
     

    
 
 

 

DIPLOMARBEIT 

 

Vehicle Routing Problem of the 
Car Distribution in Central Europe 

 
 

zur Erlangung des akademischen Grades 

Diplom-Ingenieur 

im Rahmen des Studiums 

Statistik-Wirtschaftsmathematik 

eingereicht von 

Georg Schett 
Matrikelnummer 01129268 

 
 
 
 
ausgeführt am Institut für Stochastik und Wirtschaftsmathematik 
der Fakultät für Mathematik und Geoinformation der Technischen Universität Wien  
 
 
 
 
Betreuung 
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gernot Tragler 
 
 
 
 
 
Wien, 21.09.2018     
 (Unterschrift Verfasser) (Unterschrift Betreuer) 

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Abstract

Today’s freight transport market in Central Europe is characterized by a stagnating total

transport volume combined with an increasing volatility of the transport requests. At the

same time, in order to reduce the emission of greenhouse gases, more and more transports

should be transferred from the road to more environmentally friendly transport modes. This,

however, conflicts with the increasing volatility of the transport requests as a truck is more

flexible in comparison to a train or a barge. In this thesis, on basis of the example of the

car distribution in Central Europe we develop a model describing the underlying vehicle

routing problem to be able to evaluate different fleet compositions of transport vehicles and

to show up more environmentally friendly ways of transport. To solve the resulting mixed

integer linear program, we present an exact optimization algorithm as well as a tabu-search

heuristic. At the end of the thesis we apply both algorithms on an example case of real-world

transportation data of the car distribution and compare the performance of the algorithms.
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1 Introduction

The car transportation sector faces the problem that the needed transport capacities are hard to

predict, even for the near future. The consequence is a short-termed decision making to account

for the high degree of planning insecurity and as a result the freight transportation becomes

ecologically and economically inefficient. To address this problem, the Austrian Ministry for

Transport, Innovation and Technology financed the research project “Intelligente Vernetzung

von Prognose, Planung und Optimierung zur Gestaltung nachhaltiger Transportketten”, or in

short IPPO. Some of the project’s results can be found in Brunnthaller and Stein (2017).

The companies involved in the project were the two application-oriented research organizations

Fraunhofer Austria and RISC Software GmbH as well as the freight forwarder Hödlmayr In-

ternational AG, who is specialized in vehicle logistics. I started working at Fraunhofer Austria

besides my studies in December 2016 and worked there almost solely on the research project

IPPO. My task was to find a way to estimate the distance traveled by different vehicle fleet

compositions and soon it was clear that the only way to answer this question reasonably was

by solving the underlying vehicle routing problem (VRP).

I developed an exact solution approach to solve the problem, but unfortunately it is unlikely

that this approach is expedient for large problem instances. In this thesis, we present the results

I derived in the course of the project IPPO and also introduce an alternative approach to be

able to solve larger instances of the vehicle routing problem.

1.1 Problem Description

The problem we are going to focus on can be described as follows: On predefined transport

relations a certain number of cars has to be transported from factories to turnover points within

a month. Cars can in general be transported with three different types of vehicles, namely with

a truck, a train or a barge, but not all transport modes are available for all transport relations.

Each mode of transport has a fixed number of cars it can carry on a single tour, but it does

not have to be the same for each relation as it largely depends on the type of cars that have

to be transported. Furthermore, the travel costs and distance for each mode of transport and

for each relation is known and each vehicle has a maximum number of kilometers it can travel

within a month.

Now the task of the vehicle routing problem is to find the solution with the minimum total

costs so that all transport demands are fulfilled, while the route of each transport vehicle is a

closed walk, i.e., their route is a sequence of destinations with its end point being the same as

its starting point. Furthermore, each vehicle must not exceed its maximum travel distance and

can only travel on relations where the vehicle type is available.

1.2 Structure of the Thesis

In Chapter 2 we have a closer look at the challenges freight forwarders face in their daily business

and motivate why it is essential to solve the vehicle routing problem to be able to find answers
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to those questions. Chapter 3 introduces a basic notation and some basic models to formulate

a VRP. Furthermore, we give a classification for different types of VRPs. In chapter 4 we

present exact solution algorithms to find the optimal solution of mixed integer linear programs.

Chapter 5 starts off with showing that VRPs are NP-hard and after that we present different

approaches to solve an optimization problem by using heuristic optimization methods. Finally,

in Chapter 6 we introduce a model describing the problem of the car distribution in Central

Europe together with an exact algorithm and a tabu-search algorithm to solve the corresponding

VRP. We conclude the chapter by applying both algorithms to real-world transportation data.

Chapter 7 summarizes the results and gives an outlook on potential extensions of the model.
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2 Today’s Challenges in Transport Logistics

2.1 Development of the Transport Demand

Since after the economic crises in 2009, the transport volume has steadily increased only with

a short break in 2012. Reasons for that are the worldwide recovery of the economic crisis as

well as an increase in global trade and industrial output. This trend of increasing transport

volumes is expected to continue until 2019, but with a decreasing growth rate. The basis of this

continuing growth forms a weak Euro and therefore an increase in exports, low raw material

prices and a in comparison to previous years low oil price. Nevertheless, the growth rate is

expected to decrease during the following years due to higher inflation rate, rising interest rates

and a slight increase of the crude oil prices. In addition, the exchange of goods with the USA

is expected to become more difficult and limitations in trade with the United Kingdom will

become noticeable. On top of that, shortages in the availability of skilled workers in industry

and the transport sector will become more and more a problem (SSP Consult (2017), p. 21).

As an example for one of Europe’s leading economies, let us have a look at the German transport

sector. The following figures (see Table 1) are based on a study commissioned by the German

Federal Ministry of Transport and Digital Infrastructure (see SSP Consult (2017), p. 23-29).

The overall transport volume is expected to increase from 4275 million tons in 2016 to 4403

million tons in 2019. This corresponds to an average growth of about 1% per year. At the same

time the payload-distance in ton kilometers is expected to increase at the rate of 1.5% per year,

which indicates a continuation of the trend of longer transport distances.

Million t resp. Billion tkm annual change in %
2015 2016 2017 2018 2019 15/16 16/17 17/18 18/19

Transport volume
Road Freight Transports 3539.2 3593.3 3662.5 3700.1 3722.9 1.5 1.9 1.0 0.6
Rail Freight Transports 367.3 363.5 362.7 361.8 361.6 -1.0 -0.2 -0.2 -0.1

of that: Comb. Transports 89.4 91.8 93.7 96.1 97.5 2.7 2.1 2.5 1.5
Inland Waterway Transports 221.4 221.3 221.0 220.4 220.5 0.0 -0.2 -0.3 0.0
Overall 4223.0 4274.9 4344.9 4380.8 4402.9 1.2 1.6 0.8 0.5

Payload-distance
Road Freight Transports 459.0 471.8 484.2 492.8 499.8 2.8 2.6 1.8 1.4
Rail Freight Transports 116.6 116.2 116.8 117.3 117.6 -0.4 0.6 0.4 0.3

of that: Comb. Transports 45.5 46.8 47.8 49.0 49.8 2.7 2.1 2.6 1.6
Inland Waterway Transports 55.3 54.3 54.5 54.6 54.9 -1.8 0.2 0.3 0.5
Overall 650.1 662.6 675.9 685.0 692.7 1.9 2.0 1.3 1.1

Table 1: Transport volume and performance per transport mode. Source: SSP Consult (2017)

The individual transport modes evolve differently: While the road freight transport sector will

still grow at a rather high rate of 0.8% in transport volume and 1.6% in payload-distance

until 2019, rail freight transports and inland waterway transports are expected to stay almost

constant. Only in terms of payload-distance a small growth is expected. This is due to higher

growth rates for combined transports, i.e. the movement of goods using two or more modes of

transport, without handling the goods themselves in between, which is still a growing segment

for transports by train and barge.
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Figure 1 shows that more than 70% of the total payload-distance is done by trucks (for the

sake of completeness we added transports per pipeline as a forth mode of land transportation

here) and the modal split is expected to shift even further towards road transports in the

following years. One reason for that is the lack of staff and equipment in the rail and inland

water transportation segment so that during demand peaks train and barge cannot fulfill all the

requested transports. However, transportation capacities on the road are short as well. While

it is hard to find truck drivers and workers in logistics, the demand is steadily increasing. In

addition to that more and more transport companies from Eastern Europe start competing with

domestic companies. The transport volume of foreign trucks is expected to grow at a rate of

almost 4% per year, while domestic freight companies will be able to increase their transport

volume by only less than 1%. Nevertheless, all three segments are expected to grow overall, but

the growth of transports by train and barge could be even bigger, if they were more flexible,

especially during transport demand peaks.

Figure 1: Modal split of land payload-distance in %. Source: SSP Consult (2017)

2.2 Volatility of the Transport Market

Another challenge is the increasing volatility of the transport market, i.e., an increasing fluctu-

ation in transport volume. While the transport market was characterised by continuous growth

of payload-distance (tkm) during the last decades, it has become significantly more volatile

since the financial crisis in 2009. Therefore, forecasting is way more difficult nowadays and the

risk of investments on the transport market has increased.

In 2013 the German ”Bundesverband Materialwirtschaft, Einkauf und Logistik e.V. (BME)”

conducted a survey about the market volatility in transport and logistics (see Wittenbrink and

Gburek, 2013). 229 companies from the field of industry, commerce and logistics participated

in the survey, from which about 75% were purchasers or shippers and 25% were from transport
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and logistics companies.

According to this survey, 60% of the companies expect an increasing volatility in international

transports. On one hand, this is because of the fact that more and more product parts are made

in different countries. Therefore, the complexity of the underlying processes and consequently

the uncertainty increase. On the other hand, the varying economic situations of different coun-

tries contribute to an increasing market volatility as well.

Exactly this increasing volatility makes it more difficult to plan transport capacities accord-

ingly. The last few years have shown that phases of transport capacity surplus and shortage

can alternate quite rapidly. For the transport companies this results in additional costs, either

for covering peak periods or for having unused transport capacities.

But even with perfect foresight these fluctuations in transport volume can be reduced only to

a certain degree. Therefore, alternative ways have to be found for dealing with this problem.

For the vast majority of transport companies the way to go is accepting a shortage in trans-

port capacity for short periods and not investing in an extension of the capacities immediately.

This is closely related to the approach of adjusting the transport and storage capacities to the

expected minimum of the transport demand and therefore optimizing the utilization of the own

capacities. In the survey, 48% of the shippers and 67% of the transport companies stated to

follow this approach. This also implies contracting certain transport orders out to subcontrac-

tors and renting trucks instead of buying them. This change in policy has been witnessed in the

transport market for quite some time already and especially transports by trucks are carried

out by subcontractors more and more often.

In addition, 72% of the shippers try to avoid entering any commitments regarding transport

volumes to stay as flexible as possible. This is a well known phenomenon for transport com-

panies and is particularly pronounced in the rail transportation segment. At the same time

shippers expect transport companies to be able to deal with demand peaks, but only 49% of the

transport companies are willing to accept this situation of very few long term agreements on

one hand and contracting out orders to subcontractors on the other hand. One reason for that

is that due to the lack of truck drivers it can be pretty difficult to find good subcontractors and

transport companies would then have to establish long term relationships, which contradicts

the idea of using subcontractors only for demand peaks.

Section 2.1 together with Section 2.2 show that freight forwarders have to deal with a difficult

market situation today. While transport volume is stagnating or even shrinking, the volatility of

transport volume is increasing. Under these circumstances it becomes more and more difficult

to transport goods by train or barge cost-efficiently, but at the same time it is an important

objective of world’s politics to reduce the number of road transports, as the following section

shows.

2.3 Green Logistics

An aspect that has become increasingly important over the last years is Green Logistics, mean-

ing the process of recording and reducing the use of resources and emissions.

9



With the Paris Climate Agreement, which was signed on April 22nd in 2016, the international

community agreed on tackling the problem of human made climate change. The goal of the

agreement is to keep the increase of the average global temperature below 2 degrees Celsius

compared to the pre-industrial era and to pursue efforts to even limit it to 1.5 degrees Celsius.

The climate change is mainly induced by the emission of green house gases. The main cause of

these emissions is globally as well as in Europe the burning of fossil fuels. Only by reducing this

use to almost zero by the middle of this century the goal of the Paris agreement can be reached.

Already today the average global temperature is about 1 degree above the pre-industrial level

and the years 2014, 2015 and 2016 were the warmest years on record (Umweltbundesamt, 2017,

p. 5).

Table 2 shows the change in CO2 emissions for Germany based on a prediction performed in

2010. We see that the overall CO2 output is expected to have increased by 7.8% in 2020 and by

9.5% in 2030 compared to 2005. Especially emissions caused by freight transportation are ex-

pected to increase significantly, which can be explained mainly by the increasing transportation

distance. According to this prediction, at the same time the emissions from private transports

will decrease. The comparatively big impact of commercial traffic on the CO2 emissions is,

besides the increasing transport distance, due to the specific emissions of trucks, that are a

multiple of the emissions of cars (Wittenbrink, 2014, p. 298).

2005 2020 2030 2020 to 2005 in % 2030 to 2005 in %

Road Traffic 155.1 152.3 143.9 98.2 92.8
Private Transport 106.4 96.6 86.6 90.8 81.4
Buses 3.2 2.8 2.6 87.5 81.3
Commercial Traffic 45.5 52.9 54.7 116.3 120.2

Rail Traffic 8.5 9.2 9.6 108.2 112.9
Rail Passenger Transportation 5.7 5.6 5.5 98.2 96.5
Rail Freight Transportation 2.8 3.6 4.1 128.6 146.4

Inland Waterway Transports 2.0 2.3 2.6 115.0 130.0
Air Traffic 25.4 42.1 53.0 165.7 208.7
Overall 191.0 205.9 209.1 107.8 109.5

Table 2: Expected change in CO2 emissions for different modes of transport. Source: (Witten-
brink, 2014, p. 298)

Especially due to better engines and a better fuel quality, the emissions per payload distance

decreased significantly for road transports since 1995. For instance, CO2 emissions decreased

by 28% and SO2 emissions decreased by astonishing 99%. At the same time the overall CO2

emissions of road freight transports still increased by 11%. So we see that the decrease of emis-

sions per ton kilometer caused by technological improvements is outweighed by the increase of

traffic volume (Wittenbrink, 2014, p. 299).

According to Chapter 9.5 of Wittenbrink (2014), there are basically four approaches to reduce

the emissions resulting from freight transportation:

• Giving incentives to reduce the transportation demand to preferably avoid traffic.

• Giving incentives to shift the (unavoidable) traffic to more environmentally friendly means
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of transport like train or barge.

• Finding ways to reduce the emitted CO2 emissions when performing the transports.

• Finding ways to compensate the resulting emissions in other economic sectors with lower

reduction costs.

We are going to talk only very briefly about reduction and compensation of CO2 emissions, as

these two points are not directly related to vehicle routing.

CO2 compensation is offered for instance by non-profit organizations like myclimate.org. In

order to compensate for unavoidable emissions, companies can spend money on climate pro-

tection projects to make their transports CO2-neutral. One example for a company that is

already pursuing this approach is the Austrian Post AG, which has been delivering all letters

and packages CO2-neutral since 2011 (see www.post.at/co2neutral).

Emission reduction on the other hand is a rather technological approach to reduce emissions.

Since there is a close relation between fuel consumption and CO2 emissions, the key is to find

ways to safe fuel. Installing a sensor to monitor the filling pressure of a truck’s tires safes for

instance about 4.05 tons of CO2 per year due to less fuel consumption. Alternatively, reducing

the maximal speed will decrease the fuel consumption as well and therefore results in less CO2

emissions. The key point of all these measures is whether the costs of implementing them out-

weighs the reduced transportation costs due to less fuel consumption. The tire pressure sensor,

for instance, costs about 1000 euros extra, but safes approximately 1900 euros in operating costs

per year (Wittenbrink, 2014, p. 343).

Avoidance and shifting of traffic on the other hand are the two approaches we are more inter-

ested in: What measures give an incentive to reduce traffic? And if we cannot reduce it, what

leads transportation companies to shift their transports from the road to the rail- or waterways?

In the recent past the payload distance has almost always grown at a higher rate than the gross

domestic product (GDP). The only exception was the year 2009 during the economic crises. Be-

sides that, the transport intensity, i.e., the ratio between GDP and tkm, has always increased.

For instance, between 1995 and 2007 the payload distance increased by 51% while the GDP

grew by only 21%. During these years the transport intensity has increased on average by 1.9%

per year (Wittenbrink, 2014, p. 323).

If we assume that the transport demand will not decrease significantly in the future, one impor-

tant approach has to be to utilize the capacities of transport vehicles as efficiently as possible.

For instance, a truck with a capacity of 25 tons has a fuel consumption of about 35 liters per

100 kilometers, while a van capable of transporting 1.5 tons needs about 12 liters of fuel per 100

kilometers. So the van’s fuel consumption is almost 6 times higher than the one of the truck

(the truck needs 1.4 liters per ton transported compared to the 8 liters per ton of the van). The

goal has to be a high degree of consolidation of transports to be able to move them more fuel

efficiently and therefore more environmentally friendly (Wittenbrink, 2014, p. 325).

To find such bundling potentials it is essential to have a look at the whole transport network,

because a single transport destination with a high transportation demand does not necessarily
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imply that larger trucks are more cost efficient. Especially on longer routes it can be very costly

if there is no proper transport in the other direction. It also may be hard to tell what impact

bundling on one route would have on all the other routes. Therefore, to be able to identify

bundling potentials we cannot have a look at each vehicle individually, but instead we have to

take all routes of all vehicles in the network into account, which comes down to solving the

vehicle routing problem for the given transportation network.

If it is not possible to avoid traffic any further, another approach to reduce emissions is to shift

transports from the road to more environmentally friendly transport modes like rail- or wa-

terways. Despite the pretty impressive reduction of emissions of road freight transport during

the last years, Table 3 and Figure 2 show that trucks still emit significantly more compared to

trains or barges (Wittenbrink, 2014, p. 329).

In this context, CO2 equivalent (CO2e) is often used as a measure for green house gas emission.

CO2 equivalent is a quantity describing the amount of carbon dioxide that would have the same

effect on global warming over a specified timescale as the mix of actually emitted green house

gases (Gohar and Shine, 2007).

Means of transport Green house gas in CO2e Nitric oxides NOx Particulate matter

Truck 97.5 0.49 0.0079
Train 23.4 0.07 0.0012
Barge 33.4 0.55 0.0171
Aircraft 1539.6 3.46 0.0412

Table 3: Emissions of different transport modes in gram per ton kilometer (g/tkm) Source:
Wittenbrink, 2014, p. 329

Figure 2: Ratio of specific emissions of different transport modes in gram per ton kilometer
(g/tkm). Values normalized to 1 for rail freight transport. Source: Wittenbrink, 2014, p. 330

Like above, solving the vehicle routing problem is the only way to give an appropriate answer

to the question whether a shift of the transport mode reduces the emitted gases and is cost
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efficient at the same time. Trains and barges in general have way more capacity compared to a

single truck, but at the same time have significantly higher fixed costs. So they will only be cost

efficient, if the transportation demand is constantly on a high level. And again, a high demand

on one direction of transport will not be enough either. Without a transport demand in the

other direction the amount of unloaded mileage will become too big to operate cost efficiently.

Another factor is that waterways are often much longer compared to the road connection be-

tween two cities. This implies that the transport costs per kilometer do not necessarily tell us

the whole story and therefore we need to have a look at the whole network. On top of that,

trucks are often needed for the “last mile” since the goods often have to be transported from

the train station or the port to their final destination. According to Goodman (2005), up to

28 percent of all transportation costs occur on the last mile. Even though the report is from

2005 and the exact figure might be outdated by now, it still shows that this might be another

important aspect that has to be considered.
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3 Introduction to Vehicle Routing Problems

The family of vehicle routing problems can roughly be described the following way: Given a

set of transport requests together with a fleet of transport vehicles, determine a route for each

vehicle so that all transport requests are fulfilled and the costs for doing that are as little as

possible. In particular, this means that one has to decide which vehicle fulfills which transport

requests in what order, so that the resulting vehicle route is feasible and the overall costs are

minimal.

The best studied type of VRP is the capacitated vehicle routing problem, or in short CVRP. In

this problem, each vehicle has in addition only a certain transport capacity and therefore can

only deliver a limited number of items. It first appeared in Dantzig and Ramser (1959) under

the name “truck dispatching problem”. Almost 60 years ago the authors tried to determine the

optimal routing of a fleet of gasoline delivery trucks to supply a number of gas stations. Even

though the CVRP has mainly only academic relevance we want to start with this very simple

variant of the VRP to introduce the notation and some basic models. This will be helpful later

on when we have a closer look on other variants of the VRP in Section 3.3. At first we start

with the formal description of the problem. In the following, the used notation, the different

model formulations and the classification of different variants of VRPs are based on the ones

used in Irnich et al. (2014).

3.1 The Capacitated Vehicle Routing Problem

In the CVRP a certain number of goods have to be distributed from a single depot, denoted as

point 0, to a set of n customers, which is denoted by N = {1, . . . , n}. Each customer i ∈ N has

a certain demand for goods, denoted by a scalar qi ≥ 0. One can think of qi as the weight or the

volume of the goods that have to be delivered to the customer. We assume that the vehicle fleet

K = {1, . . . , |K|} is homogeneous, i.e., there are |K| identical vehicles available at the depot.

They all are assumed to have the same transport capacity Q and cause the same costs when

transporting a good to a certain destination. Each vehicle services a certain subset S ⊆ N of

customers by starting at the depot, moving once to each customer i ∈ S and then returning

back to the depot again. By traveling from point i to point j each vehicle incurs travel costs

cij .

The whole transport network can be seen as a directed or an undirected graph. Therefore, let

V = {0}∪N = {0, 1, . . . , n} be the set of vertices. Since there is no demand to the depot, let us

define q0 := 0. In the symmetric case, i.e., when the direction of movement has no effect on the

resulting costs (i.e., cij = cji, ∀i, j ∈ V ), the graph is an undirected and complete graph with

the edge set E = {(i, j) = (j, i) : i, j ∈ V, i 6= j} and edge costs cij for all (i, j) ∈ E. Otherwise,

if there exists at least one pair of vertices i, j ∈ V for which the costs depend on the direction

the vehicle is moving (i.e., ∃ i, j ∈ V : cij 6= cji), the underlying graph is a complete digraph

with the arc set A = {(i, j) : i, j ∈ V, i 6= j} and arc costs cij for all (i, j) ∈ A. Note that both

graphs have O(n2) edges respectively arcs since |E| = n(n + 1)/2 and |A| = n(n + 1). The
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complete, weighted graph G = (V,E, cij , qi) or digraph G = (V,A, cij , qi), the fleet size |K| and

the transport capacity Q of the vehicles uniquely define an instance of the CVRP.

A vehicle route is a sequence of vertices r = (i0, i1, . . . , is, is+1) with i0 = is+1 = 0. The set

Sr = {i1, . . . , is} ⊆ N represents the set of customers visited on tour r. The route’s costs are

equal to c(r) =
∑s

p=0 cip,ip+1 . A vehicle route is feasible if no customer is visited more than

once, i.e., ij 6= ik for all 1 ≤ j ≤ k ≤ s, and the total capacity of the transported goods

does not exceed the maximal capacity of the vehicle, i.e., q(Sr) :=
∑s

p=0 qip ≤ Q. We then

call Sr a feasible cluster. |K| feasible routes, one for each vehicle k ∈ K, represent a solution

of the CVRP. The solution is a feasible solution of the CVRP, if the corresponding clusters

S1, S2, . . . , S|K| form a partition of N . So finding a feasible solution of the CVRP consists of

two tasks:

• partitioning the set of customers N into feasible clusters S1, S2, . . . , S|K|

• routing each vehicle k ∈ K through {0} ∪ Sk

Note that the seconds task involves solving the traveling salesman problem (TSP) over {0}∪Sk.
Both tasks are linked closely together since the vehicle routing is based on a given cluster and

on the other hand the costs of a cluster depend on the vehicle routing.

3.2 Mathematical Programming Models

In this section, we want to have a look at different mathematical programming formulations of

the CVRP, but first we start with defining some basic notation.

Let S be an arbitrary subset of vertices. For an undirected graph, let E(S) = {(i, j) ∈ E :

i, j ∈ S} be the set of all edges with both endpoints in S. Moreover, we define the cut set

δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S} as the set with exactly one endpoint in S. For a directed

graph, let δ− = {(i, j) ∈ A : i /∈ S, j ∈ S} be the in-arcs of S and δ+ = {(i, j) ∈ A : i ∈ S, j /∈ S}
be the out-arcs of S. For a singelton set S = {i} let δ(i) := δ({i}) (analogously for δ− and δ+).

Finally, similarly to E(S) we define A(S) = {(i, j) ∈ A : i, j ∈ S} for a directed graph as the

set of all arcs connecting two vertices in S.

For a customer set S ⊆ N we define r(S) as the minimum number of vehicle routes needed to

serve S. Calculating the number r(S) is equal to solving a bin-packing problem with items S

of weight qi, i ∈ S and bins of the size Q. As this type of problem can be pretty hard to solve

(see Section 5.1), the lower bound dq(S)/Qe is often used instead of r(S). Here d.e denotes the

ceiling function, i.e., dxe = min{k ∈ Z : k ≥ x}.

3.2.1 Compact Formulations

Next we present two classical compact formulations of the CVRP. These models are mixed

integer linear programming models (MILP) with a polynomial number of variables with respect

to |N | and |K|. At first we have a look at two vehicle-flow formulations with an exponential

number of constraints and discuss modelling techniques to reduce the number of constraints
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to a polynomial order. The advantage of compact formulations is that these models can be

solved with techniques based on mathematical programming like Branch and Cut algorithms

(see Chapter 4). However, this is only possible if the objective function and the constraints

of a VRP can be expressed as summation over the visited vertices or visited edges or arcs. A

counterexample where this is not possible is if the costs depend on the load of the vehicle.

The first important class of models has integer variables xij for each edge or arc (i, j) of the

graph, indicating how often a vehicle moves from vertex i to vertex j. Since two indices are

used in this formulations, they are known as two-index (vehicle-flow) formulations.

Laporte et al. (1986) introduced the following model for the directed CVRP:

min
xij : (i,j)∈A

∑
(i,j)∈A

cijxij (1a)

subject to
∑

j∈δ+(i)

xij = 1

∑
j∈δ−(j)

xij = 1

∀i ∈ N

∀j ∈ N
(1b)

∑
i∈δ+(0)

x0j = |K| (1c)

∑
(i,j)∈δ+(S)

xij ≥ r(S) ∀S ⊆ N,S 6= ∅ (1d)

xij ∈ {0, 1} ∀(i, j) ∈ A (1e)

In a very similar way, Laporte et al. (1985) published a model for the undirected CVRP a year

earlier:

min
xij : (i,j)∈E

∑
(i,j)∈E

ci,jxij (2a)

subject to
∑
j∈δ(i)

xij = 2 ∀i ∈ N (2b)

∑
i∈δ(0)

x0j = 2|K| (2c)

∑
(i,j)∈δ(S)

xij ≥ 2r(S) ∀S ⊆ N,S 6= ∅ (2d)

xij ∈ {0, 1, 2}

xij ∈ {0, 1}

∀(i, j) ∈ δ(0)

∀(i, j) ∈ E\δ(0)
(2e)

The objectives (1a) and (2a) in the two models are to minimize the overall routing costs.

Constraints (1b) and (2b) ensure that in a route each customer vertex is connected to exactly

two other vertices, one where the vehicle is coming from and one where it is moving on to. In

a similar way, constraints (1c) and (2c) state that the depot has exactly |K| successor vertices,

and in total 2|K| vertices are connected to it. This also implies that exactly |K| routes are
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constructed. If there are more vehicles available than actually needed, i.e., |K| > r(N), the

model solution does still contain |K| routes. In that case, one could replace the equations (1c)

and (2c) with “≤”-inequalities. As increasing the number of maximal routes increases the space

of feasible solutions, it is possible that the optimal routing costs decrease. Therefore, fleet

size minimizing and routing cost minimizing are conflicting objectives. One way to cope with

this opposing objectives is to add fixed costs of the vehicles to the model by altering the cost

coefficients c0j .

Constraints (1d) and (2d) have two purposes: On the one hand, they ensure that the capacity

constraint is not violated and on the other hand, they serve as subtour elimination constraints

(SECs). This can be seen as follows: First, if there is an infeasible route over a cluster S ⊆ N

with demand q(S) > Q, the minimum number of needed vehicles to serve this route would be

greater than 1, i.e., r(S) > 1. So at least two routes from S\V are connected to S, which is a

contradiction to S being the cluster of a route. Second, for any subtour (by subtour we mean a

tour, that does not contain the depot) over a non-empty subset S ⊆ N the sum
∑

(i,j)∈δ+(S) xij

is equal to 0, which is a contradiction to r(S) ≥ 1. For the directed CVRP, constraints (1d) are

equivalent to ∑
(i,j)∈δ−(S)

xij ≤ r(S) and
∑

(i,j)∈A(S)

xij ≤ |S| − r(S).

For the undirected CVRP, they are equivalent to∑
(i,j)∈E(S)

xij ≤ |S| − r(S).

This follows straight from the fact that since S does not include the depot, a tour is a subtour

if and only if the vehicle travels along |S| edges or arcs within A(S) respectively E(S). This

can easily be proven by summing up the constraints (1b) for i ∈ S and j ∈ S. However, regard-

less of the formulation, the number of constraints increases exponentially with the number of

customers N .

Basically there are two techniques to overcome the problem of the exponentially many con-

straints. One way is to simply leave out all or some of the SECs and solve this relaxation of the

problem. Afterwards, the violated SECs are identified (using a so-called separation method, see

Crowder and Padberg, 1980, p. 507f) and added to the problem again. This is done iteratively

until no violated SEC is found. The second option is to replace the SECs with another set of

constraints by adding additional variables. This approach was introduced by Miller, Tucker and

Zemlin for the traveling salesman problem (see Miller et al., 1960) and is therefore known as the

MTZ-formulation. Considering the directed CVRP, variables u1, . . . , un are added denoting the

accumulated demand that has already been fulfilled by the vehicle when it arrives at customer

i ∈ N . Constraints (1d) are then replaced by MTZ specific SECs

ui − uj +Qxij ≤ Q− qj ∀(i, j) ∈ A(N)
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and the capacity constraints

qi ≤ ui ≤ Q ∀i ∈ N.

Note that xij = 1 implies uj ≥ ui + qj > ui. So for each tour (i, j, . . . , i) that does not contain

the depot we get the contradiction ui > uj > . . . > ui. The big advantage of the MTZ-

formulation is that it leads to only O(n2) constraints. The drawback on the other hand is that

finding strong lower bounds of the objective value turns out to be more difficult when using the

MTZ-formulation (see Padberg and Sung, 1991). As we will see in Section 4, strong bounds are

important for solving the MILPs.

Using the two-index formulation we model the underlying fleet only implicitly. The only thing

we know is whether a specific edge (i, j) is used, but the route of which vehicle this edge is

actually part of is not clear. Therefore it is not possible to model any vehicle-specific character-

istics like different capacities or costs with this formulation, which is of course a big limitation.

However, with this formulation there exist no symmetric solutions resulting from simply renum-

bering the vehicles, such that there world be a one-to-one relation between the feasible VRP

solution and the feasible vector x.

To account for vehicle-specific characteristics, we now present a three-index (vehicle flow) for-

mulation. Let G(V,A) be a directed graph in which we split the depot 0 into two points o and

d representing the starting point respectively the end point of a route. So the vertex and arc

set is given by

V := N ∪ {o, d} and A := (V \{d})× (V \{o}).

As the name suggests, in the three-index formulation the decision variables have three indices.

Let xijk be a binary variable that indicates whether vehicle k ∈ K moves along the arc (i, j) ∈ A.

Furthermore, let yik be another binary variable that is equal to 1 if and only if vehicle k visits

vertex i ∈ V . In addition, we add the variables ui from the MTZ-formulation denoting (a upper

bound on) the load in vehicle k before reaching customer i. Finally, let us define qo = qd = 0.

The three-index formulation was originally proposed by Golden, Magnanti, and Nguyen (see

Golden et al., 1977). The following model is not exactly the one they proposed in there paper

as they also considered a maximum travel time for each vehicle and used a slight variation of

the MTZ-formulation. For the sake of clarity, we omit these extra constraints and stay with

our previously used MTZ subtour elimination constraints.

min
xijk: (i,j)∈A,k∈K

∑
(i,j)∈A

∑
k∈K

cijxijk (3a)

subject to
∑
k∈K

yik = 1 ∀i ∈ N (3b)

∑
j∈δ+(i)

xijk −
∑

j∈δ−(i)

xijk =

1, i = o

0, i ∈ N
∀i ∈ V \{d}, k ∈ K (3c)
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∑
j∈δ+(i)

xijk = yik ∀i ∈ V \{d}, k ∈ K (3d)

∑
i∈δ−(d)

xidk = ydk ∀k ∈ K (3e)

uik − ujk +Qxijk ≤ Q− qj ∀(i, j) ∈ A, k ∈ K (3f)

qi ≤ uik ≤ Q ∀i ∈ V, k ∈ K (3g)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3h)

yik ∈ {0, 1} ∀i ∈ V, k ∈ K (3i)

The objective (3a) is again to minimize the total routing costs, and the constraints (3b) state

that each customer is visited exactly once. Constraints (3c) are the so-called path-flow con-

straints. Since the constraints imply
∑

j∈δ+(d) xijk −
∑

j∈δ−(d) xijk = −1, the route of a fixed

vehicle k ∈ K, i.e., the arc set {(i, j) ∈ A : xijk = 1}, is an induced o-d-path on the graph G.

Constraints (3d) and (3e) link the routing variables xijk with the binary variables yik so that

yik is indeed 1 if and only if customer i ∈ N is visited by vehicle k ∈ K. Finally, constraints (3f)

and (3g) are vehicle-specific versions of the MTZ capacity constraints.

With this three-index formulation we are able to account for lots of vehicle specific character-

istics with only a few changes in the model. We will have a look at different types of vehicle

routing problems in Section 3.3. However, the big downside of this formulation is that espe-

cially for large fleets K the problem becomes hard to solve due to the high number of symmetric

solutions. Since renumbering the vehicles already gives us a new solution, simple permutation

of the indices of the vehicles results in |K|! equivalent solutions.

3.2.2 Extensive Formulations

An extensive formulation of the CVRP was first introduced by Balinski and Quandt (1964). The

basic idea is that a solution of the optimization problem is not defined by vehicle-flow variables

xijk indicating whether a vehicle travels along a certain edge or arc, but rather by a set of entire

routes. So the problem turns into an extended set partitioning or covering problem. Let Ω be

the set of all feasible routes of the CVRP. Each route of Ω has the form r = (i0, i1, . . . , is, is+1)

with i0 being the starting point o and is+1 being the end point d. Then the total costs of a

route are equal to cr =
∑s

j=0 cijij+1 . In addition, let air ∈ {0, 1} be a coefficient that is equal

to 1 if and only if route r visits customer i ∈ N , i.e., i ∈ {i1, . . . , is}. The decision variable of

the model is a binary variable, denoted by λr, that indicates whether route r ∈ Ω is part of the

solution. The extensive formulation is then given by

min
λr: r∈Ω

∑
r∈Ω

crλr (4a)

subject to
∑
r∈Ω

airλr = 1 ∀i ∈ N (4b)∑
r∈Ω

λr = |K| (4c)
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λr ∈ {0, 1} ∀r ∈ Ω. (4d)

Like before, the objective (4a) is to minimize the total routing costs. Constraints (4b) state that

each customer is visited exactly once by one route and constraint (4c) ensures that all vehicles

are used.

In the formulation above the model is a set partitioning problem. If the routing costs fulfill the

triangular inequality (i.e. cij + cjh ≥ cih, ∀(i, j), (j, h) ∈ A) we can replace the set partitioning

constraints (4b) by set covering constraints (i.e., replace the“= 1” by a “≥ 1”). This is possible

since removing one or several customers from a feasible route produces another feasible solution

with less or equal routing costs. Moreover, if it is feasible to use fewer than |K| vehicles, one

can change constraint (4c) to an inequality, i.e., replace the “=” by a “≤”.

Compared to the compact formulation, the extensive formulation is way more flexible when it

comes to defining whether a route is feasible or not. All this information is implicitly hidden in

the definition of the set Ω, and so non-linear cost functions and complex intra-route constraints

can be implemented in this model. In addition, this formulation does not suffer from symmetry

problems. The big downside is obviously the potentially huge number of feasible routes |Ω|.
This makes it often impossible to explicitly set up the model and, even more importantly, find

the optimal solution of (4a)-(4d) directly. Therefore, algorithms that work implicitly on huge

sets like Ω are needed. Examples for such algorithms are column generation techniques at which

we will have a closer in Section 4.3.

3.3 Classification of Vehicle Routing Problems

In this section we want to discuss various types of vehicle routing problems and their maybe

small, but meaningful differences. The following classification is based on the one presented

in Irnich et al. (2014). As we just want to give a broad overview of the most important VRP

variants, we refer to the paper of Irnich et al. for a more detailed classification.

We are going to classify VRPs with respect to the following aspects:

• the road network structure (Section 3.3.1)

• the type of transportation request (Section 3.3.2)

• the constraints affecting single routes individually (Section 3.3.3)

• the fleet composition (Section 3.3.4)

3.3.1 Network Structure

There are basically two different ways to model a vehicle routing problem regarding the network

structure. The CVRP for instance has transportation tasks that are related to points in space,

as the task is to deliver a certain amount of goods to different customers. Usually we model

these points as nodes of a graph and therefore VRPs like this are called node routing problems.

The other type of problems are so-called arc routing problems (ARP, see Corberán and Laporte,

20



2015). These models are used if the task that needs to be fulfilled is performed on the arcs

instead of on the vertices. Typical examples for that are the routing of vehicles for winter services

like salt gritting or snow removal. Often services like garbage collection and mail delivery are

seen as services on arcs as well since all the customers are located along a street segment. So in

this formulation the street segment, where the households belong to, is serviced instead of the

individual customers.

These two types of network structures can be split again into two different cases. The first one

is the simpler one of symmetric travel costs. As we will see in Section 3.3.3, other characteristics

like for instance travel time can be symmetric or asymmetric as well. If the whole problem is

symmetric, it is possible to model the problem as an undirected graph. As soon as the direction

of movement on a single edge is restricted or if any cost or any other parameter is asymmetric,

the underlying graph of the network is asymmetric as well. But this does not mean that only

because the transport network is symmetric, the model formulation has to be symmetric as

well. As we have seen in Section 3.2, the MTZ-formulation requires the underlying graph to be

a directed graph, since the order in which the customers are served is essential for the MTZ-

formulation to work out.

The granularity of the underlying data or network is another thing that differentiates the VRP

from the ARP. Usually in an ARP the arcs and edges represent single street segments. This

is in contrast to the VRP where the arcs and edges are potentially a large number of street

segments, since they represent the whole path between two points. Therefore the travel time

and the corresponding costs first need to be computed by a Geographical Information System

(GIS). Typically a weighted combination of distance and costs is used to calculate the shortest

path between two points. However, the time of day may also have a big impact on the actual

shortest path (with respect to travel costs and/or time).

The VRP is called stochastic, if some data is not known exactly but rather given by a random

variable of a given probability distribution. If some data is not known at the beginning, but

becomes available during the operation, we call the VRP to be dynamic. The CVRP as a very

simple version of the VRP is obviously neither stochastic nor dynamic.

3.3.2 Transportation Request

The CVRP is the most basic variant of a VRP, where the task is to deliver a certain amount

of goods from a central depot to a set of customers. In this section we want to classify VRPs

regarding other types of transportation request.

Delivery and Collection: The opposite of delivering goods to customers would be to collect

goods and transport them to a central depot. This type of transport can often be found either at

the very beginning or the very end of a supply chain. An example for the beginning of the supply

chain is the collection of raw milk that is then transported to a dairy factory (see Sankaran and

Ubgade, 1994). The collection of garbage is an example for a pickup VRP that occurs at the

very end of the supply chain (see Golden et al., 2002). Obviously, pure pickup and pure delivery
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problems are equivalent as simply reversing the routes turns collection into delivery and vice

versa.

So only if pickup and delivery tasks occur on the same route, a new type of problem is given.

One unchanged assumption is that all goods have to be taken from or returned to a single depot.

Therefore, in the case of distribution the VRP is often known as one-to-many problem, and on

the other hand, in the case of collection as a many-to-one VRP. One simple variant of the VRP

that contains collection and delivery is the VRP with Backhauls (VRPB, see Goetschalckx and

Jacobs-Blecha, 1989). In this type of problem, customers are either so-called linehaul customers,

to whom goods have to be delivered from a central depot, or backhaul customers, from whom

items have to be transported back to the depot. The restriction thereby is that on each route all

deliveries have to be made before the vehicles are allowed to collect anything from the backhaul

customers. This can be motivated by the idea that for instance bulky material has to be

transported and it is not possible to rearrange the loaded items inside the vehicle. Therefore all

goods have to be delivered first so that the vehicle is empty when it reaches the first collection

point. This problem can still be solved using the two-index formulation of Section 3.2 by simply

removing the arcs leading from a backhaul customer to a linehaul customer (or alternatively

setting the routing costs to a sufficiently large number M).

In the VRPB, each point is either a customer that requires delivery or collection, but not both.

In the VRP with Simultaneous Pickup and Delivery (VRPSPD, see Min, 1989) each customer

has two transportation request, a pickup and a delivery request, and both have to be performed

by the same vehicle in one visit. A real-world example for that is the transport of newly arriving

tourists from the airport to their hotels and bring back leaving tourists from their hotel to the

airport. Interestingly, the capacity constraint that ensures that at no point in time more tourists

are on the bus than the bus offers seats can be expressed easily: A set S ⊆ N of customers can

feasibly be serviced by a single vehicle, if neither the amount of the overall collected goods nor

the amount of the overall delivered goods exceeds the vehicle’s capacity. The customers just

have to be served in the order that customers with a higher amount to be delivered to than

collected from have to be served before the others.

Point-to-Point Transportation: Transportation problems with transport requests being

point-to-point transports are called Pickup and Delivery Problems (PDP, not to be confused

with the VRPSPD). To be more precise: A transport request consists of a pair of points, one

from which a certain amount of goods has to be picked up and one where theses goods have to

be delivered to. So in contrast to the VRP with Simultaneous Delivery and Pickup, customers

are always either a delivery point or a collection point, but never both. In general, there exists

no central depot in this type of problem. Instead, one could say that each delivery point has its

own depot. We therefore refer to this type of problem as a many-to-many VRP (see Battarra

et al., 2014).

Indeed, the vehicle routing problem we described in Section 1.1 is a PDP as the task is to

transport different types of cars between factories and turnover points.
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Non-split and Split Services: The Split Deliveries Vehicle Routing Problem (SDVRP) is

a relaxed version of the standard VRP, in which the amount of goods that has to be transported

to a demand point can be split between any number of vehicles. The problem was first formally

introduced in the late 1980s (see Dror and Trudeau, 1989, and Dror and Trudeau, 1990). There

are two reasons why it makes sense or maybe it is even necessary to split deliveries: First, if

the demand exceeds the maximum capacity of a vehicle, it is obviously unavoidable to split the

goods between more than one vehicle in order to be able to fulfill the transport request. The

second reason arises when the maximal capacity of the vehicles is larger than the demand: Since

the SDVRP is a relaxation of the standard VRP, the minimum costs to fulfill all the transport

requests are equal or less compared to the problem without delivery splitting and therefore it

might be possible to service all customers at less costs.

Dror and Trudeau gave the following example to illustrate the cost saving effects that are

possible due to splitting deliveries: Assume three demand points with demands q1 = 3, q2 = 4,

q3 = 3. The costs between the depot and any demand point is 10, i.e., c0,i = 10, for i = 1, 2, 3.

The costs between two demand points are given by c1,2 = c2,3 = 5 and c1,3 = 10. The capacity

of all vehicles is equal to 5. If no splits are allowed, the optimal solution has a total cost of 60

and requires 3 vehicles. For the SDVRP solution only two vehicles are required and the total

costs reduce to 50 (see Figure 3).

Figure 3: (A) The solution of the VRP and (B) the solution of the SDVRP. Source: Dror and
Trudeau, 1990

Archetti and Speranza (2008) differentiate between the following variations of the SDVRP (for

comparison we state the VRP as well):

• VRP: The problem of finding the optimal route if all demands are less than or equal to

the vehicle capacity Q and each customer is visited exactly once.

• SDVRP: The problem of finding the optimal route if all demands are less than or equal

to the vehicle capacity Q and each customer may be visited any number of times.
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• VRP+ (extended VRP): The problem of finding the optimal route if at least one demand is

greater than the vehicle capacity Q and each customer is visited at most by the minimum

possible number of times needed to fulfill the transport request, i.e., ti = dqi/Qe, where

qi is the demand of customer i and ti is the number of visits.

• SDVRP+ (extended SDVRP): The problem of finding the optimal route if at least one

demand is greater than the vehicle capacity Q and each customer may be visited any

number of times.

Usually when talking about the SDVRP an unlimited fleet is assumed. In that case there always

exists a feasible and thereby an optimal solution as well. The variant with a limited fleet size is

denoted by SDVRP-LF. Obviously, a feasible solution to the SDVRP with a fleet of |K| vehicles

exists if and only if
∑

i∈N qi ≤ |K|Q holds.

Let xijk ∈ {0, 1} again be a binary variable indicating whether vehicle k ∈ K travels along

the arc (i, j) ∈ A. In addition, let yik be the quantity of demand delivered by vehicle k to

customer i. Then the SDVRP can be formulated as follows (Archetti et al., 2006):

min
xijk: (i,j)∈A,k∈K

∑
(i,j)∈A

∑
k∈K

cijxijk (5a)

subject to
∑
i∈N

∑
k∈K

xijk ≥ 1 ∀j ∈ N (5b)

n∑
i=0

xihk −
n∑
j=0

xhjk = 0 ∀h ∈ V, k ∈ K (5c)

∑
i∈S

∑
j∈S

xijk ≤ |S| − 1 ∀k ∈ K,S ⊆ N (5d)

yik ≤ di
n∑
j=0

xijk ∀i ∈ N, k ∈ K (5e)

∑
k∈K

yik = di ∀i ∈ N (5f)∑
i∈N

yik ≤ Q ∀k ∈ K (5g)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (5h)

yik ≥ 0 ∀i ∈ V, k ∈ K. (5i)

The objective (5a) is to minimize the total routing costs. Constraints (5b)-(5d) are classical

vehicle routing constraints: Constraints (5b) state that each customer has to be visited at least

once (contrary to exactly once like in the standard CVRP), equations (5c) impose that the

number of vehicles traveling to a node has to be equal to the number of vehicles leaving the

node and (5d) are subtour elimination constraints. These are similar to the ones we introduced

in the two-index formulation, but since r(S) being the minimum number of vehicle routes needed

to serve a set of customers S makes no sense in the SDVRP context, they are replaced by this

version of subtour elimination constraints. The next set of constraints (5e)-(5g) are about the
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distribution of goods among the vehicles: Inequalities (5e) state that a customer can only be

served by a vehicle, if it visits the corresponding node, equations (5f) ensure that the demand of

all customers is served and constraints (5g) make sure that the vehicle capacity is not exceeded.

Combined Shipment and Multi-Modal Service: Combined transports is similar to the

vehicle routing problem with split deliveries: In this variation of the VRP the transport of

goods is split again, but this time the shipment itself is not split into smaller parts. Instead,

the transport path is split at intermediate transfer points or consolidation centers into segments

which are then serviced by different vehicles. We have already seen in Section 2.1 that combined

shipment is still a growing segment, and when it comes to shifting transports to the train or

the barge, multi-modal service is often unavoidable as there often is no train station or harbor

near the customer. Combined shipment is also used to consolidate less-than-truckload loadings

to full-truckload shipments.

Dynamic and Stochastic Routing: Like we mentioned in the introduction, the main task

of the research project IPPO was to improve the planning security of freight forwarders. But

forecasting production numbers of cars is obviously pretty difficult. One result of the research

project was that even the car manufacturers themselves make prediction errors of up to ± 20%.

Besides the customer demand, travel time and costs can be uncertain as well. Especially in

urban areas travel time is affected by lots of different factors like accidents, traffic and weather

conditions. Ignoring these travel time variations can lead to significantly longer travel times

at the end what may cause problems when a customer has to be visited within a specific time

window.

In general we say a problem is

• dynamic, if some or all relevant information is not know at the beginning and only becomes

available over time;

• stochastic, if the system conditions are uncertain, but can be described by a given prob-

ability distribution.

So in the case of stochastic vehicle routing, some components of the problem like travel time

or customer demand are only described by random variables. Vehicles traveling a pre-planned

route might miss time windows or reach their transport capacity before even visiting all cus-

tomers, which may cause extra costs or even make it impossible to fulfill all customer demands.

Therefore, in that case the main focus is on analyzing the impact of the uncertainties on the

routing costs or the reliability of the transport services.

3.3.3 Intra-Route Constraints

One of the most important aspects when it comes to differentiating between different types of

vehicle routing problems is the determination of the feasibility of a route. In this section, we

give an overview on the most important variants of constraints like maximal loading capacity,
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time restrictions or a limited route length. In contrast to so-called inter-route constraints, intra-

route constraints have in common that every route can be checked individually on its feasibility,

independently of all the other routes.

Loading: Capacity constraints, like they occur in the CVRP, are one of the simplest types of

constraints. They limit the consumption of a certain resource at every customer and therefore

can simply be written as an overall bound on these resources for each transport vehicle:∑
i∈N

qiyik ≤ Q, ∀k ∈ K. (6)

Note that we use the three-index model again since with this formulation many modifications

of the VRP can be described in a convenient way. For some problems there may be several

resource constraints like maximum weight, maximum volume (for liquid goods) or maximum

space (for instance a limited pallet storage area) such that each constraint individually restricts

the feasibility of a route at the same time. In that case, for each restriction a constraint analo-

gous to (6) with corresponding coefficients qi and Q has to be added to the model.

The problem becomes way more complex when the capacity constraints can not be described

by a scalar like the maximum weight, but instead shipments and cargo departments have to

fulfill 2-dimensional or 3-dimensional restrictions. So the VRP has to be solved in combination

with a multi-dimensional packing problem, which is already difficult to solve on its own.

Iori et al. (2007) consider a symmetric capcitated vehicle routing problem in which each cus-

tomer has a demand consisting of a set of rectangular two-dimensional weighted items. Often

goods are transported on top of rectangular bases like pallets, and due to their fragility or shape

they may not be stacked on each other. In that case, the three-dimensional loading problem

can be reduced to a two-dimensional loading problem of the rectangular item base on the ve-

hicle loading area. In addition, they assume that each item has a fixed loading and unloading

orientation, since common loading equipment like forklifts may not be able to pick up the items

from any side. Furthermore, when a customer’s demand consists of several items, they have to

be delivered at once (i.e., split deliveries are not allowed) and each item to be unloaded must

not be blocked by another item that has not been unloaded yet. This last restriction is due

to the problem that rearranging items with forklifts can be very difficult, time consuming or

might even be impossible. This variant of vehicle routing problem is known as CVRP with

2-dimensional Loading constraints (2L-CVRP).

Gendreau et al. (2006) introduce a tabu-search algorithm to solve a variant of the problem with

three-dimensional loading constraints, denoted as 3L-CVRP. This time horizontal rotation of

the items is allowed, while upside-down rotations are forbidden. In addition, they add some

operational constraints that are often encountered in the real-world: If an item is fragile, no

other item may be placed on top of it, and if boxes are stacked, the supporting surface needs

to be large enough so that the stability of the loading is guaranteed.

Another interesting variation of the CVRP is the so-called VRP with Compartments (VRPC),

introduced by Derigs et al. (2010). In industries with inhomogeneous goods, vehicles with differ-
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ent compartments are often used in order to save transportation costs by allowing the transport

of inhomogeneous goods together on the same vehicle. So besides an overall capacity constraint,

each compartment has its own restrictions as well. In some settings, the separator of the com-

partments may be configurable so that one compartment’s size can be up to the whole vehicle’s

capacity. In other settings, like for instance tanks in road tankers, the compartments may be

fixed units. Regarding the item compatibility, two aspects have to be taken into account: First,

only compatible items can be placed in the same compartment (item-item compatibility), e.g.,

due to certain hygiene regulations for the transport of medical products. Second, the compart-

ment has to fulfill the requirements of the transported item (item-compartment compatibility),

e.g., refrigerated cargo has to be transported in cooled compartments.

Route Length: Similar to the capacity constraints, the resource consumption on arcs or

edges may be restricted. This again is a rather simple constraint since checking the feasibility

of the solution just requires to some up the overall resource consumption for each vehicle and

check whether it exceeds the vehicle’s limit. The resulting problem is then denoted as distance-

constrained CVRP (DCVRP, see Laporte et al., 1984). Let dij > 0 be the distance between

two nodes i and j for all (i, j) ∈ A. In addition, let D be the maximal length of a route. Then

the distance constraints are given as∑
(i,j)∈A

dijxijk ≤ D ∀k ∈ K.

Of course, not only spatial restrictions can be modeled with this formulation. The parameters

dij can also denote the travel time to formulate constraints on the route duration. Similarly,

the total routing costs can be limited. Another option would be to use indicator variables

dij ∈ {0, 1} to restrict the number of connections with a certain property.

Multiple Use of Vehicles: In many VRPs the standard assumption is that each vehi-

cle performs at most or exactly one route over a planning horizon T . The Multi-Trip VRP

(MTVRP, see Mingozzi et al., 2013) relaxes this restriction so that vehicles may perform several

routes. In particular, a vehicle may perform a given set of routes with durations T1, T2, . . . , Tp if

T1 + T2 + . . .+ Tp ≤ T holds. This is a relevant scenario for distribution companies using leased

vehicles to service the customers. If the planning period is significantly larger compared to the

usual transport duration, a single vehicle can perform several routes, and therefore one of the

main concerns of a distribution company is to minimize the number of vehicles used. Conversely,

if the maximal transport capacity Q is relatively small or any other restriction leads to a small

number of customers serviced by a route, vehicles of a limited fleet size |K| may have to be

used multiple times to be even able to fulfill all transport requests. A rather simple approach

is to solve the problem with unlimited fleet size and combine the resulting routes within the

planning horizon, but this obviously yields suboptimal solutions to the MTVRP.

A possible scenario where this kind of problem occurs are carriers using electric vehicles for

last-mile deliveries in order to reduce the emission of greenhouse gases. The limited battery
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capacity of the vehicles forces them to regularly visit recharge stations during their tours. Then

these stations can be seen as kind of depots to which the vehicles have to return to and the

battery capacity is a restriction on their maximal tour length. This particular case of VRPs

with needed recharging during trips has been studied by Schneider et al. (2014).

Time Windows and Scheduling Aspects: In many scenarios, constraints regarding the

scheduling of transports are among the most important restrictions in a VRP, i.e., travel, ser-

vice, and waiting times need to be considered as well as time windows in which a customer has

to be serviced. This type of problem is generally know as VRP with time windows (VRPTW,

see Cordeau et al., 2002). We again use the three-index formulation (3a)-(3i) to model this vari-

ant of a VRP. Let tij be the travel time from vertex i to vertex j for all (i, j) ∈ A. Furthermore,

for each vertex i ∈ V a service times si and a time-window [ai, bi] are given. For the nodes o and

d representing the depot, we define so = sd = 0 and [ao, bo] = [ad, bd] = [E,L], where E and L

denote the earliest possible departure time from the depot and the latest possible arrival time at

the depot, respectively. A feasible solution can obviously only exist if ao = E ≤ mini∈N bi− toi
and bd = L ≥ maxi∈N ai + si + tid. Note that an arc (i, j) can be removed from the model, if

ai + si + tij > bj , as due to temporal restrictions it is impossible to service customer j in time

after visiting customer i.

In addition to the flow variables xijk, indicating whether vehicle k ∈ K travels along the

arc (i, j) ∈ A, and yik, denoting whether customer i ∈ N is visited by vehicle k, we introduce

the time variables wik, specifying the start of service at customer i when serviced by vehicle

k. Then (3a)-(3i) combined with the following additional constraints, are a formulation of the

VRPTW:

xijk(wik + si + tij − wjk) ≤ 0 ∀(i, j) ∈ A, k ∈ K (7a)

aiyik ≤ wik ≤ biyik ∀i ∈ V, k ∈ K (7b)

E ≤ wik ≤ L ∀i ∈ {o, d}, k ∈ K (7c)

wik ∈{0, 1} ∀(i, j) ∈ A, k ∈ K. (7d)

Note that (7b) forces wik to be equal to 0, if vehicle k does not visit customer i.

Since xijk are binary variables, the constraints (7a) can be linearized by means of MTZ-like

constraints of the form

wik + si + tij − wjk ≤ (1− xijk)Mij ∀(i, j) ∈ A, k ∈ K, (8)

where Mij are a sufficiently large constants. Mij can be replaced by max{bi + si + tij + aj , 0}
and constraints (8) are only relevant for arcs (i, j) ∈ A, such that Mij > 0. Otherwise, due to

constraints (7b) the constraint is fulfilled for all values of xijk.

There are various ways to alter and generalize these time-window constraints: If there is not

only one, but p possible intervals for the start of service at vertex i, we have a vehicle routing

problem with multiple time windows. In that case (7b) has to be replaced by wik ∈
⋃p
l=1[ali, b

l
i].
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The travel time may also depend on the time of the day. In that case tij is not a constant,

but a stepwise function tij(wik + si) depending on the time the vehicle leaves the customer i.

Chen et al. (2006) take the problem even further by considering a real-time time-dependent

VRP with time windows (RT-TDVRPTW). In their problem, the travel time does not follow a

predetermined function, but travel times may change at any time due to unexpected incidents.

So this is an example of a dynamic VRP like we discussed in Section 3.3.2. The authors solved

the problem by employing a rolling time horizon and solving a mixed integer programming

submodel at every point in time when travel times change.

Time windows do not necessarily have to be hard constraints. Taillard et al. (1997) consider

the VRP with soft time windows (VRPSTW) where each customer i ∈ N still has a given time

window [ai, bi] in which they should be serviced, but they do not necessarily have to be serviced

in that window. Nevertheless, the service at customer i still may not start before ai. So if the

vehicle arrives too early, it has to has to wait until ai. On the other hand, if the customer

is serviced too late, this is accounted for by an non-negative penalty function. A objective

function is then given by

min
xijk: (i,j)∈A,k∈K

∑
(i,j)∈A

∑
k∈K

cijkxijk +
∑
i∈N

∑
k∈K

αi(wik − bi)+,

where αi are lateness penalty coefficients and p+ = max(p, 0). In other variants of the VRP,

the overall waiting time or even the waiting time for each individual vehicle may be bounded

or penalized as well. Note that by appropriately increasing the lateness penalty coefficients αi,

the problem becomes a vehicle routing problem with hard time windows again. Therefore, the

VRPSTW can be seen as a more general formulation of the VRPTW.

3.3.4 Fleet Composition

Until now, we have only discussed vehicle routing problems with identical vehicles, all based

in a single depot. In this section, we want to have a look at problems with fleets consisting

of vehicles with different characteristics regarding capacity, costs, speed or customers they can

serve. Furthermore, these vehicles may be stationed in different depots where they start and

end their tour.

Multiple Depot VRP: At first, we want to consider a problem still consisting of a homo-

geneous fleet, but this time the vehicles may start and end their tour at different depots. This

variant of a VRP is called Multi-Depot VRP (MDVRP, see Renaud et al., 1996).

In particular, the set of nodes is partitioned into two subsets Vc = {1, . . . , n} and Vd =

{n + 1, . . . , n + p}, representing the set of customers and depots, respectively. With each cus-

tomer i ∈ Vc a non-negative demand qi is associated, and |Kj | identical vehicles with capacity

Q are based at each depot j ∈ Vd. Depots may have only a limited capacity and the vehicle

fleet may be limited or unlimited. To account for an unlimited fleet, |Kj | can simply be set to

be equal to n.
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Another interesting variation of the problem arises when the vehicles may be replenished at

intermediate depots along their route. This type of problem is known as Multi-Depot VRP

with Inter-Depot Routes (MDVRPI). Crevier et al. (2007) introduced an algorithm for solving

this type of problem, motivated by a real-life grocery distribution problem in Montana. The

problem is closely related to the VRP with multiple use of vehicles we discussed in Section 3.3.3

with the difference that we now consider multiple depots.

Heterogeneous or Mixed Fleet VRP: In industry, a fleet hardly ever consists of only one

type of vehicle. Since vehicles are usually operated for several years, new ones are acquired in the

meantime and therefore the vehicles will usually have different levels of technology. Maintenance

and operation costs will change over the years as well. In addition, fleet owners often wish to

have a fleet consisting of diverse vehicle types to achieve more versatility. An extensive survey

on the industrial aspects of fleet composition and routing is provided by Hoff et al. (2010). The

authors distinguish between vehicle types regarding three main aspects:

• physical dimensions,

• compatibility constraints, and

• costs.

Physical dimensions like the length or the height of a vehicle roughly determine the capacity of

a vehicle. Obviously, a train has a larger capacity than trucks, but there exist different types of

trains as well: Smaller cars can be transported in double-deck railcars, which roughly doubles

their capacity compared to single-deck railcars. On the other hand, bigger cars like SUVs do

not fit on such railcars and therefore their capacity is effectively 0 in that case. But physical

dimensions can constrain the usability of the vehicle as well: Double-deck railcars for instance

are only allowed to travel on certain tracks, or large trucks may face restrictions due to limited

space at ramps for loading or unloading.

Compatibility constraints define where a vehicle may travel and what type of products it may

transport. Often special equipment is needed like for instance cooled compartments for food or

drugs, or large items may not be able to be rear-loaded. In addition, certain certificates may

be needed due to increasingly strong environmental restrictions in urban areas.

Costs are obviously an important factor when it comes to deciding which type of vehicle to

use. While larger vehicles usually have lower transportation costs per unit due to a higher

capacity utilization, they are less flexible to fluctuating transport volumes. When it comes to

the age of the vehicles, older ones have in general higher maintenance and environmental costs,

but on the other hand lower depreciation costs. Over a shorter time horizon, the main goal

is to balance fixed costs of the fleet with potential extra costs arising when demand exceeds

the fleet’s capacity and external capacity needs to be bought. But extra capacity may have

a positive value as well: Due to more flexibility, there may exist a more cost efficient routing

solution.

Formally, this type of problem is known as Heterogeneous or Mixed Fleet VRP (HFVRP).
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Considering a set of different vehicle types P , the fleet K is partitioned into |P | subsets of

homogeneous vehicles K = K1 ∪ K2 ∪ . . . ∪ K |P |. All vehicles of type p ∈ {1, . . . , |P |} are

characterized by a capacity Qk = Qp, travel times tijk = tpij , variable transport costs cijk = cpij ,

fixed costs FCk = FCp and a subset of customers Nk = Np ⊆ N that are accessible by vehicles

of type p.

Fixed costs reflect the costs of the driver as well as maintenance and operating costs of the

vehicle, but they become only relevant if not all vehicles have to be used. Another factor

regarding the importance of considering fixed costs is whether the fleet is owned by the decision

maker. If the trucks are owned by a subcontractor, fixed costs will often simply be a part of

the variable transport costs.

To account for vehicle specific attributes one just has to replace the general coefficients in (3a)-

(3i) with the vehicle specific ones, e.g., the capacity Q with Qk. Fixed costs can be considered

by replacing coj with cojk+FCk for all (o, j) ∈ δ+(o). Also inaccessible customers j ∈ N\Nk can

be modeled by setting the costs cijk to a sufficiently large number M for all arcs (i, j) ∈ δ−(j).

In principle, the model represents a VRP with a limited fleet size since the fleet K consists of

exactly |K| = |K1| + |K2| + . . . + |K |P || vehicles. However, to account for an unlimited fleet

size, one just has to choose sufficiently large numbers of vehicles |Kp|.
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4 Exact Solution Methods

In the following two chapters we want to give a broad overview on how to actually solve vehicle

routing problems. All the various types of VRPs we introduced in Chapter 3 are formulated

as Mixed Integer Linear Programs (MILP) and there are basically two approaches to find

sufficiently good solutions for such problems. In this chapter we present exact solution methods

and the most important concepts of finding the optimal solution of an optimization problem. In

theory, an exact algorithm finds the optimal solution within a finite number of steps, but often

the time it actually takes for doing that is way too long to be applicable in many real-world

scenarios. If this is the case, heuristic solution methods may be the better way to solve such

problems. This type of optimization algorithms will be discussed in Chapter 5.

To start things off, let us consider an Integer Program of the form

z = min{c(x) : x ∈ X ⊆ Zn} (IP)

with an objective function c(.) and decision variables x. A rather “naive” way to derive the

optimal solution x∗ would be finding a lower bound z ≤ z and an upper bound z ≥ z such that

z = z = z. Practically, this means finding an algorithm that generates a decreasing sequence

z1 ≥ z2 ≥ . . . ≥ zs ≥ z

of upper bounds and an increasing sequence

z1 ≤ z2 ≤ . . . ≤ zt ≤ z

of lower bounds until a stopping criterion of the form

zs − zt ≤ ε

is fulfilled, where ε is a sufficiently small value. This simple idea is an important aspect of

branch and bound algorithms, which we are going to discuss in the following section. For that

purpose, the definitions and propositions are largely based on the ones presented in Wolsey

(1998).

4.1 Branch and Bound Algorithms

The basic idea of branch and bound algorithms is to break up the problem into a series of

subproblems, which can be solved more easily, and then put the information back together to

solve the original problem. Thus, branch and bound algorithms follow a divide and conquer

approach to solve the problem.

Proposition 4.1. Let X = X1 ∪ . . . ∪ XK be a decomposition of X into smaller subsets and

zk = min{c(x) : x ∈ Xk} for k = 1, . . . ,K. Then z = mink z
k.
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Even though this proposition seems pretty trivial, it is the key of branch and bound methods.

The recursive decomposition of X can be represented by an enumeration tree. Figure 4 shows

what such a enumeration tree might look like for X ⊆ {0, 1}3.

Figure 4: Binary enumeration tree. Source: Wolsey, 1998, p. 92

In the TSP context, one could branch on the arcs leaving for instance node 1. So X is then

divided into subsets X12, . . . , X1n, where Xij is the set of all tours containing the arc (i, j) ∈ A.

A complete enumeration, as it is shown in Figure 4, is impossible for most problems, as the

number of different cases one has to consider explodes even for a small number of nodes. The

idea is to find lower and upper bounds for each node in the enumeration tree and thus be able

to tell beforehand whether the optimal solution can be in a certain branch. If we know that this

is not the case, we can prune the tree at the node and ignore all solutions down that branch.

This is known as implicit enumeration, as the enumeration tree is not unfolded completely.

Proposition 4.2. Let X = X1 ∪ . . . ∪ XK be a decomposition of X into smaller subsets,

zk = min{c(x) : x ∈ Xk} for k = 1, . . . ,K, zk be a lower bound on zk and zk be an upper bound

on zk. Then z = mink z
k is a lower bound on z and z = mink z

k is an upper bound on z.

Based on Proposition 4.2 we can deduce three rules when the enumeration tree can be pruned

at the k-th node:

• Pruning by optimality: If zk = zk, the optimal value zk of the subproblem on Xk

has been found and therefore Xk does not have to be divided any further into smaller

subproblems.

• Pruning by bound: If zk > z, the optimal solution in Xk is worse than an upper bound

already found. Therefore, the optimal solution cannot be in that branch and it can be

pruned.

• Pruning by infeasibility: If Xk = ∅, there exists no feasible solution down that node

and the branch can obviously be pruned.

What we have not discussed so far is how to obtain the upper and lower bounds to be able to

prune the tree. In the context of a minimization problem, upper bounds are often referred to as
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primal bounds, whereas lower bounds are called dual bounds (why this is the case will become

clear pretty soon).

Primal Bounds: Every feasible solution x ∈ X provides an upper bound z = c(x) ≥ z

of the problem. Unfortunately, this is essentially the only way to find upper bounds. For

some problems it might be easy to find feasible solutions and the actual task is to find “good”

solutions. For other problems, especially if the set of feasible solutions is restricted by a set

of complex constraints, finding a feasible solution might be almost as difficult as finding the

optimal solution. Feasible solutions are usually found by using heuristics like a greedy heuristic

or local search (or a combination of both). A greedy heuristic starts with an empty set and adds

step by step the immediate “best” item. For the TSP that would mean the algorithm starts at

a random point and in each step it adds the point closest to it that has not been visited yet.

This easily generates a feasible solution, but it is quite likely that this solution is far off from

being optimal. Afterwards, local search can be used to improve this first initial solution, called

the incumbent solution. Local search compares the incumbent solution with other solutions in

a neighborhood close to it. If a better one is found, the incumbent is replaced by that solution

and the procedure is repeated. If the solution cannot be improved any further, it is locally

optimal with respect to the neighborhood and the algorithm terminates. We will have a closer

look at local search algorithms in Section 5.3.

Dual Bounds: Finding lower bounds of z is a different problem. The most important ap-

proach to find such bounds is via relaxation. Basically the idea is to replace the “difficult”

original problem by an “easier” optimization problems whose optimal value is not larger than

the one of the original problem. Obviously, there are two possibilities to relax a problem:

• Enlarge the set of feasible solutions so that the optimization is performed on a larger set.

• Replace the objective function by a function that has the same or smaller value for all

feasible solutions.

Definition 4.3. A problem RP zR = min{f(x) : x ∈ T ⊆ Rn} is a relaxation of the problem IP

z = min{c(x) : x ∈ X ⊆ Rn} if and only if

(i) X ⊆ T

(ii) c(x) ≥ f(x), ∀x ∈ X.

Proposition 4.4. If RP is a relaxation of IP, then zR ≤ z.

Proof. Let x∗ be the optimal solution of IP, i.e., x∗ ∈ X and z = c(x∗) ≥ f(x∗). Since x∗ ∈ T ,

f(x∗) is an upper bound of zR and thus z ≥ f(x∗) ≥ zR.

Another important aspect of relaxations is that they can be used to show that a solution is

optimal or a problem is infeasible.
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Proposition 4.5.

(i) If a relaxation RP is infeasible, the original problem IP is infeasible.

(ii) Let x∗ be an optimal solution of RP. If x∗ ∈ X and f(x∗) = c(x∗), then x∗ is an optimal

solution of IP.

Proof. Ad (i): As the RP is infeasible, T = ∅ and so X ⊆ T = ∅.
Ad (ii): As x∗ ∈ X, we obtain z ≤ c(x∗) = f(x∗) = zR. According to Proposition 4.4 we know

that zR ≤ z and thus c(x∗) = z = zR.

Now the interesting question is how to construct useful relaxations. One of the most often used

relaxations is the linear programming relaxation. It provides an easy way to compute dual

bounds within a short time. The only downside is that it can only be applied to linear integer

programs.

Definition 4.6. For the linear integer program z = min{cTx : x ∈ P ∩ Zn} with formulation

P = {x ∈ Rn+ : Ax ≤ b}, the linear programming relaxation is the linear program zLP =

min{cTx : x ∈ P}.

This is clearly a relaxation of the original problem as P ∩Zn ⊆ P and the objective function is

the same for both programs.

Another possible way of relaxing a linear program is the so-called Lagrangian relaxation. The

idea is to drop all constraints Ax ≤ b and solve the resulting relaxation z′ = min{cTx : x ∈ Zn}.
In Section 3.2, we mentioned that one way of dealing with the exponentially many constraints

of the VRP is to drop the subtour elimination constraints at first and add them iteratively until

a feasible and therefore optimal solution is found. This already is an example of a Lagrangian

relaxation. The idea can be extended by not just dropping the constraints, but adding them

into the objective function with Lagrange multipliers.

Definition 4.7. For the linear integer program z = min{cTx : x ∈ P ∩ Zn} with formulation

P = {x ∈ Rn+ : Ax ≤ b} and u ≥ 0, the Lagrange relaxation is the linear program z(u) =

min{cTx− uT (b−Ax) : x ∈ Zn}.

Another possibility to obtain dual bounds is to utilize the dual problem (this is where the dual

bounds got their name from). The key property of the dual problem is that every feasible

solution provides a lower bound on the original problem.

Definition 4.8. The two problems

z = min{c(x) : x ∈ X} (IP)

w = max{ω(u) : u ∈ U} (D)

form a (weak)-dual pair, if c(x) ≥ ω(u) for all x ∈ X and all u ∈ U . If z = w, they form a

strong-dual pair.
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The advantage of the dual problem compared to a relaxation is that the dual problem does not

have to be solved to optimality to obtain a lower bound. Instead, every feasible solution already

generates a dual bound. An example for a weak-dual pair is the following:

Proposition 4.9. The integer program z = min{cTx : Ax ≤ b, x ∈ Zn+} and the linear program

wLP = max{uT b : uTA ≥ cT , u ∈ Rm+} form a weak-dual pair.

Analogously to Proposition 4.5, we can use to the dual problem to proof the infeasibility of the

problem or the optimality of a solution.

Proposition 4.10. Suppose that IP and D form a weak-dual pair.

(i) If D is unbounded, IP is infeasible.

(ii) If x∗ ∈ X and u∗ ∈ U satisfy c(x∗) = w(u∗), then x∗ is optimal for IP and u∗ is optimal

for D.

Finally, we want to tackle the question, which nodes in an enumeration tree should be divided.

Thereby, two contradictory arguments can be brought up:

• The tree can only be pruned significantly, if a feasible solution giving a hopefully good

upper bound has been found. Descending as quickly as possible in the enumeration tree

is the key to find feasible solutions and therefore one should follow a Depth-First Search

strategy. Another advantage of this strategy is that resolving the LP-relaxation can easily

be done when just a constraint is added.

• Another idea is to minimize the number of nodes that are evaluated in the tree and

therefore always choose the active node with the best bound (i.e., choose the node s

where zs = mink z
k). By doing so, one will never divide a node whose lower bound zk is

larger than the optimal value z. So this observation suggests the use of a Best-Node First

strategy.

In practice, it is often the best idea to follow an approach that is the combination of both. For

instance, one may start with a depth-first strategy until at least one feasible solution has been

found and from there on mix best-node and depth-first to on one hand try to prove optimality

and on the other hand find better upper bounds by finding better feasible solutions.

4.2 Cutting Plane Algorithms

In the next section we are going to discuss alternative formulations of integer programs and

what distinguishes a “good” from a “bad” formulation. Let us consider a mixed integer linear

program of the form

z = min{c(x) : x ∈ X ⊆ (Zn × Rp)}. (IP)

Then the formulation of the problem can formally be defined as follows:
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Definition 4.11. A subset of Rn described by a finite set of linear constraints P = {x ∈ Rn :

Ax ≤ b} is a polyhedron.

Definition 4.12. A polyhedron P ⊆ Rn+p is a formulation of a set X ⊆ Zn × Rp if and only

if X = P ∩ (Zn × Rp).

In theory, there are infinitely many formulations of a given problem. So which one of these is

the best and what characterizes a good formulation? The answer is closely related to the linear

programming relaxation: The smaller the set P is, the better are the dual bounds gained from

the relaxation. Formally, this is described in the following proposition.

Proposition 4.13. Suppose P1 and P2 are two formulations of the mixed integer linear program

z = min{cTx : x ∈ X ⊆ (Zn × Rp)} such that P1 ⊂ P2. If zLPi = min{cTx : x ∈ Pi} for i = 1, 2

are the values of the associated LP relaxations, then zLP1 ≥ zLP2 .

Based on that observation, we use the following definition to compare two alternative formula-

tions:

Definition 4.14. Given a set X ⊆ Rn and two formulations P1 and P2 for X, P1 is a better

formulation than P2, if P1 ⊂ P2.

So, is there a best formulation that is a subset of all other formulations? In Figure 5 we see

three different formulations of the set

X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}.

The formulation P3 is better than the other two as it is a subset both of P1 and of P2. Fur-

thermore, it is ideal in the sense that when solving the LP relaxation, the optimal solution will

always be an extreme point and here all extreme points are integer. Thus, the LP relaxation

already gives us the optimal solution.

Formally P3 represents the convex hull of X, what leads us to the following formal description

of this idea:

Definition 4.15. Given a set X ⊆ Rn, the convex hull of X, denoted Conv(X), is defined as

Conv(X) =


|X|∑
i=1

λixi :

|X|∑
i=1

λi = 1, λi ≥ 0 ∀i = 1, . . . , |X|

 .

Proposition 4.16. Conv(X) is a polyhedron.

Proposition 4.17. All extreme points of Conv(X) lie in X.

Indeed, Conv(X) is the best formulation of X as there does not exist a polyhedron containing

X and being at the same time a subset of Conv(X). So theoretically, once we have found a

characterization of the convex hull, all we have to do is to solve the LP relaxation. The problem

is that in most cases there is no simple characterization of Conv(X) and an enormous number
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Figure 5: Different formulations of an IP. Source: Wolsey, 1998, p. 15

of inequalities would be needed to describe it. Therefore, we are looking for an effective way to

approximate Conv(X) for a given instance.

This leads us to cutting plane algorithms: The basic idea is to solve the LP relaxation of

the problem. and if the solution is not an integer solution, a new inequality is added to the

formulation that “cuts off” this solution. The procedure is repeated until an integer solution is

obtained.

When adding inequalities to the formulation, it is important that no feasible solution is excluded.

If this is not the case, we call the inequality a valid inequality.

Definition 4.18. An inequality πTx ≤ π0 is a valid inequality for a set X ⊆ Rn, if πTx ≤ π0

holds for all x ∈ X.

Although Dantzig et al. (1954) had already developed an algorithm for the TSP to cut off

non-integer solutions of the LP relaxation, Gomory (1958) was the first to introduce a general

approach for an arbitrary linear integer program, the so-called Gomory Cuts.

Gomory Cuts

Let us consider a linear integer program in standard form, i.e., z = min{cTx : x ∈ X = P ∩Zn+}
with P = {x : Ax = b}. Note that each linear IP with fractional coefficients can be written

that way by scaling all coefficients to integers and adding slack variables afterwards to rewrite

the inequalities as equations.

Let x∗ be the optimal solution of the LP relaxation obtained by using the simplex algorithm.

The set B ⊆ {1, . . . , n} denotes the indices of the basis variables with x∗B = A−1
B b−A−1

B ANxN
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and x∗N = 0, where N = {1, . . . , n}\B. If x∗ is an integer solution, we have already found the

optimal solution of the IP and the algorithm terminates. Otherwise, there exists an index i ∈ B
with x∗i being fractional. For convenience, we define āij = (A−1

B AN )ij and b̄i = (A−1
B b)i. Then

we get an equation of the form

xi +
∑
j∈N

āijxj = b̄i, (9)

with xi being the basic variable and xj for j ∈ N being nonbasic variables. In the next step, we

rewrite the equation so that all integer parts are on the left-hand side and all fractional parts

are on the right-hand side:

xi +
∑
j∈N
bāijcxj − bb̄ic = b̄i − bb̄ic −

∑
j∈N

(āij − bāijc)xj . (10)

As all feasible x ∈ X have to be integers, the left-hand side has to be an integer as well. In

addition, the right-hand side has to be smaller than 1 as x ≥ 0 and for any α ∈ R it holds that

0 ≤ α− bαc < 1. Combining those two observations, we get

b̄i − bb̄ic −
∑
j∈N

(āij − bāijc)xj ≤ 0. (11)

Moreover, (11) is violated by the current solution x∗ as xN = 0 and b̄i = x∗i /∈ Z:

b̄i − bb̄ic −
∑
j∈N

(āij − bāijc)xj = b̄i − bb̄ic > 0.

Finally after subtracting (9) from (11) we obtain

xi +
∑
j∈N
bāijcxj ≤ bb̄ic, (12)

which is, as we have seen, a valid inequality that cuts off the noninteger solution when added

to the formulation. Note that again a slack variable is needed to rewrite the inequality as an

equation, but since all coefficients in (12) are already integers, the slack variable is an integer

as well. This procedure is then repeated until an integer solution is obtained. The derivation

of the cuts can be found in Marchand et al. (2002). More than 50 years ago, Gomory (1963)

has already proven that with a particular type of cuts an integer solution is obtained after only

a finite number of steps.

The downside of this approach is, however, that it cannot be applied to Mixed Integer Linear

Problems (MILP), i.e., problems of the form min{cTx : Ax = b, x ∈ (Zp+×Rn−p+ )}. The problem

arises in equation (10) as the left-hand side does not have to be an integer any more. However,

Gomory (1960) presented an extension of his first approach to MILPs, introducing the “mixed-

integer cuts”, known today as Gomory mixed-integer cuts (GMI cuts).

By using the same notation as before, again we get an equation of the form (9) after applying the
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simplex method. As xi is an integer, this expression is equivalent to
∑

j∈N āijxj = b̄i−bb̄ic+ k

for some k ∈ Z. In addition, we now define N+ = {j ∈ N : āijxj ≥ 0} and N− = N\N+ to

distinguish the two cases:
∑

j∈N āijxj ≥ 0 and
∑

j∈N āijxj < 0.

In the first case, as the left-hand side is nonnegative, k has to be nonnegative too, and therefore,

b̄i − bb̄ic ≤
∑
j∈N+

āijxj +
∑
j∈N−

āijxj ≤
∑
j∈N+

āijxj .

In the second case, k has to be negative and therefore we get
∑

j∈N− āijxj ≤ b̄i−bb̄ic−1, which

is equivalent to

b̄i − bb̄ic ≤ −
b̄i − bb̄ic

1− b̄i − bb̄ic
∑
j∈N−

āijxj .

So whatever case occurs, it is always true that

b̄i − bb̄ic ≤
∑
j∈N+

āijxj −
b̄i − bb̄ic

1− b̄i − bb̄ic
∑
j∈N−

āijxj , (13)

as the right-hand side is the sum of two nonnegative numbers, of which at least one is ≥ b̄i−bb̄ic.
Like before, as the nonbasic variables x∗N are all equal to 0, this inequality is violated by the

current optimal solution x∗ and thus cuts it off.

Gomory (1960) showed that an algorithm that iteratively adds inequalities of the form (13)

solves the MILP z = min{cTx : x ∈ X = P ∩ (Zp+ × Rn−p+ )} with P = {x : Ax = b} within a

finite number of steps, provided that cTx ∈ Z for all x ∈ X.

Even though Gomory’s results were a great theoretical breakthrough as he was able to reduce

an integer linear program to a sequence of linear programs, it turned out pretty soon that his

approach was practically unusable. One problem of cutting plane algorithms is that usually a

large number of iterations is needed until an integer solution is found: “...they do not work well

in practice. They fail because an extremely large number of these cuts frequently are required

for convergence” (Nemhauser and Wolsey, 1989, p. 486). Furthermore, an even bigger problem

is the poor computational performance: “The main difficulty has come, not from the number

of iterations, but from numerical errors in computer arithmetic.” (Parker and Rardin, 1988,

p. 290).

Branch and Cut Algorithms

Therefore, only little attention was payed to Gomory cuts until the mid 1990s. This changed

when Balas et al. (1996) introduced a branch and cut algorithm that uses Gomory mixed-integer

cuts at each iteration of a branch and bound algorithm. They were able to solve 86% of the

test instances compared to only 55% of the pure branch and bound algorithm within the given

time and space limitations. One problem of branch and cut algorithms has always been that

the cuts are only valid at a particular node of the enumeration tree as some variable values are

40



fixed, but they managed to generate cuts that are valid for the whole MILP by what they call

“lifting” the cut. Indeed, this hugely improved the algorithm: In a computational experiment

they compared their algorithm to one where the cutting planes were used only locally and as

a consequence the code did not terminate in almost half of the instances. In addition, they

did not use all cuts at every iteration, what enabled them to keep the linear program relatively

small. And finally, they of course benefited from the faster and numerically more stable LP

solvers that they had at hand compared to Gomory 30 years before.

Besides Gomory cuts, other types of cuts like “Mixed-integer-rounding cuts” or “Lift-and-project

cuts” are used in branch and cut algorithms as well. For a detailed description of those cuts

we refer to Marchand et al. (2002). The number of cuts added to the problem is always a

trade-off, because adding lots of cuts can significantly tighten the formulation, but on the other

hand reoptimization may be much slower than before. Even though branch and cut looks very

similar to branch and bound, it is quite a change of philosophy. Rather than aiming for a fast

reoptimization, branch and cut algorithms try to find tight dual bounds at each node. Therefore,

the number of visited nodes in the enumeration tree is significantly smaller compared to pure

branch and bound algorithms.

4.3 Column Generation Algorithms

At last, we present the basic idea of column generation algorithms, which are needed to solve

VRP models in extensive formulation as we have seen them in Section 3.2.2.

Considering the IP in extensive form (4a)-(4d), the obvious problem is the huge number of

possible routes |Ω|. Since enumerating all the routes is (besides really small models) impossible,

a so-called column generation technique is applied. The basic idea is as follows: Only a portion

of routes is enumerated and the LP-relaxation is solved, considering only this partial route set.

The solution of the relaxation is then used to find new routes that should be included in the

formulation to further reduce the optimal function value. This is called the column generation

step. To determine such a new route that should be added to the formulation, the dual variables

are used to construct a simpler optimization problem that then has to be solved. Afterwards

the LP relaxation of the expanded problem is solved again. This process is repeated until no

additional route can be found to further reduce the transportation cost.

Let us now have a look at this procedure in more detail. First, we have to generate a subset

of all possible routes Ω′ ⊆ Ω with which we start the algorithm. Finding a good initial set of

routes can greatly improve the performance of the algorithm. The LP relaxation with respect

to this subset of routes is then given as

min
λr: r∈Ω′

∑
r∈Ω′

crλr (14a)

subject to
∑
r∈Ω′

airλr = 1 ∀i ∈ N (14b)∑
r∈Ω′

λr = |K| (14c)
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λr ∈ {0, 1} ∀r ∈ Ω′. (14d)

Here again, cr are the routing costs of route r ∈ Ω, air indicates whether route r visits customer

i ∈ N and λr is the decision variable denoting whether or not route r is part of the solution.

Now let λ̄ be the optimal solution of the relaxation. Furthermore, let π̄ = {π̄1, . . . , π̄n} be

the corresponding optimal dual variables associated with constraints (14b) and θ̄ be the dual

variable associated with constraint (14c). The question is whether or not λ̄ already is the

optimal value of the LP relaxation of the original problem with respect to the whole set of

routes Ω. This is equivalent to whether (π̄, θ̄) is the optimal solution to the dual problem of the

LP relaxation. Therefore, let us have a look at the dual problem:

max
θ,πi: i∈N

∑
i∈N

πi − |K|θ (15a)

subject to
∑
i∈N

airπi − θ ≤ cr ∀r ∈ Ω. (15b)

Clearly, (π̄, θ̄) is the optimal solution of the dual problem only if all constraints (15b) are

fulfilled. In that case λ̄ is the optimal solution of the primal problem. So how can we check

whether (π̄, θ̄) fulfills all constraints? Note that we only have to find a single route r such that

−θ̄ > cr −
∑
i∈N

airπ̄i (16)

and the solution is not feasible as then constraint (15b) is violated for that route. So if we

minimize cr −
∑

i∈N airπ̄i and find a route r such that the quantity is less than −θ̄, we have

found a violated constraint. Then the solution (π̄, θ̄) is not optimal for the problem, but we can

use this information to add the corresponding column to the formulation of the primal problem

and resolve it. This process is then repeated until no violated constraint is found. In that

case (π̄, θ̄) is the optimal solution of the dual problem and λ̄ is therefore a lower bound of the

minimal total routing costs.

So specifically, the column generation problem is to find a route r ∈ Ω that satisfies (16). Let

Sr be the set of customers appearing in route r and define c̄r to be the reduced cost of column

r, i.e., c̄r = cr + θ̄ −
∑

i∈Sr
airπ̄i for each r ∈ Ω. For a CVRP, the column generation problem

is then formally given as

min
r∈Ω

{
c̄r :

∑
i∈Sr

qi ≤ Q

}
.

What might sound not too difficult at first sight turns out to be not easy at all: The problem

is again NP-hard (see Section 5.1), as even for a given set Sr determining cr requires solving a

TSP with respect to the vertices Sr ∪ {0}.
In summary, the column generation algorithm for solving the LP relaxation of a VRP in exten-

sive form can be described as follows:
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Step 1: Generate an initial set of routes Ω′.

Step 2: Solve the LP relaxation to get optimal solutions λ̄ and (π̄, θ̄), respectively.

Step 3: Solve the column generation problem or equivalently find a route r ∈ Ω with c̄r < 0.

Step 4: For every r ∈ Ω satisfying c̄r < 0, add the route r to Ω′ and go to step 2.

Step 5: If there are no routes with c̄r < 0, stop.

The result of this procedure is a vector ȳ which is the optimal solution of the LP-relaxation

and therefore a lower bound of the original problem. For a detailed description of different

approaches to solve the column generation problem we refer to Bramel and Simchi-Levi (2002).
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5 Heuristic Optimization Methods

The big advantage of exact solution methods is that they deliver the optimal solution and

guarantee its optimality. Unfortunately, it often takes way too long to solve a given problem

with an exact algorithm. This is where heuristic solution methods may be the better option as

they provide high-quality solutions within a reasonable amount of time. However, with these

methods there is no guarantee of finding the optimal solution.

Before discussing heuristic optimization methods, we want to have a quick look at why it is so

difficult to solve vehicle routing problems with an exact algorithm. Therefore, we start with a

short excursus on the complexity of problems.

5.1 The P versus NP Problem

In the last decades, the computational power has dramatically increased while the cost of

computing has drastically decreased. At the same time, algorithms have improved as well and

still there are certain problems that cannot be solved within a reasonable amount of time. In

complexity theory, these problems are called NP-hard, but before we can talk about different

classes of complexity, we need some formal definitions. All the following definitions can be found

in Chapter 6 in Wolsey (1998).

First of all, complexity theory does not address exactly optimization problems like we have

discussed so far. Instead, decision problems having a YES or NO answer are considered, but as

we will see in a moment, the results can easily be carried over. So instead of an optimization

problem

min{cTx : x ∈ F},

where F is the set of all feasible solutions, we consider the decision problem

Is there an x ∈ F with value cTx ≥ k?

for any real number k.

Next we want to state a formal definition of the running time of an algorithm. Since the length

of the input is not only given by the number of variables, constraints or nodes, but by the size

of the numbers occurring in the data as well, we first have to define what the length of the input

actually is.

Definition 5.1. For a problem instance X, the length of the input L = L(X) is the length of

the binary representation of the instance.

Definition 5.2. Given a problem P , an algorithm A and an instance X, let fA(X) be the

number of elementary calculations required to run the algorithm A on the instance. f∗A(l) =

supX{fA(X) : L(X) = l} is the running time of algorithm A. An algorithm A is polynomial for

a problem P , if f∗A(l) = O(lp) for some positive integer p.
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Now we are able to define the class of NP-problems.

Definition 5.3. NP is the class of decision problems with the property that for any instance

for which the answer is YES, there is a polynomial proof that the answer is indeed YES.

Note that any optimization problem with the associated decision problem lying in NP, can be

solved by answering the decision problem a polynomial number of times. This can be done by

using bisection on the objective value. A subset of NP is the class of the “easy” problems P:

Definition 5.4. P is the class of decision problems in NP for which there exists a polynomial

algorithm.

Now that we have defined what we consider as easy problems, we can move on to the “most

difficult” problems, namely the NP-complete problems. As a consequence, this also leads us to

the P versus NP problem as we will see in a moment.

To define NP-complete problems, we first have to define the property of a problem being

polynomially reducible to another problem:

Definition 5.5. If P,Q ∈ NP and if an instance of P can be converted in polynomial time to

an instance of Q, then P is polynomially reducible to Q.

Polynomially reducible means that there exists an algorithm f with polynomial running time

that transforms instances p of the problem P to instances q = f(p) of the problem Q, so that

the answer of the decision problem p is YES if and only if the answer of f(p) is YES. So if we

have an algorithm for Q, it can be applied on the problem P with an overhead that is only

polynomial in the size of the instance.

Definition 5.6. NPC, the class of NP-complete problems, is the subset of problems P ∈ NP
such that for all Q ∈ NP, Q is polynomially reducible to P .

The remarkable thing about the set of NP-complete problems is that it is not only non-empty,

but instead there are quite a few decision problems belonging to this class. Karp (1972) showed

that a large number of classic problems like the set covering problem, the problem of finding an

(un-)directed Hamiltonian circuit or the knapsack problem are NP-complete.

Proposition 5.7. Suppose problems P,Q ∈ NP.

(i) If Q ∈ P and P is polynomially reducible to Q, then P ∈ P.

(ii) If P is NP-complete and polynomially reducible to Q, then Q ∈ NPC

Proof. (i) is trivially true. To proof (ii) consider a problem R ∈ NP. Since P is NP-complete,

R is polynomially reducible to P . By assumption, P is reducible to Q and thus R is polynomially

reducible to Q as well. As R was an arbitrary NP-problem, Q is NP-complete.

This proposition has the following important corollary.

Corollary 5.8. If P ∩NPC 6= ∅, then P = NP.
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Proof. Suppose Q ∈ P ∩ NPC and let R ∈ NP. Since Q ∈ NPC, R is polynomially reducible

to Q. As Q ∈ P and R is polynomially reducible to Q, (i) implies that R ∈ P. Therefore,

NP ⊆ P and thus P = NP.

The question whether P = NP was first brought up by Cook (1971). In 2000, the P versus

NP problem was named one of the seven Millennium Prize Problems, for which the Clay

Mathematics Institute (CMI) offered a 1,000,000$ prize for the first correct solution to any of

the problems. But as of today, nobody has been able to find a proof or a counter example

for the P versus NP problem (Out of the seven millenium problems so far only the Poincaré

conjecture has been proven). However, due to the large number of NPC problems for which

no polynomial algorithm has been found yet, it is likely that there does not exists an algorithm

with polynomial running time for any NP-complete problem.

Definition 5.9. An optimization problem for which the decision problem lies in NPC is called

NP-hard.

One might ask now, why all this is important for us trying to solve a specific vehicle routing

problem. The quite obvious answer is: The VRP is unfortunately NP-hard. As the VRP is

a generalization of the Traveling Salesman Problem (TSP), it is sufficient to show that this

spezial case is NP-hard. The TSP is the problem of finding the shortest tour to visit a given

set of customers. To see that the TSP is NP-hard, we first have to reformulate the problem.

The optimization problem is associated with the following decision problem:

Is there a feasible tour x with length less or equal to k?

The problem lies obviously in NP since one just has to sum up the length of all tour segments

to be able to proof whether or not its length is less or equal to a scalar k. As we have mentioned

before, Karp (1972) showed that the Hamiltonian circuit problem (HCP) is NP-complete. By

using Proposition 5.7, it is therefore sufficient to show that the Hamiltonian circuit problem

can be polynomially reduced to the TSP. The HCP asks the following question:

Given a graph G = (V,E), is there a cycle which includes each node exactly once?

Note that the TSP is traditionally defined on a complete graph. The HCP can be reduced to

the TSP in the following way: Set the length of all edges in E equal to 1 and the remaining ones

equal to 2. As a cycle containing |V | = n nodes has exactly n edges connecting these nodes, the

HCP can be reduced to the TSP by setting k = n. Then the answer to the question whether

there exists a tour of at most length k is YES if and only if there exists a Hamiltonian circuit

on the Graph G. So the TSP and thus the VRP are NP-hard.

In the following sections we are going to show different approaches to solve such difficult op-

timization problems by using heuristic optimization methods. They are thereby based on the

Chapters 1-3 of Talbi (2009).
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5.2 Common Concepts of Metaheuristics

Heuristic methods represent a family of approximate methods that are often used if optimization

problems become intractable for exact algorithms. In general, heuristics can either be problem

specific algorithms or an abstract sequence of steps that can be applied on any optimization

problem. Such general frameworks are then called metaheuristics. Nevertheless, the single steps

of a metaheuristic have to be implemented problem specifically as well. Metaheuristics them-

selves can be divided into two groups: Single solution based metaheuristics (S-metaheuristics)

and population based metaheuristics (P-metaheuristics). S-metaheuristics start with a single

solution which is then improved iteratively. Popular optimization algorithms like simulated

annealing and tabu-search belong to this class of metaheuristics. P-metaheuristics on the other

hand operate on a population of solutions, and at each iteration a whole new population is gen-

erated. This new population of solutions is then integrated into the current population using

some selection procedures. Popular examples for this type of heuristics are evolutionary algo-

rithms and swarm intelligence inspired algorithms like ant colony optimization. We are going to

discuss single solution based metaheuristics in Section 5.3 and population based metaheuristics

in Section 5.4, respectively.

Basically, there are two conflicting aspects when it comes to designing a metaheuristic: Intensifi-

cation versus diversification (see Figure 6). On the one hand, once a good solution is found, one

may hope to find even better solutions with similar characteristics and so it might be expedient

to further explore this particular region of the search space. On the other hand, unexplored

areas in the search space should be visited as well so that not only a reduced number of regions

is explored.

Figure 6: Two conflicting criteria in designing a metaheuristic: Intensification versus diversifi-
cation Source: Talbi, 2009, p. 24

The extreme algorithm when it comes to diversification is a random search algorithm, where

at each iteration a random solution is picked, independently of the solutions that were previ-

ously found. The most intensification focused algorithms are local search algorithms: At each

iteration the algorithm picks the neighboring solution that improves the current one the most.

By doing that the algorithm may get stuck in a small area of the search space, but with the

advantage that this region is then explored really well. Single solution based metaheuristics are

more exploitation oriented and therefore perform better when it comes to intensifying the search

in local regions. In comparison, population based algorithms are more exploration oriented and

thus allow a better diversification throughout the whole search space.

Even though we have just seen that there are lots of different metaheuristics, there are still

some common design questions related to all iterative metaheuristics.
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Representation

One of the fundamental design questions in developing a metaheuristic is how to encode a

solution. The representation has to be suitable and relevant for the given optimization problem,

but at the same time solutions should be easy to evaluate, and the way the search operator

functions has also be taken into consideration. All this together is essential for the efficiency

and effectiveness of the representation of any metaheuristic.

Although the same problem may have lots of different representations, it always has to have

the following characteristics:

• Completeness: All solutions associated with the problem have to be represented.

• Connexity: There has to be a search path between any two solutions of the search space.

In particular, it has to be possible to attain the global optimum from any other solution.

• Efficiency: The representation has to be easy to manipulate by the search operators.

For instance, for the traveling salesman problem with n cities, the order in which the cities

are visited could be encoded as a permutation of size n. Then each permutation represents

a unique solution and the whole solution space is represented by the set of permutations. A

possible search operator would be to exchange two cities in the sequence. This search operator

is known as city swap.

In addition to the representation, a mapping function is needed to transform the encoding to a

particular solution of the problem. There are three possible cases when it comes to mapping the

solution space with the encoding space: The traditional case is where a solution is represented by

a single encoding and each encoding corresponds to a single solution (one-to-one mapping).

So there is is no redundancy and no reduction of the original search space. It is also possible that

one solution is represented by more than one encoding (one-to-many mapping). This will

lead to a larger search space, but may have an impact on the effectiveness of the metaheuristic.

Finally, the third case is that several solutions are represented by the same encoding (many-

to-one mapping). So the representation does not include all the details of a solution, which

reduces the size of the search space. This is also referred to as indirect encoding.

When using an indirect representation, a decoder is needed to derive a complete solution given

by the encoding. Depending on how much information is missing, it can be computationally

quite intensive to derive the solution. The advantage of indirect encoding is that the decoder

can handle some or even all of the constraints so that the search operator does not have to

guarantee the validity of the solution.

Objective Function

Another important aspect in designing a metaheuristic is defining the objective function. It

describes the quality or the fitness of a solution by assigning a real value to it so that it is

possible to order solutions in the search space according to their objective value. If a decoder

is necessary, it has to be applied beforehand to generate a solution that the objective function
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can then evaluate. The objective function plays an important role as it guides the search to-

wards “good” solutions in the search space. A poorly defined objective function can lead to

unacceptable solutions, independently of the metaheuristic that is used.

For some optimization problems the objective function is simply the original objective function

of the problem, but often it has to be transformed to improve the convergence of the metaheuris-

tic. For instance, this can be the case, if the objective function only takes a small number of

values (the extreme case would be a binary function), and therefore the differentiation between

two solutions may be difficult.

For some metaheuristics it may be sufficient to determine whether a solution is better than an-

other solution. An example for that are population based metaheuristics in which the selection

strategy only needs the relative fitness of two solutions. In that case the absolute quality of the

solution has no importance.

Often the evaluation of the objective value is a quite time-consuming task. One way to im-

prove the performance of the heuristic is to replace the objective function with a so-called proxy

function that is easier to evaluate. This approach can also be helpful if an analytical objective

function is not available. In that case one can replace the objective function by an approximate

function that is derived by using a sample of solutions generated by physical experiments or

simulations.

Constraint Handling

Next we want to address different strategies for dealing with constraints. Indeed, many opti-

mization problems are constrained, and handling those constraints is not trivial at all.

Reject strategies: These strategies represent the simple approach of keeping only feasible

solutions during the search and discarding infeasible solutions. This approach is only conceivable

if the portion of infeasible solutions is relatively small, but even then it may be interesting to

explore these areas as well. As optimal solutions lie in general on the boundary between feasible

and infeasible regions, infeasible solutions may contain useful information to guide the search

towards globally optimal solutions.

Penalizing strategies: These strategies extend the objective function by a penalty function

to penalize infeasible solutions. In some cases it may be sufficient to simply penalize the number

of violated constraints. However, this approach becomes useless, if the number of constraints is

small or the constraints are tight. Another strategy is to penalize the amount of infeasibility.

This takes into account how close a solution is to a feasible region and so the penalty can be

seen as the costs of repairing the solution. Hereby the initialization of the penalty coefficients is

important: If the coefficients are too small, the algorithm might converge towards an infeasible

solution. On the other hand, if the coefficients are too high, the heuristic might get stuck in a

suboptimal region. A possible way to overcome this problem is changing the coefficients over

time. For instance, the weight of a violated constraint could increase over time so that at the
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beginning of the search even highly infeasible solutions are kept, but the longer the search process

continues, the stronger will be the penalties guiding the search towards a feasible solution. But

even with dynamic penalty coefficients initialization is still crucial: If the coefficients increase

too slowly, a longer search is needed to find feasible solutions. If they increase too fast, the

algorithm may again get stuck in a suboptimal region. Adaptive penalty functions even go one

step further and adapt the penalty coefficients according to information gained from previously

found solutions. A possible strategy would be to decrease the penalty during the search if

many feasible solutions are generated and conversely increase the penalty coefficients if many

infeasible solutions are generated. Here again we have a trade-off between diversification and

intensification of the search process.

Repairing strategies: As the name already suggests, repairing strategies transform infeasible

solutions into feasible ones. These strategies are for instance used if some constraints are

not considered by the chosen search operator and it therefore potentially generates infeasible

solutions. For applying this strategy, problem specific repairing heuristics are needed, and thus

the success of such strategies depends largely on the availability of such efficient heuristics.

Decoding strategies: When using indirect encodings, this type of constraint handling strate-

gies can be applied. As we have seen before, in that case a decoder function is used to map

each representation with a feasible solution. Hereby it is important that each representation

corresponds to a feasible solution and each feasible solution has a representation corresponding

to it. In addition, the distance between two solutions in the representation space has to be

positively correlated with the distance between the corresponding feasible solutions. Otherwise

it may be difficult to guide the search towards good solutions. Of course, this approach is only

useful if the computational complexity of the decoder is sufficiently small.

Preserving Strategies: The last type of constraint handling strategies we are going to discuss

are preserving strategies. Hereby a specific representation and a search operator are defined so

that only feasible solutions will be generated during the search process. This of course requires

the representation and operator to be designed specifically for the problem and therefore cannot

be generalized to handle any constraints of an arbitrary optimization problem. Moreover, for

some problems it may be even difficult to find a feasible solution to be able to start the search

process.

5.3 Single Solution Based Metaheuristics

Single solution based metaheuristics (S-metaheuristics) perform an iterative procedure that

moves from a current solution to another solution in the search space. Iteratively, a generation

and replacement procedure is applied to first generate a set of new candidate solutions and then

select one of these solutions to replace the current one. This iterative process continues until a

certain stopping criterion is fulfilled. If the generation and replacement procedure is based only
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on the current solution, we say the metaheuristic is memoryless. Otherwise, some information

of the previous solutions is used for the generation of the candidates and/or the selection of

the new solution. In general, there are two concepts that all S-metaheuristics have in common:

The definition of the neighborhood structure and the determination of the initial solution.

Neighborhood

The definition of a neighborhood is an important aspect in designing an S-metaheuristic, as

the structure of the neighborhood is crucial for the performance of the algorithm. A heuristic

with a poorly defined neighborhood will be inefficient or maybe even fail to solve the problem.

Formally, a neighborhood is defined via a neighborhood function.

Definition 5.10. A neighborhood function N defined on a search space S is a mapping N :

S → 2S that assigns to each solution s ∈ S a set of solutions N(s) ⊆ S.

A solution s′ is said to be a neighbor of s, if s′ ∈ N(s). A neighbor of s is generated by applying

a move operator that slightly changes the solution s. The main property a neighborhood has

to fulfill is locality. By locality we mean the effect on the solution when applying the move

operator on the representation. Small changes in the representation have to correspond to

small changes in the solution. In that case we say the neighborhood has a strong locality. Weak

locality is characterized by a large effect on the solution, even for small changes made to the

representation. In the extreme case of weak locality there is almost no connection between two

neighboring solutions and so the search converges towards a random search.

As an example let us again consider the TSP: We have already introduced the city-swap operator

that swaps two cities in the order in which the cities are visited. Besides that, another popular

move operator is the so-called k-opt operator. It removes k edges of the tour and replaces

them with k other edges. So in that case s′ is a neighboring solution of s if the corresponding

tours differ by exactly k edges. As the variation to the solution is small (provided that k is not

insanely large), the neighborhood has strong locality. Indeed, the k-opt operator turns out to

be a very efficient operator for the TSP.

Now that we have introduced the concept of a neighborhood, we can discuss what it means for

a solution to be locally optimal.

Definition 5.11. A solution s ∈ S is a local optimum with respect to a neighboring function N

and an objective function f : S → R, if f(s) ≤ f(s′) for all s′ ∈ N(s).

Note that for the same optimization problem, a solution may be a local optimum for a neigh-

borhood N1, but not regarding a different neighborhood N2. In designing an S-metaheuristic it

is often a compromise between the size and quality of a neighborhood and the computational

complexity to explore it. Large neighborhoods may improve the quality of the obtained solu-

tions as there is a larger number of solutions considered at each iteration. However, it also

increases the computational time to generate and especially evaluate the larger neighborhood.

The effects of a larger neighborhood are illustrated in Figure 7.
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Figure 7: Larger neighborhoods may improve the quality of a search at the expense of a higher
computational time. Source: Talbi, 2009, p. 94

Initial Solution

The second common concept of all S-metaheuristics is the determination of an initial solution.

The two main strategies are a random and a greedy approach. Which one of the two leads to

better results always depends on the problem at hand as well as the used heuristic. In general,

there again is a trade-off between the quality of the solution and the computational time of

the algorithm. For instance, a worse starting solution will have a smaller impact on the overall

performance of the heuristic if the neighborhood is large.

A random initial solution may be generated quickly, but the price for that may be that it takes

the heuristic pretty long to converge towards a local optimum afterwards. For some optimization

problems it may be even difficult to randomly generate a feasible solution due to the high

complexity of the constraints. Greedy algorithms lead in general to better initial solutions and

so the number of iterations needed by the metaheuristic may be smaller. Nevertheless, a better

starting solution does not necessarily lead to better local optima. For some specific problems it

also may also be an option to define the initial solution beforehand.

Next we want to discuss a few of the most popular S-metaheuristics, starting with one of the

simplest methods, namely local search (LS).

Local Search

The basic idea of a local search algorithm is the following: Starting with an initial solution,

at each iteration a neighboring solution is chosen that improves the objective function. This

process is continued until no improving solution can be found, meaning that the current solu-

tion is a local optimum. Different variations of LS can be distinguished according to the way

neighboring solutions are generated (deterministic/stochastic) and the strategies used to select

a new solution. Common selection strategies are the following:

• Best improvement: In this strategy all neighboring solutions are evaluated and after-

wards the best solution, i.e., the solution that improves the objective function the most, is
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chosen. As the exploration of the neighborhood is exhaustive, this strategy may be very

time-consuming, especially for large neighborhoods.

• First improvement: This strategy consists of selecting the first solution found that

improves the current solution. So the strategy involves only a partial evaluation of the

neighborhood. Nevertheless in the worst case, i.e., if the current solution already is a local

optimum, still the complete neighborhood is evaluated.

• Random selection: In this strategy, a solution is selected randomly among all neigh-

boring solutions that improve the current one.

It has been observed that in practice on many applications the first improvement strategy leads

to the same quality of solutions as the best improvement strategy while having a smaller com-

putational time. In addition, premature convergence to a local optimum is less an issue in the

first improvement strategy (Talbi, 2009, p. 124).

In general, local search is easy to design and implement and gives very quickly fairly good

solutions. The big downside is, however, that the algorithm converges towards local optima.

Moreover, the algorithm can be very sensitive to the initial solution for some problems: De-

pending on the starting region of the algorithm, the quality of the final solutions can differ

drastically. Another problem is that there is no way to estimate the relative error from the

global optimum, and the number of steps needed until the algorithm converges is not known

beforehand. Local search works well if the number of local optima in the search space is not

too large and their quality is more or less similar.

As the main disadvantage of LS is the convergence towards local optima, various alternative

algorithms have been proposed to escape from those local optima. Figure 8 shows three different

approaches that can be used to avoid local optima.

Figure 8: Strategies for escaping from local optima in LS. Source: Talbi, 2009, p. 125
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Two of the most popular S-metaheuristics are simulated annealing and tabu-search. They both

accept moves that momentarily degrade the current solution and thereby allow the algorithm

to move out the basin of attraction of a local optimum. At the end of this section we want to

have a closer look on those two variants of LS.

Simulated Annealing

Simulated annealing (SA) is inspired from the annealing technique used in metallurgy. When

a crystalline solid is heated and then allowed to cool very slowly, it achieves the most regular

possible crystal lattice configuration and thus is free of crystal defects. This corresponds also to

the fact that it reaches its minimum lattice energy state. Simulated annealing algorithms now

carry this type of thermodynamic behavior over to the search for global optima.

At each iteration of the algorithm, a neighboring solution is randomly generated and compared

with the current solution. Improving solutions are always accepted, while a fraction of non-

improving solutions are accepted as well, hoping to thereby escape a local optimum. The

probability of accepting a non-improving solution s′ depends on the amount of degradation

∆E = f(s′)−f(s) and the temperature parameter T , which is decreasing over time. In general,

this probability follows the Boltzmann distribution:

P (∆E, T ) = exp

(
−∆E

T

)
.

The key feature of SA is that it provides a way to escape local optima by performing moves

that temporarily worsen the objective function value. Those moves are also called hill-climbing

moves. As the temperature parameter decreases to zero, the probability of such a hill-climbing

move decreases as well and so degrading solutions are accepted less often. The algorithm stops, if

the probability of accepting a non-improving solution is negligibly small, i.e., a sufficiently small

final temperature TF is reached.

So in addition to the common design concepts of S-metaheuristics like defining a neighborhood

and generating an initial solution, SA has the following two algorithm specific design issues:

• The probability function enabling non-improving solutions to be selected

• The cooling schedule defining the temperature at each step of the algorithm

For a more detailed description of these aspects we refer to Chapter 2.4 in Talbi (2009).

Tabu-Search

Tabu-search (TS) is basically an extension of a local search algorithm using a best improvement

strategy. The big difference is that TS allows hill-climbing moves if all neighboring solutions are

non-improving. In contrast to simulated annealing, where a random neighbor is selected, TS

usually explores the whole neighborhood deterministically. As in LS, if an improving neighbor

is found, it replaces the current solution. If the algorithm reaches a local optimum, though,

it does not stop, but instead selects the next best neighboring solution. This approach is
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likely to contain cycles, as at the next iteration the algorithm might try to move back to the

previous locally optimal solution. Therefore, TS memorizes the recent search trajectory and

discards previously visited solutions. Note that in contrast to SA, tabu-search is not memoryless

anymore. This memory of solutions or moves is called tabu list.

Usually not the visited solutions, but instead the applied moves are stored in the tabu list. As

the list is updated at each iteration, storing all moves may become space and time consuming.

Indeed, at each iteration the algorithm has to check whether a move belongs to the tabu list

of already applied moves. Therefore, the tabu list usually contains only a constant number of

moves.

Sometimes the tabu list may be too restrictive. By storing only the applied moves, we loose

some information about the search trajectory and so a solution may be tabu even if it has

not been visited before. Therefore, a so-called aspiration criterion is introduced: If a move is

“good”, i.e., it fulfills some predefined criteria, it is accepted even if the move is actually tabu.

The admissible solutions are therefore those that are not on the tabu list or that fulfill the

aspiration criteria.

So in addition to the common design concepts of S-metaheuristics, tabu-search has the following

specific design issues:

• A tabu list to prevent the search trajectory from revisiting previously visited solutions.

• An aspiration criterion to be able to select good moves even if they are tabu. A common

aspiration criterion is that a tabu move may be accepted, if it generates a solution that is

better than any previously found solution.

The tabu list is also referred to as the short-term memory. Often, two additional mechanics are

introduced to further improve the search process:

• Medium-term memory (intensification): The medium-term memory stores the best

solutions found during the search process. The idea is that those solutions may have

certain attributes that all good solutions have in common. So the search should be guided

towards solutions containing these attributes.

• Long-term memory (diversification): The long-term memory stores information

about all visited solutions to detect unvisited areas in the search space and consequently

guide the search towards those areas. So some attributes of elite solutions may be dis-

couraged to further diversify the search process.

A detailed discussion of the fundamental concepts of tabu-search can be found in Gendreau and

Potvin (2010).

5.4 Population-Based Metaheuristics

Most population-based metaheuristics (P-metaheuristics) start with an initial population of so-

lutions, although there also exist algorithms starting from a partial or empty set of solutions.
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At each iteration, a new population of solutions is created (generation phase) and afterwards a

selection from the current and the new population is carried out (replacement phase). Again,

these two phases are called memoryless, if only the information of the current population is

used to generate and select the solutions. This procedure is continued iteratively until a certain

stopping criterion is fulfilled.

Most of the P-metaheuristics are inspired by natural phenomena. Popular examples are evolu-

tionary algorithms, ant colony optimization or particle swarm optimization. These algorithms

differ in the way they generate and select the new population and how they use the search

memory during the search process:

• Search memory: The search memory represents all the information extracted and used

during the search. Depending on the P-metaheurstics, the memory can be limited to the

current population of solutions (e.g., in evolutionary algorithms) or updated and extended

at each iteration (e.g., in ant colony algorithms).

• Generation: At each iteration, a new population of solutions is generated. In general,

depending on the P-metaheuristics one of the following two generation strategies is used:

– Evolution based: New solutions are generated based on attributes belonging to the

current population. A variation operator thereby acts directly on the representation

of the solutions.

– Blackbox based: Here all solutions participate in constructing a shared memory,

which is then used to generate new solutions. In this class of P-metaheuristics the

recombination of solutions is indirect through the shared memory.

• Selection: The last step at each iteration is the selection of new solutions from the union

of the current and the newly generated population. The traditional strategy is to simply

select the generated population as the new population. However, some algorithms select

the best solutions of the two sets, and in blackboard based P-metaheuristics there is no

explicit selection as the new population updates the shared memory, which consequently

affects the generation of the new populations.

As for S-metaheuristics, there are certain search concepts that all P-metaheuristics have in

common. These are the determination of the initial population and the stopping criteria.

Initial solution

In comparison to S-metaheuristics, population based metaheuristics are usually more explo-

ration oriented due to the large diversity of initial populations. The generation of the initial

population is crucial for the effectiveness and efficiency of a P-metaheuristic because if the ini-

tial population is not well diversified, the algorithm may stop without considering solutions in

certain areas of the search space. This could happen for instance if the initial population is

generated using a greedy heuristic or an S-metaheuristic. This results in an initial population

consisting of high quality solutions, but they may lack of diversity. Some P-metaheuristics such
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as scatter search explicitly take some diversification criteria into account when generating the

initial population of solutions (see Chapter 3.5 in Talbi, 2009).

Stopping criteria

The stopping criteria are usually based on some statistics on the current population or the

evolution of the population over the last iterations. Often the criteria are related to the di-

versification of the population: If the population becomes too uniform according to a certain

measure, the algorithm stops as this is a sign of stagnation of the population, and therefore

a continuation of the search is useless. Similar to S-metaheuristics, there are two stopping

procedures:

• Static procedure: In a static procedure, the end of the search may already be known

at the beginning of the search process. Static stopping criteria can for instance be a fixed

number of iterations or a maximum number of objective function evaluations.

• Adaptive procedure: In an adaptive procedure, the end of the search is determined

during the search process and therefore is a priori unknown. A possible adaptive stopping

criterion can be a fixed number of iterations without any improvement of the current best

solution.

At the end of this section, we have a look at two examples of popular P-metaheuristics.

Evolutionary Algorithms

In the 1980s, the theory of creation and evolution of a new species, first brought up by Charles

Darwin in his famous book On the Origin of Species (see Darwin, 1859), inspired computer

scientists to develop evolutionary algorithms. These algorithms are stochastic P-metaheursitics

that simulate the process of the evolution of a species. The initial population is usually gener-

ated randomly, whereby each individual of the population is an encoded version of a potential

solution. The objective function assigns a fitness value to each solution, indicating its suitability

to the problem. At each iteration, individuals are selected to form parents whereby individuals

with better fitness are more likely to be selected. The selected individuals then generate new

solutions (“offsprings”) using variation operators like crossover or mutation. In the last step,

by applying a replacement procedure, the individuals of the next generation are selected from

the parents and the offsprings. Each iteration represents a generation, and the procedure is

repeated until a stopping criterion is fulfilled.

For a detailed description of the specific search components of selection, reproduction, and

replacement of the solutions in evolutionary algorithms we refer to Chapter 3.3 in Talbi (2009).

Swarm Intelligence

Swarm intelligence algorithms imitate the collective social behavior of species like ants, bees,

fish or birds. The main characteristics of such algorithms are agents, cooperating by an indirect
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communication medium and moving around in the decision space. As one of the most successful

swarm intelligence inspired algorithms, we will have a closer look at ant colony optimization.

Ant Colony Optimization: As the name already suggests, ant colony optimization (ACO)

mimics the cooperative behavior of real ants to solve optimization problems. These algorithms

can be seen as multiagent systems, where each agent represents a single ant. Even though a

single ant is a rather simple organism, a colony uses collective behavior to solve difficult tasks

such as finding shortest paths to the food sources. Ants cannot see very well, but they manage

to find a food source by following a chemical trail (pheromone) that is left on the ground by

the other ants. The more pheromone is on a particular path, the more likely it is for ants to

select that path. Furthermore, this chemical substance evaporates over time and the quantity

left on the ground depends on the amount of food found by the ant.

In Figure 9 we see an illustration of an ant colony having their way blocked by an obstacle. At

the beginning, it is equally likely for ants to choose the right or the left path. Over time, as the

travel time of the right path is shorter, more pheromone is left on that path and therefore more

ants select the right one. This effect is further increased by the evaporation of the pheromone

on the left path. ACO mimics this principle of finding the shortest path between two points by

using this simple communication mechanism.

Figure 9: ACO is inspired by ant colonies searching for an optimal path between a food source
and their nest. Source: Talbi, 2009, p. 241

In addition to the common search components of metaheuristics like the representation of so-

lutions and the objective function, ACO has the following main design issues:

• Pheromone information: The pheromone model is the central component of an ACO

algorithm. A vector of model parameters τ called pheromone trail parameters has to be

defined, whereby the single pheromone values τi ∈ τ should reflect relevant information

when it comes to constructing new solutions for a given problem.

• Solution construction: The main task is to find a local heuristic that constructs a new

solution guided by the the pheromone information. Therefore, an ACO algorithm is easier
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to implement for problems where an efficient greedy heuristic already exists that then only

needs to be adapted to the pheromone model.

• Pheromone update: The update of the pheromone information consists of two steps. In

the evaporation phase, all pheromone trails are decreased to encourage the diversification

of solutions and to avoid premature convergence toward a suboptimal solution. In the

second phase, the reinforcement phase, the pheromone information is updated according

to the generated solutions. Defining the reinforcement learning strategy is a further main

design issue of ACO.

A more detailed description of ant colony optimization algorithms can be found in Dorigo

et al. (2006). Another popular metaheuristic inspired by swarm intelligence is particle swarm

optimization (PSO), which mimics the behaviours of natural organisms like a flock of birds or

a school of fish, when searching for a place with enough food. For more information on that we

refer to Chapter 3.6 in Talbi (2009).
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6 Model for the Car Distribution in Central Europe

Now that we have discussed different types of vehicle routing problems and how to solve them

using exact and heuristic algorithms, it is time that we get back to the actual topic of this

thesis: Solving the VRP of the car distribution in Central Europe. We want to start with a

detailed description of the problem and introduce a mixed integer linear model describing the

problem. After that we present an exact algorithm as well as a heuristic method to solve the

problem. Finally we evaluate and compare these two solution approaches by applying them to

real-world transportation data.

6.1 Model Description

Let (V,A) be a directed graph, whereby the set of nodes V represents the different locations and

the arc set A denotes the different routes connecting those locations. The locations can either

be car factories or turnover points, whereby from each factory i ∈ V a certain amount of cars

qij has to be transported to a particular turnover point j. We are going to refer to arcs with

a positive transport demand as a transport relation. In general, it is also possible that from

a single factory multiple turnover points have to be supplied, or conversely multiple factories

service the same turnover point. As we focus on the car distribution in Central Europe, there

are three modes of transport available: Cars can be carried on the road by trucks, by trains via

the rail network or by barges on the inland waterways. The total vehicle fleet K consists of a

fixed number of vehicles of each vehicle type. For each vehicle k ∈ K and each arc (i, j) ∈ A
leading from node i to node j, we know the travel cost cijk and whether the vehicle is available

on that arc. This is denoted by the parameter aijk ∈ {0, 1}, which is equal to 1 if and only if

vehicle k can go from location i to location j. This restriction is given by the fact that either

some types of cars can only be transported by a certain transport mode or that there is no

connection between the two places for that type of transport vehicle. The type of cars also

affects the number of cars a vehicle can transport in a single run. As the type of car produced

in a certain factory does not change, we also know the capacity bijk of vehicle k on arc (i, j).

Finally, we also have the distance between two locations, which in general also depends on the

type of transport vehicle. Water ways are for instance usually significantly longer than the

corresponding road connection. The distance is denoted by dijk for each vehicle k and each arc

(i, j). As a last restriction, each vehicle k has a maximal distance Dk it can travel within a

month, which is the planning horizon we are going to consider.

According to the classification in Section 3.3, the given problem is a Pickup and Delivery

Problem (PDP), as the transport requests are point-to-point requests. Furthermore, the number

of cars that have to be transported on a single transport relation are in general significantly

higher than the transport capacity of a single vehicle. So the transported cars have to be

split between several vehicles, which corresponds to a VRP with Split Deliveries (SD). Finally,

there are different types of transport vehicles, and therefore our fleet is heterogeneous (HF). All

together, the given problem is a Heterogeneous Fleet Pickup and Delivery Problem with Split
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Deliveries (HFPDPSD).

As the given problem is a split delivery problem, we are going to use the SDVRP model of

Archetti et al. (2006) that we have already presented in Section 3.3.2. In contrast to the

problem considered by Archetti et al. (2006), the given VRP has no central depot, and the

transport vehicles are allowed to travel multiple times along the same arc. Therefore, we have

to modify the model slightly:

Let xijk be the number of times vehicle k ∈ K travels along arc (i, j) ∈ A. Then the objective

function is given as

min
xijk

∑
i∈V

∑
j∈V

∑
k∈K

xijkcijk.

First, we have to ensure that all tours of the vehicles are meaningful. One criterion is that the

number of times a vehicle travels to a node has to be equal to the number of times it leaves

that node. This corresponds to the following constraints:∑
l∈V

xilk =
∑
l∈V

xlik ∀i ∈ V, k ∈ K.

At the same time, tours must not contain any subtours. This is where things becomes tricky,

because as there is no central depot and our vehicles may move along the same arc multiple

times, we can not use the subtour elimination constraints of the model introduced by Archetti

et al. (2006). At first we define a binary variable zijk that is 1 if and only if vehicle k moves at

least once from point i to point j. That means,

zijk =

1 if xijk > 0

0 otherwise.

To ensure that, let M be a sufficiently large number and let the following two inequalities hold:

xijk ≤Mzijk ∀(i, j) ∈ A, k ∈ K

zijk ≤ xijk ∀(i, j) ∈ A, k ∈ K.

Next let S be the set of all closed tours. Note that a tour is a set of routes, i.e., S ⊆ 2A.

Analogously to the notation used in Section 3.2, let δ+(s) = {(i, j) ∈ A : ∃(h, i) ∈ s} be the set

of all arcs connected to an end point of an arc in s ∈ S. Furthermore, for s ∈ S and k ∈ K we

define wsk as

wsk =

1 if vehicle k runs tour s

0 otherwise.

A vehicle runs a tour s if and only if it moves along all arcs contained in s and no arc that leads

away from that tour. So to ensure that wsk is indeed 1 if and only if vehicle k runs tour s, the
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following constraints have to be fulfilled∑
(i,j)∈s

zijk −
∑

(i,j)∈δ+(s)

zijk − wsk ≤ |s| − 1 ∀s ∈ S, (17)

with |s| being the number of arcs contained in s. Finally, we are able to define a subtour

elimination constraint that fits our problem: Every vehicle is only allowed to run a single tour,

which corresponds to ∑
s∈S

wsk ≤ 1 ∀k ∈ K.

Now that we have ensured that all vehicles run meaningful tours, we can concentrate on the

other restrictions we stated before. Let us start with a set of constraints to make sure that all

demands are fulfilled. If bijk is the transport capacity of vehicle k on arc (i, j) and qij is the

number of cars that have to be transported along that arc, than it has to hold that∑
k∈K

xijkbijk ≥ qij ∀(i, j) ∈ A.

Furthermore, if Dk is the maximal travel distance of vehicle k and dijk is the distance of the

connection between location i and j for vehicle k, then it has to hold that∑
(i,j)∈A

xijkdijk ≤ Dk ∀k ∈ K.

Finally, we have to make sure that vehicles only travel along arcs that they actually are al-

lowed to. With aijk being equal to 1 if and only if vehicle k can move along the arc (i, j), the

corresponding constraints are

aijk ≤ zijk ∀(i, j) ∈ A, k ∈ K.

In the course of the research project IPPO this model has already been published as a part

of Brunnthaller et al. (2018).

In the following two Section we are going to present the basic idea of the algorithms used to solve

the model above. We start with an exact algorithm before introducing a tabu-search heuristic.

Both algorithms were implemented in Matlab. The corresponding codes of the algorithms can

be found in the appendices.

6.2 Core Elements of the Exact Algorithm

When solving the problem with an exact algorithm, an obvious problem is the exponential

number of variables wsk, as there is one for each possible tour a vehicle can run. We are going

to use the approach presented in Section 3.2.1 to at first leave out all variables wsk as well

as the corresponding inequalities in (17). The optimization problem is then solved iteratively,
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and at each iteration, if the optimal solution contains a vehicle running a certain subtour,

the corresponding wsk variables are identified and added to the problem together with their

inequalities. In particular, this means that at each iteration all tours run by a vehicle have to

be identified, and if more than one tour is found, a wsk variable for each tour has to be added to

the problem. The identification of the tours of a vehicle is done by the function findSubtours,

which takes all the arcs along which the vehicles move as an input and then iterates from one

visited node to the next one until all cycles are found. Cycles having a node in common are

combined to a single tour afterwards, and the nodes and arcs of all tours are then returned to the

main function. The implementation of the function findSubtours can be found in Appendix A.2.

The second difficult task is to solve the MILP at each iteration. This is done by the MILP solver

intlinprog from the Matlab Optimization Toolbox (see MathWorks, 2017). The solver applies

different strategies to find the optimal solution, and whenever it cannot solve the problem with

a certain strategy, it moves on to the next one. In total, intlinprog executes six strategies:

1. Linear Program Preprocessing: The algorithm tries to detect redundant variables

and linear constraints and eliminates them. Furthermore, it strengthens the bounds on

the variables and checks the feasibility of the model. While this initial step may take

some time, it usually lowers the overall computation time and therefore potentially makes

larger problems solvable.

2. Linear Programming: Intlinprog solves the LP relaxation to get an initial lower bound

of the problem. Besides this initial relaxed problem, all lower bounds in the later branch

and bound algorithm are generated by applying this relaxation technique.

3. Mixed-Integer Program Preprocessing: Similar to the first step, intlinprog tries to

tighten the problem even further. Now the algorithm also takes the integrality restriction

of the variables into account to determine whether:

- The problem is infeasible.

- Some bounds can be tightened.

- Some inequalities are redundant and so can be ignored or removed.

- Some inequalities can be strengthened.

- Some integer variables can be fixed.

4. Cut Generation: At the next step, various types of integer cuts like Mixed-integer

rounding cuts or Gomory cuts are generated and added to the problem formulation. These

additional constraints attempt to improve the LP relaxation so that the solutions are closer

to integer points.

5. Heuristics for Finding Feasible Solutions: The algorithm runs a number of different

heuristics to find a good feasible solution and therefore a good upper bound of the problem.

Currently, intlinprog uses these advanced heuristic techniques only at the root node, not

during the branch and bound iterations.
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6. Branch and Bound: Finally, a branch and bound algorithm is applied to split the

problem into a sequence of subproblems in order to converge to a solution of the overall

MILP. As mentioned before, intlinprog uses the LP relaxations to generate lower bounds

at each node. At which node the tree should be split is determined by a predefined rule,

which is passed on to the solver. Possible splitting rules are, for instance, to choose the

variable with its fractional part closest to 0.5 or with the maximal corresponding absolute

value in the objective function. The branch and bound algorithm continues until one of

the following stopping criteria is met:

- The algorithm exceeds a predefined maximal computation time.

- The difference between the lower and upper bounds on the objective function is less

than a predefined tolerance.

- The number of explored nodes exceeds the predefined maximal number.

- The number of integer feasible points exceeds the predefined maximal number.

6.3 A Tabu-Search Algorithm for the HFPDPSD

Next we want to present a tabu-search algorithm for the HFPDPSD as an alternative to the

exact algorithm. The basic idea of the algorithm is based on the tabu-search algorithm of

Archetti et al. (2006) for solving a SDVRP. As for the model formulation, we take the key

concepts of the algorithm and adjust them to our routing problem.

Representation: The solution is encoded by a list containing an object for each available

vehicle. Each of these vehicle objects consists of the tour run by the vehicle as well as the

current travel distance and the travel costs of the vehicle. A tour is decoded as a list of cycles

consisting of the order in which certain relations are serviced by the vehicle together with the

number of units transported on each relation. The number of times the cycle is run is then

simply the number of units transported divided by the capacity of the vehicle on that relation

rounded up to the next integer.

At first glance, it may seem a bit odd as we kind of model a tour as a set of cycles that do

not necessarily have to be connected. This is necessary, as the number a cycle is run is linked

to the cycle itself and therefore a vehicle could otherwise only service all relations contained in

the tour equally often. Especially in combination with the maximal travel distance restriction,

it is not unlikely that a vehicle services some relations more often than the other ones. When

calculating the travel distance and the travel costs we of course connect the different cycles so

that the result is again a valid tour.

This is, by the way, the only part of our representation that is encoded indirectly, as we do

neither store the order in which the cycles are run nor the nodes at which the cycles are

connected. The problem with using this encoding is that the resulting lack of information is

quite huge, as the corresponding decoding function would have to solve a TSP consisting of all

relations serviced by the vehicle. Therefore we do not calculate the travel costs and distance
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exactly, but instead use a greedy heuristic as a proxy function. The idea behind this is that if

the greedy connection is suboptimal, the algorithm should construct a new cycle that connects

the other cycles in an optimal way.

Constraint handling: When it comes to constraint handling, we use a combination of a

penalization and a preserving strategy. Most of the constraints are handled by the move oper-

ator we are going to introduce in a moment. The only constraint the operator does not take

care of is the maximal travel distance restriction. This is due to the fact that this restriction

makes it potentially quite difficult to find a feasible starting solution. The amount of violation

is multiplied by a penalty coefficient and added to the objective function, which is for this

problem simply the total transport cost. The search starts with a penalty coefficient of zero

that increases whenever the search gets stuck in a region of infeasible solutions for a certain

number of iterations. In doing so, we allow the search trajectory to pass regions of the search

space consisting of infeasible solution, hoping that it will move over time to a region of good

feasible solutions.

Neighborhood: The move operator that defines the neighborhood structure of the search

space is defined via two functions: First, the function order (see Appendix B.2) generates a

list of savings, if a single run of a given relation is removed from a cycle belonging to a tour

of a vehicle. This list is then ordered by the transport cost reduction per unit removed from

the cycle. So the first entry of the list is the cycle with the highest cost reduction, if the

relation is partly or completely removed from it. After that, the function bestNeighbor (see

Appendix B.3) looks for the cycle to which adding the given relation results in the highest overall

cost reduction. To improve the performance of the algorithm, not all possible combinations are

considered: The algorithm starts with the first entry of the savings list and moves the optimal

number of units transported from one cycle to the other. Once this optimal number is found,

this number is fixed and it continues with the second entry of the list searching from the optimal

number of units to be moved from one cycle to the other. This procedure is executed for all

relations so that at the end we get the optimal number of units transported at a certain relation

to be moved from one or many cycles to a single other cycle.

If any number of units belonging to a certain relation was removed from a cycle, it is tabu to

add any number of units belonging to that relation again to that cycle for a given number of

iterations. Analogously, it is forbidden to remove any units of a certain relation from a cycle for

a given number of iterations, if units of that relation had been added to that cycle recently. So

as described in Section 5.3, we do not consider the particular transfer of units from one cycle

to another to be tabu, but rather adding or removing units of a certain relation to or from a

certain cycle.

The implementation of the main function of the tabu-search algorithm is called TabuVRP and

can be found in the Appendix B.1. It generates the initial solution using a greedy heuristic,

checks the stopping criteria after each tabu-search iteration and potentially adapts the penalty

coefficient according to the criteria described above.
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6.4 Test Scenarios

Next we want to compare the performance of the two algorithms introduced above. As a

test scenario we will take the monthly transport demand of 10 real-world transport relations

throughout Central Europe for the years 2014 and 2015. This also was the data used in the

IPPO research project to test the developed algorithm for predicting future transport demands

and optimizing the fleet composition based on that information. Figure 10 shows the number

of cars that need to be transported on the given relations. We see that the demands fluctuate

a lot: While there is usually a peak around March as the business year of many companies

ends around that time, there is typically also a low during the summer marking the company

holidays of the car manufacturers. Thus we see that only because it may be profitable to use a

train as a transport vehicle for a certain month, it is not given that it is true for all months.

Figure 10: Transport demand of the 10 test relations over time

The transport distances were calculated by using the online geographic informations systems

Google Maps and ecotransit.org. All the other parameters needed to evaluate the algorithms

are based on the doctoral thesis of Pascher (2017), who developed a detailed model to calculate

the number of cars a transport vehicle can carry as well as the resulting transportation costs

depending on the type and number of cars transported by the vehicle.

Depending on the size of the cars, a single truck can transport between 6 and 11 cars. In our

test scenarios, only mid sized cars have to be transported and so the transport capacity of a

single truck lies between 7 and 9 cars. A block train is usually allowed to have a length of up to

600 meters, which is equivalent to 18 railcars. A single-deck railcar can carry between 5 and 8

cars. A double-deck railcar can carry about twice as many, but is not available for all transport

relations or car types. On the relations of our test scenarios, trains have a capacity between

113 and 216 cars. For barges it is not that easy to generally state a fixed transport capacity, as

it largely depends on the type of barge that is available or can be used on a certain relation. In

our test scenarios, the capacity varies between 236 and 294 cars.

As we consider transport requests on a monthly basis, we have to adjust the transport capacity
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for the large vehicles: If for instance only 200 cars are produced at a certain location per

month, it is obviously unrealistic that a single train can pickup all the cars at once. Therefore,

we reduce the transport capacity according to the number of cars produced per day multiplied

by the number of days it takes the vehicle to perform a round trip from the source to the sink

and back again. Within the research project IPPO we were told by the traffic managers of

Hödlmayr International AG that they use the same approach for their strategical planning.

The calculation of the transportation costs takes various fixed and variable cost factors into

account. Fixed costs accrue independently of the use of the vehicles. In order to be able to

account for these costs, they are added to the single transports proportionally to the duration of

the transport. Examples for fixed costs are the fixed depreciation of the vehicle, taxes, insurance

or personnel costs. Variable costs depend on the distance traveled by the vehicle. So for trucks

these are, for instance, the variable part of the depreciation, maintenance costs, tires or toll

fees. The transport costs for trains and barges are calculated similarly. In contrast to the costs

of trucks it is also possible to lease or rent these vehicles, which is also considered in the cost

calculation. Furthermore, there are some additional cost factors like infrastructure costs for the

rail system or costs for the change of traction of a train. A detailed description of the cost

calculation can be found in Chapter 5.7 of Pascher (2017).

6.5 Computational Results

Now that we have described the in overall 24 test scenarios, we want to apply the two algo-

rithms to them and compare their performance. Previous tests have already shown that - as

expected - the performance of the exact algorithm becomes worse the more vehicles and loca-

tions are considered in the problem. So by setting the number of vehicles to a large number, we

insure that the problem has a feasible solution, but the exact algorithm would not be able to

find a solution. Therefore, we calculated the travel distance of the optimal solution using only

trucks with only one eighth of the transport demand. This can easily be done with the exact

algorithm. The resulting travel distance was multiplied by eight again and then divided by the

maximal travel distance of a truck giving an estimate of the number of trucks needed to satisfy

all transport requests. Finally we increased the number of trucks by 10% so that potentially

the optimal solution is not the only feasible one.

At first we want to start off with calculating the optimal routes when using only trucks and

for only half of the test size, i.e., we divided the transport demand and the number of trucks

available by two. Each algorithm was given 300 seconds to find the optimal routing of the

vehicles. The results can be found in Table 4.

The first column contains the period of the test scenarios, followed by two columns with the

optimal transportation costs and the run time of the exact algorithm. The fourth column “op-

timal solution found” indicates whether the exact algorithm converged within the given time

limit. If it was able to initially solve the problem, but the solution contains at least one subtour

(keep in mind that we add the subtour elimination constraints only iteratively), we still state

the resulting transportation costs. In that case, the costs are only a lower bound as it is the
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test period
optimal costs

exact algorithm
run time

exact algorithm

optimal
solution
found

optimal costs
tabu-search

run time
tabu-search

optimality
gap

01/2014 566480 e 54.752 sec Yes 600590 e 302.96 sec 6.02%
02/2014 840650 e 301.25 sec No — 310.53 sec —
03/2014 864700 e 300.40 sec No 908060 e 305.71 sec ≤ 5.01%
04/2014 753950 e 301.03 sec No 786560 e 304.43 sec ≤ 4.33%
05/2014 738120 e 302.56 sec No — 300.60 sec —
06/2014 654840 e 300.24 sec No 674880 e 313.35 sec ≤ 3.06%
07/2014 635730 e 33.829 sec Yes 693400 e 314.28 sec 9.07%
08/2014 382930 e 46.786 sec Yes 388030 e 306.49 sec 1.33%
09/2014 698820 e 298.74 sec Yes — 304.33 sec —
10/2014 977170 e 300.03 sec No — 305.22 sec —
11/2014 956260 e 300.05 sec No — 316.47 sec —
12/2014 683800 e 300.57 sec No 699550 e 305.50 sec ≤ 2.3%
01/2015 643410 e 13.616 sec Yes 691940 e 310.18 sec 7.54%
02/2015 727700 e 16.939 sec Yes 751260 e 301.28 sec 3.24%
03/2015 909540 e 289.94 sec Yes — 309.55 sec —
04/2015 818620 e 300.05 sec No — 302.31 sec —
05/2015 702100 e 50.654 sec Yes 736410 e 309.84 sec 4.89%
06/2015 705640 e 300.32 sec No 737720 e 304.91 sec ≤ 4.55%
07/2015 680700 e 61.339 sec Yes 702510 e 308.13 sec 3.20%
08/2015 504240 e 6.5204 sec Yes 511380 e 300.91 sec 1.42%
09/2015 780040 e 300.05 sec No — 300.15 sec —
10/2015 699280 e 161.86 sec Yes — 310.81 sec —
11/2015 784870 e 12.199 sec Yes 814360 e 303.58 sec 3.76%
12/2015 636540 e 302.36 sec No 650300 e 306.02 sec ≤ 2.16%

Table 4: Half of the transportation demand with only trucks and a maximal computation time
of 300 seconds.

solution of a relaxation of the problem. The next two columns contain the optimal costs and

the run time of the tabu-search algorithm. As the algorithm checks the elapsed time only after

each tabu iteration, it usually runs a few seconds longer than the maximal computation time,

but since the improvement of a single move is only marginally, this does not have a big effect on

the results. The last column of the table states the optimality gap, i.e., how far the tabu-search

algorithm is away from the optimal solution. If the exact algorithm only found a lower bound

of the optimal solution, we only know an upper bound of the difference to the optimal solution.

We see that the exact algorithm was able to solve 12 out of the 24 test instances within the

given 300 seconds. For 8 of those instances it took less than a minute to find the optimal so-

lution, for the instance of August 2015 even only astonishing 6.5 seconds. Note that it is quite

reasonable that the algorithm performs better for the summer months, as the transport demand

is significantly smaller for those periods due to the company holidays of the manufacturers, also

corresponding to a smaller number of trucks considered in the problem.

The tabu-search algorithm was able to find a feasible solution for 15 of the 24 instances with

optimality gaps ranging from 1.33% to 9.07%. Remarkably, the solutions of only 4 instances

have costs that are more than 5% greater than the optimal routing costs.

Next, we take the original transportation demand, but again consider only trucks as transport

vehicles. As the size of the instance doubles, we also increase the maximal computation time

from 300 to 600 seconds. The test results can be found in Table 5.
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test period
optimal costs

exact algorithm
run time

exact algorithm

optimal
solution
found

optimal costs
tabu-search

run time
tabu-search

optimality gap

01/2014 1128400 e 600.17 sec No — 601.74 sec —
02/2014 1667400 e 600.05 sec No — 608.84 sec —
03/2014 1721700 e 600.86 sec No — 631.72 sec —
04/2014 1497900 e 600.09 sec No 1583700 e 605.36 sec ≤ 5.73%
05/2014 1480900 e 605.57 sec Yes 1550900 e 629.30 sec 4.73%
06/2014 1297100 e 600.06 sec No 1376800 e 625.67 sec ≤ 6.14%
07/2014 1272300 e 601.15 sec No 1362500 e 615.25 sec ≤ 7.09%
08/2014 764460 e 600.07 sec No 783760 e 603.92 sec ≤ 2.52%
09/2014 1392500 e 601.57 sec No — 628.86 sec —
10/2014 1945100 e 600.07 sec No — 621.54 sec —
11/2014 1914500 e 600.08 sec No 2033100 e 608.81 sec ≤ 6.19%
12/2014 1341100 e 600.99 sec No 1377100 e 600.25 sec ≤ 2.68%
01/2015 1272600 e 600.10 sec No — 618.12 sec —
02/2015 1455500 e 600.06 sec No 1536200 e 611.60 sec ≤ 5.54%
03/2015 1806300 e 601.36 sec No — 626.93 sec —
04/2015 1613400 e 600.05 sec No 1726100 e 631.37 sec ≤ 6.99%
05/2015 1404200 e 600.11 sec No — 624.42 sec —
06/2015 1407700 e 600.05 sec No 1512300 e 606.24 sec ≤ 7.43%
07/2015 1361000 e 600.11 sec No — 616.85 sec —
08/2015 1000300 e 600.10 sec No 1017500 e 609.40 sec ≤ 1.72%
09/2015 1553300 e 600.06 sec No — 622.01 sec —
10/2015 1384800 e 600.11 sec No — 632.17 sec —
11/2015 1574500 e 600.06 sec No 1650500 e 607.52 sec ≤ 4.83%
12/2015 1259700 e 254.99 sec Yes 1290000 e 601.78 sec 2.41%

Table 5: Full transportation demand with only trucks and a maximal computation time of 600
seconds.

The exact algorithm was only able to find the optimal solution for two test scenarios, namely

for May 2014 and December 2015. We see that the algorithm reaches its limits as the prob-

lem size increases. In contrast to that, the tabu-search heuristic was still able to find feasible

solutions for 13 out of the 24 test scenarios, and the optimality gaps are again within an ac-

ceptable range. For the two scenarios for which we know the optimal solution, the heuristic is

only 4.73% respectively 2.41% away from the optimal solution. Both algorithms might be able

to find solutions for more instances if they were given some additional computation time, but

nevertheless it is obvious that the exact algorithm is clearly outperformed by the heuristic at

these larger problem instances.

As a last test we add two trains and a barge to the previous scenarios to test the performance of

the algorithms with a heterogeneous fleet. For all but two transport relations, it is possible to

transport cars by train or by barge. This restriction is not given as there would be no connection

for that mean of transport, but rather that the transport requests occur pretty spontaneously

on these relations and therefore it is not possible to service them by the less flexible transport

vehicles train and barge. The results are shown in Table 6.

Interestingly, neither the solutions of the exact algorithm nor the tabu-search heuristic con-

tain a barge for any test instance. On the other hand, this result is not really surprising as

Pascher (2017) has already shown that a barge is only very seldom cost efficient when it comes

to transporting cars. This is due to the fact that cars in comparison to bulk cargo or containers
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test period
optimal costs

exact algorithm
run time

exact algorithm

optimal
solution
found

optimal costs
tabu-search

run time
tabu-search

optimality gap

01/2014 1086100 e 352.50 sec Yes 1169400 e 602.54 sec 7.67%
02/2014 — 600.22 sec No 1486900 e 606.88 sec —
03/2014 1411800 e 600.20 sec No 1457200 e 624.62 sec ≤ 3.22%
04/2014 1344100 e 600.13 sec No 1396500 e 612.73 sec ≤ 3.90%
05/2014 — 600.12 sec No 1404700 e 607.90 sec —
06/2014 — 600.46 sec No 1267300 e 618.85 sec —
07/2014 1221700 e 600.16 sec No 1274800 e 618.80 sec ≤ 4.35%
08/2014 763040 e 600.08 sec No 829010 e 585.79 sec ≤ 8.65%
09/2014 — 600.28 sec No 1297200 e 608.90 sec —
10/2014 1675200 e 600.18 sec No 1733900 e 603.60 sec ≤ 3.50%
11/2014 — 600.24 sec No — 622.58 sec —
12/2014 1204300 e 51.63 sec Yes 1253400 e 615.52 sec 4.08%
01/2015 1274200 e 600.24 sec No 1361700 e 612.58 sec ≤ 6.87%
02/2015 — 600.2 sec No 1276500 e 604.49 sec —
03/2015 — 600.27 sec No 1594300 e 611.51 sec —
04/2015 — 600.27 sec No 1549500 e 601.60 sec —
05/2015 1310000 e 155.68 sec Yes 1345100 e 603.58 sec 2.68%
06/2015 1361300 e 600.17 sec No 1406900 e 613.50 sec ≤ 3.35%
07/2015 — 600.14 sec No 1376000 e 612.62 sec —
08/2015 967960 e 25.75 sec Yes 991380 e 619.04 sec 2.42%
09/2015 1335400 e 600.18 sec No 1383200 e 614.38 sec ≤ 3.58%
10/2015 1248900 e 600.14 sec No 1270400 e 617.16 sec ≤ 1.72%
11/2015 1333700 e 601.23 sec No 1415500 e 600.51 sec ≤ 6.13%
12/2015 1134800 e 600.13 sec No 1144000 e 608.70 sec ≤ 0.81%

Table 6: Full transportation demand with a heterogeneous fleet and a maximal computation
time of 600 seconds.

have only very little weight in relation to their volume and are therefore not suitable for the

transport on waterways.

The performance of the tabu-search algorithm improved significantly as it was easier for the

heuristic to find feasible solutions due to the additional transport capacities. The results of the

exact algorithm on the other hand are still not satisfying: Although the number of instances

that the exact algorithm was able to solve increased slightly from two to four, it could not find

any solution for nine instances, even completely without any subtour elimination constraints.

The tabu-search heuristic was able to find a feasible solution for 23 out of the 24 test instances

with a median optimality gap of only 3.58%. It is also worth noting that for the instance of

August 2014 it is the first and only time that the tabu-search algorithm converged, for all the

other instances it reached the time limit beforehand.
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7 Conclusion

In this thesis, we first described the current situation of the freight transport market. It is

characterized by an increasing volatility of the transport requests due to an increasing global-

ization of the manufacturing processes as well as different economic situations in the countries

being part of the production chain. Consequently, trucks are the most used transport vehicles

due to their higher flexibility compared to trains or barges. Conflicting to that, we also showed

that especially trains are significantly more environmentally friendly in comparison to trucks.

To evaluate the impact of using alternative transport modes, we discussed various types of ve-

hicle routing problems and how these can be modeled mathematically as mixed integer linear

programs. After that we presented different ways to solve the resulting problems with exact

algorithms and how to find reasonably good solutions by applying heuristic optimization meth-

ods. Based on that, we derived a MILP model describing the VRP of the car distribution in

Central Europe for which we then developed and implemented an exact optimization algorithm

as well as a tabu-search heuristic. Finally, the algorithms were applied to 24 real-world test

instances to evaluate and compare their performance.

Both algorithms were able to solve the test scenarios to a certain extent, whereby with an in-

creasing size of the problem instances, the tabu-search heuristic clearly outperformed the exact

algorithm. The heuristic was able to deliver feasible solutions with an optimality gap of less

than 5% for a large number of instances. Especially if the vehicle fleet is large enough so that

finding a feasible solution is not too difficult, the heuristic algorithm really stands out.

The big advantage of the exact algorithm is that it proves the optimality of the solution or at

least gives an estimation of how close the current solution is to the optimal one. This is some-

thing the tabu-search algorithm alone is not able to do. Another downside of the tabu-search

algorithm is the rather slow move operator, as it evaluates the impact of all relations added

to any tour of a vehicle. This is one of the reasons why the algorithm only very rarely comes

to the point of converging to a local optimum so that it has to perform a tabu-search typical

up-hill move.

Even though the tabu-search heuristic performed quite well, it may be worth investigating

whether the move operator could be sped up in order to be able to optimize even bigger in-

stances. It could also be interesting to implement medium-term and long-term memories to

further intensify and especially diversify the search process. Furthermore, the model does not

take into account the transport from the train station or the port to the final destination, as this

was not relevant for the given example case of the project IPPO. This might be an interesting

aspect to add to the model as the transport costs occurring on the “last mile” can be quite

substantial.
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Appendices

The appendices contain the core pieces of the Matlab implementation of the exact and heuristic

algorithms presented in Chapter 6.

A Matlab-Code of the Exact Algorithm

A.1 Function SolveVRP

The function SolveVRP is the main function of the exact optimization algorithm. It takes

all relevant parameters describing the problem instance as input parameters and returns the

minimal transportation costs as well as the exact routing of all vehicles.

1 function [costopt,x opt,z opt,opt tours] = ...

SolveVRP(cost,avail,capacity,distance limit,demand,distance,Tmax)

2

3 %cost numArc x numVeh matrix; cost(i,j) = cost of vehicle j traveling along arc i

4 %avail numArc x numVeh matrix; avail(i,j) = 1 if vehicle j may travel along arc i

5 %capacity numArc x numVeh matrix; capacity(i,j) = number of units vehicle j can ...

transport on arc i

6 %distance limit numVeh x 1 vector; distance limit(i) = maximal travel distance ...

of vehicle i

7 %demand numArc x 1 vector; demand(i) = number of units that have to be ...

transported on arc i

8 %distance numArc x numVeh vector; distance(i,j) = distance of arc i for vehicle j

9 %Tmax 1x1 double; maximal computation time

10

11 c = clock; % starting time

12

13 % Define some constants and parameters

14 % big M: maximal number a vehicle could travel along an arc

15 M = ceil(max(demand)/min(min(capacity(capacity>0))));

16 TolInt = 1e-5;

17 RelTolGap = 1e-2;

18 opts = optimoptions('intlinprog','Display','off','TolInteger',TolInt, ...

'RelativeGapTolerance',RelTolGap,'CutGeneration','intermediate', ...

'HeuristicsMaxNodes',200,'Heuristics','rss','IntegerPreprocess','advanced');

19 numNodes = 0.5*(1+sqrt(4*size(cost,1)+1));

20 numVeh = size(cost,2);

21 numArc = size(cost,1);

22 numVar = 2 * numArc * numVeh;

23 idx z = numArc*numVeh; %column index, after which the first z variable is

24

25 % Eliminate irrelevant arcs to improve computational performance

26 isSink = zeros(numNodes,1);

27 isSource = zeros(numNodes,1);

28

29 for n=1:numNodes
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30 % get the indices of the arcs starting and ending at the node

31 arcs in = getIdx(1:numNodes,n,1,numNodes);

32 arcs out = getIdx(n,1:numNodes,1,numNodes);

33

34 % set isSink to 1 if there is a positive demand on an arc to the node

35 % set isSource to 1 if there is a positive demand on an arc from the node

36 if any(demand(arcs in)>0) && any(demand(arcs out)>0)

37 disp(['Error: Node ',n,' is source and sink.']);

38 return;

39 elseif any(demand(arcs in)>0)

40 isSink(n) = 1;

41 elseif any(demand(arcs out)>0)

42 isSource(n) = 1;

43 end

44 end

45

46 % vehicles always travel from a source to the corresponding sink and from

47 % a sink to a source -> set avaialability of all other arcs to 0

48 for n=1:numNodes

49 if isSink(n) == 1

50 arcs = getIdx(n,find(isSink),1,numNodes);

51 avail(arcs,:) = 0;

52 end

53

54 if isSource(n) == 1

55 arcs = getIdx(n,1:numNodes,1,numNodes);

56 avail(arcs(demand(arcs) == 0),:) = 0;

57 end

58

59 if isSink(n)+isSource(n) == 0

60 arcs = [getIdx(n,1:numNodes,1,numNodes);getIdx(1:numNodes,n,1,numNodes)];

61 avail(arcs,:) = 0;

62 end

63 end

64

65 % transform parameter matrices to column vectors

66 cost = reshape(cost,numel(cost),1);

67 avail = reshape(avail,numel(avail),1);

68 distance = reshape(distance,numel(distance),1);

69

70 cost = [cost;zeros(size(cost,1),1)]; %z variables have cost 0

71

72 % flow constraint; number of trips to the node = number of trips to the

73 % node for all nodes and vehicles

74 Aeq = spalloc(numNodes*numVeh,numVar,numArc*numVeh); % allocate sparse matrix

75 for i = 1:numNodes

76 for j = 1:numNodes

77 for k = 1:numVeh

78 if i~=j
79 % set all arcs leading to node i to 1
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80 Aeq(i+(k-1)*numNodes,getIdx(j,i,k,numNodes)) = 1;

81 % set all arcs ledaing from node i to -1

82 Aeq(i+(k-1)*numNodes,getIdx(i,j,k,numNodes)) = -1;

83 end

84 end

85 end

86 end

87

88 beq = zeros(numNodes*numVeh,1);

89

90

91 % capacity constraint; all demands have to be fulfilled

92 A = [];

93

94 for k=1:numVeh

95 A = [A,sparse(diag(-capacity(:,k)))];

96 end

97

98 A = [A,zeros(size(A))]; % add matrix of zeros for the z variables

99 b = -demand;

100

101 %distance constraint; vehicles must not exceed their maximum travel distance

102 for k=1:numVeh

103 A = [A;sparse(ones(numArc,1),getIdx(1,2,k,numNodes):getIdx(numNodes, ...

numNodes-1,k,numNodes),distance(getIdx(1,2,k,numNodes):getIdx(numNodes, ...

numNodes-1,k,numNodes)),1,numVar)];

104 end

105 b = [b;distance limit];

106

107 % define z variables

108 rowidx tmp = size(A,1);

109

110 A = [A;spalloc(2*numArc*numVeh,numVar,numVeh*numArc*4)];

111 b = [b;zeros(2*numArc*numVeh,1)];

112

113 for i=1:numNodes

114 for j=1:numNodes

115 if i~=j
116 for k=1:numVeh

117 A(rowidx tmp + getIdx(i,j,k,numNodes), getIdx(i,j,k,numNodes)) ...

= 1;

118 A(rowidx tmp + getIdx(i,j,k,numNodes), idx z + ...

getIdx(i,j,k,numNodes)) = -M;

119 A(rowidx tmp + numArc*numVeh + getIdx(i,j,k,numNodes), ...

getIdx(i,j,k,numNodes)) = -1;

120 A(rowidx tmp + numArc*numVeh + getIdx(i,j,k,numNodes), idx z + ...

getIdx(i,j,k,numNodes)) = 1;

121 end

122 end

123 end
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124 end

125

126 % subtour elemination constraints (SEC)

127 idx cycle = size(A,1); % rowindex where the SEC start

128 A = [A;zeros(numVeh,size(A,2))];

129 b = [b;ones(numVeh,1)];

130

131 % define some additional parameters

132 intcon = 1:numVar; % index of integer variables

133 lb = zeros(numVar,1); % lower bounds

134 ub = [Inf.*ones(numVar/2,1);avail]; % upper bounds

135

136 multiple tours = true;

137

138 while ((multiple tours == true) && etime(clock,c) < Tmax)

139

140 % set maximal computation time

141 opts = optimoptions(opts,'MaxTime',max([0,Tmax-etime(clock,c)]));

142

143 % solve MILP using intlinprog

144 [x opt,costopt,exitflag] = intlinprog(cost,intcon,A,b,Aeq,beq,lb,ub,opts);

145

146 if exitflag==-2

147 disp('no integer solution found.');

148 return

149

150 elseif exitflag==0

151 disp('intlinprog stopped prematurely. No integer feasible point found.');

152 return

153

154 end

155

156 % eliminate subtours

157 multiple tours = false;

158

159 z opt = round(x opt((idx z+1):numVar));

160

161 for k=1:numVeh

162

163 % findSubtours returns a cell containing all tours travelled by

164 % vehicle k; if more than 1 tour is found then vehicle k has a subtour

165 [sub nodes,sub arcs] = findSubtours(z opt,k,numNodes);

166 num tours = length(sub nodes);

167

168 % add SEC, if vehicle has more than 1 tour

169 if num tours>1

170 multiple tours = true;

171

172 % allocate space for additional variables

173 extra var = num tours;
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174 var old = size(cost,1);

175 cost = [cost; zeros(extra var,1)];

176 intcon = [intcon,var old+(1:extra var)];

177 A = [A,zeros(size(A,1),extra var)];

178 Aeq = [Aeq,zeros(size(Aeq,1),extra var)];

179 lb = [lb;zeros(extra var,1)];

180 ub = [ub;ones(extra var,1)];

181

182 A(idx cycle+k,(end-extra var+1):end) = ones(extra var,1);

183

184 % define and add new SEC

185 for j=1:num tours

186 arcs out = [];

187 for sub tour=sub nodes{j}
188 arcs out = getIdx(sub tour,1:numNodes,k,numNodes);

189 end

190

191 new constr = ...

sparse(ones(size(sub arcs{j},1)+size(arcs out,1)+1,1), ...

[idx z+sub arcs{j};idx z+arcs out;var old+j], ...

[ones(size(sub arcs{j},1),1);-ones(size(arcs out));-1], ...

1,var old+extra var);

192

193 if ~any(ismember(A(idx cycle+numVeh+1:end,1:numVar), ...

new constr(1:numVar),'rows'))

194 A = [A;new constr];

195 b = [b;size(sub arcs{j},1)-1];
196 end

197 end

198 end

199

200 end

201

202 end

203

204 z opt = round(x opt((idx z+1):numVar));

205 x opt = x opt(1:idx z);

206

207 for k=1:numVeh

208 opt tours{k} = findSubtours(z opt,k,numNodes);

209 end

210

211 end

A.2 Function findSubtours

As described in Section 6.2, in order to deal with the exponentially number of subtour elimina-

tion constraints, they are added only iteratively to the problem. To find out which one has to

be added to the model, the function findSubtours returns for a given solution all tours run by
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a defined vehicle, i.e., if the function returns more than one tour, the vehicle runs a subtour.

1 function [cycle nodes,cycle arcs] = findSubtours(z opt,veh,numNodes)

2

3 numArc = numNodes*(numNodes-1);

4

5 % get arcs that are visited by the vehicle

6 visited arcs = find(z opt(((veh-1)*numArc+1):(veh*numArc)));

7 unvisited arcs = zeros(numArc,1);

8 unvisited arcs(visited arcs) = 1;

9

10 % allocate a cell for all cycles and an index vector for all the cycles that

11 % are not closed yet

12 cycles = {};
13 open cycles = [];

14

15 % repeat until all visited arcs have been assigned to cycles

16 while sum(unvisited arcs)>0

17

18 % start with the first arc that has not been considered yet

19 starting arc = find(unvisited arcs,1);

20 unvisited arcs(starting arc) = 0;

21

22 % create a new cycle

23 cycles{end+1} = getNodes(starting arc,numNodes)';

24 open cycles = [open cycles;1];

25

26 % repeat until all new cycles are closed

27 while sum(open cycles) > 0

28 for i=find(open cycles)'

29

30 % find all visited arcs leaving from the last node of the cycle

31 curr cycle = cycles{i};
32 end node = curr cycle(end);

33 arcs out = ...

intersect(visited arcs,getIdx(end node,1:numNodes,1,numNodes));

34

35 % for each of these arcs, a new cycle is created; the original

36 % one is deleted at the end of the loop

37 for j=1:size(arcs out,1)

38

39 % get the node that should be added to the cycle

40 node to add = getNodes(arcs out(j),numNodes,2);

41

42 % if the cycle does not become closed by adding the new

43 % node, create a new cycle

44 if any(curr cycle==node to add)

45 cycles{end+1} = [cycles{i};node to add];

46 open cycles = [open cycles;1];

47 else
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48 % else check whether the cycle has already been found; if not,

49 % store the new cycle at the end of the cell and set the open

50 % cycle index to 0

51 new cycle = curr cycle(find(curr cycle==node to add,1):end);

52 if ~any(cellfun(@(x)isequal(sort(x),sort(new cycle)), ...

cycles(1:(i-1))))

53 cycles{end+1} = curr cycle( ...

find(curr cycle==node to add,1):end);

54 open cycles = [open cycles;0];

55 end

56 end

57 end

58

59 % delete the original cycle

60 cycles{i} = {};
61 open cycles(i) = 0;

62

63 % set the index of the considered arcs to 0

64 unvisited arcs(arcs out) = 0;

65 end

66 end

67 end

68

69 % delete all empty entries of the cell

70 cycle nodes = cycles(~cellfun('isempty',cycles));
71 cycle arcs = {};
72

73 % derive the arcs corresponding to the nodes of the cycles

74 for i=1:size(cycle nodes,2)

75 cycle arcs{i} = [];

76 curr cycle = cycle nodes{i};
77 for j=1:(size(curr cycle,1)-1)

78 cycle arcs{i} = ...

[cycle arcs{i};getIdx(curr cycle(j),curr cycle(j+1),veh,numNodes)];

79 end

80 cycle arcs{i} = ...

[cycle arcs{i};getIdx(curr cycle(j+1),curr cycle(1),veh,numNodes)];

81 end

82

83 % as a tour may consist of several cycles, all cycles with a common node have

84 % to be merged to a single tour

85 for n=1:numNodes

86

87 % determine all cycles that contain node n

88 idxs=[];

89 for i=1:size(cycle nodes,2)

90 if any(cycle nodes{i} == n)

91 idxs=[idxs,i];

92 end

93 end
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94

95 % if more than one cycle contains node n, merge the cycles

96 if size(idxs,2) > 1

97 cycle nodes{idxs(1)} = unique(cat(1, cycle nodes{idxs}));
98 cycle nodes(idxs(2:end)) = [];

99 cycle arcs{idxs(1)} = unique(cat(1, cycle arcs{idxs}));
100 cycle arcs(idxs(2:end)) = [];

101 end

102 end

103

104 end

B Matlab-Code of the Tabu-Search Algorithm

B.1 Function TabuVRP

Analogously to SolveVRP, the function TabuVRP is the main function of the tabu-search al-

gorithm. It again takes all parameters describing the problem instance as an input and returns

the best solution found together with its total routing costs.

1 function [costopt,solution overall] = ...

TabuVRP(cost,avail,capacity,distance limit,demand,distance,Tmax)

2

3 %cost numArc x numVeh matrix; cost(i,j) = cost of vehicle j traveling along arc i

4 %avail numArc x numVeh matrix; avail(i,j) = 1 if vehicle j may travel along arc i

5 %capacity numArc x numVeh matrix; capacity(i,j) = number of units vehicle j can ...

transport on arc i

6 %distance limit numVeh x 1 vector; distance limit(i) = maximal travel distance ...

of vehicle i

7 %demand numArc x 1 vector; demand(i) = number of units that have to be ...

transported on arc i

8 %distance numArc x numVeh vector; distance(i,j) = distance of arc i for vehicle j

9 %Tmax 1x1 double; maximal computation time

10

11 % generate an initial solution

12 solution = initialSolution(cost,distance,capacity,avail,distance limit,demand);

13

14 solution overall = solution;

15

16 %get number of transport relations

17 numRelations = getNumRelations(solution);

18

19 % initialize parameters for the stopping criteria

20 fbest overall = getOverallCosts(solution);

21 c = clock; % starting time

22 a = 0; % number of moves without improvement

23 a limit = 6; % stop after a limit moves without improvement

24 penaltyFactor = 1; % penalty coefficient

25
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26 % repeat until the time limit is reached or if a feasible solution was

27 % found and did not improve for a limit moves

28 while etime(clock,c) <= Tmax && (a <= a limit | | ...

checkDistanceMaxViolated(solution) == true)

29

30 % set best found objective value to infinite

31 fbest inc = Inf;

32

33 % iterate through all relations and find the one that when added to a

34 % different tour improves the current solution the most

35 for i=1:numRelations

36

37 % find the best solution, if relation i is added to a tour

38 [sol tmp] = bestNeighbor(i,solution);

39

40 % update the incumbent solution (within the loop), if its ojective

41 % value is better than the best found so far

42 if getOverallCosts(sol tmp) < fbest inc

43 sol inc = sol tmp;

44 fbest inc = getOverallCosts(sol tmp)*longTermPenalty;

45 end

46 end

47

48 % update current solution

49 solution = sol inc;

50

51 % update the overall best solution, if its objective value is less than

52 % the one of the current best solution or if the maximal travel

53 % distance was violated by the previous best solution, but the current

54 % one does not violate it anymore. If a new best solution is found, set

55 % the number of moves without imrpovement to 0. If not, increase a by 1

56 if checkDistanceMaxViolated(solution) == false

57 if (fbest overall-fbest inc)>1e-8 | | ...

checkDistanceMaxViolated(solution overall) == true

58 fbest overall = getOverallCosts(solution);

59 solution overall = solution;

60 a = 0;

61 else

62 a = a+1;

63 end

64 elseif (fbest overall-fbest inc)>1e-8 && ...

checkDistanceMaxViolated(solution overall) == true

65 fbest overall = getOverallCosts(solution);

66 solution overall = solution;

67 a = 0;

68 else

69 a = a+1;

70 end

71

72 % after a limit moves without improvement, increase the penalty
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73 % coefficient by 1

74 if a > a limit

75 a = 0;

76 penaltyFactor = penaltyFactor + 1;

77 solution = setPenaltyFactor(solution,penaltyFactor);

78 end

79

80 end

81

82 % calculate the total routing costs

83 costopt = getOverallCosts(solution overall);

84

85 end

B.2 Function order

The function order calculates for a given relation the cost reduction if a vehicle services the

relation one time less. The savings of all vehicles are then returned as a list ordered by the cost

reduction per less transported unit.

1 function [ savings ] = order(relation, solution)

2

3 numVehicles = getNumVehicles(solution);

4 savings = [];

5

6 % for each vehicle, calculate the cost reduction if the number the relation

7 % is run by the vehicle is reduced by 1

8 for k=1:numVehicles

9

10 % get the number of tours run by the vehicle

11 numTours = getVehicleNumTours(solution,k);

12

13 % calculate the potential cost reduction for each tour run by the vehicle

14 for j=1:numTours

15 tourRelations = getTourRelations(solution,k,j);

16 relationIdx = find(tourRelations==relation,1);

17

18 % consider only tours which indeed contain the relation and from

19 % which it is not tabu to remove the relation from

20 if ~isempty(relationIdx) && isTabuRemove(solution,k,j,relation) == false

21

22 % get total number of units transported and the capacity of the

23 % vehicle for that relation

24 tourLoadings = getTourLoadings(solution,k,j);

25 unitsTransportet = tourLoadings(relationIdx,2);

26 vehicleCapacity = tourLoadings(relationIdx,3);

27

28 % reduce the number the relation is run by the vehicle by 1

29 % this corresponds to reducing the number of unit transported
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30 % by the vehicle's capacity

31 sol tmp = ...

removeUnitsTransported(solution,k,j,relation,vehicleCapacity,false);

32

33 % calculate the cost reduction per less transported unit and

34 % add a new line to the savings matrix

35 savings(end+1,:) = [k,j,unitsTransportet,vehicleCapacity,0];

36 savings(end,5) = max((getVehicleCurrentCosts(solution,k) - ...

getVehicleCurrentCosts(sol tmp,k)) / vehicleCapacity,0);

37

38 end

39

40

41 end

42 end

43

44 % sort the savings in decreasing order by the cost reduction per less

45 % transported unit

46 savings = sortrows(savings,-5);

47

48 end

B.3 Function bestNeighbor

The function bestNeighbor moves for a given relation to the best neighboring solution by re-

moving the relation from one or more vehicle tours and adding them to a single other vehicle

tour. The function is called by the main function for each relation in order to determine the

overall best neighboring solution.

1 function [solution new] = bestNeighbor(relation, solution)

2 % get the potential cost reduction for different tours, if the relation is

3 % removed from it

4 savings = order(relation, solution);

5

6 % set the objective value of the best solution found so far to infinite

7 fbest = Inf;

8

9 % get the number of vehicles

10 numVehicles = getNumVehicles(solution);

11

12 % find the tour, to which the relation that should be added "fits best"

13 % iterate over all vehicles

14 for k=1:numVehicles

15

16 % get the number of tours run by the vehicle

17 numTours = getVehicleNumTours(solution,k);

18

19 % iterate over all tours of the vehicle plus a new (=empty) tour

20 for j=1:numTours+1
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21

22 % check whether adding the relation to the tour is tabu

23 if isTabuAdd(solution,k,j,relation) == false

24

25 % set objective value of incumbent solution to infinite and

26 % initialize the incumbent solution with the originial one

27 fbest tmp = Inf;

28 sol inc = solution;

29

30 % iterate over all rows of the savings matrix, i.e. all tours

31 % from which the relation could be removed from

32 for i=1:size(savings,1)

33

34 % check that the relation is not added to the exact same

35 % tour it would be removed from

36 if savings(i,1)~=k | | savings(i,2)~=j
37

38 % calculate the maximal number of runs the relation may

39 % be removed from the tour

40 numRunsMax = ceil(savings(i,3)/savings(i,4));

41

42 % set the basic solution, to which the runs are added

43 % to, to the incumbent solution

44 sol basic = sol inc;

45

46 for n=1:numRunsMax

47

48 %calculate the number of unit that are transfered

49 units transfered = ceil(savings(i,3) - ...

(numRunsMax-n)*savings(i,4));

50

51 % transfer the units from one tour to the other one

52 sol tmp = addUnitsTransported(sol basic,k,j,relation, ...

units transfered,false);

53 sol tmp = removeUnitsTransported(sol tmp,savings(i,1), ...

savings(i,2),relation,units transfered,false);

54

55 % updateSolution recalculates and updates the costs

56 % and travel distance of the solution

57 sol tmp = updateSolution(sol tmp,[k,savings(i,1)],false);

58

59 % update the incumbent solution, if the newly

60 % generated one improves it

61 if getOverallCosts(sol tmp) <= fbest tmp

62 fbest tmp = getOverallCosts(sol tmp);

63 sol inc = sol tmp;

64 end

65 end

66 end

67 end
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68

69 % due to the way relations are added and removed, it is

70 % possible that a vehicle has two tours containing the same

71 % relations. If that is the case, removeDoubleTours merges these

72 % tours

73 sol inc = removeDoubleTours(sol inc);

74

75 % if the incumbent solution is better than the previous best

76 % solution found, update it

77 if fbest tmp < fbest

78 fbest = fbest tmp;

79 solution new = sol inc;

80 end

81 end

82 end

83 end

84

85 end
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