
TrACTOr & StARboard
Tracking and Haptic Interaction for Learning in AR

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Christoph Schindler, BSc
Matrikelnummer 00828417

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.Doz. Mag. Dr. Hannes Kaufmann
Mitwirkung: Dipl.-Ing. Mag. Emanuel Vonach, Bakk.

Wien, 29. August 2018
Christoph Schindler Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Christoph Schindler, BSc
Lobstraße 25, 3121 Karlstetten

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. August 2018
Christoph Schindler

iii

Danksagung

An dieser Stelle möchte ich mich bei meinen Eltern Gerald und Ilse, meinem Bruder
Stefan, meiner Freundin Claudia und meinen Freunden bedanken, die mir immer sehr
geduldig mit Rat und moralischer Unterstützung beigestanden sind.

Des Weiteren möchte ich mich bei meinem Betreuer, Mag. Dr. Hannes Kaufmann, für
die Betreuung meiner Diplomarbeit bedanken. Mein weiterer Dank gilt Dipl.-Ing. Mag.
Bakk. Emanuel Vonach, der mich während der gesamten Arbeit sehr gut unterstützt und
geduldig beraten hat.

Außerdem möchte ich mich bei allen freiwilligen Test-Personen bedanken, die sich bereit-
erklärt haben, an der Benutzerstudie teilzunehmen.

v

Kurzfassung

In unserer heutigen computergesteuerten Welt gewinnt das Thema der Mensch-Maschine-
Interaktion bei der Entwicklung von effizienten und flexiblen Interfaces immer mehr an
Bedeutung. Ein Feld mit immer rasanter wachsender Bedeutung ist Augmented Reality,
wobei die physische Welt mit virtuellen Inhalten erweitert wird. Die derzeitigen Interakti-
onstechniken und -prinzipien sind nicht ausreichend, um das gewaltige Potential dieser
Technologien vollständig ausschöpfen zu können.
Besonders haptisches Feedback während der Benutzerinteraktion ist ein wichtiges und
komplexes Thema. Mit dem ACTO-System haben Vonach u.a. [VGK14a] eine angreifbare
(tangible) Benutzersschnittstelle geschaffen, mit der haptische Interfaces prototypisiert
werden können. In dieser Diplomarbeit benutzen wir dieses System um haptische Interak-
tion für Augmented Reality (AR) zur Verfügung zu stellen.
Dafür haben wir zuerst ein alternatives Tracking-System für die ACTO-Roboter ent-
wickelt, es trägt den Namen TrACTOr. Mit diesem neuen Tracking-System wollen wir
einige Nachteile der existierenden Tracking-Lösung kompensieren und den Anforderungen
eines AR-Systems gerecht werden. Aufbauend auf diesem neuen Tracking-System haben
wir eine auf Augmented-Reality basierende Lernapplikation entwickelt, die haptische
Interaktion anbietet. Diese Lernapplikation trägt den Namen StARboard. Mit StARboard
wollen wir die Vorteile von haptischer Interaktion für Lernsysteme untersuchen.
In dieser Arbeit präsentieren wir das Konzept des Tracking-Systems und der Lernapplika-
tion. Des Weiteren wird die Entwicklung zusätzlicher Hardware für die ACTO-Roboter,
sowie der Systemaufbau ausführlich erklärt. Im Anschluss wird die Implementierung von
TrACTOr und StARboard diskutiert. Die technische Evaluierung des Systems hat gezeigt,
dass die Performance und Genauigkeit des TrACTOr Tracking-Systems hoch genug ist,
um Echtzeit-Tracking-Daten für eine AR-basierte Applikation zur Verfügung zu stellen.
Die Benutzerstudie, die wir mit dem fertigen System durchgeführt haben, hat gezeigt, dass
haptische Interaktion in Kombination mir AR im Einsatz für Lernsysteme ähnlich gut
abschneidet, wie herkömmliche Desktop-Applikationen oder gestengesteuerte Interaktion
für AR-Applikationen. Die Benutzer haben diese neuartige Interaktionstechnik als sehr
intuitiv, schnell und einfach zu benutzen beschrieben.

vii

Abstract

In our modern and computer-driven environment the topic of Human Computer Interac-
tion becomes more important, in order to design efficient and flexible interfaces. A field
of increasing importance is Augmented Reality, where current interaction techniques and
principles are not yet satisfying or sufficient for the great potential of these technologies.
Especially haptic feedback during user interaction is an important and complex topic.
With the ACTO system, Vonach et al. [VGK14a] developed a Tangible User Interface
(TUI) for prototyping haptic interfaces. In this thesis we use this system to provide
haptic interaction for Augmented Reality (AR).
Therefore we first developed an alternative tracking system for the ACTO robots, called
TrACTOr. With this new tracking solution we want to overcome some shortcomings of
the existing tracking solution, as well as fit the needs of an AR application better. Based
on the new tracking system we implemented an AR based learning application with
haptic user interaction, called StARboard. With StARboard we wanted to investigate the
benefits of haptic interaction for learning systems for the users.
We present the concepts of the tracking solution and the learning application. The
development of additional hardware for the ACTO robots, as well as the system setup is
explained. Also the implementation of TrACTOr and StARboard is discussed in detail.
The technical evaluation of the system showed that the TrACTOr tracking system has
a high enough performance and accuracy to provide real time tracking data for an AR
based application. The user evaluation we performed with the implemented system
showed that for learning systems, haptic interaction in combination with AR can match
the performance of conventional desktop applications or gesture based AR applications.
The users rated this new interaction technique as very intuitive, fast and easy to use.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction and Motivation 1
1.1 Motivation and Problem Statement . 2
1.2 Goals and Research Questions . 3
1.3 Structure of the Thesis . 5

2 Related Work 7
2.1 Tangible User Interfaces . 7

2.1.1 What Are Tangible User Interfaces 7
2.1.2 Why Tangible User Interfaces Are Useful 8
2.1.3 Actuated Tangible User Interface Object - ACTOs 9
2.1.4 Other Examples of Tangible User Interfaces 10
2.1.5 Tangible User Interfaces for Learning 12

2.2 Augmented Reality . 14
2.2.1 What Is Augmented Reality . 14
2.2.2 Augmented Reality for Tangible User Interfaces 15
2.2.3 Examples of Augmented Reality Used in Tangible User Interfaces 15

2.3 Tracking for Tangible User Interfaces 17
2.3.1 Optical Tracking . 17
2.3.2 Radio Frequency Tracking . 19
2.3.3 Ultrasound Tracking . 19
2.3.4 Hybrid Systems . 19
2.3.5 Other Tracking Types . 20

3 Basics 21
3.1 Kinect Depth Sensor . 21

3.1.1 Kinect Version 1 . 21
3.1.2 Kinect Version 2 . 22
3.1.3 Technical Specifications . 23

xi

3.2 ACTO Interface . 23
3.2.1 ACTO Hardware . 23
3.2.2 ACTO-Framework and Tracking 24

3.3 OpenCV (Emgu CV) . 25
3.4 Image Marker Tracking Basics . 26

3.4.1 Marker Tracking . 26
3.4.2 Marker-less Tracking . 26

3.5 Kalman Filter . 27
3.6 Unity . 27
3.7 HoloLens . 28

3.7.1 Deploy from Unity . 28
3.8 Sailing Basics . 28
3.9 Transform between Different Coordinate Systems with Homography Matrix 29

4 Conceptual Design 31
4.1 Requirements . 32

4.1.1 TrACTOr Requirements . 32
4.1.2 StARboard Requirements . 34

4.2 Concept . 35
4.2.1 Architectural Design . 35
4.2.2 TrACTOr Concept . 36
4.2.3 Concept for ACTO Adaptions 44
4.2.4 Concept for ACTO-Framework Adaptions 45
4.2.5 StARboard Concept . 46

5 Implementation 51
5.1 System Architecture . 51

5.1.1 Main Components . 51
5.1.2 Network and Communication 53
5.1.3 System Calibration . 54

5.2 TrACTOr Implementation . 54
5.2.1 Tracking System Setup . 55
5.2.2 TrACTOr Architecture . 56
5.2.3 Tracking Process . 56
5.2.4 TrACTOr Graphical User Interface 65

5.3 ACTO Module Development and Core Code Adaptions 66
5.3.1 Hardware . 67
5.3.2 Software . 71

5.4 ACTO-Framework Adaptions . 74
5.4.1 Message Enhancement . 74
5.4.2 Graphical User Interface Extension 75

5.5 StARboard Implementation . 76
5.5.1 StARboard Architecture . 76
5.5.2 StARboard Server - Physics and Game Logic 77

5.5.3 StARboard Clients . 87
5.5.4 Interaction . 88

6 Evaluation 93
6.1 Technical Evaluation . 93
6.2 User Study . 97

6.2.1 Study Design . 97
6.2.2 Tasks . 98
6.2.3 Testing Process and Execution 99
6.2.4 Results . 101

7 Discussion 109
7.1 Possible Improvements . 112

8 Conclusion and Future Work 115

List of Figures 117

List of Tables 121

Listings 121

Acronyms 123

Bibliography 125

CHAPTER 1
Introduction and Motivation

Today we live in two parallel existences. The first one is the real physical world where we
can interact with every object and living being. Our ancestors invented a wide variety
of tools that can be used for all sorts of interaction or manipulation of this world. Our
second existence is a digital one: the cyberspace. But for this virtual world we have a
very limited range of interaction possibilities. The most common ones are screens for
receiving information, and mouse and keyboard for generating or manipulating data.
The goal in Human Computer Interaction (HCI) research is to take advantage of the
diverse set of skills from the real physical world, that everyone of us brings along, and
develop new methods to use them for interacting with the cyberspace [IU97].

If the virtual data is given a physical form, these types of User Interfaces are called
Tangible User Interfaces (TUIs). An example given by Ishii is an urban planning
workbench [UI99], where the virtual buildings are represented simply by physical models
that can be touched and moved around the workbench by the user. This provides a very
tight coupling between the physical and the virtual world [Ish08].

A variety of different approaches for TUIs have been developed over the past years. Most
of them are based on some sort of interactive space, like a tabletop. The users can interact
with the digital world by positioning and moving physical objects in that space. In that
manner a lot of use cases can be covered, like an interactive synthesizer [JGAK07], or a
generic TUI prototyping tool [WSJB10].

The TUI we build upon was developed by Vonach et al.[VGK14a]. It is based on small
rectangular robots, so called ACTOs (Modular Actuated Tangible User Interface Objects).
See section 3.2 for a detailed explanation. These ACTOs serve as tokens for the Tangible
UI and can be equipped with different interfaces, like buttons, spinners, displays, etc.
This allows the creation of TUIs for different scenarios. Furthermore, each ACTO has a
set of wheels, so it can move around freely on the interaction surface. The tracking is
based on optical marker tracking. The interaction surface is a glass table and each ACTO

1

1. Introduction and Motivation

is equipped with an ID-marker on the bottom, so it can be tracked by an RGB-camera,
that is positioned underneath the table.

Regarding how the virtual data is represented and visualized, Augmented Reality (AR) is
a great way of embedding virtual information into the real world. The direct combination
of real world and virtual world enhances the users perception, compared to an ordinary
computer screen [Azu97].

1.1 Motivation and Problem Statement
One great field where TUIs can be used are learning systems. The direct interaction and
the usage of multiple human senses can improve the cognitive learning process, which
can help the users to learn faster and more efficiently [Sha09]. These kind of learning
systems are also very well suited for collaborative learning experiences.

For these reasons we want to investigate these benefits by developing a collaborative
learning system based on Augmented Reality and haptic user interaction.
We choose the ACTO system as interface for the user interaction, because it allows us
to modify the interaction tokens. They can be equipped with different interfaces, like
buttons or spinners, which allows us to create more sophisticated user input methods
than with other systems. This helps us to improve the direct interaction with the system.
To provide visual feedback we use AR glasses: The user wears a Microsoft HoloLens [Holb]
and sees virtual objects instead of the ACTO robots.

As the ACTO tracking currently requires a glass table, it is not possible to use the ACTO
system on other surfaces like a normal wooden table or the floor. Also, the lightning
situation could cause problems with the current tracking, as the ACTOs need to be well
lit from below the table without causing reflections on the glass surface.
Another issue is that for technical reasons it is required to synchronize the 3D space of the
ACTO tracking system and the AR system. To solve this issue we use an optical tracking
marker which acts as origin of both 3D spaces. This marker needs to be positioned in
a way that it is visible for the HoloLens as well as the tracking system. As the ACTO
tracking system records from below and the HoloLens top down, this is a problem. Even
if we would use a double sided marker, which is positioned on the glass table this would
cause the tracking not to work in that area.

For those reasons we present an alternative tracking solution in this thesis. We call it
TrACTOr. The system is able to operate on any kind of solid, flat surface, like a wooden
table or the floor. We developed a depth based tracking system which tracks the ACTOs
from above. This type of tracking is less vulnerable to bad lightning conditions, as it
has its own infrared light source. Also the positioning of the tracking marker does not
cause any problems, as it can just be placed on top of the interaction surface. There it is
visible for the tracking system as well as the HoloLens.

With these changes, it is possible to benefit from the advantages of TUIs provided by the
ACTOs in an AR setting. In order to explore the potential we developed the StARboard

2

1.2. Goals and Research Questions

system, a learning system for sailing students. It should support sailing beginners in
understanding the basic concept of driven bearings and different sail trims in various
wind situations.
We developed a module for the ACTO robots that allows the user to interact with them in
a way that suggests direct interaction with the virtual object he sees through AR. Figure
1.1 shows both, the ACTO robot and the virtual overlay. The virtual overlay matches the
ACTO module (highlighted in blue) that the beam of the ship exactly overlays the beam
extension of the rotary element of the ACTO module and the virtual button overlays the
real button (highlighted in red). Also the width of the virtual ship matches the width of
the ACTO. So if the user tries to grab the virtual ship he will actually grab the ACTO
robot.

Figure 1.1: Overlay ACTO robot with virtual ship.

The user can physically pick up the ship and rotate it or move it to another place. To
change the sail trim, he just pushes the beam of the boat left or right. This natural way
of interacting with the virtual objects should provide an immersive experience and an
intuitive handling to support the learning process and motivation.
With this simple interaction technique, the StARboard application provides the option
to test various sail trims for certain wind situation easily and learn how to drive certain
courses or maneuvers.

1.2 Goals and Research Questions
With this thesis we basically follow two main targets. First we want to show a novel way
to combine a haptic interface with visual AR feedback. For this purpose we develop an

3

1. Introduction and Motivation

alternative tracking solution for the ACTO system, called TrACTOr. It also solves the
other issues mentioned above, as it is not limited to the glass table and can be used on
any kind of solid, flat surface.
We investigate how a depth based tracking system allows us to track the interaction
tokens in 3D space. For this to work we equipped the ACTO robots with a small IR
LED, used for identification. Also the system setup is relatively easy, as it only requires
a depth sensor.
The tracking system has to be able to reliably track the ACTO robots from above.
Therefore we tested the two existing versions of the Microsoft Kinect camera to see if the
required accuracy can be reached. The factors which need to be tracked are the ACTOs
current x, y and z position in the interaction space as well as the rotation around the
vertical axis. We explore if this tracking system is able to work with multiple ACTO
robots at the same time. To achieve this it is necessary to differentiate between different
ACTOs, based on their id. At the same time we want to find out, if it is possible, that
multiple users interact with the system at the same time.
The tracking system has to be fast enough to provide real time tracking results, to enable
us to create the AR overlays. Another important aspect is the tracking accuracy. We
examine if the system is accurate enough so that it is possible to overlay the real world
objects with virtual objects. Only if the real world object and virtual object are well
aligned, the direct interaction, mentioned above, becomes possible.
TrACTOr also has to provide an option for optical marker tracking, which is needed for
synchronizing the tracking 3D space with the AR 3D space.
A problem that occurs with tracking from above is that the users hands occlude the
tracked objects during the interaction process. The tracking system has to be resistant
against occlusion to a certain degree.

This new tracking system allows us to follow upon our second major target. We examine
whether the usage of Augmented Reality (AR) in combination with haptic interaction
can be beneficial for interactive learning systems. Therefore we implemented a suitable
learning system, we call StARboard. With this system we close the gap between virtual
system and real world to provide human-real world interaction instead of human-computer
interaction as described by Rakimoto et al. [RN95]. We achieve this by combining the
haptic tokens and the overlayed AR content in a way that suggests direct interaction
with the virtual object with haptic feedback from the real world object. Especially the
movement of objects and adjustment of the sail should work as a sample for this. We
hypothesize that by providing this kind of interaction we can improve the efficiency of
the learning system. We also expect it to enhance the users motivation to learn.
The system should also support collaborative learning, so multiple users learn with the
system together at the same time.

An empirical user study allows us to evaluate whether our described research objectives
are reached and the assumptions we made prove to come true. For that purpose we
conducted a study with 18 users, who tested the StARboard learning system. Every
user was given several tasks to solve. In order to be able to give an objective statement

4

1.3. Structure of the Thesis

whether the StARboard system is really beneficial for the users, regarding our research
goals, we compare three different interaction techniques. Besides the already described
haptic interaction technique with AR, we also developed two other functionally equivalent
interaction techniques. One of them is also based on AR, but it uses gestures for
interacting with the virtual world. So the system does not use any physical tokens. The
other interaction technique is based on the standard computer interaction tools most of
us are familiar with: Mouse, keyboard and a standard computer screen for visualizing
the scene. Every user tried each of the systems in different order.
This method should provide us with reliable information to make a point about the
correctness of our assumptions.

1.3 Structure of the Thesis
In chapter 2 we give an overview of the research that has been done in the fields of
TUI and AR, which are particularly related to this thesis. Various technologies and
concepts which we use for our system are introduced in chapter 3. Chapter 4 contains
the conceptual design of the TrACTOr tracking system and the StARboard learning
application. In chapter 5 we discuss the implementation of the developed systems and
give details about specific implementation features. Chapter 6 covers the results of the
technical evaluation, as well as the execution and interpretation of the user evaluation.
The outcome of the thesis is discussed in chapter 7. Finally, we give a brief summary
and a outlook into the future of this topic in chapter 8.

5

CHAPTER 2
Related Work

In this chapter we give an overview of the research that has been done in the particular
fields of TUIs and related works in AR.
First we will focus on TUIs and explain what they are and why research is performed
in this area. We will also explain this with some examples that can be related to our
work. After that, we will present some basic works of AR. We will illustrate why this is
relevant for the thesis and give examples on how AR can be used for creating TUIs.
Finally, we introduce different tracking technologies that come into question for our
tracking system. We will point out the advantages and disadvantages each of them has
for our scenario and explain why we chose depth tracking in the end.

2.1 Tangible User Interfaces

This section will give an introduction into TUIs. After the general explanation, we will
present why the research for new TUIs is important, and why they will be the future in
HCI. Then we will briefly introduce the TUI we used for this thesis. Also, we will give
some other examples for TUIs. Finally, we will focus on one special field of applications,
which is the use of TUIs for educational purposes. This is the domain that our application
belongs to.

2.1.1 What Are Tangible User Interfaces

Shaer et al. [Sha09] describes the development of Tangible Interfaces as a result of the
efforts to develop applications for Augmented Reality and Ubiquitous Computing. The
basic idea is not to force the user into a virtual digital world, but to extend the real
world with digital content.
The first to talk about Graspable User Interfaces, which we nowadays call Tangible User
Interfaces, was Fitzmaurice et al. [FIB95]. They introduced physical objects, so called

7

2. Related Work

bricks, that represent virtual user interface elements. These allow direct interaction with
the digital world.
They use the example of an ordinary car to make the difference clearer. In a car you have
pedals for braking, a gear box for shifting and a wheel for steering. Each of them works
differently and serves a different purpose. For the digital world we almost exclusively use
mouse and keyboard to interact with all sorts of digital content. This poses a bottleneck
that limits our interaction possibilities for the virtual world. By developing Tangible
User Interfaces we can overcome this issues and the border between the real physical
world and the virtual digital world diminishes.

The term Ishii et al. [IU97] use for Graspable User Interface elements is Tangible Bits.
He describes them as the attempt to close the gap between physical and digital world
by making the virtual information tangible. They picture the Tangible Bits as the
counterpart of Augmented Reality. While they use a projector that is positioned above
the desk as an output device to augment the real world with virtual content, the Tangible
Bits should function as the input device to manipulate the data. They call the setup
of this prototype metaDESK. The metaDESK is an example of an early TUI that uses
tangible input devices.
In a more recent work Ishii [Ish08] describes that Tangibles (Tangible Bits) do not only
serve as input device, but they also carry a physical state that is tightly coupled to
the virtual information they represent. He uses Ben-Josephs TUI for urban planning as
an example, which allows to position different models of buildings and simulate their
shadow and wind behavior [BJIU+01]. Users can change the position and orientation
of the buildings by simply moving the models around on the table. In this example the
TUIs function as input devices, but at the same time they represent their own x- and
y-position as well as their rotation on the workbench. All of these are attributes that the
user can sense directly.

2.1.2 Why Tangible User Interfaces Are Useful

Our interaction with computers and digital information is inconsistent compared to how
we interact with the rest of the physical world that surrounds us [Ish08]. Most of our
senses, like the haptic interaction skills, are not used in the computer interaction with
mouse and keyboard [IU97].

A lot of research is done towards improved tactile interaction with computer systems.
MacKenzie et al. [MI94] describe how versatile the interaction between our hands and
various objects is. We can manipulate, transport and feel objects with our hands, or we
can even use them as tools to modify other objects and our environment. Everyone of us
already brings this capabilities along, we only need to create interfaces to use them.
Another opportunity that TUIs give us is the use of both of our hands at the same time in
two-handed interaction, which is another skill that we already have. Thereby the hands
can either be used to perform the same task, each hand could do a different task, or both
work together in a complex task, where the one depends on the other. Various studies
have shown that proper design of these tasks can lead to high performance increase or, if

8

2.1. Tangible User Interfaces

done badly, become an obstacle for the user interaction [BM86, KBS94].
The application StARboard we developed takes use of this knowledge. It is designed for
two-handed interaction, whereas one hand controls the wind source and the other one
the ship. But an alternative one-handed interaction method is also possible, where the
user only uses one hand to setup one parameter after the other.

There are also less obvious advantages that we gain through the use of our hands, when
interacting with TUIs. One aspect we know as think with your hands, which means
the supportive use of your hands while performing a cognitive task. Kirsh [Kir95a]
performed an experiment where users had to count coins with or without using their
hands. The result was clear: the participants were much faster when they were allowed
to use their hands and also the error rate was significantly lower. This is another fact
we make use of in our interface. We want the user to be able to play around with
the system’s different parameters by directly modifying the setup with his hands. He
instantly retrieves feedback from the system, as the robots move in a different speed.
This short feedback loop should improve the learning curve, as discussed in chapter 2.1.5.

TUIs provide a whole new dimension for the way we interact with computers. It allows
us to use the whole space around us. Kirsh [Kir95b] describes how we can manage our
environment with techniques like categorization to be more productive. Many of these
advantages do not apply to conventional Graphical User Interfaces but to TUIs.

Besides the already mentioned advantages, Fitzmaurice et al. [FIB95] mention even more
that also apply to our interface, like:

• simultaneous, collaborative use
• more intuitive interaction by using physical artifacts
• more specialized input devices
• one to one mapping between control and controller

2.1.3 Actuated Tangible User Interface Object - ACTOs

The TUI we used for this thesis is called ACTO interface (Actuated Tangible User
Interface Object), developed by Vonach et al. [VGK14b]. It is a highly modular TUI
to quickly bootstrap and test various setups to develop new TUIs. It is based on small
rectangular robots, so called ACTOs. These ACTOs serve as tokens for the TUI and can
be equipped with different interfaces, like buttons, spinners, displays, etc. This allows
the creation of TUIs for different scenarios. Furthermore, each ACTO has a set of wheels,
so it can move around freely on the interaction surface.
One goal of our work is to develop a new tracking system for this TUI, that is not limited
to any special surface. For the original implementation the tracking is based on optical
marker tracking. The interaction surface is a glass table and each ACTO is equipped with
an id-marker that sits underneath it, so it can be tracked by an RGB-camera positioned
underneath the table. Read further information about the ACTO system in section 3.2.

9

2. Related Work

2.1.4 Other Examples of Tangible User Interfaces

The following two examples make use of two key concepts that are part of the basic idea
of the ACTO system. The first one, called mediaBlocks, is a very early TUI developed in
1998 by Ullmer et al. [UIG98]. Similar as in the ACTO system they use several tangible
tokens that basically look the same but can serve an entirely different purpose. The
second one, called Pico, is a more recent one. It was designed by Patten et al. [PI07] and,
like the ACTO system, it is not only designed for one purpose but enables the developer
to create different sorts of applications.

mediaBlocks

Ullmer et al. [UIG98] developed a Tangible User Interface for containment, transport and
manipulation of online media. This so called mediaBlocks are made of wood and can be
tagged electronically. They can be used to transport large pieces of data between input
and output devices, whereas they do not function as storage themselves, like USB-sticks
or CDs, but as reference for the data, which itself is transferred via the network.
Also it is possible to use these blocks as controls for tangible interfaces on manipulation
devices like sequencers. This gives the user a quick and easy way of interacting with
the data, while the physical token represents the actual data and can be physically
carried from one device to another. A simple use case would be the recording of a short
video. The user can carry the video in form of a mediaBlock from the camera to the
sequencer, where he uses other mediaBlocks to manipulate it and then put the block into
the projector to display the video.
Furthermore, these mediaBlocks can be attached directly to conventional Graphical User
Interfaces (GUIs) to make the data available on normal computers as well. Figure 2.1
shows the interaction of mediaBlocks with different devices.

Figure 2.1: Operating with mediaBlocks (Ullmer et al. [UIG98]).

Ullmer et al. had to solve the problem that the mediaBlocks they use have the exact
same color and shape. This makes it difficult to differentiate between them, for the
system as well as for the user. They overcame this issue by applying electronic tags to

10

2.1. Tangible User Interfaces

them to make them identifiable by the system. For the users they labeled them with text
and a color indicator. The same issue applies to the StARboard interface we developed:
all the ACTO-robots look the same. To make them identifiable by the computer system
we use an infrared transmitter to send their ID. For the users the system provides a
3D augmentation with a virtual object (See chapter 4.2.5). With this way of displaying
the information we have the advantage that we do not rely on an extra display, but the
information can be directly displayed on the interaction token itself.

Pico

The Pico system (Physical Intervention in Computational Optimization) developed by
Patten et al. [PI07] is a more recent TUI. Similar to the ACTO system, this interface is
not designed to serve only one purpose, but to experiment with different conditions and
constraints for various fields of applications.
The system is based on the Sensetable developed by Patten et al. [PIHP01], which provides
a flat surface that can electromagnetically track (See 2.3.2) objects that are placed on
top of it and also move them around on the table. These objects act as interaction
tokens. The system also includes a projector that is placed above the table and gives
visual feedback. This setup enables the users to place different types of tokens on the
table. They are tracked by the system and depending on the underlying software which
manages the scene, Pico will move them around and provide visual feedback through
the projector. One interesting aspect of this system is, that the tokens can be moved by
the user as well as the computer. The user can also restrict the computers movement
intentions by adding constraints to the tokens, such as the position of obstacles on the
table or just holding the tokens fixed with a hand and preventing automated movement
(Figure 2.2a).

(a) Using physical constraints for restricting
token movement.

(b) Examining possible arrangements of cell-
phone towers with Pico.

Figure 2.2: The Pico system by Patten et al. [PI07].

As a sample application to introduce the Pico system Patten et al. implemented a system
for planning the positioning of cellphone towers (Figure 2.2b). The only possible way of
interacting with the system is by positioning and moving the tokens.

11

2. Related Work

The StARboard interface we developed functions in a similar way. In our case the
interaction tokens can also move around on the interaction surface by themselves. We
have the advantage that with StARboard we can not only display visual information
around the interaction tokens, but we can visually replace the interaction tokens with
3D information, which in our case is a ship and the settings are bearing and sail trim.

2.1.5 Tangible User Interfaces for Learning

In their book Shaer and Hornecker [Sha09] list a wide range of fields where TUIs can be
used. Besides domains like Information Visualization, Problem Solving and Planning,
Tangible Programming or Music and Performance they also name TUIs for Learning as
an important field where TUIs can be applied.

They state that learning systems which are based on tangible interaction are very well
suited for children, because they require many of the human senses, which supports their
development. But TUIs can also be used in learning systems for adults, to improve
the cognitive processes. Many of these learning systems are in the domain of planing,
problem solving or simulation, as StARboard, the system developed in this thesis.
An increasing number of studies focus on researching the benefits of using tangibles in
learning environments. Price et al. [PFSR09, Pon09] conducted a study where children
learned about the behavior of light using a tangible system. They observed different
aspects of tangible learning and found that the children were highly engaged in working
with the system. Also, they understood the presented concepts easily by playing around
with the system and figure out the principles of light themselves.
The outcome of another study, carried out by Schneider et al. [SJZD11], can be applied
directly to the StARboard interface. Schneider researched the learning benefits of TUIs
for collaborative learning. This is relevant for our project as the StARboard application
can also be operated by several people at the same time. If you think of a theoretical
sailing lesson, a group of students could learn together to understand the correlation
between wind, bearing and sail trim. Schneider et al. did an empirical study where
the participants should be trained in planning the setup of racks inside of a warehouse.
The aim was to reach maximum efficiency and optimized transportation routes with the
forklifts. The apprentices did not have special preknowledge in the topic of logistics in
a warehouse. The aim of the experiment was to compare a TUI with a screen based
multitouch interface. In the TUI the racks were represented by little models of racks that
could be directly grabbed and positioned by the participants. In the screen based solution
those racks were represented by 2D graphics on the screen. The result of the study was
that the apprentices performing with the TUI did not only have a significantly better
learning outcome, but also could achieve better results in performance and efficiency of
the designed system.

The aim of the StARboard application is to simplify the complex environment of sailing
which is influenced by many different parameters. It is narrowed down to the most
important ones which are then put into a TUI where tangible tokens represent objects of
the real world. Those can be manipulated and brought into relation to each other to

12

2.1. Tangible User Interfaces

learn about the behavior of the whole system and gain insight into the complex process
that is taking place in the real world.
Schneider et al. designed their learning TUI BrainExplorer [SWBP13] in a similar way
to allow better understanding of the neuroscientific processes taking place inside of the
human brain. They created a TUI that represented the structures that are involved in
processing visual stimuli. Therefore, they created a couple of tangible tokens representing
the human eyes and different parts of the brain (See figure 2.3a). When these tokens
are positioned in the interaction area, they are augmented with a 2D projection that
visualizes connections between the components.
A webcam simulates the visual functionality of the eyes and acts as input source for the
image the human sees. By manipulation of the tokens the user can now experiment with
different constellations, for example examine the effect of failure of one of the involved
brain areas. Figure 2.3b shows the result of a lesion to the persons field of view.
BrainExplorer uses tangible tokens which are shaped like parts of the human brain or
eyes. An advantage of the StARboard application is that the interaction tokens do not
need to have the exact shape of the objects they represent. We can easily use the same
token for different objects, as it is only visually replaced with a virtual object.

(a) Tangible tokens represent different parts
of the human brain.

(b) The broken connection (1) represents a
lesion in a certain brain area and results in
the loss of the top right corner of the persons
visual field (2).

Figure 2.3: The BrainExplorer tangible learning interface by Schneider et al. [SWBP13].

Analog to the StARboard application, a designated aim of the designers is that there are
little to no prerequisites for the users to use the interface and explore the topic. An active
learning experience based on sensomotoric actions should be created and the system
should allow different outcomes, so not only one predefined path of interaction exists,
but the user can freely choose what to do and how to use the system.

13

2. Related Work

2.2 Augmented Reality
In this section we want to give a short introduction about Augmented Reality (AR).
First, we will describe what AR is in general, followed by a brief overview about why AR
is an important, aspiring technology especially for TUIs. Finally, we will give examples
of TUIs using AR to give rich visual feedback within the applications interaction context,
one with 2D and one with 3D augmentation.

2.2.1 What Is Augmented Reality

An early survey about AR was done by Azuma in 1997 [Azu97]. Augmented Reality is,
as the name suggests, the augmentation of the real world with virtual content, where real
and virtual world coexist. Azuma describes AR as a variation of Virtual Reality (VR),
whereas AR supplements reality rather than replacing it completely, as it is the case in
VR. Milgram and Kishino [MK94] created the concept of the virtuality continuum, which
defines the different abstraction levels between a real and a virtual environment (Figure
2.4). It also introduces the term Augmented Virtuality (AV), which is the converse case
of AR where the virtual world is enriched with real world objects. AV will not be covered
in more detail here.

Figure 2.4: Virtuality Continuum by Milgram et al. [MK94]

Azuma defines three key requirements for an AR system, which must also be considered
for the StARboard application. It has to combine the real, 3D world with virtual 3D
objects and needs to be interactive and in real time.

The fields of application for AR are wide. While Azuma only called six of them in 1997, for
example medical visualization, maintenance and repair or military aircraft navigation, a
more recent complement to that survey [ABB+01] includes more, like navigation systems.
With advanced mobile technologies many more will emerge in the future.

For the sake of completeness it should be mentioned that AR does not only have to be
limited to the visual component. The real world can also be augmented with virtual
content for other senses, like the sense of smell, taste or even touch.

Another approach based on the visual sense is the augmentation of the real world with
2D visualizations. A 2D augmentation can be achieved easier than a 3D one, as the
augmentation process is less complex and the visualization does not rely on the users point
of view. This allows the use of more established technology as projectors or displays. 2D

14

2.2. Augmented Reality

augmentations are a common approach especially for TUIs, like the reacTable [JGAK07].
For this reason, 2D augmentation could also be considered for the StARboard application.
But the more realistic feedback and better immersion, which can be accomplished by 3D
augmentations, are important benefits that support learning (read more in section 2.2.3).

2.2.2 Augmented Reality for Tangible User Interfaces

The advantages of AR are apparent: It gives a developer the possibility to create a system
that merges with the real world, which enhances the user’s perception [Azu97]. Users are
not bound to an ordinary computer screen anymore, the whole world becomes the screen.
This matches the aim of TUIs discussed in chapter 2.1.1. Ishii [IU97] described that with
TUIs the whole world becomes the interface. This means that AR is the ideal output
mechanism for a tangible user interface, as it perfectly fits the requirements to decrease
the border between the physical and the virtual world.

Another project by Kaufmann [PAH14] supports our decision to use AR for StARboard.
It is about the use of AR in a collaborative learning environment. The system he
developed is called Construct3D and it allows students to create and manipulate different
sorts of geometric primitives and experience the relation they have to each other. After
several evaluations and design-improvement-loops, Kaufmann et al. [KD07] presented
the result of their final user study: They tested their system against a desktop based
geometry education application. The result was, that the usability of their system was
rated better. However, Kaufmann pointed out that there were still issues related to the
technology they used for AR, which could be improved to gain even better usability.

2.2.3 Examples of Augmented Reality Used in Tangible User
Interfaces

As already discussed, there are two possible augmentation strategies that we could use
for the StARboard application. In this section we give a quick example for each of them
and explain why we decided to use the 3D approach.

reacTable - 2D Augmented Reality

The reacTable developed by Jordà et al. [JGAK07] is a typical example for a 2D aug-
mentation of real world objects (figure 2.5a). A projector positioned underneath a glass
surface can augment each tangible token individually with different information, which
is displayed around the token. Depending on the token type, the information displayed
varies. This approach can be applied to StARboard in a similar manner. Around the
wind source the current wind speed as well as the wind direction can be displayed. For the
ships we can display the current bearing, speed, sail trim and its efficiency compared to
the perfect trim. Another advantage is that occlusion through the user’s hands interacting
with the tokens does not become a problem, because the tracking as well as the projection
are done from below the glass surface. The tracking will be explained in more detail in
chapter 2.3.1.3. The big disadvantage for our intended application is that the tangibles

15

2. Related Work

themselves cannot be visually replaced by virtual objects. Also one requirement of the
TrACTOr tracking system is, that it should not rely on a specific interaction surface
(see chapter 4.1.1). This issue could be overcome by positioning the projector above the
surface, which would cause other issues, as the already addressed occlusion problem.

(a) Live music performance with the re-
acTable by Jordà et al. [JGAK07] (a TUI
using 2D augmentations).

(b) Lighting a virtual car with a virtual flash-
light in MagicMeeting by Regenbrecht et
al. [RWB02] (which uses 3D AR).

Figure 2.5: 2D and 3D augmentation.

MagicMeeting - 3D Augmented Reality

The MagicMeeting interface developed by Regenbrecht et al. [RWB02] uses 3D virtual
objects to replace the tangible tokens, which in their case are 2D fiducial markers. Some
of them are attached to real world objects, as the flashlight in figure 2.5b. MagicMeeting
is a collaborative tangible AR interface that is designed to serve multiple purposes,
comparable to the ACTO system. It gives the users a comprehensive set of tools, which
they can use to perform various tasks dependent on the actual application. Each user
wears AR glasses, which enables the system to give visual output in form of 3D objects,
that are positioned within the real world interaction space. The sample application they
present in their paper is a tool for the automotive industry. As shown in figure 2.5b, the
users can see a virtual car positioned on a token. Now they can apply different kinds of
transformations to it by using some of the interaction tokens. This could be the change
of the color of an object or hiding parts of the model. In the picture the user applies a
virtual light beam to the car model by using a virtual flashlight.
An advantage of using a 3D augmentation is, that the system works more like the
real world. This allows moving around the object to see it from different angles. The
object seems to really consume space of the real world. For StARboard this means
that it becomes possible to replace the ACTOs, which are the tangible tokens, with
virtual objects, like ships in our case. To the user it looks like a small ship stands on
the interaction surface instead of the token. Compared to the MagicMeeting interface,
StARboard has the advantage that the tokens do not need to have fiducial markers

16

2.3. Tracking for Tangible User Interfaces

attached. The tokens can be directly tracked without a marker. A disadvantage, is the
occlusion problem: While the user interacts with the token the hand should occlude the
virtual object to provide a realistic effect. There are possible solutions for this problem,
which are mentioned in section 7.1 future work.

2.3 Tracking for Tangible User Interfaces
A lot of research has already been done in the field of Tangible User Interfaces. Most of
the developed systems require a proper way of tracking the physical tokens that are used
for interaction with the virtual world. Different technical approaches exist and dependent
on the specific system requirements, some are more suitable for the specific use case than
others. In the following sections we will present different tracking systems that could be
used in a related context.

2.3.1 Optical Tracking

One of the most common tracking technologies is optical tracking. Cameras are used
to record a video stream of the interaction scene, which is processed by a computer
in realtime to detect the tokens. Therefore it is required to develop according image
processing algorithms, dependent on what should be tracked. One of the big advantages
of optical tracking is, that the required hardware is highly available, cheap and easy to
handle, for example the camera of a smartphone. In addition the tracking quality can be
very good.
Basically there are three types of optical tracking, which can be distinguished by the type
of camera that is used: depth-camera tracking, RGB-camera tracking and infrared-camera
tracking.

2.3.1.1 Depth Camera Tracking

Depth cameras, as the Microsoft Kinect [Kinc], are able to create a gray-scale video
stream, whereas the different gray-values represent a different distance to the camera.
With appropriate image processing algorithms it is possible to separate the interaction
tokens from the rest of the scene, which allows an accurate position detection in 3D space.
The x- and y-position can be directly derived from the objects position on the recorded
frame, whereas the z-position, which is the distance the token has from the camera or
the background, can be deduced from the gray-scale value of the according pixels.
Follmer et al. use the Microsoft Kinect camera for their TUI [FLO+13] as well. They
create a depth-image of the interaction area, which is used to track the user’s hands and
surface objects that are used for their shape display inFORM. Therefore, they generate a
background image from the “empty” scene and use this as a reference image to compare
it with the current depth image. In this way it is possible to detect objects in the tracked
area. A specific challenge that has to be solved when developing a shape display is,
that the interaction does not only happen on a 2D surface but in a 3D space. This
requires more sophisticated tracking methods, which is why a depth sensor is used in this

17

2. Related Work

case. They also use the Kinect to detect touch on the surface of the shape display. This
method is not that accurate and they suggest a touch sensitive surface would provide
more reliable results. We cannot use the inFORM’s tracking method itself as tracking
tool for the ACTO system because it relies on color tracking for objects and only uses
depth tracking for the users hands. But we implemented a method that based on the
same principle as their depth based hand tracking. We create a background image and
compare it with the current record to create a foreground image. This image can then
be used for image processing. Read more about this procedure in chapter 4.2.2.
There is a couple of advantages the depth-camera tracking has compared to the other
techniques. The reasons why we decided for this solution are:

• It is capable of tracking tokens in 3D space.
• Besides the identification-LED, the ACTOs do not need any special modifications,
which is utterly important for the ACTO system as its main idea is to serve as a
generic basis for various modules that can be applied to it. This requires a high
grade of flexibility.

• Aside from a depth-camera there is no special hardware needed.
• The tracking is basically independent of the surface the ACTOs move on, which
was one of the projects requirements.

2.3.1.2 RGB Camera Tracking

A system developed by Weiss et al. [WSJB10] uses tangible magnetic widgets on an
interactive table. There are several types of those widgets, so called Madgets, for example
simple buttons, sliders or whole keyboards. Each of them is positioned on top of a set
of circular markers that can be detected with a simple RGB-camera from underneath
the table. The arrangement of those markers makes it not just possible to detect and
track the exact position of the Madget, but also to identify its type as they have different
arrangements for different Madgets.
Furthermore, it is possible to move the Madgets with an array of electromagnets positioned
under the table’s surface. The purpose of this system is to enable the researchers to
develop and prototype new interactive user interfaces.
This approach is not applicable to our system as it requires a specific table and the
requirement for our project is to be independent from the interaction surface.

2.3.1.3 Infrared Camera Tracking

A well-known example in this field of research is the reacTable [JGAK07] developed by
Jordà et al. The system is used to create an interactive real-time audio synthesizer.
They use an infrared camera that is positioned below a translucent surface and tracks
the interactive tokens placed on top of it. Each of these tokens is equipped with an
optical marker that faces towards the camera and allows easy identification and position
tracking. Also it is possible to track the user’s fingers when they touch the surface of the
table to provide a further way of interaction. At the same time a projector positioned

18

2.3. Tracking for Tangible User Interfaces

underneath the table gives visual feedback to the manipulation of the tokens.
Again, this tracking technique cannot be applied in case of the TrACTOr tracking.
In order to be independent from the interaction surface, the tracking would have to
occur from above. Also the visual feedback should not only be a 2D image, but a 3D
augmentation of the real world.
The advantage of positioning the projector and camera below the interaction surface is
that occlusion problems with tracking and projection can be avoided. To reduce these
problems, our tracking is implemented to be more robust against interruption caused by
partial occlusion.

2.3.2 Radio Frequency Tracking

Audiopad [PRI02] by Patten et al. is another tag-based tangible interface for musical
performance, but the tracking technology works differently than for the reacTable. The
tokens contain a so-called LC tag, which is basically a coil of wire and a capacitor.
Depending on the inductance and capacity this tag resonates at a different frequency,
which makes it possible to distinguish between different tags.
To track their position and orientation it is necessary to place several antennas in a
certain geometric order. The amplitudes of the tags resonance can then be interpreted
and the position and its rotation can be derived. For displaying information they use a
projector that is mounted above the interactive surface.
The tracking works quite fast and accurate, which gives a good response to the user.
To be able to overlay the real world with AR content it is necessary to track the tokens
in 3D space, which is not possible via the Audiopad tracking.

2.3.3 Ultrasound Tracking

The tracking of very high frequency sound, so-called ultrasound, is an approach Mazalek
et al. propose for their TViews [MRD06]. They designed a digital media table that
basically consists of a horizontal glass plate that serves as interaction surface. The inter-
action tags can be placed anywhere on this plate. In the corners acoustic transmitters
are positioned. The glass transmits the acoustic signals to the tags which calculate their
own position. In the second step they send their identity and position back to the table
via an infrared transmitter. The big advantage of this technique is, that it enables a
very high amount of tags being on the table at the same time. To give visual feedback a
display is placed right underneath the glass plate.
The resulting tracking is quite accurate and fast, but is not applicable for the ACTO track-
ing. As soon as they are lifted the tracking would be lost, which would be unacceptable
for our project.

2.3.4 Hybrid Systems

Hybrid systems use different tracking mechanisms at the same time to either increase
the accuracy and performance of the tracking, or as the STARS interface developed

19

2. Related Work

by Magerkurth et al. [MMES04], to track different aspects of the system. STARS is a
platform to realize computer augmented tabletop games and it uses two sorts of tracking.
While the user’s hands are tracked with an ordinary camera positioned above the table,
the actual playing pieces are detected via an integrated RF-ID antenna system based
on the interacTable developed by Streitz et al. [STMTK01]. The table consists of a
horizontal display which is used for displaying the playground, another vertical display
serves as screen for giving additional information to all players and additional hand held
displays give individual information to each player. In combination with physical tokens
the system enables a wide variety of tabletop game scenarios.
The disadvantage of this system compared to the system developed is that it is not
possible to track the vertical position of an object when it is lifted off the ground. This
is necessary to provide proper Augmented Reality overlays.

2.3.5 Other Tracking Types

Other than the mentioned tracking technologies, there are also various other tracking
strategies used for TUIs, like the DataTiles system developed by Rekimoto et al. [RUO01].
In their system the tokens can only be positioned within a predefined grid system that
only allows discrete positioning. The actual position is detected by several RF-ID readers
that are positioned behind every panel of the grid. Or the Augmented Coliseum developed
by Kojima et al. [KSN+06]: In contrast to the other systems introduced so far they use
inside out tracking. This means that not an outside sensor measures the position of all
the tokens, but each token determines its location itself. They project certain patterns
onto the interaction surface which are interpreted by the tokens and transformed to
location values.
These tracking mechanisms are not applicable to the ACTO system and therefore not
essential for this thesis.

20

CHAPTER 3
Basics

This chapter contains a collection of different technologies that are used in the StARboard
application and TrACTOr-tracker. Each of them is explained in detail. The information
provided in this chapter should give enough basic knowledge for understanding the
concepts discussed in later sections of this thesis.

3.1 Kinect Depth Sensor

The Microsoft Kinect is a very wide spread depth sensor that was designed for computer
games in the first place but is also used for many research projects (eg. [FLO+13]). The
first Kinect version was released in 2010. During the development process we mainly
used this version, but we designed the system to be capable of using the second version as
well. For testing and evaluation we used the current version, as it has better performance
and higher resolution as well as more accurate depth detection.

3.1.1 Kinect Version 1

The Kinect [Kinb] was developed by Microsoft [Mic]. Version one was released in
November 2010. It is a system that basically combines an array of different sensor
technologies. Besides the infrared emitter and the infrared depth sensor, which are both
used for the creation of the depth image (described in section 3.1.1.1), it also contains
an RGB camera, a tilt monitor and a microphone array, which is spread out over the
whole sensor. It provides a synchronized color and depth image and uses a 3D human
motion capturing algorithm to detect people and their movements within the camera
scene [JLDS13].

21

3. Basics

3.1.1.1 Depth Measurement

Khoshelham [Kho12] describes the mathematical background that lies behind the depth
sensor. The method used for depth measurement was invented by Freedman [FAMA10]
and is based on triangulation. The infrared emitter is a special kind of laser that projects
a constant, structured pattern of points onto the scene (See figure 3.1a). The infrared
camera captures the scene with the point pattern. The Kinect then compares the pattern
that is being sent with the one that gets recorded. Each area in the point cloud looks
different, so based on the distances between the points the Kinect can identify each single
point and compare its actual position with the expected one. Due to the fact that the
emitter and the sensor are a couple of centimeters apart from each other it is possible to
use triangulation to calculate the shift between the expected and the measured position
(this works similar as the stereoscopic vision of humans). With this it is possible to
determine the distance between the Kinect and each reference point. Figure 3.1a shows
the resulting depth image.

(a) Kinect 1 point cloud and depth image. (b) Kinect 2 depth image.

Figure 3.1: Kinect depth camera.

3.1.2 Kinect Version 2

The second version of the Kinect [Kinc] was released in 2014. The basic components are
similar to version one, but the technology used for depth perception is entirely different
(See section 3.1.2.1). This version also houses an RGB camera, a microphone array,
an infrared light source and an IR camera. Similar to the first version it is capable of
providing an RGB image and a depth image of the scene, which it uses to detect human
skeletons. But also more detailed information, like facial expressions, can be received.

3.1.2.1 Depth Measurement

From a technical perspective the biggest difference to the first Kinect version is the way
the depth image is created. While the first version used structured light, the second
version uses the Time-of-Flight (TOF) technology. This means that the IR emitter sends
out bulk light with a certain frequency to illuminate the scene. The light is reflected on
the objects in the scene and the IR sensor receives these reflections, just as a normal IR

22

3.2. ACTO Interface

camera would do. The difference is that the TOF sensor can also detect the received
light’s phase for each pixel. From the phase shift of the emitted light to the received
light it is possible to measure the time it took the light to reach the sensor. With this
information it is possible to calculate the distance between the according object and the
sensor.
As this is done simultaneously for each pixel, it is possible to create a 3D image of the
recorded scene (See figure 3.1b). [Li14, XP16]

3.1.3 Technical Specifications

Table 3.1 shows the technical specifications, that are relevant for the TrACTOr tracking
system, of both Kinect versions in comparison:

Kinect v1 Kinect v2

RGB image frame rate 30 fps 30 fps
resolution 640x480 1920x1080

depth image
frame rate 30 fps 30 fps
resolution 320x240 512x424
depth detection range ∼40cm - 4m ∼50cm - 4.5m

viewing angle horizontal 57◦ 70◦

vertical 43◦ 60◦

Table 3.1: Technical specifications of Kinect v1 and v2 in comparison [Kinb, Kina].

3.2 ACTO Interface
The TUI we build upon was developed by Vonach et al. [VGK14b]. It is an actuated
interface, which is defined by Poupyrev et al. [PNO07] as “an interface in which physical
components move in a way that can be detected by the user”. In the ACTO system these
components are small rectangular robots, so called ACTOs (Modular Actuated Tangible
User Interface Objects) (See figure 3.2a). These ACTOs serve as tokens for the Tangible
UI and can be equipped with different interfaces, like buttons, spinners, displays, etc.
This allows the creation of TUIs for different scenarios. Furthermore, each ACTO has a
set of wheels, so it can move around freely on the interaction surface.

3.2.1 ACTO Hardware

From a technical perspective ACTOs are based on an Arduino Pro Mini [Ard] Base
Module, which also consists of an interface for Radio Frequency (RF) communication.
The whole system is designed in a modular way, so that this base module can be extended
with various custom made Extension Modules. One of these Extension Modules is the
Motor Module, which is positioned underneath the Base Module and allows the ACTOs
to move around with a pair of rubber wheels. On top of the Base Module other modules

23

3. Basics

(a) Different ACTO interfaces. (b) The ACTO system setup.

Figure 3.2: ACTOs (Modular Actuated Tangible User Interface Objects) by Vonach et
al. [VGK14b]

can be connected. Those can be customized for the requirements of the TUI, like buttons,
spinners or screens.
For the StARboard interface we also designed a custom module, containing a button, a
spinner and an IR LED for identification.

3.2.2 ACTO-Framework and Tracking

To make the ACTO system usable for other people, Vonach et al. developed a framework
that provides basic functionality for controlling and tracking the ACTOs. Users who
want to build their own custom modules and develop their own software to create an
individual TUI based on the ACTO system can make use of this framework and build
their application on top of it.
The ACTO-Framework basically consists of a server, that is based on Java and runs on
an Android phone and the clients, which are the ACTOs.

3.2.2.1 Server - Android Software

As battery power and endurance is an issue with the ACTOs the framework is concep-
tualized so that most of the processing takes place on the server. It maintains all of
the ACTOs positions, by tracking them and giving them basic movement commands to
move them around on the table. The communication for these commands, as well as the
interface commands received from the ACTOs, run over a RF connection. As most of
the Android phones do not provide such an interface, an additional Arduino is connected
to the phone, via USB. This so called RF-Unit is equipped with a RF transmitter.
The standard framework provides a basic GUI which allows the user to see the current
system status and give basic movement commands. It can also be extended to provide
more functions. (This step was required for development of the TrACTOr tracking.)
Furthermore, the framework provides a WiFi interface, which allows third party applica-

24

3.3. OpenCV (Emgu CV)

tions to connect and communicate with it. (This step was required for the TrACTOr
tracking and StARboard implementation.)

Tracking

The tracking is based on optical marker tracking. The smartphone running the server
is positioned underneath a glass table (as shown in figure 3.2b) and tracks the ACTOs
with its RGB camera. Therefore each of the ACTOs has a fiducial marker (read more in
section 3.4.1) positioned on the bottom, pointing towards the camera. For this to work
the system needs to run on a glass table, so the camera can actually see the ACTOs.
This limitation is one of the main reasons the TrACTOr tracking was developed, so the
system can run on any kind of flat surface.

3.2.2.2 Client - ACTO Software

The ACTOs themselves run the so called ACTO OS. It provides the basic functionality
for communication to the server and can execute the received movement commands. It
also offers functions for developers of custom modules that make it easy for them to
address input and output pins without conflicting with the ones already used by the
ACTO OS itself.

3.3 OpenCV (Emgu CV)

The main library we use for the image processing tasks in the TrACTOr-tracker is Emgu
CV [Shi13]. Emgu CV is basically just a .NET wrapper to the open source computer
vision library OpenCV [BK13]. It allows us to use most of the functions OpenCV provides
in C#. In their book Learning OpenCV Bradski et al. describe that OpenCV can be
used for a variety of tasks connected to processing or editing stills or videos. One example
could be to convert an RGB image to a grayscale image, or to remove camera motion
from a video. The authors mention various fields of applications where OpenCV is used,
like factory product inspection, medical imaging, camera calibration, stereo vision or
robotics.
OpenCV has a main focus on real time processing of video streams (which is what we
need for the TrACTOr-tracker). We use computer vision during different stages of the
tracking process. For example to create a stable background image from the depth stream
and compare it with the current depth image. Also the actual square and line detection
works based on functionality provided by the OpenCV library.
Another task that we use OpenCV for is the calibration. In order to be able to calibrate
the different coordinate systems it is necessary to use some sort of calibration image
or marker, which in our case is just an ordinary picture printed on a sheet of paper.
OpenCV supports us in identifying and locating the picture within the camera image.
Read more about image tracking in chapter 3.4.

25

3. Basics

3.4 Image Marker Tracking Basics

A very important task for AR or systems using multiple optical devices, is to detect the
cameras position relative to the coordinate system. This can be achieved by putting a
2D marker into the scene, which is detected by the camera. With this information the
camera is able to estimate its own relative position to the marker which enables us to
synchronize multiple optical systems or to create visually appropriate augmentations for
AR. Basically there are two different types of trackings: Marker tracking and Marker-less
tracking.

3.4.1 Marker Tracking

For marker tracking a special kind of fiducial marker is required. An example for such a
marker is shown in figure 3.3. This marker system is called ARTag and was developed by
Fiala [Fia05]. It contains a set of markers with different ids that are not just trackable
but can also be distinguished from each other. The tool is able to detect the marker
within the camera image and calculate its relative pose to the camera. The disadvantage
of marker tracking is that such a marker always has to be applied to the scene, which
simply does not look good in many cases and covers a certain amount of space, which is
often not feasible.

Figure 3.3: Fiducial marker, ARTag with id 0 (by Fiala [Fia05]).

3.4.2 Marker-less Tracking

This problem can be overcome by the use of marker-less tracking. This technique does
not require any additional kind of marker, therefore natural features of the scene are
used, like corners or edges. Of course it is required that the scene provides enough of
those features to ensure proper tracking. It is for example not possible to track a plain
white wall for this reason.
Wagner et al. [WRM+08] describe their approach of marker-less tracking for mobile
devices which has to overcome special difficulties due to limited processing power and
memory. They modified two different tracking methods to make them available for mobile
devices, which is an important step for providing AR on smartphones and Head Mounted

26

3.5. Kalman Filter

Displays (HMDs).
For our system we use two different tools for tracking. As described in section 3.3
the TrACTOr-tracker uses the tracking provided by OpenCV. On the other side the
StARboard client uses tracking provided by Vuforia [vuf], another provider for tracking
frameworks.

3.5 Kalman Filter

A Kalman filter can be used to remove inaccuracies and disturbances caused by measuring
instruments. Welch et al. [WB06] describe it as “a set of mathematical equations that
provides an efficient computational solution for the least-squares method”.
The basic idea is to use the knowledge of the previous measurements to make the current
measurement more accurate. This works by creating a formula that uses all of the already
existing measurements, the so called priori state and calculates an estimation for the
next measurement, the so called posteriori estimation. Now the estimation is compared
with the actual measurement and by weighting these two results the final value can be
calculated. Afterwards this value will be included to the priori state and also be used for
estimating the following measurements.
This means that every value that is calculated in this manner is probably not hundred
percent accurate, but it is likely to be more accurate than the actual measurement. This
only applies to systems where the measured values are more or less continual. If there
are many jumps in the series of measurements the result gained by the kalman filter will
become less accurate or even useless.
For example if you want to measure an object that moves steadily in two dimensional
space without doing abrupt jumps from one position to another a kalman filter can be
used to flatten the measured values to a smooth movement path. This is important
for the tracking of ACTOs, to get smoother position and rotation values, as well as for
predicting an ACTOs location if the tracking is lost for a short period of time.

3.6 Unity

Unity [Uni] is a development environment for 3D games. Besides game development it is
a common platform for developing other kind of software that uses AR or VR. It was
developed by Unity Technologies and the first release was in 2005.
Unity gives the developer a fast and easy way of creating 3D scenes and adding interactivity
by applying scripts to the objects within the scene. Another great advantage of Unity is
that it already provides a lot of solutions for common problems and tasks that appear
for this kind of applications, like a physic engine or client server system functionality.
Also it is not only bound to one platform, Unity allows the developer to easily deploy to
all the common platforms, like iOS, Android or Windows.
All of this makes it a great tool for developing any kind of 3D based applications.

27

3. Basics

3.7 HoloLens

The Microsoft HoloLens [Holb] is an optical see-through HMD. This means that the user
can see the real world at the same time as the virtual content provided by the HoloLens.
This is possible as there is an optical projection system included which projects the virtual
image onto a transparent surface in front of the users eyes, the so called holographic
frame. In combination with a complex array of sensors, which track the 3D world around
the user and its own position and orientation within it, the HoloLens can create a very
good AR experience.
As the user can move and look around freely in the scene the level of immersion is relatively
high for the state of the art. The resolution of the virtual image is comparatively high,
as well as the opacity of the virtual image. A weakness is the field of view, which could
be larger. But this fact can be neglected as the tracking is very stable which allows the
user to look around smoothly.

3.7.1 Deploy from Unity

Basically HoloLens applications are developed in C#. Also there was a special version of
Unity released for developing HoloLens apps. They also provide the so called HoloToolkit
that provides many basic functions like gesture recognition and cursor interaction, which
is quite useful for development. So far the deploy process from Unity is a bit complex,
as there is no direct way to deploy from Unity to the HoloLens. First it is necessary to
export a Visual Studio C# project from the Unity project. This can then be opened in
Visual Studio and deployed to the HoloLens. Especially during the developing process
this consumes a lot of time. In the future the Unity compatibility for HoloLens will
probably be improved and a direct deployment process might be provided.

3.8 Sailing Basics

There is a wide range of different types of sailing boats. The way a boat is built and the
type of sails that are used are the basic factors that determine the bearings that can be
sailed and the possible speed. Besides those and the wind there are many factors playing
a role for the speed, like current, heeling, payload, load distribution and many more. For
the sake of simplicity we only consider the most important ones in our system: boat and
sail type, sail trim, wind direction and speed and bearing.
Wilson [Wil08] describes how the maximum possible speed can be calculated, dependent
on the boat and sail type, bearing and the wind speed. This information can be displayed
by using a polar diagram, which displays the maximal possible boat speed per wind speed
and bearing. It does not consider the current sail trim, an optimal trim is assumed.
Figure 3.4 shows an example for a polar diagram of a modern yacht.
The curve of such a polar diagram can vary greatly for different boat types. Not just the
speed, but also the possible bearings. While the boat in this example is able to sail every

28

3.9. Transform between Different Coordinate Systems with Homography Matrix

course between 30◦ and 330◦, a Trireme from 300 B.C. might only be able to sail courses
from 80◦ to 280◦.

Figure 3.4: A polar diagram showing the maximal possible speed of a sailing yacht,
depending on the bearing and wind speed. [Wil08]

3.9 Transform between Different Coordinate Systems
with Homography Matrix

The homography is the mathematical relation between two images of the same planar
surface, as described by Benhimane et al. [BM07]. It can be represented by a matrix,
the so called homography matrix. This means that a homography matrix can be used
to transform points from one image into the other. Every image has a two dimensional
Coordinate System (COS) which allows us to specify every point of the image with an
x and y value. If we transfer this point to the other image this can also be seen as
transferring it from one COS to another COS. Figure 3.5 shows an example to illustrate
this. In the center we see the planar surface with a highlighted point inside of the red
area, at xm/ym. On the left and right we see two different images of that surface. Both
images contain the highlighted point, but at different coordinates x1/y1 and x2/y2 in
their own COS, which is pixels on the screen in this case. This is because they do not
have the same COS. The homography matrix can now be used to transfer from one COS
to the other. So we can transform the point at x1/y1 to x2/y2 by multiplying it with the
homography matrix.
In our application the left phone would represent the Kinect camera and the right phone
the HoloLens. We do not transform the points from the Kinect to the HoloLens, but all
points are transformed to the marker COS, which is the one on the table.

29

3. Basics

Figure 3.5: Two different images of the same surface. Transform the same point between
the images with the homography matrix.

30

CHAPTER 4
Conceptual Design

This chapter contains the conceptual design of the TrACTOr tracking system and the
StARboard application. Therefore the initial problem is briefly recapitulated, followed by
the specification of requirements that results from it. Finally we give an introduction
to the conceptual design of the tracker, the application and how they will be connected.
Decisions about design specifications and technical approaches are reasoned and explained.
As already discussed in chapter 1 the aim of this project is to create a Tangible User
Interface (TUI) which gives sailing students an easy alternative to drawings and books
for learning the complex behavior of a sailing boat in different wind situations. This
application, called StARboard, should provide an intuitive and easy to learn environment
for studying various sail trims in relation to bearing, wind direction and speed.
This application is realized by using the ACTO interface, described in section 3.2.
In order to make the application easy to setup and install in various locations such
as sailing schools or also private learning environments, we need to make the tracking
independent from the surface the application runs on. The original ACTO tracking
algorithm requires the use of a glass table as interaction surface, which is usually not
available in such locations. Furthermore, we do not want to limit the TrACTOr tracking
to the StARboard application, but make it available for any other ACTO applications
that already exist or will exist in the future.

31

4. Conceptual Design

4.1 Requirements

The following requirements must be fulfilled in order to reach our research goals:

4.1.1 TrACTOr Requirements

Generic Implementation

The TrACTOr tracking software should not only work specifically for the StARboard
application, but also for other applications that have already been developed with the
ACTO interface, as well as for future implementations. It should serve as an alternative
for the current tracking, which is limited to the use of a glass table.
In order to be an adequate substitution to the current tracking it is required that the
changes that have to be made on the ACTOs need to be minimal. They should restrict
the future development of ACTO modules as little as possible.

Rectangle Tracking

The ACTOs basic shape, if watched from above, is a square. Maybe some modules
change the shape to a rectangle. So the tracking software needs to be able to detect
ACTOs independent of the modules that are positioned on top of the ACTO, as long as
they have a rectangular shape. Their position needs to be tracked in 3D space, so the x
and y position on the surface as well as the height above the surface. Additionally the
ACTOs rotation has to be tracked, but only around its vertical axis.

ACTO Identification

As the tracker should be able to track multiple ACTOs simultaneously there needs to be
a way to identify each ACTO individually. This needs to be done without changing the
shape of the ACTO itself. Furthermore, it is important that if the tracking of an ACTO
is lost and found again it can be identified as the same ACTO. The same applies if it
reappears on another place of the scene.

Independence from Tracking Surface

The tracking should be independent of the surface the ACTOs move on, as long as the
surface is flat and even enough for the ACTOs to move. Especially the restriction to the
glass table should be overcome.

Robust against Occlusion

As the users interact with the ACTOs it is likely that parts of the ACTOs or even the
whole ACTOs are occluded by the users hands from time to time. The tracking should
be robust against partial occlusion and even if an ACTO is occluded fully the tracking
should be kept alive for a certain amount of time.

32

4.1. Requirements

Robust against Different Lighting Situations

The system should be able to run in various locations with different lighting situations.
Due to this reason it should be independent of the actual lighting situation and robust
against changes of light intensity, color or direction.

Optimized for Moving Objects

A special focus during the TrACTOr design and implementation should be to optimize
the tracking of moving objects, as the tracked objects will move around on the surface.
With this special focus the accuracy of the resulting tracking should be optimized.

Real Time

As the tracker should be used for real time TUIs it is required that the tracking data
(position, rotation, identity) of each ACTO can be streamed to the ACTO-Framework
so it can be processed there and used by other applications, as in our case StARboard.
Therefore it is required to have a highly performant tracking process and fast round trip
times within the whole system.

Connection to ACTO-Framework

The already existing ACTO-Framework should be used for managing the ACTOs, so it
is required to connect the TrACTOr-tracker to the ACTO-Framework and stream all the
tracked ACTO data, as already stated. This requirement is also essential for allowing
already existing ACTO applications to use the new TrACTOr tracking.

Synchronize Coordinate Systems

There is the need to synchronize the tracking COS and the one of the application that
uses the tracking, in case visual augmentation is desired (for example for our StARboard
application). So TrACTOr has to provide a way for COS synchronization.

Normalize Tracking Data

Another requirement is the normalization of the tracking data. While the ACTO rotation
is automatically limited to a value between 0 and 360 degrees, the position values are not
limited and can basically assume any value, dependent on the system setup. To overcome
this issue it is required to normalize them. This means that a “playground” should be
defined, whereas the point 0/0/0 is in its center and the border is either -1 or +1. Every
tracking value will now be between -1 and +1, as long as the ACTO is located inside of
the defined playground. In that way the tracked values become independent from the
system setup and using them becomes much more comfortable for other systems.

33

4. Conceptual Design

4.1.2 StARboard Requirements

Real Time

In order to provide an appropriate and intuitive learning environment for sailing students
it is required that the whole application runs in real time, so that modifications executed
by the user instantly result in a behavioral change and appropriate visual and physical
adaptions of the system. This means that when the user rotates an ACTO for example,
the system should immediately recalculate its speed and movement direction and apply it
to the ACTO. In the same way, when the user changes the sail trim the visual feedback
and physical speed should change at once.
To achieve this requirement two specific needs have to be satisfied:

• Receive tracking - There needs to be a permanent connection from the TrACTOr
system to the StARboard application to stream the real time tracking data (position,
rotation, identity).

• Send movement commands - The whole physical simulation takes place in the
StARboard application, so also the movement speed and direction is calculated
here. This means that there needs to be another connection from StARboard to
the ACTO-Framework, to transmit the movement commands.

Adjust Physical Parameters

The application needs to provide a way for the users, so they can manipulate all of
the considered physical parameters, like the relative position between wind and ship,
the wind speed and the sail trim. As the system should be easy to use and provide a
hands-on experience the application should be implemented as a TUI. This means an
ACTO module needs to be designed which provides the required interaction techniques.

Visual and Physical Feedback

Besides the appropriate input method the application also requires suitable output
techniques to provide rich feedback to the users. Basically there are two different output
techniques that should be implemented:

• Physical output - To create a TUI it is required that the objects of the systems
are represented by physical interaction tokens. For the StARboard application
these represent the ships and the wind source. While the wind source is static
and can only be moved by the user, the ships need to automatically change their
physical position during interaction sessions. So moving around on the interaction
surface is the one type of feedback the application should provide.

• Visual output - The other one is visual feedback. To create an immersive
application it is required to visually decorate the physical tokens with virtual
content. So the real world scene should be augmented with virtual objects that

34

4.2. Concept

adapt to the users input. For example the sail trims should be visualized and
change when the user manipulates the according parameter.

Multiple Users

In a sailing school setup usually multiple people learn together. The application should
therefore allow multiple users to interact at the same time.

Multiple Ships

Furthermore the application should not only allow the concurrent interaction of multiple
users, but also support the use of multiple ships. This allows the direct comparison of
different trim constellations between multiple ships side by side.

Synchronize Coordinate Systems

A requirement that results from the necessary system architecture is the synchronization
of the COSs between StARboard and TrACTOr. As these two systems run individually
there needs to be a way to calibrate their COSs, so both of them have the same origin
and scale. This is needed in order to display the visual feedback in the correct location
and size.

4.2 Concept

In this chapter each of the given requirements is addressed with a specific solution strategy.
Decisions in application design are reasoned and algorithmic approaches explained.

4.2.1 Architectural Design

Figure 4.1 shows the architecture of the whole system. It shows how the main components
are connected to each other and what information they share. While these connections
are discussed in this section, the components themselves are described in detail in the
following sections of this chapter.

The ACTOs are the interfaces interaction tokens. They are positioned on the interaction
surface and controlled by the ACTO-Framework which runs on an Android phone. The
connection is based on RF and happens via an extra Arduino, as described in chapter
3.2.2.1, as most Android phones do not provide RF functionality.
For the ACTO-Framework to work properly it needs to know the exact position and
rotation of each ACTO at any time. This task is fulfilled by the TrACTOr tracking
application. It receives a depth image stream from the connected Kinect camera. TrAC-
TOr creates position, rotation and identity information from this stream and sends it
to the ACTO-Framework via a WiFi connection. To synchronize the tracking COS and
normalize the tracked data, TrACTOr also tracks an image target which is used as origin

35

4. Conceptual Design

Figure 4.1: StARboard and TrACTOr system setup.

for the COS (read more about COS synchronization in chapter 4.2.2.3 and about tracking
data normalization in chapter 4.2.2.4).
The only remaining component is the StARboard application. It consists of two com-
ponents itself, the server and the client. The server is responsible for managing the
virtual sailing scene and the game logic. Therefore it receives the tracking data from the
ACTO-Framework via a WiFi connection. The whole 3D scene is then sent to the client
which is responsible for rendering the virtual scene in the real world (AR). In order to
be able to render the scene in the correct place the client also needs to visually track
the image target to synchronize its COS with the tracking COS. The client application
can run on different kinds of devices, as smartphones or HMDs. In our case we use the
Microsoft HoloLens to run it.

4.2.2 TrACTOr Concept

TrACTOr is the component responsible for identifying and tracking the ACTOs while
they move on the interaction surface. The generated tracking data should then be
streamed to the ACTO-Framework where it is used to control the ACTO movement and
is also passed along to the StARboard application for further use. The process required
to achieve this task can be broken down into four key functions that TrACTOr has to
provide:

• tracking
• identification
• synchronization
• normalization

36

4.2. Concept

4.2.2.1 Tracking

As described in chapter 2.3 there are various technologies that can be used for creating
tracking solutions. The reasons already discussed in chapter 2.3.1.1 are crucial for our
decision to use a depth camera for our tracking algorithm. The depth camera we use
is the Microsoft Kinect camera, as explained in chapter 3.1. It is an easy to use depth
camera and also provides an RGB or IR image along the depth image. Furthermore the
Kinect SDK provides a good entry point for developing Kinect applications with C#.
The basic idea of the tracking process is shown in figure 4.2. The Kinect camera is
positioned about 70 to 90 centimeters above the interaction surface and points downwards
in an angle of about 90 degrees. This height distance is an ideal compromise for tracking
accuracy and size of the tracked area. With this setup the following process should enable
us to generate the tracking data:

Step 1 - Create Foreground Image

The aim of the first step is to create a grayscale image stream from the depth stream
that only contains the objects of interest, which are the ACTOs (shown in figure 4.2a).

Figure 4.2: Concept for tracking and identification.

The basic idea to retrieve this so called foreground image is to first create a so called
background image containing the empty scene. The whole process is shown in 4.3.
Picture (a) shows the depth image of the empty scene, which functions as background
image. To create a stable background image there should be an initialization process
that accumulates the average image over a couple of frames. This makes the resulting
background image more stable against camera flickering, compared to just using a random
single frame.
Picture (b) shows the current depth image which already contains an ACTO prototype.
To create the foreground image it is required to build the difference image between the

37

4. Conceptual Design

background image and the current depth image by subtracting them from each other.
The resulting foreground image is shown in picture (c). It only contains the objects of
interest, and can be processed in the next steps.
A major advantage of this strategy is that static objects that are located within the
interaction space do not interfere with the tracking, as long as they are already there
during the background initialization phase and do not move during the tracking process.

(a) Accumulated depth back-
ground image.

(b) Current depth image
stream.

(c) Calculated depth fore-
ground image stream.

Figure 4.3: Reducing depth stream to potentially interesting objects.

Step 2 - Two Level Tracking Process

In the next step the foreground image should be analyzed to retrieve ACTO candidates
from it. An ACTO candidate is a detected object that might be an actual ACTO or some
other object. This should be done in a two level process, whereas the aim of the first
level is to detect rectangular objects in the foreground image. The second level should
improve the tracking quality in case the tracked objects are partly occluded, for example
by the user’s hand. This second level can only be applied after an ACTO has already
been identified successfully and can not be used for initial ACTO detection. This level
becomes more important during step 5 of the tracking process (read more about it there
4.2.2.1)˙
For the first level it is required to detect all the rectangles in the foreground image. This
is a complex task which can be supported by using a appropriate computer vision library.
For this and other image processing tasks we use the OpenCV based library Emgu CV
which is described in section 3.3. It can easily be integrated into the project and provides
a wide range of image processing functions, e.g. shape detection.
To evaluate if this concept also works practically and if the size and shape of ACTOs is
suitable for tracking with the Kinect, mockup tests have been performed. Therefore an
empty ACTO case was used and positioned underneath the Kinect (see figure 4.4a). A
single frame of the depth image stream, already with background removal performed,
was used to try out the EmguCV shape detection algorithm. The result was promising,
the ACTO and also other rectangular objects could be detected, as shown in figure 4.4a.
Also the line detection algorithm was tested and different configurations were tried out

38

4.2. Concept

to figure out if it would be suitable for our needs. The result can be seen in figure 4.4c
where an ACTO, another rectangular object and an arm of a user can be seen. If the
information of both methods is combined the reliability and stability of the tracking can
be improved.

(a) ACTO prototype for
mockup tracking tests.

(b) Detection of rectangles in
foreground depth image.

(c) Detection of lines in fore-
ground depth image.

Figure 4.4: Mockup tests for image processing algorithms used for tracking.

As shown in the images of the mockup tests in figure 4.4b the square detection not
only detects ACTOs, but also other rectangular objects. All of those are candidates for
potential ACTOs and the next step is to distinguish between ACTOs and other objects.

Step 3 - Filter Actual ACTOs from ACTO Candidates

The aim of this step is to filter out the actual ACTOs from all the ACTO candidates
found in the previous step. To achieve this task different solutions have been discussed.
For example the ACTO size and shape could be used, as well as the color or similar
parameters that could be detected with the depth, RGB or IR camera. But all of those
would restrict the development of future ACTO modules, either in size, shape or visual
occurrence. To reduce the required adaptions to a minimum we decided to just include
an IR LED that is positioned on top of the ACTO. This LED serves several purposes. It
is not only used in this step but also in step 4 and also for identification as described in
section 4.2.2.2.
To decide if an ACTO candidate is an actual ACTO or not the IR image’s region of the
detected rectangle is observed. The whole area within the rectangle is searched by using
according image processing algorithms to detect a bright spot which is created by the
flashing IR LED. The images in figure 4.5 were taken during mockup tests. They show
the IR image of an ACTO candidate with the IR LED on and off.
Figure 4.4a shows the ACTO prototype with the IR LED positioned on top of it.

Step 4 - Choose from Rotation Candidates

It is not just the actual position of the ACTO which should be tracked, but also its
rotation. This is the goal in this step.

39

4. Conceptual Design

(a) ACTO candidate with IR LED on. (b) ACTO candidate with IR LED off.

Figure 4.5: Mockup tests detecting IR LEDs in the IR image.

An ACTO always has quadratic shape. The detected rectangle is aligned with the ACTOs
edges, but only from the depth image it is not possible to tell what direction the ACTO
is actually facing. As we already know the orientation of the rectangle, there are basically
four possible directions the ACTO could be facing. We call those rotation candidates.
To choose which of those candidates is the right one we again use the IR LED. Now the
LED’s actual location on the ACTO is very important. It always has to be positioned
close to one of the four corners so it is clear which corner is the closest, if seen from
above. In our application the LED should always be placed in the left front corner of
the ACTO. This allows us to clearly choose which of the four rotation candidates is the
correct one.
As an example, the ACTO prototype in the mockup test in figure 4.5a faces to the
bottom right of the image.
Mockup tests have shown that the LED must not be positioned too close to the ACTOs
edges, because in that case it could cause interferences with the rectangle detection.
This is due to the fact that the IR LED disturbs the Kinect’s depth tracking in a small
area, as it is also based on IR light. If this disturbance is too close to an ACTO’s edge,
the resulting depth image might have disturbing artifacts which could cause errors in
rectangle detection.

Step 5 - Compare with Tracking Result from Previous Frames

The aim of the final step is to improve the tracking quality by using information over
time. This means that if an ACTO is present in a certain location in one frame it is very
likely that it will still be there (or close) in the next frame. This information is very
useful for two reasons:
First, it can be used to overcome missing tracking results in single frames. So if an ACTO
is detected in a certain frame but cannot be found in the following frame, the tracker
should still expect it to be at the same position and send tracking information for it for
several frames. It is much more likely that the tracking is lost for a couple of frames
than that the ACTO disappeared. This issue is especially important in case of partial or
complete occlusion of an ACTO by a users hand. TrACTOr should still estimate the
position even if it can not see the ACTO anymore. This is also the basic assumption, why
a two level tracking process (discussed in step 2, 4.2.2.1) should be implemented. The

40

4.2. Concept

tracker knows where to expect the ACTO to be and with this information it is enough to
only detect one or two of the edges, instead of the whole rectangle.
Secondly, it can help to make the tracking more stable in terms of jitter reduction. As
the depth image’s resolution, as well as the tracked ACTOs are quite small the tracked
position and rotation can vary greatly from one frame to the other, due to measuring
inaccuracy. This will result in a jitter of the tracking data. To reduce this artifacts the
position, as well as the rotation, should be averaged over several frames. Therefore a
predicted value, that is based on the tracking of previous frames, should be calculated
and combined with the actually measured value of the current frame. The resulting value
should be chosen as current tracking. This can be done by using a Kalman filter (see
chapter 3.5) which is especially applicable for moving objects.

4.2.2.2 Identification

As the tracker has to be able to track multiple ACTOs at the same time, some sort
of identification is needed to distinguish between the different ACTOs. The ACTOs
themselves should need as little modification as possible for this, to avoid limiting the
future development of ACTO modules. So for example it is not possible to give every
ACTO a different color or shape. A couple of solutions have been considered for solving
this problem. One of them was for example to put different colored stickers on top of
the ACTO which can be detected by the RGB camera. Another one suggested to have a
certain amount of LEDs positioned somewhere on the ACTO. Depending on the amount
of lights that are on the identity could be determined. However, the solution we chose is
more pragmatic and enables us to use an unlimited amount of ACTOs at the same time.
As already discussed in the previous section each ACTO should be equipped with a single
IR LED. This LED can also be used for identity detection. Therefore each ACTO receives
a numerical id. This id is visually transmitted from the ACTO to the tracker. This can
basically be done by blinking the binary code of the id in an endless loop, whereas light
on stands for 1 and light off for 0. TrACTOr is then able to decode the bit string to the
id again and differentiate between different ACTOs (see figure 4.2b).
This task sounds trivial, but for achieving it, many factors need to be considered:
The most challenging problem that has to be solved is that the data can only be transferred
asynchronously because there is no way of synchronizing the ACTO, which is the sender,
and the Kinect camera, which is the receiver. Basically this is a common problem in
electronics and information technology but in our case it becomes a bit more complex
as we use a camera as measurement device. This means that the current signal status
can not be measured continuously, but only at discrete points in time, as we can only
measure every frame. This issue leads to two problems: The one is that the receiver does
not know when a single bit starts and ends, the other one is that it is also unknown when
a data sequence starts and ends.
The first problem happens because the LED status is not discrete. It can not only be
1 and 0 (On and Off), but also every value in between. So if the sampling rate would
be the same as the send rate, in the worst case the first measurement would happen
exactly while the LED changes status from 0 to 1. The result of this measurement is not

41

4. Conceptual Design

predictable, so it could be either 0 or 1. In that case the next measurement would again
happen exactly while the LED is turning down from 1 to 0, which again could result in
both measurement results. So a whole bit could be missed as shown in figure 4.6.

Figure 4.6: Worst case situation for sampling where sampling rate is equal to the send
rate (a) and sampling rate is twice the send rate (b).

This problem was already discussed by Nyquist [NYQ28], who stated that the sampling
rate has to be at least twice the send rate. As the sampling rate is fixed 30fps due to the
Kinect hardware specifications the send rate has to be adapted accordingly. This means
that the maximal possible send rate is 15 bits per second.

To address the second problem, that it is unknown when a data sequence starts and ends,
we developed a stable method that allows us to perform reliable id transmission. The
id is not repeated permanently, but with a break in between. Additionally a burst bit
(1) is placed before each id sequence to mark its start and another end bit (1) follows
afterwords. Figure 4.7 shows an example where a four bit id is sent at a bit rate of 15
bits per second. Before the actual data sequence a burst bit is sent to notify the receiver
that data bits will follow afterwords. As soon as the receiver, who reads with 30 frames
per second, receives the first 1 he ignores every second bit and uses the other ones as
data bits. After the four bit data sequence an end bit is sent. If this is missing the
sequence is invalid. After this a series of at least eight 0 bits should follow to make sure
the receiver can distinguish between sequence and break. If we would not use the end bit
and the receiver would start reading in the middle of the sequence a wrong id could be
read. Figure 4.8 demonstrates this problem. The receiver starts reading in the middle
of the sequence, misconstrues one of the data bits as the burst bit and reads the id 12
instead of 3. If the end bit would be used the receiver would expect it, but it does not
appear. So the sequence would be declared as invalid and ignored.

If we would use this method exactly as it was explained here another issue would arise.
Due to the breaks in between the sequences most of the bits would be 0. So most of the
time the IR LED would be off. This is a problem, as it is also used for rotation detection.
To improve this we simply invert the whole stream. So 0 becomes 1 and vice versa. Now
the LED should be on most of the time.

42

4.2. Concept

Figure 4.7: Sampling and interpreting of a whole id sequence, starting with a burst bit
followed by the 4 bit data sequence and ends with an end bit. The sampling rate is twice
the send rate and shows the worst case situation, as discussed in figure 4.6.

Figure 4.8: The possible error if no end bit would be used. The receiver starts to listen
in the middle of the sequence and due to the lack of the end bit does not recognize the
error. The wrong id is interpreted.

Another issue that needs to be considered is that the ACTOs are also not synchronized
with each other. This means that their bit rates will be shifted to each others. So the
tracker needs to handle each of them individually, which should not be a problem with
the method presented above.
To evaluate the reliability of this method mockup tests have been performed. The ACTO
prototype shown in figure 4.4a was connected to an Arduino board which controlled the
IR LED. A Kinect camera was used to create the IR video stream of the scene. This
setup was used to test various bit sequences with a promising result. The id detection
worked properly most of the time, but sometimes the detected id was not correct. To
overcome this problem the id detection runs until the same id is detected twice. As soon
as the same id is detected twice it is assigned to the ACTO.

43

4. Conceptual Design

4.2.2.3 Synchronization

When the tracker is initialized it will create a COS with its origin (0/0) in the top left
corner of the video stream. This means that the user can not really control which area
should be used as interaction space. Every time the camera is moved also the interaction
space would shift. But the biggest problem appears when TrACTOr should work together
with an AR system, because it will most likely have different COSs and the virtual objects
would be placed on the wrong place. In order to make this possible both COSs have to
be synchronized.
We also call this process calibration. In order to make it fast and easy we use an image
tracker that is detected with natural feature tracking (read more about natural feature
tracking in chapter 3.4.2). So almost any kind of image can be used for this process. The
actual image tracking is done with the OpenCV library (see chapter 3.3). As soon as the
image is detected the origin of the tracking COS is moved to the center of the image and
the tracking data that is generated will also be based on this new origin.

4.2.2.4 Normalization

The COS normalization can also be seen as part of the calibration process. It is not
enough to only synchronize both COSs so they have the same origin, because the distances
in both COSs will still be different. This means that one distance unit in the on COS is
not equal to one distance unit in the other COS. Also the camera setup can still be a
problem. If the camera is not positioned in a perfect 90 degree angle the image will be
distorted. So one distance unit in x direction could have a different distance in the real
world as one distance unit in the y direction.
To solve this issue we use the same visual marker as for synchronization. For this task
not the position, but the size of the marker is used. The distance from the origin (marker
center) to the markers edge is defined to be 1. This new distance system is then applied
to all the tracking values. Also the ACTO rotation will be based on the rotation of the
image marker, whereas a rotation of 0 means that the ACTO has the same rotation as
the image marker itself. From now on the resulting tracking values are not dependent on
the camera setup and image resolution anymore. They are based on the position, size
and rotation of the image marker which enables us to use them across multiple systems.
As soon as this step is done the calibration process is finished and the tracking data can
be called normalized.
To apply the calibration to the original tracking values, a homography matrix should be
used (see chapter 3.9).

4.2.3 Concept for ACTO Adaptions

The ACTOs are the tangible tokens for the StARboard interface (see chapter 3.2). Their
basic implementation is very generic, which allows us to use them and develop the
functionality we need on top of it. To make them usable with the TrACTOr tracking we
need to include the IR LED, described in the previous sections, and use it to transfer the

44

4.2. Concept

ACTOs id. Therefore also the core ACTO code needs to be extended with the according
algorithms to transmit the id information via the LED.
Additionally, an ACTO module should be created that provides the additional function-
ality required for the StARboard application. This is basically a stepless rotary encoder
and a simple button. The aim of this module is to give the user direct control of the
physical parameters used in StARboard, without being to complex. The conceptual
design of this module is shown in figure 4.9b
The prototype used to test this functions can be seen in figure 4.9a.

(a) StARboard ACTO module prototype. (b) StARboard ACTO module design.

Figure 4.9: Prototyping of the ACTO module required for StARboard. The module is
equipped with an IR LED, a rotary encoder and a button.

4.2.4 Concept for ACTO-Framework Adaptions

The ACTO-Framework is the server part of the ACTO interface, as described in chapter
3.2. The standard implementation by Vonach et al. already provides most of the
functionality needed for the StARboard application. The two main changes that are
required are the ability to stream tracking data via WiFi in real time and an individual
GUI which provides the functionality needed for managing the ACTOs.
The tracking data which is generated by the TrACTOr-tracker is required by the ACTO-
Framework as well as the StARboard application server. Basically there are two possible
options to solve this. The tracker could either send the data to both of them or it is just
sent to the one and is then forwarded to the other one from there. As shown in the system
architecture in figure 4.1 we have decided to use the second solution. There is a stream
transferring the data from TrACTOr to the ACTO-Framework. The ACTO-Framework
then uses it to manage the ACTOs and forwards it to the StARboard server in real time.
The reason to implement it like this is because with this solution it is possible to replace
the tracker without having to change anything else in the system. To achieve this a WiFi
connection for streaming the data to StARboard is required.
The implemented GUI provides two screens. The one screen is the management interface
for controlling the system. The network connections should be controlled, as well as the

45

4. Conceptual Design

USB connection to the other Arduino board, used for communication with the ACTOs.
The second screen shows the currently tracked situation. The playground is shown with
the different ACTOs on their current position. Also the identity of each ACTO should
be visible. This screen should make testing easier and briefly tell the user whether the
tracking works sufficiently or not.

4.2.5 StARboard Concept

The StARboard component is the actual application. It uses and controls the ACTO
interface to create a tangible application. Therefore it has to take control of the whole
scene and provide the interaction mechanisms. It basically serves two purposes. The
one is to handle the current situation on the interaction surface and send movement
commands to the ACTO-Framework, based on the current constellation of the interaction
tokens in the scene. The other one is to provide visual feedback to the user, to display the
current state of the most important physical parameters, as well as display augmentations
for the interaction tokens.

4.2.5.1 Client Server Concept

A requirement of the application is, that it can be used by multiple users simultaneously.
For this reason the StARboard application should be created with a Client Server
architecture. The basic concept for this can be seen in figure 4.10.

Figure 4.10: StARboard Client Server concept.

There is a central server that controls the whole scene. It is aware of the current location
and state of each object within the scene. Based on this knowledge it applies the
physical model that lies behind the sailing application to each object and manipulates

46

4.2. Concept

the according parameters, e.g. position and movement speed (read more about the game
logic in section 4.2.5.3). The whole scene is permanently streamed to each of the clients
via WiFi connections. The clients themselves are conceptualized as thin clients, so their
only job is to display the whole scene in the right place. They mainly do rendering and
tracking tasks (see section 4.2.5.5). This means that most of the processing effort is done
on the server side, which is very important in our situation, as the devices running the
clients have significantly less computing power as the server. The client application can
run on different devices as smartphones or HMDs.

4.2.5.2 Unity

The whole StARboard application is developed in Unity (see chapter 3.6) as Unity is not
only a very powerful development tool for 3D applications, but also has the big advantage
that the deployment to different platforms is easy and straight forward. Another great
benefit of Unity is that it provides many functions that are helpful for the StARboard
implementation itself, such as sharing of the scene between the server and the clients.
Those tasks can be done without much effort, as Unity is also designed for multiplayer
applications.

4.2.5.3 Scene Logic

Basically the scene logic running on the server should be split up in two separate areas.
The one is a central Game Controller, the other one the Ship Objects.
The Game Controller is a central unit that receives the tracking information and the
users input commands, like button clicks. It is responsible for monitoring all the objects
in the scene, applying the received tracking information and passing the user input to
the according objects.
Each object itself is responsible for maintaining their current physical state. This means
the current sail trim, the current bearing to the wind and the current sailing speed. With
the received input parameters these values need to be adapted accordingly. Based on
this information, changes in speed have to be calculated and transmitted to the Game
Controller. There they can be passed to the ACTO-Framework, to actually affect the
physical ACTO tokens. In order to be able to calculate the current speed based on the
bearing and the sail trim, each ship object needs to know the polar diagram (read more
about polar diagrams in chapter 3.8) data which is related to the respective boat type.

4.2.5.4 Visual Feedback

StARboard is not only responsible for processing the scene logic and passing movement
commands to the ACTO-Framework. Another main functionality is visual representation
of the current system state and additional information needed for teaching purposes. As
reasoned in chapter 2.2.3 we should use 3D augmentations for our application.
There are several parameters that should be visible to the user, according to the state of
wind source and ships and each of them need a visual representation themselves:

47

4. Conceptual Design

Wind Source

Basically the wind source can be represented by the 3D model of a fan, since this single
metaphor is self-explanatory. The current wind direction is shown by the rotation of the
3D model, so the fan simply faces the same direction as the wind should go (just as it is
with a real fan). The actual wind speed can be visualized with the rotating fan blades.
The faster they move the stronger is the wind. If they stand still there is no wind at all.

Ships

A more complex visualization is required for the ships. While each different boat type
should have a different 3D model for the ship itself, also the sails should be displayed
according to the currently defined sail trim. The bearing is shown with the actual position
and rotation of the ships 3D model.
To give the user more information and a better understanding for the boats behavior
it should be possible to display the polar diagram at the ships current position. The
diagram is different for each boat type and should be rotated according to the current
wind direction. This should make it easier for the user to understand the concept of
polar diagrams and provide insight into the relation between bearing and speed.
Another level of information should be given with the visualization of the true and the
apparent wind. This is a very important concept in sailing theory and usually displayed
as direction vectors. There should be one vector showing the true wind, one showing the
wind from boat motion and a third one the resulting apparent wind. This visualization
should be displayed alternatively to the polar diagram and also be rotated according to
the current wind direction.

4.2.5.5 Augmented Reality

In order to be able to display the augmentations on the right position the COSs of the
StARboard client applications need to be synchronized with the one used for tracking.
There are different solutions how those two systems could be synchronized, like manual
synchronization or marker tracking. We decided to use an automated synchronization
process based on image markers, because it does not require additional effort and allows
quick setup of the whole system. Also image markers are more esthetic than fiducial
markers. In our case a marine map could be used for example.
As described in chapter 4.2.2.3 the tracker uses an image target and natural feature
tracking (read more about natural feature tracking in chapter 3.4.2) to place the origin of
the scene to the center of the image. To also synchronize the StARboard clients they also
need to track this image and position the whole scene based on it. The library that can
be used for the image tracking task is Vuforia [vuf]. It is free to use for small application
and provides fast and robust tracking for mobile application. As an alternative solution
Metaio [met] was considered, but they do not provide their service anymore and therefore
had to be discarded. With this tracking step done the augmentations can be correctly
displayed on top of the ACTO robots.

48

4.2. Concept

4.2.5.6 Network Communication

The StARboard server and clients need to communicate to various other players in the
system. Therefore, according interaction mechanisms are required.

Server

As shown in figure 4.1 the StARboard server needs to provide three different information
channels. All of them should be based on WiFi, as it is the most widespread technology
for wireless data transmission. It also provides high data rates and is the only wireless
technology that is supported by all of the devices that should run the client, like
smartphones and the HoloLens.
The first channel is the tracking data input stream received from the ACTO-Framework.
The second one is another connection to the ACTO-Framework. It is used for sending
movement commands for the ACTOs. The third channel is between the StARboard
server and client. It is an unidirectional connection that streams the whole virtual scene
from the server to the client.

Client

The addressed connection between the server and the client is the only connection the
client needs. It does not need to send any kind of data. It connects to the server and
receives a stream with the current scene.

49

CHAPTER 5
Implementation

In this chapter we describe the implementation of the entire system. At first we give
an overview about the system architecture and introduce the main system components
briefly. Then we explain the networking situation, how the components communicate
with each other and what sort of data we actually transfer between them. Afterwards we
describe how the system calibration works and why it is required.
In the next sections we give a detailed introduction in the implementation of the main
components TrACTOr-tracker, the ACTO robots software and hardware, the ACTO-
Framework and the StARboard server and client. We display the software architecture for
each of them and point out problems and challenges we faced during the implementation
and experience that we collected. We also state differences to the concept and why we
decided to implement a few things differently. For delicate problems we display brief
extracts of the source code to give a better understanding of some implementation details.
We also included a couple of screenshots and photographs of important details of the
final system.

5.1 System Architecture
The architecture of the whole system we implemented can be seen in figure 5.1. It shows
how the main components are connected to each other and gives a first idea of the
information flow. The main components are explained in detail in the following section
5.1.1.

5.1.1 Main Components

As shown in figure 5.1 the system consists of four main components:

• TrACTOr - the Kinect based tracking system, which tracks the exact position,
orientation and identity of the ACTO robots. Its main components are the GUI

51

5. Implementation

for user interaction, the Tracking Core which contains the actual tracking process
and the WiFi Transmitter for transferring the tracking data. TrACTOr runs on a
desktop computer.

• ACTO-Framework - responsible for controlling the ACTO movement and trans-
mitting interaction commands to and from the ACTOs. The ACTOs are controlled
in the ACTO Control component, the communication to the other parts of the
system is handled in the Communication component. The GUI component provides
control and feedback functions to the user. It runs on an Android based smartphone.

• ACTO Robots - the interaction tokens themselves.
• USB Arduino Server - an Arduino based interface for the communication between

the ACTO-Framework and the ACTO Robots.
• StARboard Server and Client - the AR based learning application which uses

the ACTOs as interaction interfaces. The server major components are the ACTO
Management component to manage the ACTOs, the ACTO-Framework Connection
for communication with the ACTO-Framework, the Game Logic component to
control the virtual objects and learning system and the Maneuver Management to
run the maneuver demonstrations. While the StARboard Server runs on a desktop
computer, the Clients run on the Microsoft HoloLens.

The implementation details of all four components will be discussed more specifically in
the following sections of this chapter.

Figure 5.1: Architecture of the whole system.

52

5.1. System Architecture

5.1.2 Network and Communication

As the system consists of multiple programs which also run on different machines it
was necessary to develop proper ways to allow real time communication between the
individual components. Figure 5.2 gives an overview about the communication channels
between the units.

Figure 5.2: System communication structure.

Most of the connections run via Transmission Control Protocol/Internet Protocol
(TCP/IP) over an Ethernet or wireless network connection. This way the TrACTOr-
tracker is connected to the ACTO-Framework. The current tracking data (position,
orientation, identity) of each identified ACTO is transmitted for every frame of the Kinect
camera.
The ACTO-Framework has another permanent TCP/IP connection to the StARboard
server application. This channel is used to forward the tracking information received
from TrACTOr, but also in the other direction to transmit movement commands towards
the ACTOs. These movement commands are generated in the StARboard server, based
on the current situation in the 3D scene and the according game logic.
They are processed by the ACTO-Framework into basic motor control commands, which
are then delivered to the actual ACTO units. The communication medium this time is
RF. As the ACTO-Framework runs on a standard Android phone that does not support
RF connections, an extra Arduino unit is connected to the phone via USB. This Arduino
is equipped with a RF transmission module, that allows communication between the
phone and the ACTOs. The RF connection is also used to transmit the user input
commands from the ACTO to the ACTO-Framework, which are created when the user
clicks the button on the ACTO or rotates the potentiometer.
These user input commands are then also forwarded from the ACTO-Framework to the
StARboard server, where they are processed.
The whole 3D scene is sent via wireless network connections from the StARboard server
to the StARboard clients.

53

5. Implementation

5.1.3 System Calibration

As already described in chapter 4.2.1 a calibration process is required before the system
can be used. During this calibration process the TrACTOr’s tracking COS and the COS
of StARboard are synchronized. We achieve this synchronization process with a visual
marker that is detected by both systems, as shown in figure 5.3a. This allows us to
transfer the 3D coordinates of both COS into one shared COS.
The visual marker we use is a photo of ocean waves, seen from above (figure 5.3b). In
order to make the visual tracking fast and reliable we choose an image with strong
contrast and irregular patterns, so many visual feature points can be detected by the
software. We printed the marker with the dimensions of 39 by 39 centimeters onto a
sheet of paper, whereas we had to make sure that we use matt paper, as reflections could
cause problems for the tracker (read more about reflections in chapter 5.3.1.3).

(a) COS synchronization. (b) The visual tracking marker.

Figure 5.3: For synchronizing multiple COSs a visual marker is used, which is detected
by both devices.

The technical implementation of the tracking process is described in more detail in the
following chapters 5.2.3.2 and 5.5.3.1.

5.2 TrACTOr Implementation

One major component of the entire system is the TrACTOr tracking system. It was
developed in the programming language C# and runs on a desktop computer.
The purpose of TrACTOr is to track ACTO robots within a certain interaction area. As
described in chapter 4.1.1, three different parameters are tracked: the x, y and z position

54

5.2. TrACTOr Implementation

in relation to the tracking marker, the orientation along the camera axis and the ACTO’s
identity.
The retrieved tracking data is normalized with the tracking marker’s size and orientation,
in order to be able to properly synchronize 3D position data across the entire system.
The normalized tracking data is then forwarded to the other components of the system.
There they are used as input data for further processing steps.
As described in earlier chapters the depth based TrACTOr tracking is an alternative
tracking solution to the already existing optical tracking, which requires the usage of a
glass table. It can also be used for other ACTO applications, if the ACTO modules are
equipped with the flashing IR LED, which is used for identification.

5.2.1 Tracking System Setup

The Kinect camera is mounted approximately 70 centimeters above the center of the
interaction surface, which is defined by the tracking marker. It faces down towards the
table with an angle of about 90 degrees. The TrACTOr software is robust to slight
changes of these values, especially the mounting height. But this setup will provide the
best tracking accuracy in our experience. The tracking marker is positioned directly
underneath the Kinect on a flat surface, in our case a table. We used duct tape to attach
it to the table, so it can not move during tracking sessions. The whole setup is shown in
figure 5.4.

Figure 5.4: TrACTOr system setup.

For the tracking process we use the depth image stream, provided by the Kinect camera,
as well as the infrared image stream. The exact usage of both streams is explained in

55

5. Implementation

chapter 5.2.3.
In the first development phase we used a Kinect 1 for receiving the depth and infrared
image. Because of higher accuracy we now use the Kinect 2 instead. The TrACTOr
software is capable of handling either of them.

5.2.2 TrACTOr Architecture

The TrACTOr software itself can be split in three functional components: the GUI, the
Tracking Core and the WiFi Transmitter (see figure 5.5). The GUI component contains
the whole user interface, which allows the user to control and monitor the current tracking
situation. The GUI is broken down in more detail in section 5.2.4. The ACTO tracking
process itself is done in the Tracking Core component, which is the main unit of the
program. The input image streams are handled in the Kinect Controller. They are passed
to the Image Processor, where they are processed and converted to the formats we need.
The prepared streams are forwarded to the Calibration Service, where the image marker
is detected and the COS is calibrated. Also the ACTO Manager uses the streams to
perform the actual tracking and identification tasks with support of the Square Finder
service. It also manages the already known ACTOs and provides them to the WiFi
Transmitter. The WiFi Transmitter is the third main component of TrACTOr. Its task
is to reliably transmit the detected ACTOs with position, rotation and identity to the
ACTO-Framework.
This whole procedure is explained in the following chapter 5.2.3.

Figure 5.5: TrACTOr software architecture.

5.2.3 Tracking Process

In this section the technical implementation of the entire tracking process is explained
in detail. It starts with depth and IR image streams and ends with the transmission of
normalized tracking data.

56

5.2. TrACTOr Implementation

5.2.3.1 Tracking and ID Detection

The first important step is the actual tracking of the ACTOs, based on the input video
streams. Three pieces of information need to be acquired, the position, the orientation
and the identity. We mainly use the Kinect’s depth stream for the position recognition.
For the identity recognition we use the infrared image and for the orientation both
streams are used in combination. Figure 5.6 gives an overview of the process explained
in this section.

Figure 5.6: Flowchart of processing incoming depth and infrared frames.

Image Streams and Tracking Area

Both of these streams are received from the Kinect sensor, they can be streamed and
used simultaneously. Especially the Kinect 2 has a very wide Field Of View (FOV)
of 70 by 60 degrees. So the captured images show a lot of information which is not
interesting for the tracking process, as seen in figure 5.7a. In order to drastically reduce
the processing overhead, we implemented an option to define an area of interest, the so
called tracking area. Everything outside of this area is masked and ignored for all of the
following processing steps, as shown in figure 5.7b.
For tasks like masking of areas in an image or other image manipulation and conversion
steps we use the computer vision library Emgu CV, which is described in chapter 3.3.

Another advantage is that this functionality also simplifies the system setup. The
positioning of the camera can be more flexible, as the desired camera image cutout can
be chosen within the software and does not have to be defined by hardware adjustment of

57

5. Implementation

(a) Original Kinect IR and depth stream
without tracking area.

(b) IR stream with defined tracking area and
accordingly masked depth stream.

Figure 5.7: The tracking area can be defined by the user in order to save processing
power.

the camera itself. This allows a camera setup based on the requirements of the interaction
space and less on technical prerequisites.
The tracking area can be defined by the user in the GUI and is restored every time the
program is started.

Create Background Image

As already described in chapter 4.1.1 the first step in the tracking process is the creation
of a background depth image. Therefore a cumulative image is created over a period of
several frames. This is done by recording a sequence of the depth stream and building
the average image of all frames. The advantage of using the average over several frames,
compared to using just a single frame, is that several visual artefacts of the stream, as
flickering and noise, can be reduced drastically. As our tests showed it is enough to use
10 frames to create a good background image. This means that the initialization process
of the whole tracking system needs less then half a second. During this initial phase
of the tracking the interaction space has to be empty. This means there should be no
ACTOs present and also the users arms and all other objects need to be outside of the
tracking area. Only the tracking surface, in our case the table, and the tracking marker
have to be in the scene.
With this method we can create a very robust and reliable background image that only

58

5.2. TrACTOr Implementation

needs to be created once in a tracking session.
The process of creating the background image is automatically started when the TrACTOr
application is started, but it can also be triggered manually during the tracking process,
if desired. This could be necessary if the tracking camera is moved.

Create Foreground Image

As soon as the background image is created it can be used to generate the current
foreground image, based on the current depth frame. Therefore a binary mask is created,
based on the difference image of the current depth image and the background image. This
can be seen in figure 5.8a. This mask then covers all the areas, where the current depth
frame is different to the background image, which corresponds to the area of interest for
ACTO detection. Finally this mask is applied to the current depth image and the result
is the current foreground image figure 5.8b, which is the basis for all further processing
steps.
An important detail is, that the foreground image still contains the depth information
of the relevant areas of the original depth frame. This is needed in one of the next
processing steps, where the vertical position (z-position) of the ACTOs is determined.

Figure 5.8: Foreground image creation process: a) Creation of binary foreground image
mask, b) Generation of foreground image

Two Level Tracking

As mentioned in chapter 4.1.1 we use a two level tracking system for the identification
of potential ACTOs, so called candidates. This is done in the Square Finder. The first
step, which is required for both of the levels, is the detection of edges in the foreground
depth image. Therefore we use the Canny edge detection algorithm, developed by

59

5. Implementation

Canny [Can86]. The resulting edge image is then used for both of the tracking levels,
but in a different way (See listing 5.1).

1 // Find Canny edges in the foreground image and store them to ’cannyEdges’
2 CvInvoke.Canny(
3 foreground,
4 cannyEdges,
5 cannyThreshold,
6 cannyThresholdLinking
7);

Listing 5.1: Generate image containing edges from depth foreground image.

Level 1 - Square Detection In the next step we try to find squares in the edge
image. Therefore we first try to find contours (listing 5.2, lines 2-5), which are then
evaluated to see if they can potentially be ACTOs or not. The contour needs to have a
minimum area size (line 15) and exactly four vertices (line 17), as only rectangles can be
ACTO candidates. Finally the remaining contours corner angles are calculated. Only if
all four corners are around 90 degree the contour (lines 24-35) is added to the final list of
ACTO candidates (line 39). The list is then passed to the ACTOManager where further
processing takes place.

1 // Find contours in edge image
2 CvInvoke.FindContours(
3 cannyEdges, contours, null,
4 RetrType.List, ChainApproxMethod.ChainApproxSimple
5);
6
7 for(int i = 0; i < count; i++) {
8 using(VectorOfPoint contour = contours[i])
9 using(VectorOfPoint approxContour = new VectorOfPoint()) {

10 CvInvoke.ApproxPolyDP(
11 contour, approxContour,
12 CvInvoke.ArcLength(contour, true) * 0.05, true
13);
14 // only consider contours with a certain minimum area size
15 if(CvInvoke.ContourArea(approxContour, false) > minAreaSize) {
16 // only consider contours with four vertices
17 if(approxContour.Size == 4) {
18 // only consider contours where all four corner angles are
19 // between 80 and 100 degrees
20 bool isRectangle = true;
21 Point[] pts = approxContour.ToArray();
22 LineSegment2D[] edges = PointCollection.PolyLine(pts, true);
23
24 for(int j = 0; j < edges.Length; j++) {
25 double angle = Math.Abs(
26 edges[(j + 1) %
27 edges.Length].GetExteriorAngleDegree(edges[j])
28);
29 if(angle < 80 || angle > 100) {
30 isRectangle = false;

60

5.2. TrACTOr Implementation

31 break;
32 }
33 }
34
35 if (isRectangle) {
36 RotatedRect newRr = CvInvoke.MinAreaRect(approxContour);
37 // make sure all angles are in the range [0;180[
38 newRr.Angle = ACTOHelper.normalizeAngle(newRr.Angle, 180);
39 boxList.Add(newRr);
40 }
41 }
42 }
43 }
44 }

Listing 5.2: Find rectangles in edge image.

Figure 5.9a shows the process of creating the edge image from the depth image and
finding the rectangular candidate in it.

Figure 5.9: a) Creation of an edge image out of a foreground image and find rectangular
candidate, b) Detect lines in the same edge image.

Level 2 - Line Detection The ACTO candidates generated in level 1 can also
be used to detect ACTOs which are unknown to the tracker until then. This level is
only used to maintain ACTOs that are already known. This is usually necessary when
the ACTOs are partly occluded by the users hands during the interaction. New ACTO
candidates can not be found only based on line detection, because there are usually too
many lines detected in the image and also the length of the detected lines is not reliable

61

5. Implementation

enough to draw proper conclusions on ACTOs.
Listing 5.3 shows the source code, how the lines are extracted out of the edge image.
Figure 5.9b visualizes the creation of the edge image based on the foreground image and
how the lines are detected in the second step. See section 5.2.3.1 to see how these lines
are used to maintain known ACTO positions.

1 // Detect lines in the edge image
2 LineSegment2D[] lines =
3 cannyEdges.ToImage<Gray, byte>().Dilate(1)
4 .HoughLinesBinary(0.5, Math.PI / 180, 6, 20, 3)[0];

Listing 5.3: Use Hough Transformation to detect straight lines in the edge image.

ACTO Management

From the previous steps we receive a list of rectangles, which now need to be evaluated.
In the ACTO Manager we store already identified ACTOs for continuous tracking, but
also evaluate ACTO candidates to see if they actually are ACTOs or not.
In the first step we try to match the detected ACTO candidates as well as the tracked
lines with the already known ACTOs:

Maintain Known ACTOs For every known ACTO we first try to match any of
the rectangles we found. Therefore we mainly use the distance between the ACTO and
the rectangles. If the distance of the closest rectangle is small enough, we assume that
the ACTO has moved since the previous frame. We then use the position and rotation
of the rectangle to update the ACTOs position and rotation. An important step here
was to not just replace the ACTOs position with the rectangles position, which could be
assumed to be the new position. As the tracking has a failure of several millimeters from
frame to frame this would cause strong jitter in the final tracking. So we use a Kalman
Filter for position and rotation to make the tracking much smoother. This means the
previously measured positions area also taken into account for the determination of the
new position, which is then estimated based on these values. The resulting, so called
predicted position, is more likely to fit to the actual position, than the measured one,
due to measuring inaccuracies.

For every ACTO which could not be matched with a rectangle we try to find matching
lines from the lines detected in level 2 of the tracking process. This most likely happens
if the user interacts with an ACTO and occludes parts of the ACTO. We try to match
each of the detected lines by matching the end points of the line to the corner vertices of
the known ACTO. If both ends of the line are closer than a defined minimum value to
two adjacent corners, we accept the line as a match and use the same Kalman Filter as
before to move and rotate the ACTO towards the newly detected position.

For every known ACTO that could not be rematched we reduce the Time To Live (TTL)
by one. The ACTO will still be considered as known, which means it will be sent over
the WiFiTransmitter to the ACTO-Framework along with the other known ACTOs. We

62

5.2. TrACTOr Implementation

also try to match it again in the next frame, as long as the TTL is greater than zero.
Then the ACTO is finally dropped. We use an initial TTL of 20, so the ACTO can stay
alive for almost a second (20 frames) without actually being tracked. Every time it is
tracked, the TTL is reset. This mechanism improved the stability of the tracking a lot,
because it happens quite often that an ACTO isn’t detected for one or more frames.

Identify New ACTOs While the detected lines, which are not used for ACTO
matching, are dropped, the remaining rectangles are used to create new unidentified
ACTOs. These unidentified ACTOs are stored in the ACTOManager in order to try to
identify them during the following frames, but they are not sent over the WiFiTransmitter.
While this identification step is only carried out for unidentified ACTOs, the rotation
determination, which is also explained in the following section, is also applied to already
identified ones. For each of these two steps we need to find the IR LED in the infrared
image.
Every frame of the IR image is also forwarded to the ACTOManager. For every ACTO
we cutout the relevant section of the IR image to see if the IR LED is currently on or off.
If the light is on we additionally identify the closest corner of the ACTO rectangle to the
IR LED. This information is then passed to the ACTO model itself where the following
two steps are performed:

ACTO Identification

The ACTO identification is the process of ensuring that an ACTO candidate actually is
an ACTO and retrieving its id. As described in section 5.3.2.1, we could not implement
the id detection as planned. Tests showed that pattern transmission was much more
reliable than binary id transmission.
When the detection is about to start we wait for a series of 1, followed by a single 0,
because all of the ids we use end on 1 and start with 0. This raises the chance to start
the id detection at the right point.
Also we found out that the maximum bitrate that could reliably be detected is ten bits
per second. This is due to the asynchronous process of sending and receiving the visual
information. As the tracker works with 30 frames per second, we can try to read the
same bit three times in a second. In the ideal case we read three times 0 or three times
1, but in some cases we receive two times 0 and one time 1, or the other way around. In
that case we use the value that occurs more often. This showed to improve the reliability
again.
Another problem is that sometimes the IR LED is occluded by the user or another object,
which can interrupt the detection stream. In the worst case this could lead to a wrong id
detection. To prevent this error we included another mechanism. The ACTO id is only
set after the same id is detected twice. From that moment on, the ACTO will be seen as
identified. As soon as the same id is detected a third time the id detection is considered
as reliable and final. After that the tracker does not try to identify this ACTO anymore,
it stays fixed as long as the tracking is not lost again.

63

5. Implementation

Determine Rotation

The only remaining task of the tracking process is the determination of the rotation. As
explained in section 4.2.2.1 the tracked rectangle gives us four possible rotation candidates
for the ACTOs actual rotation. If the IR LED is detected, it can be assigned to one of
the four corners of the rectangle. We also know that the IR LED is always positioned in
the left front corner of the ACTO. This allows us to choose the correct one of these four
candidates.
This step is not only applied to new ACTOs, it is executed for every ACTO in every
frame. If the IR LED is off for that frame, it is simply ignored. This method proofed to
be very reliable. The only issue we encountered, was with reflections on the surface of
the ACTO, which were hard to distinguish from the IR LED itself. See chapter 5.3.1.3
to see how we fixed this problem.

5.2.3.2 Normalize and Transform to Marker COS

As already discussed, it is necessary to synchronize the COS of the tracking system,
the so called tracking COS, with the camera COS of the StARboard AR application.
Therefore we use a visual tracking marker (see figure 5.3b), which allows us to create a
shared COS, the so called marker COS. We use this marker for having a shared origin,
the so called pivot point of the scene. But it is also used for normalizing distances, so
one unit in the tracking COS is equivalent to one unit in the camera COS. This process
will be described in the following section.

Detect Tracking Image

The first step of this synchronization, or calibration process, is to detect the visual marker.
To achieve this we use the Kinect’s infrared camera. It would also be possible to use the
RGB camera, but the position of the RGB camera inside the sensor is a bit different. As
the depth stream is also created with the IR camera we use it for tracking as well. Then
we have the exact same origin and prevent an offset of several centimeters.
For the step of visually identifying the image in the IR frame we use Emgu CV again, as
shown in listing 5.4. The result of this step is the homography matrix, described in the
next section.

1 // Find the calibration image in the IR frame
2 Mat homographyMatrix = ImageHelper.findSubimage(
3 ((Image<Gray, ushort>) irFrame).Convert<Gray, byte>(),
4 calibrationImage
5);

Listing 5.4: Find the image marker within the IR Frame.

Homography Matrix

The homography matrix (see chapter 3.9) can be used to transform between the tracking
COS and the marker COS. We can use the homography matrix not only for transforming

64

5.2. TrACTOr Implementation

the origin of the COS, also the distances can be normalized. The square marker has a
size of 2 x 2 units in the marker COS, whereas the center point is (0/0). So the top right
corner of the marker would be (1/-1). Figure 5.10a compares the two COSs. In figure
5.10b you can see an example of a real tracking situation where the tracking information
is already transformed into the marker COS.

(a) Tracking COS and marker COS in com-
parison. ACTO with coordinates in both
COS.

(b) Live tracking image with the detected
marker and two identified ACTOs with nor-
malized coordinates.

Figure 5.10: Transform from tracking COS to marker COS with homography matrix.

5.2.3.3 Stream Tracking Data via WiFi

The TrACTOr-tracker has a WiFi socket connection to the ACTO-Framework. For
every frame the id, position and rotation of all currently known ACTOs is sent to the
framework. All this data is already in the marker COS, so the other components of the
system can directly use it for further processing.

5.2.4 TrACTOr Graphical User Interface

In order to be able to monitor and control the tracking process we also developed a
Graphical User Interface (GUI) for TrACTOr. Figure 5.11 shows the main GUI window
of the tracking software. In the upper section you see different video streams which are
mainly for monitoring the system.
The IR Image shows the live IR image stream with the currently detected ACTOs shown
in green color. Next to each ACTO you can see its id as well as the current coordinates
and rotation. The purple square shows the detected visual image marker, in the middle
you can see a little arrow, which shows the orientation of the marker. It always points
upwards. Also the active tracking area is visualized in the IR image. It can be seen
around the tracking marker. The whole area outside the tracking area is overlayed with
a transparent red color. It is also possible to display more information, like the currently
detected rectangles and lines. This features can be switched on and off in the Tracking
Controls section.

65

5. Implementation

The three frames on the right show different depth streams. The Depth Image shows
the original current depth stream. The Foreground Image is the processed depth image
which is used for tracking, the white squares you can see are the ACTOs that are being
tracked. The other white object is the users hand. The Background Image shows the
empty tracking scene which is used to generate the foreground image. In order to safe
processing power each of this streams can be frozen by clicking on it. The tracking will
still run in the background, but the displayed frame is not updated anymore.

Figure 5.11: Main GUI window of the TrACTOr tracking software.

For managing the tracking process we provided the Tracking Controls section. The most
important features are the WiFi module, which is used for creating the connection to the
ACTO-Framework. Also the image marker can be changed here, if the user wants to use
a different one. Every time the camera setup changes it is also necessary to redefine the
tracking area, which can be initiated here as well. As soon as this process is started, the
user can define the new tracking area by simply clicking its new corners in the IR image.
Another feature which can be controlled from here is the tracking calibration. If the
tracking is offset, due to bad camera calibration or setup, the error can be reduced by
manually calibrating the tracking.

5.3 ACTO Module Development and Core Code
Adaptions

In order to make the ACTOs work with the TrACTOr-tracker and also provide the
required interaction functionality for the StARboard application, an ACTO module had

66

5.3. ACTO Module Development and Core Code Adaptions

to be developed. Also the ACTO’s Operating System (OS) code had to be extended with
the according functionality for TrACTOr id detection.

5.3.1 Hardware

As already mentioned, the hardware of a module houses three main components: an
IR LED, a rotary encoder and a button. We developed a compact module that can
easily be attached to the basic ACTO robot. The module consists of two main hardware
components that had to be designed and developed: the circuit board, containing all the
electronic parts and the housing, which covers all the sensible parts and allows stable
mounting to the ACTO.

5.3.1.1 Circuit Board

The circuit board had to be developed from scratch. Figure 5.12a shows the final circuit
diagram which was designed based on the prototype which we developed earlier. This
circuit diagram was used to design the circuit board with the software fritzing [fri].

(a) Circuit diagram.

(b) Etching process of the first ver-
sion.

(c) Soldering work.

Figure 5.12: Manufacturing of the circuit board.

The final template for the board etching was printed on a transparent foil, which we used
to transfer the template to the raw board, by exposing it to UV light. After this the

67

5. Implementation

board was put into an etching liquid to remove the unwanted copper (see figure 5.12b).
The result was the finished circuit board as seen in figure 5.13a. After drilling the holes
the electronic parts were added to the board (see figure 5.12c).
During testing with the first finished version of the circuit board, as seen in figure 5.12b,
we found out that there were some problems with the circuit design. The button and the
rotary encoder were not connected the in right way. We revised the circuit diagram and
fixed all the problems in the second and final version of the board. Figures 5.13b and
5.13c show the final board with all the electronic components already attached (the IR
LED was added later).

(a) Etched circuit board (final
version).

(b) With components from
above (LED missing).

(c) Finished board with com-
ponents from below.

Figure 5.13: Final version of the circuit board.

All in all we manufactured three identical modules to give the users the possibility to
interact with one wind source and two ships at the same time.

5.3.1.2 Housing

One major target during the design of the housing was to keep it as compact as possible,
to minimize the size of the final ACTO. Also it should be easy to mount and dismount
and be built in a robust way so that nothing breaks when being mounted and unmounted
several times. With the outer dimensions we stuck to the dimensions of the ACTO case,
to get one compact object in the end.
The whole housing consists of two main parts that have to be attached to each other.
All of the 3D parts were designed with Autodesk 123D Design [aut] and printed with
an Ultimaker 2 [ult] printer. Figure 5.14a shows the 3D design of the piece which the
circuit board is attached to. In the image the 3D model is upside down, as preparation
for the 3D printing process. Each corner has a hole which is used for the screws, to
solidly attach it to the ACTO base component. On the same level three smaller holes
can be seen. Their purpose is to hold the screws that permanently attach the circuit
board to the case. On the lower level three more holes are visible. They are needed for
the electrical components which are placed on the board. The square one will contain

68

5.3. ACTO Module Development and Core Code Adaptions

the button, the large circular hole in the center is for the rotary encoder and the smaller
square shaped hole is for the IR LED. The circuit board and the housing were designed
in a way that the components perfectly fit into the designated holes.
The other main part can be seen in figure 5.14b. It is placed between the circuit board
and the ACTO base components to fill up the remaining space between the housing of
the ACTO and the StARboard component. It is not required for every ACTO, as they
are not perfectly equal.

(a) The base component (up-
side down).

(b) The spacer component. (c) Assembly of all compo-
nents to the ACTO.

Figure 5.14: The main components of the StARboard housing.

Two more components were designed. They can be attached to the rotary encoder and
improve the user experience by giving a better haptic feedback and allow more intuitive
interaction. The first one can be seen in figure 5.15a and is called boom. It is used for
the ACTOs representing boats. The ACTO will be overlaid with a virtual ship in a way
that the boom is placed exactly where the boom of the virtual ship can be seen. This
gives the user the impression of directly moving the virtual boom left and right, in order
to adjust the sail trim. The other component is called knob. It serves a similar purpose
and is used for the fan (See figure 5.15b).
Figure 5.14c shows how the 3D printed components are attached to each other.

(a) Boom, top and bottom view. (b) Knob, top and bottom view.

Figure 5.15: Interaction components for the rotary encoder.

69

5. Implementation

All the final parts, printed with the 3D printer, can be seen in figure 5.16d. The printing
process can be seen in figure 5.16c. The fully mounted StARboard ACTO module can
be seen in figures 5.16a and 5.16b. The finished module can be applied to the ACTO
base module and screwed together. The final ACTO is shown in figure 5.16e.

(a) Assembled StARboard-module (top
view).

(b) Assembled StARboard-module (bot-
tom view).

(c) 3D printing of a base component.

(d) 3D printed parts.

(e) Fully assembled ACTO for StARboard appli-
cation.

Figure 5.16: Final StARboard ACTO module components and assembled module.

70

5.3. ACTO Module Development and Core Code Adaptions

5.3.1.3 Reflections

A problem that came up with the ACTO tracking was reflections. The surface of the 3D
printed objects was very smooth, which caused strong reflections of the light, as seen in
figure 5.17a. Also other shiny parts of the ACTO as the metal screws or parts of the
potentiometer and button were a problem. The Kinect emits infrared light to create the
depth image. If this light is reflected the depth image can get severely distorted in the
affected areas, as well as the infrared image, which we use for id detection. Especially
when the ACTO was positioned directly underneath the camera, so the reflections could
go straight back, this caused problems with the rectangle detection and the id recognition.
To solve this issue we painted the surfaces which faced to the camera. We tried different
colors, to find one that is matt enough to not cause any reflections. We finally used black
acrylic color. We choose black in order to provide a background with high contrast for
the AR overlay. This solved the problem and the result was the final ACTO, as it can be
seen in figure 5.17b.

(a) Optical reflections on the ACTO surface
can disturb the tracking.

(b) The black acrylic paint prevents reflec-
tions on the surface.

Figure 5.17: Reflective surfaces on upside facing components of the ACTO caused tracking
problems.

The same problem occurred with the surface of the interaction space, which is the table
and the marker. We had to use a matt paper and ink for the tracking marker to prevent
reflections.

5.3.2 Software

As already discussed in chapter 3.2, the ACTOs are based on Arduinos. The ACTO code
is written in C. For our purposes the code basically required adaptions of two kinds. First
of all the ACTO OS had to be extended with a new module to provide the functionality
required for the TrACTOr tracking and id detection process. The other implementation
which had to be done was the functionality required by the StARboard application. We

71

5. Implementation

did it in the form of a StARboard Extension. The resulting ACTO software architecture
can be seen in figure 5.18.

Figure 5.18: ACTO software architecture with the new TrACTOr Control module and
the StARboard Extension.

5.3.2.1 TrACTOr Control Module

As already described in chapter 5.2.3.1, the identification process could not be implemented
as planned in the beginning. The detection of single bits was not robust enough, so
we had to change it from binary id transmission to pattern transmission. We use a
two dimensional array to define the available patterns. Listing 5.5 shows the defined id
patterns from 1 to 8. The first number in each line defines the length of the code and is
required for looping the series, as the length can not be retrieved programmatically. The
patterns themselves always consist of a series of 0 followed by a series of 1, which we
found was the most reliable type of pattern from the ones we tested. We use variable
length patterns to minimize the amount of data to transfer and save time during the
identification process, especially for ACTOs with a low id.

1 const int ID_CODES[8][6] = {
2 { 2, 0, 1 }, // 1
3 { 3, 0, 1, 1 }, // 2
4 { 3, 0, 0, 1 }, // 3
5 { 4, 0, 0, 1, 1 }, // 4
6 { 4, 0, 1, 1, 1 }, // 5
7 { 4, 0, 0, 0, 1 }, // 6
8 { 5, 0, 0, 0, 1, 1 }, // 7
9 { 5, 0, 0, 1, 1, 1 } // 8

10 };

Listing 5.5: ACTO id patterns from 1 to 8.

For sending the id pattern in a permanent loop an extra module, called TrACTOrControl,
was developed. Its main functions are trACTOrSetup and trACTOrLoop.
trACTOrSetup runs only once during the initialization phase. It is called at the end of
the setupActoFramework function in the core ACTOControl module. The setup function
is only responsible for defining the Arduino’s digital output pin, which should be used for
the LED and reading the id from the StARboard code. We use a digital pin and not an

72

5.3. ACTO Module Development and Core Code Adaptions

analog one, because the LED only ever needs to have two different states, ON and OFF.
The more complex function is the loop function trACTOrLoop. It is also called from
the ACTO core module, but in the loop function loopActoFramework which runs in an
infinite loop as long as the ACTO is activated. The purpose of the loop function is to
send the id pattern in a permanent loop. Therefore an important parameter is required,
the bitrate. The bitrate is the amount of data bits that is sent per second. We found that
the ideal bitrate is at 10 bits per second. With this bitrate we can achieve an optimized
balance between a high data rate and a low error rate. So depending of the ACTOs
actual id the identification pattern can be sent between two and five times per second,
which is enough for a quick id detection through the TrACTOr-tracker.
The function uses a timestamp to detect when the next bit should be sent and checks
every loop if this timestamp is already reached. As soon as the timestamp is exceeded the
next data bit is read and the status of the IR LED is set accordingly with the digitalWrite
command. If the bit is a 0 the pin state is set to LOW, if it is a 1 it is set to HIGH.

5.3.2.2 StARboard Extension Code

For the StARboard application the ACTO needs to be equipped with a stepless rotary
encoder and a button. Therefore the ACTO code needs to provide the functionality to
read from this input sources and pass the resulting values to the ACTO-Framework.
In case of the rotary encoder we use an analog input pin. This is necessary in order
to be able to control the sail trim or fan speed fluently, between their minimum and
maximum value. The ACTOControl module provides a very useful function to retrieve
input events, called onAnalogInputEvent. The desired pin needs to be specified at the
beginning of the module, by adding it to the analogInputPins array. Then the function is
called every time there is an input event on one of the specified pins, which in our case
happens whenever the current rotary encoder value changes.
The resulting value will always be an integer, but so far we do not know its meaning as
it is dependent on the actual rotary encoder component that is used. Before the value
can be used we have to normalize it, so that the minimum possible value is -1 and the
maximum value is +1. Therefore we have to test the minimum and maximum values and
use them as constants for the calculation of the normalized result.
This final value is then sent to the ACTO-Framework. For this task the ACTOControl pro-
vides another function: writeFloatMsg. It takes three arguments: the usb_msg, which spec-
ifies the type of the message that is being sent. In our case this is USB_SET_AN_UNIT,
which is used for sending the analog status of a unit. The second parameter is the ACTO
id and the third one the actual value as float.
A similar approach is used for the button, except that we use a digital input pin for it,
which can only be 0 or 1.

73

5. Implementation

5.4 ACTO-Framework Adaptions

In order for the TrACTOr-tracker to work properly and also to provide all the functionality
we needed for the StARboard application we had to adapt the ACTO-Framework to fit
our needs. The ACTO-Framework is an Android application, written in Java and runs
on a smartphone. The software architecture of the updated version of the framework can
be seen in figure 5.19.
The core components are the Communication component, the GUI component and the
ACTO Control component. We use the Communication component to share all sorts of
information as tracking information or user interaction with the TrACTOr-tracker, the
StARboard server over WiFi. The communication with the ACTOs is over an Arduino
Server that is connected via USB. The GUI component contains the interfaces for the
user interaction: ACTO GUI, ACTO Activity and TrACTOr Activity.
All the changes that were made in comparison to the original version are described in
the following sections.

Figure 5.19: ACTO-Framework software architecture.

5.4.1 Message Enhancement

Internally the ACTO-Framework uses a predefined set of system messages for sending
WiFi and USB data. Other system messages are used for sending internal messages
between Services and Activities. One important improvement we had to make is to
introduce new system messages to create the new functionality we needed.

74

5.4. ACTO-Framework Adaptions

5.4.1.1 Receive Tracking Data

In the original version the tracking data was created by the framework itself. It used
optical marker tracking to track ACTOs with the phones built-in camera. This tracking
data could be streamed in real time to other application with a WiFi socket connection.
For our setup we needed the framework to also receive tracking data via WiFi, as we use
the TrACTOr-tracker for generating it. Therefore we implemented a new WiFi interface,
which allows the TrACTOr-tracker to establish a socket connection and stream the live
tracking data to the framework. A new view was implemented as well, to graphically
display the current tracking situation. This view is described in detail in section 5.4.2.

5.4.1.2 ACTO Commands

Also the set of available commands for ACTO robots was extended. So far the framework
was just used to let robots drive to a certain point and rotate by a certain angle. The main
feature we needed for StARboard was to let the robots drive straight at a certain speed.
So we introduced three new commands: driveStraight, setSpeed and stopMovement.
The driveStraight command is used to let an ACTO drive straight ahead. The setSpeed
command can be used to change the ACTO’s speed while driving, which is very useful
for us as the ships in the StARboard application repeatedly change their speed based
on the current wind situation. The stopMovement command is used to stop the ACTO
when the wind is switched off and also for safety reasons. When the ACTO leaves the
tracking area, it stops as well, so it cannot fall of the table.
The ACTO movement functionality itself is implemented in the ACTOPlayground class.
It uses destination vectors as target position of the ACTO movement. In order to fit into
this system and make the drive straight functionality compatible and simple, we also use
target vectors. When a drive straight command is received, we use the current tracking
position of the ACTO and calculate a target point, which is straight ahead of the ACTO.
This solution lets the ACTO drive straight, but we still use the provided functions of the
existing implementation.
Also the stop functionality is implemented in a similar manner. As soon as a stop
command is received, the movement target position is set to the ACTO’s current position.
This means the ACTO will have immediately reached its new position and stops where it
currently is.

5.4.2 Graphical User Interface Extension

For having more control and better observation and debugging options, we also extended
the Graphical User Interface (GUI). On the main control page (shown in figure 5.20a)
we added an info section, which shows the currently tracked ACTOs with their x, y and
z tracking position.
A more graphical representation can be displayed in the Playground tab of the app. There
the user can see the normalized tracking area with all the tracked ACTOs on their current
position. With this view it is also possible to actually move the ACTOs. Therefore the

75

5. Implementation

user has to click the Next ACTO button until the desired ACTO is highlighted. Then
he can tab on the desired position of the tracking area. The ACTO will instantly move
to the chosen position. This feature is not used in the final StARboard setup, but it is
especially helpful for testing, debugging and probably for future applications, which use
the TrACTOr tracking.

(a) Control and info menu. (b) Live tracking situation.

Figure 5.20: ACTO-Framework GUI.

5.5 StARboard Implementation
The new possibilities provided by the TrACTOr system allows us to develop the StARboard
application. As discussed in section 4.2.5, we developed this client server based application
with Unity in the programming language C#. The server application runs on a desktop
computer. It can either run on the same computer as the TrACTOr tracking or on a
separate machine. To optimize the performance we run it on a separate computer. The
StARboard clients can run on various devices that support AR. We mainly used the
HoloLens and Android smartphones.
StARboard is a learning application for sailing students. It gives especially beginners a
better understanding of the correct sail trim for several wind situations and maneuvers.
It also allows the user to explore how different types of ships behave. Figure 4.10 shows
the basic system setup, the architecture is described in the following section.

5.5.1 StARboard Architecture

The StARboard architecture basically consists of two main components, the Server and
the Client. It is shown in figure 5.21. We designed the system based on a centralized
design principle, which means that most of the work is done on the server side while the

76

5.5. StARboard Implementation

clients purpose is mainly to display the content.
To receive the actual tracking data we establish a connection from the ACTO-Framework
Connection component to the ACTO-Framework. This connection is described in section
5.5.2.4. Based on the tracking data the ACTO Manager creates different types of virtual
objects, like ships or fans, which are managed as ACTOs, see section 5.5.2.1. These
virtual objects are controlled in the Game Controller and moved based on the physics
and game logic we implemented. See section 5.5.2.2 for a detailed description. For an
improved learning experience we developed a module for the specific training of certain
sailing maneuvers, which is explained in section 5.5.2.3. These Maneuvers are controlled
in the Maneuver Manager.
Multiple clients are able to connect to the same server instance simultaneously. This
allows multiple users to use the system at the same time, so we can provide a shared
learning experience.

Figure 5.21: StARboard software architecture.

5.5.2 StARboard Server - Physics and Game Logic

On the server we process the received tracking data and setup a virtual scene with
different kinds of objects.

5.5.2.1 Virtual Objects - Ships and Fans

While we use the ACTO robots as real world objects for tracking and as input devices,
we want the user to see other, virtual objects instead. Therefore we use AR to overlay
the ACTOs with virtual objects. While the user sees another object, he can still touch
and interact with the ACTO as if it was the virtual object he sees.
The system supports two different kinds of virtual objects, which can be actively used
by the user: Ships and Fans. For each base type different instances of objects can be
implemented easily. We developed two different ships and one fan. All of the virtual
objects are in a clear inheritance hierarchy, which allows us to bundle shared functionality

77

5. Implementation

in parent classes and easily develop new ship and fan types. The inheritance structure
can be seen in figure 5.22. The basic positioning, rotation and interaction functionality
is implemented in the ACTO base class. We implemented the ship specific functions, like
sail trim, driving speed and visualizations in the Ship class. The ship specific differences
like the physical behavior and visual details of the 3D model are implemented in the ship
child classes. The same principle applies to the Fan class. General fan specific functions
are implemented there, while different types of fans can be implemented based on that.
So far we implemented two different ships and one fan. Without much effort more ships
and fans could be added.

Figure 5.22: Inheritance structure of virtual objects.

For instantiating virtual objects while the application is running we use Unity’s Prefab
feature. It allows us to predefine objects in the editor beforehand. They can then be
instantiated and loaded into the scene at runtime. This feature is also very useful for
sharing virtual objects across multiple projects and keep them synchronized. As we used
two different Unity projects for the server and the HoloLens client, we had to synchronize
the virtual objects during the development process. At runtime the server and each
client instantiate their own prefabs. If they are not the same due to bad synchronization,
various problems can occur.

Diagrams

In order to support the user’s learning process we implemented two different kinds of
visualizations, the polar diagram and the wind diagram. The user can display them by
clicking the button on the ACTO. Read more about the ACTO interaction in chapter

78

5.5. StARboard Implementation

5.5.4.

Polar Diagram The polar diagram supports the user in finding the ideal bearing,
dependent on the current wind situation. It does not consider the current sail setting.
Figure 5.23 shows how we integrated the polar diagram into the system. It is displayed
directly underneath the ship and rotates if the wind source is rotated, so it always points
in the direction of the wind. The symmetric orange line shows the maximum possible
boat speed per bearing, which can vary for different boat types.

(a) Vagabond with polar diagram. (b) Trireme with polar diagram.

Figure 5.23: Ship specific polar diagrams displayed underneath the virtual objects.

Wind Diagram The wind diagram is supposed to give assistance in the next step,
which is finding the ideal sail setting for the current bearing. Figure 5.24 shows that the
diagram consists of two different arrows. The blue arrow represents the wind. It points
into the direction of the wind and its length indicates the current wind strength.
The second arrow can either be red or green, dependent on the current game mode (read
more about game modes in section 5.5.2.2). It always points into the current driving
direction of the boat. The length represents the current boat speed. This means the
longer the arrow gets, the faster the boat sails. This function allows the user to change
the sail setting and immediately see the response through the length of the arrow.

5.5.2.2 Physics and Game Logic

The sailing physics and the game logic are implemented in the Game Controller as well
as in the ACTO class and its deriving classes. Each tracked ACTO is represented by a
virtual object in the scene. When a new ACTO is tracked, the user can choose, which
kind of object it should represent. He can rotate the potentiometer handle on the ACTO
to switch between the available objects and click the button to select one of them. The
ACTO will then gain this object’s behavior immediately. It can either be a ship or a

79

5. Implementation

(a) Wind diagram in live mode. (b) Wind diagram in planning mode.

Figure 5.24: The wind diagram shows the wind situation and the current boat speed.

fan. The system can only have one fan at the time, because multiple wind sources do not
make sense.
The physics of the fan are quite simple, as we only store the orientation and wind speed,
the fan itself does not move. The ships on the other side are way more complex, because
they should move according to the current bearing, sail trim and wind speed. Therefore
we call the updateSpeed method of every ship in each update loop of the Game Controller.
In the ship model we calculate the current speed, based on the influencing parameters and
return it to the controller. In the controller we send the updated movement commands
to the ACTO-Framework, to apply them to the ACTO robots.
The calculation of the current ship speed is quite complex, as various parameters need
to be taken into account. As the physical behavior of a sailing boat is very complex we
simplified the system and implemented a physical approximation which is sufficiently
accurate for our application. Listing 5.6 shows the core of the speed update function’s
implementation.
First we calculate the current bearing (lines 2-9). The bearing is then used to calculate
the most interesting parameters, the maxBearingSpeed and the newSpeed.
We calculate the maxBearingSpeed based on four factors (lines 12-16):

• windSpeed - the current speed of the wind.
• maxShipSpeed - the maximum possible ship speed between 0 and 1, which is

higher for faster ship types and lower for slower ones.
• ACTO_MOVEMENT_SPEED_FACTOR - a factor that allows us to con-

trol the overall game speed easily.
• polardiagram.getMaxSpeedForBearing(...) - the maximum possible driving

speed for this specific boat type on the current bearing. This is the most interesting
and complex parameter for this calculation. Section 5.5.2.2 shows how it is calculated
in detail.

80

5.5. StARboard Implementation

The newSpeed, which is the ships new speed, is calculated based on two parameters (lines
19-21):

• maxBearingSpeed - the maximum possible speed for the current bearing, calcu-
lated above.

• sailtrim.getSpeedFactor(...) - the speed factor based on the current sail trim,
which is explained in detail in section 5.5.2.2

In order to make the movement smoother and more realistic, we do not just apply the
new speed to the ship. We also consider speed changes. So we calculate the according
acceleration or deceleration and apply it to the ship speed accordingly.

1 // get current bearing (angle between boat and wind)
2 float bearing =
3 windSource.gameObject.transform.rotation.eulerAngles.y -
4 this.gameObject.transform.rotation.eulerAngles.y +
5 180.0f;
6 bearing %= 360;
7 if (bearing > 180) {
8 bearing = bearing - 360;
9 }

10
11 // calculate the maximal possible speed for the current bearing
12 maxBearingSpeed =
13 windSpeed *
14 maxShipSpeed *
15 ACTO_MOVEMENT_SPEED_FACTOR *
16 polardiagram.getMaxSpeedForBearing(bearing);
17
18 // apply the current sail trim to the maximum possible speed
19 newSpeed =
20 maxBearingSpeed *
21 sailtrim.getSpeedFactor(getTrimDegr(), bearing);
22
23 // apply acceleration and deceleration to make movement changes smooth
24 ...
25 }

Listing 5.6: Calculate the new driving speed of a ship.

getMaxSpeedForBearing()

This function returns the ship specific maximum speed for a certain bearing, independent
of the sail setting. So it basically returns the value of the polar diagram for a certain
bearing (See polar diagram 3.8). The polar diagram is a symmetric curve. In our
approximation we divided it in several sectors, each of which is represented by an
equation, which allows us to calculate an exact value for each bearing. Figure 5.25a
shows the three sections a, b and c, we use for calculating the bearing speed for one ship
type. While every value in section a is 0, as the ship can not drive against the wind,
sections b and c are represented by a quadratic equation, we defined over several static
points along the curve.

81

5. Implementation

getSpeedFactor()

We use a similar approach for calculating the sail trim specific speed factor for a certain
bearing. First we divided all bearings in sections, similar as for the maximum bearing
speed. This time each section represents an equation that defines the perfect sail trim
per bearing. Figure 5.25b shows the four sections we use, while the orange line represents
the sail trim. Values close to the center mean the sail is very tight, while values on the
outside of the diagram mean that the sail is far opened. All the values in section a are 0
again. Sections b, c and d are represented by quadratic equations.
After calculating the perfect trim for a bearing we compare it with the actual trim and
based on the difference between these values we generate the resulting speed factor.
A special case occurs on bearings around 180 degrees, because there the ship should also
move when the sail is on the other side. In those cases the wind comes from behind, so it
should not make a big difference on which side the sail is. We also consider this special
case when comparing the ideal sail trim with the actual sail trim.

(a) Sections of a ship specific polar diagram
used for calculating the maximum speed for
a certain bearing.

(b) Sections of a ship specific diagram which
is used for calculating the perfect sail trim
per bearing.

Figure 5.25: Mathematical construction of polar- and sail diagram used for calculating
the ship speed.

Game Modes

While testing our system and the interaction we found out that it is often useful to play
around with the sail setting without the ship to be moving. Usually if the sail trim is
more or less correct, the ship will instantly start moving. But the user sometimes wants
to try out other sail settings first, before the ship starts moving. Also it becomes more
difficult for the user to set the sails as desired if the ship is already moving.
For this reason we introduced two different Game Modes: When the system is in Live
mode, the ships will move according to the current wind and sail situation. If it is in

82

5.5. StARboard Implementation

Planning mode the ship will stay static, even though it is possible to adjust the sail and
use the visualizations to see how the sail setting would affect the driving speed. The user
can switch between both modes by clicking the button on the fan. The symbol hovering
above the fan will change, as well as its color, according to the current mode (see figure
5.26). Also the color of the second arrow of the wind diagram changes to green or red
accordingly (see figure 5.24),

(a) Planning mode. (b) Live mode.

Figure 5.26: The symbol above the fan indicates the current system state to the user.

5.5.2.3 Maneuvers

Besides the user being able to play around with various parameters we also wanted to
improve the learning experience by teaching some sailing specific content to the user.
Therefore we developed the Maneuvers functionality. It allows to introduce the user to
various situations that often occur while sailing, by showing him certain courses and
standard maneuvers in a Demo mode. The system will visually show how a certain
maneuver or course is driven and what the perfect sail setting looks like. Additionally it
gives verbal audio explanation and guidance throughout the demonstration. The most
important pieces of information are pointed out so the user is able to drive the same
maneuver or course himself.
Besides this Demo feature we also implemented a Test feature, where the user is asked
to repeat the previously explained maneuver or course. We implemented a functionality
that will give verbal audio feedback to the user’s attempts to solve the task. This should
improve the learning experience and bring the user close to real world sailing situations.
In order to be able to play audio information, we created all the required recordings with
a text to speech engine (TEXT2MP3 [tex]) and stored the results as audio files in the
application. All of them are available in German as well as in English language, so the
system can also be experienced by international users. The audio files are triggered on
the server side but played on all the clients as well, so it is also possible that multiple
users solve tasks and learn together.

83

5. Implementation

The maneuver feature was implemented in a way that new courses or maneuvers can
easily be added or the existing ones updated. We used a hierarchical model, where most
of the work is done in the base class, while the child classes, which represent the actual
maneuvers, mainly define the ACTO’s waypoints, the sail trim and the audio files to use.
With this method we defined three different courses as well as three maneuvers, which
we also used for the user study, see chapter 6.2.

5.5.2.4 Networking

For the StARboard server we had to implement two different types of network connections.
The connection to the ACTO-Framework and the connections to the StARboard clients.
Both types are WiFi connections.

ACTO-Framework Connection

The ACTOFrameworkConnection handles both incoming and outgoing networking mes-
sages to the ACTO-Framework. The outgoing messages are mainly ACTO driving
commands, like moving to a certain point, setting a specific speed or stopping an ACTO.
These messages are called from the Game Controller and the Maneuvers, if active.
The incoming messages can be of different types, like tracking information or user inter-
action, like a button click or a change of an ACTO’s potentiometer. All of the received
messages are treated as events and collected by the ACTODataEventQueueManager. In
each game loop all the cumulated events are fired and handled in the ACTOManager.
There we update existing ACTOs with new tracking data, create new ACTO instances,
if they are not yet known or invoke the ACTO objects with updated user interaction, as
a button click event.
Similar as in the TrACTOr tracking system we do not just place the virtual objects to
the exact new position we received from the tracking. We just use it as a target position
and move the 3D object towards it. The further the distance to the new target position
the faster it is moved. This reduces inaccuracies from the tracking system and makes the
3D objects appear more stable.
User input events like button click or potentiometer change are passed to the ACTO
model itself, which is facilitated by our inheritance model. Dependent on the actual
object type, ship or fan, the model initiates the according actions.
A special case occurs if tracking data of unknown ACTOs is received, which means ACTO
IDs that the StARboard server did not receive during the current session yet. In this
case we create a new ACTO instance from a prefab. This GameObject, as they are called
in Unity, needs to be instantiated network wide, so it also has to be instantiated on every
client, which uses the second type of network connection, explained in the next section.
As the received tracking data is normalized to the tracking marker, see chapter 5.1.3,
we needed to make sure, the normalized position data is applied correctly on the server.
Therefore we created a GameObject on the server that also renders the tracking marker.
We added a child GameObject, called MarkerCos, to it, which is used to transform from
the normalized tracking data to Unity units. We did this with a very simple trick. The

84

5.5. StARboard Implementation

tracking marker plane always has a size of 10 by 10 units, while the tracking data ranges
from -1 to +1. So we just gave the MarkerCos a scale of 5 units. All the ACTO models
are moved into the MarkerCos GameObject and in there the normalized tracking data
can just be applied directly, with the desired result.
Another problem that arose was the size of the 3D objects we used. After instantiating
the new ACTO GameObjects they are moved into the MarkerCos GameObject, which
causes a change of their local scale. We have to reapply the original prefab scale after this
step to keep the desired 3D model size and stay independent to changes of the tracking
marker.

Client Connection

The client connection is a one to many network connection. One server provides the data
for many clients. All the calculations and interactions are made on the server side, so
every change in the visual appearance of the scene needs to be passed to every client.
This starts with the exact position and orientation of each ACTO, but also covers changes
like an updated sail trim or showing and hiding of polar diagram and wind diagram. To
share this sort of information we use SyncVars within the ACTO models. These are
basically variables whose value is shared over all the network instances. While these
SyncVars are updated on the server, the clients will check for changes of their instance of
the SyncVar and update the scene accordingly. An example for a SyncVar as we use it is
is shown in listing 5.7.
The shared variable curSailTrim is updated on the server with the latest user input
data received from the ACTO-Framework. Each client stores a local copy of the last
known value in the localSailTrim variable. In every update loop each client compares its
local copy with the shared one. As soon as they are different, the client applies the new
value to the visualization and stores it in the local copy again, until the next change is
registered.

1 // shared variable
2 [SyncVar]
3 public float curSailTrim = 0;
4
5 // local copy of the variable to detect updates
6 private float localSailTrim = 0;

Listing 5.7: SyncVars as shared variables.

We use a similar approach for playing the audio files network wide, which are used in the
maneuvers.

5.5.2.5 Graphical User Interface

The GUI of the StARboard server was designed to fulfill two needs. First to give an
observing person an overview of the current tracking situation and scene. And second to
provide the control mechanisms for connecting to the ACTO-Framework, starting the
Unity server and managing other StARboard relevant actions. This can be done by the

85

5. Implementation

user himself or if available, by an operator who controls the system so that the user can
focus on the learning system.
The reason why a convenient way of observing the system for outsiders or the operator is
important is, because the system is based on AR. This means the person operating the
session does not know what the user, who is interacting with it, currently sees. Unless he
also wears AR glasses (or other AR display). This is why we implemented the server
interface as seen in figure 5.27. It provides a top down view on the whole virtual scene
on the StARboard server PC. With the arrow keys of the keyboard the camera can be
moved. It can also be zoomed in, out and tilted to allow better viewing angles, which
might be helpful in certain situations.

Figure 5.27: StARboard server Graphical User Interface (GUI).

In the top left area of the screen, we placed the networking controls. Here the operator
can start the Unity network server PC, as well as establish a connection to the ACTO-
Framework. The current status of both network controllers can be seen at any time.
Underneath the current game mode can be changed, e.g. between Live, Planning or
Demo mode.
The maneuver controls are located in the bottom right area of the screen. Each row
represents one maneuver or course. When the operator clicks on one of the left buttons
the according maneuver will be prepared. The ACTOs will move to the starting position
of the demonstration. As soon as they are in place the other two buttons of the row,
Demo and Test, get enabled. If the operator clicks the Demo button, the maneuver will
be explained and demonstrated to the user. A click on Test will launch the test for this
maneuver, which will also be guided through an audio voice.

86

5.5. StARboard Implementation

On the top right the currently tracked ACTOs are listed. Here the operator is also able
to add additional virtual instances of the ships or fans. This is mainly used for testing
purpose and the other interaction techniques, we developed for the user evaluation. Read
more about this in section 5.5.4.1

5.5.3 StARboard Clients

As already explained, the clients we implemented are thin clients. Most of the system
logic runs on the server, while the clients are mainly for displaying the shared content.
For some interaction techniques they also transfer the interaction to the server (not
needed for the standard ACTO interaction technique). The client we developed can
be deployed to different kinds of targets with different interaction techniques. Besides
the main HoloLens client we also developed an Android client and a desktop client,
mainly for the user evaluation, to be able to compare different interaction techniques
with each other. All of these applications are based on the same Unity project which can
be deployed to different platforms and act as client or server.

5.5.3.1 Marker Tracking

One key feature which is only needed for the HoloLens client and the Android client is
the marker tracking. In order to be able to render the scene at the correct position in
the real world the tracking marker, which is positioned in the interaction space, needs to
be detected. Therefore we integrated the Vuforia tracking library into the StARboard
application, as explained in section 4.2.5.5. The center of the marker will act as the origin
of the whole scene. While the marker tracking has to be continuous for the Android
application, we also use spatial tracking on the HoloLens. This means that the HoloLens
creates a 3D scene of the environment the user is in, while using the system. This spatial
environment map is used to improve the tracking. So even when the tracking marker
is not detected anymore, as soon as its position is determined once, the system will
still be able to project the scene to the right point. We still try to detect the marker
simultaneously during the whole session in order to improve the accuracy.
During the implementation we faced a problem here, as it was not possible to reposition
the whole scene to the center of the tracking marker. The HoloLens Unity application
would always have its origin at the position where the HoloLens was in the room, when
the app was started. Therefore we used the same principle as we used on the server side
for transforming the normalized tracking positions to Unity space. The image marker
target in the Unity scene is represented by a GameObject which is positioned at the
place where the marker is in the real world. We used a separate GameObject called
MarkerCos, which we positioned inside it. Every ship or fan GameObject that is created
during a session is moved into this MarkerCos GameObject. In this way we achieve the
right position and scale of the 3D objects in the real world.

87

5. Implementation

5.5.4 Interaction

The main interaction technique we developed uses the ACTO robots as interaction tokens.
The user wears the HoloLens and sees virtual objects instead of the ACTOs, as seen in
figure 5.28

(a) User interacts with ACTOs in AR. (b) View from user perspective with and
without AR.

Figure 5.28: A user experiencing StARboard with the HoloLens.

The idea is that the user can touch the virtual object and will receive tactile feedback as
he touches the ACTO. For the user it should seem as if he would be able to touch the
virtual object. Therefore three different ways to interact are supported. He can take the
virtual object in his hand, lift it up, rotate it or put it somewhere else. He can touch
and push the beam of the sail boat, which is represented by the rotary knob with the
beam-extension on top of the ACTO. This will change the actual sail setting of the sail
boat. Furthermore, the user can click the red button on the boat in order to activate or
deactivate the visualizations polar diagram and wind diagram.
In order to give the best possible haptic feedback to the user the virtual object needs to
be overlayed on top of the real ACTO as precise as possible. So the real button should
be where the virtual button is displayed and the extension of the rotary knob has to
be at the position of the virtual beam. When the user reaches for the virtual object he
should touch the real world equivalent.
For the fan the rotary knob represents the rotational knob of a real fan. The same way
as for a real fan the user can use it to change the speed of the wind. If he clicks the
button on the fan the system switches between the Live mode and the Planning mode.

88

5.5. StARboard Implementation

To improve the usability of the system even more, we do not only use visual and tactile
feedback, we also implemented audio feedback. When the user clicks the button on an
object he hears a click sound as feedback.

5.5.4.1 Alternative Interaction Techniques for Evaluation

In order to be able to evaluate the presented haptic interaction method we also im-
plemented two other interaction techniques based on more conventional interaction
strategies: gesture based interaction and mouse-keyboard interaction. In the user study
we compared these three techniques to see if the haptic interaction provides advantages
or disadvantages compared to the others.

Gesture Based AR Interaction

For the gesture based interaction technique the user also wears the HoloLens, but the
ACTO robots are not involved. This means that the objects the user sees are purely
virtual and he can not touch them physically (see figure 5.29a).

(a) User interacting with virtual objects.

(b) Click to change visualization or
game mode.

(c) Pinch to rotate objects and change
wind speed and sail setting.

(d) Long click to move objects.

Figure 5.29: Gesture based interaction technique. (Gesture images based on graphics
from HoloLens documentation [Hola])

89

5. Implementation

For interaction we used the available standard HoloLens gestures and mapped them to
our system. A difficulty was the limited amount of available gestures, as we wanted
to provide the same range of possible actions the user has with the ACTO interaction
techniques. These are: rotating objects, changing sail setting and fan speed, moving
objects and clicking objects.

• click objects - All gestures start in the same way, as shown in image 1 in figure
5.29b. If the user brings the index finger and thumb together and apart again, he
clicks the object the cursor is currently focusing. The effect is the same as if the
user would click the button on the ACTO. At a ship the visualization changes and
at the fan the game mode changes.

• rotate objects - To rotate an object the user gazes at the desired object and puts
the two finger together as before. Instead of moving them apart from each other
again, the user can move the hand left or right to rotate the object accordingly (see
figure 5.29c).

• change sail setting and fan speed - For changing the sail setting the same
interaction technique is used, only that the user gazes on the sail, instead of the
boat’s hull. When gazing on a fan the user can manipulate the fan speed by moving
the hand up or down.

• move objects - In order to move objects a long click has to be performed, as seen
in figure 5.29d. The gesture starts equal than the gestures before, but the fingers
stay together and the hand steady for one second. After that the user can move
the object by gazing at the intended location for the object. It can only be moved
on the surface, so it cannot be lifted into the air.

Mouse Based Desktop Interaction

For this interaction technique the user works with a conventional desktop computer with
mouse and keyboard (see figure 5.30). The scene is shown from above, similar as on the
server. Again, we wanted to provide the full set of possible interactions, but this time
we had to add an additional one. In the previous interaction techniques the user could
physically move around to change the perspective on the scene. To achieve a similar
effect, the user can move the camera with the arrow keys of the keyboard. All other
interaction is done with the mouse.
With the left mouse button the user can click on an object, which is the same as if he
would click the button on the ACTO. He can use drag and drop with the left mouse
button to move the objects around in the scene. The right mouse button can be used to
rotate objects, by dragging them. If the sail is focused and the user drags with the right
mouse button he can change the sail setting. The mouse wheel can be used to adjust the
wind speed while the cursor hovers over a fan.

90

5.5. StARboard Implementation

Figure 5.30: Desktop based interaction with mouse and keyboard input.

91

CHAPTER 6
Evaluation

In this chapter we first describe the results of the technical evaluation of TrACTOr and
StARboard. We tested the performance of the tracking algorithm, especially the accuracy
and speed of the tracking. The tracking resolution and frame rate are also important
parameters we evaluated.
Afterwards we present the user evaluation we conducted. First we give a general introduc-
tion into the goals of the study and an overview of the participants and their demographic
characteristics. Then we introduce our study design. We explain the components we
used and how we sequenced them to receive a meaningful result. Afterwards we describe
the tasks for the users. Afterwards we give an overview of the testing process itself and
how we carried out the actual tests. Then we present the study results and also interpret
them based on our experience. At the end of that section we also give a summary about
all the results.

6.1 Technical Evaluation
With the technical evaluation of our system we want to outline the technical capabilities
as well as the limitations of the system. For the technical evaluation, as well as for the
user study described in the next section, we used the hardware shown in table 6.1.

For the depth tracking we used the Microsoft Kinect 2 as input device. It was placed
72cm vertically above the tracking surface. The optical marker we used was a square of
39 by 39cm. It was positioned centrally underneath the Kinect.
In the TrACTOr tracking software we defined a tracking area of about 50 by 55cm with
the tracking marker in its center. This area acts as region of interest and everything
outside of it is ignored for the tracking process.

One of the evaluated parameters of the tracking system is the frame rate. In order to
provide accurate real time tracking the frame rate has to be sufficiently high so that the

93

6. Evaluation

TrACTOr
tracking

ACTO-
Framework

StARboard
Server

StARboard
Client

System Windows 8.1 Android 6.0.1 Windows 10 HoloLens
Processor Intel Core i7-

4790K CPU @
4.00GHz

Quad-core 2.3
GHz Krait
400

Intel Cor i7-
6800K CPU @
3.40GHz

Custom
Microsoft
Holographic
Processing
Unit HPU 1.0,
Intel 32-bit
architectureGraphic card NVIDIA

GeForce GTX
980 Ti, 6GB

Adreno 330 NVIDIA
TITAN Xp,
12GB

RAM Memory 32GB 2GB 32GB 2GB

Table 6.1: Hardware Specification Used for Technical and User Evaluation.

virtual image always sticks to the real ACTO robot. This can be achieved with a frame
rate of more than 25 frames per second, because this is roughly the amount of frames a
user can perceive. To provide an even smoother experience we set 30 frames per second
as our target frame rate. This is also the frame rate of the depth camera we used for the
tracking, the Kinect 2.
The frame rate is related to the amount of ACTO robots tracked at the same time,
because the processing effort increases with every detected ACTO. Therefore we measured
the frame rate for different amounts of ACTOs, to be able to compare them. We took
measurements for zero, one, two and three ACTO robots tracked at the same time. Two
or three ACTOs is the usual amount of robots required for the StARboard application,
therefore these are the most relevant results for us.
Our results show that the frame rate of the tracking data sent from the TrACTOr system,
for zero, one, two or three ACTOs is always 30fps. This is the maximum possible value,
due to the limitation by the camera frame rate.
Additionally we measured the received frame rate at the ACTO-Framework, where the
tracking data is processed first. The received frame rate there is always 30fps as well.
This means that the tracking frame rate is sufficiently high for the usage in the StARboard
application. As the bottle neck in the tracking system is the frame rate of the camera we
also wanted to investigate how fast the actual tracking algorithm is and how it correlates
with the tracking of multiple ACTOs. Therefore we measured the time between receiving
a frame and when the tracking result is finished. We measured this for zero to three
ACTO robots and the processing effort increases linearly, from mean 3.8ms (SD=0.89)
for zero ACTOs, to mean 7.1ms (SD=”1.04) for 3 ACTOs. Figure 6.1 shows the linear
estimation of how the processing time would increase with additional ACTO robots in
the tracking area. With a frame rate of 30 frames per second the algorithm could take
33.3ms for processing, before the tracking frame rate drops under 30fps. The graph shows
that the critical point is reached after 26 ACTOs. This means that with this system

94

6.1. Technical Evaluation

configuration it should be possible to track 26 ACTOs at 30fps.

Figure 6.1: Processing time of the tracking algorithm by amount of tracked ACTO robots.

Another important factor of the tracking system is the accuracy of the tracking. To
measure this we positioned two ACTOs in known distance of 7.9cm to each other and
tracked them. Then we transformed the tracking result to real world distance values. To
achieve this we used the known tracking marker size and converted the relative distance
values of the tracking system to real world distance values. We repeated this procedure
for several positions and relations within the tracking area. The resulting average distance
error is mean 1.5mm (SD=0.95) in x as well as y direction.

To measure the jitter we tracked stationary ACTOs on different positions of the tracking
surface. We recorded the tracking data over time and then calculated the difference to
the average. The mean jitter was 0.46mm (SD=0.42) in x as well as y direction. The
mean error in z direction was 4.7mm (SD=2.9) and the mean rotational error was 0.7
degrees (SD=0.54).

As described in chapter 5.2.3 we implemented a two level tracking approach, whereas
the first level needs the whole ACTO to be visible for the camera, while in the second
level tracking is still possible despite partial occlusion. The jitter measurement above
was executed without any occlusion of the ACTO robots. We also performed the same
measurement with partial occlusion. To simulate usual user interaction we occluded the
ACTO with a hand as if the user would rotate the rotational interface on the ACTO.
This resulted in only two of the ACTOs four edges being visible for the depth camera.
The edges are the important parameters for level two of the tracking algorithm.
The resulting mean jitter with partially occluded ACTOs is 1.4mm (SD=1.22) in x as
well as y direction, 6.3mm (SD=1.25) in z direction and 5.1 degrees (SD=3.1) for the
rotation.
A comparison between the jitter error for unoccluded and partly occluded ACTOs can
be seen in table 6.2.

The tracking resolution depends on the depth camera resolution and its distance to the

95

6. Evaluation

x [mm] y [mm] z [mm] rotation [deg]
unoccluded (level 1) 0.46 0.46 4.7 0.7
occluded (level 2) 1.4 1.4 6.3 5.1

Table 6.2: Mean jitter error of unoccluded and partly occluded ACTOs in comparison.

tracking surface. In our setup we positioned the Kinect 2 with a depth tracking resolution
of 512 by 424 pixels 72cm above the tracking surface. This results in a resolution of 2mm
per pixel. As stated previously the tracking accuracy and jitter are below this value. We
can achieve this high accuracy due to the rectangle and line detection, as well as the
tracking over time.
The tracking area for this setup is about 1 by 0.83m. In order to track a larger interaction
space the Kinect could be put further away from the interaction surface. According to
the Kinect 2 specifications it has an approximate maximum range of 4.5m. With this
distance the maximum possible tracking area size is about 6.3 by 5.2m. But the higher
distance of the depth camera would also result in a lower resolution per pixel of 12.3mm
per pixel. As the ACTOs have a size of about 5.5 by 5.5cm, the tracking accuracy would
be lower accordingly.
The ideal distance between depth camera and interaction surface depends on the use
case and the application. For the StARboard application we recommend a distance of
about 72cm, based on our practical experience.

The time between the first frame when an ACTO robot is visible for the depth camera
until the first tracking result is sent, is the latency of the ACTO identification. It is also
dependent on the ACTOs actual id, because the length of the id codes differs, which
means that the optical transmission process does not take the same amount of time for
different ids. The mean measured latency for the initial ACTO recognition with the id
1 is 420ms. This means that 420ms after the ACTO first becomes visible to the depth
camera, the first tracking data package is sent. As soon as the ACTO is identified once,
this id detection does not have to be performed anymore, so it does not play a role in the
continuous tracking process, only for the initial detection. For the ACTO with the id 3
this initial detection time is 650ms. For an ACTO with id 26 it would take about 1680ms.
This time could be reduced if the used patterns for id detection would be changed. We
choose this pattern for the StARboard application as it is optimized for a lower number
of ACTOs and for StARboard we only need two or three ACTOs at the same time.

For the StARboard application the pattern is sufficient, as only two or three ACTOs are
used at the same time.

For the StARboard application the whole system round trip time is an important factor.
This is the time between receiving a depth frame at the tracking system until the 3D
model is rendered at the according position on the HoloLens. So the time between an
action happens until it is visually reflected to the user within the AR environment. During
this process the tracking data needs to be calculated on the tracking system, transmitted
to the ACTO-Framework, where it is processed and transmitted to the StARboard server.

96

6.2. User Study

There it is applied to the 3D scene and finally it is sent to the StARboard HoloLens
clients. The mean measured time for this process is 110ms (SD=42).

6.2 User Study

The aim of the user study was to evaluate whether the usage of haptic feedback in
combination with Augmented Reality (AR) could improve learning with a learning
system. Therefore we wanted to know how easy and intuitive the system is to use. The
aim was to enable the user to focus on the learning task and not on handling the system.
Another aspect we wanted to explore is how much fun the users have while using it,
because learning is much more efficient if the user enjoys what he is doing.

A total of 18 people between the age of 22 and 57 participated in the study (mean 31.5,
SD 8.4), 5 of them female, 13 male. Most of them stated that they had little to no
previous experience with the HoloLens, with an average of 1.9 (SD=1.1) on a scale from
1 - Not at all to 5 - Very much. On the other hand many of them already had some
experience with AR in general, with an average of 2.9 (SD=1.4). The general usage
of computers was rated relatively high amongst most of them, with an average of 4.6
(SD=0.9).
As the learning system deals with sailing we also asked about the preknowledge there.
Most of the users had no sailing experience at all, some had a little and a few had much,
with an average of 1.8 (SD=1.1).

6.2.1 Study Design

In order to be able to give a statement about whether the usage of haptic feedback and AR
in a learning application is useful or not, we decided to compare this interaction technique
with two others. As described in section 5.5.4.1 we implemented two additional interaction
techniques for the same learning system. As the quality of these alternative interaction
techniques has a high impact on the result of this study we tried to implement them as
good as the haptic one. We also made sure to provide the same range of functionality for
all three. The learning system stays the same, only the way of interaction changes. This
allows us to compare them objectively. The three interaction techniques are:

• AR with haptic feedback, using the HoloLens for visualization and the ACTO
robots for interaction. From now on also referred to as AR-H

• AR with gesture control, using the HoloLens. AR-G
• Conventional desktop application with mouse and keyboard control. D-M

See section 5.5.4 for a detailed description.

Each user tested all three of the interaction techniques. In order to compensate learning
effects the order was changed for each user. Also the order of the given tasks was changed
in a way that after all 18 users each combination was tested equally often.

97

6. Evaluation

After each interaction technique the users tested, they had to fill out the same ques-
tionnaire, which consisted of a combination of different tests: The first section was the
System Usability Scale (SUS), by Brooke [Bro96]. In the second section we mixed several
questions of other standardized questionnaires with questions we designed ourselves. We
used four questions of the Task Load Index (TLX) by Hart [Har06], about Frustration
Level, Mental Demand, Performance and Temporal Demand. Furthermore we added
questions to measure the absorption by activity, which is a component of the flow ex-
perience, defined by Rheinberg et al. [REV02] in the Flow Short Scale (FSC). We also
included some questions to evaluate the degree of immersion during the experience.
Additionally we measured if the users physical condition changed during the AR sessions,
due to Visually Induced Motion Sickness (VIMS). Therefore we used the method intro-
duced by Hwang et al. [HDGP17], to measure VIMS with one single question, which is
based on the Wong-Baker FACES [IC03]. It is a simple version to evaluate the physical
wellbeing in a single question, which the users had to answer directly before and after
using the HoloLens.

6.2.2 Tasks

Every user got several tasks for each interaction technique. We divided the tasks in two
sets, the warmup tasks and the tasks we actually measured.
The intention of the warmup tasks was to make the user more familiar with the interaction
technique and let them explore all the available possibilities. Four different warmup tasks
were given for each technique, whereas the first one was the easiest and they grew more
complex one by one. The tasks covered all available types of interaction, as well as all
the relevant game mechanics that are needed to solve the actual tasks. The result of
these tasks was not measured.
After finishing the warmup tasks the user had to do the two actual tasks. The first
one was a certain bearing that had to be driven, the other one a maneuver. The exact
process of these tasks was as follows: At first the objects (fan and boat) moved to their
starting position. Then the system introduced the user to the maneuver that will follow
by explaining it orally. After that the boat moved along the given path, showing the
correct sail setting. While the user watched the boat move, the system explained more
about the sail trim and the driven maneuver. After the demonstration was finished the
boat moved back to its initial position and the testing mode started. The system asked
the user to apply the correct sail trim for the given course. For maneuvers where the boat
has to rotate during the task (tack, jibe, shoot up), the system drove the first part of the
maneuver itself for the test. The sail trim had to be adjusted by the user after the boat
rotated to the new bearing. We measured the success of the task based on the amount of
tries it took the user to successfully finish it. A task was classified as successful if the
chosen sail trim lead to a new boat speed of at least 60% of the maximum possible speed
for this bearing.

98

6.2. User Study

6.2.3 Testing Process and Execution

As already described, the main part of the test consisted of three sections, one for each
interaction technique. The author guided the participants through the user test as the
instructor. The whole process of one test session can be seen in table 6.3.

Introduction
General Introduction
Demography and Preknowledge questionnaire
Introduction StARboard

Main Test
Interaction Technique 1

Introduction
(Pre questionnaire)
Training
Warm up tasks
Tasks
Post questionnaire

Interaction Technique 2 ...
Interaction Technique 3 ...

Recapitulation Sailing questionnaire
Comparing questionnaire

Table 6.3: Sequence of a user test.

After the general test introduction the users had to fill out the introductory questionnaire,
to collect demographic information and also receive information about their preknowledge
about sailing, computers, AR and the HoloLens specifically.
Before we started with the first interaction technique, we gave them an introduction to
the learning environment StARboard itself. We explained its purpose, all the available
elements, how they function and what they can do with them. We also showed them
examples of the visualizations (polar diagram, wind diagram) and explained their meaning
and how they could be used.
After that the main section of the test started. As already explained, the order here was
different for every user, but the general structure was the same over all three interaction
techniques. First we gave them an introduction to the current interaction technique.
We explained them the available interaction mechanisms and what they are used for.
Especially the two AR techniques required an explanation for users unaccustomed to
the HoloLens. For AR-H we showed them the robots and how they can be handled, for
AR-G we explained the gestures already before they were wearing the HoloLens.
For the AR techniques they had to fill out the pre question about VIMS and then the
interaction technique was started. We went through all available interaction mechanisms
together again, so they had enough time to try out each of them. Then we gave them
the four warm up tasks, to get accustomed to the handling. After this we executed the
actual tasks, as described in the previous chapter 6.2.2. Then they filled out the post
questionnaire about the according interaction technique. Afterwards we started with the
second and third interaction technique in the same manner.

99

6. Evaluation

After the user had tested all the three interaction techniques we came to the final section
of the user test. There the user first had to answer some short test questions about
sailing, in order to evaluate the learning result. It consisted of 9 questions in randomized
order, about correct sail trim and bearings. Finally the users filled out the last section of
the questionnaire, which was about the comparison of the three techniques. Finally we
asked the testers for a brief oral comparison of the three techniques. The average time of
a full test session was about 1 hour 15 minutes (SD=0.22).

The test setup can be seen in figure 6.2. The test person stands in front of the interaction
space or sits at the laptop for D-M. The instructor controls the whole setup, the TrACTOr,
the StARboard server, the ACTO-Framework and starts the ACTOs.

Figure 6.2: Session of a user test.

For better evaluation we recorded all test sessions with a video camera, and we used
screen recording to record the StARboard server and TrACTOr tracking. Additionally
the instructor made notes during the tests.
In order to prevent mistakes and to ensure a consistent test procedure we prepared a
printed overview of all the steps the instructor had to do for each user. This also included
the correct order of the interaction techniques and tasks for each user. After every section
the instructor ticked the according box on the sheet. Each interaction technique and task
got a separate color to avoid mistakes and to make finding things easier.
Before every test we prepared water and snacks for the user, to keep the motivation
higher.

100

6.2. User Study

6.2.4 Results

In this section we present the outcome of the user study. We show the results of the
questionnaire evaluation and explain our interpretation of the resulting values.

6.2.4.1 SUS

As already described, the first section of the questionnaire was the standardized SUS
test. The result is shown in figure 6.3.

Figure 6.3: SUS results overview.

It shows that the mean of the interaction technique AR-H (AR with haptic robot
interaction) is 86.7 (SD=11.3). According to Sauro [Sau11] this can bee seen as a very
good result.
The interaction technique AR-G (AR with gesture interaction) got a mean of 59.6
(SD=26.8). The mean result of this technique is below average and has to be considered
as not good enough. The high standard deviation correlates to the observations that we
made during the user tests. For some users the gestures worked quite well, for others they
did not work properly at all. The range here was very broad. We assume this is due to
the fact that most of the users have not worked with the HoloLens or other gesture based
systems before and are not familiar with this kind of interaction. This indicates that this
kind of interaction technique has a steep learning curve which resulted in problems for
some of our users as the actual testing sessions were fairly short. At this point we need
to mention that we gave the users proper instructions to the different gestures and did a
short training without and later with the HoloLens before starting the actual tasks.
The mean SUS result of D-M (desktop interaction with mouse and keyboard) was 82.9

101

6. Evaluation

(SD=15.2). This can also be considered as a good result, similar to AR-H. Most of the
test users work with desktop computers very often and are quite accustomed to this kind
of interaction. We assume that this fact allowed the users to learn and understand this
interaction technique quickly, which might play an important role in this outcome.

The result of the SUS evaluation shows that the techniques AR-H and D-M have a good
usability. They can be learned quickly and are easy to understand and accomplish. In
comparison AR-G has a far worse usability, which makes the interaction with the system
more difficult. Especially for a learning system this could become a problem, because
users can not focus on the learning content sufficiently, if they have troubles with the
system interaction.

6.2.4.2 TLX

From the results of the TLX questions especially the questions about frustration level and
mental demand show significant differences throughout the three interaction techniques.
The results can be seen in figure 6.4.

Figure 6.4: Results of the most significant TLX questions, frustration level and mental
demand.

The mean frustration level of AR-H is 2.7 (SD=2.1). A similar result can be seen at
D-M, with a mean of 4.0 (SD=3.6). Even though AR-H has a slightly better result, both
can be seen as very good ratings on a scale from 1 to 18. It shows that both interaction
techniques are very fluent and fulfill the users expectations. AR-G on the other hand

102

6.2. User Study

received an average frustration level of 9.0 (SD=5.3). This again means that the score
varies greatly over the users. While for some users the frustration level was equally low
as the one of the other two techniques, for many it was very high. It seems that for a
lot of users, this interaction technique does not support them sufficiently in what they
intend to do.
A similar result can be seen in the mental demand. While AR-H has a mean of 5.6
(SD=4.2) and D-M a mean of 5.2 (SD=3.9), the result of AR-G is a lot higher. The
mean is 8.8 (SD=4.5). The higher the mental demand for an interaction technique is,
the less focus can be put on the learning system and the actual tasks. This means that
the learners can not concentrate on the actual tasks that good, as they are busy with
handling the system. For us this is an indicator that AR-G would not be as suitable for
a learning system, at least without more intensive usage and training of the interaction
technique.

6.2.4.3 Immersion

With these questions we wanted to measure how well the interaction technique boosts
the degree of immersion into the system. The result can be seen in figure 6.5.

Figure 6.5: Result of the questions about the degree of immersion.

It shows that both AR techniques reached a very high rating. The mean value of AR-H
was 6.0 (SD=1.3). AR-G received a mean of 5.6 (SD=1.4). The scale was 1 to 7. The
mean value is represented by the X in the diagram. While both of the AR techniques
seem to have a very high level of immersion, the result of D-M was notably lower, with a
mean of 3.1 (SD=1.9).

We assume that the reason for this result is that the AR techniques provide a three
dimensional environment which allows the user to move around freely, by physically

103

6. Evaluation

changing his position in this environment. Also the user is an active part of this
environment. For D-M the user only sees a two dimensional representation of a 3D space.
He is outside of the space and can only look at it from above. A more complex camera
control might have slightly improved the result here, but it would also have made the
interaction technique more complex, which might have caused downsides as well.

6.2.4.4 FSC - Absorption by Activity

With parts of the FSC questionnaire we wanted to measure the absorption by activity.
We think that this plays a crucial role, especially for learning systems. The outcome can
be seen in figure 6.6.

Figure 6.6: Resulting values of the absorption by activity from the FSC.

It shows that the results of AR-H and AR-G are quite similar. While AR-H has a mean
of 5.4 (SD=1.7), AR-G has a mean of 5.3 (SD=1.5). The scale was 1 to 7. This shows
that the users enjoyed to work with the interaction techniques. They were absorbed in
what they were doing and had fun with the interaction. The mean value of D-M is much
lower at 4.2 (SD=1.9).

In a real learning situation this could mean that the users would be more likely to study
more and longer with one of the AR techniques, as they seem to be more absorbing.

6.2.4.5 Task Results

We also measured the outcome of the tasks we gave to the users. They were counted as
+ if the result was correct with the first attempt, ~ if they needed two or three attempts
and - if it took them four or more attempts.
The result can be seen in figure 6.7. It does not show notable differences between the

104

6.2. User Study

three interaction techniques. We assume that for measuring the efficiency in resolving
a task a bigger group of test people with longer sessions on each interaction technique
would be required.

Figure 6.7: Task result based on amount of attempts.

The graphic also shows that most of the tasks were fulfilled at the first attempt. This
could indicate that the difficulty of the given tasks was rather low. Since the test sessions
should not be excessively long and we targeted beginners, we avoided too complex tasks.
In the next development step of this learning system the tasks could become more
elaborate.

6.2.4.6 Learning Result

We found a similar situation in the result of the questionnaire we designed for measuring
the learning outcome. The questionnaire was designed in a way that every user got
nine questions. Three groups of three questions related to the tasks they did with one
interaction technique. In average the users got 6.4 (SD=1.8) of 9 questions right, which is
about 71%. There was no big difference in the results between the interaction techniques.
The average result for AR-H was 70%, for AR-G 69% and for D-M 74%. As already
discussed in the previous section we think that the learning sessions were too short to
get a reasonable result about their influence in the learning process.

6.2.4.7 Open Questions

In the last section of the questionnaire 13 of the 18 users stated that D-M interaction
was easy to use. Many justified this with the fact that they were used to working on
desktop computers. A total of 9 users mentioned that AR-H was intuitive and easy to
use. Many found it very useful that they could move around in the interaction space
freely, which gave them a very good overview and good control for both, AR-H and

105

6. Evaluation

AR-G. On the other hand 11 users noted that the interaction with AR-G was difficult or
the gestures did not work properly.
In general the users found AR-H and D-M easier to learn than AR-G. They stated
that due to the short time of usage for each interaction technique they often had to
concentrate on the interaction itself so much, that they could not sufficiently focus on
learning. With longer usage cycles we expect that they would become more familiar with
the interaction and they could concentrate better on learning. This applies to all three
techniques.
The question about which technique was most fun to use was answered by 13 users with
AR-H. 3 chose AR-G and none of them D-M. Many state the reason that it was easy to
use and it was something new, which they had not used before. The interaction with the
robots was mentioned particularly often positively, especially in combination with AR.
The question which interaction technique they would find most useful for learning for
themselves was answered with AR-H by 9 users. 4 named D-M and 2 AR-G. The high
immersion of AR-H would allow to focus on the learning tasks and it would also be fast
and easy to use.
Both AR techniques, AR-H and AR-G were mentioned to be very immersive by several
users. They found the scene very realistic and easy to picture, which allowed them to
put more focus on the tasks and learning itself. Some users noted that D-M was not
very immersive, especially the camera angle was criticized a few times.
8 users mentioned that the tracking started to jitter, especially while they interacted
with the robot. This sometimes impacted the immersion for them and made precise
adjustments more difficult. According to some of them, an improvement in the tracking
would enhance the whole learning system.
Also the technical limitations of the HoloLens affected the results. As several users stated,
the FOV was so small that it limited their immersion and made the interaction for AR-G
and AR-H more complex. We observed that many users stepped further back from the
table during the interaction with AR-G. This enabled them to see the whole scene at
once, without having to turn their head from one object to the other. When standing
directly in front of the table they were not able to see all virtual objects of the scene at
the same time. This was a problem for AR-H, because there some of them wanted to
step back as well, but then reaching for the ACTOs to carry out the interaction would
be difficult.
Some users also mentioned that the weight of the HoloLens caused them light pain in
their neck, which might become a serious problem for longer learning sessions.

6.2.4.8 Summary

In summary AR-H and D-M received similarly good results in system usability and
task performance sections of the questionnaire, with a slightly better tendency for AR-H.
But in immersion and absorption by activity AR-H was rated much better than D-M.
This gives us the conclusion that AR-H is potentially superior to D-M. AR-G reached
similar results for immersion and absorption by activity but was rated far worse in system
usability and task performance.

106

6.2. User Study

The technique AR-H offers a high degree of immersion, is very intuitive to use, has a
flat learning curve and provides a fun alternative to conventional computer systems. On
the other hand it requires a complex setup. Considering it is just a prototype, many
things could be simplified there. But some of the hardware is not as far developed, that
it could provide a trouble-free usage. For example the small FOV and heavy weight of
the HoloLens.
Also AR-G has a very high degree of immersion and provides an easy way to drop into a
virtual scene. Beside the HoloLens, and its problems we already mentioned, almost no
hardware is required. Also the interaction was very smooth and intuitive for some users.
But for many others this was not the case. We believe that with more experience this
issue might become less prominent.
D-M comes along with the convenience of a standard computer setup as most people are
used to work with. This advantage allows users to quickly adapt to the system with less
barriers at the beginning. It is also easy to run in various locations because the required
hardware is present in many places. For longer sessions this technique might be less fun
and less interesting to the users, also because of its smaller degree of immersion.

In regard of the research topic, whether haptic feedback in combination with AR would
improve learning with a learning system, or not, we conclude that it most likely would.
It is more fun to use, the direct interaction makes it possible to focus on the learning
tasks and gives a very high level of control of the system. All of these factors provide a
promising basis for a good learning environment. In order to backup this proposition
better, more research needs to be done to measure the actual learning effect, when such
a system is used over a longer period of time, in comparison to a conventional system.

107

CHAPTER 7
Discussion

In this chapter we discuss the outcome of our research. We compare the results of the
evaluation and our lessons learned with the research questions we wanted to answer in
the beginning. Afterwards we briefly talk about possible improvements of the system.

First we wanted to investigate whether we could replace the existing ACTO robot tracking
system with a new depth based system, which would eliminate several problems of the old
system and allow us the combined usage of the ACTO interface and AR. The technical
evaluation and also the result of the user evaluation show that we reached this goal
with the implementation of the TrACTOr tracking system. It allows us to replace the
previously required glass table with almost any kind of solid, flat surface. We found only
one limitation, which is reflecting surfaces, which disturbs the depth image of the Kinect
camera.
We could also show that the Kinect based tracking system offers high accuracy of 1.5mm
in x and y direction for a 50 x 55cm tracking area, for the tracking of ACTO robots with
the Kinect version 2. The only downside we could asses was the problem with occlusion
of the ACTOs during user interaction. As long as the ACTO robots are fully visible to
the depth camera, the tracking is very accurate and stable. With our two level tracking
algorithm the tracking of ACTOs is also possible when the ACTO is partly occluded
by the users hands. But during this occlusion phases the tracking sometimes shows
more jitter. The jitter for partly occluded ACTOs increases from 0.46mm to 1.4mm in x
and y direction. This was also mentioned as an issue by multiple users during the user
evaluation. Especially the ACTO rotation becomes inaccurate to several degrees, from
jitter 0.7◦ to 5.1◦ when occluded. Even small inaccuracies of a few degrees can cause
the virtual objects to appear a bit shaky. The main reason for this problem is that the
depth image is not that accurate and the ACTOs’ borders in the depth image change a
bit from frame to frame. We tried to ease this out with a Kalman Filter (see section 3.5),
but the issue still persists to a certain extent.
With the depth based tracking system we could show that we are able to accurately track

109

7. Discussion

x, y and z coordinates. Besides the issue already mentioned also the rotation along the
z axis is functional and accurate. We could show that the method of determining the
exact rotation with the additional IR light, which is mounted on top of each ACTO,
works very good (jitter 0.7◦). For the combined usage with the AR system we had to
synchronize the COSs to have the same origin and distance unit scale. We achieved this
with a visual tracking marker which allows us to transform all of the tracked x, y and z
position values, as well as the z rotation, to the marker COS. This gives us much freedom
with the positioning of the Kinect and the tracking marker. It also makes the setup
process very fast and easy.
We reached the goal of being able to track multiple ACTO robots at the same time.
This was a very important step in order to be able to compete with the original tracking
system and allow the designed user interfaces to be a lot more complex, as multiple
ACTOs can be used. We use the same IR LED as for the rotation detection. It flashes
in certain predefined patterns which allows us to distinguish between them. As already
discussed in section 6.1, the critical factors for the amount of ACTOs is the duration of
the detection algorithm and the camera frame rate. As we could show the amount of
ACTOs that could be used simultaneously, without a reduction of the tracking frame
rate of 30fps, is about 26. The IR LED of each of them flashes in a different pattern,
so we can differentiate between them. The amount of ACTOs tracked at the same time
does not influence the tracking accuracy.
This leads us to our next goal. We wanted to explore whether it was possible to implement
this tracking system in a way, that it is fast enough to deliver real time tracking data.
This is required to provide the AR overlays and also to control the ACTO movement. As
already mentioned the performance of the tracking algorithm is very good. In tracking
sessions with one ACTO it takes 5.9ms from receiving a frame to having the final tracking
data. This increases linearly by about 1.1ms per ACTO. With a target tracking frame
rate of 30fps for a real time tracking system, TrACTOr is able to track 26 ACTOs
simultaneously. This means that TrACTOr is able to collect and stream tracking data in
real time over the network, in order to be processed and used by the other components
of the system. The amount of 26 ACTOs should be sufficient for most use cases.
Tests also showed that the system can be used by multiple users at the same time without
any problems, because the game logic is centralized. The whole scene data is distributed
from this central server to as many clients as desired, where the rendering is carried
out independently. This is important for creating collaborative user interfaces, such as
collaborative learning systems.
Another question was, if the accuracy and speed of the tracking is high enough to provide
good alignment of the AR content and the real world ACTOs. The very good result of
the SUS questionnaire, the low Mental Demand in the TLX questionnaire, as well as the
high rating of immersion, give us good reasons for assuming that we reached this goal.
The TrACTOr system’s good tracking accuracy, already mentioned above, in combination
with the high quality tracking of the HoloLens, using Vuforia [vuf] for marker tracking,
allows us to align the AR objects and the real world objects very accurately. This allowed
us to achieve our goal of building an interface that provides human-real world interaction.

110

The second topic we wanted to examine was whether haptic interaction in combination
with AR would be beneficial for learning systems. The user evaluation we executed
shows that the StARboard system provides a very good usability, even slightly better
than the one of the desktop interaction. We could show that the system provides a very
immersive experience and an intuitive way of interaction. The users rated the system
as very absorbing and the frustration level and mental demand were rated quite low.
All of these factors can be a very good basis for a learning application, as described
in section 2.1.5. A system that is very absorbing and fun and easy to use is likely to
be used more often and with a positive attitude, which are also beneficial factors for a
learning environment. With the user evaluation we could show that a learning system
with haptic interaction and AR is very likely to have positive effects on learning efficiency
and the learning results, but the observed tendency is not sufficient to solidly support
this conclusion. In order to be able to give a certain answer to this question a more
detailed investigation in the learning outcome would be necessary. The focus of our
evaluation was on the comparison of this interaction technique with an equivalent gesture
based interaction technique and a desktop based interaction technique with mouse and
keyboard interaction. The result shows that it has several advantages compared to the
gesture interaction and got also slightly better results than the desktop based interaction.
This leads us to the conclusion that out of these three possibilities, the haptic interaction
with AR is the most suitable interaction technique for a learning system.
Concerning the gesture based interaction there is one additional issue we want to point
out. The result of the gesture based recognition during the user evaluation was very
diverging. We observed that for some users, the gesture based interaction worked quite
good, while others had huge problems with this interaction technique. This was not
due to preknowledge, because most of the test users did not have used gesture based
interaction before. The range of different gestures provided by the HoloLens is quite
limited and the available gestures are very similar. For example it is not possible at the
moment, to distinguish between left and right hand.
The amount of time where the users actually worked with the interaction technique was
relatively short, about five to eight minutes. And even though we gave them detailed
instruction about the different gestures before they started wearing the HoloLens and
repeated the gestures together, as soon as they were wearing it. We think that with
longer sessions the users would become more accustomed to this interaction technique.
Longer test sessions could also affect the results of the other interaction techniques, but
especially for the gesture based interaction we think that it might make a difference for
some users.
Another question was, if we would be able to provide human-real world interaction with
StARboard. Especially for the sail boat this target could be reached. The alignment of
the virtual object and the interaction objects is very good. The high degree of immersion
and low mental demand, as well as the general user feedback indicate that this kind of
interaction was very intuitive. Especially the setting of the sail was very realistic, as
it appears to the users to push the virtual sail, whereas they really push the physical
beam extension. This direct interaction was a bit worse for the fan, because of an unideal

111

7. Discussion

choice of the 3D model. The rotary knob of the ACTO is not reflected by the visual
appearance of the 3D model. This was not a big issue, because this problem only occurs
when the user tries to change the wind speed, but the main focus of the interaction
was moving the objects and changing the sail trim, which was very well reflected by the
virtual 3D objects. A different 3D model for the fan would probably increase the ease of
interaction even more.
We also wanted to examine, whether a system like this could increase the learning
motivation. The observed high level of immersion and absorption could indicate that
a system with this kind of interaction causes higher learning motivation, compared to
similar systems.
Another question we wanted to answer was, if collaborative learning would be possible
with such a system. The system meets all necessary requirements for multiple users
to share the learning experience. It is possible that multiple users interact with the
ACTO robots simultaneously. Also the demos and tasks, which the system gives, can be
experienced by multiple users at the same time, even with different kinds of AR displays
(e.g. HoloLens, smartphone). They can cooperate to solve the tasks together or use
individual ACTOs to try out certain sail trims.
All in all the StARboard application can be seen as a prototype that indicates the
potential of a haptic learning system in combination with AR. In general the usage of
haptic interaction in combination with AR proved to be a very promising concept for
building good learning systems.

7.1 Possible Improvements

Event though the TrACTOr tracking is very stable if the ACTOs are fully visible to the
depth camera, it sometimes becomes unstable during user interaction, if the users hands
partly or fully occlude the ACTO robots. As already mentioned, this was mentioned by
a few users to interfere with the immersive experience. One possible solution to solve
this issue would be a second depth camera, mounted in a different angle, so that every
ACTO is always visible from at least one camera.
Another detail which is currently limited by the technical possibilities of the HoloLens is
the visually correct imaging of the users hands and the virtual 3D objects. Currently
it is not possible to occlude the 3D models with the hands. The 3D models are always
rendered on top of all the objects in the interaction space. This is not a major issue, but
it leads to visual incorrectness between the real and virtual 3D scene. To solve this issue
the users hands would need to be tracked and reflected by occlusion models in the 3D
scene. The use of different AR glasses could be considered, but currently these features
are in development phase for various AR systems. At the moment there is no better
solution. But in several months new AR glasses generations will probably solve this issue
out of the box.
So far the StARboard application is only a prototype of a learning application. Besides
the functionality of testing different sail settings and bearings in various wind situations
we implemented the maneuver feature, where the user has to apply the correct sail trim

112

7.1. Possible Improvements

during different maneuvers. To improve the learning experience it would be a good idea, if
the user would also have to apply the bearings and bearing changes during the maneuvers,
as if he would drive them himself. We covered the three most important maneuvers and
the three most important bearings, but more of them could be implemented.
As already described the 3D model of the ship perfectly fits the physical construction
of the ACTO module. On the other side the fan model could be improved, so that its
controls also exactly match the ACTO module.

113

CHAPTER 8
Conclusion and Future Work

In this thesis we implemented a depth based tracking system for ACTO robots. It is
capable of tracking x, y and z position coordinates, as well as the rotation along the y axis
of multiple ACTO robots at the same time. The tracking system can be used for various
ACTO based applications, such as StARboard, which we also developed in this thesis.
The StARboard application is an Augmented Reality (AR) based learning application,
which uses haptic feedback to improve the user experience and learning effects.

The technical evaluation showed that the TrACTOr tracking system has a very high
accuracy with a mean tracking error of less than 1.5mm. Up to 26 ACTO robots can
be tracked simultaneously with a tracking frame rate of 30 frames per second, which
is the upper limit of the depth camera we used. These factors enabled us to develop
the collaborative learning application StARboard, where multiple users can gain basic
sailing specific knowledge about how to drive certain courses and maneuvers. This was
evaluated in a user study with 18 participants. They tested three different interaction
techniques for the sailing application. One was a desktop based interaction with mouse
and keyboard, another one a gesture based AR application using the HoloLens, and
the AR based application using our haptic interaction technique. The results of the
evaluation show that the haptic based interaction is very easy and convenient to use
and can be learned and understood quickly, similar to the desktop based interaction. In
terms of immersion and absorption by activity the haptic interaction outperformed the
desktop interaction. Out of these three, the haptic interaction can be seen as the most
promising technique for learning systems of this kind.
Although the results on the efficiency of the learning itself, or the actual effects on the
learning outcome are not conclusive, many users chose the haptic interaction as their
desired interaction technique for a learning system and the overall results seem very
promising that such an interaction technique can have positive effects on learning. An
additional study with focus on the learning outcome would be very interesting here.

115

8. Conclusion and Future Work

In the future the TrACTOr tracking system could be improved in terms of occlusion
resistance, so that the jitter of 3D objects gets reduced during user interaction. This
would allow us to achieve even better immersion. The StARboard application could be
extended, so that it is capable of teaching even more maneuvers and other situations
that typically occur during sailing. Another interesting improvement would be teaching
of sailing specific vocabulary, such as naming of certain parts of the ship. It could also
be used to show and teach different sailing relevant knots and how to tie them. Then
the StARboard application could be used in sailing schools to teach sailing students
and improve the theoretical sailing lessons with practical examples and more realistic
situations than drawings in books or displayed videos. It could also be considered to
focus the application development more on children’s needs, by giving it a more playful
character, like little games or tasks, which they need to solve.

The principle of haptic feedback for AR based learning systems could also be applied to
other fields, such as aeronautic, medicine, music, arts, industry or building engineering.
An interesting use case would be to experience the statics of buildings and different
materials. Building engineering or architecture students could use this technology to get
a better feeling for the load carrying capacity of different types of materials or structure
techniques. They could use their own force or experience the pressure which the virtual
buildings are exposed to and how the situation changes if different materials are used or
if the structure is planned differently. This could give them a very different access to this
topic, in comparison to the currently used techniques, such as computer simulations or
drawings and calculations.

Of course haptic interaction for AR cannot only be used in learning environments but
also for totally different scenarios. One field where haptic feedback and AR would be
very interesting is product design, so that the designers can quickly and easily try out
different shapes or structures during the design process. Another large and interesting
field is entertainment. The technology could be used to provide a new kind of interactive
3D experience similar to theater or movies. The users could become active parts of the
scene and sense the 3D scene not only with their eyes and ears, but also with their hands.
They could even become the most important players in the scenes themselves, which
leads us to the next field of games and sports. With highly interactive interfaces, the
border between computer games and physical sports starts to diminish and new types of
activities could be thought of, which have a game like character and are beneficial for
the users health at the same time. Prototyping tools as the ACTO robots could play an
important role in developing those kinds of new interfaces.
Augmented Reality (AR) with haptic feedback is a relatively new field of research with a
lot of potential, but also not negligible problems which needs to be tackled before it can
be applied to new areas. If we are able to solve these challenges, this technology has the
potential to revolutionize many different fields.

116

List of Figures

1.1 Overlay ACTO robot with virtual ship. 3

2.1 Operating with mediaBlocks (Ullmer et al. [UIG98]). 10
2.2 The Pico system by Patten et al. [PI07]. 11
2.3 The BrainExplorer tangible learning interface by Schneider et al. [SWBP13]. 13
2.4 Virtuality Continuum by Milgram et al. [MK94] 14
2.5 2D and 3D augmentation. 16

3.1 Kinect depth camera. 22
3.2 ACTOs (Modular Actuated Tangible User Interface Objects) by Vonach et

al. [VGK14b] . 24
3.3 Fiducial marker, ARTag with id 0 (by Fiala [Fia05]). 26
3.4 A polar diagram showing the maximal possible speed of a sailing yacht,

depending on the bearing and wind speed. [Wil08] 29
3.5 Two different images of the same surface. Transform the same point between

the images with the homography matrix. 30

4.1 StARboard and TrACTOr system setup. 36
4.2 Concept for tracking and identification. 37
4.3 Reducing depth stream to potentially interesting objects. 38
4.4 Mockup tests for image processing algorithms used for tracking. 39
4.5 Mockup tests detecting IR LEDs in the IR image. 40
4.6 Worst case situation for sampling where sampling rate is equal to the send

rate (a) and sampling rate is twice the send rate (b). 42
4.7 Sampling and interpreting of a whole id sequence, starting with a burst bit

followed by the 4 bit data sequence and ends with an end bit. The sampling
rate is twice the send rate and shows the worst case situation, as discussed in
figure 4.6. 43

4.8 The possible error if no end bit would be used. The receiver starts to listen
in the middle of the sequence and due to the lack of the end bit does not
recognize the error. The wrong id is interpreted. 43

4.9 Prototyping of the ACTO module required for StARboard. The module is
equipped with an IR LED, a rotary encoder and a button. 45

4.10 StARboard Client Server concept. 46

117

5.1 Architecture of the whole system. 52
5.2 System communication structure. 53
5.3 For synchronizing multiple COSs a visual marker is used, which is detected

by both devices. 54
5.4 TrACTOr system setup. 55
5.5 TrACTOr software architecture. 56
5.6 Flowchart of processing incoming depth and infrared frames. 57
5.7 The tracking area can be defined by the user in order to save processing power. 58
5.8 Foreground image creation process: a) Creation of binary foreground image

mask, b) Generation of foreground image 59
5.9 a) Creation of an edge image out of a foreground image and find rectangular

candidate, b) Detect lines in the same edge image. 61
5.10 Transform from tracking COS to marker COS with homography matrix. . 65
5.11 Main GUI window of the TrACTOr tracking software. 66
5.12 Manufacturing of the circuit board. 67
5.13 Final version of the circuit board. 68
5.14 The main components of the StARboard housing. 69
5.15 Interaction components for the rotary encoder. 69
5.16 Final StARboard ACTO module components and assembled module. . . . 70
5.17 Reflective surfaces on upside facing components of the ACTO caused tracking

problems. 71
5.18 ACTO software architecture with the new TrACTOr Control module and the

StARboard Extension. 72
5.19 ACTO-Framework software architecture. 74
5.20 ACTO-Framework GUI. 76
5.21 StARboard software architecture. 77
5.22 Inheritance structure of virtual objects. 78
5.23 Ship specific polar diagrams displayed underneath the virtual objects. . . 79
5.24 The wind diagram shows the wind situation and the current boat speed. . 80
5.25 Mathematical construction of polar- and sail diagram used for calculating the

ship speed. 82
5.26 The symbol above the fan indicates the current system state to the user. . 83
5.27 StARboard server Graphical User Interface (GUI). 86
5.28 A user experiencing StARboard with the HoloLens. 88
5.29 Gesture based interaction technique. (Gesture images based on graphics from

HoloLens documentation [Hola]) . 89
5.30 Desktop based interaction with mouse and keyboard input. 91

6.1 Processing time of the tracking algorithm by amount of tracked ACTO robots. 95
6.2 Session of a user test. 100
6.3 SUS results overview. 101
6.4 Results of the most significant TLX questions, frustration level and mental

demand. 102

118

6.5 Result of the questions about the degree of immersion. 103
6.6 Resulting values of the absorption by activity from the FSC. 104
6.7 Task result based on amount of attempts. 105

119

List of Tables

3.1 Technical specifications of Kinect v1 and v2 in comparison [Kinb, Kina]. . 23

6.1 Hardware Specification Used for Technical and User Evaluation. 94
6.2 Mean jitter error of unoccluded and partly occluded ACTOs in comparison. 96
6.3 Sequence of a user test. 99

Listings

5.1 Generate image containing edges from depth foreground image. 60
5.2 Find rectangles in edge image. 60
5.3 Use Hough Transformation to detect straight lines in the edge image. . 62
5.4 Find the image marker within the IR Frame. 64
5.5 ACTO id patterns from 1 to 8. 72
5.6 Calculate the new driving speed of a ship. 81
5.7 SyncVars as shared variables. 85

121

Acronyms

AR Augmented Reality. 2–5, 7, 14–16, 26–28, 36, 44, 52, 64, 71, 76, 77, 86, 88, 89,
96–99, 101, 103, 104, 106, 107, 109–112, 115, 116

AV Augmented Virtuality. 14

COS Coordinate System. 29, 33, 35, 36, 44, 48, 54, 56, 64, 65, 110, 118

FOV Field Of View. 57, 106, 107

FSC Flow Short Scale. 98, 104, 119

GUI Graphical User Interface. 10, 24, 45, 51, 52, 56, 58, 65, 66, 74–76, 85, 86, 118

HCI Human Computer Interaction. 1, 7

HMD Head Mounted Display. 26, 28, 36, 47

OS Operating System. 67, 71

RF Radio Frequency. 23, 24, 35, 53

SUS System Usability Scale. 98, 101, 102, 110, 118

TCP/IP Transmission Control Protocol/Internet Protocol. 53

TLX Task Load Index. 98, 102, 110, 118

TOF Time-of-Flight. 22, 23

TTL Time To Live. 62, 63

TUI Tangible User Interface. 1, 2, 5, 7–17, 20, 23, 24, 31, 33, 34

VIMS Visually Induced Motion Sickness. 98, 99

VR Virtual Reality. 14, 27

123

Bibliography

[ABB+01] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre.
Recent advances in augmented reality. IEEE Computer Graphics and
Applications, 21(6):34–47, 2001.

[Ard] Arduino. https://www.arduino.cc/, accessed on: 10th feb 2017.

[aut] Autodesk 123D Design, v 2.2.14. https://www.autodesk.com/solutions/123d-
apps.

[Azu97] Ronald Azuma. A survey of augmented reality. Presence: Teleoperators
and Virtual Environments, 6(4):355–385, 1997.

[BJIU+01] E Ben-Joseph, H Ishii, J Underkoffler, B Piper, and L Yeung. Urban
Simulation and the Luminous Planning Table: Bridging the Gap between
the Digital and the Tangible. Journal of Planning Education and Research,
21(2):196–203, dec 2001.

[BK13] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision in
C++ with the OpenCV Library. O’Reilly Media, Inc., 2nd edition, 2013.

[BM86] W. Buxton and B. Myers. A study in two-handed input. ACM SIGCHI
Bulletin, 17(4):321–326, apr 1986.

[BM07] S. Benhimane and E. Malis. Homography-based 2D visual tracking and
servoing. International Journal of Robotics Research, 26(7):661–676, 2007.

[Bro96] John Brooke. SUS - A quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7, 1996.

[Can86] John Canny. A Computational Approach to Edge Detection. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698,
1986.

[FAMA10] Barak Freedman, Shpunt Alexander, Meir Machline, and Yoel Arieli. Depth
Mapping Using Projected Patterns. WO Patent WO2008, 1(19):12, 2010.

125

[Fia05] Mark Fiala. ARTag, a Fiducial Marker System Using Digital Techniques. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 590–596. IEEE, 2005.

[FIB95] George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton. Bricks.
In Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI ’95, pages 442–449, New York, New York, USA, 1995. ACM
Press.

[FLO+13] Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi
Ishii. inFORM. In Proceedings of the 26th annual ACM symposium on User
interface software and technology - UIST ’13, pages 417–426, New York,
New York, USA, 2013. ACM Press.

[fri] fritzing, v 0.9.3. http://fritzing.org/.

[Har06] Sandra G. Hart. Nasa-Task Load Index (NASA-TLX); 20 Years Later.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
50(9):904–908, 2006.

[HDGP17] Alex D Hwang, Hongwei Deng, Zhongpai Gao, and Eli Peli. Quantifying
Visually Induced Motion Sickness (VIMS) During Stereoscopic 3D Viewing
Using Temporal VIMS Rating. Journal of Imaging Science and Technology,
61(6):60405—-1, 2017.

[Hola] HoloLens Documentation. https://docs.microsoft.com, accessed on: 12th
apr 2018.

[Holb] Microsoft HoloLens. https://www.microsoft.com/microsoft-hololens/en-us,
accessed on: 15th feb 2017.

[IC03] The National Initiative and Pain Control. Wong-Baker FACES Pain Rating
Scale. National Initiative on Pain Control, pages 2–3, 2003.

[Ish08] Hiroshi Ishii. Tangible bits: beyond pixels. Proceedings of the 2nd interna-
tional conference on Tangible and Embedded Intreaction (TEI ’08), pages
xv–xxv, 2008.

[IU97] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces between
people, bits, and atoms. Proceedings of the 8th international conference on
Intelligent user interfaces, (March):3–3, 1997.

[JGAK07] Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. The
reacTable. In Proceedings of the 1st international conference on Tangible
and embedded interaction - TEI ’07, page 139, New York, New York, USA,
2007. ACM Press.

126

[JLDS13] Jungong Han, Ling Shao, Dong Xu, and Jamie Shotton. Enhanced Computer
Vision With Microsoft Kinect Sensor: A Review. IEEE Transactions on
Cybernetics, 43(5):1318–1334, oct 2013.

[KBS94] Paul Kabbash, William Buxton, and Abigail Sellen. Two-handed input in a
compound task. In Proceedings of the SIGCHI conference on Human factors
in computing systems celebrating interdependence - CHI ’94, pages 417–423,
New York, New York, USA, 1994. ACM Press.

[KD07] Hannes Kaufmann and Andreas Dünser. Summary of Usability Evaluations
of an Educational Augmented Reality Application. In Virtual Reality, pages
660–669. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[Kho12] K. Khoshelham. ACCURACY ANALYSIS OF KINECT DEPTH DATA.
ISPRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, XXXVIII-5/(August):133–138, sep 2012.

[Kina] Kinect2 Specs. https://developer.microsoft.com/en-
us/windows/kinect/hardware, accessed on: 5th feb 2017.

[Kinb] Microsoft Kinect v1. https://msdn.microsoft.com/en-
us/library/jj131033.aspx, accessed on: 5th feb 2017.

[Kinc] Microsoft Kinect v2. http://www.xbox.com/en-GB/xbox-
one/accessories/kinect-for-xbox-one#fbid=1OFOTWGbdlB, accessed on:
7th dec 2016.

[Kir95a] D Kirsh. Complementary Strategies : Why we use our hands when we
think. Seventeenth Annual Conference of the Cognitive Science Society,
(Lave 88):212–217, 1995.

[Kir95b] David Kirsh. The intelligent use of space. Artificial Intelligence, 73(1-2):31–
68, feb 1995.

[KSN+06] Minoru Kojima, Maki Sugimoto, Akihiro Nakamura, Masahiro Tomita,
Masahiko Inami, and Hideaki Nii. Augmented Coliseum: An Augmented
Game Environment with Small Vehicles. In First IEEE International Work-
shop on Horizontal Interactive Human-Computer Systems (TABLETOP
’06), volume 2006, pages 3–8. IEEE, 2006.

[Li14] Larry Li. Time-of-Flight Camera–An Introduction. Texas Instruments -
Technical White Paper, (January):10, 2014.

[met] Metaio. http://www.metaio.eu/, accessed on: 24th mar 2017.

[MI94] Christine L. MacKenzie and Thea Iberall. Chapter 5. Movement Before
Contact. In Advances in Psychology, volume 104, pages 109–201. 1994.

127

[Mic] Microsoft. www.microsoft.com, accessed on: 5th feb 2017.

[MK94] Paul Milgram and Fumio Kishino. Taxonomy of mixed reality visual displays.
IEICE Transactions on Information and Systems, E77-D(12):1321–1329,
1994.

[MMES04] Carsten Magerkurth, Maral Memisoglu, Timo Engelke, and Norbert Streitz.
Towards the Next Generation of Tabletop Gaming Experiences. Proceedings
of Graphics Interface 2004, pages 73–80, 2004.

[MRD06] Ali Mazalek, Mathew Reynolds, and Glorianna Davenport. TViews: An
Extensible Architecture for Multiuser Digital Media Tables. IEEE Computer
Graphics and Applications, 26(5):47–55, sep 2006.

[NYQ28] H. NYQUIST. Certain Topics in Telegraph Transmission Theory. Trans-
actions of the American Institute of Electrical Engineers, 47(2):617–644,
1928.

[PAH14] Danakorn Nincarean Eh Phon, Mohamad Bilal Ali, and Noor Dayana Abd
Halim. Collaborative Augmented Reality in Education: A Review. In
2014 International Conference on Teaching and Learning in Computing and
Engineering, pages 78–83. IEEE, apr 2014.

[PFSR09] Sara Price, Taciana Pontual Falcão, Jennifer G. Sheridan, and George
Roussos. The effect of representation location on interaction in a tangible
learning environment. In Proceedings of the 3rd International Conference
on Tangible and Embedded Interaction - TEI ’09, page 85, New York, New
York, USA, 2009. ACM Press.

[PI07] James Patten and Hiroshi Ishii. Mechanical constraints as computational
constraints in tabletop tangible interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing systems - CHI ’07, page 809,
New York, New York, USA, 2007. ACM Press.

[PIHP01] J. Patten, H. Ishii, J. Hines, and G. Pangaro. Sensetable: A Wireless Object
Tracking Platform for Tangible User Interfaces. Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 253–260, 2001.

[PNO07] Ivan Poupyrev, Tatsushi Nashida, and Makoto Okabe. Actuation and
tangible user interfaces. In Proceedings of the 1st international conference
on Tangible and embedded interaction - TEI ’07, page 205, New York, New
York, USA, 2007. ACM Press.

[Pon09] J.G. Pontual Falcão, T., Price, S., Sheridan. Extending concepts of engage-
ment in tangible environments, 2009.

128

[PRI02] James Patten, Ben Recht, and Hiroshi Ishii. Audiopad: A Tag-based
Interface for Musical Performance. In Proceedings of the Conference on New
Interfaces for Musical Expression (NIME’02), pages 1–6, 2002.

[REV02] F. Rheinberg, S. Engeser, and R Vollmeyer. Measuring Componants of flow:
The Flow-Short-Scale, 2002.

[RN95] Jun Rekimoto and Katashi Nagao. The World through the Computer:
Computer Augmented Interaction with Real World Environments. Pro-
ceedings of the 8th annual ACM symposium on User interface and software
technology, pages 29–36, 1995.

[RUO01] Jun Rekimoto, Brygg Ullmer, and Haruo Oba. DataTiles. In Proceedings
of the SIGCHI conference on Human factors in computing systems - CHI
’01, pages 269–276, New York, New York, USA, 2001. ACM Press.

[RWB02] H.T. Regenbrecht, M. Wagner, and G. Baratoff. MagicMeeting: A Collabo-
rative Tangible Augmented Reality System. Virtual Reality, 6(3):151–166,
oct 2002.

[Sau11] Jeff Sauro. Measuring Usability With The System Usability Scale (SUS).
Measuring Usability, pages 1–5, 2011.

[Sha09] Orit Shaer. Tangible User Interfaces: Past, Present, and Future Directions.
Foundations and Trends R© in Human–Computer Interaction, 3(1-2):1–137,
2009.

[Shi13] S Shi. Emgu CV Essentials. Community experience distilled. Packt Pub-
lishing, 2013.

[SJZD11] Bertrand Schneider, Patrick Jermann, Guillaume Zufferey, and Pierre Dil-
lenbourg. Benefits of a Tangible Interface for Collaborative Learning and
Interaction. IEEE Transactions on Learning Technologies, 4(3):222–232, jul
2011.

[STMTK01] Norbert A Streitz, Peter Tandler, Christian Müller-Tomfelde, and Shin
Konomi. Roomware - Towards the Next Generation of Human-Computer
Interaction Based on an Integrated Design of Real and Virtual Worlds.
Human-Computer Interaction in the New Millennium, pages 553–578, 2001.

[SWBP13] Bertrand Schneider, Jenelle Wallace, Paulo Blikstein, and Roy Pea. Prepar-
ing for Future Learning with a Tangible User Interface: The Case of Neuro-
science. IEEE Transactions on Learning Technologies, 6(2):117–129, apr
2013.

[tex] TEXT2MP3. https://www.texttomp3.online/, accessed on: 23rd aug 2018.

129

[UI99] J. Underkoffler and H. Ishii. Urp: A luminous-tangible workbench for urban
planning and design. In Proceedings of the SIGCHI conference on Human
factors in computing systems: the CHI is the limit, pages 386–393, 1999.

[UIG98] Brygg Ullmer, Hiroshi Ishii, and Dylan Glas. mediaBlocks. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’98, volume 32, pages 379–386, New York, New York, USA,
1998. ACM Press.

[ult] Ultimaker 2. https://ultimaker.com/.

[Uni] Unity. https://unity3d.com/de, accessed on: 22nd mar 2017.

[VGK14a] Emanuel Vonach, Georg Gerstweiler, and Hannes Kaufmann. Acto. Proceed-
ings of the Ninth ACM International Conference on Interactive Tabletops
and Surfaces - ITS ’14, pages 259–268, 2014.

[VGK14b] Emanuel Vonach, Georg Gerstweiler, and Hannes Kaufmann. ACTO. In
Proceedings of the Ninth ACM International Conference on Interactive
Tabletops and Surfaces - ITS ’14, pages 259–268, New York, New York,
USA, 2014. ACM Press.

[vuf] Vuforia. https://www.vuforia.com/, accessed on: 10th feb 2017.

[WB06] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. In
Practice, 7(1):1–16, 2006.

[Wil08] Ryan M. Wilson. The physics of sailing. Physics Today, 61(2):38–43, feb
2008.

[WRM+08] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond,
and Dieter Schmalstieg. Pose tracking from natural features on mobile
phones. In 2008 7th IEEE/ACM International Symposium on Mixed and
Augmented Reality, pages 125–134. IEEE, sep 2008.

[WSJB10] Malte Weiss, Florian Schwarz, Simon Jakubowski, and Jan Borchers. Mad-
gets. In Proceedings of the 23nd annual ACM symposium on User interface
software and technology - UIST ’10, page 293, New York, New York, USA,
2010. ACM Press.

[XP16] Z Xu and T Perry. Time of flight camera, 2016. US Patent App. 14/524,814.

130

	Kurzfassung
	Abstract
	Contents
	Introduction and Motivation
	Motivation and Problem Statement
	Goals and Research Questions
	Structure of the Thesis

	Related Work
	Tangible User Interfaces
	What Are Tangible User Interfaces
	Why Tangible User Interfaces Are Useful
	Actuated Tangible User Interface Object - ACTOs
	Other Examples of Tangible User Interfaces
	Tangible User Interfaces for Learning

	Augmented Reality
	What Is Augmented Reality
	Augmented Reality for Tangible User Interfaces
	Examples of Augmented Reality Used in Tangible User Interfaces

	Tracking for Tangible User Interfaces
	Optical Tracking
	Radio Frequency Tracking
	Ultrasound Tracking
	Hybrid Systems
	Other Tracking Types

	Basics
	Kinect Depth Sensor
	Kinect Version 1
	Kinect Version 2
	Technical Specifications

	ACTO Interface
	ACTO Hardware
	ACTO-Framework and Tracking

	OpenCV (Emgu CV)
	Image Marker Tracking Basics
	Marker Tracking
	Marker-less Tracking

	Kalman Filter
	Unity
	HoloLens
	Deploy from Unity

	Sailing Basics
	Transform between Different Coordinate Systems with Homography Matrix

	Conceptual Design
	Requirements
	TrACTOr Requirements
	StARboard Requirements

	Concept
	Architectural Design
	TrACTOr Concept
	Concept for ACTO Adaptions
	Concept for ACTO-Framework Adaptions
	StARboard Concept

	Implementation
	System Architecture
	Main Components
	Network and Communication
	System Calibration

	TrACTOr Implementation
	Tracking System Setup
	TrACTOr Architecture
	Tracking Process
	TrACTOr Graphical User Interface

	ACTO Module Development and Core Code Adaptions
	Hardware
	Software

	ACTO-Framework Adaptions
	Message Enhancement
	Graphical User Interface Extension

	StARboard Implementation
	StARboard Architecture
	StARboard Server - Physics and Game Logic
	StARboard Clients
	Interaction

	Evaluation
	Technical Evaluation
	User Study
	Study Design
	Tasks
	Testing Process and Execution
	Results

	Discussion
	Possible Improvements

	Conclusion and Future Work
	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

