
(((

Y − E(Y |X)
)(

E(Y |X)− f(X)
))∣∣X))

= E
((
Y − E(Y |X)

)2)
+ E

((
E(Y |X)− f(X)

)2)
+ 2E

(
E
((
Y − E(Y |X)

)∣∣X)(E(Y |X)− f(X)
))

= E
((
Y − E(Y |X)

)2)
+ E

((
E(Y |X)− f(X)

)2)
,

where we used E
((
Y − E(Y |X)

)∣∣X) = 0, we can see that the first term is
constant and doesn’t include f and the second term is always positive. This
means that the minimizing function is f(X) = E(Y |X).

Knowing that problem (2.1) is solved by f(X) = E(Y |X) is however not
really useful, as to estimate E(Y |X) appropriately we would need for each x
multiple measurements - which are usually not given - even if we knew the
family of distributions for Y |X that is underlying.
This forces us to assume that E(Y |X) has a functional form or at least can be
approximated reasonably by one - meaning that E(Y |X) ≈ fθ(X) for some
function fθ depending on some parameter θ ∈ Θ, e.g. a powerseries in X -
and go from there, to avoid needing multiple realizations of y for each x.

In this spirit let us go back to the original problem (2.1) and now only look
for fθ ∈ H, with θ ∈ Θ, which minimize the objective of (2.1). By the same
arguments as before we could show that a function fθ minimizing (2.1) ac-
tually minimizes the L2 distance of fθ and E(Y |X); thus finding such an fθ
is equivalent to finding an fθ that approximates E(Y |X).

We still need to make some choice now about the functional form of fθ. A
good start could be to consider the space of polynomials of a certain fixed
degree; because hopefully as all continuous functions on a bounded set are
arbitrarily well approximable by polynomials this will give us good results.
We will start a bit more general and consider H to be a finite dimensional
linear space - linear because it makes things much easier - i.e every f has
the form

∑m
k=1 akhk(·), where the ak are the parameters to be estimated and

hk(·) are m functions that span the whole space H. All in all, this means

4



that we try to solve the following problem

min
ak

E
((
Y −

∑
k

akhk(X))2
)
.

Theoretically we could write down the solution to this problem directly by
differentiating in ak and setting the derivatives to zero - as this is a convex
function in ak this always gives us the unique minimum. However the solution
would require us to calculate moments of hk(X). Usually we have no idea
about the distribution of X, which can be very high dimensional and thus it
also makes no sense to look at the sample distribution. So this is not possible.

A solution to this could be to plug in the sample distribution constructed by
our datapoints

(Y1|X1), ..., (Yn|Xn),

which are in R. This only makes sense however if the observed datapoints
we are plugging in are iid. Thus let us assume furthermore that Yi|Xi are
independent and Yi|Xi ∼ N (E(Yi|Xi), σ

2).
Defining Ỹ |X := Y |X−

∑
k akhk(X) we see directly that E(Ỹ |X) = E(Y |X)−

E(
∑

k akhk(X)) = 0. And so by the assumption of Yi|Xi being independent
and normally distributed, we get that Ỹi|Xi are iid with Ỹi|Xi ∼ N (0, σ2).
So if we plug in the sample distribution into

E
((
Y −

∑
k

akhk(X)
)2)

= E((Ỹ |X)2)

we obtain the so called least squares problem:

min
ak

∑
i

(
yi −

∑
k

akhk(xi)
)2
, (2.2)

which will give us - under appropriate assumptions - an estimator for the
parameters ak.

Remark 1. Without the assumption of normality we would have had the
problem that we could not just plug in the sample distribution. If we can
only assume Yi|Xi to be independent there is no guarantee that Ỹi|Xi :=
Yi−E(Yi|Xi) is also identical distributed. This works in the case for normal
data because the conditional mean determines the whole distribution - for
fixed variance.
We will see how to treat the case when Yi|Xi cannot be assumed to be normal
in the section about GLMs, which are a remedy for this problem.

5



Remark 2. We also needed to assume constant variance as otherwise, if we
have Yi|Xi independent and Yi|Xi ∼ N (E(Yi|Xi),Var(Yi|Xi)) we couldn’t use
the argument that Ỹi|Xi were iid. We will see that this case is also covered
by GLMs.

2.1 Additive models

In this section we will introduce additive models which are a remedy for the
first problem presented in the introductory chapter.

Let us assume from now on until the section about GLMs that all Yi|Xi are
independent and satisfy Yi|Xi ∼ N (E(Yi|Xi), σ

2) - so that we can follow the
same chain of arguments as in the introduction of this chapter to arrive at
the least squares problem (2.2).

Let us quickly talk about solvability of the least squares problem

min
ak

n∑
i=1

(
yi −

m∑
k=1

akhk(xi)
)2
, (2.3)

with m < n, where xi = (xi1, ..., xip)
′ is the i-th datapoint, and see how we

could solve such a minimization problem in principle.

It is easy to see that the sum∑
i

(
yi −

∑
k

akhk(xi)
)2

(2.4)

is differentiable in its parameters ak and calculating the partial derivative in
the direction of aj gives:

∂

∂aj

∑
i

(
yi −

∑
k

akhk(xi)
)2

=
∑
i

∂

∂aj

(
yi −

∑
k

akhk(xi)
)2

(2.5)

= −
∑
i

2
(
yi −

∑
k

akhk(xi)
)
hj(xi) (2.6)

= −2
∑
i

yihj(xi) + 2
∑
i

hj(xi)
∑
k

akhk(xi).

(2.7)

6



Defining the matrix

X := (hj(xi)):,: =


h1(x1) h2(x1) · · · hm(x1)

h1(x2) h2(x2) · · · ...
...

...
. . .

...
h1(xn) · · · · · · hm(xn)

 ∈ Rn×m

and the vectors

y := (y1, ..., yn)′, a := (a1, ..., am)′,

we get that (2.7) is equal to

−2
(
y′X:,j + a′X′X:,j

)
.

This means that the gradient is equal to

−2
(
y′X + a′X′X

)′
= −2

(
X′y + X′Xa

)
. (2.8)

A necessary condition for a minimum is that the gradient is equal to zero, so
we get the so called normal equations:

X′Xa = X′y. (2.9)

To calculate the Hessian matrix we just need to calculate the Jacobian of
(2.8), which gives us:

∂

∂a
− 2
(
X′y + X′Xa

)
= −2

∂

∂a
X′Xa = −2X′X. (2.10)

Now if X′X is positive definite, then, on the one hand, the normal equations
(2.9) have a unique solution, namely a = (X′X)−1X′y, and, on the other
hand, this solution is also the unique minimizer of problem (2.3) - as the
Hessian is thus negative definite, meaning that our function is strictly con-
cave.

It still remains to clarify in which case the matrix X′X is positive definite.
We have the following equivalences

X′X p.d ⇐⇒ c′X′Xc > 0 ∀c ∈ Rm \ {0}
⇐⇒ (Xc)′(Xc) > 0 ∀c ∈ Rm \ {0}.

The last expression is true if and only if (Xc) spans the whole space Rm,
which in return is equivalent to X having full column rank - implying m ≤ n.

All in all we have therefore the following

7



Theorem 2.1. The least squares problem

min
ak

n∑
i=1

(
yi −

m∑
k=1

akhk(xi)
)2

has a unique solution if X has full column rank.

Remark 3. Checking if X has full column rank can be done by computing
the QR decomposition. There exists an orthogonal n × n matrix Q and an
upper triangular m×m matrix R such that

X = Q

[
R
0

]
. (2.11)

The column rank of R is then the column rank of X, as Q is orthogonal.

Remark 4. In reality it is not desirable to solve the normal equations, ba-
sically due to the fact that X can have a bad conditional number and thus
solving any kind of equations which include X tend to deliver bad results.
Instead we go back to the original problem (2.3) and use some numerical
optimization scheme or, as it is described in more detail in Wood [2], we can
do the following. By noticing that problem (2.3) is equivalent to minimizing
‖y −Xa‖2 and using the QR decomposition of X, as well as the fact that
orthogonal matrices are norm invariant, we can write

‖y −Xa‖2 = ‖Q′y −Q′Xa‖2

=

∥∥∥∥Q′y − [R0
]

a

∥∥∥∥2

= ‖(Q′y)1:m,: −Ra‖2
+ ‖(Q′y)m+1:n,:‖2

.

We see that the solution is directly given by solving Ra = (Q′y)1:m,:; which
is easy to solve by back-substitution as R is an upper triangular matrix.

Let us now consider the following basis functions, picking up ideas from
Chapter 1, hα(x) = xα. As already mentioned in the first chapter, choosing
such a basis will give us

(
p+d
d

)
parameters to estimate. Even if we use the

methods described in the remark to solve this problem, the number of op-
erations to carry out would explode. This puts a limitation to what we can
actually do - due to limited computational power. Not to mention that with
a very large number of basis functions we also tend to run into overfitting
problems.

8



However, it is, in many cases, also important to use higher order terms in
order to get good results.

A compromise between not too many basis functions but still enough to cap-
ture higher order effects could be to leave out, or, loosely speaking, introduce
interaction terms in an ordered manner. As the interaction of r variables
brings

(
d+r
r

)
− (dr + 1) interaction terms into play, it might be beneficial to

leave out higher order interactions and start from low interaction terms. For
example, if d = 10 and p = 5, then the number of interaction terms of x1

and x2 is
(

10+2
2

)
− (20 + 1) = 45. Similarly for the interaction of x1, x2, x3

we have
(

10+3
3

)
− (30 + 1) = 255 terms.

Going back to the beginning of Chapter 2 and applying what we have said so
far, we could take the approach to look for functions minimizing (2.1) that
have the form:

f(x1, ..., xp) =
∑
k

fk(xk) +
∑
k,l

fk,l(xk, xl) +
∑
k,l,m

fk,l,m(xk, xl, xm) + ...

= f1(x1) + f2(x2) + ...+ fp(xp) + f12(x1, x2) + f13(x1, x3) + ... .

Lastly we want to remark that there is one problem left, namely, if we have
higher order interactions like f12(x1, x2) there are identifiability problems.
We could just add any function x1 7→ h(x1) to f12 and subtract it from f1

without changing f . So there is also a need to impose some constraints to
this form to make it identifiable. We will see this later.

2.1.1 A Hilbert space approach and the backfitting algorithm

This section closely follows the book of Hastie and Tibshirani [1].

Assume that there is some reason to believe that E(Y |X) can be approxi-
mated by f1(X1) + ... + fp(Xp); so, for the moment we do not consider any
interaction terms. Going back to the optimization problem (2.1), assuming
Y ∈ L2(Ω) with E(Y ) = 0, let us choose H ⊂ L2(Ω) as the space spanned
by the closed spaces Hj, for j = 1, ..., p, where Hj is the space of measurable
functions fj for which fj(Xj) is in L2(Ω) and for which E(fj(Xj)) = 0 holds.

As the set of functions B := {f(X)|f ∈ H} is closed - under some additional
conditions, see [1] - therefore being a closed linear subspace of L2(Ω), the

9



problem

min
f∈B

E
((
Y − f(X)

)2)
(2.12)

can also be seen as finding the best approximation of Y , in the L2 norm, by
an element in B.

From Hilbert space theory it is known that there is a unique minimizing el-
ement h(X) and that it is given by the projection of Y onto B.
The latter is equivalent to saying that Y −h(X) is orthogonal to B. Further-
more we get:

Y − h(X) ⊥ B ⇐⇒ Y − h(X) ⊥ {f1(X1) + ...+ fp(Xp)|fj ∈ Hj}
⇐⇒ Y − h(X) ⊥ fj(Xj) ∀fj ∈ Hj

⇐⇒ E
((
Y − h(X)

)
fj(Xj)

)
= 0 ∀fj ∈ Hj.

As for any measurable set A ∈ A the function 1A(·) also belongs to Hj,
we get E

((
Y − h(X)

)
1A(Xj)

)
= 0 ∀A ∈ A. This is however equivalent to

E
((
Y − h(X)

)
|Xj

)
= 0 for all j.

So, all in all, as h is an element of B, we get:

E
((
Y −

∑
k 6=j

fk(Xk)
)∣∣∣Xj

)
= fj(Xj), (2.13)

for all j.

These Equations (2.13) are linear equations in a Hilbert space. They are
usually impossible to solve; also because we have no knowledge about the
distribution for any Xj. However these equations serve as a motivation for
the following. We could try to replace the operator E

(
·|Xj

)
and the function

fj(Xj) by an approximation.

In Chapter 2 we have seen how a finite approximation to E
(
· |Xj

)
could be

constructed. Basically, we can construct a linear map

Sj(·)(x1j, ..., xnj) : Rn → span{h1, ..., hm}y1
...
yn

 7→∑
k

akhk(·),

by solving the least squares problem (2.2) for different (y1, ..., yn)′, through
the normal equations (2.9).

10



From now on we will however only need that Sj(·)(x1j, ..., xnj) is a linear
function taking elements from Rn and giving back as an output a function
on the same domain as xj is defined. Furthermore we will omit writing the
dependence of Sj on (x1j, ..., xnj) explicitly, for better readability.

If we replace in (2.13) now all the terms by their approximation through Sj
and look at its data version, we would end up with:

Sj


y1

...
yn

−∑
k 6=j

fk(x1k)
...

fk(xnk)


 (xij) = fj(xij) ∀i, j . (2.14)

Defining fk := (fk(x1k), ..., fk(xnk))
′, y = (y1, ..., yn)′ and Sj as the matrix

induced by Sj(·)(x1j)
...

Sj(·)(xnj)

 ,

we get that (2.14) is equivalent to the following system:


I S1 S1 · · ·
S2 I S2 · · ·
...

...
. . .

...
Sp · · · Sp I




f1

f2
...
fp

 =


S1y
S2y

...
Spy

 ∈ Rpn. (2.15)

Remark 5. Note that a vital ingredient is that we replaced E
(
· |Xj

)
with a

finite dimensional approximation which is linear in y. If it were not linear,
going from (2.14) to (2.15) would not be possible and would make things a
lot harder.

As it is mentioned in [1], this system is usually too large to solve by inversion
of the matrix, as it has np rows and np columns, and thus, takes a lot of
computation time - O((np)3). Therefore one goes back and uses (2.14) as a
motivation for the so called backfitting algorithm, which turns out to be a
Gauss-Seidel type method for solving (2.15) - in O(n) steps.

All in all, we get the following algorithm:

11



Algorithm 1 Backfitting algorithm

(1) Initialize fj = 0 for all j = 1, ..., p and set ŷi := yi − 1
n

∑
i yi

(2) Until the fj do not change much do
For j = 1, , ..., p

For i = 1, ..., n

(fj)i := Sj

(
ŷ −

∑
k 6=j

fk

)
(xij)

end
(fj)i := (fj)i − 1

n

∑
i(fj)i

end
(3) The functions f1, .., .fp are then given by

fj(·) := Sj

(
ŷ −

∑
k 6=j

fk

)
(·)

and the model for Y is given by

1

n

∑
i

yi + f1(x1) + ...+ fp(xp).

We will stop here with this approach to additive models, refer to [1] for a
more complete view on AMs and their solvability, and end with the following:

Remark 6. If Sj are symmetric matrices, with eigenvalues in [0, 1], and if the
space {

(u1, ...,up)
′
∣∣∣Sjuj = uj ∀j

∑
i,j

(uj)i = 0
}

is empty, then it can be deduced that the backfitting algorithm converges to
the unique solution of (2.15), see [1].

2.1.2 Smoothing splines and a penalized approach to AMs

The approach taken in Subsection 2.1.1 is very general, meaning that we
have not assumed any concrete form of the operators Sj. In this subsec-
tion we will look at a very specific way of constructing Sj. Many of the ideas
and concepts presented in this subsection can be found in greater detail in [2].

12



As mentioned in Subsection 2.1.1, the operators Sj serve as an approximation
to E(·|X). At the beginning of Chapter 2 we have seen one possibility to
construct such an approximation, namely through solving the least squares
problem

min
ak

∑
i

(
yi −

∑
k

akhk(xi)
)2
,

for a fixed (y1, .., yn)′, and then setting Sj(·) :=
∑

k akhk(·) - where the ak
depend on (y1, .., yn)′.
We now take a closer look into the choice of basis functions h1, ..., hm that
can be made.

Smoothing splines

Let us assume that we have observations (y1, x1), ..., (yn, xn) with xi ∈ R. If
we want to fit a function f to the data, one reasonable requirement usually
is that the function f should be at least continuous.
We could of course use a polynomial in x to fit the data, therefore taking
hk(x) = xk. However polynomials can sometimes be problematic. Trying to
fit a polynomial to the data requires us to fix the degree of the polynomial.
If we take a degree which is too small we might end up with a model that
is too inflexible and does not predict new data too well. However, taking a
degree which is too big, might lead to overfitting - meaning that the fitted
function adjusts to the current data too well, usually resulting in a very
wiggly function - and thus we again obtain a bad model. For example, if we
generate data from the polynomial −x+ 4x3 + ε, with ε ∼ N (0, (0.2)2), and
we tried to fit a polynomial of degree 15 to the data, we can see from Figure
2.1 that this leads to a very wiggly function - as the fitted function adapts
too much to the data at hand.
A possibility would be to try to fit a polynomial with a very high degree and
avoid overfitting by one of the various methods like LASSO - which basically
help us decide which basis functions we should keep.
However the main problem stems from the fact that the basis functions xk

are not very local. Heuristically speaking, if a polynomial of degree d approx-
imates an underlying function well, then adding some more basis functions,
say m, and fitting thus a polynomial of degree d+m, does not necessarily lead
to a polynomial that fits the underlying function equally well. The reason
behind this is that each basis function contributes to the function evaluation
over the whole range of x and thus the estimated parameters can change a
lot. Not only does this imply that we may end up with a lot of computation

13



Figure 2.1: Result of overfitting

14



time needed when adding basis functions, but also that estimated parameters
can suffer from a high variance - due to the non-locality - and so prediction
becomes worse.

So one could look for basis functions hk which behave more local. One way
could be to fit a piecewise linear function or, in general, a piecewise polyno-
mial of degree d. This means that, given fixed nodes ζ1 ≤, ...,≤ ζm, where we
have that all observations xi lie in [ζ1, ζm], one fits in each interval [ζj, ζi+1] a
polynomial of fixed degree d; which means that the polynomial corresponding
to an interval is zero outside of the latter, thus being more local. However, we
still have the problem that overfitting can result in each interval in case that d
is high. If we choose the nodes in such a way that not too many observations
are present in each interval, low degree polynomials are sufficient to get good
approximations and therefore overall wiggliness is prevented. Nevertheless,
this method still has the drawback that we need to choose the degree of the
piecewise polynomials and now also the nodes - even though one could for
example just take quantiles.

With the goal in mind of preventing wiggliness, a nice approach to avoid
having to choose the degree and, surprisingly, the nodes, is the following.
Ideally we are looking for functions which are not too wiggly inside of the
intervals. To prevent wiggliness we could for example try to penalize high
absolute values of the second derivative of the function we are looking for;
as the least wiggly function we could hope for would have f ′′(x) = 0 - hence
the straight line. As this needs to be done over the whole range of x it is
natural to take the integral and rather the square of the second derivative;
mainly because the absolute value is a non-smooth function. So instead of
minimizing the usual least squares objective (2.2) we try to minimize:∑

i

(
yi − f(xi)

)2
+ λ

∫
(f ′′(x))2dx, (2.16)

where λ > 0 is for the moment fixed, controlling the amount of penalization.

Surprisingly, it turns out that the function minimizing this functional, over all
functions for which the term

∫
(f ′′(x))2dx makes sense, is a so called natural

cubic spline with nodes in xi, which is a special type of piecewise polynomial
of degree three - described below.

This can easily be seen by the following fact. For a fixed function f , we
have that any natural cubic spline p, interpolating f in x1, ..., xn, fulfills

15



∫
(p′′(x))2dx ≤

∫
(f ′′(x))2dx, see [2]. Hence the minimizer of (2.16) must

also be a cubic spline, because if f minimizes the latter, then by choosing a
piecewise polynomial with nodes xi, which exactly interpolates f in xi, we
can basically replace f in (2.16) with such a piecewise polynomial. The first
part of the objective function thus stays unchanged and the second part is
at most as high as before.

Now as mentioned above, a natural cubic spline is a special type of piecewise
polynomial of degree three. First of all, an M -spline is commonly defined as
a piecewise polynomial, where the degree of each polynomial in each of the
m − 1 intervals [ζi, ζi+1] is M − 1, with the addition of having continuous
derivative up to order M − 2 in (ζ1, ζm). Thus, for an M -spline we need to
estimate M(m− 1)− (M − 1)(m− 2) = M +m− 2 parameters. A basis for
such an M -spline could explicitly be given by

hk(x) := xk−1 for k = 1, ...,M

hi(x) := max(0, x− ζi)M−1 for i = 2, ...,m− 1.

Actually in practice it would be more advisable to use so called B−splines
or P−splines which are numerically much more stable, see [2].
A natural cubic spline is now an M = 4 spline with the addition of two more
restrictions to the spline, namely f ′′(x1) = f ′′(xm) = 0 - meaning that f is
linear outside of [ζ1, ζm]. Thus we have M +m− 2− 2 = 4 +m− 2− 2 = m
parameters to estimate now.

Remark 7. So far we have only looked at splines in one variable. However,
there is also the possibility of taking more than one variable, say x1, ..., xp.
In this case we could try to minimize a similar objective function to (2.16),
where the second term is just replaced by an integral penalizing the wiggliness
of the ”surfaces” instead of the curves.
Popular choices are for example

∑
η1+···+ηp=m

λ
m!

η1 . . . ηp

∫ (
∂mf

∂xη11 . . . ∂x
ηp
p

)2

dx1 . . . dxp (2.17)

∑
k

λk

∫ (
∂2

∂x2
k

f(x1, ..., xp)

)2

dxk. (2.18)

The motivation behind these is the following. Intuitively we would like for
a function to have the property that in each direction the second deriva-
tive is close to zero, leading to the condition that the sum of all the second

16



derivatives is close to zero. This approach would be incorporated in (2.17)
by choosing m = 2.
However, the problem with this penalty is that we need the condition 2m >
p + 1 to hold, to be able to obtain nice closed form solutions, see [2]. But,
for example using p = 8 and so m = 5 > 8

2
= 4, we get that the penalty

minimizes 5th-order derivatives, which is not very intuitive as to if this min-
imizes the wiggliness - as this means that we look to obtain solutions which
behave like quadratic polynomials. Also this approach is computationally
very expensive and so usually the second penalty (2.18) is preferable.
As the penalty (2.18) is somewhat suited for the penalized approach of ad-
ditive models as we will soon see, we will stop here and instead refer to
[2].

A penalized approach to AMs

Let us return now to the original problem where we tried to minimize (2.1)
under the assumption that f has an additive structure, that is f1(X1)+ · · ·+
fp(Xp). At the end of the introduction of Chapter 2 we had basically replaced

the probability measure in E
((
Y − f(X)

)2)
by the sample probability mea-

sure. In this spirit, if we wanted to impose an additive structure, we would
get the problem:

min
f1,...,fp

n∑
i=1

(
yi −

p∑
k=1

fk(xik)
)2
. (2.19)

Of course, as it can be easily seen, we need to fix the space in which the
functions fk lie, as otherwise taking f1(xi1) := yi would give a perfect fit.
As discussed before, one desirable property is to reduce wiggliness of the
function f1(x1) + · · ·+ fp(xp).
Due to the additive nature of this function it seems appropriate to use a
penalty term of the form (2.18). So end up with the minimization problem:

min
f1,...,fp

n∑
i=1

(
yi −

p∑
k=1

fk(xik)
)2

+

p∑
k=1

λk

∫ (
∂2

∂x2
k

fk(xk)

)2

dxk, (2.20)

where the functions fi lie in the function space such that the integral terms
make sense - typically a Sobolev space - and λk > 0 are fixed for the moment.

As the penalty and the function f we are looking for is of an additive nature,
it is easy to see, by the same arguments than before, that the functions fi
which minimize this problem are all natural cubic splines.

17



Because of this we can write fk(·) =
∑n

j=1 ajkhjk(·), for appropriate hjk. This
means that (2.20), when using the definitions

Xk := (hjk(xik))i,j ∈ Rn×n

X := (Xk
i,:)i,k =

X1
1,: · · · Xp

1,:
...

. . .
...

X1
n,: · · · Xp

n,:

 ∈ Rn×n·p

ak := (a1k, ..., ank)
′ ∈ Rn×1

a := (a1, ..., ap)′ ∈ Rn·p×1

Sk :=

(∫ (
∂2

∂x2
k

(hjk(xk)hj′k(xk))

)2

dxk

)
j,j′
∈ Rn×n

S :=

λ1S
1 0 · · ·

0
. . . 0

... 0 λpS
p

 ∈ Rn·p×n·p,

is equivalent to:

min
ajk

∑
i

(
yi −

∑
k

∑
j

ajkhjk(xik)
)2

+
∑
k

λk

∫ (
∂2

∂x2
k

∑
j

ajkhjk(xk)

)2

dxk

= min
ajk

∑
i

(
yi −

∑
k

Xk
i,:a

k
)2

+

∑
k

∑
j

∑
j′

ajkaj′kλk

∫ (
∂2

∂x2
k

(hjk(xk)hj′k(xk))

)2

dxk

= min
ak

∑
i

(
yi − (X1

i,:, ...,X
p
i,:)a

)2
+
∑
k

λk(a
k)′Skak

= min
a
‖y −Xa‖2 + a′Sa.

It is not hard to show, by calculating the gradient, that the solution to this
problem is given by

a = (X′X + S)−1X′y, (2.21)

provided that X′X + S is positive definite (p.d). As S is made up of Sk,
which are positive semi-definite, because (ak)Sak is an integral over a posi-
tive function, we get that S is always positive semi-definite.
Checking if X′X + S is p.d can be done by using the QR decomposition, see

18



(2.11).

Note that we cannot really count on proofing positive definiteness of X′X+S
by showing that X has full column rank - as this is a n× np matrix.

Unfortunately, we can readily see that we have multiple solutions. A solution
surely exists, because in the case that X has rank higher or equal to one at
least one solution exists - as the objective function is then convex and goes in
this case to plus infinity for ||a|| → ∞ - and in the case that it has rank zero,
then the solution is given by a = 0. Multiple solutions thus exist, as adding
a constant to any function fk0 and subtracting it from another function fk1
leaves f unchanged.

Let us just mention that it is therefore better to look at the slightly changed
model where we set all but one coefficient ajk, which correspond to hjk ≡ 1,
to zero to obtain

min
ã
||y − X̃ã||2 + ã′S̃ã. (2.22)

We will discuss this in more detail in Chapter 3.

We have the following

Corollary 2.1. If X̃′X̃ + S̃ is not p.d then multiple solutions can exist. If
X̃′X̃ + S̃ is p.d, then Problem (2.22) is solved by

a = (X̃′X̃ + S̃)−1X̃′y.

and all fk are unique.

We will end this subsection by the following three remarks.

Remark 8. In the case that X̃ does not have full column rank it can be shown
that the functions fk are not unique, see [4].

Remark 9. It seems as if the approach described in this subsection is inferior
to the one described in the Subsection 2.1.1. By not having to use specific
operators Sj in 2.1.1 there is a certain liberty in choosing them. We only need
to have the conditions fulfilled, which are mentioned at the end of Subsection
2.1.1, so that backfitting converges to a unique solution. As is pointed out in
[1], one of the many choices could be natural cubic splines, regression splines,
polynomials or surface smoothers, guaranteeing convergence.

19



If we work with continuous variables x1, ..., xp for which we can expect
f1, ..., fp to be smooth functions, smoothing splines seem a reasonable choice,
as explained in this subsection. In this case the two approaches are the same.
If, for all j, we choose:

Sj : Rn → {space of natural cubic splines in (x1j, ..., xnj)}

Sj(ỹ1, ..., ỹn) := arg min
fj

∑
i

(
ỹi − fj(xij)

)2
+ λj

∫ (
∂2

∂x2
j

fj(xj)

)2

dxj,

we get that the step in the backfitting algorithm

(fj)i := Sj

(
ỹ −

∑
k 6=j

fk

)
(xij)

is equivalent to finding the function fj which minimizes∑
i

(
ỹi − fj(xij))

)2
+ λj

∫ (
∂2

∂x2
j

fj(xj)

)2

dxj,

where

ỹi :=
(
yi −

∑
k 6=j

fk(xik)
)
.

This means that backfitting is the same as solving the minimization problem
(2.20) stepwise in f1, ..., fp - thus for this choice of Sj we get the same results.
In Chapter 3 we will only consider the approach taken in this subsection, as
GAMs - and especially robust GAMs - are much more accessible in this way.
If we do not expect the fk to be smooth functions then the operator approach
to AMs may work better - if for example we consider only piecewise constant
functions, we want to use KNN smoothers or regression trees.

Remark 10. Lastly, we want to remark that with the methods so far it is
also possible to take into account functions of interacting variables, e.g.
f(X1, X3), or even projections of such, e.g. f(a1X1 + a3X3) - where the
latter leads to projection pursuit regression. If for example we would like to
model E(Y |X1, ..., Xp) as a function f(X1) + f(X2) + f(X3, ..., Xp) we only
need to take, in the operator approach, operators S1, S2, S3 associated with
X̃1 := X1, X̃2 := X2, X̃3 := (X3, ..., Xp). So we could, for example, take S3

as the smoothing operator defined through the minimization problem

min
f

∑
i

(
yi − f(x̃i3)

)2
+ penalty (2.17) or (2.18)

20



and S1 as well as S2 as the operators defined through smoothing splines. It is
just as easy to do the same in the approach described in this section, where
we would have to replace the penalty by a suitable penalty for more than
one variable.
If some of the variables are categorical ones, both approaches work in a
similar manner. We could just as well model each function also depending
on categorical variables and then choose suitable operators or penalties. We
will see this in the chapter about GAMs.

2.2 Generalized linear models

The following section closely follows the book by Wood [2].

At the beginning of this chapter we considered the following problem

min
f∈H

E
((
Y − f(X)

)2)
(2.23)

and then found that f(X) = E(Y |X) is solving it.

We were only able continue from there on by assuming that all Yi|Xi are
independent and normally distributed, i.e. Yi|Xi ∼ N (E(Yi|Xi), σ

2), with
constant variance.

If this is not the case however, we could not have arrived at the least squares
problem, as it was explained at the end of the introduction of this chapter. If
Yi|Xi violates the assumption of normality, it makes therefore more sense to
take a likelihood approach, meaning that if the distribution at hand depends
on some way on the conditional expectation, as a parameter, we could try to
maximize its likelihood instead:

max
ak

∑
i

l
(
E(yi|xi) =

m∑
k=1

akhk(xi)
)
.

That this approach seems reasonable is also supported by the fact that if
Yi|Xi is independent and normally distributed, taking the approach (2.23) is
the same as taking a maximum likelihood approach; because looking at the
problem

max
ak

E
(

1√
2πσ2

exp(−‖Y −
∑

k akhk(X)‖2

2σ2
)

)
,

21



for a fixed σ, we would have ended up with the same ak.

There is however yet another problem with taking such a likelihood approach.
Assume that Yi|Xi is Poisson distributed, i.e has the density

f(yi) =
λ(xi)

yi

yi!
exp(−λ(xi)),

with parameter λ(xi) > 0. For such a variable we also have E(Yi|Xi) = λ(Xi),
and thus it follows that the conditional expectation also has to be positive. If
we would now naively model E(Yi|Xi) by

∑
k akhk(Xi), as it was mentioned

at the beginning of Chapter 2, we would not only run into problems if we
tried to maximize

max
ak

∏
i

(∑
k akhk(xi)

)yi
yi!

exp
(
−
∑
k

akhk(xi)
)

- as there is no guarantee that
∑

k akhk(xi) stays positive during maximiza-
tion - but also encounter the problem that when we try to predict Y , for
given X, by

∑
k akhk(X), we might get a negative value.

So an idea could be to compose f :=
∑

k akhk with another function g such
that g(f(·)) always stays positive. This would mean that, provided that we
have fixed a suitable function g, we could look at the following modified
problem:

max
ak

∏
i

(
g(
∑

k akhk(xi))
)yi

yi!
exp
(
− g
(∑

k

akhk(xi)
))
,

thus trying to approximate E(Y |X) by g(f(X)).

2.2.1 The exponential family

In the introduction of this section we have talked about the idea of introduc-
ing a function g in order to match the possible image of g(f) with the range
of possible values of E(Y |X). This immediately leads to the question of how
to choose such a function g.
Fortunately, for the so called exponential family, which covers a wide range
of different distributions, we are able to obtain, in many cases, a canonical
function g. We will therefore only consider this family of distributions in the
following - writing from now on Y instead of Y |X.

22



Definition 2.1. Y is said to belong to the exponential family if its density
is of the form:

fθ,ψ(y) = exp

(
yθ − b(θ)
a(ψ)

− h(y, ψ)

)
,

where ψ > 0, b is a twice continuously differentiable function, with b′′ > 0,
and a and h be such that the log-likelihood function l is regular enough in
θ ∈ Θ ⊂ R.

Remark 11. For l to be regular enough means that: θ is defined on an open
set, l is twice continuously differentiable in θ, Y has finite variance, the
integrals

∫
l dy,

∫
∂
∂θ
l dy and

∫
∂2

∂θ
l dy exist and are finite, and integration can

be interchanged with differentiation in the latter two.

Remark 12. Using exponential families to model a random variable Y is
much more than just transforming Y with some function f hoping that f(Y )
is normally distributed. Firstly there might not even exist such a function
f to achieve this, secondly even if there was such a function it might be
hard to find its form, and at last, as we will soon see, exponential families
have the advantage that they allow us to model non constant variance and
a relationship between expectation and variance. So in this sense GLMs are
a necessary extension.

Now, as it is described in [2], it is easy for a random variable Y belonging to
the exponential family to find a function g which fulfills the property we are
looking for.
The log likelihood and its first and second derivative in θ is given by

l(θ, ψ) =
Y θ − b(θ)
a(ψ)

− h(Y, ψ) (2.24)

∂

∂θ
l(θ, ψ) =

Y − b′(θ)
a(ψ)

(2.25)

∂2

∂θ2
l(θ, ψ) = −b

′′(θ)

a(ψ)
. (2.26)

From (2.25) it follows that:

E
(
∂

∂θ
l(θ, ψ)

)
= E

(
Y − b′(θ)
a(ψ)

)
=

E(Y )− b′(θ)
a(ψ)

.

23



However as

E
(
∂

∂θ
l(θ, ψ)

)
= E

(
∂

∂θ
log(fθ,ψ(Y ))

)
= E

( ∂
∂θ
fθ,ψ(Y )

fθ,ψ(Y )

)
=

∫ ∂
∂θ
fθ,ψ(y)

fθ,ψ(y)
fθ,ψ(y) dy

=

∫
∂

∂θ
fθ,ψ(y) dy

=
∂

∂θ

∫
fθ,ψ(y) dy

=
∂

∂θ
1 = 0,

we get all in all:

E(Y )− b′(θ)
a(ψ)

= 0 ⇐⇒ E(Y ) = b′(θ). (2.27)

This means that if we choose g ≡ b′, we get that the image will always match
the range of the possible values of E(Y ).

Furthermore, using (2.26) we get:

−b
′′(θ)

a(ψ)
= E

(
− b′′(θ)

a(ψ)

)
= E

(
∂2

∂θ2
l(θ, ψ)

)
= E

(
∂

∂θ

∂

∂θ
l(θ, ψ)

)
,

where the latter is further equal to

E
(
∂

∂θ

∂
∂θ
fθ,ψ(Y )

fθ,ψ(Y )

)
=

∫ (
∂

∂θ

∂
∂θ
fθ,ψ(y)

fθ,ψ(y)

)
fθ,ψ(y) dy

=

∫
∂

∂θ

( ∂
∂θ
fθ,ψ(y)

fθ,ψ(y)
fθ,ψ(y)

)
dy −

∫ ∂
∂θ
fθ,ψ(y)

fθ,ψ(y)

∂

∂θ
fθ,ψ(y) dy

=

∫
∂2

∂θ2
fθ,ψ(y) dy −

∫ ∂
∂θ
fθ,ψ(y)

fθ,ψ(y)

∂
∂θ
fθ,ψ(y)

fθ,ψ(y)
fθ,ψ(y) dy.

Using the property that we can interchange derivation and integration, we

24



get that the last term is equal to

∂2

∂θ2

∫
fθ,ψ(y) dy − E(l(θ, ψ)2) = −E

((
∂2

∂θ2
l(θ, ψ)

)2)
= −E

((
Y − b′(θ)
a(ψ)

)2)
= −V ar(Y )

a(ψ)2
,

where in the forelast equality we used (2.25). So we finally arrive at

Var(Y ) = b′′(θ)a(ψ). (2.28)

Remark 13. We see from Equation (2.28) one very big advantage of the
exponential family approach, opposed to the case of normally distributed
variables Y , with constant variance. Namely, the variance of Y is here now
connected to the mean of Y and can thus change for different X.

Table (2.1) sums up some key facts about some of the most common distri-
butions - which are part of the exponential family.

2.2.2 The maximum likelihood problem and the IRLS

Suppose that it can be assumed that Y |X is Gamma distributed. As it is
shown in Table (2.1) we have that the mean function is equal to E(Y ) =
b′(θ) = −1

θ
. This means that when we model θ, which must be negative, by∑

k akhk, we would still have to restrict the coefficients ak in such a way that
−(
∑

k akhk)
−1 is always positive - for all possible x which we allow.

We will see later, in Chapter 3, how to deal with such a case. In the following
we will only look at the very common case a(ψ) = ψ and use g ≡ b′, where
the range of θ is R. Continuing our train of thought from before, we have
the following problem

max
ak,ψ

l
( m∑
k=1

akhk(X), ψ
)
,

with m < n, or, in the data version - with observations (y1,x1), ..., (yn,xn) -
and the abbreviation θ(a, i) :=

∑m
k=1 akhk(xi):

max
ak,ψ

∑
i

l
(
θ(a, i), ψ

)
(2.29)

= max
ak,ψ

∑
i

yiθ(a, i)− b(θ(a, i))
ψ

− h(yi, ψ). (2.30)

25



Table 2.1: Some distributions belonging to the exponential family
Normal Binomial Poisson Exponential Gamma Inverse Gaussian

f(y) 1√
2πσ2

exp(− (y−µ)2

2σ2 )
(
n
y

)
py(1− p)n−y λy

y!
exp(−λ) λ exp(−λy) βα

Γ(α)
yα−1 exp(−βy)

√
γ

2πy3
exp(−γ(y−µ)2

2µ2y
)

Parameters µ ∈ R, σ2 > 0 p ∈ (0, 1), n ∈ N0 λ > 0 λ > 0 α > 0, β > 0 γ > 0, µ > 0
E(Y ) µ np λ 1

λ
α
β

µ

θ = µ log( p
1−p) log(λ) −λ −β

α
− 1

2µ2

Range of y (−∞,+∞) {0, ..., n} N0 (0,+∞) (0,+∞) (0,+∞)
Range of θ (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞, 0) (−∞, 0) (−∞, 0)
ψ = σ2 1 1 1 1

α
1
γ

a(ψ) ψ 1 1 1 ψ ψ

h(y, ψ) −
(
y2

ψ
+ log(2πψ)

)
log(

(
n
y

)
) − log(y!) 0 α log(αy)− log(yΓ(α)) −1

2

(
log(2πy3ψ) + 1

ψy

)
b(θ) θ2

2
n log(1 + exp(θ)) exp(θ) − log(−θ) − log(−θ) −

√
−2θ

g(θ) = b′(θ) θ n exp(θ)
1+exp(θ)

exp(θ) −1
θ

−1
θ

(−2θ)−
1
2

Range of E(Y ) (−∞,+∞) (0, n) (0,+∞) (0,+∞) (0,+∞) (0,+∞)



An approach for solving (2.30) would be to look for points where the gradient
vanishes. So differentiating the likelihood in the direction of aj, we get:

∂

∂aj

∑
i

yiθ(a, i)− b(θ(a, i))
a(ψ)

− h(yi, ψ)

=
1

ψ

∑
i

(
yi

∂

∂aj
θ(a, i)− ∂

∂aj
b(θ(a, i))

)
=

1

ψ

∑
i

(
yi

∂

∂aj
θ(a, i)− b′(θ(a, i)) ∂

∂aj
θ(a, i)

)
=

1

ψ

∑
i

(
yi − b′(θ(a, i))

)
∂

∂aj
θ(a, i).

As we are looking for points where the gradient vanishes, this thus means
that we are looking for a and ψ which fulfill∑

i

(
yi − b′(θ(a, i))

)
∇a θ(a, i) = 0 (2.31)

∂

∂ψ

∑
i

l
(
θ(a, i), ψ

)
= 0. (2.32)

As the the first equation does not contain ψ, we could in principle first solve
Equation (2.31), to obtain a solution a0, and then solve (2.32). However, as
the second equation usually depends in a very non-linear way on ψ and might
have multiple solutions, we only solve the first equation and then estimate ψ
- this we will see in the next subsection.

To solve (2.31) we must resort to numerical methods, as it is in most cases
impossible to solve this equation exactly. One very popular method of choice
is the Newton-Raphson, because it is computationally very cheap in compar-
ison to other methods.

Basically the Newton-Raphson method consists in linearising (2.31), meaning
that for a point solving a0 (2.31), which is equivalent to∑

i

∇l
(
θ(a0, i), ψ

)
= 0,

we can deduce that close to this a0 we have:∑
i

∇l
(
θ(a, i), ψ

)
+Hl

(
θ(a, i), ψ

)
(a0 − a) + rest = 0,

27



where Hl is the Hessian matrix of the likelihood.

The idea is thus to, hopefully, end up with a stepwise approach such that a0

can be obtained by an iterative method:

aj+1 = aj −
(∑

i

Hl

(
θ(aj, i), ψ

))−1∑
i

∇l
(
θ(aj, i), ψ

)
.

Luckily, if (2.31) has at least one solution and if X ∈ Rn×m, n > m, has full
column rank, it can be shown that (2.31) has exactly one solution - and it is
found by the iteration steps above. This can be seen by the fact that problem
(2.30) is concave in the parameters ak, because the second derivative of the
likelihood is given by:

∂2

∂al∂aj

∑
i

l
(
θ
(
a, i), ψ

)
=

1

ψ

∂

∂al

∑
i

(
yi − b′(θ(a, i))

)
∂

∂aj
θ(a, i)

=
1

ψ

∂

∂al

∑
i

(
yi − b′(θ(a, i))

)
hj(xi)

=
1

ψ

∑
i

(
− b′′(θ(a, i))hl(xi)

)
hj(xi),

where we used ∂
∂aj
θ(a, i) = hj(xi). Thus the Hessian matrix is given as

− 1

ψ
X′DX,

where D is a diagonal matrix with elements b′′(θ(a, i)).

Basically by the same reasoning as for Theorem (2.1) one can show that
1
ψ
X′DX is positive definite - b′′ is strictly positive - and so the Hessian is

negative definite. This means that the objective function of problem (2.30)
is strictly concave, in a, and therefore the objective function of (2.30) has a
unique maximum in a - for any fixed ψ - if one exists.
For a strictly concave function, on Rm, it is well known that the Newton-
Raphson method always finds its unique maximum approximately.
All together we have proven the following

28



Theorem 2.2. Assuming that problem (2.31) has a solution and that X has
full column rank, it holds that (2.31) has a unique solution. The latter is also
the unique maximum of the objective function of (2.30), in a, for any ψ, and
can approximately be found by the Newton-Raphson method

aj+1 = aj −
(∑

i

Hl

(
θ(aj, i), ψ

))−1∑
i

∇l
(
θ(aj, i), ψ

)
, (2.33)

for any chosen starting value a0.

One big problem with the Newton-Raphson method is that, in our case,
we need to calculate the Hessian matrix for each iteration - which can be
very expensive to do. Fortunately, one step of Newton-Raphson (2.33) is
equivalent to a weighted least squares problem.
As we can write

aj+1 = aj −
(∑

i

Hl

(
θ(aj, i), ψ

))−1∑
i

∇l
(
θ(aj, i), ψ

)
(2.34)

= aj +

(
1

ψ
X′DX

)−1
1

ψ

(
X′y −X′(b′(θ(aj, i))):

)
(2.35)

=

(
X′DX

)−1(
X′DXaj + X′y −X′(b′(θ(a, i))):

)
(2.36)

=

(
X′DX

)−1

X′D

(
Xaj + D−1y −D−1(b′(θ(a, i))):

)
, (2.37)

where we used∑
i

∇l
(
θ(aj, i), ψ

)
=

1

ψ

∑
i

(
yi − b′(θ(aj, i))

)
∇θ(aj, i)

=
1

ψ

∑
i

(
yi − b′(θ(aj, i))

)
(X′):,i

=
1

ψ

(
X′y −X′(b′(θ(aj, i))):

)
,

it is not difficult to prove that

β :=

(
X′DX

)−1

X′D

(
Xaj + D−1y −D−1(b′(θ(aj, i))):

)
is also the solution to the weighted least squares problem

min
βk

∑
i

Dii

(
zi −

∑
k

βkhk(xi)
)2
,

29



with zi = Xi,:aj + b′′(θ(aj, i))
−1
(
yi − b′(θ(aj, i)).

As solving a weighted least squares problem can be done very efficiently, we
can use the following algorithm to find the unique a solving Equation (2.31):

Algorithm 2 IRLS algorithm

(1) Initialize a0 - e.g randomly
(2) Until aj does not change much, do:

Set

zi := Xi,:aj + b′′(θ(aj, i))
−1
(
yi − b′(θ(aj, i))

)
Solve the weighted least squares problem

min
βk

∑
i

Dii

(
zi −

∑
k

βkhk(xi)
)2

with weights Dii := b′′(θ(aj, i))
Set aj+1 = β

However in the case that X has less then full column rank the IRLS should
still be the method of choice as can be seen by the following lemma which
we will proof in Chapter 3.

Lemma 2.1. If X does not have full column rank then the Hessian is only neg-
ative semi-definite, meaning that under the assumption that at least one solu-
tion to (2.30) exists, uniqueness is not necessarily given anymore. If the IRLS
algorithm converges to â then it holds that we have X′y = X′(b′(θ(â, i))):,
meaning that a solution to (2.31), namely â, has been found. The latter is
also a global maximum of the objective function of (2.30), for any ψ.

Remark 14. There is another further natural extension of GLMs. It is called
vector GLM (VGLM), and it allows for Y to be a multidimensional random
vector belonging to a family with density depending on a multidimensional
parameter (ζ1, ..., ζm). At the heart of GLMs was the mean function g ≡ b′

which established a link between the mean and the parameter θ. Basically it
served the purpose that the image of g(

∑
k akhk(·)) exactly matched the range

of the mean. This is the same for VGLMs, where one has for each parameter
ζi now a function gi, such that the image of gi(

∑
k akihki(·)) exactly matches

the range of ζi. Some more assumptions need to be made, especially about

30



the likelihood, in order to do something similar to the IRLS described above.
More about this can be seen in [7].

2.2.3 Some inference results for GLMs

We will quickly discuss some model checking, some hypothesis testing and
some model selection results. This subsection borrows heavily from the book
by Wood [2]. Further results on inference for GLMs can be found for example
in [8]. All the results in this subsection hold for the likelihood as well as the
quasi-likelihood, see Chapter 3 - one only needs to replace l by q; also, these
results hold for the canonical link case g := b′ as well as the more general
case of using a different mean function g, see Chapter 3.

Residuals:

If we want to do model checking, having estimated ψ, there are two commonly
used residual types. The first one are the Pearson residuals

εpi :=
yi − µ̂i√
V (µ̂i)

and the second one are the deviance residuals

εdi := sign(yi − µ̂i)
√
l(η(amax, i))− l(η(â, i))

where âmax is defined below, â is the estimated coefficient for the model
η(a, i) :=

∑m
k=1 akhk(xi), see Chapter 3, µ̂i := g(η(â, i)), V (µ̂i) := b′′((b′)−1(µ̂))

and l(η(a, i)) is short for l((b′)−1(g(η(a, i)), ψ̂).
If the model is correct, then the Pearson residuals should be close to zero and
have variance ψ̂ - as

√
V (µ̂i) =

√
ψ−1V ar(Y ). Usually one plots the fitted

values ŷi against the Pearson residuals and if there is a trend, then this is an
indication for a misspecified model.
The deviance residuals are used in a similar manner. If the plot of the fitted
values against εdi is close to zero, has variance around one and the values
experience no trend, then this could be an indication that the model is not
misspecified.

Deviance:

An important quantity when doing tests on the parameters ak is the so called
deviance. Under given ψ, the deviance is defined by:

D(a) := 2ψ
∑
i

l(η(amax, i))− l(η(a, i)),

31



where amax is the estimated parameter for the model that has as many coef-
ficients as observations, thus n.

Remark 15. The motivation behind the deviance residuals is rather hand-
waving. For some special distributions belonging to the exponential family,
in the large sample limit, we have D(â) ∼ χ2

n−p. Heuristically speaking, as
D(â) is a sum of l(η(amax, i)) − l(η(â, i)) we could suspect that the signed
square root of the latter is almost normally distributed.

Hypothesis test:

If we are interested in testing the hypothesis

H0 : E(Y ) = g
(∑

k

akhk
)

vs H1 : E(Y ) = g
(∑

l

alhl
)
,

where the first model is nested in the second one, then in the large sample
limit, under H0, we have

2
∑
i

l(η(â1, i))− l( ˆη(a0, i)) ∼ χ2
p1−p0 ,

where p1 respectively p0 are the traces of X1(X′1D1X1)−1X′1D respectively
X0(X′0D1X0)−1X′0D and â1 respectively â0 are the estimated coefficients
maximizing the likelihood for each model, with D1 respectively D0 being a
diagonal matrix with elements (D1)ii = 1

V (µ̂i)
g′(η(â1, i))

2 - µ̂i := g(η(â1, i)) -

respectively (D0)ii = 1
V (µ̂i)

g′(η(â0, i))
2 - µ̂i := g(η(â0, i)).

This result can for example be used to test if certain coefficients are zero.

Distribution of ak:

Under the assumption that the model is true, it can be shown that in the
large sample limit we get â ∼ N (a, (X′DX)−1ψ), where a is the true under-
lying parameter.

Estimating ψ:

As mentioned before we need to know ψ to be able to use the deviance.
Usually one estimates ψ from the data once a model has been fitted and

32



then goes from there.
In the large sample limit it holds that

1

ψ

∑
i

(yi − µ̂i)2

V (µ̂i)
∼ χ2

n−p,

where â are the estimated parameters for the model with p parameters max-
imizing the likelihood.

An estimate for ψ is thus based on

1

n− p
∑
i

(yi − µ̂i)2

V (µ̂i)
.

Model selection:

Model selection could be done by using either K-fold cross validation, which
we will discuss in more detail for GAMs, or using the AIC. Using the AIC
means that we look for the model that minimizes the following quantity:

−
∑
i

l(η(â, i)) + p,

where p is the trace of X(X′DX)−1X′D and â are the estimated parameters
maximizing the likelihood.

33



CHAPTER 3

Generalized additive models

3.1 GAMs and robust GAMs

In this section we will unify GLMs and AMs to what is known as general-
ized additive models (GAM). Furthermore, we will see how GAMs can be
robustified, meaning that the estimated parameters will be less sensitive to
outliers. This chapter borrows, yet again, heavily from [2].

Before we speak about how to unify the two approaches, let us widen our
GLM framework we worked in so far, to the case when the canonical mean
function b′ is not defined on the whole real line.
An example would be the Gamma distribution, i.e. b′(θ) = −1

θ
, where only

negative θ are allowed; we see that even if we are able to get an estimate
for this model, we would run into the problem of maybe having to restrict
the space that x is defined on, so that

∑
k âkhk would never become zero or

positive.

So, as a way out we could think of modelling the mean E(Y ) differently,
namely, we could try to find a function g which is defined on the whole real
line R with the property that the image of g matches the range of E(Y );
thus trying to model E(Y ) = g(

∑
k akhk). This means that we actually

reparametrize the space of θ. The latter can be seen by looking at (2.27),
which states

E(Y ) = b′(θ).

We can thus deduce g(
∑

k akhk) = b′(θ), and therefore this leads to the
reparametrization θ = (b′)−1(g(

∑
k akhk)) - where we remind the reader that

we assumed b′ to be strictly monotone.

34



3.1.1 Penalized maximum likelihood

In Section 2.2 we considered the exponential family as an extension of the
model we had looked at, namely we had assumed that Y |X is normally
distributed.
Let us assume again that we are in the GLM framework, that is, the density
of Y |X belongs to the exponential family, for fixed functions a, b and h, with
parameters θ and ψ.
In view of subsection 2.2.2 and the observations made in the introduction of
this chapter, we could therefore look at the problem

max
ak,ψ

∑
i

l
(
θ
(∑

k

akhk(xi)
)
, ψ
)
,

where we wrote θ(
∑

k akhk(xi)) for (b′)−1(g(
∑

k akhk)) to keep the notation
short.

As we had mentioned in Chapter 1, considering functions having the form∑
k akhk(xi) - where xi is high dimensional - can be very critical, as choosing

xα as basis functions leads to an explosion in the number of interactions and
thus also parameters to estimate. In Section 2.1 we solved this problem, for
the case of Y |X being normally distributed, by considering additive models.

Going this way, the idea is thus to model θ as θ
(
f1(X1) + ... + fp(Xp)

)
.

Therefore, we could consider the following problem

max
f1,...,fp,ψ

l
(
θ
(
f1(X1) + ...+ fp(Xp)

)
, ψ
)
.

To estimate the functions f1, ..., fp, we could again take a Hilbert space ap-
proach, as it is done in [1], however it is much more convenient to instead
take a penalized likelihood approach. In the spirit of AMs and splines we
thus look at

max
fk,ψ

n∑
i=1

l
(
θ
(
f1(xi1) + ...+ fp(xip)

)
, ψ
)
− 1

2ψ

p∑
k=1

λk

∫ (
∂2

∂x2
k

fk(xk)

)2

dxk,

(3.1)

for fixed λk > 0; the penalty forces the functions fk to be smooth, as it was
explained in Chapter 2. The reason for including ψ as well in the penalty,
will become apparent as soon as we look at the Newton-Raphson procedure
for solving this problem.

35



Again it is easy to see that any solution to problem (3.1) must be a sum of
natural cubic splines. Assume that the functions f1, ..., fp solve (3.1). Then
if we choose for each fk a natural cubic spline pk, with nodes x1k, ..., xnk,
which interpolates (fk(x1k), x1k), ..., (fk(xnk), xnk), we can replace∑

i

l
(
θ
(
f1(xi1) + ...+ fp(xip)

)
, ψ
)

by ∑
i

l
(
θ
(
p1(xi1) + ...+ pp(xip)

)
, ψ
)
,

without changing the value of the objective function of (3.1). However, as
already mentioned in the section about smoothing splines, a natural cubic
spline, interpolating such points exactly, always has the property∫ (

∂2

∂x2
k

pk(xk)

)2

dxk ≤
∫ (

∂2

∂x2
k

fk(xk)

)2

dxk.

Therefore it follows that (3.1) is solved by natural cubic splines pk with nodes
in x1k, ..., xnk - also see [2].

Remark 16. We would not necessarily need to model each function fk as a
smoothing spline. We could also consider interactions as well. However, we
will start with this case for simplicity. How to treat the more general case is
then considered in the subsection about identifiability.

So in the following it suffices to only look at fk =
∑n

j=1 ajkhjk, where hk
are basis functions, such that fk are natural cubic splines with nodes in
x1k, ..., xnk.
In the following we will use again the definitions already introduced for the

36



AM case - but with radically different dimensions - namely

Xk := (hjk(xik))i,j ∈ Rn×n

X := (Xk
i,:)i,k =

X1
1,: · · · Xp

1,:
...

. . .
...

X1
n,: · · · Xp

n,:

 ∈ Rn×n·p

ak := (a1k, ..., ank)
′ ∈ Rn×1

a := (a1, ..., ap)′ ∈ Rn·p×1

Sk :=

(∫ (
∂2

∂x2
k

(hjk(xk)hj′k(xk))

)2

dxk

)
j,j′
∈ Rn×n

S :=

λ1S
1 0 · · ·

0
. . . 0

... 0 λpS
p

 ∈ Rn·p×n·p.

Furthermore, let us also introduce the following definitions which we will
need just below:

h := (h11, ..., hn1, ..., h1p, ..., hnp)
′

η(a, i) := a′h(xi)

µi := g(η(a, i))

V (µi) := b′′(µi).

We can rewrite (3.1) as

max
ajk,ψ

∑
i

l
(
θ
(
f1(xi1) + ...+ fp(xip)

)
, ψ
)
− 1

2ψ

∑
k

λk

∫ (
∂2

∂x2
k

fk(xk)

)2

dxk

(3.2)

= max
ak,ψ

∑
i

l
(
θ
(∑

k

(ak)′Xk
i,:

)
, ψ
)
− 1

2ψ

∑
k

λk(a
k)′Skak (3.3)

= max
a,ψ

∑
i

l
(
θ
(
a′Xi,:

)
, ψ
)
− 1

2ψ
a′Sa (3.4)

= max
a,ψ

∑
i

yiθi − b(θi)
ψ

− h(yi, ψ)− 1

2ψ
a′Sa, (3.5)

(3.6)

where in the last line we only wrote θi instead of θ
(
a′Xi,:

)
.

37



Differentiating the objective function in the latter, in ajk, is basically similar
to what we did for (2.30) to arrive at (2.31).
For each element of the sum we get

∇(yiθi − b(θi)) = (yi − b′(θi))∇θi
=
(
yi − b′

(
(b′)−1(g(η(a, i)))

))
∇(b′)−1(g(η(a, i)))

=
(
yi − g(η(a, i))

) 1

b′′((b′)−1(g(η(a, i))))
g′(η(a, i))η(a, i)

=
(
yi − g(η(a, i))

) 1

b′′(µi)
g′(η(a, i))∇η(a, i)

=
(
yi − g(η(a, i))

) 1

V (µi)
g′(η(a, i))∇η(a, i).

Thus, if the term a′Sa is also taken into account, which has the gradient
(S′ + S)a = 2Sa - because S is symmetric - we arrive at∑

i

(
yi − g(η(a, i))

) 1

V (µi)
g′(η(a, i))∇aη(a, i)− Sa = 0 (3.7)

∂

∂ψ

∑
i

l
(
θ(a, i), ψ

)
= 0. (3.8)

Again, Equation (3.7) is independent from ψ - this is actually the motivation
for the ψ weight in front of the penalty; and this is justified by the fact
that we will estimate the tuning parameters anyways. Therefore, just as we
did with GLMs, we will again only concentrate on solving Equation (3.7)
numerically - after which ψ will be estimated. This is done in the following
subsection.

3.1.2 The P - IRLS algorithm

Before talking about which method to deploy for solving (3.7) let us quickly
look at its solvability.

In the same way as it was done for GLMs, we could proof, by differentiating
(3.7) once more, that the Hessian of∑

i

l
(
θ
(
a′Xi,:

)
, ψ
)

is given by

− 1

ψ
X′DX,

38



where D is the diagonal matrix made up of the elements

Dii :=

(
g′(η(a, i))2

V (µi)
α(i)

)
(3.9)

with

α(i) := 1 + (yi − µi)

(
V ′(µi)

V (µi)
− g′′(η(a, i))

g′(η(a, i))2

)
;

see [3] for a proof.

Furthermore, it is easy to see that the Hessian of 1
2
a′Sa is given by S.

All in all, we thus have that the Hessian of the objective function is given by

− 1

ψ
X′DX− 1

ψ
S.

In the GAM case, contrary to GLMs, it is harder to tell what happens. First
of all, the matrix X is now an n× np matrix, meaning that X has never full
column rank. And secondly, another problem is that D can have negative
entries - also they might depend on a now.
This means that it might not be so obvious if X′DX + S is p.d, over the
whole range of a, or even only positive semi-definite; thus the objective func-
tion might not even be concave anymore - in this case one might rethink the
modelling.
Also, it might help to keep the number of basis function fixed, so that the
number of samples exceed the number of basis functions - if this makes sense
should however be tested.
To check if X′DX + S is p.d, in the case of D being constant, we could use
the QR decomposition again.

Therefore we have the following. If the model assumptions are correct, mean-
ing that there exists at least one solution to (3.7), then:

if: X′DX + S is p.d everywhere→ problem (3.7) has exactly one solution

if: X′DX + S is not p.d everywhere→ problem (3.7) might have multiple

solutions which are not maxima.

Under the assumption that the model is correct and that X′DX + S is p.d
everywhere, we can find the unique maximum, in a, of the objective function
of (3.5) - which is the same for any ψ - approximately, again by resorting to

39



the Newton-Raphson method. This means that (3.7) is linearized; as we did
already before in the case of GLMs. After some calculation this will give us:

aj+1 = aj −
(∑

i

Hl

(
η(aj, i), ψ

))−1

∇a

(∑
i

l
(
η(aj, i), ψ

)
− 1

2ψ
a′jSaj

)
= aj +

(
1

ψ
X′DX +

1

ψ
S

)−1(
1

ψ
X
(

(yi − µi)
1

V (µi)
g′(η(aj, i))

)
:
− 1

ψ
Saj

)
=

(
X′DX + S

)−1(
X′DXaj + X

(
(yi − µi)

1

V (µi)
g′(η(aj, i))

)
:

)
=

(
X′DX + S

)−1

X′D

(
Xaj + D−1

(
(yi − µi)

1

V (µi)
g′(η(aj, i))

)
:

)
where we used

ψ∇a

∑
i

l
(
η(aj, i), ψ

)
=
∑
i

(
yi − µi

) 1

V (µi)
g′(η(aj, i))∇aη(aj, i)

= X
(

(yi − µi)
1

V (µi)
g′(η(aj, i))

)
:
.

Similar to GLMs it is easy to see that the latter is the solution to the weighted
least squares problem with penalization:

min
βjk

∑
i

Dii

(
zi −

∑
jk

βjkhjk(xi)
)2

+ β′Sβ,

where

zi := Xi,:aj + D−1(yi − µi)
1

V (µi)
g′(η(aj, i))

= Xi,:aj +
1

g′(η(aj, i))2
V (µi)α(i)(yi − µi)

1

V (µi)
g′(η(aj, i))

= Xi,:aj +
1

g′(η(aj, i))
α(i)(yi − µi)

and Dii =
g′(η(aj ,i))

2

V (µi)
α(i), as well as β := (β11, ..., βn1, ...., β1p, ..., βnp)

′.

This results in the following algorithm, called the P-IRLS, which approxi-
mately finds a solution to (3.7) - which may be a local maximum or local
minimum - if the model is correct:

40



Algorithm 3 P-IRLS algorithm

(1) Initialize a0 - e.g randomly
(2) Until aj or a quantity depending on aj does not change much, do:

Set

zi := Xi,:aj +
1

g′(η(aj, i))
α(i)(yi − µi)

Solve the weighted least squares problem

min
βjk

∑
i

Dii

(
zi −

∑
k

βjkhjk(xik)
)2

+ β′Sβ

with weights Dii :=
g′(η(aj ,i))

2

V (µi)
α(i)

Set aj+1 = β

Remark 17. An important thing to realize here is that the weights α(i) and
thus Dii, as already mentioned before, might be negative, in which case we
couldn’t have derived the P-IRLS algorithm in this way.
One other possibility is that before inverting the Hessian we replace it with
its expectation, namely the expectation of the Hessian of the log-liklihood -
the Fisher information - which leads to the so called Fisher scoring algorithm.
In this case we would get α(i) = 1 instead for the P-IRLS algorithm - see [3].

Even if the matrix X′DX + S is not always p.d we should use the P-IRLS
algorithm anyways. First of all, no matrix inversion is necessary and, second
of all, assuming that for each step we find a solution aj+1 - which is always
the case for α(i) = 1 - no matter if it is unique or not, we have:(

X′DX + S

)
aj+1 = X′DXaj + X′

(
(yi − µi)

1

V (µi)
g′(η(aj, i))

)
:

where D and z depend on aj. Assuming now that the P-IRLS algorithm
converges, meaning aj → â, we can see that the latter is equal to(

X′DX + S

)
â = X′DXâ + X′

(
(yi − µi)

1

V (µi)
g′(η(â, i))

)
:
.

This however is exactly

X′
(

(yi − µi)
1

V (µi)
g′(η(â, i))

)
:
− Sâ = 0.

41



The last line is equal to (3.7), meaning that we have found a solution of the
latter. We should then proceed to check if it is a maximum or a minimum -
local or global. First we can look at the matrix X′D(â)X+S, where we have
explicitly written the dependence of D on â now. If the latter is p.d then
we have found a local maximum in a, for any ψ, of the objective function
of (3.5) - as the Hessian in this point is then negative definite. Further we
can then check, which is for some members of the exponential family much
easier than others, if the matrix X′D(a)X + S is p.d over the whole range
of a. If this is so, we have found a global maximum, if it is only positive
semi-definite, there may be more global maxima.

Theorem 3.1. In case that the P-IRLS algorithm converges aj → â we have
found a solution to (3.7), namely â. If X′D(â)X+S is p.d then this solution
is a local maximum of the objective function, in a, of (3.5) - for any ψ.
Furthermore, if X′DX + S is p.d for any a, then we have found the unique
maximum. If X′DX + S is positive semi-definite for any a, then we have
found one global maximum.

This means that the P-IRLS algorithm should be used as a method of choice,
with possible multiple start overs to recover the maximal number of possible
solutions.

Remark 18. In the P-IRLS algorithm we iterate until aj or a quantity de-
pending on aj+1 and aj does not change much. Such a quantity could be
for example the objective function of (3.1), or a measure depending on the
estimated function values f̂ jk , by aj, namely

Γ(aj+1, aj) :=
∑
i

ψl(θ(aj, i), ψ)− ψh(yi, ψ)

Γ(aj+1, aj) :=
∑
k

||f̂ j+1
k − f̂ jk ||
||f̂ jk ||

.

Remark 19. We could have chosen a slightly different approach to GAMs. As
we have seen in the section about GLMs a solution to problem (2.30) fulfills
Equation (2.31). We had looked at models of the form η :=

∑
k akhk and then

proceeded to the P-IRLS algorithm to get an estimate of a. An approach
to GAMs could now also be to start with a regular unpenalized maximum
log-likelihood problem and then include the smoothing of the functions only
at the very end in the IRLS algorithm. Although the two approaches start

42



with slightly different problems they both end up with the same estimation
procedure - the P-IRLS. This way of approaching and solving GAMs, which
is taken in [1], is called the local scoring algorithm. We will need this in the
subsection about robust GAMs.

Remark 20. If b′ is not defined on the whole of R and if we do not want to
use another link g, we can still, in principle, use the P-IRLS. The Hessian
would still be − 1

ψ
X′DX − 1

ψ
S, where now we always have a matrix D with

positive diagonal elements, as Dii = b′′(η(a, i)) > 0 - compare with GLMs.
Thus the Hessian is at least negative semi-definite.
Assume that the parameter is only defined on an interval (c, d), where in-
finity is allowed, and that Equation (3.7) has a solution â. We can use the
P-IRLS, for a starting value a0 which fulfills a′0h(xi) ∈ (c, d) for all i, to find
a solution.
It follows that we have an optimization problem of a concave function over a
convex set - where the latter is {a | a′xi ∈ (c, d)∀i} - because of the following.
The objective function is at least concave in a, maybe not strictly, because
the Hessian is now at least negative semi-definite - by the above. Further,
the set is convex because, for any two points ã′xi and â′xi which are in (c, d),
for all i, we get that their line also must be in (c, d), for all i; as the latter is
convex.
Thus a Newton-Raphson approach finds a global maximum as long as one
exists - where it may be necessary to not take the full step aj+1− aj, so that
we do not exit the feasible set.
One problem with this type of modelling is however that once the model is
fitted, we might get some restrictions on the space of allowed x; as â′h(x)
must be in (c, d). This might lead to interpretability issues.

3.1.3 Identifiability

Suppose that we somehow can assume that it is more appropriate to model
η by a slightly different model, namely

f(x1, .., xp) :=
∑
k1

fk(xk1)+
∑
k1 6=k2

fk1k2(xk1 , xk2)+...+
∑

k1 6=... 6=kl

fk1...kl(xk1 , ..., xkl),

(3.10)
where all variables are continuous ones and some functions are zero; meaning
that we would like to model interactions of up to l variables. Similar to before,

43



we start out from the following optimization problem

max
fk1 ,...,fk1...kl ,ψ

n∑
i=1

l
(
θ
(
f(xi1, ..., xip)

)
, ψ
)
− 1

2ψ
R(fk1 , ..., fk1...kl), (3.11)

where R represents a penalty term - for smoothing some of the functions
fk1 , ..., fk1...kl - made up of penalties of the type (2.18). Assume now that
this leads us to look for functions fk1 , ..., fk1...kl , having the form

fk1 =
∑
j

ajk1hk1

...

fk1...kl =
∑
j

aj1k1...klhk1...kl ,

where some of the functions, maybe not all, are tensor product smoothing
splines or smoothing splines - see [2] - corresponding to the penalty terms of
R; this is justified by the same arguments than for (3.1).

This means that plugging in the above into the penalty term, we end up with
a′Sa, where a is the stacked vector of the parameters ajk1 , ..., aj1k1...kl .
Finally, by defining

η(a, i) :=
∑
k1

∑
j

ajk1hk1(xik1) + ...+
∑
k1...kl

∑
j

aj1k1...klhk1...kl(xik1 , ...xikl),

we can write problem (3.11) as

max
a,ψ

n∑
i=1

yiθi − b(θi)
ψ

− h(yi, ψ)− 1

2ψ
a′Sa, (3.12)

with a positive semi-definite matrix S; where one should keep in mind that
θi = (b′)−1(g(η(a, i))).

Remark 21. The step from problem (3.11) to problem (3.12) is only there to
somewhat justify the form of problem (3.12) and the form of the functions
fk1 , ..., fk1...kl . Of course we could have already started out with the latter, as
our analysis will not be effected by (3.11); we only need the penalized likeli-
hood problem (3.12) in the following. The same of course holds for anything
we have done so far in the GAM framework.

44



From here on out, we can do exactly the same analysis as above for prob-
lem (3.1) - as we only needed a penalty term translating to a′Sa, where S
is positive semi-definite. It therefore follows that we can also employ the
P-IRLS algorithm without problem. If the P-IRLS algorithm converges, we
have found a solution, under certain circumstances - see Theorem 3.1.

However, for the case discussed so far, there are multiple solutions, because
we have multiple representations for the functions fk1 , ..., fk1...kl .
This is very undesirable. Having multiple representations for fk1 , ..., fk1...kl
decreases the interpretability of our model - e.g. if we have two different
functions f̃1 and f̄1 for the same effect x1, this does not allow us to pinpoint
the exact effect that x1 has on f .
We can see, by the same arguments as in Chapter 2, that adding a constant
to any of the functions and subtracting it from another one, does not change
the function f . Additionally, as we consider interactions, a further problem
is that by adding, for example, a function x1 7→ h(x1) to f1 and subtracting
it from f12 does yet again not change f .
Thus, for problem (3.12), we already know from the beginning on, that -
in the case that there is a solution - there are multiple solutions. This also
entails that there is no use in checking if X′D(a)X + S is p.d everywhere -
compare with Theorem (3.1).
Of course this ambiguity is a consequence of our modelling.
The way we model f , see (3.10), leaves too much freedom. We would like to
put single effects of variables into the functions fk and second order interac-
tions - and only such, meaning without single effects - into fk1k2 ; and then
higher order ones into fk1...kl , etc.
It is therefore necessary to make this model identifiable and remove these
issues. Thus, we would have to put, on the one hand, constraints on the
parameters corresponding to constant basis functions hjk1 or hjk1...kl and, on
the other hand, put constraints on the parameters corresponding to basis
functions corresponding to single effects, double interaction effects, etc.
Also, we might want to consider some conditional constraints on the param-
eters, for example, we may only want to work with cyclic spline, meaning
that start and endpoint of the spline is the same; this can be useful for time
stamped data.
Such constraints can always be given in the form of Fa = 0, where F is a
Rm×p matrix - with p being the dimension of a, and m < p.

45



As it is explained in [2], looking at the QR decomposition of F′

F′ = Q

[
R
0

]
,

where Q ∈ Rp×p is an orthogonal matrix and R ∈ Rm×m is an upper triangu-
lar matrix, we have that a vector a is a solution of Fa = 0 iff a = Q:,(m+1):p b
for a unique b ∈ Rp−m.
Thus we should substitute a by Q:,(m+1):p b in problem (3.12) and then pro-
ceed with P-IRLS.

We summarize all this in the following

Lemma 3.1. Assume that we want to solve problem (3.12) and that F is a
matrix putting linear constraints on the parameters. Furthermore, assume
that the P-IRLS algorithm, for the following problem, converges:

max
b,ψ

∑
i

yiθ(Q:,(m+1):p b, i)− b(θ(Q:,(m+1):p b, i))

ψ
− h(yi, ψ)− 1

2ψ
b′S̃b,

(3.13)

with S̃ := Q′:,(m+1):pSQ:,(m+1):p and call the solution b̂. Then we have that

â = Q:,(m+1):p b̂ solves the corresponding maximum likelihood equation -
compare with (3.7) - and we can use Theorem 3.1, for â, to determine if the
latter is a global or local maximum - or in the worst case a minimum - and
if it is unique; for any ψ.

Remark 22. It makes more sense to remove identifiability issues beforehand,
instead of doing so with a matrix F. This means that we should set some
parameters already to zero, once we have set up all the basis functions, to
remove these issues. However, the lemma above also allows us to include
different kinds of constraints to remove identifiability issues and more.

Remark 23. It is important to realize that, in the case that we have removed
all identifiability issues, we can not deduce that X′DX+S is positive definite
- not even in the case where D is constant.
It is easy to see this. For example, for the model f(x1, x2) = a11 + a21x1 +
a31x

2
1 + a22x2 + a32x

2
2, we get, in the case that we have collinearity between

x1 and x2 - meaning that there exists a constant a such that x1 = ax2 -
f(x1, x2) = a11 + a21ax2 + a31a

2x2
2 + a22x2 + a32x

2
2. Thus, the second column

46



of the model matrix X is always proportional to the fourth column and, like-
wise, the third is proportional to the fifth. This means that the matrix X
does not have full column rank - so X′DX is not p.d.

To end this section, let us quickly talk about how to integrate factor variables
into the GAM framework as well. For example, look at the model

f(x1, .., xp) :=
∑
k1

fk(xk1)+
∑
k1 6=k2

fk1k2(xk1 , xk2)+...+
∑

k1 6=... 6=kl

fk1...kl(xk1 , ..., xkl),

(3.14)
where some variables might be factor variables now. Without loss of gener-
ality, assume that x1 is a factor variable with r levels 1, ..., r. This means,
that in the above model, we would have

f1(x1) =


c1 if x1 = 1
...

cr if x1 = r

,

where c1, ..., cr would be parameters to estimate.
Likewise, without loss of generality, a function f12(x1, x2), where x2 is a
continuous variable, would lead to

f12(x1, x2) =


f 1(x2) if x1 = 1
...

f r(x2) if x1 = r

.

For all factor variables and their levels, we can then impose, for each factor
and each level, on each function containing a continuous variable a penaliza-
tion term, e.g. (2.18). For the example above we could penalize each f i, for
i = 1, .., r, so that these will be smoothing splines. Everything we have said
so far then still holds. However, identifiability becomes an even bigger issue
now - as it is known from simple linear regression with factors.
Also, one needs to keep in mind that the parameters to estimate basically
grow times r for each function where a factor variable, with r levels, is
included - for functions with two factor variables, with levels 1, ..., r1 and
1, ..., r2, this would be r1r2; and so on.

3.1.4 Degrees of freedom, smoothing parameters, confidence inter-
vals and the quasi-likelihood

It is very important to find good tuning parameters λ1, ..., λk, because if
they are chosen too big or too small this can result in too much or too lit-

47



tle smoothing. A first approach is taken by establishing a link between the
tuning parameters and the degrees of freedom. After this we will see a more
founded way of estimating the tuning parameters. Mainly this will be done
by cross validation. At last, we will also address the question of confidence
intervals and see a nice way of how to extend our methodology to responses
Y not belonging to the exponential family.

In what follows, we will almost always motivate the quantities and definitions
we look at by the Gaussian, constant variance, AM case, and then only state
their generalizations to the GAM case, without any proofs or such. For a
more thorough treatment we refer to [1], [2] and [3].

Degrees of freedom:

To begin with, let us motivate the notion of degrees of freedom for GAMs.

Let us go back to the least squares problem (2.3), where Yi was independently
normally distributed, with constant variance.
Furthermore, let

X = U

(
Σ 0
0 0

)
V′ (3.15)

be the singular value decomposition of X - where the latter might not have
full column rank - meaning that U ∈ Rn×n respectively V ∈ Rp×p are or-
thogonal matrices and Σ = diag(σ1, ..., σr) ∈ Rr×r is a diagonal matrix, with
diagonal elements σi > 0, being the singular values of the matrix X, for
i = 1, ..., r - ordered from highest to lowest.

Assume now that we know that the true underlying function is of the form
f =

∑
i akhk. Then we could, by restricting ourselves to the points x1, ...,xn,

interpret f also as function from {x1, ...,xn} to R. We could thus identify f
with (f(x1), ..., f(xn))′ and do the following, by using (3.15):f(x1)

...
f(xn)

 =

h1(x1) · · · hp(x1)
...

. . .
...

h1(xn) · · · hp(xn)

 a = U

(
Σ 0
0 0

)
V′a =

r∑
i=1

ciui,

where c′ = (c1, ..., cr)
′ := a′(

∑r
i=1 σivi) and ui respectively vi is the i-th

column of U respectively V. Now the vectors ui can also be interpreted as
functions from {x1, ...,xn} to R. In this sense, this means that we represent

48



Figure 3.1: Decomposition of f(x) = 3 + 2x+ 2x2 − 0.4x4

f , an n-dimensional vector, as a linear combination of p basis vectors, there-
fore f is actually only p dimensional - see Figure 3.1 for an example.

Interestingly, in the case that X has full column rank, r = p, we get that
tr(X(X′X)−1X′) = p holds.
Thus if our model is correct, tr(X(X′X)−1X′) gives us the correct number
of basis functions or degrees of freedom; also indicating that X(X′X)−1X′

leaves the number of basis functions unchanged.

Remark 24. It is also important to notice that least squares sets n− p basis
functions to zero, as (f(x1), ..., f(xn))′ is only p dimensional. This must not
be the case for GAMs - see below.

In analogy to the above one can define the degrees of freedom for GAMs in
a similar fashion, namely as df(λ1, ..., λk) := tr(X(X′DX + S)−1X′D), pro-
vided that X′DX+S is invertible. Hopefully, df(λ1, ..., λk) is a good measure

49



of the true underlying dimension.

If we use smoothing splines in the GAM framework, we cannot, of course,
choose the number of basis functions ourself, only the tuning parameters
λ1, ..., λk; however we suspect that making the latter very big will reduce the
possible number of basis functions as we then opt for very smooth straight
functions. Therefore, heuristically speaking, if we want to force the model
to have a certain dimension p, or if we wanted to fix it, we could try to
approximately solve df(λ1, ..., λk) = p for λ1, ..., λk.

There are many motivations for the definition above, not only is there the
analogy to the usual linear model, but also the following observation can be
taken into account.
For the GAM, we had upon convergence â = (X′DX+S)−1X′Dz. Using the

singular value decomposition of D
1
2 X, and for simplicity, w.l.o.g, assuming

that X ∈ Rn×m, with m > n, has rank n, we get:

X(X′DX + S)−1X′D

= D−
1
2 U
(
Σ 0

)
V′
(

V

(
Σ
0

)
U′U

(
Σ 0

)
V′ + S

)−1

V

(
Σ
0

)
U′D−

1
2

= D−
1
2 U
(
Σ 0

)
V′
(

VΣ2V′ + S

)−1

V

(
Σ
0

)
U′D−

1
2

= D−
1
2 U
(
Σ 0

)
V′VΣ−1

(
I + Σ−1V′SVΣ−1

)−1

Σ−1V′V

(
Σ
0

)
U′D−

1
2

= Ũ
(
In 0

)(
I + Σ−1V′SVΣ−1

)−1(
In
0

)
Ũ′

= Ũ:,1:n

(
I + Σ−1V′SVΣ−1

)−1

Ũ′:,1:n,

where Ũ := D−
1
2 U. Furthermore, as Σ−1V′SVΣ−1 is symmetric and pos-

itive semi-definite we can find an orthogonal matrix Q s.t Σ−1V′SVΣ−1 =
Q′ZQ, where Z is a diagonal matrix with zi > 0, ordered from highest to
lowest - zi are the eigenvalues of Σ−1V′SVΣ−1, thus depending on λ1, ..., λk
- on the diagonal.

50



So all in all we can write

X(X′DX + S)−1X′Dz = Ũ:,1:n

(
I + Σ−1V′SVΣ−1

)−1

Ũ′:,1:nz

=
n∑
i=1

ũi
1

1 + zi
ũ′iz.

This means that the fitted values are a sum of n basis functions which are
shrunk - as zi > 0; this is slightly different from before where some of the
coefficients where entirely set to zero. Also, we can see that our suspicion
from before is confirmed - as in the case that λk → +∞, for Sk being p.d,
we get zk → +∞, and so, for big λk some of the terms in the above sum will
be close to zero.
Here we could thus argue that the trace, which is the sum of the eigenvalues,∑

i
1

1+zi
, gives us an indication of the dimension of the fitted function; strictly

speaking, the dimension is still n but the basis elements are shrunk therefore
being diminished in its ”dimension”.

Further arguments which support the definition above can be for example
found in [2] or [4].

Smoothing parameters:

We will now turn to the question of how λ1, ..., λk could be chosen or esti-
mated by a different approach; as for the one above we need to approximately
solve large linear systems, namely df(λ1, ..., λk) = p, which can be very costly.

As we will need it soon, let us just quickly mention that usually one estimates
ψ, upon P-IRLS convergence - for which ψ does not come into play - by

ψ̂ =
1

n− p
∑
i

V (µ̂i)
−1(yi − µ̂i)2,

where p is tr((X′DX + S)−1X′DX) and µ̂i := g(η(â, i)) - see [2] or [3].

The Gaussian AM case:

To begin with we look at a criterion which assesses the goodness of a model
- for fixed λ1, ..., λk - which would then provide us with the means of com-
paring different models for different tuning parameters.

51



Let the setting be the Gaussian AM one again, with canonical mean function
- the identity.
A first measure to be able to judge the performance of a model could be to
consider the so called expected mean squared error (MSE), namely

E
(
||E(y)−Xâ||2

)
,

which measures how close the model mean fit comes to the true underlying
mean - on the given observations; meaning that X is not independent on â.

In the Gaussian case it is not hard to show that, see [2],

1

n
E
(
||E(y)−Xâ||2

)
=

1

n
E
(
||y −Py||2

)
− σ2 +

2

n
tr(P)σ2 (3.16)

holds; where P = X(X′X + S)−1X′, see (2.21), is the so called hat matrix
with Py = Xâ.

So

1

n
||y −Py||2 − σ2 +

2

n
tr(P)σ2

could be used as an estimation for the MSE. However, as it is pointed out in
[2], this is only a good estimator if σ2 is known. In the case that σ2 is indeed
known, we could thus look for tuning parameters λ1, ..., λk which minimize
the quantity above.

Remark 25. If one does not know σ2 and it is estimated by σ̂2 = 1
n−tr(P)

||y−
Py||2, then (3.16) could at least still be used as a pointer for a good model.

Rearranging (3.16) a bit, and assuming that for a good model 1
σ2 E

(
||y −

Py||2
)
≈ 1

σ̂2 ||y −Py||2 should hold, we get

1

σ2
E
(
||E(y)−Xâ||2

)
=

1

σ2
E
(
||y −Py||2

)
− n+ 2tr(P)

≈ 1

σ̂2
||y −Py||2 − n+ 2p

= n− p− n+ 2p = p.

This suggests that we should look for models with

1

σ̂2
||y −Py||2 − n+ 2p ≈ p,

where the left side is the so called Mallow’s Cp.

52



As mentioned before, if σ2 is not known we should not use the MSE, on the
observations used for the fit, to asses goodness of fit.

Assume that we have some data - e.g (yj,xj), for j = 1, ..., n - left, which we
have not used for estimation. Then one could of course consider approximat-
ing with these observations the quantity E(||E(Y)−X′â||2) - for independent
data (Y,X) of the ones we used to fit. However, it makes more sense to look
at a very similar measure: the so called mean squared prediction error (PSE)

E
(
||Y −X′â||2

)
,

again for independent data of the ones used to fit, as it is quite simple to
estimate the PSE by

∑
j(yj − x′jâ)2.

Nevertheless, one problem remains, namely in some situations we cannot
afford to not use observations for estimation. Luckily there is a way out of
this. The PSE is approximated by what is known as cross validation.
The idea is to use all but one datum (yi,xi) for the estimation of a, and
then use this remaining datum - thus constituting a new datum - to get an
estimate of the PSE. This can be done for any i and thus we could consider

1

n

∑
i

(yi − x′iâ
−1
i )2, (3.17)

where â−1
i are the estimated parameters of a using all but the i-th datum

(yi,xi).
This can be however quite expensive, as we need to perform n fits. Luckily,
it can be shown that the latter is equal to the so called OCV score,

1

n

∑
i

(yi − x′iâ)2

(1−Pii)2
,

where Pii is the i-th diagonal element of the projection matrix P and â are
the estimated parameters when using all the data. For a proof of this see [2].

Unfortunately, as it is pointed out in [2], this quantity has the drawback of
not being invariant to transformations under orthogonal matrices Q. Mean-
ing that transforming the data y and X by Q leads to the same estimated
parameters â, which can easily be seen by looking at (2.21), but different
OCV scores. This is however critical, as we can always transform our data
and thus obtain different OCV scores for the same problem.

53



Therefore one modifies the OCV score, by replacing Pii with tr(P)n−1, to
make it rotation invariant. This leads to the so called GCV score, namely

n||y −Xâ||2

(n− tr(P))2
, (3.18)

which is easily seen to be rotational invariant as matrices commute under
the trace; again see [2] for a more extensive discussion on this.
All in all, we could then choose λ1, ..., λk such that (3.18) is minimized.

Remark 26. As it is mentioned in [3], OCV and GCV have the tendency to
be not sensitive enough when it comes to overfit. It can be argued that using

n||y −Xâ||2

(n− ζtr(P))2
,

for a fixed ζ > 0, rather than (3.18) could help to prevent this.

Remark 27. There is also the possibility of leaving out more than one datum.
Mainly, we could split the data into K almost equally big sets and perform
fitting on K−1 of them and testing on the remaining one. Such an approach
is generally known as K-fold cross validation and can help to reduce com-
putational cost - for the approach described above we would have K = n.
However one should keep in mind that using a bigger K can increase bias
but decrease variance - and vice versa, meaning that smaller K has lower
bias but bigger variance; see [4].

The general GAM case:

For the general case we could just as well derive the GCV score (3.18) from

1

n

∑
i

(yi − µ̂−1
i )2,

with µ̂−1
i = g(η(â−1

i , i)) - η(a, i) := a′h(xi) - where â−1
i is the estimate

obtained by P-IRLS by leaving out the datum (yi,xi). We would then equally
arrive at

n||y − µ̂||2

(n− tr(P))2
,

where now P := X(X′DX + S)−1X′D, for D as described in the P-IRLS
algorithm for â and µ̂i = g(η(â, i).

54



However, as it is mentioned in [3], one should keep in mind that this score
tends to under-smooth in some cases, e.g. binary data.

There are many other scores which can help us estimate λ1, ..., λk, which also
tend to deliver better results.
For example, as the deviance - see subsection (2.2.3) - namely D(a) =
−
∑

i l(η(a, i))ψ + const, is a ”natural” way to measure distance, in the case
of GAMs, to the ”best” model, we could try to look for tuning parameters
which maximize

1

n

∑
i

l(η(â−1
i , i)),

remembering that l(η(a, i)) is short for l((b′)−1(g(η(a, i))), ψ); basically we
approximate the maximum value of the expectation of the log-likelihood
E(l(η(a))) here.

Going this way one can argue, as it is done from OCV to GCV, and arrive
at

n
D(â)

(n− p)2
,

for unknown ψ - compare this with (3.18); we remark that D(â) is indepen-
dent of ψ by definition.

For known ψ we can do something similar to the MSE and get as measure

D(â) + 2ψp.

For more information about these two measures we refer to [2] and [1]. Wood,
see [3], also suggests another one, namely

D(â)

n
+

2

n

p

n− p
∑
i

(yi − µ̂i)2

V (µ̂i)
.

For computational and numerical considerations of these measures we also
refer to [3].

Confidence intervals:

55



In the following we will assume that the number of basis functions m does
not change with the number of observations n; so that all the large sample
results hold.

Let us now turn to the distribution of a in the big sample limit, and conse-
quently to confidence intervals.

We know that in the Gaussian AM case, with constant variance, that the
unique solution to (2.20) is given by

â = (X′X + S)−1X′y,

provided that X′X + S is p.d.

This means that â is also Gaussian, with mean and variance:

E(â) = (X′X + S)−1X′Xa

Var(â) = σ2(X′X + S)−1X′X(X′X + S)−1;

where we see that in the case with zero penalty, we have â ∼ N (a, (X′X)−1σ2).

Thus, in the case that we have a penalty unequal to zero, we usually get
E(â) 6= a. This however means that it makes not much sense to use the lat-
ter to construct confidence intervals or make inference - as the results would
be bias; especially for λk → +∞ we get E(â) → 0 - this also shows that a
penalty introduces different degrees of bias.

Another approach would be to take a Bayesian point of view, as it is described
in [2]. We could try to consider the improper prior, namely

f(a) ∝ e−
1
2
a′Sa.

Under this prior, and by looking at the quantity z := Xâ + D−1
(

(yi −

µi)
1

V (µi)
g′(η(â, i))

)
:
given by a converged P-IRLS - this quantity is especially

attractive as it is calculated in each iteration - it is proven in [2] that, under
mild conditions, we have in the large sample limit, under given ψ,

a ∼ N
(
â, (X′DX + S)−1ψ

)
,

where D is the diagonal matrix obtained in the converged P-IRLS algorithm,

namely Dii := g′(η(â,i))2

V (µ̂i)
α(i).

56



With this result at hand it is now easy to construct confidence intervals, for
example for f̂(x) := â′h(x). Also we can obtain, by sampling, quantities
depending on a.

Hypothesis test:

Again we assume that the dimension of basis functions is fixed.

As we have seen above, in the Gaussian case, it can be deduced

â ∼ N ((X′X + S)−1X′Xa, σ2(X′X + S)−1X′X(X′X + S)−1).

It is noted in [2], that in the general GAM case, in the large sample limit,
we have:

â ∼ N (E(â), ψ(X′DX + S)−1X′DX(X′DX + S)−1).

Furthermore, if we would like to test

H0 : ã = 0 vs ã 6= 0

for a subvector ã of a, we can use that, in the large sample limit, it holds:

ˆ̃a ∼ N (0,Σ),

for an appropriate submatrix Σ of ψ(X′DX+S)−1X′DX(X′DX+S)−1 - see
[2].

The latter result can then be used to construct a chi-square test or such.

The quasi-likelihood:

We quickly want to mention the quasi-likelihood approach.

Sometimes, when doing modelling, one can not be sure if the response vari-
able Y truly does belong to an exponential family, as we have always required
so far, however one still has an idea about how the mean and variance be-
have.
Provided that we have a mean-variance relationship, meaning that we know
that for each datum yi, its mean µi := E(Yi|Xi) and variance Var(Yi|Xi)
exist, and that the latter two satisfy the relation

Var(Yi|Xi) = V (µi)ψ,

57



for some function V and a constant ψ > 0 - that is to say that there is a
link between the mean and the variance - then one can define the log-quasi
likelihood of yi as

qi(µi) :=

∫ µi

yi

yi − x
ψV (x)

dx,

provided that this integral always exists for any possible µi.
Oddly enough the sum ∑

i

qi(µi)

possesses many of the same properties of the log-likelihood. The most im-
portant one being that when modelling µi = g(

∑
k akhk), for an appropriate

function g, the gradient of
∑

i qi(g(η(a, i))), with η(a, i) :=
∑

k akhk(xi), is
equal to

1

ψ

∑
i

(yi − µi)
V (µi)

g′(η(a, i))∇aη(a, i).

Setting this to zero is the same as (3.7), without the penalty term - but which
can be included in the definition of the sum of quasi-log likelihood without
problem.

This means that we can use the P-IRLS algorithm of Chapter 3 again to
find its solutions and therefore estimates of a; as only (3.7) was used for its
derivation.
In the big sample limit the quasi-likelihood behaves similar to the log-likelihood.
For further discussions and exact results we refer to [3].

Remark 28. It is interesting to observe that if we have a random variable
Y , coming from a family of probability distributions, only depending on the
mean and the variance, with the property that its shift and scale is again in

the same family, then we can reconsider E
((Y−µ(X)

V (X)

)2)
- for the case in which

the mean respectively the variance is a function µ(X) respectively V (X). In

such a case Y−µ(X)
V (X)

would be iid and therefore we could plug in the sample
distribution, leading to

1

n

∑
i

(
yi − µ(xi)

V (xi)

)2

;

compare this with the remark at the end of the introduction of Chapter 2.
Differentiating this in µ and setting it to zero, basically also leads to (3.7) -
without penalty.

58



3.2 Robust GAMs

3.2.1 A robust GAM version for response outliers

In this subsection we will discuss a robust version of GAMs. Mainly we fol-
low the paper by A. Alimadad and M. Salibian-Barrera, see [5], but first let
us consider the following.

In many applications it can occur that the data contains outliers - e.g a
mistake in the measurement, a wrong comma when data is collected and
recorded or just an occurrence of a very unlikely event. Heuristically said,
an outlier in the response variable Y is a very unlikely observation - in the
normal case for example, outliers are points which are very far away from
the mean - or an observation which deviates from the expected behaviour of
most of the other points.
It is however important to not only recognize outliers, as they can represent
important events which occur, but also to robustify the methods we have
talked about so far, so that the estimates do not change too much in the
presence of such. This must happen automatically, as for higher dimensional
cases it is impossible to look at a plot to recognize outliers and remove the
latter by hand - also this would be very subjective.

To begin with, assume that we are interested to model the mean of a Gaussian
variable Y , with constant variance, by an AM approach; as it was described
in Chapter 2.
More precisely, we would look for parameters a solving the following problem

min
a
‖y −Xa‖2 + a′Sa = min

a

∑
i

(yi − h(xi)
′a)2 + a′Sa.

Changing just one observation now, for example y1, can have a severe effect
on the estimated parameters a. This can be seen by looking at its solution
â = (X′X + S)−1X′y - (2.21) - which can also be written as a linear combi-
nation of vectors vi -which are the columns of (X′X+S)−1X′ - thus

∑
i viyi.

Provided that v1 is not zero, we see that â can become arbitrarily big by
letting y1 → +∞.

The main reason why this can happen is that the objective function of the
above minimization problem contains the Euclidean distance. Heuristically
speaking, if y1 becomes very big in comparison to the other points, then
h(x1)′a needs to adapt enough to account for this misbehaviour - therefore
distorting â.

59



This can lead to catastrophic effects, which can be readily seen in the very
simple linear case with only one outlier.
So an idea could be to replace the Euclidean distance with another measure
of distance which is more robust. Intuitively, very big quantities should be
damped, or given less weight, so that in the presence of an outlier y1, the
quantity h(x1)′a does not have to adjust too much to keep the objective
function as minimal as it is without the outlier. This means that we could
look at

min
a

∑
i

ρ(yi − h(xi)
′a) + a′Sa,

where ρ is an appropriate loss function measuring distance.

A very important loss function is the so called Huber loss function:

ρ(u) :=

{
1
2
u2 |u| ≤ c

c(|u| − 1
2
c) |u| > c

with its derivative being - we will need this later -

ψ(u) :=

{
u |u| ≤ c

c sign(u) |u| > c
,

where c is an appropriately chosen constant, see [5]; Figure 3.2 shows ρ, ψc
and 1

2
u2 for c = 0.5.

We will now turn back to [5]. In the latter Alimadad and Salibian-Barrera
consider a robustified version of the GAM approach to detect outliers con-
sidering disease outbreaks.
It is demonstrated that their approach seems to work very well for the Pois-
son family and the binomial distribution.
Only outliers in the response are considered, however this is the important
case, as GAMs seem to be very sensitive to outliers in the response.

For the Gaussian case, with constant variance, we can just replace in the
above minimization problem the Euclidean distance with ρ. In the case
of GAMs, an important realization is that we could have also arrived at
Equation (3.7), if we would have started out with the function

1

ψ

n∑
i=1

(
yi − µi√
V (µi)

)2

+
1

ψ
a′Sa, (3.19)

60



Figure 3.2: Huber loss function ρ, its derivative ψ and 1
2
u2

61



then would have taken its derivative in µ and would have set it to zero -
assuming that V (µi) is constant. Actually, the IRLS and P-IRLS are moti-
vated this way in [2].

So we could replace the square function in (3.19) by ρ as suggested by our
considerations above and this would basically lead us to the equation Ali-
madad and Salibian-Barrera start out from, namely

n∑
i=1

ψc

(
yi − µi√
V (µi)

)
1√
V (µi)

∇aµi − bn(a) = 0, (3.20)

where bn(a) =
∑

i E
(
ψc

(
yi−µi√
V (µi)

)
1√
V (µi)
∇aµi

)
- except for bn, which is just

a correction factor for unbiasedness, and penalty S, which is zero here but
which can be included in the algorithm later on - see Remark 19 .

Remark 29. Actually, Alimadad and Salibian-Barrera mention that their mo-
tivation for starting from Equation (3.20) comes from a quasi-likelihood ap-
proach, rather than maximum log-likelihood one - however this amounts to
the same Equation (3.20).

The authors then proceed to using a Fisher-scoring approach - which is just
Newton-Raphson where one replaces the Hessian with the Information matrix
- to solve (3.20).
This leads to an iterative approach where at each step aj+1 must fulfill

X′DXaj+1 = X′Dzi (3.21)

where D is a diagonal matrix with elements Dii - Dii and zi are described
below.

Comparing this with the unpenalized GLM/GAM case - in the GAM case
with S = 0 - one can see that this is the same than what we did for solv-
ing (3.7); except that the weights Dii and the vector zi here are different now.

With this at hand it is easy to argue that we can just translate (3.21) into a
weighted and penalized least squares problem again.

We will now state the robust generalized local scoring algorithm as derived
by the authors and refer for all proofs to their paper [5].

62



Algorithm 4 Robust Generalized Local Scoring Algorithm

(1) Initialize t = 0, f 0
0 = g−1(ỹ), f 0

k = 0, with ỹ = median1≤i≤nyi,
η0
i = f 0

0 and µ0
i = ỹ

(2) Increment t← t+ 1
Calculate the following quantities for i = 1, ..., n:

rti =
yi − µti√
V (µti)

hti = ψc(r
t
i)− E(ψc(r

t
i))

lti =

(
E(ψ′c(r

t
i))√

V (µti)
g′(ηti) +

1

2
E(ψ′c(r

t
i)r

t
i)

1

V (µti)
V ′(µti)g

′(µti) + E
(
∂

∂ηi
E(ψc(r

t
i))

))
Dt
ii = lti

1√
V (µti)

g′(ηti)

zti = ηti +
hti
lti

(3) Now solve the following weighted penalized least squares problem

min
βjk

n∑
i=1

Dt
ii(z

t
i −

p∑
k=1

βjkhjk(xik))
2 + β′Sβ,

and set f t+1
k =

∑
j βjkhjk for k = 1, .., p.

(5) Calculate a convergence criterion Γ(f t+1
1 , ..., f t+1

p , f t1, ..., f
t
p).

(6) If the criterion is smaller than a fixed ε > 0 stop, otherwise
calculate ηt+1

i := f 0
0 +

∑
k fk(xik) and µt+1

i := g(ηt+1
i ) and go to (2).

Remark 30. The latter algorithm is implemented in the R package ”rgam”.

To end this subsection we want to mention at last that the estimation of the
tuning parameters λ1, ..., λk is not so trivial in the case of outliers. As it is
mentioned in [5], even when taking the robust estimation described above,
the estimation of the tuning parameters may still be sensitive to outliers -
for some of the measures discussed at the end of the last chapter.

63



They thus suggest two different measures to avoid this, namely

∑
i

ψc

(
yi − µ̂−1

i√
V (µ̂−1

i )

)2

and
∑
i

w
(
di
)

where w : R→ R is a bounded non-negative function and di = 2
(
l(η(amax), i)−

l(η(â−1
i , i))

)
.

Remark 31. Alternatively to the approach described in this subsection, one
could also try to damper the influence of outliers directly in the maximum
likelihood problem (3.1) by composing the likelihood, or the deviance, with
an appropriate function ρ as described before. Such an approach is taken by
Hastie and Tibshirani in [1].

3.3 An application of GAMs

In the following we will look at three examples. For the first two we will
look at simulated data to illustrate GAMs and see what can go wrong when
the model is misspecified. For the third example we will consider real data
coming from the UCI Machine Learning Repository.

3.3.1 A simulated Gaussian example

Without outliers

Let us look at first at the following model:

Y (x, z) = sin(8x)− 2z3 + 0.2z2 + z + ε, (3.22)

where ε ∼ N (0, 0.1). We simulate n = 100 uniformly distributed indepen-
dent points xi and zi, between 0 and 1, which we then use to construct a grid
on [0, 1]2. With the latter gridpoints we further simulate ε independently
and then construct Y (x, z) with (3.22).

Using the implemented gam function of the mgcv and the ggplot2 package
we obtain the following resulting plots:

64



Figure 3.3: Plot of estimate f̂1 respectively f̂2 of f1(x) := sin(8x) respectively
f2(z) := −2z3 + 0.2z2 + z. The ticks at the bottom represent the simulated
xi and zi.

65



We can see that the estimated functions f̂1 and f̂2 come quite close to the
true functions f1 and f2 - except for the addition of a constant for f2, which
is accounted by the fact that by using the gam function of the mgcv we also
get an intercept term. We note as well that f1(x) = sin(8x) is very well
approximated by a natural cubic spline f̂1.
Also the deviance residual plots clearly show that the latter are very close to
normal and that the linear predictor plotted vs. the residuals experience no
trend. This is a strong hint to the fact the model is not misspecified.

With outliers

Now let us quickly see what happens if we add outliers to the above artificial
example. More specifically, we will replace 100 of the total n2 = 104 points
with outliers - so in total 102

104
= 1

10
-th of the data is corrupted. We construct

these outliers by simulating Y (x, z) with a noise ε ∼ N (0, 500), for 102 ran-
domly picked points, instead of ε ∼ N (0.01).

Fitting a non-robust GAM to this we get the following plot:

Figure 3.4: Non robust estimation of f1 and f2

66



We can see that the estimated function f̂1 is now far away from the truth.
Also the confidence intervals ”explode” in comparison to the uncorrupted
case. This means that a robustified GAM method is absolutely necessary in
this case.

So let us try to fit a robustified version of GAMs. As the rgam package does
not support, so far, the case of Y being Gaussian, we use the RBF package
which implements the methods discussed in [6], by Boente, Martinez and
Salibian–Barrera. We will not discuss the methods they explored in their
paper here and only mention that they do not take an approach based on
splines but rather build upon the Hilbert space approach described in Chap-
ter 2 to arrive at a robust version for additive models resulting in a robust
backfitting algorithm.

So, using the corresponding robust GAM method implemented in the RBF
package we get the following resulting plot:

Figure 3.5: Robust estimation of f1 and f2

We can see that the estimate of f̂1 is much better now and not far away from
what we had gotten in the no outlier case, compare Figure 3.5 with Figure
3.3. There is only a small discrepancy left between f1 respectively f2 and f̂1

67



respectively f̂2, mainly due to not taking the intercept into account.

3.3.2 A simulated binomial example

Without outliers

As a second example we simulate, as for the first example, n = 100 uniformly
distributed independent points xi and zi, between 0 and 1, which we then
use to construct a grid on [0, 1]2.
However, this time we look at a binomially distributed, more specifically a
Bernoulli distributed, variable Y (x, z) satisfying the following relationship:

E(Y |X,Z)(x, z) = cos(8x)− 2z3 + 0.2z2 + z + 0.5xz2;

thus with f1(x) = cos(8x) and f2(z) = −2z3 +0.2z2 +z. This means that for

each grid point (x, z) we simulate 1 with probability exp(f1(x)+f2(z)+0.5xz2)
1+exp(f1(x)+f2(z)+0.5xz2)

.

Using again the mgcv and the ggplot2 package we obtain the following plots.

Figure 3.6: Plot of estimate f̂1 respectively f̂2 of f1(x) := cos(8x) respectively
f2(z) := −2z3 + 0.2z2 + z and the corresponding confidence bands. The ticks
at the bottom represent the simulated xi and zi.

68



We can see from Figure 3.6 that even though the model is misspecified, as
we have only modelled f1 and f2 and not the interactions, the estimates for
f1 respectively f2 are quite close to the truth and capture the trends very
well.
Furthermore, by looking at the residual plots, we can clearly see that the
deviance residuals are non-normal. This is however no concern in the case of
a binomial distribution for GAMs. As it is also mentioned in [2] it is hard to
do model checking with these plots. In the binomial case the model can be
specified correctly while these same plots, with deviance residuals not being
normal etc, would indicate a misspecification in the Gaussian case.
However we can see from the frequency-residual plot that there seem to be
more residuals accumulating around 1 than around -1. This, as the binomial
distribution is symmetric, could be a hint that the model is slightly misspec-
ified. Also notice that, in the case of binomial data, the fact that the linear
predictor vs residuals plot clearly shows a trend, is normal. Furthermore,
looking at the fitted probabilities vs residuals plot we might be led to think
that there is a problem at high and low probabilities.

69



At last, we could also look at the misclassification rate, which is 0.35, mean-
ing that we generate m = 10 more data and then, by constructing a classifier,
where any prediction f̂ over 0.5 gets assigned 1 and the rest gets assigned 0,
we can compare it with the true probabilities P (Y = 0) and P (Y = 1) and
calculate the rate of how often we’d misclassify. This rate is quite high and
could now lead us to think that our model is very wrong. However it is im-
portant to keep in mind that, in this example, many predicted probabilities
are around 0.5 and so it might not be that easy. We could also look at an-
other measure, namely 1

m

∑
((f(xi, zi)− f̂(xi, zi))

2), which is always between
0 and 1, where the closer to zero the better. In this case we’d obtain 0.23.
All in all, we could say that the obtained model is an adequate fit, however
it might not be ideal for using it as a classifier - as explained above.

With outliers

Again let us look at what happens if we add outliers to this dataset. More
specifically, we replace the points (x, z) with x lying between 0.45 and 0.5 -
where the true function f1 has a local minimum, see Figure 3.6 - with outliers.
This is done by adding a noise, namely a uniformly distributed ε ∼ U [0, 10],
to f1 before simulation of 0 and 1; thus now with a success probability of

exp(f1(x)+ε+f2(z)+0.5xz2)
1+exp(f1(x)+ε+f2(z)+0.5xz2)

, for each grid point (x, z). In total we get that our

dataset contains 8% outliers.

We obtain the following solution plots using the usual non-robust GAM ap-
proach:

70



Figure 3.7: Non robust estimation of f1 and f2

We can clearly see, by looking at the left plot showing f1 and its prediction
f̂1, that the non-robust GAM approach fails. It results in a very bad and
wiggly estimation of f1, although only 8% of the dataset is corrupted.

Using the rgam package, which is an implementation of the methods de-
scribed in [5] - see Section 3.2, we obtain the following solution plots:

Figure 3.8: Robust estimation of f1 and f2

71



Although there is still a discrepancy between the true functions f1 respec-
tively f2 and its estimate f̂1 and f̂2, we can see that, all in all, the estimates
get very close to the truth - one mustn’t forget that the model is also mis-
specified not considering interactions. Thus, the robust approach delivers,
for this dataset, much better results than the non-robust approach; this is
evident when we take a look at Figure 3.7 comparing it to Figure 3.8.

3.3.3 A real world example

Finally, we will look at a ”real” data example to illustrate the usefulness of
GAMs. We use the ”MAGIC Gamma Telescope” data set, which can be
found at [9].
The data set consists of 19020 observations of eleven variables. The first
ten are the, independent, continuous variables, x1, ..., x10, and the last one
is the dependent categorical 0-1 variable y - representing an observed signal,
encoded with g, or a background event, encoded with h. We model the
relationship between y and x1, ..., x10 by a binomial distribution. Therefore,
we use a so called Logit-link, which means that we model the mean of Y -
or equivalently the probability P (Y = 1) - by

exp(f1(x1) + ...+ f10(x10))

1 + exp(f1(x1) + ...+ f10(x10))
.

Before calculating the fits f̂1, ..., f̂10 we randomly split the data set into a
test and training set, where the test set contains around 1

4
−th of the original

data. Using the mgcv package we obtain on this test set a total misclassi-
fication rate of 0.14 - where we classified new points according to the fitted
probabilities with the threshold of 0.5 - and a probability of wrongly classi-
fying a background event h as a signal of 0.16 - the latter is important for
this data set. Furthermore we have the following residual plots:

72



We can see that the deviance residuals are close to normal with mean zero.
This might indicate that our model is adequate - as a deviance residual close
to zero means that the fitted probabilities are also close to the observed ones.
However, as can be seen from the linear predictor vs residuals plot higher and
lower values tend to have bigger residuals. Examining this more closely by
plotting fitted probabilities vs residuals we can see indeed that there might
be a slight problem of having outliers at very low and very high probabilities:

73



Furthermore, as we have seen before, we have a misclassification rate of 0.14,
on an independent test set. This leads to the conclusion that our model is
indeed an adequate model. Further improvement might be achieved by con-
sidering multiple interactions.

At last, we show the plots for the obtained estimates f̂1, ..., f̂10 with their
confidence bands - the ticks in the x-axis represent the observed values:

We can see that almost all the variables contribute in a very nonlinear way
to the outcome - only x6 and x7 are closely linear. Also, for almost all
the variables, we can see that the confidence intervals get very wide at the
sides. This is usually due to less data there. Furthermore we can see that,
in quantity, x1, x2, x3, x4 and x9 explain the most of P (Y = 1), whereas the
others are either close to zero - like x6, x8 - or very small in comparison -
x5, x7, x10. We can see from the estimated functions in x4 and x9 that these
seem to be, almost, non-decreasing functions. The behaviour of the estimates
in x1, x2 and x3 seem to be more irregular.

74



Summary

We started this thesis by considering the following. Having observed the
values (yi, xi1, ..., xip), for i = 1, ..., n, we could try to model the relationship
between these in the following way:

yi = a0 + a1xi1 + ...+ apxip + εi,

where εi are independent Gaussian distributed variables with mean zero and
unknown constant variance. The goal is then to estimate the unknown pa-
rameters a0, ..., ap. Looking at it as a minimization problem, see (2.1), we
followed a train of thought leading us to the so called least squares problem
- see Chapter 2.

As the assumption of Y being a Gaussian random variable which is linearly
depended on X1, ..., Xp doesn’t always hold in reality, we determined that it
is important to, on the one hand, also consider interactions of X1, ..., Xp and,
on the other hand, to consider the case where Y is not Gaussian. However,
as we have seen, we explained that there are two main problems. Firstly,
considering too many interactions usually leads to a computationally infea-
sible problem and, secondly, is not clear at the beginning how to generalize
such a model to Y not being Gaussian.

We thus went on to remedy these two problems individually at first. At
the beginning of Chapter 2 we considered additive models in order to keep
the exploding cost when considering interactions small. At the beginning,
we presented the Hilbert space approach to AMs, which is mainly taken in
[1], but then decided to continue with a penalized approach as it is taken in
[2]. This led us to a, loosely speaking, nonparametric penalized least squares
problem - see (2.20). As part of this we introduced and motivated smoothing
splines.

To find a remedy to the limitation of Y not being normally distributed, with
constant variance, we introduced generalized linear models. For the latter we

75



saw that a likelihood approach, see (2.30), to estimate the parameters makes
more sense than a least squares approach.
Trying to solve the likelihood problem then led us to the IRLS algorithm,
which enables us to get a concrete estimate of the parameters.

In the third Chapter we then combined these two approaches to find a rem-
edy for the two problems at the same time and chose to take again a likeli-
hood approach, as it is heuristically better motivated, but this time adding a
penalty to it. Here, yet again, the usefulness of splines proved itself and this
approach led to (3.1). Solving such a penalized likelihood problem, which
luckily turned out to be parametric after all, led to the P-IRLS algorithm.
As we have seen, the P-IRLS is basically an extension of the IRLS algorithm,
with the limitation that in the case of Y not being Gaussian a lot of caution
needs to be paid to whether it converges, a solution is unique, etc - see The-
orem 3.1.
We then went on to discuss some big sample limit results and the general-
ization of some definitions and methods, for smoothing parameter selection,
from GLMs to GAMs.

Before ending with some examples illustrating the explored models and meth-
ods we discussed one possible way to robustify the GAM framework, so that
in the presence of outliers or corrupted data our methods do not deliver ”in-
correct” estimations of the parameters, see Section 3.2.

Finally, we used two simulated and one real data set example to show the
methods so far discussed and to also reveal where difficulties in the non-
outlier and outlier cases lie; see Section 3.3. We saw that a robustification of
the GAM methods is absolutely necessary. Without any sort of robustifica-
tion the usual methods delivered vastly wrong results - with a corruption of
under 10% in the simulated data cases.

There are still many topics concerning GAMs which we have not covered in
this thesis. For example, we could further explore vector GAMs, so called
VGAMs - meaning that Y is not necessarily one dimensional anymore - see
[7] for example.
Furthermore, we could also explore extensions of GAMs which treat their
inflexibility concerning structural breaks better - as they do not cope too
well with the case where the true underlying functions are piecewise discon-
tinuous functions.
Another topic to cover could also be the mixture of random variables belong-
ing to the exponential family and how GAMs could be extended to such.

76



At last, but surely not least, the mixture of GAMs and other models, such
as trees for example, could be explored.

77



Bibliography

[1] T. J. Hastie and R. J. Tibshirani, Generalized Additive Models Mono-
graphs on Statistics and Applied Probability 43, Chapman & Hall, 2-6
Boundary Row, London SE1 8HN 1990

[2] S. N. Wood, Generalized Additive Models An Introduction with R. Texts
in Statistical Science, Chapman & Hall/CRC, Taylor & Francis Group,
New York, 2006

[3] S. N. Wood, Generalized Additive Models An Introduction with R Second
Edition. Texts in Statistical Science, Chapman & Hall/CRC, Taylor &
Francis Group, New York, 2017

[4] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical
Learning. Springer Series in Statistics Springer New York Inc., New York,
NY, USA, 2001

[5] A. Alimadad and M. Salibian-Barrera, An outlier-robust fit for General-
ized Additive Models with applications to disease outbreak detection. Jour-
nal of the American Statistical Association, Vol. 106, No. 494 (June 2011),
pp. 719-731

[6] G. Boente, A. Martinez and M. Salibian–Barrera, Robust estimators for
additive models using backfitting. Journal of Nonparametric Statistics,
Volume 29, 2017 - Issue 4, pp. 744-767

[7] T. Yee, Vector Generalized Linear and Additive Models. Springer Series
in Statistics, Springer-Verlag New York, 2015

[8] A. Dobson, An Introduction to Generalized Linear Models, Third Edition.
Texts in Statistical Science, Chapman & Hall/CRC, Taylor & Francis
Group, 2008

[9] R. K. Bock, Major Atmospheric Gamma Imaging Cherenkov Telescope
project (MAGIC) and P. Savicky. UCI Machine Learning Repository

78



[https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope].
Irvine, CA: University of California, School of Information and Com-
puter Science

79



Curriculum Vitae

Name: Rieser Christopher
Date of birth: 19.12.1988
Place of birth: Schwaz, Austria
till 2007: Lycée International de Saint-Germain-en-Laye, France
2008-2013: TU Graz, Austria, Bachelors Applied Mathematics
2013-2016: University of Vienna, Austria, Masters Mathematics
2017-2018: TU Vienna, Austria, Masters Statistics

80


