
A Big Data Analytics Framework
for Evaluating Automated Elastic
Scalability of the SMACK-Stack

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Benedikt Wedenik, BSc
Matrikelnummer 1227151

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Mitwirkung: Projektass. Dipl.-Ing. Dr.techn. Stefan Nastic, BSc

Wien, 24. Juli 2018
Benedikt Wedenik Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Big Data Analytics Framework
for Evaluating Automated Elastic
Scalability of the SMACK-Stack

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Benedikt Wedenik, BSc
Registration Number 1227151

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Assistance: Projektass. Dipl.-Ing. Dr.techn. Stefan Nastic, BSc

Vienna, 24th July, 2018
Benedikt Wedenik Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Benedikt Wedenik, BSc
Muristrasse 87, 3006 Bern, Schweiz

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24. Juli 2018
Benedikt Wedenik

v

Acknowledgements

Working and writing a thesis in parallel consumes a lot of time and energy. I want to
thank my girlfriend Rita for supporting me during this time and being patient with me.
Further I want to thank Dr. Stefan Nastic for skillfully supporting me and giving me
valuable feedback (even on the weekend). Of course this thesis would have never been
realized without the help of Prof. Schahram Dustdar.
At this point I want to emphasize the kind sponsoring of Zühlke Engineering AG in form
of time, budget, real IoT data and expertise.
Last but not least I want to say that I’m grateful for my family and my friends for always
believing in me.

vii

Kurzfassung

In den letzten Jahren ist der Bedarf an schneller Verfügbarkeit von Informationen, sowie
an kurzen Antwortzeiten gestiegen. Die Anforderungen an ein heutiges Businesskonzept
sind im Wandel: Stunden- oder gar tagelanges Warten auf die Ergebnisse einer Abfrage
ist in vielen Branchen schlichtweg nicht mehr akzeptabel. Die Antwort kommt sofort
oder die Anfrage wird verworfen - genau hier setzt der Begriff "Fast Dataëin. Mit dem
SMACK Stack, bestehend aus Spark, Mesos, Akka, Cassandra und Kafka, wird eine
robuste und vielseitige Datenverarbeitungsplattform bereitgestellt, auf der Fast Data
Applikationen ausgeführt werden können. In dieser Thesis wird ein Framework vorgestellt,
mit dessen Hilfe Services und Ressourcen innerhalb des Stacks einfach skaliert werden
können. Die Hauptbeiträge können wie folgt zusammengefasst werden: 1) Entwicklung und
Evaluation des genannten Frameworks, einschließlich der Monitoring-Metrik Extraktion
& Aggregation, sowie des Skalierungsservices selbst. 2) Implementierung zweier real-
world Referenzapplikationen. 3) Bereitstellung von Infrastruktur-Management Tools mit
deren Hilfe der Stack einfach in der Cloud deployt werden kann. 4) Bereitstellung von
Deployment-Vorlagen in Form von Empfehlungen, wie der Stack initial am besten für
die vorhandenen Ressourcen konfiguriert und gestartet wird. Für die Evaluierung des
Frameworks werden die zwei entwickelten real-world Applikationen herangezogen. Die
erste Applikation basiert auf der Verarbeitung von IoT Daten und ist stark I/O-lastig,
während die zweite Applikation kleinere Datenmengen verarbeitet, dafür aber teurere
Berechnungen durchführt, um Vorhersagen aufgrund der IoT Daten zu treffen. Die
Resultate zeigen, dass das Framework in der Lage ist zu erkennen, welcher Teil des
Systems gerade unter hoher Last steht und diesen dann automatisch zu skalieren. Bei
der IoT Applikation konnte der Datendurchsatz um bis zu 73% erhöht werden, während
die Vorhersageapplikation in der Lage war bis zu 169% mehr Nachrichten zu bearbeiten,
wenn das Framework aktiviert wurde. Obwohl die Resultate vielversprechend aussehen,
gibt es noch Potenzial für weitere Verbesserungen, wie zum Beispiel der Einsatz von
maschinellem Lernen um Schwellwerte intelligent anzupassen, oder eine breitere und
erweiterte REST API.

ix

Abstract

In the last years the demand of information availability and shorter response times is
increasing. Today’s business requirements are changing: Waiting hours or even days for
the result of a query is not acceptable anymore in many sectors. The response needs
to be immediate, or the query is discarded - This is where "Fast Data" begins. With
the SMACK Stack, consisting of Spark, Mesos, Akka, Cassandra and Kafka, a robust
and versatile platform and toolset to successfully run Fast Data applications is provided.
In this thesis a framework to correctly scale services and distribute resources within
the stack is introduced. The main contributions of this thesis are: 1) Development and
evaluation of the mentioned framework, including monitoring metrics extraction and
aggregation, as well as the scaling service itself. 2) Implementation of two real-world
reference applications. 3) Providing infrastructure management tools to easily deploy
the stack in the cloud. 4) Deployment blueprints in form of recommendations on how to
initially set up and configure available resources are provided. To evaluate the framework,
the real world applications are used for benchmarking. One application is based on
IoT data and is mainly I/O demanding, while the other one is computationally bound
and provides predictions based on IoT data. The results indicate, that the framework
performs well in terms of identifying which component is under heavy stress and scaling
it automatically. This leads to an increase of throughput in the IoT application of up
to 73%, while the prediction application is able to handle up to 169% more messages
when using the supervising framework. While the results look promising, there is still
potential for future work, like using machine learning to better handle thresholds or an
extended REST API.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation & Problem Statement . 1
1.2 Motivating Scenarios . 2

1.2.1 Real World IoT Data Storage Application 2
1.2.2 Real World Acceleration Prediction Application 3

1.3 Research Challenges . 8
1.4 Background . 9

1.4.1 Akka . 10
1.4.2 Apache Spark . 10
1.4.3 Apache Cassandra . 12
1.4.4 Kafka . 14
1.4.5 Mesos . 15
1.4.6 SMACK Stack . 16
1.4.7 Reactive Systems . 17

1.5 Thesis Organization . 18
1.6 Methodology . 19

2 Related Work 21
2.1 Literature Studies . 21

2.1.1 Cloud Computing & Big Data 21
2.1.2 SMACK Stack . 22
2.1.3 Big Data Frameworks . 23
2.1.4 Streaming . 24
2.1.5 Languages & Programming Models 25
2.1.6 Data Analytics . 25

2.2 Comparison and Summary of Existing Approaches 26

xiii

3 A Framework for Automated Monitoring and Scaling of the SMACK
Stack 29
3.1 The SMACK Monitoring Metrics and Elasticity Actions 29

3.1.1 Kafka . 29
3.1.2 Cassandra . 30
3.1.3 Spark . 30
3.1.4 Akka . 30
3.1.5 Mesos . 31

3.2 Framework for Automated Monitoring and Scaling 31
3.2.1 Framework Architecture Overview 31
3.2.2 Monitoring Metrics Extraction Service 32
3.2.3 Monitoring Metrics Aggregation Service 37
3.2.4 Scaling Service . 38

3.3 Framework Management Tools and Predefined Blueprints 41
3.3.1 Launching Tool . 41
3.3.2 Blueprints . 43

4 Evaluation 49
4.1 Setup and Methodology . 49

4.1.1 Load Generator and Stress Test 49
4.1.2 Sensor Data Overview . 51
4.1.3 Experiment Setup . 54

4.2 Results . 60
4.2.1 IoT Data Storage Application 60
4.2.2 Acceleration Prediction Application 65

4.3 Discussion . 67
4.3.1 Summary . 67
4.3.2 Challenges & Restrictions . 68

5 Conclusion 91
5.1 Open Issues & Future Work . 91
5.2 Summary . 92

List of Figures 95

List of Tables 97

List of Listings 99

Bibliography 101

CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
In the last years the demand of information availability and shorter response times is
increasing. Existing problems, such as the large amount of data to process and analyze
in a big data application, are not the only challenges to solve. There are many sensors,
mobile devices and other IoT devices out in the field, constantly sending data in form of
streams to the processing servers.
Today’s business requirements are changing: Waiting hours or even days for the result of
a query is not acceptable anymore in many sectors. The response needs to be immediate,
or the query is discarded [30]. Quick responses, ideally near real-time, are crucial success
factors. Many data warehouses are facing the problem that the stored data is slowly
becoming obsolete. This is why "Fast Data", as an approach to solve those problems,
increases its popularity, as being "big data, but fast" [41].

The SMACK-Stack consists of five technologies combined to a lightning fast data pipeline
for today’s needs of big data applications.

• Apache Spark is the engine of the pipeline, providing batch-, as well as stream-
processing power for large-scale data processing.

• Mesos is a datacenter operating system with the aim to reduce complexity and
ease the deployment and maintenance of large-scale distributed applications.

• Apache Akka can be seen as the model, providing the possibility to build powerful
reactive distributed message-driven applications.

1

1. Introduction

• Apache Cassandra is a highly distributed database which is a hybrid between a
column-oriented and a key-value DBMS, which is implemented avoiding a single
point of failure.

• Apache Kafka serves as publish-subscribe message broker, which is usually the
ingestion point of the pipeline.

1.2 Motivating Scenarios
To evaluate the framework developed in the course of this thesis, an extensive evaluation
is performed. The setup contains two real world applications, which serve as a basis for
benchmarking and exploring the optimal resource distribution when scaling up and down.
One application is I/O-bound, which means there is not a lot of logic inside the data
pipeline, but many requests have to be processed, which is done with real world IoT data.
The other one is a computational bound application, which does not have to deal with
many requests in parallel but requires a lot of computation power inside the pipeline.

1.2.1 Real World IoT Data Storage Application

During the HackZurich 2016 [12], Europe’s largest hacking contest, Zuehlke Engineering
AG [22] developed a simple real world IoT application to be used with SMACK [23].
The application can be categorized as sensor data ingestion and analysis software. It is
designed to run in a cluster and handle vast amounts of incoming data.
As this is the product of a hackathon, the initial state was only a very basic implementa-
tion and had to be extended to fit the needs of this thesis.

In abstract terms, the application serves as endpoint for ingesting and storing relevant
IoT data. The devices connect and send their data via HTTP to a REST endpoint. After
this, the data pipeline processes and normalizes the input to finally store the data into
the Cassandra database for later analysis or statistical evaluation.

Figure 1.1 gives a rough overview of how the single components of SMACK are interacting
with each other in this application. In Figure 1.2 a more detailed view gives insight of
how the application is designed.
All the IoT devices are sending their data in JSON the REST webservice named sensor-
ingestion, implemented using Akka actors. The reason to use Akka is to be able to
provide a reactive application without a lot of manual programming effort. While the
JSON input is not parsed in Akka it is simply transferred to a Kafka topic - in this case
to the topic sensor-reading - to be processed later on in Spark.
This means that Kafka servers as a buffer here to allow the ingestion to be decoupled
from the processing. In the Spark job, which is called KafkaToCassandra, the JSON is

2

1.2. Motivating Scenarios

parsed and validated and then send to Cassandra to be stored in the sensordata keyspace
for later analysis.

A handy tool to interact with Cassandra and to perform real-time data analysis, is
Apache Zeppelin, which provides interactive scratch books and can be used with most
modern big data technologies. There are some example scratch books in the repository,
which can be used in the context of the sensor data application.

All commits can be found in the repository [23], but the main contribution to this
application can be summarized in the following points:

• Fixing compile errors and updating dependencies

• Updating docker image creation

• Collecting and computing statistics / metrics for the application

• Adding a feature to export metrics of the sensor ingestion via JMX

• Extension of the existing load generator.
The JSON files are now compacted to be able to achieve higher throughputs and
use less CPU on the client side. Further the input handling of those files had to be
adjusted.

The application can be categorized as real world application, because real IoT sensor data
has been recorded and can be used again for later stress testing. Further the scenario is
not artificial - in the context of the HackZurich, a company producing and maintaining
elevators used this application to gather information about their products to use it for
predictive maintenance.
As it can be seen from the context of the application, consistency in terms of not losing a
single sensor data is not required. It is required though, that the system stays reactive and
responsive even under heavy load and is capable of handling the data in a fault-tolerant
way. For example if one node goes offline, the whole data pipeline must not be disturbed,
as it would mean that data loss occurs. Further the persistence is a highly desired
property in this scenario. The data must be stored securely, so that the data scientists
can later on perform their analysis for the predictive maintenance, even when the stack
goes offline.

1.2.2 Real World Acceleration Prediction Application

In the course of this thesis, a new application was developed which is mainly computa-
tional bound and handles less input data than the IoT application. The IoT application
is used as a base, including the real life data, but as mentioned, just a fraction of the
volume is ingested.

3

1. Introduction

Figure 1.1: Abstract View of Zuehlke HackZurich IoT Application

Information about how the data looks like in detail can be found in section 4.1.2.

To provide a realistic use case, this application learns from the past and predicts the
movements of the elevators in the future. This could be especially helpful when talking
about predictive maintenance or even more when optimizing the idle time of the elevators.
Imagine the waiting times at an elevator can be reduced because it automatically starts
to move up or down based on the prediction. In most cases, the elevator would be in
movement even before the real request by a user would occur.
The application is written in Scala and Spark using an ARIMA model of the spark-
timeseries library. Information about the history is gathered from the Cassandra database,
which is filled with data by using the light-weighted version of the IoT application.

4

1.2. Motivating Scenarios

Figure 1.2: Detailed View of the Zuehlke HackZurich IoT Application

Figure 1.3 illustrates the architecture of the whole application.
As one can see, the ingestion part is the same as in the IoT application as mentioned
above. The data is ingested by the sensor-ingestion application based on Akka, which
writes in the sensor-reading Kafka topic. From there the KafkaToAccelerometer Spark
job constantly receives data via Spark Streaming and writes the processed data into the
sensordata keyspace of Cassandra, as well as publishing the latest processed accelerometer
data into the sensor-reading-accelerometer Kafka topic.
The Prediction Data Analytics Spark job constantly polls from Cassandra and calculates
the predictions based on the available data. The results are written into the data-analytics
topic. In the akka-data-analytics application the results of the slower but more precise
prediction from Spark are polled. Additionally the application performs a basic prediction
with the help of linear regression, based on the available data from the sensor-reading-

5

1. Introduction

accelerometer topic.
This design is related to the Lambda architecture, which uses a speed and a batch
layer, to be able to constantly provide results to the end user. In the application, both
predictions are combined if available. If there is just data from the "speed layer" or just
the "batch layer" this data is published via HTTP to the end user. In case both layers
provide data for the same timestamp, the values are combined with the help of weights,
speed ∗ 0.3 + batch ∗ 0.7.

In order to generate a satisfying amount of datasets the application only considers Ac-
celerometer data, as this data occurrs most frequently in the real-life dataset. Additionally
the information about the acceleration is enough to provide predictive values of when
the elevator should start to move up or down.

To measure the quality of the predictions, a Kolmogorov Smirnov Test is done [52]. The
setup of the test looks like follows:

1. Select only those values for which a prediction and the real value is given for the
same timestamp (and obviously the same elevator/device).

2. Accumulate the values of the dataset, where x are the timestamps and y are
corresponding values.
c1 = y1
c2 = c1 + y2
cn = cn−1 + yn

...

3. Create a new dataset which consists of the same x-values and for each y-value
calculate ydiff = abs(yreal − yprediction).

4. Now we can calculate the minimum, maximum and average of the differences and
add this curve to the plot.

For an easy and illustrative comparison of the real versus the predicted data, the Kol-
mogorov Smirnov Test is plotted in Figure 1.4, where the following statistical values
apply with respect to the calculated difference-curve:
Min : 0.04
Max : 8.56
Avg : 5.05

The K.S. Test indicates that the prediction is promising. One can observe that the curves
develop very similar but are a bit biased. The compensation or removal of this bias could
be a possible further improvement for future work. Still the K.S.-Test confirms, that the
prediction is not “random output” and has a measurable correlation to the real values.

6

1.2. Motivating Scenarios

Figure 1.3: Detailed View of the Acceleration Prediction Application

7

1. Introduction

Figure 1.4: Kolmogorov Smirnov Test - Prediction versus Real

1.3 Research Challenges

In terms of operating and managing a cluster there are a various challenges, developers
and system administrators are faced with.

• Deploying large scale applications
When facing the challenge of deploying productive applications in a large scale
cluster, several factors need to be considered. Many applications consist of multiple
instances of different technologies, or are hosted in various Docker containers.
The deployment needs to be performed in a defined sequence to fulfill subsequent
dependencies. In addition, depending on the used cluster manager, a lot of manual
steps are required until the application is ready and online.

• Initial setup
The decision of how to configure the instances of an application is a non-trivial

8

1.4. Background

task, as there are almost infinite combination possibilities and the impact can be
drastic. Finding the right distribution of resources within a cluster across the
hosted applications can be a challenging task. This is especially crucial when the
deployed application deals with large amounts of data and clients, while still staying
responsive and fault-tolerant.

• Monitoring
There are many tools available to monitor clusters and big data applications,
although a deeper understanding of the used frameworks is required. Considering
just RAM, CPU and disk usage is in most cases insufficient. For example, a high
usage of RAM in a Spark Job would not necessarily mean that it is under heavy
load, but that Spark uses - per design - a lot of memory to leverage it’s computation
power, compared to disk intensive frameworks like Hadoop. This introduces a new
layer of complexity, as each framework has its own characteristics and metrics to
observe when monitoring a cluster. Understanding what’s going on in a cluster and
reacting accordingly is crucial for the success of any large scale application.

• Scaling when needed Recognizing when to scale which component of an application
is a 24/7 task. In the ideal case, the system automatically scales up and down as
required. There are many existing approaches, but the quality of the automated
scaling still relies heavily on the quality and significance of the monitored metrics.
Without the right metrics, the scaling cannot be reliable and thus requires most of
the time manual decisions.

All the components of the SMACK stack proved that they are very scalable used in
isolation. Now the question is, where is the bottleneck when using them as combined
data pipeline? Another important question is how to distribute the resources in an
optimal way. For example if there is an application running in the cloud, how should the
CPU, RAM, disk space etc. be assigned to the different technologies to achieve the best
performance for the lowest price. Of course this question can only be answer with respect
to the requirements of the application and the kind of data to process, i.e. the input
data pattern. This is where a framework can be developed to automatically analyze and
regulate resource allocation for the SMACK stack.

1.4 Background

This section givs an overview of the single components of the SMACK stack, namely
Spark, Mesos, Akka, Cassandra and Kafka. A basic knowledge of the used technologies
is crucial for the reader to be able to understand the complex interdependencies which
are omnipresent when using a big data stack with multiple technologies.

9

1. Introduction

1.4.1 Akka

"Akka is a toolkit for building highly concurrent, distributed, and resilient message-driven
applications for Java and Scala" [1].
The mathematical model behind Akka is the Actor Model, which was developed and
presented in the first place by C. Hewitt, P. Bishop and R. Steiger in 1973 [36]. During
the time the paper was written, hardware was very expensive, which is not the case
anymore today. As a consequence, implementing large scale systems processing millions
of requests per second is now possible in a cheap fashion.

One can imagine actors as objects which are receiving and sending messages between
each other. Because in theory the order of the messages is not relevant, the behavior
of statelessly handling messages is encouraged. The Akka implementation provides a
so called mailbox, in which messages are stored to be processed later in case an actor
receives multiple messages at once. These mailboxes usually have a limit after which
newly received messages are simply dropped. An actor can internally handle and process
a message, but can also forward it to another actor, or even create a new actor to help
achieving the required task.

According to the official Akka website, akka.io, the provided framework is the defacto-
standard implementation of the actor model and comes with some interesting key features
in aspect of big data [1]. The framework is designed to be resilient by design, which allows
developers to implement self-healing and responsive applications with ease. Further the
website claims to prodive capacity handling of 50 million messages per second on a single
machine, while one GB of available heap can host up to 2.5 million actors. This in
combination with the asynchronous nature of the model provides a powerful platform to
build responsive and highly scalable big data applications.

1.4.2 Apache Spark

"Apache Spark is a fast and general engine for large-scale data processing" [6].
Build for big data processing, this open-source framework offers the possibility outperform
existing Hadoop solutions with ease. "It has emerged as the next generation big data
processing engine, overtaking Hadoop MapReduce which helped ignite the big data revo-
lution. Spark maintains MapReduce’s linear scalability and fault tolerance, but extends it
in a few important ways: it is much faster (100 times faster for certain applications)" [49].
The main reason for the immense speed is the build in direct acyclic graph execution
engine, which supports in-memory computing, as well as acyclic data flows.

One big advantage of Spark is it’s rich set of APIs, like Scala, Java, Python, R etc. There
are over 80 high-level operators, which allows developers to easily build robust and highly
parallel applications. For trying out new concepts or algorithms, there is an interactive

10

1.4. Background

mode, the so called Spark-shell.

In addition to the Spark core, there it consists of four main components:

• Spark SQL
This module allows the developer to work with structured data. It provides seamless
integration of Spark programs with SQL queries. Another very powerful feature of
Spark SQL is that one can uniformly access data, which means that there is just
one common way to access all kind of supported data sources. An example could
be loading a JSON file is from Amazon S3 and used later as a table in an SQL
query.
Further it is also possible to use JDBCS or ODBC drivers to connect ones business
application to Spark.

• Spark Streaming
The goal of this component is to provide both, fault-tolerance and scalability for
streaming applications. Through build-in high-level operators, it is possible to
write streaming jobs in the same way one would implement a batch job. A very
powerful feature is the automatic recovery strategies - Spark recovers the state of
the application as well as the lost worker node without requiring any additional
code. This is enables the developers to focus on what they want to implement on
don’t have to deal with complex fault tolerance for each component.
Again, it is possible to use the same code for batch, stream or ad-hoc queries, which
leads to the possibility of building interactive applications without a lot of effort.

• MLib
The integrated machine learning library provides many high quality algorithms,
implemented to be efficient out of the box. It’s up to 100 times faster than traditional
MapReduce approaches, such as Hadoop. The dramatic runtime comparison
difference can be seen in Figure 1.5.

Figure 1.5: Spark vs. Hadoop - "Logistic regression in Hadoop and Spark" [6]

• GraphX
This API is designed to allow graph-parallel computation in combination with
collections a seamless way. Thanks to the community the library of graph algorithms

11

1. Introduction

is growing and openly available for everyone. In terms of speed, the GraphX
implementations can be compared with other state of the art graph libraries, which
is illustrated in Figure 1.6.

Figure 1.6: "End-to-end PageRank performance (20 iterations, 3.7B edges)" [6]

Spark Architecture
Figure 1.7 illustrates the general architecture of any Spark program, regardless whether
running in standalone or cluster mode. The driver program is responsible for creating and
executing operations on the so called Resilient Distributed Datasets (RDD), which are a
main feature of Spark. RDDs are abstractions of parallelized collections and have some
powerful characteristic, especially when dealing with Big Data. Those data structures
are immutable, resilient, use lazy evaluation, are process aware and live in memory.
In addition, the driver is also responsible for creating and maintaining the Spark context,
which is necessary for the connection between the nodes and the cluster. Further
configuration settings can be passed to the context during initialization, which affect
the whole Spark program. In our case, the cluster manager will be Mesos, which is
responsible for launching and distributing the executors.
As the figure shows, each executor can run multiple tasks and usually in cluster mode,
each executor is placed on a different worker node to provide even more fault-tolerance in
case a node dies unexpectedly, but this behaviour can of course be overwritten manually.
If the driver node dies, the whole Spark program will be shutdown. For this case a
dedicated recovery strategy would have to be set up and implemented.

1.4.3 Apache Cassandra

"Apache Cassandra is a free and open-source distributed NoSQL database management
system designed to handle large amounts of data across many commodity servers, provid-
ing high availability with no single point of failure" [3].
Many big companies, like eBay, Netflix, GitHub, etc. rely on the power of Cassandra to
manage and store their data. The masterless design offers flexibility as the cluster can
be scaled up and down without any down time. In Cassandra, the key-value and column

12

1.4. Background

Figure 1.7: Spark cluster with two executor nodes [6]

oriented approach is combined to achieve extra performance when reading and writing
data.
Research has been done concerning the speed of Cassandra: "In terms of scalability, there
is a clear winner throughout our experiments. Cassandra achieves the highest throughput
for the maximum number of nodes in all experiments with a linear increasing throughput
from 1 to 12 node" [43].
Due to the automatic replication of data onto multiple nodes, fault-tolerance is ensured.
In addition there is also support for replication across data center.
Cassandra comes with a custom Cassandra Query Language (CQL), which was designed
to be close to what most developers know very well - regular SQL.

Figure 1.8: Cassandra Table [27]

As the data model is a mix between columns and key-value pairs, one has to keep in

13

1. Introduction

mind basic design decisions based on this structure. An illustrative table is displayed
in Figure 1.8, showing the key concepts of how data is structured in Cassandra. To be
able to distribute data across nodes, it is required to define a Partition Key, which is in
this case a composition between venue_name and year. This explains why there are
exactly three partitions in the given table.
The Clustering Key, in our case artifact_id, is responsible to tell Cassandra how to
sort data within the partition, which can be seen in the table. Using the static keyword,
tells Cassandra to associate the respective column directly to the partition key and not -
as by default - to the clustering key. This behaviour is desired, when one wants to update
this column for all entries in the same partition.

1.4.4 Kafka

"Kafka is used for building real-time data pipelines and streaming apps. It is horizontally
scalable, fault-tolerant, wicked fast, and runs in production in thousands of companies"
[4].
The main characteristics of this framework can be summarized as follows [30]:

• Distributed. Scaling up horizontally without any downtime is important for a Big
Data framework. Kafka is designed to run in a cluster with one or multiple nodes.

• Multiclient. To make the platform attractive for many developers, many program-
ming languages are supported, like Java, Python, PHP, .NET, etc.

• Persistent. The fault-tolerant design prevents data loss, even when a node dies.

• Real time. Kafka is designed to provide data structures with efficiency of O(1),
regardless of the data size. Using so called complex event processing, produced
messages are transmitted immediately to the customers.

• High throughput. The performant design allows this framework to handle hundrets
of reads and writes per second, even with many clients in parallel.

Kafka provides four core APIs, namely Producer, Consumer, Streams and Connector. A
producer publishes streams containing records to so called topics, while the consumer
is subscribed to one or more topics and reads the stream. With the Streams API
the possibility of directly transforming an input stream in an output stream is given.
To be able to interact with other systems, like for example a Cassandra database,
the Connector API enables the developer to hook in and run reusable producers and
consumers interacting with Kafka.
To be able to run in a cluster, Kafka relies on ZooKeeper, which is a "distributed, open-
source coordination service for distributed applications" [7].
Every cluster setup consists of the following five components:

14

1.4. Background

• Topic. The central element in which streams of records are published by a producer
and read by the consumer. Partitioning is the key to provide fault-tolerance and
each partition contains a ordered sequence of immutable messages.

• Broker. The server process of Kafka is called broker and handles requests of
producers and consumers, while the topics reside inside the broker.

• Producer. As mentioned above, the produces sends messages to the broker who
stores them in chronological order into the respective topic.

• Consumer. Requests data from topics and processes the incoming data stream.

• ZooKeeper. Is the coordinator between the consumers and Kafka brokers.

Figure 1.9 shows how the architecture with multiple brokers running on multiple nodes
could look like.

Figure 1.9: Multiple Broker / Multiple Node Kafka Cluster [31]

1.4.5 Mesos

"Mesos is a cluster manager aiming for improved resource utilization by dynamically
sharing resources among multiple frameworks " [38].
The aim behind this framework is to provide a single platform which takes care of all
hardware resources like CPU, memory, disk etc. For the developer the whole cluster looks
just like one big machine with cumulated resources. This layer of abstraction makes it
very easy to deploy and maintain applications running in a cluster.

15

1. Introduction

According to mesos.apache.org [5], there are some key features which make Mesos an
attractive candidate as cluster manager for a big data stack like SMACK.

• Linear scalability As proven by industrial application, scaling up to 10,000s of
nodes is possible.

• High availability Zookeeper plays a key role when dealing with fault-tolerance, as
the replicated master nodes use it to provide high availability. In addition it is
possible to perform non-disruptive upgrades in the cluster.

• Containers Services like Docker run natively on Mesos.

• APIS There is a command-line tool to execute commands conveniently perform
operations in the cluster, as well as a straight forward HTTP API to do requests
programmatically.

• Cross Platform Mesos is supporting platforms like Linux, Windows, OSX and most
cloud providers out of the box.

"In SMACK, Mesos orchestrates components and manages resources. It is the secret for
horizontal cluster scalation. ... The equivalent in Hadoop is Apache Yarn" [30].

1.4.6 SMACK Stack

Each SMACK technology for itself has proven to be robust and do an excellent job for
the apsect it was designed for. To build a big data architecture, we need frameworks
which have connectors and can be easily put together to a powerful data pipeline. Of
course each of the technologies could be replaced by some other framework, but it has
been shown, that those of SMACK are linkable very well [30].
It is important to see, that SMACK focuses on fast data and not necessarily only on big
data. As the requirements of most modern large-scale applications demand processing in
almost real-time, the need of such a stack is just the logical consequence.
"The SMACK stack emerges across verticals to help developers build applications to
process fast data streams ... The sole purpose of the SMACK stack is processing data in
real time and outputting data analysis in the shortest possible time, which is usually in
milliseconds" [30].

Putting it together, Figure 1.10 illustrates how the combination of Spark, Mesos, Akka,
Cassandra and Spark could look like in a big data pipeline. There are several users,
endpoints or simply events which needs to be analyzed and processed. While using Kafka
producers to ingest the data, a consumer could directly be implemented in Spark using an
available connector. Storing the data in Cassandra is just a few lines of source code when
using the Spark-Cassandra connector, which makes the pipeline easy to implement. In
this example the power of Akka is used to create a reactive application to give feedback

16

1.4. Background

to the users in a highly concurrent way and fault-tolerant by design. Running all those
frameworks on Mesos provides another layer of abstraction, so that the developer does
not need to take care about the underlaying hardware and can let Mesos do its job as
cluster manager.
This is just one of many possible setups for the stack. The two applications used in this
thesis to evaluate the results are described in more detail in Section 4.1.

Figure 1.10: SMACK Stack Illustration [15]

1.4.7 Reactive Systems

Most modern applications have to fulfill high standards and many claim to be "reactive"
systems. The term "reactive system" is defined in the Reactive Manifesto [19], where
essentially four key factors have to be given to attribute an application as reactive:

1. Responsive
This attribute describes that the application has to respond in a defined time frame
under all circumstances, as long as an answer can be given to the query. Without

17

1. Introduction

the definition of a time to response, it is not possible to determine whether an error
occurred or not. Further fast response times improve user confidence and trust
into the system and makes the whole application more interactive, which is highly
desirable.

2. Resilient
Even in the event of hardware- or software faults, the system should stay intact
and be able to respond to user queries. This is not only the case for highly critical
applications but for any "reactive" system. The only way to achieve resilience, is to
isolate components, use replication and delegate responsibilities. In case of an error
only an isolated subsystem is affected and the supervising platform can recover this
faulty component without affecting the whole application.

3. Elastic
Systems which are elastic stay responsive even under varying load. This means
that the application can react to an increasing number of requests and still provide
the required functionality even during peaks. The base for elasticity are these two
key factors: replication and distribution of functionality. Elasticity also describes
that if there are less requests than expected, the system can scale down and release
resources which are not needed at the moment.

4. Message driven
The use of asynchronous messages is crucial to allow loose coupling and isolation
of different components. The non-blocking nature of these messages lead to an
efficient use of resources, as any component which is not receiving messages can
stay idle and therefore does not consume CPU time. Further the explicit use of a
message driven architecture allows to be independent of the location, as well as
transparent scaling of components.

The applications used in this thesis to evaluate strategies and the developed framework
are reactive systems, which meet the criteria defined above.

1.5 Thesis Organization
In chapter 2, related work can be found, including the comparison and summary of
existing approaches.
Chapter 3 deals with the framework developed in the context of the thesis, including all
its components. Additionally there is an architecture overview, as well as the deployment
diagram is discussed. To give a deeper understanding of what is considered "interesting"
for the framework when deciding which component to scale, the relevant metrics for
each technology are discussed. In chapter 4 the evaluation and interpretation of the
benchmark results can be found. The experiment setup for the benchmark is described,
including challenges and restrictions. To give the reader a better understanding of the
benchmark, a section about evaluation criteria and one about the significance of the

18

1.6. Methodology

benchmark is added to the chapter. Further the setup, i.e. the applications used for the
evaluation and the target architecture are described in this chapter.
The last chapter, 5, is about open issues, the conclusion itself and possible future work.

1.6 Methodology
The scientific approach used in this thesis comprises six parts.
In the first step, a literature review is performed and background information has to
be gathered to serve as the theoretical background for this work, building on existing
research. After that an important part is the technology exploration. In this step the
individual parts of the SMACK-Stack have to be explored and knowledge about each
technology is gathered. In addition technical literature and reference books about the
respective technologies can be read to get a better overview and a deeper understanding
of each part of the SMACK stack.
The next step is the cloud setup, in which he whole stack is configured to be easily
deployed. One tool could be Amazon CloudFormation to provide a simple template for
launching preconfigured instances. Further various scripts have to be written to automate
the deployment process an install required libraries, scripts and later on the applications
to evaluate.
In the next step - the development - the framework to automatically redistribute and
elastically scale the resources is implemented. Further the two real world applications for
the experiment benchmarks are implemented and extended to fit the needs of this thesis.
During the next step, namely the experiments, the scalability of the stack is determined
by benchmarking individual configurations, where one application uses real world IoT
data.
Then the performance of the stack under management of the developed framework is
examined carefully.
In the last step the results are interpreted and the suggestions for how to distribute
the resources are deduced and the corresponding reference deployment architecture and
configuration is defined.

19

CHAPTER 2
Related Work

2.1 Literature Studies

Currently, there exists no specific suggestions on how to optimally use the SMACK-stack
in the aspect of resource distribution between the individual technologies. Further this
thesis focuses on the scalability of the whole stack and aims to find bottlenecks when
dealing with various input data patterns. There is research for each of the technologies
but not in their combination, and especially there are no recommendations based on
empirical experiments for how to setup the stack optimally with a given budget and
specific requirements.

2.1.1 Cloud Computing & Big Data

There is a lot of research in the field of cloud computing and big data. In their paper
"Fast Data in the Era of Big Data" Mishne et al. show the background of Twitters
new spelling correction and query suggestion, which has the demand to include recent
events within minutes [41]. The approach shows that the commonly used Hadoop-based
approach did not work out well, as the provided latency was simply to high. In the final
result they build their own in-memory processing engine, to be able to handle data faster.
This is similar to Apache Spark, as it also works in-memory and claims to be faster than
traditional Hadoop based approaches.

Agrawal et al. provide an overview about basic design decisions concerning scalable cloud
applications and point out actual problems and open questions [25]. They provide a
study which comprises two types of systems: 1) write-intensive applications, such as large
DBMS systems and 2) systems which provide ad-hoc analysis, where the focus lies on
speed and low latency. In the paper there are some suggestions in form of design choices,
based on successful large systems in the field.

21

2. Related Work

In the work of Hashem et al. the current development of big data as phenomena and
its challenges, as well as open research issues are discussed [35]. Cloud computing is
designated as powerful tool for many applications, when it comes down to handle huge
amounts of data and scalability is a key factor. Further it is stated, that cloud computing
enabled the rise of big data in the first place, as elasticity and scalability is relatively easy
to achieve compared to on-premise setups. The definitions, classifications and typical
characteristics of such applications are explained and introduced. In the end, the authors
illustrate open research issues and show further fields of research.
In the article of Armbrust et al. about cloud computing it is stated that it "has the
potential to transform a large part of the IT industry, making software even more attrac-
tive as a service and shaping the way IT hardware is designed and purchased" [26]. The
authors give an overview of what cloud computing is and what to challenges to face. In
the conclusion they discuss the potential of modern technologies and give an outlook for
future applications.
To be able to compare the pros and contras of existing cloud computing providers, Rimal
et al. investigated on the taxonomy of the different providers and then compared them
in aspects of architecture and services. The output of their comparison is a table with
generic attributes such as computing architecture, virtualization management, load bal-
ancing, etc. In the conclusion, the authors state that "Cloud Computing is the promising
paradigm for delivering IT services as computing utilities" [46].

With their work "Big Data: The Management Revolution", McAfee and Brynjolfsson
explain why a new way of thinking in modern businesses is crucial [40]. They state that
"using big data enables managers to decide on the basis of evidence rather than intuition.
For that reason it has the potential to revolutionize management" [40]. Explanations
about how the shift of data driven management can be revolutionary are given, and the
core properties of big data, which are the three Vs (Volume, Velocity, Variety), are dis-
cussed. Further, a simple four step getting started guideline, as well as five management
challenges are illustrated to enable readers to apply the introduced values to their own
business management.

2.1.2 SMACK Stack

In the book "Big Data SMACK" of Estrada and Ruiz, Apache Spark, Mesos, Akka, Cas-
sandra and Kafka are motivated and explained [30]. The book gives a good introduction
of why this stack is crucial for the success of many modern business applications and
shows how to combine the individual technologies to a powerful data pipeline for fast
data applications. As the book offers an overview, the authors are not going into detail
and scalability is just mentioned but never proved.

In their whitepaper "Fast Data: Big Data Evolved", Wampler and Dean present an
overview of how business changes and so do technology in the field of big data [51]. The

22

2.1. Literature Studies

term Fast Data is introduced to be the logical consequence of the big data requirements
plus the need of near- or real time applications. The authors list key components and
technologies of a modern fast data application, which contain - not surprisingly - Scala,
Akka, Spark, Cassandra, Mesos, Docker and Kafka. SMACK contains the same technolo-
gies and in this thesis also Docker is used, which reflects the power of the combination of
these technologies when working together as big data / fast data pipeline.

2.1.3 Big Data Frameworks

The paper of Zaharia et al. from the University of California introduces the Spark
framework for the first time [53]. Spark’s structure and advantages over traditional
Hadoop-based applications is shown and demonstrated. There are experiments which
show, that most machine learning algorithms Spark outperforms Hadoop by up to 10
times, which is a lot. Especially the in-memory data handling speeds up the whole
process dramatically. The numbers and experimental data from this paper could be a
base for further research in this thesis, but still it only benchmarks one technology and
not a whole stack.
A further article shows how important the development of a computation framework
for the increasingly huge amounts of data has become [54]. In their work the authors
show how Apache spark serves as unified data processing engine in the field of big
data analytics. They compare the performance to existing and common Hadoop im-
plementations, which are significantly slower when it comes to iteration within the
algorithm. This can be explained with the fact that Hadoop is disk base, while Spark
tries to manage its data structures in-memory and can therefore be dramatically faster.
The conclusion appeals to Apache Spark to encourage more open source frameworks to
be interoperable with it and to make the use of complex software compositions even easier.

To go more into detail about the commonly discussed Hadoop vs. Spark topic, the paper
of Gu and Li gives insights about the question memory vs. time [32]. As Spark relies
by design heavily on in-memory operations, Hadoop is disk-based and thus, iterative
algorithms can be performed significantly faster with spark, as the costs of reloading and
caching data are lower. Therefore more memory is required, which is a cost critical factor
when designing the system architecture. Further they show, that as soon as there is not
enough memory available to store intermediate results, Spark slows down.

To emphasize the importance of Apache Spark in the field of cloud computing, the
paper of Reyes et al. compare it to OpenMP by performing big data analytics [45]. The
motivation behind the experiment is that handling vast amount of data in parallel is still a
challenge when dealing with near-time or even real-time applications. For the evaluation,
two machine learning algorithms, both supervised, are used in the Google Cloud Platform.
Data management infrastructure and the ability to provide fault tolerance out of the
box is where Apache Spark did a better job, although the performance of the OpenMP

23

2. Related Work

implementation is more consistent in terms of processing speed.

As this thesis deals with the NoSQL database management system Cassandra, the survey
on NoSQL databases of Han et al. has its relevance [34]. In the introduction the authors
give an overview of which characteristics and requirements a modern NoSQL system has
to fulfill. By walking through the CAP Theorem (Consistency, Availability and Partition
tolerance) they show what is possible and what not for a system as Cassandra. They try
to classify existing solutions into key-value and column-oriented databases. Further some
existing systems are summarized and their core values are emphasized.

Just as Cassandra, Kafka plays an important role in the SMACK stack. The paper
of Kreps et al. from LinkedIn introduce Kafka as "a distributed messaging system for
log processing" [39]. Initially Kafka was designed to handle vast amounts of log files,
but as the authors show, the system is also capable of handling other message based
applications very well. First the framework itself is illustrated and the architecture as
well as some design principles are discussed. The authors give an insight of how they use
Kafka at LinkedIn and why they choose its design as it is. In the results section, Kafka
is compared to existing enterprise messaging systems such as activemq and rabbitmq,
where their framework significantly outperforms the others.

DCOS, the Data Center Operating System of Mesosphere, is used in the context of this
thesis to setup and manage the SMACK stack. Therefore the paper of Hofmeijer et al. is
relevant as they introduce this platform and give insights about the internal structure
[37]. The power of DCOS is to provide a layer of abstraction to the system resources in
a distributed cluster. Further the availability of software packages leverages the usually
complicated task of deploying a frame work like Apache Spark in production mode in
the cluster.

2.1.4 Streaming

As streams play a key role in Spark as well as in big data, the paper of Namiot about "Big
Data Stream Processing" is also relevant for this thesis [42]. In his work, Namiot gives
an overview of existing technical solutions for stream processing with big data. He also
mentions IoT, which is often the main source of input data for cloud applications and
may be relevant for the experimental setups in the thesis. Further, Spark is mentioned
too and explained in more detail.

Another streaming relevant work is the article of Ranjan about "Streaming Big Data
Processing in Datacenter Clouds" [44]. He describes the motivation behind the topic and
illustrates a data pipeline for large-scala data processing in the cloud, which is similar
to SMACK, but less complex. "The example service consists of Apache Kafka (data

24

2.1. Literature Studies

ingestion layer), Apache Storm (data analytics layer), and Apache Cassandra Systems
(data storage layer)" [44]. The listings in this article may be relevant for arguing why to
use Apache Spark over Apache Storm for example.

2.1.5 Languages & Programming Models

The actor model is the mathematical theory behind Akka and is widely known to be
efficient for building parallel applications. P. Haller from Typesafe Inc. gives an overview
"on the integration of the actor model in mainstream technologies" [33]. The knowledge
of this model is important in the context of this thesis as Akka is the de-facto standard
implementation of the actor model and there are some design principles to consider when
designing a highly concurrent application with this mathematical model as base. The
author states that there are some challenges for the implementation of such framework
into existing platforms as the JVM, because it is not designed to handle concurrency this
way. Those fundermental problems are illustrated and possible solutions are suggested,
while the focus lies on the Scala programming language, which is heavily used in this
field due to its functional nature. In the paper the requirements of a well designed
actor implementation is discussed and based on that, "principles behind the design and
implementation of actors in Scala are explained, covering (a) the programming interface,
and (b) the actor runtime" [33].
Tasharofi et al. investigate in their paper why Scala developers ofteh mix conventional
concurrency models with the actor model [50]. The use of a mix causes that the actor
model is no longer consistend and can cause race conditions or leverage the benefits of
using it at all. About 80% of the investigated publicly available frameworks are using a
mix between at least two concurrency models. The finding of the authors is that often
this mix is choosen due to "inadequacies of the actor libraries and the actor model itself"
[50].

2.1.6 Data Analytics

The paper of Cuzzocrea et al. about "Analytics over Large-Scale Multidimensional Data"
provides an overview of actual research issues and challenges in the field of big data [29].
The authors go into detail how to deal with especially multidimensional data and propose
a few novel research trends. Further data warehousing is discussed as a trend, which is
relevant for big data applications in general but not especially for this thesis, as SMACK
usually handles data streams where queries usually require a quick response time. Still
the analytical part of the paper is interesting in this context.

The white paper "Big Data Analytics" of P. Russom illustrates the understanding of
what big data and big data analytics are and what it means for modern a business [48].
First an extensive introduction shows what exactly big data is and also gives an idea of

25

2. Related Work

how most people in the field see the technology. In the survey explicitly the question of
how familiar people are with big data analysis, is discussed. The common understanding
is quite well, but based on the given 325 interviewed candidates only 28% said they
really know what it means and can correctly name it. In addition the benefits of such a
technology are listed, where the most popular answer, with 61%, is a "better targeted
social influencer marketing" [48], and "more numerous and accurate business insights"
[48] is with 45% on the second place. The conclusion gives a pretty compact list of
recommendations to follow when dealing with big data and big data analysis.

2.2 Comparison and Summary of Existing Approaches
This section gives an overview of existing tools and approaches to solve the problem of
automatically scaling the SMACK stack or similar technologies in the cloud.

The problem of how to realize "Efficient Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting" is covered in the paper of Roy et al. [47]. The autors
contribute in three aspects to this challenge. At first a discussion of current challenges in
the field of cloud computing and autoscaling is given. Second, the developed algorithm
to forecast work load is introduced, which is later investigated in terms of performance
by conducting empirical experiments. Their algorithm works fine for constanly increasing
or alternating workloads, but suffers from unexpected peaks.
Compared to the framework developed in this thesis, Roy et al. provide an algorithm
rather than a framework to implement autoscaling. Further the consideration of multiple
metrics is missing, as they only consider the incoming workload instead of monitoring
each component individually. Still a combination of the predictive and the reactive
approach would be possible and could be subject of future work.

The paper "Dynamic Scaling of Web Applications in a Virtualized Cloud Computing
Environment" of Chieu et al. introduces a novel architecture [28]. In their main contri-
bution, the autors illustrate a "front-end load-balancer for routing and balancing user
requests to web applications" [28]. The use of load-balancer can help to provide more
reliable web-services and reduce costs too. As the approach only covers scaling based on
user requests, on the one hand this solution cannot react on internal stress, for example
caused by a computational intense Spark job, which is implemented in the framework of
this thesis on the other hand.

Mesosphere Marathon-Autoscale [16]
This tool is a python script which is deployed within a Docker container on DC/OS and
interacts with Marathon. The information about the CPU and RAM usage is gathered
by asking directly Marathon and in case a certain threshold is reached, the Marathon
API is used to scale up the service. In the same way the down scaling is implemented.

26

2.2. Comparison and Summary of Existing Approaches

Some configuration is possible, such as defining the desired thresholds and the services
to observe.
This is a very basic approach, as only the CPU and RAM usage is considered, which
is a fuzzy indicator for the real utilization of the service. With only this information it
is not possible to reliably determine whether a service will be out of resources soon or
not, especially when dealing with complex applications, such as the ones in the SMACK
stack.

Mesosphere Marathon-LB-Autoscale [17]
With this tool the High Availability (HA) Load Balancer (LB) is used to determine which
service is under heavy load and needs to be scaled up. In Figure 2.1 the architecture
of the tool is illustrated. It works by analyzing all incoming traffic via the HA proxy,
which load balances the data between the service instances inside the stack. Therefore it
is possible to see how many requests per second each service and instance has to handle.
On the base of those statistics, the tool then uses the Marathon API to scale up or down
a service.
This tool also comes within a Docker container, which makes it easy to deploy it on
DC/OS. Still there is some configuration effort, such as defining the URLs for the HA
proxy and Marathon, sampling rate, thresholds etc. This approach is useful for TCP
traffic based services but cannot handle all services in the SMACK stack as there is
usually just one service responsible for handling incoming data from the internet. In
contrast, the framework developed in the course of this thesis is capable of extracting
metrics for all relevant parts of the cluster and scaling them accordingly, regardless
whether they are TCP based or not.

Figure 2.1: Marathon LB Autoscale Architecture [17]

27

2. Related Work

Microscaling in a Box [18]
This service is one of many micro scaling implementations and provided by microscaling
systems. It works by transferring the data between the applications via their own queue.
Then a target length can be defined which the tool tries to sustain then, which means it
scales up or down a service based on the queue length. The only metric supported is this
queuing technique, which additionally takes advantage of the fact that launching further
Docker container is relatively fast in comparison to launching an additional VM instance.
This is why the company claims to "automate scaling in real time" [18].
The approach is suitable for services where the performance and workload mainly corre-
lates with the incoming amount of data. This is not the case in the whole SMACK stack,
for example Spark could be overloaded with just a few messages in a computational
bound application. Further the usage of an additional queue between all services would
slow down the stack and consume CPU and RAM resources.

None of the introduced tools or frameworks have a deeper look insight the SMACK stack
to be able to tell whether or not a service is really under heavy load. Those tools could
be combined to get more insights but would therefore also consume a lot more resources,
which is not desirable at all. To be able to accurately monitor Akka for example, custom
metrics have to be considered, which is very unlikely to be found in a generic autoscale
tool.
The framework develped in the course of this thesis enables users to benefit from a deeper
understanding of the components running in the SMACK stack to reliably detect when
a service needs to be scaled. This is done while being independent from TCP traffic
based measurements or queue-length based approaches. Further the framework is capable
of handling user-defined metrics and is robust, as it can be hosted outside the cluster
containing the SMACK stack.

28

CHAPTER 3
A Framework for Automated
Monitoring and Scaling of the

SMACK Stack

This section gives a detailed view of the actual contribution in the scope of this thesis.
The developed applications, stress tests and tools are introduced and their architecture
is illustrated. To review the code, there is a public git repository containing the imple-
mentations mentioned in this chapter 1.
For the development mainly the Java programming language was chosen, as it is platform
independent and appeals a broad audience.

3.1 The SMACK Monitoring Metrics and Elasticity
Actions

As part of the theoretical background, this section gives an overview of which metrics
are considered as interesting for the context of this thesis.

3.1.1 Kafka

In the official DataDog Github repository there is a documentation of which metrics
can be interesting when analyzing Kafka via JMX [10]. Those proposed metrics were
considered and then refined by empirical experiments to find out which ones are good
indicators when Kafka is under heavy load.

1https://bitbucket.org/B3n3/smack

29

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

In Table 3.4 the metrics considered in this thesis concerning Kafka monitoring are
illustrated in detail.

3.1.2 Cassandra

DataDog also provides an introduction to Cassandra monitoring and emphasized which
JMX values to investigate when monitoring a cluster [9]. Like for the Kafka metrics,
those presented MBeans were refined during empirical experiments. In Table 3.5 all
relevant Cassandra JMX metrics are listed and described.

3.1.3 Spark

During the analysis of the IoT application introduced earlier, all available JMX met-
rics are collected. The script to extract the Spark JMX values of Section 3.2.2 filters
out everything which is not directly related to the driver running in Spark. This
is done by applying a regular expression as matching criteria, which looks like this:
KafkaToCassandra|.driver, where KafkaToCassandra is the Spark driver name in
the IoT application. The regular expression considers everything which is either part of
the custom class or the driver itself.
It is necessary to use this approach, as the MBean names exposed by Spark con-
tain IDs which change every time the driver is launched. An example for such a
name could be this: metrics:name=43f6de33-9485-4bbe-8dbf-263b62d2a15a-0005-driver-
20170731143634-0001.driver.DAGScheduler.messageProcessingTime.
By analyzing the plots of the collected metrics, the ones described in Table 3.7 are
considered most interesting.

3.1.4 Akka

As mentioned in Section 3.2.2, Akka does not provide JMX metrics out of the box. It is
up to the developer to collect metrics and then implement the exposure of them. In the
course of the contribution of this thesis, those features are implemented.

Fortunately there is an open-source project to ease the task of exposing JMX values. The
framework is called Kamon, which "is distributed as a core module with all the metric
recording and trace manipulation APIs and optional modules that provide bytecode
instrumentation and/or reporting capabilities" [14].
In addition there are two dedicated Akka modules in Kamon, which expose some useful
default metrics. To be able grab and expose JMX values from an existing application,
AspectJ Weaver is used. It is a non-trivial task to handle all required dependencies and
correctly launch the application with AspectJ in a Docker container. Setting up things
require knowledge in the field of virtualisation with Docker and dependency management.

30

3.2. Framework for Automated Monitoring and Scaling

In addition to the already by Kamon provided metrics, KB/s and Messages/s are added
to give more flexibility when monitoring the application. In Table 3.6, all considered
metrics are illustrated and described in detail.

3.1.5 Mesos

As there is no possibility to enlarge RAM or CPU resources for Mesos and because it
is the underlying system, there is no need to monitor it explicitly in the context of this
thesis.

3.2 Framework for Automated Monitoring and Scaling
This section introduces the framework developed in the course of this thesis. First there
is an architecture overview to better understand how the respective components interact.
Secondly the respective components and tools are illustrated and explained in detail.

3.2.1 Framework Architecture Overview

In this section, an overview of the framework is given, including architecture and deploy-
ment diagrams.

• Automated Scaling Tool for SMACK
The scaling tool evaluates the collected metrics from the REST service and scales
up or down the individual parts of the SMACK stack.

• REST Service Collecting Monitoring Information
This is the service which collects all the extracted metrics and compiles them into
a useful format. In addition there is the possibility to generate plots at runtime.

• JMX Extraction Tool
This tool is designed to automatically extract interesting metrics from SMACK
components via JMX and sending them to a central service, in this case the REST
monitoring service.

• Framework to Easily Launch SMACK in AWS
With the help of this framework it takes just a few command line calls to launch
and deploy the whole SMACK stack in the cloud.

• Deployment Blueprints
Those reference architecture and configuration recommendations help to launch
the SMACK stack and getting most out of the available resource.

Figure 3.1 illustrates the target architecture of the framework and how the tools and
services interact with each other, while Figure 3.2 shows the deployment view.

31

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

The SMACK stack is the central element in this architecture and is illustrated by many
AWS EC2 instances working together as one stack. In the same environment - namely
DC/OS - the JMX Extraction tool is running in Docker containers, collecting metric
statistics from the SMACK stack. For each node, or EC2 instance, there is exactly one
Docker container started and associated. The container runs on the same instance to be
able to access the JMX values from the available services.

In case there is no service deployed on the node, the JMX extraction tool is idle and
automatically starts extracting as a service gets deployed.
To launch and setup DC/OS the Cloud Formation tool of AWS is used, which manages the
complex installation of all required components and glues them together automatically.
The extracted metric values are directly send to the REST monitoring service, which
runs on its own dedicated EC2 instance totally independent of the DC/OS setup. There
the information is collected and combined to be evaluated later.

If it is the case that the IOT application is running in the SMACK stack, the load
generator introduced in section 4.1.1 is also part of the setup. As described, the AWS
EC2 Container Service is used to easily orchestrate the execution of multiple docker
images performing the requests. ECS enables to simply de- or increase the amount of
running Docker containers and is also independent of the DC/OS setup. There is no
information flow from DC/OS to the load generator.

All previously described parts of the setup are running in the AWS cloud. The only
application running on a local machine is the scaling tool itself. By querying the REST
monitor, the scaling tool gets up-to-date information about the workload of the SMACK
stack. In case the stack get’s offline or does not respond in time, the monitoring service
is still responsive because it is completely decoupled from the rest of the stack. The user
interacts with the scaling tool which in turn interacts directly with DC/OS to manipulate
the SMACK stack in case a component needs to be scaled up or down.

3.2.2 Monitoring Metrics Extraction Service

To be able to monitor each SMACK component individually, considering more than
just plain RAM and CPU usage, a more sophisticated approach is required than only
observing the provided DC/OS usage metrics.
First we will have a look on the technical aspect of how to gather information and then
why the proposed approach was chosen.

Collecting runtime information from an application is a common task and there are some
well-known ways to do so. Webservices for example, often provide a REST API to access
internal status information. As the applications used in this thesis all run in the Java
Virtual Machine (JVM), it is possible to use the Java Management Extensions (JMX) as

32

3.2. Framework for Automated Monitoring and Scaling

Figure 3.1: Framework Target Architecture

information channel.
This is especially useful as Kafka, Cassandra and Spark are configurable to publish
monitoring statistics via JMX without any extra programming. Akka is not able by
default to export to JMX which means all the steps - form acquiring the statistical data
to publishing them - have to be programmed into the Akka application.

Figure 3.3 shows the basic architecture of JMX. The distributed services level, serves as
entry point to access the interface. There is no defined specification and the purpose is
to provide a way to communicate with the deeper agent level.
Through the interface the client is able to access the agent level, where the agents reside
and are responsible for the communication with the instrumentation level. In the last
level, the real resources can be found, which are managed and configured with the so
called Managed Beans (MBeans).
With the help of MBeans it is possible for an application to expose values through JMX,
which can then be read by a client via the JMX interface.

33

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

Figure 3.2: Framework Deployment View

34

3.2. Framework for Automated Monitoring and Scaling

Figure 3.3: JMX Architecture Overview

In order to access JMX MBean values of running JVM instances, there are some open
source tools available. JConsole is a graphical tool which ships with the JDK and allows
the user to get an overview of a running system. However, this tool requires a GUI, and
does not provide an API to use it with scripts or via command line.
An open-source tool, which offers this interface is Jmxterm. "Jmxterm is a command line
based interactive JMX client. It’s designed to allow user to access a Java MBean server
in command line without graphical environment. In another word, it’s a command line
based jconsole" [13].
MBeans contain attributes which could be Value, OneMinuteRate, Mean, Count and
so on. As part of the contribution of this thesis, a script to automatically extract the
desired MBean values and send them to a monitoring service is provided. The abstract
algorithm of the script can be described as follows:

1. Get the current timestamp.

2. Read the provided JMX commands from the input file.

35

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

3. Create a list of all occurring MBeans in the given file.
This list is needed, as the output of Jmxterm does not contain the name of the
MBean itself.

4. Open the CSV output file and add a column header if the file is empty.

5. Execute Jmxterm with the provided command file and split the output lines by
newline.

6. For each line:

a) Extract the attribute name and the respective value of the output.

b) Write the data into the CSV file.

c) Send the data to the given REST monitoring service via HTTP POST.

7. Close all files and sleep for a given period of time.

8. Go to 1.

The exported values of the script are: Timestamp, MBean name, Attribute name, Value
and Hostname.
The hostname is important, as it is the only way to distinguish from which node the
value comes from. In addition it is required to later on generate statistics and accumulate
the value of the same MBean-Attribute combination across different nodes.
The script works fine for a static input file, which means the names of the MBeans
are known in advance and do not change during the analysis. However, Spark exposes
MBeans which contain the ID of the worker node or the task number. This makes it
impossible to predefine a list of MBean names which the script should observe and send
to the monitoring service. Because of this problem, another script is implemented to
extract interesting MBean names from Sparks JMX view.
An abstract overview of how the script works could be the following:

1. Open the connection to Sparks JMX.

2. Store all available MBeans inclusive their attributes in a list.

3. Go through the list and filter out only interesting ones (with a regular expression).

4. Extract the name of the attributes to the respective MBean.

5. Store the Jmxterm commands to get the values of an MBean attribute into a
command file.

36

3.2. Framework for Automated Monitoring and Scaling

In order to be able to automatically generate new Spark command files during runtime,
the script is executed regularly by the JMX extraction script. This enables the setup
to simply launch the extractor without having to deal with the manual extraction of
interesting Spark MBeans and the command file generation.
To be able to easily deploy and manage the JMX extraction on all nodes of the cluster, the
script is packed into a Docker container. The Docker file and the respective configurations
are also part of the contribution.

The choice to use JMX as information channel is made because of the fact, that all Spark,
Kafka and Cassandra offer JMX metrics out-of-the-box. Further it is a standardized
way to access runtime information of a JVM application. Additionally, the existence of
open-source tools like Jmxterm helps to reduce manual programming effort.

3.2.3 Monitoring Metrics Aggregation Service

In order to collect the extracted JMX metrics from the particular nodes, a central point
to store and access this information is needed.
As part of the contribution of this thesis, a REST web service running in a Docker container
is implemented, which is capable of storing, collecting and exporting the metrics of the
respective services. Further it is possible to generate and view SVG plots with this service.

The structure of the REST service API is illustrated in Table 3.1 and gives an overview
of the available operations. The service is implemented using the Java programming
language and runs in Docker. This allows the monitor to be launched on different
platforms easily without any configuration or setup effort. In the context of this thesis
AWS EC2 is used to host the service.
As part of the contribution of this thesis a CloudFormation template is created to allow
the user to launch and instantiate the monitoring service in the cloud with just a few clicks.

To get an impression of how the service looks internally, Figure 3.4 shows the imple-
mentation of the service in an UML diagram. The SmackRestMonitor contains the
main method and creates all needed instances of the particular service handlers. While
the abstract class RESTHandler already provides most of the generic business logic
to handle incoming requests, the four extended classes Akka, Cassandra, Kafka and
Spark only provide methods required for displaying information about the service.
DateValueHostname is the central unit of stored information. It is, as the name
suggests, a tuple of the date, the senders hostname and the value of the processed
request. During the constructing the date and the value is parsed for later analysis. The
association between MBeans, attributes and those tuples is managed by the instances of
the RESTHandler.
To be able to calculate information like the 60 seconds maximum, average etc. (detailed
information can be found in Table 3.1), an instance of ValueCalculator is created

37

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

by the RESTHandler each time a new request is processed. This class contains the
implementation and logic to calculate the requested statistical values.

Further, there is the option to generate SVG plots, which is done internally by using the
pygal framework. The plots are generated per MBean and contains all recorded values
for all available attributes. An example could be the message processing time which then
shows the Min, Max and OneMinuteRate. In addition to this separation, the script is
are aware of multiple hosts, which is handled in three different ways:

1. A separate curve for each node and attribute combination.
E.g. OneMinuteRate-host1, OneMinuteRate-host2, ...

2. The average of all hosts for the same attribute.

3. The sum of the values of all hosts for the same attribute.

In case two and three, a sliding time window is used to find corresponding entries. This
is required as the data needs to be aligned somehow on the time line.

3.2.4 Scaling Service

The tool introduced in this section is responsible for scaling up and down the individual
components of the SMACK stack with respect to their utilization.
There are defined thresholds for each SMACK component which are observed via the
REST monitoring service. With periodical checks, the latest values are requested from
the SMACK monitoring service, introduced in the previous section, and compared against
the predefined values.
There are two modes: The fully automatic and the suggestive one. While the tool
performs the scaling autonomously in the automatic mode, in the suggestive mode the
user can decide whether or not to scale up or down a service based on suggestions. If a
value exceeds the limit, the upscaling action is executed. Once this has been done, the
tool waits for a defined period of time to apply further upscaling to the same service.
Empirical experiments showed, that values under three minutes are too short, as the
system takes some time to launch a new instance of the respective component and
redistribute the data and workload across the cluster.

In Figure 3.5 a UML diagram shows how the tool is designed. As it can be seen the
abstract Service is extended by the respective services, which provide their own implemen-
tations of scaling up or down. In addition the services contain the respective thresholds
and URLs to access for the desired values.
The Service class provides some utility methods to easily interact with the Marathon
environment running under DC/OS, which is responsible for scaling and scheduling
services.

38

3.2. Framework for Automated Monitoring and Scaling

Figure 3.4: SMACK REST Monitoring Service

39

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

URL Description

/ Displays an overview page with links to the par-
ticular services and available operations.

/<service> Overview page of the respective service which
contains links to further operations.

/<service>/dump Outputs all stored data associated with the given
service. This call is useful for debugging purpose.

/<service>/export Returns a properly formatted CSV file containing
all collected data of the respective service.

/<service>/availableKeys Outputs a list of all collected MBeans of a service.

/<service>/availableAttributes/:bean Generates a list of all available attributes associ-
ated with an MBean and a service.

/<service>/get/:bean/:attribute Displays a new-line separated list of entries of
a given service, MBean and attribute from all
hosts from the beginning of time.

/<service>/get/:bean/:attribute/:value The :value part of the URL can be one of the
following:
LATEST Returns the most recent value which is
received by the REST service.
MAX_60_SEC Calculates the maximum of all
hosts for the given MBean / attribute combina-
tion during the last 60 seconds.
AVG_60_SEC Same as max, but calculates the
average.
MEDIAN_60_SEC Same as max, but calculates
the median.
MAX_AVG_60_SEC_PER_HOST Calculates the
average of the value for the MBean / attribute
combination during the last 60 seconds separately
for each available host and returns the maximum
value of those averages.

/generatePlots Generates plots of all services and all MBeans.
As the generation of the plots is quite computa-
tion intense, this action has to be called manually.
The plots are then exposed via the webservice
with a simple HTML page containing a list of all
available SVG images.

Table 3.1: SMACK REST Monitoring Service API

40

3.3. Framework Management Tools and Predefined Blueprints

In Util, some generic helper methods can be found, like executing a command or per-
forming an HTTP GET request. As expected, ServiceWithUrl is a three-tuple of a
service (name), URL and the JMX MBean to query. This tuple is stored together with a
threshold which is then compared against the current values.
The central part of this tool is the Controller class, which performs the initial setup and
contains the logic needed to perform HTTP requests and asking the services if an action
is needed. Further the management of the timeouts and the interaction with the user is
performed in this class.

This tool is designed to be executed on a local machine but could be deployed to the
cloud as well if needed. A requirement to successfully scale up and down is the possibility
to interact somehow with DC/OS. In this implementation, the DC/OS command line is
used for this purpose and called directly from Java.
The user has to install the command line tools provided by DC/OS and has to connect
with the stack before running the automated scaling tool. It would also be possible to use
the available REST API, but in this case an authentication would have to be performed
additionally by the tool. In addition the command line provides handy commands which
don’t come with the REST API. Due to the generic design of the abstract Service class,
the interaction with the stack could be exchanged in just one place without any effort to
adapt the services themselves.

3.3 Framework Management Tools and Predefined
Blueprints

The launching and facilitating of a big data stack can get complex and thus automated
deployments can help to minimize setup pitfalls. This section introduces a management
tool to quickly deploy the SMACK stack in the cloud, as well as configuration blueprints.

3.3.1 Launching Tool

Launching and setting up a Big Data stack with a cluster abstraction in the cloud is for
sure not a trivial task. To dramatically reduce the manual effort, in the course of this
thesis, some tools are used which are described in this section. AWS provides a Cloud
Formation (CF) service, which enables the user to create templates of cloud deployments.
Any kind of AWS resource can be instantiated, configured, mounted or terminated in
the template. It helps system administrators and developers to easily setup a desired
running configuration with a few clicks.
The CF templates are simple JSON files, which can be created by copying a template
from AWS or using the AWS CF template online editor. A benefit of using CF is that it
is also possible to update running stacks, like adding additional nodes etc. This requires
no special update flag, but only the upload of the existing template with the updated
values and AWS CF automatically recognizes what has changed and accordingly updates

41

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

Figure 3.5: SMACK Controller

42

3.3. Framework Management Tools and Predefined Blueprints

the instances.

In this thesis DC/OS (DataCenter OperatingSystem) [11], is used to run the SMACK
stack in the cloud. It is basically an open source, distributed operating system which
uses Mesos as its system kernel. The advantage to use DC/OS is that it leverages the
setup of Mesos on multiple nodes and joining them together to one cluster. In addition
there are application packages available for most big data frameworks. This means, once
it is set up, installing Apache Spark is just as much as selecting the package and clicking
on install. DC/OS takes care of launching everything, opening ports, registering nodes etc.

Fortunately there is a predefined AWS Cloud Formation template available to launch
DC/OS in the cloud offered by DC/OS itself. Zuehlke Engineering AG provides a
repository [24] with some handy tools to even more automate the launch of the stack.
The repository offers a configuration file with which all necessary AWS launch parameters
can be set and additional bash scripts to gather information once the stack is up and
running.
As part of this thesis, the used version of DC/OS is updated and several additional helper
scripts are provided. This includes a command to deploy all SMACK components and
further install the desired application itself into the stack. To help new users get into
deeper understanding and avoid starting problems, the respective documentation has
been updated.

3.3.2 Blueprints

As part of the contribution, reference deployment architecture and configuration, or sim-
ply deployment blueprints are produced. This information is the result of experimenting
with resource distribution and scaling up and down services. The blueprints are given for
two kinds of applications running in the SMACK stack, I/O and computational bound.
It is therefore as good entry point when setting up the stack initially, without having to
bother with experimenting on how to distribute the resources ideally.
During the experiments with the applications described in Section 1.2.1 and Section 1.2.2,
the resource workload is evaluated and based on that results, the deployment architecture
and configurations are deduced. It can be especially useful to have these configurations,
if one does not have a lot of experience with the SMACK stack, but still wants to get
the most out of the provided resources.

In Table 3.2 the recommended distribution of CPU and RAM for the respective frame-
works is listed for a typical I/O intense application, assuming that Akka serves as data
ingestion point.
Obviously Mesos is not part of the table, as it is the resource manager. Akka has to
handle a lot of requests, which justifies that it gets the most resources. Depending on
how much logic the ingestion application has to perform, CPU is slightly more important

43

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

CPU RAM
Akka 35% 30%
Cassandra 15% 10%
Kafka 35% 35%
Spark 15% 25%

Table 3.2: Deployment Blueprint: I/O Bound Application

CPU RAM
Akka 10% 10%
Cassandra 25% 25%
Kafka 15% 15%
Spark 50% 50%

Table 3.3: Deployment Blueprint: Computational Bound Application

than just a lot a memory.
Cassandra is in the end of the data pipeline and uses mainly disk storage. Still this has
shown to be sufficient for writing a lot of data, especially because of the master-less and
redundant design of Cassandra.
Kafka has to handle lots of pre-processed data and - depending on how many consumers
there are - needs to stream data to many nodes. This requires computational power as
well as enough memory to be performant and not being the bottleneck.
In this context, Spark as the computation engine of the data pipeline, does not have to
do a lot of heavy number crunching, but still relies - per design - on enough memory to
perform well.

Table 3.3 gives the recommendation of how to initially launch a computational bound
application within the SMACK stack.
In this scenario the data ingestion with Akka does not require many resources as there
will not be many connections to handle. Also Kafka will not be under a lot of stress as a
consequence.
The most work will be done by Spark when performing the heavy computations. In this
case, enough resources are a good idea so that Spark can spawn enough executors and
allow those to perform in-memory computations.
The recommendation is also to give Cassandra slightly more resources than in the previous
setup, as Spark will have to communicate a lot with the database.

44

3.3. Framework Management Tools and Predefined Blueprints

MBean Description Attributes

UnderReplicatedPartitions This is an indicator of availability and the
value should exceed zero only for a short time.
Longer periods of under replication are an
indicator of potential problems with Kafka’s
high-availability.

Value

ActiveControllerCount Equals the number of active controller within
the Kafka cluster. In each cluster there has
to be exactly one controller. This is an urgent
indicator for errors if the value zero.

Value

OfflinePartitionsCount In case a partition loses its leader, it goes
offline and becomes inaccessible by producers
and consumers. This is because all operations
have to be performed by the leader. Any value
above zero is alarming.

Value

UncleanLeaderElectionsPerSec The metric is a good indicator for data loss,
as every topic must have a leader. In case a
leader gets offline and Kafka is not able to
elect a new one, an out-of-sync replica will be
elected, even if it means that some messages
are lost forever. Any value above zero should
be considered as potential error.

OneMinuteRate

TotalTimeMs Produce Indicates the total time it takes Kafka to serve
a request. In this case it is the time from
the producer’s request until the data is sent.
The metric comprises the time in the queue,
local processing time of the leader, waiting
time of the followers and the time to send re-
spond. Big fluctuations and suspiciously long
waiting times are indicators for performance
problems.

Count, Mean

TotalTimeMs FetchConsumer Same as above, but the time from the con-
sumer’s request until the data is received.

Count, Mean

TotalTimeMs FetchFollower Same as above, but the time from the broker’s
follower request until the data is received

Count, Mean

BytesInPerSec Gives information of how many bytes per sec-
ond are received. Can be an indicator if an
upper bound of the system is known by ex-
perimenting.

OneMinuteRate

BytesOutPerSec Same as above, but the bytes send per second. OneMinuteRate

Table 3.4: Relevant Kafka JMX Metrics

45

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

MBean Scope Description Attributes

ClientRequest:
Latency, TotalLa-
tency

Read, Write Describes the latency of a client request.
The total value is accumulated in millisec-
onds while the latency count provides the
number of events.

OneMinuteRate,
Count

Cache: Hits, Re-
quests

KeyCache The KeyCache hit rate indicates the per-
centage of how many of the read requests
keys were found in the cache on disk.
This can be an indicator for performance
loss if there are very little cache hits.

Count

Storage: Load,
Exceptions

n.a. The load tells how many bytes per node
are used by Cassandra. With the excep-
tions count it is possible to determine
how many errors - fatal and non-fatal -
occurred on a node. If this value is in-
creasing, something goes wrong in the
cluster.

Count

Compaction:
CompletedTasks,
PendingTasks

n.a. Reflects the number of successful com-
paction tasks, respectively the ones in the
waiting queue. A lot of pending tasks
is an indicator for potential overload on
the cluster, as it is not enough time to
compact the data.

Value

GarbageCollector:
ParNew, Concur-
rentMarkSweep

n.a. The ParNew is the young-generation
Java garbage collector in the JVM. Ev-
erytime it frees up unused memory all
application threads get paused and thus
it directly affects the performance of Cas-
sandra. While ConcurrentMarkSweep
does not block all threads it handles the
old-generation part of the JVM heap. An
increasing value of the garbage collector
execution is an indicator for too little
RAM in the cluster.

CollectionCount,
Collection-
Time

ThreadPools:
PendingTask,
CurrentlyBlocked-
Tasks

MutationStage,
Read-
RepairStage,
ReadStage,
RequestRe-
sponseStage

This MBean gives information about
pending and blocked tasks in the thread
pools. In the RequestResponseStage all
callbacks to responses to a request are
executed with the original request. The
ReadStage comprises the execution of a
local read including cache deserialization.
In the MutationStage inserts, updates,
schema merges and log replays are per-
formed. The ReadRepairStage executes
read repairs if necessary. The increase of
the count in those metrics could mean
that there is a disk issue, overload or
some performance problem with Cassan-
dra.

Count

Table 3.5: Relevant Cassandra JMX Metrics

46

3.3. Framework Management Tools and Predefined Blueprints

MBean Description Attributes

ProcessingTime The absolut time to process a received message.
If the value exceeds a certain threshold it is very
likely that Akka is running out of resources.

Max, Sum

KBytes per Second As the name indicates, it referrs to the number
of KB input per second. Knowing the underlying
system this can be a warning indicator if there
is too much data to handle for Akka.

Avg

Messages per Second Same as above but messages per second. The
value does not necessarily correlate with the
KB/s, as messages can vary dramatically in size.

Avg

TimeInMailbox Equals the absolute time a message is kept in
an actors mailbox. This metric is a very good
indicator for an overload of Akka, as the value
usually fluctuates only very little, an increase of
it means that Akka is running out of resources.

Sum

MailboxSize This metric corresponds to the absolute mailbox
size of an actor. Same as time in mailbox, there
is no significant fluctuation during regular load
on the system. As the value increases, Akka is
going to run out of resources very soon.

Sum

Errors A value above zero means, that there happend
some major errors during the runtime of the
application.

Count

Table 3.6: Relevant Akka JMX Metrics

47

3. A Framework for Automated Monitoring and Scaling of the SMACK Stack

MBean Description Attributes

DAGScheduler.messageProcessingTime Indicates how long it takes Spark to process one
message at a time. If this value is increasing it is
a very good indicator that the application needs
more resources.

OneMinuteRate

DAGScheduler.stage.runningStages This metric represents the amount of stages run-
ning in parallel. This value should not be zero
as it would mean that no processing is done.

Value

DAGScheduler.stage.waitingStages In case this value increases steadily, Spark is
not able to handle new requests or tasks quick
enough. It is an indicator for insufficient re-
sources.

Value

BlockManager.memory.memUsed_MB It is interesting to keep an eye on the used mem-
ory to see whether Spark is already close to the
limit of what is provided or not.

Value

streaming.totalProcessedRecords The amount of totally processed records should
steadily increase. A stagnation is an indicator
that Spark cannot perform its tasks anymore.

Value

Table 3.7: Relevant Spark JMX Metrics

48

CHAPTER 4
Evaluation

This chapter gives an overview of the results and how the benchmark is set up. The used
tools and relevant metrics are introduced for the respective technologies. Further the
evaluation criteria is given and the summary of the results is discussed.

4.1 Setup and Methodology

In order to evaluate the framework’s performance, a use-case based approach with two
real-world applications is chosen. In the course of this thesis following two applications
are used for the experiments:
The first application is designed to mainly deal with I/O operations, based on IoT data,
is described in section 1.2.1. To get the SMACK stack close to its limit the load generator
and stress test tool introduced in section 4.1.1 are used.
The second application used to evaluate the auto-scaling framework is introduced in
section 1.2.2. As the scenario here is fundamentally different, it is a good indicator
whether the framework is able to correctly monitor and scale the stack or not. Most of
the computation power is needed in Apache Spark, which the framework should detect
and assign the most resources to this service.

4.1.1 Load Generator and Stress Test

To be able to test the application described in Section 1.2.1 a load generator was designed.
The tool has two modes - either pre-recorded real life IoT sensor data, or random data,
can be send to the cluster.
In principle the tool just sends lots of HTTP requests to the server, while the JSON
data is not interpreted and only treated as plain string. In the random mode, only the
timestamp of the entries is randomized, as it is enough to cause unique entries in the

49

4. Evaluation

Cassandra database.

The mode with real data requires the data to be provided in a specific format. In the
source code there is a tool for formatting JSON files into the proper format to be used
further. As one HTTP request contains a whole sensor data JSON entry of a device, it is
of favor, to concatenate the entries into a single line. This reduces the CPU load, as the
parsing can be omitted and one line equals one request. With the help of the provided
tool, text files with multiple JSON entries can be joined together to one larger text file
containing single-line entries. The advantage of using a few large files over multiple
smaller files is that the disk time can be reduced dramatically during reading, which
causes higher throughput.
In addition the milliseconds of the timestamp of each entry is randomize to avoid dupli-
cates in the database. This has to be done at runtime and cannot be pre computed in
advance.

The contribution of this thesis to the tool is the optimization of the data format, as well
as integrating randomization to achieve unique database entries even when the tools runs
in parallel with the same input data.

To be able to orchestrate multiple clients at once, the load generator is deployed into
a Docker image. AWS provides a service called Elastic Cloud Computing Container
Service (ECS). It allows the user to easily deploy, manage and scale Docker containers in
a managed cluster.
There are a few advantages of using this service: It is as easy as clicking on "scale" to
instantiate more containers and distribute them equally across the cluster. Amazon allows
the user to configure how the containers are distributed, for example place each container
on a different node to provide equal stress among the cluster, or to pack everything on
one node until its working capacity is full. In addition many other AWS services are
integrated, like Elastic Load Balancing, etc. An important feature is the command line
API, which helps to automatically launch and stop instances in the cluster.

In Figure 4.1 the service is illustrated and shows the individual components. The unit of
execution is always a Docker image, which can be pulled from any available container
registry. It is possible to use mainstream platforms like Docker Hub, host it at Amazon
or provide a self-hosted solution.
Next, ECS requires the user to create a so called task definition, which is basically a
JSON file which contains parameters like the container name, open ports, CPU and
memory resources, mappings, etc. There is also a web interface to easily create a task
without having to write JSON. Now it is possible to launch and stop tasks with AWS
ECS doing all the work of distributing and running the container images with the correct
parameters across the cluster. Further a service can be created which defines different
scheduling options and can be used to maintain a desired number of container instances

50

4.1. Setup and Methodology

or tasks executing simultaneously.

All the containers run inside a Virtual Private Cloud (VPC), which helps to easily
integrate the cluster in existing solutions. Amazon also provides the option to create a
dedicated VPC for the ECS cluster without any configuration effort. The cluster itself is
a logical grouping of AWS Elastic Cloud Computing (EC2) instances, which can run in
different Availability Zones (AZ). This allows the user to logically distribute clusters and
reduce network latency. To be able to execute tasks and monitor the EC2 instances used
for the ECS service, a container agent is running on each node and provides the AWS
ECS controller with information and allows autonomous interaction.

To be able to run the load generator in the cloud by using AWS ECS, the creation of a
Docker image, containing all necessary sensor data, was performed as part of this thesis.
Additionally the required task definition was created and a simple bash script to launch
an arbitrary number of container instances in the cluster.

4.1.2 Sensor Data Overview

The data used for the IoT application comes from sensors in elevators which were used
during the HackZurich. Mobile phones were placed inside the elevators and used to
gather various information about like acceleration, noise, light, etc.
In this section the available data is listed and explained in roughly.

• Accelerometer
"It is a measurement of acceleration along the three spatial axes at a moment of
time" [20].

• Gyrometer
This gives information about the device rotation rate.

• Magnetometer
Gives information about the measured magnetic field surrounding the device. The
unit is microteslas.

• DeviceMotion
"The data represents measurements of the attitude, rotation rate, and acceleration
of a device" [20].

• Barometer
Indicates the relative changes of altitude.

• BatteryLevel
Gives information about the remaining battery of the device.

51

4. Evaluation

Figure 4.1: Overview of Amazon WebServices Elastic Cloud Computing Container Service
[2]

52

4.1. Setup and Methodology

• Microphone
Represents the recorded noise in dB.

• Light
The ambient sensor is used to determine how bright the light is.

• Beacon
Any beacon recorded during the monitoring is represented by this class.

1 [
2 {
3 "z":-1.003677368164062,
4 "x":-0.0066986083984375,
5 "y":-0.036865234375,
6 "date":"2016-09-05T14:49:18.413+02:00",
7 "type":"Accelerometer"
8 },
9 {

10 "z":-0.003133475338587232,
11 "x":-0.06178427202540229,
12 "y":0.07116925170684153,
13 "date":"2016-09-03T08:40:17.552+02:00",
14 "type":"Gyro"
15 },
16 {
17 "z":-645.7014770507812,
18 "x":-19.19688415527344,
19 "y":140.535400390625,
20 "date":"2016-09-05T14:50:23.371+02:00",
21 "type":"Magnetometer"
22 },
23 {
24 "attitude":{
25 "quaternion":{
26 "x":0.0180332360021854,
27 "w":0.9998316704300516,
28 "y":-0.003365478874680562,
29 "z":-0.0003267357948271106
30 },
31 "rotationMatrix":{
32 "m13":0.006718040909618139,
33 "m12":-0.0007747425115667284,
34 "m33":0.9993269443511963,
35 "m32":-0.0360582023859024,
36 "m31":-0.006741608958691359,
37 "m21":0.0005319805932231247,
38 "m11":0.9999771118164062,
39 "m22":0.9993494153022766,
40 "m23":0.03606259822845459
41 },
42 "pitch":-0.006722463864462229,
43 "yaw":-0.000722464864462227,
44 "roll":-0.001732463864562228
45 },
46 "date":"2016-09-05T14:49:26.286+02:00",
47 "type":"DeviceMotion"
48 },

53

4. Evaluation

49 {
50 "relativeAltitude":0,
51 "pressure":95.66769409179688,
52 "date":"2016-09-05T14:50:26.300+02:00",
53 "type":"Barometer"
54 },
55 {
56 "type":"Battery",
57 "date":"2016-09-05T14:49:18.413+02:00",
58 "batteryLevel":"1.0",
59 "batteryState":"Full"
60 },
61 {
62 "peakPower":-24.93737,
63 "averagePower":-31.9056,
64 "date":"2016-09-05T14:50:23.736+02:00",
65 "type":"Microphone"
66 },
67 {
68 "type":"Light",
69 "date":"2016-09-05T14:49:18.413+02:00",
70 "brightnes":"0.3414323"
71 },
72 {
73 "beacons":[
74 {
75 "accuracy":4.084238652674522,
76 "id":"F7826DA6-4FA2-4E98-8024-BC5B71E0893E",
77 "major":59314,
78 "rssi":-88,
79 "minor":13391
80 },
81 {
82 "accuracy":4.641588833612778,
83 "id":"F7826DA6-4FA2-4E98-8024-BC5B71E0893E",
84 "major":60085,
85 "rssi":-89,
86 "minor":55763
87 }
88],
89 "date":"2016-09-13T10:04:04.034+02:00",
90 "type":"Beacon"
91 }
92]

Source Code 4.1: Sensor Data Content Example [20]

More detailed information can be found in the hackzurich-sensordata-ios repository [21].

4.1.3 Experiment Setup

The goal of the experiment is to find out how well the scaling tool impacts the performance
of the SMACK stack. This section describes the experiment setup and which steps are
taken to collect evaluation data.

54

4.1. Setup and Methodology

IoT Application

In case of the IoT-application the following setup is chosen, which is also reflected by the
architecture illustrated in Figure 3.2:

1. Launch the REST Monitor.

2. Launch the DC/OS cluster.

3. Deploy the SMACK stack.

4. Launch the JMX Extraction tool.

5. Deploy the IoT application.

6. Instantiate the ECS Load Generator.

7. Slowly increase the load by adding Docker container instances to ECS.
Slowly means five new containers each minute until 50 instances are up to give the
application and the SMACK stack time for warm-up. Then two containers per
minute are launched until 70 containers are running. After that, one container per
minute is added.

8. Evaluate the extracted metrics to see how much data the single services can handle
until the stack crashes.
Whether the stack is still healthy or not is determined by looking at the DC/OS
health status of each service. In addition the Akka application provides a web
interface with simple statistics which will be unavailable once the service crashes.

9. Stop the ECS Load Generator.

10. Restart / redeploy unhealthy services.

11. Launch the Scaling Tool.

12. Perform steps 6 to 9.

There are two runs which are almost identical.
In the first run, the stack is unsupervised and no resource re-distribution is performed.
This gives a baseline of how well the stack and the application perform in a default setup.
After the stack crashed all extracted metrics are stored in the REST Monitor which can
be then used to determine 1) when the stack or one component crashed exactly and 2)
how much data could be handled (total MB/s), as well as other metrics. Additionally
the information about the performance of each service is stored and can be evaluated.
In the second run the Scaling tool is launched, analyzing the stack and - if necessary -
scaling services up or down. Again, after the stack crashes under the heavy input of the

55

4. Evaluation

load generator, the metrics stored in the REST Monitor are analyzed.

As there is now statistical data available of both runs, the conclusion of whether the
tool worked as expected or not can be made. It is expected that the ingestion part of
the SMACK stack, which is Akka and Kafka, will crash first in this scenario, as the
application is mainly IO-bound.

The configuration of Kafka, Cassandra and is set to the defaults used by DC/OS,
while Akka is deployed within the custom application, which therefore needs a custom
configuration. This is shown in Source Code 4.2, which serves as input for the Marathon
framework to deploy the application.

1 {
2 "id": "sensor-ingestion",
3 "instances": 1,
4 "cpus":1,
5 "mem":1048,
6 "disk": 100,
7 "container":{
8 "docker":{
9 "forcePullImage":true,

10 "image":"bwedenik/sensor-ingestion",
11 "network":"HOST",
12 "privileged": false
13 },
14 "type":"DOCKER"
15 },
16 "labels":{
17 "HAPROXY_GROUP":"external",
18 "HAPROXY_0_PORT": "8083"
19 },
20 "portDefinitions": [
21 {
22 "port": 10099,
23 "protocol": "tcp",
24 "labels": {}
25 },
26 {
27 "port": 10100,
28 "protocol": "tcp",
29 "labels": {}
30 }
31],
32 "healthChecks": [
33 {
34 "protocol": "TCP",
35 "path": "/hello",
36 "portIndex": 0,
37 "gracePeriodSeconds": 300,
38 "intervalSeconds": 60,
39 "timeoutSeconds": 15,
40 "maxConsecutiveFailures": 3,
41 "ignoreHttp1xx": false
42 }

56

4.1. Setup and Methodology

43]
44 }

Source Code 4.2: Marathon Configuration for Akka Sensor Ingestion Application

The Spark driver for KafkaToCassandra, which is the number crunching job to parse the
incoming data and write it into the database, is configured with the following parameters:
spark.cores.max=2 --driver-memory 8G
spark.driver.cores=2 spark.executor.cores=2 --executor-memory 4G

1 spark.executor.extraJavaOptions=-Dcom.sun.management.jmxremote=true \
2 -Dcom.sun.management.jmxremote.port=8092 -Dcom.sun.management.jmxremote.ssl=false \
3 -Dcom.sun.management.jmxremote.authenticate=false
4 spark.driver.extraJavaOptions=-Dcom.sun.management.jmxremote=true \
5 -Dcom.sun.management.jmxremote.port=8092 -Dcom.sun.management.jmxremote.ssl=false \
6 -Dcom.sun.management.jmxremote.authenticate=false

Source Code 4.3: Spark JMX Deployment Configuration

Further, to be able to extract JMX values from Spark, the configuration shown in
Source Code 4.3 is required when deploying the driver.

Acceleration Prediction Application

The scenario of running this application in the SMACK stack is very similar to the
previous one:

1. Launch the REST Monitor.

2. Launch the DC/OS cluster.

3. Deploy the SMACK stack.

4. Launch the JMX Extraction tool.

5. Instantiate the IoT application.

6. Instantiate the ECS Load Generator (only a few instances to not overload the
system).

7. Wait for the database to be filled sufficiently.

8. Deploy the prediction application.

9. Let the data pipeline and the application work until enough predictions are provided.

57

4. Evaluation

10. Evaluate the extracted metrics to see how well the application performs.

11. Restart / redeploy unhealthy services.

12. Launch the Scaling Tool.

13. Execute step 9 and 10.

As described before, there are two runs required, one with and one without the Scaling
Tool. The difference between both runs is then analyzed and evaluated to conclude
the performance of the Scaling Tool. It is important to mention again, that the IoT
application is launched in this scenario with a dramatically reduced load from the ECS
Load Generator. There is just the need of IoT data in the database, but not a heavy
ingestion load.

The Prediction Data Analytics application itself is configured like this:
spark.cores.max=1 --driver-memory 2G
spark.driver.cores=1 spark.executor.cores=1 --executor-memory 1G
Also for this setup, the configuration from Source Code 4.3 is required when deploying
the Spark driver.

Evaluation Criteria

As not only RAM and CPU, but more specific characteristics like Akka’s mailbox size
are considered, relevant metrics are presented with respect to the evaluated application.

IoT Data Storage Application

In this application metrics concerning the data throughput are interesting. To give a
more complete of the whole stack some metrics are included which are not directly related
to throughput or latency. The relevant metrics are illustrated in Table 4.1.

Acceleration Prediction Application

As the setup of this application is only computational bound, it is not important to
consider the throughput of the Akka data ingestion and how many bytes were managed
by Kafka. The scenario focuses on the performance of the acceleration prediction, which
happens in the Spark job. Therefore only Spark metrics are considered.
In the course of this thesis only the build-in Spark metrics are considered, which reduces
the interesting ones illustrated in Table 4.2.

58

4.1. Setup and Methodology

Technology Metric Description

Akka KB per Second
Messages per Second
Processing Time How long does it take to process one message.
Time in Mailbox How long does one message have to wait in the

mailbox until it is processed.
Mailbox Size Number of total messages in the mailbox.

Kafka Bytes Out per Second
Bytes In per Second
Total Time Produce Total time it takes Kafka to serve a request.
Total Time FetchFollow Total time from the consumer’s request until the

data is received.
Total Time FetchConsumer Total time from the broker’s follower request

until the data is received.
Offline Partitions In case a partition loses its leader, it goes of-

fline and becomes inaccessible by producers and
consumers.

Under Replicated Partitions Indicates how many partitions are currently not
replicated fully.

Cassandra Read Latency
Write Latency
Load

Spark Message Processing Time
Memory Used
Total Processed Records

Table 4.1: Relevant IoT Data Storage Application Metrics

Technology Metric Description

Spark Message Processing Time Indicates how long it takes Spark to handle and
process a single message.

Complete Tasks With this metric one can tell how many tasks
were finished by Spark.

Table 4.2: Relevant Acceleration Prediction Application Metrics

59

4. Evaluation

4.2 Results

This section comprises the results of the executed benchmarks. The generated plots of
the described metrics are described and compared with each other.

To be able to better compare the values, two more variations of diagrams are added:

• Average:
The average values of all nodes, implemented With a shifting time window. This
can be used for metrics like time-in-mailbox, mailbox-size, and so on. The caption
is in form of Attribute_avg

• Sum:
Summed up values, also implemented with a shifting time window. This can be
used for metrics like kbytes-per-second, messages-per-second, etc. The caption is in
form of Attribute (sum)

4.2.1 IoT Data Storage Application

Akka

In Figure 4.2 one can see how many kilo bytes are handled by the Akka ingestion appli-
cation without the help of the Scaling Tool. First there is no input, as the stack is still
launching and the load generator was not started. After that, a steadily increasing load
gets up to about 24 MB/s (= 192 MBit/s), but does not exceed the value. Apparently
then the application was under too heavy load and the load generator was stopped. After
a recovery phase, the load was again increased steadily, this time reaching up to 34 MB/s
(= 272 MBit/s).
Figure 4.3 shows the same metric (each host is illustrated separately), but with the
interacting scaling tool. Additionally Figure 4.4 is showing the summed up ingested kilo
bytes and displays only one curve for a better comparability. One can observe, that that
after a certain load, new instances were added by the Scaling Tool. Further, there is one
instance which was killed by Mesos and restarted later on.
The increase of the load is similar to the previous experiment: First there is so much load
added that the system gets under too much stress and after a recovery phase, the load is
steadily increased again. In this scenario the peak is at about 59 MB/s (= 472 MBit/s).

Figure 4.5, 4.6 and 4.7 show a very similar behavior, as they represent the received
messages per second.
As one can see, there is this a sudden drop of messages-per-second in Figure 4.7. This is
a result of the sliding time window, as for this timestamp there is apparently just the
information of one node available, which is then of course a lower value than when adding
multiple ones. A clear observation which can be made, is that the run with the Scaling

60

4.2. Results

Tool performs better in terms of throughput.

Concerning the message processing time, Figure 4.8 shows a similar development as the
messages per second and kilo bytes per second. The time increases steadily, reaches the
plateau, drops to zero and then increases steadily after the recovery phase. An increase
of the processing time, means directly that the system gets under more stress and the
respons time gets slower.
Figure 4.9 illustrates the same metric but with enabled Scaling Tool, as well as Figure 4.10,
but with an averaged values over all hosts. As one can see, the message processing time
develops a bit smoother than the previous metrics. The increase is not as steep and in the
runs with the Scaling Tool, the three running instances provide an adequate processing
time even under heavy load. This behavior is desired and the response time is distributed
equally between the nodes, according to the plot.

Related to the processing time, there is the time in mailbox metric which is illustrated
in Figure 4.11 for the run without the Scaling Tool. Here the dramatically high peak
indicates, that the system cannot process the messages in time anymore. The sudden
increase gives a hint, that at the given time, the Akka application started to become
unresponsive. Comparing this with Figure 4.12 and Figure 4.13, which are the plots of
the Scaling Tool run, one can observe, that although there is a high peak right at the
beginning of the run, the system was able to recover immediately and the freshly added
instances had a significantly lower value than the existing one. This could be because the
mailbox of the existing instance is already filled with messages, while the new instances
obviously start with an empty mailbox. Similar as in the processing time plots, the load
is evenly balanced between the instances in the second half of the run, as the load is
increased.
The mailbox size itself is displayed in Figure 4.14, where the experiment is performed
without the Scaling Tool and in Figure 4.15 and Figure 4.16 with the enabled tool. As
expected, the mailbox size correlates to the message processing time and the time in
mailbox.

Kafka

In the data pipeline, Kafka is the second element and gets its data directly from the
Akka ingestion application, while the Spark job is polling from the topic. The consumed
data is measured in bytes per second, once illustrated as separate curve per host, once
summed up to be better comparable. Figure 4.17 and Figure 4.19 show the results of the
run before the Scaling Tool is active, while Figure 4.18 and Figure 4.20 illustrate the
same metric with the tool being enabled.
The curves are similar to the ones in Figure 4.2, 4.3 and 4.4, where the consumed
bytes of Akka are shown. The highest value of the uncontrolled run is about 33 MB/s,
while the supervised one reaches up to 57 MB/s in total, which is expected, as Akka
was already able to process more data. An interesting observation is, that the load is

61

4. Evaluation

Figure 4.2: Akka, Without Scaling Tool, KBytes per Second

not distributed equally between the Kafka brokers. For example the peak of 29 MB/s
one node 10-0-3-37 is about 371% higher than the one of 10-0-0-6 with just 7.8
MB/s, illustrated in Figure 4.18. The phenomena of the sudden drops in the summed up
plots was already explained above but should be mentioned here again as it occurs in
Figure 4.20 and a result of the sliding time window.
The "BytesOutPerSecond" curve develop very similar to the consumed bytes and can be
seen in Figure 4.21, 4.23, 4.22 and 4.24.

To see whether Kafka got under too heavy stress, it is required to evaluate, whether there
where any under replicated or even offline partitions. In the run without the Scaling
Tool the load was apparently not heavy enough to bring Kafka down, which is reflected
in no under replicated partitions, Figure 4.27, and no offline partitions, which can be
seen in Figure 4.25. During the experiment with enabled Scaling Tool, the load became
too much for Kafka to handle it and partitions were lost. Close to the peak of processed
bytes, there were up to 53 under replicated partitions, Figure 4.28, and two partitions
were offline, illustrated in Figure 4.26.

Part of the collected metrics are the fetch consumer, fetch follower and produce time,
which give an insight in how quick Kafka can interact with consumers and producers. In
Figure 4.29, which reflects the total time in milliseconds of fetching a consumer, the run

62

4.2. Results

Figure 4.3: Akka, With Scaling Tool, KBytes per Second, Separated by Host

before enabling the Scaling Tool is shown. When inspecting the plot, one can observe
again that the load is not distributed equally between the nodes. Further the maximum
is at about 12000 ms on node 10-0-0-6, while the maximum in Figure 4.30 is about
10240 on the same node but with higher load, as the Scaling Tool already scaled up
Akka and the load generator fired more requests. Interestingly, there are less fluctuations,
which could be because the Spark job polls less frequently due to the larger amounts of
data.
Another maybe surprising outlier can be seen in Figure 4.31 where the total time for
fetching a follower increases dramatically as the data ingestion starts. After about 12
minutes the service recovers and the time starts to decrease and stabilize. This initial
peak is not present in Figure 4.32, which represents the latter run, possibly because there
is no initial phase and the brokers were already warmed up.
The same interesting behavior occurs when measuring the produce time, as illustrated in
Figure 4.33, but not as dramatic as for the fetch follower time. Similarly the produce time
shows no outliers in the run with the Scaling Tool enabled, illustrated in Figure 4.34.

Spark

When observing the memory usage of Spark, one can observe that it is increasing over
time. After completing its tasks, Spark releases memory, but as can be seen, the next task
allocates more memory than the previous one. This behavior is reflected in Figure 4.35,

63

4. Evaluation

Figure 4.4: Akka, With Scaling Tool, KBytes per Second, Summed up

where these "steps" can be seen clearly. In the run with the active Scaling Tool, more
memory is allocated in total, but the steps are larger, as displayed in Figure 4.36.

Interestingly the OneMinuteRate of the message processing time is measurably lower in
the run with the Scaling Tool, shown in Figure 4.37, although there is more overall load
on the system. Additionally there is a high peak as the driver is started, which could be
because of a high initial load from the first poll from the Kafka topic. Figure 4.38 shows
the evenly low processing time in the latter run.

Cassandra

The total load of Cassandra is reflected in Figure 4.39, without the Scaling Tool, and
in Figure 4.40 with it. In the plots one can see, that in the beginning, the load did not
increase, which is because the monitor was already active before the load generator was
launched. Further it can be observed, that there are two major stagnations of the load in
Figure 4.40, which is when the data ingestion was overloaded and thus no more data was
written into the Cassandra database.
Figure 4.41 illustrates the read latency, which is quite constant except for one outlier,
which only occurs on one node and thus should not have any impact on the overall
performance. Comparing it with Figure 4.42, where the same metric is illustrated but
with enabled Scaling Tool, there are two outliers, one of them affecting two nodes at the

64

4.2. Results

Figure 4.5: Akka, Without Scaling Tool, Messages per Second

same time. This happens at the same time as the first peak in the ingestion occurs, but
luckily Cassandra could recover itself from the stress.

Way more fluctuation than in the read latency can be observed in the write latency. In
both runs, i.e. with and without the Scaling Tool, the latency is significantly higher on
one node, which can be seen in Figure 4.43 and Figure 4.44. One explanation for the
fluctuations, which look evenly, would be the Spark Streaming job which works internally
with batches.

4.2.2 Acceleration Prediction Application

As mentioned before in Section 4.1.3, the defined metrics to be measured for this applica-
tion only comprise the Spark components of the whole stack.

Figure 4.45 shows the OneMinuteRate of the message processing time of the Spark driver,
supervising the prediction. The values reach from about 21 to a maximum of around 55
21 milliseconds, while the average is at about 40 ms.
When looking at how many tasks have been completed, which is shown in Figure 4.46, one
can see that the development of the curve is almost linear. In the time between 07:54:56
and 09:13:44, which equals a difference of 1h 18min 48s, 96017 tasks were complete.

65

4. Evaluation

Figure 4.6: Akka, With Scaling Tool, Messages per Second, Separated by Host

This gives an average of 20.3 tasks per second for the run without the enabled Scaling Tool.

When enabling the Scaling Tool the restarted Spark job shows the same behavior in
terms of message processing time, Figure 4.47, and also a linear development of the
complete tasks metric, illustrated in Figure 4.48.
The Scaling Tools now scaled up the Spark job, which requires a redeployment and thus
a new Spark driver. In Figure 4.49, the message processing time of the second instance,
i.e. the one scaled up, is displayed. It can be observed, that the values are significantly
lower than in Figure 4.45 and reach from about 13 to 34 milliseconds. In the beginning
the time stays at around 20ms and increases later on, to an average of about 30. Further
there is a drop again, which could be explained because Spark internally optimizes the
scheduler or because an additional executer was launched.
Also in terms of completed tasks this run performs better, which is shown in Figure 4.50.
In the time between 10:21:53 and 11:01:06, which equals a difference of 39min 12s, 128589
tasks were complete. The calculated average is 54.6 tasks per second, which is about
169% faster than before.

66

4.3. Discussion

Figure 4.7: Akka, With Scaling Tool, Messages per Second, Summed up

4.3 Discussion

In this section the detailed results are summarized and the important aspects are
highlighted. Further open issues and restrictions are discussed to show up possible
limitations.

4.3.1 Summary

As it can be seen in the results, Akka is the bottleneck of the IoT data storage application.
This can be explained because it is the central ingestion point which has to handle all
incoming requests. Further there is no heavy computational logic inside the data pipeline
which could result in a bottleneck.
It is remarkable, that the use of the Scaling Tool results in a significantly higher through-
put in terms of MBit/s, increasing the maximum of 272 when running without the tool
to 472 when enabling it. The ability to scale up the Akka based service before getting
unresponsive is another advantage of the Scaling Tool. This behaviour can be observed
when looking at the "time in mailbox" metric, where the system is able to recover even
though there is a visible trend to a decreasing response time. With the mailbox size, a
similar situation can be seen.
Kafka shows an expected behaviour in terms of bytes-in and bytes-out, as it correlates
to the ones ingested by the Akka based sensor-ingestion. Interestingly, Kafka did not

67

4. Evaluation

Figure 4.8: Akka, Without Scaling Tool, Processing Time

distribute the load equally between all available brokers, but it apparently did not affect
the performance. The most important conclusion about the extracted Kafka metrics is,
that only the run with the activated Scaling Tool was able to put enough pressure on
Kafka to overload it. This is clearly visible when looking at the under replicated and
offline partitions, where at the peak 53 partitions were under replicated and two offline.
Spark shows a lower message processing time when using the Scaling Tool, even though
there is a higher load to handle.
When investigating Cassandra’s performance metrics, it can be seen, that there is a - as
expected - higher load to process. Notably the read and write latency did not change
significantly during the experiments.

In the experiment concerning the acceleration prediction application, only the Spark
metrics are considered as explained in Section 4.1.3. The results show, that the message
processing time could be reduced by using the Scaling Tool, as well as the number of
completed tasks increased. Based on the calculated average of the task completion, the
run with the enabled Scaling Tool was about 169% faster.

4.3.2 Challenges & Restrictions

One challenge with the described setup of the benchmark is clearly that the comparison
of the runs depends highly on how the initial setup, i.e. the run without the scaling

68

4.3. Discussion

Figure 4.9: Akka, With Scaling Tool, Processing Time, Separated by Host

tool, looks like. Assuming that the resources are distributed in the worst possible way
for the application, even a poor implementation of the Scaling tool will improve the
performance. On the other hand, if the resources are already perfectly distributed
between the respective services, it is obvious that the Scaling tool will not be able to
further improve the performance.
To overcome this issue an intuitive default parametrization is chosen to initially create
and launch the stack.

Another problem which can occur is that the heavy load of the load generator is too
much for the whole cluster. This means it is not the stack or the respective services
which do not scale correctly, but a network bottleneck causing the stack to fail. In the
worst case the effect would be the same as a DDoS attack on the DC/OS cluster. It
would cause the unavailability of the whole system or get some of the nodes offline.
On way to overcome this problem it would be possible to create a stack big enough to
surely be able to handle the load, while the services are running on only a few nodes.
But again there are problems, as the nodes with the services running on it will still have
to somehow process the data which then needs to be send to it, requiring an additional
load balancing queue. Additionally the Scaling tool would of course use the available
resources and scale up until all nodes are fully covered. But then the load generator
would also need to be scaled to be able to put enough pressure on the stack to get it to

69

4. Evaluation

Figure 4.10: Akka, With Scaling Tool, Processing Time, Averaged over Hosts

its limits.

The general problem of generating enough requests to get a whole cluster - which
is designed to handle heavy load - to its knees is also considerable. Thanks to the
implementation of the containerized solution of the load generator this task can be
achieved with just a little effort by AWS ECS. With the service a large number of nodes
can be combined to a powerful cluster, dedicated to permanently fire requests to the
DC/OS cluster. Of course this can get expensive very many nodes are required to reach
the critical mass. Gladly the performance requirements for these nodes are quite low
in terms of CPU, RAM and disk space. Due to this, it is possible to still launch many
nodes but with less powerful hardware, which significantly reduces costs.

70

4.3. Discussion

Figure 4.11: Akka, Without Scaling Tool, Time in Mailbox

Figure 4.12: Akka, With Scaling Tool, Time in Mailbox, Separated by Host

71

4. Evaluation

Figure 4.13: Akka, With Scaling Tool, Time in Mailbox, Summed up

Figure 4.14: Akka, Without Scaling Tool, Mailbox Size

72

4.3. Discussion

Figure 4.15: Akka, With Scaling Tool, Mailbox Size, Separated by Host

Figure 4.16: Akka, With Scaling Tool, Mailbox Size, Summed up

73

4. Evaluation

Figure 4.17: Kafka, Without Scaling Tool, Bytes In, Separated by Host

Figure 4.18: Kafka, With Scaling Tool, Bytes In, Separated by Host

74

4.3. Discussion

Figure 4.19: Kafka, Without Scaling Tool, Bytes In, Summed up

Figure 4.20: Kafka, With Scaling Tool, Bytes In, Summed up

75

4. Evaluation

Figure 4.21: Kafka, Without Scaling Tool, Bytes Out, Separated by Host

Figure 4.22: Kafka, With Scaling Tool, Bytes Out, Separated by Host

76

4.3. Discussion

Figure 4.23: Kafka, Without Scaling Tool, Bytes Out, Separated by Host

Figure 4.24: Kafka, With Scaling Tool, Bytes Out, Separated by Host

77

4. Evaluation

Figure 4.25: Kafka, Without Scaling Tool, Offline Partitions

Figure 4.26: Kafka, With Scaling Tool, Offline Partitions

78

4.3. Discussion

Figure 4.27: Kafka, Without Scaling Tool, Under Replicated Partitions

Figure 4.28: Kafka, With Scaling Tool, Under Replicated Partitions

79

4. Evaluation

Figure 4.29: Kafka, Without Scaling Tool, Fetch Consumer Time, Separated by Host

Figure 4.30: Kafka, With Scaling Tool, Fetch Consumer Time, Separated by Host

80

4.3. Discussion

Figure 4.31: Kafka, Without Scaling Tool, Fetch Follower Time, Separated by Host

Figure 4.32: Kafka, With Scaling Tool, Fetch Follower Time, Separated by Host

81

4. Evaluation

Figure 4.33: Kafka, Without Scaling Tool, Produce Time, Separated by Host

Figure 4.34: Kafka, With Scaling Tool, Produce Time, Separated by Host

82

4.3. Discussion

Figure 4.35: Spark, Without Scaling Tool, Memory Used in MB

Figure 4.36: Spark, With Scaling Tool, Memory Used in MB

83

4. Evaluation

Figure 4.37: Spark, Without Scaling Tool, Message Processing Time

Figure 4.38: Spark, With Scaling Tool, Message Processing Time

84

4.3. Discussion

Figure 4.39: Cassandra, Without Scaling Tool, Load

Figure 4.40: Cassandra, With Scaling Tool, Load

85

4. Evaluation

Figure 4.41: Cassandra, Without Scaling Tool, Read Latency

Figure 4.42: Cassandra, With Scaling Tool, Read Latency

86

4.3. Discussion

Figure 4.43: Cassandra, Without Scaling Tool, Write Latency

Figure 4.44: Cassandra, With Scaling Tool, Write Latency

87

4. Evaluation

Figure 4.45: Acceleration Prediction, Without Scaling Tool - First Instance, Message
Processing Time

Figure 4.46: Acceleration Prediction, Without Scaling Tool - First Instance, Complete
Tasks

88

4.3. Discussion

Figure 4.47: Acceleration Prediction, Without Scaling Tool - Second Instance, Message
Processing Time

Figure 4.48: Acceleration Prediction, Without Scaling Tool - Second Instance, Complete
Tasks

89

4. Evaluation

Figure 4.49: Acceleration Prediction, With Scaling Tool - Second Instance, Message
Processing Time

Figure 4.50: Acceleration Prediction, With Scaling Tool - Second Instance, Complete
Tasks

90

CHAPTER 5
Conclusion

In this chapter the content of the thesis is summarized and the results are discussed.
Further, open issues and possible future work are addressed.

5.1 Open Issues & Future Work

In this section the yet unsolved challenges and possible future work are discussed, while
the focus lies on the parts which could benefit most from improvement.

As illustrated in Figure 1.4, the Kolmogorov Smirnov test shows, that the prediction
correlates with the real measured values. Still there is an obvious bias, which could be
eliminated or at least decreased. The quality of the prediction could be further improved
in many ways, from fine-tuning the used ARIMA model, to using highly sophisticated
machine learning algorithms to produce very accurate predictions. As this is not the core
topic of the thesis, it is left open as possible future work.
In the current state, the predictions of the Acceleration Prediction Application are
exposed via a simple REST API. This API is subject of possible further extension,
like providing historical data as well as a filtered view per device. Depending on the
underlying business case, a control panel or dashboard could be implemented to provide
information of how the system will behave, based on the calculated predictions.

Unfortunately scaling down is not supported for Kafka and Cassandra, due to the restric-
tions of DC/OS [15], [8]. As this limitation is not easy to overcome with a workaround,
the suggestion is to wait until Mesosphere provides this functionality and then upgrading
to the latest version.

91

5. Conclusion

In the current state, many JMX values are extracted and sent to the monitoring service.
The selection of what to extract could be refined further to reduce overhead and only
focus on what is important. Another possible strategy would be to implement a broader
spectrum of extracted values, and then use a dashboard, like for example DataDog, to
provide real-time analysis of the cluster. As the degree of information is high enough for
the purpose of this thesis, this improvement is not considered crucial.

Currently the threshold management in the Scaling Tool is hard-coded and static, which
is an obvious place for further improvements. To provide dynamic adoptions to the
cluster size or the requirements during operation, a dashboard for system administrators
could be implemented where the thresholds can be adjusted during runtime. Another
possibility would be to add machine learning algorithms, to improve the accuracy of
detecting when a system or one component is under heavy stress and act proactively. As
this is probably a very lucrative investment, this improvement should be prioritized.
In addition to the CLI, a GUI could be designed to make the whole user experience with
the Scaling Tool more valuable.

Performing more and extended experiments with the SMACK stack offers a lot of
potential for future work. On the one hand, more different kinds of applications could
be deployed and investigated in terms of scalability. On the other hand, it would be
interesting to measure how well the system behaves on an even bigger cluster. There
are many possibilities to perform experiments with this technology stack, including the
tools developed in the course of this thesis. As the SMACK stack gains popularity,
deeper investigations concerning its behavior under various situations would be a valuable
investment of research time and budget.

5.2 Summary

As Big Data platforms are becoming more and more relevant in today’s applications,
new challenges appear during engineering and operating those stacks. In this work, a
Big Data analytics framework for evaluating automated elastic scalability of the SMACK
stack is developed and introduced. The challenges which are tried to be solved by the
framework can be summarized as follows:

• Deploying large scale applications
This can be challenging, especially in case productive applications need to be
deployed and orchestrated automatically.

• Initial setup
The provided configuration allows the cluster manager to allocate resources for the
respective applications. It requires experience to do it "first time right".

92

https://www.datadoghq.com/

5.2. Summary

• Monitoring
As there are plenty of monitoring tools available on the market, picking the right
one can be a challenge. Further, the extraction of metrics which give valuable
insight into an application’s health is crucial.

• Reacting on the monitored metrics - i.e. Scaling when needed
A modern monitoring tool is expected to provide reactive actions in case the
monitored metrics diverge from the defined thresholds. Being able to scale different
kinds of applications can be difficult.

By providing an infrastructure launching tool, the deployment of the whole SMACK
stack can be performed easily by executing two command line scripts. The initial setup
can be deduced from the provided deployment blueprints, which give a recommendation
about how to distribute available resources for a given application. With the help of the
integrated monitoring metrics extraction service and the monitoring metrics aggregation
service, the running services can be observed in detail. In case a service under heavy load
and is close to its limits, the scaling service of the framework takes care to automatically
or semi-automatically scale up the respective component.

As part of the contribution, two real world applications have been developed in order to
provide a valid base for the evaluation of the framework. The "IoT Data Storage Appli-
cation" is mainly I/O bound and represents applications which require high throughput.
In case of the "Acceleration Prediction Application", a prediction based on IoT data is
performed, which is heavily computational intense.

To evaluate the actual impact of the framework, empirical experiments have been con-
ducted. The setup comprises one run without the framework - i.e. unsupervised, which
serves as a baseline, and a supervised one, in which the framework automatically scales
the respective services. When analyzing the measured results, both applications benefit
from the scaling service.
An increase from 272 to 472 MBit/s was measured when running the "IoT Data Storage
Application", as well as other metrics like the time-in-mailbox of a message could be
improved. The computational bound "Acceleration Prediction Application" benefited in
form of shorter message processing times and an overall faster task completion.

Concluding it can be said, that the framework enables developers and system administra-
tors to more easily launch and deploy the SMACK stack into the cloud. The automated
monitoring and scaling reduces manual efforts and pitfalls and is proven to improve
the performance of I/O or computational bound applications. Open issues and possible
future work are discussed in the previous section in detail.

93

List of Figures

1.1 Abstract View of Zuehlke HackZurich IoT Application 4
1.2 Detailed View of the Zuehlke HackZurich IoT Application 5
1.3 Detailed View of the Acceleration Prediction Application 7
1.4 Kolmogorov Smirnov Test - Prediction versus Real 8
1.5 Spark vs. Hadoop - "Logistic regression in Hadoop and Spark" [6] 11
1.6 "End-to-end PageRank performance (20 iterations, 3.7B edges)" [6] 12
1.7 Spark cluster with two executor nodes [6] 13
1.8 Cassandra Table [27] . 13
1.9 Multiple Broker / Multiple Node Kafka Cluster [31] 15
1.10 SMACK Stack Illustration [15] . 17

2.1 Marathon LB Autoscale Architecture [17] 27

3.1 Framework Target Architecture . 33
3.2 Framework Deployment View . 34
3.3 JMX Architecture Overview . 35
3.4 SMACK REST Monitoring Service . 39
3.5 SMACK Controller . 42

4.1 Overview of Amazon WebServices Elastic Cloud Computing Container Service
[2] . 52

4.2 Akka, Without Scaling Tool, KBytes per Second 62
4.3 Akka, With Scaling Tool, KBytes per Second, Separated by Host 63
4.4 Akka, With Scaling Tool, KBytes per Second, Summed up 64
4.5 Akka, Without Scaling Tool, Messages per Second 65
4.6 Akka, With Scaling Tool, Messages per Second, Separated by Host 66
4.7 Akka, With Scaling Tool, Messages per Second, Summed up 67
4.8 Akka, Without Scaling Tool, Processing Time 68
4.9 Akka, With Scaling Tool, Processing Time, Separated by Host 69
4.10 Akka, With Scaling Tool, Processing Time, Averaged over Hosts 70
4.11 Akka, Without Scaling Tool, Time in Mailbox 71
4.12 Akka, With Scaling Tool, Time in Mailbox, Separated by Host 71
4.13 Akka, With Scaling Tool, Time in Mailbox, Summed up 72
4.14 Akka, Without Scaling Tool, Mailbox Size 72

95

4.15 Akka, With Scaling Tool, Mailbox Size, Separated by Host 73
4.16 Akka, With Scaling Tool, Mailbox Size, Summed up 73
4.17 Kafka, Without Scaling Tool, Bytes In, Separated by Host 74
4.18 Kafka, With Scaling Tool, Bytes In, Separated by Host 74
4.19 Kafka, Without Scaling Tool, Bytes In, Summed up 75
4.20 Kafka, With Scaling Tool, Bytes In, Summed up 75
4.21 Kafka, Without Scaling Tool, Bytes Out, Separated by Host 76
4.22 Kafka, With Scaling Tool, Bytes Out, Separated by Host 76
4.23 Kafka, Without Scaling Tool, Bytes Out, Separated by Host 77
4.24 Kafka, With Scaling Tool, Bytes Out, Separated by Host 77
4.25 Kafka, Without Scaling Tool, Offline Partitions 78
4.26 Kafka, With Scaling Tool, Offline Partitions 78
4.27 Kafka, Without Scaling Tool, Under Replicated Partitions 79
4.28 Kafka, With Scaling Tool, Under Replicated Partitions 79
4.29 Kafka, Without Scaling Tool, Fetch Consumer Time, Separated by Host . 80
4.30 Kafka, With Scaling Tool, Fetch Consumer Time, Separated by Host . . . 80
4.31 Kafka, Without Scaling Tool, Fetch Follower Time, Separated by Host . . . 81
4.32 Kafka, With Scaling Tool, Fetch Follower Time, Separated by Host 81
4.33 Kafka, Without Scaling Tool, Produce Time, Separated by Host 82
4.34 Kafka, With Scaling Tool, Produce Time, Separated by Host 82
4.35 Spark, Without Scaling Tool, Memory Used in MB 83
4.36 Spark, With Scaling Tool, Memory Used in MB 83
4.37 Spark, Without Scaling Tool, Message Processing Time 84
4.38 Spark, With Scaling Tool, Message Processing Time 84
4.39 Cassandra, Without Scaling Tool, Load 85
4.40 Cassandra, With Scaling Tool, Load . 85
4.41 Cassandra, Without Scaling Tool, Read Latency 86
4.42 Cassandra, With Scaling Tool, Read Latency 86
4.43 Cassandra, Without Scaling Tool, Write Latency 87
4.44 Cassandra, With Scaling Tool, Write Latency 87
4.45 Acceleration Prediction, Without Scaling Tool - First Instance, Message

Processing Time . 88
4.46 Acceleration Prediction, Without Scaling Tool - First Instance, Complete

Tasks . 88
4.47 Acceleration Prediction, Without Scaling Tool - Second Instance, Message

Processing Time . 89
4.48 Acceleration Prediction, Without Scaling Tool - Second Instance, Complete

Tasks . 89
4.49 Acceleration Prediction, With Scaling Tool - Second Instance, Message Pro-

cessing Time . 90
4.50 Acceleration Prediction, With Scaling Tool - Second Instance, Complete Tasks 90

96

List of Tables

3.1 SMACK REST Monitoring Service API 40
3.2 Deployment Blueprint: I/O Bound Application 44
3.3 Deployment Blueprint: Computational Bound Application 44
3.4 Relevant Kafka JMX Metrics . 45
3.5 Relevant Cassandra JMX Metrics . 46
3.6 Relevant Akka JMX Metrics . 47
3.7 Relevant Spark JMX Metrics . 48

4.1 Relevant IoT Data Storage Application Metrics 59
4.2 Relevant Acceleration Prediction Application Metrics 59

97

List of Listings

4.1 Sensor Data Content Example [20] . 54
4.2 Marathon Configuration for Akka Sensor Ingestion Application 57
4.3 Spark JMX Deployment Configuration . 57

99

Bibliography

[1] Akka.io. https://akka.io/. Accessed: 24.07.2018.

[2] Amazon WebServices. https://aws.amazon.com/. Accessed: 24.07.2018.

[3] Apache Cassandra. https://en.wikipedia.org/wiki/Apache_Cassandra. Accessed:
24.07.2018.

[4] Apache Kafka. https://kafka.apache.org/. Accessed: 24.07.2018.

[5] Apache Mesos. https://mesos.apache.org/. Accessed: 24.07.2018.

[6] Apache Spark. https://spark.apache.org/. Accessed: 24.07.2018.

[7] Apache Zookeeper. https://zookeeper.apache.org/. Accessed: 24.07.2018.

[8] Cassandra Limitations, GitHub.com. https://github.com/mesosphere/dcos-
cassandra-service/blob/master/docs/limitations.md. Accessed: 24.07.2018.

[9] DataDog Cassandra Metrics. https://github.com/DataDog/the-
monitor/blob/master/cassandra/how_to_collect_cassandra_metrics.md. Accessed:
24.07.2018.

[10] DataDog Kafka Metrics. https://github.com/DataDog/the-
monitor/blob/master/kafka/monitoring-kafka-performance-metrics.md. Accessed:
24.07.2018.

[11] DC/OS. https://dcos.io/. Accessed: 24.07.2018.

[12] HackZurich. http://hackzurich.com/. Accessed: 24.07.2018.

[13] Jmxterm. http://wiki.cyclopsgroup.org/jmxterm/. Accessed: 24.07.2018.

[14] Kamon. http://kamon.io. Accessed: 24.07.2018.

[15] Mesosphere. https://mesosphere.com/. Accessed: 24.07.2018.

[16] Mesosphere Marathon-Autoscale. https://github.com/mesosphere/marathon-
autoscale. Accessed: 24.07.2018.

101

[17] Mesosphere Marathon-LB-Autoscale. https://github.com/mesosphere/marathon-lb-
autoscale. Accessed: 24.07.2018.

[18] Microscaling in a Box. http://microscaling.com/. Accessed: 24.07.2018.

[19] Reactive Manifesto. http://www.reactivemanifesto.org. Accessed: 24.07.2018.

[20] Sensor Data Overview. https://github.com/Zuehlke/hackzurich-sensordata-
ios/blob/master/README.md. Accessed: 24.07.2018.

[21] Sensor Data Repository. https://github.com/Zuehlke/hackzurich-sensordata-ios.
Accessed: 24.07.2018.

[22] Zuehlke Engineering AG. https://www.zuehlke.com/. Accessed: 24.07.2018.

[23] Zuehlke HackZurich Repository. https://github.com/Zuehlke/hackzurich-
sensordataanalysis. Accessed: 24.07.2018.

[24] Zuehlke S.H.M.A.C.K. Repository. https://github.com/Zuehlke/SHMACK. Ac-
cessed: 24.07.2018.

[25] D. Agrawal, S. Das, and A. El Abbadi. Big data and cloud computing: current state
and future opportunities. In Proceedings of the 14th International Conference on
Extending Database Technology, pages 530–533. ACM, 2011.

[26] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications
of the ACM, 53(4):50–58, 2010.

[27] A. Chebotko, A. Kashlev, and S. Lu. A big data modeling methodology for apache
cassandra. In Big Data (BigData Congress), 2015 IEEE International Congress on,
pages 238–245. IEEE, 2015.

[28] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal. Dynamic scaling of web ap-
plications in a virtualized cloud computing environment. In E-Business Engineering,
2009. ICEBE’09. IEEE International Conference on, pages 281–286. IEEE, 2009.

[29] A. Cuzzocrea, I.-Y. Song, and K. C. Davis. Analytics over large-scale multidimen-
sional data: the big data revolution! In Proceedings of the ACM 14th international
workshop on Data Warehousing and OLAP, pages 101–104. ACM, 2011.

[30] R. Estrada and I. Ruiz. Big data, big challenges. In Big Data SMACK, pages 3–16.
Springer, 2016.

[31] N. Garg. Apache Kafka. Packt Publishing Ltd, 2013.

[32] L. Gu and H. Li. Memory or time: Performance evaluation for iterative operation on
hadoop and spark. In High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_-
EUC), 2013 IEEE 10th International Conference on, pages 721–727. IEEE, 2013.

102

[33] P. Haller. On the integration of the actor model in mainstream technologies: the scala
perspective. In Proceedings of the 2nd edition on Programming systems, languages
and applications based on actors, agents, and decentralized control abstractions, pages
1–6. ACM, 2012.

[34] J. Han, E. Haihong, G. Le, and J. Du. Survey on nosql database. In Pervasive
computing and applications (ICPCA), 2011 6th international conference on, pages
363–366. IEEE, 2011.

[35] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan. The
rise of "big data" on cloud computing: Review and open research issues. Information
Systems, 47:98–115, 2015.

[36] C. Hewitt, P. Bishop, and R. Steiger. Session 8 formalisms for artificial intelligence
a universal modular actor formalism for artificial intelligence. In Advance Papers of
the Conference, volume 3, page 235. Stanford Research Institute, 1973.

[37] T. J. Hofmeijer, S. O. Dulman, P. G. Jansen, and P. J. Havinga. Dcos, a real-time
light-weight data centric operating system. 2004.

[38] D. Kakadia. Apache Mesos Essentials. Packt Publishing Ltd, 2015.

[39] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for log
processing. In Proceedings of the NetDB, pages 1–7, 2011.

[40] A. McAfee, E. Brynjolfsson, T. H. Davenport, et al. Big data: the management
revolution. Harvard business review, 90(10):60–68, 2012.

[41] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin. Fast data in the era of big data:
Twitter’s real-time related query suggestion architecture. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data, pages 1147–1158.
ACM, 2013.

[42] D. Namiot. On big data stream processing. International Journal of Open Informa-
tion Technologies, 3(8):48–51, 2015.

[43] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, and
S. Mankovskii. Solving big data challenges for enterprise application performance
management. Proceedings of the VLDB Endowment, 5(12):1724–1735, 2012.

[44] R. Ranjan. Streaming big data processing in datacenter clouds. IEEE Cloud
Computing, 1(1):78–83, 2014.

[45] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita. Big data analytics in the cloud: Spark
on hadoop vs mpi/openmp on beowulf. Procedia Computer Science, 53:121–130,
2015.

103

[46] B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud computing
systems. NCM, 9:44–51, 2009.

[47] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using predictive
models for workload forecasting. In Cloud Computing (CLOUD), 2011 IEEE
International Conference on, pages 500–507. IEEE, 2011.

[48] P. Russom et al. Big data analytics. TDWI best practices report, fourth quarter,
19:40, 2011.

[49] J. G. Shanahan and L. Dai. Large scale distributed data science using apache spark.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2323–2324. ACM, 2015.

[50] S. Tasharofi, P. Dinges, and R. E. Johnson. Why do scala developers mix the actor
model with other concurrency models? In European Conference on Object-Oriented
Programming, pages 302–326. Springer, 2013.

[51] D. Wampler. Fast data: Big data evolved. Lightbend white paper., 2016.

[52] R. Wilcox. Kolmogorov–smirnov test. Encyclopedia of biostatistics, 2005.

[53] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

[54] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache spark: A unified engine for big data
processing. Communications of the ACM, 59(11):56–65, 2016.

104

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Motivating Scenarios
	Real World IoT Data Storage Application
	Real World Acceleration Prediction Application

	Research Challenges
	Background
	Akka
	Apache Spark
	Apache Cassandra
	Kafka
	Mesos
	SMACK Stack
	Reactive Systems

	Thesis Organization
	Methodology

	Related Work
	Literature Studies
	Cloud Computing & Big Data
	SMACK Stack
	Big Data Frameworks
	Streaming
	Languages & Programming Models
	Data Analytics

	Comparison and Summary of Existing Approaches

	A Framework for Automated Monitoring and Scaling of the SMACK Stack
	The SMACK Monitoring Metrics and Elasticity Actions
	Kafka
	Cassandra
	Spark
	Akka
	Mesos

	Framework for Automated Monitoring and Scaling
	Framework Architecture Overview
	Monitoring Metrics Extraction Service
	Monitoring Metrics Aggregation Service
	Scaling Service

	Framework Management Tools and Predefined Blueprints
	Launching Tool
	Blueprints

	Evaluation
	Setup and Methodology
	Load Generator and Stress Test
	Sensor Data Overview
	Experiment Setup

	Results
	IoT Data Storage Application
	Acceleration Prediction Application

	Discussion
	Summary
	Challenges & Restrictions

	Conclusion
	Open Issues & Future Work
	Summary

	List of Figures
	List of Tables
	List of Listings
	Bibliography

