
Concurrent Programming with
Actors and Microservices

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Maximilian Irro, BSc BSc
Matrikelnummer 01026859

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Wien, 30. September 2018
Maximilian Irro Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Concurrent Programming with
Actors and Microservices

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Maximilian Irro, BSc BSc
Registration Number 01026859

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam

Vienna, 30th September, 2018
Maximilian Irro Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Maximilian Irro, BSc BSc
Pfalzstraße 10, 5282 Ranshofen

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. September 2018
Maximilian Irro

v

Danksagung

An dieser Stelle möchte ich einigen wenigen meinen Dank aussprechen:

• Meiner Familie, die mich in meinem Studium immer unterstützt haben, obwohl ich
viel zu selten anrufe.

• Meinem Betreuer, Franz Puntigam, für die guten Ratschläge durch welche diese
Arbeit zustande kam.

• Theresa und Alex, die sich die Mühe gemacht haben diese Arbeit Korrektur zu
lesen.

vii

Abstract

Common problems require applications to manage multiple concerns simultaneously. A
convenient approach is the concept of concurrent programming. In this thesis, we inves-
tigate two different models for introducing concurrent computational units into software
architectures. One approach is the actor model that defines theoretically well-known
constructs supporting concurrent, parallel and distributed execution in a transparent
way. The other approach is an architectural style based on microservices, a recent trend
that gained academic and industrial popularity. Microservices facilitate many principles
of the old Unix philosophy by composing complex functionality through small, indepen-
dent, highly cohesive and loosely coupled executables. These programs interoperate via
lightweight, technology-heterogeneous messaging channels. The deployment modality of
microservices conceives concurrent execution through the operating system scheduler.
This thesis compares the programming of concurrent computation through actors and
microservices with respect to a non-trivial concurrent system scenario. We argue that
both approaches share many conceptual similarities and show few but significant differ-
ences. Both models have the same expressive capabilities regarding concurrent program-
ming concerns like communication and scalability, but are subject to different trade-offs.
We provide implementations of the system scenario based on actor and microservice
architectures. Benchmark results of these implementations suggest that actors provide
better system efficiency through a smaller codebase. Microservice architectures con-
sume significantly more system resources and suffer especially from purely synchronous
communication mechanisms.

ix

Kurzfassung

Applikationen benötigen häufig eine simultane Bearbeitung mehrerer Aufgaben. Neben-
läufige Programmierung ist hierfür ein verbreitetes Konzept. Diese Arbeit beschäftigt
sich mit zwei Modellen zur Definition nebenläufiger Programmeinheiten innerhalb von
Softwarearchitekturen. Eines dieser Modelle ist das Actor Model. Es definiert theoretisch
wohlfundierte Konstrukte, welche transparent eine nebenläufige, parallele und verteilte
Ausführung ermöglichen. Bei dem anderen Modell handelt es sich um einen relativ neuen
Architekturstil unter Verwendung von Microservices, welche sich kürzlich im akademi-
schen und industriellen Umfeld großer Beliebtheit erfreuen. Microservices bauen auf viele
Prinzipien der alten Unix-Philosophie, indem sie komplexe Funktionalität durch den Zu-
sammenschluss kleiner, unabhängiger, kohäsiver und lose gekoppelter Programme konzi-
pieren. Diese Programme interagieren über leichtgewichtige, auf Nachrichtenaustausch
basierende, technologisch heterogene Kommunikationskanäle. Microservices unterliegen
einer implizit nebenläufigen Ausführungsmodalität durch den Prozess-Scheduler des Be-
triebssystems. Diese Arbeit vergleicht die Programmierung von nebenläufiger Ausfüh-
rung mittels Actors und Microservices relativ zu einem nichttrivialen Fallbeispiel eines
nebenläufigen Systems. Wir argumentieren, dass beide Ansätze viele Gemeinsamkeiten
und wenige aber wichtige konzeptionelle Unterschiede besitzen. Beide Modelle haben
gleichwertige Möglichkeiten um typische Anliegen der nebenläufigen Programmierung
wie Kommunikation und Skalierbarkeit auszudrücken. Jedoch unterliegen die Modelle
unterschiedlichen Trade-offs. Wir stellen Implementierungen des Fallbeispiels bereit, wel-
che jeweils auf Actors bzw. Microservices basieren. Die Resultate eines Benchmarkings
dieser Implementierungen legen nahe, dass Actors eine bessere Systemeffizienz verbunden
mit einer kleineren Codebasis ermöglichen. Microservice-Architekturen hingegen konsu-
mieren erheblich mehr Systemresourcen und leiden vor allem unter den Auswirkungen
rein synchroner Kommunikationsmechanismen.

xi

To whom it may concern

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Methodological Approach . 2
1.3 Structure of the Thesis . 2

2 Concurrent Computation 3
2.1 Foundational Issues . 4
2.2 Concurrency, Parallelism and Distribution 5
2.3 Correctness Properties . 6
2.4 Programming Abstractions . 7

2.4.1 Language-Construct Approach . 8
2.4.2 Operating System Approach . 9
2.4.3 Network Approach . 11

3 Actor Model 13
3.1 Message Passing and Encapsulation . 14
3.2 Unified Abstraction . 15
3.3 Actor Systems and Variations . 16
3.4 Active Objects . 17
3.5 Integration of other Concurrency Abstractions 20

3.5.1 Futures . 20
3.5.2 Software Transactional Memory 21

4 Microservice Paradigm 23
4.1 Limits of Centralization . 24
4.2 Term Ambiguity . 25
4.3 Independence and Interaction . 25
4.4 Concurrent and Distributed Building Blocks 26
4.5 Size, Scope and Granularity . 27
4.6 Service-oriented Programming . 28

5 Implementation 31
5.1 Concurrent System Scenario . 31

5.1.1 Domain Description . 32

xv

5.1.2 System Components . 33
5.1.3 Processing Pipelines . 35

5.2 Actor-based Implementation . 36
5.2.1 Striving for Isolation . 37
5.2.2 Utilizing other Concurrency Constructs 40
5.2.3 Communication Abstractions . 42
5.2.4 Supervision and Monitoring . 47
5.2.5 Information Routing and Delivery Reliability 48
5.2.6 Persistence and IO . 50

5.3 Microservice-based Implementation . 51
5.3.1 Service Technology Stack . 52
5.3.2 Internal Service Concurrency . 53
5.3.3 Isolation and Persistence . 54
5.3.4 Communication Mechanisms . 55

6 Evaluation 61
6.1 Expressiveness and Capabilities . 61

6.1.1 Encapsulation and Isolation . 62
6.1.2 Communication and Message Routing 65
6.1.3 Conception of Concurrent Execution 67
6.1.4 Scalability and Modularity . 70
6.1.5 Integrating Actors and Microservices 74
6.1.6 Software Artifact Analysis . 78

6.2 Efficiency and Benchmark . 80
6.2.1 Performance Metrics . 80
6.2.2 Simulation Workloads . 81
6.2.3 Experiment Setup . 82
6.2.4 Benchmark Results . 83
6.2.5 Relevance of the Benchmark . 86
6.2.6 Threats to Validity . 87

7 Conclusion 89
7.1 Research Questions Revisited . 89
7.2 Contributions . 91
7.3 Future Work . 91

A Feed Structure Example 93
List of Acronyms and Abbreviations 95
List of Figures 97
List of Tables 99
Bibliography 101

1 Introduction

I think the computer is the world’s
greatest toy. You can invent wonderful
things and actually make them happen.

— Butler Lampson

The physical world is a composition of simultaneous activities. Programmers experience
nature as a concurrent environment. As such, the idea of simultaneous actions has not
been absent from the intangible world of computer programming. Numerous models to
conceive concurrent execution have been proposed over the decades. Now that many-
core machines are widespread and distribution is popular in the current trend of cloud
computing, concurrent programming techniques have become essential. Many of the
proposed models are therefore now heavily applied in practice.

In this thesis, we pay attention to two approaches toward concurrent programming.
The first approach is the actor model [59], a decade-old model dedicated to express
concurrency. The second approach is based on the microservice paradigm [42], originally
an architectural style for software systems that adds concurrent execution implicitly.

1.1 Problem Statement

Dragoni et al. [34] point out that there is yet a gap in the literature that emphasizes
the connections of the actor model and the microservice model. This work aims to fill
this gap, with a focus on the concurrent programming aspects of these two concepts.
Specifically, we ask the following research questions:

RQ1 Why do actors and microservices qualify for programming concurrency?

RQ2 How do the actor and the microservice model facilitate concurrent execution?

1

1 Introduction

RQ3 What are the expressive capabilities of actors and microservices regarding
concurrent programming concerns?

RQ4 How does the performance of actors and microservices compare in a multi-
core environment relative to a concurrent system scenario?

1.2 Methodological Approach
We conduct our research using the following methodological steps:

1. Identify the key characteristics and resulting model semantics of actors and mi-
croservices through literature review.

2. Define a non-trivial scenario for a concurrent system.
3. Develop two implementations of this scenario. One implementation is based on

actors and the other implementation is based on microservices.
4. Using the knowledge gained from implementing the systems, evaluate the expres-

sive capabilities of both models.
5. Perform an efficiency benchmark of both system implementations.
6. Evaluate the benchmark results, and answer the research questions.

1.3 Structure of the Thesis
This thesis has the following structure: Chapter 2 discusses concurrency in general with
a focus on the concerns relevant for our subsequent discussion. Chapter 3 introduces the
actor model of computation and subsequently Chapter 4 the microservice architecture
style. Chapter 5 concerns programming with actors and microservices, where Section 5.1
describes a scenario system we implement, Section 5.2 the implementation strategies with
actors, and Section 5.3 the implementation strategies with microservices. Chapter 6
evaluates both programming models based on the implementations, where Section 6.1
concerns the expressiveness of the models, and Section 6.2 their efficiency. Chapter 7
gives our conclusive view.

2

2 Concurrent Computation

What matters for simplicity is that
there’s no interleaving.

— Rich Hickey

Computation is conceived through the execution of instructions. We call activities se-
quential, if their list of atomic statements execute in a sequential manner. Given two
or more sequential activities are executing either pseudo-simultaneously (in alternation
on a single processing unit), or truly simultaneously (on multiple processing units), they
interleave and we therefore call these activities concurrent. Interleaving weakens the
total ordering from sequential actions to a merely partial ordering. As a result, concur-
rency is nondeterministic. Repeated invocations on the same input can result in different
outputs in general [6,18,122]. In this chapter, we cover the foundational concerns of con-
currency, the distinction to parallel and distributed computing, correctness properties,
and different kinds of programming abstractions.

The overall requisite for every kind of concurrency is the simultaneous presence of mul-
tiple active computational units. Depending on the context in which scholars discuss
concurrency, they established different terminologies. The programming language level
often uses the term thread for the concurrent unit. Concurrency theory uses the process
construct in general [122]. However, the term process interferes with other notions of ex-
ecutable units we discuss in due course. In order to be able to refer to different concepts
without aliasing among the terminologies, we follow the suggestion of Ben-Ari [18] and
denote abstract units of activity as tasks throughout the remainder of this thesis. This
designation is an homage to the Ada programming language, where task refers to an
activity associated with a concurrent unit. The term is well-known and offers a neutral
way to refer to every kind of concurrently executed computation within a logical unit.

3

2 Concurrent Computation

2.1 Foundational Issues

Many different notions of concurrency exist. Regardless of the chosen approach, we
always have to pay attention to three basic concerns [12]:

Expression of concurrent execution
Concurrent computation must be indicated. The literature proposes various abstrac-
tions and subsequently numerous implementations exist in practice. We discuss some
of these abstractions in due course. In general, all concurrency abstractions need to
provide the possibility to define tasks as well as manage the tasks [14]. Examples
are channels, coroutines, fork and joins, futures and threads. The interfaces for the
creation of tasks can be arbitrary, e.g. as primitives directly within a programming
language, as libraries and through operating system calls.

Communication
Tasks must be able to interact and cooperate. Communication allows tasks to in-
fluence each other [12]. The shared state communication style rests on commonly
accessible memory (e.g. variables, objects, etc.). Several tasks then interact by read-
ing and writing to the same state. In contrast, message passing communication
forgoes any access to shared data. Instead, it builds on the exchange of messages
(fixed, immutable data) sent through communication links. The links are additionally
required elements. Shared memory is only possible among tasks which gain access
to a common memory section. A shared physical machine is the most basic form to
get access to shared memory between tasks. A network can also simulate a mutual
memory region. Message passing on the other hand is not even concerned by the lo-
cality or remoteness of memory. Messages can transit numerous links between sender
and recipient. Therefore, messages easily bypass machine boundaries [36]. Message
passing can happen in either synchronous fashion (messages are sent and the execu-
tion delays until the response is available) or asynchronous fashion (the execution
resumes immediately after sending a message) [12].

Synchronization
Although concurrent execution has merely a partial ordering, communication still re-
quires some ordering constraints. We must perform an action before we can detect its
effect. Synchronization refers to mechanisms we use to ensure such constraints [12,97].
Semaphores, locks and transactional memory are prominent examples. The literature
mostly discusses synchronization techniques regarding the shared state scenario, since
the communication requires state modification by the sender before the receiver is
allowed to read the information. Also, only one task can modify state at a time to
avoid unexpected behavior due to low-level data races. The modification or evalua-
tion of shared state occurs within a critical section or critical region. Synchronization
mechanisms realize mutual exclusion where no task can access the shared state while
another is within its critical region [18,122].
Message passing on the other hand provides an implicit form of synchronization.

4

2.2 Concurrency, Parallelism and Distribution

Intrinsically, a message must be sent before it can be received. As a result, the se-
mantics of message passing constrains the order by design [12]. Synchronous passing
additionally constraints the sender from resuming its computation until it receives
an answer.
There are two kinds of synchronization mechanisms. Enforced primitives guaran-
tee no access to the state outside the primitive, thus ensuring order. Unenforced
primitives grant a certain degree of freedom in their usage and therefore provide no
guarantee of mutual exclusion, as do e.g. semaphores [36].

2.2 Concurrency, Parallelism and Distribution

So far, we have discussed concurrency as a generic term that denotes a simultaneous ex-
ecution of activities. Yet there are more diverse notions that regard the implementation
of concurrent execution. A strict distinction in our terminology is therefore in order.

We use concurrency to refer to the multiplexing of multiple tasks among one or more
processors. We cannot make more specific assumptions in general. On a single central
processing unit (CPU), the interleaving of computation is merely pseudo-simultaneous
via time slicing, since all computation is still sequential [118].

Parallelism refers to truly simultaneous execution on different CPUs. Whether parallel
execution is possible depends on the concurrency abstraction and its implementation [14].
On a programming language level, referencing components is usually subject to physical
limitations regarding the program’s memory. For example, objects can only reference
other objects that are inside the memory space of the same program in general [97]. We
regard a notion of concurrent objects that is able to surmount this restriction in due
course. This limitation on memory space does not prevent us from writing concurrent
code in general. But the limitation certainly complicates the writing of parallel code,
e.g. when we use shared state communication. Parallel execution requires code execution
on different CPU cores at the same time, which usually means distinct process memory
boundaries. Inter-component communication must happen across memory and process
boundaries. If a programming language uses a virtual machine (VM) to execute code, we
can charge transparent inter-component communication across boundaries to this VM.
For example, the Java Virtual Machine (JVM) has different approaches to implement
threads. One is to map Java threads to system processes for parallelization [54]. The
JVM hides the resulting gap in memory sections transparently. Writing explicit parallel
code, e.g. with a Fork/Join framework, can be painful and requires us to explicitly
prepare code segments and data that we can process in parallel [89,122].

Distributed computation is regarded by the literature as its own research discipline sepa-
rate from parallel computation. However, both concepts build on the same fundamental
idea: Truly concurrent execution (as in at the same time) of physically distributed
tasks [5]. Agha, Frølund and Kim formulated a simple and sound argumentation [6]:

5

2 Concurrent Computation

“In a parallel computation some actions overlap in time; by implication these
events must be distributed in space.”

This argument suggests that every parallel task is also a distributed task in a certain
sense. The major distinction is that we expect parallel tasks to be physically closer to
each other (same CPU) than distributed tasks (distinct CPUs and machines). Due to
this distance, distributed tasks cannot share main memory directly [5,25]. Distribution
therefore relies on message passing communication over the network. Of course, we can
use the network to create abstractions for shared memory, so-called spaces. One example
for a space is the Linda model [18,122].

Due to the physical separation, a subset of all distributed tasks executes on different
locations (host machines) in general. We also refer to these hosts as nodes [18]. A single
node can have one or more processors on which one or more tasks run concurrently. As a
result, we make three fundamental observations about the interrelations of concurrency,
parallelism, and distribution:

1. Concurrent systems can be parallel and distributed.
2. Parallel and distributed systems are inherently concurrent.
3. Distributed systems with two or more nodes are parallel.

Baeten [15] gives a general definition that incorporates these interrelations and which
reflects our view on concurrency within this thesis:

“Concurrency theory is the theory of interacting, parallel and/or distributed
systems.”

In subsequent sections, we pay attention to two selected task abstractions. Both conceive
concurrent computation in general. Additionally, they are able to provide parallelization
and even distribution in a transparent way.

2.3 Correctness Properties
On a fundamental level, the basic purpose of every program is the computation of a
result. From a sequential program, we always expect the same results for the same
inputs1. We can verify the correctness of a program using theoretical methods, although
these methods are not widely adopted in practice. For concurrent programs, many
standard verification techniques do not hold anymore, due to the intrinsic interleaving
of computations [18].

Many different issues regarding concurrent computation are well-known in the literature.
Examples are deadlocks, livelocks, starvation, race conditions, mutual exclusion and
1All sorts of side effects, like IO, are also forms of input to a program and must be stable as well.

6

2.4 Programming Abstractions

fairness. Due to the high-level view on concurrency in this thesis, we do not immerse
into detailed discussions on each of these issues, as we often find it in other literature
that concerns concurrency concepts. Here, simply two types of properties are relevant
to us. Both types have an effect on the correctness of concurrent programs. We can
classify all the issues we gave above in terms of these two property types [25,127,133]:

Safety
asserts the operations that are allowed (safe) to be performed. As a result, given
correct inputs result in correct outputs, while the computation never enters an unde-
sired state. Examples of safety properties are race conditions and mutual exclusion.
Informally, safety guarantees that “nothing bad will happen”.

Liveness
asserts the operations that have to be performed, such that a certain state will
be reached eventually (progress). In other words, if we provide correct inputs, we
have the guarantee for correct outputs in finite time (cf. termination in sequential
programs). Examples of liveness properties are fairness, starvation, and reliable
communication. Informally, liveness guarantees that “something good will happen”.

Safety is invariant, such that a property P holds in every state of every execution. In
contrast, liveness of P demands that the property holds in some state of every execution.
As a result, safety and liveness have a so-called duality relationship. The negation of a
member of one type is a member of the other [18]. Safety relates to partial correctness
(the result is correct if the program terminates). Liveness on the other hand relates to
total correctness (the programs terminates with a correct result) [25].

We have found deadlocks (blocking operations which for some reason do not unblock)
to have a controversial role. On the one hand, an execution path must not lead into a
deadlock (safety), while a deadlock also threatens the progression of a program, thus its
liveness. In contrast, so-called livelocks (loops never meeting their termination condition)
are, as the name suggest, clearly relate to liveness. The operations of a livelock are safe
while the program does not progress.

2.4 Programming Abstractions

Most programs are concurrent in some way. An example of implicit concurrency is
input/output (IO). There, we trigger IO devices to perform operations simultaneous to
the executing program [25]. Also, compilers and interpreters exploit the concurrency
inherent to a language’s constructs. On the other hand, explicit concurrency must be
indicated. We require appropriate programming abstractions. In general, we require
concurrency abstractions to be powerful and expressive models, fit harmoniously into the
programming language in terms of their interface, and exploit the underlying hardware
resources efficiently [126].

7

2 Concurrent Computation

2.4.1 Language-Construct Approach

Many different approaches to explicitly express concurrent computation on a program-
ming language level were proposed over the decades and are now in use. A program-
ming language either provides concurrency constructs by design, or we can utilize such
constructs through libraries and frameworks [18,122]. Therefore, most concurrent task
abstractions are available in most programming languages. The implementation part
of this thesis in Chapter 5 is in the context of Java and its virtual machine. A brief
discussion of Java’s basic approach towards concurrency is in order, since alternative
abstractions have to build on it.

Case Study: Concurrency in Java

Java is an object-oriented programming language with a C-inspired syntax for the JVM.
The language expresses concurrency via threads and offers basic concepts to manage the
access to shared resources. We define concurrent computation through the Runnable in-
terface. The default implementation of Runnable is available in the Thread class [44,46].
The following example illustrates the principle approach:

class State {
public int x = 0;

}

final State s = new State();
final Runnable task = () -> {

final String name = Thread.currentThread().getName();
synchronized(s) {

s.x += 1;
out.println(name + " " + s.x);

}
};

new Thread(task).start();
new Thread(task).start();

The synchronized primitive allows us to express mutual exclusion to a shared resource
whenever concurrent modification to this resource is possible. In this example, s denotes
some state. Two threads have access to s through the scope of the Runnable lambda.
Note that though we declared s as final, its publicly visible member x remains mutable.

The mechanism behind Java’s synchronization is locking on a common reference among
all involved threads, the so-called monitor object [44,46]. When we use synchronized
as a block construct, we must provide this monitor as an argument. In our example, the
state variable simply doubles as the monitor in addition to being the shared resource.
Alternatively, we could have used the synchronized keyword also as a part of the

8

2.4 Programming Abstractions

signature of a method in State which holds the logic. A synchronized method signature
is equal to synchronized(this) around the whole method’s body, where this refers
to the object s. The method’s object reference then acts as the monitor, just as in our
example.

A more modern alternative towards synchronization is the Lock interface. The pre-
vious synchronized keyword is an enforced synchronization primitive. The locks of
synchronized are always exclusive to one thread at a time. In contrast, the various im-
plementations of Lock do not need to be enforced. Locks can therefore offer fine-grained
options to control the locking, e.g. for simultaneous access of multiple readers [44,132].
To provide this degree of freedom, Java neither detects shared state nor requires its syn-
chronization per se. As a result, programmers can easily introduce data races when they
simply omit access control. Alternative concurrency abstractions for Java, e.g. through
libraries and frameworks, always have to take this into account.

Expressing concurrency on the programming language level has its perils due to the
overlapping of language concepts. We have already demonstrated the introduction of
mutable state via scopes and visibility. Many concepts have an influence on concurrency
considerations. Shared mutability and synchronization especially require utmost care of
the programmer for handling access to the data.

2.4.2 Operating System Approach
Operating systems (OS) use the process as their computational model. A process de-
scribes the instantiation of a program image with associated resources (e.g. memory).
Processes express dynamic execution. In the most basic case, a single processor alter-
nately executes these computational units. Scheduling is the activation and passivation
of processes and it is in the responsibility of the operating system. Scheduling results
in a quasi-parallel execution of active processes. If we utilize multiple processors, the
execution is truly parallel [14,122]. As a result, we can state that processes are inherently
concurrent units due to their execution modality.

In contrast, threads are tasks inside a process. One process can have numerous threads
which all share the same memory space [134]. Since threads within the same process
have access to the same memory locations, we are free to introduce shared state among
them. In the Java case study, we already demonstrated that shared state requires syn-
chronization. In contrast to the JVM, an operating system strictly enforces the memory
boundaries between processes. Communication between two processes requires either an
explicit arrangement of so-called shared memory, or another means of message passing
communication which we subsume as inter-process communication2 (IPC) [14,94]. We
extend our focus on OS-conceived concurrent tasks which rely on IPC in due course. A
consolidating example for future reference is in order.
2In concurrency theory, process is also the general term for a concurrent unit, as we have mentioned.
Therefore, the literature often denotes all communication between concurrent units as inter-process
communication. To avoid confusion, we use the IPC designation only for communication mechanisms
between OS processes.

9

2 Concurrent Computation

Case Study: Concurrent Processes in C
Only with C113 did the programming language add native support for the expression
of concurrency via threads. Prior to this, programmers had to use more operating
system depending approaches like the POSIX4 threads binding pthreads. An additional
strategy was to compose concurrent computation in an ad hoc way by relying on the
operating system’s scheduler to assign processes to processors in a concurrent way [14,36].

An operating system allows a process to spawn new processes. The process we call
the parent uses system calls that the OS provides to spawn a new process we call the
child. For example, the exec-family of Unix calls allows us to instantiate arbitrary pro-
cesses from executables we reference through a filesystem path. However, the new child
replaces the parent process. exec-calls alone are therefore not insufficient to compose
concurrency [94]. The expedient path is the alternative fork-call. It replicates the cur-
rent process’s address space into a separate address space of a new child [14,36]. The
following example illustrates the control flow:

void
parentBehavior(int fd[]);

void
childBehavior(int fd[]);

int
main(void)
{

int fd[2];
pipe(fd);

pid_t pid = fork();

if (pid == 0)
childBehavior(fd);

else
parentBehavior(fd);

}

Both processes are based on the same program image. The parent receives the process
identifier (PID) of the child process as the result of fork(). The child does not receive its
own PID information. We can therefore use the PID to distinguish the further program
flow of both processes. This mechanism effectively supports two separate behaviors.
Consecutive forks are possible of course.
3The C standard revision of 2011, specifically ISO/IEC 9899:2011 . It succeeds C99, the 1999 revision.
4Portable Operating System Interface, a collection of standardized programming interfaces for operating
systems. The X is a remnant from the original draft name IEEE-IX .

10

2.4 Programming Abstractions

By using additional Unix system calls, we install a so-called pipe as the IPC between
the two processes. Pipes are a form of byte stream across the memory boundaries of the
respective processes [14]. Since Unix follows an everything is a file design principle, two
file descriptors symbolize the endpoints of the pipe. This principle makes the interfaces
simple and consistent [126]. The first descriptor fd[0] is in read mode and the second
fd[1] in write mode. For example, the parentBehavior writes data to fd[1] and
the childBehavior subsequently reads this data from fd[0]. Hence, the data crosses
memory boundaries. Pipes are a communication link for message passing which avoid
the critical region problem.

2.4.3 Network Approach
As we have outlined, distribution is another approach to the conception of concurrent
execution within a system. Aside from the lack of shared memory, the distinguishing
characteristic between parallel and distributed computing is the geographical distance
between tasks. Therefore, the communication between distributed tasks happens via net-
worked message passing mechanisms. Networks introduce a wide range of perils. We can
neither assume that the communication links are reliable nor static. Also, messages are
more costly in terms of time (latency) and effort (e.g. due to data serialization) [5]. The
famous Fallacies of Distributed Computing by Deutsch subsume many of the problematic
aspects [134]:

Fallacy 1: the network is reliable.
Fallacy 2: latency is zero.
Fallacy 3: bandwidth is infinite.
Fallacy 4: the network is secure.
Fallacy 5: topology doesn’t change.
Fallacy 6: there is one administrator .
Fallacy 7: transport cost is zero.
Fallacy 8: the network is homogeneous5.

Fallacies 4 and 6 are outside the scope of this thesis. The remaining aspects are rel-
evant to some concepts we have already discussed or will soon discuss. For example,
Fallacy 2 affects synchronous communication. Asynchronous messaging does not con-
cern the latencies which delay the travel time of messages. Time constrains synchronous
communication and therefore the network-induced latencies also affect synchronization.

All concurrency through distribution is subject to these fallacies in general. Network
programming interfaces depend on the concrete network mechanism. A very basic ex-
ample is the concept of sockets that Unix introduced. The standard interface of sockets
provides the means to write data to the network. Alternatively, we use a socket to
receive data from the network [14,134]. Practically every operating system provides
5Fallacy 8 was not part of Deutsch’s original proposal, but later added by Gosling. Hence, the literature
sometimes refers to merely seven fallacies.

11

2 Concurrent Computation

sockets and bindings exist for almost all programming languages. Therefore, sockets
are a technology-heterogeneous mechanism, although rather low-level (transport layer).
More high-level is for example HTTP (Hypertext Transfer Protocol), a generic, orig-
inally stateless and text-based communication protocol that provides platform-neutral
data transfer on the application-level [30].

12

3 Actor Model

Some problems are better evaded than
solved.

— C.A.R. (Tony) Hoare

In this thesis, we particularly focus on one of the traditional models of concurrent com-
putation. In the 1970s, Hewitt et al. [59] formulated the actor model of computation. As
the name suggests, this model builds upon the concept of actors as basic building blocks.
In this chapter, we describe the model’s properties, its unified abstraction, different im-
plementations of the actor model, and its combination with other models of concurrent
computation.

Agha [2] describes actors as self-contained, interactive and independent components that
communicate via asynchronous message passing. He also reformulated the actor model
into three basic primitives an actor can perform upon receiving a message [4]:

1. Send a finite number of messages to itself and other actors.
2. Create a finite number of new actors.
3. Substitute its current behavior with a replacement behavior .

In order to send a message, we must know the unique address of an actor. The underlying
actor system delivers every message. In general, the order of delivery is nondeterministic.
We can announce an actor’s addresses by sending the address as a message. This method
of propagating location information provides the ability of dynamic reconfiguration [2].

An actor processes one message at a time. Every message gets buffered in the so-called
mailbox, if an actor is not able to process an incoming message immediately, because it
is already engaged in a message handling operation. Access to the mailbox is race-free,
and therefore safe [54].

13

3 Actor Model

3.1 Message Passing and Encapsulation
The actor concept defines that the only possible form of communication between actors
is the exchange of messages. This restriction implies that there is no directly shared state
between actors. An actor encapsulates its entire state exclusively. To access an actor’s
state, we must send a message that requests the state information. Actors process
messages in a serialized fashion. This provides the basis for isolation [90]. All state
modifications an actor does while it processes a single message appear to be atomic.
New messages do not interrupt an actor that currently processes a message [5], because
the mailbox buffers all messages.

It is important to realize that the state information we request from an actor is a mere
snapshot of the actor’s state at a specific point in time (the point when this actor
processed the respective message). When we receive a snapshot answer, we must be
aware that this information is already outdated in general [12]. On the other hand, the
isolation of state frees actors from the implications of shared state and resource handling,
like the bottlenecks that sequential locking introduces [2]. We must either copy, proxy,
or make the messages otherwise immutable in order to ensure that the snapshots do
not violate the encapsulation semantics and prevent that we accidentally expose a direct
access to internal state or resources [87]. This immutability guarantee enables save
coordination at a distance [58].

Conceptually, we realize the internal state changes within an actor through the third of
the basic primitives: behavior replacement. In general, this primitive changes the behav-
ior of the actor entirely. The actor taxonomy also calls this to become different operations
for all following messages. However, the behavior can also become the same operations,
but for a different state [140]. It is important though that behavior replacement does not
break the referential transparency of the actor’s address [2]. Therefore, changing actor
internals has no effect on its reachability for other actors. The actor logically stays the
same, but behaves differently for the next message. This strict encapsulation of state
and decoupling via immutable and asynchronous message passing leads to a strong form
of isolation between actors [3]. State within an actor is mutable, but isolated from the
outside and only available through immutable snapshots.

Additionally, an actor only changes state while it processes a message. Therefore, as
De Koster et al. [87] illustrate in detail, we can view the processing of a single message
as an isolated operation. This is important when we reason about actors, because we
always have to reason with respect to the single-threaded semantics that provides the
granularity of a turn6 [20]. We call this the isolated turn principle. This principle
guarantees the safety of actors, because they are free of low-level data races. However,
high-level races (depending on the interleaving of messages within the mailbox) can still
occur. The isolated turn principle also guarantees computational progress with each
turn [9], and thus liveness.
6In this context, turn refers to the processing of a single message. The literature defines various termi-
nologies. A good overview of actor model taxonomy and the equivalence of various terms gives [87].

14

3.2 Unified Abstraction

3.2 Unified Abstraction

Until now, we have described the actor model as a general model of computation. The
abstraction of actors provides a strict separation of component states, as well as a loose
coupling via asynchronous message passing. Actors encapsulate not only data and func-
tionality, but also their own thread of control, making actors autonomous [5]. This
autonomy enables the concurrent execution of actors, effectively turning the actor ab-
straction into a model of inherent concurrent computation [8].

There are numerous models which are able to provide inherent concurrency, e.g. logic
programming or functional programming. The benefit of the actor concept however is its
support for the direct expression of state [8]. This state is only mutable within an actor
and while the actor processes a message. Each turn is atomic. Omitting to share state
and only communicating information via asynchronous message passing greatly improves
the safety of actors, as it eliminates a whole class of errors, the race conditions [27].

The dynamic data flow of messages is the primary source of nondeterminism. We get
no guarantee on the order of messages when various actors send messages to the same
actor. Yet the actual order of processing the messages affects the behavior, resulting in
nondeterminism. A not enforced message order however eliminates unnecessary synchro-
nization overhead [2,5,85].

The actor model provides a strict concept of isolated and decoupled components. The
only link between actors is the delivery of messages, based on their addresses. These
addresses are virtual since they do not expose physical location information [20,135].
Addresses therefore do not restrict actors to physical locations. As a result, we do not
require the concurrent units to be inside the same process boundaries, nor the same host
machine. The addresses bridge the gap in physical distance. Location transparency is
the general term for separating the virtual and physical location [5,85]. The concurrent
components of the actor model inherently support parallel component execution, since
they can be transparently assigned to processor cores.

Additionally, location transparent addresses enable us to reference actors even outside the
scope of a CPU. We get the foundation for distributed execution on different nodes [85].
We refer to the execution on the same CPU as intra-node parallelism, and to the dis-
tributed execution as inter-node parallelism [117]. Intra-node components are still phys-
ically close, and we can assume that their communication channel is reliable. Inter-node
components have no guarantee on the safety and reliability of their communication chan-
nel. The messages must travel via network links (cf. Fallacy 1: the network is reliable).
The only valid assumption is that communication is more costly and volatile in any
case [5]. A particular characteristic of the actor model is therefore the facilitation of
one and the same primitive for task unit communication in concurrent, parallel and
distributed execution contexts.

15

3 Actor Model

3.3 Actor Systems and Variations

Actors are autonomous computational entities, but not individually deployable on op-
erating systems in general. They require a runtime environment, the so-called actor
system, to exist within. Actor systems have two general concerns: they provide the lin-
guistic support to utilize the actors (programming interface and model semantics) and
they realize efficient actor execution [85].

Depending on the underlying programming model, the actor concept and primitives can
pose a challenge for programmers. The model primitives provide a very low-level abstrac-
tion to express computation in an (almost) pure communication paradigm. Therefore,
actor systems aim for additional, more high-level primitives [2,140], e.g. to express vari-
ous other communication patterns.

Efficiency can pose a challenge, since the runtime must use the idioms of the underlying
system or platform to map concurrency to the actor abstraction. In thread-based envi-
ronments like Java’s virtual machine, we are forced to execute the relatively lightweight
actor constructs on top of the relatively heavy JVM threads. One implementation for
JVM threads is the direct mapping of a thread to an OS process. In this case, each
actor is executed as a system process. Haller & Odersky [54] call this an impedance
mismatch between message passing (event-based) and thread-based programming. In
this concrete example, a runtime can mitigate the negative impact by not assigning one
dedicated thread per actor. Instead, the runtime can employ a scheduling strategy sim-
ilar to operating systems. With scheduling, many actors share the resources that fewer
threads provide [85].

Numerous actor system implementations do exist. All diverge in term of features and
model semantics realization. We have identified three that merit special attention:

Erlang
A programming language dedicated to actor-based programming is Erlang [13,137].
It is well-known for introducing the programming with actors to a broader industrial
application. Ericsson first used Erlang in 1986 to build telecommunication infra-
structure. In contrast to most programming languages, an Erlang program has the
main focus on its so-called process constructs (actors), rather than e.g. objects or
functions. Erlang is designed to meet challenges like high concurrency, availability,
fault-tolerance and live-upgrades [87,137].

Akka
Released in 2009, Akka [64] is the most important actor framework for the JVM to-
day. It offers bindings for the Java and Scala programming languages. Akka is highly
inspired by Erlang and facilitates many of the same conceptualities in order to meet
similar concerns. Examples are scalability, fault tolerance and remoting/distribution.
As a library, Akka faces conceptual difficulties which endanger the actor model se-
mantics. Ecosystems dedicated to the actor model typically avoid these dangers, as

16

3.4 Active Objects

does Erlang with its virtual machine, the BEAM . Section 5.2 concerns Akka and the
challenges that the JVM presents as the target platform in more detail.

Orleans
A recent variant of an object-oriented interpretation of actors called active objects
is Orleans [20]. Microsoft Research constructed Orleans in 2011 to meet the re-
quirements of highly distributed deployment setups, currently referred to as cloud
computing, on the .NET platform. Orleans facilitates what it calls the virtual actor
model. A virtual actor (called a grain) does not exist physically as an entity all the
time. The actor runtime only (re-)instantiates a grain on demand automatically. In
contrast to most other actor variants including Erlang and Akka, this omits the need
for lifecycle management. The virtuality characteristic turned out to be more suitable
in high-scale dynamic workloads of today’s cloud computing deployment setups.

To our knowledge, Erlang, Akka and Orleans have the most significance in industrial
applications. In the remainder of this thesis, we refer to individual characteristics of all
three actor variants to point out relevant differences and noteworthy capabilities.

3.4 Active Objects
As we pointed out, actor systems often aim to provide a more high-level interface than
the mere basic primitives to express concurrency. One specific way to realize a higher
level is through the concept of objects we know from the object-oriented programming
(OOP) paradigm. Objects encapsulate state and offer operations on this data [2,140].
In the terminology of the Smalltalk programming language, we invoke an operation
by sending a so-called message to an object. This terminology already points out the
conceptual resemblance between actors and objects in general [122].

Yonezawa et al. [144] were the first to introduce classic passive objects extended by their
own thread of control in a programming language they call ABCL/17. The state of an
object in ABCL/1 is only accessible from within the object itself. We access or modify
the state through the invocation of public interface methods of the object. However, the
objects are not idle by default and only perform operations when we call their methods.
ABCL/1 objects are active on their own, since they live in their own thread. Hence comes
their name: active objects (AO). When an active object’s method is invoked, the actual
method execution is decoupled and performed concurrently. A proxy object realizes the
method invocation on the client side (invoker). The proxy merely mirrors the AO’s
public interface and handles the message dispatch. The actual computation runs inside
a server object on a separate thread [88]. Meyer [97] points out one general notion of
the concurrency conception of active objects that emphasizes a viewpoint which we pay
more attention to in due course:
7Actor-Based Concurrent Language. The /1 indicates that it is merely the first of a whole family of
languages. We have found it often omitted in the literature. Consecutive versions do not follow a
sequential numbering, e.g. ABCL/R, ABCL/f or ABCL/c+.

17

3 Actor Model

“Each object is a single, identifiable process-like entity (not unlike a Unix
process) with state and behavior.”

AOs aim for a purely object-oriented version of actors. Scholars have argued that actors
themselves already represent the very essence of object-orientation [2]. There is a decade-
old debated about the fundamental concepts of object-orientation. The author of this
thesis came to the conclusion that the only truly undisputed characteristic seems to be
the encapsulation of state [86] coupled to a set of operations which share this data [140].
Additionally, actors share object concepts like the ability to be created, having a unique
identity (address) and a public interface [129]. As a result, it has often been argued
that either actors are convenient for the foundation of active objects, or that AOs are
suitable to implement actors [88].

It is worth to point out that due to this similarity of the actor construct with the object
essence, scholars do not use the terminologies consistently. We have found that the
literature often uses active object interchangeably with the actor term. In this thesis,
we use actor to refer to Hewitt’s concept that Agha later refined. Subsequently, we use
active object for the object pattern of Yonezawa to abstract the actor semantics into a
classic object API.

The following example illustrates the subtle difference in the behavior of classic versus
active objects:

class Fnord {
private int a = 1;
void add(int b) {

a += b;
}
int get() {

return a;
}

}

Using the above class Fnord, we create the following simple procedure:

1 final Fnord f = ...; // obtain reference to an instance
2 f.add(1);
3 print(f.get());

In a single-threaded program, once the execution reaches line 3, we can safely assume
that the addition finished and the internal field a has the new value. The get() call
subsequently results in 2.

Now we alter the definition to class Fnord extends ActiveObject with some arbi-
trary base class ActiveObject that turns Fnord into an active object implementation.

18

3.4 Active Objects

Then, the previous observation does not hold anymore. When the execution reaches line
3, we have no guarantee that the addition was already executed. Line 2 only dispatched
the message and returned to leave the activity to its own flow of execution. Line 3 then
blocks (because get() has a return value) and waits until we receive an answer. But we
cannot assume that we receive the value 2 anymore. The active object can receive other
messages and process them between our add(1) and get() messages. The nondetermin-
ism we introduce through the concurrent behavior hinders us to safely reason about our
result value.

We see, although active and passive objects offer the same interface, they do not provide
the same degree of safety. The author of this thesis believes that this safety mismatch
is dangerous for programmers in general. The classic actor variants regarded by the
author (Erlang, Akka) do not provide interfaces that we can mistake for non-concurrent
entities. Therefore, these actors do not offer us a false sense of safety. However, there
is one major benefit of active objects compared to classic actors. The object interface
provides type safety. Messages to AOs are strongly typed [88]. In contrast, we can send
arbitrary types of messages to ordinary actors. Only when an actor processes a message
at runtime, it decides whether the behavior is actually able to understand the message
type. Actors therefore perform dynamic type checking at runtime – even in statically
typed programming languages.

On the other hand, active objects provide ordinary object-like interfaces. We send a
message to an AO when we call a method of the object with a fixed signature (the proxy
respectively). We are only able to call the methods of the object’s public interface. A
compiler statically ensures the message validity at compile time. Due to the nature of
AO interfaces, they only provide message passing in a point-to-point communication
style. Broadcasting messages hypothetically requires one method call to address several
objects. This behavior is not intended by the object abstraction [144].

The active object method signatures do not only define communication with a certain
degree of static type safety. Every signature also influences the behavior of an object’s
thread of control. Therefore, signatures constrain synchronization [88]. In the original
work of Yonezawa et al., they introduce multiple types of message passing for method
invocation [87,144]:

Past Type
The message is dispatched and the sending object’s thread of control immediately
continues. The thread does not wait until the message has been processed by the
receiver. This behavior is equal to message passing in the classic actor model.

Now Type
The message is dispatched and the sender waits for a result. Its thread of control
blocks until the receiver processed the message and replies with the result. This
behavior is equal to a method call (with a return value) on passive objects.

19

3 Actor Model

Future Type
The sender’s thread of control immediately returns with a reference to the result that
will be available at some point in the future. The actual result becomes available
once the receiving object has processed the message and replies with a result.

The example above illustrates two of these behaviors for method invocations on active
objects. void add(int) only dispatches a message and immediately returns (past type).
In contrast, int get(void) actually waits for a result (now type). Using the future
type requires us to include an additional model of concurrency, the future.

3.5 Integration of other Concurrency Abstractions

The actor model is a mature, general purpose model for expressing concurrent computa-
tion. It has some clear principles which we must uphold in order to ensure the intended
semantics. Besides these principles, the model does not make additional assumptions
and restrictions. This makes actors flexible and applicable for general purpose compu-
tation. Concurrency, or the suitability for it, is basically an inherent side-effect. As a
result, we can combine the model with additional, arbitrary approaches to express com-
putation. Even concurrent models are possible, as long as every concept we introduce
does not jeopardize the actor semantics.

As a result, mixing actors with other forms of concurrency was always common. The
reasons for introducing additional abstractions are manifold. Tasharofi et al. [135] em-
pirically found that programmers think that the major inadequacies of actor systems
are their lack of efficient support for blocking operations (especially IO). Also, many
communication protocols are hard to express in an asynchronous messaging style.

In order to overcome these shortcomings, actor systems interweave with additional con-
currency models. We come back and take a closer look at the two deficiencies – efficient
IO and communication styles – in Section 5.2. Before, we must know the requirements for
two concurrency models to be composable without inconsistencies. Swalens et al. [133]
regard two concurrency models as composable if their integration does not result in new
effects regarding their safety and liveness that have not been there before. The isolated
turn principle of the actor model already gives a strong boundary to ensure these prop-
erties [87]. Added concurrency concepts must neither weaken these boundaries nor the
model properties. Especially, the introduction of low-level data races is very easy for
new abstractions and we must therefore carefully avoid any race conditions [135].

3.5.1 Futures

The traditional notion of a procedure call is that the execution flow only continues once
the invoked computation has finished. Of course, the procedure we call can dispatch a
concurrent execution and return without a result. The flow of execution then resumes

20

3.5 Integration of other Concurrency Abstractions

before the computation we called executes. However, if the procedure provides a return
value, we expect the control flow to block until the respective value is available [134].

In many cases however, we do not immediately require the result for the subsequent
computation. The control flow is able to continue without accessing the value for some
time. Therefore, it is possible to resume the caller’s activity, while the called procedure
executes concurrently in a separate thread of control. The procedure initially returns
a simple placeholder that will contain the actual result value at some point in the fu-
ture [38,141]. We use such values in a semi-synchronous fashion. The value calculation
runs asynchronously in general. The calling and the called thread once again synchro-
nize when we access the placeholder for the actual result. We also call this touching or
claiming the value. Attempting to access a placeholder expands to blocking the current
control flow if the result is not yet available [135,141].

The literature does not use a uniform name for the concept of eventually retrievable
values. Baker & Hewitt [16] describe the concept of a future which delivers the result of
an expression eventually. Liskov & Shrira [92] extend this idea and introduce a data type
they call promise for result values that we single-assign at some point in the future. More
seldomly have we found the terms eventual, delay or deferred [114]. Call-by-future [16]
or call-by-need [4] express the kind of evaluation order of these concepts.

Some programming languages, among them Java and Scala, have a special view on
eventual values. These languages support both Futures as well as Promises. A Future
represents a read-only container we use as the placeholder for an eventually available
value. In contrast, a Promise is a single-assignment variable we use to explicitly set a
value at some point in time, i.e. to complete a Future8. In other words, a Future refers
to a Promise that we keep eventually [55,114]. Though today we find all designations
interchangeably used and they refer to roughly the same idea [133], we confine to the
term future. Java and Scala use this name and we rely on the specific future semantics
of these two languages in due course.

There is a long tradition of combining actors with futures. Agha [4] describes that
actors often model call-by-need computation, which is essentially a future. We also
trace future combination back to ABCL/1 and its active object notion [144]. We have
already discussed three kinds of message passing for AOs. The example then merely
demonstrated two (past type and now type). The third, coincidentally called future
type, is actually the result of combining actor concurrency semantics with the future
concurrency abstraction [135]. Orleans uses promises/futures as the only form of method
calls for all active objects [20]. For a complete formal definition of future semantics we
refer the interested reader to Flanagan & Felleisen [38].

3.5.2 Software Transactional Memory
The asynchronous messaging style of actors becomes a burden when we need some sort of
consensus between several actors. The model does not provide an adequate mechanism
8Therefore Java calls it CompletableFuture, instead of Promise as Scala does.

21

3 Actor Model

to abstract operations involving several messages [132]. We need an additional high-level
model on top of the messages.

The transaction is a well-known concept to provide a single-threaded appearance to the
access of state or memory that is concurrently accessible. A transaction encapsulates
a computation that does not have to be atomic by itself (e.g. code block). The effects
of the computation still logically appear to happen within a single instant in time [90].
Therefore, all memory modifications done inside the transaction become atomic from the
outside perspective. If a transaction becomes invalid, the transaction roles back all state
modifications across the entire code segments involved in the transaction. Write collisions
are one reason for transactions to become invalid. Upon a collision, the transaction
cannot guarantee the isolation anymore [132]. Software transactional memory (STM)
refers to transactional semantics realized in software9. In the scope of this thesis, STM
is the only considered transaction mechanism.

Combining transactions with actors can have a huge impact on performance. Espe-
cially write collisions raise the amount of coordination we require. Though all required
coordination can happen transparently through an actor system, it always means addi-
tional message processing for the involved actors, which potentially turns into a bottle-
neck [132].

9Originally, the concept was proposed for supporting transactions in functional languages, but in hard-
ware. Hence the distinction.

22

4 Microservice Paradigm

These are my principles. If you don’t
like them, I have others.

— Groucho Marx

Microservice architecture (MSA) is a recent software architecture style for designing
software applications as systems of loosely coupled, independently deployable, single
purpose services [42]. In this chapter, we outline the motivation behind microservice
architectures, the component properties and the resulting concurrent nature, problems
arising from the terminology, and the service programming model.

In contrast to a monolithic application, for a microservice architecture we split the appli-
cation logic into a suite of small parts. We implement each part as a dedicated program
and design it to provide a single task of the business logic. We call these programs,
which pose as the application’s components, microservices (MS). The microservice style
is open for every programming language and paradigm. All services communicate with
message passing semantics on the OS or network level. Therefore, we can conceive the
various services in different programming languages and technologies. As long as every
microservice exposes the interface that the architecture requires, the service is a suitable
component [34,105].

Unlike the actor model, microservices were not invented as a specific model of computa-
tion. Instead, the microservice paradigm emerged from the industrial need to break the
scalability barrier that monolithic10 applications inevitably reach [23]. Only later did the
scientific community gain interest in this paradigm. The consequence was an explosion
of contributions on this concept in recent years. Yet, academia still has some troubles
to settle on a common basic definition of the essential concepts which determine this
paradigm [57]. Fowler & Lewis [42] give the seminal review of the microservice concept.

10The term originates from the monolithic kernel style of operating system architectures. Such is a sole
binary running in kernel mode and providing the process- and memory management, file system, etc.

23

4 Microservice Paradigm

Their work is therefore the original source most scholars refer to. But Fowler & Lewis
focus on the common characteristics of microservices from a more practical engineering
perspective. We refer to Dragoni et al. [34] for further reading as well, since they give an
extensive conceptual description. An overview of the publication trends is given in [43].

4.1 Limits of Centralization
Historically, software systems are implemented in a so-called monolithic way. All the
source code compiles into one single, central artifact that we execute on one machine.
This centralization originates from the level of abstraction mainstream programming
languages provide to break down the complexity of the programming task. The general
term for these abstractions is the module, and they allow us to logically separate concerns.
Yet, the transformation of modules from program code to machine code leads to a result
where all modules merge into one unified construct: the (monolithic) executable [122]. By
inversion of argument, a monolith is an application of modules that we cannot execute
independently [34].

Modules naturally introduce a relatively strong form of coupling. In-memory call com-
munication is a cheap and direct way to address components and we therefore apply it
heavily within monoliths and their modules [23]. Every application that is subject to
the tight coupling of its modules suffers from certain issues [33,34,121]:

• The components are less reusable.
• Increased interleaving becomes hard to maintain.
• We need to upgrade all modules simultaneously and are limited in the technologies

we can use.
• Evolution is generally hindered due to the growing complexity.

Most importantly, the main argument against monoliths is scalability [34]. Each single
instantiation of a program executable is intrinsically only able to run on a single machine.
Hence, there is a natural upper bound to the application’s performance due to the
hardware limitations. Many approaches to overcome this limit(s) were proposed over the
years. Previously, the service-oriented architecture (SOA) approach gained popularity.
SOA builds on the idea of combining the capabilities of multiple monoliths – either
of the same or different program images – and integrating them through a uniform
communication channel like an enterprise-service bus [42,121]. This approach allows us
to link heterogenous technologies and enables independent deployment, since we do not
require in-memory calls between these services anymore. However, SOA still facilitates
large monolithic applications which are only able to scale through duplicated instances
of the entire application [35].

In order to overcome these limitations, the microservice paradigm aims for a separation
of the modules into small service programs. SOAs are called the first generation ser-
vices, while microservices are subsequently the second generation of services. Because

24

4.2 Term Ambiguity

microservices evolve from SOA, they are also part of the general service-oriented com-
puting (SOC) paradigm [34,96]. For an in depth review on how microservices historically
emerged from a distributed systems perspective, starting with the client-server paradigm,
to mobile agents technology and service-oriented architectures, we refer the interested
reader to Salah et al. [121].

4.2 Term Ambiguity

The literature uses the service term in an overloaded manner. We identify two general
meanings attributed to the term. On the one hand, the term refers to a computational
task unit, i.e. a process, as part of a service-oriented architecture. This is the predomi-
nant intention when authors refer to a microservice. On the other hand, a service also
describes a specific functionality that we can utilize through an interface. We know this
notion from object-orientation, where objects provide services in the form of procedures
through their public interface [129].

In order to avoid confusion, some scholars propose a clear distinction. For example, Xu
et al. [143] use the term service exclusively for the functionality part and refer to the
component as agent. We follow the example of Guidi & Montesi [51] and distinguish
between the service engine, that is the component we deploy as a process, and the service
behavior for the functionality that the service engine offers. This terminology suits us,
because it highlights the resemblance between an actor’s behavior and a microservice’s
behavior.

4.3 Independence and Interaction

From the separation of modules into dedicated service engines comes a high cohesion
within the modules as well as a loose coupling among them. As a result, microservices are
highly independent [34,35,49]. The inherent fact that each service engine is a separate
application implies that the engines are independently deployable [42]. The decoupling of
services also affects their state, since the state becomes conceptually isolated. Therefore,
we require that services refrain from sharing any resources related to memory persistence.
A database for example introduces a notion of implicit communication among all the
services with access to this database. An essential principle of the microservice style is
therefore the commitment to provide every service engine with its own exclusive database
instance(s) [34,42,107].

Consequently, all communication between microservices happens across the boundaries
of the service engine processes. We already know this concept from Section 2.4.2 as inter-
process communication. Various forms of IPC channels exist. Example mechanisms are
a shared memory section between two processes within the same operating system, or
Unix pipes. The microservice idiom specifies the following requirements on service engine
IPCs [42]:

25

4 Microservice Paradigm

1. Communication channels should be open and provide well-defined interfaces, such
that heterogenous technologies are able to use them.

2. Communication channels should be lightweight, such that they are cheap mecha-
nisms without much additional functionality besides basic message transportation.

3. Communication channels should only act as message routers, such that they trans-
port immutable messages and do not apply data processing logic on their own.

From the two example IPC mechanisms above, Unix pipes and shared memory, only the
pipes qualify for a valid microservice communication mechanism. Data in the form of
text strings represents serialized state information of a service. The pipe transports this
data in an immutable way between the endpoints of the pipe. Raymond describes this
in his Unix rule of composition as [116]:

“Text streams are to Unix tools as messages are to objects in an object-
oriented setting. The simplicity of the text-stream interface enforces the en-
capsulation of the tools.”

This satisfies the channel requirements given above. Therefore, pipes are a valid com-
munication mechanism. However, pipes do not offer a specific structuring of the byte
stream. Programmers have to specify an application-level protocol on top of the pipe
mechanism [14]. Shared memory, on the other hand, faces several conceptional problems
regarding a microservice communication mechanism. Services would send messages by
modifying memory both services have access to. Yet the memory is not necessarily ex-
clusive to both services. A third party that also has access to the memory can intercept
a message by getting a lock to the shared state before the intended recipient. This third
party is subsequently able to modify the message. Shared memory does not guarantee
the delivery of the original message itself. We require that the synchronization mecha-
nism enforces the semantically correct order of state access. This risk to correct message
delivery is another argument why microservices do not use shared state communication.

4.4 Concurrent and Distributed Building Blocks
As independently deployable applications, each microservice is by design a dedicated
process. These are inherently concurrent on the operating system level and also facilitate
parallelization on multiple cores transparently. Every communication mechanism must
be able to send data across the distinct address spaces which strictly isolate the states.
Recall the case study of Section 2.4.2 on system process programming in C. Fork/pipe-
based applications utilize Unix pipes to cross memory boundaries. Like microservices,
their components execute concurrently through the process scheduling of the OS. It is
therefore worth to debate whether these systems qualify as microservice architectures.

The fork pattern spawns processes in a tree-like fashion. All components rely on a shared
ancestor. Every child can replace itself by an arbitrary other program image using exec.

26

4.5 Size, Scope and Granularity

However, the setup of the communication routes relies on an instantiation of the pipe
before the fork. Only then have both the parent and the child access to the pipe. This
fact limits the possibility to take down or add new components independently. Hence,
pipes are rather restrictive and present a certain degree of coupling [14]. It is difficult
to replace the system’s components independently.

To overcome this restriction, more modern Unix variants introduce the concept of named
pipes. This kind of IPC allows processes to hook into a common pipe without a shared
ancestor [14]. However, every communication route we fix at compile time – generally
called static channel naming – limits the ability for changing topologies [12]. In any case,
the pipe mechanism definitely does not provide communication outside the boundary of
the common operating system. Pipes therefore limit scalability since they restrict the
service architecture onto a single host machine – at least for the subset of services that
facilitates this mechanism. Network-based IPC mechanisms overcome this restriction
inherently and we subsequently prefer them for MSAs in general. Network IPCs provide
higher degrees of freedom regarding deployment and heterogenous technology integration
at the price of more costly data transfers (cf. Fallacy 7: transport cost is zero) [30]. As a
result, we always assume that microservices are concurrent components which support
parallel execution. However, whether they qualify as distributed components within
their respective architecture is subject to the communication mechanism(s).

4.5 Size, Scope and Granularity
Bonér [23] criticizes the term micro since it encourages us to debate the actual size of a
service. Every size definition requires a metric for comparison. Only with a metric can
we debate up to which limit we call an application a microservice. Therefore, developers
focus on metrics like lines of code up to more obscure ones, e.g. the reported two pizza
team size, where a service is written and maintained by a team that we can feed with
two pizzas11 [42]. These discussions are irrelevant.

Instead, Bonér argues, a notion of size should refer to the scope of responsibility. A
guideline towards this is once again the Unix philosophy [116] we already referred to.
The philosophy suggests that programs should have a well-defined and limited scope.
We realize more complex functionality by composing multiple of these simple programs.
This concept is also found in object-oriented design, where we know it as the single
responsibility principle of objects [49]. In the microservice context however, authors
do not refer to the single responsibility principle a lot. Instead, they tend to phrase
it bounded context [33,34,96]. Authors argue that services should be an aggregation of
functionality around a single business capability. This divergence of granularity is one
of the major evolutionary changes from SOA to microservices [49,105].

However, a too-fine granularity becomes an issue. In a distributed setting, granularity
is always a balance between the number of messages that we send versus the perfor-
11Assuming an arbitrary pizza size, this either suggests very small teams, or really big pizzas.

27

4 Microservice Paradigm

mance implications we expect by every message. We must consider latencies of network
channels, processing time of addressed services, and delay penalties that result from
service unavailability when we design the granularity of microservices [123]. In general,
we expect Fallacies 1-3, 5 and 7 to contribute to bounded context considerations.

4.6 Service-oriented Programming
Until now, we have regarded microservices in the light of a software architectural style.
Within this context, the building blocks are all truly isolated components we instantiate
from independently executable artifacts. We merely link the artifacts through rather
loosely coupled message passing communication channels. Scholars argue that due to
these characteristics the perspective in the literature (both academic as well as indus-
trial) has a focus on the deployment, which is the operation of a service engine [49,143].
After all, the deployment context of MSA is the origin of the concurrent nature, that
is independent processes of the OS or network. In this section however, we favor an
argumentation towards a linguistic viewpoint on microservices as a programming model
instead.

Programming paradigms build upon respective conceptual constructs, e.g. objects in
OOP or functions in functional programming. In more recent time, a new paradigm
called service-oriented programming (SOP) [51,104] emerged. It builds upon the service-
oriented computing approach that SOA and subsequently microservices emphasize and
introduces it into the design of programming languages. Services become first-class
entities of the language and are the smallest programmable constructs. Instead of a
single executable artifact, service-oriented programs compile into multiple executables,
one for each of the service constructs in the source code. Initially, the conception of SOP
aimed for an evolutionary step. The idea was to combine the object-oriented notion with
the SOA paradigm to program distributed systems. When the microservices principles
finally distilled, it transpired that the compilation of SOP languages essentially produces
microservice architectures. Instead of the total technology freedom of the mainstream
MS paradigm, SOP languages are a separate and more restricted approach towards the
microservice style [49,104]. Various prototype languages facilitate the service-oriented
programming model. Two SOP languages merit attention:

CAOPLE
One attempt of a service-oriented programming language is CAOPLE [143]. It calls
its basic programming constructs agents (microservices). Agents provide a very strict
notion of state encapsulation, autonomy, and well-defined communication interfaces.
Unlike traditional microservices, agents do not execute directly on the host’s OS, but
run on a dedicated virtual machine called CAVM-2 instead. CAOPLE’s VM focuses
on providing a lightweight dynamic deployment of services compared to container
technology. Additionally, the VM is optimized for running large quantities of services
in a lightweight manner, as well as abstracting the network distribution of agents
across host machines.

28

4.6 Service-oriented Programming

Jolie
Currently the most advanced and scientifically best described service-oriented lan-
guage is Jolie [49,51,100,103,104]. We therefore use Jolie as the primary linguistic
reference throughout the remainder of this thesis. A Jolie program defines services
which describe two basic aspects. First, the behavior expresses all functionality that
the service offers. The behavior makes this functionality available on the so-called
communication ports. Second, the deployment describes how a service is used, i.e. the
communication technology, addresses of the exposed functionality, and data proto-
cols. These two main parts of every Jolie program, behavior and deployment, indicate
the strong separation of concerns between what we designate service behavior and
service engine. Even the root level syntax expresses this separation in the program
structure:

Program ::= D main { B }
The language’s syntactic rules prevent us from introducing the deployment expression
(D) into a behavioral expression (B) and vice versa. The only connection between
behavior and deployment are the communication ports. The behavior abstractly uses
the communication ports, and the deployment concretely defines the ports. Hence,
behavior and deployment are complemental. As a scientific prototype language, Jolie
incorporates many interesting concepts. There is only an implicit notion of concur-
rency from the service execution as OS processes, and the concurrent primitive as
one option for the so-called execution modality. In this case, upon receiving a mes-
sage on a communication port, a Jolie service spawns a dedicated process such that
the behavior executes in a separate local memory space (cf. the fork approach in
the C processes case study of Section 2.4.2). The primitive hereby allows concurrent
message processing. Among other concepts, Jolie supports complex message routing
through correlation sets, and facilitates transparent delegation through the so-called
aggregation primitive, which extends a service’s interface with the interfaces of other
services.

Microservices share many similarities with objects in general [34]. Therefore, service-
oriented languages tend to have many analogies to object-oriented languages, as the com-
putational units in both paradigms provide functionality via a public interface [129,143].
However, this marks also the most important difference to objects. In general, objects
facilitate information hiding and encapsulation in a shared memory setup. Microservices
on the other hand solely rely on message passing [34]. Besides this difference, advanced
object-oriented concepts can also be part of a language’s service constructs. For example,
Jolie has static type checking for service interfaces [100], and CAOPLE even supports
polymorphism via an inheritance mechanism.

29

5 Implementation

Every good work of software starts by
scratching a developer’s personal itch.

— Eric S. Raymond

In this chapter, we cover the practical aspects of programming with actors and microser-
vices. Section 5.1 describes a scenario for a concurrent system. Section 5.2 covers the
strategies we apply to implement this scenario using the actor model. Subsequently,
Section 5.3 describes the implementation of the scenario using the microservice model.

5.1 Concurrent System Scenario

In this section, we outline a domain-specific search engine we call Echo12. This search
engine is our non-trivial scenario of a concurrent system that serves us as the reference
for evaluating the programming of concurrent systems with actors and microservices.

Search engines are a composition of rather loosely coupled and independent subsys-
tems [30]. Users interact with a search engine by submitting search requests in the form
of so-called queries. The search engine then presents respective results to the user. This
functionality however is merely the so-called retrieval phase performed by the retrieval
subsystem. As the name indicates, this phase retrieves information. By implication,
the information must have been collected and stored beforehand. A second so-called
indexing subsystem is responsible for gathering the information and storing it in a form
that is optimized for searching, the so-called reverse index [91,113]. The reverse index
maps a document-term relationship – where documents are arbitrary text collections –
into a term-document structure [95].

12We chose the name “Echo” for its wonderful characteristics of providing a short package name and the
analogy to recalling spoken words.

31

5 Implementation

Several factors contribute to the fact that search engine architectures are suitable for con-
current programming research. First, both subsystems are mostly independent. They
merely make use of a common information index, where the indexing subsystem is ex-
clusively adding information and the retrieval subsystem is exclusively reading the in-
formation. Hence, the subsystems are independent and can run concurrently. Second,
since many kinds of search engines regard very large amounts of data, their construction
was always led by the effort to leverage concurrency in order to improve their scalability.
Especially the parallel and distributed computing research merits attention to search
engines, for example to explore cluster architectures [95,113]. Additionally, our specific
domain we outline below is also very suitable for concurrent processing.

The design of search engine architectures is generally led by two basic requirements [95]:

Effectiveness
The quality of search results is the effectiveness of a search engine. Effectiveness is
the sole concern of the scientific discipline called information retrieval (IR). Precision
and recall are the two metrics that IR defines in order to assess the effectiveness.

Efficiency
Factors like the response time and the throughput determine the efficiency of a search
engine. These factors are highly affected by the concurrent processing capabilities of
the system.

The optimization of effectiveness is not within the scope of this thesis. We merely apply
a basic scoring method of the utilized information retrieval library. Our sole goal is to
increase the efficiency of the system by leveraging concurrent programming techniques.

5.1.1 Domain Description

We build our domain-specific search engine for the podcast domain. On the one hand, the
term refers to content, that is an episodic series of digital media. The media is usually
audio, more seldomly video. On the other hand, podcast can also refer to the distri-
bution mechanism. The distribution builds upon XML (Extensible Markup Language)
web feeds. RSS 2.0 [142] (Rich Site Summary) and Atom [108] are the established syn-
dication formats. Since RSS 2.0 has always been the more dominant format, we simply
refer to RSS feeds from here on. Both formats gained popularity in the 2000s as an effec-
tive, decentralized mechanism to publish the updates to a website’s content. Podcasts
build upon the same principle. Yet they utilize an otherwise optional field for items
of an RSS feed, the <enclosure> tag. This tag provides an URL (Uniform Resource
Locator) to the media file. Subscribers of the feed download the file behind the URL
and watch/listen to the media, usually through a specialized software application. The
<enclosure> is therefore the main content of each item in a podcast RSS feed. Addition-
ally, there are other fields within the feed. Some of these fields contain human readable
information about the linked media file, so-called metadata [111]. Appendix A gives an

32

5.1 Concurrent System Scenario

example RSS feed structure with dummy metadata.

Our search engine is designed to regularly analyze RSS feeds of podcasts. The metadata
allows us to add information for every media file to the search index. Although we do not
analyze the media itself, we can still provide search functionality based on the metadata
information. The domain is very suitable for concurrent processing, since the RSS feeds
are decentralized. Every podcast content creator is publishing a separate feed. There
is no interrelation between feeds. We can process each feed separately and therefore
concurrently.

5.1.2 System Components

At the core, our basic architecture and the components are inspired by the work of
Brin & Page [24] on large scale web search engine “anatomy”, as well as more modern
interpretations of associated design principles given in [30] and [113].

The two high-level subsystems we have given above, indexing and retrieval, are internally
composed of several smaller components. We specify that each of these components has
to be a concurrent task unit of the programming model, i.e. an actor or a microservice.
The respective units are:

CatalogStore (C)
holds a catalog of all metadata information we gather about podcasts, their feeds
and episodes. The Store persists this information in a relational database.

IndexStore (I)
holds the data structure we use for searching (reverse index). Registered information
entities are called documents. Each document relates to one podcast or episode. The
IndexStore documents are merely the part of the metadata we need to match search
queries to matching results.

Web Crawler (W)
acquires the information that the search engine stores by downloading data from
URLs. These URLs relate to feed files.

Parser (P)
transforms the XML data into internal representation formats. This extracted data
is what we consider when running search queries and subsequently display in the
Web application.

Searcher (S)
performs the search operations. This component applies some basic query pre-
processing and delegates the retrieval of relevant documents to the IndexStore with
its inverted index. The Searcher communicates the results from the IndexStore back
to the Gateway.

33

5 Implementation

Gateway (G)
provides the link between the Web UI and the system-internal capabilities. The
Gateway exposes a REST interface to the outside and uses respective mechanisms
to interact with other internal system components. The REST interface allows us to
request cataloged information and perform searches.

Updater (U)
determines which feeds to re-download next in order to register new episodes, and
update existing metadata.

The CatalogStore and the IndexStore are stateful, all other task units are stateless. The
complete search engine architecture is the composition of all these components according
to the interaction model shown in Figure 1.

Figure 1. Complete interaction model of the task units in the Echo search engine

When we give some basic dataflow examples in due course, we use the following short-
hand notation for arbitrary components X and Y, where X and Y get substituted by the
component abbreviations (C, I, W, P, S, G, U). X → Y expresses X sending a message to Y
(push). X← Y denotes X fetching a message from Y (pull). X ⇄ Y is short for X sending a
request message to Y with a direct response (synchronous remote procedure call, RPC).

The system shown in Figure 1 merely forms the concurrent indexing and retrieval system.
It is therefore a backend application only. In order to actually use the search engine,
we provide the backend with a web-based user interface (UI). This Web application is
based on the Angular [93] framework. The actor and microservice implementations of
the backend have to provide a REST interface within the Gateway component to allow
interaction from the outside. The Web UI serves us as the proof of concept for the
desired functionality of the engine’s backend implementations.

Since our scientific focus is on the concurrent programming aspect and not the informa-
tion retrieval aspect, we want to implement the domain-specific logic only once. There-
fore, we provide each backend with a common Core library written in Java. The Core
offers most domain-specific functionality, so that each backend codebase can focus on
the concurrent execution and interaction. For example, the actual searching is done

34

5.1 Concurrent System Scenario

through a specialized data structure, the reverse index. We use Lucene [39] to create
this structure. Lucene offers a Java interface that is interoperable with most JVM-based
programming languages. RSS/Atom feed parsing is done using ROME [47], enriched by
an extension we wrote to support additional Simple Chapter [83] metadata information.

5.1.3 Processing Pipelines
In this section, we give a brief outline of the data processing pipelines which make up
the indexing and the retrieval subsystem. The processing pipelines are the result of the
composition of the architecture components.

Note that Figure 1 shows an interaction between the Gateway and the CatalogStore.
The pipelines below do not mention this interaction. The Web UI can display the
entire metadata of an item. Therefore we must retrieve the complete metadata from the
CatalogStore. For search requests, the retrieval subsystem merely produces the reduced
metadata that is stored in the search index. We nevertheless show the G ⇄ C call for
completeness.

Indexing Pipeline
We process feeds either when they are new to us (initial indexing), or to check for new
episodes (update). Hence, there are two cases when the indexing pipeline gets triggered.
Either we add a new feed, or the Updater determines that a feed requires a check for new
episodes. In order to determine which feeds require an update, the Updater regularly
inquires the database of the CatalogStore. The Updater passes the update candidates
to the Web Crawler. The Crawler retrieves the XML data of the feed via HTTP. Then
the Crawler passes the raw feed data to the Parser. The Parser extracts the podcast
and episodes metadata from the XML into domain objects. The Parser forwards all
metadata objects to the CatalogStore. The database of the Store persists the complete
metadata. The Catalog also sends the search-relevant part13 of the metadata to the
IndexStore, which adds the data to the Lucene reverse index data structure. The overall
flow is: U → C → U → W → P → C → I

Retrieval Pipeline
The essential purpose of the engine is search. The Web UI offers an interface similar
to well-known search providers on the world wide web. The Gateway registers search
requests from the UI on the REST interface and forwards the request to a Searcher (G→
S). This Searcher is doing some basic query processing and then forwards the resulting
query to an IndexStore (S → I). The IndexStore propagates the search results back via
the Searcher (I → S) and the Gateway (S → G) to the Web UI . We require this flow to
complete in a timely manner, thus synchronous. The complete flow is: G ⇄ S ⇄ I.
13Some parts of the metadata, like the byte size or MIME type of the <enclosure> file, is important

to determine new entries. Therefore, the CatalogStore persist this data. This metadata is however
hardly relevant for search queries, therefore we do not include it in the search index.

35

5 Implementation

Figure 2. The indexing pipeline: The Updater (U) uses the CatalogStore’s (C) metadata
to determine feeds that require updating (U → C → U). The Web Crawler (W) loads the
XML from the web, the Parser (P) transforms the feed data to domain objects. The
CatalogStore persists the data and forwards selected metadata to the IndexStore (I)

Figure 3. The retrieval pipeline: The Gateway (G) registers requests, forwards each
query to the Searcher (S), who retrieves data from the IndexStore (I). The respective
results travel back from I via S to G

5.2 Actor-based Implementation
This section covers the strategies we apply when we program with the actor model. We
implement the backend of the concurrent system which we outlined in Section 5.1. All
concepts we discuss are with respect to the specific actor variant we use. The focus is on
the linguistic support provided by the actor library. Efficiency considerations are part
of Chapter 6.

It is important to realize that although there is the conceptual actor model, there are
numerous system implementations available through various forms of interfaces, either
integrated into the programming language or as a library [87]. These systems are all
based on the theoretical model, but can choose to compromise some of the semantic
properties in order to increase their efficiency [85]. Such considerations are relevant
when we evaluate the linguistic support.

We build our Echo implementation with an actor variant called Akka [64]. We have
mentioned Akka already in Section 3.3 alongside Erlang and Orleans. The Akka library
is available for the JVM through bindings for Java and Scala, but was later ported to
other ecosystems such as .NET and JavaScript runtimes (through Scala.JS). The .NET
variant (called Akka.NET [115]) is to our knowledge not able to interweave with the
original JVM version at the moment. Because our solution is solely based on the JVM,
all following discussions refer to the capabilities of Akka’s original variant.

Akka theoretically builds on Agha’s [4] vision of the actor model and harnesses its

36

5.2 Actor-based Implementation

potential for distributed problem solving [87]. An archetype has been Erlang. Akka is
designed as a toolkit collection consisting of several libraries. We can use these libraries
in arbitrary combination based on our actual need of them. The actor runtime system
is a lightweight execution environment based on work stealing thread-pools with local
task queues which schedule the actor execution [52].

As of Scala version 2.10, Akka replaces the default actor implementation that Scala
originally offered [52]. We therefore refer to the former as Scala actors in contrast
to Akka actors. Among the reasons were the better performance, transparent actor
addresses, expressing resilience as well as fault tolerance [135]. In fact, [117] found that
Akka actors have up to 10 times higher message throughput and a network latency under
1ms, in contrast to the 0.2 seconds of Scala actors.

5.2.1 Striving for Isolation

While actors encapsulate state conceptually, in practice their full isolation must be
ensured to avoid accidentally sharing state. This is essential to guarantee the safety
properties, that is prevent data races and state modifications [52,84]. Akka offers inter-
faces for Scala and Java. Both languages support object-orientation in an imperative
programming style – even though Scala is primarily a functional programming language.
Since Akka is not directly integrated into either of these two languages14, it cannot
ensure isolation by itself. This restriction is true for most library-based actor systems
running on execution environments that support shared-memory multithreading like the
JVM [87]. Therefore it is especially interesting how Akka handles the isolated turn prin-
ciple, because, as was outlined in Section 3.1, internal state of an actor must be mutable
exclusively from within the actor itself to preserve the model semantics.

Issue of Data Hiding

Akka’s actor runtime provides a transparent interface for component communication
which exist either within the same local scope (same JVM) or remote scope (distinct
JVMs). In the first case, we must take different notions of state into account. Kniesel [86]
defines weak state as the state given through an object’s instance variables. Strong state
is the combination of local state (the object’s instance variables) and transient state (the
state of objects referenced by instance variables).

Actor semantics implies the need for a strict conception of encapsulation where the strong
state is exclusive to the actor. We must not expose mutable local state outside the actor’s
scope, nor import mutable transient state into the scope of the actor. Violation of this
requirement leads to the overlapping (sharing) of mutable state, which is in contrast to
the message passing semantics of the model.

Visibility is a property of the variables and methods of an object which are part of the
interface of the object [86]. Visibility is a concern for encapsulation and subsequently
14In Scala, Akka is the built-in actor library, but not a language feature.

37

5 Implementation

shared mutability [44,132]. Java for example offers multiple granularities for visibility of
class fields. The following code snippet illustrates the resulting problem:

public class Foo extends UntypedActor {
public String bar;
public static Props props() {

return Props.create(Foo.class, () -> new Foo());
}
@Override
public void onReceive(Object msg) { /* handle msg */ }

}

We extend UntypedActor, the base class for classic actors which do not provide type-
safety for messages. In contrast, Akka’s TypedActor is the base class for active objects,
which do provide type-safety for messages [132]. We give the field bar in class Foo exter-
nal visibility by declaring it public. The field is therefore part of every object of type
Foo and influences the object’s encapsulation [86]. From visibility follows accessibility,
such that bar is also accessible from outside the scope of Foo. Since bar is not final,
we can also modify bar from outside the object’s scope. External modifications violate
the requirement on exclusive state mutability of the actor semantics.

All Java-based actor implementations therefore face the problem that custom-written
actor classes can easily break the required model semantics. In order to cope with
this problem, object-oriented implementations can offer us APIs where we do not issue
interactions with an actor instance directly through the instance’s method interfaces,
but instead via proxy constructs like [52]:

final ActorRef foo = system.actorOf(Foo.props());

We do not directly create an instance of Foo using the new keyword as it is custom in
Java. Instead, we use the Akka system’s factory method actorOf that hides the actual
instantiation. The create method of Props takes a Java 8 lambda as an actor object
factory. The lambda and the create call are commonly wrapped in a props method
of the actor class. Java lambdas are basically functional closures15 and only allow us
to access effectively final fields inside the lambda’s scope. This restriction prevents
us from exposing mutable state to the constructor of an actor class. Of course, this is
only true for the final fields themselves, but not their members (cf. Java case study in
Section 2.4.1).

The actor system only exposes a proxy object of type ActorRef to the user. An ActorRef
instance does not have the external interface of the actor class it represents. The
ActorRef merely offers a variety of methods for sending messages to its actor. Mes-
sages sent through these methods are delivered by the actor system and then consumed
by the actor through the onReceive method [132].
15Not to be confused with Clojure, a dialect of the programming language Lisp for the JVM.

38

5.2 Actor-based Implementation

The use of ActorRefs has the benefit that no direct contact with an actor instance
object is possible. This lack of contact prevents both visibility and accessibility to
any actor object fields or method calls. Additionally, ActorRef proxies enable location
transparency [65].

References and Immutability
Preventing visibility of actor object fields and methods is not sufficient for guaranteeing
the required strong state encapsulation on the JVM. The method signature of onReceive
indicates that messages are received with type Object. Though Java has pass-by-value
method parameters, variables with a non-primitive type (all besides byte, int, char,
etc.) are actually reference variables storing the address to their objects. A passed-
by-value parameter is therefore a copy of the object-address [46]. By implication, each
message sent between actors contains a copy of the reference to the object representing
the message16. In general, we must expect that the reference we send and the reference
we receive point to one and the same object. Akka only serializes messages in case both
counterparts are not within the same JVM [132]. In case both actors are on the same
local JVM, a given message object is therefore in the scope of both the sending and the
receiving actor. This message introduces shared state between these two actors, which
is in contrast to the strong state encapsulation requirement.

However, messages are meant to represent snapshot information of a state at a given
point in time. Therefore, shared state is not a problem if it refers to immutable snapshots,
such that there is no memory with read-write or write-write access by two distinct
actors [87]. Then the facts cannot be modified by either of the holders. The encapsulation
requirement explicitly refers to mutable strong state, as immutability avoids what Akka
calls the shared mutable state trap [66].

One option for Scala is to use case class constructs, which are immutable by default
except for the transient state of the constructor parameters [65]. Java offers less syn-
tactic support for expressing immutability. The property is neither formally defined
in the Java Language Specification nor the Java Memory Model [44,46]. However, the
basic requirement is to have final fields only17. This means that the transient state
through internally referenced objects must be final too. In the author’s experience,
libraries which facilitate source-level annotation processing18 provide useful tools for
generating immutable value objects. These libraries use annotated interface declara-
tions to generate consistent implementations offering builders and factory methods for
instantiation [44].

All the restrictions we discussed so far still cannot prevent all obstacles Java and Scala
offer to break the actor model semantics. Nothing can hinder an actor from sending a
16This causes the illusion that Java has pass-by-reference parameters. It does not.
17From a technical point of view, a class can have non-final fields and still instantiate immutable

objects. String is a prominent example. However, deeper insight into the Java Memory Model is
required. Goetz gives an outline of the principal approach [44, p.47].

18Such as https://immutables.github.io for example.

39

https://immutables.github.io

5 Implementation

message to another actor containing the this reference of its object. this within an
Akka actor is the standard self-reference object pointer and therefore not equal to self
from the theoretical actor model. Akka provides us with the self() method that returns
an ActorRef inside the actor for when we need to communicate the actor’s location. But
having access to the this reference of another actor breaks location-transparent access
to the respective actor. Additionally, Java access modifiers are on class level instead of
object level. If the recipient is of the same dynamic type as the this reference sender,
then the recipient (after the corresponding typecast) has access to all private fields of
the corresponding actor object. Though this visibility feature completely bypasses the
encapsulation principle, it is intended behavior of the Java language design.

We see, a library-based actor variant like Akka cannot enforce strict actor semantics
by itself, if the programming language offers ways to break the semantics to the pro-
grammers. Only a programming language itself can enforce a strict notion of the actor
semantics, as does for example Erlang. However, in general it is sufficient if program-
mers comply to coding conventions specific to the language to avoid shared state by
accident [135]. Conventions come with the burden of ensuring immutable value objects
or manually deep-copying messages. Other actor frameworks like Orleans always provide
deep-copied messages automatically, which comes with a performance penalty [20].

It is worth pointing out that though the actor model is Scala’s standard concurrency vari-
ant, the language was not like Erlang designed to enforce strict actor semantics. Instead
it accepts the perils that come with a library-based implementation. The arguments for
a library are [54,135]:

• A library does not require special support by the compiler, JVM or extra syntax.
• A library can be easily extended, adapted, and even replaced. This has already

happened, when the standard Scala actors have been replaced under the hood by
Akka actors.

• A library can break the actor semantics intentionally, e.g. to introduce an addi-
tional concurrency abstraction, as the next section demonstrates.

Main findings

• Programming language features can jeopardize actor state encapsulation.
• Library-based actor systems cannot ensure isolation by themselves.
• Guaranteeing message immutability is the obligation of the programmer.

5.2.2 Utilizing other Concurrency Constructs
Section 3.5 motivated why we can combine the actor model with other abstractions of
concurrency, as long as the actor semantics is not jeopardized. Akka offered support
for several additional concurrency models. With version 2.3 however, Akka dropped the
combination of actors and software transactional memory into so-called transactors. In

40

5.2 Actor-based Implementation

principle, transactors have been useful for coordinating computations which span over
the scope of multiple actors and require consensus between all of them [132]. However,
transactional memory usage has never been able to abstract distribution transparently
in Akka, since STM requires shared memory which is difficult across JVMs [133]. Trans-
actor support was removed eventually.

Besides STM, much more prominently used is the future concept. Futures allow us to
define concurrent computation inside an actor [67]. However, futures are not without
perils of their own, as the following example illustrates:

var a = 0
override def receive = {

case _ =>
implicit val ec: ExecutionContext = context.dispatcher
Future { a += 1 }
a -= 1
print(a)

}

First of all, Akka requires a so-called ExecutionContext in the actor’s scope to run
the future [55]. The example uses the actor’s Dispatcher, which represents the thread-
pool on which the actor runtime executes the actor. We can also specify a separate
thread-pool instead [67]. Most importantly however, we can misuse futures to introduce
nondeterminism into the scope of an actor. The example defines a mutable state variable.
Upon receiving an arbitrary message, we dispatch a Future with the task to modify the
state variable a. Concurrently, the actor continues to process the message and attempts
to also modify the very same state variable. Due to the nondeterministic nature of
the underlying thread-pool, multiple orders of execution are possible, and therefore also
multiple results for the output statement. This is possible because Java as well as Scala
do not provide any kind of guarantee regarding the safety of data inside the scope of a
Future that exceeds the regular notion of safety of the respective language [141].

The isolated turn principle demands a guarantee that nothing interferes with the internal
state of an actor except the actor itself, at the very least while processing a message. Yet
futures have the potential to violate this constraint, thus breaking the actor semantics.
Once again, Akka can neither check nor prevent this kind of concurrent modification.
The programming languages visibility concepts simply allow us to pass mutable state
into the scope of the futures. Then the safety notion permits the mutation of this state.
Again, it is up to the programmer to ensure that only immutable state is introduced into
the scope of a future [66,132].

There are also less expected issues related to futures. The Crawler retrieves the XML
feeds via HTTP. In principle, HTTP is a synchronous communication protocol, such that
there is always a response to every request19. Most APIs are therefore blocking as they
19The most basic form is merely a status code, e.g. the famous 404.

41

5 Implementation

abstract over remote procedure call semantics. However, some APIs allow us to handle
requests asynchronously by providing a future result. The author expected to improve
the throughput of the Crawler when it retrieves feeds via an asynchronous handling of
HTTP requests. The basis for this assumption was that HTTP connections to remote
servers pose as potential bottlenecks (unknown server response time, network latency),
thus reducing the liveness of the actor. However, this approach dispatches great many
Futures simultaneously. Feed endpoints have a wide variation in response times and an
asynchronous API allows us to start requests before the previous request has finished.
All these futures stress the thread-pool of the Crawlers. We have experienced tempo-
rary starvations due to a lack of available threads in the Crawler’s thread-pool. The
author observed this effect with both asynchronous client APIs of the Akka HTTP [68]
module and the Apache HTTP Components [40] library. Akka HTTP also provides a
flow-based variant, where the concept of backpressure known from stream-based pro-
gramming should limit throughput accordingly. However, the author experienced that
the underlying super connection pool flow also introduces a limit to the amount of concur-
rent requests to a single host [68]. Feed publishers nowadays often choose to distribute
their feeds via dedicated providers. As a result, a great amount of feeds are centralized
on a small amount of hosts, rendering Akka’s flow variant inapplicable.

Although simple RPC-styled retrieval did limit throughput, we have experienced this
limitation as an advantage. The limitation puts a uniform and more predictable stress
on the thread-pool, avoids problems like actor starvation and maintains their overall
liveness. There are however still other cases where futures can come into play. The
following section continues discussing future usage in the light of communication.

Main findings

• We can combine actors with additional compatible concurrency models.
• As with isolation, programming language features can jeopardize actor se-

mantics when applying alternative concurrency constructs.
• Combining futures with actors can have a negative impact on performance.

5.2.3 Communication Abstractions

The actor model is solely built on the concept of asynchronous message passing. Akka
provides a method called tell, with an additional alias ! for Scala, on ActorRef. We
use the method to send a message object to an actor. However, many real-life scenarios
expect synchronous communication. Echo faces this problem whenever a user requests
information, i.e. a search request through the Web application (G ⇄ S ⇄ I) or meta-
data retrieval from the CatalogStore (G ⇄ D). Fortunately, we can model synchronous
communication with an asynchronous information flow [9].

42

5.2 Actor-based Implementation

Future-based Messaging
Akka provides a primitive to introduce a synchronous information flow. In addition to
the asynchronous tell [!] command, ActorRef also offers the ask method, with alias
? in Scala [65]. We use ask to model request/reply-style communication [54]. An ask-
call resembles a tell-call in that it dispatches the method’s argument as a message to
the actor behind the reference. However, ask offers a result value which is the expected
result of a synchronous call wrapped in a Future. The caller of ask is free to either
proceed its computation, or go directly into blocking until the Future is resolved. This
semantics resembles the future type message passing of active objects.

Figure 4. Example flow of a future-based synchronous call in the retrieval phase

A search request is the prime example of a synchronous call. Figure 4 shows how a request
travels from the Gateway to the Searcher and finally to the IndexStore. The results travel
back from I via S to G. On the client-side, the results are wrapped in a Future until
they become available. We can resolve a Future inside an actor (e.g. a Searcher) in a
waiting fashion, which causes the actor to block. The actor cannot process other requests
until it receives the answer from the IndexStore. However, we need to avoid blocking
if we expect the Searcher to process messages in reasonable time. We want to improve
throughput. To prevent unnecessary blocking, Scala provides monadic methods for the
Future trait that we use to define subsequent computation once the results are available.
We can also utilize these methods when we dispatch several synchronous messages inside
actors. Scala even offers specialized syntax through the so-called for-comprehension [55]:

val f1: Future[Int] = actor1 ? msg1
val f2: Future[Int] = actor2 ? msg2
val f3: Future[Int] = actor3 ? msg3

val r = for {
r1 <- f1
r2 <- f2
r3 <- f3

} yield (r1 + r2 + r3)

It is important however that we dispatch the messages prior to the for-block’s scope.
Otherwise, it enforces sequential composition, if the ask-calls are inlined into the block
scope [67]. This is because for-comprehension unfolds to monadic combinator usage of
flatMap and map, which are sequential by nature [55]. The example above becomes:

val r = f1.flatMap(r1 => f2.flatMap(r2 => f3.map(r3 => r1 + r2 + r3)))

43

5 Implementation

It is clear to see that if the ask-calls are inlined into the for-block, then the second
message only gets dispatched once the first Future is resolved. Yet if used correctly, we
can harness futures to preserve the single-threaded semantics of actors and still leverage
parallel computation inside an actor.

However, this approach has two downsides. First, it is a load on resources, since every
Future also stresses the actor’s thread pool. Second, there is always the risk of acciden-
tally passing the actor’s internal mutable state into the Future’s scope, thus introducing
race conditions [132]. ask per se is therefore not ideal, but using futures with actors still
has a long tradition [135].

Delegation-based Messaging

One of the basic actor primitives allows an actor to spawn new actors. We leverage this
ability to model synchronous request handling. Hereby, we relocate the result handling
to a dedicated child actor, individually spawned for each request. We create a child in
Akka by:

val handler = context.actorOf(ReponseHandler.props())
index.tell(msg, handler)

Using context.actorOf instead of system.actorOf makes the response handler a direct
descendent of the current actor. Providing the obtained ActorRef as a second argument
to tell20 sets the response handler as the official sender of the message. This way, we
set the handler as the recipient to the response of the message. This dynamically created
actor poses as a temporary component in the architecture:

Response Handlers (H)
exist with the sole purpose of posing as the original sender of a simple tell message
dispatch and eventually receiving an answer in a purely asynchronous fashion. Upon
message reception, a response handler passes on the result and deconstructs.

In the retrieval subsystem, the actual information flow turns from the concept definition
G ⇄ S ⇄ I into the concrete realization G→ S→ I→ H→ G (Figure 5). Altering the reply
destination is a form of the delegation concept known from object-orientation [144]. The
overall approach is sometimes referred to as cameo pattern and mostly used for brief and
simple interactions between actors [11]. The delegation pattern provides an asynchronous
composition style to handle synchronous communication requirements. The approach
is also more implementation independent, if the actor variant does not offer a handy
concept like futures.

Time in general constrains synchronous communication. It is important that we pro-
cess the messages for a cameo delegation swiftly. The actor model’s mailbox construct
20Note that the ! alias of tell does not allow more than one parameter.

44

5.2 Actor-based Implementation

Figure 5. Example flow of a delegation-based synchronous call in the retrieval phase

however buffers all incoming messages to an actor in a strict FIFO (First In First Out)
order. Large mailboxes with many messages queued up prevent timely message process-
ing. A common property of actor systems is the ability to influence the order of message
reception [87]. Akka provides the concept of a PriorityMailbox, which is utilizing
the pattern matching syntax of Scala to assign priority levels to messages based on their
type. IndexStores and CatalogStores facilitate priority mailboxes to process all messages
of synchronous flows first, regardless of the current mailbox size.

Modelling Timeouts
Synchronous information flow requires a mechanism to implement timeouts in order
to prevent starvation. Akka supports a special timing mechanism. Actors, e.g. newly
spawned delegation-slaves, register to receive a timeout message after a given time period.
The actor then simply needs to provide an appropriate message behavior to handle the
timeout message. When the actor receives the expected message of the synchronous flow
before the timeout message, the actor cancels the dispatch of the timeout message. How-
ever, if the actor receives the timeout message prior to the expected response message,
then the timeout occurred and the actor performs a timeout reaction [11,118].

It is interesting how timed messages are introduced into the actor system. Timers require
some sort of concurrent thread that constantly checks the current time and performs
registered trigger actions. Dedicated thread-based concurrency is somewhat opposed to
the actor model and message passing in general, where each action happens as a reaction
to a received message, decoupled from a notion of time. Therefore, offering solutions
for timer mechanisms is a concern of many actor systems, e.g. also Erlang [13] and
Orleans [20]. To avoid interference of outside threads with actor states, Akka provides
a special Scheduler instance that is unique for each runtime system. Actors register a
timed message sending operation with this Scheduler:

val messenger: Cancellable = context.system.scheduler
.scheduleOnce(5.seconds) {

self ! TimeoutMessage
}

The provided Cancellable reference allows us to prevent the trigger from firing by
calling messenger.cancel. This scheduling mechanism introduces a notion of time into

45

5 Implementation

the actor semantics that feels natural to the actor model [69]. In combination with
the cameo pattern, we can implement synchronous information flow semantics including
time constraints by using purely asynchronous message passing operations.

Type-restricted Messages and Compatibility

One of the basic actor primitives allows actors to send messages to other actors. How-
ever, in general this does not define restrictions on the types of messages that are sent.
Messages are untyped in the theoretical actor model. The behavior of an actor decides
at runtime whether it is able to handle the message.

The active object concept aims to provide a higher-level abstraction and provides static
guarantees for message types. Active objects leverage the method signatures of the
standard object model for static type checking. However, the active object model also
uses the method’s signature to define the method’s dispatch semantics. The work of
Waldo et al. [138] describes in detail when and why this abstraction becomes problematic,
especially in a context with transparent distribution. In short, the abstraction provided
by the object model does not incorporate some effects of distribution well. Examples for
such effects are latency, memory access (via pointers), partial failure and concurrency
effects in general. The transparent abstraction of local and remote execution is therefore
problematic with active objects. The object model must explicitly distinguish local and
remote interaction to be robust and reliable. The classic actor abstraction on the other
hand is resilient without explicitly distinguishing between local and remote message
recipients. Current developments in Akka therefore address the challenge of offering
some level of type safety for messaging without using Akka’s TypedActors for active
objects. The APIs are summarized under the name Akka Typed [70].

One part of Akka’s isolation strategy is to never expose a reference to an actual actor
instance directly. Instead, all communication happens via the messaging interfaces of
the ActorRef proxies (tell, ask). These interfaces take arbitrary types as messages.
Akka Typed introduces a generic type parameter to the address, i.e. ActorRef[U]. The
range of accepted messages is then limited to U-typed objects. The signatures of the
messaging methods changes from tell(msg: Any) to tell(msg: U).

It is worth pointing out that in Scala the actor messages have Any as the most general
type. In Java however, Object is the most general message type. This discrepancy in
the typization is somewhat counterintuitive, since Akka offers compatible bindings for
both languages. The type systems of Java and Scala deviate however. Java distinguishes
between reference types with Object as ⊤ in the type hierarchy and primitive types (int,
char, etc.) which are not subtypes of Object. Hence, we cannot use primitive types as
messages. In Scala on the other hand, all types have Any as their unified ⊤. The direct
descendent AnyVal is the supertype of all value types (Int, Char, etc.), while AnyRef
corresponds to Java’s Object and is therefore also supertype to all non-value types. If
we send an AnyVal from a Scala to a Java actor, the corresponding primitive type’s
wrapper class (Integer, Character, etc.) is received and vice versa.

46

5.2 Actor-based Implementation

In any case, type-restricted actor addresses are not without drawbacks. The third basic
model primitive states that actors can change their behavior. When we restrict accepted
messages by an ActorRef[U] that is hiding behavior changes transparently, we must
also constrain a new behavior to process messages of type U exclusively. Otherwise, the
address of the actor represented by the ActorRef[U] breaks the semantics and becomes
invalid [70]. To ensure address and behavior compatibility at compile time, we must
define type-restricted actors through a behavior function that is also restricted by a
type parameter:

val behavior: Behavior[U] =
Actor.immutable[U] { (_, msg) =>

// process msg
Actor.same

}

In this example, the typization msg:U is guaranteed. The Actor.immutable[U] factory
prevents the constructed behavior from holding and passing over mutable state [70].
Every behavior has to specify the replacement behavior for the next message explicitly.
In this example, Actor.same declares that the replacement behavior stays the same.

Though Akka Typed provides static type safe messaging, it still has its limits. For
example, Akka Typed is not able to statically ensure that a behavior is in a certain
state. The association of an actor’s address and behavior is a fundamentally dynamic
property of the actor model [70].

We have found that compile-time message safety restrictions, apart from active objects,
are a rare capability among actor systems. However, the Akka Typed library is in the
current Akka version 2.5 still under active research. It is marked as “may change” and
to be considered experimental.

Main findings

• Abstractions for synchronous-styled actor communication require additional
concurrency models (futures) or additional actors (delegation).

• An explicit sense of time is contrary to the actor concept. The runtime
must handle time and communicate it in terms of messages.

• The actor model intrinsically types all received messages dynamically. Type-
restricting the actor addresses constrains the range of acceptable messages.

5.2.4 Supervision and Monitoring
In Section 3.3 we have pointed out that actor systems aim for higher-level constructs than
the low-level basic model primitives. One example for higher-level abstractions are the
different messaging styles Akka facilitates. Another important reason for providing more
expressive constructs is the encapsulation of faults [2]. Being aware of the possibility

47

5 Implementation

of faults and handling them adequately is key, especially in a distributed context [30].
Orleans for example directly reports exceptions back to the message sender [20].

The key to handling faults in Akka is its concept of supervision. No actor exists for
itself, but is always a subordinate to its supervising actor. We call this dependency
relationship a supervision hierarchy. The actor system provides a default supervisor at
the top-level, which has the eventual supervision of all other actors [71].

The hierarchical relationship is fairly simple: a supervisor delegates work to its subor-
dinate children, but has to monitor each child in return. Monitoring is the concept of
getting notified of a subordinate’s failures, and in turn reacting to these failures. A fault
can be of arbitrary nature, i.e. an unhandled exception or invalid state. An actor auto-
matically suspends itself and all its subordinates upon the occurrence of a failure. The
runtime then notifies the superior, which has to provide a response to the failure [11,118].

The signaling of an occurred failure is not communicated via a “normal” actor message,
but on a side channel [71]. A so-called supervison strategy handles the failure notifica-
tions. This strategy can take one of four possible actions:

Action 1: Resuming the suspended child, when the fault can be safely ignored.
Action 2: Restarting the suspended child, if its internal state is invalid.
Action 3: Stopping the child completely by not continuing its execution.
Action 4: Escalating the failure, hence the supervisor fails itself.

A supervisor’s failure notification has the sole form of an exception. The actor system
does not offer state information that puts this exception into context. The reason is
that state should only belong to and be processed by one actor exclusively. Let us
assume that a failure results in the propagation of state from the child to the supervisor.
Then a part of the child’s implementation logic leaks into its supervisor. The supervisor
requires the knowledge to interpret the state in order to evaluate it in a meaningful way.
However, Akka isolates the failure in the child. In case the child gets resumed (Action
1), the cleanup falls to the child itself. The runtime does not re-introduce the message
on which the fault occurred into the mailbox, to avoid fault-reoccurrence. Actions 2-4
discard the child’s state in any case [71,118].

5.2.5 Information Routing and Delivery Reliability
We must frequently send a message not to one actor specifically, but distribute the
message among a set of equivalent instances. Akka provides an appropriate concept
called routers:

48

5.2 Actor-based Implementation

val router: Router = {
val routees = Seq(parser1, parser2, parser3)
Router(RoundRobinRoutingLogic(), routees)

}
router.route(xmlData, sender())

When a Web Crawler needs to pass on the XML feed data to the Parser, the Crawler
does not directly select the recipient. The selection of recipients follows a strategy
that depends on the used RoutingLogic. The RoundRobinRoutingLogic of the ex-
ample redirects the message to the next routee in a cyclic order. Many alternative
routing strategies are available, e.g. RandomRoutingLogic for a random recipient, and
BroadcastRoutingLogic to distribute the message to all routees [11].

Conceptually, we can do the routing directly inside the sending actor by replacing the
tell(m,s) call with router.route(m,s). Alternatively, we can also employ an inter-
mediate actor. The decision is based on the burden of managing the routees.

We have to manage the set of routees and keep it up to date, since actors can fail and
we must not send any message to a terminated actor. If the routees are children of
the routing actor, then the router gets informed through its supervision obligation in
the case of a subordinate’s demise. A supervision-managed set of routees is called a
pool [118].

Alternatively, routees are part of a so-called group when the routing actor does not su-
pervise the routees [118]. Akka provides the so-called actor selection mechanism to send
a message to an address matching a certain pattern. When no supervision relationship
exists, message delivery reliability becomes a special concern. Actor selection does not
guarantee that a recipient for a selection pattern exists. Therefore, a message becomes
a so-called dead letter when the runtime cannot deliver the message.

Delivery reliability is also a general concern of sending messages to actors, besides the
context of routing. The theoretical actor model guarantees that all messages are always
delivered [7]. Conceptually, this insurance is important since it implies that no actor
can permanently starve [85]. In practice however, we cannot safely assume perfect
delivery reliability to hold. Because we consider actors in a potentially distributed
context, message delivery can be subject to a network link. Recalling Fallacy 1: The
network is reliable warns us that we cannot trust the network to transport the data
in general. As a result, neither can we assume actor message delivery. Akka therefore
provides a weaker insurance regarding message delivery reliability than the theoretical
actor model. Particularly, all messages are merely delivered at-most-once. Additionally,
when several actors send messages to the same recipient, there is no guarantee of a general
order of the messages in the mailbox. The runtime merely enqueues the messages of each
particular sender into the receivers mailbox in the same order as the sender dispatched
the messages (FIFO order) [72].

In contrast, other actor systems like Orleans provide at-least-once delivery. They resend

49

5 Implementation

messages that were not acknowledged within a certain timeframe [20]. No message is
ever lost but it can emerge duplicate instead. As a consequence, the application logic of
actors with at-least-once delivery must cope with the fact that the actor can receive one
and the same message several times.

Main findings

• Actors exist within a hierarchical supervision structure.
• Failure is communicated along side the hierarchy while state does not leave

the boundary of an actor.
• Supervision is also useful for complex message routing logics.

5.2.6 Persistence and IO

We must employ some kind of data persistence mechanism, e.g. a database, in order
to persist the internal states of actors. Echo’s CatalogStore is a prime example. Due
to the single-threaded semantics of actors, only a single interaction with the database
is possible at the same time. This is inefficient, since database access is input/output
and therefore a performance limiting factor in general [132]. Theoretically, the single-
threaded semantics of actors makes database transactions obsolete, but the author found
that common APIs demand an active transaction in any case, e.g. with providers of the
Java Persistence API (JPA).

We can overcome the single-threaded limitation when we utilize a non-blocking API for
database connections. Such APIs provide a Future reference to an eventual result at
the cost of additional stress to the actor’s thread-pool. With the monadic methods of
Future we define further computation on the result once it becomes available. The
price is the immanent risk of accidental data races when we pass mutable state into the
Future’s scope.

An example for a situation where we cannot apply a non-blocking API is the experiment
for the benchmark we describe later on in Section 6.2.3. We need an alternative strategy.
The delegation principle we discussed for synchronous message handling is also applicable
for database interaction. We can handle several database interactions concurrently by
having as many actors communicate with the database at the same time.

Each CatalogStore actor has a database. Conceptually, we use the database to persist
the state of a single actor. The state is not exclusive anymore, if several actors manage
the same database. Yet we need several actors for concurrent interaction. Hence, we have
to intentionally weaken the encapsulation principle. Although the database conceptually
belongs to the CatalogStore, the store actor delegates all database interactions to it’s
children (Figure 6). A RoundRobinRoutingLogic distributes the database interaction
operations between the child actors. Now, the CatalogStore architecture component
consists of several task units of the actor model. All these actors conceptually share a
single persistent state. We must not break the isolation of each actor however. Therefore,

50

5.3 Microservice-based Implementation

Figure 6. Example of a stateful actor sharing its persistent state with several child
actors: The store delegates all database interactions to the child actors

these children neither share the same database connection interface object, nor any other
mutable data. We merely loosen up the restriction on encapsulating the persistent state
inside one single actor. A narrow group of actors is managing the persistent state
instead. All these actors must utilize the database system’s transaction mechanism.
We use a dedicated dispatcher for all actors involved in the logical encapsulation of
the persistent state. The underlying thread-pool uses a fixed number of threads. This
provides a predictable impact on performance, in contrast to Akka’s default dynamically
sized thread-pools. Dynamic pools add threads when demand is high, i.e. due to many
blocking operations, and can therefore consume a lot of system resources [11]. The idea
of actor-managed databases is not novel. Shah & Salles give an entire manifesto on what
they call actor database systems [125].

Main findings

• Efficient handling of persistence and IO in general uses the same strategies
as for synchronous actor communication.

• Concurrent database interaction via delegation forces us to intentionally
weaken the conceptual encapsulation of actor state.

5.3 Microservice-based Implementation

This section covers the strategies we apply when we program with the microservice
model. Again, we implement the backend of the concurrent system which we outlined
in Section 5.1. All concepts we discuss are with respect to a specific technology stack.
The focus is on the linguistic support provided by the technology stack. Efficiency
considerations are part of Chapter 6.

51

5 Implementation

5.3.1 Service Technology Stack

Service-oriented programming languages seem to be a good choice for a microservice
architecture. Though some languages are theoretically matured, from a practical point
the available SOP languages are as of yet still at an early prototypical stage. Jolie for
example still misses an ecosystem and tool support we are looking for in comparison to
Akka. Therefore, we refrained from using Jolie to implement Echo. Instead, we compose
microservices using a more traditional technology stack. We use Java as the program-
ming language for all services and the Spring [78] framework, most notably its Spring
Boot [79] module, for application fundamentals. Additionally, we apply many libraries
of the Spring Cloud [80] collection, which have proven very effective for microservice
development in industrial applications [26]. For the webserver, we configure Spring to
use Undertow [29].

Spring is based around the concept of inversion of control (IoC). Spring’s IoC variant
applies dependency injection. We do not instantiate objects directly, but instead define
for certain classes what kinds of dependencies they need (i.e. we declare fields but do
not initialize them directly). These kinds of classes are called beans. A so-called IoC
container instantiates these beans and injects their dependencies through constructor
arguments, factory methods or setter methods. An IoC container’s primary responsi-
bility is therefore the management of beans21. We call this lifecycle management. The
actual execution logic of a bean, i.e. the scheduling on a thread-pool, is also left to the
IoC container [81,139]. Therefore, Spring’s IoC container is the internal concurrency
managing system of each of our microservices. Conceptually, IoC management has a
certain resemblance to the execution of actors by an actor runtime [53].

Spring Boot is primarily an application skeleton based on the Spring framework. The
skeleton is a fully executable application without domain-specific functionality. We use
Spring beans to add custom configuration and the functionality we want the application
to fulfill [79]. In other words, Spring Boot provides us with a general foundation for the
microservice’s engine, and we as programmers merely add the specific service behavior
through custom beans.

Spring Cloud is a set of libraries which focus on features like data access, messaging,
streams, discovery, load balancing, circuit breaker, and many more [80]. The term cloud
indicates that the libraries are intended for cloud computing scenarios. This makes
them useful to us since the industry uses microservice architectures for cloud deployment
scenarios [23,35].

As we did with the actor implementation, in subsequent sections we pay attention to
the linguistic support provided by the framework regarding the expression of service
requirements.

21Sometimes Spring beans are therefore referred to as managed objects.

52

5.3 Microservice-based Implementation

Main findings

• We can leverage inversion of control frameworks to reduce the effort that
comes with writing many separate applications for MSAs.

• Programming with IoC transfers the management of concurrent execution
to the IoC container.

5.3.2 Internal Service Concurrency

The microservice model paradigm does not dictate restrictions on the internal service
structure. A service is free to apply concurrency internally, and to utilize every concur-
rency mechanism it sees fit (including actors). We build the Echo services on top the
Spring framework and utilize the concurrent programming structure that Spring’s IoC
container provides. Spring-based microservices receive requests as method calls to beans.
We discuss the concrete communication mechanisms in Section 5.3.4 below. The respec-
tive bean classes have a so-called stereotype annotation22 decoration (e.g. @Component,
@Controller, etc.). The IoC container turns each of these method calls into a so-called
task by wrapping the call into a Runnable. Every task gets appended to a task queue.
We have already demonstrated how to wrap method calls into a Runnable in the Java
concurrency case study of Chapter 2. Spring’s TaskExecutor constantly processes the
task queue. An Executor is Java’s variant of a thread-pool. An allocated thread of the
thread-pool eventually executes each task [81].

Since microservices are concurrent internally, we have to pay attention to their shared in-
ternal resources. All shared resources must be either immutable as the messages in Akka,
or we must synchronize the access to the resource. Spring uses software transactions for
synchronization.

Spring provides linguistic support in a declarative programming style for many strategies
and mechanisms. This is particularly interesting since the declarative style is not intrinsic
to Java’s imperative programming concept. However, the language allows us to introduce
declarative programming through annotations, so that the IoC container then applies
appropriate behavior. In contrast to annotation processors, where the compiler reads
annotations to influence the compilation process (e.g. to generate class implementations),
Spring uses reflection at runtime. The result is a form of aspect-oriented programming.
We leverage the declarative style for synchronization by defining software transactions
on method calls using the @Transactional annotation. Spring also extends the STM
to database transactions transparently [81,139].

While Spring enqueues each request into a concurrent task queue automatically, we as
programmers also want to leverage this technique to achieve a higher degree of concur-
rency inside a microservice. The @Async annotation allows us to declare methods that
22Stereotypes in Spring describe certain patterns for beans. Hence, we expect special behaviors of

stereotype-annotated beans.

53

5 Implementation

we want to dispatch asynchronously. When we call an @Async-annotated method, Spring
wraps the call into a Runnable and enqueues the resulting task into the task queue of
the TaskExecutor. Since the method executes at an unknown point in time for the
caller, we cannot expect a result value directly. An @Async method is therefore void in
general. Alternatively, we return the expected result wrapped in a Future [81]. We have
discussed this idea for active objects and their future type methods already. The future
enables us to return an intermediate result and provides an interface to check whether
the actual result is yet available. The author has experienced that Spring’s default
AsyncTaskExecutor does neither handle nor log the occurrence of exceptions. We have
found this factor troubling for development. Therefore, we use a custom asynchronous
task executor implementation capable of handling exceptions to fix this flaw.

Although Spring’s declarative programming style for concurrency is very powerful, we
have also experienced some limitations. The @Async and @Transactional annotations
only show effect on public methods. Additionally, self-invocation of an @Async method
does not spawn a new asynchronous task, but instead executes within the same task in a
synchronous fashion. Combining @Async and @Transactional is also possible. However,
the asynchronously dispatched method does not run within the same transaction as the
dispatching method, but in a fresh transaction instead [81].

Main findings

• The IoC container builds on Java’s standard threads, but exposes a com-
pletely different programming interface (implicit concurrency, @Async, STM).

• A declarative programming style can simplify the handling of concurrency
issues in an imperative programming language.

5.3.3 Isolation and Persistence

The incarnation of a microservice is by definition a system level process. The foundation
of the isolation of services is the strict memory boundary of every process that the
operating system enforces. By convention, services refrain from implementing shared
memory sections among them. We therefore never require synchronization among the
components. The principle must also extend to the persistence of state.

We can persist information with many different strategies. Database systems are one
well established approach. If we share a database between several microservices, every
service gets access to all other component’s persistent state. Shared databases are a
simple way to skip isolation mechanisms and bypass the service interfaces, thus breaking
the encapsulation principle. Therefore, one convention of the microservice principles is
that each service owns its databases exclusively [34]. Sharing a persistence mechanism
conceptually relates to sharing state, which introduces an implicit form of shared state
communication [30]. As a consequence, we must provide each component with its very
own database instance if we require persistence. We deploy every CatalogStore instance

54

5.3 Microservice-based Implementation

with a dedicated database instance, and every IndexStore has a separate Lucene reverse
index data structure.

Persistence is a form of IO and a potentially performance limiting factor. Hence,
database management systems usually support concurrent access to the database. As
with actors, concurrent connections increase the throughput of the component. The
Spring Data module offers us a good interface as well as a transparent abstraction to
interact with the database in a concurrent way [139].

Figure 7. Example of a stateful microservice maintaining several concurrent connections
to an exclusive database

Since Spring executes every request concurrently inside a Runnable task on a thread-
pool, concurrent database interactions are implicitly available. Every thread of the
pool can interact with the database at the same time. The transactional memory of
Spring extends to database transactions. Programmers do not have to pay heed to or
apply additional strategies to leverage efficient persistency through database concurrency.
Hence, we expect a microservice to have several database connections in place at the
same time (Figure 7).

Main findings

• State is exclusive to the entire microservice.
• Isolating state must extend to the isolated persistence of state.
• Concurrent access to persistent state is transparently possible.

5.3.4 Communication Mechanisms
Communication in microservice architectures happens via inter-process communication
mechanisms. Various kinds of interfaces are possible. While communication for actors
happens in a uniform way, microservices in general face more challenges. The freedom
in the design of services does not dictate a specific communication interface. The only
restriction regarding the interaction is that we need to omit shared memory between
services. Solely relying on message passing mechanism makes services cohesive and
loosely coupled.

We have found scholars to give REST (Representational State Transfer) as the prime
(and often sole) example of valid communication channels throughout the literature.
However, the author experienced that REST is practical only in certain situations. Since

55

5 Implementation

REST builds upon synchronous HTTP, it is a good solution for synchronous require-
ments. Echo facilitates REST for search requests through the Web application (G ⇄
S ⇄ I), as well as metadata retrieval from the CatalogStore (G ⇄ D). As even Fowler
& Lewis [42] in their seminal work on microservices point out, other mechanisms are
applicable as well, as long as they are lightweight and do not apply logic of their own.
The indexing subsystem is more predestined for an asynchronous workflow. Therefore,
we desire a message queue-like mechanism. JMS (Java Message Service) [30] is a promi-
nent example among JVM technologies. However, JMS is also limited to the JVM, which
contradicts the open and well-defined interface principle of microservices.

We require a technology-heterogeneous message queue standard. AMQP (Advanced
Message Queuing Protocol) [1] is an open specification for asynchronous messaging.
While JMS only defined the interfaces, AMQP also defines the message format. There-
fore, different implementations exist which we can interchange freely. Echo builds upon
RabbitMQ [82], a messaging system that proved to integrate well into MSAs, accord-
ing to the literature [33]. A message queue conceptually introduces a new concurrent
component into the architecture:

Message Queue (Q)
is a distributed point-to-point communication channel. The queue offers message
delivery from a sender to a qualified receiver (possibly unknown to the sender), de-
coupled in time and space (asynchronous) [30].

The queue becomes an intermediate for all asynchronous messages. Senders push mes-
sages to the queue, and receivers subsequently pull those messages from the queue. For
example, we do not send a message directly from a Web Crawler to a Parser (W → P),
where the active component is only W. Instead, the Crawler pushes a message the queue
(W → Q). At some later point and idle Parser pulls this message from the queue (P ←
Q). The message travels asynchronously. The actively communicating components are
W and P. The queue merely performs internal routing logic and reacts to requests from
others. The queue also decouples the sender W from the actual receiver P, i.e. W does not
know which concrete P receives the message.

In general, a service can have several different interfaces, based on heterogenous technolo-
gies. As a result, this allows the service to provide the same functionality on different
interfaces. Since all interfaces of Echo’s microservices produce and consume messages
in JSON (JavaScript Object Notation) format, there are no data type incompatibility
problems. Echo’s microservices provide a REST interface for every message a service
consumes from the AMQP queue. We can therefore also send a message to a service
directly via HTTP. The additional option to invoke service functionality turned out es-
pecially useful for testing and debugging purposes when we implemented Echo. This
suggests that it is valuable to maintain different interfaces for development, production,
and maintenance.

56

5.3 Microservice-based Implementation

Programming Abstractions

We have already seen that Spring provides a declarative programming style through an-
notations. The IoC container applies a behavior to a bean based on an annotation using
reflection. The benefit of reflection is that we can still apply deployment configuration
without the need to recompile, which is especially useful for communication configuration.
The downside is additional runtime overhead and the lack of static compatibility check-
ing. For example, a Searcher queries an IndexStore using a synchronous REST call (S ⇄
I). We use the Spring binding for Feign [110], a library dedicated to annotation-based
decorations for Java interfaces. Clients consume RESTful endpoints using a dynamic
interface implementation. We express the example in the Searcher through:

@FeignClient(name = "index")
public interface IndexClient {

@GetMapping("/query")
List<Result> query(@RequestParam("q") String q);

}

The stereotype annotation @FeignClient is for REST clients. Feign automatically gen-
erates an implementation class of the given IndexClient interface. Spring’s IoC then
instantiates a bean of this implementation class. Calling the query of this bean dis-
patches the REST call in a blocking fashion. The method only returns once the result
from the IndexStore is available. Mapping the HTTP body content (in JSON format)
of the response to domain objects happens transparently, provided that we configured
a JSON serializer for the IoC container. As a result, we can use every domain object
for the method result type. The IndexStore receives the request by declaring an ap-
propriate REST-endpoint using a similar annotation driven implementation approach.
@RestController is the stereotype annotation for beans that receive REST calls:

@RestController
public class IndexResource {

@GetMapping("/query")
public List<Result> query(@RequestParam("q") String q) {

// query reverse index for phrase q
}

}

This approach models a remote procedure call between the two components. The call
query("TU Wien") of the IndexClient in the Searcher results in a call of query(String)
method with argument "TU Wien" of the IndexStore’s IndexResource. The service’s
programmer invokes the method on the client-side. Then, the receiver’s inversion of
control container registers the request on the transparently exposed REST interface and
calls the method on the server-side. We can express message queue interaction in a
similar fashion through respective AMQP stereotype annotations. The resulting beans

57

5 Implementation

interact then via RabbitMQ. While the above REST example declares a synchronous
API, the AMQP annotations declare asynchronous APIs. An interface method call on
the client-side returns before the server-side receives and processes the message.

Service Discovery
Message queues decouple the sender from the receiver. Therefore, the sender neither
requires nor knows the address of the actual receiver. For direct communication like
REST however, we require the actual address of a recipient. Yet in certain deployment
scenarios this information is not statically available. We apply the concept of service
discovery known from SOA [30] to bridge this lack of static information. The so-called
registry is a dedicated service component that provides binding information about other
services. We merely predefine the connection to the registry statically and are obligated
to ensure the availability of the connection at runtime. Microservices then register with
the registry service, in order to be discoverable by others [105]. This dedicated service
adds a new concurrent component into the architecture:

Discovery Registry (D)
is a centralized service and provides address information for dynamic connections.
Other services register with the registry service under a name and their address.
Clients lookup the current address of registered services for a given name.

The name argument of the @FeignClient annotation in the REST example we gave be-
fore relates to the name we use to register the IndexStore unit. The advantage of Feign
is that it automatically integrates with discovery mechanisms. Examples for service reg-
istry technologies are Consul [56], a standalone registry service solution, and Eureka [75],
a module of Spring Cloud to add registry capabilities to custom applications. Echo sup-
ports Consul, but uses a dedicated service based on Eureka by default. The author of
this thesis experienced Consul as very resource demanding in comparison.

Figure 8. Example of service discovery usage in the retrieval phase: The consecutive
lookups delay the overall synchronous communication

Discovery mechanisms impact the response times of services. It can become necessary
to lookup an address before a service is able to make a request. The service must then
make additional RPCs for registry lookups, in the worst case for each of the involved
services. Figure 8 shows the order of interactions in the worst case for search requests

58

5.3 Microservice-based Implementation

in our scenario. When all location information is outdated, then G must first lookup I
with G ⇄ D (1) before it can do G → S (2). Subsequently, S must lookup I with S ⇄ D
(3) before it can send S → I (4). This dampens the liveness of the request flow for our
search results (G ⇄ S ⇄ I). We also need to ensure that the information in the registry
is correct and up to date. Health checks are a common feature of discovery services to
determine if their registrees are actually up and alive [33].

In contrast, message queues have the major benefit that a sender dispatches a message
to the queue without needing the address of the receiver. This circumstance provides
a lower degree of coupling as well as a notion of location transparency between sender
and receiver. Therefore, when we use message queue channels, we do not need service
discovery technology if we statically know the queue address. Otherwise, the queue needs
to register with the discovery mechanism. The clients then simply retrieve the queue’s
address dynamically.

Load Balancing
The idea of distributing work (load) between several instances of the same task unit is
called load balancing (LB). The goal is to optimally utilize the resources of all instances
and prevent that a single unit is overloaded. Load balancing maximizes throughput and
minimizes response time of the overall system [18]. There are two directions towards
load balancing. A central supervising entity that distributes the work between receiving
services is balancing load server-side. Spring Cloud offers Zuul [76] to create balanc-
ing server. In contrast, a service that distributes the work itself is doing client-side
balancing [30].

Echo’s microservices use the Spring Cloud module Ribbon [77] for client-side load bal-
ancing. The main reason for Eureka over Consul as the Discovery service is that Ribbon
integrates with Eureka. A Ribbon client does not dispatch a message directly to an
address. Instead, Ribbon uses a static name to lookup the current address of a server
from the discovery service. Ribbon can then balance individual requests directly on the
client-side across server instances, as it cooperates with Eureka to maintain a set of
valid instances of a static name [26]. This name is in fact the name argument for the
@FeignClient annotation of the declarative REST interface, since Ribbon integrates
transparently into Feign.

Main findings

• Different communication styles require different communication channels.
• Microservices are free to serve the same functionality on different commu-

nication interfaces and technologies at the same time.
• Microservices always serialize and exchange data in a technology neutral

format (e.g. JSON or XML). This prevents data type compatibility issues.
• Location transparency is not intrinsically available in MSAs. Network com-

munication coupled with discovery technology adds this feature.

59

6 Evaluation

Thinking like a computer scientist
means more than being able to program
a computer. It requires thinking at
multiple levels of abstraction.

— Jeannette M. Wing

In Chapters 3 and 4 we introduced the concepts of actors and microservices. Chapter 5
described the strategies of each model to implement concurrent systems like the Echo
scenario. We discussed each model separately and focused on the individual concepts of
each model. In this chapter, we compare and evaluate both models relative to each other.
As we have demonstrated, both actors and microservices qualify for expressing concur-
rent computation. Their mechanisms and abstractions also support parallel computa-
tion on multicore processor as well as distributed execution on multiple hosts. Several
authors [5,84,85] suggest that programming models regarding parallel and distributed
contexts should be evaluated based on two objectives: expressiveness for programmers
and efficiency of execution.

Section 6.1 compares the key properties that are the foundation of the concurrent exe-
cution of both models and the resulting capabilities. The model capabilities allow us to
evaluate the expressiveness of each programming model. Section 6.2 provides a bench-
mark for the actor- and microservice-based implementations of the Echo scenario. The
results of this benchmark evaluate the efficiency of the programming models.

6.1 Expressiveness and Capabilities

In this section, we evaluate and compare the key properties of the actor and microser-
vice programming models, as well as the capabilities we can express with these mod-
els. Programming language theory knows a concept called expressiveness or expressive
power . This concept also becomes more and more relevant in the light of concurrency

61

6 Evaluation

theory. There, the relative expressive power is used to compare two formal concurrency
models [37,45]. Evaluations on a strictly formal level require the rules and boundaries of
formal frameworks. Therefore, often programming languages are analyzed. Concurrency
theory focuses on process languages. These languages are founded on the formal frame-
works of so-called process calculi [112], which we briefly discuss in due course. Here, we
do not concern ourselves with formal proofs of behavioral equivalence however. Instead,
we revert to informal discussions about the observational equivalence of concepts we can
express in the actor and microservice model, as has been often done in the literature
before [37]. All strategies that we express in both models are essentially encodings of
ideas [45]. Ultimately, we are interested if actors and microservices have the expressive
power to convey the same ideas. The two models are equally capable to express a con-
cept if the solution of one model produces an equally powerful functionality (informally)
as the solution of the other model.

6.1.1 Encapsulation and Isolation

Actor and microservice semantics rely on the strict separation of component states. We
must ensure that state is conceptually well encapsulated within a component, and practi-
cally isolated from the outside. Encapsulation is a concept we know from object-oriented
programming. As Snyder [129] points out, OOP usually offers mechanisms to restrict the
access to an object’s state. A client gets access to an object’s state by issuing requests
for the services an object offers. These services – not to be confused with the concept of
a microservice – are what Meyer [97] calls well-defined interfaces in the form of routines.
Meyer considers these services a necessity for encapsulation.

Both actors and microservices offer well-defined interfaces in their own way. For an actor,
the interface is the sum of the messages the actor understands through its behavior.
For microservices, the interface is based on the sum of the facilitated communication
channels, e.g. the REST interfaces the service exposes and the messages it consumes
from a message queue. Only through the interfaces can we access or modify the service’s
state.

Table 1 at the end of this section summarizes the encapsulation-related matters as they
are facilitated by Akka actors and Spring-based microservices.

Shared and Mutable State

One fundamental characteristic of both actors and microservices is their notion of shared
state. Summarizing Chapter 3, the actor model encapsulates state exclusively within
an actor. Therefore, the state is only accessible to and modifiable by the actor itself.
Additionally, actors provide single-threaded semantics while processing messages. An
actor processes only one message at a time. The isolated turn principle eliminates the
need for synchronization, since message are free of low-level data races, and a turn has
exclusive access to the current state. The actor’s state is fully isolated.

62

6.1 Expressiveness and Capabilities

On the other hand, we cannot apply the same reasoning for microservices in general.
The paradigm states nothing about how state has to be handled internally. Depending
on the programming paradigm we use to implement the service, state is not necessarily
exclusive internally. In OOP for example, several objects can access the same memory
location. Furthermore, concurrent access to the state is also possible, e.g. as a reaction
to several invocations of the service’s interface within a short time span. Microser-
vices do not ensure single-threaded semantics. In general, we therefore assume that we
must synchronize the access to the service’s internal state. Additionally, the microser-
vice paradigm dictates that we must avoid shared memory between services, as well as
all kinds of shared resources in general. Since every service runs within a dedicated
system process, avoiding shared memory implies no direct intersection between service
process boundaries. Typical communication channels satisfying the requirements given
in Section 4.3 also prevent reference sharing to joined mutable data. All viable chan-
nel technologies provide some sort of message passing designed to transfer information
between the different memory spaces of distinct processes [90].

Actors generally face more challenges when it comes to truly ensuring state separation.
The components can exist within the same process boundaries and access the same
memory locations. Depending on the programming paradigm we use to implement the
actors, exposing shared state to others can be rather easy. At the same time, exposed
state is not necessarily apparent to the programmer. Think of the example we discussed
for Akka. We can use an arbitrary object as a message. If we do not construct an object in
an immutable fashion, the message transfer shares the object’s state. Concurrent access
and modification to this shared state causes unpredictable runtime issues. Especially the
imperative programming style leans on mutable state. Actors in imperative languages
therefore require extra care to preserve the model semantics. The functional paradigm
tends to avoid these problems inherently. Functional languages model the behavior as
a function and only this function is modifiable exclusively by the actor. If the actor
model is integrated into the programming language directly, the language is able to
enforce restrictions preventing shared mutability problems by design. Erlang is the
prime example [137]. However, library-based actor implementations cannot ensure full
isolation by themselves [87].

Persistence and IO
The encapsulation and isolation principle of actors and microservices has one more im-
portant implication. Recall that state is exclusive to a single component. Hence, each
component must also take exclusive care if we require durable state across the compo-
nent’s lifetime. In our scenario, every CatalogStore must have its exclusive database
and every IndexStore its exclusive reverse index data structure. However, neither an
actor runtime nor a microservice technique can enforce this persistence restriction. The
obligation of correct configuration lies solely with the programmer.

We also desire concurrent interaction to persistence mechanisms to increase through-
put. Microservices easily leverage the concurrent interaction capabilities of a database

63

6 Evaluation

management system via to the service’s internal concurrent structure. The thread-pool
strategy of Spring as well as the software transaction mechanism transparently extend
to database interactions.

Actors face more problems, since they are not concurrent internally. Like with all actions
in the actor model, database interactions must execute in a turn-based fashion and
are therefore sequential. We have outlined that we can apply the same strategies as
for synchronous communication to improve the persistence-efficiency of actors. Either
we employ additional concurrency constructs (futures) or we delegate interactions to
child actors. Futures always have the potential to violate the isolated turn principle.
Delegation forces us to share the database between several actors, violating the exclusive
ownership of (shared) state.

Cohesion, Coupling and Independence
Message passing interfaces and strong encapsulation make actors and microservices co-
hesive. Bonér [22] also defines truly isolated components combined through message
passing communication as decoupled in two dimensions. On the one hand, the compo-
nents are decoupled in time, which is the requisite for concurrent execution. On the
other hand, the components are decoupled in space, and therefore we can execute them
remotely and even move them between locations.

Regarding time, actors facilitate asynchrony intrinsically through the model design. Nev-
ertheless, actor systems tend to offer synchronous primitives on top of the asynchronous
style. Programmers receive better abstractions, at the cost of increased coupling. Mi-
croservices are free to choose the IPC style, as long as the IPC mechanism is based on
message passing rather than shared memory, which further reduces the coupling.

Regarding space, actors are conceptually fully isolated. In practice, ensuring true isola-
tion is difficult, especially for library-based actor implementations. We have discussed
the conceptional problems for Akka in detail in Section 5.2.1. In the end, the program-
mer has to guarantee the isolation by complying to programming conventions. Infringing
these conventions introduces or exposes shared mutable state, which is a violation of the
actor model. Also, shared mutability increases the coupling to the sharing component,
both in time and in space.

Microservices have an inherent advantage regardless of the chosen programming model.
The only true paradigm requirement is the avoidance of shared memory sections with
other processes. Either the operating system enforces the memory boundaries, or the
hardware separation resulting from distribution guarantees spacial decoupling. Besides,
their distinct codebases further decouple the microservices. Only a shared library in-
creases their coupling. For example, we facilitate a custom Core library in Echo. Core
increases the service’s coupling relative to the library. We have implemented all domain-
specific functionality, as well as data transfer objects (DTO) within the Core. The
DTOs are the domain objects we use as messages. Therefore, all microservices are cou-
pled among each other by the DTO classes. Actors suffer from the coupling problem

64

6.1 Expressiveness and Capabilities

unequally more. The actor runtime intrinsically binds every actor. Different interfaces
to an actor system can exist. Akka demonstrates interface diversity for Java and Scala.
Yet, the actors cannot escape the coupling to Akka’s codebase. Additionally, Echo’s
actors are also coupled by the DTOs in Core, just like the microservices.

These two notions, high cohesion and low coupling, allow us to reason about the inde-
pendence of task units. Independence is one of the primary concepts of the microservice
paradigm. The literature describes independence as a direct consequence of high cohesion
and low coupling [33–35,124]. We deem the strong process-based form of independence
superior to the notion provided by the actor construct. Actors are passive tasks which
react to messages. An actor can only perform actions when the runtime executes the
actor. Microservices can show active behavior on their own.

Characteristic Akka Spring MSA
Shared state Not enforced, obligation of the Ensured through processes

programmer memory boundaries
Single-threaded semantics, free of Concurrent access inside the

State mutation synchronization, threatened by service is possible, but
language features requires synchronization
Single-threaded semantics Concurrent interaction with

Persistence/IO dampens throughput, improved outside freely possible
with futures or delegation

Cohesion High cohesion through strong encapsulation and message passing
Coupling Coupled to common codebase Low coupling through

and the runtime independent codebases
Independence Passive units, subject to runtime Active units, subject to OS

Table 1. Comparison of encapsulation-related matters in Akka and a Spring-based MSA

6.1.2 Communication and Message Routing

According to the general concerns of concurrent computation, tasks without mutable
shared memory require other kinds of communication links which facilitate message
passing instead. Since both the actor- and the microservice model strictly omit shared
state, they too require what we call communication channels for messaging. These
channels transport information from a source to a destination. A sender writes data to
the channel, and subsequently the receiver reads the data from the channel. Independent
of the concrete channel technology, message passing is a form of implicit synchronization
of the information, since the event of reading a message can intrinsically only occur after
the message was sent. In contrast, shared state explicitly requires a defined order of
accessing the information [12].

We have identified various forms of information flows offered by channel concepts through-
out the literature [5,14,30,51,104,118,130,134]. Generally, the flows can be distinguished

65

6 Evaluation

alongside two dimensions: number of recipients and response coupling. Authors declare
varying taxonomies for the resulting combinations. Table 2 provides an overview of the
terminology we use in the remainder of this work. Subsequently, Table 3 summarizes
the communication capabilities of Akka actors and Spring-based microservices regarding
these communication styles at the end of this section.

One-to-One One-to-Many
Synchronous Request/response —
Asynchronous Notification Publish/subscribe

Request/async. response Publish/async. responses

Table 2. Communication Styles

Asynchronous one-to-one messaging is inherent to the actor model. The message-sending
primitive realizes notification style communication. Responses are asynchronous too.
Akka provides the sender() method within actors. The method produces the ActorRef
of the originator of the current turn’s message. Microservices achieve asynchrony via
message queues. Responding depends on the channel protocol. AMQP does not transmit
the sender’s location. If we must send a response, we need to include the location
information into request messages individually.

We can model synchronous one-to-one messaging on top of the actor messaging primitive.
Every synchronous communication can be expressed using asynchronous constructs in
general, and vice versa [9]. Akka provides linguistic support for request/response messag-
ing through the ask [?] method of ActorRef. Microservices utilize network mechanism
dedicated to the synchronous interaction pattern. In the service context, REST is the
most prominent example.

One-to-many communication is neither inherent as a primitive to actors nor microser-
vices, and therefore requires additional effort. Conceptually, we model the communi-
cation style by sending a message to each intended recipient in a notification fashion
(message broker). Akka has message broker capability in their message router con-
structs through the BroadcastRoutingLogic. Echo implements the routing logic inside
a separate actor. In Echo’s MSA, the RabbitMQ service does not suffice for one-to-many
message distribution. AMQP only supports what the JMS terminology calls queue se-
mantics (one-to-one), but not the JMS topics (one-to-many). We must employ another
messaging technology. Kafka [41] is a widely adopted publish/subscribe streaming sys-
tem with very lightweight message constructs.

One important realization is the difference in messaging interfaces. While Akka provides
few but homogenous interfaces (tell [!], ask [?], and RoutingLogics) across all
language bindings, the microservice model does not enforce any kind of interface. REST,
AMQP and Kafka all have different interfaces. Since all Echo services are based on
Spring, at least we express the interaction with each communication mechanism in the
same way within each service. But the microservice paradigm is also open for arbitrary

66

6.1 Expressiveness and Capabilities

technology stacks, and every stack provides its own interface for each mechanism.

Communication Style Akka Spring MSA
Request/response ask method of ActorRef, Remote procedure call

delegation pattern with REST
Notification tell method of ActorRef Message queue service

like RabbitMQ
Request/async response Request and response with Request and response

tell method of ActorRef through message queue
Publish/subscribe Router with Message broker service

BroadcastRoutingLogic like Kafka
BroadcastRoutingLogic Request through message

Publish/async responses for request, responses with broker, responses through
tell method of ActorRef message queue

Table 3. Comparison of communication styles and their implementation constructs as
we express them in Akka and a Spring-based MSA

6.1.3 Conception of Concurrent Execution
Actors and microservices are both concurrently executed components within their system
architectures. However, their execution-modalities are fundamentally different. Hence,
both constructs have different notions of concurrency. Each notion is a direct result of
the underlying concepts.

Continuations, Threads and Processes
Scala’s original actors provide two different execution semantics [54]. One of the seman-
tics schedules the actors on threads. These actors are executed in an inversion of control
manner [53], similarly to the strategy pursued by the Spring framework. The other of the
two semantics is purely event-based and therefore without IoC. Thread-based actors are
invoked by their current thread to execute a turn. Upon completion, the actor returns
to the calling thread. On the other hand, event-based actors do not have (or need) a
dedicated thread and therefore cannot return to one. Instead, they facilitate a much
cheaper concept called continuation-passing style known from functional programming.
A function refrains from returning a computed result and calls a subsequent function
instead, the so-called continuation closure. Akka extends this approach and defines a
single closure for all messages until we replace the behavior. This approach is more ef-
fective [52]. We already gave an example of a continuation with Actor.same for Akka’s
type-restricted behaviors. Dispatchers influence the thread assignment strategy for con-
currently running the behavior closures [52]. Although it uses threads, we still consider
the continuation closure approach as event-based, since a thread can be seen as merely
a trajectory in continuation space [126]. Nevertheless, threads are conceptually similar
to processes, except that several threads exist within a single process [14]. There, the

67

6 Evaluation

actor thread-pools live in one or few processes and many actors share the same memory
boundaries of their respective process.

Although they execute on top of threads, the isolated turn principle essentially defines
actors as single-threaded entities. The combination with asynchronous message passing
allows the runtime to concurrently execute these logical single-threaded components. In
general, an actor has no notion of concurrency at all. However, we have demonstrated
how to introduce additional concurrency constructs into the scope of actors, as long as
these additional constructs do not break the actor model semantics. Section 5.2 demon-
strated futures with their pitfalls as one option. In combination with the continuation
abstraction, Akka actors are powerful and still extremely light-weighted constructs.

On the other hand, microservices are concurrent distributed processes. The model
paradigm tolerates a more widespread notion of concurrency than actors do. Internally,
services do not have a counterpart to the isolated turn principle. Though a service also
receives messages via a public API and reacts to them, the MSA style permits design
flexibility regarding internal task unit concurrency. For example, a widespread strategy
in the domain of distributed systems is to utilize several threads to perform blocking
operations [134]. A microservice applies this strategy to perform blocking operations
without blocking the service’s entire process, and react to numerous messages simultane-
ously. Spring’s IoC container provides this strategy automatically for requests through
its thread-pool.

The drawback of this degree of freedom is the set of issues internal concurrency introduces.
In general, accessing state is not a safe operation anymore, if the respective state is read-
and writable across threads. We must use synchronization then, e.g. in the form we
have demonstrated in the Java case study. When we program with microservices, we are
therefore not free from the many hassles of low-level concurrency per se. We have seen
this in Echo’s MSA variant, where we use transactional memory for synchronization.

However, a service’s scope of responsibility limits the service’s size. Consequently, the
size also limits the internal concurrency considerations of a service relative to the overall
system. As a result, linguistic approaches to SOC tend to avoid internal concurrency
considerations completely by applying an idea resembling the C processes case study
of Section 2.4.2. For example, Jolie offers the concurrent primitive as one option
for the execution modality of services. The primitive spawns dedicated processes to
concurrently execute the service behavior in response to messages [103]. This idea has
close resemblance to the cameo delegation pattern of actors. Of course, the design
freedom of the MSA style also allows actor-based concurrency internally. The benefits
of synchronization-free programming can be harvested by microservices too.

Distribution and Location Transparency
Communication via message passing has one fundamental property: no mutable mem-
ory is shared between the communicating components. Conceptually, message passing
does not require the components within the same memory space. As a result, it does

68

6.1 Expressiveness and Capabilities

not matter whether the components run on the same core, different processors or even
different host machines [36]. In short, message passing enables distribution.

The actor model builds upon message passing to share state information between actors.
Additionally, actors are well isolated from each other. Based on these properties, Agha [4]
recast the initial notion of actors in the light of distributed computation. All actor
addresses, and therefore also Akka’s ActorRefs, make the location of the underlying
actor transparent. A runtime system that is part of a cluster handles the actual message
delivery on the same local node and on remote nodes. Addresses provide a uniform
interface free of location considerations.

Microservices intrinsically fall into the domain of distributed systems as well, if the ser-
vices leverage a network-based communication mechanism. There is no guarantee of a
unified channel interface for all services and mechanisms. We have given Unix pipes as an
illustrative mechanism. Pipes facilitate the file descriptor interface that Unix promotes.
This interface is limited to local node interaction, that is the memory boundaries of a
single host OS. Channels operating on the network level are distributed communication
mechanisms. Network channels facilitate message passing and provide a uniform inter-
face for remote as well as local communication [130]. Sockets are the most basic example.
The socket interface is homogenous regarding whether a socket is on the same local or a
remote node. However, sockets still require the concrete address [14]. In order to have
the recipients’ location transparent, the microservice paradigm requires additional effort
in the form of discovery mechanisms. We have demonstrated how Echo integrates dis-
covery based on Feign and Eureka directly into the client-side communication interface
using Spring’s declarative programming style.

Fairness and Resource Consumption

Actors and microservices represent concurrent building blocks of equal status in their
respective architectures. It is important to reason about their chances to make even
progress, since we have a uniform view on concurrent execution [25]. Our view does not
distinguish quasi-simultaneous execution on a single processor, truly parallel execution
on multiple CPUs, and distributed execution among several host machines. The property
of uniform progress is called fairness and is closely related to the liveness of concurrent
programs and systems, i.e. to avoid starvation [4,5].

Actors are entities inside an actor runtime. Their scheduling is the responsibility of this
runtime system, viz. the system’s execution strategy. As passive components, actors
have no proactive sense and therefore merely react to events (received messages). The
actor system delivers the message and assures that the receiving actor processes the mes-
sage eventually. Therefore, the runtime must schedule every actor regularly to prevent
starvation [84,85]. The major benefit is that actor systems can greatly reduce processing
resource consumption. Given an actor’s mailbox is empty, the runtime does not have to
invoke the actor, since there is no work to do [3].

69

6 Evaluation

On the other hand, scheduling is a nonconcern for microservices. Every MSA is a compo-
sition of concurrent distributed processes. The MSA implicitly delegates the scheduling
to the host operating system(s) – namely their scheduling policies [14]. We cannot make
specific assumptions on execution rates in general, but require these rates to be positive.
This finite progress assumption [12] is the foundation of liveness for every microservice.
However, there is one drawback to the lack of scheduling concern in MSAs. The archi-
tecture cannot influence the resource consumption based on a service’s actual demand.
An operating system always allocates resources towards every process. Therefore, every
task unit of an MSA also stresses its hosts processing power on a regular basis, at least
to a small amount. This drain on resources exists even when the services neither have
pending requests nor perform active behaviors of their own. In these cases, every process
activation is simply a waste of energy and host resources [134].

Table 4 gives an overview of how actors and microservices meet fundamental issues of
concurrent programming.

Issue Akka Spring MSA
Expression Actor object, concurrent Service program execution,

execution by runtime concurrent scheduling by OS
Message passing primitives Message passing IPC mechanisms,

Communication (e.g. tell, ask), uniform no shared memory, no uniform
interface across all actors interface across all services
Implicit among actors due to Implicit among services due to

Synchronization message passing, single- message passing, potentially
threaded semantics internally required internally

Progress Guaranteed by runtime Expected from operating system

Table 4. Comparison of Akka actors and Spring-based microservices meeting fundamen-
tal issues of concurrent execution

6.1.4 Scalability and Modularity

Their ability to scale is arguably one of the most relevant reasons given in the litera-
ture to utilize actor- and microservice-based architectures [28,33,35,54,105,121,121,135].
Based on the definition given by Bondi [21], scalability is an attribute that influences
the performance of networks, systems and processes in general. From the empirical
knowledge of industrial Erlang applications it has been suggested that scalability is
more important than raw system performance [52]. Many different aspects influence
scalability. From a concurrent point of view, every influence hindering parallelism has a
negative impact. Examples are synchronization (cf. Java case study in Section 2.4.1) and
(temporal) deadlocks. The strong isolation and message passing principles of actors and
microservices (isolated turn principle, avoidance of shared memory) reduce coordination
and contention cost. Therefore, message passing and isolation have a positive influence
on scalability capabilities by limiting safety and liveness issues [22].

70

6.1 Expressiveness and Capabilities

Forms of Scalability

Many different forms and classification approaches for scalability exist. Two merit atten-
tion here. Load scalability refers to a steady performance if the demand or work increases.
Structural scalability refers to the ability of the topology to change the amount of com-
ponents, in this case concurrent task units [21].

Two notions of scaling a system are relevant to us. Vertical scalability, or simply scaling
up, refers to an increase of resource utilization, especially multiple cores and memory
on a single host. The influencing factors are asynchronous messaging, refrain from
blocking, and synchronization. Actors conceptually support these requirements well, as
long as the units refrain from blocking inside their turns. The microservice approach
meets the requirements also quite well, when services back asynchronous communication
mechanisms and refrain from RPCs. In general though, the internal concurrency capa-
bility introduces the risk of facilitating potential hindrances of scaling up. Besides, the
scheduling efforts of actor runtimes and operating systems aim for an optimal utilization
of available resources [14]. Horizontal scalability, also scaling out, distance scalability or
geographical scalability, refers to the utilization of additional hardware resources (hosts).
Distribution capability is the prerequisite. The uniform abstraction of concurrent and
distributed execution of actors as well as the process nature of microservices combined
with network IPCs provide the foundation to scale out [5,21,33,35,72,134].

One approach to achieve scaling out is the concept of load balancing we have already
discussed. Akka actors build upon the same conceptual ideas using the router constructs.
They allow us to distribute work in various strategies, e.g. round-robin or broadcast.
Round-robin is one example of a load distribution strategy. Server- and client-side load
balancing is merely the distinction of a Router within the sending actor itself, or inside
an intermediate routing actor. Microservices either use dedicated balancing services for
server-side balancing, or client-side mechanisms like Ribbon. In one way or another,
load balancing is a valuable concept for both actors and microservices, e.g. to avoid
overflowing mailboxes and to enable timely responses to requests. Some task units are
naturally well suited for load balancing capabilities [26,105], e.g. Echo’s API Gateway.
The major difference lies in the trade-off that comes with load balancing in each model.
As we have mentioned, a Router is a supervision-managed set of routees and therefore
brings all obligations of actor supervision. Microservices are more loosely coupled and do
not know the concept of supervision in general. Hence, load balancing for microservices
does not come with additional obligations, except the operation of the additional server-
side balancing service.

A conceptual disadvantage of load balancers is that the balancers do not know about
the progress of recipients by default. The work gets distributed regardless of the current
capacity of the receivers. Load balancers can take work load metrics into account of
course, as does for example the SmallestMailboxRoutingLogic of Akka. This routing
logic aggregates the mailbox capacities of all routees first. With this information, the
logic then forwards the message to the actor with the smallest mailbox. This capacity

71

6 Evaluation

aggregation before the message dispatch increases the overall processing time [11,118].

Another kind of load balancers are message queue channels. The receiving components
actively pull messages from the queue when they have computation capacity. Therefore,
the tasks distribute load among themselves based on their demand [30,33].

Dynamic Reconfiguration

Dynamic reconfiguration relates to a change in a system’s topology at runtime. We can
add, remove or relocate task units divergent from the static initialization configuration [7].
Actors support dynamic reconfiguration inherently through the primitive that allows
actors to spawn new actors. We already demonstrated this ad hoc instantiation with
the dynamically created response handlers that the Searcher spawns for the delegation-
based synchronous communication. The loose coupling of microservices also provides
opportunities for changing topologies. Discovery registries and asynchronous messages
through intermediate message queues provide the foundation. Reconfiguration greatly
effects scalability, because it increases the optimal utilization of hardware resources [84].

A general prerequisite for dynamic reconfiguration is location transparency. Actors as
well as microservices have sophisticated solutions. Two additional properties, mobility
and elasticity, become possible as a result. Mobility refers to the relocation of compo-
nents between nodes [5,84,134]. Elasticity is a form of scalability summarizing the ability
of a system to scale the number of components dynamically depending on the current
demand. Hence, elasticity improves the load scalability while minimizing the resource
consumption. We can scale actors and microservices in a non-uniform way due to their
component properties. Each individual component type allows us to incarnate many
instances without the requirement to duplicate the residual component types as well (in
contrast to classic monolithic applications) [33,35].

Echo does not provide mobility nor elasticity. However, the general approach is con-
ceptually identical for actors and microservices, therefore we present a short outline. In
principle, we are able to create and terminate stateless task units easily on demand (elas-
ticity). Since these units have no state that requires relocation, this reconfiguration also
doubles as mobility. Akka does not provide strong mobility that requires the migration
of state. Other runtimes like Orleans do provide state migration [20]. Stateful Stores
are a bigger concern. In general, when we (re-)created a stateful unit, it is not safe to
assume that its persistent state (database, reverse index) is up to date. Therefore, we
must update the state with regard to all outstanding modifications. Event sourcing is a
convenient concept which persist all modifying commands to Stores in a so-called event
log [19,107]. A new or reactivated Store requests the history of modifications prior to the
unit’s existence. Message brokers have the potential to double as event logs. Kafka offers
optional persistence support for messages. Akka’s Persistence module is also convenient
to introduce persistence of routed messages. In both cases, it is within the obligation
of the Store units to persist a counter or reference to the last received event separately.
This reference is needed to determine the required partial history.

72

6.1 Expressiveness and Capabilities

In general, we deem the concerns related to dynamic reconfiguration more easily met with
actors. Spawning new units is a core concept of the basic model primitives. Microservices
themselves have no general notion of other services beyond interaction. We need an
additional layer to manage changing topologies. Cloud management frameworks are a
category of tools that seem convenient.

Table 5 summarizes the capabilities for each scalability variant provided through Akka
and Spring.

Scalability Form Akka Spring MSA
Very efficient resource Limited by the synchron-

Vertical scalability utilization if no blocking ization of the internal service
inside actor concurrency (STM)

Horizontal scalability Akka cluster Requires network IPC
Load scalability Server-side load balancing Client-side load balancing

with routing logic with Ribbon, message queues
Structural scalability Location transparency Requires discovery mechanism

inherent in actor addresses for location transparency
Dynamic Inherent through basic Requires service registry for
reconfiguration model primitive integration
Mobility Weak mobility (no relocation of persistent state of Stores)

Requires resource control Requires appropriate cloud
Elasticity of cluster (see [101]), not management framework,

supported by Echo not supported by Echo

Table 5. Capability matrix of scalability variants and their support by Akka actors and
Spring-based microservices

Extensibility and Technology Diversity
Another result of the reconfiguration capability is that actor and microservice architec-
tures are also open for extension. In contrast to dynamic reconfiguration, where we add
or remove instances of existing task units at runtime, we use extensibility to refer to the
introduction of either new versions of existing components (update) or new components
entirely (addition). Extensibility in general benefits from high cohesion and low coupling
of the components. There are two different kinds of extensibility [4,14]:

• static, where we adapt the architecture’s code, recompile and then redeploy
• dynamic, where we add a new component to the architecture at runtime

The independent deployment capability of each single service engine allows us to simply
add new components at runtime. The reconfiguration does not impact existing services.
New services simply consume the existing services. We then gradually update old services
to let them integrate with new components [105].

73

6 Evaluation

Actors face more challenges. Every actor requires an actor system to exist within. Er-
lang and its runtime system were tailored to support actors. As a result, the BEAM
virtual machine supports code loading and replacement for live upgrades [107,137]. The
JVM does not support similar features. Therefore, Akka requires the restart of the sys-
tem to introduce new kinds of actors. The same program structure defines all actors
(monolith). Subsequently, the actors compile into a single monolithic executable, which
limits Akka actors to static extensibility. In a clustered setup however, we do not need
to introduce a new component into all cluster nodes at once. Therefore, the cluster is
able to retain its uptime, while we upgrade and redeploy the individual cluster nodes.
Besides differences in the VM optimization, Erlang’s upgrade strategy is conceptually
similar. The BEAM does not support the replacement of single actors, but merely of
entire code modules [107].

Another interesting concern is the technology limitations regarding the conception of
new components. An actor is bound to its runtime, which is free to provide interface
bindings for numerous programming languages, e.g. as Akka does for Java and Scala.
We are able to use the Java binding from other JVM languages as well, as [132] demon-
strates for Groovy and JRuby. However, we cannot overcome the JVM as the target
platform. Interoperability with Akka.NET would broaden our possibilities, but to our
knowledge interoperability is not available. The strong memory boundaries and open
communication interfaces of microservices provide a whole different level of flexibility.
We can conceive a service using every programming language and technology we desire,
as long as the tools are able to interact with the open communication channels.

Echo’s services facilitate Java and the Spring framework for all microservice components.
However, we could have also written every service with a different technology stack. Even
now, we can replace existing services by new versions using different technologies.

Characteristic Akka Spring MSA
Extensibility Static (phased restarts) Dynamic
Technological Compatible to the Akka interface Open for arbitrary technology
Diversity (JVM technology), no compatible stacks due to open interfaces

runtimes available today and communication channels

Table 6. Comparison of modularity capabilities of Akka actors and Spring-based mi-
croservices

6.1.5 Integrating Actors and Microservices

So far, our evaluation has shown that we can express the same capabilities with both
actors and microservices.

Both constructs isolate state, communicate through a wide range of interaction styles,
and their execution modality enables parallelization and distribution in a transparent
way. The major benefit of all these capabilities is a high degree of modularity as well

74

6.1 Expressiveness and Capabilities

as great flexibility for scaling. Each model brings its own set of trade-offs, and we as
programmers must accept one of these sets in order to leverage the capabilities.

As a final capability evaluation, we want to reason whether all these properties enable
actors and microservices to integrate as equal concurrent task units. We have already
seen that the combination of concurrency models is a common and important practice.
Actors often incorporate futures, and microservices use and mix arbitrary concurrency
constructs internally. We will entertain this integration thought first with some theoret-
ical considerations and then discuss the practical approach regarding Akka and Spring.

As we have pointed out, there are two kinds of correctness properties: safety properties
and liveness properties. The combination of two concurrency models must not weaken
the safety and liveness properties. There are also two approaches to assess the correct-
ness of a computation: testing and verification. From a theoretical point of view, we
can violate every safety property by a finite execution. Hence, we can test for safety at
runtime. On the other hand, liveness properties cannot be violated by some finite exe-
cution in general. Even if an arbitrary finite execution causes a violation, there is some
continuation of the same execution for which the property still holds eventually [128].
Thus, we cannot test for liveness at runtime. This theoretical limitation raises the need
for other concepts to either guarantee or at least inspect the liveness of tasks. We require
strict theoretical frameworks to apply formal verification techniques [127]. For actors,
the theoretical actor model provides this framework. However, we have seen that rather
pragmatic rules define the microservice model in comparison. We yet lack a formal
framework.

Actor Model and Process Calculi

Among the theories of formulating concurrent computation we find a family called process
calculi or process algebras. These calculi define formal models composed of so-called
processes23 which communicate within the laws and conditions laid out by their theory.
Baeten [15] defines process as any kind of behavior of a discrete event system, such that
it is observable through discrete actions. These actions include interactions with other
discrete event systems. The other systems then react to these interactions. Therefore,
Baeten terms all interacting systems as reactive systems, which are the base for parallel
and distributed computing. As a result, one approach towards concurrency theory is the
path of process algebras.

Some process calculi gained considerable prominence. Examples are Milner’s Calculus
of Communicating Systems (CCS) [98] that was the initial work in this domain. Hoare’s
Communicating Sequential Processes (CSP) [60] was the first to introduce message pass-
ing instead of global variables for process communication. For our considerations, the
π-calculus [99], also by Milner, merits special attention. The π-calculus has a notion of
process networks, including mobility and dynamic reconfiguration [15,102].
23These are the processes of concurrency theory we have mentioned before. We must not confuse them

with operating system processes.

75

6 Evaluation

Much work was done on the field of process algebras, since they allow us to express a the-
oretical basis for arbitrary domains and requirements. In fact, more practical approaches
to express interacting processes frequently have their foundation in a process calculus.
Some calculi also suit well for microservices. The Jolie language for example is based
on a calculus dedicated to service-orientated computing called SOCK (Service Oriented
Computing Kernel) [50]. In turn, SOCK is inspired by CCS and the π-calculus. This
relation of process algebra and microservices is especially interesting, since the actor
model and process calculi share a long history. Hewitt as well as Milner published their
initial works on the actor model and CCS in 1973. Since then, these two approaches
mutually influenced and inspired the scientific development of each other. Fitting exam-
ples are the Asynchronous Sequential Processes (ASP), which bear close resemblance to
active objects, but with a more coarse granularity [87].

Scholars have long tried to formulate a theoretical link between actors and various calculi,
with mixed and mostly limited success. To our knowledge, to most promising approaches
in the literature so far merely succeeded at describing interoperability between actors
and some calculi that show a strong similarity. For example, Montanari & Talcott [102]
demonstrate the cooperation of actors and agents of the π-calculus.

As Agha et al. [9] discuss in an extensive work, a true equivalence theory among a formal
actor calculus and some process calculus requires the formulation of a simulation relation
among the primitives. This was done among different process calculi but is yet unfound
regarding actors. Agha et al. state as the foundational challenges:

“Three points of contrast between the basic actor model and process calculi
are: the choice of communication model, the choice of communicable values,
and the issue of fairness.”

Note that we have discussed these issues as concerns in varying degrees throughout this
thesis. Eventually, Agha et al. argue that instead of trying to find an analogy between an
actor- and a π-calculus, it is expedient to engage in the definition of high-level semantics
for programming languages. Then, we are able to reason about program equivalence of
actors- and π-programs.

Combining Akka Actors and Spring Microservices
Since we did not implement our Echo microservices in a SOP language like Jolie, we did
not provide them the formal foundation of a process calculus. We would not be able
to reason about the correctness properties after integration anyway, because there is no
known theoretical link between the actor model and a SOC calculus yet. Nevertheless,
we have seen that scholars are still motivated to describe interoperability between actors
and calculus-based processes. Therefore, we think about the approach to integrate our
Akka actors and Spring-based microservices. From a theoretical point of view, two
concurrent units require a shared communication channel in order to interact [9].

76

6.1 Expressiveness and Capabilities

The microservice principles allow the services a rather high degree of freedom regarding
their communication. REST-based state transfer via HTTP is a popular choice. We
have demonstrated that AMQP is also a viable channel. Actors, on the other hand,
are more restricted, since all actors must receive the message constructs in a uniform
way. By implication, this restriction means that we can still use different communication
channels as long as the channels comply to a homogenous message receiving abstraction.

Akka HTTP [68] is part of the Akka library collection. It provides a full client- and
server-side HTTP stack on top of the basic actor construct. This way, actors receive
HTTP requests like ordinary messages, just as if the messages were sent by other actors:

override def receive = {
case SomeMessage(_) => // handle message
case HttpResponse(status, headers, entity, _) => // process response

}

A unique address identifies every actor. This address is specific to a concrete actor
system and not conform to a URI (Uniform Resource Identifier) as is required by HTTP
in general. We must utilize an integration layer between a HTTP-addressable unit and
the actual actor [68].

Though this style of receiving messages is in principle conform to the actor abstraction,
there are certain limits. By implication, HTTP endpoints also do not comply to actor
addresses in general. The standard send mechanism through tell and ask therefore
do not qualify to dispatch HTTP requests. We require an alternative interface. The
example below uses pipeTo to have the integration layer reroute the response as an
HttpResponse message to the sending actor (delegation):

Http().singleRequest(HttpRequest(URI(s"http://example.com")
.withQuery(s"name", s"value"))
.pipeTo(self)

We see, not all the basic actor primitives suit for usage outside the actor construct.
However, well introduced abstractions like Akka HTTP allow actors to provide their
actor behavior to the outside in a microservice-like service behavior fashion. Communi-
cation between actors and microservices is possible in principle. Hence, we can construct
systems which distribute tasks between actors and microservices.

The general integration idea is not novel. We have mentioned the theoretical foundation
from [102] for incorporating actors and agents of the π-calculus. They also use so-called
actor-π coordinators to translate between communication channels. These coordinators
are similar to the integration layer of Akka HTTP. However, interoperability is merely
a concern of static configuration, because processes have only a static notion of inter-
connection topology in general. This static notion violates the dynamic reconfiguration
inherent to actors [7,10]. In order to overcome this limitation, microservice architectures
utilize bridge technologies like service discovery. Hence, we require actors to integrate

77

6 Evaluation

into this discovery mechanism, effectively rendering each actor into a mere microservice.
This unified approach is not quite common yet, but technologies start to emerge which
build on this idea. An example is Lagom [73], a reactive microservice system framework
built on top of Akka.

Main findings

• Process calculi provide the theoretical frameworks for formal microservice
specifications and service-oriented computing languages.

• The theoretical link between actors and process calculi is yet an open sci-
entific question.

• Actors and microservices can integrate without a formal basis. However,
the correctness properties of the models are then not guaranteed.

6.1.6 Software Artifact Analysis
Sections 5.2 and 5.3 covered the solution strategies when we program with actors and
microservices. The previous sections of this chapter compared the resulting capabilities.
Now we give attention to the effects that the programming models have on the resulting
software artifacts when we express these capabilities. We concern ourselves with three
metrics: the lines of code (LoC) it takes to express the respective functionality, the size
of the resulting artifacts, and the startup time of each artifact.

All Akka actors are compiled into a single monolithic application. Therefore, the re-
spective Akka metrics refer to the resulting monolith. The Spring-based microservices
are independent programs, so we give the metrics for each service engine separately.
The LoC give us an indication of the programming effort is takes to implement a given
functionality. We count the LoC using the CLOC [31] tool. Since Spring Boot relies
heavily on configuration to adapt it’s default behavior, we count the content of config-
uration files as source code. We measure size in terms of the bytes of each JAR (Java
Archive) file. There are several ways to package a JAR. Two kinds are relevant to us.
We define a skinny JAR (sJAR) as the archive that contains merely the bytecode and
direct resources (e.g. property files) of a program’s source code. Subsequently, we use fat
JAR (fJAR) for an archive that contains the data of the skinny JAR version, together
with its direct dependencies (e.g. other libraries in their skinny JAR version), and the
deployment information that a standard Java runtime environment requires to execute
the application. Fat JARs are therefore executable artifacts. The startup time is the
time from process incarnation until the application is fully operational.

Table 7 gives the metrics for our Echo artifact implementations. As a reminder, the Core
artifact is the library that implements the domain-specific logic. Hence, Core’s skinny
JAR is part of all fat JARs of the microservice engines as well as the monolithic Akka
backend. The Web application is the frontend client that connects to both Echo backend
implementations. We give the LoC metric of the Web application merely as a reference
relative to the other artifacts.

78

6.1 Expressiveness and Capabilities

Artifact LoC sJAR (KB) fJAR (KB) Startup (sec)
Akka backend 4487 1004.3 76 775.1 5.5
CatalogStore (MS) 1838 56.1 89 225.8 14.6
IndexStore (MS) 724 23.8 83 518.2 8.8
Searcher (MS) 656 22.2 81 754.4 8.1
Web Crawler (MS) 716 23.5 83 517.9 9.2
Parser (MS) 703 24.2 83 519.1 8.6
Registry (MS) 334 9.9 90 699.7 9.4
Gateway (MS) 889 30.5 83 655.1 9.7
Updater (MS) 693 23.9 83 518.3 8.7
Core (library) 5203 323.1 — —
Web (frontend) 3144 — — —

Table 7. Lines of code, bytecode sizes, and startup times of software artifacts

The Akka backend engine has of course by far the most lines of code. A monolith
implements the whole system within a single artifact, while each microservice merely
implements a part of the overall system. Note that the Core library implements the
DTO classes we use to send asynchronous messages via AMQP. The microservices do
not implement these DTOs themselves within their codebases. The resulting overall
LoC sum of all microservices is 6553. This makes the microservice codebase about
46 % larger than the actor codebase. We see, although Spring provides very expressive
declarative programming APIs, the Akka interface is still less verbose. However, the
more compact syntax of Scala compared to Java also contributes to the difference. Even
more interestingly, each microservice engine takes considerably more time to startup
than the entire Akka backend engine. The inversion of control model that powers the
declarative programming style of Spring adds considerable runtime overhead.

The sum of skinny JAR sizes of all microservice codebases is 241.1 KB. This size is con-
siderably less compared to the 1004.3 KB of the skinny Akka backend. We have analyzed
the content of the respective skinny archive files and made the following observations
that affect the difference in bytecode size:

• The actor codebase is written in Scala, and we make heavy use of case class
constructs. Scala’s case classes are very compact class definitions that are mostly
written in a single line of code. Though these class definitions are compact, they
still compile to dedicated .class files. Instantiated objects are immutable, hence
they suit very well for the objects we exchange as messages in actor programming.
Messages in the actor model are not only for transferring data, but also to transmit
commands. Thus, we use very fine-grained message types, and subsequently a lot
of case class definitions. Few lines of code for these definitions let the compiler
produce lots of separate .class files. In contrast, all the DTO classes for the
messages between microservices are part of the shared Core library. The bytecode

79

6 Evaluation

sizes of these classes consequently do not participate to the sJAR size of each
microservice’s artifact.

• Scala is primarily a functional programming language. Hence, we make frequent
use of so-called anonymous functions. Since Scala targets the JVM, the com-
piler evaluates these anonymous functions as instance creation expressions of the
Function class. Subsequently, every anonymous function compiles into a dedicated
.class file too [109].

• Spring provides a lot of utility functionality transparently, for example DTO class
to JSON marshalling. Akka HTTP requires us to use the Spray [74] library to
define custom JSON serializer classes manually. These serializers compile to rela-
tively significant bytecode sizes (e.g. merely 31 LoC produce about 200 KB24).

The fat JAR sizes show the impact of the declarative programming style of Spring. The
price for the relatively low LoC of each service (and subsequently the reduced effort to
write many distinct programs) is that the compiler adds lots of dependencies into the
fJAR executables. These dependencies come into play at runtime to realize the declared
functionality. As a result, every microservice engine is larger (in bytecode size) and upon
incarnation also considerably slower than the entire actor engine.

Main findings

• Programming actors demands less program code than microservices. Even
compact programming styles cannot compensate the overhead in LoC from
several codebases.

• Spring produces huge executable artifacts. Their bytecode size and the
overhead at startup is the price for the reduced programming effort.

• Microservice architectures are drastically larger in terms of executable com-
ponent sizes compared to a monolithic actor architecture.

6.2 Efficiency and Benchmark
We have compared the expressiveness and conceptual capabilities of actors and microser-
vices, and demonstrated that both are able to meet similar concerns. Now we are
interested in the efficiency we leverage from each programming model. The Echo system
implementations provide us with the foundation for a benchmark of the two models.

6.2.1 Performance Metrics
A benchmark requires measurable and comparable metrics. As we have already men-
tioned, information retrieval traditionally uses precision and recall metrics to evaluate
search engines. However, precision and recall assess the effectiveness of the retrieval
24A JAR file is essentially a compressed archive file. The direct size of a .class file does not contribute

at a ratio of 1:1 to the sJAR size.

80

6.2 Efficiency and Benchmark

techniques. IR effectiveness is not within the scope of this thesis. We require metrics
which reflect efficiency. These metrics must be applicable to actors, microservices, and
our scenario.

Savina is a benchmark suit specifically designed to evaluate actor libraries [62]. Profiling
studies used Savina to gather detailed metrics for Akka [119,120]. However, the bench-
mark suit as well as the profiling tools are actor model and Akka specific. Hence, the
metrics provided by the profiling are tailored to the actor model.

Recent works point out that there is still a lack of microservice benchmarks [145]. Due to
the technological diversity, there is also no general microservice profiling tool available.
Hence, the literature does not establish widely agreed upon metrics yet. We must revert
to model unspecific metrics. Besides a lack of common metrics established between
actors and microservices, there is also no general simulation approach for MSAs as of
yet [48]. Additionally, we have to design a custom experiment too.

Lillis et al. [91] and Pedzai & Suleman [113] each use techniques we discussed in this work
to improve the performance of search engines. Examples are synchronous/asynchronous
and one-to-one/one-to-many communication styles, message brokers, and lifecycle man-
agement (cf. Akka runtime, Spring IoC). Among other things, they evaluate the perfor-
mance by measuring the time it takes a system to index a given number of documents.
The retrieval subsystem’s performance is the time it takes to process a given number of
queries. We take this experiment design and use it to assess the efficiency of our actor
and microservice implementations.

6.2.2 Simulation Workloads

Echo has two essential subsystems: the indexing subsystem and the retrieval subsystem.
Since search requests to the retrieval subsystem do not affect the indexing subsystem
(and vice versa), we can evaluate both subsystems separately [91]. Each subsystem
requires a different kind of input data. For benchmarking a subsystem, we need to sim-
ulate a workload scenario with appropriate input data. Although we are not interested
in evaluating the effectiveness, we can still look to information retrieval for workload
data. IR uses standardized dataset collections for evaluations. These dataset collections
usually consist of three parts [95]:

Part 1: Set of documents
Part 2: Set of queries
Part 3: Relevance assessment between queries and documents

We are interested in Part 1 as the input for the indexing subsystem and in Part 2 as
the input for the retrieval subsystem. Effectiveness evaluation uses Part 3, hence we do
not require this data. To our knowledge, there is only one available dataset collection
provided by Spina et al. [131] for the podcast domain. This collection contains audio
files, manual and automatic audio transcripts, queries, and relevance assessments. Since

81

6 Evaluation

the collection misses RSS feed data, the input documents are inadequate for the Echo
implementations.

Therefore, we must design our own dataset collection. In general, we face two problems:
selecting documents (RSS feeds) and determining suitable queries. The execution time
of operations, e.g. parsing a feed, affects the performance. XML parsing time depends on
the document size. The literature therefore usually assesses execution time with respect
to the input size. Real world RSS feeds have arbitrary data and we have no control over
the input size per feed. Since we do not mind the actual information within either the
feeds, the queries, nor the quality of search results, we can simply create custom feeds
and queries using placeholder text. Appendix A shows the feed structure we use for
evaluation. We have analyzed 500 arbitrary feeds from the Fyyd Podcast Directory [17]
and found that the average feed has 70 episodes. To make the simulation workloads
more realistic, the test feeds also have 70 elements.

6.2.3 Experiment Setup

We measure all evaluation results on a multicore platform (Intel Kaby Lake Core i5
3.1 GHz with 2 cores, 64 MB of eDRAM, 4 MB shared level 3 cache, 16 GB of 2133 MHz
LPDDR3 SDRAM, Java HotSpot 64-bit server VM build 25.172-b11, macOS 10.13.6,
1 TB SDD flash storage, APFS file system). The actor implementation uses Akka version
2.5.11 and the microservices build on Spring Boot version 1.5.10.RELEASE. All code is
compiled with Java compiler version 1.8.0 update 172 and Scala compiler version 2.12.6.
The components with persistent states are deployed with an H2 [106] database engine
version 1.4.196 (in-memory persistence mode) and Lucene [39] version 7.2 respectively.

All measurements we report are for cold starts of each system. We restart all involved
JVMs for each simulation. The indexing experiments start on an empty catalog/index.
The retrieval experiments start on a filled index. Crawlers load the benchmark feeds
from the local file system, and are therefore not subject to network induced latencies.

To eliminate a threat to the validity of the benchmark (discussed in Section 6.2.6 below),
each programming model’s CatalogStore implementation uses the Spring Data JPA li-
brary for database interaction. Usually, Spring Data JPA expects a Spring IoC container
to handle concurrent connections and transaction management. To handle concurrent
database interaction directly via actors, the Akka implementation uses Spring Data
JPA without an IoC container. The respective CatalogStore therefore has to manage
transactions manually.

We assign each architecture component with a fixed number of threads to ensure that
both implementation variants have the same resources for concurrent execution available
to them. The Akka components use a Dispatcher backed by a ThreadPoolExecutor
(in contrast to the default ForkJoinExecutor with a dynamic pool size). The Spring
IoC containers of the microservices are configured to use a ThreadPoolTaskExecutor,
where the corePoolSize is equal to the maxPoolSize. We use 16 threads per component.

82

6.2 Efficiency and Benchmark

This way, the benchmark results indicate which programming model better utilizes the
available thread resources.

6.2.4 Benchmark Results

To reduce the effects of outliers, we have conducted each experiment 3 times. Each
data point in the following results is the mean of the three measured values. Note
that all experiments are for static system configurations. Therefore, the results do not
reflect any forms of structural scalability (mobility, elasticity). Also, due to the single
multicore host, we cannot draw conclusion to the horizontal scalability behavior of the
architectures.

Experiment 1: Indexing Subsystem

Figure 9 shows the benchmark results of the indexing subsystems for the overall time it
takes the implementations to process the workload with respect to the input size. The
Akka implementation shows better performance for all input sizes.

0 100 200 300 400 500

0

100

200

300

400

Number of Feeds

O
ve

ra
ll

R
un

ti
m

e
[S

ec
on

ds
]

Akka
MSA

Figure 9. Benchmark results for the overall processing time of the indexing subsystem

The figure also describes the load scalability behavior of the systems. With an increasing
load for the indexing subsystem, both implementations scale uniformly, which is the
desired behavior. This uniform behavior is the result of good vertical scalability, since
the architectures are able to uniformly leverage the resources of the single multicore host
used for the benchmark.

83

6 Evaluation

In Section 6.1.3 we discussed the issue of fairness and the implications on resource
consumption. Figure 10 shows the mean memory resource consumption of the Echo
implementations in the indexing phase. We measured the memory usage (heap mem-
ory + non-heap memory) using the java.lang.management.MemoryMXBean that every
JVM provides. The results illustrate how every microservice consumes separate system
resources, even those who do not perform any work in the indexing phase (Gateway,
Searcher). The Akka backend that implements the entire Echo system consumes only
slightly more memory resources as a single Spring-based microservice. The CatalogStore
MS in an exception. The author suspects that the reason for the CatalogStore service’s
memory demand is that the IoC container of this service has to extend the STM to
the database. The entire MSA has a considerably higher memory requirement than the
entire actor-based system. The figure also illustrates the impact of the JVM as a mi-
croservice platform. The JVM is a relatively heavy-weight VM. We must deploy every
process incarnation of a Java-based microservice in its own separate VM, which poses
a considerable impact on the system resources. The operating system always allocates
resources towards every process on a regular basis. In contrast, Akka actors, besides
being more lightweight constructs in general, only get scheduled and thus only consume
resources when they have messages in their mailbox.

M
em

or
y

U
sa

g
e

[M
eg

ab
yt

es
]

0

50

100

150

A
kk

a
ba

ck
en

d

C
at

al
og

St
or

e
(M

S)
W

eb
 C

ra
w

le
r

(M
S)

In
de

xS
to

re
 (

M
S)

P
ar

se
r

(M
S)

U
pd

at
er

 (
M

S)
G

at
ew

ay
 (

M
S)

Se
ar

ch
er

 (
M

S)

Figure 10. Memory consumption of the executable artifact VMs in the indexing phase

Experiment 2: Retrieval Subsystem

Figure 11 shows the results of the experiment to assess the retrieval subsystem’s perfor-
mance. It clearly indicates that the request/asynchronous response style of Akka actors
is superior to the synchronous REST-based communication of the microservices. Since

84

6.2 Efficiency and Benchmark

the Akka implementation processes heavy loads of requests considerably faster, this sub-
system is more available and thus has better liveness. The figure also describes the load
scalability behavior of the retrieval subsystems. Both implementations scale uniformly
as desired. Again, we trace this result back to the fact that the implementations leverage
the available system resources of the single multicore host well (vertical scalability). How-
ever, the microservice variant shows considerably lower overall efficiency. Section 6.1.4
gave the synchronous nature of RPC as a major factor limiting the scalability of an MSA.
The results of our benchmark support this claim. The request/asynchronous response
style of Akka is clearly more efficient than REST-based communication.

0 500 1000 2000 3000

0

50

100

150

Search Requests

O
ve

ra
ll

R
u

n
ti

m
e

[S
ec

on
d

s]

Akka
MSA

Figure 11. Benchmark results of the overall processing time for the retrieval subsystem

In Section 5.2.3 we have actually discussed two variants to model request/asynchronous
response communication with Akka. One variant is based on futures, the other on cus-
tom child actors and delegation. The author expected that the delegation approach
would show better performance, since a future always stresses the thread-pool, while the
actor runtime must only schedule a delegation child once the response is available in
the mailbox. The Akka result in Figure 11 therefore shows the performance when the
retrieval subsystem uses delegation. To evaluate the future- and delegation-based mod-
elling of (semi-)synchronous communication, we have conducted the retrieval experiment
also with futures. Figure 12 illustrates the future results in contrast to the delegation
results.

We see, neither of the two request/async. response styles show a considerable perfor-
mance advantage. Recall that the future and delegation strategies are also applicable
for database interaction and IO. The results of Figure 12 suggest that each strategy
is also equally efficient for database interaction. Therefore, we assume that the actor

85

6 Evaluation

0 500 1000 2000 3000

0

5

10

15

20

Search Requests

O
ve

ra
ll

R
u

n
ti

m
e

[S
ec

on
d

s]

Akka (Delegation)
Akka (Future)

Figure 12. Comparison of the benchmark results for the retrieval subsystem using either
delegation or futures for request/response communication in the Akka-based implemen-
tation

implementation does not suffer from a negative impact because it has to use the Spring
Data JPA library for database access in these benchmark experiments.

6.2.5 Relevance of the Benchmark

To the authors knowledge, there exists no benchmark comparing Akka actors and Spring-
based microservices yet. We were only able to find one project on GitHub25 which bench-
marks popular microservices frameworks. The benchmark results include Spring Boot
with the Undertow webserver and Akka HTTP. The experiment setup is rather sim-
ple. The frameworks merely serve “Hello World!” on a REST interface as the workload,
which does not resemble a real-world workload scenario.

The literature reports especially a lack of different interaction modes in microservice
architecture benchmarks [145]. Most available benchmarks merely focus on one interac-
tion mode, while this literature also reports that MSA-related problems originate from
asynchronous and mixed communication setups. Echo’s subsystems engage this circum-
stance, since we have modeled the indexing subsystem in an asynchronous fashion, and
the retrieval subsystem in a synchronous fashion. Our experiences do not reflect prob-
lems with the asynchronous style. In contrast, we have found that the synchronous style
is considerably less performant than the asynchronous style.

25https://github.com/networknt/microservices-framework-benchmark

86

https://github.com/networknt/microservices-framework-benchmark

6.2 Efficiency and Benchmark

Interestingly, Bonér, the creator of Akka, advocates in his recent works [22,23] for what
he calls reactive microservices. Essentially, a reactive microservice is a service that ori-
ents itself on the actor principles, especially asynchronous messaging and the lack of
global consistency (cf. eventual consistency). Bonér argues that reactive microservices
are more performant than tightly-coupled synchronous services facilitating global consis-
tency (e.g. via a transactions mechanism). However, he provides no benchmark results
to back his claim. The subsystems of our microservice implementation reflect a reactive
microservice style (indexing pipeline) and a more “traditional” synchronous style (re-
trieval pipeline). The Akka implementation provides the reference to a purely reactive
(asynchronous) system. Our benchmark results support Bonér’s argumentation that the
reactive style is more performant.

6.2.6 Threats to Validity

Like all experiments, we are also subject to some factors threatening the validity of our
results.

External Threats to Validity

The external threats concern how much our results are generalizable. The domain-
specific actions of our scenario have an influence on the performance. Examples are the
HTTP retrieval of RSS feeds, XML parsing and database IO. These actions dampen
e.g. the throughput. The utilized underlying technologies (HTTP library, XML parser,
database system) influence the performance of these actions. This threatens the compa-
rability of the benchmark metrics across systems, if the implementations apply different
technologies. We mitigated this threat by founding all task units on the JVM. We pro-
vide all components with the same Core library, which implements the domain-specific
functionality. The CatalogStores access the same kind of database system, and both im-
plementations use the Spring Data JPA library for database interaction. Platform- and
domain-specific effects are therefore uniform across the system implementations. Nev-
ertheless, due to the domain influence, no general statement about the performance of
Akka or Spring-based services is possible. Other metrics are not even measurable in the
scenario. Examples are the creation time and maximum process support as suggested
in [136]. The static configuration of our scenario does not intend elasticity, i.e. a dynamic
creation of task units. Hence these metrics require an experiment outside the bounds of
our scenario.

Additionally, we conducted the experiments merely on a single multicore machine. The
experiments therefore only incorporate the effects of vertical scalability we leverage from
general concurrency and parallelism on one single machine. Also, the multicore machine
has a very small number of cores. The test setup does not consider the horizontal
scalability effects of distribution-induced concurrency.

To eliminate the threat of selection bias, we did not use real world RSS feeds for simu-
lation. Instead, we used test data with uniform size and feed structure.

87

6 Evaluation

Internal Threats to Validity
The internal threats to the validity of this benchmark concern the accuracy of our data
collection tool. Since we did not find a tool that is sufficient to collect the data for Akka
actors and Spring-based microservices, we developed a custom benchmark framework.
We implemented this toolkit to the best of our ability. But we have to assume that the
toolkit’s efficiency is not state of the art. This threat is mitigated since both systems are
subject to the same potential inefficiency, which does not distort the relative comparison
of metrics.

An additional threat results from the fixed amount of threads we provide for each com-
ponent in the benchmark. Actor-based components can fully leverage all these threads,
e.g. for child actors or futures. We have discussed in Section 5.3.2 that the microservices
use a different TaskExecutor for asynchronous tasks than the standard thread-pool of
Spring’s IoC container. To ensure the overall thread limit for each component, we have
to split up the threads between the two thread-pools. There is the threat that a ser-
vice’s implementation does not distribute the computational load equally between the
two thread-pools. We did not measure the thread-partitioning required for ideal thread
utilization for each microservice. Instead, we distributed the available threads evenly
between both pools for all services. This threat is only mitigated for services which do
not apply asynchrony internally. Then there is only the standard TaskExecutor with
the full amount of threads in place.

88

7 Conclusion

Most papers in computer science
describe how their author learned what
someone else already knew.

— Peter Landin

In this chapter, we draw our conclusive view. We give answers to the research questions,
summarize the contributions, and finally motivate some future work.

7.1 Research Questions Revisited
In the beginning of this thesis we asked a set of research questions. It is now time to
revisit and answer these questions.

RQ1: Why do actors and microservices qualify for programming concurrency?

Actors and microservices encapsulate their state exclusively and all their communication
solely facilitates message passing semantics. These properties make the task units highly
cohesive and provide a temporal and spacial decoupling. The resulting independence is
the foundation that enables an actor runtime or an operating system to execute the task
units in a concurrent fashion implicitly.

RQ2: How do the actor and the microservice model facilitate concurrent
execution?

The execution modality of actors and microservices already introduces concurrency
among the task units. Both models can also utilize additional sources of concurrency.
The actor model has a long tradition of using futures, e.g. for (semi-)synchronous commu-
nication abstractions. In general, actors can be combined with every other concurrency
model, as long as the combination does not introduce new safety or liveness issues.

89

7 Conclusion

Microservices are free to employ internal concurrency using every model available to
their technology stack. Unlike actors, microservices are therefore not free of internal
synchronization in general. Our scenario implementation leverages the implicit schedul-
ing of requests on thread-pools through an inversion of control container. Software
transactional memory controls the required synchronization.

RQ3: What are the expressive capabilities of actors and microservices regard-
ing concurrent programming concerns?

We have shown that both models apply different implementation strategies, but in gen-
eral achieve the same capabilities for concerns like parallelization/distribution, commu-
nication, isolation, location transparency, persistence/IO, and scalability. The two im-
plementation strategies come with different trade-offs for each model.

In general, we expect larger executable artifacts and more resource consumption from
the microservice approach, since the model produces independent programs. The author
initially expected that the microservice style would also show a significantly higher pro-
gramming effort, e.g. in lines of code. The suspected reason was the need to maintain a
dedicated codebase for each service. Indeed, our overall microservice codebase is about
46 % larger compared to the actor codebase, although the declarative programming style
we applied for the microservices already reduced our programming effort significantly.
The price for this reduction is the resulting size of the executable artifacts.

The actor model achieves all capabilities in a single codebase. This single codebase
implies that at least a portion of the actors (in a distributed cluster deployment) exist
within the same process and memory boundaries. Much of the programmer’s effort is
the liability to guarantee that no mutable state is accessible through reference sharing
among any two actors in order to ensure the model semantics.

RQ4: How does the performance of actors and microservices compare in a
multi-core environment relative to a concurrent system scenario?

The benchmark results show that, with respect to our non-trivial scenario, the perfor-
mance of an actor-based system is generally better than the performance of a microser-
vice system. Since we have ensured that the domain-induced impact on the performance
is uniform between both system implementations, the difference in the performance re-
sults from the efficiency we leverage from the underlying concurrent programming model.
We have also shown that microservices which facilitate an asynchronous communication
style merely have a slight overhead compared to actors. However, the benchmark also
exposed that strictly synchronous communication (request/response) among services is
clearly inferior to the request/asynchronous response style that actors facilitate. It is
therefore surprising to the author that the scientific literature emphasizes REST as the
primary microservice IPC mechanism.

90

7.2 Contributions

7.2 Contributions
In this thesis, we compared the programming of concurrent computation with the actor
and microservice model. We have explored the interrelations of the two models and
filled a gap in the literature. In order to answer our research questions, we designed
Echo, a non-trivial scenario for a concurrent domain-specific search engine prototype.
We also provide an actor implementation based on Akka, as well as a microservice im-
plementation based on the Spring framework of this system scenario. We evaluated
the capabilities we are able to express with each model regarding concurrent program-
ming concerns like parallelization/distribution, communication, persistence/IO, location
transparency, isolation/independence, and scalability. Finally, we reported the results
of an efficiency benchmark of the system implementations.

Further materials related to this work are available at:

https://max.irro.at/pub/dipl/

7.3 Future Work
The benchmark in this thesis is limited to a single multicore host. We did not benchmark
the effects of distribution and horizontal scalability due to our limited access to hardware
resources. Also, although we have motivated the integration of Akka actors and Spring-
based microservices in Section 6.1.5, we did not investigate the effects on efficiency within
a mixed architecture integrating actors and microservices as equal concurrent task units.

From our literature readings and practical experience, it is our believe that one major
limitation of both actors and microservices is the lack of checkable compatibility (design
by contract). Some work on static analysis for actors has been done in the literature.
The work by D’Osualdo et al. [32] for example defines a checkable model for Erlang-
styled concurrency. This model can be also expressed as processes of a suitable calculus.
Recall that service-oriented programming languages incorporate the microservice model
into the language level, and sometimes build upon a process calculus. We deem it worth
to fathom into contract verification techniques (especially behavioral types [61,112]) for
the actor model and SOC calculi, for example towards a more theoretical foundation for
integrating actors and microservices.

From our experiences in this work, it is the author’s general believe that the microser-
vice styles suffers from the lack of a theoretical foundation. We therefore think that
service-oriented programming languages are a highly promising evolutionary step worth
of further investigation.

91

https://max.irro.at/pub/dipl/

Appendix A Feed Structure Example

An RSS 2.0 [142] feed is an XML document. The feed’s top level element is the <rss>
tag. A feed becomes an Atom [108] feed if the <rss> element additionally has the XML
namespace xmlns:atom="http://www.w3.org/2005/Atom". The <channel> encloses
the metadata entries of the feed (<title>, <link>, <description>, etc.) as well as
a set of <item> elements. Each item has it’s own set of metadata elements (<title>,
<pubDate>, <description>, <guid>, etc.). The most important element of each item
of a podcast feed is the <enclosure>, which provides the URL to the media file. Some
feeds of the domain also apply additional XML namespaces to provide a wider range of
metadata. Two prominent examples of such namespaces we also support in Echo’s feed
parsers are:

• xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" for metadata
used in the iTunes Podcast Directory [63].

• xmlns:psc="http://podlove.org/simple-chapters/" for chaptermark metadata
information in the Simple Chapters [83] format.

Below is a complete example of an RSS 2.0 feed. It provides some few metadata elements.
The feed merely has a single <item> element. In general, a feed has several items. All
metadata in this example is text of the so-called Lorem ipsum26, a well-known placeholder
text snippet. The text is not intended to transport any meaning. Instead, the design
and publishing industries use the text to demonstrate a text structure or visual form.
Hence, the Lorem ipsum is also suitable to illustrate the RSS feed structure, without
providing actual meaningful content.

26https://lipsum.com

93

https://lipsum.com

Appendix A Feed Structure Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<rss>

<channel>
<title>Lorem ipsum</title>
<link>https://lorem.ispum.fm</link>
<language>en-us</language>
<description>

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed
diam nonumy eirmod tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua

</description>
<item>

<title>Lorem ipsum</title>
<enclosure url="https://lorem.ispum.fm/episode-1.mp3"

length="17793193" type="audio/mpeg"/>
<guid isPermaLink="false">https://lorem.ispum.fm/li001</guid>
<pubDate>Fri, 13 Jul 2018 16:35:13 +0000</pubDate>
<description>

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

</description>
</item>

</channel>
</rss>

94

List of Acronyms and Abbreviations

AMQP Advanced Message Queuing Protocol
AO Active Object
API Application Programming Interface
CPU Central Processing Unit
DTO Data Transfer Object
FIFO First In First Out
fJAR fat JAR
HTTP Hypertext Transfer Protocol
IPC Inter-Process Communication
IO Input/Output
IoC Inversion of Control
IR Information Retrieval
JAR Java Archive
JSON JavaScript Object Notation
JVM Java Virtual Machine
LB Load Balancing
MS Microservice
MSA Microservice Architecture
OOP Object-oriented Programming
OS Operating System
PID Process Identifier
REST Representational State Transfer
RPC Remote Procedure Call
RSS Rich Site Summary
sJAR skinny JAR
SOA Service-oriented Architecture
SOC Service-oriented Computing
SOP Service-oriented Programming
STM Software Transactional Memory
URL Uniform Resource Locator
VM Virtual Machine
XML Extensible Markup Language

95

List of Figures

1 Complete interaction model of the task units in the Echo search engine . 34

2 The indexing pipeline: The Updater (U) uses the CatalogStore’s (C) metadata
to determine feeds that require updating (U → C → U). The Web Crawler (W)
loads the XML from the web, the Parser (P) transforms the feed data to
domain objects. The CatalogStore persists the data and forwards selected
metadata to the IndexStore (I) . 36

3 The retrieval pipeline: The Gateway (G) registers requests, forwards each
query to the Searcher (S), who retrieves data from the IndexStore (I). The
respective results travel back from I via S to G 36

4 Example flow of a future-based synchronous call in the retrieval phase . . 43

5 Example flow of a delegation-based synchronous call in the retrieval phase 45

6 Example of a stateful actor sharing its persistent state with several child
actors: The store delegates all database interactions to the child actors . . 51

7 Example of a stateful microservice maintaining several concurrent connec-
tions to an exclusive database . 55

8 Example of service discovery usage in the retrieval phase: The consecutive
lookups delay the overall synchronous communication 58

9 Benchmark results for the overall processing time of the indexing subsystem 83

10 Memory consumption of the executable artifact VMs in the indexing phase 84

11 Benchmark results of the overall processing time for the retrieval subsystem 85

12 Comparison of the benchmark results for the retrieval subsystem using either
delegation or futures for request/response communication in the Akka-based
implementation . 86

97

List of Tables

1 Comparison of encapsulation-related matters in Akka and a Spring-based
MSA . 65

2 Communication Styles . 66

3 Comparison of communication styles and their implementation constructs as
we express them in Akka and a Spring-based MSA 67

4 Comparison of Akka actors and Spring-based microservices meeting funda-
mental issues of concurrent execution . 70

5 Capability matrix of scalability variants and their support by Akka actors
and Spring-based microservices . 73

6 Comparison of modularity capabilities of Akka actors and Spring-based mi-
croservices . 74

7 Lines of code, bytecode sizes, and startup times of software artifacts . . . 79

99

Bibliography

[1] Organization for the of Advancement Structured Information Standards (OA-
SIS). Advanced Message Queuing Protocol (AMQP) Version 1.0. 2012. Ac-
cessed: 2018-05-22 http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-
complete-v1.0.pdf

[2] Gul Agha. Concurrent Object-Oriented Programming. 1990. Commun. ACM 33,
9, 125141. DOI:10.1145/83880.84528

[3] Gul Agha. Actors Programming for the Mobile Cloud. 2014. In IEEE 13th In-
ternational Symposium on Parallel and Distributed Computing, ISPDC 2014,
Marseille, France, June 24-27, 2014, 39. DOI:10.1109/ISPDC.2014.31

[4] Gul A. Agha. ACTORS - A Model of Concurrent Computation in Distributed
Systems. 1985. MIT Press. ISBN 978-0-262-01092-4

[5] Gul A. Agha and WooYoung Kim. Actors: A Unifying Model for Parallel and
Distributed Computing. 1999. Journal of Systems Architecture 45, 15, 12631277.
DOI:10.1016/S1383-7621(98)00067-8

[6] Gul Agha, Svend Frølund, WooYoung Kim, Rajendra Panwar, Anna Patterson,
and Daniel C. Sturman. Abstraction and modularity mechanisms for concurrent
computing. 1993. IEEE P&DT 1, 2, 314. DOI:10.1109/88.218170

[7] Gul Agha and Carl Hewitt. Concurrent Programming Using Actors: Exploiting
Large-Scale Parallelism. 1985. In Foundations of Software Technology and Theo-
retical Computer Science, Fifth Conference, New Delhi, India, December 16-18,
1985, Proceedings, 1941. DOI:10.1007/3-540-16042-6_2

[8] Gul Agha, Christopher R. Houck, and Rajendra Panwar. Distributed Execution
of Actor Programs. 1991. In Languages and Compilers for Parallel Computing,
Fourth International Workshop, Santa Clara, California, USA, August 7-9, 1991,
Proceedings, 117. DOI:10.1007/BFb0038654

[9] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A
Foundation for Actor Computation. 1997. J. Funct. Program. 7, 1, 172.
DOI:10.1017/S095679689700261X

101

http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
https://dx.doi.org/10.1145/83880.84528
https://dx.doi.org/10.1109/ISPDC.2014.31
https://dx.doi.org/10.1016/S1383-7621%252898%252900067-8
https://dx.doi.org/10.1109/88.218170
https://dx.doi.org/10.1007/3-540-16042-6_2
https://dx.doi.org/10.1007/BFb0038654
https://dx.doi.org/10.1017/S095679689700261X

BIBLIOGRAPHY

[10] Varol Akman. Review of Actors: A Model of Concurrent Computation in Dis-
tributed Systems. 1990. AI Magazine 11, 4, 9295. http://www.aaai.org/ojs/
index.php/aimagazine/article/view/861

[11] Jamie Allen. Effective Akka: Patterns and Best Practices. 2013. OReilly Media.
ISBN 978-1449360078

[12] Gregory R. Andrews and Fred B. Schneider. Concepts and Notations
for Concurrent Programming. 1983. ACM Comput. Surv. 15, 1, 343.
DOI:10.1145/356901.356903

[13] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming in
ERLANG. 1993. Prentice Hall. ISBN 978-0-13-285792-5

[14] Kean Bacon and Tim Harris. Operating Systems: Concurrent and Distributed Soft-
ware Design. 2003. Pearson Education. ISBN 978-0321117892

[15] Jos C. M. Baeten. A Brief History of Process Algebra. 2005. Theor. Comput. Sci.
335, 2-3, 131146. DOI:10.1016/j.tcs.2004.07.036

[16] Henry G. Baker and Carl Hewitt. The incremental garbage collection of processes.
1977. SIGART Newsletter 64, 5559. DOI:10.1145/872736.806932

[17] Christian Bednarek. Fyyd Podcast Directory. Accessed: 2018-09-07 https://fyyd.
de

[18] Mordechai Ben-Ari. Principles of Concurrent and Distributed Programming. 1990.
Prentice Hall. ISBN 978-0-13-711821-2

[19] Manuel Bernhardt. Reactive Web Applications. 2016. Manning Publications Co.
ISBN 978-1633430099

[20] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen The-
lin. Orleans: Distributed Virtual Actors for Programmability and Scalability.
2014. Accessed: 2018-02-17 https://www.microsoft.com/en-us/research/
publication/orleans-distributed-virtual-actors-for-programmability-
and-scalability/

[21] Andre B. Bondi. Characteristics of Scalability and Their Impact on
Performance. 2000. In Workshop on Software and Performance, 195203.
DOI:10.1145/350391.350432

[22] Jonas Boner. Reactive Microservices Architecture: Design Principles for Dis-
tributed Systems. 2016. OReilly Media. ISBN 978-1-491-95779-0

[23] Jonas Boner. Reactive Microsystems: The Evolution of Microservices at Scale.
2017. OReilly Media. ISBN 978-1-491-99433-7

102

http://www.aaai.org/ojs/index.php/aimagazine/article/view/861
http://www.aaai.org/ojs/index.php/aimagazine/article/view/861
https://dx.doi.org/10.1145/356901.356903
https://dx.doi.org/10.1016/j.tcs.2004.07.036
https://dx.doi.org/10.1145/872736.806932
https://fyyd.de
https://fyyd.de
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://dx.doi.org/10.1145/350391.350432

BIBLIOGRAPHY

[24] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. 1998. Computer Networks 30, 1-7, 107117. DOI:10.1016/S0169-
7552(98)00110-X

[25] David W Bustard. Concepts of Concurrent Programming. 1990. Carnegie Mel-
lon University, Software Engineering Institute. Accessed: 2018-04-03 http://
repository.cmu.edu/sei/110/

[26] John Carnell. Spring Microservices in Action. 2017. Manning Publications Com-
pany. ISBN 978-1617293986

[27] Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen, and Matthias Wäh-
lisch. Native Actors A Scalable Software Platform for Distributed, Heterogeneous
Environments. 2013. In Proceedings of the 2013 Workshop on Programming based
on Actors, Agents, and Decentralized Control, AGERE!SPLASH 2013, Indi-
anapolis, IN, USA, October 27-28, 2013, 8796. DOI:10.1145/2541329.2541336

[28] Natalia Chechina, Kenneth MacKenzie, Simon J. Thompson, Phil Trinder,
Olivier Boudeville, Viktoria Fordós, Csaba Hoch, Amir Ghaffari, and Mario
Moro Hernandez. Evaluating Scalable Distributed Erlang for Scalability and
Reliability. 2017. IEEE Trans. Parallel Distrib. Syst. 28, 8, 22442257.
DOI:10.1109/TPDS.2017.2654246

[29] Jboss Community. Undertow Webserver. Accessed: 2018-08-29 http://undertow.
io

[30] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-
cepts and Design (5th ed.). 2011. Addison-Wesley Publishing Company. ISBN 978-
0132143011

[31] Al Danial. CLOC. Accessed: 2018-08-13 https://github.com/AlDanial/cloc

[32] Emanuele DOsualdo, Jonathan Kochems, and C.-H. Luke Ong. Automatic Verifi-
cation of Erlang-Style Concurrency. 2013. In Static Analysis - 20th International
Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings, 454476.
DOI:10.1007/978-3-642-38856-9_24

[33] Nicola Dragoni, Schahram Dustdar, Stephan Thordal Larsen, and Manuel Maz-
zara. Microservices: Migration of a Mission Critical System. 2017. CoRR
abs/1704.04173,. arXiv:1704.04173

[34] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: yesterday,
today, and tomorrow. 2017. In Present and Ulterior Software Engineering. 195216.
DOI:10.1007/978-3-319-67425-4_12

103

https://dx.doi.org/10.1016/S0169-7552%252898%252900110-X
https://dx.doi.org/10.1016/S0169-7552%252898%252900110-X
http://repository.cmu.edu/sei/110/
http://repository.cmu.edu/sei/110/
https://dx.doi.org/10.1145/2541329.2541336
https://dx.doi.org/10.1109/TPDS.2017.2654246
http://undertow.io
http://undertow.io
https://github.com/AlDanial/cloc
https://dx.doi.org/10.1007/978-3-642-38856-9%5C_24
http://arxiv.org/abs/1704.04173
https://dx.doi.org/10.1007/978-3-319-67425-4_12

BIBLIOGRAPHY

[35] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. Microservices: How To Make Your Application Scale.
2017. CoRR abs/1702.07149,. arXiv:1702.07149

[36] Michael B Feldman. Language and System Support for Concurrent Programming.
1990. Carnegie Mellon University, Software Engineering Institute. Accessed: 2018-
03-18 http://repository.cmu.edu/sei/194/

[37] Matthias Felleisen. On the Expressive Power of Programming Languages. 1991.
Sci. Comput. Program. 17, 1-3, 3575. DOI:10.1016/0167-6423(91)90036-W

[38] Cormac Flanagan and Matthias Felleisen. The Semantics of Future and an Ap-
plication. 1999. J. Funct. Program. 9, 1, 131. http://journals.cambridge.org/
action/displayAbstract?aid=44231

[39] Apache Software Foundation. Lucene. Accessed: 2018-06-02 https://lucene.
apache.org

[40] Apache Software Foundation. HttpComponents. Accessed: 2018-06-02 https://
hc.apache.org

[41] Apache Software Foundation. Kafka. Accessed: 2018-06-02 https://kafka.
apache.org

[42] Martin Fowler and James Lewis. Microservices: a definition of this new archi-
tectural term. 2014. Accessed: 2017-09-22 http://martinfowler.com/articles/
microservices.html

[43] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on Architecting
Microservices: Trends, Focus, and Potential for Industrial Adoption. 2017. In 2017
IEEE International Conference on Software Architecture, ICSA 2017, Gothen-
burg, Sweden, April 3-7, 2017, 2130. DOI:10.1109/ICSA.2017.24

[44] Brian Goetz, Tim Peierls, Joshua J. Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. Java Concurrency in Practice. 2006. Addison-Wesley. ISBN 978-0-321-
34960-6

[45] Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: history,
myths and facts. 2016. Mathematical Structures in Computer Science 26, 4, 639654.
DOI:10.1017/S0960129514000279

[46] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java
Language Specification – Java SE 8 Edition. 2015. Accessed: 2018-06-10 https://
docs.oracle.com/javase/specs/jls/se8/jls8.pdf

[47] Patrick Gotthard. ROME. Accessed: 2018-02-06 https://rometools.github.io/
rome/

104

http://arxiv.org/abs/1702.07149
http://repository.cmu.edu/sei/194/
https://dx.doi.org/10.1016/0167-6423%252891%252990036-W
http://journals.cambridge.org/action/displayAbstract?aid=44231
http://journals.cambridge.org/action/displayAbstract?aid=44231
https://lucene.apache.org
https://lucene.apache.org
https://hc.apache.org
https://hc.apache.org
https://kafka.apache.org
https://kafka.apache.org
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://dx.doi.org/10.1109/ICSA.2017.24
https://dx.doi.org/10.1017/S0960129514000279
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://rometools.github.io/rome/
https://rometools.github.io/rome/

BIBLIOGRAPHY

[48] Marco Gribaudo, Mauro Iacono, and Daniele Manini. Performance Evaluation
Of Massively Distributed Microservices Based Applications. 2017. In European
Conference on Modelling and Simulation, ECMS 2017, Budapest, Hungary, May
23-26, 2017, Proceedings., 598604. DOI:10.7148/2017-0598

[49] Claudio Guidi, Ivan Lanese, Manuel Mazzara, and Fabrizio Montesi. Microservices:
A Language-Based Approach. 2017. In Present and Ulterior Software Engineering.
217225. DOI:10.1007/978-3-319-67425-4_13

[50] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi Zavat-
taro. SOCK: A Calculus for Service Oriented Computing. 2006. In Service-Oriented
Computing - ICSOC 2006, 4th International Conference, Chicago, IL, USA, De-
cember 4-7, 2006, Proceedings, 327338. DOI:10.1007/11948148_27

[51] Claudio Guidi and Fabrizio Montesi. Reasoning About a Service-oriented Program-
ming Paradigm. 2009. In Proceedings Fourth European Young Researchers Work-
shop on Service Oriented Computing, YR-SOC 2009, Pisa, Italy, 17-19th June
2009., 6781. DOI:10.4204/EPTCS.2.6

[52] Philipp Haller. On the Integration of the Actor Model in Mainstream Technologies:
The Scala Perspective. 2012. In Proceedings of the 2nd edition on Programming
systems, languages and applications based on actors, agents, and decentralized
control abstractions, AGERE! 2012, October 21-22, 2012, Tucson, Arizona, USA,
16. DOI:10.1145/2414639.2414641

[53] Philipp Haller and Martin Odersky. Event-Based Programming Without Inver-
sion of Control. 2006. In Modular Programming Languages, 7th Joint Modular
Languages Conference, JMLC 2006, Oxford, UK, September 13-15, 2006, Pro-
ceedings, 422. DOI:10.1007/11860990_2

[54] Philipp Haller and Martin Odersky. Scala Actors: Unifying thread-based
and event-based programming. 2009. Theor. Comput. Sci. 410, 2-3, 202220.
DOI:10.1016/j.tcs.2008.09.019

[55] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang, Roland Kuhn,
and Vojin Jovanovic. Futures and Promises. Scala Documentation. Accessed: 201-
06-07 https://docs.scala-lang.org/overviews/core/futures.html

[56] HashiCorp. Consul. Accessed: 2018-05-16 https://www.consul.io

[57] Sara Hassan and Rami Bahsoon. Microservices and Their Design Trade-Offs: A
Self-Adaptive Roadmap. 2016. In IEEE International Conference on Services Com-
puting, SCC 2016, San Francisco, CA, USA, June 27 - July 2, 2016, 813818.
DOI:10.1109/SCC.2016.113

[58] Pat Helland. Immutability Changes Everything. 2015. ACM Queue 13, 9, 40.
DOI:10.1145/2857274.2884038

105

https://dx.doi.org/10.7148/2017-0598
https://dx.doi.org/10.1007/978-3-319-67425-4_13
https://dx.doi.org/10.1007/11948148_27
https://dx.doi.org/10.4204/EPTCS.2.6
https://dx.doi.org/10.1145/2414639.2414641
https://dx.doi.org/10.1007/11860990_2
https://dx.doi.org/10.1016/j.tcs.2008.09.019
https://docs.scala-lang.org/overviews/core/futures.html
https://www.consul.io
https://dx.doi.org/10.1109/SCC.2016.113
https://dx.doi.org/10.1145/2857274.2884038

BIBLIOGRAPHY

[59] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal Modular AC-
TOR Formalism for Artificial Intelligence. 1973. In Proceedings of the 3rd Interna-
tional Joint Conference on Artificial Intelligence. Standford, CA, USA, August
20-23, 1973, 235245. http://ijcai.org/Proceedings/73/Papers/027B.pdf

[60] C. A. R. Hoare. Communicating Sequential Processes. 1978. Commun. ACM 21,
8, 666677. DOI:10.1145/359576.359585

[61] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone,
Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio
Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. Foundations of Session
Types and Behavioural Contracts. 2016. ACM Comput. Surv. 49, 1, 3:13:36.
DOI:10.1145/2873052

[62] Shams Mahmood Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite:
Enabling Empirical Evaluation of Actor Libraries. 2014. In Proceedings of the
4th International Workshop on Programming based on Actors Agents & De-
centralized Control, AGERE! 2014, Portland, OR, USA, October 20, 2014, 6780.
DOI:10.1145/2687357.2687368

[63] Apple Inc. iTunes Podcast Directory. Accessed: 2018-09-07 https://itunes.
apple.com/us/genre/podcasts/id26

[64] Lightbend Inc. Akka. Accessed: 2018-01-03 https://akka.io

[65] Lightbend Inc. Actors (Scala Variant). Akka Version 2.5 Documentation. Accessed:
2018-04-22 https://doc.akka.io/docs/akka/2.5/scala/actors.html

[66] Lightbend Inc. Akka and the Java Memory Model. Akka Version 2.5 Documenta-
tion. Accessed: 2018-04-14 https://doc.akka.io/docs/akka/2.5/general/jmm.
html

[67] Lightbend Inc. Futures. Akka Version 2.5 Documentation. Accessed: 2018-04-12
https://doc.akka.io/docs/akka/2.5/futures.html

[68] Lightbend Inc. Akka HTTP. Akka Version 2.5 Documentation. Accessed: 2018-05-
24 https://doc.akka.io/docs/akka-http/current/index.html

[69] Lightbend Inc. Scheduler. Akka Version 2.5 Documentation. Accessed: 2018-04-22
https://doc.akka.io/docs/akka/2.5/scala/scheduler.html

[70] Lightbend Inc. Akka Typed. Akka Version 2.5 Documentation. Accessed: 2018-04-
26 https://doc.akka.io/docs/akka/2.5.5/scala/typed.html

[71] Lightbend Inc. Supervision and Monitoring. Akka Version 2.5 Documentation.
Accessed: 2018-04-26 https://doc.akka.io/docs/akka/2.5/scala/general/
supervision.html

106

http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://dx.doi.org/10.1145/359576.359585
https://dx.doi.org/10.1145/2873052
https://dx.doi.org/10.1145/2687357.2687368
https://itunes.apple.com/us/genre/podcasts/id26
https://itunes.apple.com/us/genre/podcasts/id26
https://akka.io
https://doc.akka.io/docs/akka/2.5/scala/actors.html
https://doc.akka.io/docs/akka/2.5/general/jmm.html
https://doc.akka.io/docs/akka/2.5/general/jmm.html
https://doc.akka.io/docs/akka/2.5/futures.html
https://doc.akka.io/docs/akka-http/current/index.html
https://doc.akka.io/docs/akka/2.5/scala/scheduler.html
https://doc.akka.io/docs/akka/2.5.5/scala/typed.html
https://doc.akka.io/docs/akka/2.5/scala/general/supervision.html
https://doc.akka.io/docs/akka/2.5/scala/general/supervision.html

BIBLIOGRAPHY

[72] Lightbend Inc. Message Delivery Reliability. Akka Version 2.5 Documentation.
Accessed: 2018-04-10 https://doc.akka.io/docs/akka/2.5/general/message-
delivery-reliability.html

[73] Lightbend Inc. Lagom. Accessed: 2018-05-28 https://www.lagomframework.com

[74] Lightbend Inc. Spray JSON. Accessed: 2018-02-05 https://github.com/spray/
spray-json

[75] Netflix Inc. Eureka. Accessed: 2018-08-10 https://github.com/Netflix/eureka

[76] Netflix Inc. Zuul. Accessed: 2018-08-10 https://github.com/Netflix/zuul

[77] Netflix Inc. Ribbon. Accessed: 2018-08-10 https://github.com/Netflix/ribbon

[78] Pivotal Software Inc. Spring. Accessed: 2018-03-14 https://spring.io

[79] Pivotal Software Inc. Spring Boot Version 1.5.10.RELEASE Documenta-
tion. Accessed: 2018-05-03 https://docs.spring.io/spring-boot/docs/1.5.
10.RELEASE/reference/htmlsingle/

[80] Pivotal Software Inc. Spring Cloud Version Finchley.M5 Documentation. Ac-
cessed: 2018-05-03 http://cloud.spring.io/spring-cloud-static/Finchley.
M5/single/spring-cloud.html

[81] Pivotal Software Inc. Spring Framework Version 4.3.14.RELEASE Documentation.
Accessed: 2018-05-03 https://docs.spring.io/spring/docs/4.3.14.RELEASE/
spring-framework-reference/htmlsingle/

[82] Pivotal Software Inc. RabbitMQ. Accessed: 2018-03-14 https://www.rabbitmq.
com

[83] Podlove Initiative. Simple Chapters. Accessed: 2018-08-17 https://podlove.org/
simple-chapters/

[84] Lianghuan Kang and Donggang Cao. An Extension to Computing Elements in
Erlang for Actor Based Concurrent Programming. 2012. In 15th IEEE Interna-
tional Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops, ISORC Workshops 2012, Shenzhen, China, April 11, 2012,
99105. DOI:10.1109/ISORCW.2012.28

[85] Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor Frameworks for the JVM
Platform: A Comparative Analysis. 2009. In Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, PPPJ 2009, Cal-
gary, Alberta, Canada, August 27-28, 2009, 1120. DOI:10.1145/1596655.1596658

[86] Günter Kniesel. Encapsulation = Visibility + Accessibility. 1996. Universitat Bonn,
Institut fur Informatik III. Accessed: 2018-04-14 http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.22.536

107

https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html
https://doc.akka.io/docs/akka/2.5/general/message-delivery-reliability.html
https://www.lagomframework.com
https://github.com/spray/spray-json
https://github.com/spray/spray-json
https://github.com/Netflix/eureka
https://github.com/Netflix/zuul
https://github.com/Netflix/ribbon
https://spring.io
https://docs.spring.io/spring-boot/docs/1.5.10.RELEASE/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/1.5.10.RELEASE/reference/htmlsingle/
http://cloud.spring.io/spring-cloud-static/Finchley.M5/single/spring-cloud.html
http://cloud.spring.io/spring-cloud-static/Finchley.M5/single/spring-cloud.html
https://docs.spring.io/spring/docs/4.3.14.RELEASE/spring-framework-reference/htmlsingle/
https://docs.spring.io/spring/docs/4.3.14.RELEASE/spring-framework-reference/htmlsingle/
https://www.rabbitmq.com
https://www.rabbitmq.com
https://podlove.org/simple-chapters/
https://podlove.org/simple-chapters/
https://dx.doi.org/10.1109/ISORCW.2012.28
https://dx.doi.org/10.1145/1596655.1596658
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.536
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.536

BIBLIOGRAPHY

[87] Joeri De Koster, Tom Van Cutsem, and Wolfgang De Meuter. 43 years of actors:
a taxonomy of actor models and their key properties. 2016. In Proceedings of
the 6th International Workshop on Programming Based on Actors, Agents, and
Decentralized Control, AGERE 2016, Amsterdam, The Netherlands, October 30,
2016, 3140. DOI:10.1145/3001886.3001890

[88] R. Greg Lavender and Douglas C. Schmidt. Active Object – An Object Behavioral
Pattern for Concurrent Programming. 1995. Accessed: 2018-05-15 https://www.
dre.vanderbilt.edu/~schmidt/PDF/Active-Objects.pdf

[89] Doug Lea. A Java Fork/Join Framework. 2000. In Proceedings of the ACM 2000
Java Grande Conference, San Francisco, CA, USA, June 3-5, 2000, 3643.
DOI:10.1145/337449.337465

[90] Mohsen Lesani, Martin Odersky, and Rachid Guerraoui. Concurrent Programming
Paradigms: A Comparison in Scala. https://infoscience.epfl.ch/record/
136824/files/Formatted%20Report.pdf

[91] David Lillis, Rem W. Collier, Mauro Dragone, and Gregory M. P. OHare.
An Agent-Based Approach to Component Management. 2009. In 8th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 1, 529536.
DOI:10.1145/1558013.1558086

[92] Barbara Liskov and Liuba Shrira. Promises: Linguistic Support for Efficient
Asynchronous Procedure Calls in Distributed Systems. 1988. In Proceedings of
the ACM SIGPLAN88 Conference on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, 260267.
DOI:10.1145/53990.54016

[93] Google LLC. Angular. Accessed: 2018-08-21 https://angular.io

[94] Robert Love. Linux System Programming: System and Library Calls Every Pro-
grammer Needs to Know. 2007. OReilly. ISBN 978-0-596-00958-8

[95] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. 2008. Cambridge University Press. ISBN 978-0-521-
86571-5

[96] Manuel Mazzara, Ruslan Mustafin, Larisa Safina, and Ivan Lanese. Towards Mi-
croservices and Beyond: An incoming Paradigm Shift in Distributed Computing.
2016. CoRR abs/1610.01778,. arXiv:1610.01778

[97] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. 1997.
Prentice-Hall. ISBN 978-0136291558

[98] Robin Milner. A Calculus of Communicating Systems. 1980. Springer.
DOI:10.1007/3-540-10235-3

108

https://dx.doi.org/10.1145/3001886.3001890
https://www.dre.vanderbilt.edu/~schmidt/PDF/Active-Objects.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/Active-Objects.pdf
https://dx.doi.org/10.1145/337449.337465
https://infoscience.epfl.ch/record/136824/files/Formatted%2520Report.pdf
https://infoscience.epfl.ch/record/136824/files/Formatted%2520Report.pdf
https://dx.doi.org/10.1145/1558013.1558086
https://dx.doi.org/10.1145/53990.54016
https://angular.io
http://arxiv.org/abs/1610.01778
https://dx.doi.org/10.1007/3-540-10235-3

BIBLIOGRAPHY

[99] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes,
I+II. 1992. Inf. Comput. 100, 1, 177. DOI:10.1016/0890-5401(92)90008-4

[100] Bogdan Mingela, Nikolay Troshkov, Manuel Mazzara, Larisa Safina, and Alexander
Tchitchigin. Towards Static Type-checking for Jolie. 2017. CoRR abs/1702.07146,.
arXiv:1702.07146

[101] Ahmed Abdel Moamen, Dezhong Wang, and Nadeem Jamali. Supporting Resource
Control for Actor Systems in Akka. 2017. In 37th IEEE International Conference
on Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8,
2017, 26422645. DOI:10.1109/ICDCS.2017.291

[102] Ugo Montanari and Carolyn L. Talcott. Can Actors and pi-Agents Live To-
gether? 1997. Electr. Notes Theor. Comput. Sci. 10, 189196. DOI:10.1016/S1571-
0661(05)80697-8

[103] Fabrizio Montesi. Process-aware web programming with Jolie. 2016. Sci. Comput.
Program. 130, 6996. DOI:10.1016/j.scico.2016.05.002

[104] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-Oriented Pro-
gramming with Jolie. 2014. In Web Services Foundations. 81107. DOI:10.1007/978-
1-4614-7518-7_4

[105] Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API Gate-
ways in Microservices. 2016. CoRR abs/1609.05830,. arXiv:1609.05830

[106] Thomas Müller. H2 Database Engine. Accessed: 2018-09-05 http://www.
h2database.com/html/main.html

[107] Sam Newman. Building Microservices: Designing Fine-Grained Systems, 1st Edi-
tion. 2015. OReilly. ISBN 978-1491950357

[108] Mark Nottingham and Robert Sayre. RFC 4287: The Atom Syndication Format.
2005. Accessed: 2018-08-26 https://tools.ietf.org/html/rfc4287

[109] Martin Odersky. The Scala Language Specification – Version 2.12. 2016. Accessed:
2018-07-16 https://scala-lang.org/files/archive/spec/2.12/

[110] OpenFeign. Feign. Accessed: 2018-08-10 https://github.com/OpenFeign/feign

[111] Laurie J. Patterson. The Technology Underlying Podcasts. 2006. IEEE Computer
39, 10, 103105. DOI:10.1109/MC.2006.361

[112] Jorge A. Pérez. The Challenge of Typed Expressiveness in Concurrency. 2016. In
Formal Techniques for Distributed Objects, Components, and Systems - 36th IFIP
WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th Interna-
tional Federated Conference on Distributed Computing Techniques, DisCoTec 2016,
Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, 239247. DOI:10.1007/978-
3-319-39570-8_16

109

https://dx.doi.org/10.1016/0890-5401%252892%252990008-4
http://arxiv.org/abs/1702.07146
https://dx.doi.org/10.1109/ICDCS.2017.291
https://dx.doi.org/10.1016/S1571-0661%252805%252980697-8
https://dx.doi.org/10.1016/S1571-0661%252805%252980697-8
https://dx.doi.org/10.1016/j.scico.2016.05.002
https://dx.doi.org/10.1007/978-1-4614-7518-7_4
https://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://arxiv.org/abs/1609.05830
http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html
https://tools.ietf.org/html/rfc4287
https://scala-lang.org/files/archive/spec/2.12/
https://github.com/OpenFeign/feign
https://dx.doi.org/10.1109/MC.2006.361
https://dx.doi.org/10.1007/978-3-319-39570-8%5C_16
https://dx.doi.org/10.1007/978-3-319-39570-8%5C_16

BIBLIOGRAPHY

[113] Calvin Pedzai, Ndapandula Nakashole, and Hussein Suleman. An Approach to
Better System Resource Utilization for Search Engine Clusters. 2006. Department
of Computer Science, University of Cape Town. Accessed: 2018-07-21 http://
pubs.cs.uct.ac.za/archive/00000363/01/techical.pdf

[114] Kisalaya Prasad, Avanti Patil, and Heather Miller. Futures and Promises. In Pro-
gramming Models for Distributed Computing. Accessed: 2018-04-22 http://dist-
prog-book.com/chapter/2/futures.html

[115] Akka.NET Project. Akka.NET. Accessed: 2018-09-30 https://getakka.net

[116] Eric S Raymond. The Art of UNIX Programming. 2003. Addison-Wesley Profes-
sional. ISBN 978-0131429017

[117] Stephan Rehfeld, Henrik Tramberend, and Marc Erich Latoschik. An actor-
based distribution model for Realtime Interactive Systems. 2013. In 6th
Workshop on Software Engineering and Architectures for Realtime Inter-
active Systems, SEARIS 2013, Orlando, FL, USA, March 17, 2013, 916.
DOI:10.1109/SEARIS.2013.6798103

[118] Raymond Roestenburg, Rob Bakker, and Rob Williams. Akka in Action. 2015.
Manning Publications Co. ISBN 978-1617291012

[119] Andrea Rosà, Lydia Y. Chen, and Walter Binder. Profiling actor utiliza-
tion and communication in Akka. 2016. In Proceedings of the 15th Interna-
tional Workshop on Erlang, Nara, Japan, September 18-22, 2016, 2432.
DOI:10.1145/2975969.2975972

[120] Andrea Rosà, Lydia Y. Chen, and Walter Binder. AkkaProf: A Profiler for Akka
Actors in Parallel and Distributed Applications. 2016. In Programming Languages
and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November
21-23, 2016, Proceedings, 139147. DOI:10.1007/978-3-319-47958-3_8

[121] Tasneem Salah, M. Jamal Zemerly, Chan Yeob Yeun, Mahmoud Al-Qutayri, and
Yousof Al-Hammadi. The Evolution of Distributed Systems Towards Microser-
vices Architecture. 2016. In 11th International Conference for Internet Technology
and Secured Transactions, ICITST 2016, Barcelona, Spain, December 5-7, 2016,
318325. DOI:10.1109/ICITST.2016.7856721

[122] Michael L. Scott. Programming Language Pragmatics (2. ed.). 2006. Morgan Kauf-
mann. ISBN 978-0-12-633951-2

[123] Dharmendra Shadija, Mo Rezai, and Richard Hill. Microservices: Granularity vs.
Performance. 2017. In Companion Proceedings of the 10th International Conference
on Utility and Cloud Computing, UCC 2017, Austin, TX, USA, December 5-8,
2017, 215220. DOI:10.1145/3147234.3148093

110

http://pubs.cs.uct.ac.za/archive/00000363/01/techical.pdf
http://pubs.cs.uct.ac.za/archive/00000363/01/techical.pdf
http://dist-prog-book.com/chapter/2/futures.html
http://dist-prog-book.com/chapter/2/futures.html
https://getakka.net
https://dx.doi.org/10.1109/SEARIS.2013.6798103
https://dx.doi.org/10.1145/2975969.2975972
https://dx.doi.org/10.1007/978-3-319-47958-3%5C_8
https://dx.doi.org/10.1109/ICITST.2016.7856721
https://dx.doi.org/10.1145/3147234.3148093

BIBLIOGRAPHY

[124] Dharmendra Shadija, Mo Rezai, and Richard Hill. Towards an Understanding of
Microservices. 2017. In 23rd International Conference on Automation and Com-
puting, ICAC 2017, Huddersfield, United Kingdom, September 7-8, 2017, 16.
DOI:10.23919/IConAC.2017.8082018

[125] Vivek Shah and Marcos Vaz Salles. Actor Database Systems: A Manifesto. 2017.
CoRR abs/1707.06507,. arXiv:1707.06507

[126] Olin Shivers. Continuations and threads: Expressing machine concurrency directly
in advanced languages. 1997. In In Proceedings of the Second ACM SIGPLAN
Workshop on Continuations, 21. Accessed: 2018-07-26 http://www.ccs.neu.edu/
home/shivers/papers/cps-threads.ps

[127] Munindar P. Singh and Amit K. Chopra. Correctness Properties for Multiagent
Systems. 2009. In Declarative Agent Languages and Technologies VII, 7th Inter-
national Workshop, DALT 2009, Budapest, Hungary, May 11, 2009. Revised
Selected and Invited Papers, 192207. DOI:10.1007/978-3-642-11355-0_12

[128] Paolo A. G. Sivilotti and Charles P. Giles. The Specification of Distributed Objects:
Liveness and Locality. 1999. In Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research, November 8-11, 1999, Mississauga,
Ontario, Canada, 11. DOI:10.1145/781995.782006

[129] Alan Snyder. The Essence of Objects: Concepts and Terms. 1993. IEEE Software
10, 1, 3142. DOI:10.1109/52.207219

[130] Giandomenico Spezzano, Domenico Talia, and Marco Vanneschi. A Concur-
rent Programming Support for Distributed Systems. 1990. Computing Systems
3, 3, 423447. http://www.usenix.org/publications/compsystems/1990/sum_
spezzano.pdf

[131] Damiano Spina, Johanne R. Trippas, Lawrence Cavedon, and Mark Sanderson.
Extracting Audio Summaries to Support Effective Spoken Document Search. 2017.
Journal of the Association for Information Science and Technology 68, 9, 21012115.
DOI:10.1002/asi.23831

[132] Venkat Subramaniam. Programming Concurrency on the JVM. 2011. Pragmatic
Bookshelf. ISBN 978-1-93435-676-0

[133] Janwillem Swalens, Stefan Marr, Joeri De Koster, and Tom Van Cutsem. To-
wards Composable Concurrency Abstractions. 2014. In Proceedings 7th Workshop
on Programming Language Approaches to Concurrency and Communication-
cEntric Software, PLACES 2014, Grenoble, France, 12 April 2014., 5460.
DOI:10.4204/EPTCS.155.8

[134] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms, 2nd Edition. 2007. Pearson Education. ISBN 978-0-13-239227-3

111

https://dx.doi.org/10.23919/IConAC.2017.8082018
http://arxiv.org/abs/1707.06507
http://www.ccs.neu.edu/home/shivers/papers/cps-threads.ps
http://www.ccs.neu.edu/home/shivers/papers/cps-threads.ps
https://dx.doi.org/10.1007/978-3-642-11355-0_12
https://dx.doi.org/10.1145/781995.782006
https://dx.doi.org/10.1109/52.207219
http://www.usenix.org/publications/compsystems/1990/sum_spezzano.pdf
http://www.usenix.org/publications/compsystems/1990/sum_spezzano.pdf
https://dx.doi.org/10.1002/asi.23831
https://dx.doi.org/10.4204/EPTCS.155.8

BIBLIOGRAPHY

[135] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why Do Scala Developers
Mix the Actor Model with other Concurrency Models? 2013. In ECOOP 2013 -
Object-Oriented Programming - 27th European Conference, Montpellier, France,
July 1-5, 2013. Proceedings, 302326. DOI:10.1007/978-3-642-39038-8_13

[136] Ivan Valkov, Natalia Chechina, and Phil Trinder. Comparing Languages for Engi-
neering Server Software: Erlang, Go, and Scala with Akka. 2018. In Proceedings
of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau,
France, April 09-13, 2018, 218225. DOI:10.1145/3167132.3167144

[137] Steve Vinoski. Concurrency with Erlang. 2007. IEEE Internet Computing 11, 5,
9093. DOI:10.1109/MIC.2007.104

[138] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. A Note on Dis-
tributed Computing. 1996. In Mobile Object Systems - Towards the Programmable
Internet, Second International Workshop, MOS96, Linz, Austria, July 8-9, 1996,
Selected Presentations and Invited Papers, 4964. DOI:10.1007/3-540-62852-5_6

[139] Craig Walls and Ryan Breidenbach. Spring in Action. 2007. Manning Publications
Co. ISBN 9781933988139

[140] Peter Wegner. Concepts and paradigms of object-oriented programming. 1990.
OOPS Messenger 1, 1, 787. DOI:10.1145/382192.383004

[141] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Safe futures for Java.
2005. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,
October 16-20, 2005, San Diego, CA, USA, 439453. DOI:10.1145/1094811.1094845

[142] Dave Winer, Brent Simmons, and Jon Udell. RSS 2.0 Specification. 2003. Accessed:
2018-08-26 http://cyber.harvard.edu/rss/rss.html

[143] ChengZhi Xu, Hong Zhu, Ian Bayley, David E. Lightfoot, Mark Green, and Peter
Marshall. CAOPLE: A Programming Language for Microservices SaaS. 2016. In
2016 IEEE Symposium on Service-Oriented System Engineering, SOSE 2016, Ox-
ford, United Kingdom, March 29 - April 2, 2016, 3443. DOI:10.1109/SOSE.2016.46

[144] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented con-
current programming ABCL/1. 1986. In Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA86), Portland, Oregon,
Proceedings., 258268. DOI:10.1145/28697.28722

[145] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
Benchmarking microservice systems for software engineering research. 2018. In Pro-
ceedings of the 40th International Conference on Software Engineering: Com-
panion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
323324. DOI:10.1145/3183440.3194991

112

https://dx.doi.org/10.1007/978-3-642-39038-8_13
https://dx.doi.org/10.1145/3167132.3167144
https://dx.doi.org/10.1109/MIC.2007.104
https://dx.doi.org/10.1007/3-540-62852-5_6
https://dx.doi.org/10.1145/382192.383004
https://dx.doi.org/10.1145/1094811.1094845
http://cyber.harvard.edu/rss/rss.html
https://dx.doi.org/10.1109/SOSE.2016.46
https://dx.doi.org/10.1145/28697.28722
https://dx.doi.org/10.1145/3183440.3194991

	Abstract
	Kurzfassung
	1 Introduction
	1.1 Problem Statement
	1.2 Methodological Approach
	1.3 Structure of the Thesis

	2 Concurrent Computation
	2.1 Foundational Issues
	2.2 Concurrency, Parallelism and Distribution
	2.3 Correctness Properties
	2.4 Programming Abstractions
	2.4.1 Language-Construct Approach
	Case Study: Concurrency in Java

	2.4.2 Operating System Approach
	Case Study: Concurrent Processes in C

	2.4.3 Network Approach

	3 Actor Model
	3.1 Message Passing and Encapsulation
	3.2 Unified Abstraction
	3.3 Actor Systems and Variations
	3.4 Active Objects
	3.5 Integration of other Concurrency Abstractions
	3.5.1 Futures
	3.5.2 Software Transactional Memory

	4 Microservice Paradigm
	4.1 Limits of Centralization
	4.2 Term Ambiguity
	4.3 Independence and Interaction
	4.4 Concurrent and Distributed Building Blocks
	4.5 Size, Scope and Granularity
	4.6 Service-oriented Programming

	5 Implementation
	5.1 Concurrent System Scenario
	5.1.1 Domain Description
	5.1.2 System Components
	5.1.3 Processing Pipelines
	Indexing Pipeline
	Retrieval Pipeline

	5.2 Actor-based Implementation
	5.2.1 Striving for Isolation
	Issue of Data Hiding
	References and Immutability

	5.2.2 Utilizing other Concurrency Constructs
	5.2.3 Communication Abstractions
	Future-based Messaging
	Delegation-based Messaging
	Modelling Timeouts
	Type-restricted Messages and Compatibility

	5.2.4 Supervision and Monitoring
	5.2.5 Information Routing and Delivery Reliability
	5.2.6 Persistence and IO

	5.3 Microservice-based Implementation
	5.3.1 Service Technology Stack
	5.3.2 Internal Service Concurrency
	5.3.3 Isolation and Persistence
	5.3.4 Communication Mechanisms
	Programming Abstractions
	Service Discovery
	Load Balancing

	6 Evaluation
	6.1 Expressiveness and Capabilities
	6.1.1 Encapsulation and Isolation
	Shared and Mutable State
	Persistence and IO
	Cohesion, Coupling and Independence

	6.1.2 Communication and Message Routing
	6.1.3 Conception of Concurrent Execution
	Continuations, Threads and Processes
	Distribution and Location Transparency
	Fairness and Resource Consumption

	6.1.4 Scalability and Modularity
	Forms of Scalability
	Dynamic Reconfiguration
	Extensibility and Technology Diversity

	6.1.5 Integrating Actors and Microservices
	Actor Model and Process Calculi
	Combining Akka Actors and Spring Microservices

	6.1.6 Software Artifact Analysis

	6.2 Efficiency and Benchmark
	6.2.1 Performance Metrics
	6.2.2 Simulation Workloads
	6.2.3 Experiment Setup
	6.2.4 Benchmark Results
	Experiment 1: Indexing Subsystem
	Experiment 2: Retrieval Subsystem

	6.2.5 Relevance of the Benchmark
	6.2.6 Threats to Validity
	External Threats to Validity
	Internal Threats to Validity

	7 Conclusion
	7.1 Research Questions Revisited
	7.2 Contributions
	7.3 Future Work

	Appendix A Feed Structure Example
	Bibliography

