
On Provisioning and Configuring
Ensembles of IoT, Network

Functions and Cloud Resources

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Lingfan Gao
Registration Number 01633394

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dr.techn. Hong-Linh Truong

Vienna, 27th August, 2018
Lingfan Gao Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Lingfan Gao
Vienna

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. August 2018
Lingfan Gao

iii

Acknowledgements

I would first like to thank my thesis supervisor Priv.-Doz. Dr. Hong-Linh Truong. He
has been an incredibly hardworking supervisor who on many occasions provided me with
advice and comments during the non-work hours. He always had a clear idea of the
destination that the thesis work should arrive at while giving me guidance. He was never
quick to dismiss any idea but saw the opportunity to enrich our work with them.

I would also like to thank BSc Michael Hammerer who is a fellow master student of
Software Engineering and Internet Computing. He is also working in the domain of
resource ensembles with my thesis supervisor. Some of the conceptual design and
implementation was done with the assistance of Michael. However, our topics are clearly
separate as he deals with interoperability of resource ensembles. I wish him the best of
luck with his master thesis.

Finally, I want to express my profound gratitude to my parents for all their support both
financial and emotional throughout years of study.

v

Kurzfassung

Mit dem rasanten Wachstum des Internets der Dinge (engl. IoT) ist ein effizientes
Management der Ressourcen, aus denen ein IoT-basiertes System besteht, notwendig.
Da IoT-Systeme oft zusammen mit der Cloud verwendet werden, bezeichnen wir diese
Systeme als IoT-Cloud-Systeme. Es gibt eine Reihe von IOT-Cloud-Systemen, die derzeit
in der Literatur untersucht werden, vom Flottenmanagement bis zur Datenzentren-
Wartung. Diese IoT-Cloud-Systeme bestehen aus Ressourcen die materiell oder virtuell
sein können, wie Sensoren, Netzwerkfunktionen, Software-Artefakte oder Cloud-Dienste.
IoT-Cloud-System Szenarien erfordern eine schnelle Fertigstellung und Konfiguration von
Ressourcen in Echtzeit, um sich an veränderte Nutzeranforderungen anzupassen. Mit der
wachsenden Popularität von *aaS (X as a Service) werden immer mehr Organisationen
und Dritte zu Anbietern spezialisierter Ressourcen. Jeder Ressourcenanbieter verwendet
verschiedene Methoden und APIs zur Verwaltung ihrer Ressourcen. Dies funktioniert
jedoch heutzutage zu Lasten der Nutzer, die komplette Ressourcen-Pakete sich beschaffen
und schließlich benutzen müssen. Der Mehraufwand, der erzeugt wird, um sich separat
mit verschiedenen Ressourcenanbietern zu verbinden, ist signifikant. Unser Ziel ist es,
diesen Mehraufwand und das für den Nutzer erforderliche Wissen zu reduzieren, um
Pakete von IoT, Netzwerkfunktionen und Cloud-Dienste zur Erstellung funktionaler
Systeme schnell fertigzustellen und zu konfigurieren. Deshalb schlagen wir eine neuartige
Architektur und ein System vor, das darauf abzielt, komplette Ressourcen-Pakete in
einer dynamischen Umgebung auf Abruf zu konfigurieren und fertigzustellen. Unser
Framework harmonisiert die Repräsentation von Ressourcen und Ressourcen Anbietern
durch die Abstraktion höherer Informationsmodelle. Mit den Abstraktionen, die diese
Informationsmodelle bieten, sind wir in der Lage, eine einheitliche API zur Verwaltung
von Ressourcen zur Verfügung zu stellen, ohne uns mit den dazugehörigen Informationen
auf niedrigerem Level für verschiedene Arten von Ressourcen und Infrastrukturen zu
befassen. Schließlich bieten wir eine Bewertung unseres Frameworks auf einer funktionalen
sowie Leistungsebene.

vii

Abstract

With the rapid growth of the Internet of Things (IoT) and their integration with cloud
computing systems, there is a need for effective management of resources that make up
an IoT-based system. These IoT Cloud Systems are made up of resources which may
be physical or virtual such as sensors, network functions, software artifacts or cloud
services. There are a number of IoT Cloud Systems currently studied in literature with
various applications from vehicle fleet management to datacenter maintenance. IoT Cloud
System scenarios require rapid provisioning and configuration of resources at runtime to
adapt to changing user requirements.

With the growing popularity of *aaS (X as a Service) many organizations and third
parties who have become IoT and Cloud resource providers. Each resource provider
uses different methods and APIs to manage their resources. However, this is at the
expense of today’s users who need to provision and use entire end-to-end ensembles of
resources. The overhead that is generated in order to interface separately with different
resource providers is significant. We aim to reduce this overhead and the knowledgebase
required for a user to rapidly provision and configure ensembles of IoT, network functions
and cloud services to form functional systems. To this end, we propose a framework
that aims to provision and configure end-to-end resource ensembles in a dynamic and
on-demand environment. Our framework harmonizes the resource and resource provider
representation through the abstraction of higher level information models. With the
abstractions these information models provide, we are able provide a unified API to
manage resources without dealing with the associated low-level information for different
types of resource and infrastructures. Finally, we provide an evaluation of our framework
on functionality and performance.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Questions . 3
1.3 Approach . 4
1.4 Contribution . 6
1.5 Thesis Structure . 7

2 State of the Art 9
2.1 Overview . 9
2.2 Background . 10
2.3 Resource Provisioning . 13
2.4 Related Work . 16
2.5 Summary . 22

3 Motivation Scenarios and Use Cases 23
3.1 Overview . 23
3.2 Scenario: Monitoring Infrastructures of Base Transceiver Stations (BTS) 23
3.3 Use Cases . 26
3.4 Resource Ensemble Approach . 35
3.5 Requirements . 37
3.6 Summary . 43

4 Architecture Design 45
4.1 Overview . 45

xi

4.2 Operating Context . 45
4.3 Models . 47
4.4 Detailed Design and Service Architecture 55
4.5 Additional Models . 57
4.6 Service Orchestration . 60
4.7 Service Mesh . 63
4.8 Summary . 67

5 Prototype Implementation 69
5.1 Overview . 69
5.2 Implementation . 70
5.3 Messaging Communication . 74
5.4 Deployment . 86
5.5 Summary . 91

6 Evaluation 93
6.1 Test System . 93
6.2 Functional Evaluation . 98
6.3 Performance Evaluation . 110
6.4 Lessons Learned . 121
6.5 Summary . 123

7 Conclusion and Future Work 127
7.1 Conclusion . 127
7.2 Future Work . 128

Bibliography 129

List of Figures

1.1 An example of a resource ensemble with the BTS scenario 2
1.2 Illustration of the challenges behind resource provisioning without the support

of any deployment tools . 4

2.1 rsiHub architecture taken from [Tru18] . 11
2.2 Example of a centralized service registry, taken from [Sim03] 12
2.3 Example of a decentralized service registry, taken from [Sim03] 12
2.4 Example of a hybrid service registry, taken from [Sim03] 12
2.5 BTS scenario class diagram taken from [TB17] 17
2.6 Example of deployment configurations taken from [TB17] 18
2.7 The inherited information model taken from [LNT16] 19
2.8 The inherited architecture inherited from [LNT16] 19

3.1 A functional overview of the BTS Monitoring System scenario 25
3.2 BTS Monitoring System Use Cases . 26

4.1 An overview of the operating context of our proposed framework 46
4.2 The UML class diagram of our resource object 50
4.3 Modified Resource UML class diagram to accommodate inter-resource rela-

tionships . 52
4.4 An architectural overview of our framework 56
4.5 Architecture of a Local Management Service interfacing Providers 58
4.6 UML class diagram of a Control Result 59
4.7 UML class diagram of a Provider Adaptor 59
4.8 UML class diagram of a Local Management Service 59
4.9 Orchestration of the Initial registration of Local Management Services and

subsequently their Provider Adaptors . 61
4.10 Service orchestration for resource provider query 62
4.11 Service orchestration for resource control 64
4.12 A basic Service Mesh, resources A and D only know the location of resources

B and C through the lookup . 65

5.1 Overview of the technologies used in the prototype implementation 69
5.2 Sequence diagram describing a resource control 72

xiii

5.3 Messaging topology of a Local Management Service and a Provider Adaptor.
We use the BTS sensor provider as an example 75

5.4 Messaging Topology of a Global Management Service and Local Management
Services . 81

5.5 Illustration of Deployment Model 1 . 88
5.6 Illustration of Deployment Model 2 . 90

6.1 An overview of our test system . 97
6.2 Creating a slice description in JSON and adding an MQTT broker resource 102
6.3 A sensor and broker in a slice, along with their connectivity 103
6.4 Using Pizza to provision a slice from a JSON description file 104
6.5 Using Pizza to update a slice from a JSON file 105
6.6 Using Pizza to query providers for available resources 106
6.7 Result of the query (Figure 6.6) for available resources 107
6.8 An illustration of the resource slice deployed during experiment 1 113
6.9 Resource consumption of Global and Local Management Services with 30

users at stressed usage patterns . 115
6.11 A comparison of request success rates (%) for the MQTT and CloudMQTT

provider for 30 concurrent users under Experiment 1 120
6.12 A comparison of average response time (in seconds) for the MQTT and

CloudMQTT provider for 30 concurrent users Experiment 1 120
6.10 Resource consumption of Global and Local Management Services with 30

users at expected usage patterns . 125

List of Tables

3.1 UC01: Add Data Consumer . 27
3.2 UC02: Add Data Source . 28
3.3 UC03: Protect Data Consumer . 29
3.4 UC04: Add Data Processing Logic . 30
3.5 UC05: Set Data Format . 31
3.6 UC06: Use Custom Data Sink . 32
3.7 UC07: Protect Data Source . 33
3.8 UC08: Remove Data Source . 34
3.9 UC09: Remove Data Pipeline . 35
3.10 A breakdown of the resource types in our scenario 36
3.11 Data Harmonization Requirement . 38
3.12 Resource Discovery Requirement . 39
3.13 Resource Provisioning Requirement . 39
3.14 Resource Configuration Requirement . 39
3.15 Resource Deletion Requirement . 40
3.16 Resource Monitoring Requirement . 40
3.17 Slice Provisioning Requirement . 41
3.18 Slice Configuration Requirement . 41
3.19 Slice Deletion Requirement . 41
3.20 Slice Monitoring Requirement . 42
3.21 Overview of requirements with respect to use cases 42

5.1 An overview of the services provided by the Global Management Service’s
API . 71

5.2 An overview of the communication protocol between Provider Adaptor and
Local Management Service . 76

5.3 Messaging Protocol 1 of the Table 5.2 . 77
5.4 Messaging Protocol 2 of the Table 5.2 . 77
5.5 Messaging Protocol 3 of the Table 5.2 . 78
5.6 Messaging Protocol 4 of the Table 5.2 . 78
5.7 Messaging Protocol 5 of the Table 5.2 . 79
5.8 Messaging Protocol 6 of the Table 5.2 . 79
5.9 Messaging Protocol 7 of the Table 5.2 . 80

xv

5.10 An overview of the communication protocol between Global and Local Man-
agement Services . 82

5.11 Messaging Protocol 1 of the Table 5.10 83
5.12 Messaging Protocol 2 of the Table 5.10 83
5.13 Messaging Protocol 3 of the Table 5.10 84
5.14 Messaging Protocol 4 of the Table 5.10 84
5.15 Messaging Protocol 5 of the Table 5.10 85
5.16 Messaging Protocol 6 of the Table 5.10 85
5.17 Messaging Protocol 7 of the Table 5.10 86

6.1 Resource, provider and adaptor implementations used in our test system.
Append https://www.github.com to URL paths 96

6.2 Experimental setting for functional evaluations 101
6.3 Experimental setting for performance evaluations 111
6.4 Metrics used for performance experiments 112
6.5 Results of stress test, first attempt . 113
6.6 Results of stress test, second round . 113
6.7 Results of sustained load test . 116
6.8 Time to provision containerized deployments on GCE, in seconds 117
6.9 Time for resource to complete pending configuration, in seconds 117
6.10 Time for resource to enter the framework, in seconds 118
6.11 Experiment 1, with only 30 concurrent users. CloudMQTT was used as a

resource provider . 118
6.12 Experiment 1, with only 30 concurrent users. We use our MQTT provider

and set the timeout of provider requests to 600 seconds (10 minutes) . . 119

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

1.1.1 Background

An IoT Cloud System is typically composed of many various components (both virtual
and physical) that create complex interactions far more numerous than the number
components themselves. IoT Cloud Systems have been studied in literature and many
scenarios have been proposed. The authors of [Tho15] give the example of a vehicle
management system that pulls data from embedded sensors and may remote control the
vehicle in emergency. The paper [NVI+15] also uses a vehicle related scenario similar to
[Tho15] but applies it on a larger scale by monitoring and controlling a fleet of vehicles.
IoT Cloud Systems can also be applied to facility management of datacenters in the
cloud as stated in a scenario from the authors of [TCD+15].

The dynamic environment in which these IoT Cloud Systems are used calls for rapid
deployment of resources [TN16] [ACIM15]. By resources we mean the different ele-
ments that make up an IoT Cloud System as: sensors, software artifacts, gateways,
communication brokers and data storage.

Deploying an IoT Cloud System involves the correct provisioning and configuration of
each of its constituent resources. We therefore use the term resource ensemble to refer
to all these resources as a whole [TN16] which communicate and interoperate between
each other. A resource ensemble differs from a deployment of resources. The resource
ensemble belongs to a user who deploys it as a functional system in order to satisfy
his/her requirements. Once the user’s requirements change then resource ensemble should
be (re)configured to reflect those changes. The presence of a user context is novel and
not seen in related works on IoT Cloud System deployment such as [TCD+15].

Three important resource types[TN16][LNT16] can be identified which can belong to an
ensemble that composes an IoT Cloud System: IoT resources, cloud services and network

1

1. Introduction

function services. IoT resources are made up of devices such as sensors and actuators
which reside far from the cloud either at IoT gateways or edge devices. Network function
services are resources that are virtualized network functions, e.g. firewalls, routers and
DNS name servers. A large collection of network function services can be found on
Google’s Virtual Private Cloud [SRR18]. Cloud services are the most popular of the
resource categories and include software analytics services and data storage services.

Our term resource ensemble is closely linked to the concept of resource slices mentioned in
[TN16]. We use the term ensemble as an abstraction of the resources which are structured
into a resource slice. Our term resource ensemble is defined as a group of resources that
function together to form a system that fulfills a user’s requirements. This definition also
covers that of the resource slice. In this thesis these two terms are used interchangeably.

1.1.2 Motivating Scenario

We illustrate a basic IoT Cloud System’s resource ensemble in Figure 1.1. This example
is inspired from [TB17] and it is used for the monitoring and predictive maintenance of
Base Transceiver Stations(BTSs). We explain this scenario here briefly and take a more
detailed look in Chapter 3. Figure 1.1 breaks the system down to its basic resources.
BTS sensors sends monitoring data through MQTT brokers to analytics clients that store
the data in data storage services. Each component seen in the figure is a resource in its
resource ensemble.

Figure 1.1: An example of a resource ensemble with the BTS scenario

There are many different providers offering their own resources. Without some form
of resource discovery mechanism, there is an overhead associated with locating the
appropriate resources that fit user requirements.This is a key problem that we address in
this thesis. A user is faced with the problem of discovering relevant resources without

2

1.2. Research Questions

any kind of search method. Then the form of the different resources must be resolved,
this can be through containers, executables or even an organization’s deployment API.
Furthermore, each resource can differ greatly with how they are managed and configured.
The heterogeneity of the available resource pool is a challenge that is currently difficult
to overcome.

Figure 1.2 illustrates the example where an end user tries to deploy a BTS resource
ensemble without the support of a framework that we aim to develop in this thesis. We
assume that the user has managed to locate the BTS specific sensor and analytics client
resources. The user is then faced with the problem of how to handle the configuration of
the two resources so that communication between them is possible. The user must choose
between the two choices of MQTT brokers that are available. In order to make this choice
the user must study their documentation and deployment methods. Finally, a choice of
storage method has to be made between the two available options: BigQuery[Goo18a]
and Cassandra [Apa18a].

For chosen resources, there is then the question of configuration and monitoring. Each
resource could require different methods of configuring and monitoring which might not be
well documented by their providers. Moreover, the overhead of researching documentation
and expanding a knowledge base just for one resource that makes up an ensemble is
detrimental to the flexibility of the system. A user cannot rapidly integrate new resources
into his/her system to accommodate changing requirements.

1.2 Research Questions

As our motivating scenario highlights, the current deployment process for a resource
ensemble involves directly interacting with various resource providers. This process can
create significant overhead for applying rapid changes to resource ensembles resulting
from changing user requirements.

We aim to provide an easier deployment process for users to deploy and manage resource
ensembles on-demand at runtime. This thesis aims to answer the following research
questions:

• RQ1 Concept and Modeling How can we abstract the low-level information
from different providers for different types of infrastructures and resources? How do
we specify a set of resources and their relationships in order to capture the context
of a resource ensemble?

• RQ2 Design and ImplementationWhat features do we need to manage resource
ensembles so that they can be provisioned and reconfigured on-demand at runtime?
What are the possible existing technologies we can use to provide these features?
What new software services and frameworks do we need to implement to provide
these features?

3

1. Introduction

Figure 1.2: Illustration of the challenges behind resource provisioning without the support
of any deployment tools

• RQ3 Evaluation How do we evaluate our proposed solution? What kind of
experiments can we run with our final framework? How do we provide or emulate
different resources and providers required to test the framework? On what criteria
do we evaluate the features of our framework?

1.3 Approach

We classify seven main phases that we carried out during the course of our work on
this thesis. Although the seven phases seem clearly defined here, we did adhere strictly
to the "waterfall" method. During the work, we left open the possibility to identify
improvements that can be made retroactively to the results of each phase.

1. In the initial phase we described the motivating scenario that we picked. We
formalized this scenario in terms of stakeholders and use cases. The description of

4

1.3. Approach

our motivating scenario was used in later steps to constrain our work so that the
purpose is clear.

2. We bootstrapped all the necessary resources and resource providers that could be
used in our scenario to form functioning resource ensembles. We finished this step
before starting work on our actual proposed solution since in order to create a
framework to interact with resources and resource providers we had to have those
artifacts available. We tried to find IoT gateways, network functions and cloud
services that we could either repackage or implement. This set of example resources
and providers served as part of the testbed we used to evaluate our framework.

3. Based on our motivating scenario we engineered a set of functional requirements
that our framework must comply with to fulfill the use cases we laid out in our initial
phase. The requirements clearly described and documented our set of functional
requirements so that we could have a clear development strategy. Moreover, we
also mapped our requirements to the use cases that we formalized in the initial
phase to determine accurate coverage.

4. In order to answer our research question concerning modeling, we analyzed the
different traits of resources and providers to come up with an information model
used to represent them in our framework. Based on previous work in this area
[LNT16] we adopted and adapted existing models and improved upon them. In this
phase we made some preliminary models and settled on a final set of information
models based on the design and implementation phase.

5. Based on the functional requirements that our framework must fulfill, we defined
the usage context of our framework. From this we designed an architecture that
can interact with a heterogeneous set of resources and resource providers. We
also provided different deployment models that our framework could be deployed
in. These deployment models involve the existing cloud but also emerging edge
infrastructures.

6. We implemented a prototype that adheres to our given framework design. The
prototype was built to use the resources and providers that we implemented for our
chosen scenario. The implementation also involves developing a communication
protocol that is compliant with our architecture. We included this protocol as a
part of the prototype since many different communication methods exist and it
need only be compliant with our framework design.

7. We evaluated our prototype framework on two levels: Functionality and Perfor-
mance. Regarding the former, we determined a set of criteria for the evaluation
of our proposed framework. By conducting functional experiments based on the
use cases of our motivating scenario we evaluated the features of our framework
with the criteria. Regarding performance, we ran stress and load tests to determine
typical performance metrics such as response time and rate.

5

1. Introduction

1.4 Contribution

We have defined the research questions that we aim to answer with this thesis. To this
end we contribute a framework that includes the following key features, which take the
form of functional requirements in Chapter 4:

• Interfacing with various resource providers and harmonizing data to one common
information model

• Management of resource providers and their resources through a common API at
runtime

• A system of query so that resources can be identified and discovered quickly through
their key attributes

• A decentralized procedure where resource providers can join the framework by
themselves or by interested third parties who are willing to maintain the interface

• Management of resource ensembles that form functional IoT Cloud Systems through
a common API at runtime

We also implement a prototype of our proposed framework in the GitHub repository
https://github.com/SINCConcept/HINC. The framework is built from a previ-
ous project, HINC, developed by the authors of [LNT16]. We leverage and extend its
capabilities with our proposed features.The repository contains all the code and docu-
mentation of our prototype framework. Additionally, we conduct experiments on our
prototype implementation for evaluation. The evaluation we proposed addresses two of
the most important software testing aspects in industry today [JAAA16]: functional and
non-functional.

In terms of functional evaluation, we evaluate firstly the correctness of our proposed
framework. In other words, we check that the planned features of the framework function
correctly. Moreover, we also devise set of use cases based on a real-world scenario in
Chapter 3 . We evaluate the features of our proposed framework with respect to fulfilling
the use cases of the scenario in order to gauge the usefulness of our framework. This
evaluation aims to provide information on the value of our proposed framework (its
usefulness).

Regaring non-functional evaluation, we evaluate the performance of our framework. This
evaluation will show us how effective our prototype implementation is and whether future
work can be done to create a better quality tool from our proposed framework.

The evaluation experiments will also be in the repository where we host the prototype
implementation along with all the necessary tools, scripts and documentation to repeat
the same experiments for other developers or researchers with an interest in our work.

6

https://github.com/SINCConcept/HINC

1.5. Thesis Structure

As of the submission of this thesis, a separate paper submitted to the European Conference
on Software Architectures (ECSA 2018) has been accepted for inclusion in the program
of Posters, Tools and Demos Track.The paper [HT18] shows a high level view of the
proposed framework that we work on in the thesis. The work has benefited from
realistic scenarios from our industry collaboration and from INTER-IoT http://www.
inter-iot-project.eu/. Furthermore, we have benefited from the Google Cloud
Platform Education Grant (TU Wien, Advanced Services Engineering) for access to
resources (VMs, container clusters...) used in our experiments.

1.5 Thesis Structure
In Chapter 2 we introduce our motivating scenario and formalize this scenario with use
cases. The chapter also describes the functional requirements of our framework that were
derived from the use cases. The information models that we use to represent resources
and resource providers are presented in Chapter 4 along with the architecture of our
proposed framework. The chapter also briefly describes some models that are important
to the function of our framework. We describe in detail the prototype implementation
of our framework in Chapter 5. We proceed to carry out an evaluation of our proposed
framework in Chapter 6.

7

http://www.inter-iot-project.eu/
http://www.inter-iot-project.eu/

CHAPTER 2
State of the Art

2.1 Overview
As a starting base for the thesis, we discuss the state of the art and any related work into
the deployment of resource slices. There is current research done on the topic funded by
the INTER-IoT project [II18a] as a sub project known as INTER-HINC [II18b].

This thesis focuses on the provisioning and management of resource slices. The focus of
this thesis implicitly means that we need to consider the provisioning and management
of individual resources. Since there is a lack of current and recent research specifically
into resource slices, we also study the background and related works for the following
complementary topics :

• Resource Slices - Work related specifically to the provisioning and management
of resource slices. We look for existing tools and conceptual architecture related to
the management of resource slices.

• Resource Discovery - The query of resources based on their attributes and
capabilities. The query applies for both resources that already and exist and
resources that are available to be provisioned.

• Resource Provisioning - The deployment of resources on-demand. This topic
also partly includes the configuration of the resource at the time of deployment.

• Resource Configuration - The configuration of resources on-demand and runtime.
This also includes the storage of configuration belonging to running resources.

• Resource Monitoring - The retrieval of monitoring data from resources at
runtime. We also consider retrieving monitoring information from resources with
existing monitoring solutions.

9

2. State of the Art

Additionally we examine current tools available that are relevant to our work. We evaluate
these related tools and discuss how well they fit as solutions to our stated problem.

2.2 Background

2.2.1 Resource Slices

The authors of [TN16] propose an information-centric approach towards IoT resources
provisioning and management. The concept is called SINC - Slicing IoT, Network
Functions, and Clouds. A slice here is an abstract term that refers to a logical grouping
of resources. This kind of division makes sense for the end users of IoT as it allows them
to create and manage groups of resources to their needs. This concept of slice is what we
adopt for our proposed framework in this work. Naturally one would group different IoT
resources by type. For example, we could separate sensors, communication brokers and
cloud services in each of their respective groups. SINC proposes to create end-to-end
slices, in any direction of an IoT System, the direction of the slice being at the discretion
of the user. The high level concepts of this paper on the SINC concept were the primary
drivers of our framework design.

The author of [Tru18] present an architecture for a framework to manage resource slices.
The paper deals with the conceptual architecture named "Resource Slice Interoperability
Hub (rsiHub)" which is illustrated in Figure 2.1. Furthermore the paper also makes
reference to our motivating scenario in Chapter 3, although the scenario as mentioned
in this paper, was not as mature as what we have committed to this thesis. Further
focusing on IoT interoperability is also briefly mentioned. Figure 2.1 is very similar to
the final architecture that is presented in Chapter 5.

2.2.2 Resource Discovery

The establishment of an information model which harmonizes various resource data is
essential to resource discovery, as a structured model can be queried and filtered easily.
This related paper [LNT16] proposes a high level distributed information model for IoT
known as HINC - Harmonizing, IoT, Network functions and Clouds. HINC aims to
model IoT and cloud resources and maintain their relationships, connecting resources
across sub-networks. The work by the authors is essential for resource discovery, since
effective query and discovery is only possible if the resource pool shares a common set of
attributes that can be queried.

The authors of [KR15] specifically deal with an overview of service discovery in the IoT
Cloud technology stack and discuss potential solutions. One of the proposals is the
creation of middleware abstractions that rely on unified data representations of resources
so that "neither sensors or devices nor applications or users should have to take care of
the heterogeneity of the corresponding spaces (e.g. which nodes which integrates other
node or executes an application)"[KR15]. This approach is also taken by the work of
[LNT16] in creating unified/harmonized information models of resources.

10

2.2. Background

Figure 2.1: rsiHub architecture taken from [Tru18]

The requirements for web services discovery are similar to the requirements for resource
discovery. Typical queries for web services include attributes such as the type of the
desired service, preferred price and maximum number of returned results. Since web
services are queried through their attributes just like we do for resources, the research
in the web services discovery field could also apply to our work. The papers [Sim03],
[CZC11] and [MC12] survey the approaches and architectures that apply to web services
discovery. Service discovery can occur in two different scopes: static and dynamic. In
static service discovery, details are bound at deploy time and cannot be changed. In
dynamic service discovery, service details are not bound at deploy time and can be
changed. Since our work has a heavy focus on runtime operations, we do not consider
any type of static resource discovery. All three survey papers [Sim03][CZC11][MC12]
state the need for registries where the appropriate information for services are stored.
There are two main types of registries: centralized and distributed. Figure 2.2 shows an
example of a centralized registry. In a central registry, only one global registry exists.
This kind of service registry gives consistent results to queries since the management
of the distributed resources is done centrally. In a decentralized registry, illustrated in
Figure 2.3, the services are managed separated in smaller registries. The separation of
the services is done either arbitrarily or more commonly by organization [CZC11]. The
advantage is that, in this approach existing registries can be reused and performance can
be better than a central registry if the user knows which registry to query. Although
[CZC11][MC12] discuss only centralized and decentralized service registry approaches,
[Sim03] presents a hybrid registry whose design resembles the architecture of [LNT16],
an example of which is given in Figure 2.4. In this approach organizations may be

11

2. State of the Art

responsible for their own registry but queries can still be directed to a single authority
that is the source of truth for the ecosystem.

Figure 2.2: Example of a centralized service registry, taken from [Sim03]

Figure 2.3: Example of a decentralized service registry, taken from [Sim03]

Figure 2.4: Example of a hybrid service registry, taken from [Sim03]

12

2.3. Resource Provisioning

The concept of resource discovery has received much research in IoT where the need to
discover resources in a heterogeneous pool was first noticed as a large problem [DCB15].
Therefore, the solutions proposed can fit our problem statement. The authors of [DCB15]
and [VC17] have conducted surveys into the different solutions for resource discovery. The
two papers conclude that the most popular solution to the resource discovery problem
is the use of a centralized registry. There are other solutions such as distributed/P2P
discovery, DNS discovery and resource search engines however, the centralized registry
accounts for 7 out of the 10 solutions surveyed by [DCB15]. In all the solutions surveyed
by the two papers, the interaction protocol in a registry used is REST, or CoAP which
uses the same operation verbs as REST but designed for more resource constrained
devices.

2.3 Resource Provisioning

In order to deploy resource ensembles, we first need to address the issue of resource
provisioning. The resources that we deal with are part of a large pool that is heterogeneous
in terms of attributes and methods. We deal with resources across IoT, network functions
and cloud services. The heterogeneity between IoT resources has led to research in this
area, which we can find in [DCB15] and [VC17]. Therefore, in our work we do not only
deal with the differences found within each resource type but across different resource
types with their differing infrastructures.

Let us take the example of an instance of MongoDB. Two popular providers of MongoDB
are MongoDB Atlas [Inc18b] and MLab [mla18]. Both of these providers provide the
same types of resources. However the API provided by each of the respective providers
uses different authentication methods, control flows and payloads. In order to provision a
MongoDB instance in this case, it is necessary to acquire the knowledgebase to interact
with one or both of these providers.

The authors of [TB17] use metadata to describe provisioning parameters and methods.
However, the lack of a clear architectural proposal and prototype implementation means
that the only contribution that this paper makes to this area makes are concepts with
some example forms of resource metadata.

The paper [TCD+15] contributes a system that is capable of deploying IoT resources and
cloud services. After analyzing some of their source code which is available open source
at https://github.com/tuwiendsg/iCOMOT we have confirmed the capability of
their solution to deploy various types of resources and cloud services. In order to solve
the problem of deploying resources across a heterogeneous resource pool, they use a rule
based system that orchestrate the deployment dependencies of resources. The resources
are made compatible with the rules and uploaded to a central repository where they can
be deployed. In their example to deploy sensor units, the sensor artifacts are uploaded
the registry along with the data and configuration scripts.

13

https://github.com/tuwiendsg/iCOMOT

2. State of the Art

2.3.1 Resource Configuration

We deal not only with resource configuration at its deployment, but also dynamically
at runtime. This feature allows us to modify a resource ensemble to quickly adapt to
changing requirements for the user(s) of the resource ensemble.

The authors of [TB17] discuss the need for automated configuration generation based
on metadata from resources. Under this principle, a resource provider should attach as
much metadata as is necessary to derive a configuration for this resource. Additionally
we would need to rely on information services to provide information about different
protocols and deployment solutions. This solution would mean that a range of different
configuration options could be generated for a single resource. However, the user would
need to make a choice about a final configuration.

Like with provisioning, industry standards currently favor configuration based on the
resource provider. Some providers will make available a method where a resource can
be configured for example through a graphical interface or a RESTful API while other
providers will not allow any kind of configuration once a resource has been provisioned.
This can be seen in CloudAMQP [84c18a], where once a broker has been provisioned,
there is no way to change the name of the broker or reconfigure is resources such as CPU,
memory or number of nodes in the cluster. The only operations available are to delete
the broker or create new brokers.

However [TN16] proposes that a "single" reconfiguration step could actually be abstracted
to a service chain [Ins13] in the case of network function services, where a sequence of
actions are applied to a data stream as it passes through an ingress or egress point in a
physical or virtual network device, effectively hiding the reconfiguration step in a series
of different steps. There is however industry work in this area with many new tools that
have been released which have become very popular, we discuss these tools in the related
work section.

The Service Mesh concept [Jen18] that we use in our work allows us to avoid an aspect
of configuration altogether. Using the service mesh we can abstract the TCP/IP commu-
nication layer and avoid directly configuring a resource to communicate with another
through the deployment and control of a network of sidecar proxies. The service mesh is
a new concept that has been developed by industry and no current academic research
exists. However many documentation, white papers and blogs have been dedicated to
the topic such as [WM17] or [AS17].

A Service Mesh is a dedicated software infrastructure layer that handles communication
between services. It was created to provide a reliable communication layer in a complex
topology of services, particularly the kind of complex microservice architecture topologies
found in modern day clouds [WM17]. In practice, this layer is implemented with a
collection of network proxies that are deployed with applications. The implementa-
tion details differ from each organization or developer, the examples that we studied
[Jen18][WM17][AS17][FS18] all mention different solutions. But the concept remains the
same.

14

2.3. Resource Provisioning

The Service Mesh relies on the concept of sidecar proxies[WM17][AS17][Kle17] that are
deployed with the different application instances. The application instances are generally
not aware of the services with which they communicate. Furthermore, we can say that
each application has no idea of any outbound destination apart from its assigned sidecar
proxy. The proxy is responsible for routing that communication from our application
to its correct intended destination. The configuration of the proxy determines where
communication is routed, there are many ways that this can be achieved but the most
important requirement is that the configuration should be able to be changed dynamically.
Therefore the application is never aware of any failure in connectivity and can run normally.
If a fault is detected then the proxy can choose to retry the request or even switch to
a failsafe destination. By doing this, we limit the responsibility of each service in our
framework by removing the networking responsibility. This decreases the complexity of
orchestrating a large number of services. We can deploy services independent of each
other, for example a message consumer can be deployed without the precondition that a
running broker is unavailable, the consumer will function as normal (although consume
no messages). When the fault is detected(no running broker) a new message broker can
be deployed and the consumer’s proxy reconfigured to route communication to the new
running broker. Furthermore, in the event that the communication topology needs to be
reconfigured, only the deployed proxies need to be updated with the new routing policies
and the services themselves don’t require any reconfiguration.

The authors of [TCD+15] contribute a system that can configure IoT resources dynami-
cally at runtime. This feature is achieved in their system through the implementation
of governance processes. When an action is called, the runtime services reconfigure the
resource based on the available mechanisms that the resource has to effect this change.
For example if the resource implements this capability with runtime variables the runtime
services can stop the resource, change the variables and then restart the resource again.

The paper [NVI+15] contributes a governance tool for IoT cloud systems. The tool
provides a set of runtime mechanisms that provide among many other governance
operations, the capability to reconfigure resources at runtime. The tool makes no
concrete assumptions about the implementations of the resources. The governance
operations can consist of for example, to query the current version of a service, change
a communication protocol, or spin up a virtual gateway. The tool requires that the
capabilities of the resource e.g. communication protocols, to be packaged in a certain
format.

2.3.2 Resource Monitoring

Like with provisioning and configuration, the current accepted industry standard is to let
the provider decide on the monitoring strategy. The provider MongoDB Atlas [Inc18b],
CloudAMQP [84c18a] and MLab [mla18] all provide in their own interfaces and their own
logging tools to monitor their resources. Google Cloud Platform Stackdriver [Pla17b] is
the solely default supported monitoring system available to the resources in Google Cloud
Platform [SRR18]. Some newly developed tools exist as a solution to provide monitoring

15

2. State of the Art

that cross different platforms and infrastructures that we discuss in the related work
section.

The paper [MCTD13] has developed a customizable monitoring tool with the objective of
analyzing cross-layered, multi-level elasticity of cloud services from whole cloud services
to service units, based on structure dependencies. The tool is customizable in the sense
that is should be able to collect monitoring information from different types of cloud
services that each use their own existing monitoring solutions. In this case, they use
a customizable Data Collector node that gathers monitoring data from these existing
monitoring solutions. This approach of using customizable nodes to gather data from
exiting monitoring frameworks has already been used by StatsD [Git18a] an industry
solution released open source by Flickr in 2012. Moreover this approach has subsequently
been adopted by Telegraf [Inf18] released in 2016 by InfluxData and Fluent Bit [Dat18]
which was released in 2015. This approach makes sense given the wide array of existing
monitoring solutions available in the current market. Many of the existing monitoring
solutions are in fact mandatory for many. A survey from by [FEH+14] has found a total
of 21 monitoring tools and frameworks that are currently being used in the cloud alone.

2.4 Related Work

2.4.1 Resource Slices

There has not been a lot of related work that focus directly on resource slices. The authors
of [TN16] conclude in their paper that their contribution was a conceptual architecture
for the implementation of a framework. Their work relies very closely to [LNT16] whose
architecture we did leverage and extend.

The authors of [TB17] suggest a resource slice based approach to uncertainty testing.
The choice of their motivating scenario is based on base transceiver stations, which we
have leveraged in our work. They took a top-down approach, by analyzing the domain
and creating models for different classes of entities that could be identified. Figure 2.5
shows the resulting model that they contribute, where as Figure 2.6 displays their effort
to come up with a JSON representation of their entities.

Since the work done in [TB17] was from a purely top down process, the continued work
of the authors in [LNT16] makes an implementation (HINC) using certain aspects of
the models in Figures 2.5 and 2.6 in Java. Although the implementation does its job
by demonstrating the service discovery concepts of different resource models, we had
difficulty applying their models and implementations to our use cases

We found that the work done in [TB17] was too refined, that is to say the models are
too precise to be applicable on the implementation level. Initially, when trying to use
this work as a base for our modeling, we found that it was extremely hard to find all the
classes of separation required to describe a deployment configuration, let alone figure
out how to parse such a configuration with the large number of possible entities. The
JSON example provided in the work was simply a list of documents, while we approved

16

2.4. Related Work

Figure 2.5: BTS scenario class diagram taken from [TB17]

of the document based approach (and embraced it) for its machine readability. We found
that the fine degrees of separation was not feasible for our implementation oriented work,
for example mqtt broker configuration being separate from the description of the broker
itself. Furthermore the deployment configuration in Figure 2.6 did no work to try and
model the relationships between different JSON objects, which raised problems with how
to actually parse it.

The paper [TCD+15] presents a system for "controlling, monitoring and testing IoT
cloud systems consisting of both IoT units and cloud services" . Their main work focuses
on the elasticity of IoT cloud systems, but there is also a lot of overlap between the
concept of resource slice. iCOMOT is capable of deploying resources. Their prototype
implementation is capable of deploying a sensor topology along with a message broker
for communication. The sensor can be manipulated at runtime to change communication
protocol to CoAP. However, due to the focus of the work on the elasticity of IoT cloud
systems, the deployment work goes no further than this basic example. Additionally,
there doesn’t seem to be a simple or extensible way to describe more kinds of resources to
the system for deployment. Their website http://tuwiendsg.github.io/iCOMOT/
demo.html#sensorUtil only contains one example deployment consisting of sensors
and mqtt brokers. There also is no way to define the entire IoT cloud system like we
propose to with the resource slice. The descriptions between the sensor and broker in
their example are separate, and the only kind of relationship between the two resources
must be configured manually by the user.

17

http://tuwiendsg.github.io/iCOMOT/demo.html#sensorUtil
http://tuwiendsg.github.io/iCOMOT/demo.html#sensorUtil

2. State of the Art

Figure 2.6: Example of deployment configurations taken from [TB17]

2.4.2 Resource Discovery

The paper [LNT16] provided us with a base for the information models that we use
in our final framework. The paper focused almost exclusively on harmonizing various
resource data into a distributed model. The contributions of this paper were crucial in
our work, which is mostly a practical systems-oriented implementation. Figure 2.7 shows
an overview of the distributed model.

In Chapter 4, we develop our information models for resources and resource providers
based on the work in Figure 2.7. We do not leverage these models directly, but we do
leverage the concept and extend them. The authors of [LNT16] also introduce two key
components into the architecture: Global and Local Resource services. These resource
services serve to bridge and interface different IoT resources and provide higher level
access to their information. The architecture crucially uses an adaptor system to marshal
data from heterogeneous resource providers into the information models shown in Figure
2.7. The authors implemented a prototype of their proposed system design. Our work
leverages the source code of their prototype and extends it to include the other features
that involve resource provisioning, configuration and management. We also leverage and
extend the architecture provided by [LNT16] which is illustrated in Figure 2.8.

18

2.4. Related Work

Figure 2.7: The inherited information model taken from [LNT16]

Figure 2.8: The inherited architecture inherited from [LNT16]

From our research into service discovery, we have found that the most popular solution
to service discovery is the use of a central registry that is queryable [DCB15] [VC17].
Furthermore, the most popular service discovery tools in industry such as Consul [Has18],
Zookeeper [Apa18b] and etcd [Cor18] all work on the basis of a central registry where
services are registered. The registered services can then be queried through protocols like
REST as is the case with Consul and etcd or through a client based API with Zookeeper.

Since the majority of solutions that we researched made use of a central registry, we
leverage this concept to resources. Our framework registers resources into our own central
registry and opens up query to a HTTP REST API.

2.4.3 Resource Provisioning

Since a lot of the research related to our work is based on directly implementing resource
slices, resource management is slightly neglected with authors of papers dealing directly
with the implementation of resource slices. However, the provisioning has been treated

19

2. State of the Art

in literature and the authors of [KR15] specifically deal with an overview of the IoT
Cloud technology stack and discuss potential technologies that could lead to on-demand
provisioning. While not providing a solution to this problem, the paper clearly introduces
the problem and its different parts. The challenges of the non-heterogeneity of IoT
resources is presented as well as the recent developments in Infrastructure as a Service
(IaaS) and Software as a Service (SaaS). The paper suggest a high level middleware along
with a higher level abstraction of resources as basis of a solution. We leverage both of
these concepts in our final system design.

Furthermore, due to the rise of large distributed platforms and an increased reliance of
DevOps, we can identify a lot of very mature provisioning tools developed by industry.
One category of tools that handles our aspect of resource provisioning are continuous
deployment tools.

Netflix’s Spinnaker tool [OSS18b] was released in 2017 as an open source multi-cloud
continuous delivery platform for releasing software. Spinnaker uses a pipeline method
for deployment that consists of different stages (actions) to execute before moving on to
the next. By default Spinnaker can integrate with the most popular cloud deployment
solutions including AWS EC2, Kubernetes, Google Compute Engine, Google Kubernetes
Engine, Google App Engine, Microsoft Azure. Further deployment solutions can be
integrated into spinnaker by way of custom stages, in other words code that is integrated
into Spinnaker through its API.

Similarly to Netflix’s Spinnaker, which is a relatively new tool, there is also the better
established Jenkins tool [OSS18b][OSS18a]. Jenkins is also a tool developed for continuous
delivery of software. However it is a lot more low-level than Spinnaker. The different
pipeline stages in Jenkins are implemented with code and Jenkins itself has no support
for any cloud provider, although there is a very large market place for 3rd party plugins
that can support deployment for various cloud platforms.

Continuous delivery tools, can be very useful in the provisioning aspect of our problem.
The pipeline concept is very powerful and most continuous delivery tools including
Spinnaker, Jenkins, Buddy Works and Chef [Bud18][Che18] all allow custom functions to
be executed when a deployment environment is not supported. The custom functions can
serve as interfaces to the operations of resource providers. Our solution is not unlike the
pipeline method for resource provisioning since we also rely on the development of custom
implemented functions that serve as common interfaces to different resource providers.

However, while the ease of deployment and high automation are very attractive features,
there are also very necessary features that are missing. Firstly, there is no configuration
management built into these systems. The pipeline concept actually encourages the
developer to use external tools for configuration management. Moreover, there is no
service discovery or service orchestration layer at all. This is understandable since the
goal of these tools is to provide deployment options for your infrastructure and not to
manage it. Furthermore, monitoring features are also lacking with these tools. Therefore,
we leverage the concept of using custom functions to abstract provider level details that

20

2.4. Related Work

these tools endorse but choose to implement our own solution in order to have a wider
feature base.

2.4.4 Resource Configuration

Dynamic resource configuration is also a very popular problem that is being addressed
with many new service orchestration tools that support service discovery for service
configuration. These features could potentially apply to the resource configuration aspect
of our problem.

Consul [Has18] is a service orchestration tool that provides service discovery and service
configuration. The service discovery feature, relies on deploying a server-like service
registry so that services can query the registry to locate upstream services. The service
configuration feature is a central store that supports transactional access in order to
provide access on a distributed scale in real time. The configuration is stored in a
hierarchal key/value store. While Consul does have some interesting service orchestration
features, in reality they are not well adapted to our use case. Current service orchestration
tools like Consul, Zookeeper or etcd [Apa18b] [Cor18][Has18] rely on the fact that the
services being deployed are all owned by the system. The service discovery mechanisms
all require the query method to be built into the software. For example, Spring Boot has
a consul library that integrates with the Spring library to automate the service discovery
and configuration processes so that the HTTP API does not have to be used. The etcd
tool, has an even weaker service discovery feature which relies on DNS queries. Since
the resources that we intend to manipulate in our problem involve third-party owned
resources, these current service orchestration tools are of little use. In Chapter 4 we
discuss the how the concept of a Service Mesh deals with this issue.

While these tools market dynamic service configuration, they are in reality a simply a
key/value store that can be queried for correct configuration. The actual reconfiguration
needs executed either by the developer or the use of other tools. We can envision the
continuous deployment tools we discussed earlier (Spinnaker, Jenkins) implementing
specialized pipelines to check for configuration changes and apply them to different
resources. Our framework does not only store the configuration in our central registry,
but can also effect the configuration process on the resources.

Regarding the representation of resources and configurations, the work done by [TB17]
using the models in [LNT16] would require a specific protocol for configuring each resource.
This would depend on its configuration requirements because there is no harmonization
of a resource and its configuration by the authors. In our work we go further than [TB17]
and include the resource’s configuration in its representation. Therefore, we may apply
the same configuration procedure to each resource.

2.4.5 Resource Monitoring

Fluent Bit [Dat18] is an open source and multi-platform log processor and forwarder
which allows users to collect data/logs from different sources. The tool collects logs

21

2. State of the Art

using different input plugins that can be implemented by any third party through the
tool’s API. The tool also uses powerful language parsers to extract and tag important log
information. Then, data can be filtered for different configurable parameters. Another
set of output plugins can also be implemented to deliver the final data records to different
destinations.

Another similar monitoring agent is Telegraf [Inf18] which is developed by InfluxData as
a part of their TICK stack for dealing with real time streaming information. Like Fluent
Bit, Telegraf uses a plugin architecture to manage input and output of data. Processor
and aggregator plugins can also be used to transform the data and create aggregated
metrics.

These kind of monitoring agents such as Fluent Bit [Dat18], Telegraf [Inf18] or StatsD
[Git18a] are a new type of monitoring agent that have been developed in recent years
due to the variety of monitoring solutions that distributed systems now use. This new
kind of monitoring agent focuses on pulling monitoring data from different sources and
processing them to make a set of unified records. While these tools are very powerful
for the monitoring aspect of our problem, they do not have any other feature, as they
are very specialized tools. The most valuable feature of these monitoring agents, is the
flexibility that they provide in monitoring a heterogeneous pool of resources through
the collector plugin concept. With this concept tools like Fluent Bit and Telegraf are
able to monitor an entire pool of resources that do not share similarities in operating or
deployment environment and be able to unify the monitoring data. This concept has
been shown by other related works such as [LNT16] which also uses a plugin concept
to collect uniform data from a pool of resources. However, we do not directly use these
tools in our work because of current industry practices. The largest cloud providers such
as Google Cloud Platform [SRR18] and even smaller providers such as MLab [mla18]
and CloudAMQP [84c18a] require direct access to their APIs for monitoring services on
their resources. Since we generally deal with a lack of access the technical specifics of our
deployed resources we would have difficulty in using the monitoring agents for our work.

2.5 Summary
In this chapter, we discussed current and existing research into the area of resource slices.
We also presented several different types of tools: deployment tools, monitoring agents
and service orchestration tools that can solve different aspects of our problem statement.
We discuss the features that are available in these tools and evaluate their usefulness as
solutions to our deployment problem.

22

CHAPTER 3
Motivation Scenarios and Use

Cases

3.1 Overview
In this Chapter we present our choice of motivating scenario which is based on a real
world problem that could be addressed by our proposed solution. We identify the different
stakeholders involved in this scenario as well as formalize use cases for them. Finally, we
derive some functional requirements of our framework along with criteria for evaluation.

3.2 Scenario: Monitoring Infrastructures of Base
Transceiver Stations (BTS)

Our scenario is based on a monitoring system for the infrastructures of BTSs which we
briefly introduced in Chapter 1. A BTS is a piece of equipment that facilitates wireless
communication between user equipment and a network. Such devices can include mobile
phones, tables or computers with wireless internet connectivity. The network can be
that of any of the wireless communication technologies such as GSM(2G), WCDMA(3G),
Wi-Fi or any other wide area network (WAN) technology. The BTS equipment are usually
housed in a shelter which protects the telecoms equipment from external conditions such
dust, corrosion or adverse weather conditions.

Our scenario monitors the infrastructure of BTSs. The infrastructure concerns the various
metrics that keep a BTS operational such as temperature, humidity, battery capacity,
power, voltage and current. These metrics are not directly involved in the primary
function of a BTS, providing wireless communication. BTS infrastructure is monitored
by an array of sensors which sensors can be installed such as external temperature sensors
[Ala18].

23

3. Motivation Scenarios and Use Cases

id , reading_time , value , s tat ion_id , parameter_id
6378227581 ,2017−10−23 12 :01 :05 , 2 . 4 , 1161114060 ,161
6378229354 ,2017−10−23 12 :01 :32 ,24 ,1161114039 ,116
6378224373 ,2017−10−23 12 :01 :15 ,61 ,1170410000 ,115
6378223549 ,2017−10−23 12 :00 :55 ,6 ,1161114044 ,122

Listing 3.1: "Sample of BTS data from https://github.com/rdsea/
IoTCloudSamples/tree/master/data/bts"

These sensors detect the infrastructure and operating environment of the BTS, which can
be used for various big data analysis of BTS infrastructures. Additionally, the sensors
also facilitate the monitoring of the BTS for faults and alarms. These sensors produce
data that is sent to an IoT gateway that is forwarded to a message broker. In our
scenario we have procured real data from BTS sensors which include recorded metrics on
temperature, humidity and battery voltage and example of which can be seen in Listing
3.1 which contains four data points for battery capacity, temperature, humidity and
battery voltage all differing by the parameter_id. This data was obtained from BachPhu,
a company developing IoT solutions in Vietnam

Further processing of this data occurs through different software artifacts with analytical
capabilities. The processed data is then stored in a non-relational data store adapted for
Big Data processing. A functional overview can be seen in Figure 3.1.

In the scope of our work, our scenario manifests itself in the following components:

• Data sources, in other words the BTS sensors that can collect different environmental
and infrastructural metrics such as temperature, humidity and voltage. These
sensors use IoT gateways to forward the data to message brokers.

• Message brokers that are responsible for the publishing of data to further software
components that will use the raw sensor data.

• Ingestion clients process and analyze the data. Naturally, there can be several
software artifacts that could effect a number of operations on the data, for the sake
of simplifying we only use one.

• Data sinks which store or consume the data that has passed through the data
pipeline.

• Firewalls can also be used to secure access to certain resources like the data source,
in order to secure it, for example only authorizing one destination for the data so
that it does not get sent to the wrong client. This network resource is cross cutting
and can be used at any point in the data pipeline.

24

https://github.com/rdsea/IoTCloudSamples/tree/master/data/bts
https://github.com/rdsea/IoTCloudSamples/tree/master/data/bts

3.2. Scenario: Monitoring Infrastructures of Base Transceiver Stations (BTS)

Figure 3.1: A functional overview of the BTS Monitoring System scenario

3.2.1 Stakeholders

In our scenario there are four stakeholders present that interact with the BTS Monitoring
System.

• Data Consumer - In other words, the client of our BTS Monitoring System. This
is an stakeholder that consumes the output of the big data pipeline. The Data
Consumer will search and visualize the final data output for profit to use in other
business related applications.

• Service Operator - The Service Operator manages the monitoring system. He is
responsible for accepting data access requests from data consumers and allocating
data sources to different data pipelines. Furthermore, the Service Operator also
has the relevant permissions to configure the firewall to protect different parts of
the system, for example, data sources or data sinks.

• Data Engineer - The Data Engineer creates different algorithms and methods
to analyze and process the data received from the data sources. The analysis
phase enriches the data and adds value. The value created by the Data Engineer
is what the Data Consumer looks for when deciding to use the System’s services.
Additionally, the Data Engineer can also choose to deploy custom data processing
methods into the data pipeline at the request of the Data Consumer.

• Developer - The Developer is responsible for maintaining the system as well as
developing new features. The main responsibility of the Developer in this scenario

25

3. Motivation Scenarios and Use Cases

is to provide interoperability solutions in the form of deployable software artifacts
into the data pipelines when required.

3.3 Use Cases
We use our chosen scenario to describe several use cases of our framework. These use
cases help will help us identify key architectural and design points and make sure that we
do not work outside the scope of our problem statement. We aim to achieve all these use
cases with our proposed framework and detail the usage of our framework with respect
to several use cases in the evaluation chapter of this thesis. Figure 3.2 gives an overview
of the stakeholders involved in the BTS scenario as well as the different use cases that
the BTS scenario must support.

We further document our scenario’s use cases in Tables 3.1 to 3.7.

Figure 3.2: BTS Monitoring System Use Cases

26

3.3. Use Cases

ID UC01
Title Add Data Consumer
Stakeholders Data Consumer, Service Operator
Problem
Statement

A new client would like to consume the analyzed data from the
BTS monitoring System.

Preconditions none
Scenario

1. The Data Consumer wants to consume BTS sensor data
2. The Data Consumer requests the Service Operator for

data access
3. The Service Operator creates a data pipeline in the System

for the Data Consumer
4. The Service Operator adds the data sources selected by

the Data Consumer to the pipeline Uses use case UC02
5. The Service Operator adds the level of network protection

the Data Consumer requires through firewall settings Uses
use case UC03

6. The Data Consumer receives instructions to fetch data
from the data sink

Successful
End States 1. A data pipeline exists for the Data Consumer

2. The Data Consumer receives the data from his/her se-
lected data sources

3. The Data Consumer has the appropriate network firewall
protection for his/her pipeline

Table 3.1: UC01: Add Data Consumer

27

3. Motivation Scenarios and Use Cases

ID UC02
Title Add Data Source
Stakeholders Data Consumer, Service Operator
Problem
Statement

A Data Consumer wants to add new data sources to his/her
data pipeline

Preconditions

1. The Data Consumer has successfully made a data request
with the Service Operator

2. There already exists a data pipeline for the Data Consumer

Scenario

1. The Data Consumer selects data sources from a catalogue
2. The Data Consumer sends selected data sources to Service

Operator
3. The Service Operator adds the selected Data Sources to

the Data Consumer’s data pipeline

Successful
End States 1. The Data Consumer receives the data from his/her se-

lected data sources

Table 3.2: UC02: Add Data Source

28

3.3. Use Cases

ID UC03
Title Protect Data Consumer
Stakeholders Data Consumer, Service Operator
Problem
Statement

A Data Consumer would like network protection through a
firewall for his/her data sink

Preconditions

1. The Data Consumer has successfully made a data request
with th Service Operator

2. There already exists a data pipeline for the Data Consumer

Scenario

1. The Data Consumer chooses firewall rules for his/her data
sink

2. The Data Consumer sends firewall rules to the Service
Operator

3. The Service Operator configures the firewall with the new
rules on the Data Consumer’s Data Sink

Successful
End States 1. The Data Consumer’s data sink can only be accessed

externally according to the firewall rules

Table 3.3: UC03: Protect Data Consumer

29

3. Motivation Scenarios and Use Cases

ID UC04
Title Add Data Processing Logic
Stakeholders Data Consumer, Data Engineer
Problem
Statement

The default data processing logic of the system is not adapted
to the Data Consumer’s needs. The Data Consumer consults
with the Data Engineer to implement a custom data processing
logic for the data pipeline.

Preconditions

1. The Data Consumer has successfully made a data request
with th Service Operator

2. There already exists a data pipeline for the Data Consumer
3. The Data Consumer has added data sources

Scenario

1. The Data Consumer informs the Data Engineer of his/her
constraints

2. The Data Engineer develops a new algorithm or method
to process the BTS sensor data

3. The Data Engineer deploys a custom software artifact into
the pipeline to process the BTS sensor data

Successful
End States 1. The Data Consumer receives data processed by the new

data processing logic

Table 3.4: UC04: Add Data Processing Logic

30

3.3. Use Cases

ID UC05
Title Set Data Format
Stakeholders Data Consumer, Developer
Problem
Statement

The default data format of the system’s output is not adapted
to the Data Consumer’s requirements. The Data Consumer
requests the Developer to change the data format of his/her
pipeline.

Preconditions

1. The Data Consumer has successfully made a data request
with the Service Operator

2. There already exists a data pipeline for the Data Consumer
3. The Data Consumer has added data sources

Scenario

1. The Data Consumer informs the Developer of his/her
chosen data format

2. The Developer searches for an existing data transform
function. If none is found, the Developer creates a new
transform function and keeps it for future use

3. The Developer deploys a custom software artifact into the
pipeline to transform the BTS sensor data output format
before it reaches the data sink

Successful
End States 1. The Data Consumer receives data in his/her chosen format

Table 3.5: UC05: Set Data Format

31

3. Motivation Scenarios and Use Cases

ID UC06
Title Use Custom Data Sink
Stakeholders Data Consumer, Developer
Problem
Statement

The Data Consumer wishes to receive the BTS sensor data in a
data sink that is not normally supported by the system.

Preconditions

1. The Data Consumer has successfully made a data request
with th Service Operator

2. There already exists a data pipeline for the Data Consumer
3. The Data Consumer has added data sources

Scenario

1. The Data Consumer informs the Developer of his/her data
sink and provides any interoperability and authentication
data

2. The Developer creates a temporary data sink for the BTS
data that will forward the data to a new data sink.

3. The Developer deploys the custom data sink to the data
pipeline

Successful
End States 1. The Data Consumer receives data in his/her data sink

Table 3.6: UC06: Use Custom Data Sink

32

3.3. Use Cases

ID UC07
Title Protect Data Source
Stakeholders Data Consumer, Developer
Problem
Statement

The Service Operator has detected malicious attack or usage of
a data source and wishes to limit access to this data source

Preconditions

1. There is malicious attack or usage associated with he data
source

Scenario

1. The Service Operator identifies authorized and unautho-
rized access to the data source

2. The Service Operator creates firewall rules to deny unau-
thorized access to the data source on a white list basis

3. The Service Operator applies the firewall rules to the data
source.

Successful
End States 1. The data source can only be used by white listed hosts.

Table 3.7: UC07: Protect Data Source

33

3. Motivation Scenarios and Use Cases

ID UC08
Title Remove Data Source
Stakeholders Data Consumer, Service Operator
Problem
Statement

A Data Consumer wants to remove a data source from his/her
data pipeline

Preconditions

1. The Data Consumer Has successfully made a data request
with the Service Operator

2. There already exists a data pipeline for the Data Consumer

Scenario

1. The Data Consumer Selects a data source from his/her
pipeline

2. The Data Consumer sends the selected data source to the
Service Operator

3. The Service Operator removes the selected data source
from the pipeline

Successful
End States 1. The Data Consumer no longer receives data from the

deleted data source.

Table 3.8: UC08: Remove Data Source

34

3.4. Resource Ensemble Approach

ID UC09
Title Remove Data Pipeline
Stakeholders Data Consumer, Service Operator
Problem
Statement

A Data Consumer no longer wishes to use the system and wishes
to remove his/her data pipeline

Preconditions

1. The Data Consumer Has successfully made a data request
with the Service Operator

2. There already exists a data pipeline for the Data Consumer

Scenario

1. The Data Consumer requests the Service Operator he no
longer wishes to use the data pipeline

2. The Service Operator frees all resources associated with
the pipeline

Successful
End States 1. The data pipeline no longer exists.

Table 3.9: UC09: Remove Data Pipeline

3.4 Resource Ensemble Approach

The Big Data BTS system enables multiphase data pipeline where the output of one
resource becomes the input of the next. However, each user can choose to either use the
entire system or only a subset. For example, a user could deploy an entire system from
data source to data store and consume the analyzed data from a data sink, or simply
choose to deploy a few sensor resources along with a broker and use his/her own data
consumer for further processing.

Therefore, the on-demand aspect becomes an important requirement of implementing
this scenario. Additionally, modifications to the monitoring system should be made
at runtime in function of changing user requirements. In the scope of our scenario for
example, this could be adding more sensors that publish different metrics on the BTSs or
creating a more complex data pipeline that puts different BTS metrics in their separate
data stores.

In order to satisfy the on-demand aspects of our scenario, we take a resource ensemble
based approach by treating the BTS data pipeline as a resource ensemble where each of
the pipeline components is a resource that is part of an ensemble. By following Figure 3.1,
we classify each component of our BTS monitoring system as a resource. We assume that

35

3. Motivation Scenarios and Use Cases

each resource can be deployed separately. Additionally there exists a different resource
provider that is responsible for provisioning the resource, and managing it during its
lifecycle. We present the breakdown of resources in our scenario in Table 3.10.

IoT Resource Network Function Service Cloud Service
Data Source X
Message Broker X X
Ingestion Client X
Data Sink X X
Firewall X

Table 3.10: A breakdown of the resource types in our scenario

Although this system that we describe could be the property or be maintained by the
same organization, industry examples show that varying levels of ownership is far more
likely.

Firstly, sensor ownership is very common in industry. Moreover, sensors can be obtained
by many individuals for cost effective platforms such as the Raspberry-Pi or Arduino
through Grove [See18]. Many large organizations already release their sensor data publicly
for free such as Microsoft’s T-Drive taxi data that contains one-week trajectories of 10,357
taxis [YZ11]. Other datasets can be bought, for example, from the databrokers market
[dD18]. According to current research [Per17] [PZCG13] the sensor as a service model
is very feasible and several trial projects have already begun. Therefore, we can easily
envision a situation where sensors can be owned by an organization that provides/sells
access to them on-demand.

Message broker services are also very common with the cloud. Cloud AMQP [84c18a]
was first released in 2012 that offered managed instances of AMQP brokers as a service.
Additionally there also exist public message broker instances such as MQTT brokers
provided by HiveMQ. Recently with the popularity of docker, a simple broker can be
deployed by an organization or an individual very easily with one command either on
the cloud or on a edge node.

Software artifacts are generally implemented by developers for specific domain uses.
The improvement of deployment solutions such as docker or using easy distribution
techniques like maven mean that it can be very easy to provide software as a service by
an organization or an individual. Furthermore tools like Node-RED [Fou18a] provide a
simple tool to wire different software functions together.

Data stores are one of the most common types of services offered by a wide range of
providers such as Google BigQuery, MongoDB Atlas or Amazon RDS [Goo18b][Inc18b][Ama18].
These providers all have some kind of management API through RESTful interfaces.

Therefore, we assume that each resource can be deployed separately by a different resource
provider. In order to for a user to successfully deploy a configuration of a BTS system,

36

3.5. Requirements

the stakeholders must interface with the different providers for each of the resources that
we described in our system.

As we stated in Chapter 1, we tackle the problem of a heterogeneous set of resources and
resource providers. Without our proposed framework, the stakeholders must discover the
relevant resource providers, which could be could be done with other tools. However, a
stakeholder must be aware of the different API calls and conventions used by each resource
provider to be able to configure or monitor resources (we illustrate these problems in
Figure 1.2). Our proposed framework aims to tackle the problems faced in this scenario
which were also mentioned in the introduction chapter of this thesis.

Therefore, our goal is to implement our motivating scenario using a resource ensemble
based approach through our proposed deployment framework. The next section deals
with the requirements of our proposed framework.

3.5 Requirements

In this section we specify the requirements that our proposed framework must fulfill in
order to reach a desired level of functionality and achieve our stated use cases. These
derived requirements will focus development and reduce development overhead by driving
a lean framework design. As stated in the research of the State of The Art in Chapter
2, there is a lack of related tools and current work into an actual resource deployment
framework. Therefore, we exclude a set of non-functional requirements in order to focus
work on a functional framework. We do however evaluate the non-functional quality of
performance in the Chapter 6.

Since we now discuss the requirements for our proposed framework we identify the two
primary stakeholders:

• Ensemble User - This stakeholder represents the user of our proposed framework.
The Ensemble User will interact with our framework to provision and manage
resource ensembles. Regarding our motivating scenario, the Ensemble User can
be stakeholders of our scenario who interact with our framework to fulfill their
assigned use cases.

• Resource Provider - This stakeholder is responsible for provisioning and config-
uring resources that are used in the resource slices of our scenario. This stakeholder
does not necessarily have to be a person. The Resource Provider could also be an
organization or a platform that manages a resource that can be utilized in resource
ensembles.

We state that the proposed framework will fulfill the following requirements. These
requirements are specified using a modified version of the Volere requirement shell [MS05]:

37

3. Motivation Scenarios and Use Cases

3.5.1 Data Harmonization

Our work tries to deploy different resources from various third party resource providers.
These various resource providers will have different representations of their resources
as well as different management methods through their respective APIs. In order
to manage so many different protocols and models in one framework, we must place
requirements in place for harmonizing data into a one unified representation. By making
data harmonization a requirement, we facilitate a set of common operations that can be
used to interface with various resource providers and also facilitate interoperability of
our operations with external systems.

ID DH1
Title Resource Data Harmonization
Description Our framework will need to effectively manage resources with

diverse capabilities. These resources also implement various
communication protocols. The pool of resources that we man-
age is heterogeneous, even among those resource pools that
are homogeneous in functionality. For example, when choosing,
IoT sensor devices, there is a large degree of heterogeneity in
data format, communication protocol or security protocols to
name but a few. Since our objective is to treat different types
and categories of managed resources in the scope of end-to-end
resource ensembles, we need a high level model that harmo-
nizes the low-level information and configuration parameters
required by resource providers for various types of resources.
This model must be extensible to cater not only information
provided by resource providers, but also additional metadata
that can be generated to support other logistical functions such
as interoperability.

Stakeholders Resource Provider

Table 3.11: Data Harmonization Requirement

We achieve this requirement by using the information models from [LNT16] as a starting
point. The approach taken by [LNT16] is top-down while we take a bottom-up approach.
Therefore we expect to make modifications to them for use in our framework.

3.5.2 Resource Management

In order to manage multi-resource ensembles, we must first establish a set of requirements
that govern the management of individual resources. We use resource management
operations as the building blocks for managing multi-resource ensembles.

38

3.5. Requirements

ID RM1
Title Resource Discovery
Description Our framework aims to interface with many different resource

providers to manage their resources. An end user of our frame-
work needs to efficiently identify the resources that conform the
best to his/her requirements. Due to the heterogeneous nature
and the large size of our resource pool, we need a discovery
functionality that facilitates detailed queries. This requirement
uses the previous data harmonization requirement, so that the
resource discovery is structured and systematic for all the re-
sources managed by the proposed framework.

Stakeholders Resource Provider, Ensemble User
Dependencies DH1

Table 3.12: Resource Discovery Requirement

ID RM2
Title Resource Provisioning
Description Since our problem statement involves the provisioning of re-

source ensembles, we must be able to provision the resources
that form our resource ensemble. The resource should be provi-
sioned directly from our framework without any direct provider
interaction from the user’s end.

Stakeholders Resource Provider, Ensemble User
Dependencies DH1

Table 3.13: Resource Provisioning Requirement

ID RM3
Title Resource Configuration
Description A resource should be configured when it is provisioned by our

framework. Furthermore, we aim to provide dynamic config-
uration to resources. The configurable parameters should be
made known to the user and the resource and used without
any direct provider interaction by the user. This requirement
allows us to modify resource ensembles based on changing user
requirements.

Stakeholders Resource Provider, Ensemble User

Table 3.14: Resource Configuration Requirement

39

3. Motivation Scenarios and Use Cases

ID RM4
Title Resource Deletion
Description Once a resource has been used adequately by the user who

provisioned the resource, or when the resource is no longer of
use, the user should be able to delete this resource. The deleted
resource no longer appears in the framework. However, the
framework handles the deletion on a purely superficial level,
the actual physical resource provider side may be dealt with
according to the best practices and policies of the resource
provider.

Stakeholders Resource Provider, Ensemble User
Dependencies DH1

Table 3.15: Resource Deletion Requirement

ID RM5
Title Resource Monitoring
Description Our proposed framework should be able to provide monitoring

information about each resource, or notify the user of a lack of
monitoring information. The monitoring information available
for a resource should be provider specific (i.e. what the provider
can tell us). This information can give the user a diagnostic
view of his/her resource ensemble and can provide useful data
for any fault detection or error-handling analytics task related
to resource ensembles.

Stakeholders Resource Provider, Ensemble User

Table 3.16: Resource Monitoring Requirement

Since we inherit the architecture from [LNT16] and extend it. We make use of the
adaptor pattern of the architecture and extend it to cover the extra resource and provider
operations. In our implementation we leverage and extend only the architecture. In our
implementation use opt for a more distributed approach which is presented in 5.

3.5.3 Slice Management

The goal of our work is to provide a framework that allows on-demand dynamic deployment
of resource ensembles. Therefore we detail a set of requirements that will govern the
operations required to manage end-to-end resource ensembles. These requirements are
built upon the resource management requirements that we have previously established as
building blocks to managing multi-resource ensembles.

40

3.5. Requirements

ID SM1
Title Slice Provisioning
Description The framework should be able to provision a resource ensemble.

A set of resources specified by the user shall be submitted to the
framework. The framework shall then proceed to provision all
of the resources specified by the user for this resource ensemble
through the framework’s resource management operations.

Stakeholders Resource Provider, Ensemble User
Dependencies RM2, RM3

Table 3.17: Slice Provisioning Requirement

ID SM2
Title Slice Configuration
Description The framework should be able to reconfigure an existing re-

source ensemble. The user shall be able to submit an updated
specification of a resource ensemble, that may be partially or
totally different from the original ensemble to the framework.
The framework shall make the appropriate changes to the re-
source ensemble such as provisioning new resources, changing
inter-resource relationships or deleting resources that are no
longer relevant to the updated ensemble using the resource
management operations previously specified.

Stakeholders Resource Provider, Ensemble User
Dependencies RM2, RM3, RM4

Table 3.18: Slice Configuration Requirement

ID SM3
Title Slice Deletion
Description The framework should be able to delete a ensemble upon user

command. The resources of the ensemble should be deleted
using the resource management operations previously specified.

Stakeholders Resource Provider, Ensemble User
Dependencies RM4

Table 3.19: Slice Deletion Requirement

41

3. Motivation Scenarios and Use Cases

ID SM4
Title Slice Monitoring
Description The framework should be able to provide as much monitoring

information as possible about the status of resource ensemble.
This monitoring data can take the form of logs, resource usage
or network connectivity information of the different resource in
the ensemble. When monitoring data is not available for certain
resources in the ensemble, the situation should be notified to
the user. Any incident detection or interoperability warnings
are not in the scope of this requirement.

Stakeholders Resource Provider, Ensemble User
Dependencies RM5

Table 3.20: Slice Monitoring Requirement

In order to fulfill the slice management requirements for our framework, we build a tool
in our framework that leverages the features of the resource requirements. This tool
should rely on the resource operations to manage the resources in the slice. The novel
feature in this new tool is to manage inter-resource relationships that give context to the
individual resources to form a resource slice.

Table 3.21 shows a summary of our derived requirements mapped to the use cases. In
the evaluation phase we discuss how we developed our features can be used to carry out
our chosen use cases.

Use
Case/Req.

UC01 UC02 UC03 UC04 UC05 UC06 UC07 UC08 UC09

DH1 X X X X X X X
RM1 X X X X
RM2 X X X X X X X
RM3 X X X
RM4 X X
RM5 X X
SM1 X
SM2 X X X X X X X
SM3 X
SM4 X

Table 3.21: Overview of requirements with respect to use cases

42

3.6. Summary

3.6 Summary
In this chapter we have developed a set of use cases that are based on the realistic scenario
of a BTS monitoring system. Our use cases involve the provisioning and management
of big data pipelines which rely on various resources that make up the pipeline. We
identified the stakeholders involved in the scenario and derived well defined use cases. We
treat the BTS data pipeline as a resource ensemble and take an ensemble based approach
to carry out the use cases. Consequently, we derived a suite of functional requirements
for our framework design from our use cases. The functional requirements, which involve
data harmonization, resource management and slice management requirements, make
sure that we constrain our framework design to solve te motivating scenario and avoid
an "over-engineered" solution.

We aim to develop the features of our framework to carry out these use cases using the
concept of resource slices. The proposed deployment framework (discussed in Chapters 4
and 5) will serve as the tool to fulfill the use cases of the BTS monitoring system. In
Chapter6 we conduct a functional evaluation of our framework through its use in these
use cases.

43

CHAPTER 4
Architecture Design

4.1 Overview

This chapter first presents the operating context of our proposed framework based on
the functional requirements from Chapter 3. We then explain the different information
models that we developed that are used in our framework. Then, we present the design
and service architecture of our framework. We go on to describe the service orchestration
required by our framework to complete certain operations. Finally we discuss how we
use the Service Mesh concept (introduced in Chapter 2) in our framework along with the
benefits that it brings.

4.2 Operating Context

Based on the functional requirements for our framework we present an overview of the
context in which or proposed framework will operate in Figure 4.1.

The context of the framework is to deploy ensembles of resources and provide configuration
and monitoring capabilities. Since resource ensembles are provisioned on-demand, we
need to harmonize various types of resources to facilitate runtime solutions that support
IoT data delivery and control. The framework is designed to act as a very powerful
middleware that interfaces with third party providers at runtime.

Figure 4.1 presents the context of the framework through different layers of the concerns.
The user primary concern is to manage resource ensembles. This is achieved by the
framework and the set of services it uses to manage the pool of resource providers. The
management of the actual resource at the low-level are done purely through resources
providers, which are managed by our framework.

45

4. Architecture Design

Figure 4.1: An overview of the operating context of our proposed framework

The following sections will discuss the models and architecture of our proposed framework,
their implementation details, and the various metadata and information models that we
use unify access to different resources and their providers.

46

4.3. Models

4.3 Models

4.3.1 Resources and Resource Providers

Our work deals with ensembles or slices [TN16] of resources in an IoT Cloud System.
For us a resource is a very generic way of describing a component that forms a part of an
IoT Cloud System. Using the existing work [TN16] [LNT16], we can see that IoT Cloud
Systems can be broken down into three types of resources:

• IoT Resources: These types of resources can be simple or complex. For example, a
simple case would be a set of public sensor data that can be accessed through a
repository using some kind of client API or an actual IoT device network. Access
can be subscribed and controlled through actuators and gateways offered as a
service model [PZCG13][Per17].

• Network Function Services: These resources generally deal with a lower level
of communication infrastructure. There has been work into virtualized network
functions to accelerate and facilitate provisioning of networking components in
dynamic virtualized environments. We can already see the use of different types of
network function services in cloud IaaS providers (e.g. Google Cloud VPC [SRR18],
Amazon Web Services VPC [Ser17]). The types of network functions available
from these provider include load balancers, firewalls and intrusion detection devices.
Sometimes network functions can be hard to classify. For example the network
functions we mentioned previously could also be classified as cloud services due to
their location. Additionally, network functions located in IoT devices or gateways
could be IoT resources. In general, when given a network function we could also
classify it by its location.

• Cloud Services: We can find an abundance of cloud services due to the widespread
usage and promotion by large industry entities. Organizations such as Google and
Microsoft provide various cloud services such as storage, database as a service or
analytics as a service. Many examples of IoT scenarios recently published [TB17]
[PZCG13] [Tho15], require interaction between IoT and the cloud.

A resource provider is an entity that provider different types of resources. If we take
Google Cloud as an example, we can see that it is as a provider for network function
and cloud service resources [SRR18]. Google cloud allows users to create their own
virtual private networks with resources such as firewalls rules, load balancers or cluster
management solutions which fall into the Network Function Service category. While on
for Cloud Services, we can see the BigQuery [Goo18b] and Storage product as well as
Google Cloud Pub Sub [Pla17a] which is a messaging as a service product.

47

4. Architecture Design

4.3.2 Harmonizing Resource Data

The different types of resources will be very distinct regarding their attributes. The
differences can either be implicit (e.g. a sensors will never be equivalent to a storage
bucket) or explicitly (e.g. MongoDB Atlas [Inc18b] and MLab [mla18] provide databases
with different model representations). To make our framework support deployment
through resource discovery and querying, the information presented to the user must be
unified. This harmonizing of the different resource data and metadata is the only feasible
way to facilitate a unified set of operations on these resources.

During the implementation to try to achieve the use cases that we set out and aiming
for high automation, we decided to use the document based representation given by
[TB17] and used in part by [LNT16]. We decided to orient the documents towards
resources so that each resource and its related configurations, parameters and metadata
are described in a single document. This made sense from our bottom-up perspective
since a deployment requires all of the resource’s available metadata and configuration to
be successful. Furthermore, by keeping all the resource metadata in the same location (a
single source of truth) we obtain by default, a natural service discovery mechanism. We
can query different types of resources through a JSON based query like the one used by
the most popular document-oriented database, MongoDB.

Figure 4.2 presents the model of our resource description as a UML class diagram. The
description include its name, resource provider and unique identification (uuid). We also
classify the resource through the resourceType field. The metadata object is a collection
of information about that resource that can vary between resources depending on their
type. A few examples of metadata could be some protocol specific interoperability data
that details the protocol and data formats information to help resolve interoperability
issues. The interoperability metadata is actually used by others in ongoing research, we
do not deal with them in the scope of this thesis.

The parameters object contains all the configurable elements of the resource. In Listing
4.1 it is the mqtt connection along with the published topics which is what we call an
access point. Access points reference network communication, since our resources all form
a part of some distributed system. We model their communication access points in terms
of egress (outgoing) and ingress (incoming) access points. However, the parameters object
can also contain resource specific parameters. In Listing 4.2 the parameters contain
specific information about the configuration of the provided BigQuery instance, such as
the dataset and table IDs along with the schema definition.

This single document resource description allows us to treat resources similarly to a
REST entity. This avoids transmitting state information among different software
implementations that make use of our resource description and facilitates interoperability.
Furthermore, by following the RESTful convention we can define a simple transactional
mechanism to create, delete and update our resources, we could even go further and
propose other actions that act on our resources. One action that could be useful is to
fetch any related monitoring information. In our representation, we may apply the same

48

4.3. Models

{
" uuid " : " sensor1528671664454 "
"name " : " s en so r humidity " ,
" providerUuid " : " s e n s o r l o c a l 1 " ,
" resourceType " : " IOT_RESOURCE" ,
" l o c a t i o n " : nu l l ,
" parameters " : {

" i ng r e s sAcc e s sPo in t s " : [

] ,
" e g r e s sAcce s sPo in t s " : [

{
" app l i c a t i onPro t o c o l " : "MQTT" ,
" host " : " l i nke rd−t e s t s l i c e −s enso r " ,
" port " : 7 474 ,
" acce s sPat t e rn " : "PUBSUB" ,
" networkProtocol " : " IP " ,
" qos " : 0 ,
" t op i c s " : [

" t op i c "
]

}
]

} ,
" metadata " : {

} ,
" dataPoints " : [

{
"name " : " humidity " ,
" dataType " : nu l l ,
" un i t " : " percent "

}
] ,

}

Listing 4.1: Example of a sensor resource

49

4. Architecture Design

Figure 4.2: The UML class diagram of our resource object

configuration procedure to each resource. We assume that a user who creates or updates
a resource understands the semantics of the resource’s parameters. This can be done
through documentation from the resource providers. With the widespread of different
software documentation tools such as Swagger [Sma17], this would not deviate from
standard industry and development practices.

4.3.3 Specifying a Resource Ensemble/Slice

In the previous section we discussed our resource representation, however that is only a
part of our modeling requirement. With our semi-structured representation of resources,
we address the specification an entire system in the form of a resource ensemble.

In order to facilitate the automated deployment of a resource ensemble, we must specify
the resources and their relationships with respect to each other. To this end, we introduce
another entity that we call a Connectivity. A connectivity is an entity that describes the

50

4.3. Models

{
"name " : " bigQuery datase t " ,
" pluginName " : " b igquery " ,
" providerUuid " : " b i gque ry l o ca l 1 " ,
" resourceType " : "CLOUD_SERVICE" ,
" l o c a t i o n " : nu l l ,
" parameters " : {

" i ng r e s sAcc e s sPo in t s " : [

] ,
" e g r e s sAcce s sPo in t s " : [

] ,
" da ta se t Id " : " t e s tData s e t " ,
" t ab l e s " : [

{
" id " : " t e s tTab le " ,
" schema " : [

{
" d e s c r i p t i o n " : " f i e l d d e s c r i p t i o n " ,
"mode " : "REQUIRED" ,
"name " : " id " ,
" type " : " STRING"

} ,
{

" d e s c r i p t i o n " : " f i e l d d e s c r i p t i o n " ,
"mode " : "REQUIRED" ,
"name " : " va lue " ,
" type " : " FLOAT64"

} ,
]

}
]

}
}

Listing 4.2: Example of a Google BigQuery resource

51

4. Architecture Design

relationship between two resources. Figure 4.3 shows the addition that we make to our
resource model to accommodate inter-resource relationships. We can see an example of a
connectivity in Listing 4.3 towards the bottom. This connectivity states that the two
resources communicated data with each other through MQTT using a data JSON data
format.

Figure 4.3: Modified Resource UML class diagram to accommodate inter-resource
relationships

The extra connectivity object that we add to our resource model allows us to, for one
resource, keep track of the relationships with other resources.

We express our models through the form of a JSON document. Listing 4.3 shows an

52

4.3. Models

example of a simple slice description involving two resources: an MQTT broker and a
sensor that publishes to the broker.

{
" s l i c e I d " : " t e s t s l i c e " ,
" r e s ou r c e s " : {

" s enso r " : {
"name " : " s en so r humidity " ,
" providerUuid " : " s e n s o r l o c a l 1 " ,
" resourceType " : "IOT_RESOURCE" ,
" resourceCategory " : SENSOR,
" l o c a t i o n " : nu l l ,
" parameters " : {

" i ng r e s sAcc e s sPo in t s " : [] ,
" e g r e s sAcce s sPo in t s " : [

{
" app l i c a t i onPro t o c o l " : "MQTT" ,
" host " : " l i nke rd−t e s t s l i c e −s enso r " ,
" port " : 7474 ,
" acce s sPat t e rn " : "PUBSUB" ,
" networkProtocol " : " IP " ,
" qos " : 0 ,
" t op i c s " : [

" t op i c "
]

}
]

} ,
" metadata " : {} ,
" c on t r o lPo in t s " : [] ,
" dataPoints " : [

{
"name " : " humidity " ,
" dataType " : nu l l ,
" un i t " : " percent "

}
] ,
" source " : [] ,
" t a r g e t " : [

" mqtt_connect iv ity "
] ,
" adaptorName " : nu l l ,
" re sourceCategory " : nu l l

} ,

53

4. Architecture Design

" broker " : {
"name " : " mosquitto broker " ,
" pluginName " : " mosquittobroker " ,
" providerUuid " : " mqtt loca l1 " ,
" resourceType " : "NETWORK_FUNCTION_SERVICE" ,
" l o c a t i o n " : nu l l ,
" parameters " : {

" i ng r e s sAcc e s sPo in t s " : [
] ,
" e g r e s sAcce s sPo in t s " : []

} ,
" metadata " : {} ,
" c on t r o lPo in t s " : [] ,
" dataPoints " : [] ,
" source " : [

" mqtt_connect iv ity "
] ,
" t a r g e t " : [] ,
" adaptorName " : nu l l ,
" re sourceCategory " : nu l l

}
} ,
" c o n n e c t i v i t i e s " : {

" mqtt_connect iv ity " : {
" acce s sPo in t " : {

" app l i c a t i onPro t o c o l " : "MQTT" ,
" networkProtocol " : " IP " ,
" qos " : 0 ,
" t op i c s " : []

} ,
" dataFormat " : "JSON" ,
" i n g r e s s " : {

" l a b e l " : " s en so r " ,
" a cce s sPo in t " : 0

} ,
" e g r e s s " : {

" l a b e l " : " broker " ,
" a cce s sPo in t " : 0

}
}

} ,
" createdAt " : 1528671706

}

54

4.4. Detailed Design and Service Architecture

Listing 4.3: Example of simple resource slice

We express the specification or a resource ensemble in the form of a JSON document. The
document represents a graph of nodes(resources) connected by edges(connectivities). The
semi-structured nature of this document permits us a large degree of machine readability
for automated operations. Any program could take this JSON representation and parse
it to create the resulting graph of the resource ensemble with respect to its data stream.
Therefore we can have a high degree of interoperability with our slice description.

We could use the description to provision our slice,and then submit it to other services
to check for either interoperability issues, optimization or even detect faults with the
slice. These features all represent current work associated with this thesis. Furthermore
the JSON slice description results in a single source of truth for the resource slice. This
allows us perform operations such as those we mentioned with resources in the previous
section.

4.4 Detailed Design and Service Architecture
Figure 4.4 presents an overview of the entire framework architecture. The concrete design
details are discussed later in this section and the prototype implementation is explained
in the next chapter. The overview of the framework shows the layout of the services which
interact with each other to fulfill the functional requirements laid out in the previous
section. As Figure 4.4 illustrates, there are four software modules that comprise the
framework:

• Global Management Service

• Local Management Service

• Adaptor

• Slice Management Client

Along with two stakeholders: Resource Providers and Ensemble Users.

55

4. Architecture Design

Figure
4.4:

A
n
architecturaloverview

ofour
fram

ew
ork

56

4.5. Additional Models

According to Figure 4.4, a Provider Group interacts with a Local Management Service
to exchange provider data and controls. The Local Management Service is responsible
for populating the framework with data obtained from providers and their resources.
Additionally, the Local Management Service is also the point where controls are forwarded
to the providers. A Local Management Service interfaces with its assigned providers
through adaptors.

The responsibility of the adaptor is to transform and harmonize the data sent to and
from the provider due to the heterogeneous nature of resources and providers. Local
management services can be deployed in the cloud or edge (an IoT gateway or a network
station) and interfaces with IoT Resource Providers to manage the resources in an
organization (e.g., a company with multiple resource providers) or any kind of logical
grouping of resource providers. Thanks to the adaptors that are deployed to interface
with the different providers, we can have unified access to all the resources of such an
organization.

The Global Management Service is responsible for serving clients which require the
services of the various resource providers. Resources can be queried and controlled with
the various Local Management Services. A Global Management Service can be used
with multiple Local Management Services. Resource queries can be effected for a single
Local Management Service or a grouped subset of Local Management Services. For
example, we could run a resource query for resources served by local management services
that interface with a specific organization such as Microsoft Azure. While the local
management services are intended to be an intermediate step in the process to unify data
going to and from the providers, the Global Management Service exposes to an end user
to providers and their resources.

The Slice Management Client, uses exposed by the Global Management Service such as
the query, provisioning, configuring and monitoring of resources. The Slice Management
Client is a higher level module that uses the base resource level operations to manage
resource ensembles. Additionally, the Slice Management Client is a point of contact with
an interoperability recommendation service (based on ongoing work) which can determine
interoperability issues within the ensemble and can recommend possible software artifacts
that act as bridges between resources. The Slice Management Client is one way in which
a user may create and manage a slice. It is also possible to directly use the resource API
provided by the Global Management Service. However, this results in more overhead as
the user would be responsible for managing the inter-resource relationships of a resource
ensemble.

4.5 Additional Models
This section quickly references some additional models that are used in our framework.
These models are not as conceptually important as the data harmonization models that we
previously presented, but are important to the framework’s function. The importance of
these models is made clear in the next chapter that details the prototype implementation.

57

4. Architecture Design

Figure 4.5: Architecture of a Local Management Service interfacing Providers

4.5.1 Control Result

This model contains the result of any controls that will be executed on the provider or
its resources. It encapsulates the final state, output, time and the unique identifier of the
control.

4.5.2 Adaptor

As seen in the previous chapter, the adaptor is responsible for interfacing with the
providers. Since the adaptor is the only interface with the provider with our framework.

58

4.5. Additional Models

Figure 4.6: UML class diagram of a Control Result

We can assume that the adaptor is associated to the resources of the provider. There is
also different metadata can be included in this model for ongoing interoperability work
related to the work in this thesis.

Figure 4.7: UML class diagram of a Provider Adaptor

4.5.3 Local Management Service

The model of the Local Management Service owns various metadata that will be used
for ongoing interoperability work . The elements uuid and groupId will be used for
inter-service orchestration and communication.

Figure 4.8: UML class diagram of a Local Management Service

59

4. Architecture Design

4.6 Service Orchestration

Our framework consists of four different types of components that communicate with each
other to function correctly. Once a user launches a query through a Global Management
Service, the Global Management Service must send the query to the appropriate Local
Management Service, which then acts on the provider through the appropriate adaptor.
As we mentioned in the previous section, there can be many Local Management Services
for a Global Management Service and many adaptors for a Local Management Service.
Additionally, the Slice Management Client and external stakeholders communicate with
the Global Management Service for use of provider services. In order that these services
can all communicate with each other, they need to be orchestrated. In this section, the
orchestration of these services is described step by step.

4.6.1 Initial Registration

The initial registration concerns the registration of our distributed components with each
other. This registration occurs on two levels: Firstly, Local Management Services will
register to the Global Management Service. Secondly, the provider adaptors register to
their respective Local Management Services. The registration of the Local Management
Services lets the Global Management Service know where to find the menu of resources.
The registration of the provider adaptors is equivalent to the registration of the resource
providers into our framework which provide the content to the menu.

1. Once the Global Management Service is up and running, it constantly listens to
registration messages from new Local Management Services.

2. A Local Management Service sends a registration request to a Global Manage-
ment Service. The Global Management Service keeps a list of all available Local
Management Services that are registeredby their uuid and groupId.

3. Once a Local Management Service is up and running, it listens to registration
messages from new resource providers adaptors.

4. An adaptor sends a registration request to a Local Management Service. The Local
Management Service keeps a list of all available provider adaptors.

Figure 4.9 illustrates the described steps for the Initial Registration.

4.6.2 Query

The query process is our solution to resource discovery. The Initial Registration steps
(previous subsection) established a registry of resources and means to populate it. In the
next steps, we explain the orchestration process to query our resource registry.

60

4.6. Service Orchestration

Figure 4.9: Orchestration of the Initial registration of Local Management Services and
subsequently their Provider Adaptors

1. A Local Management Service keeps a list of all available adaptors that are registered.
This list is queried periodically for resource and provider data.

2. Once an adaptor receives a query, it retrieves data from the provider API and
harmonizes this data with our information model. Once the adaptor has harmonized
the resource and provider data, it is sent to the Local Management Service where it
is cached to provide a fast response to queries from the Global Management Service
management service.

3. The Slice Management Client or an external stakeholders queries resources or
providers by submitting the query to the Global Management Service.

4. The Global Management Service broadcasts this query to the subset of Local
Management Services that are concerned by the query.

5. The Local Management Services concerned by the queries, will send their cached
resource and provider data back to the Global Management Service.

61

4. Architecture Design

6. The Global Management Service waits for the results of the query from the dif-
ferent Local Management Service services and sends the result back to the Slice
Management Client or the external stakeholders.

Figure 4.10 illustrates the query orchestration steps.

Figure 4.10: Service orchestration for resource provider query

62

4.7. Service Mesh

4.6.3 Control

We interact with resources and resource providers through controls. A control can be the
provision, configuration or the removal or a resource. We document here the orchestration
between our components in order to send controls and and receive the execution results
of those controls.

1. The Slice Management Client or an external stakeholder sends a control for a
particular resource to the Global Management Service.

2. The Global Management Service sends this control to the Local Management
Service responsible for the right provider.

3. The Local Management Service receives a control and sends the control to the
correct provider adaptor.

4. The adaptor receives the control and extracts the parameters needed to execute
the control through the resource provider’s API.

5. The result of the execution is retrieved and harmonized with our information model
which is then sent back to the Local Management Service.

6. The Local Management Service receives the control execution result and extracts the
resource data from the control result and sends this data to the Global Management
Service.

7. The Global Management Service waits for the resulting resource data and sends
the result back to the Slice Management Client or the external stakeholder.

Figure 4.11 illustrates the control orchestration steps

4.7 Service Mesh
In this section explain how we leverage the Service Mesh paradigm to achieve the
requirements for resource discovery and dynamic runtime configuration of resources. We
also indicate the problems faced by our framework in these areas without the service
mesh, to highlight its advantages.

Figure 4.12 presents a diagram of a basic resource topology using a service mesh. This is
the solution that we adopt in the following chapter. In this solution, each resource is
deployed alongside a proxy which determines the correct destination through a service
discovery lookup. Notice that in Figure 4.12 no resource communicates directly with the
another. However the communication occurs between the different resources through
the proxies thanks to the address resolution feature provided by the service discovery
lookup. This is only one possible architecture for a service mesh. Some other solution
architectures are provided by [Jen18]

63

4. Architecture Design

Figure 4.11: Service orchestration for resource control

One of the challenges posed by our work is that we do not own or control the majority
of resources. Our control of different resources is limited to the exposed APIs, whose
definition may be more fine or coarse grained depending on the provider. In the following
subsections we discuss several important aspects of the Service Mesh that can address
constraints posed by provider APIs.

We take the following example: A resource communicates with another through REST,

64

4.7. Service Mesh

Figure 4.12: A basic Service Mesh, resources A and D only know the location of resources
B and C through the lookup

we call these resources the client and server.

4.7.1 Resource Discovery

Our proposed framework can provision the two resources without difficulty, we assume
that they are cloud services. However at the moment of provisioning the client does
not know anything about the server. Therefore, at the end of this provisioning phase,
communication between the two resources is inherently broken as the client has no idea
of the server’s URI to which it is publishing data.

During the configuration phase, in order to obtain a functioning set of resources (i.e.
client publishing data to the server), we must reconfigure the client to inform it of the
server’s URI. A reconfiguration of the resource may not be possible due to limitations of
the provider’s exposed API. This situation presents us three very important problems:

1. In order to reconfigure a resource we must actually provision another one. This
re-provisioning is hidden as a configuration step in a chain [Ins13]. A provider
might provide the means to reconfigure its resources, however there is no guarantee
that we can reconfigure this URI parameter as we do not own the provider or its
resources.

65

4. Architecture Design

2. Any changes to a resource ensemble would result in an more of work, due to
the point above. If reconfiguration resulted in re-provisioning, we would exhibit
stagnant performance for our "on-demand" framework.

3. How would resource providers react to such a wasteful use of their resources? Our
framework could potentially lose trust or be blacklisted by providers for misuse of
their platforms

These issues, can be seen very often in industry and is informally known as "dependency
hell" regarding microservices (not software). Work has been done in the field of mi-
croservices to address this problem [GGG+16] [DCLT+14]. However, this work does not
exactly fit in with our domain since we also aim to provision and configure resources
from third parties (even though in some cases we would deploy artifacts ourselves in the
form of VMs or containers).

The Service Mesh concept helps us provide a measure of of isolation between each resource
and allows us to coordinate the communication topology without relying too heavily on
the limitations of the resource provider. In our example provided above combined with
the Service Mesh, the client would publish data to a reliable source immediately after its
provisioning and configuration. Although some data might be lost during the deployment
of the server, we no longer need to reconfigure the client once we the server has been
provisioned.

4.7.2 Runtime Functionality

We aim to provide as much of our functionality as possible dynamically during runtime.
Therefore, being able to reconfigure the communication topology of a resource ensemble in
function of the user requirements of his/her system is essential. As mentioned previously,
in a Service Mesh each resource is only aware of its outgoing communication through its
attached proxy. In the event that resources need to be routed to different access points,
or new resources need to be deployed into the ensemble, a simple reconfiguration of each
proxy will ensure that inter resource communication is operating correctly without any
downtime releases.

4.7.3 Usage in our framework

The Service Mesh aims to solve a very important problem in our framework. The
resources that we aim to "connect" in resource ensembles need an element of network
connectivity. Since the Service Mesh operates at the TCP/IP level, we use it in our
framework to abstract the need to configure each resource to correctly communicate with
other resources. By deploying the service mesh we only configure any TCP/IP protocols
once. Any further configurations (at runtime) can be done by simply reconfiguring the
service mesh.

When we provision a resource, we also provision a configurable sidecar proxy that
can be controlled by our Slice Management Client as seen in Figure 4.12. The Slice

66

4.8. Summary

Management Client in our design is what is know as the control plane to the service mesh
in [Jen18][FS18][Kle17]. Since the Slice Management Client is responsible for the service
mesh of a resource slice, it is responsible for the routing of TCP/IP communication in a
resource slice. The result is that the configuration regarding TCP/IP communication
has been abstracted from the resource provider. When a resource is provisioned, it
is configured with the TCP/IP parameters (IP/port) of the relevant sidecar proxy.
Therefore, in situations where only a change in the communications topology occurs in a
resource slice only the Slice Management Client is involved in the reconfiguration.

However, this solution does not mean that our framework cannot function without a
Service Mesh. We explicitly state that we only adopt this architectural concept to simplify
the configuration of a resource slice, which in our framework design is handled by the
Slice Management Client. The relevant resource level operations can still be accessed
through the Global Management Service by any other third party client. Thus, our
design is flexible enough to benefit from this paradigm but does not obligate users to use
it.

4.8 Summary
In this chapter we firstly presented the different models that we use to harmonize resource
data in our framework. We also briefly present some other models that are important
to the framework’s function. We then explained the design of a novel architecture that
is capable of interfacing with various resource providers to query and control resources
through harmonized information model. First we presented the context in which the
framework will be operating in. Based on the operating context, we present the detailed
design and service architecture of the different software services that we need to implement
without going into the technical implementation details. Then, we give a high level view
of the service orchestration needed to completed different tasks that are required by the
framework. Lastly, we present the concept of the Service Mesh, that is very important in
the tackling the problem of inter-resource communication.

67

CHAPTER 5
Prototype Implementation

5.1 Overview

Based on the presented architecture in Chapter 4, we present in this chapter a prototype
implementation of our proposed deployment framework.

Figure 5.1 presents an overview of the prototype implementation of our framework.
We chose to separate the different modules of our framework into separate standalone
software services with defined communication protocols. We discuss each of the modules
in the sections below.

Figure 5.1: Overview of the technologies used in the prototype implementation

We chose to use AMQP through RabbitMQ [Piv18] as the primary communication
medium for the "internal" part of the framework, in effect the part of the framework

69

5. Prototype Implementation

behind the Global Management Service. The initial AMQP communication was inherited
as a part of the HINC project [LNT16] that we studied before starting work on the work
of this thesis.

5.2 Implementation

5.2.1 Provider Adaptors

In our architecture presented in Chapter 4, Resource Providers are external services
who expose their resources via sets of APIs. Due to the heterogeneity of the resource
providers, we do not interface directly with particular providers but through an adaptor
that exposes a unified API. In our prototype implementation, the adaptors are standalone
software artifacts that communicate with a Local Management Service.

The implementation of an adaptor should be unique to each provider. However, we define
a clear communication protocol between a Local Management Service and its adaptors
to ensure that the two components can function together with expected behavior. The
protocol is based on request response. Table 5.2 in Section 5.3 presents an overview of
the communication protocol.

As described in the protocol, an adaptor first registers its presence to the Local Manage-
ment Service to which it will be assigned. Upon registration by the Local Management
Service, all the appropriate queries and controls will be received by the adaptor. Once
an adaptor has been registered, it receives messages from the Local Management Service
that could correspond either to queries about the provider and its resources, or controls
to execute operations on the provider’s resources. The exact messaging protocol and how
the message routing is done is explained in detail in Section 5.3.

5.2.2 Local Management Service

The Local Management Service manages a set of resource providers through the adaptors
that are deployed. The Local Management Service listens to adaptor registration messages
and keeps a list of available adaptors that it can query and control. The Local Management
Service in our prototype is implemented using Java. We use Spring Boot [Piv17] which
provides use with lots of helper tools such as dependency injection and a high level
and declarative abstraction to manage AMQP resources. We simply use Spring AMQP
[Piv17] to declare all the exchanges and queue bindings, these bindings are illustrated in
Figure 5.3.

In order to store our document based data, and to provide powerful querying capabilities,
we opted for a document based database. We chose MongoDB, the most popular JSON
document based database on the market. By using Spring Boot [Piv17], we have all the
built in database access classes that can be dependency injected into the application.
MongoDB [Inc17] also provides us with the ability scale our framework easily and access
the database from many different Local Management Services sharing a database instance.

70

5.2. Implementation

Service Payload Response Description
CREATE RESOURCE Resource Resource Provisions a specified re-

source
MODIFY RESOURCE Resource Resource Configures a specified re-

source
DELETE RESOURCE Resource Resource Deletes a specified resource
MONITOR RESOURCE Resource Resource Fetches available monitoring

information on specified Re-
source

QUERY RESOURCE Resource List<Resource> Returns all running resources
that matches provided query

QUERY RESOURCE Resource List<Resource> Returns all resource avail-
able to be provisioned that
matches query

Table 5.1: An overview of the services provided by the Global Management Service’s API

Additionally, we also opted to build a set of DAOs for our information model ourselves,
due to technical difficulties in using the built-in Spring DAO to serialize schemaless JSON
nodes.

Regarding adaptors, we store all registered adaptors in memory using a hashmap for faster
routing. We also create a special AdaptorManager class in the Local Management Service
to expose all adaptor operations. We use the singleton pattern for the implementation of
the AdaptorManager along with thread safe datastructures in order to guarantee thread
safety, since the asynchronous message receiving system in Spring Boot is implemented
using multi-threading.

5.2.3 Global Management Service

The Global Management Service is implemented with Java using Spring Boot[Piv17].
Like the Local Management Service, Spring Boot provides us with many useful tools
for AMQP, which the Global Management Service uses to communicate with its Local
Management Services.

The resource provider services that are exposed to the Slice Management Client and
other external stakeholders is done so using a RESTful API at the Global Management
Service. Spring Boot also provides a built in declarative RESTful API builder. Swagger
is used to provide an interactive API documentation for the services that we expose. The
services we expose are summarized in Table 5.1.

The first services: CREATE, MODIFY, DELETE AND MONITOR (in Table 5.1) are
our resource controls, we treat a resource as a RESTful entity. Every resource control
expects a specification of a resource according to our information model. Any updates to
the resource as a result of the control are returned upon the completion of the control.

71

5. Prototype Implementation

This is necessary because some metadata or parameters of a resource are only available
after the control. For example if the resource were to be a simple HTTP server, the IP
address of the server would only be known once the server has been provisioned.

Figure 5.2 describes the sequence of actions used in the resource controls of create,
configure and delete. The flow is relatively simple, the request is passed down from
the Global Management Service to the provider adaptor which executes the "low-level"
operations on the resource provider. The adaptor then harmonizes this data to enter
our framework again. In the case of these resource controls, the Global and Local
Management Services only deal with our resource model illustrated in Figure 4.2.

Figure 5.2: Sequence diagram describing a resource control

All the queries and controls of our framework follow the same principle from the Global
Management Service. A request is initiated from the Global Management Service and
relayed and routed through Local Management Services and provider adaptors and sent
back to the Global Management Service. The differences between requests concern mainly
the payload, which we document in Section 5.3.

Although the Global Management Service exposes resource related services, it does
not manage resource relationships. A resource is treated like a REST entity by the
Global Management Service. A resource can be created, configured and deleted. It
is possible to manage multiple resources as a resource ensemble through the Global
Management Service’s API, if the responsibility of the maintaining the relationships
among the resources are handled by the client using the Global Management Service. The
REST API means to provide low level access to resource operations. We subsequently
gain advantage of interoperability by allowing external parties to use our unified resource
API.

In order to deal with the deployment of end to end resource slices, we use another service

72

5.2. Implementation

described in the next section to manage the inter-resource relationships. However, thanks
to the interoperability of the Global Management Service’s REST API, any external
stakeholders or organization can create resource slices in a similar way. This also leaves
the open possibility of proposing better ways of managing resource slices.

5.2.4 Slice Management Client

The Slice Management Client is the module in our framework that is responsible for
managing resource slices. It does this by maintaining resource relationships. We imple-
mented the Slice Management Client as a command line interface (CLI) using Node.js
with the help of the yargs [Git18b] package. Using these tools we created a POSIX-like
documented CLI with positional arguments and nested commands like the popular git
CLI. Due to the usage of Slice Management Client as a manager for resource slices we
also refer to it as pizza.js or Pizza.

Pizza supports resource querying, it is possible to query a provider’s available resources.
The purpose of this resource querying is important for slice deployment since a user must
first identify what resources are necessary for his/her slice. Since our information models
are implemented using JSON, the query process resembles the traditional MongoDB
[Inc17] style document query.

Creating or modifying a slice is done through the command line using a JSON version of
our slice model. In the case of creating a new slice through the create command, Pizza first
deploys a Service Mesh through Google Cloud [SRR18] by deploying a Linkerd [Buo18]
sidecar proxy for each resource. Then, Pizza interfaces with the Global Management
Service to correctly provision and configure all of the slice resources. Once all resources
have been correctly configured, Pizza routes the Service Mesh proxies using the deployed
resources.

When a resource slice is modified, a JSON description of the new resource slice should
be submitted to Pizza through the update command. Pizza parses the updated slice
description and compares it with the current slice stored in Pizza. New resources are
provisioned and configured and modified resources are reconfigured through the Global
Management Service. Finally, new sidecar proxies of the Service Mesh are deployed and
the service mesh is reconfigured according to the updated slice.

While currently the command line Slice Management Client can be seen as cumbersome
to use due to the very verbose JSON resource and resource slice descriptions, all resource
related operations are still executed through the APIs exposed by the Global Management
Service. The main function of the Slice Management Client is to handle the inter-resource
relationships that make up the slice as well as the Service Mesh that facilitates resource
communication. This design allows future work to accommodate a more user-friendly
Slice Management Client.

73

5. Prototype Implementation

5.3 Messaging Communication
In our prototype implementation, we use AMQP with RabbitMQ [Piv18] for the purpose of
inter-service communication between the Global Management Service, Local Management
Service and Provider Adaptors. In this section, we discuss how we implemented our
messaging protocol.

5.3.1 Local Management Service and Provider Adaptors

Figure 5.3 presents an overview of the messaging topology between the Local Management
Service and its Provider Adaptors, we use the BTS sensor provider as an example. The
Local Management Service uses only one queue to receive messages from the various
provider adaptors that it handles. However, a Local Management Service can use multiple
consumers to process the messages faster (this is done with multi-threading thanks to
Spring AMQP). Since only one queue is used to receive all adaptor messages, it is bound
to a simple fanout exchange which sends messages to all queues bound to it.

When a new adaptor is registered, its input queue is bound to two different exchanges by
the Local Management Service. We assume that the adaptor’s input message queue is
declared by the adaptor itself. The Local Management Service first binds the adaptor’s
input queue to the broadcast exchange, which sends messages to all adaptors. The
broadcast exchange is a simple fanout exchange that requires no routing key since the
messages are sent to every bound queue. The second exchange is the adaptor unicast
exchange, which sends messages that are routed to specific adaptor input queues. The
adaptor input queue is bound to a routing key which is the adaptor ID that is sent as a
part of the adaptor registration message.

Our messaging protocol involves pairs of request and response messages. A message that
is sent from the Local Management Service to an adaptor and vice versa will expect a
message with a response. However, the response may be empty or not used once it is
received. Table 5.2 gives an overview of the different types of messages that are used in
the communication between the Local Management Service and its provider adaptors.
Tables 5.3 to 5.9 describe the specific protocols.

74

5.3. Messaging Communication

Figure 5.3: Messaging topology of a Local Management Service and a Provider Adaptor.
We use the BTS sensor provider as an example

75

5. Prototype Implementation

R
equest

P
ayload

R
esponse

D
escription

R
EG

IST
ER

A
daptor

N
/A

T
his

request
is

sent
by

the
adaptor

to
register

the
adaptor

w
ith

a
LocalM

anagem
ent

Service
Q
U
ERY

R
ESO

U
R
C
ES

R
esource

U
PD

AT
E

R
ESO

U
R
C
ES

T
his

requests
queries

allprovisioned
resources

ow
ned

by
the

provider
Q
U
ERY

PR
O
V
ID

ER
R
esource

U
PD

AT
E

PR
O
V
ID

ER
S

T
his

request
queries

the
provider

for
allits

avail-
able

resources,that
is

to
say,allthe

resources
that

this
provider

is
able

to
provision

PR
O
V
ISIO

N
R
esource

C
O
N
T
R
O
L
R
ESU

LT
T
his

request
controls

the
provider

to
provision

a
resource

that
is

provided
along

w
ith

the
request

body
D
ELET

E
R
esource

C
O
N
T
R
O
L
R
ESU

LT
T
his

request
deletes

an
existing

resource
that

is
provided

along
w
ith

the
request

body
C
O
N
FIG

U
R
E

R
esource

C
O
N
T
R
O
L
R
ESU

LT
T
his

request
configures

an
existing

resource
that

is
provided

along
w
ith

the
request

body
G
ET

LO
G
S

R
esource

(Provider
specific)

T
his

request
fetches

m
onitoring

inform
ation

of
an

existing
resource

Table
5.2:

A
n
overview

ofthe
com

m
unication

protocolbetw
een

Provider
A
daptor

and
LocalM

anagem
ent

Service

76

5.3. Messaging Communication

Request REGISTER
Request This request is sent by the adaptor to register the adaptor with

a Local Management Service. The payload simply includes the
adaptor UUID. Once the Local Management Service receives this
request, the adaptor is registered and the Local Management
Service will begin to query provider data. Moreover, the local will
be able to control the provider through this adaptor.

Request
Payload

Adaptor 4.7

Response There is no response received, once the adaptor is registered, the
Local Management Service will simply begin using the adaptor.

Response
Payload

N/A

Table 5.3: Messaging Protocol 1 of the Table 5.2

Request QUERY RESOURCES
Request This request queries all provisioned resources owned by the provider.

This request is sent by the Local Management Service to an adaptor.
Upon receiving the request, the adaptor gathers resource data from
the provider and transforms all resource data to our information
model.

Request
Payload

Resource 4.2 1

Response The adaptor replies with the response UPDATE_RESOURCES
with a list of resource models. Upon receiving the response, the
Loal Management Service updates its data repository with the
resources received from the adaptor.

Response
Payload

List«Resource» 4.2

Table 5.4: Messaging Protocol 2 of the Table 5.2

1can be only a partial description

77

5. Prototype Implementation

Request QUERY PROVIDER
Request This request queries the provider for all its available resources, that

is to say, all the resources that this provider is able to provision.
Upon receiving the request the adaptor interfaces with the provider
and retrieves this data and transforms it to our information model

Request
Payload

Resource 4.2 2

Response The adaptor replies with the response UPDATE_PROVIDER with
a list of resource models and additional provider metadata. Upon
receiving the response, the Local Management Service updates its
data repository with the provider information received from the
adaptor.

Response
Payload

List«Resource» 4.2

Table 5.5: Messaging Protocol 3 of the Table 5.2

Request PROVISION
Request This request controls the provider to provision a resource. The

request contains the description of the resource to provision. This
request is sent by the Local Management Service only to the
adaptor that is responsible for the resource to be provisioned.

Request
Payload

Resource 4.2

Response Upon receiving the request, the adaptor parses the provided re-
source description and provisions the resource through the provider
using the parameters and metadata provided through the resource
description. The response body contains the execution result of
the provision control. A successful execution will return the appro-
priate status and the provisioned resource. A failed execution will
return the appropriate status and error messages.

Response
Payload

Resource 4.2

Table 5.6: Messaging Protocol 4 of the Table 5.2

2can be only a partial description

78

5.3. Messaging Communication

Request DELETE
Request This request deletes an existing resource that is provided along with

the request body. This request is sent by the Local Management
Service only to the adaptor that is responsible for the resource to
be deleted.

Request
Payload

Resource 4.2

Response Upon receiving the request, the adaptor parses the provided re-
source description and deletes the resource through the provider
using the parameters and metadata provided through the resource
description. The response body contains the execution result of the
delete control. A successful execution will return the appropriate
status and the deleted resource. A failed execution will return the
appropriate status and error messages.

Response
Payload

Resource 4.2

Table 5.7: Messaging Protocol 5 of the Table 5.2

Request CONFIGURE
Request This request configures an existing resource that is provided along

with the request body. This request is sent by the Local Man-
agement Service only to the adaptor that is responsible for the
resource to be configured.

Request
Payload

Resource 4.2

Response Upon receiving the request, the adaptor parses the provided re-
source description and configures the resource through the provider
using the parameters and metadata provided through the resource
description. The response body contains the execution result of
the configure control. A successful execution will return the appro-
priate status and the configured resource. A failed execution will
return the appropriate status and error messages.

Response
Payload

Resource 4.2

Table 5.8: Messaging Protocol 6 of the Table 5.2

79

5. Prototype Implementation

Request GET LOGS
Request This request fetches monitoring information of an existing resource.

The monitoring data retrieved depends on what the provider makes
available to be used (e.g. google stackdriver). This request is sent
by the Local Management Service only to the adaptor that is
responsible for the resource.

Request
Payload

Resource 4.2

Response Upon receiving the request, the adaptor parses the provided re-
source description fetches the available monitoring data through
the provider. The response body has no structure and depends on
the format of the data made available by the resource provider.

Response
Payload

N/A (Provider specific)

Table 5.9: Messaging Protocol 7 of the Table 5.2

5.3.2 Global Management Service and Local Management Services

Figure 5.4 presents an overview of the messaging topology between a Global Management
Service and the Local Management Services that it controls. Like with the Provider
Adaptors, the Local Management Services must self register to a Global Management
Service.

The Global Management Service uses only one queue to receive messages from ites
Local Management Services. However, a Global Management Service can use multiple
consumers to process the messages faster (In fact this is done with multi-threading thanks
to Spring AMQP). Since only one queue is used to receive all Local Management Service
messages, it is bound to a simple fanout exchange (an exchange sends received messages
to all queues bound to it).

The Local Management Service only uses one input queue to receive the messages sent
from the Global Management Service. This input queue is bound to three different
exchanges upon its registration which is illustrated in Figure 5.4. The Local Management
Service’s broadcast exchange is a simple fanout exchange that routes a message to all
queues that are bound to it. This effectively means that a message sent to the broadcast
exchange will reach all the Local Management Services that are handled by the Global
Management Service.

The Local Management Service’s unicast exchange routes messages to specific Local
Management Services whose queues are bound to a routing key that is the ID of the Local
Management Service. Similarly, the Local Management Service’s groupcast exchange
routes messages to queues that are routed to the ID of a group of Local Management
Services.

80

5.3. Messaging Communication

Similar to the Local Management Service and Adaptors, the protocol involves pairs of
request and response messages. Table 5.10 gives an overview of the different types of
messages that are used in the communication between the Global Management Service
and its Local Management Services. Tables 5.11 to 5.17 describe the specific protocols.

Figure 5.4: Messaging Topology of a Global Management Service and Local Management
Services

81

5. Prototype Implementation

R
equest

P
ayload

R
esponse

D
escription

R
EG

IST
ER

LocalM
anagem

ent
Service

N
/A

T
his

request
registers

a
LocalM

anagem
ent

Ser-
vice

w
ith

a
G
lobalM

anagem
ent

Service
FET

C
H

R
ESO

U
R
C
ES

R
esource

D
ELIV

ER
R
ESO

U
R
C
ES

T
his

request
fetches

all
provisioned

resources
from

LocalM
anagem

ent
Services

FET
C
H

PR
O
V
ID

ER
S

R
esource

D
ELIV

ER
PR

O
V
ID

ER
S

T
his

request
fetches

allresources
that

are
able

to
be

provisioned
through

the
affected

Local
M
anagem

ent
Service

PR
O
V
ISIO

N
R
esource

PR
O
V
ISIO

N
R
ESU

LT
T
hisrequestissentby

a
G
lobalM

anagem
entSer-

vice
to

a
LocalM

anagem
ent

Service
to

provision
a
specified

resource
D
ELET

E
R
esource

D
ELET

E
R
ESU

LT
T
his

request
is

sent
by

a
G
lobal

M
anagem

ent
Service

to
a
LocalM

anagem
ent

Service
to

delete
a
specified

resource
C
O
N
FIG

U
R
E

R
esource

C
O
N
FIG

U
R
E

R
ESU

LT
T
hisrequestissentby

a
G
lobalM

anagem
entSer-

vice
to

a
LocalM

anagem
ent

Service
to

configure
a
specified

resource
G
ET

LO
G
S

R
esource

G
ET

LO
G
S
R
ESU

LT
T
his

request
is

sent
by

a
G
lobal

M
anagem

ent
Service

to
a
LocalM

anagem
ent

Service
to

fetch
available

m
onitoring

data
for

a
specific

resource

Table
5.10:

A
n
overview

ofthe
com

m
unication

protocolbetw
een

G
lobaland

LocalM
anagem

ent
Services

82

5.3. Messaging Communication

Request REGISTER
Request This request registers a Local Management Service with a Global

Management Service. The payload includes the ID, group ID and
other metadata about the Local Management Service. The Local
Management Service is registered, and its providers can be queried
and controlled by the Global Management Service.

Request
Payload

Local Management Service 4.8

Response There is no response received, once the Local Management Service
is registered the Global Management Service will simply begin to
use the Local Management Service in queries and controls.

Response
Payload

N/A

Table 5.11: Messaging Protocol 1 of the Table 5.10

Request FETCH RESOURCES
Request This request fetches all provisioned resources from Local Manage-

ment Services. The payload may contain a JSON query with a
complete or partial resource model to filter by different resource
attributes. This request is sent by the Global Management Service
to Local Management Services

Request
Payload

Resource 4.2

Response Upon receiving this request the affected Local Management Service
sends resource queries to the providers that it handles through its
provider adaptors. The Global Management Services waits until
a set timeout for all the resources that are sent back from the
different Local Management Services.

Response
Payload

List«Resource» 4.2

Table 5.12: Messaging Protocol 2 of the Table 5.10

83

5. Prototype Implementation

Request FETCH PROVIDERS
Request This request fetches all resources that are able to be provisioned

through the affected Local Management Service (i.e. a resource cat-
alogue). The payload may contain a JSON query with a complete
or partial resource model to filter by different resource attributes.
This request is sent by the Global Management Service to Local
Management Services

Request
Payload

Resource 4.2

Response Upon receiving this request the affected Local Management Service
sends provider queries to the providers that it handles through its
provider adaptors. The Global Management Services waits until
a set timeout for all the resources that are sent back from the
different Local Management Services. The resources received have
not actually been deployed and might contain some placeholders
or descriptions of fields that will be populated once they have been
provisioned.

Response
Payload

List«Resource» 4.2

Table 5.13: Messaging Protocol 3 of the Table 5.10

Request PROVISION
Request This request is sent by a Global Management Service to a Local

Management Service to provision a specified resource.
Request
Payload

Resource 4.2

Response Upon receiving this request the affected Local Management Service
sends provider provision controls to the provider that can provi-
sion this resource. Once the Local Management Service gets the
provisioned resource description (with all metadata and param-
eters) from the adaptor, the resource is sent back to the Global
Management Service.

Response
Payload

Resource 4.2

Table 5.14: Messaging Protocol 4 of the Table 5.10

84

5.3. Messaging Communication

Request DELETE
Request This request is sent by a Global Management Service to a Local

Management Service to delete a specified resource.
Request
Payload

Resource 4.2

Response Upon receiving this request the affected Local Management Service
sends provider provision controls to the provider that can delete this
resource. Once the Local Management Service gets confirmation
that the resource has been deleted from the adaptor, the resource
description is sent back to the Global Management Service.

Response
Payload

Resource 4.2

Table 5.15: Messaging Protocol 5 of the Table 5.10

Request CONFIGURE
Request This request is sent by a Global Management Service to a Local

Management Service to configure a specified resource.
Request
Payload

Resource 4.2

Response Upon receiving this request the affected Local Management Ser-
vice sends provider provision controls to the provider that can
configure this resource. Once the Local Management Service gets
confirmation that the resource has been reconfigured from the adap-
tor, the updated resource description is sent back to the Global
Management Service.

Response
Payload

Resource 4.2

Table 5.16: Messaging Protocol 6 of the Table 5.10

85

5. Prototype Implementation

Request GET LOGS
Request This request is sent by a Global Management Service to a Local

Management Service to fetch available monitoring data for a specific
resource.

Request
Payload

Resource 4.2

Response Upon receiving this request the affected Local Management Service
sends provider provision controls to the provider that can provide
monitoring data for this resource. Once the Local Management
Service receives this data from the adaptor, it is sent back to the
Global Management Service.

Response
Payload

N/A (Provider specific)

Table 5.17: Messaging Protocol 7 of the Table 5.10

5.4 Deployment

To run our framework, all the described software components need to be deployed to an
infrastructure. The design of the architecture allows several different deployment models.
In this section we discuss two different types of deployment models, that are used in
different deployment contexts.

In the deployment models we do not mention the Slice Management Client. Since the Slice
Management Client is a command line interface, we expect the service to be distributed
among the users of our framework. In any case, the Slice Management Client simply uses
the services exposed by the Global Management Service. However, the Slice Management
Client is responsible for creating the Service Mesh which will always be deployed in a
dedicated cloud datacenter.

5.4.1 Deployment Model 1

Figure 5.5 presents our first deployment model. It exploits the usage of cloud datacenters
to house all our services. We deploy all the services of our framework into a a cloud
datacenter. This provides our global and local management services with a large amount
of scalability. Google Cloud Platform [SRR18] provides auto-scaling for instances up
to specifications of up to 96 cores with options of high memory or high CPU instances.
Although in reality our framework will never use the highest levels of scalability provided
by a cloud datacenter, it assures that sufficient resources will always be available if needed
to handle high load. Additionally we have the option of using less resources and can
mitigate the costs of keeping the framework running.

In this deployment model we assume that we have been granted open access to organiza-
tions and entities that own the resource providers in our system. The access to resource

86

5.4. Deployment

providers should be available publicly through the Internet since in our deployment model
the provider adaptors are also deployed in the cloud datacenter. In this situation we also
assume that the resource providers have little to no participation in the deployment of
the framework since all access to the resource providers are free.

The external services in our framework consist of the RabbitMQ [Piv18] broker and the
MongoDB [Inc17] cluster. These services may be deployed along with our framework in
the same datacenter. Additionally, these services can be managed by external providers.
There are many DaaS providers [mla18][Inc18b] that can host MongoDB clusters in
different cloud data centers. Likewise, Messaging as a Service providers [84c18a] exists
that can host RabbitMQ clusters in different cloud data centers. In this deployment
model, where these external services are deployed is not important to our deployment
model. We assume that we use the external services. Therefore we increase the number
of cloud datacenters we use by two.

Since we use AMQP as our communication throughout the framework. We must make
sure that the RabbitMQ broker is in a network infrastructure where it is publicly
available. This way, we can we can deploy the other services regardless of their network
infrastructures as long as they have an available Internet connection and configured to
use the broker.

The Global Management Service is the central point of communication to interact with
resource providers through our unified API. Multiple instances can be deployed and load
balanced in order to achieve a higher fault tolerance. Once possible API gateway is
Kong [Inc18a] which is based on the widely adopted NGINX HTTP server that processes
client requests to upstream services. The lower bound deployment of one instance is still
functional but in the event of a failure in the Global Management Service, the clients will
lose access to all the resource providers. However, the configuration required for clients
is still the same regardless of the number of instances, they will only use one IP/Domain
to access the APIs offered by the Global Management Service.

According to our description in Chapter 4, the Local Management Service manages the
resources in an organization, so therefore instances deployed depends on the number
of logical/organizational separations among the resource providers. A deployment may
include more than one instance of a Local Management Service to the same set of resource
providers to increase fault tolerance but we do not take this direction. Although they
are single points of failure regarding the providers that they interface with, the message
based communication with RabbitMQ provides the Local Management Service with a
high amount of fault tolerance since messages that are queued will not be lost on failure.
In case of a failover, messages that were not handled will be consumed on a restart in the
order that they are queued. Since we deploy our Local Management Services in a cloud
datacenter, we can assume that in the event of a failure, the actual downtime of the
service will be short. Google Cloud Platform, already has mechanisms in place [SRR18]
to detect the crash of an application running in a VM (Compute Engine) or a container
(Container Engine). New instances will subsequently be started.

87

5. Prototype Implementation

Since in this deployment model, we assume public access to all resource providers over
the Internet, the provider adaptors can be deployed in the cloud datacenter along with
all our other services. The deployment on the cloud means that we can also leverage
the fault tolerance of the message based communication to deploy only one Adaptor per
resource provider.

Figure 5.5: Illustration of Deployment Model 1

5.4.2 Deployment Model 2

Figure 5.6 presents our second deployment model. This deployment is similar to our first
deployment model. However in this deployment model, we assume that we no longer
have open access to the organizations that own the resource providers. In this situation
we can make the assumption that resource providers are a part of large organizations in
industry that do not wish to reveal sensitive details of their resource APIs and processes.

We can see two differences in the deployment compared to the first deployment model.
The two differences both accommodate certain resource providers’ wish that the owner
of our framework does not get a knowledge of their internal APIs. The first change
in deployment is the non-deployment of provider adaptors. The deployment of the
adaptors can be outsourced to the organizations. Since the adaptors interface with our
framework through self-registration, we only need to deploy a Local Management Service

88

5.4. Deployment

and communicate the RabbitMQ details to the organizations. The resource providers
take the responsibility of harmonizing data and unifying their API with that of our
framework.

The second change could be the outsourcing of the entire Local Management Service
cluster to these organizations. This would occur in the event that an organization that
owns several resource providers wishes to control access to their resources. Since the Local
Management Service manages the resources in an organization, the idea that the entire
responsibility of deploying and managing it goes to the organization is not infeasible. In
this case we communicate the RabbitMQ broker details to the organization so that they
can register their Local cluster with the Global Management Service.

Furthermore, in this deployment model we can make a distinction between the capabilities
of the organizations who choose to handle their own deployments. We first consider the
case of a large organization which has access to a cloud data center where deployment of
Provider Adaptors and Local Management Services mirror our own in the first deployment
model.

Additionally, we can also consider the other extreme case where the organization has
limited capabilities. Without access to a cloud datacenter this type of provider would
rely on edge devices which could be a specific edge node or simply old desktop PCs that
can house running instances of Provider Adaptors. In this case the resource providers
will most likely be deployed in other devices in a closed network. However, we do not
treat resource providers as a part of our framework, and hence we do not treat them as
a part of this deployment model. This edge case can also apply to organizations who
cannot use cloud datacenters, for example political organizations such as governments or
international bodies [ZT13].

Having taken responsibility for their own deployments of provider adaptors or Local
Management Services, these organizations must also be responsible for the uptime and
maintenance of these services.

89

5. Prototype Implementation

Figure
5.6:

Illustration
ofD

eploym
ent

M
odel2

90

5.5. Summary

5.5 Summary
In this chapter we presented the prototype implementation of our deployment tool. The
final prototype uses implementations of the software services that were presented in
Chapter 4 as part of the framework design. Additionally since there are many different
deployable software services which make up our framework, we have presented two
deployment models that utilize both cloud and edge platforms under different contexts.
The deployment models represent the different degrees of openness to resource provider
access that organizations can grant our framework.

91

CHAPTER 6
Evaluation

6.1 Test System
In order to thoroughly evaluate the features of our prototype, we must evaluate the
features with respect to our motivating scenario. One of the main contributions of our
work is a novel method of using resource slices to implement IoT Cloud Systems. In
order the do this, we must first have a test system with a functional set of resources and
resource providers. We can then use this test system with our deployment framework
to create resource slices. We implement resources and providers that are part of our
motivating scenario in Chapter 3.

6.1.1 Resource and Providers

In order to evaluate the features of our prototype implementation using the identified use
cases from Chapter 3. We implemented resources and providers ourselves. We try to use
as many third party resources and providers as possible such as Cloud MQTT brokers,
Google Firewall or BigQuery. However, we do need to implement certain resources with
specific behaviors that we use in our scenarios. We implemented these resources and their
providers using Node.js due to the short amount of time needed to setup and maintain a
simple project without being constrained to the complications of using an established
language like java, such as multi-threading and compiling.

In the scope of our work we implemented the following resources:

• Generic Sensor - This simple software module reads data provided in a CSV
formatted file and outputs the result in either CSV or JSON format in a selection of
protocols that include MQTT, AMQP or HTTP. We use this resource to simulate
the sensor data streams of our scenarios by providing the real sensor data we
mentioned in Chapter 3.

93

6. Evaluation

• Simple Analytics Client - This software module can ingest data through a
selection of communication protocols that include MQTT, AMQP or HTTP. Since
the focus of our work is not data analytics, we mock a simple mechanism for
implementing the analytics. Any data ingested by this module can be output in
a variety of data sinks. These data sinks can be storage solutions such as Google
BigQuery[Goo18b]. Additionally, there is also a data sink to a HTTP POST
endpoint.

• Mosquitto MQTT Broker - This MQTT broker [Fou12] is developed by the
eclipse foundation. We simply package a version of it for easy deployment in our
scenarios.

• Node-RED - Node-RED [Fou18a] provides a browser-based flow editor that makes
it easy to wire together flows using the wide range of nodes in the palette. Flows
can be then deployed to the runtime in a single-click. JavaScript functions can be
created within the editor using a rich text editor. A built-in library allows you to
save useful functions, templates or flows for re-use [Fou18a]. We use Node-RED
as simple software artifacts that can support multiple input and output sources
including MQTT, HTTP and TCP. Node-RED is extensible and new nodes can be
created through plugins.

For each of these custom resources, we also implement a provider that will provision,
configure and monitor these resources. These providers are implemented in Node.js and
are simple REST servers that act as management APIs, that we can see in many industry
service providers such as Cloud AMQP [84c18a], MongoDB Atlas [Inc18b] or Google
BigQuery [Goo18b] .

The resources themselves are deployed by their providers on in the form of docker
containers on the Google Container Engine (GCE) using Kubernetes [Pla14]. We chose
to use the Kubernetes engine on Google Cloud to deploy our resource for several reasons:

• GCE supports a high level of automation. Creating container deployments and
exposing the deployment with a public IP takes a matter of seconds and can be
completely automated using JSON templates.

• GCE allows us to easily limit what resources a container deployment can have. We
can use this feature to limit CPU and memory in order to simulate low resource
edge devices and to create sets of test environments.

• GCE can expose containers directly with an external IP. However, we can also take
advantage of the internal DNS that resolves services based on their name. This lets
set up different test environments very quickly without having to wait for allocation
of external IP addresses.

• GCE has its own firewall service and container clusters can be configured to follow
firewall rules. This can be the network function service provider in our test system.

94

6.1. Test System

We also interfaced with third party providers to obtain the following resources:

• Google BigQuery - Google BigQuery[Goo18b] is a cloud-based big data analytics
web service for processing very large read-only data sets. BigQuery was designed for
analyzing data on the order of billions of rows, using a SQL-like syntax. It runs on
the Google Cloud Storage infrastructure and can be accessed with a REST-oriented
application program interface (API) or a variety of client APIs developed and
supported by Google.

• Google Firewall -The Google Cloud Platform provides a firewall service [SRR18]
that lets you deny or allow traffic from VM instances or Kubernetes containers
based on a JSON configuration that you specify. GCP firewall rules are set on a
virtual networking level, so they work as a physical firewall would.

• Cloud MQTT - Cloud MQTT [84c18b] is provided by 84codes - a Swedish tech
company that supplies cloud infrastructure for developers. Cloud MQTT is a
"Messaging as a Service" product that provisions managed instances of RabbitMQ
brokers that use the MQTT. Cloud MQTT also provides a management API
available through REST.

In the case of third party providers, we do not need to implement any resource or provider
code. We need only interface the provider to our framework with a Provider Adaptor
implementation.

We implemented all the Adaptors for the resources and providers in Section 6.1.1. The
implementations were in Node.js using the same structure in order to save development
time. Each of our adaptor implementations takes a configuration as input that includes:

• ADAPTOR NAME - This serves as the ID of the Adaptor that is used by the
Local Management Service.

• BROKER URI - This configuration is the connection string of the AMQP broker,
that includes and username and password that might be required.

• LOCAL EXCHANGE - The routing key of the Local Management Service, this
is exchange that the Local Management Service uses to receive Adaptor messages.

Our Adaptor implementations use additional configuration that are necessary to interface
with their assigned providers, for example, an endpoint HTTP URL of the provider’s API.
However, these additional configuration values can change depending on each Adaptor
implementation.

Table 6.1 gives an overview of the resources, providers and adaptors that we use in our test
system. From the table it is clear which services and components that we implemented
by providing the GitHub link to the source code. Resources that have been implemented
and reused by external parties have been marked as such. Likewise, resources that are
provided by cloud providers have also been marked.

95

6. Evaluation
R
esource

R
esource

Im
plem

tation
P
rovider

Im
plem

entation
A
daptor

Im
plem

entation
G
eneric

Sensor
/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
o
T
C
l
o
u
d
U
n
i
t
s
/

s
i
m
p
l
e
s
e
n
s
o
r

/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
o
T
P
r
o
v
i
d
e
r
s
/
b
t
s
-
s
e
n
s
o
r

/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

b
t
s
-
s
e
n
s
o
r
-
p
l
u
g
i
n

A
nalytics

C
lient

/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
o
T
C
l
o
u
d
U
n
i
t
s
/

i
n
g
e
s
t
i
o
n
C
l
i
e
n
t

/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
o
T
P
r
o
v
i
d
e
r
s
/

b
t
s
-
i
n
g
e
s
t
i
o
n
-
p
r
o
v
i
d
e
r

/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

b
t
s
-
i
n
g
e
s
t
i
o
n
-
p
l
u
g
i
n

M
osquitto

M
Q
T
T

External
/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
o
T
P
r
o
v
i
d
e
r
s
/

m
o
s
q
u
i
t
t
-
m
q
t
t
-
p
r
o
v
i
d
e
r

/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

m
q
t
t
-
p
l
u
g
i
n

N
ode-R

ED
External

/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
n
t
e
r
O
p
P
r
o
v
i
d
e
r
s
/

n
o
d
e
r
e
d
-
d
a
t
a
t
r
a
n
s
f
o
r
m
e
r
-
p
r
o
v
i
d
e
r

/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

n
o
d
r
e
d
-
p
l
u
g
i
n

G
oogle

B
igQ

uery
External

C
loud

Provider
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

b
i
g
q
u
e
r
y
-
p
l
u
g
i
n

G
oogle

Firew
all

External
/
r
d
s
e
a
/
I
o
T
C
l
o
u
d
S
a
m
p
l
e
s
/

t
r
e
e
/
m
a
s
t
e
r
/

I
o
T
P
r
o
v
i
d
e
r
s
/

k
u
b
e
r
n
e
t
e
s
F
i
r
e
w
a
l
l
P
r
o
v
i
d
e
r /
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

k
u
b
e
f
i
r
e
w
a
l
l

C
loud

M
Q
T
T

External
C
loud

Provider
/
S
I
N
C
C
o
n
c
e
p
t
/
H
I
N
C
/
t
r
e
e
/

m
a
s
t
e
r
/
e
x
t
-
p
l
u
g
i
n
/

c
l
o
u
d
m
q
t
t

Table
6.1:

R
esource,provider

and
adaptor

im
plem

entations
used

in
our

test
system

.
A
ppend

https://www.github.com
to

U
R
L

paths

96

/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/simplesensor
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/simplesensor
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/simplesensor
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/simplesensor
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-sensor
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-sensor
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-sensor
/SINCConcept/HINC/tree/master/ext-plugin/bts-sensor-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bts-sensor-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bts-sensor-plugin
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/ingestionClient
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/ingestionClient
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/ingestionClient
/rdsea/IoTCloudSamples/tree/master/IoTCloudUnits/ingestionClient
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-ingestion-provider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-ingestion-provider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-ingestion-provider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/bts-ingestion-provider
/SINCConcept/HINC/tree/master/ext-plugin/bts-ingestion-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bts-ingestion-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bts-ingestion-plugin
/rdsea/IoTCloudSamples/tree/master/IoTProviders/mosquitt-mqtt-provider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/mosquitt-mqtt-provider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/mosquitt-mqtt-provider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/mosquitt-mqtt-provider
/SINCConcept/HINC/tree/master/ext-plugin/mqtt-plugin
/SINCConcept/HINC/tree/master/ext-plugin/mqtt-plugin
/SINCConcept/HINC/tree/master/ext-plugin/mqtt-plugin
/rdsea/IoTCloudSamples/tree/master/InterOpProviders/nodered-datatransformer-provider
/rdsea/IoTCloudSamples/tree/master/InterOpProviders/nodered-datatransformer-provider
/rdsea/IoTCloudSamples/tree/master/InterOpProviders/nodered-datatransformer-provider
/rdsea/IoTCloudSamples/tree/master/InterOpProviders/nodered-datatransformer-provider
/SINCConcept/HINC/tree/master/ext-plugin/nodred-plugin
/SINCConcept/HINC/tree/master/ext-plugin/nodred-plugin
/SINCConcept/HINC/tree/master/ext-plugin/nodred-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bigquery-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bigquery-plugin
/SINCConcept/HINC/tree/master/ext-plugin/bigquery-plugin
/rdsea/IoTCloudSamples/tree/master/IoTProviders/kubernetesFirewallProvider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/kubernetesFirewallProvider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/kubernetesFirewallProvider
/rdsea/IoTCloudSamples/tree/master/IoTProviders/kubernetesFirewallProvider
/SINCConcept/HINC/tree/master/ext-plugin/kubefirewall
/SINCConcept/HINC/tree/master/ext-plugin/kubefirewall
/SINCConcept/HINC/tree/master/ext-plugin/kubefirewall
/SINCConcept/HINC/tree/master/ext-plugin/cloudmqtt
/SINCConcept/HINC/tree/master/ext-plugin/cloudmqtt
/SINCConcept/HINC/tree/master/ext-plugin/cloudmqtt

6.1. Test System

6.1.2 Deployment Configuration

The test system we use can be seen in Figure 6.1. We utilize a simple deployment
that consists of one Slice Management Client, Global Management Service and Local
Management Service. We use six different resource providers along with one adaptor
attributed to each provider. The choice of providers fulfills the different kinds of resources
that we need for our scenario shown in Figure 3.1.

We use the minimum cardinalities of the Global and Local Management Services. This
means that we deploy one instance each. For the Local Management System, we deploy
one of each resource provider that we implemented for the test system. Then, for
each resource provider we deploy one instance of a Provider Adaptor to register the
provider with the Local Management Service. For the functional evaluation, the low
cardinalities of the deployed services in our system are of no consequence. Moreover,
since we only have a limited number of resource providers, it does not make sense to
create several Local Management Services during the experiments just to double the
same resources that we deploy. We are developing a novel framework, with no real
related tool which can provide a similar feature base. For this reason, we would like
to evaluate the performance of the tools of our framework and not the performance of
deployment with solutions that mitigate the effect of a large load. Therefore we do not
deploy multiple Global Management Services that are load balanced behind an API
gateway. We also do not deploy multiple Adaptors for a resource provider to increase
message consumption/handling. Since our implementation is only a prototype and not a
production ready product, we should test with the most basic deployment configuration
of services to evaluate the implementations of the services. Using deployment techniques
to mitigate performance stress would be counterproductive to our evaluation.

Figure 6.1: An overview of our test system

97

6. Evaluation

6.2 Functional Evaluation

6.2.1 Experimental Setting

In order to show that we have attained our use cases set out in Chapter 3. We conduct the
following four experiments that fulfill selected use cases in Figure 1.2. Since thoroughly
evaluating every use case is time consuming, we choose these use cases to evaluate, since
they cover the maximum amount of functional requirements in Table 3.21.

The experiments can all be found on GitHub https://github.com/SINCConcept/
HINC/tree/master/scenarios/btssensors, along with the scripts and configura-
tion files required to run them. The GitHub repository also includes a set of deployment
scripts which help to deploy a running system. We deploy our proposed test system in
Figure 6.1 following the cloud-only model as seen in Section 5.4.1.

The deployment takes place mostly on the Google Cloud Platform Kubernetes Engine
[Pla14]. We use Kubernetes to take advantage of the internal DNS which avoids any
manual IP configurations of our services. Table 6.2 gives and overview of the test system
deployment.

Most of the components of our test system are deployed using containers. Containers
deployment is automated and easier to configure since we don not have to worry about
configuring IP addresses thanks to the Google Container Engine [Pla14]. However, the
specifications that we declare for each of our containers (CPU, memory) do have a margin
of error due to the scheduling process of Kubernetes [SRR18].We create and manage the
resource ensembles in our experiments by using Pizza on a Dell XPS laptop through the
command line terminal. We save all deployment configurations in JSON file templates
which can be reused for future experiments. We also use a MongoDB Atlas cluster and a
CloudAMQP cluster as our external services.

6.2.2 Criteria

We evaluate the usage of our framework against a set of criteria that measures certain
non-functional qualities regarding user experience. The evaluation of these non-functional
qualities below, is essential in determining the effectiveness of our framework in deploying
resource slices. To this end, we run experiments with our framework to implement the
use cases stated in Chapter 3.

• Learnability - How quickly a new user can begin efficient and error-free interaction
with the framework.

• Operability - The level of effort required for a user to interact with the frame-
work, we also use the vernacular term Simplicity to avoid ambiguity with specific
operations that we effect in our experiments.

• Attractiveness - To what degree would a user use our framework compared to an
alternative solution

98

https://github.com/SINCConcept/HINC/tree/master/scenarios/btssensors
https://github.com/SINCConcept/HINC/tree/master/scenarios/btssensors

6.2. Functional Evaluation

• Flexibility - How easy the framework facilitates complex operations for an experi-
enced user.

These first two criteria of Learnability and Operability can be found in the software quality
requirements from the ISO/25010 system and software quality models standard [ISO10].
The second set of criteria of Attractiveness and Flexibility are also from the standard
ISO/20150 [ISO10] but are a part of the Systems and software Quality Requirements
and Evaluation (SQuaRE) – Systems and software quality models. We chose the criteria
that would provide the most value to our work. Unfortunately the whole suite of quality
requirements and models cannot be evaluated in the scope of this thesis.

The evaluation of our framework with respect to the above criteria is carried out by us.
We conduct the experiments through role play, by using our framework as we would
expect the end user to. This technique is often used in formal requirements review
[rol][DS16], which is appropriate for our evaluation since we aim to evaluate the features
of our framework.

6.2.3 Experiments

We base our functional evaluation on four experiments that are operations based on the
richest use cases presented in Chapter 3. We explain our procedure of these experiments
and then follow up with an evaluation of our framework’s key features based on these
experiments.

6.2.3.1 UC01 Add Data Consumer

Use Case 3.1. We begin with a simple slice description in JSON that consists of a MQTT
broker, BigQuery dataset and an analytics client (example in Figure 6.2). We deploy
this resource slice simulating the Service Operator declaring an empty pipeline for a new
client. The client can then run a JSON query through Pizza specifically for IoT resources
that are sensors (example of the query in Figure 6.6 and the result in Figure 6.7). The
chosen sensor descriptions can then be added to the JSON slice description followed by
an update command (Figure 6.5) to Pizza for the new slice description. The result is
that the BigQuery dataset is being filled up with data points from the newly provisioned
sensors that pass through the analytics client.

6.2.3.2 UC03 Protect Data Consumer

Use Case 3.3. This experiment begins by deploying a slice that is fully functional. We
assume that in this case a client already possesses a functional data pipeline. The slice
description can be submitted to Pizza to obtain monitoring information on the different
resources in the slice. We assume that the Data Consumer has found a reason in this
monitoring information to apply a firewall to the analytics client. A script is provided
to ease the configuration of JSON firewall resource which can be quite tedious. The
firewall must be accurately configured to avoid breaking the pipeline functionality of the

99

6. Evaluation

slice. Once the firewall has been configured, it can be observed that the row count in
the BigQuery database does not increase. A call to Pizza to retrieve the logs for the
analytics client will show that new messages are still being consumed from the broker,
but the inserts to the BigQuery database fail due to connection errors.

6.2.3.3 UC04 Custom Analysis Logic

Use Case 3.4. This use case tries to increase the flexibility of a data pipeline by allowing
custom logic to enter the pipeline. We begin by deploying a functional slice. We then
deploy a Node-RED instance by adding it to the slice description and then submitting
an update through Pizza. The URL endpoint for the Node-RED instance can be found
in the updated slice description once Pizza has finished updating the slice. To simplify
the process of creating a data flow in Node-RED, we have included an exported data
flow that can be imported with one click into Node-RED so that the custom logic can
be applied. In this case the custom logic is a function that adds an offset of 100 to the
values received from the data sources. These changes can be visualized on the debug
screen in Node-RED or in the BigQuery dataset. In our use case, the Node-RED data
flow could have been prepared by a separate Data Engineer and handed to the client in
a packaged form that can be imported, like in Node-RED.

6.2.3.4 UC09 Remove Data Pipeline

Use Case 3.5. This experiment simply involves provisioning a data pipeline slice and then
deleting it and releasing its resources. This use case is important to show the on-demand
aspect of resource slices. Once there is no more need for a resource slice, it can be deleted.
A new slice can equally be provisioned afterwards.

100

6.2. Functional Evaluation

Name Deployment Type Specs
Global Google Cloud[SRR18] Container 2x2.0GHz CPU, 2048Mi

RAM
Local Google Cloud Container 1x2.0GHz CPU, 1024Mi

RAM
MongoDB MongoDB Atlas [Inc18b] Amazon EC2 512MB Storage, Shared

RAM
RabbitMQ CloudAMQP [84c18a] Amazon EC2 Share CPU & RAM
Pizza N/A Dell XPS 8GB RAM, 2x1.8GHz, In-

tel Core i5,
Mosquitto Adaptor Google Cloud Container 0.5x2.0GHz CPU, 256Mi

RAM
Analytics Adaptor Google Cloud Container 0.5x2.0GHz CPU, 256Mi

RAM
Sensor Adaptor Google Cloud Container 0.5x2.0 GHzCPU, 256Mi

RAM
BigQuery Adaptor Google Cloud Container 0.5x2.0 GHzCPU, 256Mi

RAM
Node-RED Adaptor Google Cloud Container 0.5x2.0 GHzCPU, 256Mi

RAM
Firewall Adaptor Google Cloud Container 0.5x2.0 GHz CPU, 256Mi

RAM
BigQuery Provider Google BigQuery N/A N/A
Mosquitto Provider Google Cloud Container 0.5x2.0 GHz CPU, 256Mi

RAM
Analytics Provider Google Cloud Container 0.5x2.0 GHz CPU, 256Mi

RAM
Sensor Provider Google Cloud Container 0.5x2.0 GHz CPU, 256Mi

RAM
Node-RED Provider Google Cloud Container 0.5x2.0 GHz CPU, 256Mi

RAM
Firewall Provider Google Cloud Container 0.5x2.0 GHz CPU, 256Mi

RAM
BTS Sensor Google Cloud Container 0.1x2.0 Ghz CPU, 100Mi

RAM
Mosquitto Broker Google Cloud Container 0.1x2.0 Ghz CPU, 100Mi

RAM
Analytics Client Google Cloud Container 0.5x2.0 Ghz CPU, 256Mi

RAM
Node-RED Instance Google Cloud Container 0.5x2.0 Ghz CPU, 256Mi

RAM
BigQuery Dataset Google BigQuery [Goo18b] N/A N/A
Google Firewall Google VPC [SRR18] Container 0.5x2.0 GHz CPU, 256Mi

RAM

Table 6.2: Experimental setting for functional evaluations
101

6. Evaluation

Figure
6.2:

C
reating

a
slice

description
in

JSO
N

and
adding

an
M
Q
T
T

broker
resource

102

6.2. Functional Evaluation

Fi
gu

re
6.
3:

A
se
ns
or

an
d
br
ok
er

in
a
sli
ce
,a

lo
ng

w
ith

th
ei
r
co
nn

ec
tiv

ity

103

6. Evaluation

Figure
6.4:

U
sing

Pizza
to

provision
a
slice

from
a
JSO

N
description

file

104

6.2. Functional Evaluation

Fi
gu

re
6.
5:

U
sin

g
Pi

zz
a
to

up
da

te
a
sli
ce

fr
om

a
JS

O
N

fil
e

105

6. Evaluation

Figure
6.6:

U
sing

Pizza
to

query
providers

for
available

resources

106

6.2. Functional Evaluation

Figure 6.7: Result of the query (Figure 6.6) for available resources

107

6. Evaluation

6.2.4 Evaluation

6.2.4.1 Dynamic Resource Provisioning

Learnability As our experiments have shown, it is possible to provision new resources
in a slice at any point during its lifecycle. The learnability of this feature is difficult. The
concept of long and verbose JSON descriptions is not a new idea in industry. This practice
can be seen in all of the major cloud providers: GCP[SRR18], and AWS[Ser17]. Moreover,
some of more complicated RESTful APIs that exist such as Facebook’s V2 graph based
API [Fac18] also rely on heavy JSON payloads. Although these JSON formats are
generally documented, the majority of support comes from the community through the
form of posted questions of blog post tutorials. The lack of clear documentation hurts
the learnability factor of our framework.

Operability The process of dynamically provisioning a resource is relatively easy. As
we mentioned in Chapter 4, all configurable resource parameters are in the parameters
section of the resource model. In practice the description can simply be copy and pasted
from a resource discovery query into a slice description, brokers for example have no
necessary parameters to be provisioned. Although the resource and slice descriptions can
be long and verbose, the structured JSON representation means that simple operations
can easily be supported by a variety of tools or scripts. In our experiments we make
plenty of use of shortcut.js scripts to parse and fill our different resource parameters based
on our existing slice description, at the same time always leaving room for a manual
inspection if necessary.

Attractiveness The framework has certain attractive features for dynamic provisioning
that would draw users from existing solutions. The main value of using our framework
is the use of a unified information model and API. This prevents the need to learn
specialized models and APIs of different providers. For example, MongoDB Atlas[Inc18b]
and MLab[mla18] both offer cloud hosted MongoDB databases. Although both products
offered have the same functionality, the methods of provisioning them differ.

Flexibility There is a lot of flexibility involved in the dynamic provisioning feature of
our framework. As seen in the first experiment, we can choose on-demand the number
and types of data sources through a simple query and copy/paste operation. Additionally,
in the third experiment we can see that we can entirely rewire and change the nature of
our data flow by provisioning a new resource and configuring old ones.

6.2.4.2 Dynamic Resource Configuration

Learnability The learnability of dynamic resource configuration is on par with dynamic
resource provisioning. The same knowledge of the information model is a prerequisite
to do it effectively. Adopting some sort of documentation for the resource model would
facilitate a smaller learning curve.

Operability A dynamic resource configuration is simply changing the required parame-
ters in a resource model. This can be done through automated scripts and other tools.

108

6.2. Functional Evaluation

However, a knowledge of the resource model is essential for this task to be trivial.

Attractiveness The dynamic resource configuration makes the framework very at-
tractive compared to any related tools that we discussed in Chapter 2. Most dynamic
configuration tools do not actually handle any configuration but are very powerful config-
uration stores. Certain implementation libraries will actually effect any reconfiguration
by watching the changes to these configuration stores. Our solution however, aims
to actually reconfigure a resource. The adaptor design chains[Ins13] a series of more
complicated operations behind a reconfiguration. Additionally, The Service Mesh avoids
reconfiguration of TCP/IP communication through abstraction.

Flexibility The dynamic configuration feature can provide flexibility in the form of
resource re-usability. In some cases an existing resource can simply be reused to suit
changing requirements with a dynamic configuration, there might be no need to statically
delete the resource and recreate a new one. Dynamic resource configuration also provides
a margin of error in deployments, since and configuration errors can be fixed on-demand.

6.2.4.3 Resource Query

Learnability The resource query feature is probably the most easy to learn feature of our
framework. The strong resemblance to the type of query used by the popular document
based MongoDB[Inc17] will provide a smooth transition for new users. Learnability is
therefore a very strong trait of this feature.

Operability Since JSON is one of the most popular data interchange formats in the
Web among developers, it not only adds to the learnability but also makes and query
very simple. By looking at a resource model (also in JSON) it is very simple to write a
query into a JSON file and call the appropriate command to use the JSON query.

Attractiveness The Resource query might not sound as important as the two features
discussed above but can be quite attractive. The document based query is a very powerful
tool that can explore different metadata that might be of relevance to a user. Although
we do not make much use of metadata in the scope of our work, this could prove very
interesting in the scope of resource interoperability.

Flexibility The flexibility of JSON translates pretty well to this feature.

6.2.4.4 Third Party Interfacing

Learnability Interfacing with a third party can be a steep learning curve. There
exist no implementation guidelines for an Adaptor that interfaces with a provider. We
made the conscious choice of not adhering to strict implementation guidelines like the
authors of [LNT16]. However, we have a very well defined set of information models and
communication protocols that should be adhered to by an Adaptor for communicating
with the framework. To be able to implement Provider Adaptors, the developer must
first learn the prerequisites models and protocols.

109

6. Evaluation

Operability Once the learning curve has been overcome, the actual implementation
of provider adaptors becomes almost formula-like. Additionally the fact the Provider
Adaptors are stand alone pieces of software, the developer can pick the technologies of
his/her choice as long as the models and protocols are adhered to by the Adaptor.

Attractiveness Since this feature of our framework that allows the dynamic provisioning
and configuration of various types of resources, this is a very attractive feature of our
framework. Thanks to the provider adaptor design pattern we can apply our abstraction
to a wide range of third party providers through the unified API and information model.

Flexibility The flexibility of the Provider Adaptor is one of the main reasons we chose
to use it in the framework. A provider could be an organization that provides resources
through a well defined API. However a provider can also be a GitHub repository with a
useful software artifact. In this case the provider adaptor is responsible to deploying this
software artifact and exposing its capabilities through our information model.

6.3 Performance Evaluation

6.3.1 Experimental Setting

During the performance evaluation, our test system is deployed on dedicated VMs.
The VMs give us the advantage of better monitoring since we are available to install
monitoring agents on the machines to gather metrics such as CPU and memory usage
through Google Stackdriver. Additionally, when a service is deployed on a VM we can
be sure of its specifications as long as it is the only service deployed on that machine.
During a containerized deployment however, a container is scheduled among the different
nodes the container cluster and therefore it is hard for use to guarantee a certain set of
specifications for the service (even when we declare usage limits). The specifcations of the
VMs stated in Table 6.3 can be found on the Google Cloud Platform Compute Engine
website at https://cloud.google.com/compute/docs/machine-types.

Since our Slice Management Client is implemented as a command line interface, we need
separate environment for each user. We cannot concurrently execute the commands of the
client in the same operating system since the local data store used in its implementation is
not designed to be threadsafe. In order simulate users, we package the Slice Management
Client into a docker image. During the experiment we will deploy groups of Slice
Management Clients through the Google Cloud Platform Kubernetes Engine. Each
container will generate slices specifications to provision. The response time for completed
operations will be measured In order to collect test metrics, we deploy a master service
which records receive results through HTTP from the simulated user clients. Each
container executes one slice creation script and exits. We use the restart policy of
Kubernetes to keep providing more users into the system while maintaining a maximum
user limit for the current run. We will process the results and gather metrics with a
separate analysis script.

110

https://cloud.google.com/compute/docs/machine-types

6.3. Performance Evaluation

In early performance tests, we used MongoDB and RabbitMQ through their respective
cloud providers. However, we can only select a few options due to the lack of funding for
these platforms. MongoDB Atlas [Inc18b] only allows a maximum of 512MB of storage
and while the RAM is not specified, we started receiving connection errors in the middle
of testing. CloudAMQP [84c18a] restricts the number of connections and RAM available
to free-tier brokers.

Name Deployment Type Specs
Global Google Cloud Compute n1-standard-2
Local Google Cloud Compute n1-standard-2

MongoDB GCP Compute n1-standard-2
RabbitMQ GCP Compute n1-standard-2

Pizza N/A Container 0.1x2.0 Ghz CPU, 100Mi RAM
Mosquitto Adaptor Google Cloud Compute n1-standard-1
Analytics Adaptor Google Cloud Compute n1-standard-1
Sensor Adaptor Google Cloud Compute 0.n1-standard-1

BigQuery Adaptor Google Cloud Compute n1-standard-1
BigQuery Provider Google BigQuery N/A N/A
Mosquitto Provider Google Cloud Compute n1-standard-1
Analytics Provider Google Cloud Compute n1-standard-1
Sensor Provider Google Cloud Compute n1-standard-1
BTS Sensor Google Cloud Container 0.1x2.0 Ghz CPU, 100Mi RAM

Mosquitto Broker Google Cloud Container 0.1x2.0 Ghz CPU, 100Mi RAM
Analytics Client Google Cloud Container 0.5x2.0 Ghz CPU, 256Mi RAM
BigQuery Dataset Google BigQuery N/A N/A

Table 6.3: Experimental setting for performance evaluations

Each user effects a set number of test runs. A test run consists of a set of operations
that a users executes with our deployment framework. We run our experiments with an
increasing number of users, we gather the set of metrics that we describe in Table 6.4

111

6. Evaluation

Metric Name Description
Average Response Time The average time in seconds that passed between requests

and responses with our framework. If a test run involves
multiple requests to our framework, we measure the aver-
age of all those requests. This metric answers the question
"How fast does our framework respond?"

Max Response Time The longest time in seconds that occurred between a
request and response with our framework. This metric
answers the question "What is the slowest time that our
framework can respond?"

Min Response Time The shortest time in seconds that occurred between a
request and response with our framework. This metric
answers the question "What is the fastest time that our
framework can respond?"

Deviation This is the standard deviation of the all the response times
from the requests made to our framework. This metric
answers the question "How much does the response time
of our framework vary?"

Success Rate The percentage of successful responses between that are
executed in all of our tests runs. This metric answers the
question "How many requests are answered?"

Users The number of users constantly using the framework,
conducting test runs.

Runs The number of test runs that each user executes.

Table 6.4: Metrics used for performance experiments

6.3.2 Experiment 1 - Stress Test

This experiment tests the ability of our framework to handle performance at unexpected
high loads. We simulate these high loads by using concurrent users that send continuous
requests for slice creation to our framework. By continuously creating extra slices, (which
also means extra resources) we burden the framework on purpose in order to find the
breaking point of our services.

However, the idea of a user that continuously creates resource slices is not expected
standard behavior since we expect a user to create at most a few slices and use them.
In an ideal situation a good user will also delete his/her slices and release the resources
from our framework. The result of the initial set of tests can be seen in Table 6.5.

One test run consists of a slice creation operation. The simulated users create one slice
per test run of specification: 2 BTS sensors, 1 MQTT Broker, 1 BigQuery dataset and
1 analytics client. An illustration of the slice we use in this experiment is presented in
Figure 6.8. We calculate our metrics by running 25 runs per simulated user.

112

6.3. Performance Evaluation

Figure 6.8: An illustration of the resource slice deployed during experiment 1

users avg rT deviation max rT min rT success
1 8.04 1.2 16.26 7.19 100
3 15.48 5.84 25.14 7.26 86.71
5 25.07 91.76 604.87 7.59 62.80
10 114.25 215.51 605.91 8.04 59.67
15 115.22 204.04 606.84 5.65 54.81
30 613.11 2.99 619.88 607.52 26.25

Table 6.5: Results of stress test, first attempt
users: Total number of concurrent users
avg rT: Average response time (seconds)

deviation: Standard deviation (seconds) of response times
max rT: Maximum response time (seconds)
min rT: Minimum response time (seconds)

success: % of successful requests

users avg rT deviation max rT min rT success
1 6.8 1 13.26 5.86 100
3 12.65 4.72 20.6 5.55 96.87
5 11.33 2.07 24.55 9.18 97.64
10 25.15 8.39 43.14 8.69 86.82
15 39.71 15.2 84.86 12.63 89.78
20 111.07 29.27 175.8 33.5 88.69
30 185.11 58.29 345.28 68.11 53.57

Table 6.6: Results of stress test, second round
users: Total number of concurrent users
avg rT: Average response time (seconds)

deviation: Standard deviation (seconds) of response times
max rT: Maximum response time (seconds)
min rT: Minimum response time (seconds)

success: % of successful requests

We can observe that these results of the first round (Table 6.5) seem under-performing.
While our implemented solution might not be very performant, this kind of performance
is scarcely seen even in the worst of implementations. After an investigation we noticed

113

6. Evaluation

a problem with the message consumption between the Local Management Service and its
provider adaptors. The Spring AMQP framework that we used in the Local Management
Service implementation provides and easy to use abstraction of the RabbitMQ API.
However, this abstraction hides certain details in the operations. One such operation
convertSendAndReceive is responsible for sending a message and waiting for a correct
reply. The destination is declared by the programmer, but the receiving is implicitly
handled by Spring AMQP. Spring AMQP declares a single reply queue that is create
in the default exchange where all messages sent using this method is received. Each
message is tagged with a correlationId which allows the consumers receiving the reply to
identify which reply is destined for which request.

It must first stated that this is the reccommended approach by RabbitMQ for receiving
message replies in a request/response manner [Piv12]. Spring AMQP consumes the
replies using a pool of consumers that are multi-threaded. This method saves memory
for the broker as only one queue needs to be declared throughout the lifecycle of our
framework. This method is detrimental to our framework since we would like to use
as many consumers as possible to handle replies. We found that a Spring AMQP
can be configured to create callback message queues instead of using a single reply
queue. This means that for each request a separate reply queue would be created as
well as a dedicated consumer to consume from that queue. RabbitMQ discourages this
technique in their own documentation. However, of the developers of RabbitMQ even
suggested this workaround when questions were posted on RabbitMQ’s development
forums concerning this performance issue https://groups.google.com/forum/#!
topic/rabbitmq-users/CY6lshL1plA. After another set of testing, we found the
results to be greatly superior. The second set of tests can be seen in Table 6.6.

We can see from Figure 6.9 that the performance of our core services: the Global and
Local Management Services do quite well in terms of resource consumption during the
high load test runs. One significant problem is very apparent from the results from
Table 6.6, the high rate of request failure at 30 users. From the performance of our core
services, we see no immediate cause for the high request failure of our framework.

114

https://groups.google.com/forum/#!topic/rabbitmq-users/CY6lshL1plA
https://groups.google.com/forum/#!topic/rabbitmq-users/CY6lshL1plA

6.3. Performance Evaluation

Fi
gu

re
6.
9:

R
es
ou

rc
e
co
ns
um

pt
io
n
of

G
lo
ba

la
nd

Lo
ca
lM

an
ag

em
en
t
Se

rv
ic
es

w
ith

30
us
er
s
at

st
re
ss
ed

us
ag

e
pa

tt
er
ns

115

6. Evaluation

6.3.3 Experiment 2 - Sustained Load

This experiments evaluates the performance of our framework under normal expected
usage. Using our set of simulated user clients, one test run consists of a simple series of
operations that emulate a correct usage of our framework:

• Create a resource slice

• Wait 10 seconds

• Update a resource slice

• Wait 10 seconds

• Delete a resource slice

The initial slice is identical to the slice used in the previous experiment: 2 BTS sensors, 1
MQTT Broker, 1 BigQuery dataset and 1 analytics client, illustrated in Figure 6.8. The
slice is then updated to change the sensors for other sensors of a different data type. The
slice is finally deleted from our framework. We calculate our metrics by running 25 runs
per simulated user.

We run these tests on increasing numbers of concurrent users. The results can be seen in
Table 6.7

users avg rT deviation max rT min rT success
1 8.04 1.2 16.26 7.19 100
3 9.22 1.31 18.07 8.15 100
5 9.61 1.57 19.8 8.04 100
10 16.13 5.15 26.86 5.99 100
15 21.78 7.51 42.49 6.7 100
20 54.02 14.16 75.97 14.78 96
30 71.51 11.13 91.88 40.4 63.09

Table 6.7: Results of sustained load test
users: Total number of concurrent users
avg rT: Average response time (seconds)

deviation: Standard deviation (seconds) of response times
max rT: Maximum response time (seconds)
min rT: Minimum response time (seconds)

success: % of successful requests

We can see that the success rate of operations is far greater compared to our previous
experiment. In general we can see that until 20-30 users the framework is quite reliable.
Similar to the previous experiment, we see a very high rate of failure when we reach 30
concurrent users. However, Figure 6.9 shows that the resource usage during the 30 user
test had the highest rate of failure that both Global and Local Management Services are
performing quite well. This was similar to the previous experiment.

116

6.3. Performance Evaluation

The most probable cause of the request failure is a timeout associated with a resource
creation request. When creating a slice we treat the resource creation atomically. When
one resource fails to be provisioned, then the operation for the entire slice fails too. Since
our the performance of our framework is not strained, we analyze our resource providers
in the next subsection for possible causes of the high request failure rate.

6.3.4 Resource Provider Analysis

According to our performance tests, we reach a high level of request failure with increasing
concurrent users. Other related tools such as Consul [Has18], Zookeeper [Apa18b] and
[Cor18] (Chapter 2) can operate at greater than 200 concurrent users according to a
benchmark run by CoreOS in 2017 [Lee17]. However, these tools only partly share our
feature base and they are also production ready tools. We use their benchmarks as
eventual goals, but it is infeasible to try to achieve the goals of production ready products
developed by large teams of developers. We indicated in Sections 6.3.2 and 6.3.3 during
our experiments that we suspected resource providers as the bottleneck.

To find the problem, we investigated the log files of the different resource providers that
we used in our experiment. Since we have treated the resource providers as external to
our system, we did not include any kind of instrumentation in their implementations.
We added additional instrumentation to resource providers to record the time it takes to
create a containerized deployment on GCE [Pla14]. The additional instrumentation was
applied to the BTS sensor provider and the MQTT provider, which are two providers
implemented by us. We also instrumented the Provider Adaptors of the resource providers.
In the Provider Adaptors we measure the time that it takes for the resource to complete
all pending configuration after provisioning. Pending configuration in case of the MQTT
resource means the assignment of its public IP through the provider (and subsequently
GCE) and the update of its resource model (for example, setting unique id, adding
metadata). However pending configuration of the sensor resource is the update of its
resource model. We ran the scenario of Experiment 1 (Section 6.3.2) with 30 users with
the two instrumented resource providers and Provider Adaptors. The measurements that
we recorded during the test are presented in Tables 6.8 and 6.9.

Resource Adaptor average max min deviation
MQTT broker 0.8 0.83 0.69 0.13
Sensor 0.75 3.42 0.63 0.34

Table 6.8: Time to provision containerized deployments on GCE, in seconds

Resource Adaptor average max min deviation
MQTT broker 187.58 311 44 90.21
Sensor 0.75 3.42 0.63 0.34

Table 6.9: Time for resource to complete pending configuration, in seconds

117

6. Evaluation

We identified a problem associated with the MQTT Provider. Our implementation of the
MQTT provider uses GCE Kubernetes [Pla14] to deploy containerized versions of the
Eclipse Mosquitto MQTT broker [Fou12]. In order to obtain an MQTT broker as a fully
functional resource, it must have a publicly exposed IP address so that clients can connect
to it. Using the GCE deployment in order to obtain a public IP for a containerized
deployment, it is necessary to expose it with a LoadBalancer service [Pla18a]. Creating
this service is not a fast operation due to the latency in the Compute Engine’s APIs
for creating the components of a load balanced service. The latency caused by these
tasks are our of our control since we cannot have any measure of control over Google’s
infrastructure. Therefore there is no way to avoid the wait for the assignment of a public
IP to a broker.

We notice that creation of the containerized deployment between the resources is similar
and fast. However there is a significant increase between the time the BTS sensor resource
and MQTT broker resource to complete their pending configurations. This increase in
time is due to the assignment of public IP to the MQTT resource. We find the problem
to be the creation of LoadBalancer components in the GCE cluster. In scenarios where
we use less concurrent users, the creation of LoadBalancer components is not an issue.
However at 30 users the number LoadBalancer components that are created is larger
than the number of machines that make up the cluster. It is important to note that in
all of GCE’s related documentation [Pla18a][SRR18], it is reccommended to use only
as many LoadBalancers as needed to expose a running. However the documentation
considers using GCE to deploy production systems. In our experiments we use GCE as a
testbed to deploy resources for many resource ensembles.

We run same test again with 30 concurrent users. However we use CloudMQTT [84c18b]
as the provider of MQTT broker resources. Since we do not handle to deployment of
CloudMQTT brokers, we only instrument the Provider Adaptor to measure the time for
the resource to enter our framework. The results are presented in Tables 6.10 and 6.11

Resource Adaptor average max min deviation
MQTT broker 187.58 311 44 90.21
CloudMQTT broker 1.57 1.94 1.1 0.21

Table 6.10: Time for resource to enter the framework, in seconds

users avg rT deviation max rT min rT success
30 70.85 11.56 90.88 38.4 98.09

Table 6.11: Experiment 1, with only 30 concurrent users. CloudMQTT was used as a
resource provider

users: Total number of concurrent users
avg rT: Average response time (seconds)

deviation: Standard deviation (seconds) of response times
max rT: Maximum response time (seconds)
min rT: Minimum response time (seconds)

success: % of successful requests

118

6.3. Performance Evaluation

We notice by replacing our MQTT provider with CloudMQTT we achieve a success
rate of 98%. We discovered that the Spring AMQP [Piv17] library that we use in our
implementation of the Global and Local Management Services sets a default timeout of
180 seconds (3 minutes). Therefore, by using our MQTT provider that deploys to GCE,
we very consistently go over this timeout limit. CloudMQTT as an organization who
specialize in the deployment of MQTT brokers manage to provision functional brokers
withing 1-2 seconds. Therefore, by switching to the more reliable resource provider we
increase the performance of our framework. Therefore, we should treat the resource
providers as a source of uncertainty. In a production context, we could either increase
the timeout of our requests to resource providers, or impose a threshold on the response
time of resource providers.

users avg rT deviation max rT min rT success
30 288.94 93.7 449.82 107.57 96.93

Table 6.12: Experiment 1, with only 30 concurrent users. We use our MQTT provider
and set the timeout of provider requests to 600 seconds (10 minutes)

users: Total number of concurrent users
avg rT: Average response time (seconds)

deviation: Standard deviation (seconds) of response times
max rT: Maximum response time (seconds)
min rT: Minimum response time (seconds)

success: % of successful requests

We modified our framework and set the timeout to 600 seconds (10 minutes). Then we
ran experiment 1 with 30 users, using our MQTT provider. The results are presented
in 6.12. We can see that we now achieve a success rate of ≈ 97%. However have an
average response time more than four times higher than using the Cloud AMQP provider.
Figure 6.11 gives an illustration of the comparison of the request success rates between
the MQTT provider (with and with the long timeout) and the CloudMQTT provider.
We also provide Figure 6.12 as an illustration of the comparison of the average response
times.

119

6. Evaluation

Figure 6.11: A comparison of request success rates (%) for the MQTT and CloudMQTT
provider for 30 concurrent users under Experiment 1

Figure 6.12: A comparison of average response time (in seconds) for the MQTT and
CloudMQTT provider for 30 concurrent users Experiment 1

We can see from the graphs that the performance of a resource provider does impact the
performance of our framework. In a production scenario, we need to consider a longer
response time from our framework if we have underperforming resource providers, or a
higher request failure rate.

120

6.4. Lessons Learned

6.4 Lessons Learned
In this section we give a resumé of important lessons that were learned during and after
the course of the evaluation of our framework. The lessons that we learn can be avenues
for improvement for our framework. Additionally the lessons learned aim to share useful
experience that we gained through the use of different tools and technologies over the
course of the work of this thesis.

Our framework has a significant learning curve. During the functional evaluation we
found that the long an verbose JSON descriptions of resources and resource slices can a
difficult read for a new user to our framework. In our evaluation we use resource slice
descriptions of around 200 lines long. Moreover, the documentation of the semantics of
our resource information models can be improved. However documentation is also an issue
shared among other industry organizations. In our work we used primarily Google Cloud
Platform [SRR18] as infrastructure for our deployments and evaluations. We learned
that the learnability issue of our framework is shared by the Google Container Engine
[Pla14]. GCE models all its types of objects in a JSON format. Similar to the way that
we deploy resource slices, to deploy multiple objects through GCE include all the JSON
descriptions in one file. The different fields in the JSON descriptions of GCE are not
thoroughly documented in either the GCE official documentation [Pla18b] or the official
Kubernetes (the engine which runs the GCE) documentation [Fou18b]. The knowledge
of using Kubernetes on GCP was essential to our work since, our resource providers
and framework deployments all take place on GCE. In practice most of our knowledge
was gained from the practical tutorials that were posted in the documentation pages for
[Pla18b] and [Fou18b]. Features that go further than the basics in these tutorials are
simply not documented. For example, during our implementation of the firewall provider,
[Fou18b] under the section "Network Policies" gives an example of a firewall rule that
denies all traffic to a selected service. However, there is no documentation on allowing
or denying selective traffic, or making a firewall rule apply to a group of services. We
learned the two features in the previous sentence simply through experimentation with
GCE by creating simply dummy services and sending pings among them. Questions from
Stack Over flow such as https://stackoverflow.com/questions/50960779/
kubernetes-ingress-network-policy-from-other-pod provide examples of
selective firewall policies that the official documentation does not even mention. Therefore,
with this experience we can conclude that although our JSON information models can
provide a barrier for new users, our work is certainly not the only tool that suffers from
this issue.

Although in our initial problem statement we consider the resource providers to be
external, they can still bring significant consequences. During the performance evaluations
of our framework, we noticed the impact of underperforming resource providers that
interact with our system. During the evaluations, we did not know the cause of the
high rate of error experienced by our framework. In Subsection 6.3.4, we analyzed our
resource providers and identified an example of an underperforming provider. The MQTT
provider that we implemented, deploys instances of brokers on the Google Container

121

https://stackoverflow.com/questions/50960779/kubernetes-ingress-network-policy-from-other-pod
https://stackoverflow.com/questions/50960779/kubernetes-ingress-network-policy-from-other-pod

6. Evaluation

Engine. However, the time to assign a public IP address to a broker service increased
the provisioning time of the resource above the default three minute timeout of our
framework. The underlying issue with the long delay in the assignment of public IP
addresses lies in the internal processes of Google Container Engine to create the different
components necessary for exposing a public IP. We found two solutions to improve the
level of service of our framework. The first solution involved using a different provider for
the same resource type, in this case we used CloudMQTT [84c18b] as a resource provider.
We found by using an alternative provider that is more performant, we could increase
the rate of success of requests from ≈ 50% to ≈ 97%. The second solution involved
increasing the request timeout of our framework to 10 minutes. By increasing the timeout
we achieved a similar success ratio our first solution, but the average response time of
our framework increased to ≈ 3 minutes. We have learned after this experience that the
performance of a resource provider can have consequences to the performance of our
framework. We could imagine that in a production context, we would face the choice
of either using a small, but efficient, set of resource providers or using a large pool of
resource providers but passing operational delays to our end users for underperforming
resource providers.

We can see above, that we mentioned Google Cloud Platform and Google Container
Engine several times to reference issues or features. This indicates that there is strong
reliance on Google Cloud Platform in our work. This is true, since all our framework
deployments and most of our resource providers use the infrastructure of GCP.This work
has benefited from the Google Cloud Platform Education Grant (TU Wien, Advanced
Services Engineering) for access to resources such as VMs and container clusters. Our
work should benefit from using infrastructures from other cloud providers such as Amazon
Web Services [Ser17]. However, due to the lack of funding and resources, this was simply
not possible. We did initially try to use MongoDB Atlas [Inc18b] and CloudAMQP
[84c18a] free tier services for the deployments in our evaluations. These free tier services
were simply not powerful enough for our requirements, for example both MongoDB Atlas
and CloudAMQP apply connection limits to their resources, after which the service stop
functioning. We subsequently deployed these resources on powerful VMs in GCP. Any
further work on our framework could benefit from using other kinds of infrastructure.

In the worst case scenario that involves underperforming resource providers and a high
number of concurrent users, a user could wait several minutes for the creation of a
resource ensemble. This magnitude of response time would not suit users who use our
framework to create short-lived resource ensembles. The time it takes for our framework
to respond might not be worth the reward of using he resource ensemble for a short a
period of time. However, for long-lived resource ensembles, the performance of our tool
can still be adequate. We the maximum response time from our performance evaluation
in Table 6.12, which is 450 seconds (≈ 8minutes). If the user intends to use the resource
ensemble for only 10 minutes, we can see that the usage period could potentially take as
long as the time it takes to provision the ensemble. However with increasing lifespan of
the resource ensemble the upper bound of our framework’s response time is amortized.

122

6.5. Summary

A 30 minute usage of an ensemble means the response time only accounts for 25% of
the usage period, for one hour the proportion decreases to 12.5%, for two hours this
proportion is 6.25% and so on.

The performance impact of the resource providers could lead to further work on our
framework. Currently the framework enables users to interface with diverse resource
providers. However, the user cannot know from our framework the performance of a
resource provider from our framework. Using our example from Subsection 6.3.4, we
assume a case where the MQTT and CloudMQTT provider are deployed together with
our framework. The user depending on his/her choice, could either deploy his resource
ensemble within two minutes or 10 minutes according to Tables 6.11 and 6.12. Future
work could focus on a reccomendation service for resource providers. The example provide
6.3.4 shows that even between two providers that provide the same resource type, it is
possible to distinguish attributes that make one provider more attractive than the other.
In this case the CloudMQTT provider would be more desirable than our MQTT provider
since the time to provision the resource is shorter. This concept could be extended to
different attributes that do not only focus on performance but on other attributes of the
resource provider. The correct provider reccomendation to an end user could improve
the quality of our framework’s experience.

6.5 Summary

In this section we evaluated our proposed framework on two levels: Functional and
Performance. We found that functionally we achieved the feature base required to achieve
the use cases of our motivating scenario specified in Chapter 3. We evaluated the features
of our framework on four different criteria: Learnability, Operability, Attractiveness and
Flexibility. We concluded that the features of our framework provides flexibility and
operability in the management of resource ensembles compared to other related works
and tools. However, the current command line based Slice Management Client combined
with a verbose JSON specification means that our framework is not friendly for new
users even though the JSON format simplifies more complex operations by facilitating
automation.

Our performance evaluation revealed that the performance of resource providers can have
a significant impact on the performance of our framework. We identified an example where
using an alternative resource provider decreased the average response time from ≈ 180s
to ≈ 70s. The reason behind this improvement was linked to our cloud infrastructure
provider, Google Cloud Platform [SRR18]. This nevertheless, shows that our external
resource providers are a source of uncertainty. This uncertainty can lead to future work
on our framework by trying to reduce this uncertainty by either introducing a benchmarks
for resource providers or a recommendation service to users of our framework.

We conclude the chapter with a section that notes several lessons learned from the
evaluation of our framework. We discuss issues such as those related to Google Cloud

123

6. Evaluation

Platform, which provides the infrastructure for our work, or the performance impact of
resource providers on our framework.

124

6.5. Summary

Fi
gu

re
6.
10

:
R
es
ou

rc
e
co
ns
um

pt
io
n
of

G
lo
ba

la
nd

Lo
ca
lM

an
ag

em
en
t
Se

rv
ic
es

w
ith

30
us
er
s
at

ex
pe

ct
ed

us
ag

e
pa

tt
er
ns

125

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion
In this thesis we introduced a novel framework that is able to provision and configure
resource ensembles of IoT resources, network function services and cloud services. We
had difficulty finding any related works or tools that were a solution to our problem
statement, although there are other solutions that handle different subsets of our problem
statement. To this end, we have leveraged exiting work to create a distributed information
model that harmonizes data between a large heterogeneous pool of resources and resource
providers. Our harmonized information models clear the way for an architectural design
that exposes a single unified API which can query and control resources and providers
across different platforms and infrastructures. By offering a single unified API for resource
based operations, we reduce the knowledgebase that is required to provision and configure
a resource ensemble that forms an IoT cloud system. Furthermore, we use the unified
API that we provide in order to develop features that allow for the provisioning and
configuration of end-to-end resource slices on-demand at runtime. However, we have
designed our framework in such a way that the management of resource slices do not
depend solely on our implementation. In order to facilitate interoperability we have
exposed our resource level operations through a HTTP REST API that can be used by
third parties.

Regarding the evaluation of our prototype implementation of our proposed framework,
we contribute evaluations on the functional and performance levels. The design of
our framework was driven by a scenario that is based on a real world problem. In
the functional evaluation we use our framework to achieve the use cases of our stated
scenario. Moreover, we evaluate the features of our prototype based on a set of criteria:
Learnability, Simplicity, Attractiveness and Flexibility. The evaluation against these
criteria take into account the processes and methods of related tools. Regarding the
performance evaluation, we tested the framework with a small amount of concurrent

127

7. Conclusion and Future Work

users, so our results are adequate but not extensive. We managed to run experiments
that evaluated the stress and load that our prototype can handle. Running a basic
deployment and interfacing with seven different resource providers, our framework can
handle the stress of continuous resource slice creation requests for up to 20 users with
an operation success rate of over 88%. However, 20 users is simply too small of a
metric for performance testing to give reliable results. Furthermore, we evaluated
that our prototype can handle a sustained load of reasonable usage for up to 20 users
with a operation success rate over 96%. We also discovered that the performance of
resource providers, which are external to our framework, can have significant impacts
on the performance of our framework. We found an example where using bad and good
quality resource providers with our framework resulted in a difference of 40% in the
average response time. The prototype implementation of our framework is available open
source on GitHub at https://github.com/SINCConcept/HINC. Additionally, all
the IoT resource, network function service and cloud service examples that we have
implemented to test and evaluate our work is also available open source on GitHub a
https://github.com/rdsea/IoTCloudSamples and can be used by developers
who need example software for testing. Some of our work is being integrated with the
INTER-IoT project, and currently our tools are being used to develop interoperability
support for resource ensembles. We also contributed a paper published by the European
Conference on Software Architectures (ECSA 2018) in the program of Posters, Tools and
Demos Track [HT18].

7.2 Future Work
Due to the scope of work and time we could only evaluate our prototype framework with
one scenario that could benefit from the resource ensemble approach. With this limit
in mind, we aimed to thoroughly evaluate all the functional aspects of our prototype
through our chosen scenario. Therefore in future works our proposed framework could
be applied to different scenarios that involve IoT and cloud resources working together
to gain more knowledge into the feasibility of the resource ensemble based approach. We
also learned form our evaluation that the command line terminal based approach can be
verbose for constructing and reading the description of resource slices. However, with the
availability of our resource REST API, we welcome any future work on a more graphical
oriented user friendly solution for the Slice Management Client which could involve a
native desktop or mobile client which could repackage some library code in our slice
management client into a more user friendly experience. This could be somewhat like
the approach taken by Node-RED[Fou18a] which allows the import and export of data
flows through JSON in its graphical interface. We also believe that the performance of
our prototype can be improved through further iterations of development although our
performance results were satisfactory. We have separated clearly our architectural design
and prototype implementation so that future researchers or students can either reuse
and extend our implementation or seek a better implementation while keeping to our
conceptual architectural design.

128

https://github.com/SINCConcept/HINC
https://github.com/rdsea/IoTCloudSamples

Bibliography

[84c18a] 84codes. Cloud amqp product overview. https://www.cloudamqp.com/
docs/product_overview.html, 2018.

[84c18b] 84codes. Cloud mqtt. https://www.cloudmqtt.com/, 2018.

[ACIM15] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro. Information centric
networking in iot scenarios: The case of a smart home. In 2015 IEEE
International Conference on Communications (ICC), 2015.

[Ala18] Alarmtab. Bts digital temperature sensor. https://www.alarmtab.de/
BTS-digital-temperature-sensor, 2018.

[Ama18] Amazon. Amazon rds user guide. https://docs.aws.amazon.com/
AmazonRDS/latest/UserGuide/Welcome.html, 2018.

[Apa18a] Apache. Cassandra nosql database. http://cassandra.apache.org/,
2018.

[Apa18b] Apache. Zookeeper. https://zookeeper.apache.org/, 2018.

[AS17] IBM Animesh Singh. What is a service mesh and how is-
tio fits in. https://developer.ibm.com/code/2017/07/21/
service-mesh-architecture-and-istio/, 2017.

[Bud18] Buddy. Buddy works. https://buddy.works/, 2018.

[Buo18] Buoyant.io. Linkerd service mesh proxy. https://linkerd.io/, 2018.

[Che18] Chef. Chef. https://www.chef.io/chef/, 2018.

[Cor18] CoreOS. etcd. https://coreos.com/etcd/, 2018.

[CZC11] Marco Crasso, Alejandro Zunino, and Marcelo Campo. A survey of ap-
proaches to web service discovery in service-oriented architectures. J.
Database Manage., 2011.

[Dat18] Treasure Data. fluentbit. https://fluentbit.io/, 2018.

129

https://www.cloudamqp.com/docs/product_overview.html
https://www.cloudamqp.com/docs/product_overview.html
https://www.cloudmqtt.com/
https://www.alarmtab.de/BTS-digital-temperature-sensor
https://www.alarmtab.de/BTS-digital-temperature-sensor
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
http://cassandra.apache.org/
https://zookeeper.apache.org/
https://developer.ibm.com/code/2017/07/21/service-mesh-architecture-and-istio/
https://developer.ibm.com/code/2017/07/21/service-mesh-architecture-and-istio/
https://buddy.works/
https://linkerd.io/
https://www.chef.io/chef/
https://coreos.com/etcd/
https://fluentbit.io/

[DCB15] S. K. Datta, R. P. F. Da Costa, and C. Bonnet. Resource discovery in
internet of things: Current trends and future standardization aspects. In
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015.

[DCLT+14] Roberto Di Cosmo, Michael Lienhardt, Ralf Treinen, Stefano Zacchiroli,
Jakub Zwolakowski, Antoine Eiche, and Alexis Agahi. Automated synthesis
and deployment of cloud applications. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, 2014.

[dD18] databroker DAO. databroker dao global market. https://
databrokerdao.com/, 2018.

[DS16] Pablo Delatorre and Alberto Salguero. Training to capture software require-
ments by role playing. In Proceedings of the Fourth International Conference
on Technological Ecosystems for Enhancing Multiculturality, 2016.

[Fac18] Facebook. Facebook v2 graph api. https://developers.facebook.
com/docs/graph-api/overview, 2018.

[FEH+14] Kaniz Fatema, Vincent C. Emeakaroha, Philip D. Healy, John P. Morrison,
and Theo Lynn. A survey of cloud monitoring tools: Taxonomy, capabilities
and objectives. Journal of Parallel and Distributed Computing, 2014.

[Fou12] Eclipse Foundation. Eclipse mosquittoTM an open source mqtt broker.
https://mosquitto.org, 2012.

[Fou18a] JS Foundation. Node-red 0.18 release. https://nodered.org/blog/
2018/01/31/version-0-18-released, 2018.

[Fou18b] Linux Foundation. Kubernetes reference documentation. https://
kubernetes.io/docs/reference/, 2018.

[FS18] NGINX Floyd Smith. What is a service mesh? https://www.nginx.
com/blog/what-is-a-service-mesh/, 2018.

[GGG+16] Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Jacopo Mauro, and
Fabrizio Montesi. Self-Reconfiguring Microservices. In Theory and Practice
of Formal Methods. 2016.

[Git18a] Github. Statsd. https://github.com/etsy/statsd, 2018.

[Git18b] GitHub. yargs the modern, pirate-themed successor to optimist. https:
//github.com/yargs/yargs, 2018.

[Goo18a] Google. Bigtable nosql database. https://cloud.google.com/
bigtable/, 2018.

[Goo18b] Google. What is bigquery? https://cloud.google.com/bigquery/
what-is-bigquery, 2018.

130

https://databrokerdao.com/
https://databrokerdao.com/
https://developers.facebook.com/docs/graph-api/overview
https://developers.facebook.com/docs/graph-api/overview
https://mosquitto.org
https://nodered.org/blog/2018/01/31/version-0-18-released
https://nodered.org/blog/2018/01/31/version-0-18-released
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://github.com/etsy/statsd
https://github.com/yargs/yargs
https://github.com/yargs/yargs
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigquery/what-is-bigquery
https://cloud.google.com/bigquery/what-is-bigquery

[Has18] HashiCorp. Consul. https://www.consul.io/, 2018.

[HT18] Lingfan Gao H.L. Truong, Michael Hammerer. Service architectures and
dynamic solutions for interoperability of iot, network functions and cloud
resources. In In Proceedings of European Conference on Software Architecture
(ECSA2018), 2018.

[II18a] INTER-IoT. Inter-iot eu project. http://www.inter-iot-project.
eu/, 2018.

[II18b] INTER-IoT. Inter-iot eu project open calls. http://www.
inter-iot-project.eu/open-call, 2018.

[Inc17] MongoDB Inc. Mongodb. https://www.mongodb.com/, 2017.

[Inc18a] Kong Inc. Kong api gateway. https://konghq.com, 2018.

[Inc18b] MongoDB Inc. Mongodb atlas documentation. https://docs.atlas.
mongodb.com/, 2018.

[Inf18] InfluxData. Telegraf. https://www.influxdata.com/products/,
2018.

[Ins13] The European Telecommunications Standards Institute. Network functions
virtualisation update white pap er,” https://portal. https://portal.
etsi.org/NFV/NFVWhitePaper2.pdf, 2013.

[ISO10] ISO/IEC. Iso/iec 25010 system and software quality models. Technical
report, 2010.

[JAAA16] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad. Software testing
techniques: A literature review. In 2016 6th International Conference
on Information and Communication Technology for The Muslim World
(ICT4M), 2016.

[Jen18] Andrew Jenkins. Service mesh architectures. https://aspenmesh.io/
2018/03/service-mesh-architectures/, 2018.

[Kle17] Matt Klein. Service mesh data plane vs. con-
trol plane. https://blog.envoyproxy.io/
service-mesh-data-plane-vs-control-plane-2774e720f7fc,
2017.

[KR15] Andreas Kliem and Thomas Renner. Towards On-Demand Resource Provi-
sioning for IoT Environments. 2015.

[Lee17] Gyu-Ho Lee. Exploring performance of etcd, zookeeper and consul. https:
//coreos.com/blog/performance-of-etcd.html, 2017.

131

https://www.consul.io/
http://www.inter-iot-project.eu/
http://www.inter-iot-project.eu/
http://www.inter-iot-project.eu/open-call
http://www.inter-iot-project.eu/open-call
https://www.mongodb.com/
https://konghq.com
https://docs.atlas.mongodb.com/
https://docs.atlas.mongodb.com/
https://www.influxdata.com/products/
https://portal. etsi.org/NFV/NFV White Paper2.pdf
https://portal. etsi.org/NFV/NFV White Paper2.pdf
https://aspenmesh.io/2018/03/service-mesh-architectures/
https://aspenmesh.io/2018/03/service-mesh-architectures/
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://coreos.com/blog/performance-of-etcd.html
https://coreos.com/blog/performance-of-etcd.html

[LNT16] D. H. Le, N. Narendra, and H. L. Truong. Hinc - harmonizing diverse
resource information across iot, network functions, and clouds. In 2016
IEEE 4th International Conference on Future Internet of Things and Cloud
(FiCloud), 2016.

[MC12] Debajyoti Mukhopadhyay and Archana Chougule. A survey on web service
discovery approaches. In David C. Wyld, Jan Zizka, and Dhinaharan Naga-
malai, editors, Advances in Computer Science, Engineering & Applications,
2012.

[MCTD13] D. Moldovan, G. Copil, H. Truong, and S. Dustdar. Mela: Monitoring
and analyzing elasticity of cloud services. In 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science, 2013.

[mla18] mlab. Mlab mongodb hosting. https://mlab.com/, 2018.

[MS05] Jose Luis Mate and Andres Silva. Requirements Engineering for Sociotech-
nical Systems. Information Resources Press, 2005.

[NVI+15] S. Nastic, M. Vögler, C. Inzinger, H. Truong, and S. Dustdar. rtgovops: A
runtime framework for governance in large-scale software-defined iot cloud
systems. In 2015 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, 2015.

[OSS18a] OSS. Jenkins. https://jenkins.io/, 2018.

[OSS18b] Netflix OSS. Spinnaker concepts. https://www.spinnaker.io/
concepts/, 2018.

[Per17] Charith Perera. Sensing as a service (s2aas): Buying and selling iot data.
2017.

[Piv12] Pivotal. Remote procedure call (rpc) with rabbitmq. https://www.
rabbitmq.com/tutorials/tutorial-six-spring-amqp.html,
2012.

[Piv17] Pivotal. Spring boot framework. https://spring.io/projects/
spring-boot, 2017.

[Piv18] Pivotal. Rabbitmq message broker. https://www.rabbitmq.com/,
2018.

[Pla14] Google Cloud Platform. Google container engine. https://cloud.
google.com/kubernetes-engine/, 2014.

[Pla17a] Google Cloud Platform. Google cloud pub sub. https://cloud.google.
com/pubsub/, 2017.

132

https://mlab.com/
https://jenkins.io/
https://www.spinnaker.io/concepts/
https://www.spinnaker.io/concepts/
https://www.rabbitmq.com/tutorials/tutorial-six-spring-amqp.html
https://www.rabbitmq.com/tutorials/tutorial-six-spring-amqp.html
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://www.rabbitmq.com/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/

[Pla17b] Google Cloud Platform. Google stackdriver. https://cloud.google.
com/stackdriver/, 2017.

[Pla18a] Google Cloud Platfor. Exposing applications using services.
https://cloud.google.com/kubernetes-engine/docs/
how-to/exposing-apps, 2018.

[Pla18b] Google Cloud Platform. Google container engine documentation. https:
//cloud.google.com/kubernetes-engine/docs/, 2018.

[PZCG13] Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Sensing as a service model for smart cities supported by internet
of things. 2013.

[rol] Role-play and use case cards for requirements review.

[See18] Seed. Sensors for grove. https://www.seeedstudio.com/category/
Sensor-for-Grove-c-24.html, 2018.

[Ser17] Amazon Web Services. Amazon web services virtual private cloud. https:
//aws.amazon.com/vpc/, 2017.

[Sim03] Ludwig Simone. Comparison of centralized and decentralized service
discovery in a grid environment. file:///home/ling/Downloads/
Comparison_of_centralized_and_decentralized_servic.pdf,
2003.

[Sma17] Smartbear. Swagger api documentation. https://swagger.io/, 2017.

[SRR18] V. Srinivasan, J. Ravi, and J. Raj. Google Cloud Platform for Architects:
Design and manage powerful cloud solutions. 2018.

[TB17] Hong-Linh Truong and Luca Berardinelli. Testing uncertainty of cyber-
physical systems in iot cloud infrastructures: Combining model-driven en-
gineering and elastic execution. In Proceedings of the 1st ACM SIGSOFT
International Workshop on Testing Embedded and Cyber-Physical Systems,
2017.

[TCD+15] H. Truong, G. Copil, S. Dustdar, D. Le, D. Moldovan, and S. Nastic. icomot
– a toolset for managing iot cloud systems. In 2015 16th IEEE International
Conference on Mobile Data Management, 2015.

[Tho15] Sonali D. Thosar. Cloud computing and software-based internet of things. In-
ternational Journal of Advanced Research in Computer Science and Software
Engineering, 2015.

133

https://cloud.google.com/stackdriver/
https://cloud.google.com/stackdriver/
https://cloud.google.com/kubernetes-engine/docs/how-to/exposing-apps
https://cloud.google.com/kubernetes-engine/docs/how-to/exposing-apps
https://cloud.google.com/kubernetes-engine/docs/
https://cloud.google.com/kubernetes-engine/docs/
https://www.seeedstudio.com/category/Sensor-for-Grove-c-24.html
https://www.seeedstudio.com/category/Sensor-for-Grove-c-24.html
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
file:///home/ling/Downloads/Comparison_of_centralized_and_decentralized_servic.pdf
file:///home/ling/Downloads/Comparison_of_centralized_and_decentralized_servic.pdf
https://swagger.io/

[TN16] Hong Linh Truong and Nanjangud C. Narendra. SINC - an information-
centric approach for end-to-end iot cloud resource provisioning. In Interna-
tional Conference on Cloud Computing Research and Innovations, ICCCRI
2016, Singapore, Singapore, May 4-5, 2016, 2016.

[Tru18] H. L. Truong. Towards a resource slice interoperability hub for iot. In 2018
IEEE International Conference on Cloud Engineering (IC2E), 2018.

[VC17] C.P. Vandana and A. A. Chikkamannur. Study of resource discovery trends
in internet of things (iot). Advanced Networking and Applications, 2017.

[WM17] buoyant.io William Morgan. What’s a service mesh? and why
do i need one? https://blog.buoyant.io/2017/04/25/
whats-a-service-mesh-and-why-do-i-need-one/, 2017.

[YZ11] Microsoft Yu Zheng. T-drive trajectory data sample. https:
//www.microsoft.com/en-us/research/publication/
t-drive-trajectory-data-sample/, 2011.

[ZT13] Bernd Zwattendorfer and Arne Tauber. The public cloud for e-government.
Int. J. Distrib. Syst. Technol., 2013.

134

https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Statement
	Research Questions
	Approach
	Contribution
	Thesis Structure

	State of the Art
	Overview
	Background
	Resource Provisioning
	Related Work
	Summary

	Motivation Scenarios and Use Cases
	Overview
	Scenario: Monitoring Infrastructures of Base Transceiver Stations (BTS)
	Use Cases
	Resource Ensemble Approach
	Requirements
	Summary

	Architecture Design
	Overview
	Operating Context
	Models
	Detailed Design and Service Architecture
	Additional Models
	Service Orchestration
	Service Mesh
	Summary

	Prototype Implementation
	Overview
	Implementation
	Messaging Communication
	Deployment
	Summary

	Evaluation
	Test System
	Functional Evaluation
	Performance Evaluation
	Lessons Learned
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

