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Abstract 

Predictive maintenance is a novel approach for making maintenance decisions, lowering 

maintenance costs, increasing a plants capacity and production volume, and positively 

affecting environmental and employee safety. In predictive maintenance, condition data 

of machines is constantly collected and analysed to predict future machine failures. Due 

to the high volume, velocity, and variety of gathered data, Big Data analytic frameworks 

are necessary to provide the desired results. The performance of these frameworks highly 

influences the overall performance of a predictive maintenance system, raising the need 

for tools to measure it.  

Benchmarks present such tools by defining general workloads for a system to measure its 

performance. Due to the wide popularity of Big Data analytics across industries, 

benchmarks for Big Data analytic frameworks are defined specifically for each domain. 

While there are currently many benchmarks available for other domains such as retail, 

social network, or search engines, there are none available for Big Data analytic 

frameworks in the application area of predictive maintenance. 

This thesis introduces the predictive maintenance benchmark (PMB). The PMB is a 

benchmark aimed at measuring the performance of Big Data analytic frameworks in the 

field of predictive maintenance. The data model and workload of the PMB represent 

typical tasks encountered by a predictive maintenance system. The PMB is implemented 

in the two most popular Big Data analytic ecosystems Hadoop and Spark and show Spark 

outperforming Hadoop in almost every task. For evaluation, findings gathered during 

implementation and execution of the PMB are analysed. Furthermore, the PMB results are 

validated against other studies comparing Hadoop and Spark. 
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Kurzfassung 

Predictive Maintenance (vorausschauende Wartung) ist ein neuer Ansatz für das Fällen 

von Wartungsentscheidungen und ermöglicht eine Senkung von Wartungskosten, eine 

Steigerung der Produktion, sowie eine Erhöhung der Sicherheit und des 

Umweltbewusstseins. Bei Predictive Maintenance werden permanent daten über den 

Zustand einer Maschine gesammelt und verwendet, um Vorhersagen über künftige 

Ausfälle zu treffen. Auf Grund des Volumens, der Geschwindigkeit, und der Vielfalt der 

gesammelten Daten werden für deren Analyse spezielle Software Frameworks aus dem 

Bereich der Big Data Analyse benötigt. Die Leistung dieser Frameworks ist maßgeblich 

für die Leistung des gesamten Predictive Maintenance Systems.  

Benchmarks erlauben es die Leistung von Frameworks zu messen und dienen daher 

gleichzeitig als Basis dafür, diese zu vergleichen. Durch den branchenweiten Einsatz von 

Big Data Analyse, und die daraus resultierenden unterschiedlichen Einsatzgebiete, ist es 

wichtig die Frameworks innerhalb eines bestimmten Aufgabengebietes zu vergleichen. 

Zurzeit existieren solche Big Data Benchmarks für die Bereiche des Handels, der Sozialen 

Netzwerke, der Web Suche, sowie der Bioinformatik. Es gibt allerdings derzeit keinen 

Benchmark, der den Tätigkeitsumfeld von Predictive Maintenance abdeckt.  

Die vorliegende Diplomarbeit stellt daher den Predictive Maintenance Benchmark (PMB) 

vor. Der PMB setzt sich zum Ziel, die Leistung von Big Data Analyse Frameworks an Hand 

von Aufgaben aus dem Bereich Predictive Maintenance zu testen. Das Datenmodell und 

das Arbeitsvolumen von PMB repräsentieren hierbei typische Aufgaben eines Predictive 

Maintenance Systems. Nach der Entwicklung des PMBs, wird er auf den zwei populären 

Big Data Frameworks Hadoop und Spark implementiert. Die Resultate der jeweiligen 

Implementationen dienen als Basis für den Leistungsvergleich zwischen Hadoop und 

Spark. Schlussendlich wird der PMB durch Erkenntnisse, die während der Planung, 

Implementierung und Analyse der Resultate gewonnen wurden evaluiert. Zusätzlich 

werden die Resultate des PMBs noch mit anderen Studien, die die Leistung von Hadoop 

und Spark vergleichen, validiert. 
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1 Introduction 

1.1 Motivation 

The importance of maintenance has grown with the increasing complexity of production 

systems [1]. Efficient maintenance lowers costs, increases a plants capacity and 

production volume, and positively affects environmental and employee safety [2]. 

Predictive maintenance is a novel approach for making decisions on timing and substance 

of maintenance work. The basic concept behind predictive maintenance is to predict 

future failures based on past and current condition data of a machine [3]. An increasing 

number of machines, affordable sensors, and intensive research have led to an immense 

volume of available data, often known as Big Data [4].  

Big Data is characterised by its huge volume of data, speed of creation (velocity), and 

variety in data formats [5]. This leads to the following significant challenges [6]: 

• Big Data often contains inaccuracies, duplicates, or missing values. Data cleaning 

detects and removes these errors in order to raise overall data quality [7]. 

• Information comes from many different sources in various data formats and must 

be transformed to be analysed [6]. 

• The high volume of Big Data exceeds the capacity of common storage solutions and 

requires new approaches such as distributed databases, where data is spread 

among multiple devices [6]. 

• Volume and variety of Big Data present significant challenges during analysis. Fast 

and accurate processing of petabytes of data requires specialised soft- and 

hardware [6]. 

Thus, to cope with these challenges specialised software frameworks have been 

developed, utilizing not only one but a cluster of multiple computers to store and process 

Big Data [12]. Processing Big Data generally requires multiple frameworks to work 

together, in a so-called Big Data analytic ecosystem [13].  

The Big Data analytic ecosystem plays a central role in a predictive maintenance system. 

Its performance affects how much information can be processed, effectively limiting the 

amount of monitored machines as well as the speed of the analysis. It depends on the 

performance of each individual framework as well as how well they cooperate. Thus, it is 
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important to analyse and compare such frameworks to discover their strengths and 

weaknesses in the application area of predictive maintenance. 

1.2 Problem Statement  

Due to volume, variety, and velocity of Big Data, common data processing technologies 

cannot handle its analytics satisfactory [8]. Only advanced data mining and storage 

techniques enable storage, management, and analysis of Big Data [8]. This has led to the 

development of specialised software frameworks. In many cases, such as predictive 

maintenance, one framework is not enough to provide all desired functionalities [9]. 

Before assembling a Big Data analytic ecosystem, a decision on which frameworks should 

be used has to be made. There are many possible candidates with more than 70 

contestants in the open-source world alone [10]. Due to their differences in technology 

and functionality, direct comparison is difficult and special tools such as benchmarks are 

necessary. Benchmarks define general workloads and measurement metrics, which are 

used to compare different software with each other [11]. Due to the various application 

areas of Big Data analytics (i.e. search engines, e-commerce, social networks, or predictive 

maintenance) Big Data benchmarks aim to generate application-specific workloads [12, 

13]. While benchmarks for other areas exist [11, 14, 15], there are currently none 

available for predictive maintenance. This lack of benchmarks for Big Data frameworks in 

the field of predictive maintenance prevents focused comparisons in this application area. 

1.3 Aim of the Work 

Benchmarks are tools to compare different software frameworks with each other. In the 

area of Big Data, they generally define application specific tasks due to the different 

possibilities for Big Data analytics. Currently, there are no benchmarks available for 

predictive maintenance. This thesis introduces such a benchmark: The predictive 

maintenance benchmark (PMB). The PMB enables the comparison of Big Data analytic 

ecosystems in the area of predictive maintenance. This thesis answers following research 

question: 

1. What are the requirements for a Big Data analytic ecosystem to perform predictive 

maintenance? 

2. What are the requirements of a benchmark comparing Big Data analytic 

frameworks in the field of predictive maintenance? 
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3. Are there any benchmarks for testing the performance of Big Data analytic 

frameworks in relation to predictive maintenance? 

4. Is it possible to test Big Data analytic frameworks using the developed PMB? 

5. Using the PMB, how do the most popular Big Data analytic frameworks compare to 

each other? 

1.4 Methodological Approach 

1.4.1 Literature Research 

A systematic literature search is performed to determine the theoretical background, 

current state of the art and the landscape of current Big Data analytic frameworks. It 

follows the methodology defined by Kitchenham at al. [16]: After identifying the research 

questions, search queries are formulated. These queries are then being used in search 

engines for data collection. Selecting relevant information is done through an iterative 

process: At first the titles are scanned for relevant topics, then the abstracts, and at last 

the full text is read. Each step filters out irrelevant literature. This process ensures a broad 

and efficient way for literature research [16]. 

1.4.2 Benchmark Development 

The development of the PMB follows the methodology on designing Big Data benchmarks 

defined by Han and Lu [12]. Major technology-agnostic Big Data benchmarks such as 

BigBench [14] and BigDataBench [15] followed a similar approach. As shown in Figure 1, 

designing a benchmark can be divided into the 5 steps of planning, generating data, 

generating tests, execution, and analysis and evaluation [12]. During the planning step, 

the benchmark object, application domain, and evaluation metric are defined. The next 

two steps specify the data and workload of the benchmark. Both of them depend on the 

application domain and should represent common, real-life tasks. For execution, the 

benchmark is implemented and executed. As described below, the implementation of the 

benchmark follows the methodology of Hevner at al. [17]. During the last step of the 

methodology, the benchmarking result is analysed and evaluated. 

 
Figure 1: Benchmarking process as defined by Han and Lu [12]. 
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1.4.3 Benchmark Implementation 

For the individual implementations of the PMB on the most popular Big Data analytic 

frameworks, the thesis follows the methodology proposed by Hevner at al. [17]. Table 1 

displays the seven guidelines for design-science research and their description. The bold 

text below specifies how the guideline will be followed during this master thesis. 

Table 1: Design-science research guidelines as proposed by Hevner et al. [17, p. 83]. 

Guideline Description / specification 
Design as an Artefact Design science research must produce a viable artefact in the form of a construct, 

a model, a method, or an instantiation. 
The PMB is implemented on the most popular Big Data analytic 
frameworks and executed on a cluster of five Raspberry Pi’s 1. For each 
tested ecosystem, an artefact is created consisting of the code 
implementing the benchmark as well as the cluster-specific configuration 
of the frameworks within the ecosystem.  

Problem Relevance The objective of design science research is to develop technology based solutions 
to important and relevant business problems 
Implementing and executing a benchmark is important to evaluate its 
design. Observations made during implementation as well as analysing 
the benchmark results provide feedback on the validity of the 
benchmark. 

Design Evaluation The utility, quality, and efficiency of a design artefact must be rigorously 
demonstrated via well-executed evaluation methods. 
The implementation of the PMB is evaluated by comparing the 
measurement results to findings of similar benchmarks from other 
domains. 

Research 
Contributions 

Effective design science research must provide clear and verifiable contributions 
in the areas of the design artefact, design functions, an/or design methodologies. 
The PMB serves as a measurement tool to compare Big Data analytic 
frameworks in the domain of predictive maintenance. The 
implementation of the PMB serves during its evaluation.  

Research Rigor Design science research relies upon the application of the rigorous methods in 
both the construction and evaluation of the design artefact. 
Each step of the process is rigorously documented and follows before 
defined guidelines. 

Design as a Search 
Process 

The research for an effective artefact requires utilizing available means to reach 
desired ends while satisfying laws in the problem environment. 
The implementation of the PMB follows an iterative process. After each 
iteration, the current state is tested and evaluated. 

Communicate 
Research 

Design-science research must be presented effectively both to technology-
oriented as well as management-oriented audiences 
The results of the research are presented within the proposed master 
thesis. The thesis provides a theoretical background, the specifications of 
the PMB, and the results of its implementation. 

 

 

                                                        
1 https://www.raspberrypi.org/ 
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1.5 Structure of the Work 

Following the introduction, the second chapter covers the related work. This thesis 

proposes PMB, a new Big Data benchmark in the field of predictive maintenance. The 

related work therefore covers other benchmarks in the field of Big Data, separating them 

into technology-bound and technology-agnostic works. 

The third chapter gives an overview of Big Data analytics and Big Data analytic 

ecosystems. The different elements of such ecosystems are explained in detail based on 

the six pillars model proposed by Khalifa et al. [18]. Building upon this, a general 

architecture of a Big Data analytic ecosystem is presented, which will be used to develop 

test-setups for the benchmark implementation.  

In the fourth chapter a theoretical background to the field of predictive maintenance is 

offered. After an introduction in different maintenance techniques, all necessary steps 

from collecting data to making maintenance decisions are explained.  

The fifth chapter presents the predictive maintenance Benchmark (PMB) following the 

methodology introduced in chapter 1.4.2. After determining the requirements and goals 

of the PMB, the data model and workloads are specified. 

In the sixth chapter the evaluation of the PMB is shown. The benchmark is implemented 

on the currently most popular frameworks, which are portrayed in detail. The 

performance of the frameworks is measured and compared to each other. The results are 

used to evaluate if the PMB is viable. 

Finally, conclusions as well as limitations of the work are discussed. Furthermore, 

possibilities for future work are presented. 
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2 Related Work 

This thesis introduces the PMB, a new Big Data benchmark in the field of predictive 

maintenance. Related work therefore covers relevant research in the area of Big Data 

benchmarks. The increase in popularity of Big Data analytics led to the rapid development 

of new benchmarks by both academia and industry [11]. Existing Big Data benchmarks 

can be separated in technology-bound and technology-agnostic benchmarks [11].  

2.1 Technology-bound Benchmarks 

Technology-bound benchmarks are tied to specific Big Data analytic frameworks. They 

measure the performance of this framework across multiple hardware systems. 

Technology-bound benchmarks pursue different goals than PMB. While the PMB 

compares Big Data analytic frameworks with each other, technology-bound benchmarks 

compare the performance of one framework on different hardware setups. Below, the 

main contributions to technology-bound benchmarks are listed. They are grouped by the 

framework they are bound to. 

HiBench, introduced by Huang et al. [19], and the MapReduce Benchmark Suite (MRBS) 

developed by Sangroya et al. [20] offer a variety of benchmarks for the Hadoop 2 

MapReduce environment. The tests performed by HiBench include micro-benchmarks 

such as WordCount and Terasort as well as complex use cases from the domains of web 

search (page rank, nutch indexing), machine learning (Bayesian classification, K-Means 

clustering) and analytical queries (Hive 3  joins and aggregations). Similar to HiBench, 

PMBs workloads also include machine learning (classification) and analytical queries. 

However, they are neither bound to Hadoops MapReduce or Hive, nor are they utilized in 

the context of predictive maintenance. MRBS defines workloads such as a movie 

recommender, database queries, DNA sequencing, text processing and classification using 

the Naïve Bayes algorithm. In contrast to PMB, MRBS is tied to Hadoop and does not cover 

tasks in the area of predictive maintenance.  

Li et al. [21] present SparkBench, a comprehensive benchmarks suite for the Spark 

ecosystem 4 . It offers workloads in four different areas: machine learning, graph 

computation, SQL queries and streaming applications. The workloads include logistic 

                                                        
2 http://hadoop.apache.org/ 
3 http://hive.apache.org/ 
4 http://spark.apache.org/ 
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regression, support vector machines, matrix factorization, pagerank, triangle count, hive 

SQL queries, twitter tags and page views as well as K-Means, linear regression, decision 

tree, and shortest path calculations. SparkBench measures execution time and data 

process rate (data size/execution time) as performance indicators. In contrast to PMB, 

Sparkbench is limited to the Spark ecosystem. Additionally, the workload of SparkBench 

covers a set of multiple generic tasks rather than focusing on a specific application area 

as PMB does. 

Apart from the scientific community, manufacturers of Big Data frameworks provide 

benchmarks for their respective products. The Apache Software Foundation introduces 

GridMix5 , a benchmark for their Hadoop MapReduce environment. GridMix emulates 

different users sharing the same cluster resources submitting synthetic MapReduce jobs 

into the system. Different to other benchmarks, the workload is not predefined but 

modelled after an existing Hadoop system by analysing its job history. GridMix enables 

analysis on how an existing Hadoop system would perform on different hard- and 

software settings. In contrast to PMB, GridMix does not specify a fixed set of workloads 

but uses the workloads of an existing Hadoop cluster. Thus, GridMix can be used for any 

application area, provided a Hadoop cluster already exists. Many Big Data analytic 

frameworks offer examples that can be considered as micro benchmarks. Hadoop, for 

example, includes examples such as WordCount, Pi, Terasort and Grep 6 . WordCount 

calculates the amount of words in a provided text file. Pi estimates the digits of the 

mathematical constant Pi using a quasi-Monte Carlo method. Terasort sorts one terabyte 

of data and Grep counts the matches to a regex expression in an input file. Spark7, Storm8 

and Flink 9  also include such examples. These examples have already been used in 

scientific papers as micro benchmarks to test Big Data analytic frameworks [22–26]. 

Micro benchmarks are fundamentally different to PMB. They are bound to a specific 

framework and only consider small and simple tasks. The PMB is framework independent 

and defines complex workloads in the domain of predictive maintenance. 

                                                        
5 http://hadoop.apache.org/docs/r1.2.1/gridmix.html 
6 http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html 
7 http://spark.apache.org/examples.html 
8 http://github.com/apache/storm/tree/v1.2.1/examples/storm-starter 
9 http://ci.apache.org/projects/flink/flink-docs-release-1.4/examples/ 
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2.2 Technology-agnostic Benchmarks 

Technology-agnostic benchmarks define general workloads without tying them to a 

specific framework. Their goal is to compare similar software rather than the same 

software across multiple hardware settings [11]. This section discusses the scientific 

effort in the development of Big Data benchmarks. The benchmarks are grouped by 

similar approaches. 

The first group of benchmarks focuses on specific parts of a Big Data analytic ecosystem 

such as data storage or data processing. This focus presents the main difference to the 

PMB, which tests an entire Big Data analytic framework. Pavlo et al. [27] introduce a 

benchmark to compare the capabilities of different distributed databases, therefore 

focusing on data storage frameworks. The benchmark defines a series of 23 SQL-queries 

on a given data set and measures their execution time as performance indicator. The 

university of Berkley implemented a variation of Pavlov’s benchmark, the AMPLab 

Benchmark10. The AMPLab benchmark builds upon the queries defined by Pavlo et al. [27] 

but uses a different data set. The university of Berkley implemented the benchmark for 

Redshift11, Hive12, Impala13 and Stinger14. Ferrarons et al. [28] present a benchmark called 

Primeball, which focuses on data processing. They propose a fictitious news site hosted 

in the cloud to serve as a benchmark. A data set, queries and several use cases typical for 

news sites are defined to be implemented and measured. In addition to execution time, 

Primeball also takes costs of cloud services into account and integrates them into their 

performance matrix. In addition to the focus on single processing frameworks, Primeball 

differs from PMB in its application area. While Primeball consists of tasks typical to an 

online news site, PMB defines tasks based on predictive maintenance.  

Like the PMB, the second group of benchmarks tests entire Big Data analytic ecosystem 

rather than its parts. However, while PMB focuses on tasks typical for predictive 

maintenance, the benchmarks below are based on tasks from other application areas. 

Ghazal et al. [14] presents the end-to-end Big Data benchmark BigBench, which is based 

on a product retailer model. BigBench covers ten business cases: Cross-selling, customer 

micro-segmentation, sentiment analysis, analysing user shopping experience, assortment 

                                                        
10 http://amplab.cs.berkeley.edu/benchmark/ 
11 http://aws.amazon.com/ 
12 http://hive.apache.org/ 
13 http://impala.apache.org/ 
14 http://de.hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/ 
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optimization, pricing optimization, store performance analysis, return analysis, inventory 

management and price comparison. The tests include handling structured and 

unstructured data as well as different data set sizes. Since its initial proposal, BigBench 

was continuously improved and in 2017 standardized by Cao et al. [29] of the Transaction 

Processing Performance Council (TPC) under the name TPCx-BB. Gao et al. [15] introduce 

the Big Data benchmark BigDataBench, which offers a wide variety of workloads. It does 

not focus on one business model but takes data sets from various domains and defines 

related workloads. In particular, BigDataBench consists of 15 data sets and 40 workloads 

coming from the domains of search engine, social networks, e-commerce, multimedia 

analytics and bioinformatics.  

Many of today’s popular Big Data benchmarks do not originate in scientific work but are 

defined by institutions. Since they are often considered as industry standards, the main 

non-scientific benchmarks are mentioned below. In contrast to the PMB they focus on 

testing specific areas of a Big Data analytic ecosystem. The main institutes defining Big 

Data benchmarks are the Transaction Processing Performance Council (TPC)15, Standard 

Performance Evaluation Corporation (SPEC) 16  and the Storage Performance Council 

(SPC)17 [11]. The TPC-H benchmark (Ad-hoc decision support benchmark) [30] is aimed 

at testing data warehouse frameworks and consists of 22 business queries simulating 

companies involved in managing, selling, and distributing products. The performance of 

the data warehouse is given by the execution time of the individual queries. The TPC-H 

benchmark is available for the Big Data querying systems Hive18 and Pig19. The SPEC SFS 

2014 benchmark [31] measures the maximum sustainable throughput of file systems. Its 

workloads consist of creating, reading and removing directories and files of various sizes. 

The performance of the file system is defined by the execution time of the workloads. The 

SPC-1 and SPC-2 benchmarks [32, 33] are targeted at comparing the performance of 

different storage systems. SPC-1 defines various I/O operations for file systems such as 

read, write, and remove. SPC-2 specifies I/O operations in the three areas of file 

processing, database-queries, and video on demand.  

                                                        
15 http://www.tpc.org/ 
16 http://www.spec.org/ 
17 http://www.storageperformance.org/ 
18 http://github.com/rxin/TPC-H-Hive 
19 https://issues.apache.org/jira/browse/PIG-2397 
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3 Big Data Analytics 

In the data-centric world of the 21st century, Big Data analytics has become a major issue 

and research topic [34]. Cheaper data storage, a growing number of Internet users, 

connected devices, and sensors contribute to an ever increasing volume of collected data 

[35]. Data analysis has become a critical corporate asset, is disrupting industries, and 

enables new markets and opportunities [36]. 

This chapter offers an introduction into the world of Big Data and Big Data analytics. After 

defining the term, the main technology drivers are introduced to provide background 

knowledge for the techniques used in Big Data analytics software. Following this, the Big 

Data analytic ecosystem is introduced, describing a construct of multiple software 

frameworks working together [37]. In order to structure such an ecosystem, Khalifa et al. 

developed a 6-pillar model [18], which is presented thereafter. At last, a general 

architecture for Big Data applications is introduced.  

 

3.1 Big Data 

The origin of the term Big Data is not known, but assumed to be in the mid-1990s 

somewhere in Silicon Valley [38]. However, its widespread popularity began as recent as 

2011 [39], as indicated by Figure 2, which shows a Google Trends20 analysis. 

 
Figure 2: Popularity of "Big Data" and "Data Analytic" according to Google Trends from 2004 – 2017. 

Even though the importance of Big Data has been widely recognized, a unified definition 

has not yet been reached. In the following some of the most popular ones are presented.  

                                                        
20 https://trends.google.com 
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McKinsey & Company, one of the world’s leading consulting agencies, describes Big Data 

as data sets, whose size is beyond the ability of typical database software tools to capture, 

store, manage, and analyse [40]. In this definition, McKinsey uses size as the primary 

characteristic. McKinsey does not set a fixed value but defines Big Data dynamically by 

linking it to the capabilities of current database tools. With this approach the definition of 

Big Data grows with the capabilities of databases, respecting the fact that data sizes too 

big to process today may become standard in just a few years.  

Laney introduced a more diverse approach for the definition of Big Data by characterising 

it through 3 V’s: Volume, Velocity, and Variety [5]: 

• Volume characterises size of Big Data. Similar to McKinsey’s approach, the 

definition of volume is dynamical rather than absolute. Instead of being linked to 

a certain amount of petabytes, the size of Big Data is defined as too much to handle 

for common storage system [38]. 

• Velocity outlines the speed at which Big Data is generated. The growth in smart 

devices, sensors and online services has led to an enormous rate of data creation, 

which is still increasing [38]. 

• Variety describes the diversity of data types within Big Data. In Big Data, 

traditional tabular information (structured data) is often accompanied by photos, 

video (unstructured data), or emails (semi-structured data) [41]. 

While Laneys 3 V’s represent the most popular understanding of Big Data, many 

suggestions were made to extend them. The International Data Corporation (IDC) added 

Value as a fourth V, outlining the importance of utilizing Big Data analytics to gain insights 

and to support decision making [42]. IBM coined the term Veracity, which addresses the 

uncertainty and unreliability of Big Data. And SAS proposed Variability, describing the 

variations in data flow rate [41].  

Throughout the last decade, many other extensions were suggested, resulting in a total of 

42 V’s as listed by Elder Research [43]. 

 

3.2 Technology Drivers for Big Data Analytics 

Over the last decade, Big Data analytics has enabled many industries such as retail and 

manufacturing to increase their margin by lowering operating costs, product 

development costs, and increasing customer experience [36]. Data centric companies 
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such as Amazon21 or Ebay22 significantly transformed their respective market through 

their recommender systems [44]. Manufacturing companies have the potential of 

lowering their operating costs by up to 30% by adopting Big Data analytic technologies 

such as predictive maintenance [44].  

The rising popularity of Big Data analytics is driven by an ever increasing capacity of 

storage and data processing, new and cheap ways of data generation, and the 

development of new data processing technologies. This chapter presents some of the 

important technological drivers behind Big Data analytics. 

3.2.1 Distributed Computing 

The high volume, velocity and variety of Big Data poses big challenges for computer 

systems such as high demands on storage space and processing power. Storing and 

processing large amounts of data often exceeds the capabilities of commonly available 

systems [45].  

Distributed systems help in addressing these challenges. Instead of having just one single 

computer, multiple machines are connected together into a cluster. Data is distributed 

around the system and stored on different machines. Processing tasks are split into 

smaller ones, which are then executed in parallel. The system is easily scalable by 

introducing additional machines into the system. 

Figure 3 illustrates the structure of a typical computer cluster in the example of the 

popular Big Data processing framework Apache Hadoop. For a cluster to work correctly 

it is important to keep track of all connected machines. Keeping track includes knowing 

their name, capabilities and how to reach them within the network. Furthermore, their 

status must be monitored for possible failures or breakdowns. This responsibility of 

managing the cluster is often separated from normal processing tasks and specifically 

assigned to one or more machines. By this way it can be separated from the cluster and is 

less prone for failure. As shown in Figure 3 on a Hadoop cluster the NameNode is 

responsible for overseeing the network. Besides monitoring the resources of a cluster, it 

is necessary to divide the computational work among it. Therefore, it is necessary to split 

tasks into multiple smaller ones and distribute them within the network. In the example 

of Hadoop, this responsibility falls upon the Resource Manager. It splits tasks up, monitors 

                                                        
21 https://www.amazon.com/ 
22 https://www.ebay.com/ 
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the current utilization of all connected computing nodes, and distributes the workload 

accordingly. It also ensures that all tasks are completed successfully and, if necessary, 

redistributes failed tasks again. The third component of the cluster is the DataNodes. Their 

primary purpose lies in processing tasks and storing data. To prevent loss of data due to 

component failure, it is replicated multiple times across the cluster [46]. 

 
Figure 3: Architecture of a Hadoop 2.x cluster. 

Distributed systems offer a lot of advantages over a single machines. They are easier to 

scale, naturally support running multiple applications, and are more reliable since they 

do not have one point of failure [47]. However, there is evidence that single-machine 

systems are sometimes superior due to the costs of task distribution and network traffic: 

A recent study suggests that in many common data analytic cases with data of up to 100 

GB, a single-machine system is sufficient and even outperforms clusters [48]. Single-

systems are however strictly limited in their processing capabilities, while distributed 

systems simply grow by adding components. 

3.2.2 In-Memory 

Traditionally a computer has two main kinds of storage systems: the hard disk and the 

random access memory (RAM). The hard disk is responsible for persistent data storage. 

It has a high storage volume and information stays available even after shutting down the 

system. The two most common technologies for hard disc storage are ferromagnetic 

drives (HDD) and solid-state drives (SDD), which use flash memory. RAM is traditionally 

responsible for volatile information. It offers very fast access speed but is expensive and 

information is lost if power is removed. Therefore, it is mostly used by software to store 

frequently used and currently needed information. 

In recent years many Big Data analytic frameworks have switched from using disk 

memory to RAM for data storage [49]. This technique is generally referred to as keeping 
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data in-memory. In-memory technology enables over 1.000 times faster access speed than 

the traditional disk-memory as illustrated in Figure 4. The figure shows the memory 

hierarchy of a computer with a two-core processor [49]. The hierarchy is defined in terms 

of access latency and the logical distance to the CPU. In addition to hard disk and RAM, the 

CPU internal memory caches are listed. Data transfers through the caches into the 

registry, where the core then processes it. As displayed, latency increases highly down the 

layers. While RAM is 100 times slower than caches, the latency of disk memory is over a 

1.000 times higher than RAM. 

 

 
Figure 4: Memory hierarchy and access speed [49]. 

 

As mentioned above, the challenge of in-memory technology is preventing information 

loss if power is removed. Therefore, frameworks based on in-memory technology need 

rigorous backup mechanisms to ensure data recovery in case of unscheduled system 

shutdown. Although still very expensive, the highly increased accessing speed of RAM 

offers great value for companies and is predicted to gain market share with falling prices 

[50, 51]. 
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3.3 Classification of Big Data Analytic Frameworks 

Big Data analytic frameworks are often specialised on specific tasks such as data storage, 

processing or visualization. Utilizing Big Data analytics in a business context often needs 

solutions combining many different frameworks. Various tools assembled together form 

an ecosystem. In general, a software ecosystem consists of a set of software solutions. Such 

ecosystems enable, support and automate the activities of associated social and business 

systems. [52]. For Big Data analytic ecosystems, typical activities are collecting, preparing, 

transforming, storing and analysing data. To describe the requirements of a Big Data 

analytic ecosystem, Khalifa et al. [18] developed a model consisting of the six pillars 

Storage, Processing, Orchestration, Assistance, Interface, and Deployment as shown in 

Figure 5. 

 
Figure 5: Six pillars for building Big Data analytics ecosystems [18,p. 3]. 

 

3.3.1 Storage Pillar 

Storage is the first pillar of a Big Data ecosystem and describes all 

functions concerning preserving information [18]. Volume, variety, and 

velocity of Big Data put high requirements on data storage systems: Big 

Data storage systems must be able to store an ever growing amount of 

information in many formats such as tables, text or video [53]. They also 

must provide high access speed to cope with the high rate new data is 

entering the system [53]. Traditional data management systems do not 

satisfy these requirements, which has led to the development of new 

approaches [54]. To address the challenges of volume, variety, and 
Figure 6: The 
storage pillar. 
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velocity, Big Data ecosystems often rely on distributed storage systems specifically 

designed to handle large amounts of diverse information. As shown in Figure 6, storage 

systems can be divided into three sub categories: relational database management 

systems (RDBMS), distributed file systems (DFS) and Not-only structured query language 

systems (NoSQL). 

Relational Database Management Systems (RDBMS) 

Relational database management systems organize data in one or more tables, following 

a model first proposed by Codd in 1970 [55]. Tables consist of columns and rows, where 

each row is identified by a unique key-value. The columns define the schema of the table 

while the rows hold the information.  

Relational databases are designed to support the ACID (Atomicity, Consistency, Isolation, 

and Durability) properties, first mentioned by Haerder and Reuter in 1984 [56]. To 

conform to ACID properties, transactions should either succeed or be rolled back 

(Atomicity), never leave the database inconsistent (Consistency), never interfere with 

each other (Isolation), and persist even after restart of the database (Durability). A 

transaction is a short sequence of interactions with the database through which a user can 

manipulate the data.  

According to the information platform DB-Engines23 RDBMS is by far the most popular 

database technology with an overwhelming popularity score of 79.6% [57]. This is also 

supported by the yearly data connectivity report published by Progress [58], which states 

that only 2% of respondents do not use a relational database. However, it has to be 

mentioned that both surveys are not focused on Big Data solutions but include the whole 

infrastructure of a company. While RDBMS are still the most popular choice in Big Data 

storage, their dominance is not as high as the surveys suggest. Due to the variety of Big 

Data, other data storage techniques are on the rise [58]. 

Distributed File Systems (DFS) 

Distributed file systems (DFS) offer similar functionalities as file systems implemented in 

popular operating systems such as Windows or Linux. In contrast to them, files are not 

stored on a single computer but are distributed across multiple machines.  

                                                        
23 https://db-engines.com/ 
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Observing the distributed file systems at Google, Ghemawat et al. [59] concluded that 

machine breakdowns inside a DFS are unavoidable. DFS often consist of hundreds or even 

thousands of inexpensive machines. Due to the huge size of systems and poor component 

quality machine breakdowns are rather common. To address this issue, DFSs implement 

rigorous methods to prevent data loss. Many products such as the Google file system (GFS) 

[59] or the Hadoop distributed file system (HDFS) [60] replicate data within the system. 

This replication ensures that loss of hardware components does not result in loss of data. 

Not only Structured Query Language Systems (NoSQL) 

Not only structured query language (NoSQL) databases are the third and final element of 

the storage pillar. According to Brewers CAP theorem, any networked shared-data system 

can achieve at most two of the three desirable properties consistency, high availability, 

and partitioning [61].  

• Consistency (C) means that the data is always the same across the entire system. 

All users have the same view of the data at all time.  

• High availability (A) entails that every request results in a meaningful result rather 

than error messages or silence. The higher the availability, the faster these 

requests are processed. 

• Partitioning (P) implies that the system can be separated without further 

compromising the before mentioned qualities. Consistency and availability can be 

maintained even in the event of message loss or partial system failure. 

As described above, relational databases are designed for strong consistency and 

serializability. Following the CAP theorem, they are not able to offer high availability. 

Opposite to that NoSQL databases sacrifice consistency in order to provide high 

availability and serializability. Instead of being consistent at all time, temporary 

inconsistency is possible. Still, eventually, consistency at a future state is guaranteed [62]. 

 



 

18 

3.3.2 Processing Pillar 

Processing is the second pillar of a Big Data analytic ecosystem. It 

includes all activities of manipulating and analysing data [18]. Similar to 

storage systems, volume, velocity, and variety of Big Data demand special 

requirements of Big Data processing systems: Analysing tera- or even 

petabytes of diverse data at once exceeds the capabilities of single 

computers [63]. Therefore, distributed systems are used to process data 

in parallel on multiple computers. Tasks are split into smaller parts that 

can be executed simultaneously on multiple machines. As shown in 

Figure 7, there are six different approaches how Big Data is processed: 

batch, incremental (also called stream processing), interactive, iterative, 

approximate, and in-database processing.  

Batch Processing 

Batch processing describes executing a series of commands without manual intervention 

[18]. The program containing the commands is defined before the analysis and runs 

uninterrupted from start to finish. Therefore batch processing is best suited for complex 

analysing of large data sets [25]. After initialization, the process can take minutes, hours 

or even days. Correspondingly, it is not well suited for real-time processing. Figure 8 

illustrates the workflow of a batch process. Before processing, individual data is collected 

and combined into one big data set. Additionally, the program to analyse the data set is 

written. Both are then submitted to the batch-processing engine, which produces the 

desired results. 

 
Figure 8: Workflow of batch processing. 

Batch processing is generally used for big and complex analysis where execution time is 

not essential. For many Big Data analysis use cases such as sales forecast, customer 

segmentation, or medical diagnostics this method is sufficient. 

Figure 7: The 
processing pillar. 
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Batch processing is not necessarily slow. There have been efforts to achieve almost real-

time analysis using very small batch processes, executed in succession. Data is collected 

from a very small timespan and analysed in intervals of milliseconds [22]. 

Incremental Processing  

Incremental or stream processing focuses on the analysis of moving data instead of resting 

data sets like batch processing. This means that data is processed immediately when it 

gets available [18]. 

In many cases today data is collected continuously and at a high rate: User behaviour is 

observed live, machines are monitored non-stop, and transactions are tracked steadily. 

Gathered information is only valuable a short amount of time and real-time analysis is 

essential. Product recommendations, as for example done by Amazon, must be calculated 

almost instantaneously or they do not benefit their customers.  

Figure 9 displays the general workflow of stream processing. In contrast to batch 

processing, data is not accumulated but processed as soon as it enters the system. The 

analysis program runs continuously and waits constantly for new data. Rather than 

producing one single result, stream processing provides continuous analysis. 

 
Figure 9: Workflow of stream processing. 

The key challenge in stream processing is keeping the latency low [22]. Latency describes 

the time that passes from the moment data enters the system until it is processed. In order 

to handle large amounts of data, many modern frameworks for stream processing 

implement a distributed processing methodology [64]. 

Interactive Processing  

Interactive processing allows for user interaction during an analysis. As Big Data analysis 

becomes more popular in companies – experiencing a year-to-year growth of 11% 

between 2015 and 2016 [58] - the user base grows steadily. Due to new applications in a 



 

20 

wide range of industries, new types of users have emerged. Instead of traditional long and 

complex analysis, ad-hoc queries and reports are gaining ground and are responsible for 

up to 80% of a company’s workloads [65].  

As shown in Figure 10, the user has multiple interactions with the system during 

interactive processing. In contrast to batch processing not all steps have to be predefined, 

but user input is possible after initialization. 

The entire process can consist of multiple queries and analyses. The system fetches 

necessary data from the databank and processes it accordingly. 

 
Figure 10: Workflow of interactive processing. 

Interactive processing frameworks are designed for fast execution of small jobs consisting 

of data queries. There are multiple methods available to optimize query performance. 

Apache Tez, for example, reduces the overhead of launching queries resulting in faster 

initialization times [66]. Apache Spark saves intermediate results in-memory, enabling 

faster response times for future queries concerning the same data [67]. And Google 

Dremel as well as Apache Drill have optimized accessing data by only searching through 

relevant columns [68]. 

Iterative Processing 

Iterative processing describes workloads that repeatedly do the same processing steps or 

run multiple times through the same data set [18] as illustrated in Figure 11. Machine 

learning and graph processing algorithms are common examples containing a lot of 

iterative computations [24].  

 
Figure 11: Workflow of iterative processing. 
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Iterative execution engines are optimized on reusing input data, code, or intermediate 

results. They often hold frequently used data in-memory for fast access [24]. 

Approximate Processing 

The goal of approximate processing is to deliver very fast results from analysis of large 

amounts of data. In order to increase their speed, accuracy is compromised. Results are 

not found by analysing the whole data set but approximated using a representative 

sample [18]. 

This allows for almost real-time response time when querying peta and exabytes of data 

[69–71]. It is especially useful in situations where an exact result would not benefit the 

quality of decisions or where data is incomplete and noisy to begin with. Approximation 

is also applicable for predictions or other statistical analysis.  

Figure 12 illustrates the general concept of approximate processing. The program does 

not analyse the whole data set but approximates the result processing only part of the 

available data. 

 
Figure 12: Workflow of approximate processing. 

Nair [72] argues that the amount of data and data analysis will exceed the available 

processing capabilities. In order to cope with the vast amount of data, approximation 

techniques are necessary.  

In-database Processing 

In all other introduced concepts, processing of data is separated from data storage. This 

separation requires the movement of data between storage and processing layers. The 

concept behind in-database processing is to move data processing tasks inside the storage 

layer as shown in Figure 13. The goal is to eliminate data movement between storage and 

processing by analysing it without moving it out of the database [18].  
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Figure 13: Workflow of in-database processing. 

Apache MADLib24, for example, offers machine learning in SQL. Its goal is to operate on 

the data in-database and eliminate unnecessary movement of data between multiple 

runtime environments. MADLib provides various supervised and unsupervised machine 

learning algorithms as functions that can be called via SQL. 

3.3.3 Orchestration Pillar 

In a distributed system the workload is divided and spread around 

multiple nodes. Tasks are assigned to individual computers depending 

on available resources. Resources include memory, CPU, network 

capacity and disk storage space. The pillar of Orchestration covers the 

management of these resources inside a cluster [18]. The management 

of a cluster is generally separated from the clusters and the responsibility 

of the resource manager [18]. The responsibilities of a resource manager 

include monitoring status and current workload of all nodes. 

Furthermore it distributes the workload among the cluster and 

supervises the progress of individual tasks [73]. As illustrated in Figure 14, orchestration 

frameworks are differentiated depending on their techniques of resource allocation: 

scheduling or provisioning. 

Scheduling 

Scheduling frameworks maximize resource utilization or data locality. Maximizing 

resource allocation aims at using as many of the above mentioned resources of the cluster 

as possible instead of letting only a few nodes work. This means spreading the workload 

as wide as possible among the cluster. Maximizing data locality aims at minimizing data 

transfer within the cluster. The goal is to process data only on those nodes it is stored on. 

Maximizing resource utilization and data locality can almost never be achieved together. 

                                                        
24 http://madlib.apache.org/ 

Figure 14: The 
orchestration pillar. 
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Data is not replicated on every node. Therefore, in order to utilize every resource of the 

cluster, data has to be transferred. Likewise, maximizing data locality results in 

processing data on only those nodes the information is stored on, disregarding others. 

Therefore, either resource allocation or data locality has to be prioritized [18]. 

Provisioning 

Provisioning minimizes job execution time and monetary costs. This is especially helpful 

on cloud-based solutions. In cloud environments the user is charged depending on the 

amount and time resources are used. Provisioning frameworks take the increasing costs 

of additional nodes into account when distributing resources and weigh them against the 

benefits of more processing power [18]. 

3.3.4 Interface Pillar 

As mentioned before, Big Data analytic systems have a broad audience. 

In order to match their specific needs, user interfaces are developed 

offering different access points [18]. They allow users to interact with Big 

Data analytics in a familiar environment by providing an abstraction 

level from underlying functions such as processing or storage. Interviews 

with expert show that there is a lot of potential in improving user 

experience for beginners, since many programs today are primary 

designed for professional users [74]. 

Khalifa et al. [18] distinguish five main approaches to interfaces: sheets, 

graphical interfaces, visualization tools, interfaces providing SQL capabilities, and scripts 

(see Figure 15).  

Sheet Interfaces 

Sheet interfaces offer environments similar to popular spreadsheet based tools like 

Microsoft Excel. Although very consumer friendly, they are commonly only suitable for 

data exploration and preparation. For model building and complex analysis, other tools 

are necessary [18]. 

Figure 15: The 
interface pillar. 
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Spreadsheets are established tools in data science [75] and especially popular for 

business users. Projects such as the from Barga et al. [76] introduced Daytona  or 

OpenRefine25 aim at providing a spread-sheet like environment for Big Data analytics. 

Graphical Interfaces 

Graphical tools provide a visual interface for Big Data analytics. Instead of writing code, 

users are able to assemble workflows via drag and drop or use menus to analyse data [18]. 

Big Data analytic features can be accessed through a graphical user interface. 

The field of traditional data analysis already offers many tools with a graphical interface. 

Solutions such as RapidMiner26, IBM SPSS27, SAS28 and KNIME29 provide highly developed 

graphical user interfaces, which offer a huge variety of data analytic functions. However, 

they are limited to processing data on one machine, limiting the amount of data to be 

processed at once.   

In the last decade, there has been some effort to bring graphical user interfaces into the 

field of distributed Big Data analytics. Especially commercial products such as Microsoft 

Azure30 and IBM Watson31 have worked hard on providing user-friendly interfaces. Other 

examples of graphical user interfaces in the domain of Big Data analytic frameworks are 

Radoop32, which extends RapidMiner to work on the distributed processing framework 

Hadoop [77], and WINGS33, which provides a drag and drop interface to create workflows 

for large computational experiments [78].  

Visualization Interfaces 

Large data sets are difficult to process for the human mind. In the sense of the old proverb 

“a picture is worth more than thousand words”, visualization of data helps to comprehend 

and analyse information. While before mentioned graphical tools provide a graphical user 

interface to analyse data (i.e. menus or drag and drop), visualization tools provide a visual 

presentation of Big Data itself (i.e. bar graphs or diagrams) [18].  

                                                        
25 https://openrefine.org/ 
26 https://www.rapidminer.com/ 
27 https://www.ibm.com/spss 
28 https://www.sas.com/ 
29 https://www.knime.com/ 
30 https://azure.microsoft.com/ 
31 https://www.ibm.com/watson/ 
32 https://rapidminer.com/products/radoop/ 
33 https://www.wings-workflows.org/ 
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Data visualization can be utilized during the whole process of data analytics: from initial 

data exploration to representation of results [79]. Visualization helps in analysing 

outliers, recognizing patterns, or determining important features. It can also serve as a 

communication tool. Companies consist of different stakeholders such as executives, 

functional leaders and data scientist. Each of them works with different methods and 

communication channels. Data visualization supersedes these differences and provides a 

single platform for discussions [80]. 

The visualization of Big Data introduces many additional challenges in comparison to 

traditional data visualization. Big Data is often composed of various different data types. 

Visualization tools must therefore be able to deal with semistructured and unstructured 

data. They must also be able to process large amounts of data, preferably in parallel to 

provide scalability. Big Data can be very complex, consisting of multiple dimensions. 

Multidimensional data is too complex for the human mind to process at once. One of the 

biggest challenges of data visualization is to reduce complexity enough to make 

information comprehensible without losing significance or missing important 

connections [81]. Many commercial Big Data analytic solutions such as IBM Watson or 

Microsoft Azure offer many features to visualize data in different ways such as bar graphs 

or pie charts. They utilize their underlying distributed computing power to cope with the 

large volumes of data. Microstrategy34  and Tableau 35 offer tools that can easily visualize 

data from different sources and formats and present them in interactive visualizations. 

Driven by the entertainment industry, there is a lot of research going into the field of 

visualization. New technologies such as virtual and augmented reality offer immersive 

user experience. In recent years, there has been some effort to combine Big Data with 

augmented reality, raising Big Data visualization into the next dimension [82–85].  

Structured Query Language (SQL) Interfaces 

Developed by IBM in 1976 [86], SQL is the de-facto standard language for relational 

database management systems and is supported by the most popular systems [57]. SQL 

enables the user to add, update, delete, or find data inside a database. However, SQL is 

limited to structured data formats. Due to the variety in formats within Big Data, many 

Big Data applications utilize NoSQL databases to manage unstructured and semi-

                                                        
34 https://www.microstrategy.com/ 
35 https://www.tableau.com/ 
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structured data. They are often a better fit [62] and grow steadily in their popularity [58]. 

Due to their different structure, not all of them natively support SQL.  

Due to the wide popularity of SQL and its big support among many tools, SQL interfaces 

aim at providing NoSQL databases with a SQL interface. This way Big Data can be accessed 

through the well-known language of SQL, simplifying the switch to a NoSQL system [18].  

Script Interfaces 

Scripts offer algorithms, functions or other code fragments for Big Data analytics. Users 

do not have to implement algorithms from scratch but can build on prior work [18]. 

The lowest level of scripts provides support for higher languages such as R36 or Python37, 

which are currently the most popular languages for data analytics [87] This allows users 

to create analytic processes in a higher language and port it to different Big Data analytic 

platforms. Projects such as “R on Hadoop” [88] for example bring R to platforms for 

distributed computing. Other languages such as Pig Latin [89] or Jaql [90] are specifically 

designed as scripting languages for Big Data analytics and tailored for distributed 

processing. Code libraries present a higher level of scripts. They contain already 

implemented algorithms that can be reused. Especially complex algorithm families like 

machine learning have led to the development of many libraries [91–94]. 

3.3.5 Assistance Pillar 

According to McKinseys 2016 Big Data report [36], there is a severe 

shortage of qualified analytical talents, in particular data scientists. 

During the report, many executives across geographies and industries 

where interviewed, stating great difficulties finding qualified analytical 

personnel. The lack of qualified personnel greatly decreases a company’s 

capability of implementing Big Data analytics.  

Assistance frameworks make Big Data analytics more accessible. They 

provide support during the design and implementation of analytical 

processes. As shown in Figure 16, assistance frameworks can be separated into the two 

major categories of static and intelligent tools [18]. 

                                                        
36 https://www.r-project.org/ 
37 https://www.python.org/ 

Figure 16: The 
assistance pillar. 
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Static Assistance Tools 

Static assistance tools always offer the same assistance, regardless of the data set. They 

are not aware of the specific context and provide general support. This category includes 

well-known tools such as tooltips, wizards and help pages [18]  

Static tools alone are often not sufficient. There is a vast amount of analysis techniques 

available. Choosing the correct one is usually highly dependent on the available data set 

and use case, which static tools do not take into account. Novices and experts alike often 

struggle during the selection process due to insufficient knowledge [95]. This has led to 

the development of intelligent tools. 

Intelligent Assistance Tools 

Intelligent assistance tools take the context of a data analysis into account. They provide 

different support depending on the use case and data set [18]. For example, they may 

suggest different analytical techniques depending on the size of a data set or on its value 

distribution.  

Bernstein et al. [96] propose an intelligent discovery assistance tool, that suggests data 

mining processes depending on the input data as well as desired mining results. It 

searches the space of possible processes and ranks them by speed and accuracy. This 

greatly simplifies the selection process between multiple data analytic algorithms. 

In recent years many tools have emerged [95], assisting users during the whole process 

of knowledge discovery [97]: data selection, preprocessing, transformation, data mining, 

and interpretation. 

3.3.6 Deployment Pillar 

The sixth and final pillar consists of deployment methods for Big Data 

solutions [18]. When a company decides to adopt Big Data analysis it is 

faced with many decisions beyond the analysis process itself. Questions 

such as “Does the company want to develop the software themselves or 

outsource it?” or “Do they use their own or third-party IT 

infrastructure?” have to be answered. Depending on strategic, resource 

and their operating environment factors, different strategies are best 

suited [98]. As shown in Figure 17, the product and service model can be distinguished 

during deployment. 

Figure 17: The 
deployment pillar. 
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Product Model 

In the product model organizations buy or develop the software and deploy it on their 

own infrastructure. This ensures data security and privacy. It also benefits processing 

large on-site data since it does not have to be uploaded to third party servers [18]. 

Service Model 

The service model describes the approach of outsourcing the infrastructure to an external 

service provider [18]. This offers companies flexibility in adding or reducing 

infrastructure and releases them from the responsibility of maintenance.  

The extent of the service can differ in their depth. In general, three approaches can be 

differentiated: The Infrastructure as a Service (IaaS), Platform as a Service (PaaS) or 

Software as a Service (SaaS) model [37].  

• In IaaS, the service provider offers its hardware with basic software like operating 

system, network security and similar utilities.  

• PaaS provides an environment on which applications can be developed. The user 

does not have to maintain the platform but only his application.  

• Following the SaaS approach the user consumes the whole analysis service. The 

service provider develops and maintains the software and the customer pays for 

the entire software. 

 

3.4 Architecture of a Big Data Ecosystem 

The above presented framework from Khalifa et al. [18] can now be used as the 

foundation to describe a general architecture of a Big Data analytic ecosystem. The six 

pillars can be transformed almost directly into the components of a general software 

architecture. Only the last pillar, deployment, represents implementation requirements 

rather than an architectural component and is therefore not considered. Retaining the 

names introduced before, the components can be separated into storage, orchestration, 

processing, interfaces, and assistance.  



 

29 

 
Figure 18: High level architecture of a Big Data analytic ecosystem. 

Figure 18 shows a graphical representation of the architecture of a Big Data analytics 

ecosystem. Starting from the bottom, the first layer represents the storage component. 

Data can be stored either on a distributed file system or on (distributed) databases, as 

depicted in yellow and red. As mentioned above there are many types of databases. An 

ecosystem is not limited to only using one storage system but can combine multiple 

systems (i.e. a relational database for financial data and a NoSQL database for emails). The 

next layer, depicted in orange, is the resource manager. The resource manager is vital in 

distributed environments. It is responsible for managing the computer cluster and its 

resources as well as distributing the workload among all computing nodes. The 

processing layer, here represented in blue, focuses on the workload itself. It is responsible 

for analysis and manipulation of data. It defines the programming paradigm used for all 

data processing and therefore influences how applications must be written. As described 

before there are different programming paradigms that are implemented in different 

execution engines. Execution engines offer APIs for different programming languages. The 

famous Hadoop MapReduce framework for example offers an API for Java. Developers can 

write a program consisting of Mappers and Reducer in Java and feed it into the execution 

engine. Creating a program for one execution engine however is often linked to writing a 

large amount of engine specific code. This especially applies when implementing complex 

analysis. The interface layer, depicted in green, addresses this problem by adding an 

additional abstraction layer. Interfaces are situated between the execution engine and 

application developers. They provide already implemented functionalities that can be 

used by developers. They range from simple data access and search applications to 

complex machine learning libraries. While most of them are aimed at one specific 

execution engine, some offer support for more than one. This allows developers to switch 

between execution engines in the future and increases longevity of applications. The last 

layer, illustrated in black, are assistance tools. They provide functionalities over the entire 
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system but are not directly related to the analytical process. This includes for example 

security, logging services and programs related to monitoring cluster health and 

performance. 

The goal of this general architecture is to provide a frame of reference when describing 

and comparing Big Data analytic ecosystems. The architecture is a tool to compare Big 

Data analytic ecosystems in a uniform way. Differences can be recognized and formulated 

in a consistent manner. Singular components of the architecture can be exchanged to form 

a new ecosystem. 
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4 Predictive Maintenance 

4.1 Overview of Maintenance Techniques 

Maintenance describes all activities necessary to restore equipment, or to keep it in a 

specified operating condition [2]. Maintenance retains or prolongs the life of an item. 

Producers as well as consumers encounter the issue of maintenance on a regular basis. 

Cars, jet engines, laptops, manufacturing plants, houses and even software systems need 

to be serviced periodically to maintain their functionalities.  

In many companies, maintenance related costs are only depicted as a simple cost centre, 

divided into direct and indirect costs [100]. Regarded as cost centres, maintenance costs 

rise and fall in direct relation to performed services. In reality however, maintenance can 

increase productivity and profitability of a company by influencing their entire value 

chain [101]: Poor maintenance results in higher deterioration, more breakdowns, and 

reduced reliability. Breakdowns delay production, decrease production capacity, and 

raise overall uncertainty of the production process. Poorly serviced machines are prone 

to making more mistakes, reducing product quality and increasing rejection rate. On the 

other hand, a well-implemented maintenance system can affect the whole process, 

increasing quality and reliability while minimizing costs for spare parts and fluids [100]. 

Many scientists have analysed the impact of maintenance on the production systems. Al-

Najjar and Alsyouf [100] developed a model to identify, monitor and improve the impact 

of vibration-based maintenance. When the model was tested in a Swedish paper mill, it 

reduced maintenance costs over 25% (-0.353 Mio USD). Furthermore, potential profits 

due to elimination of unscheduled downtime were estimated at around 3 Mio USD. Carter 

[102] examined the possible gains through maintenance systems of high-capacity coal 

shovels. Since shovels are becoming bigger and more efficient any downtime has an 

increased effect on production outcome. Therefore, minimizing machine breakdowns has 

a significant impact on overall productivity. 

The literature distinguishes breakdown maintenance, time based preventive maintenance, 

and predictive maintenance as the three main types of maintenance [3, 103, 104]. As 

explained below, their main difference lies in the method used to determine maintenance 

needs. 
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4.1.1 Breakdown Maintenance 

Breakdown maintenance is the simplest and oldest type of maintenance. As illustrated in 

Figure 19, in breakdown maintenance a machine is repaired after a failure occurs.  

 
Figure 19: Process of Breakdown Maintenance. 

The orange line indicates the time a broken component (red) is replaced (blue). 

Breakdown maintenance is very efficient, since each component operates its entire 

lifespan (from instalment until breakdown). However, breakdown maintenance also 

produces the most amounts of failures out of all maintenance types, since no proactive 

actions are taken to prevent them. It also takes some time between discovering and fixing 

a failure. Therefore, sudden breakdowns can lead to very expensive delays throughout the 

production chain [104]. 

4.1.2 Time Based Preventive Maintenance 

Time based preventive Maintenance is based on the assumption that similar machines 

deteriorate in comparable fashion [105]. To prevent failures, machines are periodically 

serviced, regardless of their current health as shown in Figure 20: . 

 
Figure 20: Process of Time Based Preventive Maintenance. 

The orange line indicates the periodical service of the machine; the red X shows the 

remaining possibility of unscheduled services due to failures. Time and substance of the 
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periodical services are based on failure statistics. These statistics can be derived from 

predecessor models, machine tests or experience. Preventive maintenance can prolong 

the remaining useful life of a machine by targeting vulnerable components directly. It also 

lowers the risk of unplanned failures and production breaks since maintenance can be 

scheduled during times of lower capacity utilization [105] 

4.1.3 Predictive Maintenance 

Predictive maintenance, also called condition-based maintenance, is the newest 

maintenance type. Building up upon the approach of time based preventive maintenance 

predictive maintenance follows the goal of exchanging components before they fail. In 

contrast to preventive maintenance, predictive maintenance does not only rely on 

average-life statistics but also considers the current condition of a machine. Specific 

environmental effects are part of the calculation at which time a machine should be 

serviced. This approach leads to increased efficiency for maintenance tasks. While 

preventive maintenance may exchange parts to soon, predictive maintenance ideally 

intervenes just before a component will fail. Monitoring the condition of a machine also 

enables catching premature failure due to higher wear and tear.  

  
Figure 21: Process of Predictive Maintenance. 

Figure 21 depicts the general process of a predictive maintenance system. Machines 

measure their current condition and report the data to a prediction system. Depending on 

an analysis of incoming measurements, often supported by historical data, the system 

makes predictions on possible machine failures. These predictions are then interpreted 

and may induce machine service [105]. 

A predictive maintenance system consists of three main steps. The first step is acquiring 

data to obtain information relevant to the systems condition. In the second step this data 
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is processed for better understanding and interpretation. Finally, efficient maintenance 

policies are recommended during the last step of maintenance decision making [104] (see 

Figure 22). 

 
Figure 22: Three steps of predictive maintenance. 

The subsequent chapters analyse these three steps in detail and introduce different 

techniques and approaches.  

4.2 Data Acquisition 

The foundation of every predictive maintenance system is information about the current 

condition of a machine. This information is the basis for future predictions resulting in 

maintenance decisions. Therefore, collection and storage of information is considered as 

first step of a predictive maintenance system. Gathered data can be separated into 

condition monitoring data and event data [104]. 

4.2.1 Condition Monitoring Data 

Condition monitoring data consists of all measurements related to the health of a machine 

[104]. In general, sensors inside or next to a machine collect measurements automatically. 

Measurements are either periodically or continuously. Modern sensors allow for a 

multitude of available data sources. The most common sources include vibration data, 

acoustic data, oil analysis, temperature, electrical measurements, pressure, moisture, 

humidity, weather, or environment data [3, 104, 105].  

Depending on the sensor, data is recorded in different data types: The simplest type is a 

single value, for example, determining the oil pressure within a machine. Another data 

type is a wave, which records continuous data such as sound or vibration. The last 

possible type is multidimensional data, where one measurement consists of multiple 

values. The most common multidimensional data type is an image [104]. 

Vibration Monitoring 

Vibration monitoring refers to measuring the vibration of machines with non-destructive 

sensors and analysing equipment [105]. Vibration data is used to detect wear, imbalance, 

misalignment, loosened assemblies or turbulence on machines with rotational or 
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reciprocating parts [106]. Rotational and reciprocating parts produce significant 

frequencies on various amplitudes. Deviations can be used as indicators on their condition 

[107]. Rotational and reciprocating parts are integrated in most machines used in 

manufacturing plants. Therefore, and due to the fact that vibration monitoring allows the 

detection of a multitude of different problems, it is the widest used technique in predictive 

maintenance [108]. Vibration sensors are able to produce both continuous data and 

periodical measurements. Analysis of vibration data is especially well suited for detecting 

failures in the early stage of a machine, right after its installation [100].  

Sound or Acoustic Monitoring 

Another way of monitoring the condition of a machine is analysing its sound emissions. 

This technique has a strong relationship with vibration monitoring and can be used in 

similar environments [105]. Goti [109] implemented a predictive maintenance system 

based on data collected by electronic stethoscopes in a Spanish manufacturing plant. His 

results indicate that sound monitoring can be a cost efficient alternative to vibration 

monitoring. However, it is often complicated to isolate the sound of single machines, 

especially in environments where multiple machines are working close to each other. 

Oil Analysis and Lubricant Monitoring 

Lubricants like oil are used to decrease effects of wear, friction, and heat generation of 

moving parts. Leaks, broken off fragments and oxidation can lead to contamination 

resulting in reduced effectiveness of the lubricants or even harming the machine [107]. 

Oil analysis and lubricant monitoring serve two purposes [105]. At first, it provides 

information about the current state of the fluid to analyse if it is suitable for further use, 

or if it needs to be exchanged. Second, it serves as an indicator for wear conditions of 

internal oil-wetted components. The use and viability of fluid monitoring for predictive 

maintenance has been analysed in some scientific papers. Gonzales et al. [110] for 

example implemented a predictive maintenance system for cogeneration engines based 

on the analysis of circulating fluids resulting in a working system able to make suggestions 

for component replacements. Lukas and Anderson [111] utilized lubricant analysis for 

condition monitoring of gas turbines. And Kalligeros [112] examined the possibility of 

lubricant analysis to determine maintenance needs of hydraulic lifts. 
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Temperature Monitoring 

Temperature can be measured either by temperature sensors or infrared emissions. 

Deviations of temperature are signs of pending problems [107]. Excessive heat for 

example can indicate too much friction, problems with heat dissipation or lubrication 

issues. Temperature monitoring is often used on electric and electronic components to 

control power flow [105]. Especially infrared sensors are highly influenced by their 

environment. Changing seasons, open windows or the installation of a machine nearby 

can result in temperature fluctuations. The system has to account for these environmental 

effects and include them in the calculations. 

Electrical Monitoring 

There are two main ways to monitor electrical signal. First, it can be measured how much 

electricity a machine uses. Second, changes in equipment properties such as resistance, 

conductivity, dielectric strength, and potential can be observed [105]. Variations in either 

property indicates broken parts, excessive heat or shortages. 

4.2.2 Event Data 

In contrast to conditional monitoring data, event data is neither measured continuously 

nor periodically, but event based. Event data is created whenever a specific incident 

occurs. Event data often includes incidents such as installation, errors, breakdowns, 

repairs, or component changes. Although many events must be recorded manually, 

modern machines allow for at least partial automation. Error logs for instance allow an 

automated registration of errors. Although often receiving less attention, event data is as 

important as condition monitoring data for predictive maintenance systems since they 

are good indicators of future failures (i.e. frequent small errors can indicate a bigger 

error) [104].  

4.3 Data Processing 

Data processing is the second step of a predictive maintenance system. It describes 

handling and analysing the data collected during data acquisition [104]. Raw data often 

contains errors or missing values. These lead to reduced data quality. Therefore, data is 

often processed first, cleaning out poor quality data and increasing its analysability.  
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4.3.1 Data Cleaning 

Data quality is the fitness of data in regards to its purpose [41]. Data quality is critical. 

Often referred as “garbage in – garbage out” [7, 104, 113], analysis performed on poor 

quality data can lead to misleading or wrong conclusions. Poor data quality can be caused 

by different factors: Sensors may malfunction or miss a measurement, data transmission 

can fail due to network errors, or humans enter faulty inputs. Before analysing data it is 

therefore important to clean “dirty data” [104]. Data cleaning is the process of identifying 

and possibly fixing data errors [114]. There is not one single method to handle data errors. 

The subsequent paragraphs give an overview to the most popular techniques. Since data 

cleansing has become a growing research area with an increasing amount of 

contributions, a more in-depth analysis is beyond the scope of this thesis. 

Sensor Failures 

With often hundreds of machines under surveillance, sensor failure is a common issue in 

the field of predictive maintenance. There are usually four types of sensor failures: bias, 

precision degradation, complete failure, and drift [115]. Biased failures describe errors 

due to measurements that are off by a specific amount, for example, a light sensor that 

catches only 80% of light due to dust particles on its lens. Precision degradation outlines 

the fact that many sensors loose precision over time due to wear and tear. Complete 

failure implies a sensor malfunction and drift errors arise when sensor measurements 

drift in one direction over time. Various strategies have been introduced to handle sensor 

failures. For instance, Xu and Kwan [115] approach the issue by building a residual model 

for a given system based on input-output measurement data. Future sensor 

measurements are tested against that model to detect failures. Koushanfar et al. [116] 

developed a cross-validation based technique for detection of sensor faults. They detect 

errors by analysing sensor data for inconsistent readings.  

Missing Data 

Missing data describes incomplete data rows. Data analysis processes are seldom able to 

handle missing values. Therefore, they must be dealt with before further analysis. There 

are three main approaches of handling missing data [117]. One strategy is to discard all 

data items containing missing values. Thus, only healthy data is considered for analysis. 

If, however, many items have missing values this approach may result in discarding most 
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of the data. The second strategy is to substitute a missing value with the mean value of the 

data item (i.e. substituting missing information about the age of a machine with the mean 

age of all machines). This strategy implies a normal distribution of the data. The third 

strategy is to estimate the missing value based on other existing values (i.e. estimating the 

age of a machine based on its serial number). Statistical estimation techniques such as 

regression are often utilized for calculating missing values. 

Even if one of the strategies is applied, missing data can still be a problem. Each strategy 

can introduce bias into the analysis, resulting in misleading or wrong conclusions [117, 

118]. 

4.3.2 Data Analysis 

Data analysis describes techniques to analyse the data in order to gain insights and deeper 

understanding. Depending on the specific data type, different analyses are available. As 

mentioned above, the three data types are value, waveform and multidimensional data 

[104]. 

Analysing Value Data 

Value data is the simplest form, consisting of at least one item. To get a better 

understanding of a single data item basic statistical analyses can be applied. This includes 

calculating features like mean, standard deviation, variance, and min-max values. Another 

analysis technique is visualizing the data. Visualization allows for a comprehensible quick 

look at data to get a feeling for the overall value distribution, to detect outliers and trends, 

and to discover relationships [104]. 

The complexity of analysing value data increases with the number of variables. Beyond 

examining every variable for itself, correlations between variables can be analysed. One 

of the most popular techniques is the regression analysis, where one dependent variable 

is defined as a function of multiple independent variables. As with single variable data, 

data containing multiple variables can be visualized (i.e. a graph visualizing the 

development of variables over time). A modern approach for analysing multi dimensional 

data is utilizing unsupervised machine learning algorithms [104]. Machine learning 

describes a class of algorithms that is able to make predictions based on existing data. 

They “learn” data correlations from a set of input data. Generally, machine learning is 

divided into supervised and unsupervised learning [119]: Supervised learning techniques 
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are used to make predictions, where all possible outcomes are known up front. A 

supervised learning algorithm is first trained on a data set, where possible outcomes are 

labelled. After training, the algorithm, it is able to make predictions on unlabelled data. 

For instance, a supervised machine learning algorithm is trained on multiple images 

showing cats and dogs. Afterwards the trained algorithm is able to detect whether a new 

image shows a cat or a dog but unable to identify other animals like bunnies because it 

has not yet learned them. Unsupervised learning algorithms do not have to be trained. 

They take in raw data and draw conclusions based on correlations they find. For instance, 

an unsupervised learning algorithm can find images showing similar content. 

Unsupervised machine learning algorithms are therefore best suited for data exploration 

[119]. 

Large amount of variables leads to high complexity in further analysis. Especially in 

prediction models, too many variables result in long execution times and can even 

negatively affect the accuracy of the outcomes [120, 121]. In order to reduce complexity, 

dimensional reduction techniques are utilized. The basic idea is to remove variables with 

no or little descriptive benefit. The simplest approach is leaving out data columns with a 

large amount of missing values since they do not convey a high amount of information. 

Similarly, variables with a very small variance have limited impact. Another way is to 

analyse correlations between variables. If at least two of them have high correlation and 

follow the same trends, they likely carry similar information and can be reduced to only 

one. In addition to these simple techniques, more sophisticated methods are available. 

Principal component analysis (PCA) is the most popular method for dimensional 

reduction [121, 122]. PCA transforms the data into in an equal or smaller amount of 

uncorrelated data. It uses the most expressive features to approximate the data [121]. 

Analysing Waveform Data 

Many data such as vibration analysis or acoustic data are recorded as waves. Waves 

convey a lot of information, but their analysis is complex. Wave analysis can be split into 

three main categories: time domain analysis, frequency domain analysis and time 

frequency analysis [104]. 

Time domain analysis applies statistical methods directly to the wave itself. It analyses 

changes to the wave over time. Typical features are mean, peak, peak-to-peak interval, 

standard deviation, crest factor, skewness and kurtosis [104].  



 

40 

Frequency-domain analysis is not based on time but on frequency. Instead of analysing 

changes to the signal over time, frequency-domain analysis concentrates on how much of 

the frequency lies in between specific frequency bands [104]. 

Time-frequency analysis combines the two approaches by investigating waves both in the 

time and frequency domain. Waves are represented as two-dimensional functions of time 

and frequency [104]. 

Figure 23 illustrates the time and frequency dimension of a wave as well as their 

relationship. The conversion between the two is done by Fourier transformation. As 

displayed below, the Fourier transformation decomposes a given wave, which was 

measured over time, into separate waves of consistent frequency [104]. 

 
Figure 23: Illustration of the relationship between time and frequency dimensions of a wave as established by the 
Fourier Transformation (based on 38). 

Figure 23 illustrates the time dimension as orange line, which displays the changes to the 

wave over time. The blue bars in the frequency dimension show the various frequencies 

the wave is composed of. 

Analysing Multidimensional Data 

Multidimensional data like images are complex to analyse. Sometimes raw image data 

provides enough information to identify patterns. If this is not the case, image processing 

techniques have to be applied to extract useful information [104] . 

Image processing techniques have found their way into the manufacturing industry and 

have proven to be an excellent data source for data analysis and decision making systems. 

Oikawa et al. [123] designed a system based on image and sound data to detect oil and 

steam leaks as well as fire and smoke in the vicinity for a thermal power plant. Demant et 
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al. [124] show how image processing can be used to implement a visual quality control 

system in a manufacturing plan. Connolly [125] introduces many more application areas 

for infrared images in the manufacturing industry like identifying heat leaks and product 

defects.  

4.4 Maintenance Decision Support 

After collecting and analysing data, the final step of a predictive maintenance system is to 

decide whether a machine has to be serviced or not. The decision is highly dependent on 

the previous steps. Independent of the chosen method, analysis can only be meaningful 

when performed on significant quality data. Maintenance decision making techniques can 

be separated into two categories: diagnostics and prognostics [104]. Fault diagnostics 

focuses on the detection, isolation, and identification of faults. Prognostics builds upon 

diagnostics and tries to predict failures before they occur [104].  

4.4.1 Failure Diagnostics 

Machine diagnostics is the process of analysing data to diagnose the state of a machine. 

Its goal is to recognize if a failure is currently present. One of the main tasks is to identify 

patterns indicating failures. These patterns can then be used to detect failures inside of a 

machine without manual inspection. Analysing faults and investigating their causes is 

often done by experts of the respective fields. This requires qualified personnel and 

results in time and monetary costs. To speed up the process and to make it universally 

applicable, automated diagnostic approaches have been developed. Diagnostic techniques 

can be generally categorized into three types: statistical, artificial intelligence and model 

based approaches [126].   

Statistical Approaches for Machine Diagnostics 

Statistical approaches utilize statistical methods to diagnose machine failures. They 

analyse and compare machine data to previous measurements to detect the current state 

of the machine. Common statistical methods include hypothesis tests, cluster analysis, and 

hidden Markov models. 

Hypothesis Test 

The problem of detecting a specific fault inside a machine can be described as a hypothesis 

test problem with the following hypothesis [104]: 



 

42 

H0: Fault x is present 

H1: Fault x is not present. 

In order to test the hypothesis, current measurements are compared to measurements 

taken during normal behaviour.  

Nyberg [127], for example, introduces a framework of structured hypothesis tests for 

automated fault diagnostics. He splits the diagnostic problem into multiple hypotheses 

following the above-mentioned design. After testing for each hypothesis, he combines the 

results logically to detect which failures are able to describe the current state.  

The key to hypothesis tests lies in careful definition of possible failure states as well as the 

presence of sufficient data measured during them. The initial development of the 

statistical model therefore requires expert knowledge and has to be thoroughly tested 

against reality [127]. 

Cluster Analysis 

Cluster analysis is another statistical method to detect machine failures. The basic idea is 

to group similar data points together into fault categories. New measurements are then 

compared to these groups and are put into the ones they are most similar to [128]. 

Consider Figure 24 as an illustrated example. The first graph (left) plots two-dimensional 

data consisting of a x- and y-value. Green points indicate measurements taken during 

normal working time of the machine, red points indicate measurements during failure 

occurrences. A clustering analysis then groups similar data together into two groups: the 

failure and non-failure group (middle). To diagnose the current state of the machine, the 

new data point (orange) is analysed and compared to both groups (right): The new orange 

data point is most similar to the failure group. Hence the current state of the machine is 

diagnosed as failure. 

 
Figure 24: Example of failure identification by cluster analysis. 
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There are multiple ways to define groups. A common technique is to cluster points 

together, which have the smallest distance to each other. There are however many types 

of distances that can be utilized. Examples include Euclidean distance, Mahalanobis 

distance, Kullback–Leibler distance and Bayesian distance [104].  

Hidden Markov Model 

Named after the Russian mathematician Andrey Markov, the Markov process is 

mathematical model to represent a stochastic system. The system consists of states and 

transitions between these states. The Markov model predicts the next state of the system. 

The future state is only dependent on the present one. Past states and transitions are not 

considered [126]. In a hidden Markov model some, or all states are not directly, but 

indirectly observable. The states are therefore hidden from the observer [126]. 

Figure 25 illustrates an example for a hidden Markov model of a machine. The machine 

either runs normal (Fault-free) or experiences one of two possible failures (Failure 1 or 

Failure 2).  The hidden Markov Model below models these three states of the machine. 

Every state can transition into each of the others as represented by the grey dotted 

arrows. The orange arrows show one possible sequence of states. Each transition has a 

probability p. The goal of the hidden Markov model is to estimate the most likely system 

sequence based on the current state at the present time Tk. 

 
Figure 25: Illustration of a hidden Markov model consisting of three hidden states and four points in time. 

Many experiments have been performed to test the application of hidden Markov models 

in the field of predictive maintenance. Ying et al. [129] introduce a hidden Markov based 

algorithm for fault diagnosis in systems with partial and imperfect tests. They model 

failures as hidden states and calculate the transition probabilities by the well-known 

Baum–Welch algorithm [130]. Tai et al. [131] explore the application of a hidden Markov 

model to detect machine failures in a production environment based on the quality of the 

manufactured products. Li et al. [132] show that a hidden Markov based fault diagnostic 

model can effectively predict failures during the speed-up and speed-down process of 
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large rotating machinery (i.e. turbines in a power plant) based on vibration data. And Wu 

et al. [133] propose a real-time condition monitoring system based on acoustic sensors 

and a hidden semi-Markov model, yielding positive results in the detection of common 

machine failures. 

Artificial Intelligence Approaches for Machine Diagnostics 

Artificial intelligence describes a group of techniques that try to simulate intelligent 

behaviour. In the field of failure diagnostics, artificial neural networks, expert systems, 

and fuzzy logic systems are the most popular methods. 

Artificial Neural Networks 

Artificial neural networks have their origins in studies of the human brain [134]. They try 

to mimic the activities of the brain, where millions of interconnected neurons process 

information in parallel. The idea of neural networks for processing information was born 

in the middle of the 20th century. The first model was developed in 1943 by McCulloch 

and Pitts [135]. In 1954 Minsky [134] introduced the first working prototype Snark, 

consisting of 300 vacuum tubes and 40 variable resistors. It could be trained to run a 

maze. Although the research on artificial neural networks continued on, it really gained 

momentum in the 1980s with the rise of modern computers. 

 
Figure 26: Structure of an artificial neural network with one input layer, two hidden layers and one output layer. 

An artificial neural network transforms multiple inputs into multiple outputs. It utilizes 

interconnected nodes as processing units. Figure 26 displays the structure of an arbitrary 

artificial neural network. It consists of three main parts: the input layer, the output layer, 

and one or more hidden layers in between. Each layer consists of multiple nodes. Each 
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node is connected to all nodes of the previous and the next layer. Each connection has a 

weight assigned to it. The weight represents how strong nodes are connected and can be 

a positive as well as a negative value. 

Each node has a value. The value is calculated as the sum of all nodes of the previous layer 

multiplied by the weight of the connection to it. This calculation is done for each layer. 

The result is given by the node in the output layer with the highest value. The performance 

of the algorithm highly depends on set weights of the connections. They are usually set 

during a learning phase, in which the algorithm is fed with training data. The training data 

consists of multiple data items that are already labelled with the correct outcome. 

The possible application of artificial neural networks to the issue of failure diagnostic is 

explored in multiple occasions. He and Li [136] use ultrasound data and an artificial 

neural network to successfully diagnose the condition of grinding machines. Verma et al. 

[137] introduce a system detecting faults of an air compressor based on acoustic data. 

Soliman et al. [138] utilize an artificial neural network to estimate current capacity of DC-

link capacitors. Their input data includes in-/output current/voltage as well as loading 

power and DC-link voltage. Their results indicate that their model was able to detect even 

very small changes of capacity. 

While artificial neural networks can be very accurate, Gowid et al. [139] point out that 

they bear high computational as well as development costs. Gowid et al. [139] compare 

the application of neural network with a fast Fourier transformation based segmentation 

algorithm to condition monitoring of centrifugal equipment.  

Expert Systems 

Instead of learning from historic data, expert systems use domain expert knowledge for 

problem solving. Inference engines are used to transform inputs into conclusions. In the 

field of machine failure, the most commonly used reasoning techniques are rule-based 

reasoning, case-based reasoning, and model-based reasoning. 

In general an expert system is composed of a man-machine interface, an interpreter, a 

reasoning machine, a knowledge acquisition module and a knowledge base [140]. Figure 

27 display its architecture and interaction.  
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Figure 27: General architecture of an expert system. 

During development of the system, domain experts fill the knowledgebase through the 

knowledge acquisition module. Depending on the reasoning method, this can be in form 

of rules, cases or an underlying model. New input by users is processed by the reasoning 

machine, which applies rules extracted from the existing knowledge in the knowledge 

base. The result is presented to the user through the interpreter, explaining all reason 

leading to the conclusion [140]. 

The feasibility of expert systems in the field of machine diagnostics is examined multiple 

times. Deng et al. [140] present a rule-based expert system to monitor the condition of 

wind turbines. In addition to identifying the state of the machine, the expert system 

advises the user on how to restore functionality. Gao et al. [141] developed an intelligent 

fault diagnostic system for gearboxes of rolling mills in the steel industry. Their hybrid 

reasoning machine uses a combination of rules and cases to generate a fault diagnostic 

report. Wen et al. [142] apply case-based reasoning to vehicle fault diagnostic. Their 

system is able to find root causes of vehicle faults. Their experiments with real data show 

its accuracy and effectiveness. Stanek et al. [143] use a combination of model and case 

based reasoning to diagnose high-voltage switching devices. Their model simulates the 

behaviour of the devices based on the input data. The case based reasoner complements 

the results of the model to get the final results. 

Fuzzy Logic Systems 

First mentioned by Zadeh in 1965 [144], the main goal behind fuzzy logic is to describe a 

system that is capable of dealing with classes that do not have precise defined criteria. 

Traditional logic knows only two conditions: true or false. In the real world we often 

encounter situations where this binary classification leads to problems. Fuzzy logic does 

not limit itself to true and false but utilizes a sliding scale between 0 and 1. 
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Consider the classical example of water temperature. In a traditional logic system the 

water has only two states: hot and cold [145]. At very high or low temperatures the 

classification into either one of these states is simple. The problem arises when defining 

the transition point at which the state changes from cold to hot. The question is, if there 

is really one point where all higher temperatures can be considered as hot and all lower 

ones can be considered as cold. Fuzzy logic helps to define the grey area between hot and 

cold. Instead of having two absolute values, a value between one and zero is assigned to 

each state. Figure 28 shows a possible temperature function in fuzzy logic. In this example 

the three states cold, warm and hot are possible. Each state is described by a membership 

function. The membership function defines the value at a specific temperature. For 

example, in point P, the membership functions of both the cold and the warm state assign 

a value of 0.5 each.  

 
Figure 28: Fuzzy logic system modelling temperature. 

Fuzzy logic can be utilized to diagnose machine faults as well. Instead of cold, warm and 

hot, measurements are classified into groups like low, normal, and high. Rules are then 

applied on these outcomes to reach conclusions. Fuzzy logic is also often coupled with 

inference engine. Mechefske [145] analyses the application of fuzzy logic for fault 

diagnosis based on vibration data. He experiments with different shapes of membership 

functions, namely linear, triangular, S-, and π-curve, with the last one yielding the best 

performance. Noreesuwan and Suksawat [146] use fuzzy logic and sound analysis to 

monitor the health of groove ball bearings. They present nine fuzzy rules to accurately 

determine the condition of the bearings. Hichem et al. [147] propose a system for 

detecting stator windings faults in induction machines. They combine fuzzy logic with an 

inference engine consisting of 14 rules to determine one of four possible machine states. 

The challenge of developing an effective fuzzy logic system is defining the membership 

function as well as the rules applied to measurements. They can be either set manually or 
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calculated analysing historic data. Especially manual configuration bears the risk of 

introducing bias into the system. 

Model Based Approaches for Machine Diagnostics 

Model based techniques utilize physical and explicit mathematical models of the machine 

to diagnose their current state [148]. The model simulates the behaviour of the physical 

machine and is used to predict its future condition. Figure 29 illustrates the workflow of 

a model based approach for failure diagnostics. It displays the physical, real system as 

well as the mathematical model of this system. Both, the system and the model are fed 

with input data (i.e. how fast a rotor should spin). The model simulates how the real 

system should behave under perfect conditions. Sensors monitor the real system and 

measure how the system actually behaves. The simulated data and the actual sensor data 

are then compared to find discrepancies. Analysing these discrepancies can lead to the 

detection of failures within the real system.  

 
Figure 29: Workflow of a model based approach for failure diagnostics. 

The mathematical model must be very precise to simulate the real system accurately. 

Developing the model is time-consuming and requires expert knowledge. Furthermore a 

model is only applicable to the type of machine it was designed for [148]. However, once 

constructed, they are very accurate in simulating the correct behaviour [148]. The 

complexity of the model increases with the number of its components. Most research 

available targets single components rather than entire machines. For instance, Bartelmus 

[149] presents a mathematical model for a one-stage and two-stage gearbox. The gearbox 

is simulated on a computer and compared to real-life sensor data to infer the current 

condition of the gearbox. 

4.4.2 Failure Prognostics 

While diagnostics focus on assessing the current condition of a machine, prognostics aim 

at predicting the machine’s future condition. As illustrated in Figure 30, there are two 
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main prediction types [104]: Predicting the remaining useful life (RUL) of a machine and 

predicting component failures.  

 
Figure 30: Prediction of RUL vs prediction of component failure. 

Predicting the RUL of a machine is calculating how much time is left until a failure occurs. 

The problem can be formulated as follows: “How much time will pass until machine X will 

fail?” The result of this prediction is a number representing the time until failure. 

Predicting component failure calculates if a specific component will fail in a fixed time 

period, resulting in the problem statement “Will component Y of machine X fail in the next 

24 hours?”. Depending on the technique, this prediction can have two different outcomes: 

Either the result is a simple binary yes or no, or the result is a percentage representing 

the probability of component failure.  

In general, both prediction types utilize similar techniques to diagnostics, which were 

already presented in chapter 4.4.1.  

Predicting Remaining Useful Life 

The RUL represents the time until a machine will fail. Calculating the RUL enables 

servicing the machine just in time before it would break down. RUL can be predicted on a 

component, machine, or system level (i.e. RUL of a bearing, engine, or car). The RUL can 

be represented in two main ways. It can be indicated in a time unit, for example hours 

until failure. This time unit is sometimes accompanied by a percentage indicating the 

certainty of the prediction (i.e. the component has a RUL of 50h with a certainty of 85%). 

Or the RUL can be presented in form of degradation, for example the component has been 

worn down to 5o%. Similar to diagnostics, RUL prediction falls into the three categories 

of statistical approaches, artificial intelligence approaches, and model-based approaches. 
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Statistical Approaches for Predicting RUL 

Statistical approaches to RUL prognostics utilize statistical methods to predict the time 

until failure of a machine. They compare current data of a machine to historic 

measurements to calculate the RUL. Typical statistical methods include the already 

discussed techniques of hypothesis tests and hidden Markov models. Besides them, 

regression is one of the main methods to determine the RUL.  

Goode et al. [150] use a traditional statistic approach to solve the problem of determining 

the RUL. They utilize statistical process control to separate the whole machine life into 

the two intervals I-P (Installation - Potential failure) and P-F (Potential failure - Functional 

failure). While the machine is running correctly in the I-P interval, it runs with a problem 

during P-F. The current interval of a machine is predicted using a Weibull distribution and 

RUL is estimated. Another example is presented by Li et al. [151], who predict the RUL of 

rolling bearings based on R/S Statistic and fractional Brownian motion. The fractional 

Brownian motion is a mathematical function representing a continuous series of data. It 

is a semi-random continuous stochastic process.  R/S Statistic is one of the oldest methods 

for estimating the Hurst-index, which can be used to describe the trend within a time 

series such as the fractional Brownian Motion [152]. The prognosis of Li et al. [151] is 

based on vibrational data and predicts the degradation status of rolling bearings. 

As mentioned before, the Markov model is based upon states and the transition between 

them. Each transition only depends on the current state of a machine. Markovian-based 

models can be used to estimate the time passed between the current and a future state, 

for example operating and broken [153]. The model can be further refined by adding 

multiple states (i.e. excellent, good, minor defects, and critical failure). The main limitation 

of Markov-based models is their central assumption of independence of past states. To 

estimate RUL, Markovian models only consider current values. Banjevic and Jardine [154], 

for example, estimates RUL of a transporters transmission based on a Markov failure time 

process. They calculate RUL as a function dependent on machine age and current 

condition data derived from oil analysis. 

Another method to estimate RUL is regression. Regression is a statistical process for 

estimating one (dependent) variable based on the values of one or more (independent) 

variables. Consider the following linear regression model. Linear regression is a special 

form of regression, where the relationship between the independent variable and the 

dependent variable is represented by a linear function. 
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y = β0 + β1x1 + β2x2 + β3x4 + β4x4 

In this function, the dependent variable y is represented as a function of the four 

independent variables x1-x4. β1- β4 are the unknown coefficients for the values of the 

independent variables and β0 is the unknown constant. The unknown coefficients β0 - β4 

are estimated by analysing historic data, where y and x are known. In the case of 

predictive maintenance, xi represents the current condition of a machine and y the RUL. 

Regression based methods are widely used in industry and academic research due to their 

simplicity [153]. However, this simplicity creates some problems: Regression assumes a 

monotonic degradation process, which cannot always be observed in real life [153]. 

Regression also cannot model temporal variability and uncertainty in the degradation 

process [155]. 

Caesarendra et al. [156], for example, utilize logistic regression (a special form of 

regression used to calculate the percentage if an event will occur or not) to calculate the 

degradation status of bearings based on vibration data. Yan et al. [157] also applied a 

logistic regression model to determine RUL of an elevator door motion system. Kehlif et 

al. [158] use a regression model to predict RUL of the Turbofan machine based on a data 

set provided by NASA.  

Artificial Intelligence Approaches for predicting RUL 

Most of the artificial intelligence approaches for predicting RUL are based upon the 

artificial neural network (see chapter 4.4.1). While the input data to the neural network 

is the same as in diagnostics (current condition data of a machine), the output differs. 

Instead of outputting the current health of the machine, the neural network is trained to 

predict RUL. For instance, Wang and Vachtsevanos [159] predict the fault propagation 

process using a artificial neural network and estimate RUL as the time left before the fault 

propagates to a certain level. Another example is provided by Asmai et al. [160]. In a first 

step they predict the failure probability using a logistic regression model. In a second step, 

the result of the logistic regression is fed into an artificial neural network, predicting RUL. 

While artificial neural networks can achieve good prediction results with only a few 

samples to train on [159, 161], they can take a long time to train due to a high amount of 

hidden layers and data points [162]. 
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Model Based Approaches for Predicting RUL 

Similar to model based approaches used for machine diagnostics (see chapter 4.4.1), 

model based approaches for failure prognostics build a mathematical model of a physical 

system. They predict RUL by simulating future behaviour on the theoretical model. Model 

based approaches require specific mechanistic and theoretical knowledge of the system 

of which the RUL is estimated. This results in long development periods and the need for 

experts. Models are also only applicable to one specific machine and cannot be easily 

applied to others. Ray and Tangirala [163], for example, developed a non-linear stochastic 

model to predict crack dynamics in order to estimate RUL. Li et al [164, 165] introduce a 

stochastic model to simulate defect propagation in bearings with the goal of calculating 

RUL. 

Predicting Component Failures 

Predicting component failures formulates the prediction problem differently than 

predicting RUL. Instead of estimating the average time until failure, a prediction is made 

whether a specific component will fail in a specified time horizon (i.e. 24h). The answer is 

a binary yes or no instead of a numerical time value. The binary result is sometimes 

accompanied by a percentage representing the certainty of the prediction. Predicting 

component failure is typical solved by classification machine learning algorithms. 

Classification algorithms identify to which class a certain set of values belong. In case of 

predictive maintenance, the classes are for example “will fail” or “will not fail”. The values 

for the prediction are given by current condition data of a machine. The following sections 

introduce the most prominent machine learning algorithms for classification problems: 

decision tree, decision forest, naïve Bayes, artificial neural networks, and support vector 

machines.  

Decision Tree and Decision Forest for Predicting Component Failure 

The basic idea of decision trees is to break up a complex decision into a union of several 

simpler decisions [166]. Instead of making one decision, several small decisions are made 

to come to a conclusion. The structure of the possible decisions resembles a tree. 
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Figure 31: Example of a decision tree for predicting component failures. 

Figure 31 illustrates an exemplary decision tree from the domain of predictive 

maintenance. It consists of one root node (orange), internal nodes (blue), and leaf nodes 

(green) holding the final prediction [167]. At each node a decision is made revealing the 

path to the next node. Consider a machine with four different sensors measuring pressure, 

voltage, heat, and vibration. The measurements of these sensors can indicate imminent 

component failure. Instead of considering all measurements at once, the decision tree 

splits the problem into multiple smaller decisions. Starting at the orange root node, at first 

only the pressure is considered. Depending on its value, a different path is chosen for the 

next node (in this case <100, =100, >100). At the subsequent node the next variable is 

considered (voltage, heat, or vibration) and leads to the final green leaf node holding the 

class prediction. 

In machine learning a data set is used to create such a decision tree. The tree is recursively 

partitioned until all data items of the same class belong to the same label [168]. This 

process is called the training of the decision tree. Training is a computationally very 

expensive task, since the data set is traversed multiple times [167]. However, after 

training, the decision tree model is computational very efficient since new data is only 

checked for a few attributes when traversing through the tree [166]. One of the biggest 

advantages of the decision tree is its transparency regarding decision making. Decision 

trees produce understandable results since all steps leading to the final decision are made 

due to transparent rules. 

The decision forest is an expansion of the decision tree. Instead of having only one 

decision tree, multiple trees are trained. The trees are uncorrelated and differ due to some 
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random variable considered during training. Figure 32 illustrates an example for a 

decision forest made from three different decision trees. In a first step, new data is 

classified by every single tree. Afterwards, in a second step, a majority vote is used to 

conclude the final classification. 

 
Figure 32: Example of a decision forest consisting of three decision trees. 

Decision trees and forests have been employed to predict machine failures multiple times. 

For instance, Sylvain et al. [169] use a decision tree to predict aircraft component 

replacements. Their goal is to predict whether a specific component should be replaced 

within a given time period or not. The input data was gathered from an Airbus A-320 and 

the experiment was conducted for 16 different components with positive results. 

Bonissone and Goebl [170] present a model combining a neural network and a decision 

tree to predict imminent failure of a paper web in a paper mill. The paper web transports 

the paper through the process with speeds up to 60 mph. Due to high stress, the web 

breaks on average once per day, resulting in standstill of the entire machine for up to 90 

minutes, leading to revenue losses of several million dollars per year. The model proposed 

by Bonissone and Goebl predictis imminent failures to enable personnel to take 

preventive actions. Guang et al. [171] propose a decision forest model to predict failures 

in a cloud computing system. They collect 83 runtime performance metrics from two 

clusters containing 166 servers each. The data is then used to train a decision forest to 

predict component failures within the cluster.  

Support Vector Machines for Predicting Component Failure 

First proposed for by Cortes and Vapnik [172], support vector machines (SVM) are a tool 

for classification in data analysis. Figure 33 shows the basic concept of SVM with two-

dimensional data. In this figure, data points are plotted against a field. They are either a 
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member of class working (green) or failure (red). The SVM then calculates a boundary 

between them (blue). The goal of the boundary is to separate both classes in such a fashion 

that it has the maximum distance to points of both classes, placing it right in the middle of 

them [172]. To classify a new data point (orange), it is plotted on the same plain. 

Depending on which side of the boundary the new data point resides, a classification is 

made. In the illustrated case, the new orange data point would be classified as failure. 

 
Figure 33: A Support Vector Machine for classification of two classes. 

SVMs are able to achieve high accuracy on complex classification problems, but they are 

computational very expensive to train with increased dimensionality of the data [173]. 

There have been some experiments to use SVM to predict machine failures. For instance, 

Susto et al. [173] utilize multiple SVMs to predict failures of an ion-inducing machine used 

in the semi-conductor industry. The machine is critical to the process and considered a 

bottleneck due to its high costs. The tool utilizes a tungsten filament, which has to be 

replaced frequently, disabling the machine for up to three hours and slowing down the 

entire production line. The model proposed by Susto et al. determines the optimal time 

for the replacement of the tungsten filament. 

Nearest Neighbour for Predicting Component Failure 

Nearest neighbour is a method to classify data by finding the most similar known data 

points. Figure 34 illustrates this technique. New data (orange) is compared to all other 

data points, whose class is already known (in this case red for class failure and green for 

class working). The new data is classified the same class as its nearest neighbour (in this 

example failure). 
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Figure 34: Nearest Neighbour algorithm for classification of two classes. 

By considering only the nearest neighbour, the method is not aware of outliers in the 

training data. Therefore, instead of finding only the nearest neighbour, multiple close 

neighbours are considered. This approach is generally called k-nearest neighbours. 

Nearest Neighbours is one of the simplest classification algorithms, requiring just the 

computation of distance between samples [173]. No explicit training of the model is 

necessary. However, this leads to expensive calculations each time a new data point is 

classified. Thus, it is not surprising that nearest neighbour approaches have not yet been 

heavily researched for the domain of failure classification. Verma and Kusiak [174] give 

an example by using a k-nearest neighbour approach to predict failures of generators and 

blades of wind turbines. They compare its performance to implementations using a 

decision tree, support vector machine, and genetic algorithm, resulting in k-nearest 

neighbour performing worse than any other algorithm. 

Naïve Bayes for Predicting Component Failure 

The Naïve Bayes classifier is a simple probabilistic classifier with strong (naïve) 

independence assumptions [175]. It classifies a set of variables based on already classified 

data. The classifier strongly assumes that all variables are independent of each other. 

Although this assumption is generally not realistic, the Naïve Bayes classifier can perform 

surprisingly well even when classifying data with highly dependent variables [176]. Using 

the Naïve Bayes Classifier, the probability of a class c given the variable x can be expressed 

as follows: 

𝑃(𝑐|𝑥) =  
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 

P(c|x): the probability of class c given the attribute x 

P(x|c): probability of variable x given the class c 

P(c): the probability of class c 
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P(x): probability of variable x 

With n variables X, the probability of class c is given by the product of the individual 

variables xi: 

𝑃(𝑐|𝑋) =  𝑃(𝑐|𝑥1)  ×  𝑃(𝑐|𝑥2)  ×  … ×  𝑃(𝑐|𝑥𝑛) 

Consider following example for clarification. A machine periodically measures pressure 

and heat. For simplification, the measurements are either high or low. Table 2 lists ten 

observations made of the machine. Each observation consists of the pressure and heat 

measurements as well as a binary yes/no, indicating if a failure was present at the time. 

Table 3 lists the frequencies of failures depending on the individual measurements. They 

are separated by variable. The table also lists the likelihood of failure given a specific 

measurement.  

Table 2: Observations of pressure and heat 
and corresponding state of the machine. 

Observations 

Pressure Heat Failure 
low high yes 
low low no 
high low no 
low low no 
high high yes 
low high yes 
low low yes 
low high no 
low low no 
high low yes 

 

Table 3: Tables of frequencies and likelihood of failures. 

Frequency Tables and Likelihood of Failure 

Pressure Failure No Failure Likelihood 
low 3 4 =3/10 
high 2 1 =2/10 
Sum 5 5  
 =5/10 =5/10  
    
Heat Failure No Failure Likelihood 

low 3 1 =3/10 
high 4 2 =4/10 
Sum 7 3  
 =7/10 =5/10  

 

 

Now, consider a new observation with high pressure and low heat. The question is 

whether the observation will likely result in failure or not. Using the formula above and 

the values calculated in Table 3, the probability of failure given the new observation is 

calculated as follows. At first, the probability of failure given the high pressure is 

calculated: 

𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑦𝑒𝑠|ℎ𝑖𝑔ℎ) =
𝑃(ℎ𝑖𝑔ℎ|𝑦𝑒𝑠)𝑃(𝑦𝑒𝑠)

𝑃(ℎ𝑖𝑔ℎ)
 

P(high|yes) = 2/5 = 0.4 
P(yes) = (5/10)*(7/10) = 0.35 
P(high): 5/10 = 0.5 

                                =
0.4 ∗  0.35

0.5
=  0.28  

Afterwards, the probability of failure given the low heat measurement is calculated: 

𝑃ℎ𝑒𝑎𝑡(𝑦𝑒𝑠|𝑙𝑜𝑤) =
𝑃(𝑙𝑜𝑤|𝑦𝑒𝑠)𝑃(𝑦𝑒𝑠)

𝑃(𝑙𝑜𝑤)
 

P(low|yes) = 3/7 = 0.43 
P(yes) = (5/10)*(7/10) = 0.35 
P(low): 3/10 = 0.3 
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                            =
0.43 ∗  0.35

0.3
=  0.5  

Multiplying both probabilities results in the overall probability for the observation of 

being in the class failure with 14%: 

𝑃𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚(𝑦𝑒𝑠|𝑋) =  𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑦𝑒𝑠|ℎ𝑖𝑔ℎ)  ×  𝑃ℎ𝑒𝑎𝑡(𝑦𝑒𝑠|𝑙𝑜𝑤) =  0.28 ×  0.5 = 0.14 

There is only a limited amount of research available utilizing a Naïve Bayes classifier for 

predicting machine failures. Di Maio et al. [177], for example, use a Naïve Bayes classifier 

to predict failures of bearings. They use data collected by vibration sensors and classify 

the data to find the most similar degradation process. 

Artificial Neural Networks for Predicting Component Failure 

The artificial neural network as portrayed in chapter 4.4.1 can also be used to predict 

component failures. Instead of training the neural network to predict the current state, 

the network is trained to predict future component failures. Therefore, the training data 

set is labelled with future component failures instead of current state. 

Bangalore and Tjernberg [178] use a neural network to predict failures of gearbox 

bearings from wind turbines. They collect the average temperature of the bearings every 

10 minutes and use a neural network to predict its future development.  Based on this 

prediction an assessment is made whether the bearing will fail or will continue to work. 

They tested their model with data from offshore wind turbines and were able to detect 

severe damages of gearbox bearings in advance.  
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5 Predictive Maintenance Benchmark (PMB) 

This chapter introduces the Predictive Maintenance Benchmark (PMB). The PMB is a tool 

to compare Big Data analytic ecosystems in the domain of predictive maintenance. It 

follows an end-to-end approach and tests an entire ecosystem rather than single Big Data 

analytic frameworks. 

Due to the broad employment of Big Data analytics across industries [179], it is important 

to compare Big Data analytic frameworks in context of their application area [12, 13]. 

Today’s end-to-end Big Data benchmarks focus on the domains of retail, e-commerce, 

search engines, or social networks [14, 15]. PMB expands the available benchmarking 

domains into the field of predictive maintenance. It is based on a predictive maintenance 

use case, in which a machine learning algorithm is used to predict future component 

failures. 

PMB is developed following the methodology of Han et al. [12]. As described in chapter 

1.4, the methodology separates the development of a benchmark into the five steps of 

planning, data generation, test generation, execution, and analysis and evaluation. This 

chapter covers the first three steps of the methodology, while execution and evaluation 

are completed in chapter 6. 

 

5.1 Planning of the PMB 

During planning, the benchmark object, application domain, and evaluation metrics are 

determined [12]. As mentioned before, the goal of PMB is to test an end-to-end process in 

the not yet covered domain of predictive maintenance. Therefore, the object of PMB is a 

Big Data analytic ecosystem and the application domain is predictive maintenance.  In 

accordance to the popular end-to-end Big Data benchmarks BigBench [14] and 

BigDataBench [180], as well as many other benchmarks [11], execution time is the main 

performance metric of PMB. 

The workloads of PMB are based on a predictive maintenance use case, which is described 

below in section 5.3. The use case consists of the three steps data acquisition, data 

processing, and maintenance decision making (see chapter 4.2-4.4). The data is collected 

from multiple sources, including periodic condition monitoring data (i.e. vibration data), 

event based data (i.e. occurrences of errors), and additional information (i.e. machine 
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age). The data is processed and combined to extract significant features for the prediction. 

Afterwards, a machine learning algorithm is used to make predictions on future machine 

failures based on the extracted features. The predictions are made following the 

classification approach described in chapter 4.4.2, where the algorithm is trained to 

predict whether a component will fail in a given time period. PMB defines workloads for 

training a new model as well as using an already trained model for new predictions. 

 

5.2 PMB Data Model 

The data model of a Big Data benchmark must be comparable to those of real live 

applications. Otherwise it cannot be considered representative and results are not useful 

for the process of implementing Big Data solutions [12]. Therefore, two main aspects have 

to be considered for the data model of PMB. First, the data model must be representative 

of predictive maintenance use cases. In particular this means the inclusion of various 

condition monitoring measurements as well as event text based data such as errors and 

maintenance information [104]. Second, the data model must represent Big Data and its 

main characteristics volume, variety and velocity.  

This section introduces the chosen data model and explains how it meets the above 

mentioned criteria. After presenting the components of the data model, the model is 

analysed in respect to the three dimensions of volume, variety, and velocity. 

5.2.1 Specifications of the PMB Data Model 

The basis for the data model is a data set [181] published by Microsoft39, which is part of 

the guide “Predictive Maintenance Modelling Guide” of their Big Data analytics platform 

Microsoft Azure40. The data set was created by monitoring 100 machines over the period 

of one year. Each hour four condition indicators were measured (volt, pressure, rotation, 

vibration). Furthermore, errors, failures, and services were logged. Each machine consists 

of five components which can break down. The data set is anonymised and does not 

specify which machines where monitored. Additionally, model, error types, and 

components are only available as generic names (i.e. error1, error2) to prevent 

conclusions about the machine itself. As illustrated in Figure 35 the data model consists 

                                                        
39 http://www.microsoft.com/ 
40 http://azure.microsoft.com/ 
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of the five parts telemetry data, machine metadata, error log, maintenance log, and 

machine failures. 

 
Figure 35: Data model of the PMB. 

The periodical telemetry data holds information about the condition of the machines and 

is recorded each hour. Furthermore, the data model consists of three event based data 

logs: the error log which automatically registers all minor errors a machine experiences, 

the maintenance log which keeps records of time and substance of regular services and is 

maintained by the service personnel, and the failure log which documents machine 

breakdowns. The last data set of the data model is the machine metadata, which holds 

additional information about the machine such as type and age.  

Telemetry Data 

The telemetry data set consists of condition data of 100 machines. Each hour, voltage, 

pressure, rotation, and vibration of the machine is measured. Each set of measurements 

is marked with a timestamp and the ID of the machine. Table 4 lists the information 

recorded in the telemetry data. Additionally, the range of the variables, their arithmetic 

mean μ, and the standard deviation σ are presented. 

Table 4: Telemetry data set of the PMB data model. 

Name Description Unit Range μ σ 

machineID ID of machine number 1-100  - 

datetime date and time of record date 1.1.– 31.12.2015  - 

volt voltage level of the machine volt 97 – 256 170.8 15.5 

pressure pressure inside the machine bar 51 - 186 100.9 11.0 

rotation rotation speed of the rotor  138 – 695 446.6 52.7 

vibration vibration indicator  15 - 77 40.4 5.4 

Figure 36 displays the distribution of the individual values in respect to the number of 

their measurements. The highest peak of the graph represents the mean value. The higher 

the value of the standard deviation, the flatter the distributions curve. Vibration data has 
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the smallest standard deviation and therefore shows the steepest graph while rotation 

displays the flattest curve due to its high standard deviation. 

 
Figure 36: Distribution of telemetry data. 

 

As an example, Figure 37 shows the development of telemetry data over one week. During 

this time three errors and one failure occurred as indicated by the orange (error) and red 

(failure) lines. Errors are small disturbances during runtime while failures occur when a 

component breaks down. The illustrations clearly show the ups and downs of vibration 

measurements during normal runtime as well as heavy drops just before or after errors 

and failures.  

 
Figure 37: Telemetry data over one week.  
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Machine Metadata 

The machine metadata stores additional information about machines such as model type 

and age. There are 100 machines of four different types and age between 0 and 20 years. 

The model types are anonymised and only available as generic names (modelX). Table 5 

lists the individual features. 

Table 5: Machine metadata of the PMB data model. 

Name Description Unit Range 

machineId ID of machine number 1-100 

model type of machine name Model1-Model4 

age age of machine year 1-20 

 

Figure 38 shows the model and age distribution of the machines. There are four different 

machine models available. More than 65% of all machines are either Model 3 or Model 4 

(Figure 38, left graph). The smallest group is Model 1 with a size of only 16%. Machines 

are between 0 and 20 years old. The average age is 11.3 years. 35% of all machines are 15 

years or older (right graph).  

 
Figure 38: Model and age distribution of machines. 
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Error Log 

Each time a minor error occurs the machine records it automatically. In contrast to fatal 

errors, minor errors do not result in failure. The machine is able to detect five different 

errors. The nature of these errors is not further specified in the data set. Each record is 

accompanied by a timestamp. The time is rounded to the closest hour. Table 6 lists the 

individual features recorded in the error log. 

Table 6: Error log data of the PMB data model. 

Name Description Unit Range 

machineId ID of machine number 1-100 

datetime date and time of record Date 1.1.– 31.12.2015 

errorID ID of error name Error1-Error5 

 

During the monitored year 3.919 errors have been recorded. As shown in the left bar 

graph of Figure 39, Error 1 and 2 are most common with over 50% of all recorded errors 

falling into these two categories. The least frequent error is Error 5 with only 9.1%. On 

average, a machine experiences 39 errors per year. Over half of all machines recorded 

between 35 and 45 errors (Figure 39, middle graph). No machine recorded less than 20 

errors and only one had more than 55. Errors seem to be independent of age (Figure 39, 

right graph). All four age groups experience approximately the same amount of average 

errors. 

 
Figure 39: Distribution of errors (left), number of errors per machine (middle), and errors per age of machine (right) 
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Maintenance Log 

The maintenance team services machines periodically. During these services the machine 

is inspected, and components are replaced if necessary. The service crew records the date 

and exchanged components in the maintenance log. The components are not further 

specified in the data set than by generic names (CompX). There are four different types of 

components. Table 7 displays the individual features, their data type and range. 

Table 7: Maintenance log data of the PMB data model. 

Name Description Unit Range 

machineID ID of machine number 1-100 

datetime date and time of record date 1.1 – 31.12.2015 

comp ID of changed component name Comp1-Comp4 

 

In total 3.268 services with component changes have been recorded in 2015. As shown in 

Figure 40, replacements are distributed evenly among all four components (left graph). 

On average, a machine experiences 33 component changes per year. Only 9 machines have 

more than 38 replacements and only 9 less than 28 (Figure 40, middle graph). The 

number of services is independent of age (Figure 40, right graph). All machine age groups 

experience approximately the same amount of component replacements. 

 
Figure 40: Distribution of exchanged components (left), number of services per machine (middle), and number of 
services per age of machine (right). 
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Failure Log 

Machine failures occur if a component breaks down. The affected component is replaced 

by the maintenance team. Each time a component is exchanged due to failure, it is 

recorded in the failure log. The failure log follows the same structure as the maintenance 

log and is also kept manually by the service personnel. Each record consists of the time of 

failure, the failed component, and the id of the machine. As before, the individual 

components are not further specified. The time is rounded to the closest hour. Table 8 

lists the individual features, their data type and range. 

Table 8: Failure log data of the PMB data model. 

Name Description Unit Range 

machineID ID of machine number 1-100 

datetime date and time of record date 1.1 – 31.12.2015 

failure ID of changed component name Comp1-Comp4 

 

Overall, there have been 761 failures during the entire year. The components vary in their 

susceptibility to failure. As shown in Figure 41, Component 1 and 2 experienced the most 

break downs, while Component 3 is least prone for failure (left graph). On average, 

machines experience 7.6 component failures per year. Most machines record 6-10 failures 

(Figure 41, middle graph). Only 2 % of all machines have not had any breakdowns. In 

general, older machines are more error-prone to failure than new ones (Figure 41, left 

graph). Over 60% of all failures occur on machines older than 10 years. Since machines 

are also more vulnerable right after commissioning, the slight increase of failures in young 

machines is expected. 

 
Figure 41: Distribution of component failures (left), number of failures per machine (middle), and number of failures 
per age of machine (right). 
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5.2.2 Volume, Velocity, and Variety of the PMB Data Model 

This section covers how the PMB data model addresses the Big Data key characteristics 

volume, velocity, and variety. 

Volume 

To address the dynamic volume characteristic of Big Data, the data model of a Big Data 

benchmark must be able to provide different data sizes and possibilities for future data 

expansion. Below, all possibilities for adjusting the volume are discussed. The volume of 

the PMB data model is determined by three main factors: 

• Number of monitored machines 

• Number of records per machine 

• Number of measured variables (i.e. voltage) 

The number of monitored machines influences all five data sets of the PMB data model. 

Altering the number of monitored machines therefore impacts the entire data model. The 

data sets have information of 100 machines, making one machine make up 1% of the data 

volume. Decreasing the number of machines is as simple as removing all records with a 

given machine id from all five data sets, enabling data sets between 1 and 100 machines. 

Increasing the number of monitored machines is achieved by duplicating existing 

machine data and assigning it new machine ids. By duplicating existing machines, the data 

size of the PMB data model can be increased indefinitely. Therefore, altering the number 

of monitored machine is a viable option to influence the data set size of the PMB data 

model. 

The number of records per machine is influenced by the length of observation as well as 

the interval between measurements. For the data sets of the PMB data model, the length 

of observation is one year. The observation period directly influences all five data sets and 

can be decreased by removing all data items collected after a given point in time. 

Increasing the observation time is done by duplicating data from one year to the next (i.e. 

January 2015 is duplicated to January 2016). However, increasing the observation period 

by duplicating data does not consider potential aging effects of the machines, making it 

suboptimal for data size adjustments. The measurement intervals are fixed at 1 hour. 

Shortening the intervals results in more measurements and extending the intervals leads 

to less measurements. Extending the intervals can be achieved by deleting data points 

within them. Shortening intervals however is not possible without additional 
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measurements. Thus, it is not feasible to adjust the data size by altering the measurement 

periods. 

The number of measured variables of the PMB data model are given by the data set. There 

is not enough information available for adding meaningful variables to the data set and 

removing a variable may take away too much information, leading to an unrealistic data 

model. Thus, changing the number of variables is not a viable option for altering the 

volume of the PMB data model. 

In summary, altering the number of monitored machines is the best method to adjust the 

volume of the data model. This method will be used to provide different data sizes for the 

PMB. 

Velocity 

The data model of Big Data benchmarks must be capable to simulate different speeds of 

data generation. In the context of the PMB, the velocity is given by the number of 

measurements entering the system in a time period (i.e. measurements per hour). In the 

PMB data model, data velocity is influenced by the number of monitored machines and 

the time interval between measurements. As discussed before, altering the measurement 

interval is not a viable option since it is not possible to shorten the intervals without 

additional information. Therefore, the velocity of the PMB data model is adjusted by 

altering the number of machines. 

Variety 

The data model combines periodic measurements (telemetry), event based data 

(maintenance, errors, failures) and long-term information (machine metadata), which are 

all typical for predictive maintenance [104]. All measurements are value type data and do 

not include other data types such has waves. There is also no unstructured or semi-

structured data in the data set. However, while unstructured or semi-structured data is 

common in many Big Data applications [38], it is seldom considered in predictive 

maintenance use cases [104]. 

The data model includes the most popular data types for predictive maintenance. 

Nevertheless, it does not cover all possibilities (i.e. waveform analytics). In future work, 

the PMB can be extended by adding more data types to the data model.  
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5.3 Workload Specification 

This section presents the workload of the benchmark. PMB is designed to represent 

common tasks within a predictive maintenance system. PMB is based on a predictive 

maintenance use case, where future machine failures are predicted using multiple data 

sources. The workload can be separated into the two phases of training and running the 

system.  

During the training phase, the system learns to predict future machine failures. More 

precise, a supervised machine learning algorithm learns to predict whether a specific 

component will fail during the next 24 hours. The machine learning algorithm is trained 

on data collected over one year, consisting of telemetry data, error logs, maintenance log, 

failure logs, and meta information. Before training, the different data sources are first 

combined and processed to extract important features. During training, the algorithm 

processes the data set to examine correlations between conditional data and failures. 

After completing the training, the precision of the algorithm is tested. Training an 

algorithm is generally done on big data sets. Therefore, this part of the PMB tests how Big 

Data analytic ecosystems perform when processing big data set at once. 

The running phase simulates normal operation of a predictive maintenance system. 

During the running phase, the trained algorithm is utilized to make predictions for new 

data input. After loading, the model is used to classify new information. Rather than 

making multiple predictions at once, multiple single predictions are made in a row. In 

contrast to the training phase, the running phases tests how a Big Data analytic ecosystem 

handles multiple small requests to predict machine failures. 

5.3.1 Phase 1: Training the Predictive Maintenance System 

In the training phase, the predictive maintenance system learns how to predict machine 

failures. As illustrated in Figure 42, this training process can be separated into the three 

main steps of preprocessing, training, and testing. During preprocessing, collected data is 

combined and important features are extracted from the data. After preprocessing, the 

created data set is split into a training and test set. The training set is used to train the 

machine learning algorithm into a trained model. The test set is then utilized to test the 

accuracy of this model. The individual steps are portrayed in detail below:  
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Figure 42: Phase 1 of PMB: Training the predictive maintenance system. 

 

Preprocessing the Data 

The preprocessing step covers all tasks to prepare raw incoming data for the training of 

the machine learning algorithm. Preprocessing can be separated into the three subtasks 

of ingesting data into the system, combining the individual data sets, and splitting the data 

into training and test set. For each step, the execution time is measured and used as 

performance indicator. 

Data Ingestion 

Ingesting the data describes all necessary steps to bring the data into the Big Data analytic 

ecosystem. In general, this includes tasks such as creating databases or file systems and 

copying data into them. At the end of data ingestions, the information should be accessible 

for further processing. The execution time of the entire process is timed for the 

benchmark metric. 



 

71 

Data Processing 

After data ingestion, the data sets are combined and prepared for the training of the 

machine learning algorithm, resulting in one single data set. The final data set combines 

information from the telemetry data set with the event based error and maintenance log. 

Furthermore, it contains information about age and model of the machine. Each data row 

is labelled with the information if a component will fail in the next 24 hours. This label 

represents the value that will be predicted by the machine learning algorithm. The entire 

process is timed and used for the PMB metric. 

Table 9 shows the content of the final data set. The date and machine ID identify each 

record set uniquely. Information about the machine (model and age) is added from the 

machine meta data. The telemetry data (volt, pressure, rotation, and vibration) is 

accompanied by calculated short time trend indicators such as mean and standard 

deviation for the past three, and 24 hours. Information about the errors is added by 

calculating how often a specific error occurred in the last 24 hours and the maintenance 

log is used to calculate the days since a component was last changed. At last, the label is 

added to the record set. The label represents the data field that should be predicted by the 

predictive maintenance system. It states whether a component will fail within the next 24 

hours. 

Table 9: Final data set after preprocessing. 

Name Description Unit Source 

datetime date and time of record Date telemetry data 

machineID ID of the machine numerical telemetry data 

General Machine Data 

model Model of the machine numerical meta data 

age Age of the machine numerical meta data 

Telemetry Data: Current Information and short-time Trend 

volt voltage level of the machine numerical telemetry data 

pressure pressure inside the machine numerical telemetry data 

rotation rotation speed of the rotor numerical telemetry data 

vibration vibration indicator numerical telemetry data 

volt-mean 3h μ voltage of last 3h numerical mean of last 3 hours 

rotation-mean 3h μ rotation of last 3h numerical mean of last 3 hours 

pressure-mean 3h μ pressure of last 3h numerical mean of last 3 hours 

vibration-mean 3h μ vibration of last 3h numerical mean of last 3 hours 
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volt-sd 3h σ volt of last 3h numerical σ of last 3 hours 

rotation-sd 3h σ rotation of last 3h numerical σ of last 3 hours 

pressure-sd 3h σ pressure of last 3h numerical σ of last 3 hours 

vibration-sd 3h σ vibration of last 3h numerical σ of last 3 hours 

volt-mean 24h μ voltage of last 24h numerical mean of last 24 hours 

rotation-mean 24h μ rotation of last 24h numerical mean of last 24 hours 

pressure-mean 24h μ pressure of last 24h numerical mean of last 24 hours 

vibration-mean 24h μ vibration of last 24h numerical mean of last 24 hours 

volt-sd 24h σ volt of last 24h numerical σ of last 24 hours 

rotation-sd 24h σ rotation of last 24h numerical σ of last 24 hours 

pressure-sd 24h σ pressure of last 24h numerical σ of last 24 hours 

vibration-sd 24h σ vibration of last 24h numerical σ of last 24 hours 

Error Information 

error1count 
number of occurrences of error1 
in the last 24 hours 

numerical error log 

error2count 
number of occurrences of error2 
in the last 24 hours 

numerical error log 

error3count 
number of occurrences of error3 
in the last 24 hours 

numerical error log 

error4count 
number of occurrences of error4 
in the last 24 hours 

numerical error log 

error5count 
number of occurrences of error5 
in the last X days 

numerical 

 
error log 

Maintenance Information 

comp1_lastchange 
days since last replacement of 
component 1 

numerical maintenance log 

comp2_lastchange 
days since last replacement of 
component 1 

numerical maintenance log 

comp3_lastchange 
days since last replacement of 
component 1 

numerical maintenance log 

comp4_lastchange 
days since last replacement of 
component 1 

numerical maintenance log 

Failure Information 

failure 
ID of component that fails within 
the next 24h. 0 if none fail. 

numerical Failure log 
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Splitting the Data Set 

The final step of preprocessing is splitting the data set into training and test set. The 

training set is used for training the machine learning algorithm. Afterwards the trained 

algorithm predicts failures based on the data from the test set. These predictions are then 

compared to the real failure data to calculate the precision of the algorithm. For the PMB, 

the data set is split in a ratio of 70:30 for training and test set. 

Training the Machine Learning Algorithm 

In this step the machine learning algorithm is trained on the training set produced during 

preprocessing. The resulting model should be able to make predictions if any of the five 

machine components will fail during the next 24 hours. Therefore, a supervised machine 

learning algorithm for classification is necessary. As mentioned in chapter 4.4.2, the most 

commonly used classification algorithms for predictive maintenance are decision trees, 

support vector machines, and artificial neural networks. While all three are viable options, 

the decision tree is currently available in most machine learning libraries for Big Data 

analytics. The decision tree also produces the most transparent model, making it easy to 

understand the reasoning behind predictions. Therefore, the PMB uses a decision tree as 

machine learning algorithm. Other machine learning algorithms may be added in future 

work.  

After initializing the data and the machine learning algorithm, the decision tree is trained. 

The training of the algorithm should be done in a distributed fashion, utilizing multiple 

nodes of a cluster.  

Testing the Machine Learning Model 

The trained decision tree is tested using the test set produced in preprocessing. Testing a 

machine learning model is done in two steps. First, the model makes predictions based on 

the data from the test set without knowing the real labels. Second, the predictions made 

by the model are compared to the real labels, and the accuracy is calculated. 

 

5.3.2 Phase 2: Running the Predictive Maintenance System 

The second phase of PMB tests the predictive maintenance system in a running 

environment. It can be divided into the two steps of preprocessing and scoring as 
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illustrated in Figure 43. Similar to Phase 1, preprocessing covers all tasks from data 

ingestion to preparing the data set. During scoring the trained model is loaded and used 

to make predictions. 

Phase 2 is tested using different data and request sizes to examine their effects. The data 

sizes are determined by the number of telemetry data items that have to be predicted by 

the system. There are three different data sizes consisting of 10, 100, and 1.000 data items 

respectively. By using different data sizes, it can be analysed how the predictive 

maintenance system scales with the number of predictions it must make at once. The 

request sizes. Running one data size through the entire process of Phase 2 represents one 

request. Besides testing the effect of data size, the PMB also tests the effect of multiple 

subsequent requests. Therefore, three request sizes are used within Phase 2 of the PMB. 

The small size consists of 1 request, medium size of 10 requests, and big size of 100 

requests. By varying data and request size, the PMB tests how the system handles multiple 

predictions at once as well as multiple predictions after each other. 

 
Figure 43: Phase 2 of PMB: Running the predictive maintenance system. 
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Preprocessing the Data 

In a production environment, preprocessing covers all activities from ingesting new data 

into the system to preparing it for the trained machine learning model. The prepared data 

set has to be in the exact same format as the data set the algorithm was trained on. 

Otherwise a prediction is not possible.  

When new telemetry data enters the system, all values as described above in Table 9 have 

to be calculated. The necessary information is loaded from data storage. For the PMB, the 

two tasks of ingesting new data as well as preparing the data set are timed. 

Scoring the Data 

During data scoring, the trained model is used to predict failures based on new 

information. The trained machine learning algorithm is loaded and used to classify the 

newly prepared data.  

 

5.4 Metrics 

The PMB tests the performance of Big Data analytic ecosystems in the field of predictive 

maintenance. The performance is measured by the execution time of the individual tasks. 

As summarized in Table 10, the workload is separated into the two phases of training and 

running the predictive maintenance system.  

Table 10: Workloads of the PMB. 

Workload Description 

Phase 1 Training the predictive maintenance system 

Preprocessing All steps from data ingestion to preparing it for training 

Data Ingestion Create database and copy data sets into the system 

Processing Combine data and calculate necessary features 

Training Training of the decision tree 

Loading Load data and initialize model 

Training algorithm Train the decision forest on training data set 

Testing Test the algorithm 

Loading Loading data and model 

Predicting Predict failures based on the test set 

Phase 2 Running the predictive maintenance model 

Preprocessing All steps from data ingestion to preparing it for training 
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Data Ingestion Ingest new telemetry data into the system 

Processing Calculate all necessary features 

Scoring Score new telemetry data 

Loading Load the prepared data and machine learning model 

Predicting Use trained decision tree to make predictions 

 

Each phase is executed multiple times, using different data sizes. This way, PMB also 

analyses how the performance of the Big Data analytic ecosystem scales with different 

growing data.  

Table 11 lists the various data set sizes for both phases. Phase 1 is executed using three 

different data set sizes: A small data set, containing data of 33 machines; a medium data 

set, containing data for 66 machines; and a big data set, containing data of 100 machines. 

Phase 2 is executed using different request sizes and data sizes. One request covers the 

entire workload described in Phase 2. Multiple requests therefore execute Phase 2 

multiple times after each other. Phase 2 is tested with a small data size of 10 items, a 

medium data size of 100 items, and a big data size of 1.000 items. Additionally, three 

request sizes of 1, 10, and 100 requests are used. 

Table 11: Data set sizes for both phases of the PMB. 

Data Size Specification 

Data set sizes for Phase 1: 

small Data set includes data of 33 machines 

medium Data set includes data of 66 machines 

large Data set includes data of 100 machines 

Data set / request size for Phase 2: 

small / small 1 prediction request with 10 data items  

small / medium 1 prediction request with 100 data items 

small / large 1 prediction request with 1.000 data items 

medium / small 10 prediction requests with 10 data items each 

medium / medium 10 prediction requests with 100 data items each 

medium / large 10 prediction requests with 1.000 data items each 

large / small 100 prediction requests with 10 data items each 

large / medium 100 prediction requests with 100 data items each 

large / large 10 prediction requests with 1.000 data items each 
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6 Benchmark Evaluation 

The PMB is evaluated by a case study. The benchmark is implemented and executed on 

two popular Big Data analytic ecosystems, which run on a 5 node Raspberry Pi cluster. 

The results are then analysed and compared to the findings of similar benchmarks. 

This chapter starts with a scientific literature research, identifying popular open source 

Big Data analytic frameworks. Based on this research, the frameworks for implementing 

the PMB are chosen. The chosen frameworks are then portrayed in detail. Afterwards, the 

testing environment, the individual benchmark implementations, and their results are 

presented. Finally, the PMB is evaluated by comparing the results of the implementations 

and analysing findings gathered during the process.  

6.1 Selection of Big Data Analytic Frameworks 

To determine the most popular open source Big Data analytic frameworks, a ranking was 

established using two main criteria: 

I. How many times is a framework mentioned in survey papers? 

II. How many times is a framework cited in peer reviewed papers? 

The above listed criteria must be first formulated as research questions. Based on these 

research questions, search queries are formulated to find related papers using the Catalog 

Plus41 search engine provided by the TU Vienna. The resulting documents are screened to 

filter out relevant papers, which are finally used to create the popularity ranking of open 

source Big Data analytic frameworks.  The problem resulting from the first criteria (I) can 

be formulated as two separate research questions: 

R1: What scientific survey papers of Big Data analytic frameworks are 

available? 

R2: How many times are the individual Big Data analytic frameworks 

mentioned within the papers resulting from R1? 

The second criteria (II) analyses how often Big Data analytic frameworks are cited in peer 

reviewed papers. To limit the search space, only the most popular frameworks resulting 

from R2 are considered.  

                                                        
41 http://catalogplus.tuwien.ac.at 
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R3: How many times are the popular Big Data analytic frameworks (based on 

R2) mentioned in the title of peer-reviewed papers? 

R4: How many times are the popular Big Data analytic frameworks (based on 

R2) mentioned inside the entire text of peer-reviewed papers? 

R1: What scientific survey papers of Big Data analytic frameworks are available? 

The following query searches for scientific survey papers of Big Data analytic frameworks: 

R1/Q1: “Survey” in the title AND “Big Data analytic framework” in the text 

The query resulted in 137 potentially relevant documents. The filtering is done in three 

steps: First, papers are filtered based on their title. Second, papers are filtered based on 

their abstract. And third, papers are filtered based on their entire content. This screening 

process resulted in 9 relevant survey papers as listed in Table 12. Khalifa et al. [18] also 

provide a broad survey while describing their six pillar model (see chapter 3.3). 

Therefore, their paper was added. Table 12 lists title, reference, journal, and publication 

year of relevant papers. All journals where published between 2013-2016. 

Table 12: Scientific survey papers of Big Data analytic frameworks. 

Title and Reference Journal Year 

A Survey on Real-time Big Data Analytics: Applications and Tools 
[182] 

IEEE 2016 

Parallel and Distributed Collaborative Filtering: A Survey [183] 
ACM Computing 

Surveys 
2016 

The Six Pillars for building Big Data Analytics Ecosystems [18] 
ACM Computing 

Surveys 
2016 

A survey of open source tools for machine learning with big data in 
the Hadoop ecosystem [94] 

Journal of Big Data 2015 

Big Data Analytics: A Survey [184] Journal of Big Data 2015 

In-Memory Big Data Management and Processing: A Survey [49] IEEE 2015 

A Survey on Platforms for Big Data Analytics [185] Journal of Big Data 2014 

Big Data: A Survey [186] Springer Science 2014 

Toward Scalable Systems for Big Data Analytics: A Technology 
Survey [187] 

IEEE 2014 

A Survey on Big Data Analytic Tools [188] IDEAS 2013 2013 
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R2: How many times are the individual Big Data analytic frameworks mentioned within the 

papers resulting from R1? 

The second research question analyses how many times open source Big Data analytic 

frameworks are mentioned within the survey papers discovered during R1. Therefore, 

there is no specific query for the search engine but a screening of the survey papers. Table 

13 lists the individual Big Data analytic frameworks and the references of the papers they 

are mentioned in. The frameworks are further grouped by the 6 pillars and their 

subcategories [18] (see 3.3). Hadoop and Spark are often mentioned in broader sense and 

therefore are categorized as ecosystems rather than processing engines. 

Table 13: Number of citations in Big Data analytic frameworks survey papers. 

Frameworks Pillar Subtype Mentioned in Sum Rank 

Hadoop Ecosystem  [18][94][182][183][185][186][188] 7 1. 
Spark Ecosystem  [18][49][94][182][183][185] 6 2. 

Mahout Interface Scripts [18][94][183][185][186][187] 6 2. 
MLBase Interface Scripts [18][185] 2 6. 

MLlib Interface Scripts [18][94] 2 6. 
Radoop Interface Scripts [18][186] 2 6. 
SAMOA Interface Scripts [94] 1 7. 

deeplearning4j Interface Scripts [18] 1 7. 
FlinkML Interface Scripts [94] 1 7. 
HiveMall Interface Scripts [18] 1 7. 

QDrill Interface Scripts [18] 1 7. 

Hive Interface SQL [18][94][185][187][188] 5 3. 
Drill Interface SQL [18][94][188] 3 5. 

YARN Orchestration Scheduling [18][94][185] 3 5. 
IReS Orchestration Scheduling [18] 1 7. 

Pegasus Orchestration Scheduling [18] 1 7. 

MapReduce Processing Batch [94][185][186][187] 4 4. 
Flink Processing Batch/Incr. [94][183] 2 6. 

DistWEKA Processing Batch [18][94] 2 6. 
H2O Processing Batch [18][94] 2 6. 

Storm Processing Incremental [18][94][182][183][186][187] 6 2. 
Spark Streaming Processing Incremental [18][49][185] 3 5. 

Samza Processing Incremental [18] 1 7. 

Tez Processing Interactive [18] 1 7. 

Cassandra Storage Column [18][94][186][187] 4 4. 
HBase Storage Column [18][94][186][187] 4 4. 

HyperTable Storage Column [186] 1 7. 

HDFS Storage DFS [18][185][94][186] 4 4. 
Alluxio Storage DFS [185] 1 7. 

FastDFS Storage DFS [186] 1 7. 
QFS Storage DFS [186] 1 7. 

HyPer/ScyPer Storage RDBMS [49] 1 7. 
MySQL Cluster Storage RDBMS [18] 1 7. 

ScaleDB Storage RDBMS [18] 1 7. 
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Overall, Hadoop, Spark, Mahout, Storm, and Hive are clearly the most mentioned 

technologies, being cited seven, and six times respectively. MapReduce, Cassandra, HBase, 

and HDFS follow with 4 citations each. YARN, Drill, and Spark Streaming are the only other 

frameworks mentioned more than twice. 

R3: How many times are the popular Big Data analytic Frameworks (based on R2) 

mentioned in the title of peer-reviewed papers? 

R4: How many times are the popular Big Data analytic Frameworks (based on R2) 

mentioned inside the entire text of peer-reviewed papers? 

Both, the third and fourth research question analyse how many times the most popular 

frameworks as determined in R2 are mentioned in peer-reviewed journals. For each 

framework, three different search queries are introduced as listed below. The first query 

searches for papers containing the name of the framework in the title. The second query 

builds upon this and adds the term “Big Data” as a search parameter. In the third query, 

the name of the framework is searched for within all search fields. To ensure only relevant 

papers are included, the term “Big Data” is given as a second search parameter. The first 

and second queries are expected to give similar results. Table 14 shows the results of the 

executed queries. 

R3/Q1: “Name of the Framework” in the title 

R3/Q2: “Name of the Framework” in the title AND “Big Data” over all fields 

R4/Q1: “Name of the Framework” over all fields “Big Data” over all fields 

For each pillar, regardless of subtype, the top 3 frameworks as determined by R2 are 

chosen. Only the two subtypes scripts and sql where separated, since they serve 

fundamentally different purposes. For the category of orchestration, no further analysis 

is undertaken, since YARN is the only framework mentioned more than once. 

Due to the ambiguous names of many frameworks, the name of the developing company 

was added as search parameter over all fields (i.e. Apache for Storm). The ranking shows 

the overall rank of the framework for R3 and R4. The score is the mean rank within each 

query resulting in the overall rank. 
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Table 14: Number of peer-reviewed papers by Big Data analytic framework. 

Frameworks R3/Q1 R3/Q2 R4/Q1 Score/Rank 

Processing 
Hadoop 171 85 338 1.33 / 1. 

Spark 34 28 168 2.66 / 2. 
Storm 5 5 44 6.33 / 7. 

Interface / Scripts 
Mahout 3 1 108 6.66 / 8. 

MLlib 0 0 40 9.33 / 10. 
MLBase 0 0 10 9.66 / 11. 
Radoop 0 0 4 10.00 / 12. 

Interface / SQL 
Hive 13 7 163 3.66 / 4. 
Drill 1 1 81 7.66 / 9. 

Storage 
HDFS 13 7 451 2.33 / 2. 
HBase 5 1 257 5.00 / 5. 

Cassandra 3 3 126 6.00 / 6. 

 

The conducted literature survey clearly shows that – in accordance with the former 

results – Hadoop and Spark dominate this research area. Especially Hadoop, being the 

oldest and most developed framework, has been studied extensively. In the category of 

Scripts, Mahout is mentioned in most papers, with three of them carrying the framework 

in the title. MLlib, in second place, has no dedicated research papers but is mentioned in 

40 others. Hive leads the area of SQL interfaces with 13 papers mentioning the framework 

within their title and HDFS is in front within the storage category. 

Summary and Framework Selection 

Apache Hadoop leads both rankings. It is by far the most mentioned and analysed open 

source Big Data framework and has accumulated a vast number of other related projects 

around itself. Nonetheless Apache Spark seems to challenge its positions and has gained 

significant traction by introducing its faster in-memory based execution engine. In third 

place is the data stream processing engine Storm. Concerning machine learning libraries 

Mahout is the most prominent framework with Sparks machine learning library MLlib 

being in second place. In the area of SQL interfaces, Hive leads clearly before Drill in both 

rankings. And finally, HDFS is ahead in the realm of storage frameworks due to its better 

performance in the second ranking. 

For the implementation of the PMB, a framework from each of the above mentioned 

categories is necessary: processing, interface/script, interface/SQL, storage, and 

orchestration. Together, these frameworks form the Big Data analytic ecosystem that is 
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tested by the PMB. For evaluation, the PMB is implemented in two ecosystems. The 

frameworks are selected depending on their ranking. 

 
Figure 44: Selected ecosystems for PMB implementation. 

 

Figure 44 illustrates the two chosen ecosystems. Due to the high individual rankings, the 

two frameworks Hadoop MapReduce and Spark are selected as processing engines (blue). 

Mahout and MLlib are chosen as machine learning libraries (red). Mahout currently 

provides the decision tree only for Hadoop, and MLlib only supports the spark processing 

engine. Each ecosystem is orchestrated (orange) by YARN. HDFS and Hive serve as storage 

system (yellow) and sql interface (green) for both ecosystems.  
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6.2 Selected Big Data Analytic Frameworks 

6.2.1 Apache Hadoop 

Apache Hadoop42 is an open-source framework for distributed storage and processing of 

Big Data. It started as an open source implementation of the Google Distributed File 

System (GFS) [59] and its associated programming model MapReduce [23]. Hadoops first 

version 0.1.0 was released in April 200643. In 2017, Hadoop released its third big release 

step with version 3.0.0-alpha. The framework is written in Java and therefore runs on any 

platform capable of running a java virtual machine.  

Today, Hadoop has become an integral part of big companies such as Facebook, Ebay or 

Adobe 44 . Many companies provide products that build upon Apache Hadoop. 

Hortonworks 45  and Cloudera 46  are two of the biggest companies offering customized 

releases of Hadoop with additional features as well as support. Many platform providers 

like Amazon Web Services (AWS)47 or Microsoft Azure48 also offer preconfigured Hadoop 

environments to their customers. 

The Hadoop project includes three main modules: A storage module (Hadoop Distribued 

File System (HDFS)), a cluster management module (Hadoop Yet Another Resource 

Negotiator (YARN)), and a processing module (Hadoop MapReduce). Additionally, Hadoop 

offers a Java API for programming MapReduce applications and provides some support 

functions such as a web based interface for application tracking. Figure 45 displays how 

Hadoop can be embedded within the architecture of a Big Data ecosystem.  

 
Figure 45: Embedding Hadoop in the architecture of a Big Data analytic ecosystem. 

                                                        
42 https://hadoop.apache.org/ 
43 https://archive.apache.org/dist/hadoop/core/ 
44 https://wiki.apache.org/hadoop/PoweredBy 
45 https://hortonworks.com/ 
46 https://www.cloudera.com/ 
47 https://aws.amazon.com/ 
48 https://azure.microsoft.com/ 
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Hadoop Distributed File System (HDFS) 

The Hadoop distributed file system (HDFS)49 is one of the four core modules of the Apache 

Hadoop framework and implements a distributed file system designed to store large 

amounts of data [60]. It is an open source implementation of the Google File System (GFS). 

HDFS is designed to run on a cluster of commodity hardware, containing hundreds or 

even thousands of nodes. Due to the high component failure rate in big clusters, data 

reliability represents a key issue [60]. To address this issue, data is replicated among 

multiple nodes. 

As shown in Figure 46, HDFS implements a master/slave architecture [60]. The master is 

responsible for managing the file system. It decides where new data should be saved, 

keeps track where data is stored, and regulates file access to clients. When clients want to 

store or retrieve information, they contact the master, which in return refers them to a 

slave node. The slave nodes store data and respond to approved read and write requests 

from the client. In the Hadoop environment the master is called the NameNode and the 

slaves are called DataNodes. The system is designed to have only one NameNode but up 

to hundreds or thousands of DataNodes. 

 
Figure 46: HDFS Architecture. 

The NameNode in HDFS stores the namespace of the system. The namespace in HDFS is a 

hierarchy of files and directories. For each file and directory attributes like permission, 

access times, and disc space quotas are recorded. The NameNode also maintains the 

locations of files. For faster access the HDFS stores the whole namespace in RAM. 

DataNodes are responsible for storing the data. The HDFS interface is patterned after the 

UNIX file system. Behind this interface, data is stored as multiple smaller data blocks of 

                                                        
49 http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html 
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the same size. Each block is represented by two files on the local filesystem of the 

DataNodes. The first file holds metadata like checksums for the block data and generation 

stamps, and the second file contains the data itself. Blocks are replicated on multiple 

DataNodes to ensure data safety. DataNodes send heartbeats every three seconds to the 

NameNode to confirm their operational status. After 10 minutes of not receiving a 

heartbeat, the DataNode is considered dead and the NameNode schedules to recreate the 

lost blocks on other, functional DataNodes. The heartbeat contains data about total 

storage capacity, storage used and currently conducted data transfers. The NameNode 

uses this information for load balance across the system. 

Figure 47 shows the process of reading and writing data from and to HDFS. If a client 

wants to store information in HDFS it first creates an HDFS file and fills it with the desired 

data. The HDFS file is then split into multiple data blocks of the same size. Next the client 

contacts the NameNode and requests a DataNode to host the first data block and 

additional DataNodes to store its replicas. Then the client transfers the data block directly 

to the suggested DataNodes. After the completion of the transfer the client contacts the 

NameNode again to decide where the next data block and its replicas will be stored. This 

process repeats for all data blocks of the file. For reading data from HDFS the client first 

contacts the NameNode for information on what blocks the desired file is made of and 

their location. The locations of each block are ordered according to their distance to the 

client. The client tries to fetch the closest replicas of the blocks first and assembles the file 

after receiving all blocks. 

 
Figure 47: Reading and writing data from/to HDFS. 

HDFS implements a single-writer, multiple-reader model. While one client writes a file, 

no other client is permitted to write on that same file. However, multiple users may read 

the same file simultaneously. The file system is optimised for high throughput instead of 
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low latency. This means, one single request of many read/write commands outperforms 

multiple single requests containing only a few read/write commands. Therefore, HDFS is 

streamlined for batch processes rather than interactive user requests.  

Yet Another Resource Negotiator (YARN) 

Yet Another Resource Negotiator (YARN) 50  is the cluster management framework of 

Hadoop. Its main responsibility is to manage the computing resources of a cluster [73]. 

This includes keeping track of available resources and assigning them to applications. 

Introduced in 2012 with the second generation of Hadoop (Version 2.0.0-alpha51), the 

basic idea of YARN is to separate the functionalities of resource management and job 

scheduling/monitoring [73]. In Hadoop 1.0 both tasks where tied together in the 

MapReduce module. By detaching the resource management, the system is no longer 

dependent on the MapReduce programming model but may also run other applications.  

Like HDFS, YARN follows a master/slave architecture, which is depicted in Figure 48 [73]. 

The master, or Resource Manager, is the central manager of the cluster resources. It keeps 

track of available resources and assigns them to applications. Slaves, or Node Managers, 

are responsible for processing data. They also monitor the health of the node and report 

their status to the Resource Manager. 

 
Figure 48: YARN Architecture. 

The Resource Manager is the central point for managing the cluster resources. In YARN, 

resources are represented as containers, where a container is a logical set of resources 

(e.g. 1 GB Ram, 1 CPU). Each container is bound to a node. Applications request resources 

                                                        
50 http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html 
51 http://hadoop.apache.org/releases.html 
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from the Resource Manager. Their request submission includes the number and size of 

required containers as well as locality preferences. The Resource Manager then allocates 

resources to the application through a scheduler. It assigns them containers and issues 

tokens that enables the application to contact them. If not all requests can be satisfied, a 

scheduler decides how to allocate the resources. YARN offers three different schedulers: 

FIFO, Fair, and Capacity scheduler. The FIFO (first in first out) scheduler allocates 

resources according to their submission order. Jobs submitted first, are executed first. The 

Fair scheduler allocates resources in such a way, that over time all applications get an 

equal share of them on average. The capacity scheduler is designed for sharing Hadoop 

clusters among multiple organisations. Each organization is guaranteed a certain overall 

capacity of the cluster. However, if the cluster is not utilized fully, organizations may 

access additional resources beyond their capacity. This way the cluster is utilized in its 

full potential. The Resource Manager is not responsible for coordinating execution and for 

providing fault tolerance for applications. Both these tasks fall into the responsibility of 

the application itself. 

Node Manager represent the working force of the cluster. They authenticate requests and 

monitor container execution. A Node Manager communicates with the Resource Manager 

via heart-beats, where they report information about overall and available resources as 

well launches and terminations of containers. Node Manager also monitor the health of 

the underlying physical system. If a software or hardware problem on the local system is 

detected, the status of the node is changed to unhealthy and reported to the Resource 

Manager. 

Figure 49 shows YARNs process of resource allocation. At first, a client contacts the 

Resource Manager and submits an application. After passing a security credential 

validation as well as administrative checks the Application Master is launched on a 

container in the system. The Application Master is the manager of an application. It is 

responsible for the lifecycle management of an application as well as handling faults. It is 

part of the application itself and may be written in any programming language. The 

Application Master requests resources from the Resource Manager. Depending on 

availability and active type of scheduler, the Resource Manager assigns resources in form 

of container to the applications and issues tokens to the Application Master for activating 

them. The Application Master then coordinates its tasks and utilizes the containers as 

necessary. It may dynamically request additional resources or terminate containers if no 
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longer needed. After completion the Application Master terminates their containers and 

reports to the Resource Manager 

 
Figure 49: The process of resource allocation in YARN. 

Hadoop MapReduce 

Hadoop MapReduce52 is Hadoops native programming framework. It is an open source 

implementation of Googles MapReduce [23] programming model. It was inspired by the 

map and reduce primitives already present in Lisp and other functional programming 

languages [23]. The purpose of MapReduce lies in processing large amounts of data on 

computer clusters. It takes a set of input key/value pairs and produces a set of output 

key/value pairs. Following the principle of divide and conquer, tasks are split into smaller 

ones and processed in parallel on multiple machines. Generated intermediate results are 

then merged back into a final output. The process of a MapReduce program can be 

separated into two main phases: the map-phase and the reduce-phase [189].  

Hadoops implementation of MapReduce consists of two main modules [190]. The first one 

is the job tracker. Its main purpose is the management of MapReduce jobs. The job tracker 

receives all jobs from the client, schedules map and reduce tasks, monitors failing tasks 

and reschedules them if necessary. There is only one job tracker in a Hadoop cluster. The 

second module is the task tracker. It purpose lies in executing and reporting back to the 

job tracker. In a Hadoop cluster there exists one task tracker per cluster node. 

                                                        
52 http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html 



 

89 

Figure 50 depicts the steps of a MapReduce program, commonly referred to as a job. In 

the beginning, the input data is split into multiple smaller key/value pairs. In the map 

phase, the worker nodes take the input data and follow a user defined map function to 

produce a set of intermediate results. In between the map and reduce phase, all 

intermediate results with the same key value are merged together. This intermediate step 

is often referred to as shuffle phase. The shuffle phase not considered one of the main 

phases since it cannot be programmatically influenced by the user. Finally, in the reduce 

phase, workers follow the user defined reduce function to group intermediate results 

together. 

 
Figure 50: Execution of a MapReduce job. 

For better understanding the process of a MapReduce job, consider the word-count 

example provided by Dean and Ghemawat [23]. Imagine having a large set of text 

documents and wanting to know how many times a word is mentioned within them. To 

solve this problem, it is necessary to counts overall occurrences of each word. This task 

can be fulfilled by a MapReduce program. The MapReduce program takes a set of input 

key/value pairs (document name/content) to create the desired output key/value pairs 

(word/count). In the map phase, the workers execute the user defined map function to 

count the words in each document. The map function takes a document as input and 

creates a new key/value pair for each word as an intermediate result. The key is the word 

itself and the value is its occurrence, which initially is always “1”. The following pseudo-

code is an example of how this map function may look like: 

map(String key, String value): 

   //key: document name 
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   //value: document content 

    

   for each word w in value: 

      create IntermediateResult(w,1) 

 

If a map process has finished, intermediate results are sorted by key and saved to local 

disk. They are not saved to HDFS to avoid unnecessary duplication. The shuffle phase 

describes the process of getting intermediate results to the workers for the reduce phase. 

During shuffle, all intermediate results are grouped together depending on their key 

value. Finally, the reducers add up the intermediate results. Their input is a key/value pair 

where the key is the word and the value is a list of its occurrences. The following pseudo-

code shows the concept of such a reduce function: 

reduce(String key, Iterator values): 

   //key: word 

   //value: list of counts 

    

   int result = 0 

   for each v in values: 

      result += ParseInt(v) 

   return result 

 

Figure 51 illustrates the word-count example with its inputs and outputs during each 

phase. The two texts “hello world” and “around the world” have been chosen as an 

example. The map- and reduce functions follow the logic of the above defined pseudo code 

examples. 

 
Figure 51: MapReduce example: counting words in text documents. 
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6.2.2 Apache Spark 

Apache Spark53 is a framework for distributed, parallel processing [191]. In comparison 

to Hadoop, Spark utilizes in-memory technology to achieve better performance. Spark 

started as a project at the university of California, Berkley, and was later donated to the 

Apache foundation, where it became a top level Apache project in 201454. The framework 

is written in Java and Scala, and therefore runs on any JVM capable system. It offers APIs 

in Scala, Java, Python and R. Today, over 50 contributors actively develop the 

framework55. 

 
Figure 52: Embedding Spark in the architecture of a Big Data analytic ecosystem. 

As shown in Figure 52, Spark consists in its current version 2.2.156 (released 1.12.2017), 

of 6 main modules. The centre of Spark is Spark Core. It is responsible for executing and 

monitoring data processing. Spark Core also includes a cluster management module and 

is therefore able to run its own cluster (Spark Standalone). However, Spark also provides 

native support for third party cluster management frameworks Hadoop YARN and 

Apache Mesos57. The other 5 components (Spark SQL, Spark Streaming, MLlib, GraphX, 

and Spark R) offer high level features on top of Spark Core. Spark SQL provides an SQL-

like interface to work with structured data. Spark Streaming enables processing of data 

streams. MLlib is a library of machine learning algorithms for Big Data analysis. GraphX 

provides an API for graphs and graph-parallel computation and Spark R is an API for R. 

Additionally, Spark offers support functions such as central logging and a web based 

graphical user interface for job monitoring. In contrast to Hadoop, Spark does not provide 

a distributed storage system. It is dependent on other frameworks like Hadoop HDFS. The 

following sections presents the most prominent modules of Spark (Spark Core, Spark SQL, 

                                                        
53 https://spark.apache.org/ 
54 https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces50 
55 https://spark.apache.org/committers.html 
56 https://spark.apache.org/docs/2.2.1/ 
57 https://mesos.apache.org/ 
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Spark Streaming and MLib). Since neither Spark R nor GraphX are necessary for a PMB 

implementation, they are not portrayed. 

Spark Core 

Spark Core is the data processing engine of Spark [191]. It is responsible for data 

processing as well as management functions such as scheduling and monitoring tasks. 

Spark Core implements, and is built around a programming abstraction called Resilient 

Distributed Data Sets (RDD) [24].  

The main characteristic of RDDs is that they may exist beyond the lifetime of a job. This 

allows for the reuse of intermediate data across multiple computations. While reusing 

results in Hadoop would require the data to be saved on disk, RDDs can be stored in-

memory. The reuse of data is especially common in iterative machine learning and graph 

algorithms. Reusing data also benefits interactive use cases, for example running multiple 

ad-hoc queries against the same set of data. Stored intermediate query results can be used 

to speed up future ones.  

As shown in Figure 53, RDDs are created from data in stable storage or other RDDs 

through deterministic operations called transformations [24]. Transformations include 

mapping data to RDDs (map), filter or join operations. Once a RDD is created, it cannot be 

changed. RDDs are read-only. They are split up into partitions that are distributed around 

the cluster to enable distributed processing. 

 
Figure 53: Creating RDDs and splitting them into Partitions 

RDDs are fault tolerant [24]. In many distributed systems like Hadoop HDFS, fault 

tolerance is provided by replicating data on multiple cluster nodes [60]. This is associated 

with a lot of network traffic and data replication. In contrast to that, RDDs ensure fault 

tolerance by saving transformations needed for creating it, rather than its data. Storing 

transformations instead of raw data represents just a fraction of the data volume but still 

ensures there is always enough information available to rebuild a RDD if lost.  
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Figure 54: Master/slave architecture of Spark. 

As illustrated in Figure 54, Spark follows a master/slave architecture similar to the one of 

Hadoop. The master runs the Spark application that is provided through the so-called 

Driver Program. The Driver defines the RDDs and their analysis. It launches the 

SparkContext, which coordinates the application. The SparkContext connects to the 

cluster manager to demand resources, schedules tasks, and monitors them. The slaves or 

workers process data. They host Executors which execute tasks provided by the 

SparkContext. They report back to the SparkApplication. 

 
Figure 55: Workflow of a Spark application. 

Figure 55 presents the workflow of starting an application inside Spark. To run a Spark 

application a user has to define a Driver Program, which defines RDDs and their 

processing. Each Spark application is coordinated by its own SparkContext, which is 

launched on the master. The SparkContext takes the user defined transformations and 

translates them into a directed acyclic graph. The graph is then submitted to the 
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scheduler. After scheduling, the SparkContext connects to the cluster manager to demand 

computing resources in the cluster. Then the SparkContext connects to the allocated 

workers and invokes Executors, which process RDD partitions. Each worker runs one 

Executor per application. After completion, Executors report results back to the 

SparkContext. 

Spark SQL 

Spark SQL58 is Sparks module to work with structured data and was introduced in 2014 

during the release of Spark 1.0.059. It allows users to access many popular data sources, 

including Hive, Avro, Parquet, ORC, JSON, and JDBC. Spark SQL enables clients to perform 

SQL-queries but also offers APIs in Scala, Java, and Python to connect to data sources 

programmatically [67]. Independent of the utilized language, all queries are executed by 

the same engine, allowing for high flexibility and developers to switch languages 

depending on the use case. 

 
Figure 56: Interfaces of Spark SQL and interaction with Spark. 

Figure 56 displays the interfaces of Spark SQL and how it interacts with Spark Core [67]. 

Spark SQL offers a SQL interface that can be accessed through JDBC/ODBC or through 

command-line console. Additionally, Spark SQL offers a DataFrame API for user programs. 

DataFrames are the main abstraction in Spark SQL. They are equivalent to a table in a 

relational database. DataFrames can be created either from relational data sources or 

RDDs. The Catalyst Optimizer is the internal interface to Spark Core. It plans queries and 

translates them into Spark executable code [67]. 

                                                        
58 https://spark.apache.org/sql/ 
59 https://spark.apache.org/news/spark-1-0-0-released.html 
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Spark Streaming 

Spark Streaming60 is Sparks dedicated processing engine for data streams. It is designed 

to offer real-time data processing and was introduced in 2013 as part of Sparks release 

0.7.061.  

The general idea behind Spark Streaming was to create a system capable of real time data 

processing that is able to provide fast recovery in case of failure [22]. Other stream 

processing systems often utilize a continuous processing model, where data is processed 

as soon as it enters the system. However, continuous processing results in high costs for 

providing fault tolerance [22]. Instead of continuous processing, Spark Streaming 

implements a mini-batch processing approach as shown in Figure 57. Input data of 

continuous data streams is first stored and grouped into small data sets. Periodically these 

data sets are processed in batch using the Spark Core processing engine. The time 

intervals between batch processes are very small, achieving almost real-time 

computation speed. 

 
Figure 57: Mini-batch processing model of Spark Streaming. 

Structuring stream processing as a set of short, stateless, deterministic tasks is called 

discretized streams [22]. To highlight the advantages of discretized streams, consider 

traditional approaches for providing fault tolerance in continuous data processing 

system. As displayed in Figure 58, there are two main methods. The first method sustains 

fault tolerance through replication. The entire data processing stream is duplicated to 

provide a backup if one stream fails, doubling the hardware requirements of the system. 

Furthermore, to ensure identical outcomes, all nodes down the stream must be 

synchronized. The second method implements upstream backups. Each node retains a 

copy of sent messages. If a failure occurs, all messages are resent to a backup machine. 

The recovery therefore rests solely on the backup machine, which has to reprocess data 

on its own. 

                                                        
60 https://spark.apache.org/streaming/ 
61 https://spark.apache.org/releases/spark-release-0-7-0.html 
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Figure 58: Traditional approaches for providing fault tolerance in continuous data processing systems. 

Spark Streaming uses discretized streams to provide fault tolerance. Figure 59 shows the 

processing model of discretized streams. Input data is stored in the form of RDDs among 

the cluster. After a short period of time, the accumulated data is processed within a batch 

process using the Spark Core execution engine. Spark Streaming stores all operations, a 

discretized stream goes through. In case of failure, the affected stream checks its history 

and repeats all lost transformation steps. The recomputation can be done in parallel on 

multiple nodes. 

 
Figure 59: Processing model of discretized streams. 

The Spark Streaming library offers APIs in Java, Scala and Python. Spark Streaming allows 

for custom data source configuration but natively supports HDFS, Flume, Kafka, Twitter, 

and ZeroMQ. 

MLlib 

MLlib62 is a library of machine learning algorithms and had its debut in Spark version 

0.863. Its development began in 2012 as part of the MLBase project [92] and was open 

sourced in September 2013. MLlib is written in Scala and provides interfaces for Java, 

                                                        
62 https://spark.apache.org/mllib/ 
63 https://spark.apache.org/releases/spark-release-0-8-0.html 
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Scala, Python and R. It offers a wider variety of implemented algorithms for classification, 

regression clustering, and collaborative filtering [91]. 

6.2.3 Mahout 

Apache Mahout64 is a programming framework for creating distributed machine learning 

algorithms. Additionally, Mahout provides some premade machine learning algorithms 

for Hadoop MapReduce, Spark, H2O and Flink. In 2016, Mahout introduced a new math 

environment called Samsara with its 0.11.1 release65. In Samsara, developers can specify 

machine learning algorithms in an abstract language similar to R or MATLAB. The Mahout 

project started in 2009 as part of Apache Lucene66 (a text search engine library) with the 

goal to provide scalable machine learning algorithms67. In 2010, Mahout split from Lucene 

to become an independent Apache project. In recent years Mahout shifted its focus from 

a library of machine learning algorithms to an environment for building them.  

 
Figure 60: Embedding Mahout in the architecture of a Big Data analytic ecosystem. 

Considering the architecture of a Big Data ecosystem, Mahout is a high level library on top 

of an existing Big Data environment as shown in Figure 60. Mahout natively supports the 

execution engines of Hadoop MapReduce, Spark, Flink and H2O.  

  

                                                        
64 https://mahout.apache.org/ 
65 https://mahout.apache.org/general/release-notes.html 
66 https://lucene.apache.org/ 
67 https://lucidworks.com/2009/04/07/apache-mahout-01-released/ 
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6.3 Testing Environment 

6.3.1 The Raspberry Pi 

The Raspberry Pi68 is a series of single-board computers developed in the United Kingdom 

by the Raspberry Pi Foundation. It is a low cost, high performance computer, intended to 

promote computer science in education and developing countries. Since its first release, 

over 17 million Raspberry Pi’s have been sold worldwide [192]. The current model of the 

Raspberry Pi is the Raspberry Pi 3 Model B69, which is illustrated in Figure 61. Table 15 

lists its specifications. 

Table 15: Specifications of the Raspberry Pi 3 Model B.  

 

Figure 61: Raspberry Pi Model 3 B70. 

 
 
 
 
 
 

6.3.2 Raspberry Pi Based Computer Clusters 

Due to its low costs, small size, and good performance, the Raspberry Pi is a multipurpose 

tool that can be utilized in many different application areas such as education, media 

centres and game machine71. These attributes also promote the Raspberry Pi as basis for 

computer clusters – an approach, whose viability has been explored in scientific papers. 

Cox et al. [193] introduce Iridis-Pi, a cluster comprising of 64 Raspberry Pi Model 3 B. 

Fung et al. [194] present the Glasgow Raspberry Pi Cloud, a scale model of a datacentre 

composed of clusters of Raspberry Pi devices. Abrahamsson et al. [195] constructed the 

                                                        
68 http://www.raspberrypi.org/ 
69 http://www.raspberrypi.org/products/raspberry-pi-3-model-b/ 
70 http://www.Raspberry Pi-spy.co.uk/2016/02/introducing-the-raspberry-pi-3-model-b/ 
71 https://www.raspberrypi.org/forums/ 

RaspberryPi Model B  
specifiations 

 
1.2 GHz 64-bit quad-core ARMv8 CPU 

1 GB RAM 
Micro SD card slot 

 
4 USB ports 

Full HDMI port 
Ethernet port 

Combined 3.5mm audio jack and 
composite video 

Camera interface (CSI) 
Display interface (DSI) 

VideoCore IV 3D graphics core 
40 GPIO pins 
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Bolzano Raspberry Pi cluster, which connects 300 Raspberry Pi 3 model B to an energy 

efficient computing cluster. Ashari and Riasetiawan [196] compare the performance of a 

cluster comprising of 14 Raspberry Pi Model B to a the performance of the multicore 

processor chips Intel72 i5 and i7 in the area of matrix calculations. Their results show that 

the Intel chips outperform the cluster significantly. Schot [197] analyses the capabilities 

of the Raspberry Pi 2 as basis for a micro data centre. The micro data centre consists of 8 

Raspberry Pi 2 running Hadoop and shows low power consumption with a moderate 

performance. 

Overall, the Raspberry Pi can be considered a viable basis for computer clusters. Its low 

costs and high performance allow to create cluster environments on a budget. Therefore, 

a Raspberry Pi cluster was chosen as hardware for running the two Big Data analytic 

ecosystems. 

6.3.3 Raspberry Pi as Basis for PMB Implementations 

There are good reasons for choosing the Raspberry Pi as basis for the cluster running the 

Big Data analytic ecosystems. Firstly, the Raspberry Pi uses an SD-Card as hard drive. Its 

content can be stored as an image, enabling simple replication of experiments. Secondly, 

distributed processing frameworks are designed to work best on clusters consisting of 

multiple nodes of the same hardware. And thirdly, the Raspberry Pi Model 3 is affordable. 

Therefore, the PMB is implemented on two Big Data analytic ecosystems running on a 

Raspberry Pi cluster. The utilized Raspberry Pi cluster consists of five Raspberry Pi 3 

Model B. The Raspberry Pi’s operate on Raspbian 73 , a lightweight Linux Debian 

distribution. For storage, each unit has a MicroSD card with a capacity of 32 GB. The 

individual units are connected by LAN, using a standard 8-Port network switch as 

connection device. 

  

                                                        
72 http://www.intel.com/ 
73 http://www.raspbian.org/ 
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6.4 Benchmark Execution 

The PMB is implemented on two Big Data analytic ecosystems. This section presents their 

configuration, implementation details, and benchmark results. To prevent distortion 

effects of outliers, each benchmark is performed ten times and the results are calculated 

as the mean of these ten repetitions. 

6.4.1 Cluster Network Setup 

The cluster consists of five Raspberry Pi 3 Model B, which are connected to an 8-port 

gigabit switch via Ethernet cable. As illustrated in Figure 62, the switch is connected to a 

router, which manages the network. The Raspberry Pis are capable of network transfers 

speeds of 100 Mbit/s, the switch and router are able to achieve transfer speeds of up to 

1.000 Mbit/s. Therefore, the single Ethernet cable between switch and router is able 

handle all incoming requests from the five Raspberry Pis. 

 
Figure 62: Test environment cluster network setup. 

The Raspberry Pis operate on Raspbian74, a free operating system based on Debian, 

which is optimised for the Raspberry Pi hardware. In the network, the individual 

Raspberry Pis are named as master, slave-01, slave-02, slave-03, and slave-04. For easy 

identification, are assigned static ip-addresses by the router (192.168.1.10-192.168.1.10). 

The names are assigned on each machine by editing the hostname file located at 

/etc/hostname. External access to the cluster can be achieved via ssh75 or ftp76. SSH is 

used to grant password free access between all Raspberry Pis, since the orchestration 

framework YARN needs all nodes to be able to communicate with each other directly and 

without password authentication. 

                                                        
74 https://www.raspberrypi.org/documentation/raspbian/ 
75 https://www.ssh.com/ 
76 https://tools.ietf.org/html/rfc959 
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6.4.2 Ecosystem 1: HDFS, YARN, MapReduce, Mahout, Hive 

Ecosystem 1 combines the most popular Big Data 

analytic frameworks Hadoop, Mahout, and Hive (see 

Figure 63). It is based on Hadoop, covering the 

filesystem HDFS, the resource manager YARN and the 

execution engine MapReduce. Mahout serves as the 

machine learning library and Hive as the sql interface 

for data access and preparation. 

Ecosystem 1: Cluster Configuration 

This section specifies the frameworks, their 

respective versions, and configurations used for 

implementing the PMB. Table 16 lists the 

frameworks and their respective versions. For 

Hadoop, version 2.7.5 is chosen, since the newest version Hadoop 3.0.0 was still in Alpha 

release phase during the development of PMB. For Hive and Mahout, the most recent 

versions 2.3.2 and 0.13.0 are selected. 

Hadoop and Hive must be configured to run on the limited resources of the Raspberry Pi 

cluster. All configurations are done by editing xml-files within the respective installation 

folder on each node. Table 17 list the adjusted parameters, their values, and in which files 

they are set. 

Table 17: Cluster specific configuration of frameworks in Ecosystem 1. 

File Parameter Value Comment 

hdfs-site.xml 
dfs-replication 3 number of data replication 

dfs.blocksize 67108864 
the size of HDFS blocks in bytes  

(here 64 MB) 

mapred-site 
.xml 

mapreduce.reduce. 
memory.mb 

512 
max memory in MB assigned  

for reduce tasks 
mapreduce.map. 

memory.mb 
512 

max memory assigned in MB  
for map tasks 

yarn.app.mapreduce.am. 
resource.mb 

512 
size of a container requested  

from YARN in MB  

yarn-site.xml 

yarn.nodemanager. 
resource.memory-mb 

1024 memory of the NodeManager in MB 

yarn.scheduler.minimum-
allocation-mb 

128 
minimum allocation for every container 

request in MB 
yarn.scheduler.maximum-

allocation-mb 
1024 

maximum allocation for every container 
request in MB 

hive-site.xml hive.execution.engine mr sets MapReduce as execution engine 

Frameworks Version 

Hadoop  2.7.5 
Hive 2.3.2 

Mahout 0.13.0 

Figure 63: Ecosystem 1. 

Table 16: Ecosystem 1: frameworks and versions. 
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Ecosystem 1: PMB Implementation 

The PMB is implemented using a Bash77 script. The script invokes Hadoop commands, 

calls Hive scripts, and executes a java program for training and testing the decision tree. 

It also measures execution time and saves performance results to a csv file. Figure 64 

illustrates how Phase 1 of the PMB (see 5.3.1) is implemented on Ecosystem 1. The first 

step of Phase 1, preprocessing, is separated into data ingestion and data processing. For 

data ingestion, the data is copied into HDFS using its command line interface. Hive then 

creates corresponding tables for easy data access. For data processing, Hive transforms 

the individual data sets into the final processed data set according to a Hive script written 

in HiveQL 78 , a language similar to SQL. Hive creates a MapReduce application that 

requests resources from YARN. The resulting data set is split into training set and test set 

and stored in HDFS. In the second step of Phase 1, training, a Java program is invoked. The 

program trains a decision tree implemented by the Mahout library using the training set 

stored in HDFS. The resulting decision tree model is saved in HDFS. In the third step of 

Phase 1, testing, a Java program loads the trained model and tests it against the test set. 

 
Figure 64: Implementation of Phase 1 of the PMB on Ecosystem 1. 

                                                        
77 https://www.gnu.org/software/bash/ 
78 https://cwiki.apache.org/confluence/display/Hive/LanguageManual 
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Phase 2 of the PMB (5.3.2) consists of preprocessing new data and scoring it (see Figure 

65). During the first step, preprocessing, data is ingested into HDFS using the Hadoop 

command line interface. Then the data is preprocessed in Hive according to a HiveQL 

script that calculates all values necessary for prediction. Hive translates the HiveQL 

commands into MapReduce jobs, which in turn requests cluster resources from YARN. For 

the second step of Phase 2, scoring, a Java program loads the Mahout decision tree model 

created during Phase 1 and classifies the new processed data. The results are saved into 

HDFS. 

 
Figure 65: Implementation of Phase 2 of the PMB on Ecosystem 1. 

For each step of Phase 1 and Phase 2, the execution time is measured. Where possible, the 

execution time is further divided into subcategories such as time for initializing a 

framework, loading data, and processing it. The results of the PMB implementation are 

shown below. 

Ecosystem 1: PMB Results 

The performance of Ecosystem 1 is determined by measuring the execution time of Phase 

1 and Phase 2 as defined by the PMB in seconds. Both phases are executed with three 

different data set sizes. In Phase 1 the data sets vary in the number of machines they 

contain. The small data size contains 33 machines, the medium size 66 machines, and the 

big size 100 machines. During Phase 2 the data sizes vary in the number of data items that 

need to be classified. The data sizes for Phase 2 are 10 items (small), 100 items (medium), 

and 1.000 items (big). Figure 66 shows the PMB performance results of Ecosystem 1. 
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Figure 66: PMB results of Ecosystem 1 in seconds. 

In Phase 1 (Figure 66, blue), most of the execution time is accumulated during 

preprocessing of data in Hive (blue bar graph, left). Hive needs 876 seconds more for 

processing the medium data set (66 machines) than processing the small data set (33 

machines). It takes only 577 additional seconds to process the big data set (100 

machines). This observation suggests good performance scalability with increasing data 

volume since adding machines decreases the average preprocessing time per machine. 

During training and testing, the scaling effect is almost linear. For training, the time 

increase is 54 seconds for the medium data set, and 57 seconds for the big data set (blue 

bar graph, centre). For testing, additional time of 127 seconds (medium data set) and 120 

seconds (big data set) is necessary (blue bar graph, right).  

In Phase 2 (Figure 66, green), data sizes do not grow linear as in Phase 1 but by a factor 

of ten. Therefore, even though the absolute execution time of preprocessing during Phase 

2 increases rapidly with each data set, the processing time per data item decreases (green 

bar graph, left). In particular, the processing time per item decreases from 84 seconds 

(small data set) to 12,4 seconds (medium data set) to 5,4 seconds (big data set). Scoring 

is separated into three request sizes consisting of 1 request (small), 10 requests 

(medium), and 100 requests (big) respectively. In each request, the entire data set is 

classified. The collected data shows that an increase in data size has only marginal effects 

on the execution time of the requests. For the small request size, the execution time for all 

three data sets is between 114 and 119 seconds (green bar graph, centre left). When 

comparing the measurements of small, medium, and big request Scoring (green bar graph, 

right three) it shows that execution time scales linear with the requests size. Increasing 

the number of requests by ten results in roughly 10 times longer execution time (i.e. 

execution time for the small data set increases from 119 to 1.150 to 11.642 seconds). 
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Figure 67 provides a detailed view of Phase 1 (blue) and Phase 2 (green). The individual 

steps discussed above are broken down further into sub steps for in-depth analysis. 

 
Figure 67: Ecosystem 1: Performance breakdown of Phase 1 and Phase 2 in seconds. 

In Phase 1, preprocessing (Figure 67, blue bar graph, top) is divided into the two tasks of 

data ingestion and processing. Most of preprocessing is spent processing the data with 

data ingestion taking a maximum of 5% of overall time. The breakdown of training (blue 

bar graph, centre) shows that only the loading of the data is affected by the file size. The 

time for initializing Mahout (66-69 seconds) and training the model (115-117 second) is 

almost constant throughout all three data sets. During testing (blue bar graph, bottom), 

the time for loading and classifying data increases with growing data size, while the time 

for initializing Mahout stays at 61-67 seconds. 

Preprocessing of Phase 2 (Figure 67, green bar graph, top) almost exclusively consists of 

processing the data with only 8 seconds spent for data ingestion. All three types of scoring 

(small, medium, and large request) show a similar percentage distribution between 

classifying data and initializing Mahout (green bar graph, bottom three sections). 

Classifying data accounts for minimum 51% (medium request/medium data size) to 

maximum 61% (small request/medium data size) of overall scoring execution time. 
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6.4.3 Ecosystem 2: HDFS, YARN, Spark, MLlib, Hive 

Ecosystem 2 implements the second most popular Big 

Data analytic frameworks Spark and MLlib (see Figure 

68). The remaining frameworks are the same as in 

Ecosystem 1, with the difference of Hive not running on 

MapReduce but Spark. In contrast to the Hadoop 

MapReduce execution engine, Spark is based on in-

memory technology. 

Ecosystem 2: Cluster Configuration 

Ecosystem 2 is built upon Spark, Hadoop, and 

Hive. For Hadoop and Hive the same versions as 

in Ecosystem 1 are selected. For Spark and its 

machine learning library MLlib version 2.2.1 

(prebuilt for Apache Hadoop 2.7 and later) is chosen. Figure 19 lists the frameworks and 

their respective versions. 

Similar to Ecosystem 1, Spark must be configured to run on the limited resources 

provided by the cluster. In particular, available resources, storage block size, and 

execution engine for Hive must be configured. Table 19 list the individual parameters, 

their values, and in which files they are set. 

Table 19: Cluster specific configuration of frameworks in Ecosystem 2. 

File Parameter Value Comment 

hdfs-site 
.xml 

dfs-replication 3 
how many time data is replicated on the 

system 
dfs.blocksize 67108864 the size of HDFS blocks in bytes  

spark-env 
.sh 

SPARK_EXECUTOR_MEMORY 512 
memory to use per executor process, in 

MB 

SPARK_DRIVER_MEMORY 512 
memory to use for the driver process  

(i.e. SparkContext initialization) in MB 
SPARK_WORKER_MEMORY 512 memory to use per worker process in MB 
SPARK_DAEMON_MEMORY 512 memory to use per deamon process 

yarn-site 
.xml 

yarn.nodemanager. 
resource.memory-mb 

1024 memory of the NodeManager in MB 

yarn.scheduler.minimum-
allocation-mb 

128 
minimum allocation for every container 

request in MB 
yarn.scheduler.maximum-

allocation-mb 
1024 

maximum allocation for every container 
request in MB 

hive-site 
.xml 

hive.execution.engine spark sets the execution engine of hive to spark 

Frameworks Version 

Spark  2.2.1 
Hadoop  2.7.5 

Hive 2.3.2 

Figure 68: Ecosystem 2. 

Table 18: Ecosystem 2: frameworks and versions. 
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Ecosystem 2: PMB Implementation 

To offer maximum comparability of the PMB results of Ecosystem 1 and Ecosystem 2, the 

respective implementations are as similar as possible. The PMB in Ecosystem 2 is also 

implemented using a Bash script. HDFS and Hive are used in both ecosystems. Therefore, 

all data ingestion and preprocessing steps use the same HDFS commands and HiveQL 

scripts. The only difference is present in the Java program loading the MLlib library for 

training and testing the decision tree, since Mahout and MLlib offer different APIs. 

However, the overall procedure in both Java programs was kept the same. Figure 69 

illustrates the implementation of PMB Phase 1 (see 5.3.1) in Ecosystem 2. Phase 1 consists 

of preprocessing the data, training the decision tree model, and testing the trained model. 

The data is ingested using HDFS and processed in Hive, which runs on Spark. For training, 

a Java program is executed, that creates a decision tree model using MLlib and the 

processed data. The model is stored in HDFS and tested using MLlib on Spark. 

 
Figure 69: Implementation of Phase 1 of the PMB on Ecosystem 2. 

In Phase 2 of the PMB (5.3.2), new data is preprocessed and scored. Figure 70 illustrates 

how Phase 2 is implemented in Ecosystem 2. After ingesting the data into HDFS, it is 

processed in Hive using the same HiveQL scripts developed during the implementation of 

Phase 2 in Ecosystem 1. However, since Hive uses Spark and not MapReduce, the HiveQL 
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commands are translated into RDD transformations rather than MapReduce jobs. These 

RDD transformations are then executed by the Spark execution engine. During the second 

step of scoring, a Java program loads the trained MLlib decision tree model from HDFS 

and classifies the processed new data. The results are saved to HDFS. 

 
Figure 70: Implementation of Phase 2 of the PMB on Ecosystem 2. 

Similar to the PMB implementation in Ecosystem 1, the execution time of each step of 

Phase 1 and Phase 2 is measured. Where possible, the execution time is further divided 

into subcategories such as time for initializing a framework, loading data, and processing 

it. The results of the PMB implementation are shown below. 

Ecosystem 2: PMB Results 

The performance of Ecosystem 2 is measured by timing the execution time of the 

individual steps of Phase 1 and Phase 2. Figure 71 shows the PMB performance results of 

Ecosystem 2 in seconds. As before, the results are divided into Phase 1 (blue) and Phase 

2 (green). Data, data size, and request size are identical to the PMB implementation in 

Ecosystem 1. 
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Figure 71: PMB results of Ecosystem 2 in seconds. 

As before, most of the time during Phase 1 is used for preprocessing the data (Figure 71, 

blue bar graph, left). The processing of the medium data size takes 578 additional seconds, 

while the processing of the big data set only takes 478 additional seconds. Preprocessing 

therefore scales well with increasing data size. For training (blue bar graph, centre) and 

testing (blue bar graph, left) an increase in data size results in a decrease in processing 

time per machine. For example, training with the small data set takes 283 seconds, 

amounting to 8,6 seconds / machine. Adding 33 machines (medium data set) results in 

4,6 seconds / machine and adding another 33 machines leads to 3,6 seconds / machine.  

Preprocessing during Phase 2 (Figure 71, green bar graph, left) shows good scalability 

when increasing the data size. The processing time/item decreases from 57,8 seconds 

(small) to 8,47 seconds (medium) to 3,7 seconds (big). The data size has only minimal 

effect on the execution time during scoring. For instance, when scoring the small request 

(green bar graph, centre left), 10 items (145 seconds) are scored almost as fast as 1.000 

items (148 seconds). The execution time scales linear with the request size. Increasing the 

request size 10 times results in approximately 10 times longer execution time. For 

instance, scoring the small data size increases from 145 seconds (small request), to 1.378 

seconds (medium request), to 13.729 seconds (big request). 

Figure 72 shows a breakdown of Phase 1(blue) and Phase 2(green) discussed above. 
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Figure 72: Ecosystem 2: Performance breakdown of Phase 1 and Phase 2 in seconds. 

In Phase 1, preprocessing (Figure 72, blue bar graph, top) is separated into the two tasks 

of data ingestion and processing with processing being the major contributor to execution 

time. The breakdown of training (blue bar graph, centre) shows that loading data is not 

affected by file size. While counterintuitive at first, this can be explained by Sparks lazy 

loading approach. Data is only really loaded if used. During loading, Spark only checks if 

the data is available for later use but does not keep it in memory. This means, in Phase 1, 

data is first loaded during actual training of the model and not before. Training, and 

initializing Spark however, are affected by data size with increased execution times. 

During testing (blue bar graph, bottom) a similar phenomenon to training can be 

observed. Data size has almost no effect on data loading time but increases the time of 

classification. The time for initializing Spark is similar across all data sizes with 49-53 

seconds. 

Preprocessing of Phase 2 (Figure 72, green bar graph, top) is dominated by processing the 

data (>98,5%) with only 8 seconds spent for data ingestion. Across all three request sizes 

of scoring (green bar graph, bottom three), the execution time ratio between classifying 

data and initializing Spark remains similar at roughly 25%/75%. 
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6.5 PMB Analysis and Findings 

This section presents the evaluation of the PMB. First, the performance results of the two 

PMB implementations are analysed and used to compare the two ecosystems with each 

other. The results of the comparison are then matched against conclusions drawn by other 

benchmarks, analysing Hadoop and Spark based environments. Finally, key findings are 

presented and used to evaluate the PMB. 

6.5.1 Comparison between Ecosystem 1 and Ecosystem 2 

During Phase 1 of the PMB, Ecosystem 1 and Ecosystem 2 differ in two main aspects. 

Firstly, although both ecosystems run the same Hive preprocessing scripts, Ecosystem 1 

runs Hive on MapReduce while Ecosystem 2 runs Hive on Spark. Secondly, Ecosystem 1 

uses Mahout for training and testing the model whereas Ecosystem 2 uses MLlib. Figure 

73 shows a comparison between the PMB performances of Ecosystem 1 and Ecosystem 2 

during Phase 1 of the PMB. The measurements are divided into the three steps of 

Preprocessing (left), Training (centre), and Testing (right). 

 
Figure 73: Comparison between Ecosystem 1 and Ecosystem 2 during Phase 1 of the PMB in seconds. 

In comparison to Ecosystem 1, Ecosystem 2 shows significantly better performance 

during preprocessing (Figure 73, left) with a speed advantage of roughly 30%. Both 

preprocessing tasks are done with Hive but using the different execution engines Hadoop 

MapReduce and Spark. The better performance of Ecosystem 2 suggests that Hive on 

Spark is significantly faster than Hive on MapReduce. 

For training (Figure 73, centre) with a small data set, Ecosystem 1 is more than 20% faster 

than Ecosystem 2. However, this advantage decreases with growing data sizes to 4,8% 

with the medium data set and 3,5% with the big data set. This shows that while Hadoop 
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and Mahout are better with smaller data sets, Spark and MLlib are catching up with 

increasing data size. 

Considering testing (Figure 73, right), Ecosystem 2 shows better performance across all 

three data sets. Spark and MLlib outperform Hadoop and Mahout especially with growing 

data sizes and are almost twice as fast when testing the large data set.  

 

In Phase 2, Ecosystem 1 and Ecosystem 2 again use different execution engines for the 

same Hive preprocessing scripts (MapReduce om Ecosystem 1, Spark in Ecosystem 2). 

While Ecosystem 1 uses Mahout on MapReduce for scoring, Ecosystem 2 utilizes MLlib on 

Spark. Figure 74 displays the performance of Ecosystem 1 and Ecosystem 2 during Phase 

2 of the PMB.  

 
Figure 74: Comparison between Ecosystem 1 and Ecosystem 2 during Phase 2 of the PMB in seconds. 

Similar to the observations during Phase 1, Ecosystem 2 shows roughly 30% better 

performance during Preprocessing across all data sizes in Phase 2. This reinforces the 

proposition that hive runs faster on the Spark execution engine than on MapReduce. 

Throughout scoring, Ecosystem 1 outperforms Ecosystem 2. The main reason is the long 

initialization time of Spark. Starting a Spark job takes almost twice as long as starting a 

Hadoop MapReduce job. Due to repeated initialization with each request, Spark shows 

lower performance across all request sizes. 
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6.5.2 Validating PMB Results by Analysing other Performance Evaluation Studies 

This section looks at the results from performance evaluation studies of Hadoop and 

Spark and compares them with the results of the PMB implementations. The analysis this 

comparison is used to assess the validity of the PMB. 

Zaharia et al. [24] compare Spark to Hadoop by implementing two machine learning 

applications, logistic regression and k-means, and measuring their execution time. The 

experiment is done with 100GB of data on a 100 node cluster. For both applications, Spark 

shows significantly better performance: Spark outperforms Hadoop by up to 3x during k-

means application and up to 20x in logistic regression. The PMB also shows a performance 

advantage of Spark, although not as high as reported by Zaharia et al. [24]. One possible 

explanation is the difference in measured tasks. While the PMB covers the entire process 

of data ingestion, data processing and data storage, Zaharia et al. [24] focus on data 

processing. Another possible explanation is the bigger cluster used by Zaharia et al. [24]. 

The significantly higher available RAM benefits Spark because it can store the entire data 

set in-memory at all time.  

Samadi et al. [198] use the HiBench benchmark suite to analyze the performance of Spark 

and Hadoop. HiBench covers workloads from the four categories of micro benchmarks, 

web search, SQL, and machine learning. Their results show that Spark is up to 18x faster 

in the category of web search tasks, up to 6.7x faster in SQL tasks, 1.8x faster in micro-

benchmarks, and 1.6x faster in machine learning tasks. Overall, the findings of Samadi et 

al. [198] correspond with the results of the PMB, where Spark also outperforms Hadoop. 

Mavridis and Karatza [199] analyze the performance of Hadoop and Spark when 

analyzing web server log files. The analysis consists of tasks such as counting requests per 

day, finding possible DoS (Denial of Service) attacks, identifying DoS attackers, counting 

errors, and finding most frequent errors. All tasks are done on log files of three different 

sizes (1.1GB, 5.5GB, and 11GB) The experiment runs on a 6 node cluster with 8 GB RAM, 

and 40GB disk space each. Similar to the results of the PMB, the comparison of Mavridis 

and Karatza [199] shows that Spark is faster than Hadoop in every analyzed case. 

Poggi et al. [200] compare the performance of Hive, Mahout, and MLlib using BigBench 

[14]. Their experiments show that Hive and MLlib is up to 2.2x faster than Hive and 

Mahout. These results are similar to the ones produced by the PMB, although in the latter, 

the performance advantage of MLlib is not as significant. This can be explained by the 

difference in tasks and data size. Due to the smaller data size used in PMB, initialization 
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has a higher impact on overall execution time. Therefore, the higher initialization time of 

MLlib compromises its advantage during data processing, resulting in a smaller 

performance advantage then measured by Poggi et al. [200]. 

Overall, the PMB implementations on Ecosystem 1 and Ecosystem 2 produce comparable 

results to performance evaluation studies analysing Hadoop and Spark. 

 

6.5.3 Key Findings and Evaluation of the PMB 

The development and implementation of the PMB resulted in key findings, which are 

presented below: 

Representability of the PMB 

The PMB is developed based on in-depth research in the field of predictive maintenance 

(see chapter 6). The PMB data model (see section 5.2) represents typical data sources and 

data types encountered during predictive maintenance. It combines periodic condition 

monitoring data with event based maintenance-, error-, and failure logs. The data set was 

created by monitoring machines over the period of one year and thus represents real 

world data. The workload of the PMB (see section 5.3) is based on typical tasks of PMB, 

covering the three steps of predictive maintenance data acquisition, data processing, and 

maintenance decision making (see section 4.2-4.4). 

Feasibility of the PMB 

The PMB was implemented on the two most popular Big Data analytic ecosystems. The 

structure of these ecosystems is based on the 6-Pillar of Kahilfa et al. [18] (see section 

3.3). The selection of the frameworks underlying the two ecosystems is based on a 

scientific literature research (see section 6.1). The successful implementation and 

execution of the PMB on two Big Data analytic ecosystem showed its feasibility. The 

metric of the PMB enables a structured comparison of the performance of both 

ecosystems. 
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Validity of the PMB 

The PMB implementations on both ecosystems show similar results as performance 

evaluation studies comparing Hadoop and Spark based systems (see section 6.5.2). The 

PMB results indicate Spark outperforming Hadoop throughout almost every workload. 

This indication corresponds to the results of multiple studies analysing Hadoop and 

Spark. 
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7 Conclusion and Future Work 

7.1 Conclusion 

Benchmarks for Big Data analytic ecosystems need be designed for specific application 

areas. Most available Big Data benchmarks focus on tasks originating from e-commerce, 

retail, search engines, or social media. There are currently no benchmarks available for 

the field of predictive maintenance. This thesis introduced the PMB, a technology-agnostic 

benchmark to test Big Data analytic ecosystems in the application area of predictive 

maintenance. 

The first step was to identify the requirements of a Big Data analytic ecosystem hosting a 

predictive maintenance system. For this purpose, extensive research was undertaken to 

establish a theoretical understanding of Big Data analytic ecosystems and their 

application in the field of predictive maintenance. Based on this research, general 

requirements for a benchmark covering predictive maintenance were identified. In the 

second step, the acquired knowledge was used to develop the PMB. After planning the 

benchmark, the data model and the workloads of the PMB were defined. For evaluation, 

the PMB was implemented using two different Big Data ecosystems and executed on a 5 

node Raspberry Pi cluster. The frameworks forming the respective ecosystems were 

determined through a scientific literature research. Ecosystem 1 is based on Hadoop, 

Mahout, and Hive. Ecosystem 2 consists of Hadoop, Spark, MLlib, and Hive. The PMB 

results indicate that Ecosystem 2 outperforms Ecosystem 1 in almost every workload. 

Furthermore, the performance of Ecosystem 2 scales faster with growing data sizes than 

the performance of Ecosystem 1. The main driver behind this performance advantage is 

assumed to be the in-memory technology of the Spark execution engine. 

The evaluation of the PMB showed that it is a viable tool for comparing Big Data analytic 

ecosystems in the field of predictive maintenance. The data model and workloads 

represent typical predictive maintenance workflows and the individual measurements 

provide a detailed view of the performance of the ecosystem. The results of the PMB 

implementations are comparable to results of other Big Data benchmark 

implementations, that analyse Hadoop and Spark based ecosystems. 
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7.2 Future Work 

The PMB enables comparison of Big Data analytic ecosystems in the application area of 

predictive maintenance. Although this benchmark covers a typical data model and typical 

workloads faced during predictive maintenance, there are still open issues. These issues 

are presented below. 

The PMB data model consists of periodic measurements (telemetry data), event based 

data (i.e. failure logs) and static information (machine meta data). All considered data 

types are value based. As described in chapter 4.2, many condition indicators such as 

vibration or acoustic data is measured in waveform. Therefore, incorporating wave data 

and analysing it presents a promising extension to the PMB. 

PMB uses a decision tree as classification algorithm to predict future failures. As shown in 

chapter 4.4.2, multiple other machine learning algorithms are available for predicting 

failures. Hence, overall coverage of the PMB can be increased by including multiple 

machine learning algorithms for classification as well as prediction of remaining useful 

life. 

For evaluation, the PMB was implemented on two different Big Data analytic ecosystems 

using a 5 node Raspberry Pi cluster. The testing environment is restricted by the limited 

capabilities of the Raspberry Pis. The next step is to execute the PMB implementations on 

an improved cluster of more capable machines, enabling insights in how both ecosystems 

scale with improved hardware.  

Finally, the PMB can be implemented on other ecosystems. Analysis of these 

implementations can provide feedback on which areas of the PMB need further 

development. This iterative procedure improves the benchmark with each 

implementation. 
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