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Abstract 

In an asset allocation task an investor seeks the optimal combination of assets that best suits his 

needs in an uncertain environment. The most popular approach to asset allocation is the mean 

variance model by Markowitz. However, using the Markowitz optimization will lead to portfolio 

weights that tend to be extreme, instable and poorly diversified. This is because the traditional 

Markowitz approach treats the inputs as if they were known with 100% certainty.  

An alternative approach is the Black-Litterman model. The Black-Litterman model uses the market 

portfolio as a neutral starting point that initially requires zero certainty about the inputs. The market 

returns implied in the market portfolio can then be tilted in accordance with the investor’s views by 

using a Bayesian approach.  

The Black-Litterman model extended by Meucci's weighting approach gives the opportunity to 

valuate this certainty/uncertainty by using confidence in subjective views. In this context, the 

following questions are particularly of interest: 

a. In how far affect different levels of confidence in subjective views the asset allocation? 

b. How do different levels of confidence in subjective views concern the portfolio's 

performance? 

c. And how do different levels of confidence in subjective views affect the portfolio's stability 

and risk? 

A detailed analysis of these questions unveils interesting asymmetries in the risk-return profile that 

an investor may take advantage of. 

In addition, the finalizing outlook suggests new fields of application for the Meucci Black-Litterman 

model and Bayesian approaches in general, such as a decision making/investment tool in corporate 

finance as well as a new method to bring in subjective views on the second moment of the return 

distribution with regard to stress events. 
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1. Introduction 

“Prediction,” goes an old Danish proverb, “is hazardous, especially about the future.”1 As far as 

finance and asset allocation is concerned, we know that there is no model that works well all the 

time. However, most investors seek a portfolio that performs well (at least) most of the time. The 

keywords here are risk and stability. One model that provides some stability is the Black-Litterman 

model. It bases upon two established tenets of modern portfolio theory - the mean-variance 

optimization framework of Markowitz and the Capital Asset Pricing Model (CAPM) of Sharpe et al. 

The market portfolio as defined by the CAPM serves as a stable foundation that can be updated by 

subjective views.  

The Black-Litterman model is a useful framework that gives reasonable flexibility to adjust the 

returns and weights given by different views with the ebbs and flows of (new) information. This is the 

basic idea of this approach: the opportunity to update and adjust one's beliefs in the light of new 

information. 

The thesis is structured as follows: 

The ensuing chapter demonstrates the main motivation of this treatise. It treats practical issues with 

the standard model of modern portfolio theory, Markowitz's mean variance approach, and how the 

(Meucci) Black-Litterman model tries to solve it. 

The "problem statement" explains the intention of this thesis and why the confidence in subjective 

views is the critical element of the Meucci Black-Litterman model. 

The chapter "Methodology" gives an overview of the methods that are used throughout this work. 

"The mean variance approach of Markowitz" deals with assumptions and insights of Markowitz's 

modern portfolio theory, which is in the broader sense the foundation of the Black-Litterman model 

and of portfolio theory in general. 

The next chapter explains the Capital Asset Pricing Model (CAPM) along general lines. The Black-

Litterman model assumes that the market is in equilibrium on average and uses the expected 

equilibrium returns given by the equilibrium asset pricing model CAPM as a neutral reference point 

for expected returns. 

                                                           
1
 https://quoteinvestigator.com/2013/10/20/no-predict/, 4.3.2018 
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Chapter 6 presents the Black-Litterman model from a Bayesian point of view. It shows how the two 

sources of information - the implied market and the subjective information - are combined in a 

Bayesian manner. 

The ensuing chapter 7 treats questions that concern the practical use of the Black-Litterman model:  

a. How to implement the Black-Litterman model from a practical point of view, 

b. What kind of problems may occur by adjusting the input parameters (  and  ) and 

c. How to weight conveniently between the market and the subjective views (i.e. the 

introduction of Meucci's approach). 

The actual performance and stability analysis of a Black-Litterman portfolio takes place in chapter 8. 

Over a 3-months period of time the performance of different calibrations of the Black-Litterman 

model is compared to two benchmarks: the market portfolio and a mean variance portfolio that is 

calculated with historical estimates of expected returns. In this context the issues by estimating 

expected returns that are derived from historical data are examined as well. 

Founded on the results of the analysis, the following chapter addresses drawbacks of the Black-

Litterman model in general. 

"Outlook" proposes two new possible areas for the application of the Black-Litterman model (in a 

"naive" asset allocation and in product portfolios) as well as a method to take stress events in 

Portfolio Theory more into account. 

The final chapter summarizes the most important proposals made in the thesis. 
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2. Problem statement 

2.1. Motivation 

In the early 1900s portfolio management was rather straightforward. Well acknowledged works like 

the one from Williams (1938) published by the Harvard University Press suggested to rely exclusively 

on the investment with the highest expected return. So, putting all eggs in one basket was kind of 

state of the art. 2 

In the 1950s Markowitz's article "portfolio selection” changed portfolio theory for good.3 His 

framework is a quantification of the two basic objectives of investing: maximizing expected return 

and minimizing risk. In other words: maximizing the investor’s utility. The quintessence of his insights 

about the risk-return trade-off is diversification. Even after more than half a century of dissection by 

bright minds, Markowitz's work is still the foundation of modern portfolio theory. 

In the practical world of asset allocation however, the Markowitz framework has had little impact.4 

There are a few reasons why. Probably the most important one is its instability of portfolio weights. 

The weights received by Markowitz's model (also referred as the mean variance approach) are 

extremely sensitive to (small) changes of input parameters. For example, a 0,1% upward change in 

the expected return may easily increase the weight of an asset in an optimized mean variance 

portfolio to, say, 17% (compare chapter 4.2.2.). As expected returns, i.e. future returns, are very 

difficult to estimate (and impossible to know for sure, unless the investor is a clairvoyant), mean 

variance portfolios often lead to poor results. Using historical estimates only helps to a certain extent 

since they base on history that is not going to repeat.5 

If already small changes may give rise to large opportunity costs,6 things get even worse, considering 

that the classical mean variance optimization requires (historical estimates of) expected returns and 

(co)variances of all securities in the investment universe considered. Investors are very unlikely to 

have reliable forecasts in all securities, companies and sectors they have at their disposal.7 Usually 

they have detailed understanding in only few assets and markets. But focusing on a small amount of 

assets contradicts diversification. Therefore, investors often try to augment their views by using 

auxiliary assumptions. However, vague assumptions concerning expected returns are considered to 

                                                           
2
 Rebonato and Denev (2013), p.6 

3
 Markowitz (1952) 

4
 He and Litterman (1999), p. 2 

5
 https://www.forbes.com/sites/johnmauldin/2017/06/01/modern-portfolio-theory-2-0-the-best-investment-

strategy-today/2/#6ee9ceba70db, 7.3.2018 
6
 Meucci (2005) 

7
 Fabozzi (2006), p. 285 
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be "the natural enemies" of the mean variance framework and may turn it into the "error 

maximization machine", as Scherer describes it.8 

Furthermore, optimal portfolio weights of the standard asset allocation model tend not only to be 

instable and sensitive, but also extreme, not intuitive and, if not ruled out, highly leveraged. This is 

because the classical mean variance approach overweights assets with large expected returns and 

low standard deviations and underweights those with low expected returns and high standard 

deviations. This usually results in large short positions in many assets if an investor does not use 

constraints concerning short selling. On the other hand, when constraints rule out short positions, 

the model prescribes corner solutions in which only a few assets are assigned while many assets 

receive zero weights.  

Over the last years, many approaches have been made to tackle these issues. One of the better-

known solutions is given by Michaud (1989), also known as the resampling approach. The key point is 

to introduce a simulated-sample vector of expected returns and to average the weights obtained in 

the simulations in order to get "resampled" better behaving weights. This procedure of combining - 

individually bad behaving - asset allocations indeed reduces the instability and leads to more 

diversified, less sensitive and (surprisingly) well performing9 portfolios. However, as each set of 

weights has been obtained under conditions of parameters certainty, the resampling approach 

determines the "expectation of weights" instead of the expectation of the utility over uncertain 

weights.10 From this perspective, its theoretical justification might seem a bit opaque. 

In the early 1990s, Black and Litterman developed an alternative approach, the so called Black 

Litterman model (BL model). This model differs significantly from other proposed solutions to 

stabilize asset allocations. Unlike mean variance optimizations, the BL model does not start from 

scratch and does not require (historical) estimates of expected returns, since it uses the equilibrium 

market portfolio based on the Capital Asset Pricing Model (CAPM) of Sharpe11, Lintner12 and Mossin 

as a neutral starting point for further calibration. By Bayesian updating this neutral portfolio may 

then be adjusted in accordance with the investor’s subjective views.  

The underlying of the BL model may be explained by “reverse optimization": Since the market 

equilibrium returns are already implied in equilibrium asset pricing models like the CAPM, no 

historical estimates of expected returns are needed. The equilibrium values are furthermore the 

                                                           
8
 Scherer (2002), p. 452 

9
 Rebonato and Denev (2013), p.76 and Scherer (2002) 

10
 Rebonato and Denev (2013), p.75 

11
 Sharpe (1964) 

12
 Lintner (1965) 
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reason why BL portfolios are generally well diversified, because the market equilibrium portfolio 

consists of a broad variety of positively weighted assets.  

On top of this CAPM foundation, the BL model allows to bring up subjective views. If an investor has 

one or more views, he may adjust the weights according to his views by using Bayesian updating. On 

the other hand, if an investor does not have any views, he simply holds the market portfolio. In 

addition, the Meucci Black-Litterman model (compare chapter 2.2.) provides the opportunity to 

specify the confidence in his views in line with the market model.  

The Bayesian combination of statistical information that pertains to the market conditions with 

subjective expertise seems promising to model future returns, particularly because of the possibility 

to weight freely between these two sources of information. The fact that the Black-Litterman model 

obtains its inputs from two forward-looking sources - the implied market information and the 

subjective views - is another benefit compared to the mean variance approach. 

Its biggest advantage though is that it (usually) results in stable, intuitive and well diversified 

portfolios. According to He and Litterman (1999) this was actually the main intention of Black and 

Litterman to develop their model: 

When managers try to optimize using the Markowitz approach, they usually find that the portfolio 

weights returned by the optimizer […] tend to appear extreme and no particularly intuitive. In practice 

most managers find that the effort required to specify expected returns and constraints that lead to 

reasonable answers does not lead to a commensurate benefit. Indeed this was the original motivation 

[...]. 

Its Bayesian nature is an important aspect of the BL model. Modern asset allocation models are 

supposed to provide not only statistically sophisticated asset allocations but also a coherent way to 

organize the subjective intentions of an asset manager. Embodying Bayesian views into a model 

allows one to "rationalize" subjectivity within a quantitative framework.13 As Markowitz stated 

(1987): "The rational investor is a Bayesian." 14 

Researches over the last decades showed that no model, neither "pure" historical/statistical data 

based models nor "naive" asset allocation models perform well all the time. As for future forecasts in 

general and economic forecasts in detail, it is difficult to estimate future developments ex ante. It is 

therefore beneficial to exploit any useful piece of information available, statistical information as 

well as subjective expertise.  

                                                           
13

 Fabozzi (2006), p. 285 
14

 Markowitz (1987), p. 57 
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From this perspective asset allocation has similarities to other social sciences that have to forecast 

the future. An interesting analogy is given by Lewis (2017):15 the NBA draft. For decades, players 

were picked only because of a (subjective) professional expertise. Then Morey introduced a model 

that relied on historic-statistical data and "outperformed" (made better picks) most experts. Today 

every information, however limited, is cherished and squeezed as much as possible by combining 

statistical data with subjective expertise, just like in the Black-Litterman model.  

The Black-Litterman approach has certainly some downsides as well. They are discussed in detail in 

chapter 9. Beforehand we can state that its biggest drawback occurs if it is calibrated rather 

extremely, say, the investor has views that differ a lot from the implied market returns and has very 

high confidence in his views.  

 

2.2. Performance and Stability of a Meucci Black-Litterman portfolio 

Although the Black-Litterman model provides a sophisticated model to combine two different 

sources of information, the question of how to weight conveniently between them remained an 

open question in the early nineties. In 1999 He and Litterman suggested an approach to equally 

weight the confidence in the market and in the views. 

Six years later Meucci proposed a method which allows to weight freely between the (implied) 

market information and the subjective information. This is done by introducing a confidence 

parameter          that valuates one’s belief in the subjective views in an intuitive and 

comprehensive manner. 

Note that the possibility to bring in subjective views implicates that the Black-Litterman model 

expects its user to have superior information that enables to generate abnormal returns compared to 

an uninformed market observer. Without this assumption we would withdraw the Black-Litterman 

model its right to exist - a Black-Litterman portfolio would then only describe the market portfolio. 

The subjective views - and the confidence we have in them - are therefore the crucial elements of the 

Black-Litterman model. 

While many (if not all) performance analyses of the Black-Litterman model examine whether certain 

subjective views lead to a better performance than the market portfolio or not, we take the implied 

assumption that the subjective views are more accurate than the market returns, as granted. Thus 

this treatise does not focus on how to select views that may outperform the market. It rather 

                                                           
15

 Lewis (2017), p.23ff 
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concentrates on how different levels of confidence affect a Meucci Black-Litterman portfolio's 

performance and stability, if subjective views are more accurate than the implied market 

assumptions. In particular we investigate the following questions: 

a. In how far affect different levels of confidence in subjective views the asset allocation? 

b. How do different levels of confidence in subjective views concern the portfolio's 

performance? 

c. And how do different levels of confidence in subjective views affect the portfolio's stability 

and risk? 

A detailed analysis of these questions unveils interesting asymmetries in the risk-return profile that 

an investor may take advantage of. 
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3. Methodology 

To answer the questions raised in the problem statement we come back to methods that base in the 

broader sense on the core foundation of modern portfolio theory: Markowitz's portfolio selection. 

His insights on diversification and the risk return trade-off paved the way for any modern portfolio 

management as well as the method we use to obtain the weights of the portfolios.  

Market equilibrium returns implied in the Capital Asset Pricing Model by Sharp, Lintner and Mossin 

are used as the center of gravity in the asset allocation model of Black and Litterman. The 

combination of their model with the entropy pooling approach by Meucci finally leads to a weighting 

method between the implied market information and the subjective views, which will be used 

throughout this work. Chapter 7 illustrates how an asset allocation of the Meucci Black-Litterman 

model takes place and explains the influence of different levels of confidence in subjective views on 

the asset allocation. 

There exists a broad range of different methods to evaluate the performance of a portfolio. They are 

generally classified into two categories: conventional methods and risk-adjusted methods. 16 Risk-

adjusted methods have the advantage that the returns are adjusted in order to take different levels 

of risk into account. This makes sense since higher risk portfolios are expected to have ceteris paribus 

a higher return (in the long term). 

In our case the conventional as well as the risk-adjusted method suffer from the subjective element 

of the Meucci Black-Litterman model. The disadvantage is that they may (and will) be easily 

manipulated due to the subjective views. However we are not interested in the question whether the 

views we apply to the Black-Litterman model lead to a better performing portfolio at all (which we 

assume that they will), but rather on how different levels of confidence in subjective views affect the 

performance and the stability. For this purpose the following methods are used:  

To examine this impact of subjective views on the pure performance we use a so-called conventional 

benchmark comparison based on empirical data.17 A portfolio is said to have beaten a benchmark 

once the return of the portfolio exceeds that of the benchmark, measured during the same period of 

time.18 The results in chapter 8 below highlights why the conventional benchmark comparison is 

therefore the method of choice (keyword: tension field between two benchmarks). 

                                                           
16

 Samarakoon and Hasan (2006), p. 617 
17

 Samarakoon and Hasan (2006), p. 617 
18

 Samarakoon and Hasan (2006), p. 618 
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The total risk of a portfolio is defined as the standard deviation of the returns of the portfolio.19 Thus 

for the stability and risk analysis, we will examine how the portfolio's standard deviation is affected 

by different levels of confidence in the subjective views.  

As far as risk-adjusted performance measurements are concerned, we focus on the method 

proposed by Sharpe 1966. This method evaluates the excess return, i.e. the risk premium, per unit of 

risk20 via the so called Sharpe ratio. We do so because other risk-adjusted performance 

measurements such as the methods proposed by Treynor or Jensen do not contribute much for our 

purpose since, a) their measurements aim on the systematic risk (i.e. market risk) which is only a part 

of the overall risk and b) Treynor's or Jensen's method work well if the portfolios of interest are well 

diversified, since then a part of the overall risk may be diversified away, and the systematic risk is the 

predominate risk. But as the confidence in the subjective views increases, the Meucci Black-

Litterman portfolios may become not well diversified which may cause biased results.  

Thus, for eventually not well diversified portfolios is the appropriate measure of risk and stability the 

portfolio's standard deviation and therefore the appropriate risk-adjusted performance 

measurement the Sharpe ratio.21 

The empirical dataset is composed of market-daily observations of the Austrian Traded Index ATX 

covering the period between 01.08.2017 and 31.10.2017. In order to evaluate the performance of a 

Meucci Black-Litterman portfolio we apply two benchmarks: on the one hand the ATX itself serving 

as a proxy for the market portfolio and on the other hand a mean variance portfolio calibrated with 

historical estimates of expected returns.  

 

The thoughts proposed in the chapter "Outlook" about subjective views on the covariance matrix 

concerning stress events have been inspired by Rebonato's Bayesian-net approach. The suggested 

method of varying volatilities and correlations among assets (embodied in the covariance matrix) is a 

rather straightforward solution to take tail events more into account.  

 

 

 

                                                           
19

 Samarakoon and Hasan (2006), p. 618 
20

 Sharpe (1966), p. 123 
21

 Samarakoon and Hasan (2006), p. 620 
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4. The mean variance approach of Markowitz 

As already mentioned, the origin of modern portfolio theory is the portfolio selection model of 

Markowitz (1952). Till then, asset allocation and stock picking were basically equivalent (Williams 

1938). Markowitz set the foundation of his work by modeling the rate of returns on assets as random 

variables. The first central moment of the random variable, i.e. the expected value, is used as the 

expected return, and the second central moment, i.e. the variance of the expected return, is applied 

as the measure of risk. So, expected return and risk are the basis for any investment decision.  

The key to Markowitz's portfolio selection lies in the words diversification and correlation. In general, 

the expected return of a portfolio, which consists of individual assets, is a linear combination of the 

expected returns of the individual components of that portfolio: 

            

 

   

 

where       = expected return of the portfolio 

   = weight of asset   

   = return of asset   

However the return standard deviation (and the variance), i.e. the risk, of a portfolio is not a linear 

combination of the standard deviations of the individual assets. Only in the very special and 

unrealistic case that the correlation among those assets is exactly +1 it is a linear combination. For 

any correlation <+1 a subadditivity effect comes into play. The following example explains why. 

Assume a portfolio consisting of two assets only, asset A and asset B. Then the expected return for 

this portfolio is:22 

  

                 

with 

        

The portfolio return variance   
  is 

  
             

                                      

  
    

             
    

             
                                   

  
    

    
    

    
                     

                                                           
22

 Schwaiger (2012), p.134, Aussenegg (2016), p.98 
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The covariance            of the returns       is defined as  

                      

where     represents the correlation between A and B. 

The risk or volatility of the portfolio, i.e. the standard deviation, is the square root of the portfolio 

variance: 

      
    

    
    

                     

The three following cases show where the subadditivity comes from:23 

         

      
    

    
    

                

             

 

         

      
    

    
    

                

             

 

         

      
    

    
    

                     

              

 

As for the case        , it is straightforward to see that no subaddivity effect takes place - the 

portfolio's volatility adds up just like the expected returns. For        , the overall risk is 

              , which means that there exists a combination of the assets A and B (i.e. the 

                                                           
23

 Aussenegg (2016), p.100 
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weights    and   ) that eliminates the portfolio risk     . The most common case however is  

       . As the equation above shows, the portfolio risk    is lower for any correlation     than 

the linear combination of the individual asset risks            . 

This subadditivity caused by noncorrelation is known as the diversification effect. It means that an 

investor can reduce his exposure to an individual asset risk simply by building a diversified portfolio 

of assets that have a correlation    . A diversified portfolio consisting of at least two assets may 

have less risk than the least risky individual asset, according to their correlation. This diversification is 

the very heart of modern asset allocation and portfolio management.  

Furthermore it is assumed that investors are risk averse. This means that an investor prefers the 

investment with the lowest risk, if all investments have the same expected return. On the other hand 

if all investments are equally risky, he will choose the one with the highest return. Thus, more risk 

must be taken in order to get more return. The risk-return trade-off of a certain investment is for all 

investors per se the same. However not all investors have the same level of risk aversion and will 

therefore differently evaluate the risk-return trade-off based on the individual risk aversion. 

Before advancing to the portfolio weights of an efficient portfolio, it might be useful to sum up the 

assumptions of Markowitz's portfolio selection:24 

 Investors are rational and risk averse 

 Investors make decisions based on expected return and risk 

 Investors estimate risk on basis of the volatility of expected returns 

 Investors try to maximize their utility 

4.1. Portfolio weights 

A common way to describe the risk aversion is via a quadratic utility function  :25 

      
 

 
     

where   = return vector 

  = risk-aversion coefficent (compare chapter 4.2.3.) 

  = covariance matrix 

                                                           
24

 Fabozzi (2006), p. 208 and https://cfacuecards.wordpress.com/2012/06/10/5-assumptions-to-markowitz-
portfolio-theory, 5.4.2018 
25

 See e.g. Fabozzi (2006), p. 45, Idzorek (2005), p.5, Rebonato and Denev (2013), p. 58, Aussenegg (2016), p. 90 
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Other important utility functions incorporate linear utility function, exponential utility function, 

power utility function and logarithmic utility function. However, as several studies and Fabozzi (2006) 

state: "The quadratic utiltiy function provides a good approximation for many other standard utility 

functions such as exponential, power, and logarithmic utility."26 

Differentiation with respect to the weights and setting the derivative equal to zero leads to 

  

  
          

    

 

4.1.1. Unconstrained solution 

The unconstrained solution for    is 

   
 

 
     

As this solution does not include any constraints, it is not particularly useful in practice. Besides the 

fact that short selling is not ruled out, the solution just obtained does not reflect a budget constraint, 

meaning that the weights do not sum up to one. Throughout this work, the only constraint we use is 

the budget constraint. There are two reasons why: while the budget constraint maintains a linear-

algebra solution,27 short selling constraints no longer allow such a solution. In addition the following 

applies primarily to the Black-Litterman approach, which usually has none or only a few and small 

short positions (compare chapter 7 and 8). Therefore the theoretically "cleanest" solution possible is 

of interest. So besides the fact that short selling constraints are reasonable when using the pure 

mean variance approach, further calculation will be done with the budget constraint only. 

4.1.2. Budget constraint 

Carrying out the maximization problem of the quadratic utility function with the budget constraint  

     

 

   

 

requires the introduction of a vector of Lagrangian multipliers   and the creation of a Lagrangian 

function  . 

                                                           
26

 Fabozzi (2006), p. 47 
27

 Rebonato and Denev (2013), p.58 
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The differentiations with respect to the portfolio weights   and to the Lagrangian multipliers are set 

to zero to obtain the portfolio weights.  

   
 

 
       

   

 
     

with  

         

         

 

4.2. Disadvantages 

Although Markowitz's work is still one of the most widely used quantitative asset allocation models28 

and resulted in the Nobel Prize, it has some severe downsides that are worth considering.  

4.2.1. Leverage 

The first is that unless constraints rule out short selling, Markowitz's mean variance approach usually 

results in highly leveraged portfolios with large long positions financed by large short positions. If 

positivity constraints are assigned to fix this problem, the model provides corner solutions in which 

only a few assets are assigned - mostly those with the highest Sharpe ratio, i.e. the expected (excess) 

return to risk ratio - while many assets receive zero weights. This contradicts the common-sense 

notion of diversification. In other words, the portfolio returned by the mean variance optimizer tends 

to be extreme, rather poorly diversified and not very intuitive.  

4.2.2. Instability 

The second and practically even more important issue is the instability of weights received by the 

mean variance model. Small changes in inputs may give rise to large changes of portfolio weights. 

                                                           
28

 Idzorek (2005), p.2 
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Considering that the inputs can only be estimated and often are based on history that is not going to 

repeat, the high sensitivity of the mean variance approach leads to (very) large opportunity costs.  

The behavior of the Markowitz portfolio weights bears analogy to the chaos theory: Although fully 

deterministic, small differences of initial conditions (i.e. expected returns) yield to diverging 

outcomes that are almost impossible to predict.  

But where does this instability come from? And is there a way to fix it? To answer these questions, it 

is worth to have a closer look at the (unconstrained) solution 

   
 

 
     

We obtain the sensitivity of the weights to the returns by differentiating the equation with respect to 

the return vector  : 

   

  
 
 

 
    

The sensitivity of the weights to the returns is inversely related to  , the risk aversion coefficient and 

directly related to    , the inverse of the covariance matrix. As the covariance matrix consists of very 

"small numbers" (products of squares of volatilities times correlations), the inverse of the covariance 

matrix is made up of "large numbers" (compared to unity).29 This implies that the sensitivity of the 

"pure" mean variance approach is high too. Although the risk aversion coefficient has a stabilizing 

effect on the sensitivity, for reasonable values of   (say between 1 and 4) the large inverse 

covariance matrix     dominates the equation 
   

  
 

 

 
   . For understanding reasons it is helpful 

to go back to a two asset portfolio (consisting of asset A and B only). 

Assume that asset A has a volatility of 14% and asset B one of 16% and that the investor has a risk 

aversion factor of    , to keep the example simple. For a correlation of 0.4, the sensitivities are 

   

   
      , 

   

   
 

   

   
        and 

   

   
     . If the correlation is 0.75, then the sensitivities 

increase and the first weight to a change in the expected return of the first asset becomes 116.62.30 

That means that the small change of 0,1% of the expected return of asset A leads to a change of 

11.66% of asset's A weight in the portfolio. 

This explains (at least mathematically) where the high sensitivity and instability comes from. 

However, as the expected return is not the only parameter that has to be estimated, the uncertainty 
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brought by the estimation of the covariance matrix can also be a source of portfolio estimation 

errors. Actually Palczewski and Palczewski31 show that the portfolio estimation errors consist not 

only of two parts (the expected return and the covariance matrix) but of three: the third one is a 

non-linear component due to the superposition of errors in the two estimates. 

 

4.2.3. Risk aversion coefficient 

The unconstrained solution of the maximization problem highlights that the risk-aversion coefficient 

plays an essential role in asset allocation - not only in the mean variance model but also in asset 

valuation in general and in many other allocation models that build on Markowitz's risk-return trade-

off foundation, including the Black-Litterman model. Although the risk-aversion coefficient is such a 

fundamental element, research has provided comparatively little help as how risk aversion should be 

modeled.32 Risk aversion is ultimately an empirical challenge33  and rather subjective. Amos Tversky 

and Nobel laureate Daniel Kahneman addressed already 1979 in their paper34 the issue of modeling 

risk aversion. (Low) laboratory incentives do not reflect the behavior in actual "real-world" situations 

of choice. 

As the proposed results of this treatise are supposed to appeal as many investors as possible (each 

with a different level of risk aversion), we will use the implied market risk-aversion coefficient, which 

is a convenient choice for this purpose (compare chapter 7.2.).  
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5. The capital asset pricing model (CAPM) 

The following chapter describes the motivation, intuition and assumptions of the CAPM model and 

why the risk-return trade-off introduced by Markowitz plays an important role not only in portfolio 

optimization but also in security valuation.  

5.1. Capital Market Line (CML) 

So far, all calculations base on the assumption that no risk free asset is available. However, if one 

assumes that borrowing and lending at the risk free rate is possible, the weights of the efficient 

portfolio are different. This is because the presence of a risk free asset allows obtaining a better risk-

return trade-off than without a risk free asset.35 Thus, adding a risk free asset with the risk free 

return    changes the efficient portfolio weighting as follows:  

               
 

 
           

              
 

 
          

  

  
                 

   
 

 
              

Comparing the tangency weights    with the weights in absence of a riskless asset    leads to: 

    
   

 
 

         

   
 

     
              

 

Without a risk free asset, investors select a portfolio with the highest expected return for a given 

level of risk according to their risk aversion, which is represented by the risk aversion coefficient  . 

Any portfolio with the highest expected return for a given risk level is efficient. All of these portfolios 

maximize the respective investor's utility. The combination of all efficient portfolios over different 

levels of risk represents the efficient frontier.  
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However, the introduction of a risk free asset with a standard deviation of zero      shifts the 

efficient frontier from a combination of portfolios only consisting of risky assets to a new 

proportional line consisting of one risky portfolio and a riskless asset. Since all but one efficient 

portfolio combinations the investor obtains in the absence of a riskless asset are dominated by this 

new linear combination of riskless and risky assets all but one portfolio combinations of the risky 

portfolio become redundant.  

The one and only portfolio whose combination with the risk free asset dominates all other portfolios 

is called the market portfolio or tangency portfolio, because it corresponds to the point of tangency 

between the line through the risk free asset and the efficient frontier of risky assets. This new 

efficient frontier line is called the Capital Market Line (CML). The portfolio of all rational investors, no 

matter how risk averse they are, lies on the CML. The slope of the CML is equal to:36 

        
  

                      

The market price of risk represents the premium for one unit of risk. The expected return of the CML 

portfolio   can be obtained by considering that the minimum expected return for zero risk      is 

given by   : 

         
        

  
   

The equation above shows that the expected return of the portfolio   is a linear function of the 

expected return of the market portfolio.  

 

5.2. Capital Asset Pricing Model (CAPM) and Security Market Line (SML) 

The Capital Asset Pricing Model is an equilibrium asset pricing model based on Markowitz's mean 

variance portfolio selection. It is an abstraction of the real world capital markets using the following 

assumptions:37 

 Investors subscribe to Markowitz's method of portfolio diversification (compare Markowitz 

portfolio assumptions) 

 Investors have the same time horizon 

 Investors have the same expectations about the expected return and variance of all assets 
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 There is a risk free asset with the expected return    and zero risk     : Investors can 

borrow or lend any amount at the risk free rate 

 Capital markets are (perfectly) competitive and frictionless 

 There are no taxes, transaction costs or short sale restrictions 

Sharpe developed an asset pricing model that explains how a risky asset should be priced by using 

the Capital Market Line (compare market portfolio or tangency portfolio) as a starting point. The CML 

sheds light on the expected return of the efficient portfolio; however it does not give any information 

about the valuation and pricing of an individual asset. To do so, the introduction of the notion of 

systematic and unsystematic risk is helpful.38  

Assume a portfolio that consists of   assets, where    represents the expected return of the asset   

and    the weight of the asset   of the portfolio  . The variance of the expected return of portfolio   

is 

  
                      

 

   

 

   

 

For the market portfolio   holds therefore 

  
                        

 

   

 

   

 

where     and     represent the percentage of asset   and asset   in the market portfolio. By 

collecting the terms, the equation can be rewritten as 

  
                        

 

   

                  

 

   

                     

 

   

 

With the covariance of asset   and the market portfolio   

                         

 

   

 

follows  
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The equation above unveils that the variance of the market portfolio is only a function of the 

covariance of each asset with the market portfolio. The degree to which an asset covaries with the 

market portfolio is called the systematic risk. Sharpe defines systematic risk as the portion of an 

asset's variability that can be attributed to a common factor.39 The systematic risk results from 

economy-wide sources of risk, mainly based on general economic conditions, that affects the overall 

general market. Therefore it is also called the market risk. This risk cannot be reduced by building a 

portfolio. In other words, this risk is not diversifiable.  

On the other hand, the diversifiable asset's risk is called the non- or unsystematic risk. It represents 

the asset's specific risk, that only affects asset  . With growing   the asset's specific risk will cancel 

out. Thus, the unsystematic risk can be diversified. This means that a highly diversified portfolio has 

ceteris paribus a lower unsystematic risk than a poorly diversified portfolio.  

As already mentioned the Capital Market Line (CML) gives information about the expected return of 

the efficient portfolio lying on the CML, but not about the expected return of individual assets. The 

expected return of individual assets       is:40 

         
        

  
            

This is called the Security Market Line (SML). In equilibrium all individual securities are on the SML 

and not on the CML, because of the nonsystematic risk that is incorporated in individual assets. In 

well diversified portfolios like the CML's market portfolio however, the nonsystematic risk has 

(almost) no impact.  

With regard to the equation of the SML, it is obvious that the expected return of an individual asset 

      does not depend on its total risk, but rather on how it covaries with the market (portfolio). The 

degree to which the asset's covariance depends on the market is defined as   

   
          

  
      

  
  

 

The covariance prescribes the direction and intensity of the asset's correlation with the market, while 

the division through the market's variance   
  normalizes    in order to make it comparable with 

other assets.41 
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Substituting the ratio  

          

  
  

in the SML equation gives the beta version of the SML:42 

                         

This is called the Capital Asset Pricing Model (CAPM). The CAPM is a theory which states that in 

equilibrium all securities are on the SML.43 If the security is temporarily not on the SML, an 

adjustment process takes places to bring it back "on track", i.e. back on the Security Market Line.  

According to the CAPM, the expected return on an individual asset is a linear function of the asset's 

systematic risk as measured by beta. Thus, a higher beta leads ceteris paribus to a higher expected 

return. 

The CAPM serves as the starting point for the Black-Litterman approach is content of the next 

chapter. 
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6. The Black-Litterman model 

In the early 1990s, Fischer Black and Robert Litterman proposed a model for portfolio selection. This 

model, known as the Black-Litterman model, uses a Bayesian approach to combine the market 

equilibrium with additional market views of an investor.  

Since its publication the Black-Litterman asset allocation model has gained wide application in many 

financial institutions.  

“At Goldman Sachs, the Black-Litterman model is a key tool in the Investment Management Division’s 

asset allocation process”, Litterman stated in 200344 (both, Litterman and Black were working for 

Goldman Sachs when they developed their asset allocation model). 

 

6.1. The motivation behind the Black-Litterman model 

As already mentioned, more than half a century ago, Markowitz set the foundation of modern 

portfolio theory with the formulation of the two basic objectives of investing: maximizing expected 

return and minimizing risk.45 In the practical world of investment management however, the mean-

variance optimization has had (surprisingly) little impact. There are 2 main reasons why (compare 

2.1. Motivation): 

First, classical mean-variance optimization requires (historical estimates of) expected returns and 

(co)variances of all securities of the relevant investment universe. But investors typically have 

knowledge and expertise to provide reliable forecasts of the returns of only a few assets and 

markets. Therefore, investors often try to augment their views based on auxiliary assumptions, which 

lead to poor results.46 Thus, the Markowitz approach makes it difficult to focus on small segments of 

the investment universe, since it (unrealistically) requires expected returns for every security of the 

investment universe considered. 

Second, optimal portfolio weights of standard asset allocation models tend to be extreme and not 

very intuitive. This is because the classical mean-variance approach is very sensitive to the return 

assumptions used, since it overweights assets with large expected returns and low standard 

deviations and underweights those with low expected returns and high standard deviations. This 

usually results in large short positions in many assets if an investor does not use constraints 

concerning short selling. On the other hand, when constraints rule out short positions, the models 

                                                           
44

 Litterman (2003) 
45

 He and Litterman (1999), p.2 
46

 Black and Litterman (1992), p.28 
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prescribe corner solutions in which only a few assets are assigned while many assets receive zero 

weights.47  

Actually, this was the main motivation for Black and Litterman to develop their approach. Their asset 

allocation model provides an intuitive solution for the two problems. The key is combining the mean-

variance optimization framework of Markowitz48 and the capital asset pricing model (CAPM) of 

Sharpe49 and Lintner.50 

 

6.2. Equilibrium returns 

The starting point of the Black-Litterman model is the market equilibrium. The market equilibrium is 

the condition in which expected returns equilibrate the demand for assets with the outstanding 

supply. One of the basic assumptions of the Black-Litterman model is that unless an investor has 

specific views on assets, the assets’ expected returns are consistent with the market equilibrium 

returns. Therefore, an investor without any views holds the market portfolio.51 

The expected equilibrium returns given by an equilibrium asset pricing model such as the CAPM 

provide a neutral reference point for expected returns. This allows the Black-Litterman model to 

generate optimal portfolio weights that are much better behaved than the unreasonable portfolios 

that standard models typically suggest. The CAPM serves as the “center of gravity” for expected 

returns.  

The equilibrium returns are the set of returns that clear the market52 if all investors had identical 

views. Supposing the asset universe consists of N assets, the implied excess equilibrium return vector 

  may be derived via the CAPM as follows: 

        

where   is the vector of asset returns, 1 is a vector of ones and    is the risk-free rate. Assuming that 

the CAPM holds,   is given by:53 
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where: 

•       is the market risk premium. 

•                   
  is the vector of asset betas, where        is the market return. 

•   is the vector of asset returns. 

•      is the vector of market capitalization weights 

•   
  is the variance of the market return, i.e.   

      
       , where   is the asset return 

covariance matrix. 

 

Denote by   the expression           
 . The vector of equilibrium risk premiums, i.e. the implied 

excess equilibrium return vector  , may be written as  

         

Rearranging leads to  

     
 

 
     

This represents the vector of market capitalization positions and   is the risk-aversion coefficient. The 

risk-aversion coefficient reflects the expected risk-return tradeoff. It is the rate at which an investor 

will forego expected return for less variance.54  

The estimation of the risk-aversion coefficient is a critical issue, since  

a. the risk-aversion coefficient is different for each investor depending on the investor's risk 

aversion level and 

b. is in principle difficult to estimate. 

As already explained in chapter "4.2.2. Instability” and again subject of chapter “10.3. Covariance 

matrix during stress events”, the risk-aversion coefficient plays an important role for the stability and 

the composition of the asset allocation.  

 

6.3. Distributional assumptions 

Within the framework of Black-Litterman it is assumed that the asset returns   follow a multivariate 

normal distribution with an expected return vector   and a covariance matrix  .55 This is because the 
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Black-Litterman model does not assume that the world is always at CAPM equilibrium, but rather 

that the market is in equilibrium on average. At any given point in time the equilibrium could be 

perturbed by shocks. Therefore, 

      

where the N x 1 vector   represents the perturbations to the equilibrium. The vector   is assumed to 

have a multivariate normal distribution so that the prior distribution on   is given by  

          

The parameter   is a scalar. It may be interpreted as the remaining uncertainty in the estimation of 

 . Blamont and Firoozy56 interpret    as the standard error of the estimation of the implied 

equilibrium return vector  . Alternatively   represents the investor’s uncertainty that the CAPM 

holds. 

So   is a parameter to adjust the variance of the distribution of  . The smaller the value of  , the 

smaller the variance of the distribution and the larger the confidence in the estimation of the 

equilibrium return vector  . Thus, a small value of   corresponds to a high confidence in the 

equilibrium return estimates. There are many different approaches to set the value of  . It is 

discussed in greater detail in chapter “7.4. The choice of τ and ω” below. 

The mean (i.e. the equilibrium return vector  ) and the variance (i.e.   ) of the normally distributed 

  vector directly enter the Black-Litterman Formula, representing a neutral starting point for further 

calibration. 

 

6.4. Investor views 

As already mentioned, the Black-Litterman model provides the flexibility to combine the market 

equilibrium with additional views of an investor. Investors’ views are expressed as deviations from 

the equilibrium returns. If an investor does not have any views, the optimal portfolio of the Black-

Litterman model matches the market equilibrium portfolio. If an investor has one or more views 

about the market, the Black-Litterman approach tilts the optimal portfolio away from the market 

portfolio in the direction of the investor’s views.57 
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There are 2 types of views within the framework of Black-Litterman: Absolute views and relative 

views. An absolute view could be expressed as “next period’s expected return of Apple is 8%”, or as 

“General Motors will have an absolute return by 4%”. A relative view on the other hand could be 

expressed by “Apple will outperform General Motors by 4%”. Among portfolio managers, relative 

views are the predominant type,58 since many portfolio strategies produce relative rankings of assets 

(assets are expected to underperform/outperform other assets) rather than absolute expected 

returns.  

In the Black-Litterman model investors’ views are expressed by view portfolios (i.e. sub-portfolios) 

composed of the assets involved in the respective views. For instance, the two absolute views above 

correspond to two view portfolios, one long in Apple and the other one long in General Motors.  

The assets involved in relative views form two separate sub-portfolios, one long portfolio for the 

assets that are expected to outperform and one short portfolio for the assets expected to 

underperform. The number of outperforming assets need not match the number of underperforming 

assets. However, the net long positions less the net short positions must be equal to 0.59 

Implementing the stated views into the Black-Litterman model is done via 3 variables: 

•   … is a matrix that identifies the assets involved in the views (K x N matrix or 1 x N row 

vector in the special case of 1 view); 

•   … is the view vector (K x 1 column vector); 

•  … is a diagonal covariance matrix of error terms from the expressed views representing the 

uncertainty in each view (K x K matrix); 

where K represents the number of views and N is the number of assets. 

 , the matrix that identifies the assets involved in the views, is the “pick” matrix: each of its K rows is 

an N-dimensional vector that corresponds to one view. Thus, each row of   represents a view 

portfolio, where an element of   is nonzero if the asset is involved in the view and zero if it is not. In 

the case of relative views, the elements of a row sum up to zero. In the case of absolute views, the 

corresponding row consists of only one 1 in the place of the asset involved and zeros everywhere 

else. Therefore the sum of the elements in a row is 1 in absolute views. 
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The K x 1 vector of expected returns on the view portfolios is given by   . It is assumed that it is 

normally distributed which leads to the distributional assumption of the investor’s views:60 

          

The mean of this distribution is the view vector  . In the case of e.g. 4 views,   is a 4 x 1 column 

vector. The vector   includes the investor’s views on the assets’ expected returns.  

The degree of confidence an investor has in his views is reflected by the covariance matrix  . The 

covariance matrix   consists only of diagonal elements    . Its off-diagonal elements are set equal 

to zero, since the model assumes that the views are independent of each other. The investor’s 

confidence in the  th view is inversely proportional to the value of     – the larger the value of    , 

the smaller the confidence in the  th view. Just like for  , there are different approaches to specify 

the value of  . It is discussed in greater detail in chapter “7.4. The choice of τ and ω” as well. 

 

6.5. The Black-Litterman formula 

A possibility to combine the two sources of information represented by the “market information” 

embodied in 

          

and the subjective information embodied in  

          

is given by the Bayes’ theorem. The Bayes’ theorem is a rule that may be used to update the beliefs 

that one holds in the light of new information. It states that after observing the data D, the belief in E 

(expressed as the probability     ) is adjusted according to the following ratio:61 

       
           

    
 

where  

        is the conditional probability of the data given that the prior evidence E is true. 
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      is the unconditional probability of the data. That is the probability of D irrespective of E 

that may also be expressed as                                , where the 

subscript c describes the complementary event. 

The probability      is called the prior probability (before having seen the data) and        is called 

the posterior probability (after having seen the data, i.e. the updated probability). 

If we apply the Bayes' theorem to asset allocation modeling, it is expressed in terms of distributions 

not probabilities.62 

In the context of the Black-Litterman model it is assumed that an investor is aware of the CAPM 

equilibrium returns. If an investor wants to form his views based on this knowledge, he may – 

according to the Bayes’ theorem – use the expected equilibrium returns as the prior returns and 

update them with his own views.  This results in the posterior returns that combine the equilibrium 

returns and the views. Figure 1 illustrates the process of combining the two sources of information – 

the market information and the subjective information. 
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Figure 1: Combining the market information and the subjective information
63

 

Applying the Bayes’ theorem to the two sources64 

             

                          

leads to the posterior distribution of the expected returns  : 

                                                              

The posterior distribution is normal with the mean and the covariance given by the elements 

referred to above. The mean of the posterior expected return, i.e.     , represents the Black-

Litterman formula and is given by 
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      is the posterior expected return vector (N x 1 column vector); 

    is a scalar; 

   is the covariance matrix of excess returns (N x N matrix); 

   is the a matrix that identifies the assets involved in the views (K x N matrix or 1 x N row 

vector in the special case of 1 view); 

   is a diagonal covariance matrix of error terms from the expressed views representing the 

uncertainty in each view (K x K matrix); 

   is the implied equilibrium return vector (N x 1 column vector); and, 

   is the view vector (K x 1 column vector).  

When no views are expressed, the posterior estimation of the expected return becomes        . 

When the uncertainty in the views is large, then      is dominated by  . 

Keeping the two sources where the Black-Litterman formula is derived from (the market equilibrium 

and the views) in mind might help to understand and interpret the results of the posterior expected 

return. Depending on the investor’s confidence in his views, the expected returns will either tilt in 

the direction of the expected equilibrium returns   (for a low level of confidence in the views) or will 

go in the direction of the “view returns”   (for a high level of confidence). Therefore,   can be seen 

as the views’ equivalent to the market’s  .  
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7. How to implement the Black-Litterman model 

The following chapters 7 and 8 examine the practical implementation and the performance and 

stability analysis of the Black-Litterman model. This is done by using empirical data. However as 

chapter 7 and 8 focus on different issues, it might be helpful to use data that fit best the respective 

needs: Chapter 7 emphasizes the understandings of the Black-Litterman model. Thus, we need a 

database that many portfolio managers are already familiar with and have (at least) a vague idea of 

the weightings and dependencies among the assets included. We will therefore use the S&P 500. 

Chapter eight is not about asset allocation with the Black-Litterman model in the first place, but 

rather how Black-Litterman portfolios actually perform compared to the market portfolio and the 

mean variance optimized portfolio. The S&P 500 would meet those requirements as well however we 

believe that the world is not in need of another performance comparison about the S&P 500. For this 

reason a less commonly used dataset appears to bring more interesting insights. Therefore we will 

use the ATX, the Austrian Traded Index which may be seen as the Austrian’s equivalent to the S&P 

500.   

The starting point of the calibration of a Black-Litterman portfolio is the market portfolio. As the 

market portfolio is as such a theoretical device, it is necessary to use approximations for the market 

portfolio. The S&P 500 serves as a proxy for the US market portfolio. 

An index composed of 500 companies is a benefit concerning market coverage, but in turn reduces 

the traceability and comprehensibility of the results. Thus, the companies of the S&P 500 index are 

bundled into 10 "value weighted industry portfolios", consisting of: 

 Basic Materials (1000) 

 Industrials (2000) 

 Consumer Goods (3000) 

 Health Care (4000) 

 Consumer Service (5000) 

 Telecommunications (6000) 

 Utilities (7000) 

 Financials (8000) 

 Technology (9000) 

 Oil & Gas (0001) 
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In order to cover many different market conditions, we decide to use a broad period of time: from 

the 6.10.1989 to the 26.08.2016. The companies' returns will be considered on a weekly basis. We 

receive the returns of the value weighted industry portfolios by summing up the company returns of 

one industry at time   multiplied by the company market values at    , and divided by the sum of 

the company market values at    .  

      
               
  
   

        
  
   

 

Since an individual company   generates its return    with the market value at    , we weight the 

return at   with the market value at    . 

To get an idea of the returns of the value weighted industry portfolios it might be helpful to depict 

the returns for two examples, like e.g. the Technology and Financials value weighted industry 

portfolios. The return over time equals their Buy-and-Hold returns: 

                     

 

   

 

Figure 2 shows the generated Buy-and-Hold returns for the industries Technology and Financials. The 

x-axis represents the number of weeks from 6.10.1989 by 26.08.2016. The y-axis shows the return 

from the starting point till the last date in percent. 

 

Figure 2: Buy-and-Hold returns of Tech and Financials 
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Chapter eight goes into detail concerning the evaluation of the relevant historical returns and the 

valuation of (negative) risk free returns (see chapters 8.1. and 8.2.). For now, we show how to 

calibrate adequate inputs in a superficial way. 

To obtain the relevant excess returns, the risk free return      (compare chapter "8.2. Risk free rate") 

of each week is subtracted from the return of the respective weekly value weighted returns: 

                        

The historical estimates of expected returns as well as the covariance matrix base on these excess 

returns. For the expected excess returns we may use the arithmetic means of the value weighted 

excess returns over the whole time span.  

        
 

 
    

  

      

 

The choice of the historical arithmetic mean for future expected returns is certainly controversial. 

Chapter "8.1. Historical estimates of expected returns" discusses the question whether this makes 

sense or not in greater detail. As we focus in the following on the asset allocation only (and not on 

the actual performance), the arithmetic mean appears to be a convenient choice for the input 

parameters of the mean variance portfolio. The evaluated excess returns are listed in Table 1. All 

figures are shown as absolute values. 

Industry Expected excess return Variance Standard deviation 

1000 0,00119549 0,00095969 0,03097883 

2000 0,00153876 0,00069223 0,02631024 

3000 0,00159888 0,00040258 0,02006443 

4000 0,00186508 0,00058608 0,02420905 

5000 0,00153398 0,00063808 0,02526032 

6000 0,00097387 0,00071758 0,0267877 

7000 0,00129897 0,00050572 0,02248825 

8000 0,00152814 0,00123313 0,03511593 

9000 0,00207168 0,00122525 0,03500352 

0001 0,00166392 0,00088144 0,02968905 

Table 1: Expected excess returns 

Table 2 shows the covariance matrix of the ten industry portfolios, representing the variances and 

the dependencies among the industries. 
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 1000 2000 3000 4000 5000 6000 7000 8000 9000 0001 

1000 0,00095969 0,00065225 0,00039749 0,00035732 0,00050569 0,00033077 0,00029456 0,00070178 0,00054666 0,00063332 

2000 0,00065225 0,00069223 0,00039462 0,00039428 0,00055102 0,00038601 0,00027833 0,00073996 0,00062631 0,00048227 

3000 0,00039749 0,00039462 0,00040258 0,0003436 0,00036965 0,00027158 0,00024824 0,00048139 0,00031005 0,00032099 

4000 0,00035732 0,00039428 0,0003436 0,00058608 0,00038558 0,00028508 0,00023586 0,00050102 0,00035969 0,00032615 

5000 0,00050569 0,00055102 0,00036965 0,00038558 0,00063808 0,0003895 0,00023403 0,00067876 0,00061218 0,00036563 

6000 0,00033077 0,00038601 0,00027158 0,00028508 0,0003895 0,00071758 0,00026681 0,00050138 0,0004545 0,00032114 

7000 0,00029456 0,00027833 0,00024824 0,00023586 0,00023403 0,00026681 0,00050572 0,00035578 0,00021021 0,00035726 

8000 0,00070178 0,00073996 0,00048139 0,00050102 0,00067876 0,00050138 0,00035578 0,00123313 0,00067402 0,00054052 

9000 0,00054666 0,00062631 0,00031005 0,00035969 0,00061218 0,0004545 0,00021021 0,00067402 0,00122525 0,00039938 

0001 0,00063332 0,00048227 0,00032099 0,00032615 0,00036563 0,00032114 0,00035726 0,00054052 0,00039938 0,00088144 

Table 2: Covariance matrix 

 

7.1. Mean variance portfolio 

The tangency portfolio weights   , calculated via    
 

 
           , are shown in Figure 4. 

Table 3 lists the precise values of   . There are also negative weights, as short positions are not ruled 

out. The calculated weights tend to be extreme and not very intuitive. By comparing the weights to 

the values for the expected return and the variance in Table 1 it is evident that industries with a low 

Sharpe ratio65   
         

  
 have low or negative weights. Conversely, industries with a high reward-

to-variability ratio are overweighted. 

 

Figure 3: Portfolio weights calculated with the mean-variance approach of Markowitz 
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Industry    

1000 -0,47116706 

2000 -0,03011255 

3000 1,12648318 

4000 0,50209868 

5000 -0,02045573 

6000 -0,27025012 

7000 0,26614105 

8000 -0,32328101 

9000 0,46372503 

0001 0,35203339 

Table 3: Values of the tangency portfolio weights 

7.2. Market portfolio 

With          (compare chapter 5.1.) we obtain the implied risk-aversion coefficient 

          . This represents the risk-aversion coefficient that the market "expects" investors to 

have. 

For      , the excess equilibrium returns of the 10 industry portfolios are shown in Figure 4 and 

Figure 5, respectively.  

 

Figure 4: market equilibrium returns (weekly) 
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Figure 5: market equilibrium returns (p.a.) 

The corresponding market weights are illustrated in Figure 6. 

 

Figure 6: market equilibrium weights 

Figure 6 reveals that there are no short positions or corner solutions – in contrast to the weights, that 

we received using the Markowitz approach. This plausible weighting of the industry portfolios 

provides a neutral framework that the investor can adjust according to his own views, optimization 

objectives and constraints.  

7.3. Subjective views 

In our case of 10 industry portfolios the number of assets involved is     . Below are four sample 

views (i.e.    ): 

View 1: the Oil & Gas portfolio (0001) will have an absolute excess return of 8% (equilibrium 

return: 7%) 
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View 2: the Financials portfolio (8000) will outperform the Industrials portfolio (2000) by 2% 

View 3: the Technology portfolio (9000) will outperform the Utilities portfolio (7000) by only 

125 basis points (compared to the implied market assumption of 4,6%) 

View 4: the Consumer Goods portfolio (3000) will have an absolute excess return by only 4% 

(equilibrium return: 5,75%)  

View 1 and View 4 are absolute views and View 2 and 3 are relative views. 

In our example is   the following 4 x 10 matrix: 

   

          
           
           
          

  

Corresponding to our views,   (on an annualized basis) is 

   

    
    
      
    

  

and  

   

       
       
         
       

  

in the case of weekly returns. 

7.4. The choice of   and   

The choices of   and   are the most difficult part in the practical application of the Black-Litterman 

model.66 As already mentioned, there are many different approaches to specify the value of    and  .  

7.4.1. He and Litterman 

One approach is given by He and Litterman in 1999.67 They calibrate the confidence of a view by 

setting the ratio of  
 

 
 equal to the variance of the view portfolio: 

 

 
      

  

                                                           
66

compare e.g. Fabozzi et al (2008) and Idzorek (2005) 
67
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Where   is a single 1 x N row vector from Matrix P that corresponds to the  th view. Thus there is no 

need to separately specify the value of   since only the ratio of 
 

 
 enters the Black-Litterman formula. 

The actual value of   becomes irrelevant.  

We assume any value for  , e.g.        . We could actually ignore   by setting it to 1, however for 

comprehensive reasons we keep carrying  . The covariance matrix   has the following form: 

  

 

 

      
       

       
      

        
     

         
     

  

   

                
               
                
                

  

This approach equally weights the confidence in the market and the confidence in the views. In other 

words, the investor is trusted as much as the official market model, which is quite a convenient 

choice to calibrate the uncertainty matrix. 

For understanding the mechanics of the model, it might be helpful to start with an in-depth look at 

one view only instead of four. If we apply only View 1 (an absolute view) to the Black-Litterman 

model, the pick matrix   becomes a 1 x 10 row vector 

               

and the view vector   is 

            

In accordance with the approach given by He and Litterman, the variance of View 1 has the following 

form:  

         
                    

where        . 

After specifying the covariance matrix  , we know all inputs that enter the Black-Litterman formula 

and may calculate the new posterior expected return vector     . 
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 Black-Litterman      Market equilibrium   

Basic Materials 0,0928764 0,0902841 

Industrials 0,0966428 0,0946688 

Consumer Goods 0,0609845 0,0596706 

Health Care 0,0636346 0,0622996 

Consumer Service 0,0845892 0,0830927 

Telecommunications 0,0652026 0,0638881 

Utilities 0,0538232 0,0523609 

Financials 0,1209306 0,1187182 

Technology 0,0998116 0,0981769 

Oil & Gas 0,0763921 0,0727842 
Table 4: Posterior expected return vector p.a. compared to market equilibrium expected return vector p.a. of View 1 

Although only the Oil & Gas portfolio is directly affected by our View 1, the individual returns of the 

other portfolios changed from their equilibrium returns as well. This is because each individual return 

is linked to the other returns via the covariance matrix  .68 So the Black-Litterman model does not 

simply replace the expected return of one asset only, but rather adopts the expected returns of all 

assets in the light of the (new) subjective information given by the investor. However the return of 

the asset involved, i.e. the Oil & Gas portfolio, changes the most, just as expected. 

As shown in Table 4, the posterior expected return vector of the Oil & Gas portfolio is higher than its 

prior equilibrium return. This is no surprise, since the He and Litterman approach of the Black-

Litterman model equally weights the confidence of the two sources of information. If an investor 

adds views that have a higher expected return than the one given by the market equilibrium, the 

new posterior return of Black-Litterman model      will be higher, ceteris paribus, than prior 

equilibrium returns   . This means that the portfolio of an optimistic investor, who believes that the 

assets involved in his view will outperform the market, will always have a higher expected return 

than the portfolio of an investor with bearish views. In other words, the investor with the highest 

expectations will have the portfolio with the highest expected returns. 

With the posterior expected return vector      of the Black Litterman model with one view only – 

View 1 – the new portfolio weights may be derived by using the mean variance approach of 

Markowitz with the constraint that the weights sum up to one. The Black-Litterman portfolio weights 

are presented in Figure 7. 
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Figure 7: Black-Litterman portfolio weights with View 1 only 

In accordance with the changes of the expected returns the weights of the assets change as well. 

Since View 1 states that the Oil & Gas portfolio will have a higher expected return than the one given 

by the market equilibrium, the Black-Litterman model shifts weight from other portfolios to the Oil & 

Gas portfolio. Thus, as far as absolute views are concerned, the behavior of the Black-Litterman 

model is quite intuitive.  

However, among portfolio managers relative views are the predominant type. Therefore it might be 

useful to analyze the calibration for a relative view – View 3. View 3 expresses that the Technology 

portfolio will outperform the Utilities portfolio by only 125 basis points, which means that the 

difference between the expected return of the Technology portfolio and the Utilities portfolio should 

be smaller, ceteris paribus, than the difference at equilibrium (~4.6% p.a.).  

Applying View 3 to the Black-Litterman model leads to  

                

In the row vector   the outperforming portfolio receives a positive weighting, i.e. one, while the 

underperforming portfolio receives a negative weighting, i.e. minus one. The view vector   has the 

following form 

              

In line with the calculation of   of an absolute view, the calibration of   is 
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where        . The actual value of   is still irrelevant since only the ratio of 
 

 
 enters the Black-

Litterman formula. 

The new posterior expected return vector      is depicted in Table 5. 

 Black-Litterman      Market equilibrium   

Basic Materials 0,0870796 0,0902841 

Industrials 0,0902457 0,0946688 

Consumer Goods 0,058885 0,0596706 

Health Care 0,0607256 0,0622996 

Consumer Service 0,0782862 0,0830927 

Telecommunications 0,0615024 0,0638881 

Utilities 0,056117 0,0523609 

Financials 0,1146731 0,1187182 

Technology 0,0852751 0,0981769 

Oil & Gas 0,0722489 0,0727842 
Table 5: Posterior expected return vector p.a. compared to market equilibrium expected return vector p.a. of View 3 

As shown in Table 5, the market equilibrium return of the Technology portfolio is distinctly higher 

than the equilibrium return of the Utility portfolio. The difference between the expected return of 

the Technology portfolio and the Utilities portfolio is about 4.6% p.a. at equilibrium. To reduce the 

difference between the expected returns in accordance with View 3, the posterior expected return of 

the Technology portfolio decreases, while the Utility portfolio’s posterior expected return increases. 

Interestingly the decrease of the Technology portfolio’s return is more than 3 times as high as the 

Utilities’ increase. This is due to the different variances and correlations of Technology and Utility. As 

already mentioned, a view does not only affect the returns of assets involved in the view, but also all 

the other assets’ returns via the covariance matrix. This is valid for absolute views as well as for 

relative ones. 

Figure 8 represents the corresponding optimal portfolio weights for the new posterior expected 

return vector      of View 3, compared to the equilibrium weights. 
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Figure 8: Black-Litterman porfolio weights with View 3 only 

In line with the expected returns, the Black-Litterman model reduces weight of the Technology 

portfolio in favor of the Utilities portfolio, just as expected. Surprisingly the weights of the portfolios 

where no views are expressed remain unchanged. This is because the new portfolio can be seen as 

the sum of two sub portfolios, where portfolio 1 is the market equilibrium portfolio and portfolio 2 is 

the view portfolio consisting of the long and short positions based on the view. In a relative view, the 

long and short positions of portfolio 2 – the view portfolio – perfectly compensate each other and 

therefore have no impact on the weights of portfolio 1. On the other hand, the absolute View 1 

increases the weight of the Oil & Gas portfolio without an offsetting position. However, this 

intuitiveness of the Black-Litterman model is a bit less apparent once investment constraints are 

added.69 

All considerations so far equally weighted the confidence in the market equilibrium return and the 

confidence in the views given by the investor in line with the approach of He and Litterman. 

However, this might become an issue if the investor wants to specify different levels of confidence 

for the views compared to the equilibrium and among each other.  

7.4.2. Meucci 

Another method to specify the confidence in the market and the views is given by Meucci.70 Meucci 

sets     and introduces  , a parameter for the view portfolio, to adjust the confidence in views. 

Meucci specifies the elements   of the subjective uncertainty matrix   as: 
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where        . 

The scalar   represents the confidence in the investor’s views. The case     leads to an infinitely 

disperse distribution of the views: this means that the investor’s views have no impact. Thus, if an 

investor has only low confidence in his view, he sets   small and the Black-Litterman portfolio will tilt 

in the direction of the market portfolio.  

On the other hand, the case     leads to an infinitely peaked distribution of the views: this means 

that the investor is trusted completely over the market model.71 In other words, for a high value of  , 

the view information of the Black-Litterman formula will become predominant.  

The case   
 

 
 equally weights the confidence in the market equilibrium model and the confidence 

in the investor’s views. Therefore this constellation corresponds to the He and Litterman approach 

and leads to the same returns. 

With Meucci’s approach it is possible to calibrate the confidence of our views for different values of 

 . As View 1 concerns the Oil & Gas portfolio only, the changes of the Oil & Gas portfolio for different 

values of   are of interest. Figure 11 presents the expected returns for     (i.e. equal the market 

equilibrium return),     ,         ,       (i.e. the same expected return as with the He 

and Litterman approach),          and      , representing a very high confidence in the 

investor’s view. 

 

Figure 9: Expected return of the Oil & Gas portfolio for different settings of c in View 1 
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As Figure 9 demonstrates, in the case of a small value of   which corresponds to a low level of 

confidence in the view compared to the level of confidence in the market model, the expected return 

of the Oil & Gas portfolio is almost similar to the market equilibrium return (~7,3% p.a.). For 

increasing confidence, the posterior expected return rises and goes in the direction of the investor’s 

expected return expressed by our View 1 (~8% p.a.). 

The corresponding weight changes of a portfolio generated by using the mean variance approach of 

Markowitz for the different settings of   are depicted in Figure 10.  

 

Figure 10: Portfolio weights for different settings of c in View 1 

Changes in the level of confidence in View 1 lead not only to a different expected return for the Oil & 

Gas portfolio, but also to a different expected return of every other asset class, since each individual 

return is linked to the other returns via the covariance matrix (compare He and Litterman approach 

View 1). Thus, the weights of every industry portfolio change as well. 

Figure 11 shows the weight changes for the Oil & Gas portfolio in greater detail.  
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Figure 11: Weights of the Oil & Gas for different settings of c 

As shown in Figure 11, different values of   lead to significant changes in the weighting of the Oil & 

Gas portfolio. An expected return of the Oil & Gas portfolio that is equal to the market equilibrium 

return (~7,3%) corresponds to a weight of about 0.012. In the case that the expected return of the 

Oil & Gas portfolio is almost completely dominated by the View 1 (8%), its weighting rises to almost 

0.06.  

Meucci’s approach is not only appropriate for absolute views, but also for relative ones like View 3. 

As already mentioned, in View 3 the difference between the expected return of the Technology 

portfolio and the Utilities portfolio is of interest. The consequences of different settings of   for the 

posterior expected returns are illustrated in Figure 12. 
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Figure 12: Expected return of the Technology portfolio and the Utilities portfolio for different settings of c 

The impact of   in View 3 is in line with the effects of   in an absolute view. However the actual 

change of the expected return of each portfolio involved depends on the implied difference between 

the expected return of the Technology portfolio and the Utilities portfolio according to  . This has no 

consequences for    , but for increasing confidence in View 3 the expected returns change. This 

means the expected return of Technology decreases while the expected return of Utilities increases 

in order to reduce the difference between the expected returns to 125 basis points. 

Figure 13 illustrates that the higher the confidence in the investor’s view gets, the more weight is 

shifted from the Technology portfolio to the Utilities portfolio. For high values of  , the Technology 

portfolio even becomes a short position. 

 

Figure 13: Weights of the Technology portfolio and the Utilities portfolio for different settings of c 

0 
0,01 
0,02 
0,03 
0,04 
0,05 
0,06 
0,07 
0,08 
0,09 

0,1 
0,11 

Utilities 

Technology 

Difference 

-0,1 

-0,05 

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

0,35 

0,4 

Utilities 

Technology 



51 
 

8. Performance measurement of a Meucci Black-Litterman portfolio  

Contrary to the previous chapter 7 that focused on asset allocation and on how the mechanics of the 

Black-Litterman model work, we will investigate in the following the actual performance that a 

Meucci Black-Litterman portfolio delivers. This performance will be evaluated by using a benchmark 

comparison based on empirical data. 72 The dataset for this purpose bases on the Austrian equity 

market. We will use the Austrian Traded Index ATX as a proxy for this market. The time period of 

interest is the 01.08.2017 till the 31.10.2017. For the calibration of the covariance matrix as well as 

the historical estimates of the expected returns, daily observations over five years are taken into 

account: from the 01.11.2012 until the 31.07.2017. The ATX consists of 20 assets, however due to 

adaptations made on the 27.10.2017, where the newly listed BAWAG GROUP AG entered the ATX, 

we consider for the performance test only 19 assets, as for the BAWAG GROUP AG is no statistically 

firm data available yet.  

The benchmarks that the Black-Litterman portfolio has to compete with are: on the one hand the 

ATX itself, representing the market portfolio and on the other hand a mean variance portfolio that is 

calibrated with historical estimates of expected returns. 

While the portfolio weights of the market portfolio are easily accessible via their representation in 

the ATX, the preparation of the mean variance portfolio requires the investigation of historical 

estimates of expected returns.    

8.1. Historical estimates of expected returns  

The determination of the expected returns for Markowitz's mean variance approach causes some 

issues: Not only are historical returns a questionable estimation for future returns per se (since 

history is not going to repeat), like Asness (2005) noted: 

When it comes to forecasting the future, especially when valuations (and thus historical returns) are 

at extremes, the answers we get from looking at simple historical averages are bunk.73 

But also the extraction of appropriate historical returns per se may cause some issues. There are 

mainly two different approaches to do so: by calculating the arithmetic average or by determining 

the geometric average. Both methods have their advantages and disadvantages. 
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The first common method to estimate a future return is to use the arithmetic mean of historical 

returns.74 Compare to chapter 7., the arithmetic mean between the two points in time      and 

     is defined as the average of   period returns   :
75 

        
 

 
    

  

      

 

 

Table 6 shows the arithmetic means of daily returns of the assets included in the ATX: 

 Arithmetic means 

EBS AV Equity 0,00068614 

OMV AV Equity 0,0006343 

VOE AV Equity 0,00066369 

RBI AV Equity 0,00015739 

ANDR AV Equity 0,00022289 

BWO AV Equity 0,00082458 

WIE AV Equity 0,00118962 

IIA AV Equity 1,799E-05 

CAI AV Equity 0,00080986 

LNZ AV Equity 0,00083923 

VER AV Equity 0,00012409 

POST AV Equity 0,00041674 

UQA AV Equity 0,00023192 

TKA AV Equity 0,00051303 

VIG AV Equity -2,9407E-05 

SBO AV Equity 7,9848E-05 

SPI AV Equity 0,000905 

ZAG AV Equity 0,00086774 

AGR AV Equity 0,00033968 
Table 6: arithmetic means 

The use of arithmetic mean returns to model future returns is proposed in many finance textbooks 

and leads to an unbiased estimate of cumulative return if the arithmetic mean of the asset's 

stochastic rate of return is known.76 However various studies prove that compounding at the 

arithmetic average historical return results in an upwardly biased forecast.77 It is important to keep 

that in mind when using the historical arithmetic average, since this leads to overly optimistic 

forecasts. 
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An alternative approach is the use of the geometric mean. The geometric mean corresponds to the 

constant period based growth rate that leads to the same value as the          over the same 

period.78 The geometric mean is: 

             

  

      

    
    

Similarly, but expressed through the         : 

                    
      

An investor should consider that the geometric average is unbiased indeed, but only in the special 

case where the sample period and the investment horizon are of equal length. In general, forecasts 

obtained by compounding at the geometric average will be biased downwards.79 A convenient choice 

for future expected returns is therefore a return that lies between the arithmetic mean and the 

geometric mean.80  

The geometric means of the daily returns of the 19 assets are depicted in table 7. 

 Geometric means 

EBS AV Equity 0,00046265 

OMV AV Equity 0,00049656 

VOE AV Equity 0,00049737 

RBI AV Equity -0,0001467 

ANDR AV Equity 9,711E-05 

BWO AV Equity 0,00051241 

WIE AV Equity 0,00098244 

IIA AV Equity -0,00011721 

CAI AV Equity 0,00071385 

LNZ AV Equity 0,00067121 

VER AV Equity 3,7089E-06 

POST AV Equity 0,00034811 

UQA AV Equity 0,00010196 

TKA AV Equity 0,00040418 

VIG AV Equity -0,00015718 

SBO AV Equity -0,00014719 

SPI AV Equity 0,00081287 

ZAG AV Equity 0,00053749 

AGR AV Equity 0,00025539 
Table 7: geometric means 
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Note that the described upwardly biased estimation errors of the arithmetic means are only 

pronounced over long time horizons. In our 3 month example we may use therefore arithmetic 

means as input parameters for the mean variance portfolio. This procedure is similar to the one 

presented in the previous chapter.  

8.2. Risk free rate 

As explained in chapter 6. the Black-Litterman requires excess returns as input parameters. Therefore 

the valuation of an appropriate risk free rate is critical.  

In order to understand what makes an asset risk free, reconsider how risk is measured in 

investments. Investors that buy an asset have an expected return of that asset. However the actual 

return they make may differ a lot from this expected return. That is where the risk comes into play.81 

Based on Markowitz's portfolio theory, the variance in actual returns around the expected return 

represents risk in finance. Interestingly, the keynote of the risk free rate and our performance 

analysis is the same: the gap between expectations and actual returns. 

A risk free asset must meet two requirements: no default risk and no reinvestment risk.82  

How to identify and evaluate in practice such securities that have similar expected and actual 

returns? Frequently used proxies for such free risk rates are government bond yields.83 Until 2008 

they were characterized by low volatility and very predictable returns, just as expected and intended. 

However the financial crisis in 2008 and the followed Quantitative Easing programs (including 

government bond purchases) in the US, EU, UK and Japan significantly depressed the yields for 

government bonds and increased their volatility.84 This causes some new issues: Are government 

bonds still a good proxy for risk free assets (due to their volatility)? How to deal with negative risk 

free returns? 

Generally, the usage of a de facto default-free Government bonds as a practical compromise is still 

legitimate, however there are some adaptations and alternative options that may be considered:85 

 the usage of an average government bond yield over a certain period (to smooth out short 

term volatility) 

 the usage of a government bond yield from another de facto default free country with less 

volatility (e.g. German instead of Italian bonds) 
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Although the theoretical and practical impact of negative risk free rates is a critical question, the 

impact on research appears to be surprisingly little. Especially by considering that negative 

government bond yields give rise to a more complex issue than only increased volatility.  

From a conventional point of view, nominal interest rates cannot be negative, as one has always the 

option to hold money as cash. However, in practice holding cash does not come for free: Storing cash 

requires security and therefore costs. Furthermore, using cash for transactions may be expensive and 

cumbersome. In effect, the lower boundary for interest rates is shifted below zero and therefore 

negative but it still exists (meaning that negative rates cannot be below that boundary, since at a 

certain point holding cash is cheaper).86  

Negative risk free rates have some implementations and consequences one should consider: 

 Negative interest rates are incompatible with a healthy and growing economy.87  

 Negative risk free rates increase ceteris paribus the excess returns - which appears to be 

rather odd.  

 The (unrealistic) CAPM assumption that an investor can borrow and lend at the risk free rate 

leads to the absurd constellation that lending money is more expensive than borrowing 

money.  

 Investors that desire a fixed income have to take a higher risk. 

 Not least, negative risk free rates are an opening for digital currencies.88 

But how to deal with negative risk free rates appropriately? Damodaran (2016) suggests the 

following options:89 

 Switch currencies: If the risk free rate of the currency you are using is negative, switch to a 

different one. 

 Normalize risk free rates: Replace the negative risk free rate by a normal risk free rate (note 

that normalization is in the eye of the beholder and therefore always subjective). 

 Stay with the negative risk free rate  

In order to depict the consequences of the different options with the negative risk free rate, we will 

calibrate two mean variance portfolios with historical excess returns. The various assets' returns stay 

similar (i.e. not the excess returns), only the way how the risk free rate is taken into account changes, 
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89

 Damodaran (2016), p. 14 
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resulting in different excess returns. In both cases the German government bond yields represents 

the proxy for risk free rates. 

The first asset allocation is done in the following way: the assets' returns are reduced by the risk free 

rate without any adoptions - meaning that risk free rates can be negative. 

               
 

 
           

  

      

 

 

The second portfolio is calculated like the first portfolio except for the negative risk free rates - they 

are substituted by      if the risk free rate is negative. Thus     . 

                    
 

 
           

  

      

 

Both cases benefit from the usage of an average of the risk free rate, in order to smooth out the 

volatility: 

               
 

 
            

  

      

 
 

 
      

  

      

 
 

 
       

  

      

 

The obtained arithmetic mean excess returns vary significantly. The excess returns of the second 

portfolio are generally lower than the ones of the first portfolio, with some returns turned into 

negative. This is because negative risk free rates are added to the company's returns according to the 

definition of excess returns: 

                      

Table 8 compares the impact of the different risk free rates on the asset's excess returns: 

                     

EBS AV Equity 0,00068614 0,00012151 

OMV AV Equity 0,0006343 6,9667E-05 

VOE AV Equity 0,00066369 9,9058E-05 

RBI AV Equity 0,00015739 -0,00040724 

ANDR AV Equity 0,00022289 -0,00034174 

BWO AV Equity 0,00082458 0,00025922 

WIE AV Equity 0,00118962 0,00062499 

IIA AV Equity 1,799E-05 -0,00054664 

CAI AV Equity 0,00080986 0,00024523 

LNZ AV Equity 0,00083923 0,0002746 
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VER AV Equity 0,00012409 -0,00044054 

POST AV Equity 0,00041674 -0,00014789 

UQA AV Equity 0,00023192 -0,00033271 

TKA AV Equity 0,00051303 -5,1595E-05 

VIG AV Equity -2,9407E-05 -0,00059404 

SBO AV Equity 7,9848E-05 -0,00048478 

SPI AV Equity 0,000905 0,00034037 

ZAG AV Equity 0,00086774 0,00030311 

AGR AV Equity 0,00033968 -0,00022495 
Table 8: Comparison of excess returns 

These two different excess returns that only differ in the way the risk free return is taken into 

account lead to different portfolio weights of an optimized unconstrained mean variance portfolio. 

Figure 14 and 15 illustrate the difference. 

 

Portfolio 1:

 

Figure 14: Portfolio weights with negative risk free rates 
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Portfolio 2: 

 

Figure 15: Portfolio weights without negative risk free rates 

This is another example that highlights the high sensitivity of the mean variance approach. Even the 

assumed minor decision to consider small negative risk rates or not induces rather different portfolio 

weights.  

8.3. The covariance matrix 

Deriving a feasible covariance matrix that is real, symmetric and positive-semidefinite90 may also 

cause some practical problems. Although the issue may be solved by using well-established statistical 

techniques, real-world covariance matrices often appear to be noisy, unavailable or inappropriate. 

E.g. a small numbers of outliners can easily destroy a whole sample.91 If an investor finds himself with 

a bad behaving covariance matrix, several solutions have been proposed to tackle this problem (see 

e.g. Rebnato (1999), Kupiec (1998), Finger (1997), Brooks (1998) et al). 

In our case, the covariance matrix bases on the historical (excess) returns and appears to be plausible 

and feasible. Table 9 shows the covariance matrix corresponding to the excess returns of the ATX 

assets: 

 

 

                                                           
90 

Rebonato (1999) p. 11, Rebonato's example refers to a correlation matrix, which must meet the same 

requirements, since                       
91

 Rebonato (1999), p. 1 
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EBS OMV VOE RBI ANDR BWO WIE IIA CAI LNZ VER POST UQA TKA VIG SBO SPI ZAG AGR 

EBS 4E-04 1E-04 2E-04 3E-04 1E-04 6E-05 2E-04 1E-04 1E-04 1E-04 9E-05 7E-05 1E-04 9E-05 1E-04 8E-05 6E-05 2E-04 4E-05 

OMV 1E-04 3E-04 2E-04 2E-04 9E-05 4E-05 1E-04 1E-04 7E-05 8E-05 9E-05 5E-05 9E-05 5E-05 8E-05 1E-04 5E-05 1E-04 2E-05 

VOE 2E-04 2E-04 3E-04 2E-04 1E-04 5E-05 1E-04 1E-04 8E-05 1E-04 9E-05 6E-05 1E-04 7E-05 1E-04 1E-04 5E-05 1E-04 3E-05 

RBI 3E-04 2E-04 2E-04 6E-04 1E-04 6E-05 2E-04 2E-04 1E-04 1E-04 1E-04 9E-05 2E-04 8E-05 2E-04 1E-04 8E-05 2E-04 4E-05 

ANDR 1E-04 9E-05 1E-04 1E-04 2E-04 5E-05 1E-04 1E-04 7E-05 8E-05 8E-05 6E-05 8E-05 5E-05 9E-05 8E-05 5E-05 1E-04 3E-05 

BWO 6E-05 4E-05 5E-05 6E-05 5E-05 2E-04 7E-05 8E-05 7E-05 4E-05 4E-05 4E-05 6E-05 3E-05 5E-05 4E-05 4E-05 8E-05 2E-05 

WIE 2E-04 1E-04 1E-04 2E-04 1E-04 7E-05 4E-04 1E-04 9E-05 1E-04 9E-05 7E-05 1E-04 8E-05 1E-04 1E-04 7E-05 2E-04 3E-05 

IIA 1E-04 1E-04 1E-04 2E-04 1E-04 8E-05 1E-04 3E-04 9E-05 8E-05 9E-05 6E-05 1E-04 6E-05 1E-04 1E-04 8E-05 1E-04 3E-05 

CAI 1E-04 7E-05 8E-05 1E-04 7E-05 7E-05 9E-05 9E-05 2E-04 5E-05 5E-05 5E-05 6E-05 4E-05 7E-05 6E-05 6E-05 8E-05 2E-05 

LNZ 1E-04 8E-05 1E-04 1E-04 8E-05 4E-05 1E-04 8E-05 5E-05 3E-04 6E-05 5E-05 7E-05 6E-05 8E-05 8E-05 5E-05 1E-04 3E-05 

VER 9E-05 9E-05 9E-05 1E-04 8E-05 4E-05 9E-05 9E-05 5E-05 6E-05 2E-04 4E-05 6E-05 5E-05 7E-05 7E-05 4E-05 9E-05 3E-05 

POST 7E-05 5E-05 6E-05 9E-05 6E-05 4E-05 7E-05 6E-05 5E-05 5E-05 4E-05 1E-04 6E-05 3E-05 6E-05 5E-05 4E-05 9E-05 2E-05 

UQA 1E-04 9E-05 1E-04 2E-04 8E-05 6E-05 1E-04 1E-04 6E-05 7E-05 6E-05 6E-05 3E-04 6E-05 1E-04 9E-05 6E-05 1E-04 3E-05 

TKA 9E-05 5E-05 7E-05 8E-05 5E-05 3E-05 8E-05 6E-05 4E-05 6E-05 5E-05 3E-05 6E-05 2E-04 6E-05 2E-05 3E-05 6E-05 2E-05 

VIG 1E-04 8E-05 1E-04 2E-04 9E-05 5E-05 1E-04 1E-04 7E-05 8E-05 7E-05 6E-05 1E-04 6E-05 3E-04 1E-04 5E-05 1E-04 3E-05 

SBO 8E-05 1E-04 1E-04 1E-04 8E-05 4E-05 1E-04 1E-04 6E-05 8E-05 7E-05 5E-05 9E-05 2E-05 1E-04 5E-04 5E-05 1E-04 3E-05 

SPI 6E-05 5E-05 5E-05 8E-05 5E-05 4E-05 7E-05 8E-05 6E-05 5E-05 4E-05 4E-05 6E-05 3E-05 5E-05 5E-05 2E-04 7E-05 2E-05 

ZAG 2E-04 1E-04 1E-04 2E-04 1E-04 8E-05 2E-04 1E-04 8E-05 1E-04 9E-05 9E-05 1E-04 6E-05 1E-04 1E-04 7E-05 6E-04 4E-05 

AGR 4E-05 2E-05 3E-05 4E-05 3E-05 2E-05 3E-05 3E-05 2E-05 3E-05 3E-05 2E-05 3E-05 2E-05 3E-05 3E-05 2E-05 4E-05 2E-04 

Table 9: Covariance matrix 
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8.4. Asset Allocations 

With the historically derived expected returns and covariance matrix, as well as the market 

capitalizations of the relevant assets from the 31.07.2017, the asset allocations for the traditional 

mean variance approach and the market portfolio (i.e. the weightings according to the ATX) are as 

follows: 

 

Figure 16: Comparison of portfolio weights 

The allocation of the mean variance portfolio uses the arithmetic mean returns as the historical 

estimate of expected returns and does take negative risk free rates into account.  

Figure 16 illustrates that the weights of the mean variance portfolio and the market equilibrium 

portfolio are completely different. This certainly has consequences on the performance: we can 

already predict that an extraordinary negative performance of IIA as well as positive performances of 

BWO, WIE and SPI will have a positive impact on the Markowitz portfolio. The market portfolio on 

the other hand appears to be overall robust. 

As already explained, the market equilibrium portfolio is identical to a Black-Litterman portfolio if no 

subjective views are set. In contrast to chapter 7 that suggested that the portfolio with the highest 

utility was always held by the most optimistic investor (since the investor with the most optimistic 

views holds the portfolio with the highest expected return for a given level of risk), the performance 
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test requires the portfolios "to prove" their promised returns. In other words: as the further 

performance test will demonstrate the best performing portfolio is (of course) not the one with the 

highest expected return ex ante, but the one with the highest return ex post.  

With that in mind, the performance measure emphasizes how views impact on the portfolio 

performance. To highlight the importance of the accuracy of the predictions, the performance of two 

Black-Litterman portfolios with different views is considered: 

Views Black-Litterman portfolio 1 

View 1: The EBS AV (Erste Bank) will have an excess return of 0,08% instead of the implied 

market return of 0,06%. 

View 2: LNZ AV (Lenzing) will outperform the OMV AV by 0,02%. The implied market 

assumption is that OMV will outperform Lenzing by 0,01%). 

View 3: IIA AV (Immofinanz) will have an excess return of 0,06% instead of 0,04%. 

View 4: VOE AV (Voest) will outperform ZAG AV (Zumtobel) by 0,02% instead of only 0,01% 

which is the corresponding implied market assumption. 

 

Views Black-Litterman portfolio 2 

In contrast to the Black-Litterman portfolio 1, the portfolio 2 uses only absolute and no relative 

views. This is just due to simplicity reasons: basically one could also use relative views only to obtain 

the same allocations.  

To highlight the performance and stability as well as the possibilities and limitations of the Black-

Litterman model, portfolio 2 will be calibrated rather extremely: We will have views on all 19 assets 

that differ from the implied market returns. The 19 absolute views are depicted in the following 

table: 

 Views Implied market returns Difference 

EBS AV Equity 0,000632467 0,00062238 1,00869E-05 

OMV AV Equity 0,001036291 0,000407862 0,000628429 

VOE AV Equity 0,001361233 0,00046874 0,000892493 

RBI AV Equity 0,002654054 0,00064268 0,002011374 

ANDR AV Equity -0,001089418 0,000329129 -0,001418547 

BWO AV Equity 0,000257342 0,000177117 8,02245E-05 

WIE AV Equity 0,001804209 0,000423092 0,001381117 

IIA AV Equity 0,000715306 0,000364575 0,000350731 
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CAI AV Equity 0,00166077 0,000248569 0,0014122 

LNZ AV Equity -0,004073601 0,000294508 -0,004368109 

VER AV Equity 0,003245697 0,000256163 0,002989533 

POST AV Equity -0,000407192 0,000187203 -0,000594395 

UQA AV Equity -9,76779E-06 0,000322615 -0,000332383 

TKA AV Equity 0,000698704 0,000201371 0,000497332 

VIG AV Equity -0,000303497 0,000330207 -0,000633704 

SBO AV Equity 0,003302429 0,000308681 0,002993748 

SPI AV Equity 0,002624089 0,000170828 0,002453261 

ZAG AV Equity -0,002082167 0,000391664 -0,00247383 

AGR AV Equity -0,001202869 9,02924E-05 -0,001293162 
Table 10: Comparison of views and implied market returns 

 

The corresponding parameters to the views expressed are: 
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To point out the impact of the confidence on the views, the Black-Litterman portfolio 2 is split into 

portfolio 2a and portfolio 2b: 

The overall confidence in Portfolio 2a's views is 16,67%, meaning that all views receive the same 

16,67% of confidence, while the implied market returns are trusted with 83,33%. Why do we use 

such odd values like 16,67% and 83,33%? This is due to simplicity reasons: For the case         , 

the term  
 

 
     

 

      
   simplifies to 5. 

Portfolio 2b on the other hand weights the confidence in the subjective views with 83,33%. Thus the 

confidence in the implied market returns is only 16,67%. With          follows 
 

      
      .  

The views of the Black-Litterman portfolio 1 are trusted as much as the implied market information, 

i.e.      . 

The corresponding   matrices are: 

   

 

 

             

            

             

               

  

       
            

   
             

 

     

 

         
            

   
             

 

     

 

 

Applying these views to the Black-Litterman formula leads to the following asset allocations of the 

Black-Litterman portfolios 1 and 2a: 
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Figure 17: Comparison of BL 1 and BL 2a 

Figure 17 shows that the Black-Litterman portfolio 1 (BL 1) is way more balanced than the Black-

Litterman portfolio 2a (BL 2a). This is not surprising since BL 1 received only 4 views that differ from 

the implied market return, while in BL 2a views were expressed for all 19 assets. Although the 

confidence in the views of BL 2a are relatively weak (even weaker than the one of BL 1), the high 

difference between the implied market returns and the views causes significant changes to the 

portfolio weights. The underlying market equilibrium allocation is hardly determinable. 

Figure 18 compares the Black-Litterman portfolio 2a (BL 2a) to the Black-Litterman portfolio 2b (BL 

2b). Although BL 2a looked already extreme and highly leveraged in figure 17, one can see that the 

increased confidence in the views (83,33% in BL 2b compared to 16,67% in BL 2a) pushes the weights 

to a wholly new level. In direct comparison, BL 2a appears to be the robust allocation while BL 2b 

does not differ much from an ordinary mean variance portfolio.  
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Figure 18: Comparison of BL 2a and BL 2b 

Calibrating a Black-Litterman portfolio in such an extreme manner may seem strange and to miss the 

point of the Black-Litterman model. However, we will provide evidence that this calibration offers 

important insights concerning the performance and the limits of the Black-Litterman model. 

 

8.5. Three months performance  

So far, only expected returns have been considered. This applies irrespectively whether in the case of 

historical estimates for expected excess returns in the mean variance approach or in the case of the 

implied expected excess returns of the market portfolio and the Black-Litterman model. Now the 

actual excess returns come into play. The 3-month Buy and Hold returns of the 19 assets are 

depicted in table 11.  

 BHR 

EBS AV Equity 4,26% 

OMV AV Equity 7,08% 

VOE AV Equity 9,39% 

RBI AV Equity 19,12% 

ANDR AV Equity -6,94% 

BWO AV Equity 1,71% 

WIE AV Equity 12,63% 

IIA AV Equity 4,83% 

CAI AV Equity 11,57% 
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LNZ AV Equity -23,62% 

VER AV Equity 23,85% 

POST AV Equity -2,65% 

UQA AV Equity -0,06% 

TKA AV Equity 4,72% 

VIG AV Equity -1,98% 

SBO AV Equity 24,31% 

SPI AV Equity 18,88% 

ZAG AV Equity -12,85% 

AGR AV Equity -7,64% 
Table 11: Buy-and-Hold returns 

As one can see the 19 excess returns are rather different: the Schoeller-Bleckmann AG (SBO) had the 

highest BHR with more than 24% while the Lenzing AG dropped by almost 24% in 3 months. Table 12 

shows the corresponding daily geometric mean returns.  

EBS AV Equity 0,06% 

OMV AV Equity 0,10% 

VOE AV Equity 0,14% 

RBI AV Equity 0,27% 

ANDR AV Equity -0,11% 

BWO AV Equity 0,03% 

WIE AV Equity 0,18% 

IIA AV Equity 0,07% 

CAI AV Equity 0,17% 

LNZ AV Equity -0,41% 

VER AV Equity 0,32% 

POST AV Equity -0,04% 

UQA AV Equity 0,00% 

TKA AV Equity 0,07% 

VIG AV Equity -0,03% 

SBO AV Equity 0,33% 

SPI AV Equity 0,26% 

ZAG AV Equity -0,21% 

AGR AV Equity -0,12% 
Table 12: geometric means 

The geometric means are particularly of interest, since they enable to compare the expected daily 

excess returns to the daily excess returns that actually took place. Per definition, the geometric mean 

represents the constant growth rate for a certain time period (3 months in this case).  

However, the actual ex-post identified GMs partially significantly differ from the historically 

estimated expected returns (calculated with a risk free rate that may be negative). The differences 

are depicted in the table 13 below. 
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 estimated GM actual GM Difference 

EBS AV Equity 0,05% 0,06% 0,02% 

OMV AV Equity 0,05% 0,10% 0,05% 

VOE AV Equity 0,05% 0,14% 0,09% 

RBI AV Equity -0,01% 0,27% 0,28% 

ANDR AV Equity 0,01% -0,11% -0,12% 

BWO AV Equity 0,05% 0,03% -0,03% 

WIE AV Equity 0,10% 0,18% 0,08% 

IIA AV Equity -0,01% 0,07% 0,08% 

CAI AV Equity 0,07% 0,17% 0,09% 

LNZ AV Equity 0,07% -0,41% -0,47% 

VER AV Equity 0,00% 0,32% 0,32% 

POST AV Equity 0,03% -0,04% -0,08% 

UQA AV Equity 0,01% 0,00% -0,01% 

TKA AV Equity 0,04% 0,07% 0,03% 

VIG AV Equity -0,02% -0,03% -0,01% 

SBO AV Equity -0,01% 0,33% 0,34% 

SPI AV Equity 0,08% 0,26% 0,18% 

ZAG AV Equity 0,05% -0,21% -0,26% 

AGR AV Equity 0,03% -0,12% -0,15% 
Table 13: Differences between the estimated GM and the actual GM 

Eleven companies performed better than estimated and eight achieved a weaker performance than 

expected. The highest difference between the estimated and the actual GM occurs at Raiffeisen Bank 

International (RBI +0,28%), Lenzing (LNZ -0,47%), Verbund (VER +0,32), Schoeller-Bleckmann (SBO 

+0,34%) and Zumtobel (ZAG +0,26%). The other historical estimates are (more or less) appropriate. 

The high amount of appropriate historical estimates is supposed to have a positive effect on the 

performance of the mean variance portfolio. The next chapter investigates if this is the case. 

8.6. Portfolio performance 

The performance of a portfolio consisting of   assets may be calculated as the sum of the weighted 

(in our case daily) excess returns   . The weighing is effected by multiplying the asset  's portfolio 

weight    by the individual asset's excess return   :  

         

 

   

 

with the budget constraint 
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Thus, the overall return of a portfolio is a linear combination of the returns of the individual 

components in that portfolio.92 

Note that the asset's portfolio weights    may differ over time if portfolio adjustments are done. 

However we are interested in the Buy and Hold returns and therefore consider only static portfolios, 

meaning that no portfolio weight changes take place, i.e.            . 

The figure below shows the 3-months performance of the mean variance, the market and the Black-

Litterman portfolio 1: 

 

Figure 19: 3 months performance of the Markowitz, the market and the BL 1 portfolio 

The extreme portfolio weights of the Markowitz approach cause pronounced ups and downs 

compared to the market portfolio and the Black-Litterman portfolio. The high volatility is on the one 

hand not surprising because of the rather extreme Markowitz weights (as depicted in figure 16). On 

the other hand it is still remarkable since the main motivation of the mean variance approach is to 

provide a portfolio with a minimum of risk (i.e. volatility) and a maximum of return according to the 

investor’s risk-aversion. 

The market portfolio outperformed the Black-Litterman portfolio 1 (BL 1) by about two percent. BL 1 

got four moderate views, which turned out to have a worse performance than the market. Obviously 

the views we expressed were less appropriate than the implied market assumptions. However it may 

clearly be seen that the overall performance development of the market and the BL 1 portfolio is 

almost similar and characterized by a high correlation. If the subjective views are further away from 

the actual returns than the implied market returns, then the market portfolio outperforms the Black-
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Litterman portfolio. Otherwise if the subjective views are closer to the actual returns than the 

implied market returns, then the Black-Litterman portfolio outperforms the market. Figure 20 

emphasizes this statement. 

 

Figure 20: 3 months performance of the market, the BL 2a and the BL 2b portfolio 

Figure 20 shows that both, the high and the low trusted, Black-Litterman portfolios outperform the 

market portfolio. In direct comparison, the market's performance appears to be almost zero.  

However that did not happen by chance but on purpose: In order to show the opportunities and 

limitations of the Meucci Black-Litterman model, the BL portfolio 2's views are identical to the actual 

returns (compare geometric means of actual returns from table 12 with   ), meaning that the views 

were set up with the parameters that actually took place, which in turn delivered an asset allocation 

that relies to 83% on the market and to 17% on the "right" predictions et vice versa (for BL 2a and BL 

2b). 

Just as one expects the key to the highest portfolio return lies in the accuracy of the views. The closer 

the predicted return of any asset is to its actual return, the better is the portfolio's performance. 

The comparison of BL 2a and BL 2b illustrates two issues: The first is that an increase of the 

confidence in the subjective views leads to an increase in performance. Figure 21 illustrates the 

relationship between confidence and performance. The x-axis depicts different settings of   for the 

Black-Litterman portfolio 2, representing the confidence in the investor's views and the y-axis shows 

the associated Black-Litterman portfolio 2 performance. 
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Figure 21: Performance of the BL 2 portfolio for different settings of c 

This behavior corresponds to our intuition of Meucci's weighting process: The higher the confidence 

in the correct subjective (i.e. actual) returns, the higher the portfolio's performance. Note that the 

relation between confidence and performance is (almost) linear. In the following chapter "8.9. The 

Mahalanobis distance", we will have a look at this issue from a different angle.  

The other comment we can make is that the higher the confidence in the subjective views, the more 

the portfolio performance reminds of an ordinary mean variance portfolio performance with a higher 

volatility. In order to examine this behavior we introduce another portfolio: A new mean variance 

(Markowitz) portfolio that uses the views of the BL portfolios 2 (i.e.   ) as the input vector of the 

expected returns. The weights we receive are identical to the ones we receive if we calibrate the 

Black-Litterman portfolio 2 with 100% confidence in the subjective views. They are depicted in Figure 

22 below. 

 

Figure 22: new Markowitz portfolio and Black-Litterman 2 portfolio with 100% confidence weights 
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The fact that a mean variance portfolio and a Black-Litterman portfolio with 100% confidence in the 

subjective views are identical is actually not surprising since the case        leads to an infinitely 

peaked distribution of the views which means that the investor is trusted completely (compare 

chapter 7.4.2.) – just as in the mean variance approach. 

Figure 23 illustrates the performance of the Black-Litterman portfolio 2 with four different settings 

for  : the market portfolio (   ), the BL 2a portfolio (         , the BL 2b portfolio (  

      ) and the new Markowitz portfolio (   ). 

 

Figure 23: 3 months performance of the market, the BL 2a, the BL 2b and the new Markowitz portfolio 

The performance of the BL portfolio 2b and the new Markowitz portfolio is characterized by a high 

correlation. The new Markowitz portfolio which bases on the “right” expected returns represents the 

portfolio with the highest return for a certain level of risk-aversion (without risk-aversion the best 

choice would be to go for the asset with the highest return only, like Williams suggested. Certainly 

this extreme method only applies if the investor is able to predict the future returns correctly.) 

We know now both extremes of the Black Litterman model: With zero confidence in subjective views 

it results in the market portfolio while a hundred percent confidence in the investor's views leads to 

an efficient mean variance portfolio set up with the subjective views. This confirms that the Black-

Litterman model moves in the stress field of the two Nobel prize winning ideas: the CAPM model by 

Sharpe et al and the Portfolio Theory by Markowitz. Black and Litterman established the missing link 

and Meucci proposed a convenient way to weight between them. 
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Figure 24: market portfolio - mean variance portfolio 

As the CAPM model and the Portfolio Theory are both only theories, they have some drawbacks that 

ought to be considered. Further it should be noted that shifting between the allocations always 

implies a shift between the advantages and the disadvantages of the market portfolio and a mean 

variance portfolio, i.e. stability and the possibility of a higher performance. 

With that trade-off in mind, we should also cast a glance at the Meucci Black-Litterman model from a 

different perspective: the traditional Markowitz approach treats the inputs as if they were known 

with 100% certainty93 while holding the pure market portfolio initially requires zero certainty about 

the inputs. The Meucci Black-Litterman model now gives the opportunity to valuate this 

certainty/uncertainty by using confidence in subjective views.  

 

 

8.7. Stability and Risk adjusted performance  

We know now that the increase in performance occurs in a (more or less) linear manner: If the 

subjective views are more accurate than the implied market returns, the performance of a Meucci 

Black Litterman portfolio increases linearly with increasing confidence in the subjective views.  

Can we make the same statement about stability? Beforehand remember that the Black-Litterman 

model nests the subjective views in a robust environment, the market portfolio. This, however, only 

works to a certain extent: the more confidence the investor has in his own views, the less stable his 

asset allocation gets. This means that stabilization is achieved by neglecting the investor's views. So if 

an investor considers himself as a clairvoyant who has many divergent views on returns to the 

market with a high level of confidence, then the Black-Litterman allocation will be rather instable, 

but in turn offers the possibility to significantly outperform the market (compare BL portfolio 2a, 2b). 
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On the other hand, investors with almost no subjective views and forecasts enjoy the advantage of a 

portfolio which is in a way the most stable of portfolios: the market portfolio.94 Or in the words of 

Rebonato: 95 

"[...]if the Black-Litterman is used purely as a regularization device, it [...] "sedates" the patient rather 

than curing it."  

In portfolio theory the standard deviation of the returns of the portfolio is applied as the measure of 

risk and stability.96 Thus we examine the relation between the portfolio’s standard deviation   , i.e. 

the square root of the variance of the return 

  
                      

 

   

 

   

 

and the confidence parameter   in order to analyze the stability of a Meucci Black-Litterman 

portfolio. Figure 25 depicts this relation. 

 

Figure 25: Portfolio's standard deviation for different settings of the confidence parameter c 

At first sight figure 25 shows that the more weight we add to the subjective views, the less stable the 

asset allocation gets; just as expected and rather intuitive. However a closer look unveils that the 

relation between stability and confidence is more complex than the almost linear relation between 

performance and confidence: Close to the market portfolio, i.e.     , the slope of   is 

comparatively low. It is then continuously increasing until   is about     where it appears to 
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become almost linear - just like the performance-confidence relation. Obviously a positive 

stabilization effect brought by the market portfolio - representing an anchor of stability - comes here 

into play. The following risk-adjusted performance measurement proposed by Sharpe 1966 highlights 

this behavior.  

The Sharpe ratio evaluates the excess return, i.e. the risk premium, per unit of risk of the portfolio.97 

It is defined as:  

  
         
  

 

where   is the Sharpe ratio,           the excess return of the portfolio and    the standard deviation 

of the returns of the portfolio. Unlike other risk-adjusted performance measurements the Sharpe 

ratio method also works well if the portfolios of interest are not well diversified, which might be the 

case for higher levels of confidence in the subjective views (compare chapter 3.). In the context of 

the risk-adjusted performance measurement of Sharpe a portfolio is said to outperform a benchmark 

when it earns a higher risk premium per unit of standard deviation than the benchmark.98  

Figure 26 shows the Sharpe ratio for different levels of confidence in the subjective views – in 

analogy to figure 21 and 25: 

 

Figure 26: Sharpe Ratio for different settings of the confidence parameter c 

The graph of figure 26 emphasizes the differences and asymmetries between the absolute 

performance (figure 21) and the risk/stability (figure 25) of the Meucci Black-Litterman portfolios:  
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While the performance grows almost in a linear manner, the risk increases slower than the return for 

small values of  . This causes a significant increase of the Sharpe ratio for low levels of confidence 

with           . At about      , meaning that the investor has the same confidence in the 

implied market returns as in the subjective views (compare the He and Litterman approach of 

chapter 7.4.1.), the risk premium per unit of standard deviation reaches almost its peak and starts to 

flatten out at a high level. 

What are the practical implications of a concave Sharpe ratio function? 

The first statement we can make is that the higher the confidence in the subjective views ceteris 

paribus, the higher is the risk premium we get per unit of risk, as long as the subjective views are 

more accurate as the implied market returns. However since a) a confidence of 100% in a view is not 

very realistic and causes many disadvantages of a mean variance portfolio, and b) the Sharpe ratio 

between       and        remains almost identical; it is fair to say that the choice for 

      is particularly convenient, if an investor has a relatively high level of confidence in his 

predictions and wants to combine the advantages of a relatively well diversified portfolio with a high 

risk-return profile.  

The second statement may be even more relevant from a practical standpoint of view: the 

exploitation of the asymmetry between the risk and return relation. A study in 2016 by S&P Dow 

Jones Indices proved that about 90% managed funds could not outperform the market. 99 And if they 

do, it is often due to a higher risk that is taken. The insight that low levels of confidence lead to a 

linear increase of return but to a disproportionately low increase of risk might change this paradigm. 

Even relatively small values of   cause significantly improved returns per unit of risk. For     

    the stabilization effect of the market portfolio can be conserved, however the increased return 

brought in by the subjective views goes directly into account.  

How do the Sharpe ratios of the Meucci Black Litterman portfolios perform compared to the 

benchmarks? Table 14 displays them. 

 Markowitz Market BL1 BL2a BL2b Markowitz 2 = 
100% Confidence 

Sharp 
Ratio 

0,02513436 0,05954525 0,02122493 0,45028457 0,51122977 0,51192362 

Table 14: Sharpe ratio of the Black-Litterman portfolios and the benchmarks 

Unlike the previous conventional benchmark comparison where only the performance is considered, 

the Markowitz portfolio calibrated with historical returns does not outperform the market portfolio 

                                                           
99
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in a risk-adjusted performance measurement. This is due to its higher volatility. In fact, the risk-

adjusted performance of the Markowitz portfolio is only slightly better than the one of the BL1 

portfolio which had the lowest absolute portfolio performance. The Sharpe ratios of the BL2 

portfolios and the Markowitz 2 portfolio correspond to the ones we determined in figure 25: This 

comparison highlights again that the Sharpe ratio increases significantly from the market portfolio 

(    ;                    ) to the BL2a portfolio (     ;                    ) while 

it remains almost identical for the BL2b and the Markowitz 2 portfolio. 

 

8.8. Takeaways of the performance and stability analysis 

In a nutshell the key takeaways of the performance and stability analysis of the Meucci Black-

Litterman model are: 

1. The Meucci Black-Litterman model moves in the tension field between the market portfolio 

and an ordinary mean variance portfolio. 

2. The relation between performance and confidence is almost linear. 

3. The relation between stability and confidence is split roughly into two parts: For     

    the slope of   is comparatively low, however continuously increasing until   is about  

    where it becomes almost linear as well - just like the performance relation. Obviously a 

positive stabilization effect brought by the anchor of stability - the market portfolio - comes 

here into play.  

4. Point 2. and 3. cause the effect that the risk premium per unit of risk increases rapidly with 

increasing confidence until the confidence in the subjective views is about 50% (= the He and 

Litterman approach), then it starts to flatten out at a high level. 

5. Thus the paradigm of holding the market portfolio might change since bringing in subjective 

views with a low level of confidence improves a portfolio's risk/return profile significantly 

due to the asymmetry between the performance-confidence and the stability-confidence 

relation. 

6. Note however that these statements are only valid if an investor is able to determine 

subjective views that are closer to the actual returns than the implied market returns. But as 

already mentioned in the problem statement, if that is not the case, using the Black-

Litterman model makes no sense at all. 
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8.9. The Mahalanobis distance 

As already mentioned in chapter "8.6. Portfolio performance" we may also have a look at the 

confidence-performance linearity from a different angle. 

Go back to the two sources of the Black-Litterman model: The implied market information and the 

subjective information. As explained in chapter 6.5., the implied market returns and the subjective 

views base on different distributions. The Black-Litterman model uses the Bayes' theorem to 

combine these two distributions to a new combined return distribution.  

The corresponding weights of a portfolio are then obtained with the aid of the unconstrained or 

constrained solution of the same utility function that was used to receive the implied market returns. 

Mind that this extraction of portfolio weights occurs independently from the Black-Litterman model 

and bases on the mean variance approach. A common choice is the quadratic utility function when 

using the Black-Litterman model100 with the unconstrained solution: 

   
 

 
     

Note that the usage of the same mean variance method to obtain the implied market returns   

(input of the Black-Litterman model) and the posterior portfolio weights, implies that the new 

posterior return vector      (output the Black-Litterman model) and the implied market returns   

are two estimations of the return vector with the same covariance matrix  . This means we 

substitute   once for   and once for      while the risk aversion coefficient and the covariance 

matrix   remain the same. This method is used for a good reason: Since the (unconstrained) Black-

Litterman portfolio is the market equilibrium portfolio plus a weighted sum of the portfolios about 

which the investor has views,101 the usage of different methods at the extraction of the implied 

market returns and the selection of the optimal portfolio weights would lead to inconsistent and 

unintuitive results.  

Thus the only reasonable procedure of obtaining portfolio weights implies that the posterior return 

vector      and the implied market return   are two estimations of the return vector with the same 

covariance  . This offers an interesting possibility to "measure" the impact of different levels of 

confidence in the subjective views.  

A method to do so is given by Mahalanobis. He proposed a measure for the distance between two 

vectors that are linked via a covariance matrix. The Mahalanobis distance is defined as 
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It is a dissimilarity measure between two random vectors   and   with the same covariance matrix 

 .102 In our case the Mahalanobis distance of interest is  

                                

It is straightforward to see that             if the posterior return equals the implied market 

return       . The more      and   differ, the longer the Mahalanobis distance ceteris paribus 

becomes. In the case that the covariance matrix is the unity matrix, the distance reduces to the usual 

Euclidean norm103 of the distance vector         .  

Different levels of confidence lead to different posterior returns     . If we carry the assumptions of 

the Black-Litterman portfolio 2 (i.e. the subjective views are similar to the returns that actually took 

place), we receive the following Mahalanobis distance for different levels of confidence: 

 

Figure 27: Mahalanobis distance for different settings of c 

Figure 27 approves that the more weight we add to our subjective views, the longer the Mahalanobis 

distance from   to      becomes and thus the more do the expected returns of the market portfolio 

and of the Black-Litterman portfolio of interest differ. Furthermore figure 27 highlights the linearity 

of the (expected) return-confidence relation that has substantial similarity to Figure 21 (the 

performance-confidence relation). We will pick up this linearity once more in chapter 10.3. where an 

alternative approach of deriving a reasonable covariance matrix is proposed. 
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9. Drawbacks of the Black-Litterman model 

We already addressed the main disadvantage of the Black-Litterman model: 

In a nutshell, the stabilization is achieved by neglecting the investor's views. It "wants" its user to stay 

close to the market portfolio. Otherwise it results in an ordinary mean variance portfolio with all its 

drawbacks: instable, highly concentrated, highly leveraged if not ruled out and very sensitive to input 

parameters. 

However there are some other issues that deserve mentioning. One is that it requires an estimation 

of the risk-aversion coefficient, which is difficult (see chapter 4.2.3.). Going back to the sensitivity of 

portfolio weights: 

   

  
 
 

 
    

Remember that the risk-aversion coefficient   is (besides    ) the critical parameter for the stability 

of weights. So why not use a high value of  , e.g. 6 or 8 if the risk-aversion coefficient is an estimation 

anyway? And why not use even higher values like 100 if stability is the main concern in Black-

Litterman portfolios with a high confidence in subjective views and mean variance portfolios in 

general? This leads indeed to a higher stability, however often not in a desirable way (compare e.g. 

Rebonato and Denev (2003) who analyzed this issue in greater detail).104 This stabilization problem is 

also addressed in the outlook, where we propose a look and a method to deal with it from a different 

angle.  

There is another drawback that deserves consideration: the implied market return of an asset A 

bases mainly on its current market capitalization. If asset A performed well in the recent past 

compared to other assets, then ceteris paribus its market capitalization increased as well compared 

to other assets. This implies a pro-cyclical behavior of the market and thus of the Black-Litterman 

model.105 
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10. Outlook 

The Bayesian nature lying underneath the Black-Litterman model works not only for the combination 

of the market portfolio with a portfolio that holds subjective views, but also for any portfolio that is 

supposed to be updated in the light of new information. This opens new possibilities e.g. for the 

naive asset allocation or product portfolios. Furthermore we suggest a method to take stress events 

more into account. 

10.1. Naive asset allocation 

Naive asset models differ from the concepts of asset allocation we proposed so far: Instead of 

selecting the assets of a portfolio by minimizing risk and maximizing the expected return, assets are 

selected from a "stand-alone" point of view.106 This implies that the correlations among the assets 

are not taken into account directly.  

The starting point of a naive asset allocation is the picking of stocks and other assets that investors 

feel are undervalued. Thus, naive asset allocations focus on the individual asset and not on the 

overall portfolio in the first place. The diversification effect by combining various assets is taken as a 

"bonus." Although its name "naive" and its rather simple approach of selecting a portfolio might 

suggest that naive asset allocations perform poorly or at least weaker than optimized portfolios, they 

can perform surprisingly well.107 

How does the Black-Litterman model come into play at naive asset allocations? Usually naive asset 

allocation modeling does not end after a naive portfolio has been selected. They often get optimized 

in a second run. This is why these kinds of portfolios are also known as "pseudo-optimized" 

portfolios. After the pure naive portfolio has been selected, it gets updated by adding new assets to 

the original portfolio weights via analyzing if adding another asset (class) leads to a higher Sharpe 

ratio or not. In the very most cases it does.108  

From this point of view, the Black-Litterman model may also be used for naive asset allocation 

modeling: The pure naive portfolio can be understood as the prior distribution. The identification of 

the implied assets' excess returns of that portfolio (not the market portfolio) could assist the investor 

as a reference point for further calibrations. Possibly he realizes that the weight (and therefore the 

implied return) of asset A in the pure native allocation does not correspond to his actual expected 

return for asset A.  
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Therefore he could update the original pure naive allocation with subjective views concerning the 

expected returns. The weighting between the prior and the subjective part may then be done in the 

already proposed Meucci manner (see chapter 7.4.2.). 

In other words, this method replaces the market portfolio by the pure native asset allocation 

portfolio (and its implied returns) while the underlying principles of the Black-Litterman model 

remain the same.  

10.2. Product portfolios 

The Black-Litterman model may also be used as a decision making/investment tool in corporate 

finance. If a company is in anticipation of changes concerning the returns of its assets, the Black-

Litterman model provides information how and where to invest reasonably by considering the 

variance and the correlations among the different assets' returns.  

Assume a company that operates mainly in the automotive and the energy sector and is structured 

into 5 divisions: 

 Automotive industries powered by internal combustion engines (ICE) 

 Automotive industries powered by alternative power trains (APT) 

 Fossil Energy industries (FEI) 

 Sustainable Energy industries (SEI) 

 Other assets (OA) 

The current asset allocation of the company's 5 divisions is as follows: 

 

Figure 28: Company's asset allocation 

 

ICE 

APT 

FEI 

SEI 

OA 

ICE 27,49% 

APT 14,52% 

FEI 36,84% 

SEI 17,85% 

OA 3,31% 

Table 15:  Company's asset allocation 
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The five divisions had different returns over the last years. The historical estimates of the expected 

excess returns that base on the average return over the last 5 years are depicted in table 16 below: 

 Historical estimates 

ICE 28,12% 

APT 22,31% 

FEI 27,43% 

SEI 19,12% 

OA 15,32% 
Table 14: Historical estimates of the expected excess returns 

And the corresponding covariance matrix is: 

 ICE APT FEI SEI OA 

ICE 0,112771609 0,03227418 0,05039206 0,02145855 0,0186986 

APT 0,03227418 0,12369742 0,02399253 0,01757558 0,01577877 

FEI 0,050392061 0,02399253 0,09673821 0,0164831 0,01451009 

SEI 0,021458551 0,01757558 0,0164831 0,07760145 0,00968203 

OA 0,018698602 0,01577877 0,01451009 0,00968203 0,04587475 
Table 15: Covariance matrix of the historical excess returns 

The historical estimates of expected returns match the current asset allocation: obviously the current 

company's cash cows are the divisions "Fossil Energy" and "Automotive ICE". However due to 

expected changes in the Automotive as well as in the Energy industry, the company adopts its 

believes concerning expected returns: 

 Views Historical estimates Difference 

ICE 26% 28,12% -2,12% 

APT 24% 22,31% +1,69% 

FEI 25% 27,43% -2,43% 

SEI 22% 19,12% +2,88% 
Table 16: Views 

But the company's management is not as confident about the future returns of the Automotive 

industry as it is about the Energy industry. Thus it wants to weight its assumptions. The following 

table shows the confidence for each division related to the historical estimates based on the average 

of the last 5 years returns: 

 Confidence 

ICE 83,33% 

APT 83,33% 

FEI 16,67% 

SEI 16,67% 
Table 17: Confidence in the views 
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Assume further that the company's two basic objectives are the same as the ones of many investors: 

maximizing return and minimizing risk. Certainly, the operational business underlies other constraints 

than ordinary security portfolios. Many operational units are quantized and cannot be divided. Think 

of a power plant: Suppose a new power plant costs 100 million USD and is expected to increase the 

overall SEI division's return by 10%. Saving 20 million USD by leaving out the turbine makes no sense, 

since the power plant can only run as a whole. So saving 20 million of initial investment costs does 

not decrease the promised 10% to 8% but to 0%. This also applies to many other operating units: 

new machinery, assembly lines, etc.  

However if we assume the value of (new) operational units to be small compared to the existing 

assets, we find ourselves in a situation that is rather similar to the one many investors have: How and 

where to invest if we want to maximize the return and minimize the risk? And what kind of 

consequence do the new views have on the company's future returns and future investments? 

With regard to these issues, the concept of Bayesian updating implied in the Black-Litterman model 

offers a potential solution: By extracting the "artificial implied" returns of the current allocation and 

updating them in the light of new information.  

Suppose that our company subscribes to the Markowitz's assumptions introduced in chapter 4, the 

implied excess returns   may be calculated by: 

         

With an assumed risk aversion coefficient     follows: 

ICE 17,61% 

APT 11,8% 

FEI 16,92% 

SEI 8,61% 

OA 4,81% 
Table 20: implied excess returns 

As we can see the implied excess returns differ a lot from the historical excess returns. In our case all 

5 diversions have lower implied excess returns than its actual historical returns. Different implied 

returns will be the case in almost 100 percent, except for the very unrealistic scenario that a 

company is managed like a mean variance portfolio.  

This gap between actual and implied returns requires further considerations:  

The basis of the view for the new expected return (actual return) and of the return that the Black-

Litterman model is calibrated with (i.e. the implied return) is different. The following table illustrates 
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this issue. The blue elements base on the artificial implied returns while the greens represent the 

actual returns. 

 ICE APT FEI SEI 

Implied return 17,61% 11,8%   

  16,92% 8,61% 

Actual return (historically estimated) 28,12% 22,31%   

  27,43% 19,12% 

View of new expected return (with a 

confidence of 80%) 

26% 24%   

  25% 22% 

View of new expected return based on 

the implied returns 

? ?   

  ? ? 

Table 18: Implied and actual returns and views 

The stated views refer to the actual return: E.g. the actual return of the FEI division is expected to 

drop from 27,43% to 19,12% while the SEI's return is expected to rise by almost 3% to 22%. Simply 

implementing the view that the Sustainable Energies' actual return is believed to be 22% into the 

Black-Litterman model would lead to biased results since further calculation in the Black-Litterman 

model base on the artificial implied returns and not on the actual ones. Thus we need to bridge this 

gap by identifying a value that bases on the implied returns and corresponds to our view. 

A very straightforward solution for this problem provides the linear interpolation between the 

artificial implied returns on the one hand and the actual returns on the other hand: 

 

Figure 29: linear interpolation
109

 

 

    
    

 
     
     

 

                                                           
109

 https://en.wikipedia.org/wiki/Linear_interpolation, 20.3.2018 
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With      and      it is apparent that the value of interest   is a linear function of   with the 

slope  
  

  
: 

    
  
  

 

                                   
                  

             
 

Applying the SEI view               to the formula above leads to: 

        
   

      
       

According to this procedure the expressed view for Sustainable Energies corresponds to the view 

that the new expected return is         on an implied return basis. 

Same holds for the Fossil Energies (the view        leads to         ) as well as for the ICE 

and the APT. 

 ICE APT FEI SEI 

Implied return 17,61% 11,8%   

  16,92% 8,61% 

Actual return (historically estimated) 28,12% 22,31%   

  27,43% 19,12% 

View of new expected return (with a 

confidence of 80%) 

26% 24%   

  25% 22% 

View of new expected return based on 

the implied returns 

16,28% 12,69%   

  15,42% 9,91% 

Table 19: Views based on the implied returns 

The obtained views on the implied basis may then be applied to the Black-Litterman model in the 

usual way to receive the new expected returns and further the new weights. The only change we 

made compared to the original Black-Litterman formula is the exchange of the implied market excess 

returns   for the implied company's excess returns  : 
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This leads to 

Prior return Posterior return 

0,17608448 0,17095727 

0,11797448 0,11853935 

0,16917448 0,15709548 

0,08608448 0,09648353 

0,04806448 0,04745848 
Table 20: Comparison of the prior and the posterior return 

and with  

         
 

 
         

   

 
   

         

            

to the new allocation: 

 

Figure 30: Posterior company's asset allocation 

 

 Prior weights  Posterior weights Difference 

ICE 0,27487417 0,26985773 -0,50% 

APT 0,1451603 0,14913984 0,04% 

FEI 0,36836171 0,31789606 -5,05% 

SEI 0,17851525 0,23267446 5,42% 

OA 0,03308857 0,03043192 -0,27% 

 

The obtained posterior weights give an idea of how new expected returns affect future investment 

decisions among the company's divisions. The weight changes appear rather intuitive: As the 

Table 21: Comparison prior and posterior weights 

ICE 

APT 

FEI 

SEI 

OA 
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confidence in the expressed views for the ICE and the APT is low, only very moderate movements 

take place. However, the direction of the small shifts implies that the modified expected returns are 

already taken into account. The Energy Industries illustrate the added confidence in the views: The 

FEI's return is expected to drop while the SEI's is about to rise - which both is reflected in the 

suggested weight changes. The feature of this procedure is that not only the expected returns and 

the variance of the company's assets are taken into account, but also the often neglected 

correlations among the different divisions' returns.  

The proposed method has similarities to how engineers deal with time dependent differential 

equations: they convert them via the Laplace transform from the time domain to the frequency 

domain where further calculations are easier. Afterwards the inverse Laplace transform takes the 

function of frequency and yields a function of time.  

Our transformation takes place from real world returns to implied capitalization returns. Instead of 

the Laplace transform we use the linear interpolation to bridge the gap between actual returns that 

do not correspond perfectly to actual capitalizations and implied returns. 

In a nutshell this is an attempt for an investment decision making tool that allows updating the 

current asset allocation of a company in the light of new information by considering the variance and 

the correlations among the assets’ returns. 

 

10.3. Covariance matrix during stress events 

So far all subjective views concerned only the first moments of the return distribution: the expected 

returns. This is sufficient for most market conditions, since the second moments of the return 

distribution tend to be more stable during normal market conditions than the expected returns.110 

However in conditions of market turmoil, there is evidence111 that the codependence among some 

asset classes changes radically.  

Therefore a method is proposed to receive a covariance matrix that reflects the increase of 

volatilities and codependences among assets, for the case that the investor is in anticipation of a 

market turmoil. 

Generally, identifying and assessing the probability of stress events is difficult. Unfortunately, crises 

don't have a regular invariant signature and structure. Crises rather unfold according to their own 

                                                           
110

 Rebonato and Denev (2013), p. 7 
111

 Söhnholz (2010), p.27ff 
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idiosyncratic dynamics. However there are some crises-specific aspects, like the increase of 

volatilities or the greater codependence among assets which are normally weakly correlated.112 With 

the following proposed method the investor can make a choice: whether he believes that the next 

upcoming crisis will cause similar effects like any previous crisis (in this case he can use certain crisis-

specific information) or that he is only expecting any crisis (in that case the model provides a more 

general procedure). In either case it is up to the investor to specify her confidence, i.e. the likelihood 

that the stress event occurs. This approach is therefore kind of similar to Meucci's approach to 

specify   of the Black-Litterman model, the "uncertainty matrix of subjective views". 

During crises volatilities and correlations generally increase and tend to go to one.113 Suppose that 

the investor is expecting a crisis with a probability of 50% but has no accurate conception of how the 

securities will be affected. The only assumption made is that the volatility and the correlations 

among the assets will increase and thus will go in the direction of one. Assume further that the 

feasible covariance matrix during normal market conditions is   . The corresponding inverse 

covariance matrix is then   
  . For all feasible covariance matrices the following relation holds: 

     
     

By the introduction of   (the confidence factor) the investor can calculate a new (crisis) covariance 

matrix    that takes an (unrealistic) stress scenario, where the covariance matrix equals  , with   

percent into account: 

          
         

For     the new crisis specific covariance matrix    is equal to    meaning that no crisis is 

expected. In the case that the investor is in anticipation of a crisis with a probability of 50% the 

confidence factor   becomes     and    is a linear combination of   and   (consisting of 50% 

respectively). For     the new covariance matrix    equals  . Certainly, this is absolutely unrealistic 

and not useful, therefore this rather straightforward way of deriving a crisis covariance matrix is 

supposed to be used only for        . However the advantage of this method is its feature not 

to request any crisis-specific information from the user and the fact that it can be calculated rather 

quickly. 

With some adaptations though, the proposed method may be used in a more consistent and intuitive 

manner with        . The drawback is that one has to make the effort to extract information from 

                                                           
112

 Rebonato and Denev (2013), p.7 
113

 Although one has to be aware that generalizations and statements like these need strong qualifications, 
recent studies (compare Söhnholz (2010)) showed that during many stressful market conditions correlations 
did increase. 
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previous crises and that the investor is supposed to know the specific information of the upcoming 

crisis ex ante. This means that the correlations and volatilities of previous stress situations are 

expected to be almost similar to the ones that are likely to occur during the next crisis. For example if 

an investor holds the view that the next market turmoil is caused by tech companies, then the 

historical information of the dot-com collapse might be the one of choice. Or if the next financial 

crisis is expected to have the same characteristics as the lost Japanese decade, then the information 

during the 1990s in Japan are of interest. The new covariance matrix derived from this crisis specific 

information is denoted by   . As it is impossible to know for sure when the next stress event occurs, 

it might be helpful to mix and weight this crisis specific data with statistics derived during normal 

market conditions. The new weighted (crisis specific) covariance matrix     that incorporates crisis 

specific data (  ) as well as the volatilities and dependencies among assets during ordinary 

conditions (  ) can then be obtained by: 

 

            
             

As before,   represents the confidence factor. However this time a value close to      does make 

sense if the investor holds the view that a crisis is very likely to occur and that his crisis specific 

covariance matrix perfectly matches the anticipated volatilities and correlations,       . 

Certainly we could also create a crisis specific covariance matrix    without relying on historical 

information. E.g. Rebonato (1999) describes a consistent way of deriving a feasible covariance matrix. 

This gives the freedom to specify a covariance matrix    that corresponds to any crisis the investor 

designs. However designing or simulating a crisis can be difficult if doing so out of the blue, since 

crises do not have an invariant signature and structure, as already mentioned. Thus, deriving crisis 

specific information from history appears to be the more convenient choice. 

What are the impacts of this procedure on portfolio selection? Remember the optimal portfolio 

weights of the unconstrained maximization problem are: 

   
 

 
     

Thus the term 
 

 
    defines a linear mapping between the expected returns   and the portfolio 

weights   .114 Figure 31 visualizes this thought: 

 

                                                           
114

 See Doust (2008) as well as Rebonato and Denev (2013), p.77 
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Figure 31: Linear mapping
115 

The portfolio weights are the values of interest in this transformation process. They depend of: 

a. the input parameters, i.e. the expected returns and 

b. the transformation mapping, i.e. the (inverse) covariance matrix multiplied by the 

risk-aversion coefficient.  

While the Black-Litterman model approach tries to change the input parameters by substituting the 

expected returns   by     , the proposed method of weighting the covariance matrix aims on the 

mapping itself. Suppose that the transformation process from returns to weights resembles a 

physical experiment where a tennis ball machine throws tennis balls trough a plate that is pierced by 

holes and slits on a target behind the plate.  

 

Figure 32: Experimental set-up
116

 

If we assume the tennis ball machine to throw the balls perfectly stable every single time, the success 

of hitting the target will mainly depend on the condition of the tennis balls (are they soft or hard?) 

and the arrangement of the holes and slits of the plate. In this analogy the tennis balls represent the 

inputs, the target the output and the tennis ball machine the assignment of the inputs to the 

outputs. 

While the Black-Litterman model focuses on the condition and "stability" of the tennis balls, the 

weighted covariance matrix changes (and increases) the holes and slits on the plate. Both approaches 

                                                           
115

 Rebonato and Denev (2013), p. 88 
116

 Tennis ball machine from: http://www.tennis-aaron.de/tennisballmaschinen.php, 12.6.2018 
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use the "Markowitz tennis ball machine" to throw the tennis balls and both pursue the same 

objective: hitting the target. 

Weighted covariance matrices should have a positive stabilization effect on the portfolio weights. A 

"stressed" covariance matrix can be an alternative to an unrealistically high risk-coefficient. Go back 

to sensitivity of the portfolio weights:  

   

  
 
 

 
    

Remember that the weight's stability depends only on the risk-aversion coefficient   and the inverse 

covariance matrix    . Instead of increasing   we can equivalently increase   which in turn 

decreases     and therefore 
   

  
. The advantage of this method compared to an unrealistically high 

value of   is that the new crisis covariance    contains more information than  :    describes the 

increased volatilities and especially codependences more precisely than (simply) multiplying every 

element of     by a common factor 
 

 
. From this point of view, the new crisis covariance    is an 

alternative/extension to   that embodies more information.  

In the context of the Black-Litterman model, another question may come to mind: Does it make 

sense to substitute   by    or     in the Black-Litterman formula if economic turbulences are 

expected? Unfortunately not, since a) subjective views are generally uncorrelated (however complex 

views may theoretically interfere with each other) and more importantly b) since the weighted 

covariance matrix    is way more disperse than the ordinary covariance matrix    (since crises are 

characterized by increased volatilities and correlations). The impact of the subjective returns will 

become insignificant, while the implied market returns will be overweighted in the Black-Litterman 

model. Adding weight to the subjective views via Meucci's approach 

   
 

 
           

   

reduces de facto the crisis-specific higher covariance of     to a small value of   for    , 

corresponding to a peaked distribution of the views (compare chapter 7.4.2. Meucci). Thus, the 

precious crisis information embodied in     gets "lost" for a high level of confidence in the subjective 

views. 

A consistent way of using the new covariance matrix is by substituting   by     throughout the 

whole calibration of the Black-Litterman model, including the determination of the implied market 

returns           . Note that the use of the covariance matrix     will lead ceteris paribus to 

different implied returns than using   . 
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11. Summary  

The most popular asset allocation model is the mean variance approach proposed by Markowitz. This 

approach is a quantification of the two main objectives of investing: maximizing expected return and 

minimizing risk. However in the practical world of investment management, the Markowitz approach 

has shown its drawbacks. This is mainly because the weights received by the standard model tend to 

be extreme and not very intuitive. Furthermore they are extremely sensitive to the input parameters. 

To overcome these problems, Black and Litterman developed an alternative approach. The Black-

Litterman model is an asset allocation model that uses the Bayes’ theorem to combine the market 

equilibrium portfolio with additional subjective views of an investor.  

To unveil the impact of subjective views on the asset allocation we analyzed how an implementation 

of the Black-Litterman model works: 

The starting point of the Black-Litterman approach is the market equilibrium. The market equilibrium 

provides a neutral framework that an investor can adjust according to his own views, optimization 

objectives and constraints.  

If an investor does not have any views, he holds the market portfolio. However, if an investor does 

have one or more views, he may adjust the equilibrium weights according to his views. Furthermore 

the Black-Litterman model provides the opportunity to specify the confidence in his views in line with 

the market model.  

A common method to calibrate the level of confidence is given be He and Litterman. Their approach 

equally weights the confidence in the market model and in the subjective views. A different approach 

is given by Meucci. Meucci’s approach gives the opportunity to calibrate the Black-Litterman model 

for different levels of confidence in the views.  

We examined during a 3-months investigation the influence of subjective views on the actual 

performance of a Black-Litterman portfolio compared to two benchmarks: the market portfolio and a 

mean variance optimized portfolio. As for a mean variance optimized portfolio the input parameters 

are the critical factor, we explain two different, common approaches to evaluate reasonable 

expected returns (arithmetic and geometric means). It turns out the current issue of negative risk 

free rates and the way how we consider them has a major influence on the final mean variance 

portfolio weights. 

The performance test confirms the intuition that not the portfolio with the highest expected return 

ex ante, but the one with the most accurate return assumptions delivers the highest performance. 
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The test further highlighted that the Black-Litterman model moves in the tension field between the 

two Nobel Prize winning ideas: the CAPM model by Sharpe et al and the Portfolio Theory by 

Markowitz. Black and Litterman established the missing link and Meucci proposed a convenient way 

of weighting between them. The analysis of the portfolio performance proves that this weighting 

appears in an (almost) linear manner.  

The relation between stability and confidence is split roughly into two parts: For small values of 

confidence the slope is comparatively low, however continuously increasing until the confidence 

reaches about 50%. Above 50% the steepness remains almost unchanged - it becomes almost linear 

just like in the performance-confidence relation. Obviously a positive stabilization effect brought by 

the market portfolio comes here into play.  

This asymmetry between the performance-confidence and stability-confidence relation cause that 

the risk premium per unit of risk (represented by the Sharpe ratio) increases rapidly with increasing 

confidence until the confidence in the subjective views is about as high as the confidence in the 

market (i.e.      ), then it starts to flatten out at a high level. 

Thus the paradigm of holding the market portfolio might change since bringing in subjective views 

with a low level of confidence improves a portfolio's risk/return profile significantly due to the 

asymmetry between the performance-confidence and the stability-confidence relation. 

Note however that these statements are only valid if an investor is able to determine subjective 

views that are closer to the actual returns than the implied market returns.  

The Bayesian nature lying underneath the Black-Litterman model works not only for the combination 

of the market portfolio with a portfolio that holds subjective views, but also for any portfolio that is 

supposed to be updated in the light of new information. This opens new possibilities: 

In naive asset allocation the assets of a portfolio are selected from a stand-alone point of view. 

Usually the selected pure naive portfolio gets updated and optimized in a second run. If we 

understand the pure naive portfolio as the prior distribution that is updated in the light of new 

information, we may apply the presented Bayesian and "weighting" methods for this type of asset 

allocation models. 

The Black-Litterman model may also be used as a decision making/investment tool in corporate 

finance. If a company is in anticipation of changes concerning the returns of its assets, the Black-

Litterman model provides information how and where to invest reasonably by considering the 

variance and the (often neglected) correlations among the different assets' returns.  
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Furthermore we suggest a method to take stress events more into account and to stabilize portfolio 

weights. This is done by the introduction of subjective views on the second moment of the return 

distribution and the correlations. The suggested procedure to do so is by mixing and weighting a 

covariance matrix derived during normal market conditions with crisis specific information. 

In a nutshell, the Meucci Black-Litterman model provides a sophisticated approach for modern asset 

allocation with an attractive risk-return profile. 
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