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Abstract

This master thesis is a report of a survey aimed at understanding and re-
ducing background sources in central exclusive production events measured at
the ALICE experiment, located at CERN–LHC. The ALICE experiment con-
sists of a central barrel and a forward muon spectrometer. Additional smaller
detectors for global event characterization and triggering are located at small
angles outside of the central barrel. Such a geometry allows the investigation
of many properties of diffractive reactions at hadron colliders, for example the
measurement of single and double diffractive dissociation cross-sections and
the study of central exclusive production (CEP). Central diffractive events are
defined experimentally by hits in the central barrel and no activity outside of
it, creating an activity gap in the observed rapidity of measured particles. The
study of Pythia-8 simulations of these processes show a drastic reduction of
non-diffractive events (background) by enforcing the rapidity gap condition.
The remaining background is largely composed of partially reconstructed CEP
events, so called feed-down events. Often feed-down events are accompanied
by neutral particles, which are not detected. This missing mass and momen-
tum leads to a shift of the invariant mass spectrum to lower masses. This
thesis aims at understanding and suppressing background sources in the two
pion invariant mass spectrum in X → π+π− decays of the centrally pro-
duced system X. This is done in two ways: First, a feed-down template is
constructed by using background events marked by a detected gamma in the
main calorimeter of ALICE, and by using events with more than two detected
charged tracks. Despite facing possibly tedious efficiency corrections for the
sake of complete feed-down descriptions, this method yields promising results.
Second, machine learning methods for background suppression of CEP events
are employed. The measured variables e.g. the four-momentum of particles,
energy loss in the detectors, deduced kinematic quantities, and global event
characteristics are generally correlated. To obtain a maximal separation of
signal and background it is necessary to treat these observables in a fully
multivariate way. Although achieving good results, i. e. the signal purity can
be increased by 30% while maintaining a nearly constant signal efficiency, the
trained classifiers tend to obtain a strong mass bias which results in a cut-like
behavior of the trained model. It can be concluded that multivariate tech-
niques trained on Pythia-8 generated CEP simulations generally suffer from
incomplete Monte Carlo descriptions, including only high mass continuum
production. However, promising new packages are currently being developed
which provide interesting prospects for further studies.
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Zusammenfassung

Die vorliegende Arbeit versucht das Verständnis von Untergrundereig-
nissen in speziellen inelastischen Streuvorgängen zu fördern. Das Charakte-
ristikum dieser Streuvorgänge ist, dass beide Streupartner erhalten bleiben
und ein Teilchen X bei einer zentralen Rapidität (um null) erzeugt wird,
während die ausgehenden Streupartner mit hohen Rapiditäten den Streu-
vorgang verlassen. Diese Prozesse werden in der Literatur als “central ex-
clusive production events” (CEP Events) bezeichnet. Diese Studie bezieht
sich auf die Analyse von CEP Events, die im Zuge des ALICE Experiments
am CERN–LHC gemessen wurden. Das ALICE Experiment besteht aus ei-
nem zentralen Detektor-Bereich und einem Vorwärts-Detektorsystem zum
Nachweis von Myonen. Außerhalb des zentralen Detektorsystems befinden
sich verschiedene kleinere Detektorsysteme, welche für die Bestimmung von
globalen Event-Eigenschaften unter kleinen Winkeln zur Strahlachse plat-
ziert sind. Um CEP Events in ALICE zu messen, wird verlangt, dass Teil-
chenspuren im zentralen Bereich von ALICE detektiert werden, während die
Vorwärts-Detektorsysteme frei von jeglicher Signalaktivität bleiben: d.h. ein
Rapiditäten-Doppelspalt-Filter wird implementiert. Die Analyse von Pythia-
8 Simulationen zeigt, dass dieser Rapiditäten-Doppelspalt-Filters eine drasti-
sche Reduktion von nicht-CEP Events hervorruft. Der bestehende Untergrund
besteht aus CEP Events selbst, in denen nur ein Teil des vollständigen Zer-
fallskanals von X gemessen wird. Dadurch geht ein Teil der gesamten Energie
und Masse des Ursprungssystems verloren, was zu einer Verschiebung des in-
varianten Massenspektrums zu kleineren Massen führt. Dieser Untergrund
wird als “feed-down” bezeichnet. Die vorliegende Arbeit beschäftigt sich mit
Methoden, deren Ziel es ist feed-down Untergrund im folgenden beobach-
teten Zerfallskanal: X → π+π−, (1) zu beschreiben und (2) zu reduzieren.
Um den feed-down Untergrund zu beschreiben wird eine Schablone des Un-
tergrunds erzeugt. Dafür wird die Massenverteilung von Events mit einem
detektierten Photon im Kalorimeter (EMCal) und von Events mit mehr als
drei detektierten geladenen Teilchen gemessen. Obwohl diese Methode vor
möglicherweise schwierigen Effizienz-Korrekturen steht, ähneln die Ergebnis-
se stark der originalen feed-down Gestalt. Des Weiteren werden multivariate
Analysetechniken verwendet, um den Untergrund in CEP Events zu reduzie-
ren. Da im Allgemeinen die gemessenen Variablen, wie e. g. der Viererimpuls
eines Teilchens oder der Energieverlust in den Detektoren, korreliert sind,
bietet eine multivariate Analyse einen vielversprechenden Ansatz. Trotz einer
Verbesserung des Signal-Untergrund-Verhältnisses von bis zu 30% während
die Signaleffizienz beinahe gleich bleibt, erhalten die trainierten Modelle eine
starke Massen-Verzerrung. D.h. die multivariate Methode verhält sich sehr
ähnlich zu einer eindimensionalen Entscheidung, welche die Massen-Variable
betrifft. Es kann die Schlussfolgerung gezogen werden, dass es multivariaten
Analysemethoden, welche auf herkömmlichen Trainingsmethoden basieren,
d.h. “fully supervised learning” auf Pythia-8 simulierten Daten, an vollstän-
digen Beschreibungen von CEP Prozessen mangelt. Allerdings werden zurzeit
neue, vielversprechende Simulationspakete entwickelt, welche eine große Re-
levanz für zukünftige Studien aufweisen könnten.
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Chapter 1

Motivation

Particle physics is the study of the smallest, irreducible building blocks of nature
and the interaction between them. The governing theory - the Standard Model -
describes the known elementary particles and the dynamics via the four fundamen-
tal forces in astonishing detail. A central idea is the concept of reductionism, which
states that physical phenomena can be described by breaking the problem down into
smaller, fundamental constituents. Despite hints for physics beyond the Standard
Model (e. g. dark matter and quantum gravity), phenomena within the theory, like
the strong force, can become equally challenging due to completely distinct behav-
ior at different energy and momentum scales. The framework of the strong force is
quantum chromodynamics (QCD), which was developed according to the principles
of quantum electrodynamics, following its vast successes in describing fundamental
interactions between electrically charged particles. At high energy levels QCD is
experimentally well established where it can be described with perturbative meth-
ods achieving great precision. In this energy regime the interaction is characterized
in terms of basic quark and gluon exchanges. However, at lower energy levels ac-
curate descriptions become increasingly difficult to outright impossible - even if
knowledge of the higher energy dynamics is considered - as complex (high-order)
interactions become the dominating processes. Diffraction physics at LHC energies
lies in-between these two energy scales describing strong interactions outside the
QCD framework via Regge theory. To resolve the issue of the rising total cross sec-
tion at high energy levels a Pomeron ansatz is used to describe the mediation of the
strong force. This Pomeron-state carries vacuum quantum numbers. However, the
Pomeron is not represented by a single physical particle but instead it is associated
with a superposition of multiple particles with constitute the so-called Pomeron tra-
jectory. In the current set of known compound particles none can be attributed to
this Pomeron trajectory. The glueball, however, a hypothetical particle consisting
only of gluons would classify as a candidate since the simplest exchange of vacuum
quantum number is via a pair of gluons in a color singlet state [1].

This study describes a special diffractive process called central exclusive pro-
duction (CEP) in proton-proton collisions with a center of mass energy

√
s of 13

TeV. measured in ALICE at LHC–CERN. CEP events are defined as processes in
which the two interacting protons stay intact but exchange sufficient energy and
momentum to create a particle X. According to Regge theory theses states (at
LHC energies) are produced by a fusion of two Pomerons, which are emitted by
the interacting protons. The production of X via double Pomeron fusion is a col-

1



CHAPTER 1. MOTIVATION

orless mechanism which results in a clear experimental signature with large voids
of particles between the outgoing protons and the centrally produced system in the
pseudorapidity variable η. This is referred to as a rapidity gap. Measuring the decay
products of X (i. e. π+π− in this thesis) allows for a detailed study of the Pomeron.
However, the analysis of the X → π+π− invariant mass spectrum is prone to back-
ground sources from high mass states that decay into X → π+π− +N , two charged
pions and N additional unobserved particles. In order to reduce this background
component a general background study is carried out followed by a multivariate
approach to reduce its contribution to the total mass spectrum.

This thesis is structured as follows: First, Chap. 2 features an introduction to
the Standard Model (Sec. 2.1) and diffractive physics (Sec. 2.2) and subsequently
its role in the ALICE experiment (Sec.2.3). Second, Chap. 3 aims at understanding
the background components by studying simulated data as well as creating a back-
ground template (Sec. 3.3) which can be subtracted from the data yielding signal
events. Third, Chap. 4 describes a multivariate approach using neural networks to
reduce background components. Finally, Chap. 5 summarizes results obtained in
the two previous chapters and gives an outlook for future CEP studies.

2



Chapter 2

Theoretical background

2.1 The standard model
In this section a short introduction to the standard model and QCD is presented.
It summarizes the ideas found in [2–5] where also further information is available.

The Standard Model of particle physics describes the known fundamental par-
ticles and the interactions between them. It is based on the principle of symmetry
under space-time1 and gauge transformations. Since space-time transformations
represent a change in coordinate system, it follows that the laws of physics must be
invariant under space-time transformations. To kinematically describe a relativistic
theory which is required to be invariant under local gauge transformations one uses
a Lagrangian density. The set of gauge transformations under which the Standard
Model Lagrangian is invariant is given by the following symmetry group

SU(3)C × SU(2)L × U(1) (2.1.1)

U(n) is the group of all n × n unitary matrices and SU(n) are a subgroup of the
U(n) with unit determinant, called the special unitary matrices. The symmetry
group SU(2)L × U(1) is associated with the electro-weak interaction. It represents
a unification of electromagnetic and weak interactions. The subscript L indicates
coupling only to left handed particles. The SU(3)C part gives rise to the strong
interactions where the subscript C denotes that particles with color charge transform
under the SU(3) group. The electromagnetic force is described by a subgroup of
the U(1) part of the electro-weak symmetry. The weak interactions are described by
the rest of the SU(2)L×U(1) part. The Higgs mechanism spontaneously breaks the
electro-weak symmetry SU(2)L×U(1)→ U(1)EM . The group U(1)EM is associated
with the electromagnetic interaction and acts only on electrically charged particles.
The fact that the weak and strong force are described by a higher symmetry as the
electromagnetic force gives rise to more than one boson mediating the weak and
strong forces.

Additionally, there exist multiplicative discrete symmetries that are conserved
in some particle interactions called the charge (C), parity (P) and time (T) reversal
symmetry. When these symmetry operations act on particles a transformation of
(affected) particles takes place. The charge symmetry operation flips all charge
quantum numbers which include electric charge, baryon and lepton numbers as

1Space-time transformations are translations, rotations and Lorentz boosts.

3
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well as the quark numbers, isospin, strangeness, charm, bottomness and topness.
As a consequence, the particle is transformed into its anti-particle. The parity
operation affects only the spatial coordinates flipping their sign while leaving the
sign of the time component unaffected. The T-symmetry reverses the sign of a
particle’s time component. A time symmetric process requires an interaction to
be also possible in the other direction2. Although the individual symmetries can be
violated by e. g. the weak interaction, the standard model requires that the combined
CPT symmetry is conserved. I. e. the Lagrangian has to be invariant under the
simultaneous application of all three operations. The pure electromagnetic and
strong interaction conserve also C, P and T operations separately.

The particles currently considered elementary are fermionic particles which make
up all the standard matter and the bosons that mediate the electromagnetic, weak
and strong forces. The fermionic matter consists of six quarks and six leptons. The
quark sector is made up of the up, down, charm, strange, top and bottom quarks.
The leptons are split into the charged leptons, the electron, the muon, and tau as
well as the three neutrinos.

2.1.1 QCD
To describe the processes that are relevant to this analysis we have to focus on the
strong interaction which is described by Quantum chromodynamics (QCD). The
Lagrangian density L of QCD yields the kinematics of quarks and gluons. It is
defined by the following formula3 [5]

LQCD = −1

4
F a
µνF

µν a +
∑
q

q(iγµDµ −mq)q (2.1.2)

Here q describes the quark fields for q = {u, d, s, c, b, t} with their associated mass
mq and γµ denotes the gamma matrices. µ represents the four-dimensional space-
time indices. The spinor indices of γµ and q a have been suppressed in the interest
of readability. The gluon field strength tensor F a

µν is given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν (2.1.3)

Aa
µ are the gluon vector fields with color a = {1, 2, . . . , 8} and gs is the strong

coupling constant which measures the strength of the interaction. The functions
fabc are the structure constants of the SU(3) group and the indices a, b, c run over
the eight color degrees of freedom. The reason the gluons are massless is explained
by the impossibility of including a mass term such as m2AµAµ to LQCD whilst
maintaining gauge invariance [5]. Dµ denotes the covariant derivative of the quark
fields. It is given by the following relationship

Dµq = (∂µ + i
gs
2
Aa

νλa)q (2.1.4)

λa are the Gell-Mann matrices which make up the linearly independent generators
of the SU(3). QCD is a so-called non-Abelian gauge theory, i. e. the generators of

2However, the time reversed process is less likely due to phase space arguments like mass and
energy conservation.

3In general, the Einstein notation applies, i. e. indices appearing twice in a single term (and
not otherwise defined) are to be summed over their respective ranges.

4
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the SU(3) group do not commute. Instead, they obey a the following relationship

[λa, λb] = if c
abλc (2.1.5)

Here, the structure constants fabc of the SU(3) appear again defining the commuta-
tion relationship between the generators of the group. The formula Eq. 2.1.5 is the
origin of the gluon self-interaction term −gsfabcA

b
µA

c in the Lagrangian, enabling
three or four pure gluon vertices. This is contrasted with the U(1) symmetry group
of electrodynamics which contains no self interaction terms, i. e. the photon field
does not carry an electric charge and, therefore, cannot interact with itself.

2.1.2 The running coupling constant
The interaction terms in the Lagrangian can be used to calculate the probability of a
particular scattering process. At leading order the coupling between particles with a
color charge is described by the coupling strength gs. The actual coupling, however,
does not correspond solely to the leading order term, but includes higher order, or so
called loop corrections as well. This results in a running coupling i. e. gs → gs(|q2|)
where the strength of the interaction is dependent on the momentum scale |q2|. By
convention, the measured parameter is the strong coupling αs =

gs
4π

. For a one-loop
approximation the strong coupling is given by

αs(|q2|) =
12π

(11nc − 2nf )

1

ln(|q2|/Λ2
QCD)

(2.1.6)

nc is the number of color charge states and nf is the number of quark flavors at
the momentum scale |q2|. ΛQCD is a free parameter and must be measured exper-
imentally. According to the standard model nc = 3 and nf = 6, we can conclude
that

(i) as |q2| → ∞ the coupling strength αs approaches 0 (asymptotic freedom),

(ii) as |q2| → 0 the interaction becomes so strong that the colored objects are
confined into color neutral states.

The property of asymptotic freedom makes QCD calculations tractable at high mo-
menta by allowing the interaction to be treated as a perturbation of free fields.
However, at low momentum transfer non-negligible long-range correlation and multi-
particle interactions in higher-order loops make quantitative application of QCD
impracticable.

2.2 Diffractive physics
One way to test the theory of QCD and the Standard Model in general is via high
energy particle collider experiments. To describe the different ways a collision can
occur the total cross section is used. It describes the probability that two particles
will collide and react in a certain way, and generally depends on the energy of the
colliding particles. The total cross section σtot is divided into two major parts: the
elastic and the inelastic cross section whereas the inelastic one can be further divided
into the diffractive (D) and non-diffractive (ND) cross section:

σtot = σel + σinel with: σinel = σND + σD. (2.2.1)

5
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Elastic processes are defined as events where the initial particles emerge from the
interaction without any exchange of quantum numbers. The final state particles
remain unchanged. Hence, only the kinematics of the process changed. This can be
formulated as

1 + 2 → 1′ + 2′ (2.2.2)

In inelastic scattering the result are multi-particle final states X. This is expressed
by

1 + 2 → X (2.2.3)

X describes the whole system of emerging particles which differ from the initial states
1 and 2. In contrast to non-diffractive events, diffractive scattering is defined as a
vacuum quantum number exchange between the two initial protons (see Sec. 2.2.1).
To distinguish non-diffractive events from diffractive ones at the experimental level
the rapidity distribution of particles emerging in both event categories has to be
considered. The rapidity relative to the beam axis of a particle is a measure of its
forward momentum, which is defined as follows

y =
1

2
lnE + pz
E − pz

(2.2.4)

E is the particle’s energy and pz the momentum in the initial z-direction along
the beamline. In collider experiments where m � p ⇒ E ≈ p the rapidity is
approximately equal to the pseudorapidity η

y ≈ η = −ln
[
tan
(
θ

2

)]
=

1

2
ln |p|+ pz
|p| − pz

(2.2.5)

θ denotes the angle enclosed between the particle and the beamline. |p| is the par-
ticles spatial momentum magnitude.

In contrast to diffractive events, non-diffractive collisions are characterized through
a color quantum number exchange between the two protons. As neither of the sys-
tems is color neutral they are pulling a color field between them as they are moving
apart. The energy of this field grows with the separation displacement. As soon as
the distance reaches the order one unit in rapidity new particles are created filling
the rapidity gap. Therefore, large rapidity gaps between final state particles are
exponentially suppressed [6]:

dNND

d∆η
∼ e−∆η (2.2.6)

To ensure two final states, where the quantum numbers equal those of the incoming
protons, a large non-exponentially suppressed rapidity gap distribution of the final
states is required:

dND

d∆η
∼ const. (2.2.7)

This difference in rapidity gap distribution is illustrated in Fig. 2.1.
Thus, we can summarize the two dependent conditions that characterize a diffrac-

tive event as follows:

(i) No color exchange resulting in (ii),

(ii) Constant rapidity gap distribution of the final state.
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Figure 2.1: Maximum rapidity gap distribution in non-diffractive
and diffractive events simulated with Pythia-8 (MBR). In contrast to
diffractive events, non-diffractive ones experience an exponentially
suppressed rapidity gap. This can be explained by the color exchange
in ND events. As ND events exchange color, the energy of the field
grows with the separation displacement of the scattered particles.
As the distance reaches the order of unit rapidity new particles are
created filling the rapidity gap.

Among the diffraction events we distinguish three kinds of event classes: single (SD),
double (DD), and central diffraction (CD), also called central exclusive production
(CEP). In single and double diffraction, either one (SD) or both incoming protons
(DD) break apart after the interaction. As the exchange is still mediated by particles
with vacuum quantum numbers, the decay products of the dissociated protons have
net quantum numbers identical to those of the initial s ate proton. Thus, the central
rapidity gap remains intact [7]. In central exclusive production both protons emerge
unchanged and a single object at central rapidity - i. e. with a rapidity much closer
to zero as the outgoing protons - is created. These processes can be schematically
viewed as

1 + 2
SD→ 1′ + X

1 + 2
DD→ X1 + X2

1 + 2
CEP→ 1′ + X + 2′

(2.2.8)

In this thesis we will focus on central exclusive production.
The energy scale at which diffractive processes with large rapidity gaps are hap-

pening is relatively low. This process is classified as belonging to the soft energy
regime. Consequently, the running coupling constant αs is large limiting the ap-
plication of perturbative QCD as higher order terms can no longer be neglected.
Therefore, an alternative description for diffraction in the soft regime is needed. A
formalism describing diffractive exchanges is Regge theory.
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2.2.1 Regge theory and the pomeron
The following section is a brief discussion of Regge theory and the pomeron approach
will be held very briefly. For a more holistic approach see [6, 7]. Historically, Regge
theory was introduced to describe the strong interaction. This approach was later
succeeded by QCD.

At its core, Regge theory studies the properties of scattering as a function of an-
gular momentum, which is not quantized in multiples of ~ but treated as a complex
variable. Initial free particles at the time −∞ interact via the unitary scattering
matrix at time 0 producing final free particle states at time +∞ [8, 9]. Hadronic
interactions at large energies are described by assuming the exchange of an object
called Reggeons. These Reggeons carry angular momentum α(t) which have a func-
tional dependence on the four-momentum transfer t = (p1 − p1′)

2 = (p2 − p2′)
2. A

consequence of its t−dependence the Reggeon is not represented by a single phys-
ical particle but instead it is associated with a superposition of multiple particles
(mesons) that all contribute simultaneously to the total cross section. This super-
position of particles all follow the following function [10]

α(t) = α(0) + α′t (2.2.9)

This linear function is called a Regge trajectory. The slope α′ and intercept α(0)
can be measured by fitting the angular momentum against the squared mass of light
mesons [11] as shown in Fig. 2.2. This results in an intercept α(0) ∼ 0.5. For large
values of s, the center of mass energy squared, the total cross section shows the
following relationship

σtot ∝ sα(0)−1 (2.2.10)

As the intercept α(0) is roughly α(0) ' 0.5, the dependence is assumed to be 1/
√
s.

Therefore, as the center of mass energy increases, the total cross section is expected
to vanish asymptotically.

However, as illustrated in Fig. 2.3, at around 20 GeV the total cross section is
increasingly defying the predicted trend. To explain the observed energy dependence
of σtot a Regge trajectory with an intercept α(0) > 1 is introduced, which results in
a positive exponent (see Eq. 2.2.10) and leads to a rising total cross section with an
increase in s.

This trajectory called the Pomeron is the dominant exchange propagator in
diffractive processes. Contrary to the mesonic Reggeon, the Pomeron is not expected
to be based on quarks. In the current set of known compound particles none can be
attributed to lie on the Pomeron trajectory. The glueball, however, a hypothetical
particle consisting only of gluons4, would classify as a candidate since the simplest
exchange of vacuum quantum number is via a pair of gluons in a color singlet
state [1].

2.2.2 Central exclusive production
Central exclusive production is defined as a diffractive process in which the two
incoming particles do not disintegrate and a single object is produced by a color-less

4According to QCD, gluons carry color charge and, thus, interact with themselves enabling
such a state to exist.
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Figure 2.2: Example of a Regge trajectory: The Regge trajectory
describes a quadratic relationship between the mass of mesons and
resonances and their angular momentum. The parameters of the
Regge trajectory are extracted by finding the best fit [12].

exchange at central rapidity. In proton-proton interactions it can be schematically
written as

pp → p + X + p (2.2.11)

X is the system produced at mid-rapidity, which is separated from the outgoing
protons by large rapidity gaps. There are three processes that contribute to the
t-channel exchange of a color-singlet object: diphoton fusion, photoproduction, and
double Pomeron exchange (DPE). Diphoton fusion is a pure QED process where both
protons radiate a photon that fuse to produce the central system like γγ → X. Pho-
toproduction and DPE are both processes that involve the emission of a Pomeron.
In double Pomeron emission, as the name suggests, both protons emit a Pomeron,
which then join together and create the central system. Photoproduction can be
seen as the intermediate process between diphoton fusion and DPE. It describes the
emission of both a photon and a Pomeron fusing together to create the X system.
At high energies Pomeron mediated processes are expected to predominantly con-
tribute to the CEP cross section since the Pomeron is strongly interacting [14].

The characteristics of CEP entail some interesting features of the centrally pro-
duced system X. Since the protons stay intact and the Pomeron carries vacuum
quantum numbers, X must be a color singlet. Such a state is even under charge
conjugation as well as parity transformation5. Collectively they represent the selec-
tion rule for the centrally produced particle: JPC = (even)++ [15, 16]. Additionally,
the protons in CEP scatter in the very forward region. As the scattering angle be-
tween the in- and outgoing protons decreases asymptotically to zero, so does J → 0
by conservation of angular momentum. For small non-zero scattering angles this

5This means that the charge conjugation and parity operation are C= +1 and P= +1 respec-
tively.
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Figure 2.3: Total cross section over center of mass energy
√
s: At

∼ 20 GeV the cross section increases contrary to predictions from
Regge theory with pure Reggeons [13].

rule still approximately holds true and large values of J are greatly suppressed [17].
Thus, a large contribution to the experimental signature of the CEP system is ex-
pected to consist of scalar mesons6 and potentially glueballs. The importance of the
study of these states is mentioned in the 2010 Particle Data Group Note on scalar
mesons [18]: ”The scalar mesons are especially important to understand because
they have the same quantum numbers as the vacuum (JPC = 0++). Therefore
they can condense into the vacuum and break a symmetry such as a global chiral
U(Nf ) × U(Nf ). The details of how this symmetry breaking is implemented in
Nature is one of the most profound problems in particle physics.”

2.3 The ALICE experiment
ALICE7 is a general-purpose heavy-ion experiment at the CERN large hadron col-
lider (LHC) that aims to study the physics of strongly interacting matter in heavy-
ion, proton-ion, as well as proton-proton collisions [19]. The detector is built around
the interaction point at Point 2 where the decay products of the colliding particles
are measured by its 18 sub-detector systems [20]. The sub-detectors can be cat-
egorized into the central barrel, the forward muon spectrometer, and additional
detectors for event characterization and trigger purposes lying outside of the central
barrel.

The central barrel is made up of the Inner Tracking System (ITS) [21], Time
Projection Chamber (TPC) [22], Time-of-Flight detector (TOF) [23], High Momen-
tum Particle Identification Detector (HMPID) [24], Transition Radiation Detector
(TRD) [25], Electromagnetic Calorimeter (EMCal) [26, 27], and the Photon Spec-
trometer (PHOS) [28]. This set of detectors provide excellent particle tracking and
identification capabilities in the mid-rapidity region around |η| < 0.9 in the whole
2π azimuthal (φ) range. Additionally, the inner tracking system which is located

6Scalar mesons have quantum numbers JPC = 0++

7A large ion collider experiment
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very close to the beamline covers an extended rapidity range of |η| < 2 and |η| < 1.4
with its inner and outer layers of silicon pixel detectors respectively. The particle
identification (PID) performance is illustrated in Fig. 2.4. It shows a very good
ability to identify even low-momentum particles which is a key feature for studying
CEP events [29].

(a)

(b)

(c)

Figure 2.4: PID performances of barrel sub-detector systems
(see [30]): (A) TPC momentum versus deposited energy per unit
length (dE/dx). (B) ITS, energy loss (dE/dx) versus momentum.
(C) TOF signal versus momentum.

Among the forward detectors outside of the central region are the V0 [31], the
T0 [31], the Forward Multiplicity Detector (FMD) [31] and the ALICE diffractive de-
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tector (AD) [32]. The V0 detector system consists of two scintillator arrays situated
on both sides of the central barrel in the pseudorapidity regions of −3.7 < η < −1.7
and 2.7 < η < 5.1, respectively. The FMD detector consists of five silicon semicon-
ductor sub-detectors which are used to estimate the charged particle multiplicity in
events. Its acceptance overlaps with the V0 detector with a pseudorapidity range of
−3.4 < η < −1.7 and 1.7 < η < 5.0. During the long shutdown 1 of LHC the AD
system, an additional forward detector was installed by the ALICE Collaboration.
The AD consists of two modules one on each side of the interaction point made
of two layers of scintillator pads in the pseudorapidity region of −7.0 < η < −4.9
and 4.8 < η < 6.3, respectively. This upgrade has therefore considerably increased
the forward coverage of the ALICE detector to over 12 units in pseudorapidity.
This makes, combined with the excellent low-momentum, tracking in the central
barrel ALICE well suited for diffractive studies. In general, all detectors cover the
full azimuthal range except for HMPID, PHOS, and EMCal+DCal. In Fig. 2.5a a
schematic view of the detector is shown and Fig. 2.5b illustrates the pseudorapidity
coverage of the individual sub-detectors.

Central exclusive production events are defined experimentally by activity in the
mid rapidity region, i. e. in the central barrel and an activity gap in the forward
direction. At ALICE, this topology can be implemented at trigger level zero (L0)
by requiring hits in the ITS or TOF systems [33]. The double-gap condition is real-
ized by the absence of V0 signal. In the offline analysis additional information from
FMD, TPC, and AD detectors extend the activity gap region to over 12 units in
pseudorapidity.

Since the protons remain intact, CEP events provide a distinct low multiplicity
signature to search for in the detectors. Therefore, the mass of the centrally pro-
duced particle X can be measured with a high degree of accuracy if the momenta
of the outgoing protons are detected. Additionally, the knowledge of the outgoing
proton momenta can be used to reduce background sources from partially recon-
structed X masses where one or multiple decay products of the central system were
not detected. However, despite the wide η-coverage of the ALICE detector system
the scattered protons do not enter the detector acceptance due to the very small
scattering angle. Consequently, a significant amount of background arises from par-
tially reconstructed events.

Although not available at ALICE, these proton momenta measurements can be
achieved using ultra forward detectors typically housed in so called roman pots in
the beamline itself [34].

12
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Figure 2.5: Two representations of the ALICE detector com-
ponents: On top (A) the detector components are displayed in
schematic drawing for LHC Run 2. Below that, the pseudorapidity
coverage of the sub-detectors is shown (B) illustrating the ability to
perform diffractive studies over a large rapidity region.

13



Chapter 3

Background studies

This thesis aims at understanding and subsequently reducing background (BG)
sources in the analysis of CEP events at ALICE. For this purpose Monte Carlo
(MC) simulations are used to generate a data set {xk}1≤k≤N . This data set consists
of N independent and identically distributed samples drawn from an underlying
distribution p(x|θ), where the parameter θ corresponds to the setting of the sim-
ulator [35]. These settings θ are formulated in theoretical frameworks, e. g. QCD
or Regge Theory, describing production, decay, or annihilation mechanisms, which
have to be established beforehand. Monte Carlo methods are used to approxi-
mate the probability p(x|θ) by sampling from a large space of unobserved processes:
p(x|θ) =

∫
p(x, z|θ)dz [35]. The variable z is generally regarded as the MC truth.

z describes the realm of possible event configurations where a fixed value entirely
predefines all event characteristics: i. e. its kinematics, the initial particles created
from the scattering process as well as individual particle-detector interactions. Stan-
dard reconstruction algorithms make estimates on a subset of z components such
as particle momenta, energies and particle identification (PID) given the observed
data x.

MC simulations rely heavily on good theoretical models and have to be con-
stantly compared and tuned to real data. The major advantage of using a simulated
set of data over a real one is the precise knowledge of the ”observed” data x via z.
Therefore, MC simulations provide a tool to study the resulting background mass
spectrum in any degree of detail. This opens up the possibility to find intrinsic
mechanisms to reduce it.

3.1 Used framework & data sets
A widely used high energy pp MC simulation package that includes diffractive
physics is called PYTHIA-8 [36]. It is used in this thesis to generate the event
sample {xk}1≤k≤N . To simulate the diffractive processes the MBR (Minimum Bias
Rockefeller) model [37] is used. The MBR description is the most recently imple-
mented diffractive model, which generates events following a renormalized-Regge-
theory approach. The default numeric values of the cross sections of each sub-
process, i. e. non-, single-, double-, and central-diffractive processes, have been used.
This includes parameters describing the Pomeron trajectory (see Sec 2.2.1) labeled
internally as ε and α, which describe the intercept above 1 and the slope of the
curve, respectively. Quite often the parameter ε is varied from the default param-
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eter of ε = 0.104. However, in this thesis the default configuration are used. This
is symbolized by (ε = 0.104) in the following plots. Although MBR is quite suc-
cessfully tested on data it describes only non-resonant continuum production of the
centrally produced particle (X) in CEP events at masses ≥ 1.5 GeV/c2. A compari-
son of continuum and resonant production of a 2π final state can be seen in Fig. 3.1.
The mediator particles shown (i. e. γ,P,R) are the photon, the Pomeron, and the
Reggeon. For a summary on the possible production mechanisms see Sec. 2.2.2. The
generated mass distribution (MBR) up to 4 GeV/c2 is plotted in Fig. 3.2.

Additional imprecisions may arise as described by Lebiedowicz et al. [38] due to
absorption effects which may favor the cross section of photoproduction processes
over DPE. This would lead to an increased number of ρ final states in the π+π−

spectrum. This effect is also not included in the MBR simulation model. Despite
some limitations the benefits of using a carefully tested general purpose MC sim-
ulation providing precise knowledge of all kinematic and PID information and a
good understanding of a large portion of the CEP decay channels (made up of con-
tinuum events) is crucial for this study. Thus, the background reduction results
discussed in the following sections lack information of the background contributions
of photoproduction and resonantly produced CEP particles. Nevertheless, contin-
uum produced CEP events are assumed to make up a large portion of the general
CEP spectrum [38] making the study of their contribution to the background a vital
task.

(a) (b)

Figure 3.1: Feynman graphs of continuum (A) and resonant (B)
2π production in central exclusive events [38].

The tracking and interaction of the generated particles with the material of the
detector is simulated with GEANT [39] and happens within the ALICE software
framework. Altogether, a data set comprised of approximately three million CEP
events has been simulated8. In order to study the background the data set is pre-
filtered by enforcing a double gap selection as well as track quality cuts summarized
in Tab. 3.1. It should be noted that this thesis studies the background contribution
in the π+π− data. This decay channel is chosen as it provides the largest amount
of data. However, the following methods apply also to different final states such as:
K+K− or their respective four particle final states 2π+2π− and 2K+ 2K−. To sum-
marize, the data set is obtained in the following way. First, event selection according

8The data is internally classified as belonging to the run-period of 2016k
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to Tab. 3.1 is applied yielding two accepted pion tracks. For this study perfect parti-
cle identification is assumed, as the focus lies on general background characteristics
and not on background introduced by false PID estimates. PID studies is a separate
field of study which goes beyond the constraints of this thesis. The application of
the prefilter results in a data set of roughly 2 × 104 events (see Sec. 3.2 for more
details) which entail a reduction factor of ∼ 102. Second, the invariant mass of
the particle X is calculated via the measured energy Ei and momentum ~pi of the
detected pions (i = 1, 2 and c = 1) as follows

M =

√√√√(∑
i

Ei

)2

−

(∑
i

~pi

)2

(3.1.1)

To process and analyze the data the AliRoot framework [40] is used which is an
extension to ROOT v5.34/30 [41] a scientific software framework.

Cuts applied to the simulated data

1. Double gap:
!V0, !FMD, !AD

2. Track cuts:
- Two (2) tracks reconstructed in the TPC & ITS
- Good tracks quality: χ2/dof< 4
- DCAz < 0.5 cm
- Tracks require at least 70 pad hit clusters in the TPC
- Tracks have to be in |η| < 0.9 due to bad tracking outside
- The number of SPD fired chips has to be ≤ Ntracks

3.2 Double gap selection & the invariant mass
spectrum

CEP events at ALICE are selected via a double gap condition requiring activity
in the central barrel and the absence of signal in the forward region (discussed in
detail in Sec. 2.3). However, this trigger mechanism does not explicitly specify the
size of the η-gap. In order to decrease the non-diffractive background component
the rapidity gap condition outside the barrel is maximized. While the rapidity gap
distribution for non-diffractive events decreases exponentially, the diffractive η-gap
distribution stays constant (as discussed in Sec. 2.2, see Fig. 2.1). This shape dif-
ference between non-diffractive and diffractive events can be exploited. A larger
∆η eventually means a better signal to background ratio9. In Fig. 3.3 the influence
of different rapidity gap sizes can be seen. The three sub-plots each feature the
2π invariant mass spectrum measured in the central barrel region over the relative
count. Here, the specific detector simulation and tracking of the individual particles
is reduced to a simple detector acceptance cut in φ and η. I. e. a charged particle

9I. e. a better ratio of diffractive to non-diffractive events.
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Figure 3.2: Generated mass distribution of the centrally produced
X particle in Pythia-8 MBR CEP simulations. ε refers to an impor-
tant parameter of the MBR simulation scheme which describes the
intercept of the Pomeron trajectory above 1. This spectrum shows
no structures as the MBR model simulates only non-resonant con-
tinuum DPE production of the X mass ≥ 1.5 Gev/c2.

is detected if its trajectory coincides with a detectors spatial coverage. This as-
sumes perfect detection efficiency of charged pions, which is justified by the aim of
highlighting the effects of a variable rapidity gap imposed on different background
components (non-, single-, and double-diffractive BG). The left plot illustrates the
invariant mass spectrum in absence of a double gap condition: here, all events with
exactly two detected pions (π+π−) in the central barrel are plotted. As the imposed
rapidity gap ∆η increases from the left panel to the right one, the background con-
tribution from ND, SD, and DD events decreases and approach zero. The increasing
η-gap is accomplished by successively requiring no signal in the FMD and V0 (in the
middle panel) and no signal in FMD, V0, and the AD detector system in the right
most panel. This double gap condition eliminates nearly 100% of the ND, SD, and
DD background components. The remaining sample is defined as feed-down (FD)
background. The source of FD are CEP events themselves. These events are only
partially reconstructed, i. e. the detected pions come from n > 2 final state events,
where n is the total number of final state particles10. This means that at least one fi-
nal particle generated in the X decay remains undetected, resulting in a loss of mass
and energy. As a consequence, the reconstructed invariant mass of the X particle
is understated which induces a shift of the FD invariant mass spectrum towards to
lower masses. Since feed-down represents the majority of the background portion, it
is crucial to understand its origin and composition in order to describe and ideally
eliminate it. One option to reduce feed-down events on an experimental level is to
introduce detectors measuring the scattered protons in ALICE. By combining the
four momenta of the scattered protons with the two measured pion tracks one can
check for a deviation from the initial center of mass energy of

√
s = 13 TeV (and

zero three-momentum), which concludes a background event. As this is no viable

10This information is available by inspecting the MC truth z of the event.
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option, two alternative methods are considered here: FD description and reduction
via multivariate methods.
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Figure 3.3: Invariant mass distribution for different rapidity gap
filters. The non-diffractive, SD, and DD background can be reduced
by selecting a large rapidity gap as is done by using the FMD, V0
and AD detector systems. See Sec. 3.2 for more details.

3.3 Background estimation
The goal of a background estimation study is to construct a representative template
of the background shape which can then be subtracted from the whole data, yielding
the excessive data as signal. To extract the signal yield, a background as well
as a signal shape are used to fit the data. A common approach to describe the
combinatorial background, i. e. the background which arises from pairs of particles
originating from different mother particles11, is to employ the like-sign (LS) method.
The like-sign method constructs a combinatorial BG estimation from pairs of two
positive or two negative pions, respectively. These pairs of identical charge cannot
be the only two particles originating from X (due to charge conservation, since X
has vacuum quantum numbers) and consequently their mass spectrum is expected to
have a similar shape as the contribution from uncorrelated opposite-sign pairs [42].
The probability of measuring a pair of opposite-sign pions is determined by the
number of available positive N+ and negative N− pions, respectively. The total

11I. e. the detected tracks are combined in the wrong way. Therefore, the combinatorial back-
ground consists of totally uncorrelated particles.
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number of available pions is N = N+ +N−

P (+−,−+) = P (+)P (−) + P (−)P (+) =

=
N+

N

N−

N − 1
+

N−

N

N+

N − 1
= 2P (+)P (−)

(3.3.1)

The like-sign ansatz is formulated in the following way

P (+−,−+) = 2P (+)P (−) ' 2
√

P (+)P (+)P (−)P (−)
= 2
√

P (++)P (−−)
(3.3.2)

The probabilities are defined as P (++) = N+

N
N+−1
N−1

(the same goes for P (−−) with
N−). Consequently, the background (with N > 2) can be estimated by combining
the measurement of positive and negative like-sign pairs such as P (+−,−+) '
2
√

P (++)P (−−).
However, the comparison of the LS background estimation in Fig. 3.4a shows that

the like-sign hypothesis underestimates the feed-down substantially. In addition to
underestimating the feed-down background, the like-sign distribution in Fig. 3.4b
yields a poor approximation for the feed-down shape. A hint for the unrelated results
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Figure 3.4: Like-sign approximation of the combinatorial back-
ground: Left: Total like-sign approximation using positive and neg-
ative like-sign pairs with 2

√
(++)(−−). The like-sign hypothesis

states that these curves should match. Right: A shape compari-
son between feed-down background (black) and the like-sign (blue)
modeling of the combinatorial background yields a rather unrelated
description of the data.

of the like-sign background estimation can be found by studying the uncertainty in
Eq. 3.3.2: i. e. when P (+−,−+) equals 2

√
P (++)P (−−).

P (+−,−+)
?
= 2
√

P (++)P (−−)

2
N+N−

N(N − 1)
= 2

√
N+(N+ − 1) N−(N− − 1)

N2(N − 1)2

N+N− =
√

N+(N+ − 1) N−(N− − 1)

(3.3.3)

The equal sign in Eq. 3.3.3 applies for N+/− = N+/−−1. Hence, the error introduced
by the like-sign estimation decreases for large N+/−. In extreme cases, such as N = 3
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either N+ − 1, or N− − 1 becomes zero, the right hand side of Eq. 3.3.3 vanishes,
which causes a drastic underestimation of the like-sign assumption (in Eq. 3.3.2).
In fact, cases with low N (i. e. few available pions) tend to be the norm rather than
the exception when studying the feed-down composition. The main decay channels
are listed in Tab. 3.1 (an extended table is listed in Tab. B.1 in the appendix).

Decay Occurrence[%] Cumulative [%]

X
π+

ρ−

π0

γγ

π−

21.82 21.82

X
π+π−

19.66 41.48

X
π0

γγ

ρ0

π+π−

7.75 49.23

X
π0

γγ

π−

ρ+

π0

γγ

π+

5.37 54.60

X
π0

γγ

π+

π−

4.20 58.80

X
π0

γγ

ω

π0

γγ

π+

π−

3.64 62.44
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X
ρ+

π0

γγ

π+

ρ−

π0

γγ

π−

3.52 65.96

X
π0

γγ

ρ+

π0

γγ

π+

ρ−

π0

γγ

π−

1.23 67.19

X
π0

γγ

π0

γγ

ρ0

π+π−

1.20 68.40

Table 3.1: Decay channels in the feed-down background listed by
highest relative occurrence. The nine most frequent decay modes
make up over 2/3 of all detected events. The second most frequent
event is what we consider signal. Here the central system X decays
into two pions, which both get measured up in the detector. All de-
picted background events - highlighted in red - show X decaying into
two pions accompanied by two additional final state gammas. Their
energy is not reconstructed in the ALICE detector and therefore is
missing when constructing the invariant mass of X.

The table features decay channels found in the data, sorted by highest relative
occurrence. The left column schematically illustrates the decay chain in a hierar-
chical way featuring all intermediate and final state particles12 Additionally, the
cumulative occurrence of all decay modes is reported. Red colored rows refer to

12Final state particles are defined by a life time which is long enough to reach the main detector
components in ALICE.
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feed-down events with two charged pions accompanied by additional final state pho-
tons (γ background). The table features the nine most common decay channels in
the data which together make up roughly 68 %. The second most frequent event
is what we consider signal, i. e. the central system X decays into two pions which
get measured in the detector. The other decay channels listed are gamma accom-
panied background processes. The photon energies are not reconstructed13 in the
ALICE detector and therefore go missing. The feed-down contributions can be cat-
egorized into three groups (see Fig. 3.5) depending on the background composition
(i. e. the additional undetected particles: π+π− + Nundet). First, the largest group
consists of events with two pions accompanied only by additional final state gam-
mas, i. e. π+π− + Nγ. This ”gamma background” accounts for a little over 83% of
all feed-down events. Second, with ∼ 12%, events with additional charged particles,
i. e. π+π− + Ncharged + (Nneutral), are considered. These decay channels possibly
also include neutral particles like photons but most importantly have more than
two detectable14 charged particles. This contribution is referred to (in this work) as
3+ background. Third, the least frequent decay channels feature neutral particles
besides photons, e. g. neutrons, and neutral kaons such as K0

L/S, which make up
around 4% of the total feed-down.

Furthermore, the knowledge about the feed-down composition (illustrated in
Tab. 3.1) helps explain the structures present in the dipion invariant mass spectrum
(plotted in Fig. 3.5). At roughly 0.77 GeV/c2 a dominant ρ0 peak is present. Many
decay channels (e. g. the third most frequent in Tab. 3.1) feature a neutral ρ-meson
which decays into two charged pions, which finally get measured in the central
barrel. Alongside the ρ0 additional particles (e. g. neutral pions π0) are produced
whose decay products (primarily gammas) go undetected. Therefore, the measured
charged pions produce an invariant mass contribution at the ρ0 mass at ' 0.77
GeV/c2. The same is true for neutral kaons, i. e. K0

S, which also decay into two
charged pions creating a peak at ' 0.49 GeV/c2. Additional less prominent peaks
also exist in the data, however, their contribution is rather small, compared to
decay channels which involve processes such as ρ0 → π+π− and K0

S → π+π−. The
remaining feed-down decay channels can be considered as combinatorial background
contributions.

Since these structures arise from correlated particles, the like-sign method falls
short to describe such events. The LS approximation can, therefore, only model
the 3+ FD contribution, amounting to merely 12%. Within the 3+ background
contribution many decay channels exist, which feature other extra charged parti-
cle types besides pions, such as kaons. This background contribution is also not
describable via the like-sign approximation. Therefore, the like-sign method even
under-represents the 3+ background contribution, plotted in Fig. 3.6.

Consequently, the like-sign estimation fails to capture the essence of a large
potion of the background. In an effort to better approximate the background shape,
two alternative approaches are attempted: the γ-hit and the 3+ track estimation
describing a majority of feed-down events.

13I. e. in the current state of the analysis. See the next sections for more details.
14Detectable in a sense that the detection efficiency of a charged track entering the detector

acceptance is - within a certain momentum range - approximately equal to one. Therefore, charged
particles entering the detector acceptance are significantly more likely to be detected than photons
in the the calorimeter acceptance.
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Figure 3.5: Invariant mass distribution of various feed-down con-
tributions: The feed-down background can be categorized into three
groups. First, gamma-component which consists of π+π− events
which are accompanied only by additional photons. Second, the
3+ contribution consisting of decay channels with more than two
charged particles. Third, the least frequent decay channels feature
neutral particles besides photons.
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Figure 3.6: Like-sign approximation of the 3+ background com-
ponent: Left: Total like-sign approximation using positive and neg-
ative like-sign pairs with 2

√
(++)(−−). The like-sign hypothesis

states that these curves should match. Right: A shape compari-
son between the 3+ background component (black) and the like-sign
(blue) approximation of the combinatorial background yields a rather
unrelated description of the 3+ FD part.

3.3.1 The γ-hit background estimation
As seen in Fig. 3.5 a large fraction of the feed-down can be attributed to events con-
taining final states photons which are invisible to the ALICE detector systems cur-
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rently in use. The invariant mass distributions of all gamma-accompanied feed-down
events is plotted in Fig. 3.7. The total FD invariant mass spectrum (black) is com-
pared to decay channels with at least one final state gamma (in color). Altogether,
they account for ∼ 95% of the total FD. Furthermore, over 83% of all FD events only
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Figure 3.7: Invariant mass distribution of feed-down event ac-
companied by gammas. The total feed-down mass spectrum (black)
contains contributions which have at least an additional γ (pink) ac-
count for ∼ 95%. Over 83% of all FD events are only accompanied
by gammas (green). The prominent peaks in the dipion spectrum
originate from decays such as ρ0 → π+π− and K0

S → π+π− where
additional final state particles go undetected (see Sec. 3.3 for more
details).

consist of two pions with N additional final state photons, i. e. π+π− +Nγ. Conse-
quently, a large portion of the feed-down could be reduced by vetoing events with
gamma signals in the detector (similar to the double gap veto detectors V0, FMD &
AD). The detector system capable of measuring photons is the EMCal+DCal [26, 27]
(see Fig. 2.5a for its integration in ALICE). The two opposing calorimeters cover
the pseudorapidity region between |η| < 0.7, and 110° and 60° in azimuthal angle,
respectively. To assess the feasibility of using the EMCal to detect gammas related
to FD events the energy deposited in the EMCal is studied. In Fig. 3.8a the pri-
mary photon energy as well as the secondary particle energy reaching the EMCal
is plotted. As the calorimeters are placed quite far away from the beam pipe the
primary photons may interact with the material of the detector, i. e. gaseous and
solid matter from various detector systems between the interaction point and the
calorimeters. Thus, in general the photons lose energy on their way to the calorime-
ter e. g. by producing secondary particles. This secondary particle energy is the
maximum available energy to produce a signal in the calorimeter, which provides an
approximation of the energy scale of particles entering the EMCal. Both primary
and secondary energies have a peak occurrence near zero and then decrease expo-
nentially. The actual measurable energy distribution, i. e. the secondary particle
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Figure 3.8: Energy distribution of primary gammas and secondary
particles reaching the EMCal (A). Energy dependent trigger effi-
ciency of the EMCal (B). A comparison of the maximum energy
depositable in the EMCal (A) with the energy dependent efficiency
of the EMCal in (B) a small percentage - roughly 0.1%− 0.01% of
all gammas - are assumed to be detected.

energies, goes to zero at roughly 1.5 GeV. A comparison of the energy dependent
trigger efficiency of the EMCal (see Fig. 3.8b) yields an estimated percentage of
0.1%−0.01% of detectable gammas. Therefore, the background reducing capability
of the EMCal is limited by the low-energy range of feed-down gammas.

Similarly to the like-sign background estimation, actual detected photons pro-
vide an indication of the background shape. In the like-sign case, the fact that
both pions have the same charge identifies the event unambiguously as background.
Correspondingly, an energy deposition in the EMCal, called a cluster, also indicates
a partially reconstructed event. Thus, the mass spectrum constructed from π+π−

with at least one additional γ-hit in the calorimeter should result in an excellent
feed-down approximation. The measured energy deposited in the calorimeter is
plotted in Fig. 3.9. The energy distributions of signal and background events are
nearly identical. This similar shape is caused by the fact that clusters most domi-
nantly originate from the charged pions and actually not from gammas (as discussed
earlier) entering the calorimeter. Consequently, a cluster in the EMCal provides no
direct indication for a background event: i. e. a registered EMCal response does
not suffice to distinguish signal from background events. The total EMCal response
EMCtot consists (mainly15) of two parts: EMCtot = EMCπ + EMCγ. The goal
is to find a variable in which we can discriminate the pion from gamma induced
clusters, thus obtaining EMCγ = EMCtot −EMCπ. A promising observable is the
distance between a track and the spatial position of the measured energy deposition
in the calorimeter. This distance is obtained via the following method: an algorithm
prolongates the track measured in the ITS and TPC with the knowledge of its four-
momentum and the magnetic field present in the detector to the EMCal surface.

15Small contaminations arise from other decay particles as well. As we assume perfect PID,
other charged particles types get rejected by the TPC, which lies in front of the EMCal. Therefore,
these additional contributions are limited to neutral particles which are, like the gammas, part of
feed-down events which we aim to reduce. Hence, the following description is also valid in the case
of contaminations.

25



CHAPTER 3. BACKGROUND STUDIES

E (GeV)
0 0.2 0.4 0.6 0.8 1 1.2

C
ou

nt
s 

/ (
0.

03
 G

eV
)

1

10

210

310

410

=13 TeVs
=0.08)εPythia-8 MBR (

ALICE simulation, this thesis

E(cluster) (sig)

E(cluster) (FD)

(a)

0 0.2 0.4 0.6 0.8 1 1.2

C
ou

nt
s 

/ (
0.

03
 G

eV
)

1

10

210

310

410

=13 TeVs
=0.08)εPythia-8 MBR (

ALICE simulation, this thesis

E(cluster) (FD)

E(cluster) (sig)

E (GeV)
0 0.2 0.4 0.6 0.8 1 1.2

R
at

io
s

0

1

2

(b)

Figure 3.9: Comparison of EMCal energy distributions of pion vs.
gamma induced calorimeter showers (A) and a direct shape compar-
ison (B): The clusters most dominantly originate from the charged
pions entering the calorimeter. Therefore, the energy distribution
of signal and background clusters are nearly identical.

This results in a point of impact on the EMCal for every detected track. Combined
with the spatial information of registered calorimeter responses a distance between
clusters and tracks dC−T can be calculated. Due to the curvature of the EMCal
surface the displacement is calculated in the 2D rapidity azimuthal plane between
the two points. This measure is also referred to as the R distance in cylindrical
coordinates (measured in radians). It is given by the following relation

dC−T = mini(
√

(φcluster − φtrack,i)2 + (ηcluster − ηtrack,i)2) (3.3.4)

The minimum function ensures that dC−T is the distance to the nearest track (see
algorithm A in the appendix). This variable seems suitable, as the distance dC−T is
expected to be small for pion induced clustered compared to photon induced ones.
In Fig. 3.10a a direct comparison is plotted, where a clear trend can be seen. Where
gamma induced clusters are almost uniformly distributed between 0.5 < dC−T < 4.0
rad, clusters created by charged pions tend to be very close to the pion track itself
(which seems intuitive). Additionally, the probability that a gamma cluster is close
to a pion track is small. This means a cut can be introduced increasing the chance
of separating pion from gamma signals. The optimal cut value in dC−T is obtained
via a significance cut determination illustrated in Fig. 3.10b. The significance is
defined via

S =
NSig√

NSig +NBG

(3.3.5)

NSig represents the number of signal and NBG the number of background samples
on the left hand side of the cut (less than the cut value). The maximum significance
presents a trade-off between an optimal signal to background ratio while a relatively
large amount of signal data remains. This results in a cut value of dcutC−T = 0.51 rad.
At this point the purity P and signal efficiency εS are P = 98.05%, and εS = 93.18%,
respectively. This cut is used to distinguish clusters in the EMCal originating from
gammas against clusters produced by charged pions. Thus, the EMCγ response
used to discriminate signal from background events is obtained.
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Figure 3.10: Comparison of the minimum cluster-track distance
in the η − φ-space dC−T between γ and π+/π− induced calorimeter
showers (A). A clear difference between γ caused and π+/π− caused
clusters can be seen. To separate them an optimal cut value, with a
high signal amount and lowest possible background contamination,
is searched for via the maximum significance plotted in (B). It lies
at dC−T = 0.51 rad. At this point the purity P and signal efficiency
εS are P = 98.05%, and εS = 93.18%, respectively. This cut is
used to distinguish clusters in the EMCal coming from gammas to
clusters produced by charged pions.

Since the EMCal does not cover the same region as the tracking detectors (TPC,
ITS), tracks may lie outside of the calorimeter acceptance. In case no track can be
prolongated to the EMCal surface, a measured energy deposition in the calorimeter
is assumed to originate from a photon (EMCγ). With these requirements imple-
mented, the energy deposited in the EMCal is plotted in Fig. 3.11. Contrary to
Fig. 3.9, the signal from charged pions EMCπ is nearly eliminated yielding only
a small contamination of π+/π− clusters of ∼ 2% (see purity). After obtaining a
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Figure 3.11: Comparison of EMCal energy distributions of pion
vs. gamma induced calorimeter showers after a cluster-track dis-
tance cut (A) and direct shape comparison (B): Contrary to Fig. 3.9
the signal from charged pions is nearly eliminated yielding mostly
clusters produced by gammas in background events.
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rather clean sample of γ-hits in the EMCal, an estimation of the background mass
spectrum can be constructed. If a measured cluster hit has dC−T > 0.51 rad or if
neither of the pion tracks can be propagated to the EMCal surface, the invariant
mass of the detected, opposite-sign pions is calculated. This is referred to (in this
work) as the γ-hit background. In Fig. 3.12b the γ-hit BG template is compared
to the feed-down proportion of events with at least one final state gamma yielding
a reasonable agreement. In Fig. 3.12b a comparison of the total background with
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Figure 3.12: Comparison of the γ-hit background approximation
(green) with feed-down events with at least one final state gamma
(black). Left: A comparison of the total background with gammas
and the γ-hit approximation reveals the limitations of the method.
In contrast to the like-sign assumption the γ-hit model faces tedious
efficiency-corrections in order to truly estimate the total contribu-
tion. Right: A direct comparison between the constructed template
and the true background yields a reasonable agreement between the
model and the actual shape.

gammas and the γ-hit approximation reveals the limitations of the method. In con-
trast to the like-sign assumption the γ-hit model faces tedious efficiency-corrections
in order to truly estimate the total contribution. Despite yielding good shape agree-
ments, this approach is somewhat limited by the relatively low amount of obtainable
statistics due to the low EMCal-efficiency at the expected γ-energies.

3.3.2 The 3+ background estimation
The second largest feed-down contribution comes from decay channels which feature
more than two charged tracks (ncharged > 2) in the final state, hence 3+ detectable
charged tracks. By analyzing events in which more than two tracks can be found
in the TPC, rendering it a certain BG event, the 3+ background shape can be esti-
mated. More specifically, the BG-template is constructed by making combinations
of two opposite-sign pions with all detected tracks. E. g. in the following case of
three detected pions π+π−π+ two pairs − (π+π−) π+ and π+ (π−π+) − yield two
invariant masses16. This procedure provides three advantages. First, although only

16The generated data set has to contain at least a π+π− pair. Beyond that, any kind of particle
detected is allowed. E. g. in the case of two detected pions and an additional kaon only one pair,
i. e. one invariant mass can constructed.
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12% of all feed-down events are in the category of 3+ events, charged particles,
unlike photons, are detected very efficiently. Second, as seen in the example above,
one event can account for more than one combined invariant mass, resulting in an
increased statistic. Third, by combining opposite-sign instead of like-sign pairs the
structure present in the FD is expected to be preserved.

Despite these benefits, the impact of the number of tracks N on the background
template shape has to be studied. As N grows the likelihood of such events to
constitute to the 2π invariant mass spectrum (of the feed-down) shrinks drastically.
In general, the ratio of high N events constituting to the 2π invariant mass spec-
trum (of the feed-down) is expected to be exponentially suppressed, as events with
a high number of charged tracks N are more likely to be identified as background.
Therefore, in order to study the different background shapes as a function of varying
N , a maximum of 10 detected tracks N = 3, 4, . . . , 10 is chosen. In Fig. 3.13 the
invariant mass distribution of opposite-sign combinations of events with different
N are plotted. The panel on the left features the 3 − 10 track background created
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Figure 3.13: Comparison of the 3+ background approximation
for different numbers detected tracks: Left: The 3− 10 track back-
ground created by stacking N-track combinatorial π+π− invariant
mass spectra for N = {3, 4, . . . , 10} and the individual N track con-
tributions. Right: A direct shape comparison between the 3 − 10
background approximation (black) and the individual N track back-
ground templates (in color) for various N .

by combining the individual N -track combinatorial π+π− invariant mass spectra for
N = {3, 4, . . . , 10} and the individual N track contributions. A large portion of the
3 − 10 BG consists of contributions from 3 and 4 track events. This dominance of
low N track contributions arises due to the strict event and track filter (Tab. 3.1)
which is applied to the data. This pre-filter exponentially suppresses events with a
high number of tracks. The right panel features a direct shape comparison of the
3 − 10 background approximation (black) with the individual N track background
templates (in color) for various N yields a constant agreement across all N . As the
choice of N does not affect the resulting shape, N = 3 is used to approximate the
3+ background shape.

In Fig. 3.14 a comparison of the 3+ background approximation with the 3 track
estimation is plotted. The right panel shows a direct shape comparison between the
3 track background approximation (pink) and the 3+ background (black) yielding
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Figure 3.14: Comparison of the 3+ background approximation
with the 3 track estimation. Left: The 3 track estimation (pink)
exceeds the 3+ background (black) by a factor of ∼ 3.5. Right: A
direct shape comparison between the 3 track background approxima-
tion (pink) and the 3+ background (black) yields suitable results.

suitable results. The left panel illustrates the 3 track estimation (pink) exceeding
the 3+ background (black) by a factor of ∼ 3.5. Therefore, the relative scaling
needed to obtain a true estimate of the 3+ background has to be considered. The
scaling is composed of two parts. First, the relationship between the number of
possible unique opposite-sign pair combinations Npair with respect to the number
of detected charged tracks N is considered. In the case of N = 3 detected charged
pions, the possible combinations is 2. This number decreases as other charged par-
ticles are detected as well (e. g. K±). The exact factor can be obtained by dividing
the number of 3 track events processed by the total number pairs created. In this
study a value of Npair/Nevts = 1.85 is obtained. Second, a compensation term which
includes contributions from likelihood/efficiency considerations (similar to the γ-hit
background) has to be taken into account. This includes e. g. the ratio between the
likelihood of detecting two tracks in a multiple charged tracks event and the likeli-
hood of detecting three tracks in the same event. And, e. g. the efficiency difference
between an event with three detected tracks and an event with two detected tracks
which pass the applied prefilter cut in Tab. 3.1 . These considerations, however,
exceed the scope of this thesis and have to be the subject of further studies.

3.3.3 Results
As mentioned in the previous sections (Sec. 3.3.1 and Sec. 3.3.2), careful efficiency-
corrections have to be carried out in order to estimate the feed-down components
correctly. Here, we use the available MC information to rescale the histograms
in Fig. 3.14a and Fig. 3.12a accordingly. A final approximation of the feed-down
is made by using a combination of the 3-track and γ-hit background template,
amounting to 12% and 88% of the final approximation, respectively (according to the
relative ratios, see Fig. 3.5). The relative numbers (12−88% : 3-track − γ-hit) have
to be the subject of further discussions as e. g. the γ-hit approximation also includes
events with 3+ tracks, i. e. many decay channels with more than two charged tracks
also frequently have final state gammas. The result is plotted in Fig. 3.15. Despite
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Figure 3.15: Left: Feed down (black) approximation with a com-
bination of the γ-hit and 3 track template (red). A direct shape
comparison between the feed-down (black) and the combined ap-
proximation (red).

the need for some further adjustments, the feed-down shape approximation obtained
by a combination of the γ-hit and 3 track template provides reasonable results on
MC data. This result seems to be a promising application to real data.
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Chapter 4

Multivariate feed-down rejection

In this chapter background suppression techniques are discussed, which provide a
complementary approach to background estimation studies (see Chap. 3). Instead
of subtracting a background model from the data the goal is to find characteristics
in the data which help to identify and thereby reduce background contamination.
Conventional methods for BG rejection usually apply sequential rectangular cuts
to various (individual) observables followed by a statistical analysis on the selected
sample. An example for the use of of sequential rectangular cuts is the prefilter which
is applied to the raw data summarized in Tab. 3.1. To obtain a maximally pure data
sample with high signal efficiency a multivariate analysis approach is attempted. In
contrast to single-variate methods a multivariate analysis (MVA) treats the data in
its full high-dimensional feature17 space in order to make predictions of its signal or
background nature. This signal/background prediction process is commonly referred
to as a classification task. In the following sections a motivation as well as an
introduction to MVA techniques are discussed.

4.1 Motivation for using MVA for BG rejection
To suppress the background component in the data one typically tries to find ob-
servables where a scalar cut value cS−B can be introduced to obtain a signal and
background sample (see Sec. 3.3.1) A cut can be regarded as a simple if -statement
which is chosen so that on one ”side” (e. g. > cS−B) the data behaves more signal-like
and on the other side more background-like (< cS−B). Traditionally, these individ-
ual decisions are made using the distribution of a single observable motivated by
physical considerations. However, this scheme does not easily scale to higher dimen-
sions as correlations between the variables come into play. Therefore, sequential
one-dimensional cuts lack the potential to fully utilize the complex and high dimen-
sional feature dependencies [35].

MVA by definition employs multiple variables simultaneously. Classification
tasks can be regarded as mapping d input variables x = {x1, x2, . . . , xd} onto the
real numbers such as Rd → R via a function y = y(x). The input variables x
range from kinematic variables, e. g. a particle’s energy and momentum, to global
event variables like the total number of clusters produced in various detector sys-
tems. The purpose of the function y is to combine the input information x in such

17The words feature, variable and observable are used interchangeably.
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a way that the discrimination of signal and background is possible. As the out-
put space is one-dimensional18 signal and background events have to be separated
again via a one-dimensional cut. Therefore, output values with y(x) > cS−B are
regarded as signal, while events with y(x) ≤ cS−B are considered background (or
the other way around). Since the function y maps d-dimensional inputs onto the
real numbers a constant value in the output space y = const corresponds to a po-
tentially highly intricate hypersurface in the input space [43]. This hypersurface
with y(x) = cS−B is what is called the decision boundary in the input space between
signal and background events. Machine learning refers to the automated task of
distinguishing signal from background. This entails finding the optimal mapping
function y(x) and hence the best possible decision boundary to separate the two
classes. Since individual cuts (to some degree) ignore the possible high dimensional
correlations between input features, the use of MVA methods such as machine learn-
ing is motivated by a performance increase in terms of higher efficiency for the same
misclassification rate [43].

4.1.1 General aspects of MVA
In the following section general aspects of MVA will be discussed. The content of
this section is a summary of concepts presented in the following sources [35, 43, 44],
where additional, more in-depth information is provided.

The Neyman-Pearson lemma states that a classification algorithm which makes
decisions on the likelihood ratio

y(x) =
p(x|S)
p(x|B)

(4.1.1)

provides the highest signal efficiency for a given background efficiency [43]. The
exact probability functions p(x|θ) for signal (θ = S) and background (θ = B) tend
to be unknown, i. e. p(x|θ) is not explicit formulated mathematically as an equation
which can be evaluated. For low dimensional data19 histograms or kernel-based den-
sity estimates can be used to assess the unknown source probability density function
from simulated samples [35]. In order for these methods to provide reliable results
the sample space has to be represented to some reasonable extend. If a one dimen-
sional data set needs N samples to describe the underlying PDF, d-dimensional data
require in the order of O(Nd) samples. Therefore, PDF estimation techniques need
massive amounts of data in high dimensions and, thus, fail simply due to limiting
computational resources20, regardless of the speed of the sample generator [35].

Alternatively, a variable y can be constructed depending on the d-dimensional in-
put x = {x1, x2, . . . , xd} like y = y(x) which is used as a multivariate classifier. For
n samples a feature matrix X ∈ Rn×d is constructed from the individual samples.
The goal is to find the best mapping Y : Rn×d → Rn |X 7→ y = Y (X) between the
collective inputs X to their corresponding desired target labels y = {y1, y2, . . . , yn}.
The quality of the function Y at point x is measured by a loss function written
as L(y, Y (x)). It can be interpreted as the distance between the true class labels

18Which is the case for a binary, i. e. signal & background, classification task. For a n-label
classification problem with n > 2 the output space is in general n-dimensional.

19I. e. in the order of d < 5 dimensions.
20This problem is referred to as the curse of dimensionality.
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y and the predicted labels Y (x) [44]. A leaning algorithm is tasked to minimize
the loss L, and, by doing so, finding the optimal mapping function Y . Ideally, the
algorithm finds the best function for all possible sets of (x, y). However, due to the
curse of (the large) dimensionality and the infinite number of possible functions to
choose from this becomes an impossible task. In supervised learning, instead a set
of labeled data {xi,yi} for i = (1, 2, . . . , n) is sampled from the set of all possible
values of (x, y) via the probability p(x,y) [35]. In order to find the function Y
one chooses an algorithm, e. g. neural networks or decision tree based methods such
as random forests. These algorithms all distinctly restrict the function space to
families of highly adjustable functions Yφ(X) with finite sets of tunable parameters
φ [35]. This constitutes the hierarchy of multivariate analysis, which is regarded
as an umbrella term for all analysis methods exceeding one dimension. Machine
learning (ML) is considered a sub-part of MVA, which is in turn a comprehensive
term for all algorithms capable of autonomously ”learning” specific traits about a
data set. Choosing an algorithm, also called a model, restricts the space of functions
with which these data set traits can be found.

The target labels y are chosen to be 0 for background and 1 signal21. In order to
adapt the parameters φ the loss function is minimized reducing the distance between
the predicted and the true labels. This process is called training the model which
aims to be effective across a range of inputs, not only on known data (seen during
training) but also on unseen one. This goal is referred to as generalization and is
sometimes rather tricky to achieve. An important goal in attaining generalization
is to find a balance between overfitting and underfitting. Typically, overfitting is
more prominent in more complex, flexible models and underfitting is common in
very simple learners. As the model aims to extract as much information from the
training data as possible, data specific artifacts such as random noise contributes to
the model. The knowledge obtained from the random noise leads to a performance
loss if tested on data not used during training [44]. This describes the problem of
overfitting. Underfitting happens when the model complexity is too low, making
it impossible for the model to learn important characteristics present in the data.
Instead of overfitting vs. underfitting this problem is also often referred to as the
bias-variance trade-off [43]. Due to the high potential complexity of commonly
used models such as neural nets, the problem of overfitting is the prominent one.
Therefore, to maximize the generalization power of a classifier, overtraining has to
be reduced to a minimum. In a first step to do so the available data is split into
three groups: the training set, a validation set, and a test set. While the model is
fitted to the training set, overfitting is monitored on the validation sample. which
is done via a performance comparison. In the case of overfitting the performance
of the training sample drifts away from the validation set performance. Once a
model yields satisfying and unbiased results on training and validation samples, its
final generalization power is determined on a third sample: the test sample. As
the training happens over more than one epoch22 information can leak from the
validation sample into the training sample. In this case the test sample provides a

21Consequently, MC data is necessary in the case of fully-supervised learning as it provides
information on the signal or background nature of an event.

22An epoch is a single step in training a neural network; a neural network can be trained on every
training sample more than one time. Each time all training samples have passed, the performance
is evaluated on the validation sample. We say that one epoch is finished.
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truly unbiased classifier performance report.
Since both training and testing require a statistically well-balanced data set,

both samples want to maximize the number of data points in them. This poses a
problem due the limited amount of available data. The general goal is to split the
data in such a way that during training a representative and diverse set is available
while keeping a sufficient amount of data to adequately test the model on a balanced
representation of the underlying PDF. In this thesis a train-validation-test split of
60%− 20%− 20% has been chosen.

4.1.2 Assessing classifier performance
A crucial task when training a model is its performance evaluation. Simply put,
one checks how many times the classifier makes correct and incorrect predictions
by comparing them to the true class labels from the MC truth. Usually, it is more
interesting to find a specific class (i. e. commonly signal) while reducing contam-
ination from the other one (i. e. background). In this case, a confusion matrix is
useful. It contains information on the number of true positives (TP) i. e. correctly
predicted signal events, true negatives (TN), i. e. correctly predicted background,
and misclassified signal and background events: false positives (FP, or type I error)
and false negatives (FN, or type II error), respectively. The confusion matrix is
the basis of multiple performance measures (also called metrics). E. g. one popu-
lar metric is called accuracy which is defined as the ratio of all correctly classified
events over the number of total events: (TP + TN)/(TP + FP + FN + TN). How-
ever, accuracy runs into problems in the case of sample imbalance where one class
is overly present shadowing the performance of the small class. Other performance
metrics include e. g. precision, recall, and the f1-score. All these metrics have their
own advantages and disadvantages. Therefore, in order to best reflect the prediction
performance of the classifier either multiple metrics, or a powerful metric like the
ROC23 curve should be reported. Due to the widespread use of the ROC curve in
HEP analysis [44] and its special properties (reported in the next paragraph) it will
be employed to assess model performances in this thesis.

The ROC curve plots the false positive rate (FPR = FP/(TN + FP)) against
the true positive rate (TPR = TP/(TP + FN)) corresponding to background ac-
ceptance versus signal efficiency, respectively. It is constructed via the MVA output
Y = Y (X) of the classifier. As one slides across the range of outputs Y , the FPR
and TPR are computed for each cut value along the MVA output: from the lowest
(most background-like region) to the highest (signal-like) region, i. e. from 0→ 1 (in
this thesis). The MVA output of a classifier is plotted in Fig. 4.1 (in gray). In green
the contribution from positive-class (signal) events and in red negative-class events
(background) is shown. In the case of a perfect classifier the signal and background
distributions no longer overlap making them totally separable. The nature of the
ROC curve restricts itself between zero and one on both axes. The best possible
model has a working point in the top left corner at (0,1) with no false negatives and
100% signal efficiency. A truly random classifier would lie on the 45° line, regardless
of sample imbalance. Consequently, the area under the ROC curve (ROC AUC) can
be used as a scalar metric to report the model performance. That means the ROC
curve can be condensed into a single classifier performance measure which it useful

23ROC stands for receiver operating characteristic.
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Figure 4.1: MVA output of a classifier shown in gray together
with contributions from positive- (green) and negative-class (red)
events.

to directly compare the quality of trained classifiers. In Fig. 4.2 two examples of
differently performing classifiers and their associated ROC curves are shown. The
classifier in the left panel shows a higher ROC AUC than the one on the right in-
dicating that the left model can separate signal from background more clearly. We
conclude that the model in the left panel outperforms the one in the right panel.
The statistical interpretation of the ROC AUC can be formulated as follows. It is
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Figure 4.2: Examples of different performing classifiers, which are
presented via their associated ROC curves: The classifier in the left
panel shows a higher ROC AUC than the one on the right, indicating
that the left model can separate signal from background more clearly.
We conclude that the model in the left panel outperforms the one in
the right panel.

the expectation value that a randomly drawn signal sample is ranked higher than a
randomly drawn background sample [44]. Despite ROC AUC being a powerful met-
ric its application is limited to comparing classifier performances. Flach et al. [45]
conclude that ROC AUC is a coherent metric when including non-optimal operat-
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ing points, i. e. the optimal cut value on the MVA output Y . Choosing an optimal
working point is a separate problem altogether which depends on the individual
classification problem. It dependents heavily on finding a suitable balance between
type I and type II errors [43]. Since the aim of this thesis is to find a classifier with
a high degree of generalization power, the working point is a secondary task and
defined after a model is selected. Therefore, we can use the powerful metric ROC
AUC without restrains in the search for a proper classifier. Afterwards the optimal
working point is determined by maximizing the signal significance (as a function of
MVA output) which is often approximated by TP/

√
TP + FN for a given cut on

the MVA output. It describes the ratio of the signal strength over the uncertainty of
the total number of events

√
N assumed to be signal (i. e. all events on the left hand

side of an MVA cut) with N = TP + FN where a Poisson statistics is assumed [43].
Fig. 4.3 illustrates the MVA cut optimization via significance calculations (in the

right panel). As signal efficiency (green) and background efficiency (red) decrease
at different rates, the significance (blue) peaks somewhere in between.
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Figure 4.3: Significance calculations to find the optimal MVA
cut value. Left: MVA output, see Fig. 4.1 Right: Optimization of
the MVA cut value via significance calculations. As signal efficiency
(green) and background deficiencies (red) decrease at different rates,
the significance (blue) peaks somewhere in between. The circle in-
dicates the maximum significance and the MVA cut value.

4.1.3 Neural networks and deep learning
Machine learning has become a popular tool in high energy physics using different
algorithms such as boosted decision trees and neural networks suited for the large
amount and intricacy of HEP data. With the rise of deep learning the immense data
surge can be handled more adeptly as higher-dimensional, more complex problems
became more feasible [35]. Following an introduction into deep neural networks and
deep learning, this work focuses on the application of such classifier structures to a
binary classification task in order to discriminate signal from background events. In
this section the theory of neural networks and deep learning is explored, summarizing
the core concepts outlined in the following sources [35, 43]. A holistic summary
of (nearly) all important work published in the area of neural networks and deep
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learning can be found in [46].
In neural networks the structure of the network pre-defines the space of functions

yφ
24. The structure is comprised of a series of transformations mapping the input x,

of dimensionality d, onto a so-called hidden state h(i), with dimensionality m. This
hidden state h(i) is often called the embedding and it is the i’th transformation of
the input x. The subscript i denotes the i’th hidden layer. In principle there can be
an arbitrary number M of hidden states as long as the final transformation maps
these hidden states onto the function output y. The transformation h(i) → h(i+1)

from the i’th layer to the i+ 1’layer can be expressed by the following relationship
h(i+1) = Φ(i)(W (i)h(i) + b(i)) = A(h(i)) (4.1.2)

An M layer neural network can therefore be written as
yφ(x) = AM(AM−1(. . . A1(x))) (4.1.3)

The function Φ(i) in Eq. 4.1.2 is called the activation function which can differ from
layer to layer. Popular choices include functions of error-like behavior, e. g. the
sigmoid Φ(t) = 1/(1+e−t) or the hyperbolic tangens. With the rise of deep learning
more activation functions are used including the ReLU25 [48] Φ(t) = max(0, t) and
the softmax [49] function Φ(t)j = etj/

∑K
k=1 e

tk for j ∈ {1, . . . , K} where K are the
number of classes with K = 2 for binary classification. W (i) denotes the so called
weight matrix of the i’th layer with W (i) ∈ Rm×n. It transforms the i’th embedding
hi ∈ Rn to m-dimensional space. The m-dimensional vector b(i) is called the bias
term causing a translation. The first embedding is the input vector h0 ≡ x and the
final embedding is the one-dimensional output variable y.

In the simplest case the input x ∈ Rd (d features) gets multiplied by a weight
matrix W (1) ∈ R1×d resulting in a weighted sum. If Φ1 represents the identity
function Φ(t) = t then the network can be mathematically expressed as

y(x) = b+
d∑

l=1

W1,lxl (4.1.4)

This is the simplest form of a single layer perceptron (with an identity activation
function). It describes a linear classifier, as Eq. 4.1.4 contains no non-linear opera-
tions. I. e. hyperplanes with y(x) = const correspond to linear decision boundaries
in the d-dimensional feature space of x. Typically, linear models oversimplify the
problem at hand, i. e. HEP data where multidimensional correlation between the
input variables exist.

A non-linear model is attained by adding a hidden layer h(1) ∈ Rm accompanied
by a transition matrix W (1) ∈ Rm×d and a bias term b(1). Together they apply an
affine transform to the input vector x transforming it into m-dimensional space.
The non-linearity is introduced by a non-linear activation function Φ(1) (e. g. a sig-
moid) which transforms the space by point-wise application of the function. These
operations can be formulated by

y(x) = Φ(2)

(
b(2) +

L∑
l=1

[
W 2

1,l · Φ(1)

(
b
(1)
l +

m∑
k=1

W
(1)
kl · xk

)])
(4.1.5)

24To demonstrate the workings of a neural net we focus on a single data point in order to
increase readability by decreasing the number of necessary indices. I. e. Yφ(X)→ yφ(x) = yφ

25ReLU stands for rectified linear unit. It constitutes the identify function truncated at 0. Its
adoption in deep learning solved (to some degree) the vanishing gradient problem; see [47]
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The network described by Eq. 4.1.5 can be regarded as having an input layer, a fully
connected26 hidden layer and a fully connected output layer. This general structure
of fully connected layers is referred to as a feed forward network (FFN) or multi-layer
perceptron (MLP). A schematic example is shown in Fig. 4.4.

Figure 4.4: Schematic drawing [43] of a feed forward neural net-
work described by the Eq. 4.1.5. This network takes a m = 4 dimen-
sional input and transforms it into a L = 5 dimensional embedding
before returning a one-dimensional output y.

The composition of the network, i. e. the dimensionality of each W (i) as well as
the choice of the activation functions Φ(i) is referred to as the network architecture,
which is defined by the analyst. For a set architecture the goal of classifier training is
to find the right values for the affine transforms (W (i) & b(i)) which optimize signal
and background discrimination. For this task a loss function with respect to the
model parameters L(fΦ(x, y)) is defined, quantifying the performance of the classi-
fier on the training data. Due to the nature of the fully connected layer structure
the different weights are highly correlated. Consequently, as the network grows in
size, the loss function becomes more complicated resulting in the existence of many
saddle points and local minima. This poses a problem for standard minimization
techniques which are not adjusted to such a complex task. Usually, the optimum
weights, resulting in the best classification (for an MLP), are found by a method
called backpropagation. Backpropagation is an efficient method to compute the gra-
dient of the loss function - ∇ΦL. Training is then done in the following way:

Before the training starts the architecture is fixed and the weights of the network
are initialized, usually with small and random values. Then the data is fed into the
network and propagated to the output following the randomized affine transforma-
tions. This result is compared with the expected output (the target labels) via the

26Fully connected refers to the fact that each hidden node is connected to all inputs xi with
i ∈ {1, . . . , d} (or the previous layer nodes) via the weights wi.
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loss function. Then the gradient of the loss function is calculated as a function of
the individual weights (i. e. of each individual layer) using the chain rule of differen-
tiation. To minimize the loss, backpropagation is used to adjust the weights towards
smaller losses like W → W − η · ∇WL(W ). The parameter η is called the learning
rate and defines the step size towards the direction of smaller losses (indicated by
∇WL(W )). The leaning rate η is part of the training parameters which have to be
tuned as well27 to ensure optimal generalization power of a classifier. Together with
the network architecture they constitute the hyperparameters of the network.

Initially, multilayer perceptrons were distinguished from deep neural networks by
the number of hidden layers, with deep nets having more than one layer and MLPs
being shallow networks with only one hidden layer. As Hornik et al. have shown
in [50] using a shallow network poses no restriction as any function can be approxi-
mated by introducing a single hidden layer. However, an effective one-hidden-layer-
network may require a large number of nodes in the hidden layer resulting in a highly
non-linear decision boundary. These intricate, high-dimensional models often fail to
find some underlying truth about the data. Deep networks (i. e. more hidden layers)
in contrast, are faced with the problem of the so-called vanishing gradient [51, 52].
During backpropagation the difference between yΦ(x) and the desired output ytrue
is propagated from the output backwards through the various embeddings. For
each embedding the gradient of the loss function with respect to its weight matrix
∇W (i)L(W ) is calculated. As the gradient is calculated via the chain rule of differen-
tiation for every layer a derivation close to zero (or zero) in one layer will force the
whole product towards zero. Therefore, the gradient rapidly approaches zero as the
network grows in depth and the parameter adjustments eventually die out at some
point in the network. The problem of vanishing gradients makes it very difficult
to improve the performance of deep architectures. With the recent introduction
of multiple strategies including new activation functions (e. g. ReLU), larger train-
ing samples, and regularization techniques like dropout [53] this problem has been
largely mastered. One advantage of using deep networks is their ability to learn ab-
stract, high-level features from low-level input data, provided that enough flexibility
is given. This opens the potential to obviate the need for manual and often time-
consuming feature engineering28 (see [54, 55] for more information). Moreover, the
layers of deep architectures can be interpreted as constituting a hierarchical repre-
sentation of the data. These properties have lead to a wide success in the application
of deep learning: especially the methods of computer vision and natural language
processing have become almost entirely dependent on deep learning. These fields
use specific architectures tailored to their needs like convolutional nets [56] (popular
in image recognition) and recurrent/recursive nets [57].

Especially recurrent networks are relevant to this analysis as they posses the
ability to process variable length sequences of a common dimensionality. I. e. an in-
put of fixed dimension d which can occur several times N (with N not predictable),
e. g. N particle tracks in an event. This issue arises e. g. if a variable amount of
detected pions (i. e. 2,4,6) should be considered. In simple feed forward networks
variable-length input can in principle be processes by cropping or zero-padding the

27The tuning of the training parameters such as the learning rate η happens outside of the
network training.

28Feature engineering is the process of creating observables which make a signal and background
discrimination more easy. This often requires specific domain knowledge.
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input to a fixed length/dimension d. However, these solutions either neglect useful
information or introduce a placeholder value in the network with no physical mean-
ing. An optimal solution would entail a self adjusting network which dynamically
adopts to the required input size. Illustrated in the following expression is an exam-
ple of such a network mapping n individual inputs {h(i)}i ∈ {1, . . . n} onto a single
output h

h = Φ(W (1)h(1) +W (2)h(2) + · · ·+W (n)h(n)) (4.1.6)
This architecture is called recursive or recurrent as input can be fed recursively into
the network which is then condensed into a single (arbitrary) length representa-
tion h. Due to the possibly endless depth of recursive networks such rudimentary
recursive units in Eq. 4.1.6 can encounter vanishing and exploding gradient prob-
lems. By selectively applying the activation function and transformations W (i) these
problems can be mitigated. This procedure is called gating and results in a more
complex recurrent unit, with for example long-short-term-memory (LSTM [58]) and
gated recurrent units (GRU [59]). These units use shared weights that can be con-
sidered as creating a sort of ”memory” of recent states.

Usually, deep neural networks effectively have tunable hyperparameters in the
order of 105 up to 107 depending on their width and depth. Consequently, it is
(nearly) impossible to explain the prediction just from inspecting the final weights
and biases. Algorithms like neural networks and deep learning are commonly re-
ferred to as black box models. However, recent advances have been made to partially
entangle the workings of black box algorithms and research towards interpretable
machine learning is actively conducted (see e. g. [60, 61]). An additional, algorithm
independent problem is described as a covariate shift between training data and
real29 data. As MC simulations provide only an approximation to real data the
distribution describing the training samples varies (at least slightly) from the ac-
tual data. This leads to a performance decrease when the classifier is used to make
predictions on real data. Since covariate shift is a common problem in machine
learning, domain specific approaches such as re-weighting [62] or domain-adversarial
training of neural nets [63] exist. For an overview of deep learning and its applica-
tions outside of physics see [64, 65].

In the next section machine learning methods using neural networks with deep
architectures are deployed to discriminate signal and background events in order to
reduce feed-down contamination in the data.

4.1.4 Used frameworks & data sets
The data preprocessing and filtering has been done as described in Sec. 3.1. In
addition, a gamma-filter has been added discarding events with calorimeter clusters
exceeding a distance of dC−T > 0.51 rad (see Sec. 3.3.1 for details) which suggests
the detection of a photon.

All machine learning tasks are performed with Python 3.5.2 and the Keras
2.1.3 [66] framework using the Tensorflow 1.4.1 [67] backend. Data handling is per-
formed using the Python packages NumPy 1.14.0 and Pandas 0.22.0. The conversion
between ROOT trees and the Python data structures is done with the package up-
root 2.6.14 [68]. Plotting in Python is done via the matplotlib 2.1.2 library.

29I. e. data collected in the experiment unlike the simulated training data which is an approxi-
mation of these events.
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The data items considered for this study include event-, and track-level fea-
tures. While event-level information describes overall event behavior such as total
energy depositions in various sub-detector systems, track-level information contains
details about single track characteristics. Baldi et al. [69] conclude that classifiers
using raw low-level information from detectors combined with high-level features
(i. e. constructed from low-level information) outperform models trained solely on
either only low-, or high-level data. Technically, all features obtained within the
ALICE framework are to some degree composite features obtained from simple dig-
ital signals from the detector. Here, high-level features refers to observables which
are constructed from features obtained via the ALICE software framework.

4.1.5 Data preparation
In order to construct sensible features the background nature of high mass feed-down
events is considered. Feed down is characterized by its missing undetected energy
and momentum which is expected to yield a dissimilar event topology compared to
fully reconstructed signal events. To describe the event topology two variables are
generated: First, the distance in the φ−η space as dφ−η =

√
(φ1 − φ2)2 + (η1 − η2)2

is calculated where 1 and 2 refers to the first and second particle. Second the
enclosed angle ϕ1−2 between the two track three-momenta ~p1 and ~p2 is constructed
(ϕ1−2 yields a similar quantity as dφ−η). Further information available in the ALICE
software framework include the particles four-momentum, the length of the track,
and the distance of closest approach (DCA) to the main vertex. The DCA is ob-
tained as the minimum distance from any point of the prolongated track fit30 to the
expected decay vertex. The invariant mass itself is not used as a training variable
as it relies heavily on theoretical assumptions. The network should not focus too
much on the mass observable as its distribution may not represent the real data ac-
curately. The goal is to extract information about the signal and background nature
of events via their individual topology introduced by different ”production” mecha-
nisms: i. e. feed-down mass/energy loss vs. total event reconstruction. This underly-
ing topology difference should, to some degree, be model-independent31, thus hope-
fully producing a robust model which can be applied to general missing mass/energy
cases.

4.2 Multivariate feed-down rejection
In this section the multivariate approach to reject the feed-down background com-
ponent in the two pion invariant mass spectrum in X → π+ + pi− decays of the
centrally produced system X is described. Specifically, a summary of the algorithms
used, as well as the optimization procedures implemented is presented. Eventually,
the results produced are discussed in Sec. 4.3.

The machine learning algorithm in use is a neural network. Training a neu-
ral net is done by updating the weights after a single event has been fed through

30The tracks are obtained via performing a Kalman filter [70]. Simply speaking a curve is fitted
through clusters in the detector produced by the track.

31That is the model of the simulator generating the diffractive mass which depends on theoretical
assumptions.
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the network, this is called online learning. As the amount of data grows, this ap-
proach becomes less and less tractable due to the hardly parallelizable weight-update
scheme. In practice, one feeds a certain number of training samples into the net-
work and then updates the weights once. This procedure is referred to as mini-batch
learning, in case only a subsample of the data is fed into the network at a time, or
batch-learning in case the entire training sample is propagated trough the network
before the weights are updated. In the following paragraph the specific choices of
different hyperparameters are briefly explained. These choices are mostly motivated
by being the state of the art method in training a neural network. Additionally, the
availability of the hyperparameter setting in Keras is an important criterion as it
facilitates their application.

Before the training starts the weights are initialized via the Glorot [71] normal
initialization scheme. The initial weights are drawn randomly following a truncated
normal distribution with zero mean and a standard deviation of σ =

√
2/(n+m).

n and m refer to the dimensionality of the weight matrix W ∈ Rm×n (the layer takes
n - dimensional input and produces m - dimensional embeddings). The bias nodes
b(i) are initialized with zeros. The activation functions are chosen to be ReLUs
within network layers and a sigmoid in the final layer returning a value between
zero and one. In order to prevent the network from overfitting, regularization meth-
ods are employed. They include dropout [72] layers and batch normalization [73]
which are installed for every hidden layer. Dropout among them is the simplest yet
quite effective technique of randomly ignoring a certain fraction of nodes in a layer,
consequently preventing the network from focusing on one specific connection. Ex-
treme dropout fractions include 0 and 1, which describe no dropout regularization
and total dropout which renders the network untrainable. Somewhere in between
the two extreme dropout fractions sits an optimal dropout fraction fdrop ∈ (0, 1)
for a given architecture. Therefore, this fdrop constitutes to the hyperparameters
of the network. Contrary to dropout, batch normalization alters the output of a
network layer. It attempts to maintain the activation close to a mean of zero and
its standard deviation close to one. This has two major benefits: for one it prevents
the activations jointly to fall towards zero (with near zero variance) which increases
the model’s performance and, moreover, introduces regularizing effects (i. e. by pre-
venting internal covariate shift, for more information see [73]). Due to the relatively
small training sample consisting of about 105 data points the mini-batch is chosen to
be of size 32, which allows for reasonable training times in the order of 2−4 minutes
depending on the specific architecture. To prevent features from highly varying in
magnitudes, units, and range the data is standard scaled before it is entered into the
network. Standard scaling transforms each feature distribution centering its distri-
bution around a zero mean with a variance of one. The model loss is determined
via the binary cross-entropy (CE) - a quantity originating from information theory
which is commonly implemented in classification tasks. In order to optimize the loss
function a popular gradient-based optimization algorithm called Adam [74] is used.

4.2.1 Evolution of the classifier architecture
The evolution, i. e.the search via trial and error of the optimal classifier architec-
ture, is done manually in the following way: At first an architecture is selected.
Hereby, two major components can be altered: first, the input layer type, and sec-

44



CHAPTER 4. MULTIVARIATE FEED-DOWN REJECTION

ond, the number of hidden layers as well as the dimensionality of each embedding
(except the first,i. e. the input, and last one, i. e. the output). To describe the first
component more precisely the data at hand has to be considered, which consists
of event- and track-level information. This implies that the data cannot be simply
entered into a ”flat” neural network (i. e. with a standard d - dimensional input) as
the number of tracks may not be constant, resulting in a variable input dimension.
However, this thesis considers only the measured two pion spectrum. In this case
a flat, fixed length input vector can be constructed by stacking the feature vectors
of both recorded tracks on top of the event-level features. This results, depending
on the exact features used (see Tab. C.1 in the appendix), in an approximately
50-dimensional vector with about 10 event observables and 20 for each track (the
exact number of features used is discussed below). However, stacking the particles
introduces an ordering, i. e. a top and a bottom particle, which may introduce bi-
ases. Additionally, stacking the inputs increases the total dimensionality drastically.
The most obvious way of handling multiple similar inputs32 is via recurrent units.
Especially long-short-term-memory units are relevant as they have the ability to
store important information in a hidden state causing it to entangle details about
multiple n-dimensional inputs into a single n-dimensional output. Hence, the first
choice of architecture regards the use of a flat network versus a recursive one. The
output of the recursive layer is then concatenated with the event input (in the same
way the flat stacked NN concatenates the three input vectors). Thereafter, a (deep)
neural net is attached, whose width and depth, i. e. the dimensionality and the
number of layers, respectively, is subject to the second variation. The performance
is tested on a fixed set of features (later referred to as ”BLFφη Bayes”, see below).
Finally, the performance of different feature combinations is studied. During train-
ing, overtraining is monitored by comparing the training and validation performance
via their CE-losses and their respective ROC AUC’s. If at least one pair of these
measures starts to drift apart from one another (illustrated in Fig. 4.5b) the model
is discarded and further more restrictive regularization is applied: i. e. the dropout
rate fdrop = min(fdrop += 0.1, 0.8). If a classifier is still overfitting with a dropout
rate of 80% the architecture is not reported and not considered any further. After
successful training (i. e. no overfitting) over 50 epochs33 the performance of a model
is evaluated on the unseen test sample. The number of epochs is restricted to 50
as overtraining occurs quite frequently if training happens over & 50 epochs (can
e. g. be improved by a larger sample size). The optimal performance for a certain
architecture is reported in Tab. 4.1. The results can be summarized as follows: In
general, the recurrent architecture slightly outperforms the flat one. Flat architec-
tures have a considerably higher input dimensionality which innately makes them
more difficult to train as they require way more fine-tuning to prevent overfitting.
While architectures implementing recurrent units produce reasonable results across
multiple network designs, the flat setup is struggling to yield stable generalizable re-
sults due to overfitting during training, apparent in Fig. 4.5b. This overfitting trend
can be seen in Tab. 4.1. Models with recurrent units tend to have a lower variance
around their mean value compared to classifiers trained on the flat architecture

32Similar in the sense that each input has the same features, i. e. the same dimensionality as
well as identical variables. In the context of this thesis this applies to the detected pions which
share observables.

33Describes one forward pass and one backward pass of the entire training sample.
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Figure 4.5: Model performance comparison between training and
validation set during training to highlight overtraining: In (A) no
overtraining occurs on the classifier structure 2× 50, (fdrop = 0.7)
implementing a recurrent cell where in (B) the flat approach leads
to overfitting.

which experience standard deviations as high as 1.21. This means these models are
quite unstable in their predictions making them unreliable predictors. In general,
overfitting in flat architectures requires more restrictive dropout rates of ≥ 80%.
Additionally, deeper and wider > 70 networks are also more prone to overfitting
as the number of complexity increases (applies to flat and recurrent setup). Un-
derfitting also happens for architectures with a width < 30 where the performance
between the training and validation set constantly drifts apart. Therefore, flat and
very deep structures are avoided in favor of more stable and generalizing results.
These architecture tests are performed on a feature set which excludes the specific
use of the pT variable. The reported performances can be improved by adding pT
dependent variables (see below). However, as stated above, pT is strongly depen-
dent on the choice of the underlying model (mass biased) which should generally
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Architecture ROC-AUC [%] ROC-AUC DL-test [%]

2× 30, recurrent (fdrop = 0.7) 90.4± 0.98 85.7± 0.62

2× 40, recurrent (fdrop = 0.7) 91.2± 0.83 86.1± 0.68

2× 50, recurrent (fdrop = 0.7) 91.2± 0.55 86.8± 0.33

2× 60, recurrent (fdrop = 0.7) 91.3±0.47 87.7±0.12
2× 70, recurrent (fdrop = 0.7) 91.0± 0.71 85.8± 0.24

3× 40, recurrent (fdrop = 0.7) 90.2± 0.81 85.5± 0.41

3× 60, recurrent (fdrop = 0.7) 89.9± 0.78 85.7± 0.46

2× 50, flat (fdrop = 0.8) (70 epochs) 89.9± 1.21 85.8± 1.01

2× 60, flat (fdrop = 0.8) 90.0± 1.09 85.8± 0.95

Table 4.1: Performance comparison of various neural net archi-
tectures measured via their ROC-AUC. The reported performance
is calculated as the mean of three runs (with as little overfitting as
possible) with the corresponding standard deviation. The notation
is as follows: a× b represents the dimensions of the network where
a refers to the number of hidden layers and b to the number of
nodes in each layer. The subsequent text describes how the track
level data is handled; flat suggests a stacking of the feature vectors
whereas recurrent means that the track information is processed in
a recurrent unit, i. e. a LSTM cell.

be avoided. Nevertheless, many track features experience a pT dependence to some
degree, which cannot be eliminated.

In order to test the full generalization power of the network the classifier is
tested on another simulated sample. This sample does not follow the CEP simu-
lation scheme of MBR [37] but is modeled according to the theory of Donnachie-
Landshoff [75] (DL). Like the MBR simulation scheme, the DL data are generated
based on a Pomeron approach. However, the DL parametrisation uses intrinsically
different PDF shapes in order to simulate the kinematics. The results are reported
also in Tab. 4.1 under ROC-AUC DL-test34. The mass distribution is slightly shifted
towards lower masses (using the default setting in both the MBR and the DL simu-
lation) compared to the MBR hypothesis, plotted in Fig. 4.6. The performance on
this data set provides important insights as a potential disagreement in the invari-
ant mass distribution cannot be ruled out when transitioning to real data. Despite
the invariant mass difference, the remaining one-dimensional feature distributions,
which were used to train the model overlap almost entirely. However, high dimen-
sional correlations between theses variables are likely to be different for the two
CEP simulation approaches. Hence, a performance drop is assumed by testing the
model on the DL data, which is also what we obtain, illustrated in the performance
Tab. 4.1. This drop is quite moderate which implies a high level of consensus in the

34DL stands for the Donnachie-Landshoff parametrisation.
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Figure 4.6: Invariant mass comparison of MBR and DL simulated
events. The DL parametrisation assumes lower invariant masses
compared to the MBR model of the high mass continuum background
(default values).

modeling of the simulation35 (which is also the case).
In order to study the effect of certain features on the classifier we fix the architec-

ture to 2× 60, recurrent (fdrop = 0.7). It should be noted that regarding overfitting,
the recurrent architectures reported in Tab. 4.1 are quite stable and perform rather
similarly. In order to choose a generalizing architecture the lowest standard devia-
tion is considered which is a measure for a reliable and stable configuration. Again,
the reported performance metrics are the ROC-AUC on the test set, and the DL
sample (average of three runs with the corresponding standard deviation). As a
baseline a set of features listed in 4.2.1 are used.

35The re-weighting scheme has also been applied to combat a covariate shift expected in dif-
ferently simulated data. However due to the similarities the procedure does not increase the
performance on the Donnachie-Landshoff data.
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Baseline features (BLF) used in every training

1. Event features:
- Number of tracklets
- Number of singles
- Number of tracks (in total)
- Number of residuals
- Total FMD, V0 & AD multiplicity
- Number of V0s

2. Track features:
- η
- φ
- Number of clusters in ITS, TPC, TRD
- Number of shared clusters in TPC
- PID TPC signal
- Golden χ2

- Track length
- ITS χ2

- TPC χ2

- DCAxy & DCAz

A more detailed description of features used in this analysis is shown in Tab. C.1
in appendix A. Event level features contain observables like the number of track-
lets,36 and the total accumulated signal in the veto detector systems FMD, V0, and
AD37. Particle features include kinematic observables such as a tracks η and φ direc-
tion, as well as detector specific signals, e. g. the number of clusters track produced
in the TPC. The results are shown in Tab. 4.2. The standard feature configuration
on its own does not perform exceptionally well. Most of these features have rather
similar signal and background distributions, thus making it hard to disentangle sig-
nal and background events. As additional information gets introduced the classifier
performance increases quite noticeably. The first feature added is the distance of
both tracks in φ − η which reveals information about the event topology, plotted
in Fig. 4.7. It shows a distinct pattern for signal and background which the clas-
sifier is able to utilize. Generally, a trend to better performances can be observed
as additional kinematic information is introduced via pT correlated features. This
performance increase is immediately noticeable by simply adding the variable pT
to the baseline features (BLF + pT ). A similar performance can be obtained by
introducing dηφ as well as six features describing the particle properties via TPC
number of sigmas (nσ) and the Baysian PID probability of pions, kaons, and pro-
tons, respectively. However, the PID features themselves are not independent of
the transverse momentum and carry some information either directly or indirectly
about pT . Therefore, in order to achieve a well performing model, some information
of the particles momentum has to be added. This arises from the particular way the

36Tracklets are segments formed with hits on two layers of SPD which is part of the ITS detector
system.

37The total signal is the sum of all signal lying below the trigger threshold.
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Features ROC-AUC [%] ROC-AUC DL-test [%]

BLF 78.5± 0.1238 76.1± 0.05

BLF + dφ−η (BLFηφ) 85.4± 0.68 83.0± 0.18

BLFηφ + Bayes PID probabilities 91.3± 0.47 87.7± 0.12

BLFηφ + Bayes + TPC nσ 94.9± 0.35 89.8± 0.12

BLF + pT 94.3± 0.26 89.2± 0.46

BLFηφ + pT + ϕ1−2 95.1± 0.19 91.0± 0.05

All features 95.3± 0.35 90.7± 0.09

Table 4.2: Performance comparison of networks trained with var-
ious feature compositions using the 2 × 60, recurrent architecture
with adjustable dropout rate (to avoid overfitting). The ROC-AUC
score reported is the mean of three trials with the corresponding
standard deviation (reported to two significant figures as it would
sometimes appear to vanish).

feed-down background is produced. The missing mass and energy from undetected
particles results in a shift to lower momenta (see Fig. 4.8). In the following section
on the results the reduction power of neural networks is discussed depending on
the features used listed in Tab. 4.2. Specifically, the effects on the invariant mass
distribution are discussed.
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Figure 4.7: Signal and background distributions of the distance
in φ− η space of the two measured tracks.

38Slight overtraining was unavoidable.

50



CHAPTER 4. MULTIVARIATE FEED-DOWN REJECTION

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
pt

0

100

200

300

400

500

600

700

800

900

En
tri

es

ALICE simulation, this work
Pythia-8 MBR = 0.104

s = 13 TeV

S+B
Bg
Sig
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background events. Due to the nature of feed-down events energy
and momentum is lost leading to a shifted momentum distribution
to lower values.

4.3 Results & Discussion
In this section, the results of the classifiers reported in Sec. 4.2.1 are presented.
Before discussing classifier performances, the invariant mass spectrum of signal and
background before applying an MVA cut plotted in Fig. 4.9 is again examined. Here
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Figure 4.9: Invariant mass spectrum of signal and feed-down data
used to train the network.

the effect of feed-down is apparent as it results in a shift to lower invariant masses of
the detected particles. It is tempting to introduce a mass cut at roughly . 1 GeV/c2

eliminating a large portion of the feed-down. However, as mentioned in Sec. 3.1, the
simulated data sample includes only high mass continuum events. These states con-
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stitute particles with higher masses of the CEP event spectrum. Not contained in
the data sample are final states from resonantly produced X particles which occupy
the mass spectrum around and below the 1 GeV/c2 range. Therefore, a classifier
performance is not only measured via its ROC-AUC but most importantly by the
level of background reduction across the whole invariant mass spectrum while keep-
ing the mass dependent signal efficiency as close to one as possible.

In order to make predictions with a classifier, the MVA output is used to de-
termine the maximum signal significance (using the MC truth) for a given cut on
the output. Data points to the left of the cut are regarded background events, data
points on the right as signal events (see Sec. 4.1.2 for more details). The resulting
invariant mass distribution and background reduction of feed-down events is plotted
in Fig. 4.10 and Fig. 4.11 for various classifier predictions. The models themselves
differ in the set of features used to train the classier. Models reported in Fig. 4.11
explicitly use the observable pT during training, whereas the plots in Fig. 4.10 do
not. The baseline classifier (BLF) is reported for comparison in both figures. In
addition, the performance of each classifier is reported via the signal purity and
signal efficiency in Tab. 4.3. The purity P is defined as the fraction of signal

Features Signal purity [%] Signal efficiency [%]

No classifier 21.0 100.0
BLF 33.9 88.1

BLFηφ 45.7 82.8
BLFηφ + Bayes PID probabilities 66.1 70.6

BLFηφ + Bayes + TPC nσ 67.8 93.3
BLF + pT 64.8 87.4

BLFηφ + pT + ϕ1−2 69.4 92.1
All features 69.9 93.1

Mass cut at 1.39 GeV/c2 39 69.9 93.8

Table 4.3: Performance comparison of networks trained with var-
ious feature compositions using the 2 × 60, recurrent architecture.
The reported scores are signal purity P defined as the fraction of
signal events in the event sample: P = S/(S + B) and the signal
efficiency defined as the fraction of signal events that survive the
classifier cut.

events in the event sample: P = S/(S + B) and the signal efficiency defined as the
fraction of signal events that survive the classifier cut. The optimal classier max-
imizes both, signal efficiency and purity which is achieved by completely reducing
the background while leaving signal events unchanged. The true performance of a
classifier is then assessed via a combination of these measures. The mass depen-
dent background reduction reveals a clear pattern as more features get added to the

39Mass cut value is obtained via maximum signal significance for a cut along the invariant mass
spectrum. See Fig. 4.12.
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Figure 4.10: Invariant mass distribution (A) and background
reduction (B) in feed-down events for various MVA models: The
choice of features used to train the classifier depicted do not explic-
itly contain the pT observable.
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Figure 4.11: Invariant mass distribution (A) and background
reduction (B) in feed-down events for various MVA models: In
contrast to Fig. 4.10 the training features for the displayed classifier
do explicitly contain the pT observable. Additionally the baseline
classifier (BLF) is reported for comparison.
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baseline features (BLF): i. e. the classifier gradually becomes a more defined mass
cut between roughly 1.2 − 1.5 GeV/c2. This is also evident in the signal efficiency
plotted in Fig. 4.13 which increases as the background reduction approaches zero.
The introduction of the variable pT , either directly or indirectly via e. g. nσ the
classifier acts as a mass cut. This effect is most prominent for a classifier using all
features plotted in Fig. 4.14. The classifier makes an error function like signal and
background separation in the invariant mass spectrum at around 1.3− 1.4 GeV/c2.
Based on this assumption a mass cut for comparison is introduced. The optimal
cut value is obtained via the maximum significance calculated along the invariant
mass, illustrated in Fig. 4.12. This results in an optimal mass cut of 1.39 GeV/c2.
This optimal cut value lies precisely in the transition region where background re-
duction transitions from 1→ 0 for classifiers using pT variables. The cut also results
in a very similar purity and signal efficiency compared to the all features classifier
(see Tab. 4.3). The network seems capable of extracting invariant mass informa-
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Figure 4.12: Signal significance for a cut along the invariant mass
variable.

tion about the measured tracks and subsequently using it in the decision process.
Furthermore, some traces of the combined invariant mass appears to be present in
several features, as classifiers with no direct momentum information behave very
similarly to those with access to the full kinematics (i. e. via pT ). This becomes ev-
ident if we compare the mass dependent signal efficiency and background reduction
of the classifiers (BLF + pT ) and (BLFφη + Bayes + nσ) in Fig. 4.15 which show
similar behavior.

Despite relatively high background suppression rates reported in Tab. 4.2 the
use-case of models trained in this thesis are constrained to high mass continuum
CEP events (where MVA can be replaced by a one-dimensional cut on the mass).
In order to avoid a strict mass cut on real data a multivariate analysis trained on
Pythia-8 simulated data using currently available parametrisations (e. g.MBR/DL)
can only be practical if rudimentary features (e. g. BLF) are used to train the model.

To increase background reduction in the regions > 1.3 GeV/c2 a classifier may
only be trained in this specific mass region. However, training in this specific mass
region would require at least 102 more events to be simulated as the background
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Figure 4.13: Signal efficiency over invariant mass for different
classifiers without (A) and with (B) the full kinematic variables (pT )
among the training features. Additionally, the baseline classifier
(BLF) is reported for comparison.
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Figure 4.14: Signal efficiency and background reduction as a func-
tion of invariant mass of a classifier trained on all features: This
results in error function like behavior of both the signal efficiency
and background reduction at around 1.3 − 1.4 GeV/c2 indicating
that the neural net focuses heavily on mass dependent features such
as pT .

component drops roughly exponentially above ∼ 1 GeV/c2. That implies an in-
crease to roughly 108 total simulated CEP events.

An alternative strategy is described in a paper by Metodiev et al. [76]. The
method described is called classification without labels (CWoLa) and has the advan-
tage of being easily implementable in the case of real data. Instead of providing a
pure signal and background sample the classifier is trained to separate statistical
mixtures of classes. Metodiev et al. show that even without information on individ-
ual labels and class proportions the optimal classifier can still be found as in the case
of fully-supervised learning (i. e. all label information is available). The training is
performed on two data sets where one predominantly contains background samples
and the other contains more signal instances. As described in Chap. 3 a fairly rep-
resentative background sample can be created by using tracks with a γ-hit in the
EMCal or more than two measured tracks in the TPC. Here a sample of 3 and 4
measured tracks is used. This negative-class sample is labeled generated background.
The positive-class sample consists of signal and background events, i. e. events with
two tracks, passing the filter in Tab. 3.1, and lacking EMCal hits. It is labeled
”S-B mixture” (contains real signal and background samples) and is considered the
”signal” class when training the classifier.

The classifier is tasked to distinguish generated background samples from a mix-
ture of signal & background events (S-B mixture). The feature distributions of the
generated background sample and the background in the mixed sample should share
similar characteristics. Therefore, in order to distinguish the two data sets the clas-
sifier has to focus on traits present in signal events. It is expected that the MVA
output of signal events within the ”S-B mixture” sample gets shifted more towards
1 compared to background events in the ”S-B mixture” as they provide a more dis-
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Figure 4.15: Model comparison of (BLF + pT ) and (BLFφη +
Bayes + nσ) regarding invariant mass dependent signal efficiency
and background reduction. Both models behave similarly, despite
having different additional (on top of the BLF) features. Therefore,
the model (BLFφη + Bayes + nσ) is able to extract information on
the transverse momentum from the additional features it gets.
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tinct difference from ”generated background” events. In addition, the model should
be less prone to kinematic variables as background samples contained in the ”S-B
mixture” set alter the distribution of said variables.

The MVA output and ROC curve tested on (real) signal (green) and background
(red) events contained in the ”S-B mixed” sample can be seen in Fig. 4.16. The clas-
sifier is able to distinguish signal events (green) contained in the mixed sample more
clearly from the generated background events (yellow) than real background (in red)
contained in the mixed set. However, as can be seen in Fig. 4.17, this training sce-
nario results in a very similar classifier (as predicted by [76]), which again obtains
a mass bias. pT dependent variables provide the classifier with an immediate im-
plication to originate from the ”S-B mixed” sample. To eliminate pT dependencies
a CWoLa network is trained using only the set of baseline features (BLF). A com-
parison of the mass dependent background reduction and signal efficiency between
a CWoLa network and a standard network trained with BLF is plotted in Fig. 4.18.
Both purity and signal efficiency are reported in Tab. 4.4
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Figure 4.16: MVA output and ROC curve for a classifier trained
to distinguish generated background samples (yellow) from a mix-
ture of positive-class (green) and negative-class (red) instances. The
generated background sample is obtained via γ - hit and 3+ track
methods (with 3 and 4 tracks in the TPC) described in chapter 3.
The classifier can distinguish signal events in the mixed samples
more clearly from the generated background samples than the re-
maining background sample. The final ROC curve is then evaluated
with the ground truth information on only signal and background
events (not including generated background samples).

Despite yielding a classifier which tends to be mass independent the potential
of this method is again limited by the missing low mass resonant component, if the
training is performed on MC simulated data. However, as the negative-class sample
is composed of (γ-hit & 3+ track) feed-down events and the positive-class sample of
a mixture of signal and background events the method is transferable to real data.
The network could be trained following the steps outlined above. Ideally, the true
signal should emerge from the background data in a similar way as it is depicted in
Fig. 4.16. Despite some difficulties regarding the optimal working point when train-
ing on real data, classification without labels provides a potential implementation
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Figure 4.17: Background reduction (A) and signal efficiency (B)
comparison of classifiers trained on all features using two different
methods. The classifier plotted in red is trained using the stan-
dard fully-supervised learning approach where all label information
is available. The classifier represented by the blue dots uses a differ-
ent strategy called classification without labels. Here the negative-
class training set consists of generated background events (γ hit, and
3+ background - see Chap. 3), where the positive-class sample is a
mixture of signal and background samples without any other back-
ground indications. Both training scenarios result in very similar
classifiers.

)2 (GeV/cππm
0 0.5 1 1.5 2 2.5

B
g 

re
du

ct
io

n

0

0.2

0.4

0.6

0.8

1

=13 TeVs
=0.104)εPythia-8 MBR (

ALICE simulation, this thesis

BLF

BLF (CWoLa)

(a)

)2 (GeV/cππm
0 0.5 1 1.5 2 2.5

S
ig

na
l e

ffi
ci

en
cy

0

0.2

0.4

0.6

0.8

1

=13 TeVs
=0.104)εPythia-8 MBR (

ALICE simulation, this thesis
BLF

BLF (CWoLa)

(b)

Figure 4.18: Same scenario as in Fig 4.17, with the difference that
the classifiers are trained only on the set of baseline features. Both
training scenarios result in very similar classifiers. However, the
resulting CWoLa model seems to be less depending on the invariant
mass as other models before.

of MVA methods in the analysis of CEP events, which makes it relevant for further
investigations.

Ultimately, standard supervised machine learning applications (using simulated
training data) involving central exclusive production require a more complete CEP
simulation to be sought out to truly deploy the potential of multivariate analyses.
A package currently in development is called ExDiff [77], which simulates centrally
produced low mass resonances f0(1500), f0(1710), f2(1950), and f2(2220) at the de-
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Features Signal purity [%] Signal efficiency [%]

BLF 33.9 88.1
BLF (CWoLa) 33.5 50.1

All features 69.9 93.1
All features (CWoLa) 60.8 86.2

Table 4.4: Performance comparison of networks trained with var-
ious feature compositions using the CWoLa training scheme. The
reported scores provide an extension to Tab. 4.3

sired center of mass energy of
√
s = 13 TeV. The recently published version 2.0 is

also connected to Pythia 8.2 for resonance decays and hadronization making it easy
to include and interesting for further studies.

61



62



Chapter 5

Summary and outlook

The framework of the strong force is quantum chromodynamics (QCD). QCD is
experimentally well established at high energies, where theoretical assumptions can
be made using perturbative methods. Interactions in this energy regime are char-
acterized in terms of basic quark and gluon exchanges. At lower energies, however,
accurate descriptions become increasingly difficult to outright impossible - even when
knowledge of higher energy dynamics are considered - as complex (high-order) inter-
actions become the dominating processes. Diffraction physics at LHC energies lies
in-between these two energy scales, describing strong interactions outside the QCD
framework via Regge theory. To resolve the issue of the rising total cross section
at high energies a Pomeron ansatz is used to describe the mediation of the strong
force. Central exclusive production (CEP) events represent a particular interesting
diffractive process. CEP processes are events where the two interacting protons stay
intact but exchange sufficient energy and momentum to create a particle X. Ac-
cording to Regge theory, theses states (at LHC energies) are produced by a fusion
of two Pomerons, which are emitted by the interacting protons. The production
of X via double Pomeron fusion is a colorless mechanism which results in a clear
experimental signature with large voids of particles between the outgoing protons
and the centrally produced system in the pseudorapidity variable η (referred to as
a rapidity gap).

The ALICE experiment consists of a central barrel and a forward muon spectrom-
eter. Additional smaller detectors for global event characterization and triggering
are located at small angles outside of the central barrel. Such a geometry allows the
investigation of central exclusive production (CEP). A CEP trigger is constructed
by requiring hits in the central barrel and no activity outside of it, creating a rapid-
ity gap filter. Measuring the decay products of X at ALICE allows for a detailed
study of the Pomeron.

In this thesis the charged dipion invariant mass spectrum of the decay X → π+π−

has been studied for possible background sources. This was done by employing
Pythia-8 simulations of these processes, which indicated a drastic reduction of non-
diffractive events (background) by enforcing the rapidity gap condition (described
above). Furthermore, these studies revealed that the remaining background is
largely composed of sources from high mass states which decay into X → π+π−+N ,
i. e. two charged pions, which end up in the detector, and N additional unobserved
particles. This background is referred to as feed-down (FD). To successfully ex-
tract information about the composition of the X particle from the invariant mass
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spectrum, the feed-down background source has to be reduced.
This thesis focused on (1) understanding, and describing the feed-down back-

ground (see Chap. 3) and (2) studied the potential of multivariate analysis (MVA)
methods to reject feed-down contributions in the invariant mass spectrum (see
Chap. 4).

The goal of the feed-down description study (in Chap. 3) was to find feasible
methods which are able to replicate the background shape. I. e. a representative
template of the background shape which can be subtracted from the whole data
yielding the excessive data as signal. A well-known method for approximating the
combinatorial background is the so-called like-sign estimation. It is constructed as
follows: particle pairs of identical charge cannot solely constitute the central system
X (due to charge conservation, X has vacuum quantum numbers) and, consequently,
their mass spectrum is expected to coincide with the continuum background in the
data. However, often feed-down events (83 %) are accompanied solely by neutral
particles. I. e. the majority of background decay channels do not feature additional
charged pions and can, thus, not be modeled using the like-sign approximation. Fur-
thermore, the invariant mass spectrum of feed-down events show emerging structures
not describable in the continuum assumption. Therefore, the like-sign method was
substituted by two other FD estimation methods: the γ-hit, and the 3+ background
approximations.

First, roughly 95% of all feed-down events are accompanied by gammas. How-
ever, of those gammas entering the calorimeters (EMCal) at ALICE only a small
fraction get measured. This is due to low detection efficiency (∼ 10−3−10−4) of the
EMCal at the expected gamma energies. If photons actually do produce a signal in
the EMCal they were used as veto information discarding roughly 10% of feed-down
events. Additionally, as detected gammas identify a background event, such events
were used to approximate the background distribution. In contrast to the like-sign
approximation, where a like-sign pair estimation is constructed, the so-called γ-hit
background template is constructed with two opposite-sign pions if an additional
photon was measured in the EMCal. This results in a very good approximation
of the feed-down shape (as 95% of the feed-down come with at least one gamma).
However, due to the low detection efficiency at the expected gamma energies this
method provides a relatively small sample size.

Second, to combat the small statistics obtained in the γ-hit method a track based
estimation was used. A feed-down composition study revealed that about 12% of all
feed-down events have more than two tracks. The detection efficiency of a charged
track entering the detector acceptance - within a certain momentum range - equals
nearly one. Therefore, charged pions entering the detector acceptance are a few
orders of magnitude more likely to be detected than photons in the EMCal, guar-
anteeing an increase in statistics. The background was constructed in the following
way: A data set of events with more than two detected tracks was created (con-
taining at least a π+π− pair). Within one event π+π− pairs are formed and their
invariant mass is calculated. This procedure, called the 3+ track estimation, has
the advantage over the like-sign method in that it retains the structures observed in
the BG spectrum.

Both the γ-hit and the 3+ background estimations represent their respective
feed-down contributions quite well. Despite the need for further adjustments, i. e. care-
ful efficiency corrections in order to estimate the true extend of each background
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component, the combined background template provided reasonable results on sim-
ulated data. Therefore, the γ-hit and 3+ background approximation seems to be a
promising application to real data.

In the feed-down suppression study, multivariate classification with neural net-
works has been implemented. A comparison of different architectures and feature
selections has been conducted. For training event- and track-level data were used.
When training the classifiers overfitting was prominent for deep and wide archi-
tectures. Consequently, rather shallow and narrow architectures were used which
provided consistent results. In addition, a recursive unit (LSTM) has shown im-
proved results when dealing with multiple track inputs compared to a simple flat-
tened network input (i. e. the track inputs have been stacked on top of each other),
which continuously showed signs of overtraining. Despite a relatively decent purity
increase of 30%, while keeping the signal efficiency at > 93%, a closer look at the
invariant mass dependent background reduction (& signal efficiency) shows that the
classifier is seemingly adopting a simple mass cut. Subsequently, the classifier was
compared to a simple one dimensional mass cut (obtained by maximizing the signal
efficiency over the invariant mass) which yielded a striking similarity. The trained
classifiers seem to introduce a cut at the same position which was obtained via the
maximum signal significance, thus, resulting in approximately the same purity and
signal efficiency as a regular 1-dimensional cut. In general, all classifiers (i. e. clas-
sifiers differing in the set training features) adopted a mass/pT bias to some degree.
This can be attributed to the defining characteristic of feed-down events which is
missing energy/momentum. However, this mass bias is not desirable as the sim-
ulated data only describe the high mass continuum production of X. Other CEP
events from resonant decays (not described in the simulations used in this thesis)
feature lower mass states, whose contribution to the dipion invariant mass spectrum
in X → π+π− decays would be truncated by the networks obtained mass bias.

In an effort to prevent classifiers from obtaining a mass/pT bias, a method called
classification without labels (CWoLa) was implemented. Instead of providing a pure
signal and background sample, the classifier was trained to separate statistical mix-
tures of classes. Therefore, the model should be less prone to kinematic variables as
the additional background samples in the mixture data set alter the distribution of
said variables. The negative-class data set was constructed via γ-hit and 3+ back-
ground methods which resulted in a pure background sample. The positive-class
data set was composed of a mixture of signal and background events, i. e. events
with two tracks, passing the track filters without γ signals in the EMCal. As ex-
pected, the MVA output of signal events in the positive-class sample got shifted
more towards 1 compared to background events in the same sample as they provide
a more distinct difference from the negative-class event sample consisting of gen-
erated backward events (γ-hit, 3+ BG). This training scenario resulted in a very
similar classifier, which is again strongly biased towards kinematic (i. e. pT depen-
dent) variables.

In conclusion, the use-case of models trained in this thesis are constrained to
high mass continuum CEP events. However, as negative-class samples are com-
posed of generated background events (γ-hit & 3+ track) and positive-class samples
of a mixture of signal and background events, CWoLa is easily transferable to a
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real data. Despite the difficulty of finding an optimal working point when training
on real data, classification without labels provides a potential implementation of
MVA methods in the analysis of CEP events, which makes it relevant for further
investigations.

Ultimately, standard supervised machine learning applications (using simulated
training data), involving CEP events, require a more complete CEP simulation to
truly deploy the potential of multivariate analyses. An interesting package currently
in development is called ExDiff, which simulates resonantly produced X particles in
the low mass region. This simulation package provides a reference point for future
studies.

Furthermore, besides being useful in MVA application such as classification with-
out labels, the background approximations γ-hit-, and 3+ track-background can be
used to estimate the high mass continuum background (feed-down) present in real
data.
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Appendix A

γ-hit algorithm

The following algorithm is used to discriminate a charged pion from a potential
gamma in the EMCal.

Algorithm 1 Identification of γ cluster in the EMCal.
1: for all clusters do
2: min dC−T ← 999 rad
3: for all tracks do
4: if current track not propagatable to EMCal surface then
5: continue to next track
6: else
7: current dC−T ← get_phi_eta_dist(current track, current cluster)
8: end if
9: if current dC−T < min dC−T then

10: min dC−T ← current dC−T

11: end if
12: end for
13: if min dC−T > 0.51 rad then
14: mark current cluster γ-hit
15: end if
16: end for
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Decay table

This section lists an extended version of the decay table Tab. 3.1 featuring decay
channels until a cumulative occurrence of 80%. The color scheme is as follows: red
colored decay channels describe 2π final states accompanied by additional final state
gammas. Blue colored rows represent decay channels with more than two charged
particles in the final state.

Decay Occurrence[%] Cumulative [%]

X
π+

ρ−

π0

γγ

π−

21.82 21.82

X
π+π−

19.66 41.48

X
π0

γγ

ρ0

π+π−

7.75 49.23

X
π0

γγ

π−

ρ+

π0

γγ

π+

5.37 54.60

X
π0

γγ

π+

π−

4.20 58.80
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X
π0

γγ

ω

π0

γγ

π+

π−

3.64 62.44

X
ρ+

π0

γγ

π+

ρ−

π0

γγ

π−

3.52 65.96

X
π0

γγ

ρ+

π0

γγ

π+

ρ−

π0

γγ

π−

1.23 67.19

X
π0

γγ

π0

γγ

ρ0

π+π−

1.20 68.40

X
π0

γγ

π0

γγ

π−

ρ+

π0

γγ

π+

1.08 69.48

72



APPENDIX B. DECAY TABLE

X
π0

γγ

π0

γγ

π+

π−

0.93 70.40

X
ρ0

π+π−

π+

π−

0.90 71.30

X
ρ0

π+π−

η
γγ

0.86 72.16

X
ρ0

π+π−

η

π0

γγ

π0

γγ

π0

γγ

0.80 72.96

X
π+

ρ−

π0

γγ

π−

η
γγ

0.77 73.73

X
π+

π−

η
γγ

0.74 74.48
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X
π0

γγ
η

π0

γγ

π+

π−

0.68 75.15

X
π−

ρ+

π0

γγ

π+

η

π0

γγ

π0

γγ

π0

γγ

0.52 75.68

X
π+

π−

π−

ρ+

π0

γγ

π+

0.49 76.17

X
π+

π−

ω

π0

γγ

π+

π−

0.46 76.64

X
π+

ρ−

π0

γγ

π−

N

N

0.46 77.10
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X
π0

γγ

π0

γγ

ω

π0

γγ

π+

π−

0.46 77.56

X
K0

K0
L

K0

K0
S

0.43 77.99

X
η

γγ

ω

π0

γγ

π+

π−

0.43 78.43

X
π0

γγ

π+

π−

η
γγ

0.46 78.89

X
ρ0

π+π−

π+

ρ−

π0

γγ

π−

0.40 79.29
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X
π+

π−

η

π0

γγ

π0

γγ

π0

γγ

0.37 79.66

X
π0

γγ

ρ0

π+π−

η
γγ

0.34 80.00

Table B.1: Extended decay table sorted by highest relative oc-
currence including decay channels until a cumulative occurrence of
80%. The color scheme is as follows: red colored decay channels
describe 2π final states accompanied by additional final state gam-
mas. Blue colored rows represent decay channels with more than
two charged particles in the final state.
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Appendix C

Input variables

Here a short description of the training variables used in MVA is provided.
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Feature name Description Signature

Event features
nTrklets Total number of tracklets BLF
nSingles Number of cluster on SPD layer 1 or 2 not associated

with a tracklet on other SPD layers
BLF

nTrks Total number of tracks BLF
nResidual Number of tracklets not associated with a track BLF
nV0s Number of V0s BLF
FMDmult Total multiplicity measured in FMD BLF
V0mult Total multiplicity measured in V0 BLF
ADmult Total multiplicity measured in AD BLF
Track features
η Pseudorapidity of particle BLF
φ Azimuthal angle of particle BLF
nClusITS Number of clusters in ITS BLF
nClusTPC Number of clusters in TPC BLF
nClusTRD Number of clusters in TRD BLF
nSharedClusITS Number of shared clusters in TPC BLF
TPCsig TPC signal BLF
trkLen Length of measured track BLF
χ2
ITS Quality measure of the fit of the reconstructed track

in the ITS
BLF

χ2
TPC Quality measure of the fit of the reconstructed track

in the TPC
BLF

χ2
golden χ2 between the TPC track constrained to the pri-

mary vertex and the global track
BLF

DCAxy Closest approach of the track to the primary vertex
in the xy-plane

BLF

DCAz Closest approach of the track to the primary vertex
in the z-direction

BLF

dφ−η Distance in the 2D φ−η space between the two tracks BLFφ−η

Bayes Bayesian PID probabilities to be of particle type a
(with a = π, K, P)

Bayes

TPC nσ Number of σ away from the mean expected TPC
signal for the particle a (with a = π, K, P)

TPC nσ

pT Transverse momentum pT

ϕ1−2 Angle between the two tracks ϕ1−2

Table C.1: Variables used in the multivariate analysis. Addition-
ally, the feature group is added.
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