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Kurzfassung

In der Automatisierungstechnik werden verschiedenste Arten von Verhaltensdiagrammen
innerhalb eines Unternehmens eingesetzt. Die Kompatibilität dieser Diagramme zuein-
ander ist begrenzt, weil nur eine spezielle Menge von standardisierten Dateiformaten
für den Import und Export unterstützt werden. Derzeit gibt es kein System, welches
ein beliebiges Verhaltensdiagramm durch die Nutzung einer generalisierten Kernsprache
in ein beliebiges anderes Verhaltensdiagramm transformieren kann. In der Literatur
findet man Beispiele, welche einen speziellen Diagrammtyp in einen anderen vordefi-
nierten Diagrammtyp transformieren können, jedoch sind hier die Möglichkeiten auf die
vordefinierten Typen beschränkt. In dieser Arbeit möchte ich ein System entwickeln,
welches den Intermediate Modelling Layer (IML) des AutomationML Konsortiums als
Kernsprache zum Austausch beliebiger Verhaltensdiagramme benutzt. Durch den Ein-
satz einer Fallstudie möchte ich evaluieren, ob es zu einem Informationsverlust bei der
Transformierung mit der Kernsprache IML kommt. Zum Einsatz kommen hierbei zwei
verschiedene Verhaltensdiagramme, das Aktivitätsknotennetzwerk (AONN) und GANTT.
Nach der Transformation von GANTT nach AONN und retour kommt es zu keinem
Informationsverlust. Wenn man AONN nach GANTT und retour transformiert, verliert
man die Attribute: Verzögerung, spätester Startzeitpunkt, frühester Startzeitpunkt und
spätester Endzeitpunkt.
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Abstract

The interoperability for exchanging behavioural models between different tools in automa-
tion is only achieved by a small amount, which are supporting standardized import and
export formats. There is no transformation framework existing for exchanging different
behavioural models through a standardized kernel language. The literature describes
several techniques to transform a modelling language into another pre-defined modelling
language, but all of these are fixed to specific types of modelling languages and do not
support the general exchange between any behavioural modelling language.

In this thesis, I introduce a new technique that allows exchanging a small amount of
behavioural modelling languages through a standardized kernel language based exchange
framework. I am using the Intermediate Modelling Layer (IML) from the AutomationML
consortium as a kernel language for exchanging activity-on-node networks (AONN) into
GANTT charts and back. By doing a case study based evaluation the generated input
and output models of the different behaviour modelling types are analysed for possible
information loss after exchanging them. The round trip transformation from GANTT
to AONN and back has no information loss, whereas AONN to GANTT and back loses
information attributes like delay, latest start time point, earliest start time point and
latest end time point.
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CHAPTER 1
Introduction

This chapter gives an overview about the problem domain. Moreover, it is important to
mention the relevance for research work in this chapter. At the beginning, an introduction
indicates problem fields, which are summarized in the problem statement. Furthermore,
the goals are defined and the methodological approach is shown for reaching the desired
goals. At last, the structure of the thesis is outlined.

1.1 Motivation

Since the first development of automated processes, an underlying automation language
was needed. Today, many automation languages exist and the interoperability between
these languages is only achieved to a limited extent. Interoperability between languages
has been a problem since the second programming language was invented [Chi13].

In today’s factories, groups of engineers exist, such as mechanical-, electrical- and software
engineers, who require different views of information in their working area. This leads
to the problem of having different data representations of information, which makes it
difficult to exchange this information between the departments. Therefore it is necessary
to combine different automation languages in the industrial area to support the different
tools in an automated tool chain [BS82] [SAC+15].

A variety of behavioural languages exist, because of the usage of different tools and
groups of engineers in industry. This leads to a lower interoperability between processes
that are administrated over different departments in a company. The understanding of
the various syntaxes and semantics of the used languages is one of today’s problems.
One approach to improve this situation is to develope a kernel language for behavioural
modelling languages to close the gap between these different languages and support
Interoperability [BTL+13] [BCW17].
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1. Introduction

1.2 Problem statement

However, with the solution of a kernel language based exchange framework the need for
model transformations to and from the kernel language is given. Model transformations
are used for passing information over syntactical, structural and semantical varieties of
models. When a transformation is applied, a loss of information could happen. This is
another open research area, which has to be analysed by doing a case study [HMPR04].

Furthermore, the input metamodels for the transformations have to follow a defined
structure to guarantee an output model. Every behaviour metamodel has specific
characteristics which make them different to metamodels of the same kind of language.
This makes it necessary to describe a way of generalization on metamodels of the same
language.

Moreover, behaviour models could be distinguished between task-oriented (GANTT),
time-related (AONN) and event-driven (State Charts) approaches. To constitute a kernel
language based exchange framework the three approaches must be generalized. This
thesis is focused on exchanging the task-oriented and the time-related approach.

1.3 Aim of the work

This thesis will focus on the Intermediate Modelling Language (IML) from the Automa-
tion Markup Language (AutomationML) Consortium. It should be implemented as a
standardized Ecore metamodel. The transformations should be written in the ATLAS
Transformation Language (ATL).

The main goal should be the constitution of IML used in a kernel language exchange
framework for behaviour models. The research interest behind this goal is the exchange
of different input behavioural modelling languages over the pivot language IML and the
evaluation of the resulting output models.

SG1: The first sub-goal is to develop a standardized Ecore metamodel for the IML.
The definition of IML is done by the AutomationML Consortium and is currently in
progress for a standardization. Moreover, it is important to mention that there could be
problems arising due to specific constructs, which are not available in Ecore. In addition,
problems in the definition of IML itself could be found and should be reported to the
AutomationML Consortium.

SG2: The second sub-goal is to develop transformations from task-oriented charts and
time-related charts to IML and back. This is realised by defining a GANTT and AONN
metamodel, which is used for our transformations. In addition, this development should
lead to the possibility of exchanging different types of approaches through IML.

SG3: The third sub-goal is the evaluation of IML as a standardized kernel language for
exchanging behaviour modelling languages. This evaluation is done by doing a two part
case study. The first part transforms a task-related behaviour model into a time-related
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1.4. Methodological approach

model over IML and back. The second part transforms a time-related model into a
task-related model and back over IML. The result of this case study is an evaluation
which analyses the difference between the input and the output model.

1.4 Methodological approach

To reach the expected results the methodological approach comprises the following steps.

In the first phase, it is necessary to analyse the problem domain by finding suitable
metamodels for the given behaviour models. Furthermore, the analysis of these languages
is important to understand the different semantics and conceptions of them. The major
aspects of such behaviour models have to be identified in this phase [Mur08].

One important step in this phase is the study of the different definitions and representa-
tions of time in the chosen behavioural models. Every behavioural model uses a specific
transition condition technique to switch from one state to another. For this case the
different approaches for firing a transition have to be analysed. There is the possibility of
having dependencies between states and conditions. Furthermore, some models could be
event based. Some states use either their own timeline for their run or the global time.

In the second phase, generalized metamodels for every behavioural language must be
constructed. This is important due the existence of different metamodels for a specific
behavioural language. Furthermore, this leads to a more stable starting point for our
model transformation into the kernel language. The construction of a metamodel follows
the definition of a "Design as a Search Process" by searching for a potential solution in
the solution space [HMPR04].

In the next step, possible relations and similarities between the different semantics of the
formal languages have to be found. It is necessary to especially look on different concepts,
e.g. the definition of a state, the dependency of states and the definition of conditional
elements in the languages. Based on the findings transformations into the kernel language
can be built. Moreover, in this generalization part similarities between the semantics and
the resulting kernel language have to be noticed for our model transformations [EWSG89].

In this master thesis, I focus on the language "AutomationML". AutomationML is a regis-
tered consortium with the purpose to create a standardized data exchange format for engi-
neering processes of production systems, for ensuring the interoperability between models.
The consortium is interested in transforming behaviour models into AutomationML. For
this purpose I choose the IML as a possible kernel language for finding associated model
transformations for GANTT, AONN and State Charts [BY12] [DLPH08].

Based on the kernel language IML, model transformations for transforming one be-
havioural modelling language into another over the kernel language, will be created.
It is important to generate transformations from the generalized metamodels of the
behavioural languages into the pivot language to support interoperability in the different
behavioural modelling domains.

3



1. Introduction

The third phase concentrates on the evaluation of the resulting kernel language based
exchange framework. By doing a Case Study an evaluation of the possible use of a kernel
language for model exchange is done by comparing the source and generated target
models. To support my evaluation, I use the guidelines for conducting and reporting case
study research in software engineering [RH09].

Finally, an iterative and incremental process is used. Therefore the resulting feedback
from the previous iteration will be used to improve the results in the next iteration.

1.5 Structure of the thesis
Chapters 2 and 3 are describing the used concepts, methods and models, languages,
design methods and data models. Chapter 4 is covering the practical solution concept and
the realisation of theoretical concepts. In Chapter 5, the case study set up is described
and their evaluation result. At the end, in Chapter 6 and 7 future work is discussed and
an overall summary is done.

4



CHAPTER 2
State of the Art

In this chapter the currently available techniques are described and delimited. These
fundamentals are the basis of the implementation and will be used to found a solution
for the problem domain.

2.1 AutomationML

AutomationML is a neutral standardized data exchange format for the use in industrial
automation systems engineering. It was developed by the companies Daimler, ABB,
Siemens, Rockwell, Kuka, Zhlke, netAllied and the universities of Magdeburg and
Karlsruhe [DLPH08].

The engineering process and the involved engineering tools have become key factors for
engineering quality and effectiveness as well as for the integration of the control system
engineering within the overall engineering of modular manufacturing systems [LHK10].

Figure 2.1 is an excerpt of different software tools which are supporting the engineering
process of manufacturing systems. The goal of AutomationML is a standardized, open
format to become a better interoperability of tools. Normally in practice it depends on
the engineering disciplines and project phases which tools are used. The data is stored in
different files which cause inefficiency. This leads to an error-prone engineering process
because the data has to be manually redrawn [DLPH08].

2.1.1 Intermediate Modeling Layer

IML acts like a layer between the target output format PLCopen XML and various input
formats. It is possible to generate another output format than PLCopen XML. The IML
shall be used for the description of sequencing and behaviour of different elements. The
layer is displayed in Figure 2.2. The IML consists of the following elements [DLPH08]:
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2. State of the Art

Figure 2.1: Different software tools used in the industrial area [Dra10, p. 5]

• Header (A set of all IML Elements belonging to the system)

• State (A state describing a stable situation within a system where a dedicated set
of properties is valid)

• State Transition (A state transition is a change from one state to one or several
next states by interpreting state transition conditions)

• Activity (An activity describes one or more operations related to certain states)

6



2.1. AutomationML

• Selection Divergence (A selection divergence is a logical association between one
predecessor state and two or more successor state transitions. The successor state
transitions can be regarded as having an XOR relation)

• Simultaneous divergence (A simultaneous divergence is a logical association between
one predecessor state transition and two or more successor states. The successor
state can be regarded as having an AND relation)

• Selection convergence (selection convergence is a logical association between two or
more predecessor state transitions and one successor state. The predecessor state
transitions can be regarded as having an XOR relation)

• Simultaneous convergence (A simultaneous convergence is a logical association
between two or more predecessor states and one successor state transition. The
predecessor states can be regarded as having an AND relation)

• Event (An event is fired by an activity to which it is associated. Events are mainly
used as triggers for state transitions)

• Variable (A variable is a modelling entity that characterizes states and activities.It
value can be changed by activities; it can be used as trigger conditions for state
transitions or as system input and output)

• Comment (Comment is used for descriptive information)

• Additional Data (Additional data allow storing information beyond the definitions)

2.1.2 PLCopenXML

The XML data format PLCopen XML specified by the PLCopen association is standard-
ized and usable with IEC 61131-3 software projects. It can store all relevant programming
information used in programming projects. With the usage of PLCopen XML it is
possible to extend the standard with an own XML schema. This XML schema could
be used to add additional data fields to the standard. The AutomationML uses the
programming language Sequential Function Charts (SFC) and stores the information in
the PLCopen XML format by using an own XML schema and mapping rules from the
IML system to PLCopen XML documents [DLPH08] [PLC].

In the following example a IML state s is mapped to an PLCopen <step> element. It is
possible to see the additional information for using an own XML Schema:

7



2. State of the Art

Figure 2.2: Overview of the IML [DLPH08]

<step>
<addData>

<data name="http://www.automationML.org/AML_addData.xsd">
<AutomationML>

<StateStatus> current </StateStatus>
</AutomationML>

</data>
</addData>

</step>
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2.2. Information Integration Theory

2.2 Information Integration Theory
The Information Integration Theory was developed by Norman Anderson in 1981. Infor-
mation Integration Theory is for describing how a person integrates information from a
number of sources. Many sources lead to an complex judgement to find out which source
the relevant information has [And81]. In order to distinguish between different sources,
four interlocking concepts were developed:

• Stimulus Integration: Integration is the central concept of the Information Integra-
tion Theory. There are multiple stimuli available which could have a dependency to
each other. Single stimuli are rare and could help in understanding information and
give predictions or not. The integration theory studies the integration of different
stimuli. In this case two central questions are arising: How are stimuli integrated
to receive a response and what stimuli was more effective then another one?

• Stimulus Valuation: Stimuli differ in the valuation part and are classified in
two types: physical and psychological stimuli. Physical stimuli are observations
from experimental studies. In the Information Integration Theory psychological
stimuli were used because they don’t need any experimental study to get a result.
Psychological stimuli are immediate causes of thought and behaviour. The valuation
part has the purpose to change physical stimuli into psychological stimuli by using
a validation operation. An example could be the scoring of a specific color. This
specific color looks for example different to persons with a color decease.

• Cognitive Algebra: Researches have shown that stimuli integration often uses simple
algebraic rules in the background. Some of these rules are averaging, subtracting
or multiplying of stimuli information.

• Functional Measurement: Functional Measurement is the last basic concept of
the Information Integration Theory. It uses the cognitive algebra with numerical
representations of the stimuli. For this case the measurement of psychological
values for the stimuli is important.

The Functional Measurement Diagram is shown in Figure 2.3. Stimuli or Sources S are
processed through a validation operation V to receive their psychological values s. In the
next step the different stimuli are combined by an integration function I into a response
r. At last, the externalized response is processed through the response function M to
receive the observable response R.

2.3 Metamodeling
A metamodel is obviously a model of a model. Therefore the model from which the first
one is generated, is called a metamodel. A metamodel is important for defining the frame
of the resulting model. It defines rules and constraints to help build up a model from the

9



2. State of the Art

Figure 2.3: Functional Measurement Diagram

metamodel. Additionally, with this frame it is possible to have a validation of the resulting
model. Because of this, language concepts and their grammar for the specification of
models could be a definition for metamodels [BCW17]. This has many advantages like a
normalized format for exchanging, the possibility to check the correctness of models and
a small and accurate definition of the language concepts.

In the metamodelling world a 4-layer metamodelling Stack (Figure 2.4) is used. This
stack is splitting metamodels in a Language Engineering and a Domain Engineering part.
Every layer of this model defines another purpose. The meta-metamodel at the M3-Layer
defines the meta language (e.g. MOF, Ecore). The metamodel at the M2-Layer conforms
to the meta-metamodel and defines the Language (e.g. UML, ER). The Model at the M1-
Layer conforms to the metamodel and represents the System (e.g. a UniversitySystem).
The Model Instance at the M0-Layer conforms to the model and represents a System
Snapshot (e.g. A UniversitySystem Snapshot).

2.3.1 Meta Object Facility (MOF)

The Meta Object Facility (MOF) is a platform-independent metadata management
framework. It was developed by the OMG-Standard with the purpose of defining
metamodels. The MOF is for defining language concepts for the modelling of object-
oriented structures. There are some generalized concepts for object-oriented languages:
objects are described by classes, objects have properties, there are relationships between
objects and classes could be grouped by packages [(OM16].

The MOF is a subset of the Unified Modelling Language (UML) and is similar to the

10



2.3. Metamodeling

Figure 2.4: 4-layer metamodelling Stack [BCW17, p. 83]

class diagram of UML. Additionally, the metamodel of MOF is generated by limiting the
UML metamodel with OCL constraints. Some differences are that no n-ary associations
and no association classes available. Furthermore it is not possible to have overlapping
inheritances and interfaces. The major difference between UML and MOF is that MOF
is for modelling a metamodel and UML for object-oriented modelling.

The major benefits of the MOF are:

• Simple modelling of metadata, because only important modelling constructs and
notations are used from the UML class modelling

• The possibility to map MOF to other technologies like XMI, JMI, ...

• The tool support for modelling a metamodel is extended, because any UML
modelling tool could be used for modelling metadata

2.3.2 Eclipse Modeling Framework (EMF)

The Eclipse Modelling Framework (EMF) is a modelling framework for Eclipse [Ste08].
The EMF is not as high complex as other modelling frameworks. The model behind the
EMF is called Ecore (Figure 2.5). The Ecore is the meta-metamodel of the EMF. The
Ecore meta-metamodel is based on the eMOF (Essential Meta Object Facility) which is
a smaller subset of MOF for building metamodels. The aim of Ecore is the mapping of
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2. State of the Art

the eMOF to Java. Because of this it is also called the Java-based implementation of
eMOF [BCW17].

The Ecore model (Figure 2.5) is similar to the UML but more simplified. In fact the
Ecore model is a simplified subset of the full Unified Modelling Language. The EMF
only supports class modelling.

The Eclipse Modelling Framework supports a variety of features including a modelling
environment, code generation, various modelling frameworks and im- & export function-
ality.

Figure 2.5: Ecore modelling elements at a glance [BCW17, p. 93]

2.4 Model Transformations
There are two types of model transformations: The Model-to-Model and the Model-to-
Text transformation. The Model-to-Model transformation transforms either a Model
X into a Model Y or alters a previous Model. On the other hand, the Model-to-Text
transformation transforms a Model X into a textual language.

There are five possible methods of Model-to-Model transformations [BCW17]:

• merged (to homogenize different versions of a system)

12
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• aligned (to create a global representation of the system from different views to
reason about consistency)

• refactored (to improve their internal structure without changing their observable
behaviour)

• refined (to detail high-level models)

• translated (to other languages/representations)

There are existing two types of approaches for Model-to-Model transformations [BCW17].
The first one is called out-place or endogenous transformation. This transformation creates
a new model from the scratch up whereas in-place or exogenous transformations are for
altering a model. Last-mentioned have the possibility to create, delete or update elements
from the input model. Figure 2.6 explains the difference in a graphical representation.

Figure 2.6: Out-place transformation (left), in-place transformation (right) [BCW17]

2.4.1 ATLAS Transformation Language (ATL)

ATL is an Out-Place or endogenous transformation technique. In fact that the source
and the target models are distinct, two attributes are very important. A source model is
read-only and a target model is write-only [BCW17].

ATL is declarative-imperative hybrid but the recommended style is declarative. In the
declarative part you can use so called Matched Rules (Figure 2.7) with the support of
traceability. This is possible by using the Object Constraint Language (OCL). If you
want to use a declarative rule, it is important to use a source pattern to be matched
in the source model and a target pattern to be created in the target model for each
match during rule application. If needed it is possible to use a optional action block for
a sequence of imperative statements.

The imperative part includes Called/Lazy-Rules, Action blocks, Global variables via
Helpers. To call an imperative rule it is necessary to give them a name, if needed some

13
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Figure 2.7: Syntax of a Matched-Rule in ATL [BCW17]

arguments and it has to contain a declarative target pattern and/or an optional action
block.

An important fact concerning rules in ATL is that Matched-Rules are only applied once
for each match and Called/Lazy-Rules are applied as many times they get called from
other rules.

One of the biggest advantages of ATL is the so called Implicit Trace Model. This model
consists out of the following phases [Ran11]: the module initialization phase, the matching
phase and the target initialization phase.

In the Module initialization phase the module variables and the trace model gets initialized
and Called-Rules for the entry point are executed. After the initialization phase the
Matching phase is executed. In this phase the source patterns of the Matched-Rules are
used to select the needed elements of the source model. Once the source patterns are
selected, target elements are created by iterating through all assigned target patterns. In
every iterating step a traceability information is stored.

The last phase is the Target initialization phase. The created elements get initialized
based on the bindings. Finally, the optional imperative code from a do block or possible
calls to Called-Rules were executed.

2.5 Possible Kernel Languages for Modelling Languages
Currently some languages exist, which may be classified as kernel languages for behavioural
modelling, such as fUML, Kermeta and Petri nets. The focus of this chapter is on an
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evaluation of possible kernel languages for modelling languages.

2.5.1 fUML

The Executable Foundational UML (fUML) is a computationally complete and compact
subset of the UML metamodel, designed to simplify the creation of executable UML
models. Additionally, fUML selects two major systems of UML, the usage of classes and
activities for behaviour modelling of such a system. Moreover, fUML is using an own
library called Foundational Model Library for implementing primitive data types and
primitive behaviour operations on these data types. The use of fUML as a kernel language
leads to problems, such as supporting only a small subset of UML, which exclude specific
chart types of UML for behaviour models. This is caused by the complex semantics
used in fUML. Finally, fUML has its focus on executing models and not on exchanging
different types of input models. [LLP+09] [(OM17].

2.5.2 Kermeta

Kermeta is known as a kernel language, which integrates concepts from languages like
MOF, OCL and QVT. It uses the strategy of having different concepts in one metamodel
by using instances of these defined models for our transformations. Kermeta is more
useful for transforming databases of different language implementations by using an
object-oriented programming language [MFV+05].

2.5.3 Petri-Nets

Another form of behaviour modelling is the Petri-Net formalism. The Petri-Net is a
modelling technique for sequential and concurrent procedures for distributed systems
with the feature of modelling parallel operations. There research on how Petri-Nets have
been done could be used to represent sequential and concurrent behaviour models. The
result has shown that extending Petri-Nets is possible for several behaviour processes
but they could get quickly complex in terms of size [BDK01].
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CHAPTER 3
Methodology

In this chapter the methods, patterns, theoretical models and paradigms used for the
thesis will be described. Moreover, this chapter discusses the methodologies and tools for
reaching the desired goals.

3.1 Design Science Methodology
First of all, I will look on the Design Science Methodology which is overall used as the base
methodology for this thesis. Furthermore, when using this methodology, we have to speak
about a design science project. A design science project, consists of two components:

• Artefact (is an object to study in a specific context)

• Activity (is for designing and investigating the artefact in a context)

Moreover, a design science project is the study of an artefact interacting with a problem
context. In this thesis solutions for the existing problems should be found. In most
cases these problems got fixed by improving an existing artefact in a specific context.
Additionally, it is important to understand the context itself, to find solutions for the
design problem. Sometimes an artefact could handle a specific context without any
problem but in some cases the interaction between an artefact and a context have to deal
with problems. In contrary, the study of artefacts and contexts alone is not expedient,
because in most cases they have to deal with each other. Finally, the design science
process helps to find and solve occurring problems, when dealing with an artefact in a
specific context [Wie14].

Figure 3.1 shows a graphical representation of the design science process. The artefact
interacts in a specific way with a context. Everything known about the artefact is
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a possible design for our problem domain. In contrary, the context is an empirical
knowledge, because information about the context itself and the interaction with the
artefact and the context have to be gained during the process. At last, the knowledge
gain and problem resolving mechanism is a living process. By iterating over difficult
contexts, problems should be fixed or solved in an iteration with another context.

Figure 3.1: Graphical representation of the design science process

In this thesis my artefact is IML, which should be used as a pivot language for exchanging
behaviour models. It is important to bring the possible pivot language into different
types of contexts, like developing of a metamodel, writing transformations for model
exchange and information loss.

The activity component of the design science process is splitting up in the design activity
and the investigate activity. The design activity defines the goals of the researching
part for the project. The investigate activity has to build up knowledge about the used
context to contribute with it. These two types of activities lead to the following two
kinds of research problems in the process, namely the design problem and the knowledge
questions.

Design problems want to change something in the real world. First, an analysis of the
designated goals is required. The solution of a design problem is a design and at least
there could be more than one solution.

Knowledge questions ask for knowledge about the world as it is and do not want to change
something in the real world, like a design problem. In difference to design problems,
knowledge questions are assumed to have only one answer. This answer could not be true
in all cases and can have a specific uncertainty, because of the possibility to be wrong
under some assumptions.

There are two types of knowledge questions. The first one is the empirical knowledge
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question, which requires data about to world. The second one is the analytical knowledge
question, which uses mathematics or logic, without the usage of data about the world. In
this thesis I focus on the usage of empirical knowledge questions.

Additionally, there are two types of empirical knowledge questions available. The
descriptive questions focus on the fact of what happened without asking for explanations.
It is like using the Five Ws to answer these kind of questions [ZWA+13]. Another type
is the explanatory question, which ask why something happened.

The existence of these two kinds of problems lead to the existence of an iterative process
in a design science project. Moreover, when a design problem focuses on a change of the
real world, knowledge questions could help to achieve this change by asking something
about the real world and the resulting information is returned to the design problem. I
must also take into account that knowledge questions could generate new design problems.
The design activity generates different new designs, which have to be passed back again
to the knowledge questions.

In this thesis the global research questions for the design process are the following:

• What concepts constitute a kernel language for behavioural modelling?

• What kind of benefits may be realized by using the kernel language?

When a knowledge question is answered, the so called knowledge context is enriched with
new information. First, the knowledge context is build up by the knowledge of the author
including theories and methods from former studies and could only include information
available yet. This knowledge is called prior knowledge. Some kind of prior knowledge is:

• Scientific literature (scientific theories from existing studies)

• Technical literature (specification of other artefacts used in a problem context)

• Professional literature (documentations from vendors, magazines including infor-
mation about the artefact)

• Oral Communication (talking with colleagues)

Additionally, when information is not available in prior knowledge, research on the topic
has to be done. The resulting knowledge of a design science project is called the posterior
knowledge.
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3.2 Used concepts

3.2.1 Object-oriented concept

The object-oriented concept is a common method to minimize complexity of a software
system. Additionally, during the development of the object-oriented concept for software
systems, the object-oriented programming approach, in short OOP, was developed. The
main goal of this concept is to help understanding complex software systems or complex
structures. Object-oriented software development is yet not the only concept available to
handle complexity of software projects. The importance of this concept is the existence
of many application fields for solving problems. Moreover, it could be combined with
many software development approaches [LR11].

The concept supports two main concepts:

• Classes (a class defines the data format and available methods of an object)

• Objects (an object is an instance of a class)

This leads to the first major feature of OOP named data encapsulation. Data encapsulation
is separating the data and the method part of a class. Accordingly, the direct access
to data of an instantiated class is not allowed. If another object wants to read or write
data to our object, it must use a predefined interface. One benefit is the consistency
of data is organised by the object itself. Another benefit is the changeability of data
definitions in a class. When the underlying data structure of a class is changed, only
objects instantiated from the changed class have to be adapted. Objects which use the
interfaces of a changed class must not to be adapted because the changed class has to
supply the same type of information when accessing a method. This is a good example
for reducing complexity of the software system.

Another feature of OOP is polymorphism. Polymorphism means to specify a method on a
class and every instantiated object of this class or their subclasses has to implement the
method. Whenever the method is called on an object of the parent class or a subclass,
the function is available and implemented in a specific way. This leads to an abstraction
from the class hierarchy.

Thirdly, inheritance enables the feature of deriving a class from a base class, whereas
the derived class can use methods and attributes from the base class. The derived
class can use existing constructs from the base class or overwrite these with an own
implementation.

An object consists out of data, which defines the state of an object and the functionality
implemented in operations. The operation call of an object is called the sender-and-
receiver pattern. An object is sending information to another object by calling an
operation. Therefore, in some cases the object is waiting for an answer or not. This leads
to the existence of having a visibility property set on the data inside an object. This
property could have the following values:
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• private: The operation is only accessible from the object itself or the default value

• public: The operation is available for everyone

A class describes the structure of similar objects. The structure of a class consists of
properties and operations. Moreover, to define the structure of a class, a classification
on related objects have to be done. In this classification process a generalisation of the
properties and methods is done.

3.3 Methods and Models

3.3.1 Modelling a metamodel

First, information about a metamodel itself and the process of generating a metamodel
is described. A quick overview is given in Section 2.3 about the 4-layer modelling
architecture of metamodels.

Metamodels define language concepts and their grammar for the specification of models,
as described in Section 3.5. The prefix meta is translated from the Greek language and
means about. In short, a metamodel knows something about other models.

Using a metamodel has one big advantage, the validation of models. Models generated
from metamodels have to conform to the definitions of the metamodel. In summary,
checking the correctness of models is possible. Another advantage is the precise and
concise definition of the language concepts (Section 3.5) in the metamodel.

The next point is the exchange format. Metamodels are exchangeable, because of the
serialization syntax. Moreover, this exchangeable format helps to store metamodels in
repositories and allows them to get stored in versions. At last, metamodels are extensible.
They could be easily extended with profiles.

The Metamodel Development Process describes the way of creating a metamodel in an
incremental and iterative way.

First, in the Modelling Domain Analysis part it is necessary to sketch modelling examples
from the same modelling language. The more different examples are existing, the better
is the outcome of the metamodel, because more information is given for the identification
process. In the identification process the purpose, possible realizations and the different
content of the modelling language is analysed. In this process similarities between the
different example models should be demonstrated.

In the second part, which is called the Modelling Language Design, a formalization process
is starting on the results of the previous modelling domain analysis. Moreover, after
formalizing the modelling language, the modelling constraints (f. e. OCL) have to be
defined. They help to improve the resulting metamodel by validating reference models
from the metamodel.
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Figure 3.2: Metamodel Development Process

The last part is the Modelling Language Validation where the metamodel is used to
generate reference models. By creating such models, the validation process of the
metamodel will check the integrity of the reference models. In this part the most
problems from the formalization process where found. Every problem is collected as a
feedback and given back to the first part, the modelling domain analyses. The metamodel
development process is an iterative process with a feedback loop to build a metamodel
without any lack of information.

In short, the metamodel development process determines the modelling concepts, the
properties of the modelling concepts and defines an object-oriented design of the language.
At next I will focus on an example for building up a metamodel for the AONN.

Figure 3.3: Example model of an AONN [DLPH08]

In Figure 3.3 an example model of an AONN is shown. The example includes the
following nodes: Project, Activity, ActivityTransition. First, it is necessary to generate
a notation table is generated to get an overview of the used concepts. In Table 3.1 I
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constructed the notation table of the example model from Figure 3.3. The first used
concept is the activity. An activity is some kind of node, storing information about time
behaviour of the element and a name. The second concept is the transition between two
activities which is displayed as an arrow. At last, the project container itself is defined
with a name of the generated model.

Syntax Concept
- Project

Activity

Transition

Table 3.1: Notation table of an AONN

The next step of the metamodel development process is the construction of a property
concept. This property concept table extracts the information about intrinsic properties
and relationships of the modelling concept. The intrinsic properties are describing
concepts whereas relationships are needed to find out which concepts are connected and
under which constraints. In Table 3.2 the concept properties for our example are shown.

Concept Intrinsic properties Relationships
Project Name Unlimited number of Activities and Transitions

Activity

Name

Incoming and outgoing Transition

Earliest Start
Duration

Earliest End
Latest Start

Delay / Buffer
Latest End

Transition - Source activity and target activity
Nodes: Activity

Table 3.2: Concept properties of the AONN example model

In the third step, the object-oriented design of the language is created. In this step
the headers of the property concept Table 3.2 are swapped. The concept is turned into
a Class and the intrinsic properties- and relationships columns are transformed into
Properties. Moreover, this switch generates the basis of the metamodel. Figure 3.4 shows
the generated metamodel.

After defining the metamodel of the AONN, it is now possible to create an abstract syntax
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Figure 3.4: Metamodel of the AONN

for our example. This abstract syntax uses the elements of the metamodel described in
Figure 3.4. An abstract syntax is generated by using, every class of the metamodel as
an Object. It must be instantiated with the needed properties of the example model. In
Figure 3.5 the derived abstract syntax is shown.

Figure 3.5: Abstract syntax of the example model by using the defined metamodel
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In summary, the most important point of the metamodel development process is the
iterative way of building up a metamodel out of an existing model. Every phase of the
process has it’s primeness. The next step will get better with the feedback of the previous
step and improve the result while it is finished.

3.4 Pivot Model

A language could be transfered into another by writing transformation rules. The
existence of many languages, lead to a higher maintainability of these transformations.
By changing a simple thing in the structure of a language, all connected transformations
must be adapted. An approach to overcome this problem, is the usage of a pivot language
or also called an intermediate language [WW07].

A pivot is described as an interpreter in simultaneous interpreting, which translates a
language A into an intermediate exchange language. The intermediate exchange language
forms the basis for transforming languages into another. This pivot model has the ability
to transform the language A into any kind of language which supports the pivot language.
The pivot language can be seen as an intermediate exchange layer [Mat07].

Figure 3.6: Language exchange over a pivot model

This intermediate exchange layer should be developed after a transformation classification.
In our case I look especially on behaviour model transformations. For this case a pivot
model has to be build up which supports the concepts of behaviour modelling. When
building up a pivot language the usage of the set theory is recommended. There are
some principles of the set theory which are useful for the concept phase of a kernel
language [Vau95].

The union is for merging all information into one single model. There are similar parts
in all the classified languages which could be generalized in the pivot language. This
generalization is for implementing the basic functionality in the pivot model.

Furthermore, important constructs for generalization are the intersection and the differ-
ence. There are existing languages which are including special constructs. These must be
modelled in the pivot model for not loosing this information during a transformation
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process. One option is to model an additional data construct for storing these special
information or to integrate it into the pivot model for reusing the concept in other
languages.

3.4.1 Model Transformations

A key technology of model-driven engineering is the model transformation. Model trans-
formations are important for models which have to be kept consistent with another model
over time. To overcome this problem, bidirectional transformations were used[HTCH16].

A system consists of many parts whereas some parts are in some kind of a relationship
to each other. This relationship is because they use the same semantic or match in
syntactical ways. These parts are a single piece of the whole system or a part which
evolves in combination with another part of the system. The key fact is to hold the
system in a consistent state. The little helper used to hold connected parts consistent
are called transformations. There are two types of transformations, the unidirectional or
the bidirectional transformation.

A unidirectional transformation means the creation of a target model from a given source
model. In this case manual modifications on the target model will be ignored and are
lost. An automatic system is needed to check consistency on the target side.

A bidirectional transformation has the purpose to hold up consistency between two
parts. As an introduction in bidirectional transformations the concept of having a set of
source artefacts named S and a set of target artefacts named T must be introduced. A
unidirectional transformation creates a target artefact from a source artefact (S → T ).

The difference between bidirectional and unidirectional transformations is described in an
additional operation, the reflection of updates from the target model back to the source
model (Figure 3.7). As defined, two artefacts s ∈ S and t ∈ T are consistent if t = get s.
The reflection of updates from the target model is defined as put S×T → S, which takes
the original source s ∈ S with the updated target t′ to update the source s′ = put(s, t′).

After defining a transformation and the existing transformation types between a source
and a target model, I will explain the concept behind transformations.

As seen in Figure 3.8 the transformation definition has to be declared before a trans-
formation could be done. The transformation definition is written in a transformation
language (f.e. ATL, QVT, F-Alloy,...). The transformation definition declares rules for
transforming a source metamodel into a target metamodel in strict accordance with the
underlying relationship of the source and target metamodel [CH06].

After creating the transformation definition, an instance of the source metamodel, the
source model, can be transformed into a target model. The resulting target model must
be an instance of the target metamodel. Every instance of a metamodel has to strictly
satisfies the requirements of the corresponding metamodels.
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Figure 3.7: Difference between unidirectional and bidirectional transformations

3.4.2 EMF Profiles

Domain-Specific Modelling Languages (DSMLs) help to reduce complexity in software
development by preparing modelling languages for designers to their application domain.
A big problem with DSMLs is the difficult adaptability to fit into the domain. Moreover,
the abstract syntax, the concrete syntax and all related artefacts of the modelling
environment re-created or adapted. To overcome these problems, EMF Profiles were
introduced in the Eclipse environment [LWWC11].

EMF Profiles use the strategy of lifting the metalevel by inheritance. This allows
to directly instantiate profiles by inheriting instantiation capabilities. Moreover, the
stereotype «inheritsFrom» must be applied to the metamodel profile. As seen in Figure 3.9
the metaclass Stereotype in Profile MM is a subclass of the meta-metaclass EClass. This
is required due to EMF. EMF allows only instances of the meta-metaclass EClass, residing
on M3 to be instantiated on M1.

3.5 Formal Languages

First of all, the anatomy of formal languages is introduced. They are consisting of four
components [BCW17]:

• Abstract syntax : The abstract syntax is for defining the language concepts and the
combination of these concepts. The language concepts are described as data types.
The abstract syntax could be seen as the grammar of a specific language. It does
not define the notation or meaning of the concepts.
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Figure 3.8: The abstract concept of transformations [CH06]

• Concrete syntax : The concrete syntax defines a notation for illustrating the language
concepts in two ways, textual or graphical.

• Semantics: The semantics defines the meaning of the language concepts. Moreover,
it defines how these language concepts are interpreted.

• Serialization syntax: The serialization syntax is for model exchange between tools
and also for persistent storage (f. e. XML, proprietary format, ...).

In the anatomy of formal languages, the main components could be extended with
additional components, which are:

• Extension: Extension of a language by new language concepts (f. e. UML Profiles).

• Mapping: Mapping is acting as a translational semantic definition to add a mapping
to other languages or domains (f. e. UML2Java).

3.5.1 Object Management Group (OMG)

The Object Management Group is a non-profit organisation for the IT-Industry. Every
kind of organisation can participate in the OMG. The Board of directors is a council
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Figure 3.9: EMF Profile Architecture [LWWC11, p. 5]

consisting of the worlds best company’s like IBM, Apple or Sun. Since 1989 the OMG
developed many standards in the IT like UML, CORBA or MDA. The development
of such standards is done by a Task Force. In the Task Force every organisation has
the same voting power no matter what member size it is. Every suggested standard is
available for the public and many of the suggested standards get ISO certified [(OMa].

3.5.2 Model-driven architecture (MDA)

The Model-driven architecture includes many software design approaches for developing
software systems. The MDA was launched by the OMG in 2001 and is standardized.
In the MDA the construction of a software system is split up into four layers (Fig-
ure 3.10 [(OMb]).

The first layer is the Computation Independent Model (CIM). In this type of model
the different types of activities for reaching the desired goals are constructed including
functional and non-functional requirements. This layer should fit the interests of the
developers and the users. It is very important to choose a modelling language both can
read. At most the Use-Case or the Activity diagram from the UML standard is used for
modelling this task. CIM includes the domain-specific language (DSM).

The second layer is the Platform Independent Model (PIM). This layer describes the
needed technical specifications without using a specific technology, programming language
or middleware. It is important to construct models which are platform and company
independent. The PIM is operating on a higher level of abstraction to model specific
techniques more generally. For this purpose UML Profiles help to use stereotypes in
modelling specific techniques.
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The third layer is the Platform Specific Model (PSM). The purpose of this layer is
to describe the used technology by using the PIM. For example, a persistence layer
with hibernat could be generated, which defines specific UML Profiles for the defined
stereotypes of the PIM.

At last, the code layer is for generating the source code of the goal platform by using the
defined techniques in the PSM.

Figure 3.10: Graphical representation of the MDA layers

Moreover, the separation of concerns leads to a platform-, language- and system-
independent model. To sum up, the MDA defines the structure, semantics and notations
of models using industry standards. These models are called MDA Models and are used
to create specifications for the acquisition, system and technology. In addition, they
produce the documentation part of such a system and makes it executable. The main
goal of MDA is to lower the complexity of models and to simplify the interdependency
between other systems with the requirement of not using any values from the source
model. In Addition, the MDA distinguishes between two types of model transformations:

• Transformations from a model into another Model used by MOF or QVT

• Transformations from a model into a programming language

A transformation uses the elements of an input model and generates the elements of an
output model by using a specific set of rules.
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3.5.3 Meta Object Facility (MOF)

To sum up the information from Section 2.3, MOF is a standard to generate metamodels
by using concepts from the UML class diagram. It uses classes, attributes and associations.
In Figure 3.11 the UML metamodel of the class diagram is shown [(OM16].

Figure 3.11: Key concrete classes from the UML2 kernel package [(OM16, p. 42]

The MOF standard states four layers of metamodelling starting at the M3-layer until
the M0-layer. Every layer is an instance of its above layer except for the M3-layer. The
M3-layer is an instance of the M3-layer itself, which means that MOF uses his own
metamodel to describe its possibilities. Figure 2.4 shows the four layer model.

• The M3-layer of this model describes MOF itself. Moreover, the MOF standard
constructs are used to define metamodels for many application areas.

• The M2-layer describes metamodels by using the provided MOF constructs. Fig-
ure 3.11 shows the UML class diagram by using MOF.
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• The M1-layer describes the models which conforms to the metamodel defined in
the M2-layer.

• The M0-layer uses the concrete instances of classes defined in the M1-layer.

3.5.4 Ecore

The metamodel of EMF (Subsection 2.3.2) is the so called Ecore. The Ecore metamodel
could be seen as a simplification of the UML class diagram [BCW17]. Figure 3.12 shows
the hierarchy of the components in Ecore whereas abstract classes or interfaces are
deposited with a lightgrey color. In the following part, the main elements of the Ecore
metamodel would be described [Foua].

Figure 3.12: The Ecore components relation hierarchy [Foua]

The EObject is similar to the java.lang.Object from Java. Every object in EMF is import-
ing this interface to have the main functionality available like reflections, notifications
and access to the metaobject EClass, the container and to the available resources.

The EFactory-elements of a package are generated by their responsible EFactory. The
reference to an EPackage is the only reference found in a Factory done by the ES-
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tructuralFeature. A EFactory consists of the methods create, createFromString and
convertToString for generating the necessary Objects.

Every EModelElement in Ecore, which means completely every element, has the possibility
to store additional information by using the EAnnotation.

The EClassifier is an abstract class for referencing an EReference with an EClass or an
EAttribute with an EDataType. The keywords instanceClassName and instanceClass
returns the implemented class. Another keyword is the isInstance operation for checking
if an object given as a parameter is the same EClassifier.

The EPackage is similar to packages in Java. It is possible to group elements. Moreover,
packages could be build up in a hierarchical manner. To make this possible eSubPackages
where created. Every EPackage has the following attributes named nsURI and nsPrefix
to identify a package as unique. The attributes are stored in the EClassifiers and could
be read by the reference eClassifiers.

The EClass is used to model classes. Every EClass has a name attribute available in
ENamedElement and can have many references and attributes which could be seen in
eAllAttributes, eAllReferences or eAllStructuralFeatures. One important paradigm is
the availability of multi-inheritence. An EClass can have many superclasses available in
eSuperTypes whereas other metamodels only support one inheritance between classes.
There is the method isSuperTypeOf to check if a delivered class is inherited. The
attributes interface and abstract are similar to the Java implementation. They could be
read by using the getEStructuralFeature.

The EDataType is used to model simple data types. These data types could be similar
to existing Java classes or build up with own classes to fit complex structures. The
properties instanceClassName and instanceClass are for using the existing Java classes.

The datatype EEnum can have every value of a predefined list. The values of an EEnum
are called EEnumLiteral.

An EClass could be extended to model behaviour of a class by so called EOperations.
Operations are callable with the command eAllOperations and could have none ore many
EParameters. Moreover, eExceptions could be implemented on classes like in modern
programming languages.

The next concept is an EAttribute to use attributes with a specific kind of EDataType.
Attributes have a name and could only exist in connection with a class. In the class
concept the keyword eAttributes will list all attributes which are connected to the specified
class.

EReferences are for connecting two classes with each other. A reference is only referencing
in one direction. If someone wants to model a bidirectional connection, two references
have to be created and the opposite direction in eOpposite must be defined. On the two
ends of a reference, EClasses must be defined. For defining the specific type of these
EClasses, the keyword eReferenceType is used. With the usage of the EStructuralFeature
multiplicities could be modelled. At last, a reference could be a containment.
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The abstract class EStructuralFeature describes the characteristics of references (ERefer-
ence) and attributes (EAttribute). The keywords changeable, transient, unique, unsettable
and volatile describe values from attributes. In addition, multiplicities like lowerBound,
upperBound, required and many are for describing references. The last possible keyword
is the defaultValue to set the standard value.

3.5.5 Transformation languages

As described in Section 2.4, I will focus on the model-to-model transformations and
especially on Out-Place transformations. I use the method of Out-Place transformations
for transforming a behaviour language into a pivot language and backwards. In every
transformation case, new target models would be generated.

3.6 Design Methods

3.6.1 The Iterative and Incremental development

As first introduced in the Section 3.1, this thesis focuses on the Design Science Method-
ology. This methodology is using an iterative, incremental and test-driven process for
answering the desired research questions.

Figure 3.13: Iterative and Incremental development process

The first part of the iterative and incremental development is the Initial Planning. In
this part the overall objectives of the project have to be defined into smaller sub goals.
All the sub goals must define a metric with a reachable and specific goal value which is
checked in the end of the incremental process to finish a sub goal [BCW17].
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The next part is based on the Plan-Do-Check-Act (PDCA) circle. The first section of
the PDCA circle is the Plan section. In this section the planning and requirements for
the cycle iteration are defined and the possible steps to achieve a positive result. This
planning is based on the requirements of the initial planning phase [She31].

In the next section the plan is executed and the artefact is implemented. This section is
called the Do section. For the next section it is important to collect data for analysis
purposes.

Third, the Check section is studying the actual results of the implementation. These
results are collected during the Do section and compared against the expected results of
the sub goals from the planning phase. If there are any differences between the planned
sub goals, information about the differences must be collected for the next iteration of
the cycle.

Finally, the Act section is reached. If there are differences between the planned sub
goals and the realised implementation, studied in the Check section, the current status
is defined as the new baseline. The baseline should be improved by learning from the
gained information from the previous sections to complete more defined sub goals in
the next incremental iteration. This process is done as long as all planned sub goals are
successfully resolved. This could be done after one iteration but in most cases after an
endless number of iterations.

After finishing the PDCA cycle with a positive Check section, the deployment is done.
The resulting artefact is functional and agreed with the defined goals.

3.7 Data Models

3.7.1 Intermediate Modelling Layer

IML is introduced in Subsection 2.1.1. It is used as the underlying data model for this
thesis and should be studied to be a kernel language for exchanging behaviour models.
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CHAPTER 4
Implementation

In this chapter implementations and their suggested solution under the usage of method-
ologies from Chapter 3 are described. At the beginning, the updated Ecore Intermediate
Modelling Layer is shown. Next the major types of behaviour models get introduced.
Moreover, transformation rules for transforming specific types of behaviour models into
the IML are stated. At last, the graphical editor SIRIUS is adapted to construct graphical
representations of IML models.

4.1 IML-Based Exchange Framework

4.1.1 IML-Ecore Metamodel

First, IML must be transformed into an Ecore metamodel. There is currently an
IML Ecore metamodel available developed by the Institute of Software Technology and
Interactive Systems from the Vienna University of Technology. This metamodel is based
on an old definition of IML. Currently the IML should be standardized by the IEC and
is available in version 0.89. In this thesis i will focus on the version 0.89. Accordingly,
an update of the current Ecore metamodel implementation of IML with the updated
standardisation of version 0.89 has to be done.

Every element described in Subsection 2.1.1 is transformed into an Ecore Class element.
Additionally some new elements were introduced:

• Element is an abstract class. It is a generalization of all elements which specify a
global Ecore class element. The Header class has a relationship with the element
class. If there is no Header, then all elements can’t exist because of a composition.

• IdentifyableElement is a differentiation of an Element. The counterpart is the Event.
They distinguish from each other by their attributes. The IdentifyableElement has
an ID attribute, whereas the Event has a name attribute.
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• ConnectionPoint is an abstract class which has the purpose of generating connec-
tions. Every Class which inherits from the Connection Class has the ability to
make a Connection.

• A Connection consists of a source and a target ConnectionPoint.

• The Jump class is for jumping from a specific State to another State.

• The Time class is for defining time points on activities. A time point stores
information about the earliest or latest start or end of an activity. Moreover the
delay and duration of an activity is stored. The Time class describes a time object
for designated behaviour models.

The current implemented Ecore metamodel is shown in Figure 4.1. It displays the
development state of the Intermediate Modelling Layer with the current version 0.89.

4.1.2 SIRIUS Editor for IML

The Sirius modelling environment is an open-source software developed by the Eclipse
Foundation. Furthermore, SIRIUS creates an own modelling workbench including the
Eclipse modelling techniques EMF and GMF. It distinguishes between two kinds of
environments, the specification environment and the runtime environment [Foub].

The specification environment is mainly used by the specifier or the developer. It is
possible to define custom multi-view workbenches including diagrams, trees and tables.
Additionally, the instant feedback feature helps to model faster. At last, SIRIUS is highly
customizable by supporting native tooling, Java or extension points.

The runtime environment is used by the end-user and executes the specification defined
by the specification environment. There is no code generation for the end-user. Moreover,
the environment is viewpoint-based so it could be adapted to the needs of the users.

There is currently a SIRIUS project for IML available developed by the Institute of
Software Technology and Interactive Systems from the Vienna University of Technology.
This project must be adapted to fit to the needs of IML 0.89. The difference to the
currently available implementation is the Time class of the Ecore metamodel. This must
be added to the current SIRIUS project.

The gradient representation of the ActivityNode has to be updated to display the time
point information instead of displaying only the name of the activity represented. An
update of the label expression is needed by using ACCELEO for creating an expression.
If the DA_-Activity is generated, the value of the earliest start time point should be
display. If the TA_-Activity is generated, the value of the duration should be displayed.
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Figure 4.1: IML Ecore metamodel
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The used expression is:

[if self.name.startsWith(’DA’) then ’D ’
.concat(self.time.earliestStart.toString())
.concat(’ | ’).concat(self.name)
else ’SD ’.concat(self.time.duration.toString())
.concat(’ | ’).concat(self.name) endif/]

Table 4.1 shows the notation table for the graphical representation of the IML metamodel
generated by the SIRIUS editor.

Graphic Concept
Initial state

State

State transition

Activity

Simultaneous con- & divergence

Table 4.1: Notation table for the IML definition used in SIRIUS

4.2 Behaviour Models

The first point I would like to mention is, for constructing a kernel language for behaviour
models must be understood the different types of behaviour models. I have looked
up different types of behaviour models like GANTT, AONN, Impulse diagrams, State
charts and Sequence Function charts. After analysing these different diagrams, three
different approaches of behaviour models are depicted: Event-driven, Task-oriented and
Time-related. In the upcoming subsections the different approaches are described.
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4.2.1 Event-driven approach - State machines

A good example for describing the event-driven approach is the State Machine (SM). A
state machine consists out of states and events. To change from one state to another
state a specific event has to occur. There is no dependence to any kind of duration on
how long the state machine is in a specific state. On the other hand a state can not
change to another state without any event. The state machine must be some kind of
event-driven approach.

Figure 4.2: Example of a door modelled with a state machine

In Figure 4.2 a small example of a door with a state machine diagram is modelled. In this
example the door has two states: opened and closed. Additionally, two events could occur
on this door: close and open. The resulting transitions lead to the following possible
changes on the door:

• If the door is in the state opened and the event or transition close is happening,
the door changes to the state closed.

• If the door is in the state closed and the event or transition open is happening, the
door changes to the state opened.

These transitions could be displayed in a State transition table as shown in Table 4.2.

State (next)
Opened Closed

State (current) Opened - close
Closed open -

Table 4.2: State transition table for the example shown in Figure 4.2

In this thesis I will focus on the two approaches task-oriented and time-related. A
distinction to the event-driven approach must be made, because the task-oriented and
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time-related approaches have many similarities. Both approaches are not bound to events
to trigger state transitions. They are connected over the completion or expiration of
tasks whereas event-driven approaches have to wait for occurring events. First, it is
more significant to look at modelling techniques with the same background. Moreover
the evaluation of the results are more significant and easier to make as comparing an
event-driven approach with one of the others. At last, state machines are not the main
modelling technique used in industrial automation processes whereas AONN and GANTT
charts are more appreciable.

4.2.2 Task-oriented approach - GANTT

The task-oriented approach is commonly used in behavioural modelling when a behaviour
between tasks should be modelled. GANTT charts are using this approach to model
dependencies between tasks. There are typicalyl two options when a task could be fired
in a GANTT chart.

The first option is that a task must wait with the processing until all depended tasks are
finished. Furthermore, a task could have a dependency to one or multiple predecessor
tasks. In addition to that, tasks are existing which have no dependency to any task.
These tasks are time-related tasks. They are start processing when a specific time is
reached independent of any other task.

This leads to the existence of two possible modelling techniques for GANTT charts. They
could be modelled with a global time, which means that every task starts counting the
past time from the beginning, whereas the local time is only for the current task. The
local start time of a task is zero and when the duration has past the end is reached. The
global time calculation takes every predecessor task in count until they reach the first
task of the chain.

Additionally, IML supports the global and local time approach. At least the type of
implementation differs between the two time approaches. The global time is used, when
existing tasks are not depending on each other. This example could be seen in Figure 4.3.
The usage of tasks without dependencies results in using the global time scale to align
the tasks and results in the corresponding sequence.

After transforming Figure 4.3 into IML, the global time scale is used, which defines when
the different states have to start by using the delay attribute. This attribute could be
seen on the DA_-Activity connected to every state and marked with a D in Figure 4.4.
The whole chart has to be splitted up by using a Simultaneous Divergence element and
merged together at the end by a Simultaneous Convergence element.

Besides the local time approach is used when a task get in a dependency relationship
with each other. As an example I want to use the adapted Figure 4.5, which is Figure 4.3
with added dependencies between tasks.

After transforming Figure 4.5 into IML, the local time scale is used. Every state is in
dependency to the predecessor state and also the time scale starts from beginning after a
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Figure 4.3: Example of a GANTT chart with no dependencies resulting in using the
global time scale

Figure 4.4: Example of a non task dependent GANTT chart transformed into the IML

state. The resulting IML chart from Figure 4.6 is now a sequence of states which runs
from the top to the bottom.

A very important point in Figure 4.6 are the activities of the states. All DA_-Activities
are set with a zero, because they start quickly after the predecessor state finishes without
any delay after the predecessor state, whereas in Figure 4.4 the DA_-Activities have a
delay to wait on each predecessor state. The TA_-Activities are now storing the duration
how long a state is running, whereas in Figure 4.4 the TA_-Activities store the global
end time of a state.

At next I would like to introduce the GANTT Ecore metamodel. This metamodel is
downloaded from http://www.ganttproject.biz/. It is open-source and available
for using in any kind of project [Sot]. In Figure 4.7 the fully non adapted GANTT Ecore
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Figure 4.5: Example of a GANTT chart with dependencies between tasks resulting in
using the local time scale

metamodel is shown.

In addition, I will describe the main parts of the metamodel used:

• The Project class describes the whole GANTT chart and is mandatory to create,
because all other classes are depending on this class.

• A project has one mandatory global task to reach, which is called Tasks in the
metamodel. Every smaller unit task is in a relation with the Tasks class, which
describes the overall reaching goal.

• A Task itself describes a smaller unit off the overall task. This class has the main
information about how long the duration is and when the task would be finished.
As described, the metamodel does not store information when a task is starting, it
rolls up the time calculation from behind starting at the point of completion.

• A task could have none or multiple dependencies described through the Depend
class. Every depend class links to only one previous task. If someone wants to
build up a multiple dependency, more depend classes linking to each single task of
dependency must be created.

4.2.3 Time-related approach - AONN

The last approach is the Time-related approach. There is a type of behaviour model
which depends on time relations. This behaviour model is called the activity-on-node
network (AONN). The former name of this model type was Program Evaluation Review
Technique (PERT). Figure 4.8 describes the main structure of a node.

A node consists of the following attributes:

• Node name: The name of the given node

• Earliest start: The earliest start time point of the node
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Figure 4.6: Example of a task dependent GANTT chart transformed into the IML

• Duration: The fixed duration time of the node

• Earliest end: The earliest end time point of the node is the summing up of the
earliest start and the duration attribute

• Buffer : The buffer attribute defines the maximal waiting time until the node begins
with the processing

• Latest start: The latest start time of the node is the summing up of the earliest
start and the buffer attribute

• Latest end: The latest end is the summing up of the latest start with the duration
attribute

• Predecessor : A node can have a relation to none or multiple predecessor nodes

• Successor : A node can have a relation to none or multiple successor nodes
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Figure 4.7: Ecore metamodel of the GANTT chart [Sot]

An AONN is using the time-related approach. Furthermore, using the earliest and latest
start time points help avoiding processing failures by using a waiting time. This type
of behaviour model is not depending on any events or not waiting on when a task is
finished, because a task has to be finished between the earliest and latest end time point.

An AONN is using the global time scope on all nodes of a chart. It is not possible to use
the local time scope in this case, because of the major relationship between a node and
the fixed time points. Figure 4.9 shows an example of an AONN.

After transforming the activity-node-network from Figure 4.9 the time points are stored
in activities at the different states. The DA_-Activities are storing the time point of the
earliest start, whereas the TA_-Activities are storing the duration of a state.

At next I would like to introduce the AONN Ecore metamodel. This metamodel is
developed on my own by using the metamodel developing process. The development
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Figure 4.8: Basic structure of an AONN node

Figure 4.9: Example of an AONN

of the AONN Ecore metamodel is described in Subsection 3.3.1. The resulting Ecore
metamodel is shown in Figure 4.11.

In addition, I will describe the parts of the metamodel:

• The Project class describes the whole AONN and is mandatory to exist, because
all other classes are depending to this class.

• The Node class is the main class of the chart. First, it describes all the important
attributes like earliest or latest start or end time point, the duration and the delay.
Moreover, it saves the name of the node. At last, information about predecessors
and successors is saved in relations to other nodes. A node could have no or multiple
pre- or successors.

4.3 Transformations

This section describes the developed transformations for this thesis. The scope of this
thesis is on the development of ATL transformations from GANTT charts or AONNs to
the IML and back.

First, I would like to describe the transformations from GANTT or AONN to IML
because they are very similar to each other.

4.3.1 GANTT to IML

The transformation from GANTT to IML should generate an IML chart for every used
GANTT chart. Additionally, the generated IML should have at least one initial state
followed by a state transition and one termination state. Every GANTT bar should be
transformed into an IML state followed by two associated activities and a state transition.
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Figure 4.10: IML chart of the transformed AONN from Figure 4.9

The first activity of the generated state should represent the delay in execution of the
GANTT bar. The other activity is for defining the duration of the state.

Another important point for the transformation are successor and predecessor relationships
of GANTT bars. If a GANTT bar has two or more predecessors, an IML simultaneous
divergence element must be generated. If a GANTT bar has two or more predecessors, a
synchronous IML elements and additionally an IML simultaneous convergence element
must be generated.

The ATL transformation for transforming a GANTT chart into an IML chart has to

48



4.3. Transformations

Figure 4.11: Ecore metamodel of the AONN

deal with caching during the transformation phase. Many elements are generated after
knowing all pre- or successor of a GANTT bar. Caching was implemented to handle
these special cases of not running a strict transformation from the first bar to the last
bar. There are existing many cases because of the possible pre- and successor connections
of a bar. In addition an abstract rule hierarchy was build up.

Figure 4.12: ATL rule hierarchy for transforming a GANTT bar to an IML state

The abstract rule Task2Bar is for generating the generalized main parts of a bar to state
transformation. It generates the state, the two activities and the state transition.

The abstract rule Task2BarActivityCaseAB is a more specific rule than Task2Bar because
it only takes bars into account, which have no predecessor bar. The Task2BarActivityCaseA
rule is matched, when the bar is the only bar in the diagram with no predecessor bars,
whereas Task2BarActivityCaseB is matched, when the bar has no predecessor and at
least one other bar in the GANTT diagram has no predecessor.

The abstract rule Task2BarActivityCaseCD is a particularized rule of Task2Bar and
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takes only bars into account, which have only one predecessor bar. The matched rule
Task2BarActivityCaseC matches on bars with only one predecessor bar and no other bar
in the GANTT chart has the same predecessor bar, whereas Task2BarActivityCaseD
is matched on bars with only one predecessor and the predecessor has more than one
successor bar.

The last matched rule Task2BarActivityCaseEF has one similarity for Case E and Case
F. Both cases have more than one predecessor node. The predecessor nodes of Case E
have only one successor node, whereas the predecessor nodes of Case F have more than
one successor node.

In conclusion, for creating all these cases it is important to create helpers for especially
calculating the maximum time of a sequence of depending elements, calculate the number
of end bars in the chart, calculate the number of depending bars to a specific one and
calculate the dependencies other bars have on a specific bar.

4.3.2 IML to GANTT

First, the Header of the IML chart is transformed into a GANTT project. All generated
tasks from the IML chart must be in a relationship with the project class.

The transformation from IML states to GANTT tasks is based on recursions. There is a
simple way to overcome the problem of defining GANTT tasks with a dependency (local
time) or without a dependency (global time) by iterating backwards from every IML
state. To distinguish between the two possible time points, two conditions are existing.

The first condition is needed to calculate the global start time of a specific state. When a
simultaneous convergence is reached, the maximum time of all paths have to be calculated.
This is done by summarizing all TA_-Activity duration values for every path of the
divergence. The maximum duration time is then used in the recursion for finding the
global start time of a task.

Figure 4.13: Example of a path calculation
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In Figure 4.13 an example for calculating the duration of splitted paths is shown. The
global time for S_end should be calculated and a simultaneous convergence / divergence
split is on the way to the initial state. To calculate the maximum time of the left path, all
duration values from the TA_-Activities are summed up, which leads to the calculation of
4 + 2. The right path has only one state with a value of 9. At last, the maximum-function
is used to find the highest value from all paths, which is in our case the right path.

When the global time is calculated, the duration of the current state is added to define
the time when the task is complete. The duration of the generated task is the duration
of the transformed state subtracted by the delay of the transformed state.

The second condition is the generation process for Depend classes. If the current
transformed state has no predecessor states in IML, no depend classes were generated
but if it has predecessors then for every predecessor a depend class is generated.

4.3.3 AONN to IML

The transformation from AONN to IML is realized the same way as used in Subsection 4.3.1
and instead of GANTT tasks, AONN nodes are used. The only difference between the
transformation from GANTT to IML and AONN to IML is the activities of a state. The
first activity of the generated state should represent the earliest start time in execution
of the AONN node. The other activity is for defining the duration of the state.

4.3.4 IML to AONN

The transformation from IML to AONN works a little bit different then the transformation
from IML to GANTT. First, the IML Header element is transformed into an AONN
Project element.

Second, every State element having two activities must be transformed into an AONN
Node element. The attributes are copied from the state and the timing attributes of
a node are copied from the concurrent Activity element. The DA_-Activity has the
information stored about the earliest start time point and the latest start time point.
The TA_-Activity stores the information about the duration, delay (buffer) and the
earliest end time point and the latest end time point.

Moreover, there is a need for caching states during the ATL transformation because of
the existence of predecessor and successor relations. When a predecessor or successor
node is not transformed yet, then the state and node relation is cached. When a new
state is transformed to a node, the cache is checked if the node is ready for setting up a
relation to the current node.

4.4 Transformation Contracts
After defining the different cases for the transformation into IML, the test process during
the implementation phase is described. Furthermore, to test the defined transformations
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different input sample models have to be generated to match all different cases for the
transformation.

First, a sample model in the start language is generated by using the eclipse model builder.
The sample model has to fit to specific defined cases to test them. When the model is
finished the transformation into the IML is started. The resulting output model is then
checked through the definition of IML. When an error is emerged, the transformation
is reviewed and adapted to fit to the needs. Whereas an error free output model is
generated into a graphical model representation to make a last check on the generated
model.

Furthermore, the check process of the output model is supported by the usage of a
check-list. This check-list is basically written for every transformation type. At next
the different transformations and their check-lists are described in short. The needed
elements and theire attributes of every case is shown in the IML standardization.

4.4.1 GANTT to IML

First, the check-list for transforming GANTT charts to IML is described.

1. Mapping of the start of a GANTT chart to IML elements
Case A: The start has only one successor bar
Case B: The start has more than one successor bar

2. Mapping of GANTT chart bars to IML elements

3. Mapping of a GANTT chart bar start point to IML elements
Case A: The bar has no predecessor bar
Case B: The bar has exactly one predecessor bar
Case C: The bar has more than one predecessor bar

4. Mapping of a GANTT chart bar end point to IML elements
Case A: The bar has no predecessor bar
Case B: The bar has exactly one predecessor bar
Case C: The bar has more than one predecessor bar

5. Mapping of GANTT chart successor bars to IML elements
Case A: The bar has no or exactly one successor bar
Case B: The bar has more than one successor bar

6. Mapping of GANTT chart predecessor bars to IML Elements
Case A: The bar is the only bar in the diagram with no predecessor bars
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Case B: The bar has no predecessor bar and at least one other bar in the
GANTT chart exists with no predecessor bar

Case C: The bar has only one predecessor bar and no other bar has the same
predecessor bar

Case D: The bar has only one predecessor bar and this predecessor bar has
more than one successor bar

Case E: The bar has more than one predecessor bar, the predecessor bar has
only one successor bar

Case F: The bar has more than one predecessor bar, the predecessor bar has
more than one successor bar

7. Mapping of the end of a GANTT chart to IML elements
Case A: There exists only one predecessor state transition for the terminal

state
Case B: There exists one simultaneous convergence for all synchronisation

states

Example 1 - E1

In the first example (E1) a GANTT chart without any pre- & successor relations is
transformed into IML (Figure 4.14). The important fact in E1 is the timing relation of
the different bars. The resulting IML output model is shown in 4.15.

Figure 4.14: GANTT chart - Example E1

In this example the following cases from Table 4.3 are tested.

Example 2 - E2

In the second example (E2) a GANTT chart with pre- & successor relations is transformed
into IML (Figure 4.16). The important fact in E2 is the timing relation of the different
bars in relation to the predecessor bars. The resulting IML output model is shown in 4.17.

In this example the following cases from Table 4.4 are tested.
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Figure 4.15: Example 1 of a non task dependent GANTT chart transformed into the
IML

Case
A B C D E F

Step

1 X
2 X
3 X
4 X
5 X
6 X
7 X

Table 4.3: Used cases in GANTT chart - Example E1

Example 3 - E3

In the third example (E3) a GANTT chart with pre- & successor relations is transformed
into IML (Figure 4.18). A case is tested where a bar has more than one successor relation
and the successor bars of this bar are time shifted. The resulting IML output model is
shown in 4.19.

In this example the following cases from Table 4.5 are tested.

Example 4 - E4

In the fourth example (E4) a GANTT chart with two pre- & successor relations is
transformed into IML (Figure 4.20). A case is tested where two start bars are existing
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Figure 4.16: GANTT chart - Example E2

Figure 4.17: Example 2 of a task dependent GANTT chart transformed into the IML

but one is time shifted and a bar has more than one predecessor relations. The resulting
IML output model is shown in 4.21.

In this example the following cases from Table 4.6 are tested.
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Case
A B C D E F

Step

1 X
2 X
3 X
4 X
5 X
6 X X
7 X

Table 4.4: Used cases in GANTT chart - Example E2

Figure 4.18: GANTT chart - Example E3

Case
A B C D E F

Step

1 X
2 X
3 X X
4 X X
5 X X
6 X
7 X

Table 4.5: Used cases in GANTT chart - Example E3

Example 5 - E5

In the fifth example (E5) a GANTT chart with a bar having more than one predecessor
and the predecessor has more than one successor is transformed into IML (Figure 4.22).
The resulting IML output model is shown in 4.23.

In this example the following cases from Table 4.7 are tested.

4.4.2 AONN to IML

At next the check-list for transforming AONN charts to IML is described.
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Figure 4.19: Example 3 of a task dependent GANTT chart transformed into the IML

Figure 4.20: GANTT chart - Example E4

1. Mapping of the start of an AONN to IML elements

Case A: The start has only one node

Case B: The start has more than one node

2. Mapping of AONN nodes to IML elements
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Figure 4.21: Example 4 of a task dependent GANTT chart transformed into the IML

3. Mapping of AONN node start points to IML elements

4. Mapping of AONN node end points to IML elements

5. Mapping of AONN successor nodes to IML elements
Case A: The node has no or exactly one successor node
Case B: The node has more than one successor node

6. Mapping of AONN predecessor nodes to IML Elements
Case A: The node is the only node in the diagram with no predecessor node
Case B: The node has no predecessor node and at least one other node in the

network exists with no predecessor node

58



4.4. Transformation Contracts

Case
A B C D E F

Step

1 X
2 X
3 X X
4 X X
5 X
6 X X
7 X

Table 4.6: Used cases in GANTT chart - Example E4

Figure 4.22: GANTT chart - Example E5

Case
A B C D E F

Step

1 X
2 X
3 X X
4 X X
5 X
6 X X
7 X

Table 4.7: Used cases in GANTT chart - Example E5

Case C: The node has only one predecessor node and no other node has the
same predecessor node

Case D: The node has only one predecessor node and this predecessor node
has more than one successor node

Case E: The node has more than one predecessor node, the predecessor node
has only one successor node

Case F: The node has more than one predecessor node, the predecessor node
has more than one successor node

7. Mapping of the end of an AONN to IML elements
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Figure 4.23: Example 5 of a task dependent GANTT chart transformed into the IML

Case A: There exists only one predecessor node transition for the terminal
state

Case B: There exists one simultaneous convergence for all synchronisation
states

Example 1 - E1

In the first example (E1) an AONN with single pre- & successor relations is transformed
into IML (Figure 4.24). The resulting IML output model is shown in 4.25.
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Figure 4.24: AONN - Example E1

In this example the following cases from Table 4.8 are tested.

Case
A B C D E F

Step

1 X
2 X
3 X
4 X
5 X
6 X X
7 X

Table 4.8: Used cases in AONN - Example E1

Example 2 - E2

In the second example (E2) an AONN with pre- & successor relations is transformed into
IML (Figure 4.26). Important is the testing of nodes having the same pre- & successor
node. The resulting IML output model is shown in 4.27.

In this example the following cases from Table 4.9 are tested.

Case
A B C D E F

Step

1 X
2 X
3 X
4 X
5 X X
6 X X X X
7 X

Table 4.9: Used cases in AONN - Example E2

Example 3 - E3

In the third example (E3) an AONN with pre- & successor relations is transformed into
IML (Figure 4.28). In this network the existence of multiple start- & endpoints is tested.

61



4. Implementation

Figure 4.25: Example 1 of an AONN transformed into the IML

Additionally, the Case 6F is especially tested in this example. The resulting IML output
model is shown in 4.29.

In this example the following cases from Table 4.10 are tested.
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Figure 4.26: AONN - Example E2

Case
A B C D E F

Step

1 X
2 X
3 X
4 X
5 X X
6 X X X X X
7 X

Table 4.10: Used cases in AONN - Example E3
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Figure 4.27: Example 2 of an AONN transformed into the IML
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Figure 4.28: AONN - Example E3
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Figure 4.29: Example 3 of an AONN transformed into the IML66



CHAPTER 5
Case Study Based Evaluation

5.1 Using IML as a kernel language for exchanging
behaviour models

In this section, I perform a case study on IML. The main goal is to evaluate IML to aim as
a pivot language for model exchange between different modelling languages. Additionally,
the possible loss of information during model exchange has to be tested and evaluated by
the comparison of sample input models with generated output models. In my thesis I
focus on the two approaches time-related and task-oriented because of the similarities of
these approaches.

5.1.1 Research questions

I perform this study to evaluate the capability of using IML as a pivot language for model
exchange. Moreover, I specifically want to answer the following research questions (RQ):

1. RQ1-Completeness: Is there an information loss when doing model exchanges via
the pivot language IML and where do they happen?

2. RQ2-Correctness: After transforming a time-related approach into a task-oriented
approach, is the resulting model valid?

5.1.2 Case Study Setup

Case and subjects selection

The main objective of this case study is the successful transformation of an input sentence
of behaviour modelling language X into an output sentence of behaviour modelling
language Y over the pivot language IML. In this case successful means that the output
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sentence Y is complete and correct. Furthermore, correctness is given when the syntax
validation of the output meta-metamodel returns true, whereas completeness could only
be reached by having an empty set returned when looking at the delta sentence between
the input and output sentence.

A studied case of this case study is the performance of the pivot language. Is it possible
to transform any behaviour modelling language into another over the pivot language? Is
the pivot language operating differently on different inputs? If I look deeper into these
questions, the current transformation from a sentence in language A to a sentence in
language B is following the given formula:

SA ... Sentence in Language A

SB ... Sentence in Language B

SP ivot ... Sentence in Language P ivot

TAP ... T ransformation from SA to SP ivot

TP B ... T ransformation from SP ivot to SB

TAP (SA) = SP ivot

TP B(TAP (SA)) = SB

(5.1)

As shown in Equation 5.1, to translate a sentence in language A into B over the pivot
language, two different transformations are needed. There must be a case, which controls
the resulting sentence in language B on correctness and completeness. Is there some kind
of information loss? Is the needed behaviour available again?

After controlling the sentence in language B another case has to be checked: Is it possible
to transform the sentence in language B back to the sentence in language A over the pivot
language? Additionally, I introduce two new types of transformations for transforming a
sentence in language B into the pivot language and the transformation from the pivot
language to the sentence in language A. This is shown in Equation 5.2.

TBP ... T ransformation from SB to SP ivot

TP A ... T ransformation from SP ivot to SA

TBP (SB) = SP ivot

TP A(TBP (SB)) = SA

(5.2)

These Equations 5.1 and 5.2 are showing important facts regarding the language A and
the pivot language. Moreover, there are existing two cases, which have to be fulfilled.
The first case regards the pivot language. As shown in Equation 5.3 the sentence in the
pivot language created after transforming a sentence of language A to a sentence in the
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pivot language or transforming B, which must be generated from Equation 5.1, should
create the same sentence in the pivot language.

SP ivot = SP ivot

TAP (SA) = TBP (SB)
(5.3)

The other case takes a deeper look on the backward transformation and the expected
outcome after transforming a sentence in language A into a sentence of language B
and backwards. The goal from exchanging over the pivot language should be that the
input sentence A is the same as the resulting output sentence after usage of the four
transformations. If the outcome is the same as the input sentence, it is a transformation
over the pivot language without any information loss. In Equation 5.4 the principle is
shown by formula.

SA = TP A(TBP (TP B(TAP (SA)))) (5.4)

Requirements

First, to start this case study, a system is required which can handle metamodelling for
creating input models, write model transformations to generate output models and has
the opportunity to execute these transformation rules. The EMF is a package which has
every requirement at start and is freely accessible. Additionally, the definition of the
pivot language is needed for defining transformation rules.

Setup

Second, the metamodels have to be defined. I decided to use an existing Ecore metamodel
for defining GANTT charts [Sot]. The AONN metamodel is created by using the
metamodel development process as mentioned in Subsection 3.3.1. The last metamodel
is the IML. This metamodel is build up from the standardization document [DLPH08].
It follows the defined standards and uses all concepts from the AutomationML standard.

Third, the transformations have to be written in ATL. In the AutomationML standard
the transformations from a GANTT or an AONN into IML are defined. These have
to be translated into the ATL and especially checked in this case study. Moreover, the
backward transformations from IML to GANTT charts or AONNs have to be constructed.
There is no standardization for these kinds of transformations and a more intensive
testing must be done.

Fourth, sample models for the two kind of charts have to be created. These models
must fulfill the requirements of integrating all kind of cases which are existing in the
transformation definitions. The used models for this case study could be seen in Section 4.4.
These kinds of models are integrating all kinds of cases and the resulting IML outputs
are controlled and checked against the standardization.
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At last, the input and resulting output sentence of the models must be compared. The
goal is a resulting difference between these sentences which has to be an empty set. This
has to be checked by using data analysis and define validity procedures.

5.1.3 Data collection procedures

In the data collection part I focus on two examples. Both examples transform the
respective model language into the concurrent other language over the pivot language and
vice versa. The first example focus on the part of transforming a time-related behaviour
modelling language (AONN) into a task-oriented modelling language (GANTT) over the
pivot language (IML) and back. As a prerequisite it is important to define measurable
metrics in the two modelling languages. These metrics could be read out from the
generated xmi-files after a successful transformation.

In the GANTT chart, I focus on the following classes:

• Project

• Task

• Depend

At next a list of measurable metrics is build up defined per class. This metrics must be
fulfilled after transforming back into the input language.

Project:

• The number of Project instances must be the same.

• The attribute name must be set with the input value.

Task:

• The number of Task instances must be the same.

• The attribute id must be set with the input value.

• The attribute name must be set with the input value.

• The attribute complete must be set with the input value.

• The attribute duration must be set with the input value.

Depend:

• The number of Depend instances must be the same.
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• The number of relations named depends must be the same.

• The attributes defined in every relation depends must be the same.

In the AONN, I focus on the following classes:

• Project

• Node

At next a list of measurable metrics is build up defined per class. This metrics must be
fulfilled after transforming back into the input language.

Project:

• The number of Project instances must be the same.

• The attribute name must be set with the input value.

Node:

• The number of Node instances must be the same.

• The attribute name must be set with the input value.

• The attribute delay must be set with the input value.

• The attribute duration must be set with the input value.

• The attribute ESTP must be set with the input value.

• The attribute LSTP could be set with the input value. It is not necessary because
it could be calculated by summing up the values of ESTP and delay.

• The attribute EETP could be set with the input value. It is not necessary because
it could be calculated by summing up the values of ESTP and duration.

• The attribute LETP could be set with the input value. It is not necessary because
it could be calculated by summing up the values of ESTP, duration and delay.

• The number of relations named successor must be the same.

• The relationships successor between a node and another node must be as defined
in the input model.

• The number of relations named predecessor must be the same.

• The relationships predecessor between a node and another node must be as defined
in the input model.
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5.1.4 Analysis procedures

In this thesis, I focus on qualitative data analysis. After defining the important measurable
metrics in the previous section, conclusions from the generated data have to be derived.

Time-Related approach (AONN)

First, the input model AONN is chosen. I decided to use the example from Section 4.4.2
as SA defined in Equation 5.1. Additionally, GANTT is defined as the variable SB as
sentence in language B. As declared in Equation 5.4, I transform the sentence of language
A (SA) over four different transformation files named TP A, TBP , TP B and TAP . The
resulting information of Equation 5.4 is stored in SA′ .

Sentence of language A (SA) - Input Model

The following values are defined in the example from Section 4.4.2 and shown in Table 5.1.

ID Node Name Delay Duration EETP ESTP LETP LSTP
1 start 0 0 0 0 0 0
2 handover to conveyor 1 0 4 4 0 4 0
3 initialise robot 1 3 6 6 0 9 3
4 move to lift position 0 3 7 4 7 4
5 lift skid 0 2 9 7 9 7
6 execute manufacturing robot 1 0 9 18 9 18 9
7 postprocess robot 1 12 4 22 18 34 30
8 initialise robot 2 8 4 10 6 18 14
9 execute manufacturing robot 2 0 5 23 18 23 18
10 postprocess robot 2 8 3 26 23 34 31
11 lower skid 0 4 27 23 27 23
12 move to conveyor 2 0 7 34 27 34 27
13 end 0 0 34 34 34 34

Table 5.1: Input metrics for AONN sentence A (SA)

Additionally, the relationship of each node is presented in Table 5.2. Predecessor relations
are marked with a P and successor relations with a S. On the x-axis and y-axis the
representative id of the nodes, described in Table 5.1, are shown. The table could be
read by finding the node on the y-axis and looking along the x-axis to find the concurrent
relationships.

Sentence of language A’ (SA′) - Output Model

After transforming the input sentence (SA) via Equation 5.4 into the output sentence
(SA′), the output metric values are plotted into Table 5.3.

At next the relationship table of the output sentence SA′ is shown in Table 5.4.

∆A - Difference Sentence
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13
1 S S
2 P S
3 P S S
4 P S
5 P S S
6 P P S S
7 P S
8 P S
9 P P S S
10 P S
11 P P S
12 P S
13 P P P

Table 5.2: Relationship table of the AONN input sentence A

ID Node Name Delay Duration EETP ESTP LETP LSTP
1 start 0 0 0 0 0 0
2 handover to conveyor 1 0 4 0 0 0 0
3 initialise robot 1 0 6 0 0 0 0
4 move to lift position 0 3 0 4 0 0
5 lift skid 0 2 0 7 0 0
6 execute manufacturing robot 1 0 9 0 9 0 0
7 postprocess robot 1 0 4 0 18 0 0
8 initialise robot 2 0 4 0 6 0 0
9 execute manufacturing robot 2 0 5 0 18 0 0
10 postprocess robot 2 0 3 0 23 0 0
11 lower skid 0 4 0 23 0 0
12 move to conveyor 2 0 7 0 27 0 0
13 end 0 0 0 34 0 0

Table 5.3: Output metrics for GANTT sentence A’ (SA′)

The ∆A difference sentence is defined as the difference between sentence A and sentence
A’ and is measured by comparing the attributes of all nodes in the sentence. With this
comparison technique it is possible to quantify the information loss between the input
and the generated output sentence. If ∆A is an empty set, then no information is lost.
On the other hand a non-empty set deals with a loss of information.

In my case the result of comparing Table 5.1 and Table 5.3 is a non-empty set, because
attribute information from nodes are lost. The following attributes are missing: delay,
LSTP, EETP, LETP. The attribute LSTP could be calculated by summing up the
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13
1 S S
2 P S
3 P S S
4 P S
5 P S S
6 P P S S
7 P S
8 P S
9 P P S S
10 P S
11 P P S
12 P S
13 P P P

Table 5.4: Relationship table of the GANTT output sentence A’

values of ESTP and of the delay of a node. The attribute EETP could be calculated by
summing up the values of ESTP and duration. The attribute LETP could be calculated
by summing up the values of ESTP, duration and delay. In this case the attribute delay
is necessary to complete the full list of attributes defined for a node. The difference ∆A
is a non-empty set, because the attribute delay is lost.

Last, the difference between Table 5.2 and Table 5.4 is an empty set. All relationships
between the nodes are obtained and in the right order. No information on pre- and
successor relations get lost after transformation.

Task-Oriented approach (GANTT)

At next I change the input sentence to the GANTT language. I decided to use a new
example as SA defined in Equation 5.1. Moreover, AONN is defined as the variable
SB as sentence in language B. As declared in Equation 5.4, I transform the sentence of
language A (SA) over four different transformation files named TP A, TBP , TP B and TAP .
The resulting information of Equation 5.4 is stored in SA′ .

Sentence of language A (SA) - Input Model

The following values from the input GANTT sentence example are defined to underlie
specific cases from the GANTT check-list. The example is shown in Table 5.1.

Additionally, the dependency of each task is presented in Table 5.6. Dependencies between
the tasks are marked with a D. On the x-axis and y-axis the representative id of the
nodes, described in Table 5.1, are shown. The table could be read by finding the task on
the y-axis and looking along the x-axis to find the dependent tasks.

Sentence of language A’ (SA′) - Output Model
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ID Node Name Duration Complete
1 begin procurement 2 2
2 needs assessment 6 8
3 market survey 4 6
4 vendor selection 4 12
5 site preparation 8 16
6 network installation 8 20
7 special hardware 6 18
8 network available 2 22

Table 5.5: Input metrics for GANTT sentence A (SA)

ID 1 2 3 4 5 6 7 8
1
2 D
3 D
4 D
5 D
6 D
7 D
8 D D

Table 5.6: Relationship table of the GANTT input sentence A

After transforming the input sentence (SA) via Equation 5.4 into the output sentence
(SA′), the output metric values are plotted into Table 5.7.

ID Node Name Duration Complete
1 begin procurement 2 2
2 needs assessment 6 8
3 market survey 4 6
4 vendor selection 4 12
5 site preparation 8 16
6 network installation 8 20
7 special hardware 6 18
8 network available 2 22

Table 5.7: Output metrics for AONN sentence A’ (SA′)

At next the dependency table of the output sentence SA′ is shown in Table 5.8.

∆A - Difference Sentence

The ∆A difference sentence is defined as the difference between sentence A and sentence
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ID 1 2 3 4 5 6 7 8
1
2 D
3 D
4 D
5 D
6 D
7 D
8 D D

Table 5.8: Dependency table of the AONN output sentence A’

A’ and is measured by comparing the attributes of all tasks in the sentence. With this
comparison technique it is possible to quantify the information loss between the input
and the generated output sentence. If ∆A is an empty set, then no information is lost.
On the other hand a non-empty set deals with a loss of information.

In this case the result of comparing Table 5.5 and Table 5.7 is an empty set, because all
attribute information from every task is compared the same. No attribute is missing or
falsely transformed.

Moreover, the difference between Table 5.6 and Table 5.8 is again an empty set. All depen-
dency relations between the tasks are the same. No information about any dependency
is lost after transformation.

5.1.5 Validity procedures

I declare that, I have checked all examples from Subsection 4.4.1 and Subsection 4.4.2
against the Equation 5.4. In all appropriate cases the result was the same as mentioned in
Subsection 5.1.4. Most of the examples are from the AutomationML group and mentioned
in the standardization document [DLPH08]. Additionally, all the cases are representative,
because in Subsection 4.4.1 and Subsection 4.4.2 all possible cases are tested.

At next the metric calculation is double checked by summing up the defined values of
each task or node and control it with the representative summed up values. Moreover,
the metrics are also checked on the counterpart side in the IML. Every metric has a
counterpart metric in IML for controlling the definition.

At last, the resulting sentences from applying transformations on different input sentences
are not manipulated anyway. The output of the different transformations are renamed for
using the generated xmi-file as an input for the next transformation. All transformations
are programmed for a generic use. It is defined to use a specific input metamodel and
generate a specific output metamodel.
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5.1.6 Interpretation of the Results

Answering RQ1. It is important to distinguish between two different cases. A transfor-
mation from a modelling language A into IML and vice versa into the same modelling
language A has no information loss. The main purpose of the IML is the exchange
between different modelling languages and in this case it is possible that information is
lost after a transformation like in the example used in Section 5.1.4.

Answering RQ2. Every approach has specific metrics which are needed to calculate other
metrics or are needed for the correctness of the modelling language. In my case the metric
delay is lost after transforming a time-related approach into a task-oriented approach.
Moreover, a transformation back into a time-related approach from a task-oriented
approach would lead to a lack of information. The metrics latest start time point, latest
end time point and delay are lost after transformation.

5.1.7 Threats to validity

First, in the current realization I only focus on two behaviour approaches, the time-
related and the task-oriented approach. I do not consider the event-driven approach
(e.g. state machines) which may has no information loss after transformation. Second,
the standardization of IML itself is currently in a development state for defining a new
standard. In some cases my transformation outputs did not match with the current
standardization. To overcome this problem another person has taken a look on the
standardization document and my realization and we decided to write an error document
to the AutomationML group for correcting the false parts of the IML development. Third,
the reliability of the written transformations is checked with the given examples. It
is possible, that a specific kind of input model can lead to an error output, but only
when the defined elements of the input metamodel are not used correctly. Last, the
implementations are tested with fixed metamodels. There should be a way of transforming
specific realizations of metamodels of a modelling language into one general metamodel
and this metamodel is the general input model for the realized transformation.

5.2 Dealing with information loss
As mentioned in Subsection 5.1.6 information loss is happening during transformation
of an AONN into a GANTT chart over the pivot language IML. There is a method
available for extending an existing metamodel called EMF Profiles and is mentioned in
Subsection 3.4.2. The hypothesis is, that an extension of the GANTT metamodel could
prevent information loss during transformation.

5.2.1 Definition of the profile

During transformation from an AONN to a GANTT chart, the delay information is lost.
For this case a solution for storing this information in the GANTT chart must be applied.
Therefore the Task class, which stores timing information about a single task, must be
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extended. A new stereotype called AONN is created and linked with the class Task. The
stereotype has one attribute available called delay and is for storing the delay information
from the AONN. A graphical representation of the extension is shown in Figure 5.1.

Figure 5.1: Profile for extending a GANTT chart with AONN information

5.2.2 Adjustments of the transformations

At next the extension must be added to my transformations. It is important to adjust
the transformations from IML to GANTT and vice versa GANTT to IML. In the first
transformation the storing of the delay into the newly generated variable must be ensured.
On the other hand, the second transformation must be adapted to read out the delay
value and write it into the right class attribute in the IML.

IML to GANTT transformation

First, I will take a look on the adaptations of the transformation IML to GANTT. The
basic changes must be done in the Eclipse launcher of the ATL transformation. The
adapted configuration is shown in Figure 5.2. The metamodel part is extended with the
Profile information from EMF profiles. Additionally, the AonnAPP declares the profile
extension. Moreover, the transformation needs now a second input file and generates a
second output file for the extension. In this case the second input file uses the definition
of the profile extension. The second output file (xmi) conforms to the profile extension
and includes the transformed data from the profile extension.

There have to be done three small adaptations on the existing transformation to include
all needed information.

Step 1: The launcher information must be available in the global variable declaration of
the ATL.
create OUT: GANTT, OUT2: AonnAPP from IN: IML, IN2: Profile;

Step 2: Everytime an IML state is transformed into a GANTT task, a new instance of
the AONN extension should be created and linked with the task.
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Figure 5.2: Adapted launcher configuration for the transformation IML to GANTT

task_delay : AonnAPP!AONN (
appliedTo <- task,
extension <- Profile!Stereotype.allInstancesFrom(’IN2’) ->

any(x|x.name = ’AONN’).extensions -> first()
)

Step 3: The attribute delay must be filled with the concurrent information.

task_delay.delay <- thisModule.getPureDelay(state);

GANTT to IML transformation

Second, I will take a look on the adaptations of the transformation GANTT to IML.
The basic changes must be done in the Eclipse launcher of the ATL transformation. The
adapted configuration is shown in Figure 5.2. The metamodel part is extended with the
Profile information from EMF profiles. Additionally, the AonnAPP declares the profile
extension. Moreover, the transformation needs now a second input file and generates a
second output file for the extension. In this case the second input file is the created output
file from the transformation IML to GANTT, which stores the information about the
delay attribute and the associated task. The second output file could declare information
for future transformations but is not used in my case.

There must be three small adaptations on the existing transformation to include all
needed information.
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Figure 5.3: Adapted launcher configuration for the transformation GANTT to IML

Step 1: The launcher information must be available in the global variable declaration of
the ATL.
create OUT: IML, OUT2: Profile from IN: GANTT, IN2: AonnAPP;

Step 2: Everytime a GANTT task is transformed into an IML state, a corresponding
instance of the AONN extension should be looked up.
aonn_app : AonnAPP!AONN (aonn_app.appliedTo = task)

Step 3: The attribute delay must be set on the right place in the IML state on the
corresponding time element.
delay <- aonn_app.delay

5.2.3 Extended Example

At next I want to show an example which is extended with the EMF Profiles technique.
For this case, I want to start with the example from Section 5.1.4. I adapted the
transformations from IML to GANTT and GANTT to IML as described in the subsection
above and extended the GANTT metamodel with the EMF Profile for AONN.

Sentence of language A” (SA′′) - Output Model

The output sentence SA′′ is now storing the information about the delay. The output
table with all necessary metrics are shown in Table 5.9
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ID Node Name Delay Duration EETP ESTP LETP LSTP
1 start 0 0 0 0 0 0
2 handover to conveyor 1 0 4 0 0 0 0
3 initialise robot 1 3 6 0 0 0 0
4 move to lift position 0 3 0 4 0 0
5 lift skid 0 2 0 7 0 0
6 execute manufacturing robot 1 0 9 0 9 0 0
7 postprocess robot 1 12 4 0 18 0 0
8 initialise robot 2 8 4 0 6 0 0
9 execute manufacturing robot 2 0 5 0 18 0 0
10 postprocess robot 2 8 3 0 23 0 0
11 lower skid 0 4 0 23 0 0
12 move to conveyor 2 0 7 0 27 0 0
13 end 0 0 0 34 0 0

Table 5.9: Output metrics for sentence A” (LA′′)

Moreover, the relationship table of the output sentence SA′′ is shown in Table 5.10.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13
1 S S
2 P S
3 P S S
4 P S
5 P S S
6 P P S S
7 P S
8 P S
9 P P S S
10 P S
11 P P S
12 P S
13 P P P

Table 5.10: Relationship table of the output sentence A”

∆A - Difference Sentence

The extended ∆A difference sentence for this extended example is defined in the difference
between sentence A and sentence A”. A deeper look on the differences between Table 5.3
and Table 5.9 leads to the missing of the metrics EETP, LETP and LSTP. The named
metrics could be calculated as mentioned in the sections above.

The ∆A difference between Table 5.4 and Table 5.10 leads to an empty set.
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Summarized, with the usage of EMF Profiles the information loss could be reduced
against zero. The lost metrics could be easily calculated by using other metrics. This
means the information loss from Section 5.1.4 is compensated.
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CHAPTER 6
Related Work

Best to my knowledge the kernel language based exchange framework for behavioural
modelling languages is a new approach to exchange different types of behaviour models.
The framework creates a temporary kernel language for defining 1:1 transformation rules
between a common behaviour model and the kernel language. Therefore the complexity
is low because of only having a fixed transformation from a specific language type to the
kernel language.

Nevertheless a lot of related work is done in the section of model transformation in the
industrial area. The Model Morphing Approach from Marion Murzek [Mur08] is defining
a specific set of morphing rules per modelling language type, which have to be executed
to generate an integrated model from the input model. The integrated model could then
be exchanged 1:1 with a modelling transformation technique to generate an output model.
This approach uses an incremental way of changing an input model with generic rules to
create a transformable integrated model.

Another approach for doing model transformations is defined by Andy Schürr [SVV12]
[Tra05] [Sch94] [SK08]. In his paper Applications of Graph Transformations with
Industrial Relevance the Triple Graph Grammar (TGG) is used for transforming a
Modal Sequence Diagram (MSD) into a Timed Game Automata (TGA). The approach
is using metamodels for the left-hand side (MSD), the right-hand side (TGA) and
the correspondence model, which defines the rules for copying or extending source
elements into the target model. The correspondence model must be built up between
every specific source and target model. This could be very complex and lead to strong
dependencies between the models. This results in a generated correspondence model for
every transformation target language from a specific model. Moreover, a general export
file from a generalized correspondence model could not be generated and imported into
other modelling language tools. At last, the TGG approach is an imperative process,
while ATL additionally supports declarative constructs.
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The model synchronisation approach is based on TGG and extended with forward-
and backward update functionality between two models to obtain completeness and
correctness. The defined TGG correspondence rules between the source and target model
is extended by synchronization rules to update the source model when something is
changed on the target model and vice versa. This approach is good for synchronising
two models which are very similar between each other except some attributes or classes.
The synchronisation of two completely different modelling languages leads to a complex
system of synchronisation rules, because of the many attributes of each class which must
be copied and safed for backward compatibility. The additional generated attributes
need to be integrated in the existing data structure for storing the information. This
leads to adoptions on the metamodel level and is creating different metamodels of the
same modelling language [EEGH15] [LLR17] [GW09].

Industrial transformations for validation purposes like PLC to Petri-Net, is one area which
is important for industry [BCC+08]. The validation process of PLC diagrams could be
very complex. To overcome this problem transformations into another modelling language
like Petri-Nets are existing. In particular these could be solved by validating the kernel
language IML. When transforming PLC into IML, a standardized validation process
could be set-up for validating every modelling language, which could be transformed into
IML. Furthermore, validators for different modelling languages could be generalized in a
single point.

Summarized, the kernel language based exchange framework has the ability to use the
ATL to transform an input model directly into a model instance of the IML. The IML
has the ability to produce an export format, which could be directly imported into a
modelling tool or transformed into another modelling language. The exchange layer
has the ability to perform validation tasks on the resulting IML. I think the kernel
language based exchange framework could help to raise the interoperability between
different modelling languages and tools to join features and functionality of each language
together.
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CHAPTER 7
Conclusion and Future Work

7.1 Conclusion

In this master thesis I focused on IML from the AutomationML consortium as an exchange
layer between behaviour modelling languages like GANTT and AONN. The big difference
between these two modelling languages is the usage of a task-driven and a time-related
approach. I challenged IML as a pivot language to find out if an information exchange
without any kind of loss between different behaviour languages is possible. Therefore,
an Ecore metamodel for IML has been created to take use of the ATL technique for
transforming a sentence A into a sentence B over the pivot language IML. Additionally,
the transformations for transforming a sentence of language A into IML, IML into a
sentence of language B and both vice versa has been created and tested by using respective
examples, which are testing a large amount of cases. Finally, a case study was done to
demonstrate the strength of IML as a pivot language.

The first example regarding the transformation from GANTT to AONN and back over
the pivot language had no information loss. The important metrics are transformed
correctly and did not change after using all transformations. The second example started
with the AONN and transformed it into the GANTT and back using the pivot language.
An information loss concerning one important metric, the delay, occurs. To overcome
this problem, the usage of EMF Profiles has been investigated. The GANTT metamodel
has been extended and the information loss could be prevented.

Although the pivot language IML is loosing information, but it could be used as a pivot
language by using boundaries. The exchange between GANTT and AONN and vice versa
has no loss of information when the delay is zero. Moreover, the extension of GANTT
could help prevent the information loss when the delay is greater than zero.
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7. Conclusion and Future Work

7.2 Future Work

7.2.1 State Machine Transformations

As next steps the focusing on exchanging event-driven approaches like the state machine
should be considered by using a case study. First, an Ecore metamodel should be
created by using the UML 2 standardisation. Second, two kinds of transformations
must be prepared, the transformation from a state machine into IML and backward.
Third, representative examples must be created to test the transformations and the pivot
language definition. Last, exchanges between all types of modelling languages must be
done to find out which transformations are loosing information and extensions for these
kind of Ecore metamodels must be defined to prevent this loss.

7.2.2 Petri Net Transformations

Another important future work is the transformation from IML to Petri nets. Petri nets
are used in many kinds of software projects to visualize the behaviour of a system. There
are many standards available for exporting and importing these kind of models.

7.2.3 Model Co-Evolution

A solution for model co-evolution should be implemented. This problem happens when a
sentence of language A is transformed into a sentence of language B and a change on
sentence B is happening afterwards. The transformation from sentence B

′ into sentence
A

′ creates an updated sentence of A. A technique must be found to update sentence A
to create sentence A

′ .
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