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Kurzfassung

Das rapide Wachstum von Parasiten wie, der Varroa Milbe (Varroa destructor), ist einer
der Hauptgründe für die erhöhte Sterblichkeitsrate von Bienenkolonien. Bienenzüchter
müssen händisch zeitaufwendige Proben und Behandlungen durchführen um diesem Ster-
ben entgegenzuwirken. Der Befallstatus einer Kolonie wird durch visuelle Kontrolle von
Stichproben durchgeführt. Die Ergebnisse basieren dabei auf statistischen Hochrechnun-
gen der Proben zum Milbenbefall und werden teilweise durch invasive und zeitaufwändige
Maßnahmen erbracht. Das Ziel dieser Arbeit ist es zwei unterschiedliche Klassifikationsan-
sätze zu vergleichen und auf die Klassifizierung von Bienen anzuwenden. Hierfür wurde ein
Kamerasystem entwickelt, das in der Lage ist kontinuierliche Aufnahmen des Einganges
einer Bienenkolonie anzufertigen. Von dem gefilmten Videomaterial wurde händisch eine
Datenbasis mit mehr als 13,000 Bildern von infizierten und gesunden Bienen erstellt. Diese
wurde weiterfolgend zum Trainieren und Evaluieren der beiden Klassifikationsansätze
verwendet. Verglichen werden ein “traditoneller” Machine Learning Ansatz mit einem
Deep Learning Ansatz. Die finale Evaluierung zeigt, dass die automatische Unterscheidung
von infizierten und gesunden Bienen mit Hilfe des präsentierten Kamerasystems möglich
ist. Unter der Verwendung des Deep Learning Ansatzes, basierend auf dem erstellten
Testdatensatz, ergibt sich eine Erkennungsgenauigkeit von 94.4% für gesunde und 85.5%
für infizierte Bienen. Dieser neuartige Ansatz zur Bienenklassifizierung und -überwachung
dient als erster Schritt in Richtung voll-automatisierter Überwachung von Bienenstöcken
und deren Parasiten.
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Abstract

Rapid growth of parasites like Varroa destructor is one of the main reasons for elevated
mortality of bee colonies. Beekeepers have to perform time consuming manual sampling
to enable treatment and avoid colony losses. Most existing sampling plans only produce
rough estimates and can be invasive and costly. This can be a significant stress factor,
when considering an average sample size of 300 bees per apiary, to get a significant test
result. This yields the question, if it would be possible to automatically monitor the
infestation status of a beehive, using a non-invasive method. This works provides a first
step towards answering this question. Therefore a camera system capable of creating
continuous recordings of the entrance of an apiary is designed with whom more than 7TB
of video data is recorded. From the conducted video material, a ground truth dataset is
created with more than 13,000 manually labeled images of infected and healthy bees. The
dataset is used to train and evaluate two detection approaches: A “traditional” machine
learning pipeline and a deep learning pipeline using convolutional neural networks. The
final evaluation shows that distinguishing between healthy and infected bees is possible
using the convolutional neural network approach, providing the proof of concept. A
per-class classification accuracy of 94.4% for healthy bees and 85.5% for infected bees is
recorded with an overall f-score of 0.82, calculated on the labeled test dataset. This work
therefore provides a novelty approach for automatic parasite classification and represents
as a first step towards automated parasite monitoring.
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CHAPTER 1
Introduction

Each year, for over a decade now, beekeepers are recording high losses of their honeybee
winter populations [STS+15]. This is a global phenomenon, reducing the worldwide pop-
ulation of honeybee Apis mellifera continuously [ESM+09]. Researchers and beekeepers
are still struggling to find the root causes, but agree on a combination of responsible
factors [vM10]. Examples are: The heavy use of pesticides, genetic mono-cultures of bee
breedings, diseases particular to honeybees and global climate change [vM10]. A factor
to highlight respective to sudden dying of bee colonies is diseases [GG15]. Gisder et al.
show that there is a correlation between the sudden death of a beehive and infections with
viruses and diseases induced by parasites [GG15]. These diseases are mainly transmitted
and spread by parasites [BG08]. In particular the Varroa mite (Varroa destructor) is a
world-wide threat, responsible for the deaths of millions of colonies [Mar01]. The effects
of a Varroa infestation on colonies are also referred to as Varroosis which, in summary,
makes up the most destructive disease of managed honeybee colonies world wide [BG08].

To counteract and maintain their colonies, beekeepers are performing high frequency
manual monitoring of their hives. This is necessary to determine the general health status
of each colony which includes identifying the parasite load [LMB+10]. Monitoring is done
manually, which comes with a number of drawbacks. Manual testing works on the basis of
drawing random samples from a bee population and perform statistical projections on it.
These are prone to errors and depend heavily on the sample size taken and the individual
procedure used. Additionally, methods are invasive leading to bees being killed during
the testing procedure. This is a significant stress factor, when considering an average
sample size of 300 bees per test and per hive, to get a significant test result [LMB+10].
Finally, because manual interactions are necessary for each hive, the process becomes
time consuming.

There is an obvious need for precise and economic ways of monitoring the health of a
beehive. Especially regarding manual sampling. A possible solution is to omit the time
consuming and invasive procedure of manual sampling and replace it with an automated
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Figure 1.1: The overall project pipeline. The left side shows the five major steps. The right
side shows schematic illustrations corresponding to each step.

non-invasive process. This work aims to answer the following question on this behalf:
Is it possible to automatically monitor the infestation status of a colony using camera
based observation techniques? In particular: Is it possible to detect, whether a honeybee
is infected with the parasite Varroa destructor when passing through the entrance of a
beehive.

To answer this question, the proof of concept is implemented using a classification
approach. The necessary data is provided by using a video camera system which is placed
on top of the entrance of a beehive. The idea is to monitor a colony at the hive entrance
and film individual bees as they are entering or leaving the hive. For each observed bee
a decision is made, whether the bee is infected with a parasite or not. Therefore two
machine learning algorithms are trained to distinguish between healthy and infected bees.
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The final results of the best performing algorithm provide the proof of concept.

The complete process is schematically explained in Figure 1.1, depicting four major steps.
On the right side of each step a visual description is provided, illustrating the contents
of this step. It ranges from designing and building the hardware recording system to
evaluating the recorded data and algorithms. The individual steps of Figure 1.1 are
further explained:

1. Designing and building of the camera system: First a video camera system
is designed, which is placed in front of a beehive taking continuous recordings of
the entrance. The systems design is heavily influenced by the designs of [CYJL12]
and [KTP15]. It focuses on filming honeybees when they are entering or leaving
the apiary. In the first step of Figure 1.1 the initial design of the proposed
camera system is visualized with the bottom of a apiary in the back. It is a
3D - model designed using Blender1. The basic idea is to have a transparent
tunnel acting as entrance to the hive, which is observed by a camera placed on
top of it. The tunnel is further equipped with artificial lighting to maintain a
constant and homogeneous background. Finally a micro processing unit is included,
performing live computations on the recorded video data. The design is undergoing
an evolutionary process yielding three different prototypes.

2. Creating the video footage: The second stage consists of testing the prototypes
with the goal of recording video data of infected and healthy bees. Each prototype
comes with an individual hardware configuration leading to different recording
properties. Videos are recorded in laboratory and field setups. In the laboratory
setup, different recording conditions as well as different camera sensors are tested.
The video data, used to create datasets for training and evaluating the recognition
models are recorded here. The field recordings target for experimenting with long
term usage, as well as recording video data from beehives.

3. Creating the ground truth from the video data: For the training of a
recognition algorithm, a manually labeled dataset is necessary. This approach
requires datasets to train, validate and test the created models.

Within the scope of this task a manually labeled dataset with more then 13, 000
manually labeled images is created. The videos acquired in the previous step are
processed and images of individual honeybees are extracted. These images are then
manually labeled by a human observer, marking “0” for healthy bees and “1” for
bees infected with Varroa mites. In case of an infected bees, the position of the
Varroa mite is marked on the image. The total labeled dataset is split into three
distinct subsets: (1) train dataset, (2) test dataset and (3) validation dataset.

4. Training two types of models: The aforementioned datasets are now used
to train two types of recognition algorithms: (1) “Traditional” machine learning

1https://www.blender.org/ (last visited 06/2018)
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1. Introduction

algorithms and (2) Convolutional neural networks. The parameters of the individual
models are evaluated using the validation dataset to find the best performing
candidate models.

5. Performance evaluation: The final step is to apply the best performing trained
models on the test dataset. Here the classification performances of both the best
performing deep learning as well as “traditional” models are compared.

Concluding with a final selection of the best performing model capable of differenti-
ating between healthy and infected bees.

The contributions of this work are the following:

• Developing and evaluating three camera recording systems, providing details on
how to design such a system. The complete pipeline from theoretical system design
to implementation and building of a recording system is presented. This results
in three novel camera systems which are implemented as prototypes and used for
data recording.

• With these systems 7.01 TB of video data is recorded. Both laboratory and field
setups are considered during this process. The detailed configuration of each test
session is documented in a structured form, allowing the generation of a data report.

• From the recorded video data a labeled dataset with 13,464 manually labeled bee
images is created. For this task, an objection detection and extraction pipeline is
presented. Additionally a supporting labeling software tool is implemented using
Python, easing the task of manually labeling the extracted images. Both the
recorded data, as well as the labeled dataset qualify to be used in future projects
and different research questions.

• A comparison between “traditional” machine learning and deep learning technology
is applied for classifying the health status of honeybees. The results of this
comparison are presented providing the proof of concept by showing the capability
of distinguishing between healthy and infected bees.

1.1 Motivation

The main contributions of this work are based on creating an automated monitoring
system and the comparison of segmentation and classification methods in this veterinarian
context. This context is provided by real world implication of elevated honeybee colony
losses that started in the year 2000 [Mar01]. This is still an ongoing problem as recent
studies show [NLC16]. This vanishing of honeybees does not only affect the global supply
of honey, but in reality global human food supply. The honeybee Apis mellifera historically
developed to be the most used insect pollinator for fruits and vegetables [M+76], [DMM00].
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1.1. Motivation

This is due to their self sustainability and workforce. Also the workforce can be stimulated
by feeding artificial diets to adjust to pollination needs. [vM10].

Pollination is important for both wild plants as well as agricultural productivity, affecting
global human food supply. Fifty-two of the 115 leading food commodities depend on
honeybee pollination [KVC+07]. Putting this into figures results in an estimate of around
35% of the human diet made possible by animal pollination [KVC+07]. Imagining a
scenario with all animal pollinator service declined estimates in around 1.42 million
additional human deaths per year from malnutrition-related diseases, as recent studies
show [SSMM15]. This is more than the total population of Cyprus2. These statistics
need to be regarded with care, since honeybees are not the only animal pollinators.
Nevertheless, they propagate the relevance of managed honeybee colonies for the global
food supply.

From an economic point of view insect pollination is estimated to have a global value of
around 212 billion USD in the year 2009 [GSSV09]. This makes around 9.5% of the total
value of agricultural production.

1.1.1 Colony Losses and Colony Collapse Disorder

In the years 2006 to 2008 a significant drop in the number of managed honeybee colonies
is observed in the US [ESM+09]. This sudden vanishing of colonies is titled Colony
Collapse Disorder [vHJUP10]. The keywords “phenomena” and “disorder” emphasize
the fact that scientist and beekeepers are at the mercy of this anomaly. Within these
years, research focused on finding reasons for this disorder, with the goal of identifying
the root cause and possibly stopping the process. Despite the efforts no single root
cause is identified and instead a combination of the following stress factors is found
responsible [ESM+09], [PBK+10]:

• Diseases and parasites: There are more than 23 viral diseases known that
specialized on honeybees, not including bacterial infections. These are transmitted
and spread via parasites, like Varroa destructor.

• Pesticides: The increased use of pesticides in modern agriculture leads to a
frequent contact of honeybees with these chemicals during foraging activity. With
many of the used pesticides having unknown effects on honeybee populations.

• Genetic mono cultures of honeybee colonies: Genetic variety is getting sparse
within the honeybee genome due to selective breeding. This also leads to higher
susceptibility to pathogens and pests.

• Increased industrialization: Natural habitats of pollinators are shrinking and
bacteria and fungi deadly to honeybees are spread easily because of increasing
global transport.

2Population: 1,176,598, taken from https://esa.un.org/unpd/wpp/
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1. Introduction

(a) (b)

Figure 1.2: Varroa destructor mites. (a) A grown female Varroa mite on honeybee larvae after
opening a brood cell. (b) A microscopic record of a female Varroa mite.

• Weather and climate change: Changing climate adds additional stress in
warmer parts of the world.

This list is far from complete and does not show to complex interactions between different
stress factors. It is undeniable that the parasite Varroa destructor is one of the driving
factors in this field [LMB+10]. Varroosis is entitled the single largest threat for honeybee
colonies world wide. [BG08], [LMB+10], [FNK13], [Loc16]

1.1.2 Varroa destructor

Varroa destructor (V. destructor) or the Varroa mite is a parasitic mite specialized on
bees. Their original natural host is the Asian bee Apis cerana. In the age of globalization
and international trade opportunities for displacement of parasites beyond their natural
barriers is high [Hul09]. This lead to V. destructor adapting to new hosts like the
European honeybee Apis mellifera. Because of this modification it successfully spread
throughout the world, leaving only a few isolated islands and the continent Australia
unaffected [RAZ10]. There exists a stable host-to-parasite relationship between the Asian
hive bee Apis cerana and the parasitic mite. This symbiosis is missing with the European
honeybee Apis mellifera. This is largely due to the fact that Varroa adapted their live
cycle enabling them to reproduce not only in drone brood cells but worker brood cells
as well [Loc16]. Also the Asian hive bee has developed behavioural defenses against V.
destructor.

Grown female Varroa destructor are of round shape, approximately 1mm of diameter.
They have six legs to move and jump onto their hosts and tubular feeding tools to
suck the bodily fluids. Figure 1.2 shows examples of grown female V. destructor. Their
life cycle is structured in three major phases [RAZ10], [LMB+10]: In the first phase,
adult female mites invade brood cells of worker or drone bees just before they are closed
with a wax capping. The reproduction and second phase is starting here. Inside this
secure environment the female mite is feeding from the growing honeybee larvae while

6



1.1. Motivation

reproducing and mating. After around three days the first male egg is laid followed by
around 4 female eggs. The bee larvae is not killed during this procedure and later frees
grown mites from the cell.

This releases 1 to 2 additional female mites, which spread to other hives or look for new
brood cells directly. This is also the period, when the presented system can detect the
presence of V. destructor, because they are transported through the entrance. Leaving
a hive untreated causes an epidemic infection of surrounding hives, because of this
transportation aspect.

The mite feeding on the bee results in a reduced life span and general weakening of the
host. But this becomes a neglectable factor when compared the transition of viruses
during the feeding. Up to 23 different viruses are transmitted by Varroa mites resulting
in different symptoms like disoriented or crippled bees unable to fly because of deformed
wings [MG15].

1.1.3 Monitoring and Treating Infestations

Untreated colonies exceeding an infestation rate of 30% during the summer months, are
most likely to not survive the following winter [FHIR03]. Therefore regular monitoring
and treatment is necessary to sustain honeybee colonies for more than one season [RAZ10]

In the year 2010, Lee et al. suggested standardized sampling plans to better control the
global growth of parasites like Varroa destructor [LMB+10]. The procedures are based
on statistical extrapolation from a minimum sample size of 300 bees per test and colony.
The following three categories are identified:

• Sampling from living bees: A sample of 300 up to 1000 living hive bees
is drawn and tested for the presence of Varroa mites. All samples are taken
manually with either of the two known methods: sugar shake [MWE02] and alcohol
wash [DJDARG82]. In both methods the sample is put in a jar and shaken, with
the goal of separating the Varroa mites from their hosts. A fine scaled grid then
separates the parasites from the rest and then they are counted manually. When
using alcohol, the bees die during the procedure with the advantage of getting more
accurate results compared to the other methods. Using powder sugar instead of
alcohol produces less accurate results, but the sampled bees survive the procedure.

• Sampling from the brood: This method is time consuming, but is used to
determine the infestation status in the first phase of the reproduction cycle. One or
more apiary combs holding brood cells need to be removed from the hive and the
cells are observed individually. They need to be opened, removing the covering wax
capping, with the purpose of looking for occurrences of parasites. The bee larvae
is killed during this procedure. In Figure 1.2a a brood with Varroa infestation
is displayed. The more cells are observed, the higher the accuracy of the test.
Advantage of this method is, that Varroa mites can be detected in the early stages
of their life cycle, while they are still in their reproductive phase.

7
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• Non-invasive sticky board: This method is non-invasive in the sense that no
bees are being harmed during this procedure. To get an estimate of the Varroa
population inside a hive, a board covered with Vaseline or other sticky material is
put under the hive. In regular intervals the boards are recovered and the amount
of dead mites sticking on the board are counted. The boards can be equipped with
a printed grid to ease the task of manual counting.

All methods result in a count of parasites from a sample. The amount of parasites in
relation to the total sample size gives the relative infestation level in percent. Here again
the need for efficient methods of monitoring become apparent.

1.1.4 Comparison of Image Processing and Classification Methods

As part of this work, honeybees need to be segmented and extracted from consecutive
video frames for processing. Five different methods qualify as potential solutions to the
segmentation problem. This offers the possibility of comparing and evaluating these
methods, which are best suited for the application in this veterinarian context.

In the next stage of the algorithmic pipeline, the question about manual and automatic
feature extraction is applied to honeybee classification. Manual feature extraction
describes the task of hand crafting features to be extracted from the input data to
transform from the input space to the features space. This translation is necessary to
reduce the dimensionality of the input data and enable feature based classification. This
approach is also referred to as a “traditional” machine learning approach.

A different way of regarding the classification problem is to let the model learn the
feature representation from the input data without manual intervention. This is the
case with deep learning and convolutional neural networks. So the “traditional” machine
learning approach consists of a manually engineered transfer function, followed by a
“shallow” classifier. A “shallow” classifier denotes a model that is not using deep learning
technologies [YYPH14]. Both methods qualify for the presented classification task and are
also used for insect classification [GM16], [MCR+17]. A detailed comparison is provided
by applying both methods to the same problem using the same datasets. This allows for
making a decision about which method is better suited for the classification task in the
video surveillance setup presented in this work.

1.2 State of the Art

The standard treatment against parasites involves frequent manual monitoring. This
process is time consuming and possibly inaccurate depending on the individual procedure
and sample size taken [LMB+10]. The major thread is imposed by a parasite called
Varroa destructor creating the need for efficient and accurate parasite detection. In the
best case, automating as much of this process as possible up to complete automation.

8



1.2. State of the Art

Ref Year Objective Method Dataset Conclusion

[GVAG16] 2016 Creating a wireless
ad hoc sensor net-
work for bee moni-
toring

Ad hoc nodes are im-
plemented using Rasp-
berry Pis with temper-
ature, humidity, gps
and camera sensor

Not applica-
ble

Power consumption on
raspberry pi doubles
with external sensors,
but long term applica-
tion is possible using all
sensors

[ZKA+16] 2016 Smart apiary man-
agement: Monitor-
ing the health of
colonies

Combining sensors at-
tached to the hives
with a cloud based cen-
tered monitoring ser-
vice

Not applica-
ble

Internet communica-
tion technologies are
necessary for precision
agriculture minimizing
manual intervention

[GCZ+15] 2015 Smart apiary man-
agement: Monitor-
ing the health of
colonies

Remotely monitoring:
Temperature, humid-
ity, sound, carbon
dioxide and weight

Not applica-
ble

A system for helping
beekeepers improving
their knowledge of the
colonies by collecting
environmental data is
presented

[QAHL14] 2014 Using acoustic sig-
nals to detect Var-
roa infestations

SVM is trained with
features extracted
from acoustic signals
from healthy and
infected hives

5 sounds of
healthy and
1 sounds
of infected
bees

Prototype for monitor-
ing acoustic signals is
presented, missing a de-
tailed evaluation

[RH14] 2014 Measuring the flight
activity

Human observers are
manually counting
bees at the apiary
entrance

60 one-
minute
counts

Factors for influencing
the flight activity like
foraging availability are
identified

[SMA+94] 1994 Measuring the flight
activity

Rod arms triggering
a mechanically driven
pen

Not docu-
mented

Flight activity can be
monitored mechani-
cally

[Wri28] 1928 Measuring the flight
activity

Human observers are
manually counting
bees at the apiary
entrance

Not docu-
mented

The count of bees is
used for deriving infor-
mation about the hon-
eybee colony

[Gat14] 1914 Manually measur-
ing the hive temper-
ature

Human observers are
regularly measuring
temperature of bee
colonies

Not docu-
mented

The temperate gives in-
sights into the status of
a beehive

Table 1.1: State of the art for electronically enhanced apiary management.

To the best of my knowledge, no system providing this service exists today. The methods
and ideas for the created detection pipelines are grouped in the following Sections. Each
is explained in detail as well as summarized in the Tables 1.1, 1.2 and 1.3.

1.2.1 Electronically Enhanced Monitoring of Bees

The idea of regularly collecting data about honeybees dates back to the year 1914, where
Burton N. Gates recorded hourly temperature data from a beehive [Gat14]. A first

9



1. Introduction

attempt for automatically recording the flight activity of honeybees is documented by
Wrigth et al. in the year 1928 [Wri28]. Bees moving through the hive entrance are
tripping a balance arm, which produced electrical impulses driving a printer. Their
efforts show that even back then the relationship between measurable parameters and
the activity or health of an apiary is suspected. Using micro processors to estimate
flight activity is first presented in the year 1994 by Struye et al. [SMA+94]. They built a
machine equipped with tunnels and infrared sensors for each tunnel to successfully count
the number of bees flying in and out. In the year 2015 Meikle et al. state that multiple
sensors are used to derive information about the health of bee colonies [MH15].

The trend of computer technologies entering the beekeeping profession is driven by the
fact that electronic sensors are becoming increasingly cheaper and more accurate [MH15].
These topics are referred to as precision beekeeping, precision apiculture or smart apiary
management. Main goal is to increase the efficiency of beekeeping and develop real
time observation tools to continuously monitor bee colonies, without creating additional
stress [ZBMS15], [ZKA+16]. The process is grouped into a three-phase-cycle: 1. data-
mining using sensors, 2. data interpretation and 3. application based on the measured
results. Examples for sensors which are used in the first phase are: Weight-, temperature-,
oxygen-level-, humidity-, sound-, vibration- and optical sensors [MH15], [YLG11]. In
the second phase, the collected information is statistically processed. This is then used
to predict the colonies health state and apply treatment or other processes in the third
phase [ZSM12].

There exist also commercial bee monitoring systems. The systems allow beekeepers
to keep track of parameters like weight, humidity or sound inside the hive. Example
systems are BeeHiveLab [GCZ+15], ARNIA [Eva18], HOBOS [Tau18], the Intelligent
Beehive [HHDV16], or Melixa [Mel18]. All of these commercially available products
facilitate all three phases of precision beekeeping in their products. The HOBOS project
also incorporates visual information in the first phase. A surveillance camera is mounted
vis-à-vis the entrance giving a visual clue about the activity of the hive. The data is not
further processed but directly streamed to give a live camera feed of the hive.

Qandour et al. are focusing on the effects of Varroa infestations to remotely detect
infestations of such [QAHL14]. They claim to detect pest infestations, including Varroa
infestations, solely by remotely monitoring the sounds created by honeybee colonies. By
using directed electronic microphones, sounds of healthy as well as infected beehives are
recorded. Features like frequency and bandwidth of the sounds are then extracted and
used to train a Support Vector Machine (SVM) classifier. The classifier is trained to
discriminate between ”infected-” and ”healthy- hive” sounds. Unfortunately no detailed
results or data sets are provided to compare their results. In their conclusion they
state that the classification works better then random guessing and that future work is
necessary. Nevertheless acoustic features can be used in combination with visual sensors,
to detect parasite infestations.
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(a) (b)

Figure 1.3: Tracking Varroa mites inside a brood cell. (a) A Video frame of a beehive brood
cell infected with female Varroa mite. (b) The heat map derived from the tracking the mite inside
the cell [RPT+12].

1.2.2 Monitoring using Visual Sensors

Meikle et al. state that technological progress, creates cheaper sensors [MH15]. This
also applies to cameras and video sensors with advantages over other sensor technologies.
They provide a rich amount of information and enable machine learning and image
processing technologies. A camera facing the entrance of a beehive records all events
occurring at the entrance. One can later set the actual issue to focus on. The same video
can be used to count bees, track bees, perform behavior analysis, or to measure the pollen
foraging activity [BPRM16]. Further, camera sensors allow non-invasive monitoring
of honeybees [BPRM16]. This is why cameras are also used for behavior analysis and
to understand the bee waggle dance [CMS08], [THKA16]. Finally, the collected video
material acts as a video archive to be manually inspected by a beekeeper in the case of
anomalous activity.

Camera sensors are also part of research related to Varroa destructor. In the year 2012,
Ramirez et al. are detecting and tracking Varroa mites inside honeybees brood cells,
with a follow up work in 2017 [RPT+12], [RBPRFM+17]. In a laboratory setup, a single
mite infected brood cell is observed by a video camera, displayed in Figure 1.3a. Image
processing is used to extract the Varroa mite from the background and track the mite
inside the cell. They use a technique termed adaptive background subtraction to separate
the mite from the background. This is part of a group of methods called change detection,
which can be found in latter works dealing with bee detection and tracking. The idea
is to extract the background from the image by averaging over previous frames and
subtracting this background to extract the foreground. This is based on the assumption
that the background is static and only changing slowly while the foreground is changing
quickly. The information provided by the tracker is used to derive a heat map of the
movements inside the brood cell, as shown in Figure 1.3b.

1.2.3 Monitoring the Hive Entrance

There exists a steady and balanced flow of bees entering and leaving a healthy hive
which, is partly explained due to the fact that bees rarely die inside their hive. [KTP15]
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Ref Year Objective Camera Setup Segmentation Test dataset Conclusion

[RMA+18] 2018 Detecting pollen
bearing honey-
bees

Exposed camera
setup protected
by sun cover over
hive and camera

Not mentioned 142 samples for
the test dataset
(80/20 split from
total 710)

A two-layer
CNN outper-
forms deeper
pre-trained CNNs
and “traditional”
models with
96.4% accuracy

[BPRM16] 2016 Detecting pollen
bearing honey-
bees

Box with artificial
lighting and Rasp-
berry Pi camera
model

Background sub-
traction using
MOG and color
segmentation in
LAB color space

354 images of
honeybees ex-
tracted from 50
video frames

Using a SVM to
classify pollen
bearing bees with
92.14% accuracy
running on a
Raspberry Pi

[KR16] 2016 Counting the
number of bees
at Langsthroth
beehive entrance

Exposed Rasp-
berry Pi camera
attached to a
Raspberry Pi

Color threshold-
ing in HSV

7,948 bees taken
from 1781 frames

Counting works
with an accuracy
of 85%

[THKA16] 2016 Measuring the in-
and-out activity
at hive entrance

Box setup includ-
ing LED light-
ing and process-
ing unit

Background sub-
traction using av-
erage gray scale
value

150 manually la-
beled frames from
30s of recordings

Predictive track-
ing and count-
ing of honeybees
shows high corre-
lations with man-
ual counts

[KTP15] 2015 Comparing image
segmentation
methods for bee
detection

Exposed camera
setup, without ar-
tificial lighting

Adaptive back-
ground subtrac-
tion and object
detection using
cascade classifica-
tion and sliding
window

Unknown Background
subtraction out-
performs cascade
classification for
bee segmentation

[TG15] 2015 Estimating the
number of bees at
the entrance of a
beehive

Exposed CCTV
camera with time
stamp relying on
natural daylight

Adaptive back-
ground subtrac-
tion using 11
previous frames

Bee count manu-
ally evaluated on
20 frames over 12
hours

The bee estima-
tion from the
signal-to-noise
ratio matches the
manual count

[YC15] 2015 Tracking honey-
bees and splitting
merged groups of
honeybees

Exposed action
camera without
artificial lighting

Combination
of background
subtraction and
color thresholding

300 video frames
manually anno-
tated

99% of flying
bees and 70% of
merged bees is
tracked correctly

[CGKM13] 2013 Tracking bees at
the hive entrance
using stereo vi-
sion

Exposed stereo
camera setup
without artificial
lighting

Combination
of depth and
motion intensity
segmentation

80 manually anno-
tated trajectories
in 1000 frames

Tracking achieves
a detection rate of
79.46%

[CYJL12] 2012 Identifying and
recognizing
honeybees us-
ing paper tags
attached to bees

Box with artifi-
cial lighting and
infrared sensitive
CCTV camera

Hough transform
for detecting
the paper tag
followed by OCR

30 min recording
of in and out ac-
tivity in labora-
tory

Bee detection and
recognition rate
of 86%

[CMS08] 2008 Measuring the in-
and-out activity
at hive entrance

Exposed camera
setup, without ar-
tificial lighting

Adaptive back-
ground sub-
traction with
template match-
ing for detection

600 video frames
manually an-
notated in the
field

Tracking works in
real-world condi-
tion with preci-
sion 0.94 and re-
call 0.79

Table 1.2: State of the art for monitoring the entrance to a beehive using visual sensors. All
camera setups use a similar top-down view on the landing platform of the beehive.
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This flow allows for monitoring regular and irregular behavior which might lead to
conclusions about the general health state [KTP15]. The behavior can be recorded by
creating entrance-traffic statistics of bees entering and leaving the hive. This traffic
is used to estimate the flight activity which can be used to determine colony intrinsic
factors like foraging activity or general health, as well as assessing a colonies response to
environmental changes [RH14]. This is conducted after manually monitoring a beehive
by human observers.

A possible setup for video based monitoring is to replace these observers by cameras
mounted outside the hive facing the entrance. This setup has the following favorable
properties: (1) Natural daylight can provide the required light for creating photo or
video footage, or artificial lighting can be added easily. (2) The elevated humidity
and temperature inside a beehive must be considered when deciding where to put a
camera sensor. Placing the sensor outside the hive can avoid fogging of lenses and
over-heating of electrical compounds. (3) The entrance to the hive offers a central point
observation, providing an organized scenery when compared to sceneries found inside
the hive. Nevertheless attempts for visually tracking and analyzing bees inside a beehive
are presented by [WWRL17], [KOOI11], [KM09]. Main goal is to record and understand
interactions and forms of communication between bees, like the waggle dance [RGS+05].
To deal with the chaotic scenery both [WWRL17] and [KM09] use sticky tags attached
to the bees bodies for identification and tracking. In a laboratory environment Wario et
al. achieve a detection accuracy of over 90% on the manually marked bees [WWRL17].
Kimura et al. are achieving a 72% detection rate of total of 500 bees in a dynamic honey
comb scenery, without the need for manually tagging individual bees [KOOI11]. They
use a data compression method similar to k-means named vector quantization (VQ), to
find centroids of individual bees and groups of bees respectively. Tracking of individual
centroids is done by calculating the trajectory of previous frames and using a nearest
neighbor approach to assign centroids to previous frames. The system is providing a
proof of concept, but does not deal with continuous application issues. The maximum
processing time is limited to 3 minutes due to memory limitations. With a maximum
resolution of 720 × 480px and the in-hive setup, no parasites are detectable.

Campbell et al. are the first to publish a video monitoring system mounted at the hive
entrance using the preferable setup with a camera mounted outside the hive, facing down
on the entrance [CMS08]. Their goal is to measure the flight activity of a honeybee
colony by tracking individual bees on a frame-by-frame basis. Figure 1.4a shows the
camera setup, where the camera is mounted outside of the hive facing down on the
landing platform. In this setup the camera is exposed to environmental factors and
relies on natural day light as a light source. The exposed setup introduces additional
challenges like constantly changing light conditions or light obstructions by falling leaves
or other animals. The authors still argue in favor of this setup reasoning to be as least
invasive to the bee colony as possible, preserving there natural behavior. For detection of
individual bees in the scenery they use adaptive background subtraction. This technique is
used for defining a mask separating foreground from background pixels. In this case the
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(a) [CMS08] (b) [THKA16]

(c) [CYJL12]

Figure 1.4: Apiary entrance monitoring. (a) Exposed camera setup with camera housing
mounted on top of the entrance. (b) Closed camera setup with constant lighting conditions. All
electrical parts are included. (c) Box setup similar to (b) but using external hardware and a
infrared CCTV camera.

word adaptive refers to averaging the recent 300 video frames to predict the background.
This compensates for slow changes in the background like changing day light conditions.
Tracking is done by assigning each detected bee a probability of different behaviors like
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“crawling” or “flying”, to better predict their position in the next frames. In their results
they show a high false-positive-rate due to shadows cast by approaching bees. Still they
claim a detection rate of 94% for their bee counter measured on 600 manually labeled
frames. This is followed by a work of Tashakkori et al. in the year 2015 [TG15].

Tu et al. present an efficient way for estimating the number of bees in the image, based
on the amount of foreground-pixels in relation to the total amount of pixels [THKA16].
This relation is fairly constant, because the camera is mounted in a box with artificial
lighting, only allowing bees to crawl into the hive. The size of individual bees only differ
slightly, which allows estimating the amount of bees in each video frame. This count is
then passed as parameter k for k-Nearest-Neighbors algorithm, to find the center points
of the individual bees in the video-frame, which are tracked over time. For tracking each
individual center point is modeled as the centroid of an ellipse with its main axis modeled
using the moments of the foreground object. Using this ellipse approximation can be
used to predict movement direction and improve the tracking results. The ellipse fitting
step is used in this work as well, to improve the bounding box orientation extraction for
the extraction of the ground truth.

The hardware setup used by Tu et al. is depicted in Figure 1.4b. This setup, in comparison
to an exposed camera setup visible in Figure 1.4a, offers a constant background and
therefore eases the task of identifying and tracking the objects of interest. Also the
authors manage to get real time analysis using low cost hardware and present an all-in-one
solution, with no external hardware necessary. In principle a similar goal is targeted
in this work, although computational efforts are higher when processing frames for
classifying individual bees.

The idea of using a cascade classifier, facilitating a windowing function for bee detection,
is introduced by Kale et al. [KTP15]. They focus on creating segmentations of honeybees
for later tracking, comparing two different methods for segmentation: Background
Subtraction and Cascade Classification. Cascade classification is originally introduced
by Viola et al. [VJ01] in the year 2001 and is used for face detection in real time videos.
The technique is targeted at real time computation of features on low cost hardware.
A sliding-window is used to scan the input image. For each window, easy to compute
features are calculated, in a cascade manner, starting with simple to complex features.
The complex features are only computed, once the simpler features show the possibility
of detecting the object of interest. Only if all stages provided by the weak-learners are
met, the object of interest is classified as detected. Another advantage of this method is,
that not only the foreground is estimated but also the positioning of a bounding box for
the detected object is provided by the sliding window. Despite these favorable properties
experimental results show that background subtraction generally outperforms cascade
classification in terms of segmentation. The sliding window technique is used in this work
to extract sub-window-patches from bee images, before classification.

Using a closed environment, such as a box, fitted with artificial lighting to monitor the
entrance is first presented by Chen et al. in the year 2012 [CYJL12]. Figure 1.4c shows
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a schematic representation of the recording system. This work and the work by Tu et al.
inspired the first prototype design.

Their goal is to create accurate statistics about the bee-traffic and flight time of individual
bees. To distinguish between the individuals, they fitted each bee with a specially designed
paper tag holding a unique code. The tags are detected by the camera and the code is
extracted and identified using optical character recognition. For recognizing the tags
a close up view of the bees backs is necessary. To get enough detail, the entrance is
narrowed to 80mm of width and the bees have to pass a transparent tunnel of 6mm
height. This tunnel is further divided into sub-tunnels of 8mm width, to separate the
stream of bees and pre-set the possible walking directions. This inspired the tunnel
design of the second prototype. They record detection rates up to 98% using this setup.
Despite these good results, their work is contradictory. The authors refrain from using
visible light and instead use infrared light, arguing to create less interference for the bees.
On the other hand they physically manipulate bees by attaching tags on their backs
and introducing tunnels which can get jammed easily. Experiments performed using the
second prototype showed, that using the tunnels with the dimensions presented in this
paper, dead bees can not bee carried out of the beehive. So the natural drop of bees
is disrupted leading to jammed tunnels, if not cleared manually. Also, due the tunnel
height of 8mm, bees are walking upside down through the tunnel hiding the tags with
their bodies.

1.2.4 Visual Insect Classification

Detecting parasites on honeybees can be handled as a classification task rather than a
detection task. Therefore a classifier is trained to discriminate between healthy bees and
infected bees. Respectively, it is trained to distinguish between image patches showing
Varroa mites and image patches not showing Varroa mites.

The first approach for automated bee classification is by Arbuckle et al. in the year
2001 [ASSW01]. This is also one of the very first attempts to automate insect classification
in general [MCR+17]. The authors introduce a system named ABIS, short for: Automatic
Bee Identification System, which consists of a suite of software tools for identifying and
monitoring bees. Different bee species are determined using microscopic images of the
bees wings. The venations and cell structures within bees wings are unique to their
species and therefore offer the information needed to classify individuals. By only utilizing
20 samples per class for training a classifier, recognition rate of over 95% is achieved not
mentioning the size of the test dataset. This work and the methods used for general
insect classification or classifying butterfly species, are providing insights into possibly
useful features for parasite detection.

Martineau et al. give an overview of existing image-based insect classification tech-
niques [MCR+17]. They survey 44 papers and group them based on three sequential
phases: (1) Image capture, (2) Feature extraction and (3) Classification. The first
phase differentiates between Lab-based and Field-based input data. Since the camera
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Ref Year Objective Model Classifier Test dataset Conclusion

[MCR+17] 2017 Survey of the
state of the
art for insect
classification

Comparing fea-
tures: SIFT, color
and shape as well
as hierarchical
methods

SVM, Artificial
Neural Networks,
Decision Trees,
Non-parametric
models

33 different
datasets are
identified and
compared

Most used fea-
tures are shape,
color and texture
in combination
with SVM or
neural networks

[GM16] 2016 General insect
classification
with 277 different
species

Convolutional
neural network
based on VGG-16

ConvNet 217,657 insect im-
ages organized in
277 classes

Top-5-miss-
classification rate
of 22.54% using
hierarchical deep
CNN

[KK14] 2014 Butterfly species
classification
with 14 different
species

Five texture
and three color
features with
“shallow” neu-
ral network
classification

2-Layer ANN 95 images of but-
terflys

94.74% classifi-
cation accuracy
showing the value
of texture and
color features
for butterfly
classification

[ASSW01] 2001 Developing ABIS
(Automatic Bee
Identification Sys-
tem) using micro-
scopic images of
bee wings

Deformable tem-
plate matching
based on cells of
wings of bees

SVM Unknown 95% accuracy not
mentioning the
size of the test
dataset nor the
amount of classes.

Table 1.3: State of the art for visual insect classification.

setup followed in this work, provides a constant environment similar to the laboratory
environments, the Lab-based methods offer similarities. Meaning that the lighting and
background conditions can be manipulated and reconstructed over different recordings.
The second phase reviews feature extraction techniques used for insect classification. One
fourth of the 44 works compared show, that segmentation of background and foreground
is done manually. In the remaining 33 works, thresholding and background subtraction
techniques are used.

Feature extraction is further categorized in global and local features. The main global
features used are color and shape features, with Histograms and Local Binary Patterns
(LBPs) as examples. The first attempt of using LBPs as a feature does not produce
satisfying results, which is why this method is discarded. Local features are also used,
with Scale-invariant Feature Transformation (SIFT) and Speeded Up Robust Features
(SURF) prevailing.

Three quarters of the analyzed works use discriminative classifiers, such as Random
Forests (RFs), Support Vector Machines (SVMs), or Neural Networks (NNs), instead
of generative methods like Naive Bayes. Nevertheless, the task of adding additional
classes to an existing classification system requires more effort with descriptive methods
than compared to generative methods. This makes descriptive methods less favorable for
general insect classification tasks. Considering a static class structure this is not true
and descriptive methods are to be preferred. Nevertheless both a discriminative and a
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generative classifier are used in the evaluation.

Finally they mention that Convolutional Neural Networks (CNNs) and other Deep
Learning structures are the state-of-art for insect classification tasks. But only one of the
44 papers considered, written by Glick et al., uses CNNs as a classifier [GM16]. They are
applying Convolutional Neural Networks to differentiate between 277 distinct classes of
insects. The complete dataset used, consists of around 200,000 images, which are split in
90% training, 5% validation and 5% testing. The network architecture follows the well
known VGG-16 introduced by Simonyan et al. in the year 2014 [KA14]. It is designed as
a web service, allowing users to upload images of insects taken via a phone camera to a
cloud service and in return get the highest prediction scores per class. This creates a
dynamic use case and the authors present a satisfying best top-5-accuracy of 23.03%.

1.2.5 State of the Art Summary

The following inspirations are drawn from the presented works:

• The ideas for the hardware setup of the prototypes are taken from Tu et al. [THKA16].
They manage to implement a real-time tracking algorithm on low cost hardware.

• The tunnel dimensions and camera position as well as the box setup of the prototypes
is taken from Chen et al. [CPMR05].

• Ideas combining different foreground detection techniques in combination with
morphological image operations is inspired by Yang et al. [YC15].

• Also the idea for approximating the bees shape with an ellipse is taken from Tu
et al. [THKA16] In the context of this work it serves the purpose of aligning the
extraction bounding boxes with the main axes of the bee.

• Martineau et al. [MCR+17] as well as Arbuckle et al. [ASSW01] provided ideas for
possible features when classifying bee images.

Eight of the 22 related works deal with tracking and behavior analysis which is not the
main focus of this work. No comparative work dealing with parasite monitoring using
visual information are identified. This is why the novelty monitoring system is developed
in a evolutionary process.

1.3 Structure of Work

This work is organized in five main chapters: Chapter 1 starts with an introduction to
the significance of the problem in Section 1.1. Followed by the state-of-art, for honeybee
monitoring and analysis in Section 1.2.

Chapter 2, covers all necessary steps for creating the ground truth dataset. First, the
characteristics of the final dataset are presented. Next the prototypes are presented in
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Section 2.1, followed by the necessary data processing and extraction steps in Section 2.2
to form the labeled ground truth. The chapter is finalized with post processing steps
applied to the dataset in Section 2.3.

In Chapter 3 the machine learning models used for classification are presented and
explained. Section 3.1 gives an overview of the classification problem followed by detailed
explanations for both the “traditional” machine learning approach (Section 3.2), as well
as the deep learning approach (3.3). This chapter sets the theoretical basis for the
evaluations presented in the following Chapter 4.

In Chapter 4 the datasets are explained in Section 4.1, followed by a definition of the
used performance metrics in Section 4.2. The best configuration of each aforementioned
approach is determined in Sections 4.4 and 4.3. Then a final comparison of the best
performing models is presented in Section 4.5 followed by a conclusion in Chapter 5.
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CHAPTER 2
Data Acquisition

All data is acquired for the purpose of performing automated decisions. In case of this
work, the decisions are, whether a bee walking through the entrance of a beehive is
infected with a parasite or not. To perform these decisions a pipeline that expects input
data from the sensor and outputs a decision is needed. This pipeline processes the data
and passes it to a decision model, which decides about the infection status of a honeybee.

2.0.1 Dataset Background

The decision model is designed using supervised learning [LBH15]. This is the process of
finding a function f∗ that describes a predictive relationship between input and output
to the function. Goal is to predict the values of unseen inputs based on the already seen
inputs. This pool of known inputs is composed of data specific to solving the problem
at hand. The idea of supervised learning is to create a database of correctly classified
samples and use subsets of these samples to train the framework and another subset to
evaluate the performance. This database is referred to as ground truth.

The review of exiting insect ground truth datasets revealed sparse availability. The
only available dataset related to honeybees is the Honeybee Dance Dataset [ORBD08],
which features video material and tracking data of honeybees inside the beehive. No
labeled dataset for honeybee classification or parasite detection like MNIST for digits
recognition [KB04] or the Stanford Dogs dataset for classifying dog breeds [KJYL11],
exists. This implies that a new ground truth dataset needs to be created from scratch.
For this purpose the designed recording system is used. The advantage of not having an
existing dataset is the ability to fully design and create the ground truth to fit the needs
of this project.

In this work, the original input for creating a ground truth is based on video streams
coming from a video sensor. This stream is composed of a series of images put in a
temporal context. An individual image is referred to as video-frame or simply frame.
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Labeled Dataset Total

# Total Samples: 13,464
# Negative Samples (class 0): 10,372
# Positive Samples (class 1): 3,092
Ratio: 1:3.35

Table 2.1: Total amount of manually labeled data, before splitting into subset.

Dataset # of samples % of total Ratio

Train dataset: 8,028 59,6%
Class 0: 6,219,
Class 1: 1,809,
Ratio = 1:3.4

Test dataset: 3,433 25,5%
Class 0: 2,680,
Class 1: 753,
Ratio = 1:3.5

Validation dataset: 2,003 14,9%
Class 0: 1,473,
Class 1: 530,
Ratio = 1:2.8

Table 2.2: Ground truth datasets after manually splitting into three subsets.

Each frame shows an entrance tunnel to a beehive and covers a field-of-view of around
10 × 4cm. In this observed area more than 200 bees can be captured in a single frame,
passing through the entrance to a beehive. The automated decisions about a parasite
infestation need to be performed for each individual bee and in each observed video
frame. Detecting parasites on honeybees in each video-frame can be reformulated to:
Detecting honeybees in each video-frame and classifying these, as infected or not. This
way a complex problem gets separated into two simpler ones: (1) Detection of honeybees
in the video frames and (2) Classification of bees.

For creating the necessary ground truth first the detected bees extracted from the video
frames. Then the individual extracted images of bees can further be examined for the
presence of Varroa mites, assigning them to one of the two classes. This way of regarding
the problem is beneficial for this labeling task. A crowded scenery with up to 300 bees in
one video frame, create a challenging labeling task for human observers. This can be
eased by first extracting the detected bees inside the video frames, before passing the
data to the observer.
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(a) Negative data samples without parasites.

(b) Positive data samples with at least one visible parasite per image.

Figure 2.1: Data samples of the manually labeled ground truth.

2.0.2 Dataset Properties

Three distinct datasets are necessary: First a train dataset: Used for training a model.
Second a test dataset: To evaluate the final performance. The test dataset is solely used
for this purpose and remains untouched until the final evaluation step. Performance
evaluation can only be considered unbiased, if the algorithm is tested with data it has
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never seen before. Therefore a third dataset, the validation dataset is created. It is
derived from the training dataset, e.g. in 80/20 split, so 20% of the training dataset is
taken to form the validation dataset.

In total 13,464 bee images are manually labeled, looking for occurrences of Varroa mites.
Examples of both classes are displayed in Figure 2.1. The dataset distribution is given in
Table 2.1.

The labeled data is split into the aforementioned three distinct datasets illustrated in
Table 2.2. This is done before training, to allow the same datasets to be used for the
training of different models. For performing the dataset splits, the goal is to keep the
ratio of positive to negative samples evenly spread, while taking into account that a split
can only be made between images of different videos. Otherwise the same bee would be
visible in different dataset introducing a bias to the data. After the manual split, the
datasets are stored in different sub-directories to avoid a mix-up of data samples.

2.1 Data Recording and Prototyping

First step is data recording. Here the goal is to create a system capable of capturing
honeybee traffic at the hive entrance with enough detail to be able to detect parasites
like V. destructor. The basic idea for this system is provided by the works of [THKA16]
and [CYJL12]. Their setups include a closed box environment for the camera, which is
put in front of the apiary entrance filming the bees from a top down view when they are
entering or leaving.

The purpose of the box setup is to create a constant environment with homogeneous
lighting conditions, which is not provided in exposed setups similar to [CMS08] or [KTP15].
This way, effects of environmental factors like rain or extensive sunshine are reduced and
a static background is provided.

Figure 2.2 shows the three major prototypes used for data recording. Each image shows
the interior parts with the rain cover removed.

2.1.1 Design Considerations

The following considerations where taken into account when designing the proposed
camera systems [SSMB16]:

• Minimal interference: This system should not interfere with the efficiency of
the honeybees in their daily tasks. Using a box setup in front of the beehive
possibly interferes with the harvesting activity [CMS08]. But neither [THKA16]
and [CYJL12] are mentioning any negative effects after applying their systems.
During the field testing phases, quick adaption to the new hive entrance is noticeable,
with no visible decrease in efficiency.
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(a) Prototype I (b) Prototype II (c) Prototype III

Figure 2.2: Prototypes in chronological order. Rain covers have been removed to show internal
parts.

• Easy implementation: The overall dimensions of the system should allow easy
mounting on beehives, as well as being compatible with different types of beehives.

• Flexibility during prototyping phase: Designing and building the system is an
experimental process. A flexible design with modular mounting points is required
to allow different hardware configurations such as: Different cameras, lighting,
backgrounds etc.

• Easily workable materials: Materials like wood or plastic are to be preferred
over metal to keep the costs low and make prototyping easier.

• Weatherproof: The system should be able to cope with different weather con-
ditions, such as extensive sunshine, rain or wind. For this reason all electronic
components must be kept save from water and temperature management might
be necessary. This is accomplished by covering top part up to the tunnel entrance
with a plastic rain cover.

• Support independence/ autonomy: Low power consumption hardware is to
be preferred as well as wireless networking techniques, to enable the system to work
even in remote places. Also all necessary hardware from storage unit to artificial
light sources are to be included in the box setup.

• Simplicity: Utilizing the principle of simplicity, the proof of concept is provided
using only one camera sensor. Additional sensors can be added to enhance the final
detection performance, but are not dealt within this work.
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Figure 2.3: The OpenSCAD rendering of a wooden side panel of the Prototype I illustrating
the bumps and dents design.

Figure 2.4: Calculating the necessary camera lens properties for a targeted field of view of
100 × 40mm and a camera to image plane distance of 200mm. The same calculations can be used
for different fields of view.

To give the system stability and ease the assembly, all junction points of the individual
parts of the prototype are equipped with a regular pattern of bumps and dents. These
fit seamlessly into each other, making screws unnecessary for assembling the main parts.
The design of a wooden side panel of the first prototype is displayed in Figure 2.3,
showing the regular patterns of dents and holes. This design technique is common to all
created prototypes, because of the satisfying results. All prototypes are designed using
OpenSCAD1, a 3D solid geometry modeling tool. It allows the design of complex objects
by combining simple objects like cubes, cylinders or spheres.

When deciding about the overall dimensions of the system two primary factors are taken
into account: (1) The overall dimensions of the system are chosen to allow easy mounting
on industrial standard beehives. Also it allows mounting of more than one camera system
on one hive. (2) The outer dimensions follow the requirements created by the sensor lens
properties. Goal is to cover a minimum field of view of around 100×40mm by the camera
lens. With this field of view and a maximum distance of 200mm from the image plane,
the resulting viewing angles need to be at least 29◦ horizontally and 10.2◦ vertically. The
necessary calculations are depicted in Figure 2.4. The final distance to the image plane
depends on the camera lens used, which is why all prototypes are equipped with flexible

1http://www.openscad.org/ (last accessed 04/2018)
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mounting points for the camera. Using the same calculations depicted in Figure 2.4, an
image plane distance of 150mm would result in a minimum viewing angle of horizontally
37◦ and vertically 15◦. Further reducing the height of the prototype, while keeping the
same field of view, requires a lens with wider viewing angles.

2.1.2 Lab Recordings and Field Recordings

Since the system is mounted at the entrance to a beehive a certain level of flight activity
is necessary for creating video data. This limits the period of time available for recording
data roughly to March to September (CET) where the average temperature is above 15
degrees Celsius. Further this becomes prominent when considering the fact that not only
bees are to be monitored but also Varroa mites. This limits the final time span to a rough
period of May to September, based on the observations made. Two different recording
setups are used, which both depend on the availability of honeybees and Varroa mites to
produce data.

1. Field recording: The camera system is mounted on beehives in an open-air envi-
ronment, continuously recording video data during daytime. Long term application
of the system is tested and test data is recorded. Using this setup, more than 820
hours of video material are conducted. The longest continuous field recording spans
52 consecutive days and produces 1.2 TB of video data.

2. Lab recording: Parallel to recording in the field, recordings are performed in
a controlled laboratory environment. Labeling the field data is a difficult task,
due to the amount of bees passing through the entrance at the same time. This
leads to the idea of using a controlled laboratory setup to create the video data for
the ground truth. The standard procedure includes: (1) Extracting parasites and
honeybees from a beehive. (2) Artificially infecting bees with the parasites so each
bee has at least one parasite sitting on its body. (3) Lock the infected bees inside
the prototype by closing the tunnel entrances and perform continuous recordings.
Figure 2.6a shows the laboratory setup with the first prototype. In Figure 2.6b the
data recording process is shown, with bees locked inside the prototype.

The task of manual labeling benefits from this setup. By introducing the prior of
at least one Varroa mite per bee visible in the scenery less effort has to be put in
looking for occurrences of parasites. Also since the amount of bees locked inside at
once can be controlled. Making the scenery less chaotic when compared to videos
from field recordings. Using this method more than 420 hours of video material are
recorded.

2.1.3 The Prototyping Process

The process for creating a prototype is illustrated by a flowchart in Figure 2.5. It
starts with the Design phase on the left side of Figure 2.5. Here new design ideas
are implemented and overall dimensions are varied and tested in virtual form. Hence
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Design

Design 
Sufficient?

Build Lab test

Yes   

Re-evaluate 
Requirements

    No

Yes  

                           No

Lab recording

Field recording

    

Update
XML

Store 
Video

Footage

Documentation

 Bees & Mites
available?

Figure 2.5: The data recording process. It shows a circular information flow starting in the
Design phase leading to Documentation and back to Re-evaluate Requirement and Design.

the aforementioned program OpenSCAD is used. A resulting 3D model of the second
prototype is presented in Figure 2.7a.

After the Design phase comes the Build phase. It incorporates all tasks related to
physically creating the new prototype. The 3D model from the previous step is mapped
onto a 2D plane and cut out of wood or plastic by using computer driven cutting machines
like CNC or a laser cut. Such a machine is capable of creating precise cuts (< 0.2mm)
through the materials wood and acrylic plastic, which is necessary to enable precise
builds. The individual parts are assembled and the camera hardware is integrated to
form a new prototype.

The next step is the Lab test, here the prototype is tested with different light and
camera configurations. Varying these parameters is the main focus of this phase. The
observations are documented and test video data is stored. If the design does not work
as expected or produces insufficient results, it is re-evaluated and goes back to the Design
phase.

If it works according to expectations the next steps are Lab recording and Field recording.
Goal of these is to generate video data with the new prototype. This is only possible
if honeybees and Varroa mites are available for recording, which is not the case during
winter. The data is recorded in test sessions and is documented in a machine readable
XML format, consisting of meta-information about the test and its configuration. This
allows for the automated generation of data reports. Both the documentation as well as
the recorded video data are archived on two mirrored 8TB hard drives in RAID 1. After
each recording session, the design is re-evaluated and if still sufficient then further videos
are recorded.
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2. Data Acquisition

(a) (b)

Figure 2.6: Prototype I. (a) Lab recording setup for recording infected bees. (b) Lab recordings
in action, with bees locked inside the prototype.

2.1.4 Prototype I

The first fully implemented prototype is displayed in Figure 2.2a and 2.6. The process of
creating this prototype is published at the Visual observation and analysis of Vertebrate
And Insect Behavior (VAIB) Workshop in the year 2016 [SSMB16]. The process starts
with gathering the required information from experts and implementing the following
ideas:

Tunnel entrance setup: All prototypes use a tunnel as central point for monitoring.
The dimensions of the tunnel, functioning as new entrance for a beehive, are chosen
to be as big as possible while allowing enough details to record Varroa mites. These
dimensions are 163 × 112 × 32mm (length x width x height) for the first working
prototype. The comparison to later models can be drawn by looking at Table 2.3,
which compares all technical parameters between the different models. The original
entrance with an opening of 370 × 40mm is narrowed to 112 × 32mm.

This change to the beehive raises the question of affecting the daily lives of a bee
colony. While this concern cannot fully be eliminated it is mitigated by the fact, that
beekeepers are narrowing the entrance to a beehive regularly during winter months.
They considerably narrow the entrance, to protect the bees from predators entering
the hive. Also apart from industry standard beehives, there exist alternative build
types, like the Warre beehive [War07]. These are more economical and bee-friendly
hive types, where new boxes are put under existing frame-less boxes to allow bees to
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2.1. Data Recording and Prototyping

naturally grow their honey combs. The build plans2 arrange the entrance with 120mm
width and 15mm height, which comes close to the upper mentioned dimensions.

LED Lighting inside tunnel: The challenge of light reflections induced by the arti-
ficial lighting is dealt with, by placing the light sources inside the tunnel. Test
recordings with dead bees showed little shadow casting and no reflections.

Low-cost hardware: The total price including all building materials for this prototype
resulted in less than 150€. A Raspberry Pi model B micro computer is used as
the main processing unit. It offers build flexibility and additional hardware with
little costs of around 30€. The camera sensor used is provided by Raspberry Pi’s
official camera module which offers the desired resolution of 1920 × 1080px, at a
minimum cost of around 30€. Both elements take up little space and therefore offer
the possibility of fully integrating them inside the prototype. This is true for the
camera module with outer dimensions of 30 × 30 × 5mm (length, width, height).

The design already incorporates many of the above mentioned features like the transparent
roof and the flexible camera mounting but suffers from poor design choices. Figure 2.6b
shows the first test session with actual living bees in a laboratory setup. Up to six
bees are taken from an apiary and locked inside the tunnel of the prototype to enable
continuous recordings. The observed design flaws are: (1) The tunnel features the same
height as the original apiary entrance. This is done to offer as much original entrance
space as possible, but is unfavorable because it allows bees to fly through the tunnel. (2)
The main light sources are placed inside the tunnel to reduce reflections on the acrylic
glass. This is indeed lowering the reflections, but creates inhomogeneous light conditions
when bees are passing by the light sources. In Figure 2.6b one can see the light occlusions
produced by honeybees gathering at the light sources.

Figures 2.8a to 2.8c show examples of frames from videos taken with this prototype.
Additional to the main light sources inside the tunnel a ring of LEDs is mounted from
a top down view. This creates undesired reflections on the glass roof, but is necessary
to raise the overall brightness of the videos. Despite the additional lighting the overall
scenery looks dark compared to video frames from later prototypes such as Figure 2.8i.
The faults in the initial design soon became apparent, leading to only little data being
recorded using this prototype.

2.1.5 Prototype II

Main purpose of this prototype is to remove the design weaknesses of the first prototype
and introduce sub-tunnels (Figures 2.2b, 2.7b). The implemented design features are
summarized in the following description:

Subtunnel design: The overall tunnel height is lowered from 32mm to 8mm, to tackle
the problem of bees flying through the tunnel. This way, bees can only crawl through

2http://warre.biobees.com/plans.htm (last accessed 04.2018)
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(a) (b)

Figure 2.7: Prototype 2. (a) Rendering of OpenSCAD 3D model. (b) Final realization with all
electronic parts included. The entrance tunnel is equipped with sub-tunnels and re-positioned
light sources.

the tunnel, one by one. The idea and tunnel dimensions are taken from [CYJL12],
where a similar degree of detail is necessary to detect characters on attached paper
tags. They also incorporate 8mm wide sub-tunnels, just wide enough to allow
individual bees to pass through one at a time. This pre-sets possible walking
directions, aligning all bees in one of two directions. Also they get horizontally
separated. The sub-tunnels can be observed in Figure 2.7 and are visible in the
videos taken (see example frames from Figure 2.8d to 2.8f).

The sub-tunnel design gives promising results, while running experiments in the
laboratory environment. In the field setup it turns out unfavorable, because the
entrance is easily jammed with dead bees. The tunnels do not allow dead bees to be
dragged outside the hive. Bees trying to move the dead bodies jam the tunnels one
by one, leading to fully sealing the entrance. This leads to the conclusion that the
sub-tunnel design proposed by [CYJL12] does not work in practice and is removed
from future prototypes.

Repositioning of the camera: The field of view is narrowed from 160 × 100mm to
100 × 40mm, to gain pixel density. This is done by re-positioning the camera closer
to the image plane and rotating it to enable a tunnel width similar to the previous
prototype. Bees are now passing through the field of view from top to bottom and
vice versa, when before they moved from left-to-right and vice versa.
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(a) Prot I: Lab testing (b) Prot I: Lab testing (c) Prot I: Light testing

(d) Prot II: Lab testing (e) Prot II: Field testing (f) Prot II: Infrared testing

(g) Prot III: Raspberry Pi
Camera Module

(h) Prot III: Toshiba
BU238MC

(i) Prot III: Axis M1125

Figure 2.8: Example frames of recordings taken with Prototype I, II and III.

Repositioning of the light sources: By turning the camera 90◦ the top and bottom
of the tunnel is not visible in the field of view of the camera. The light sources are
re-positioned to these “blind-spots“ outside the tunnel facing down on the acrylic
glass. This led to the intentionally undesired reflections on the glass roof, but only
occurring on the edges of the field of view. The center and the tunnels remain free
from reflections (2.8e).

Experimenting with camera parameters: Due to setting the camera closer to the
image plane, there is less time available for capturing objects of interest, since they
pass by the sensor more quickly. From the cameras perspective the object are
now bigger and move quicker through the image. This leads to motion blurring
when looking at individual frames. Motion blur is reduced by testing different
parameter combinations of the parameters frame rate, lens shutter speed and sensor
light sensitivity. Figure 2.8d shows a scenery with un-adjusted parameters, whereas
Figure 2.8e shows a different scenery with the above mentioned parameters adjusted.
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(a) Raspberry Pi Camera
Module

(b) Toshiba BU238MC (c) Axis M1125

Figure 2.9: Prototype III. (a) Setup with Raspberry Pi Camera Module and Raspberry Pi
including all necessary hardware. (b) Setup with Toshiba BU238MC camera sensor during a
laboratory test session. (c) Final setup with Axis M1125 camera sensor during a laboratory test
session.

Motion blur is eliminated at the cost of image quality. Additionally, Figure 2.8f
shows the results of testing the scenery with infrared light and a removed infrared
light filter. No features of interest are detected using the infrared light spectrum.

In total 1.853 TB of video data is recorded using this prototype. This corresponds to
514.2 hours of recording. A comparison of the recorded data with each prototype is
displayed in Table 2.4.

2.1.6 Prototype III

The bottle-neck in the design of Prototype II is represented by the camera sensor and
its limited capabilities of creating records without motion blur. When choosing a setup
with fast shutter speeds (5ms and faster), to reduce motion blur, it comes at the cost of
image quality. Since less light is passing through to the image sensor, more noise and
color artifacts are visible in the final recordings. Two major approaches are followed in
the design of Prototype III to reduce these effects:

Brighter light source: Due to the fast shutter times less light reaches the image sensor.
To enable shutter speeds greater 6ms brighter light sources are introduced. This
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Prototype Size (GB) Time (hours)

Prototype I 0.2 0.7
Prototype II 1,853.0 514.2
Prototype III 4,176.0 1,022.9

Table 2.4: Amount of recorded video data with each prototype.

is done by switching from 16 LEDs @12V with 279lm/m to 60 LEDs @24V with
1249lm/m.

The frames in Figure 2.8e and 2.8g are recorded using the same Raspberry Pi Camera
Module sensor with the same shutter speeds of 6ms. Figure 2.8g shows this difference
and is brighter and more colorful, solely by changing the light source.

Testing different camera sensors: The Raspberry Pi Camera Module is identified
as the bottle neck in Prototype II. To consolidate additional candidate sensors, the
following properties are taken into account:

1. Sensor size: The greater the physical sensor size, the more light is handled
by the sensor, resulting in increased image quality with unchanged lighting
conditions.

2. Shutter speed: A minimum shutter speed of 6ms must be possible to allow
recordings free from motion blur.

3. Camera outer dimensions: Build types with outer dimensions smaller than 10
cm are preferred over bigger cameras.

Two additional candidate cameras are tested. First, the Toshiba BU238MC (see
Figure 2.9b). It features a 1/1.2” sensor at little overall size of the camera and
is produced for industrial filming at high frame rates of 60-90fps. One example
frame recorded with this sensor is displayed in Figure 2.8h. When comparing video
recordings acquired using this sensor to frames acquired with the low-cost Raspberry
Pi Camera Module (Figure 2.8g), small increases in image quality are noticeable.
But this increase does not justify the about 20 times higher costs of the Toshiba
sensor.

The Axis M1125 is the second candidate camera. It is built for surveillance appli-
cations, which is why it is network based and connected via RJ45 instead of USB.
Also it ships with a built in web interface allowing easy configuration of camera
parameters and offering a live preview mode. By using this camera, the video quality
is be increased significantly. The video frame displayed in Figure 2.8i, is produced
during a field testing session using the Axis camera. Comparing this frame to all
other frames displayed in Figure 2.8, one can observe the superior image quality.
The camera is bulkier than the previously tested models with outer dimensions
of 148 × 44mm. Additionally an external USB networking card is necessary to
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Figure 2.10: The pipeline for creating the ground truth, from input video frames to labeled data
with three main stages: (1) Segment foreground (2) Detect, track and extract bees (3) Manually
label the extracted images by marking the positions of Varroa mites.

compensate for the poor networking performance of the built-in network card of the
Raspberry Pi. Nevertheless these drawbacks are disregarded in favor of the gained
image quality.

Parameter Tuning: Despite the aforementioned changes small adaptions are made to
the overall dimensions. The tunnel is shortened to 120mm and widened to 142 mm
(See Table 2.3 for comparison). Also new top parts visible in Figure 2.9 are designed
to allow the testing of different camera sensors. The new dimensions are displayed in
Table 2.3.

The data recorded with the Axis camera sensor outperformed all other camera sensors
and prototypes. This is why the videos recorded with Prototype III are used as input for
the next steps towards creating a ground truth dataset. In total 1.990 TB (505 hours)
of lab recordings and 2.183 TB (517.9 hours) of field recordings are produced by using
Prototype III with the Axis camera sensor.

2.2 Data Extraction and Annotation

After finishing the data recording phase, the data needs to be processed to allow the
extraction of a ground truth dataset. All necessary processing steps are illustrated in
Figure 2.10.

Up until the last step Manual Labeling, the pipeline works fully automated. The individual
steps are further explained in the following sections.
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(a) Frame from training
dataset

(b) Background Subtraction:
Median and Otsu

(c) Background Subtraction:
GMM

(d) Color Thresholding:
HSV

(e) Color Thresholding:
CIE-Lab

(f) Combined Mask by
Equation 2.3

Figure 2.11: Different foreground segmentation methods compared based on an example frame
recorded with Prototype II.

2.2.1 Foreground Detection

In the first step, each video frame is separated into foreground and background regions.
In this case, the foreground is defined by bees moving through the frames and the
background as the rest respectively. The results of this step are black-and-white binary
images assigning each pixel to one of the two classes.

The background in the videos is considered static due to a rigid camera position and
the box setup with artificial lighting. This is why the background subtraction is used to
segment the background from the foreground like presented in the works of [THKA16],
or [CMS08]. Besides background subtraction, color thresholding in the color spaces RGB,
HSV and CIE*L*A*B is tested. The color of the background is chosen freely, allowing
contrast maximization between background and foreground. Also combinations of the
two methods are tested, following the approach of [YC15].

Figure 2.11 compares the results of different foreground extraction methods. The example
input frame is taken from the first lab recording session with Prototype II and displayed
on the top left. In Figures 2.11b and 2.11c Background Subtraction is applied, to get a
binary image. The idea is to subtract all intensity values belonging to the background
(Equation (2.1)).

Gi(x, y) =

{

255 if |Fi(x, y) − B(x, y)| > t

0 otherwise
(2.1)
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Each pixel of the output mask Gi(x, y) is assigned to the foreground only if its greater
then a proposed threshold t after subtracting the background image B from the input
video frame Fi. This technique is also used in [KR16], [KTP15], [THKA16], using
different approaches to calculate B and t.

Another approach is to calculate B based on a Mixture of Gaussian distributions
(Figure 2.11c). For B all intensity values are modeled as linear combinations of k

Gaussian distributions, calculated over the histogram of Fi. Each pixel intensity value
is assigned a probability of belonging to the foreground or background based on the k

distributions. These distributions are constantly updated, making the background adapt
to small changes [WPS02]. This, for instance, leads to bees slowly dissolving into the
background if they are not moving.

Figure 2.11d and 2.11e, show the best results conducted with color thresholding. Color
thresholding performs a simple thresholding operation on individual color channels c of
the input video frame Fi. To get the resulting output Mask Gi, the Equation (2.2) is
applied to each channel F c

i defining the foreground for each channel with two thresholds
tc1 and tc2.

Gi(x, y) =

{

255 if tc1
≥ F c

i (x, y) ≥ tc2

0 otherwise
(2.2)

Applying color thresholding in the default RGB color space gives unsatisfying results.
One feature of the RGB color space is that brightness and color information represented
by a single value for each color channel red, green and blue. Other color models exists
like CIE*L*A*B, HSV or HSL which use a different representation of color information.
HSV for instance, uses three color channels, but grouped into Hue, Saturation and Value.
In this representation the brightness information (Value) is separated from the color
information (Hue, Saturation) and therefore allows setting of independent thresholds.
The Figures 2.11d and 2.11e, show the results of color thresholding. Finally a combination
of functions, defined by Equation 2.3 is shown in Figure 2.11f.

Combinedmask = Bc = (HSVmask ∨ LABmask) ∧ Mogmask (2.3)

Depending on which prototype is used for recording, a different approach gives best
results. For Prototype I, color thresholding in CIE*L*A*B is used. For Prototype II, the
Bc gives best results. For Prototype III, color thresholding in HSV color space in one
single color channel works the best. Foreground pixels are then defined by all intensity
values of the S channel falling into the region [0.35, 1].

2.2.2 Bee Detection and Extraction

After successfully segmenting the foreground, the bees need to be identified and extracted.
Goal is to retrieve individual images of bees, with and without parasites for labeling.
The extraction follows the procedure illustrated by Algorithm 2.1.
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Algorithm 2.1: Detecting and Extracting Bees from Videos
Input : Video frame f and foreground mask m

Output : Extracted bee images
1 blobs = PerformConnectedComponentAnalysis(m);
2 forall blob in blobs do
3 if blob dimension not in possible range then
4 Discard blob;
5 end
6 else
7 bee = PerformEllipseFitting(blob);
8 if distance to previous bees < t then
9 old_bee identified in new frame;

10 end
11 if old_bee has moved or is new bee then
12 extracted_bee = RotateImageAndExtractBoundingBox(f , old_bee);
13 SaveAsImage(extracted_bee);
14 end

15 end

16 end

It starts by finding connected regions in the segmentation mask using Connected Com-
ponent Analysis. Each blob in the mask is assigned a label by scanning the image
pixel-by-pixel and determining the connectivity to all adjacent pixels with the same
value [BB16a]. All detected blobs are then scanned for possible bee candidates, based on
their size and shape.

All candidate blobs are fitted with ellipses to determine their main orientation. This
is done using the fitEllipse function provided by OpenCV [Bra00]. It calculates
the ellipse that best fits a set of 2D points, in a least-squares sense using the algorithm
proposed by Fitzgibbon et al. [FF95].

The next step is composed of a simple tracking logic. The center point of the detected
ellipse is compared to the center points off all detected bees in the previous frame
calculating the euclidean distance. This tracking is necessary to keep the dataset
uncluttered from similar images. Bee images are only extracted if a new is found, or if the
existing bee has moved a minimum of 150 pixels. This way it is ensured that non-moving
bees are not extracted twice.

For extracting a rotated image patch of a bees from the video frame, the frame is rotated
to align with the main axis of each detected ellipse. Each ellipse is fitted with a bounding
box of size 160 × 280px and saved as an image file. This is done for each kth video frame,
where k = 15, so extraction is performed at two frames per second.

The resulting bee images can be observed in Figure 2.1. At this point it is noted that the
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(a) Class: mite = 1 (b) Class: no_mite = 0

(c) Class: to_delete = -1

Figure 2.12: Screenshots from the labeling process. (a) A positive data sample, with the
manually drawn selection. (b) A negative data sample not showing V. destructor. (c) An
erroneous sample marked for deletion.

main goal of this work is not to detect honeybees in videos in a fully automated fashion.
This task is subordinate and only follows the purpose of creating a functioning ground
truth pipeline, which enables training of aforementioned image classifier. This is also the
reason, why no effort is put into separating groups of bees.

Nevertheless for extracting images from video frames, this simple approach produces
satisfying results.
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2.2.3 Data Annotation

Arriving at this stage, manual intervention by users is necessary The extracted bee
images need to be grouped in two distinct classes: “no_mite” and “mite” or “bee-without-
parasite” and “bee-with-parasite” respectively. Data examples for each class are given in
Figure 2.1. It is the users task to find the occurrences of Varroa mites in the images and
mark the position in the images. By pre-determining the infestation status, a label can be
pre-assigned to each extracted image. Bee images taken from a video with infected bees
are assigned the pre-label “mite”, while sessions without parasites are labeled “no-mite”.
This is also illustrated in the input field of the extraction pipeline (Figure 2.10). Two
inputs are provided, first the video frames and second the pre-label.

During the lab testing phase it became evident, that pre-setting the infestation status
does not fully correspond to the amount of extracted images actually showing Varroa
mites. Looking at the final dataset (Table 2.1) around two thirds of the extracted images
do not show Varroa mites, although each individual bee is originally infected. This is due
to two major factors: First, the lowered tunnel height of 8mm, introduced when switching
from Prototype I to Prototype II, allows bees to pass through the tunnel up-side-down.
If a bee is infected with a parasite sitting on its back and is walking up-side-down, then
the camera does not record the mite. Second, it is observed that Varroa mites tend to
switch their host frequently. Interestingly, they tend to prefer weaker hosts, leaving their
original hosts free and gather on the same weaker bees.

For the labeling task, a labeling software tool is implemented, allowing the user to make
selections to mark the positions of Varroa mites and navigate through the dataset. Screen
shots of this labeling tool are displayed in Figure 2.12. When a user switches to the next
image, the label is set, depending on whether a selection is made or not. The label is
saved into a text file with the same title as the image. Upon making a selection, the label
“mite” (“1” in the file), as well as the position of the selected rectangles is saved in the text
file. An example is displayed in Figure 2.12a. If no selection is made (see Figure 2.12b),
the label “no-mite” (“0”) is written to the text file. A third class is added to the possible
label set named “to-delete” (“-1”), which is assigned to erroneous images. These errors
occur due to incorrect segmentation masks or artifacts coming from rotating and cutting
of the bee images. Upon marking an image “to-delete”, the colors are inverted, visible in
Figure 2.12c, to signal to the user that this image is not be used for the final dataset.

The benefit of this approach is that non-experts can be used for labeling. A person
labeling the data, does not have to be a bee expert to detect the presence of Varroa in the
images. Showing example images of both classes and a brief explanation of the labeling
program is sufficient for this task. In total, an estimated 26 hours (around 4 working
days) are consumed for creating the final dataset with 13, 464 manually labeled samples.

For efficient loading of the dataset, the individual text files resulting from the labeling
application are aggregated into one single CSV file. Within the CSV, each data sample is
represented by one line holding the path to the image, as well as the label and bounding
box information. In this step, the images marked as “to-delete” are excluded from the
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LabelExtracted
patch

Labeled bee image

0
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Figure 2.13: Sliding window visualized

process. The CSV and the data samples together form the final ground truth.

2.3 Dataset Post Processing

The previously explained steps are necessary for computing the ground truth. Starting
from here, the ground truth is further processed to prepare the data for training a
classifier. Two major processing steps are performed:

1. Patch Extraction, splitting the bee images into smaller sub-window-images, which
are used as input for the recognition models.

2. Data Augmentation, performing translations on the data with the goal of creating
more data samples.

2.3.1 Patch Extraction

To reduce the risk of fitting the model to unwanted correlations in the data, it is trained
and evaluated on sub-image patches instead of complete bee images. Examples for
unwanted correlations are the orientation of the bee, or illumination changes in the
background. This way, the amount of background information is minimized supporting
the model in calculating features specific to classifying Varroa mites.

Patch extraction describes the process of extracting sub-image patches from the labeled
bee images. These sub-image patches can be of arbitrary sizes smaller than the original
image. At the full bee image resolution of 160 × 280px the average size of Varroa mites is
around 25px in diameter. To grasp some of the background with a Varroa mite, a fixed
window size of 42 × 42px is used for the sub-images.
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2.3. Dataset Post Processing

(a) Examples of negative sub-image patches.

(b) Examples of positive sub-image patches.

Figure 2.14: Sub-image patches after patch extraction. (a) Negative data samples not showing
V. destructor. (b) Positive data samples showing V. destructor.

To obtain the sub-image patches, a sliding window function is used, as presented in [VJ01].
A window is moved over the image, extracting sub-image-patches. Figure 2.13 visualizes
the extraction, where the rectangle represents the sliding window. Each position the
window resides in, the pixels are extracted and saved as a new image patch. Each
extracted sub-image patch represents a data sample and is assigned a label from the
ground truth. If the original image is a positive sample, each patch overlapping with the
position of the Varroa mite, is marked as positive (“1”). All other samples are marked as
negative (“0”).
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Dataset # of samples Class 0 Class 1 Ratio

Train dataset 954,967 951,507 3,460 1 : 275
Test dataset 509,643 508,186 1,457 1 : 348.8
Validation dataset 226,364 225,369 995 1 : 226.6

Table 2.5: Ground truth datasets after applying the sliding-window patch extraction.

The function is provided with four parameters: (1) Input image, (2) Border padding
(3) Sub-window-size and (4) the stride to move the extraction window. The image size
is constant at 160 × 280px and border padding is set to 5px, leaving a center cropped
155×275px for scanning. The window size is set to 42×42px to ensure that the mites are
fully captured. The stride is set as big as possible while ensuring that a mite can always
be fully represented in one patch. Setting the stride to (14, 14), provides an overlap of
one third between the windows ensuring full representation. This results in an extracted
153 sub-image patches from one input bee image. Table 2.5, shows an overview of the
ground truth data, after applying patch extraction with the aforementioned configuration.
Data examples of both classes after extraction are illustrated in Figure 2.14.

2.3.2 Data Augmentation

The generalization power of classifiers is increased by applying random transformations
on the input data to effectively increase the amount of available data for training. By
generating new samples from existing ones, a higher variability is represented inside the
data, making the classifier less prone to overfitting. Enhancing the generalization power
is not the main focus of using data augmentation in this work. Here it serves the purpose
of reducing imbalances in the dataset that result from patch extraction. Augmentation is
only applied to the positive class because a sufficient amount of negative samples exists
already. Also augmentation is only applied on the training dataset.

To enable full comparison of the “traditional” and deep learning approach, both methods
need to be trained and evaluated on the same datasets. This is why data augmentation
is performed offline, before actual training rather than online during training. The
augmented image patches are saved to disk to be loaded at a later stage.

For the augmentation the python library imgaug is used. It provides the function
SomeOf() , which is used to apply a minimum combination of two of the following
augmentation steps:

• GaussianBlur(sigma=0.8) : A gaussian filter-kernel function blurring the
image with the intensity defined by sigma.

• Fliplr() : Mirror a data sample from left to right.
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• Flipud() : Flip the image up-side-down. This way the orientation of the bee is
randomized.

• PiecewiseAffine(scale=(0.03, 0.05), mode=‘edge‘) : Performs a piece
wise scaling operation distorting the image using 2 randomly chosen points inside
the image. The intensity of the distortion is managed by the scale parameter.
Emerging holes are filled by replicating the edge pixels.
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CHAPTER 3
Classification Architectures

The basis for creating a detection and classification algorithm is provided by the datasets
which are now used to train classification models.

3.1 Classification Problem Description

The parasite detection problem can be split into two simpler problems: First a detection
problem and second a classification problem.

The goal of the classification step is to predict the infestation status of a honeybee, as
either healthy or infected with Varroa mite. For this supervised learning is used. It
consists of a collection of algorithms that learn the parameters of a function f∗ which
associates an input x with an output y, given a set of training examples. The training
samples consist of images x1, x2, . . . , xn, and corresponding class labels y1, y2, . . . , y3.
In this work the classification problem is a binary problem: y ∈ {0, 1}, where bees are
either infected with a parasites (y = 1) or not (y = 0). In general this can be formulated
as [GBC16]:

y = f∗(x) (3.1)

Training a classifier means finding a function f∗, that maps the input x to the category
y. x represents a bee image to be classified and y represents the true label.

The dimensions of the raw pixel data of image x is generating the input space. For
discriminating between classes, f∗ needs to be insensitive to variations in the input data,
such as illumination changes or background changes. But on the other hand, it needs
to be sensitive to changes particular to the different classes of y. Working in the input
space does not allow this kind of differentiation. This is why the input is transformed
into the features space before passed onto f∗, depicted in Equation (3.2).
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z = φ(x) (3.2)

y = f∗(z) = f∗(φ(x)) (3.3)

This transformation is performed by a function φ, which produces a feature representation
z of the input data x that better qualifies for discrimination. φ performs a non-linear
transformation on the input data, which can be thought of as providing a set of features
representing x. This is beneficial when the feature space produced by φ is linearly
separable. Then the function f∗ can be a simple linear function, defining a hyper-plane
in n-dimensional space.

In the following sections, two different approaches for choosing φ and f∗ are represented
by a “traditional” machine learning and a deep learning approach.

3.2 “Traditional” Machine Learning Pipeline

The “traditional” machine learning approach consists of a manually engineered transfer
function φ, followed by a “shallow” classifier. φ is composed of handcrafted features that
transform the input image into a feature vector. f∗ is represented by a “shallow” classifier
like Random Forest or Naïve Bayes. Nevertheless “shallow” classifiers in combination
with feature selection is valuable to consider, due to the following:

• It offers the ability to engineer φ: The “traditional” approach requires the expertise
of the designer to create φ. This creates a comprehensible workflow from input
data to final classification result.

• Challenges when working with deep learning technologies: The progress in deep
learning is achieved by exploring architectural variants on an experimental ba-
sis [AS16]. There exists no full understanding of how to choose structural param-
eters or how to efficiently tune hyper parameters. Solely rough guidelines and
recommendations are available [AS16].

A pipeline for training “traditional” models is presented in Figure 3.1. It depicts the
workflow of how “traditional” models are created, with all intermediate steps necessary.
The input to the pipeline is the labeled train dataset from the ground truth and the
output is a trained model, which is used for making predictions.

In the first step the data is preprocessed into sub-image-patches. The patch extraction
results in (42, 42, 3) dimensional sub-image-patches, which are vectorized for further
processing. So each patch is transformed into a 1D vector with dimensions (1, 5292). In
the next preprocessing step, data augmentation is applied, to result in an evenly balanced
dataset for training. This results in a total of n sub-window-patches, which are stacked
to form a (n, 5292) dimensional input array for training.
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Figure 3.1: The pipeline for creating a “traditional” machine learning model. Input is the
labeled training dataset. Output is a trained model, which can be used to predict unknown
samples.

In the feature extraction step, the preprocessed input data is transformed into the feature
space. The dimensions of this space depend on the combination of features, as well as
on the individual configuration of a feature. For example, when extracting the feature
“color mean”, the dimensions of the output array transforms to (n, 3) with one mean
value for each original color channel of the input images. A complete list of available
features is displayed in Table 3.1, with “# of Params” giving the dimension of the feature
space. The result of the extraction is an array with dimensions (n, len(feature space)),
consisting of n feature vectors for each data sample.

In the next step, this array in combination with the corresponding ground truth labels
is used for training a classifier . Two classifiers are tested in this work. A classifier is
trained by calling the fit() method, passing the feature vectors and the true labels of
each training sample.

The result of the pipeline is a trained classifier, which can be used to predict unseen
inputs. Predicting unseen samples is done by following a similar pipeline:

Imagine an unseen bee image of size 160 × 280px. In the first patch-extraction step, the
image is turned into an array of 153 sub-image-patches of 42 × 42px, which gives an
input array of dimensions (153, 42, 42, 3) or (153, 5292). No data augmentation needs
to be applied when predicting. The same feature extraction steps used for training are
now applied on the (153, 5292) dimensional input array. The resulting array of feature
vectors is then passed onto the trained classifier by calling the predict() function
of the pipeline. The output of this prediction is a (153, 2) dimensional array, giving the
probability estimation for every input patch belonging to one of the two output classes.
To complete the prediction, the individual patch results are summarized and a final label
is assigned.

The complete process is published in the year 2018 at the International 15th International
Conference on Image Analysis and Recognition (ICIAR 2018) [SBPM18].
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Feature Description # of Params

color hist k bins Color histogram with k bins, for each color
channel

k * 3

color mean Mean value per color channel (1. statistical
moment)

3

color std Standard deviation per color channel (2. sta-
tistical moment)

3

color skew Skew value per color channel (3. statistical
moment)

3

texture SIFT Scale-Invariant Feature Transformation ex-
tracted from center point

128

Table 3.1: The list of feature candidates. Four different color features as well as one texture
feature qualify for representing φ for the “traditional” machine learning approach.

3.2.1 Feature Extraction

The goal of this step is to extract characteristics of positive and negative image patches
taken from the training dataset, to distinguish between patches showing and not showing
Varroa destructor. In the ideal case, the extracted features would make this classification
problem trivial. They should be robust to irrelevant transformations in the data like
translations, rotation and scaling but highly specific variations that are important for
discrimination. Defining these features is a complex task requiring a high level of
expertise [LBH15].

The input to the feature extraction is composed of images x1, x2, . . . , xn, which are
spatially limited arrays encoding brightness and color information. Spatial information, is
represented by groups of pixels forming visual objects or textures, while color information
is represented by assigning each pixel a vector of color information. In the case of
RGB-images, this vector is of length three and holds a value for each of the base colors
red, green and blue.

Possible features are identified after observing the input data shown in Figure 2.14 leading
to the following observations:

• Distinct parasite colors: When observing the comparison in Figure 2.14 the most
prominent difference is the color. The reddish to brown color is visually different
from other colors observed in negative image patches (Figure 2.14a).

• The position of a parasite varies: Parasites are not bounded to any specific spots on
the bee, although they might prefer certain areas. Nevertheless they are potentially
spotted everywhere on the bees corpus. This results in non-static environments
close to the boundaries of parasites.
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→
(a) RGB
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(b) Red

channel
(c) Green
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(e) RGB
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Figure 3.2: Color histograms with k = 256 bins for both a negative (top line) and a positive
(bottom line) sample. (a) and (e) show a combined version of each histogram with the channels
R,G and B summed up.

• Varroa mites are of round shape: This property can be extracted using shape
descriptors like SIFT.

• Light reflections on the chitinous exoskeleton of Varroa mites: Due to the artificial
lighting, reflections are visible in regular patterns on the backs of Varroa mites.
This adds texture to the mites shape, which is not always present when looking at
the input samples in Figure 2.1.

The observations led to a list of feature candidates described in Table 3.1. Two types
of color features: Color Histogram and Color Moments are tested, as well as SIFT as a
representative for texture and shape features.

Color Histograms

Color information is used to extract low-level features from images and is applied to
different computer vision problems [SS01]. This is mainly due to their invariance to
scaling, translation, rotation and partial occlusions [KS04], [AK11],.

Color is defined by three or more values that are referred to as channels. The standard
format is RGB, but other representations like HSV or CIE-L*A*B* exist.

The most widely used color feature is the color histogram [KS04]. A histogram hk defines
a function mi that quantifies the given space into k one dimensional sub-regions, also
called bins. This is done by counting all pixel values falling into the disjoint regions
i = 1, . . . , k. A plot of a histogram shows a function of pixel intensity values with
peaks and valleys corresponding to the amount of intensities. This is independent of
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their position inside the image, which creates translation invariance. With k = 256 two
histograms are displayed in Figure 3.2, which are calculated on a positive and a negative
patch sample.

The best value for parameter k is found in an experimental process during hyper parameter
search. The feature vector is yielded by creating a histogram for each available color
channel separately. Hence, the length of this vector is 3 · k, for a three-channel color
image.

Color Moments

Another group of color features is composed of statistical color moments computed on
the intensity values of an input image. They describe a statistical representation of
color by interpreting the color distribution as a probability distribution. These allow the
computation of characterizing moments. In Stricker et al. [SO95] three main moments
are calculated on the image’s distributions: (1) mean, (2) std = standard deviation and
(3) skewness.

The first moment: color mean is defined by Equation (3.4) and defines the average color
value meanc for a specific color channel c.

meanc =
n

∑

i=1

m
∑

j=1

xc
ij

m · n
(3.4)

xc
ij is the color intensity of an image x at position ij of a color channel c. So after

extracting this feature from a three channel color image (c ∈ {0, 1, 2}), the resulting
feature vector has the length 3. This also applies to all following color moments.

The second moment, is represented by the standard deviation, defined by Equation (3.6).

variancec =
1

n · m

n
∑

i=1

m
∑

j=1

(xc
ij − meanc)2 (3.5)

stdc =
√

variance (3.6)

It is interpreted as a measure of the color homogeneity in each channel. The higher the
variance of color values within one color channel, the higher the std.

The third moment is called skewness and defined by equation (3.7).

skewnessc =
1

n·m

∑n
i=1

∑m
j=1(xc

ij − meanc)3

3

√

1
n·m

∑n
i=1

∑m
j=1(xc

ij − meanc)2
(3.7)

The skewness can be understood as a measure of the asymmetry in the distribution
of color values per channel. It is 0 for a perfectly symmetrical distribution. If the
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(a) (b)

Figure 3.3: Calculating a SIFT feature vector. (a) The 4 × 4 sub-regions around a centered
key point. (b) The final feature vector with the k computed gradients for each of the 16
sub-regions. [BB16b]

distribution is not symmetrical but tends towards the left side, it tends to positive values.
If it tends to the right, the skew becomes negative.

Scale-Invariant Feature Transform (SIFT)

The next group of features is defined by texture and shape features. Here only one feature
is extracted, namely SIFT.

The Scale-Invariant Feature Transform (SIFT) is proposed by D.Lowe in 1999 [Low99].
It describes a multi-scale corner detection algorithm, that is refined with a rotation-
invariant feature descriptor attached to each key point. The main use of SIFT is to
detect and recognize local key points in images, while tolerating transformations and
scale changes [BB16b].

It consists of two major steps: (1) Efficient key point detection and (2) feature vector
description. In the first step the goal is to find points of interest in the image. This
key elements are identified using Laplacian-of-Gaussian filters, which detect corners and
edges in the image. Basically the filter detects bright blobs surrounded by dark regions
and vice versa. The filters are applied in different scales, followed by refinement steps to
end up with a final set of interest points [BB16b].

In the second step local descriptors k′ = (x, y, nσ, α) are created for each interest point.
This is done by sampling the surrounding image gradients and creating a histogram of
gradient orientations. (x, y) determine the key points spatial position. α is the angle of
the dominant gradient vector at position (x, y). nσ represents a scale parameter and sets
the area of the surrounding pixels to incorporate for computing the gradients. It is set
depending on the magnitude of the dominant gradient vector at the key points position.
The area defined by nσxnσ is divided into 4 × 4 subregions, with 16 regions in total. In
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Figure 3.3, these sub-regions are referred to by A-D and 1-4. For each sub-region, k

gradients are computed. Usually k = 8 and determines 8 different directions, like depicted
in Figure 3.3b. All the gradients are computed in a pre-set order shown in Figure 3.3b,
which results in a final feature vector of length 16 ∗ 8 = 128.

The main use of SIFT is in Multi-view matching and image stitching [HZ03]. To use
SIFT descriptors in the feature extraction pipeline, the output produced needs to have
constant dimensions. Each key point descriptor has a constant length of 128 elements,
but the amount of key points can vary between samples. This is avoided by extracting
a fixed number np of key points, producing an output vector of dimension (np, 128)
for each sample. A simple implementation of this idea is to define a regular grid with
np elements and compute k′ at these positions. By pre-setting the position of key
points, a dependency towards the location is created and translation invariance is voided.
Nevertheless this dependency is tolerable due to the patchification pre-processing. By
extracting sub-images from the original complete bee images, the input becomes invariant
to translation. The majority of pixels of a sub-image patch either show a Varroa mite
or not, which makes the key point search irrelevant. Also due to the small input image
size of 42 × 42px, np is set to 1, with setting the scale parameter nσ = 42 to cover the
complete patch area. This way all pixel information of the image patch is incorporated
when calculating the 128 element feature vector.

Another approach, not followed in this work, is to use Bag-of-Words (BoW) architecture
to enable SIFT descriptors for classification [ATK+15]. Here the computed key points
off all training samples are grouped in k clusters. Each sample is assigned to the closest
cluster and represented in a histogram forming the final feature vector.

3.2.2 Classification

There exist two groups of classifiers: (1) generative and (2) discriminative models [MCR+17].
Generative models are also referred to as non-parametric models, because they do not
rely on parameter tuning for computing probabilities. They estimate the likelihood of
belonging to class C for a sample represented by its feature vector z:

P (z|C) (3.8)

Which is the probability of the occurrence of feature vector z, when considering the class
C. A representative of this type of classifiers is the Naïve Bayes classifier.

The group of discriminative models is parameterized and is trying to set a boundary in a
given feature space between different populations to separate them. In stochastic terms,
they are calculating the probability of class C given a feature vector z:

P (C|z) (3.9)

Examples are: Linear Support Vector Machines (SVM), Decision Trees (DTs) or Random
Forests (RFs).
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Naiïve Bayes and Random Forest are used in this work, to provide a representative of
both a parameterized and an non-parameterized model. Both classifiers expect an array
of feature vectors with the dimension (n, len(feature vector)) as input, where n is the
number of samples to classify. The output of each classifier is a predicted confidence for
each sample of belonging to one of the two output classes. This allows for later setting a
desired separation boundary between the classes, different from the default 0.5

Naïve Bayes Classifier

The Naïve Bayes classifier is a simple but effective classifier applying the Bayes’ Theorem
(Equation 3.11) to calculate the probability of an input z belonging to a certain class
C [Ras14].

P (C|z) =
P (z|C) · P (C)

P (z)
(3.10)

posterior probability =
likelihood × prior probability

evidence
(3.11)

It proposes, that the posterior probabilities of observing an event can be calculated based
on the prior probabilities and the likelihood of that event. In a classification scenario
the posterior probabilities can be interpreted as the probability that a particular feature
vector z belongs to a class C given its feature values.

The likelihood is the class-conditional probability for a class C to observe a feature vector
z, which is directly estimated from the training data (Equation (3.12)). This estimation
can only be made under the assumption that the feature values z1, z2 . . . zn of z are
statistically independent from another. This means that the probability of observing zi

does not affect the probability of another observation zj with i 6= j. Further it (naively)
assumes conditional independence of the features:

P (z|C) = P (z1, z2 . . . zn|C) = P (z1|C) · P (z2|C) · ... · P (zn|C) =
n

∏

i=1

P (zi|C) (3.12)

Under this assumption, the likelihood can be calculated as a product of the individual
likelihoods for each feature. These are estimated using the maximum-likelihood estimate,
which takes the frequency of observing zi in C over the total count of all features in C.

The prior probability is also referred to as class priors, which describe the general
probability of observing a particular class. It is also estimated from the training data,
once more using the maximum-likelihood estimate.

The evidence is the probability of encountering a particular feature vector z independent
from the class label. It can be interpreted as scaling factor and is calculated using
Equation (3.13).
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P (z) = P (z|C) · P (C) + P (z|¬C) · P (¬C) (3.13)

All parameters of the Naïve Bayes classifier can be calculated as presented and no
hyperparameters need to be set. The condition of independent features is likely to be
violated since the features can have unseen correlations.

Random Forest Classifier

Random Forest is the second classifier tested in this work. It is a representative of the
group of discriminative classifiers and performs a non-linear mapping from input to
output.

A Random Forest is a composition of simpler or weaker classifiers called Decision Trees
(DTs). This technique of having an ensemble of weak classifiers voting for the most
popular class is called ensemble learning. It is a basic technique to reduce the risk
of overfitting a training dataset [Bre01]. The forest is grown in a divide-and-conquer
manner, also referred to as bootstrap aggregation: (1) Divide the data into disjoint subsets
(bootstraps). (2) Grow a randomized tree predictor (weak classifier) for each subset. (3)
Aggregate the results of the weak predictors together.

A weak learner in Random Forest is represented by a binary Decision Tree, which is
acquired by recursively dividing the feature space into sub-regions. For building a tree,
first a root node is chosen following a criterion. Each node consists of two child nodes
(left and right) that further refine the division. Where to choose the optimum split is
based on a decision rule, for instance by maximizing a “purity” criterion, in the case of
classification. Each left and right child node are further split into two consecutive child
nodes in a recursive manner. The procedure stops, if all samples in a leaf node belong to
the same class, a maximum tree depth is reached, or all training samples have been used
up.

For predicting the class of an unknown sample, the feature vector is passed to the root
node of the individual DTs and traversed through the trees. Once a leaf node is reached,
the value assigned to this node is used as the predicted output class. Each DT votes for
one of the two available classes and the majority vote makes the final prediction.

The benefit of Random Forest is that they can be applied to a wide range of prediction
problems, with only a few parameters to tune [BS16]. The only manually chosen parameter
in this work is the amount of trees in the forest, which is left at a default value of 10.

3.3 Deep Learning Pipeline

A different way of regarding the classification problem is to learn the transfer function φ

from the data, instead of manually engineering it. Simple linear models serve as basis for
a learnable φ (Equation (3.14)).

f(x; w, b) = xT w + b (3.14)
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Figure 3.4: The pipeline for creating a ConvNet model. Input is the labeled training dataset.
Output is a trained model, which can be used to predict unknown samples.

The generalization to non-linear problems is achieved by combining the results of the
linear models with a non-linear function g, referred to as activation function. The linear
models are referred to as nodes or neurons. By combining a multitude of these neurons
in a non-cyclic way, one can create a network or neurons, also referred to as multi-layer
perceptron or Artificial Neural Network.

This idea of combining simple entities to form complex models is inspired by actual
biological neural networks found, for instance, in the human brain. Here the nodes are
represented by biological neurons [AH17]. The interconnections of neurons are represented
by the weight for each input connection to a neuron. If a stimulus reaches a certain
threshold in a biological neuron, it fires an action potential. This activation of the neuron
is modeled by the non-linear activation function g. The idea is founded by F. Rosenblatt
in 1958 with the proposal of a single layer perceptron, which describes one linear entity
of a network [Ros58].

The pipeline for creating a deep learning model is depicted in Figure 3.4. Up until the
Convolutional Neural Network step, this pipeline is similar to the “traditional” pipeline.
So the data undergoes the very same pre-processing steps before passed on to the deep
learning model. In contrast to the “traditional” pipeline, no distinct feature extraction
steps are necessary and the data is directly passed to the input layer of the network. The
network is trained with a call to the fit() method, passing the pre-processed training
dataset in the form of training batches. The output of the network is a trained classifier,
that can be used to predict the label of unseen samples.
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Figure 3.5: A three-layer fully connected feed forward artificial neural network. All connections
are directed from input to output creating an acyclic graph. The input has three neurons, the
two hidden layers have four neurons each and the output has one neuron [SKP18].

3.3.1 Deep Artificial Neural Networks

The neurons in a network are grouped in layers forming an acyclic graph, having all
connections directed from input to output. In the case of a fully connected network, each
neuron of a layer is connected to each other neuron in the previous layer (see Figure 3.5).
This acyclic property does not comply with the biological model, but is necessary for
efficiently training such networks. These networks are also referred to as Feed-forward
Networks.

Figure 3.5 shows a very simple three-layer ANN. It is referred to as a three layer model,
because the output layer is omitted when counting the number of layers. All layers
between input and output are referred to as hidden layers of the network. In Figure 3.5
two hidden layers h(1) and h(2) are illustrated, with four neurons each, followed by the
output h(o) with a single neuron.

The grouping of linear nodes into layers is described by equation (3.15), which shows the
process for a single image x:

h(i+1) = f (i)(x; W , c) = g(W T x + c) (3.15)

h(i+1) is the output of the ith layer. W is an array of weight vectors w and c is the
vector of biases b from the linear models presented in Equation (3.14). The function g is
the non-linear activation function, that can be of various forms. A common way is to
choose g as rectified linear unit [GBB11]. Only by applying this non-linearity, the model
can generalize to non-linear problems.

The final representation of f and φ is created by chaining the layers. The output of the
input layer is the input for the first hidden layer and so on:

y = f(φ(x)) = h(o)(h(2)(h(1)(x)) (3.16)
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In general this chaining of functions can be of arbitrary length, creating deep neural
networks.

3.3.2 Convolutional Neural Networks (ConvNets)

A subset of deep neural networks is defined by Convolutional Neural Networks, also
referred to as ConvNets or CNNs. When working with images as input to a network, the
number of neurons and therefore parameters of the network can be very high even for
“shallow” networks. This is due to images carrying a lot of information, which needs to
be handled by the network. For example, assuming a 16 × 16px grayscale input image
connected to a hidden layer with 7200 neurons already result in 16×16×7200 = 7, 372, 800
different parameters. Imagining multiple hidden layers in combination with bigger and
multi-channel color input images results in millions of parameters to train. The goal
of ConvNets is to reduce the number of parameters allowing networks to be deep with
much less parameters [AH17]. This is done by introducing new types of layers to the
architecture:

Convolution Layers

Two principles are followed for reducing the amount of parameters: (1) Spatial information
is encoded by groups of pixels (2) Weight-sharing between groups of neurons. The first
principle is based on the assumption that a pixel in an image is highly correlated with its
close neighbors and loosely correlated with its far neighbors. This is considered by defining
sub-image regions of smaller sizes e.g. 5 × 5px, which are connected to a neuron in the
next layer. This implies, that the network is not fully-connected anymore. Considering
the example from before, the parameters can be reduced to: (5× 5) × 7200 = 180, 000. To
further reduce the amount of parameters the second principle, weight-sharing is applied:
The 7200 neurons in the hidden layer can be re-arranged to 50 blocks of 12 × 12 neurons.
The neurons inside each block are now set to share its weights with all other neurons
in the same block. This way further local information is encoded and the amount of
parameters reduces to 5 × 5 × 50 = 1250, which is a reduction of more than 99.98%
compared to the fully connected network. Combining the two operations is similar to a
convolution operation with a filter kernel in the spatial domain. This is why these layers
are named convolution layers and the result of convolving a filter with the input image is
called feature map.

Convolving a filter with a multi-channel input, always results in a single channel out-
put [AH17]. Input images are three dimensional, with the third dimension equal to the
number of channels in the image, for example (42, 42, 3). The output of convolving a
5 × 5px filter with this image, results in a one channel image with dimensions (38, 38, 1)
So when applying 50 of these 5 × 5-convolution filters in a convolution layer the output
is a 50-channel image (38, 38, 50) with each channel representing the filter result of a
different kernel.
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32x32

16x16

Figure 3.6: Max-pooling operation with kernel-size d = 2 and stride s = 2 applied on a 32×32px
input image. The resulting image is 16 × 16px, which is a spatial reduction by the factor 2.

ReLU Activation

In case of this work, a convolution layer is always followed by a Rectified Linear Unit
(ReLU) activation function. This is necessary to provide non-linear mappings. The
function cuts of negative values at zero, depicted in Equation (3.17) for a random d ∈ R.

g(d) = max{0, d} (3.17)

Different functions can be used to introduce non-linearity. Historically the sigmoid-
function is used to train multi-layer-perceptrons [Gol17]. But this can lead to a problem
with vanishing gradients, when the signal propagates from the last to the first layer
during training [GBB11]. This is why activation functions of the ReLU family are mostly
used nowadays [AH17].

Pooling Layers

Another way of reducing the amount of parameters in the network, is to use Pooling. This
is done by spatially downsampling the resulting feature maps from convolution operations.
Then use max-pooling with a kernel-size of d = 2 and a stride s = 2 (Figure 3.6). This
extracts the maximum pixel value within a d × d grid across the image. As a result the
output is spatially reduced by the factor s. Alternatively average-pooling can be used,
but it is proven to perform worse [SMB10]. Pooling layers do not have any trainable
parameters.

Dropout Layers

In the AlexNet [KSH12], a technique called Dropout is used, to reduce overfitting. Dropout
sets the output of each hidden neuron to 0 with a probability of 0.5. This way, neurons
drop out at the forward pass phase during training and as a conclusion do not participate
in the backpropagation. As a result, more robust features are learned because uncertainty
is removed [HSK+12].

60



3.3. Deep Learning Pipeline

Softmax Output Layer

The softmax layer is an output layer that applies the softmax function on a resulting
vector. The softmax function is a logistic function, that treats the scores of a output
vector y as unnormalized log probabilities [Kar18]. Exponentiating these gives unnor-
malized probabilities which are divided by the sum over all probabilities to sum to one
(Equation (3.18)). This is a favorable property because the output gives the confidences
of the classifier for observing each individual class C. This is similar to the maximum
likelihood estimation performed in the Naïve Bayes classifier.

P (C|yC) = softmax(yi) =
eyC

∑j 6=C
j eyj

(3.18)

The probability of observing class C given yC is calculated by exponentiating yC and
dividing it by the sum over all exponentiated scores.

3.3.3 Training the Network

Training a network requires an objective function or loss function to measure the error
between the calculated output and the actual output. Learning is then performed in the
form of changing the weights of each node so that the error or loss is minimized.

This is based on the principle of gradient decent and applied by the backpropagation
algorithm [AH17]. The idea is to compute the gradient of the loss function at each
node and change the weights in the direction of the gradient to minimize the loss.
Backpropagation is used for efficiently computing these gradients. First the output is
calculated by a combination of all gradients of the previous nodes. Then the new weights
are calculated in one single backward pass, using the already calculated gradients [AH17].

For efficiently training a neural network the following parameters need to be set accord-
ingly:

Batch size: The batch size describes distinct junks of data, which are passed to the
inputs of a network at once. Here it is set to 256, meaning 256 samples per batch.
This results in an input vector dimension of (256, 42, 42, 3) for each batch. A igger
batch size of 512 samples is also tested but gives worse results on the validation test
dataset.

Loss function: Different loss functions are found in literature [AH17]. The binary cross
entropy is used as loss function in this work (Equation (3.19)).

binary cross entropy(pi) = H(pi) = −(yi log(pi) + (1 − yi) log(1 − pi)) (3.19)

With yi ∈ {0, 1} being a binary indicator for the class Ci being the correct label
and pi denoting the predicted probability of the observation being of class Ci. It
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is calculated on the outputs of a probability model with values normalized to 1:
0 ≤ pi ≤ 1, which result from the softmax function. The cross-entropy loss increases
with the predicted probability for observing a label diverging from the actual label.

Optimizer and learning rate: For efficiently calculating the loss theRMSprop opti-
mizer is used with a learning rate of 0.0001 and a decay of 1e−6. The RMSprop
optimizer is a mini-batch optimizer developed by Geoff Hinton and used as one of
the default optimizers in Keras [Hin18].

Training epochs: Training is performed in a maximum of 15 epochs. One epoch is
defined by one pass of the full training dataset to the network. If the total number
of epochs is consumed, the network has seen the complete dataset 15 times. In many
cases the maximum number of iterations is not reached, because a stopping criterion
is met. The stopping criterion used here is the gradient of the loss function becoming
positive. So training is stopped, if the loss does no longer minimize.

To build the ConvNet of Figure 3.7, the library Keras is used [C+15]. It is a high-level neu-
ral networks API, built on top of the powerful deep learning library TensorFlow [AAB+18].
The model used here is a simple Sequential model, with the parameterized layers
added one by one. Each layer consumes one line of code, so programming a neural
network becomes highly efficient.

3.3.4 Network Architecture

All the previously presented types of layers are used by the convolutional neural network
architecture presented in this work. It follows the main ideas proposed by LeCun et
al. and their LeNet-5 [LBBH98] and Krizhevsky et al. [KSH12]. This is to reduce the
spatial information by a series of convolution and pooling layers to finally result in a
fully connected network with a softmax output layer. The architecture is illustrated in
Figure 3.7.

The basis for the network is given by three convolution cycles followed by the fully
connected network. Each convolution cycle (Conv Cycle in Figure 3.7) is composed of: (1)
Two convolution layers (Conv (3 × 3)), which are each followed by ReLU activations and
(2) A max-pooling layer followed by a dropout layer. Each convolution layer performs
3 × 3 convolutions and is parameterized with a number denoting the number of feature
maps to generate determining the output dimensions (Section 3.3.2) After three of these
cycles, the data is flattened and passed to a fully connected network. This is composed
of an input layer with 1152 nodes, followed by a hidden layer with 512 nodes, followed
by a ReLU activation and dropout layer to finally arrive at a binary softmax output.

This rather simple network, already has a total number of 878,370 learnable parameters,
when working with image patches of size 42 × 42 × 3px as inputs. The argument
for choosing this structure, as opposed to more recent and more complex methods is,
simplicity. A simpler model is easier to train and consumes less training data, because of
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Figure 3.7: Visualization of the ConvNet model as a directed acyclic graph. It is grouped into
three Conv Cycles and a Fully Connected Network. Each layer of the network is illustrated with
a title and the dimensions of its inputs and outputs.

less weights being trained. If the classification works on a simple network, the prove of
concept is provided. Further work can build up on this solution testing more complex
and “deeper” models.

63





CHAPTER 4
Evaluation and Discussion

Goal of the evaluation process is to determine the performances of each individual
detection approach, as well as finding out, which outperforms the other. This is done by
answering the following questions:

• How well does the patch classification work?

• How well are complete bees classified?

To answer the second question the first question needs to be dealt with first, because the
complete bee results are inferred from the patch classification results. The patch classifi-
cation performance is of valuable information, because it provides detailed information
about the classification process and can be used for parameter tuning.

The classification performance for the complete bee images is calculated from the patch
prediction results. All predicted labels that belong to the same original bee image are
gathered and a label for the original bee is inferred from the individual patch predictions.
For the original bee image to be predicted positive, at least one of the sub-image patches
must be classified as positive. Otherwise the prediction is negative.

4.1 Datasets for Evaluation

Applying the patch extraction using the proposed sliding-window function creates an
imbalanced dataset with an imbalance of 285 : 1, negative to positive patches. This is
why, for evaluating the patch classification performance, two types of datasets are used.
These are created based on the idea that one can freely choose the number of negative
and positive samples used for training and evaluation. Keeping all available positive
patches and varying the amount of negative patches leads to the following two datasets:
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1. Sliding-window datasets: For each bee image all patches are extracted using
the windowing function. So for each positive image patch sample there exists 285
negative samples. While being unfavorable for hyper parameter tuning, this dataset
is used to simulate the in-action performance. This simulation is possible because
the same windowing function is used when the system is in action. So in later use
the chances of observing an imbalance of negative to positive samples will be high
which is why this type of dataset reflects a similar imbalance.

2. Balanced dataset: This is a subset of the sliding-window dataset, where each
data sample is represented by one sub-window-patch only. If a bee image has the
label “mite”(positive sample), the representing sub-window patch is being extracted
from the position of the Varroa mite marked by the user in the ground truth. If
the label is “no-mite” (negative sample), the representing patch is chosen randomly
and also assigned the label “no-mite”. This simulates a balanced dataset, which is
used to fine-tune parameters and calculate performance measures like accuracy or
confusion matrices.

Both types of datasets are applied to the existing test, as well as, a validation dataset.
This results in a sliding-window and a balanced version of both datasets, which are used
during the evaluation process.

The complete bee performance is computed based on a sliding-window dataset. This is
because, the results of all predicted patches of the original complete bee image must be
taken into account, when deciding for the predicted label of the complete bee. By using
the sliding-window all patches belonging to a complete bee image are represented.

For evaluating the individual performances of each model, different pipeline configurations
and sets of parameters are tested. This process is also referred to as hyper parameter
search, where hyper parameters denote all configurations that can not be set automatically
and need manual pre-selection. For hyper parameter search solely the balanced and
sliding-window representation of the validation dataset are used, to avoid adding a bias
to the fine-tuning process.

4.2 Metrics for Evaluation

For performance evaluation different measurements are used. For comparing different
models, both Precision-Recall-Curves (PRC) as well as Receiver-Operating-Characteristic-
plots (ROC) are used. The PRC plots precision over recall, which are computed for
different threshold values to separate the predicted classes. In ROC the true-positive-rate
is plotted over the false-positive-rate. For both curves, scalar representations can be
computed. The area-under-the-curve (AUC) is one of theses scalar representations and is
applied for the PRC (PR-AUC) curve as well as the ROC curve (ROC-AUC). The area
is summarized from trapezoids fitted under the curves, applying the trapezoidal rule. For
the PRC, additionally the average precision (AP ) is computed, which can be interpreted
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Figure 4.1: Binary confusion matrix explained

as the weighted mean of precisions achieved at each threshold. Binary confusion matrices
are used to better visualize the per class-accuracy and give insights into false-positive
and false-negative predictions. The schema used in this work is shown in Figure 4.1 and
differs slightly from typical schemas, with the true-positives shown in the bottom right
square. The confusion matrix gives detailed insight into the classification result and is
used as basis for other scores like the f-score or precision and recall.

For illustrating the overall performance the harmonic mean between precision and recall
is used (Equation (4.1)).

f1 =
2

1
precision

+ 1
recall

=
2 · TP

2 · TP + FP + FN
(4.1)

This harmonic mean is called f1-score and is defined on the interval [0, 1] with 1 as best
score.

4.3 Evaluation Deep Learning Approach

Applying the patch extraction using the sliding-window function on the manually labeled
dataset with imbalance 1 : 3 creates a new dataset with imbalance 1 : 285 positives to
negatives. This dataset does not provide satisfactory results for training. This is because
the imbalance has a significant impact on the classification performance and balanced
datasets are to be preferred [SMD13], [HG09]. In this work a combination of the following
two approaches is used to achieve a balanced dataset for training: (1) Under-sampling
the majority class, in this case the negative class. (2) Over-sampling the minority class,
the positive class.

Under-sampling is realized by randomly choosing a subset of negative data patches
from the overall pool of negative patches after extraction. Therefore a parameter nneg
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Figure 4.2: Evaluating different dataset for training the ConvNet, evaluated on the sliding-
window validation dataset. The number in the title of each model indicates the number of patches
extracted from the original training dataset.

is introduced, that represents the number of randomly chosen image patches that are
returned from each negative sample. For instance, setting nneg = 80, returns 80 negative
patches from a complete bee image. The training dataset has: class_0: 6,219, class_1:
1,809 complete bee images. When applying patch extraction with nneg = 80, the resulting
training dataset has the form class_0: 497,520, class_1: 1,809, which is a subset of the
total available patches of class_0: 951,507, class_1: 1,809. The minority class remains
unchanged at this stage, extracting all available positive data patches.

To create a balanced dataset,the remaining 1, 809 positive patches are over-sampled,
using data augmentation. For nneg = 80, a number of 275 augmented images must be
created from each positive image patch, to result in an evenly balanced dataset of around
500, 000 samples per class.

The results of the process of determining the optimal nneg is displayed in Figure 4.2. The
plot shows the comparison of precision-recall curves, resulting from models trained with
datasets extracted with different nneg. They are evaluated on the same sliding-window
validation dataset to better examine the results. For numerical comparison, the average-
precision (AP ) as well as the area-under-the-curve (AUC) are provided. Best results can
be achieved when extracting patches with nneg = 80 with a maximum PR-AUC = 0.6035.
But closely followed by 1-to-120_neg, 1-to-160_neg and 1-to-200_neg, with about 2%
less performance. The model, which is trained with 1-to-1_neg performs better then the
model trained with 1-to-60_neg. This indicates that the number of negative samples is of
less impact than the number of positive samples and that the heavy data-augmentation
for the minority class does not provide sufficient variation.

The best performing deep learning models are further referred to as ConvNet_80_neg and
ConvNet_160_neg trained on the 1-to-80_neg and 1-to-160_neg dataset respectively.
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4.4 Evaluation “Traditional” Approach

Both approaches “traditional” and deep learning use parameterization which influence
the classification results. These parameters are hyperparameters. Setting these follows
a logical approach, where possible values are defined in literature or by testing via a
trial-and-error.

For the “traditional” approach the hyperparameters are represented by the configurations
of the individual features and the combinations features. In cases where parameters
can not be determined logically, grid search over possible values is performed. Each
parameter configuration is tested on the previously mentioned balanced validation dataset
with the goal of finding the best configurations.

The order in which the features are extracted is irrelevant to the final outcome, which
is why no special regard is taken during parameter search. The functionality for com-
bining different features is provided by the python library scikit-learn1. It contains
the Pipeline facility, which allows the combination of data processing steps, feature
extraction steps and final classification, into one pipeline. This library facilitates hyper
parameter search. Features can be grouped into a so called feature_union which,
in combination with a classifier, form a Pipeline . The classifier within the pipeline
is trained, by a single call to the pipelines fit() method, simplifying the process of
hyper parameter tuning.

4.4.1 Optimal Feature Selection

The grid search method mentioned above is used to find optimal parameter configurations
and feature combinations. All parameters are computed on the balanced validation
dataset. This dataset is used in favor of the sliding-window dataset, solely because it
is smaller and therefore offers better performance. After grid search a list of relevant
feature candidates is extracted, which are further tested on the sliding-window validation
dataset.

The list of available features is listed in Table 3.1. Each feature allows for different
configurations which are tested with two classifiers: (1) Random Forrest and (2) Naive
Bayes. In total, 258 different feature combinations, 129 per classifier are tested. Table 4.1
shows a filtered version of these original grid search results. The top part shows the
results for the individual features in all configurations tested using both classifiers. The
lower part contains all feature combinations with an area-under-the-curve of the Precision-
Recall-Plot (PR-AUC) greater than 0.8 to filter for the best performing combinations.
For all results, additionally the AUC of the Receiver-Operating-Characteristics-Plot
(ROC-AUC) and the average precision (AP ) are listed. Based on the best results,
highlighted bold, seven candidate pipelines are extracted, that qualify for further testing.
So each highlighted result is represented by a candidate pipeline, summarized in Table 4.2

1http://scikit-learn.org/stable/ (last accessed 04/2018)
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4.4. Evaluation “Traditional” Approach

Pipeline label Features Classifier

Mean_RF color mean Random Forest

Hist8Mean_RF
color histogram with 8 bins, color
mean

Random Forest

MeanStd_RF color mean, color standard deviation Random Forest

MeanStdSIFT_RF
color mean, color standard deviation,
texture SIFT

Random Forest

MeanStd_Bayes color mean, color standard deviation Naive Bayes

Hist32MeanSkew_Bayes
color histogram with 32 bins, color
mean, color skew

Naive Bayes

SkewSIFT_Bayes color skewness, texture SIFT Naive Bayes

Table 4.2: The pipelines resulting from grid search, with a PR-AUC > 0.8 on the validation
dataset

The overall best result with a PR-AUC of 0.86 computed on the balanced validation
dataset is achieved by the Mean_RF pipeline. This is a very simple pipeline with color
mean as single feature followed by a random forest classifier. Nevertheless, all candidate
pipelines of Table 4.2 are further tested, to ensure independence from the validation
dataset.

4.4.2 Optimal Number of Training Samples

The dataset used for training changes depending on the amount of sub-window patches
extracted from each original sample. Goal of this evaluation is to find the optimal amount
of training-patches for training the “traditional” pipeline.

The MeanStd_RF pipeline is used for the comparison of the different configurations of
the datasets. It is trained using different training dataset configurations, but validated
on the same dataset.

Figure 4.3 shows both a PRC-plot and a ROC-plot, acquired after training MeanStd_RF
with different training datasets. The datasets are titled: 1_neg, 10_neg, 30_neg, 60_neg,
80_neg and 160_neg. The number in the title of each individual dataset indicate the
number of random 42 × 42px sub-window-patches, which are being extracted from each
negative 160 × 280px complete bee image. Further all available positive sub-window-
patches, showing Varroa mites, are extracted and data augmentation is applied to match
the number of negative patches. This results in different sizes for the dataset. For
instance, the training dataset 1_neg consists of a total number of 12,438 extracted
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Figure 4.3: Results of training the same “traditional” pipeline MeanStd_RF with different
Trad_i_neg training datasets. i represents the number of negative patches extracted using a
sliding-window function.

patches and 160_neg of 1,990,348 samples, so a broad range of inputs is covered.

Comparing the individual performances using the AUC values in Figure 4.3 shows a
maximum difference between the PR-AUCs of less than 1% and 1.5% for the ROC-AUCs.
This leads to the conclusion that the amount of training patches is of little impact to the
classification result.

4.4.3 Final Pipeline Selection

In the previous steps, the candidate models are narrowed from 258 to 7 best performing
“traditional” pipelines. Further the training dataset is set to 80_neg with a total of
1,258,260 patches for training.

The seven pipelines are further evaluated to select the best performing models from this
group, which is compared with the best performing deep learning models. Therefore the
sliding-window validation dataset is used which has an imbalance towards the negative
label. This is similar to the imbalance of the test dataset. Each model is trained using
the 80_neg training dataset and evaluated on the sliding-window validation dataset. The
result of this evaluation is a comparative ROC plot displayed in Figure 4.4.

Again slight differences are noticeable between the performances of the different models.
Closely examining the curves, a group of three pipelines of marginally better performance
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4.5. Classification Performance Evaluation

Figure 4.4: Results of the seven best performing “traditional” pipelines computed on the
sliding-window validation dataset.

can be identified. These are Mean_RF leading with AUC = 0.9143, followed by
Hist8Mean_RF (AUC = 0.9122) and MeanStd_RF (AUC = 0.8855).

4.5 Classification Performance Evaluation

All previous evaluations are performed on the validation dataset in different manifestations.
To evaluate the actual classification performance, the best models of both approaches
are applied on the test dataset. The models are listed in Table 4.3 and consist of three
“traditional” and two deep learning models.

For a complete comparison, the patch classification performance is evaluated using the
above mentioned balanced test dataset and the sliding-window test dataset. Then the
complete bee performance is inferred from the patch classification results, to determine
the in-action performance.

4.5.1 Results Patch Classification

The patch classification performance is identified using a similar approach as is used for
the evaluation of the hyper parameters for the individual models. With the difference of
testing the models on the test dataset instead of the validation dataset.

Balanced Test Dataset Performance

First, the results of applying the models on the balanced test dataset are summarized in
Figure 4.5. Here the individual performances can be compared using a PR-plot and a
ROC-plot. Additionally the confusion matrices for both the best performing “traditional”,
as well as, deep learning approach are presented.
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4. Evaluation and Discussion

Model label Description

Trad_80_neg_Mean_RF
“Traditional” pipeline: Color mean with Random For-
est, trained on dataset 80_neg

Trad_80_neg_Hist8Mean_RF
“Traditional” pipeline: Color histogram with 8 bins,
color mean with Random Forest, trained on dataset
80_neg

Trad_80_neg_MeanStd_RF
“Traditional” pipeline: Color mean, color standard de-
viation with Random Forest, trained on dataset 80_neg

ConvNet_160
Convolutional Neural Network, trained on dataset
160_neg

ConvNet_80
Convolutional Neural Network, trained on dataset
80_neg

Table 4.3: The list of the final best performing models including a short description.

Observing the results depicted in Figure 4.5a, the PR-curves allow a clear separator
into two groups: (1) Curves belonging to “traditional” models and (2) Curves belonging
to deep learning models. Within the groups similar performances are observed with a
clear separation between them. The same behavior can be observed in the corresponding
ROC plot in Figure 4.5b. Here the two groupings become even more evident. Based on
the PR-AUC, the best performing models for each group are: ConvNet_160_neg with
PR-AUC = 0.9926 and Trad_80_neg_Mean_RF with PR-AUC = 0.8424. The best
f-scores per group are achieved by ConvNet_80_neg and Trad_80_neg_MeanStd_RF.
For these two models, confusion matrices are presented with Figure 4.5c showing the
confusion matrix for the best performing “traditional” model and Figure 4.5d, with the
best performing deep learning model.

Both the PR-plot as well as the ROC-plot indicate a superior performance of the
deep learning models, independent of the individual configuration. Closely observing
the confusion matrices reveals that the accuracy for the negative class is about 20%
higher with the ConvNet_160_neg model (Figure 4.5d), in comparison to the best
performing “traditional” model (Figure 4.5c). Also the f-score = 0.77 of the best
performing “traditional” model is around 20% lower than the f-score = 0.97 for the deep
learning model.

Sliding-Window Test Dataset Performance

The gap between the two groups becomes more evident, when using the sliding-window
test dataset with a class imbalance of 1 : 285. So for each positive sample there exist
285 negative samples in the test dataset. The results for applying the models to this
dataset are summarized in Figure 4.6. Both the performance of the “traditional” and
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Figure 4.5: The overall patch classification performance of the balanced test dataset calculated
by the best performing candidate models.

deep learning approaches are decreasing using this dataset.

The PR-Plot in Figure 4.6a shows a similar performance of the ConvNet models of
AUC = 0.613, which is a drop of about 38% compared to the best PR-AUC score of
the balanced dataset in Figure 4.5a. Within the “traditional” models, again similar
performances are observed, but showing a higher drop in their overall performance. The
best model Mean_RF achieves a PR-AUC = 0.1333, making a total reduction of more
than 60% compared to the balanced dataset with 0.8424.
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Figure 4.6: The overall patch classification performance of the sliding-window test dataset
calculated by the best performing candidate models.

This behavior is better explained after observing the confusion matrices for the best
performing “traditional” (Figure 4.6c) and deep learning model (Figure 4.6d). Again the
best f-scores are provided by the models Trad_80_neg_MeanStd_RF and ConvNet_80,
which allows a direct comparison to the confusion matrices of Figure 4.5. Both models
show a higher rate of false-positive predictions (top right square), where the actual label
is negative but is predicted as positive, when compared to Figure 4.5. Which is why
the f-scores of both models drops significantly. The f-score of the “traditional” model
(Figure 4.6c) drops to a minimum of f-score = 0.04 (top description), which is explained by
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4.5. Classification Performance Evaluation

the lower precision compared to the deep learning models. The ROC-Plot also indicates
that the high rate of false-positives is responsible for the drop in performance, since the
ratio of true-positives to false-negatives remains approximately unchanged. This is also
shown by the per-class accuracies of the confusion matrices, which can be found on the
left side of each plot, under the true label description. Similar per-class performances are
reached.

This shows that the per-class accuracy and ROC-plot are insufficient performance
measures when working with imbalanced datasets. This is because both performance
measures are sensitive to imbalances in the data. Looking at the test dataset, an accuracy
above 90% could be achieved by predicting all samples as negative, solely because negative
samples outnumber positive ones. In the ROC-plot, the true-positive-rate is plotted
over the false-positive-rate. The false-positive-rate (FPR) is also sensitive to imbalances
in the data, since it incorporates the total number of negative samples to compute:

FPR =
∑

False positives
∑

Total negatives
. This is why performance measures based precision and recall are

to be preferred when working with imbalanced data [SR15]. At the default threshold of 0.5
the best performing “traditional” model MeanStd_RF reaches a maximum f-score of 0.04
(Figure 4.6c) and the deep learning approach a maximum f-score of 0.18 (Figure 4.6d).
This result can be improved by choosing a different threshold.

4.5.2 Choosing Optimal Thresholds

The output of each model can be interpreted as confidences for the predicted labels. In
the binary case, two confidences result from a prediction, one for the positive and one for
the negative class adding up to 1. Example predictions are: Class 0 = 0.7, class 1 = 0.3,
or class 0 = 0.01, class 1 = 0.99. A natural separation of the two classes is provided by
a threshold of 0.5. When interpreted as confidences a predicted confidence greater 0.5 is
necessary to classify a patch as positive (class 1). This threshold can be varied to change
the confidence of the predicted classes.

Two confusion matrices are given in Figure 4.7. Both are acquired after applying the same
ConvNet_80_neg model on the sliding-window validation dataset. The only difference is
the threshold used. In the confusion matrix on the left (Figure 4.7a), the threshold is set
to default 0.5, separating the classes directly in the middle. Here a higher false-positive
rate can be observed (top right square) with an overall f-score of 0.25 on the validation
dataset. On the right hand plot (Figure 4.7b), the threshold is set to 0.993. With this
new threshold, the corresponding f-score raises to 0.58. This lowers the false-positive
error, but raises the false-negative error, so the classes get separated more evenly. At this
new threshold the positive class is only assigned if the confidence of observing a positive
sample is greater than 99.3%. This leaves the question for how to set this threshold in
an automated fashion.

First, the optimal threshold depends on the model used, so it needs to be evaluated on a
per model basis. Second, the threshold is calculated based on the validation dataset and
not on the test dataset. In later application, this value is adjusted based on experience and
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Figure 4.7: Finding the optimal threshold, where precision and recall are highest. (a) and (b)
show confusion matrices computed using the same models, but different thresholds for assigning
a predicted positive label. (c) shows the intersection point of precision and recall.

observations. The optimal patch classification threshold for the ConvNet_80_neg model
is based on the separation point calculated in Figure 4.7c, where precision and recall
reach a maximum value. The classification error in the confusion matrix in Figure 4.7b
(top-right and bottom-left square) gets evenly spread across the classes.

The optimal threshold for each candidate model and the corresponding patch classification
results, computed on the sliding-window test dataset, are displayed in the last column
of Table 4.4. These thresholds are calculated using the same method as used for
the ConvNet_80_neg model illustrated in Figure 4.7c. All candidate models use an
optimal threshold above 0.95 again indicating the higher false-positive rate. The best
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Model Results @ 0.5 Results @ opt threshold

Trad_80_neg_Mean_RF f-score = 0.02 @ 0.965: f-score = 0.05
Trad_80_neg_Hist8Mean_RF f-score = 0.03 @ 0.960: f-score = 0.06
Trad_80_neg_MeanStd_RF f-score = 0.04 @ 0.985: f-score = 0.08
ConvNet_160_neg f-score = 0.21 @ 0.990: f-score = 0.57
ConvNet_80_neg f-score = 0.18 @ 0.993: f-score = 0.58

Table 4.4: Patch classification performance calculated on the sliding-window test dataset.
The results are given for the default threshold 0.5 and the respective optimal threshold,
which is calculated based on the results on the validation dataset. Best Performing model
is ConvNet_80_neg with a maximum f-score = 0.58.

Model Results @ 0.5 Results @ opt threshold

Trad_80_neg_Mean_RF f-score = 0.33 @ 0.800: f-score = 0.33
Trad_80_neg_Hist8Mean_RF f-score = 0.33 @ 0.960: f-score = 0.36
Trad_80_neg_MeanStd_RF f-score = 0.33 @ 0.985: f-score = 0.37
ConvNet_160_neg f-score = 0.52 @ 0.985: f-score = 0.82
ConvNet_80_neg f-score = 0.47 @ 0.985: f-score = 0.82

Table 4.5: The final classification results for complete bee images calculated on the sliding-window
test dataset. The overall best performing model is ConvNet_80_neg with results highlighted
in gray. All results are inferred from the patch classification results of the sliding-window test
dataset.

patch classification result is achieved by the ConvNet_80_neg with a f-score = 0.58 at
threshold 0.993.

This must however not be the optimal threshold for the complete bee classification,
because the patch results are grouped for each complete bee image. A positive predicted
class label of the complete bee image depends on the positive prediction of one single
patch. So the same label is assigned to a complete bee even if more than one patch show
a positive prediction and these predictions can be false-positives as well. When using
the proposed threshold of 0.993 for complete bee validation on the validation dataset a
f-score of 0.85 is achieved. Additionally a range of thresholds around this patch threshold
are tested and a higher f-score of 0.88 are achieved with a threshold of 0.985. This
threshold is chosen as the optimal threshold for the final bee classification. The list of
optimal complete bee thresholds are illustrated in the last column of Table 4.5

4.5.3 Results Complete Bee Classification

With the patch classification performance being necessary for parameter tuning and
providing a detailed analysis of the classification process, it does not answer the question
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Figure 4.8: Complete bee classification results of the best performing models at threshold 0.5,
calculated on the test dataset. (a) Result of the best deep learning model ConvNet_80_neg (b)
Result of the best “traditional” model MeanStd_RF.
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Figure 4.9: Complete bee classification results of the best performing models at threshold 0.985,
calculated on the test dataset. (a) Result of the best deep learning model ConvNet_80_neg,
with the overall best result highlighted in bold. (b) Result of the best “traditional” model
MeanStd_RF.

of how well the actual bee classification works. This is the goal of this final evaluation
section. So given a new bee image composed of 153 unseen image patches, how well does
the system classify the complete bee as infected or not. This evaluation is performed
on the test dataset and not on a live-data stream, which makes it a simulation of the
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in-action performance. The results are still representative for the in-action performance,
because the same approach for extracting the image patches using a sliding-window is
used, as for live-data. The prospect of working with the test dataset is, that it allows a
detailed evaluation. Measures like f-score or per-class-accuracy can be calculated directly,
enabling exact evaluation of the classification results.

The classification result for a complete bee image is inferred from the classification results
of all sub-window patches extracted from this image. So the first step to the complete
bee prediction is the predictions of all sub-window patches belonging to the same bee
image. A bee image is assigned a positive label, if one or more sub-window patches
are predicted as positive. Therefore a negative label is only assigned, if all sub-window
patches are predicted as negative. This is due to the fact that a Varroa mite can be
fully represented in one single image patch. Therefore, one patch alone holds enough
information to classify the complete bee as positive.

The individual patch classification results depend on the threshold for the confidence of
the classifier for predicting the positive class. This is why the patches are classified with
two different thresholds, before summarizing the results: (1) The default threshold of 0.5
and (2) the optimal complete bee threshold for each model calculated on the validation
dataset. With the default threshold (Figure 4.8a) 63.03% of the negative bee samples are
miss-classified as positive samples using the deep learning approach. The classification
performance is increased using the optimal threshold (Figure 4.9a). The complete bee
classification results of all candidate pipelines are presented in Table 4.5. Each model is
described with two f-scores, one for the 0.5 threshold and one for the optimal threshold.
The highest scores and best performing models are highlighted in bold. These are
Trad_MeanStd_RF with a f-score of 0.37 and ConvNet_80_neg and ConvNet_160_neg,
with the latter two performing equally well, achieving a f-score of 0.82.

A final comparison of the best performing “traditional” and deep learning model is given
in the form of confusion matrices in the Figures 4.8 and 4.9. Figure 4.8 illustrates the
complete performance for both models at threshold 0.5 and Figure 4.9 the performance at
threshold 0.985. At the optimal threshold of 0.985 the ConvNet_80_neg model shows a
per-class accuracy of 94.4% for the negative and 85.5% for the positive class. This results
in an overall miss-classification rate of less than 8%2. The best performing “traditional”
model is Trad_80_neg_MeanStd_RF, with a per-class accuracy of 32% for the negative
and 86% for the positive class, with a total 57% miss-classification.

4.6 Discussion of Classification Results

The results of the patch classification are summarized in Table 4.4. These show a
significant performance differences between the two groups: “Traditional” and deep
learning models with an f-score difference of 0.45. This is in contrast to the performance
of the configurations within the same groups, which are little with a f-score variability of

2 fp+fn

total number of samples
= 149+94

2680+651
= 0.072951
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less than ±0.02 . Both groups show a high false-positive rate, explained by the strong
imbalance of 1 : 285 in the test data. The maximum patch classification performance is
0.58 using the ConvNet_80_neg model. This is reached after adjusting the confidence
threshold from 0.5 to 0.993. Reasons for this average performance are: (1) The limited
amount of training data, which does not provide sufficient variability in the data. (2)
The strong imbalance in the test dataset, raising the chances for a miss-classification.

Similar to the results of the patch classification, a high number of false-positives is
observed in the complete bee results with 64.03% false-positive classifications. Adjusting
the confidence threshold is used to balance this error. It is set to the optimal threshold
of 0.985 computed on the validation dataset. So to classify an image patch belonging to
a complete bee image as positive, the model has to be 98.5% sure that it deals with a
positive sample to output a positive prediction.

The ConvNet_80_neg is the overall best performing model. It achieves best performance
both at patch-classification (Table 4.4), as well as complete bee classification (Table 4.5).
Less resources are consumed for training this model compared to the ConvNet_160_neg,
which shows similar performances.

With this model a maximum complete bee classification performance with 0.85 (f-score) is
reached. This is a gain of 0.27 compared to the patch classification performance using this
model. This is explained by the miss-classifications at patch level having less effect in the
context of complete bee classification, where the individual results are grouped to form
the final result. Both the false-positive and false-negative errors decrease when choosing
the confidence threshold of 0.985. This indicates that before the threshold adjustment
the classifier is more confident in correctly predicting negative complete bee images than
correctly classifying positive images as positive. And that miss-classifications, leading
to a higher false-positive rate, occurs with patches taken from positive samples. This is
again explained by the imbalance in the test dataset.
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CHAPTER 5
Conclusion and Future Work

This works presents a comparison of state of the art image classification methods as well
as different segmentation approaches to detect and classify honeybees at the beehive
entrance. It is shown that the classification of healthy and infected bees works with a
f-score of 0.82 using optimal hyper parameters calculated on the validation dataset. First,
three video recording systems were designed that enable recording of honeybees at the
hive entrance. The designs were developed in an evolutionary process and resulted in
three novel recording prototypes. The prototypes were applied both in field recordings
as well as in the laboratory creating 7.01 TB of processable video data that represents
1, 584.5 hours of recording. Four different camera sensors were tested with the Axis
M1125 as the best performing sensor. From the recordings with this sensor a labeled
dataset with 13, 464 images of infected and healthy honeybees was created. This included
the implementation of a bee detection and extraction software and the manual marking
of the positions of Varroa mites in each extracted image using a custom designed labeling
tool.

This dataset was used to train and evaluate two types of classification pipelines: A “tra-
ditional” machine learning, as well as, a deep learning pipeline. Each pipeline was tested
in different configurations using the validation dataset, to find the respective optimal
parameterizations. The best performing models of each pipeline were compared using
the f-score metric and confusion matrices. The best performance is achieved using a
convolutional neural network with a miss-classification rate of 7.2%. This model is
capable of distinguishing between healthy and infected bees with a f-score of 0.82. The
best performing “traditional” model achieves a minimum miss-classification rate of 57%
and a maximum f-score of 0.37. This shows the superiority of the deep learning approach
compared to the “traditional” approach. This work therefore provides a proof of concept
depicting both the hardware as well as the software implementation.

The following future work is necessary before the presented system can be set in action:
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5. Conclusion and Future Work

(1) Touching bees leading to merged foreground masks need to be separated to enable
a full tracking solution of individual bees. This is necessary to feed the classification
pipeline with well prepared image patches of bees.

(2) Applying different deep learning techniques. For future development of the detection
pipeline other deep learning models can be tested. They can be evaluated and compared
using the created dataset. Following the suggestions from [Gol17], unsupervised pre-
training or transfer learning could lead to better results. Here the idea is to use a ConvNet
that is pre-trained on a large image dataset and fine-tune the top layers with the available
dataset. The advantage of this method is that a small dataset can be used for the fine
tuning step since the network already learned how to extract image features due to the
pre-training. This methods can be applied without putting additional effort into data
labeling.

Whether this system is capable of fully replacing manual sampling requires a long term
field study, which is beyond the scope of this work. Nevertheless, the presented system
shows the capabilities of detecting the parasites Varroa destructor and provides a potential
hardware setup in the form of a functioning prototype. This system can further be
used for other recognition tasks like identifying bees carrying pollen or estimating the
in-and-out-activity using the data from the tracker. These results can be used to give
further insight into the foraging activity and general health of bee colonies.

84



List of Figures

1.1 The overall project pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Varroa destructor mites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Tracking Varroa mites inside a brood cell . . . . . . . . . . . . . . . . . . . 11
1.4 Apiary entrance monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Data samples of the manually labeled ground truth . . . . . . . . . . . . . 23
2.2 Prototypes in chronological order . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 The OpenSCAD rendering of a wooden side panel of the Prototype I . . . 26
2.4 Calculating the necessary camera lens properties . . . . . . . . . . . . . . 26
2.5 The data recording process . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Prototype I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Prototype II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Example frames of recordings taken with different Prototypes . . . . . . . 33
2.9 Prototype III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Pipeline for creating the ground truth. . . . . . . . . . . . . . . . . . . . . 36
2.11 Foreground extraction methods compared . . . . . . . . . . . . . . . . . . 37
2.12 Screenshots from the labeling process . . . . . . . . . . . . . . . . . . . . 40
2.13 Sliding window visualized . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14 Sub-image patches after patch extraction . . . . . . . . . . . . . . . . . . 43

3.1 The pipeline for creating a “traditional” machine learning model . . . . . 49
3.2 Color histogram for a negative and positive sample . . . . . . . . . . . . . . 51
3.3 Calculating a SIFT feature vector . . . . . . . . . . . . . . . . . . . . . . 53
3.4 The pipeline for creating a ConvNet model . . . . . . . . . . . . . . . . . 57
3.5 A three-layer fully connected feed forward artificial neural network . . . . 58
3.6 Max-pooling operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7 Visualization of the ConvNet model as a dircted acyclic graph . . . . . . 63

4.1 Binary confusion matrix explained . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Evaluating different dataset for training the ConvNet . . . . . . . . . . . 68
4.3 Results of the “traditional” pipeline with different training datasets . . . 72
4.4 The best performing “traditional” pipelines computed on the validation dataset 73
4.5 Patch classification performance evaluated on balanced test dataset . . . . 75
4.6 Patch classification performance evaluated on sliding-window test dataset 76

85



4.7 Finding the optimal threshold, where precision and recall are highest . . . 78
4.8 Complete bee classification results at threshold 0.5 . . . . . . . . . . . . . 80
4.9 Complete bee classification results at threshold 0.985 . . . . . . . . . . . . 80

86



List of Tables

1.1 State of the art for electronically enhanced apiary management . . . . . . 9
1.2 State of the art for visual apiary entrance monitoring . . . . . . . . . . . 12
1.3 State of the art for visual insect classification . . . . . . . . . . . . . . . . 17

2.1 Total amount of manually labeled data, before splitting into subset . . . . 22
2.2 Ground truth datasets after manually splitting into three subsets . . . . . 22
2.3 Technical properties of all three prototypes compared . . . . . . . . . . . 29
2.4 Amount of recorded video data with each prototype. . . . . . . . . . . . . 35
2.5 Ground truth datasets after applying the sliding-window patch extraction 44

3.1 The list of feature candidates . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Selection from the total grid search results for feature selection . . . . . . 70
4.2 The pipelines resulting from grid search . . . . . . . . . . . . . . . . . . . . 71
4.3 The list of the final best performing models . . . . . . . . . . . . . . . . . 74
4.4 Patch classification performance calculated on the sliding-window test dataset 79
4.5 The final classification results for complete bee images . . . . . . . . . . . 79

87





List of Algorithms

2.1 Detecting and Extracting Bees from Videos . . . . . . . . . . . . . . . . 39

89





Bibliography

[AAB+18] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems. tensorflow.
org, 2018. (last accessed: 02.06.2018).

[AH17] Hamed Habibi Aghdam and Elnaz Jahani Heravi. Guide to Convolutional
Neural Networks: A Practical Application to Traffic-Sign Detection and
Classification. Springer Publishing Company, Incorporated, 1st edition,
2017.

[AK11] Fatemeh Alamdar and MohammadReza Keyvanpour. A new color feature
extraction method based on quadhistogram. Procedia Environmental
Sciences, 10:777–783, 2011.

[AS16] Plamen Angelov and Alessandro Sperduti. Challenges in deep learning.
In Proceedings of the European Symposium on Artificial Neural Networks,
pages 485–495, 2016.

[ASSW01] Tom Arbuckle, Stefan Schröder, Volker Steinhage, and Dieter Wittmann.
Biodiversity informatics in action: identification and monitoring of bee
species using abis. In Proceedings of the 15th International Symposium
Informatics for Environmental Protection, 2001.

[ATK+15] Ryfial Azhar, Desmin Tuwohingide, Dasrit Kamudi, Sarimuddin, and
Nanik Suciati. Batik image classification using sift feature extraction, bag
of features and support vector machine. Procedia Computer Science, 72:24
– 30, 2015. The Third Information Systems International Conference
2015.

91

tensorflow.org
tensorflow.org


[BB16a] Wilhelm Burger and Mark J. Burge. Regions in Binary Images, chap-
ter 10, pages 209–219. Springer London, London, 2016.

[BB16b] Wilhelm Burger and Mark J. Burge. Scale-Invariant Feature Transform
(SIFT), pages 609–664. Springer London, London, 2016.

[BG08] Otto Boecking and E. Genersch. Varroosis – the ongoing crisis in
bee keeping. Journal für Verbraucherschutz und Lebensmittelsicherheit,
3(2):221–228, May 2008.

[BPRM16] Z. Babic, R. Pilipovic, V. Risojevic, and G. Mirjanic. Pollen bearing
honey bee detection in hive entrance video recorded by remote embedded
system for pollination monitoring. Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences ISPRS, III-7:51–57, 2016.

[Bra00] Gary Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[Bre01] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October
2001.

[BS16] Gérard Biau and Erwan Scornet. A random forest guided tour. TEST,
25(2):197–227, Jun 2016.

[C+15] François Chollet et al. Keras. https://keras.io, 2015. (last accessed:
02.06.2018).

[CGKM13] Guillaume Chiron, Petra Gomez-Krämer, and Michel Ménard. Detecting
and tracking honeybees in 3d at the beehive entrance using stereo vision.
Journal on Image and Video Processing, EURASIP, 2013(1):1–17, 2013.

[CMS08] Jason Campbell, Lily Mummert, and Rahul Sukthankar. Video moni-
toring of honey bee colonies at the hive entrance. Visual observation &
analysis of animal & insect behavior, ICPR, 8:1–4, 2008.

[CPMR05] Junqing Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz. Adaptive
perceptual color-texture image segmentation. IEEE Transactions on
Image Processing, 14(10):1524–1536, October 2005.

[CYJL12] Chiu Chen, En-Cheng Yang, Joe-Air Jiang, and Ta-Te Lin. An imaging
system for monitoring the in-and-out activity of honey bees. Computers
and Electronics in Agriculture, 89:100–109, November 2012.

[DJDARG82] David De Jong, D De Andrea Roma, and Lionel Gonçalves. A compara-
tive analysis of shaking solutions for the detection of varroa jacobsoni
on adult honeybees. In Proceedings of the Apidologie, volume 13, pages
297–306, 01 1982.

92

https://keras.io


[DMM00] Keith S. Delaplane, Daniel R. Mayer, and Daniel F. Mayer. Crop
pollination by bees. Cabi, 2000.

[ESM+09] Jay D. Evans, Claude Saegerman, Chris Mullin, Eric Haubruge,
Bach Kim Nguyen, Maryann Frazier, Jim Frazier, Diana Cox-Foster,
Yanping Chen, Robyn Underwood, et al. Colony collapse disorder: a
descriptive study. PLoS ONE, 4(8):e6481, 2009.

[Eva18] Huw Evans. Arnia: Using remote hive mon-
itoring data. http://www.beeculture.com/

arnia-using-remote-hive-monitoring-data/, 2018. (last
accessed: 02.06.2018).

[FF95] Andrew Fitzgibbon and Robert Fisher. A buyer’s guide to conic fitting.
In Proceedings of the 5th British Machine Vision Conference, pages
513–522, 02 1995.

[FHIR03] Ingemar Fries, Henrik Hansen, Anton Imdorf, and Peter Rosenkranz.
Swarming in honey bees (apis mellifera) and varroa destructor population
development in sweden. Apidologie, 34(4):389–397, 2003.

[FNK13] Roy M. Francis, Steen L. Nielsen, and Per Kryger. Varroa-virus inter-
action in collapsing honey bee colonies. PLoS ONE, 8(3):1–9, March
2013.

[Gat14] B.N. Gates. The temperature of the bee colony, united states department
of agriculture, dept. Bull, (96), 1914.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, pages 315–323, 2011.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[GCZ+15] M. Giammarini, E. Concettoni, C. C. Zazzarini, N. Orlandini, M. Al-
banesi, and C. Cristalli. Beehive lab project - sensorized hive for bee
colonies life study. In Proceedings of the 12th International Workshop
on Intelligent Solutions in Embedded Systems (WISES), pages 121–126,
October 2015.

[GG15] Sebastian Gisder and Elke Genersch. Special issue: Honey bee viruses.
Viruses, 7(10):2885, 2015.

[GM16] Jeffrey Glick and Katarina Miller. Insect classification with heirarchical
deep convolutional neural networks. Convolutional Neural Networks for
Visual Recognition, 2016.

93

http://www.beeculture.com/arnia-using-remote-hive-monitoring-data/
http://www.beeculture.com/arnia-using-remote-hive-monitoring-data/
http://www.deeplearningbook.org


[Gol17] V. A. Golovko. Deep learning: an overview and main paradigms. Optical
Memory and Neural Networks, 26(1):1–17, Jan 2017.

[GSSV09] Nicola Gallai, Jean-Michel Salles, Josef Settele, and Bernard E Vaissière.
Economic valuation of the vulnerability of world agriculture confronted
with pollinator decline. Ecological Economics, 68(3):810–821, 2009.

[GVAG16] Santiago González, Tito Raúl Vargas, Pau Arce, and Juan Carlos Guerri.
Energy optimization for video monitoring system in agricultural areas
using single board computer nodes and wireless ad hoc networks. In Pro-
ceedings of the Signal Processing, Images and Artificial Vision (STSIVA),
pages 1–7. IEEE, 2016.

[HG09] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Trans-
actions on Knowledge and Data Engineering, 21(9):1263–1284, Sept
2009.

[HHDV16] Donald Howard, Gordon Hunter, Olga Duran, and Demetrios Venet-
sanos. Progress towards an intelligent beehive: Building an intelligent
environment to promote the well-being of honeybees. In Proceedings of
the 12th International Conference on Intelligent Environments, IE2016,
pages 262–265. IEEE, 2016.

[Hin18] Geoffrey E. Hinton. Cs321 neural networks for machine learning-
overview of mini batch gradient descent. http://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf,
2018. (last accessed: 02.06.2018).

[HSK+12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR - Computing Research Repository,
2012.

[Hul09] Philip E. Hulme. Trade, transport and trouble: managing invasive
species pathways in an era of globalization. Journal of Applied Ecology,
46(1):10–18, 2009.

[HZ03] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[KA14] Simonyan Karen and Zisserman Andrew. Very deep convolutional
networks for large-scale image recognition. Learning Representations,
abs/1409.1556, 2014.

[Kar18] A. Karpathy. Cs231n convolutional neural networks for visual recognition.
http://cs231n.stanford.edu/, 2018. (last accessed: 02.06.2018).

94

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://cs231n.stanford.edu/


[KB04] Ernst Kussul and Tatiana Baidyk. Improved method of handwritten
digit recognition tested on mnist database. Image and Vision Computing,
22(12):971–981, 2004.

[KJYL11] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-
Fei Li. Novel dataset for fine-grained image categorization: Stanford
dogs. In Proceedings of the CVPR Workshop on Fine-Grained Visual
Categorization (FGVC), volume 2, 2011.

[KK14] Yılmaz Kaya and Lokman Kayci. Application of artificial neural network
for automatic detection of butterfly species using color and texture
features. The Visual Computer, 30(1):71–79, 2014.

[KM09] Uwe Knauer and Beate Meffert. Evaluation based combining of classifiers
for monitoring honeybees. In Proceedings of the Workshop on Applications
of Computer Vision (WACV), pages 1–6. IEEE, 2009.

[KOOI11] Toshifumi Kimura, Mizue Ohashi, Ryuichi Okada, and Hidetoshi Ikeno.
A new approach for the simultaneous tracking of multiple honeybees for
analysis of hive behavior. Apidologie, 42(5):607, 2011.

[KR16] Vladimir Kulyukin and Sai Kiran Reka. A computer vision algorithm
for omnidirectional bee counting at langstroth beehive entrances. In
Proceedings of the International Conference on Image Processing, Com-
puter Vision, and Pattern Recognition (IPCV), page 229. The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2016.

[KS04] S. R. Kodituwakku and S. Selvarajah. Comparison of color features for
image retrieval. Indian Journal of Computer Science and Engineering,
1(3):207–211, 2004.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[KTP15] David J. Kale, Rahman Tashakkori, and R. Mitchell Parry. Automated
beehive surveillance using computer vision. In Proceedings of the South-
eastCon 2015, pages 1–3, April 2015.

[KVC+07] Alexandra-Maria Klein, Bernard E. Vaissiere, James H. Cane, In-
golf Steffan-Dewenter, Saul A. Cunningham, Claire Kremen, and Teja
Tscharntke. Importance of pollinators in changing landscapes for world
crops. In Proceedings of the Royal Society of London B: Biological
Sciences, volume 274, pages 303–313. The Royal Society, 2007.

95



[LBBH98] Yann LeCun, L. Bottou, Yoshuga Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, volume 86,
pages 2278–2324, Nov 1998.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436, 2015.

[LMB+10] K. V. Lee, R. D. Moon, E. C. Burkness, W. D. Hutchison, and M. Spivak.
Practical sampling plans for varroa destructor (acari: Varroidae) in apis
mellifera (hymenoptera: Apidae) colonies and apiaries. Journal of
Economic Entomology, 103(4):1039–1050, 2010.

[Loc16] Barbara Locke. Natural varroa mite-surviving apis mellifera honeybee
populations. Apidologie, 47(3):467–482, May 2016.

[Low99] David G. Lowe. Object recognition from local scale-invariant features.
In Proceedings of the 7th IEEE international conference on Computer
Vision, 1999., volume 2, pages 1150–1157. Ieee, 1999.

[M+76] Samuel Emmett McGregor et al. Insect pollination of cultivated crop
plants, volume 496. Agricultural Research Service, US Department of
Agriculture, 1976.

[Mar01] Stephen J. Martin. The role of varroa and viral pathogens in the collapse
of honeybee colonies: a modelling approach. Journal of Applied Ecology,
38(5):1082–1093, 2001.

[MCR+17] Maxime Martineau, Donatello Conte, Romain Raveaux, Ingrid Arnault,
Damien Munier, and Gilles Venturini. A survey on image-based insect
classification. Pattern Recognition, 65:273 – 284, 2017.

[Mel18] Melixa. Melixa hive monitoring systems. http://melixa.eu/en/,
2018. (last accessed: 02.06.2018).

[MG15] Alex Mcmenamin and Elke Genersch. Honey bee colony losses and
associated virus. 107, 01 2015.

[MH15] W. G. Meikle and N. Holst. Application of continuous monitoring of
honeybee colonies. Apidologie, 46(1):10–22, 2015.

[MWE02] Paula Macedo, J Wu, and Marion Ellis. Using inert dusts to detect and
assess varroa infestation in honey bee colonies. 41, 06 2002.

[NLC16] Francesco Nazzi and Yves Le Conte. Ecology of varroa destructor, the
major ectoparasite of the western honey bee, apis mellifera. Annual
review of entomology, 61:417–432, 2016.

96

http://melixa.eu/en/


[ORBD08] Sang Min Oh, James M Rehg, Tucker Balch, and Frank Dellaert. Learning
and inferring motion patterns using parametric segmental switching
linear dynamic systems. International Journal of Computer Vision,
77(1-3):103–124, 2008.

[PBK+10] Simon G. Potts, Jacobus C. Biesmeijer, Claire Kremen, Peter Neumann,
Oliver Schweiger, and William E. Kunin. Global pollinator declines:
trends, impacts and drivers. Trends in Ecology & Evolution, 25(6):345 –
353, 2010.

[QAHL14] A. Qandour, I. Ahmad, D. Habibi, and M. Leppard. Remote beehive
monitoring using acoustic signals. Acoustics Australia, 42:205, 2014.

[Ras14] Sebastian Raschka. Naive bayes and text classification I - introduction
and theory. CoRR - Computing Research Repository, abs/1410.5329,
2014.

[RAZ10] Peter Rosenkranz, Pia Aumeier, and Bettina Ziegelmann. Biology and
control of varroa destructor. Journal of Invertebrate Pathology, 103:S96–
S119, January 2010.

[RBPRFM+17] Melvin Ramírez-Bogantes, Juan P. Prendas-Rojas, Geovanni Figueroa-
Mata, Rafael A. Calderon, Oscar Salas-Huertas, and Carlos M. Travieso.
Cognitive modeling of the natural behavior of the varroa destructor mite
on video. Cognitive Computation, 9(4):482–493, Aug 2017.

[RGS+05] J. Riley, Uwe Greggers, A. D. Smith, Donna Reynolds, and Robert
Menzel. The flight paths of honeybees recruited by the waggle dance.
Nature, 435 7039:205–7, 2005.

[RH14] Guy Rodet and Mickaël Henry. Analytic partitioning of honeybee (apis
mellifera l.) flight activity at nest entrance: adaptation and behavioural
inertia in a changing environment. Ecological Research, 29(6):1043–1051,
2014.

[RMA+18] I. F. Rodriguez, R. Megret, E. Acuna, J. L. Agosto-Rivera, and T. Giray.
Recognition of pollen-bearing bees from video using convolutional neural
network. In Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), 2018, pages 314–322, 2018.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, pages
65–386, 1958.

[RPT+12] M. Ramírez, J. P. Prendas, C. M. Travieso, R. Calderón, and O. Salas.
Detection of the mite varroa destructor in honey bee cells by video
sequence processing. In Proceedings of the 16th International Conference

97



on Intelligent Engineering Systems (INES), 2012, pages 103–108, June
2012.

[SBPM18] Schurischuster S., Remeseiro B., Radeva P., and Kampel M. A prelimi-
nary study of image analysis for parasite detection on honey bees. In
Proceedings of the 15th International Conference on Image Analysis and
Recognition (ICIAR 2018), 2018.

[SKP18] M. Sewak, M.R. Karim, and P. Pujari. Practical Convolutional Neural
Networks: Implement advanced deep learning models using Python. Packt
Publishing, 2018.

[SMA+94] M. H. Struye, H. J. Mortier, G. Arnold, C. Miniggio, and R. Borneck.
Microprocessor-controlled monitoring of honeybee flight activity at the
hive entrance. Apidologie, 25:384–384, 1994.

[SMB10] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pool-
ing operations in convolutional architectures for object recognition. In
Proceedings of the International Conference on Artificial Neural Networks,
pages 92–101. Springer, 2010.

[SMD13] Yale Song, Louis-Philippe Morency, and Randall Davis. Distribution-
sensitive learning for imbalanced datasets. In Proceedings of the 10th
IEEE International Conference and Workshops on Automatic Face and
Gesture Recognition (FG), 2013, pages 1–6. IEEE, 2013.

[SO95] Markus A. Stricker and Markus Orengo. Similarity of color images. In
Proceedings of the Storage and Retrieval for Image and Video Databases,
1995.

[SR15] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers on
imbalanced datasets. PLoS ONE, 10(3):1–21, 03 2015.

[SS01] George Stockman and Linda G. Shapiro. Computer Vision. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[SSMB16] Schurischuster S., Zambanini S., Kampel M., and Lamp B. Sensor study
for monitoring varroa mites on honey bees (apis mellifera). In Proceedings
of Visual observation and analysis of Vertebrate And Insect Behavior
(VAIB) Workshop, 2016.

[SSMM15] Matthew R. Smith, Gitanjali M. Singh, Dariush Mozaffarian, and
Samuel S. Myers. Effects of decreases of animal pollinators on hu-
man nutrition and global health: a modelling analysis. The Lancet,
386(10007):1964–1972, 2016/06/15 2015.

98



[STS+15] Nicola Seitz, Kirsten S. Traynor, Nathalie Steinhauer, Karen Ren-
nich, Michael E. Wilson, James D. Ellis, Robyn Rose, David R. Tarpy,
Ramesh R. Sagili, Dewey M. Caron, Keith S. Delaplane, Juliana Rangel,
Kathleen Lee, Kathy Baylis, James T. Wilkes, John A. Skinner, Jeffery S.
Pettis, and Dennis vanEngelsdorp. A national survey of managed honey
bee 2014–2015 annual colony losses in the USA. Journal of Apicultural
Research, 54(4):292–304, 2015.

[Tau18] Jürgen Tautz. Hobos (honeybee online studies). http://www.hobos.
de/, 2018. (last accessed: 02.06.2018).

[TG15] Rahman Tashakkori and Ahmad Ghadiri. Image processing for honey
bee hive health monitoring. In Proceedings of the SoutheastCon 2015,
pages 1–7. IEEE, 2015.

[THKA16] Gang Jun Tu, Mikkel Kragh Hansen, Per Kryger, and Peter Ahrendt.
Automatic behaviour analysis system for honeybees using computer
vision. Computers and Electronics in Agriculture, 122:10–18, 2016.

[vHJUP10] Dennis vanEngelsdorp, Jerry Hayes Jr, Robyn M. Underwood, and Jeffery
S. Lock Pettis. A survey of honey bee colony losses in the united states,
fall 2008 to spring 2009. Journal of Apicultural Research, 49(1):7–14,
2010.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2001. CVPR
2001., volume 1, pages I–I. IEEE, 2001.

[vM10] Dennis vanEngelsdorp and Marina Doris Meixner. A historical review of
managed honey bee populations in europe and the united states and the
factors that may affect them. Journal of Invertebrate Pathology, 103,
Supplement:S80 – S95, 2010.

[War07] Émile Warré. Beekeeping For All. David Heaf, 2007.

[WPS02] P. Wayne Power and Johann Schoonees. Understanding background
mixture models for foreground segmentation. In Proceedings of the Image
and Vision Computing New Zealand, 01 2002.

[Wri28] B. Wright. Lundie’s “flight activities of the honey bee.”. Bee World,
9(2):21–23, 1928.

[WWRL17] Fernando Wario, Benjamin Wild, Raúl Rojas, and Tim Landgraf. Auto-
matic detection and decoding of honey bee waggle dances. PLoS ONE,
12(12):1–16, 12 2017.

99

http://www.hobos.de/
http://www.hobos.de/


[YC15] Cheng Yang and John Collins. A model for honey bee tracking on 2d
video. In Proceedings of the International Conference on Image and
Vision Computing New Zealand IVCNZ2015, pages 1–6. IEEE, 2015.

[YLG11] Ting Hua Yi, Hong Nan Li, and Ming Gu. Optimal sensor placement for
structural health monitoring based on multiple optimization strategies.
The Structural Design of Tall and Special Buildings, 20(7):881–900, 2011.

[YYPH14] X. C. Yin, C. Yang, W. Y. Pei, and H. W. Hao. Shallow classification
or deep learning: An experimental study. In Proceedings of the 22nd
International Conference on Pattern Recognition, 2014, pages 1904–1909,
Aug 2014.

[ZBMS15] Aleksejs Zacepins, Valters Brusbardis, Jurijs Meitalovs, and Egils Stal-
idzans. Challenges in the development of precision beekeeping. Biosys-
tems Engineering, 130:60 – 71, 2015.

[ZKA+16] Aleksejs Zacepins, Armands Kviesis, Peter Ahrendt, Uwe Richter, Saban
Tekin, and Mahmut Durgun. Beekeeping in the future - smart apiary
management. In Proceedings of the 17th International Carpathian Control
Conference (ICCC), 2016, pages 808–812. IEEE, 2016.

[ZSM12] Aleksejs Zacepins, Egils Stalidzans, and Jurijs Meitalovs. Application of
information technologies in precision apiculture. In Proceedings of the
13th International Conference on Precision Agriculture, 2012.

100


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	State of the Art
	Structure of Work

	Data Acquisition
	Data Recording and Prototyping
	Data Extraction and Annotation
	Dataset Post Processing

	Classification Architectures
	Classification Problem Description
	``Traditional'' Machine Learning Pipeline
	Deep Learning Pipeline

	Evaluation and Discussion
	Datasets for Evaluation
	Metrics for Evaluation
	Evaluation Deep Learning Approach
	Evaluation ``Traditional'' Approach
	Classification Performance Evaluation
	Discussion of Classification Results

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

