
Automated XSS Vulnerability
Detection Through Context Aware

Fuzzing and Dynamic Analysis

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Tobias Fink, BSc
Matrikelnummer 1026737

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Wien, 21. Juni 2018
Tobias Fink Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Automated XSS Vulnerability
Detection Through Context Aware

Fuzzing and Dynamic Analysis

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Tobias Fink, BSc
Registration Number 1026737

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Vienna, 21st June, 2018
Tobias Fink Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Tobias Fink, BSc
Windmühlgasse 22/20, 1060 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Juni 2018
Tobias Fink

v





Kurzfassung

Cross Site Scripting (XSS) Angriffe sind bereits seit langem bekannt und obwohl eine
breite Palette an Gegenmaßnahmen vorgestellt wurde, ging das Auftreten von neuen
XSS Schwachstellen nur marginal zurück. Auf der anderen Seite erhöht sich die Zahl an
Angriffen sowie deren Raffinesse, da immer mehr Anwendungen Code vom Server auf den
Client auslagern. Existierende Programme zur Schwachstellenanalyse in diesem Sektor
weisen oft nur eine ungenügende Genauigkeit beim Aufspüren solcher Fehler auf.
Deshalb beschäftigt sich diese Arbeit mit der Lösung der folgenden Probleme: (i) Unzu-
reichende Testumgebungen zur Auswertung bestehender Tools, (ii) Fehlende Vergleiche
bereits existierender Black-Box Analysetools, (iii) Entwicklung und Implementierung von
Methoden zur effektiven Erkennung von XSS Schwachstellen.
Die automatisierte Auswertung von Analyseprogrammen bedarf einer Testumgebung,
welche eine möglichst hohe Abdeckung an diversen XSS Schwachstellen bietet. Da
existierende Frameworks hier große Mängel aufweisen, wurde eine eigene Anwendung
entwickelt um möglichst viele Kombinationen unterschiedlicher Dateneingangs und -
ausgangspunkte, sowie Filtermechanismen in Webanwendungen abzubilden, welche zuvor
in keinem Testset enthalten waren.
Basierend auf dieser Testumgebung wurde eine großangelegte Studie zu frei verfügbaren
XSS Scannern durchgeführt. Die Auswertung zeigt, dass existierende Tools nur unzurei-
chende Ergebnisse liefern. Speziell bei den Varianten der DOM-basierten und persistenten
Schwachstellen konnten die meisten überhaupt keine Testfälle erkennen.
Um den Stand von offenen und frei verfügbaren Werkzeugen zu verbessern stellen wir
daher eine eigene Black-Box Methodik zum effizienten Erkennen von XSS Schwachstellen
in Webanwendungen vor, welche aus zwei wesentlichen Teilen besteht. Zuerst wird eine
Analyse der Datenflüsse innerhalb der Anwendung durchgeführt um Informationen zu
deren Eingangs- und Ausgangskontext sowie eventuell vorhandene Filter- und Sicherheits-
maßnahmen zu erhalten. Anschließend werden diese zuvor identifizierten Datenkanäle
durch Fuzzing mit speziell adaptierten Angriffen getestet und dynamisch in einem inte-
grierten Browser ausgewertet. Diese dynamische Verifizierung erlaubt es falsch positive
Ergebnisse zu vermeiden.
Die Evaluierung des entwickelten Prototypen zeigt auf, dass die neu entwickelte Methodik
im Vergleich zu existierenden frei verfügbaren Tools in der Lage ist in annähernd der selben
Zeit eine signifikant höhere Anzahl an ausnutzbaren Schwachstellen zu identifizieren.

vii





Abstract

Cross Site Scripting (XSS) attacks have been around for a long time and while a multitude
of countermeasures and mitigation techniques have been researched, XSS vulnerabilities
did not decline much. The number of attacks and their sophistication increases as more
and more code is shifted into the client side of web applications. Therefore this thesis deals
with the following challenges: (i) Creating and implementing a method for efficient XSS
detection, (ii) the lack of coverage of current testbeds regarding types and possibilities of
XSS, (iii) the missing comparisons and analysis of existing black-box scanners.

A testing environment was created covering a large number of diverse XSS vulnerabilities
in 1808 distinct test cases so that black-box scanning tools can be evaluated and compared
with regard to their performance. The focus was to maximize combinations of different
input and output contexts together with filtering mechanisms and also to minimize the
complexity of the web application and test case structure in order to make them easily
accessible for automated scanners. The test cases of already existing testbeds, which
often only feature a handful of simple XSS test cases, were integrated and many more
new and advanced ones implemented.

Based on the previous findings an approach to efficiently detect XSS vulnerabilities is
presented and implemented in a fully automated scanner prototype. The approach is
based on data flow detection together with input and output context analysis. This
allows the construction of specialized and environment sensitive attack payloads. The
scanner additionally collects information about potential input filters and sanitization
mechanisms and evaluates these against several evasion methods. The gathered data flows
are then fuzz tested with specifically tailored payloads. Finally, detected vulnerabilities
and attack vectors are verified dynamically to ensure a zero false positive rate.

Several automated vulnerability scanners that try to detect XSS flaws exist, but no large
scale comparison of their performance regarding detection rate is available. Therefore
existing free and open source analysis tools were evaluated against the created testbed,
uncovering that most of them lack proper detection capabilities especially in the sectors
of DOM-based and stored cross site scripting. Many could not even detect a single
vulnerability in the test cases of these two categories. The evaluation of the prototype
implementation of the new approach shows, that it is able to detect significantly more
vulnerabilities than other open source scanners. This is achieved while the time required
for the scanning process stays in the range of the best performing open source tools.

ix





Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 XSS Vulnerability Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 XSS Execution Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Background 17
3.1 Cross-site Scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Cross-site Scripting Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Black-box Vulnerability Testing . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 FOXSS 25
4.1 Data Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Payload Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Exploit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Scanner Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Testing Environment 39
5.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Evaluation 53
6.1 XSS Vulnerability Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi



7 Conclusion and Future Work 73

List of Figures 77

List of Tables 77

Glossary 79

Acronyms 81

Bibliography 83

Appendices 99
Appendix A: Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



CHAPTER 1
Introduction

Cross-Site Scripting (XSS) vulnerabilities have been among the most common vulnerabil-
ities in web applications for a very long time, nevertheless the number of attacks is still
on the rise [1–5]. Even big, well tested websites that are used by millions of users are
continually facing newly discovered exploits in this category [6–12]. When those software
bugs are abused, it allows malicious payloads to be executed, which opens the door for
adversaries to perform a wide range of attacks against the web applications, their users
and owners. This includes among other types of attacks the stealing of user credentials or
sensitive information, taking over accounts, performing malicious actions like clickjacking,
impersonation or the spreading of malware [13–18].
One of the major challenges of preventing such vulnerabilities is the ever increasing
complexity and dynamicity of modern web applications. The ongoing changes in the
JavaScript and HTML standards continually introduce new features which enable a more
interactive user experience [19–22]. This leads to a shift from mostly static websites that
are loaded in a simple HTTP request from a web server, to adaptively changing sites
depending on server events and web applications that include rich client-side functionality
which also work offline. WebSockets [23], WebRTC [24] and other new JavaScript
elements [25–28] allow continuous background communication channels between the web
application and multiple servers. While it was sufficient to perform a simple static
string search for malicious HTML tags that could be injected to identify data flows that
lead to possible vulnerabilities formerly, this is not adequate any more as many likely
vulnerable entry points may be missed. Additionally the dynamic nature of JavaScript
allows dynamic code generation and evaluation at runtime which makes obfuscation easy
[29, 30]. Furthermore new HTML elements and the addition and introduction of new
properties create novel ways to bypass existing XSS filters [31, 32].
White-box testing approaches could provide very detailed insights about potential vul-
nerabilities, because of the actual source code that is analyzed. However the dependency
on the code makes the testing approach inflexible when it needs to be applied on various

1



1. Introduction

kinds of programming languages or web applications that combine a diverse technology
stack. In order to be able to detect XSS vulnerabilities efficiently and independently of
the programming languages and technologies black box testing can be used. This method
avoids the necessity to have access to and the need to analyze the actual source code.
Automation and integration into regular testing processes during development is easy.
Furthermore a generic analysis approach does not depend on specific manual refinements
and adaptations for different types of websites. Even closed source applications can be
analyzed this way [33, 34].

Several approaches of black-box testing for cross site scripting exploitability were devel-
oped over the years. Many of those scanning tools are outdated and have low detection
ratios or high numbers of false positives [34–40]. Often a lot of manual work is required
to identify and examine all web application entry points. Standard XSS payloads are
tested most of the time, but special payloads that are only applicable in specific contexts
are often missed by automated tools [4, 34]. A more advanced method of automated
vulnerability scanning is required to improve the detection quantity and quality of XSS
vulnerabilities in modern web applications.

1.1 Approach

In this thesis we propose FOXSS, a autonomous XSS scanning tool featuring fully
automatic discovery of data flows that is capable of intelligent fuzzing with regard to
their context. This allows the detection of possible vulnerabilities with high accuracy
and a large coverage rate. It is achieved by instrumented web application execution and
a combination of static and dynamic analysis. The validity of each vulnerability that
gets reported by FOXSS is dynamically verified in a browser engine by automatically
generated proof of concept attack payloads. Thus guaranteeing zero false positives and a
high detection ratio of XSS vulnerabilities. The processing steps that FOXSS performs are
as follows: (i) The data flow detection module first identifies all possible input channels
in the different parts of the web application. This is accomplished by checking the static
parts like URL, HTML and HTTP headers as well as the dynamic parts which include
JavaScript event handlers, background communication like WebSockets or JavaScript
initiated HTTP requests etc. Then those input channels are tested with specific identifiers
and monitored for possible output channels. To achieve this the Document Object Model
(DOM) is searched for the identifiers and a set of relevant built-in JavaScript functions
and objects is instrumented to detect when any identifier is passed through. Several
contextual aspects are gathered and aggregated when a full data flow from input to
output is recognized. (ii) Afterwards the payload generation module decides based on the
data flow, the input and output contexts which exploits should be generated, transformed,
assembled and then tested. (iii) An evaluation component of the XSS analysis module
then checks each of the previously generated XSS tests for successful injection and
execution of payloads. This is done by loading the derived request in a browser window
and automatically perform all actions required to trigger the vulnerability like simulating

2



1.2. Contributions

user interactions. A XSS execution is verified by exposing a custom function in the global
JavaScript context of the browser engine and triggering it through the XSS payload.

Additionally a testing environment for evaluating black-box XSS scanners was created.
It is separated into two parts: The test cases of the publicly available testbed “Firing
Range” [41] and the newly developed testbed “XSS Playground”. A combined number of
1808 distinct test cases covers the majority of the XSS vulnerability landscape. They
range from basic and trivial ones which can be found in existing testbeds to different rare
vulnerabilities and heavily dynamic JavaScript based test cases. The web application
behind the XSS Playground has a flat tree like structure where every test case can be
reached through a custom URL. Its design allows automated scanners to easily access and
examine the test cases. The focus lies on the detection of the actual XSS vulnerability
rather than testing a scanners ability to navigate through hidden or protected areas. So
no authentication or session dependent parts of the web application exist.

The finalized testing environment allows us to evaluate and compare our own solution
FOXSS with other black-box scanners. Since many of them were created and also
abandoned over time first the available existing XSS scanners and approaches were
gathered and reviewed in detail. After an initial assessment where outdated and otherwise
inappropriate or unobtainable scanning tools and projects were discarded, the remaining
were analyzed in the testing environment.

1.2 Contributions

In the course of working on this thesis for XSS detection the following scientifically
relevant contributions are made:

• Numerous existing XSS detection solutions are compared and their functionality
discussed and analyzed. This is based on their documentation, source code (if
available) and the actual results they generated when executed on the specially
crafted test web application. Their performance is recorded and rated taking into
account the runtime, coverage of detected vulnerabilities, false positive and false
negative rates as well as special side effects that might occur during their execution.
This leads to recent up-to-date comparative results and an overview of the features
of existing black-box scanners. Even lesser-known open source programs were
tested, which might be hard to find and know about otherwise. Also scanners that
were created many years ago are taken into account. All that were obtainable were
first analyzed whether they are worth a deeper analysis and ready for the testing
environment. Since several ones failed some checks, they are documented separately
and the problems encountered are discussed. To the best of my knowledge no such
wide-ranging comparison was previously created.

• A testbed dedicated to XSS vulnerabilities is created. It includes tests covering all
classes and many different types of XSS bugs. It provides combinations of all entry

3



1. Introduction

sources with different exit contexts and input sanitizing functions. A special focus
is put on vulnerability corner cases, very unusual ones, multi stage vulnerabilities
and those which are only possible through new HTML5 and JavaScript language
additions. Also existing test environments that are dedicated to Cross-Site Scripting
test cases were analyzed and influenced the test cases that are featured in the
testbed.

• The analysis of different attack payloads and the different execution contexts
where they can appear. Also the possibilities of how they can be transformed
or manipulated so that filtering and sanitization techniques can be successfully
evaded is investigated. Data sources and sinks that can be found in modern web
applications are listed, analyzed and presented. Those are important for identifying
data flows and subsequently for vulnerability testing.

• The main contributions are the newly developed XSS scanning approach and the
implementation of a fully automated black-box vulnerability scanner, capable of
identifying the data flows of modern, highly dynamic web applications. Those
can be thoroughly tested for potential cross site scripting vulnerabilities in an
intelligent way: The context in which information flows happen are considered
which allows adapting attack payloads and leads to a reduction of the test space.
The client-side code of web applications under test is executed dynamically in a
prepared environment that monitors JavaScript execution and DOM access. It
detects and is able to verify injected context refined payloads. The scanner is able
to find vulnerabilities which are undetectable by existing tools and features a false
positive rate of zero.

1.3 Structure of the Thesis
The remaining parts of the thesis are organized as follows: In the next chapter (2) existing
approaches to detect and defend against XSS vulnerabilities are analyzed. Chapter 3
provides the technical background about XSS and presents the different classes. Chapter
4 explains the theoretical concepts and the design of the scanner and its mechanisms.
Chapter 5 describes the actual implementation of the testbed and the details about the
test cases. After that the evaluation of existing XSS detection applications and the
newly created advanced scanner is presented in chapter 6. The final chapter 7 provides a
conclusion and ideas for future work.

4



CHAPTER 2
Related Work

A lot of research has been conducted over the years in the area of Cross-Site Scripting.
The scientific work and research by interested individuals that was published on their
personal websites, blogs or other channels will be discussed in this chapter. Several
different methods to detect and prevent cross site scripting were examined. The fact
that this topic is still very actively investigated, the amount of XSS vulnerabilities found,
abused and publicly disclosed and the multitude of varying approaches shows that there
is still a lot of potential for improvement and new ideas [3]. The research in the area of
XSS can be split into a few high-level categories:

• Client side protection, mostly deployed in the browser as an add-on or an addition
to the browsers source code.

• Server side protection focusing on filtering mechanisms, input sanitization, test
generation and additional security layers.

• Automated vulnerability scanners targeting web applications, performing black-box
testing.

• Automated code analysis finding security flaws or predicting vulnerabilities (white-
box testing).

• Analysis of new XSS attack vectors, XSS types and other work of more theoretical
nature (like improving test coverage or detection algorithms).

The approach which will be presented in this thesis belongs to the third and the last
category.

5



2. Related Work

2.1 XSS Vulnerability Detection
The approaches listed in this section primarily try to identify XSS vulnerabilities in
web applications through different methods. The algorithms subsection contains mostly
theoretical concepts.

White-box approaches analyze the source code of the applications. They depend on the
availability of the code for analysis and have the disadvantage of being specific to one or
more languages. They need to understand the different programming styles and models
which they follow together with all the API differences. In return they can examine all
entry points and the actual handling of inputs and outputs.

Black-box approaches work like an external attacker which does not have any information
about the inner functionality of the web application. The program entry points have to be
identified and tested (often with numerous) payloads in order to eventually find a software
bug which can be exploited. The advantage is that actual proof of concept exploits
can be found and the application is exercised dynamically such that vulnerabilities that
might not exist in the development environment because of a different configuration
can be found. Furthermore those approaches can be executed on any web application
independently of the programming language it was written in. The weakness lies in the
discovery of data channels. Unlinked ones or dynamically generated ones might not be
found and not tested at all. Such tests are also more time consuming since many requests
are needed to exercise different XSS payloads and entry points.

2.1.1 Algorithms

An algorithm for XSS detection that analyzes the position of certain characters is
presented in [42]. 32 characters that regularly occur in malicious scripts represent the
features. Each feature has a certain value, based on their importance. The highest
valued characters are " > / < (space) = ’. For each input sequence a value can
be computed and compared with a threshold to determine if the input is classified as
containing an XSS payload or not. The detection threshold is defined beforehand by
computing values of many learning samples and choosing it with the help of a special
function. This algorithm is even able to detect obfuscated XSS payloads.

Detecting XSS bugs through model checking was proposed in [43]. They build a behavioral
model of the website by inspecting the HTML structure and deriving legitimate actions
a user can perform. This model can be built automatically by the algorithm discussed in
the paper. The model is expressed in CTL (Computation Tree Logic). After the model is
created, it can be checked, which allows finding bugs that can lead to XSS. The authors
recommend that this should be done before deploying a web application at the end of
development.

2.1.2 White-box Approaches

Hydara et al. propose a method for detecting cross-site scripting vulnerabilities already

6



2.1. XSS Vulnerability Detection

during development, before a web application is deployed. With the help of a genetic
algorithm, which operates on the control flow graph constructed of the source code,
software flaws are found. The approach was validated in a prototype implementation
which is able to automatically scan Java based web apps and report possible findings
[44]. In [45] also a genetic algorithm in combination with static analysis of the source
code of web applications, that are written in PHP, is presented. The focus of this paper
lies on optimizing existing genetic algorithms and to optimize the generation of test data.
All three types of XSS vulnerabilities could be detected with this method.

The tool saferXSS operates on Java source code and performs static analysis. Through
pattern matching it finds unvalidated input channels and tries to autonomously apply
a proper sanitization function. To achieve this, control flow graphs are created and
the contexts in which user data is used are evaluated. Then code rewriting secures
the application considering the findings [46]. In [47] a scanning program that employs
a combination of static and dynamic analysis was created. Instead of targeting the
analysis of websites it was designed to author browser extensions, focusing on XSS
vulnerabilities that are caused through DOM-based sources. In a first step they create
candidate vulnerabilities, then proof of concept exploits are generated by dynamic
symbolic execution. The program is designed to test user provided scripts for the
Greasemonkey browser extension.

A machine learning based method that operates on the source code of PHP applications
is presented in [48]. First a data flow graph is built and functions that are executed
on those data nodes are classified into different categories. With the use of a training
data set and statistical classifiers the effectiveness of those sanitization functions which
are applied on the data is calculated. This allows predicting whether they are safe
or vulnerable. Another approach by Gupta et al. is also based on machine learning.
The analysis process of PHP source code identifies IO-channels, filtering and validating
functions and combines them with information about the context in which the output
of user generated information happens. Through different machine learning algorithms
multiple prediction models are built and used to analyze the extracted features [49].

An approach that uses symbolic execution and constraint solving to discover XSS is
presented in [50]. It operates on the bytecode of Java web applications. The detection
of multiple classes of injection vulnerabilities are supported. Regarding XSS they do
not consider DOM-based vulnerability sinks which is a major drawback. The same
authors also released another paper that focuses primarily on constraint solving for XSS
detection in [51]. In [52] a concolic testing approach is explored. Java web applications
are processed and IO channels are gathered to detect any dependencies which might be
susceptible for XSS. Then the source code is transformed to another language which
is understood by concolic testing applications. At this point they can be executed in
the testing engine and the handling of XSS injection attacks is observed by monitoring
components which are injected into the code. The final values of input data can then be
checked before they are used in critical parts of the application, like the database or in
the HTML output. In their approach simple pattern checking is performed in this final

7



2. Related Work

stage for XSS detection.

In the area of taint tracking and analysis the following approaches have been developed:
Andromeda is a source code analyzer for Java, JavaScript and .NET applications. Similar
to other taint tracking solutions it builds a control flow graph out of input, output and
sanitization function triples. Vulnerabilities are found when there is no appropriate data
transformation between an input and an output [53]. Gupta et al. created a tool for
XSS detection employing a “context-sensitive approach based on static taint analysis and
pattern matching techniques” [54]. It operates on the source code of web applications
programmed in the PHP language, because it is the most used server-side language. In
its three steps the tool identifies output statements that might be vulnerable and tracks
the information flow back to its input source, while also considering the input context.
The final decision whether a vulnerability exists is made based on the existence of proper
sanitization mechanisms on the IO path. XSSDM was evaluated on a large set of PHP
source code files, where 2856 files contained at least one XSS vulnerability. Its major
limitations are the restriction to a single programming language and the inability to
handle object oriented code [54]. Similarly XProber creates a control flow graph and
performs static taint analysis in PHP scripts. Although the final detection of XSS is quite
different from other approaches. They are using a unique technique for analyzing strings
[55]. An approach for analyzing XSS vulnerabilities in mobile HTML5 based applications
is presented in [56]. It tries to statically identify all functions that interact with input
data sources and constructs a call graph from those functions and any dependents. Then
it performs taint and data flow analysis on these functions. The approach was evaluated
on a corpus of over 15000 of such apps and showed a low false positive rate.

To find missing or ineffective input sanitizer functions in the source code, “POSTER”
[57] was created. It automatically extracts all methods that are applied on external
inputs and generates test cases in which those functions are evaluated on XSS attack
vectors to determine their reliability. A very similar approach was made in [58], where
the efficiency of input filtering or sanitizing functions that are found in the source code is
tested by automatically generated test cases. This approach focuses on Java applications
and considers the context of the output. In [59] a method to automatically generate
unit tests and create a testing framework to examine the efficiency of encoding and
sanitization functions, in order to find XSS vulnerabilities. Their approach was also
developed for Java based web applications. In [60] test cases that exercise possible XSS
vulnerabilities and their corresponding paths are automatically generated based on the
PHP code. Static taint analysis is used to build a control flow graph. A genetic algorithm
followed by concrete symbolic execution create, refine and select appropriate test cases.
Similar concepts are presented in previous work by the authors in [61] and [16].

Another research tries to detect XSS flaws with a fuzzy logic system. It analyzes the code
metrics with respect to a complex rule set to find injection vulnerabilities and determine
their severity. The reference implementation is designed to analyze PHP code [62].

8



2.1. XSS Vulnerability Detection

2.1.3 Black-box Approaches

Many tools capable of detecting XSS in this area were created by companies that want
to sell their vulnerability scanners. So obviously they do not want to reveal publicly
the exact details of the inner workings, mechanisms, technologies and strategies their
tools follow to detect XSS vulnerabilities, in order to preserve their possible competitive
advantage. Many times free versions of those tools (with limited capabilities) exist.
Furthermore many open source tools exist which are also lacking documentation about
the already mentioned abstract methods and functionalities for their particular scanning
approach. More information about those scanning applications is provided in Section
6.1 on page 53. However also several XSS scanning applications are either listed and
discussed on various blogs and websites related to vulnerability scanning or discussed
in papers [36, 63–70]. Also some benchmarks about their capabilities and performance
exist [36–40, 63]. But most of those benchmarks only compare a handful of scanners or
test the web vulnerability detection capabilities in general. XSS detection performance is
most of the time not a priority and is not analyzed in depth by those benchmarks.

XSS payloads which were introduced through new HTML5 features were investigated by
Dong et al.. They created a collection of new attack vectors and used them in a tool
for testing web-mail providers. The tool is able to create mails which include malicious
XSS content inside various attributes and transform the XSS payloads with different
encodings to bypass filters. The results of those test-mails have to be verified manually.
According to the authors they found seven vulnerabilities in real world web-mail systems
[31].

In [71] Pan et al. proposed a new approach for control flow analysis of web applications
to be able to determine the existence of XSS vulnerabilities. It is based on taint analysis,
a method in which user inputs are mapped to server responses and the influences of the
input data is tracked. Their technique is programming language and source code agnostic.
They also try to correctly process websites that employ URL rewriting and HTML input
sanitization where, according to the authors, other taint tracking techniques fail.

Duchene et al. developed a XSS scanner which performs black-box testing on web sites.
It can detect reflected and stored XSS through fuzzing. A scan starts by building an
abstract control flow model of the web application and detects possible taints. After
optimizing the model through reduction algorithms, XSS payloads are generated with
a genetic algorithm constrained by a special attack grammar to mimic a human like
attacker. Previously evaluated payloads and the context in which one was tested is
considered in follow-up tests, which enables bypassing of filters. The prototype of their
scanner was evaluated on 7 different web applications and compared with a few other
open-source black-box scanners. The results show that KameleonFuzz can detect more
vulnerabilities than those it is compared with. However it is not possible to handle web
applications that heavily use JavaScript and provide a different functionality than the
static version does. Also the attack grammar has to be formulated manually and many
parameters have to be adjusted by hand, which can change the results drastically [35].

9



2. Related Work

DexterJS is specialized in detecting DOM-based XSS. It retrieves web-pages, instruments
the JavaScript code and executes them in a browser engine. Then possible unsafe data
propagation is detected and XSS payloads created, which are verified by sending them to
the original server hosting the website. The implementation works like a proxy server.
According to the paper the tools should be available on https://dexterjs.io/, but
this seems not to be the case any more because several attempts at accessing it at various
times over multiple months failed [72].
ETSSDetector [73] is another black-box scanner. The tool emulates a browser in a Java
framework. It focuses on finding all components and data channels of a web application.
So it starts by gathering all links and forms. In contrast to other tools it tries to fill forms
with valid data to uncover possible hidden data entry points. The testing of XSS payloads
is context sensitive, first a dummy is injected to determine the location of the payload
then an appropriate exploit is sent. Results are analyzed not only in direct responses
to a request but in the whole application, which allows detecting stored vulnerabilities
more efficiently. The evaluation was executed on three varying test scenarios and the
results compared with 5 other XSS scanners. ETSSDetector is limited to the web-page
structure, the authors describe that cookies are not covered and it seems like JavaScript
channels are not tested either.
Vishnu and Jevitha propose a XSS scanning technique which heavily relies on machine
learning to predict an attack. Their implementation extracts and identifies features of
web applications as training data, separated in known vulnerable or exploited websites
and secure ones. Seven different features are analyzed in URLs and five in JavaScript
code of websites. In their evaluation they test and compare the performance of various
classifiers they implemented, considering “correctly and incorrectly classified instances,
True Positive Rate (TPR), False Positive Rate (FPR), Precision and the time taken to
build the model”. Although they do not discuss the evaluated data set in detail and no
comparison with similar approaches is given [74].
In [4] the authors address the issue of XSS attacks which contain intermediate steps
and are harder to detect than simple reflected XSS vectors. Those so called multi-step
vulnerabilities are inserted in an entry point of the web application, stored and later
executed on a different point. To be able to identify such flaws the authors created a
“Pattern-driven and Model-based Vulnerability Testing (PMVT) approach”, in which
XSS test patterns combined with a behavioral model of the website generate abstract test
cases. From those the actual tests are derived later and executed in the HTMLUnit Java
framework. All XSS payloads are taken from the OWASP filter evasion cheat sheet. A
significant amount of manual work is also required, the abstract operations of the model
has to be manually implemented in the Java framework. The approach was evaluated on
two vulnerable test web apps and compared with other black-box scanners. Although a
high level of detection was reached, such test runs require a lot of time (multiple hours).
A tool especially for DOM-based XSS detection was created by Lekies et al.. They
modified a browser engine to track data flows and identify those which are dangerous
and might cause XSS vulnerabilities. Since they can exactly correlate data sources with

10

https://dexterjs.io/


2.2. XSS Execution Prevention

their corresponding sinks, context aware payloads can be created and evaluated. The
execution in a browser engine avoids false positives. The scanner was evaluated on over
500000 URLs of the Alexa Top 5000 websites and uncovered multiple vulnerabilities [75].

Improving Black-box Testing

The question of how to efficiently perform black-box fuzzing of websites regarding cross
site scripting and which important aspects have to be considered is discussed in [33].
Especially the questions “How to obtain a notion of coverage on unstructured inputs?
How to capture human testers intuitions and use it for the fuzzing? How to drive the
search in various directions?” are addressed.

A take on the theoretical and practical concepts of how black-box XSS scanners work,
how they generate their payloads and which problems they encounter while performing a
web page analysis is investigated in [34]. Existing testbeds are enhanced with new test
cases and existing scanning tools are compared. A tool called XSSPeeker was developed
to analyze their functionality. It operates on the network layer and analyzes the requests
that are made. An extensible testbed framework that was used in the tests was also
published publicly [41, 76]. The authors address the research questions of how to improve
XSS payloads and how to increase detection capabilities of black-box scanners.

Another interesting approach is shown in [77], which concentrates on optimizing and
generating XSS payloads to reduce the overall test space thus improving the speed of a
scan. In multiple stages cross site scripting attack vectors are generated, mutated and
refined continuously through machine learning with historical test data of previously
executed tests. A third party web crawler harvests input channels of interest. Those
cover HTTP headers, form data, URL parameters and the end of the URL. JavaScript
and cookies are not included. The authors Guo et al. created a prototype implementation
which was tested on several real world websites.

In [78] a model for automatically attacking web applications with XSS payloads is
presented. Manual work is required to refine the payload generation.

2.2 XSS Execution Prevention

This section covers attempts that protect the end user or the web applications from
Cross-Site Scripting. The client-side solutions reside in the browser either as part of the
browsers default protection mechanisms like Content Security Policy (CSP), as an add-on
or even as a modification of the browsers source code resulting in a modified browser
binary. Potential XSS exploits are filtered and blocked. They lack the detection of stored
XSS.

Server-side approaches introduce additional layers of security like Web Application
Firewall (WAF) or special proxies that inspect and filter or sanitize the traffic. Also
several approaches that discuss the effectiveness of various sanitization and filtering

11



2. Related Work

functions and libraries or the integration of security evaluation tools into the development
life cycle exist.

2.2.1 Client-side Approaches

Content Filtering

Today many browsers include default filtering mechanisms, which target reflected XSS.
In browsers using the WebKit rendering engine like Chrome, Chromium and Safari the
filter determines if a piece of JavaScript code that can be found in a HTTP response was
also present in the associated request. When this is the case it will take further actions
to block its execution [75, 79, 80]. In Internet Explorer already since version 8 a similar
technique is used. It is enabled by default but can be disabled by sending a simple HTTP
header X-XSS-Protection: 0 in the response. Those filtering components are just
a simple defensive layer and should not be considered as sophisticated mechanisms that
make browsing secure against all kinds of reflected XSS. They offer some advantages
for the broad masses of inexperienced users, because no extra configuration or user
interaction is required which might be confusing [81, 82]. However many ways to bypass
the default browser filters exist [83–85].

Another security mechanism which every modern browser supports is the Same-Origin-
Policy. It limits the possibilities in which resources that are retrieved from varying
locations (different hosts, ports, protocols, etc.) can access and communicate with each
other. Thus scripts loaded from untrusted sources can not offhandedly manipulate trusted
content [86, 87].

Browser add-ons like NoScript, ScriptSafe or uMatrix (and others) allow fine-grained
control over the content that is loaded in a web page. They are far more aggressively
blocking content than the previously discussed browser filters and most likely break
websites that rely on JavaScript or other dynamic elements (embedded content, multi-
media, etc.) when their default configuration is used. The detection algorithms heavily
use regular expressions. It is up to the user to allow specific elements and remote
resources [88–90]. XSS-immune is an extension for the browser Google Chrome. It
tries to defend against Cross-Site Scripting attacks by comparing scripts existing in the
request with those in the response and JavaScript injections in parameters. Another
feature is the context aware handling of XSS worms and auto-sanitization of them. The
Java based extension was tested against several open source attack payloads [91]. In
[92] three different filtering components are applied on each request and response the
browser performs. Those filters restrict loading or sending data to/from cross domain
resources, remove dynamic script creation and block inline JavaScript, pop-up windows,
cookie access in combination with cross-origin links and frame creation at runtime. The
authors claim that only malicious elements are filtered and benign code is unaffected. An
evaluation of those claims is not shown nor discussed. XSS-ME [93] is an add-on for the
Firefox browser which tries to test all forms of a website, sending them to the server and
analyzing the response. So it follows an offensive approach in its first phase, by trying to

12



2.2. XSS Execution Prevention

attack the web application. Then in a second phase, when it detects XSS vulnerabilities
that are reflected back it is able to block those scripts and warn the user.

A taint tracking browser engine is proposed in [82] to battle XSS. It tracks data flows
and provides the information to HTML and JavaScript parsers which allows assorting
XSS fragments already in the parsing stage. Code originating from tainted data sources
is not allowed to execute in the JavaScript engine which is also enhanced with taint
information. The approach was implemented as a modification of the Chromium browser.
It is especially targeting DOM-based XSS.

Content Security Policy

One of the most widespread defensive mechanisms, which has become a W3C standard,
continually evolves and is increasingly adapted by browser vendors and web application
developers is the so called Content Security Policy (CSP) [94–96]. When present on a
web page, it determines which resources can be accessed, where data can be sent to
and retrieved from and which scripts can be executed in the context of the web-page.
This allows a fine grained control of different sources and eliminates many possibilities
for malicious content injections such as XSS. Inline JavaScript is blocked by default
for example. However there is need for improvement as recent research has shown that
numerous side-channel attacks exist which can bypass security features of CSP. This is
caused partly because of ambiguous or imprecise specifications and also because of edge
cases not considered. For example CSP bypassing methods through DNS and resource
prefetching and caching [97]. Often the CSP configuration is ineffective. Weichselbaum
et al. have analyzed the CSP of about 100 billion web sites and identified “that 94.68%
of policies that attempt to limit script execution are ineffective, and that 99.34% of
hosts with CSP use policies that offer no benefit against XSS” [98]. Another study
about CSP adoption found that its use was not very widespread and that most of those
web applications that used it, had a weak configuration which did not prove efficient at
countering injection attacks [99].

To address the issue of faulty CSP configurations, AutoCSP [100] was created. It is a
tool which analyzes web applications and derives proper CSPs. It is even capable of
automatically implementing the required server side changes. The presented prototype
was created for the PHP language.

In [101] multiple weaknesses and how they could bypass a CSP are discussed. To oppose
them a policy based approach called PMHJ to increase the security of CSP and add
further preventive mechanisms is shown. It even further expands the granularity down
to single HTML elements, introduces integrity protection for them to counter structural
manipulation like node-split attacks [102] and unsafe JavaScript functionality is disabled.
Since the blocking of JavaScript that is considered unsafe is accomplished by blacklisting,
it suffers from possible missing entries. Furthermore the policy needs to be supported on
the server and on the client side. A lot of work has to be done to implement the policy,
because the HTML elements need “nonce” attributes for integrity checks and JavaScript

13



2. Related Work

code has to be adapted. This has to be done on every website. Also the browser code
needs to be changed to understand and enforce the policy.

Recent work on CSP discovered a new methodology to bypass CSP protections through
so called “script-gadgets” which are present in most websites that make use of popular
JavaScript libraries. In such attacks HTML code can be injected into a website where
it is later accessed by already existing JavaScript code that reacts to the presence of
the HTML code in the DOM. The JavaScript code transforms the piece of HTML, that
in itself is not malicious, into some executable JavaScript. In 13 out of 16 analyzed
JavaScript libraries and frameworks such script-gadgets were discovered that make this
kind of code reuse attack possible [5].

2.2.2 Server-side Approaches

Additional Security Layers

Prandl et al. studied the efficiency of different free Web Application Firewall (WAF)
[103] solutions. A WAF is a proactive defensive solution and works similar to common
firewalls which block malicious traffic. Instead of inspecting low level network traffic they
examine application level protocols in order to detect and prevent attacks targeting web
applications. The advantage of such firewalls is that no source code changes have to be
applied and multiple services can be protected at once. However this comfortable way of
protecting the application by a separate maybe even third party source is no guarantee
for perfect security. The actual vulnerabilities of the web application itself will not be
fixed and might be exploitable through different channels bypassing the WAF [104]. In
the study by Prandl et al. they also discovered that the security is highly dependent
on the quality of the WAF. Too restrictive configurations might block many benign
requests, on the other hand attacks might be missed if they are too liberal. Advanced,
new and sophisticated payloads could also sneak through. In [105] a high level analysis
of techniques for detecting and preventing XSS through log file analysis, the usage of
WAFs and filtering are discussed. In [106] algorithms for a web application firewall that
can detect XSS attacks among others are presented.

The approach of [107] deals with creating an abstract model of a website to identify and
distinguish between benign and malicious users. First the model is created by collecting
all static resources and analyzing dynamic actions a user should be able to do. When
the web app is deployed and used in the production phase, requests are validated against
the model and flagged if discrepancies are found.

Noncespaces by Gundy and Chen tries to protect the HTML content from being altered in
a malicious way by an attacker. It introduces randomization of tags and attributes which
allows identifying third party code and protects the integrity of the document structure.
As long as the randomization is not guessable by an attacker he/she will not be able to
manipulate the DOM tree in a way that allows XSS execution. Additionally it is possible
to apply policies to the untrusted content provided by users. Their implementation
is based on a PHP template framework. Sanitization becomes unnecessary with this

14



2.2. XSS Execution Prevention

approach. However for its full functionality to work there has to be a proxy application
running on the client side [108]. A similar approach that tries to protect the HTML is
presented in the paper about XSS-SAFE, a web application framework for Java/JSP
projects. It injects tokens that are based on the content into the HMTL and JavaScript
code at the server side. This works like a hash function over parts of the web page. It
enables the detection of any alterations or injections which can in turn be sanitized by
the framework [109].

In [110] a framework for PHP applications is proposed that can detect injection attacks
based on computing the divergence of the actual input with the expected input using an
algorithm based on the Kullback-Leibler distance. In a setup phase the code is analyzed
and the expected input is derived. The web applications source code is instrumented
with analysis components. At runtime the inputs can be checked and attack payloads
identified when the HTTP response would contain unexpected data (e.g. JavaScript
code).

A complete architecture for XSS safe Java web applications is proposed in [111]. A
reverse proxy in front of the actual web server, that inspects the HTTP requests and
responses for scripts, forwards the request to a sanitization component. The input is
normalized (like charset encoding, HTML structure and tags), XSS filtering (encoding
of special characters into HTML escape sequences) and comparing against whitelisting
patterns is performed. Also a special model for accessing databases is proposed. Similarly
the authors of [112] show how to utilize Snort, a popular intrusion detection system, to
detect XSS attacks outside of the actual web application. This approach relies on static
pattern matching and tries to recognize the payloads that would be injected. In [113] a
detection framework in the shape of a proxy server is proposed. A significant part of the
workload is offloaded on the client, where a request is preprocessed and might already be
dropped if certain conditions are satisfied before sending it to the proxy. In the proxy
features are extracted and analyzed which determine if an attack is in progress.

Secure Programming and Sanitization

The paper [114] encourages defensive programming techniques to harden a web application
already at development time against XSS attacks. The evaluation of their method was
conducted on two versions of a test web app, one implemented while using defensive
programming, the other one without it. This security model “blocks all the html tags,
scripts, programming language, constructs, event handlers, character codes, insecure
keywords, if present in input, but allows only those tags that are known to be safe for
performing XSS” [114]. In contrast to casual sanitization filtering Maurya applies an
additional sanitization step on the input data before passing it to the actual filtering
component of the web application in order to get a completely clean input before any
attempt at storing the information persistently is made. Two whitelists are also employed,
one for HTML elements and one for their attributes. The major problem of this solution
is the need for manual fine tuning and configuration. Unknown or unexpected attacks
might not be recognized, especially because only a list of well known XSS vectors is used

15



2. Related Work

in their evaluation. Teto et al. focus on defensive programming principles and propose
them as the best countermeasure against XSS vulnerabilities [115].

Templating frameworks are commonly used in web applications today, as they reduce
the need to repeat code and make it possible to reuse components. To reduce the risk of
missing output sanitization or applying the wrong transformation functions Samuel et al.
introduce a framework which automatically handles the filtering issues. With respect to
the context and the data types, the values which get dynamically inserted in the web
templates get secured against XSS attacks. The largest part of the approach can be
executed statically thus only a small performance overhead exists. Only Java is currently
supported on the server side [116].

Multiple sanitization and filtering libraries as well as API functions for the languages
Java, PHP and ASP.NET are tested and compared in [117]. The tests were achieved by
creating a simple web application where the relevant methods were applied, one at a time
on the input. The effectiveness regarding security and performance regarding processing
time was recorded and presented. In [118] various defensive approaches against injection
attacks in web applications are analyzed regarding their effectiveness, runtime impact
and ease of use. Besides discussing an extensive number of tools, the authors also take a
look at the practicability of using those defensive applications an libraries.

JoanAudit [119] helps developers detect possible injection attacks by analyzing security
related code fragments and reporting flaws. It can even automatically fix vulnerable
parts of the code. The bytecode of Java applications is processed and analyzed. In [120]
a method for automatically transforming web applications written in ASP.NET in order
to separate data and code (HTML and JavaScript) is presented. This is especially useful
for legacy applications because the approach works on the application binaries. This
should prevent XSS injections and make it easier to introduce CSPs. There are several
limitations imposed on the web application and the programming APIs it uses by this
approach. Furthermore only ASP.NET is supported.

16



CHAPTER 3
Background

Before we advance to the description of FOXSS and the details of its internal mechanisms
the concepts of XSS are presented. It is necessary to understand how this type of
attack on web applications works and which variants exist. Further a short explanation
of black-box vulnerability testing is provided, since FOXSS falls into this category of
vulnerability scanners.

3.1 Cross-site Scripting
Cross-Site Scripting is basically a special type of injection attack in which untrusted
input gets embedded in the HTML document of an application and then interpreted as
if it was an actual part of this document. It allows an attacker to execute JavaScript
code in the context of the browser of a victim. The injection can occur as part of an
HTTP request or locally when user input is handled by JavaScript code, processed and
included in the web page. XSS vulnerabilities allow the inclusion of markup ranging
from simple HTML tags manipulating the appearance of the page layout to JavaScript
code that can furthermore execute a multitude of malicious actions on behalf of an
attacker. The main cause why this type of attack is possible, is the absence of proper
input filtering or sanitization in web applications when data from an untrusted source is
accepted, processed inside the app and included in the output. Since the attack surface
of websites is many times huge, it is often hard to cover all possible input channels. XSS
payloads can be infiltrated through URLs, forms, cookies, HTTP headers and other data
sources that are visible to the web-server, the programming language runtime or the web
application on the client side.

A typical example would be a website that contains an input box (e.g. to search for some
items). The data of this input box is passed as parameter in the URL to a server side
script that generates the response dynamically. In the resulting response page the data
of the input box (i.e. the search term) gets included. An exploitation of this functionality

17



3. Background

is illustrated with the following URL that accepts the parameter p which carries the data
of the input box.

http://example.com/?p=<script>alert("XSS")</script>

When a value like this is provided and simply mirrored into the resulting response by a
PHP script like the following:

<html>
<head><title>test</title></head>
<body>

The parameter p was: <?php echo $_GET[’p’]; ?>
</body>
</html>

Then the script tag and its contents will be embedded and interpreted by the browser,
resulting in an “alert” message pop-up. So an attacker could craft a link that leads to this
URL and provide arbitrary JavaScript code. A user that gets tricked into following this
link will then unknowingly execute the code in the context of his or her browser with all
the privileges and access to data the website has there. While this is a trivial example that
can be easily avoided, many more sophisticated techniques exist [13, 15, 18, 77, 121–123].
In the year 2000 one of the first XSS attacks was publicly documented [75]. Since then
they have evolved a lot.

Now that we know how XSS works and that we can execute JavaScript one might ask
why do we need to worry about this? JavaScript runs in a sandboxed environment in
the browser. The interaction with everything else outside the browser is very limited.
There is no direct access to read or write files in the file system. You can not execute
or install arbitrary programs or change any settings of the browser or operating system,
without the user explicitly allowing it or taking actions by him/herself. But JavaScript
can do a lot of other things that might not seem dangerous at the first glance. It can
record keystrokes, clicks and several other user interactions. It can make HTTP requests
through many different techniques. While it cannot read from arbitrary network locations
it can send data to arbitrary URLs and IP addresses. It has access to all the data the
vulnerable website can write data to, like cookies and web storage. It can manipulate
the appearance of the web application and hide malicious actions behind benign ones.

All this leads to a multitude of serious threats to which users of a vulnerable web
application are exposed. A malicious actor can perform phishing by changing the target
of forms or duplicating the data when the submit button is clicked and also sending
them to their own server effectively stealing the data. Another possibility would be to
create new forms that appear as legitimate part of the website and grabbing additional
data that a user would never be required to share on the website this way. A keylogger
could be easily injected into the website that records everything a user writes. This

18



3.2. Cross-site Scripting Types

can be achieved through listening for DOM events that are emitted when a user presses
keys of the keyboard. Cookies of an authenticated user can be stolen. This allows the
attacker to overtake the account of a victim and perform actions on their behalf like
transferring money. Cryptographic keys that are used by a website and stored in the
browsers local storage can be read and abused to decrypt private data. The address
where a user sends a payment or sensitive information can be changed behind the scene
while the user still sees the one he/she typed. The data would thus be transferred to
some different destination without the user noticing. An attacker could create a botnet
out of a websites users making them involuntarily participants in Distributed Denial
of Service (DDoS) attacks that can take down web applications by producing excessive
loads of HTTP traffic.

3.2 Cross-site Scripting Types
There exist three distinct categories in which XSS attacks can be classified. Throughout
the literature it is generally agreed on those three. In some cases DOM-based (type-0)
XSS is considered as part of reflected XSS [18, 121, 124–126].

3.2.1 Reflected (type-1)

In a reflected XSS attack, the payload that should be executed is present in the HTTP
request and will be transfered back to the user in the response. The web application that
is running on the server is responsible for embedding the payload in the HTML response.
Usually this is done by an adversary through tricking a victim into clicking a prepared
link (like a HTML link that hides the actual URL text) that contains the exploit code.

A visualization of an example can be seen in Figure 3.1. The web application in this
example can be seen as some kind of social network where users can view pictures. The
parameter p of the URL where a picture can be viewed is vulnerable. The steps required
to perform a reflected XSS attack using a vulnerability in this example web application
are as follows:

1. The attacker identifies the XSS vulnerability in the web application that can be
abused for malicious purposes.

2. The attacker sends a poisoned link to the victim (in this example as part of an
email) and tricks him/her into clicking it.

3. The victim accesses the link containing the XSS payload and loads it in the browser.

4. The payload that was sent with the request is included in the response by the
website.

5. In the browser of the victim the exploit gets executed and the session cookie gets
stolen allowing the attacker to log into the victims account and impersonate it.

19



3. Background

VICTIM(S)ATTACKER

SERVER

XSS Payload

BROWSER

DATABASE

(2) Attacker sends link containing payload

XSS Payload

(1) Attacker finds 
vulnerability

WEB APPLICATION

(3) Victim opens malicious link

(4) Web app embeds payload 
and returns manipulated web page 

(5) XSS payload executes and 
steals secret user information

Figure 3.1: Visualization of a reflected XSS attack.

3.2.2 Persistent (type-2)

Persistent XSS, also known as stored XSS, gets permanently saved in the web application
and is always served to every user that visits a vulnerable page that includes the payload.
So no direct interaction with a victim is required. It is harder to detect than reflected
XSS, since it is not necessary that the malicious content can be found in the request.
Also the payload might appear on a completely different and unrelated page than where
the actual injection happened because it is loaded from some kind of persistent storage.

A visualization of an example can be seen in Figure 3.2 on page 21. In this example
of a persistent XSS attack, the website represents a simple message board where users
can post comments. On the page there is a HTML form to submit new messages which
will be stored in a database on the server by the web application. Furthermore the last
message is always displayed on the page. Data submitted through the form will be shown
there without any sanitization applied. To exploit this behavior the following steps can
be taken:

1. The attacker identifies the XSS vulnerability in the web application that can be
abused for malicious purposes.

2. Then the attacker injects JavaScript code via the form when posting a new message.
The website saves it in its database.

20



3.2. Cross-site Scripting Types

VICTIM(S)ATTACKER

SERVER
(2) Attacker injects 

XSS payload

BROWSER

DATABASE

(1) Attacker finds 
vulnerability

WEB APPLICATION

(3) Victim visits 
website

(4) Web app embeds payload 
and returns manipulated web page 

(5) XSS payload executes and 
steals secret user information

Database stores  
XSS payload

Figure 3.2: Visualization of a persistent XSS attack.

3. A victim later accesses the page where the last comment can be viewed. The
attacker does not have to interact with the victim at all.

4. The web-server delivers the page in the response. The malicious JavaScript payload
gets loaded from the database and inserted, afterwards it is interpreted by the
browser of the victim.

5. The payload gets executed and like in the previous example sends the victims
session cookie to an attacker controlled server.

Note that any user that visits the page and sees the message the attacker posted is
susceptible for the attack. The exploit will send the cookies of users to the attacker as
long as it is accessible on the website, which in this specific case can be an unlimited
amount of time as long as the attack payload does not get removed from the database
or a newer comment gets posted such that another message is shown instead of the
attacker’s.

3.2.3 DOM-based (type-0)

The third type of XSS called DOM-based XSS, named after the DOM [127], can have
some similarities with reflected and persistent XSS. Like in reflected XSS the URL is
also one of the most interesting attack points here, but instead of involving a server,

21



3. Background

type-0 attacks can appear in purely static HTML sites. Also it can be stored persistently
somewhere in the browsers data storages and later retrieved and executed from there.
The main difference between this type and the other two is that a server is not involved
in the actual vulnerability, but the client-side JavaScript code. This is the reason why it
is sometimes also called local XSS. It was also documented much later than the other
two types, first in the year 2005 [128]. In DOM-based attacks JavaScript code that
already exists in the page is utilized and serves as an entry point to either manipulate
the structure of the page through methods provided by the DOM API or perform a
conversion of the string payload to JavaScript code and run it. A script that accesses
the URL or parts thereof and mirrors this information somewhere in the page, can be
abused for XSS injection as an example. The URL is not the only input channel, several
others exist and are explained later in more detail.

VICTIM(S)ATTACKER

SERVER

XSS Payload

BROWSER

DATABASE

(2) Attacker sends link 
containing payload

XSS Payload

(1) Attacker finds 
vulnerability

WEB APPLICATION

(3) Victim opens malicious link

(4) Web app sends response 

(6) Secret information 
is stolen (5) Client side code accesses payload, 

includes and executes it.

Figure 3.3: Visualization of a DOM-based (client-side) XSS attack.

An example is visualized in Figure 3.3. This time the website consists of a single purely
static HTML document. The server does not manipulate the response in any way, it just
serves the HTML file. The functionality of this page is just a simple search box, but
instead of processing the search on the server, the client side JavaScript is responsible for
that. The DOM-based attack that can be seen works as follows:

1. The attacker identifies the XSS vulnerability in the web application that can be
abused for malicious purposes.

22



3.3. Black-box Vulnerability Testing

2. Similar to the reflected attack, the attacker sends a URL to the victim. The payload
is included as the value of an URL parameter.

3. The victim clicks the link and retrieves the web page.

4. The website returns the response, which is still clean at this point, it is just the
same static HTML file that would be served if no parameter was provided.

5. As soon as the browser interprets the response it executes the JavaScript. The
payload will get accessed by a JavaScript function, included and executed.

6. Finally the attacker can steal the sensitive information.

Since code like this, where a user can perform simple tasks on a website like a search box,
is increasingly offloaded on the client side in order to save processing power for other
tasks, this type of XSS is more prevalent than ever.

3.3 Black-box Vulnerability Testing

In black-box testing the functionality of an application is tested without regard to the
actual inner workings. Knowledge about the implementation, the programming languages
or the technology stack behind the application is not necessary. This property makes
black-box testing approaches portable which is important since web applications are
written in many different programming languages. For almost all languages a web
application framework exists, which removes the hassle of dealing with low level HTTP
requests and other common issues and makes developing for the web in a certain language
easy. So a generic black-box vulnerability testing approach once developed can be used
for practically any web application without further changes. However there are also
several challenges specific to this type of testing methodology.

The absence of the actual source code makes it necessary to explore all possible entry
points of the web application where external data is accepted and processed. Usually the
different pages and subsections can be found by following links from a starting page at the
root and recursively iterating over all newly discovered links. Problems might arise when
pages are not linked with simple HTML anchor tags but dynamically generated buttons
and links. Then the scanner needs to interpret the HTML and JavaScript in order to
get to the correct links. Also handling authentication protected areas and avoiding state
changes in the web application need to be considered. When the scanner triggers an
irreversible state change and locks down the web application it might have a disastrous
impact on the vulnerability analysis phase. For example if the program deletes several
data records that open special areas in the web application where a vulnerability resides
it might not be accessible later on and makes it impossible to discover the vulnerability.

Another challenge is the generation of test data or better the actual attack payloads. The
more different payloads are generated the more time is consumed to test them against the

23



3. Background

test subject and determine if they reveal a vulnerability. The detection rate also depends
on sophisticated payloads. It is important to minimize the amount of test data and
different test cases while having enough payloads to exercise all functionality provided by
a web application and maximize the discovery of exploitable flaws. The questions of how
to mutate and adapt payloads when filtering mechanisms are applied, how to deal with
sanitizer functions and if they can be evaded need to be thought of.

Furthermore a black-box vulnerability scanner needs an oracle to determine whether a
payload was actually successful and found a vulnerability or if the test case failed and
the web application handled the input data correctly or at least in a way that does not
open the door for an attacker. This can be as simple as performing a string search in the
HTTP response, but it can also be much harder, especially in the case of XSS testing.
For example when trying to identify DOM-based XSS there is no response to inspect.
A JavaScript interpreter is necessary to track down through which functions the data
gets propagated and where it ends up. For a static scanner it makes no difference if the
data gets escaped and securely stored or passed to a function that parses it as if it was
JavaScript code. It will be blind and can impossibly detect the vulnerability other than
taking a lucky guess. When searching for vulnerabilities that get persisted in the web
application the author(s) of a vulnerability scanner also needs to consider how to map
the payload that triggered the vulnerability to the actual payload that was sent to the
entry point. This might be on a completely different location and might be transformed
on the way to the exit point where it appears on the surface again.

24



CHAPTER 4
FOXSS

In this thesis we present FOXSS (short for “Finding Only XSS”), a prototype imple-
mentation to automatically detect XSS vulnerabilities in Web applications. It is written
in JavaScript, uses the electron1 framework as its runtime and consists of more than
7000 lines of program code. The system can detect all types of XSS vulnerabilities
in web applications automatically and requires only minimal configuration. This is
achieved without the need of a human analyst to manually provide information about
which parameters or entry points to use. All potential vulnerabilities are verified by the
system and, if found valid, at least one proof of concept exploit will be provided which is
guaranteed to execute and being able to trigger arbitrary JavaScript code. This approach
ensures zero false positives and easy confirmation of the results for a human analyst.
Furthermore, the payload template generated by FOXSS can be used to build custom
XSS payloads to further verify and expose the impact of the found vulnerability.

On the technical side, the majority of requests during analysis of a web application
are made through a browser engine. This enhances the process to reliably detect the
necessary contextual information. It must be ensured that the payload data, which
consists of HTML and JavaScript is interpreted in exactly the same way as it would be in
a regular browser. Environments that emulate a browser are not enough for this purpose.
They often lack features and do not provide the same level of support for the HTML
and JavaScript standards as an up to date regular browser. This might void certain
DOM elements or JavaScript features that can be abused for XSS attacks. Analysis
results might become imprecise and miss crucial aspects that are required for the exploit
generation algorithm. Also the verification might not be the same, thus leading to either
false positives or and increase of false negative results. However, in some cases the raw
textual HTTP communication is important. Especially when filters and encodings in
the response data need to be detected. JavaScript APIs for accessing the DOM only

1https://electronjs.org/

25

https://electronjs.org/


4. FOXSS

have access to the data that was already interpreted by the browser engine. But the raw
data might have been changed after it was processed by the browser. Furthermore, the
delimiters of attributes of HTML elements can only be detected by statically analyzing
the raw textual response.

The electron framework provides the perfect basis for our needs. It combines Node.js2
with the Chrome browser and builds a comfortable API over those two components. So
we can use a modern browser engine which allows us to hook and manipulate JavaScript
at a lower level than the one that is available to the tested web application while not
needing to manipulate it at the source code level of the browser engine. This keeps our
changes portable between updates of the browser engine and also allows us to make
changes adaptable at a fine grained level. Some JavaScript modifications are just relevant
for certain requests, the processing of a group of pages or only in a specific stage of the
analysis. We can also use regular HTTP requests provided by Node.js. The ability
to process a web application like it was run in a real browser also opens the possibility
to simulate user interactions and better analyze applications that heavily use dynamic
content. For data extraction the DOM APIs can be used, which provide simple methods
for the search and access of specific attributes as well as the gathering of contextual
information. Custom parsing code that might be error prone can be avoided in many
cases.

To accomplish the previously made claims there are basically three steps involved in the
analysis process of a web application:

i First it is necessary to identify all or as many data flows as possible. Without
knowing where user controlled data can enter the application or failing to find
the corresponding exit sink makes it impossible to further test these potentially
vulnerable contexts. Also data validation and filtering mechanisms that might be in-
between an entry and an exit point are important. Finding and correctly analyzing
their behavior provides vital information which can be used later in refining the
payloads to test. The more fine-grained information that can be gathered in this
first step, the more precise attacks can be created which avoids unnecessary tests
and as a result spares time and processing power later on.

ii After the data flows are located the next step is to create a set of payloads that
could be executed according to the contextual constraints like the surroundings
of the exit point and filtering techniques. Since most of the time there is a large
degree of unknown parameters, multiple different payloads and variations thereof
are generated.

iii In the third step the payloads are encoded according to the information that was
gathered about the entry point and tested until the execution of one is triggered.
At this point testing of the data flow can be stopped, since a valid exploit was

2https://nodejs.org/en/

26

https://nodejs.org/en/


4.1. Data Flow Analysis

found. Otherwise the number of untested payloads will exhaust after some time
which will categorize the data flow as safe.

4.1 Data Flow Analysis

The identification of data flows is the first and most important part in the whole process
from requesting a URL to finding an exploitable vulnerability. A data flow in the system
consists of a single entry point and one or more exit points. An entry point contains all
information to make a certain HTTP-request as well as instructions to perform optional
user actions on the web-page like clicking a button or similar. All fields of the entry
point that can be used as data entry sources are stored individually and easily accessible.
An exit point contains a reference to a specific field of the associated entry point that is
relevant for reproducing the injection of data at a certain location by using the entry point
information and replacing this field with a payload. Furthermore all relevant context
sensitive information about the final data sink is stored. If the sink is in a HTML context
the hierarchy of parent elements, other attributes of a HTML element and attribute
delimiters are saved. In a JavaScript context the surrounding code and function calls
are saved. Possible filtered characters are also analyzed, added and saved in a separate
scan stage. Also included is the actual URL since the exit point might be located on a
different page than the entry point was, because of redirects or persistent storage of the
input data that was passed to the entry point.

4.1.1 Entry Point Detection

Detecting entry points combines the obvious approach of extracting the targets of link
elements with more advanced ones. Naturally a user navigates the web application
through links that can be most commonly found in HTML anchor tags. But there are
several other possibilities to discover areas of the web application. Basically all href
attributes and others which might reveal structural information like src and data
attributes of elements are extracted. Also the targets of forms are resolved with respect
to the host of the web application, normalized into the internal URL format and added.
For all requests non-standard HTTP headers that might appear are recorded. This
data could also be extracted in a static environment, just dissecting the raw HTTP
requests. However many more entry sources are gathered dynamically by instrumenting
the JavaScript that is exposed by the browser engine. So URLs and other data relevant
for entry points which might be assembled at runtime can be gathered. Functions that
can perform HTTP requests or retrieve data somehow need to be monitored. Those
include the XMLHttpRequest, Websocket and fetch objects. Access to unsafe data
sources like document.cookie and document.referrer that can be accessed by
JavaScript but are dependent on HTTP headers are observed. Mechanisms to share
data between different origins like setting window.name and the postMessage API
need to be observed. Since those dynamic and potentially also the static features might
be hidden behind some user interaction and generated dynamically, after the page load

27



4. FOXSS

click-, submit- and drop events are artificially crafted and dispatched in order to reveal
them.

The full list of entry points and data sources that are interesting for XSS and get tested
in FOXSS are listed in Table 4.1.

4.1.2 Exit Point Detection

All URLs that were gathered in the previous phase are split into their parts creating a
large number of possible entry sources. Every path element, query parameter (name as
well as value), hash, header, cookie and found DOM-entry point is separately tested. For
each of those entry fields a unique identifier is generated, their original value is replaced
and a modified request is sent. The exit point detection component will then examine
the response for those identifiers.

Like the entry point analysis, the exit point analysis consists of static and dynamic
analysis components. Static analysis uses XPath selectors to detect exit point identifiers
located in element name, element content, HTML comment, attribute name and attribute
value contexts. The dynamic analysis component hooks interesting JavaScript functions
and objects. When one of them is called at runtime they are automatically detected
and the calls inspected whether they contain our identifiers or not. These functions
include the script generating contexts eval, setTimeout, setInterval and various
aliases of the Function-constructor call, all of which can create JavaScript code at
runtime. DOM-generating function calls like those to document.write, document.
writeln, Element.prototype.innerHTML, Element.prototype.outerHTML,
Element.prototype.insertAdjacentHTML and createContextualFragment
of the Range.prototype object. Also various versions of document.createElement
in combination with setting a specific attribute are intercepted. Location changing
contexts resulting through the manipulation of the location-object together with
its functions and properties and the window.open function are dangerous sinks and
are monitored. HTTP request methods in JavaScript provided by XMLHttpRequest,
Websocket and fetch get observed for request contexts. Additionally all DOM-insertion
methods are proxied and checked if dynamically generated elements which have some
properties that contain the exit point marker are passed to them. Otherwise they would
be missed since they are not detected by the static analysis.

In Table 4.2 all relevant exit contexts and their specific sinks are listed. A description of
why they are interesting and what they can do can be found next to them.

4.1.3 Filter Detection

Filter analysis requires the raw HTML response in textual form. The HTML response
interpreted by the browser might be cleaned of erroneous elements and invalid characters,
but to detect filter transformations in particular of special characters that resemble
control sequences, the output of the web applications needs to be original. That is why

28



4.1. Data Flow Analysis

Data source Description

URL sources

path fragment URL paths are split up on slashes. For each of those parts/fragments a
test is generated. Example: /a/b/c would lead to 3 tests.

query parameter name The name part of a query parameter is tested separately. Example: For
?q=a a test for q will be created.

query parameter value Example: For ?q=a a test for a will be created.
hash The hash part of an URL. It is often used in SPAs and is an important

source for DOM-based XSS. Sometimes it is used for navigation and a
path like structure is appended there.

auth* URLs might have an auth part consisting of a user:password. This is
currently not tested.

HTTP sources

Header There are many different HTTP headers that could carry exploit data.
In this approach some commonly used standard as well as non-standard
headers are tested: Cookie, Date, Forwarded, From, Referrer,
User-Agent, Via, X-Requested-With, X-Forwarded-For,
X-Forwarded-Host, X-Request-ID, X-Csrf-Token.

Body HTTP requests that can carry data in the body, like POST, can also
carry attack vectors there. Depending on the encoding type name-value
pairs are tested or just a single test for the body is created.

DOM sources

document.cookie Cookies are exposed in the client side. Name and value will be tested.
document.referrer Also the HTTP referrer if available is exposed.
window.name This property can be used (although not intended for this use) to

exchange data across different frames. As such it can be manipulated
from the outside without restrictions and has to be considered always
as dangerous when data is read from this property.

postMessage API This API was designed to communicate between different frames and
windows. The programmer needs to ensure only data from valid origins
are accepted, failing to do so makes this a dangerous source because
anyone can send data.

location** Access to the full URL.
location.href** Access to the full URL.
location.hash** Access to the URL hash.
location.search** Access to the URL search part containing the query.
location.pathname** Access to the URL path.
document.documentURI** Access to the full URL.
document.URL** Access to the full URL.
document.baseURI** Access to the full URL.
localStorage*** Data storage that can only serve as an indirect source because

something needs to be stored before retrieving it.
sessionStorage*** Data storage that can only serve as an indirect source because

something needs to be stored before retrieving it.
IndexedDB*** Data storage that can only serve as an indirect source because

something needs to be stored before retrieving it.
history.pushState*** Indirectly manipulates the location object.
history.replaceState*** Indirectly manipulates the location object.

* Currently not used in the approach.
** Not separately tested and/or observed, since they are already covered by the tests for URL sources.
*** Not a direct source, needs another source to be useful. Not currently used.

Table 4.1: Possible entry points and data sources.

29



4. FOXSS

only HTTP requests are used instead of performing the requests of this analysis stage in
the browser engine.

Since the actual data flows are already known at this stage, only those need to be
tested instead of all possible entry points. Payloads consisting of identifiers and special
characters get injected into the input channels and the resulting string that arrives at
the exit point is analyzed. If the original string can be found it is likely that no filters
are active. On the other hand when some characters are missing or replaced with others
this information about those characters is saved.

The most important characters are angle brackets < > for HTML tags, quotes " ’ for
attributes and parenthesis and the backtick character ( ) ‘ for JavaScript function calls.
Several more interesting characters or strings can be tested like data: and base64;
for data-URLs. Depending on the actual exit context of the respective data flow the
importance of these might vary. In a HTML attribute context angle brackets and quotes
are important, because the availability of them determines if a breakout of the context is
possible which increases the number of potential XSS payload candidates. In a JavaScript
context the availability of parenthesis and backtick character are important because
either the former or the latter are necessary to perform a function call. Also the other
characters are interesting in this context since a breakout might be the only option for
execution, depending on the surroundings.

A few problems need to be considered. Testing all special characters at once would be
the fastest way since the number of requests is at the minimum. Depending on the filter,
testing multiple characters at once might lead to some interference. For example a filter
might strip the whole input if one of the characters is blacklisted. Testing one character
or string at a time would avoid this, but also increase the scan time the more special
strings are tested. It might be even faster not restricting the payloads at all by the
filter information. There might also be filtering mechanisms that only remove certain
characters in combination with other characters, like a filter that removes angle brackets
when a HTML-element is detected but not otherwise. In general the filter functions
cannot be reconstructed at all times. This is why the first approach, which has the least
performance impact is used.

4.2 Payload Generation

All data that was gathered up to now will influence the payload creation and selection.
Each exit context has its own set of attack vectors which are then reduced according
to the available filtering information. If possible alternative representations that avoid
restricted characters are generated. The availability of a breakout from the current
context to a different context is also considered.

The attack vectors were composed from various sources [32, 129–132]. All of them meet the
requirement that they will automatically and directly execute a specific piece of JavaScript
code when they are injected successfully into the web-page. No additional action is

30



4.2. Payload Generation

required. Furthermore they should run in all modern browsers (without guarantee) and
at least in Chrome/Chromium (hard requirement). No browser specific vectors or vectors
for outdated browsers are used.

All the vectors that can be seen in Table 4.3 represent base attack vectors. They can be
obfuscated or changed to a certain degree through the following techniques:

JavaScript: For JavaScript code multiple different encoding techniques can be used.
Discussing them all would be out of scope so only a few aspects will be covered
here, details can be found in [29, 30, 133, 134]. Since it is possible to generate code
from strings at runtime through various functions, it is easy to change the actual
characters that are used in the payloads. Strings can be encoded as numbers or as
sequences of special characters like in [135]. Required functions can be accessed
through alternate indexes or keys in the object and prototype chains without
specifying their actual name.

HTML: HTML parsers ignore some characters in specific locations of HTML elements
and have a certain degree of fault tolerance. This allows the introduction of
additional (useless) characters or leave some out, to break up the structure. In the
formal specification the space characters are defined as (in ascii hex representation)
\x09 \x0A \x0C \x0D \x20 3. From first to last these are the tab character
(ascii hex: 0x09), the line feed (0x0A), the form feed (0x0C), the carriage return
(0x0D) and the space (0x20). Considering the following HTML tag structure and
its different sections, several possibilities for obfuscation exist:

<(a)tagname(b)(c)attributename(d)=(e)(f)attributevalue(f)(g)>

(a) Between the tag opener meta character (<) and the tagname: Only more <
characters are allowed.

(b) Between the tagname and the first attribute: The space characters \x09
\x0A \x0C \x0D \x20 and the slash (/). All of them are valid separators
of the tagname and the first attribute. A valid example would be <tag////
attr=x>.

(c) Between attributes: The space characters \x09 \x0A \x0C \x0D \x20. A
slash before the attribute name is also allowed, but only in combination with
at least one of the space characters, not as a standalone separator.

(d) Before the attribute name-value separator (=): The space characters \x09
\x0A \x0C \x0D \x20.

(e) After the attribute name-value separator (=): The space characters \x09
\x0A \x0C \x0D \x20.

(f) Before and after the attribute value delimiter: The space characters \x09
\x0A \x0C \x0D \x20.

3https://www.w3.org/TR/html51/infrastructure.html#space-characters

31

https://www.w3.org/TR/html51/infrastructure.html#space-characters


4. FOXSS

(g) Before the tag closing meta character (>): The space characters \x09 \x0A
\x0C \x0D \x20 and the slash (/).

There are additionally differences between browsers. Those can be found here4.

URL protocol: Also the protocol schema can be obfuscated. Assuming the following
URL and its sections:

(a)java(b)script(c):alert(1)

The following characters are allowed in the respective section:

(a) At the beginning or before the protocol: \x09 \x0A \x0D \x20 The tab,
newline, carriage return and space character.

(b) Between any characters of the protocol: \x09 \x0A \x0D The tab, newline
and carriage return character.

(c) Before the colon: \x09 \x0A \x0D The tab, newline and carriage return
character.

Again there are differences between browsers and even between different versions
of the same browser 5.

data URLs: Data URLs help avoiding character restrictions because they allow base64
encoding which can be used to convert textual data containing special characters
into mostly alphanumeric data. The format of data URLs is like this:

data:[<MIME-Type>][;charset=<Charset>][;base64],<Data>

For most of our use cases specifying the mime-type is not necessary. Using data
URLs in contexts that import HTML will automatically treat the data as HTML
even without the correct text/html mime-type. Also the charset is negligible. So
most of the time the data URL can be reduced to a format that only contains the
following special characters : ; , + / = when encoded in base64.

4.3 Exploit Verification
After creating the payloads for every data flow they are tested in a sandbox. The actual
requests are derived from the data flow and the payload. In the sandbox the requests are
executed and the responding content interpreted by the browser engine. The JavaScript
functionality of the browser engine in the sandbox is extended by a special non-standard
function which is exposed in the global JavaScript context of the sandbox. This top
level function can be called standalone like other global functions. It accepts a single

4https://html5sec.org/#100
5https://html5sec.org/#101

32

https://html5sec.org/#100
https://html5sec.org/#101


4.4. Scanner Structure

parameter, the id of the payload that was responsible to trigger it. Internally this id is
transferred back to FOXSS where it can be processed. So if an XSS payload is successful
it will trigger exactly this function. In this way it can be guaranteed that a potential
vulnerability can in fact be exploited. The custom function can be replaced by pretty
much any JavaScript code for real world exploits. When the payload can not be verified
through a function invocation it will not be counted as XSS vulnerability, so no false
positive results will be generated.

So why was exactly this mechanism for verifying the vulnerabilities and payloads chosen?
This approach has the advantage that a vulnerability verified through it has the following
guaranteed properties:

i The payload can execute a JavaScript function. This automatically means we can
almost always choose any arbitrary code as a replacement because of the runtime
code generation abilities available in JavaScript. To show that the vulnerability
exists a human analyst can for example then just create a pop-up window or make
a HTTP request in order to present the successful XSS attack.

ii Another property is that it will not conflict with any existing code or overwrite
existing variables. The name can be assigned arbitrarily. If we would have chosen to
hook or replace an already existing function we would always have some interference
when the code of the web application also uses the same function. So additional
filtering would be required in order to know if the function call originates from the
payload or the web application.

iii The impact on the execution of the web application in the browser is minimal
and the characters required in the payload can be kept small. If we would have
decided to verify the exploit by issuing a HTTP request we would need to expose
additional server side functionality to handle these requests. The time a HTTP
request takes is many times higher than an internal function call. Also the code for
the payload would be much bigger and would require more special characters that
can be avoided otherwise. HTTP requests might also not be possible in every case
or might be blocked.

4.4 Scanner Structure

Figure 4.1 shows a diagram of the generalized interacting components. In the user
interface one can provide a URL as a starting point, together with one of three crawl
options. The first one limits crawling only to the provided URL itself. The second one
does the same but to a single depth level so that only the provided URL and all of the
URLs found on it are analyzed. The last one provides a full recursive crawl. The domain
of the specified URL will be set as the base host. All further URLs that are found will
be checked if they belong to the same base host. If this is not the case they will not get
analyzed. Furthermore the current processing steps of a scan can be monitored in the UI.

33



4. FOXSS

BACKEND

ENTRYPOINT ANALYSER

DATAFLOW
ANALYSER

XSS ANALYSER

scan config

Aggregated Information

Testcase
Verified 
Exploit 

HTTP Request 
HTTP Response

Aggregated Information

Testcases

RelayServer

Sandbox Instrumented 
browser engine Entrypoints

EXITPOINT ANALYSERscan config

Sandbox Instrumented 
browser engine 

FILTER ANALYSERscan config

Sandbox Instrumented 
browser engine 

Exit- 
points

Context 
data 

Filter data 

PAYLOAD GENERATOR

Dataflow XSS Payload

Testcases

Filter data Context data 

XSS DETECTOR

Sandbox Instrumented 
browser engine 

ELECTRON FRAMEWORK

FRONTEND

Settings

Initiate Scan Logs ResultsScan Schedule

Figure 4.1: High level view of the scanner architecture.

34



4.4. Scanner Structure

Multiple scans can be scheduled and will be executed one after another. A log section
records low level internal data. When data flows and later XSS vulnerabilities are found,
they and their associated details can be viewed in separate categories.

In the backend the scan configuration will be passed to the data flow analyzer where
internal data structures for further analysis components are created. Scan requests are
then passed to sandboxes where they are processed and loaded as if it was a regular
browser. Each sandbox loads its own analysis component and JavaScript context which
might have been instrumented according to rules of the analysis component it contains.
The data flow analyzer will begin executing the initial information provided by a user.
The entry point analyzer will then possibly gather more URLs that are recursively
analyzed for further entry points. Afterwards the exit point analyzer will probe all entry
points succeeded by the filter analyzer that will test the detected data flows for filtering
mechanisms. After all information from the entry point analyzer, exit point analyzer and
filter analyzer has been aggregated and optimized the detected data flows are available
for further processing. data flows will be also listed in the UI for examination. In the
current prototype the XSS analyzer will access this data and will create XSS attack
payloads for each data flow. The payload generator will utilize all the data flow details
and provide as many payloads that might be successful as possible. In a separate sandbox
the attacks will be executed and verified. A local HTTP server exposes an endpoint that
serves payloads which can only be included remotely through URLs. So eventually the
sandbox will request data from this server. Finally detected vulnerabilities together with
their proof of concept exploits are reported in the UI.

35



4. FOXSS

Data sink Description

HTML sinks

Element name The name of a HTML tag: <SINK attr="">
Element content The content of a HTML tag: <tag>SINK</tag>
Comment Inside a HTML comment: <!- SINK ->
Attribute name Name of an attribute of an element: <tag SINK="">
Attribute value Value of an attribute of an element: <tag attr="SINK">

DOM script generation

eval Runtime code generation of the input. eval(SINK)
setTimeout Runtime code generation of the input. setTimeout(SINK,

123)
setInterval Runtime code generation of the input. setInterval(SINK,

123)
new Function Runtime code generation of the input. new Function(arg,

SINK)

DOM HTML generation

document.write Interprets the string as DOM elements and inserts them into
the DOM.

document.writeln Same as above.
Element.prototype.innerHTML = Interpretation of the argument as DOM nodes and insertion as

element content.
Element.prototype.outerHTML = Interpretation of the argument as DOM nodes and insertion

surrounding content of the element.
Element.prototype.insertAdjacentHTML Interpretation of the argument as DOM nodes and insertion at

a specific place relative to the element.
Range.prototype.createContextualFragment Creation of DOM from a string. Needs to be inserted separately.
document.createElement(’script’).src = Code generation and execution of the argument.
document.createElement(’script’).textContent
=

Code generation and execution of the argument.

document.createElement(’script’).innerText
=

Code generation and execution of the argument.

document.createElement(’script’).text = Code generation and execution of the argument.
document.createElement(’link’).href = Import HTML or execute script from URL argument.
document.createElement(’iframe’).src = Import HTML or execute script from URL argument.
document.createElement(’iframe’).srcdoc = Create HTML content.
document.createElement(’object’).data = Import HTML or execute script from URL argument.
document.createElement(’embed’).src = Import HTML or execute script from URL argument.

DOM location changers

location = Changes location to a specific URL. Can be used to execute
attack vectors through data or javascript protocol or change
to attacker controlled site.

location.href = Same as above.
location.assign Same as above.
location.replace Same as above.
window.open Same as above, but opens a new window instead of changing

current.

JavaScript request

XMLHttpRequest.prototype.open Retrieve attacker controlled content or exfiltrate data.
XMLHttpRequest.prototype.send Same as above.
window.fetch Same as above.

DOM node insertion

Node.prototype.appendChild Indirect sink. Dangerous when the node/element itself or
certain attributes or content of the inserted Node can be
controlled.

Node.prototype.insertBefore Same as above.
Node.prototype.replaceChild Same as above.
Element.prototype.insertAdjacentElement Same as above.
Element.prototype.append Same as above.
Element.prototype.prepend Same as above.
Element.prototype.before Same as above.
Element.prototype.after Same as above.
Element.prototype.replaceWith Same as above.

Table 4.2: Possible exit contexts and data sinks.

36



4.4. Scanner Structure

Vector Description
PAYLOAD A raw JavaScript payload.
javascript:PAYLOAD A raw JavaScript payload with the javascript protocol. This can

be used in contexts where a URL is required.
<script>PAYLOAD</script> A HTML script element.
<img src onerror=PAYLOAD> Using the onerror-handler on elements that try to retrieve

content from a specific location. The location (src or href
attribute) is not set or set to some invalid value (x) which will
generate an error and call the code specified in the onerror
attribute.

<video src onerror=PAYLOAD> Variation of previous.
<video><source onerror=PAYLOAD> Variation of previous.
<audio src onerror=PAYLOAD> Variation of previous.
<audio><source onerror=PAYLOAD> Variation of previous.
<script src onerror=PAYLOAD></script> Variation of previous.
<input type=image src onerror=PAYLOAD> Variation of previous.
<link rel=stylesheet href=x onerror=PAYLOAD> Variation of previous.
<link rel=prefetch href=x onerror=PAYLOAD> Variation of previous.
<link rel=preload href=x onerror=PAYLOAD> Variation of previous.
<iframe onload=PAYLOAD> Uses the onload event handler to execute the code of this

attributes’ value. The code is immediately executed as soon as
the element is loaded.

<svg onload=PAYLOAD> Variation of previous.
<style onload=PAYLOAD> Variation of previous.
<input autofocus onfocus=PAYLOAD> The onfocus handler in combination with the autofocus

attribute will directly execute the payload. This is available on
some form elements.

<select autofocus onfocus=PAYLOAD> Variation of previous.
<textarea autofocus onfocus=PAYLOAD> Variation of previous.
<button autofocus onfocus=PAYLOAD> Variation of previous.
<video src onloadstart=PAYLOAD> Specific for audio and video elements there exists an onloadstart

attribute which will execute code. A source or src attribute is
necessary for this handler otherwise it will not get the loadstart
event.

<video onloadstart=PAYLOAD><source> Variation of previous.
<audio src onloadstart=PAYLOAD> Variation of previous.
<audio onloadstart=PAYLOAD><source> Variation of previous.
<iframe src=PAYLOAD> Loads and embeds the HTML or JavaScript content from a

URL provided to src. Can use JavaScript URLs.
<link rel=import href=PAYLOAD> Can use URLs to import HTML or JavaScript and execute it.
<object data=PAYLOAD></object> Variation of previous.
<embed src=PAYLOAD></embed> Variation of previous.
<script src=PAYLOAD></script> Variation of previous.
<iframe srcdoc=PAYLOAD> The payload here is an inline HTML fragment or in otherwords

another attack vector of this list. Special characters can be
encoded as HTML entities.

<svg><script>PAYLOAD</script></svg> A script inside an svg element supports special characters
encoded as HTML entities. Directly executes the JavaScript
payload.

<details open ontoggle=PAYLOAD> The combination of open and ontoggle on the details element
automatically executes the payload.

<body onload=PAYLOAD> Onload on the body tag.
<body onpageshow=PAYLOAD> The onpageshow eventhandler of the body tag works similar to

onload and automatically executes the payload.
<body onscroll=PAYLOAD><h1><br>[...] If the content of the body is long enough to overflow the window

size, the onscroll handler can be used to directly execute code.
Here h1 (to increase the line height) and br elements are used.

HOST+"/s/PAYLOAD/" Represents an external URL that loads a piece of JavaScript
code.

HOST+"/h/PAYLOAD/" Represents an external URL that loads a complete HTML page.
HOST+"/f/PAYLOAD/" Represents an external URL that loads a HTML fragment.

Table 4.3: XSS attack vectors used in FOXSS. The keyword PAYLOAD will be replaced
by JavaScript code. 37





CHAPTER 5
Testing Environment

Creating a testing environment with numerous test cases for automated XSS vulnerability
scanners was another main part of this thesis. To properly compare and evaluate scanners,
a large number of different test cases that cover all possible input channels, exit contexts
and also provide filtering mechanisms on the input data are required. To ensure that as
many different types and aspects of XSS vulnerabilities as possible are covered in the
test cases, I started with examining already existing testbeds that contain tests with
XSS flaws. Most of the publicly available testbeds for web application vulnerabilities
focus on providing few test cases for a broad range of vulnerability classes rather than
focusing on diverse and specialized test cases for each class. Since the test amount and
quality is often very low an evaluation of scanners in these testbeds would not yield
good comparative results. Another problem with existing testbeds is their layout. Those
that are designed to model real world web applications contain unnecessary barriers.
User accounts, login zones and restricted areas need a lot more additional logic just
to correctly crawl through the site structure. Overcoming the structural complexity
of a web application is not a primary research focus of this thesis. It would require
additional configuration and logic in the scanner to handle such applications in order to not
terminate a test session prematurely for example because a “logout”-function is triggered
accidentally. Furthermore some scanners do not even have such configuration options,
including FOXSS. A suitable testbed should also have a separation of vulnerabilities by
type such that it is possible to specifically test a certain category or a small amount of
vulnerabilities at a time, which makes identifying problems in the scanner implementation
easier. To sum it up an optimal testing environment should have the following properties:

• A maximum number of different test cases for all three categories of XSS organized
in a tree like structure of the web application.

• Requires no complicated scanner setup like associating session cookies or login
routines and areas that depend on session information.

39



5. Testing Environment

• Each test case can be identified by its own URL. Additional pages like indirect
placements of the XSS payloads should be only reachable through the subtree of a
test case.

• A single URL should not contain more than one variant of a bug that can be
exploited, in order to make the result assessment easier.

• No additional unnecessary styling, image or multimedia content that is not required
for the execution of a test case. This would just increase the amount of data
transfered each request and slow down the scanning process.

Three publicly accessible testbeds were chosen for a more detailed examination, since
they stated in their description that they featured XSS test cases. Those were WebGoat
[136], DVWA [137] and Google Firing Range [41, 76]. All were packaged as a docker
image for portability. The four testbeds are discussed below.

WebGoat WebGoat version 7.1 is not dedicated to XSS vulnerabilities only but also
showcases many other flaws that can be present in web apps. It is designed to act more
as a learning tool and teach the concepts of the included vulnerabilities rather than to
be evaluated by an automated scanner. Hints and solutions for each vulnerability as well
as detailed descriptions are provided. In order to access the test cases of WebGoat a
login has to be performed. The test cases contain: Three simple stored XSS attacks,
two reflected and a few DOM-based tests. There are no interesting escaping or filtering
mechanisms. There are simply not enough test cases that would justify running WebGoat
as a separate testbed, so this testbed was dropped.

DVWA DVWA version 1.9 also features various web application vulnerabilities. Re-
garding XSS, all 3 types are supported with four different filtering mechanism examples
each. Two of those are no-filter and secure-filter (security levels low and impossible
respectively). Furthermore two filters exist that depending on the XSS category either
remove ‘<script‘ tags, use case sensitive filters that can be bypassed by mixed case
HTML tags, or are simply not applied to all input fields. The filter level that is applied
is controlled by a cookie. So in an automated test one would need to change the cookie
value whenever a different filter should be applied and to be able to test all those 12
test cases. Since this functionality is tedious for automated testing, it is much easier to
recreate those few test cases.

Firing Range Version 0.47 which is the latest version published on Github was used.
Firing Range was designed for automated analysis and contains a huge amount of different
XSS vulnerabilities spreading over various data-sources and -sinks. The test cases are
structured into different categories and each test case has a unique URL. Not all categories
are relevant, for example “Flash Injection” is out of scope for our scanner comparison
since it would require generating flash files and testing them which none of the scanners
supports. Furthermore some individual tests that cannot be exploited in a meaningful

40



5.1. Structure

way, or only work in a specific browser because they exploit some non-standard features
are available. Test cases of the reflected and the DOM-based XSS categories are included,
however none of the stored type can be found.

After manually investigating the testbeds and their relevant vulnerabilities, I came to
the conclusion that the quality as well as the quantity of XSS based test cases in all but
Firing Range was very poor. In fact Firing Range was the only testbed that focused
mainly on XSS and some related vulnerabilities and was actually designed for automated
testing as described in [34].

This lead to the creation of a custom testbed which I called XSS Playground. This testbed
was specifically engineered for the evaluation of automated tools and XSS vulnerability
testing. It contains a large number of test cases ranging from basic vulnerabilities, over
various filtering techniques to exotic test cases that can only be exploited with special
context aware payloads. It is basically separated into three categories representing the
three types of XSS. Each test case has a unique URL, one entry point and one exit point
where the payload, depending on the filtering mechanism is placed either unmodified or
transformed. Some test cases cannot be exploited due to secure filters and serve as a
measurement for false positives that might be generated by scanners. The number of
test cases that serve this purpose is rather low in contrast to the exploitable ones.

5.1 Structure

A high level view of the implementation of XSS Playground can be seen in Figure 5.1 on
page 42. It is a web application written in JavaScript for Node.js. In its 3000+ lines of
code it provides all kinds of combinations of input filters, entry and exit contexts. The
main part (WebApp) loads the configuration (some of which can be configured at runtime)
at startup and registers routers for the XSS categories. Each router is responsible to
handle the HTTP requests targeting one of its test cases. They handle retrieving the
payload from the accepted source, getting the HTML template, applying the respective
filter on the input and embedding it in the template before the HTTP response is sent to
the client. Contexts for DOM-based XSS are handled slightly different in the DOMRouter
that is why it is not using the ContextHandler in the diagram. The StoredRouter saves
the inputs in memory. When the application is restarted all stored data records will be
cleared.

The final complete test environment consists of selected test cases of Firing Range and
XSS Playground, since not all are relevant or fall in the scope. This is described in detail
in Section 5.2 on page 43. The technology stack of the complete test environment can
be seen in Figure 5.2 on page 43. As a base Docker containers are used to provide an
isolated environment. The operating system running in each container is Alpine Linux1,
a very small and minimalistic Linux distribution. The base runtime and programming
language for Firing Range is Java. Specifically version 8 is used in the container. XSS

1https://alpinelinux.org/

41

https://alpinelinux.org/


5. Testing Environment

Figure 5.1: High level view of the XSS Playground implementation.

Playground uses NodeJS version 8.2.1. Firing Range uses the Google Appengine2 as a
framework and provider of a web server. Internally an embedded Jetty web-server comes
into operation. In the XSS Playground the Express3 framework is used under the hood
to provide better HTTP request handling.

The overall test case and website structure for Firing Range and XSS Playground is
visualized in Figure 5.3 and Figure 5.4 respectively.

Firing Range has a very flat structure. From the main index page each category of test
cases can be reached, from which the actual individual test cases are linked. The unused
categories are grayed out and dashed.

In XSS Playground everything is split up into the 3 main XSS categories in a first level.
From there on various categories that indicate the origin of the entry source can be
found. Regarding DOM-based XSS the links to the individual test cases can be accessed
after the group was selected. Reflected and Stored XSS categories have an additional

2https://cloud.google.com/appengine/docs/
3http://expressjs.com/

42

https://cloud.google.com/appengine/docs/
http://expressjs.com/


5.2. Test Cases

Container

Docker

Container

Application

Language

OS

SDK/Framework

Alpine Linux

Java 8

Appengine SDK 1.9.54 (embedded Jetty)

Firing Range v0.47

Alpine Linux

Node JS 8.2.1

Express 4.15.3

XSS Playground

Figure 5.2: Composition of technologies used in the test environment.

Angular-based
XSSes

Bad JavaScript
imports

CORS related
vulnerabilities Flash Injection Reverse

ClickJacking
Vulnerable

librariesMixed content

index

Address
DOM XSS DOM XSS Escaped XSS Redirect XSS Reflected XSS Remote

inclusion XSS Tag based XSS URL-based
DOM XSS

29 Tests 41 Tests 45 Tests 3 Tests 48 Tests 5 Tests 13 Tests 26 Tests

Figure 5.3: Firing range test case structure.

subcategory (view). The “all view” leads to a list of all test cases for a particular entry
point. The “filter view” restricts the test cases to a specific filter. The “context view”
provides all test cases for a certain exit context.

5.2 Test Cases

Since the exploitability of a XSS vulnerability always depends on the underlying browser
that interprets the content of a web application, it is necessary to define how a test case is
determined to be exploitable or not. Furthermore some XSS vulnerability might only be
present in certain versions of a browser and might already be secured in current versions.
As an example XSS attacks that were made available through features of a Cascading
Style Sheet (CSS) are not possible any more in modern browsers [138].

Looking at the market share of browsers one can see that Google Chrome absolutely
dominates the space. Two different sources show that nearly sixty percent of all website
visits in November 2017 combining desktop and mobile browsers are made with Chrome:

43



5. Testing Environment

index

DOM-based XSS

Reflected XSS

Stored XSS

unsafe
codegeneration

unsafe
domgeneration

unsafe
locationchange

codegeneration  
with garbage  
interference 

user triggered restricted input

cross window
communication

vulnerable
URL path

vulnerable
request parameter

vulnerable
request headers

reflected
POST bodies

filter view

context view

all view

filter view

context view

252 Tests 252 Tests

40 Tests

150 Tests

50 Tests

5 Tests

10 Tests

81 Tests

2 Tests

all view

filter view

context view

252 Tests

all view all view

filter view

context view

252 Tests

all view

filter view

context view

252 Tests

simple

Figure 5.4: XSS Playground test case structure.

59.49% [139] and 59.2%[140] to be precise. All tests were manually verified with Chrome
version 63, whether they could be exploited or not. If a test case was not exploitable, it
is marked as such in the evaluation table and the reason why it cannot be is discussed in
the following subsections for both testbeds. Furthermore some test cases are out of scope
for the evaluation. Those consist of vulnerabilities that are specific to certain JavaScript
libraries or when guessing has to be made by a scanner.

All eligible tools were tested against the test cases which are described in the following
sections. The number of test cases for each testbed can be found in Figure 5.5.

5.2.1 Firing Range

In general the tests provided by Firing Range often only combine one entry point with a
particular exit point, not exercising different combinations of the entry point and other

44



5.2. Test Cases

Figure 5.5: Number of test cases and category per testbed.

exit contexts and vice versa. It provides a total of 210 test cases for the evaluation.

The test cases (in total 41) of the following categories are not part of the evaluation
because of being out of scope:

Angular-based XSSes 20 tests. Vulnerabilities are library specific.

Bad JavaScript imports 3 tests. Requires the detection of resources that are loaded from
unsafe origins, that might be attacker controlled.

CORS related vulnerabilities 3 tests. No actual XSS vulnerability test cases.

Flash Injection 2 tests. JSONP in combination with Flash.

Mixed content 1 test. Not an XSS specific vulnerability or test case.

Reverse ClickJacking 11 tests. Mostly JSONP callback specific.

Vulnerable libraries 1 test. Vulnerabilities are library specific.

The categories and test cases that are included for the evaluation and possible restrictions
thereof are:

Address DOM XSS Number of test cases: 29.

The test cases of this category belong to the DOM-based type and extract a possible
payload from the URL. This is done through JavaScript which accesses the location
object or one of its alternatives like document.URL or document.documentURI. The

45



5. Testing Environment

payload data is then passed to JavaScript functions that either try to execute it, insert it
into the DOM or set it as a new URL.

The following are marked as not exploitable:

• /address/locationpathname/documentwrite It uses the path as payload
but does not allow user controlled parts of the path. Attempting so will result in a
server error. This seems like a bug in the testbed.

• /address/URLUnencoded/documentwrite The test relies on a non-standard
property document.URLUnencoded that can only be found in older versions of
Internet Explorer.

DOM XSS Number of test cases: 41.

As the name suggests this category contains several different DOM-based vulnerabilities.
The sources contain document.cookie, document.referrer, window.name, the
postMessage API and event related tests. Payloads are either executed directly as
JavaScript code or written into the DOM. Several tests utilizing the LocalStorage and
SessionStorage APIs exist. However all of them try to read a predefined value (“badValue”)
from the web storage and use it as the payload. Since there is no way of setting this
particular value provided by the test cases, without guessing the predefined key and
manipulating the localStorage from outside, those tests are considered safe and thus
marked as not exploitable:

• /dom/toxicdom/localStorage/array/eval
• /dom/toxicdom/localStorage/function/eval
• /dom/toxicdom/localStorage/function/innerHtml
• /dom/toxicdom/localStorage/function/documentWrite
• /dom/toxicdom/localStorage/property/documentWrite
• /dom/toxicdom/external/localStorage/array/eval
• /dom/toxicdom/external/localStorage/function/eval
• /dom/toxicdom/external/localStorage/function/innerHtml
• /dom/toxicdom/external/localStorage/function/documentWrite
• /dom/toxicdom/external/localStorage/property/documentWrite
• /dom/toxicdom/sessionStorage/array/eval
• /dom/toxicdom/sessionStorage/function/eval
• /dom/toxicdom/sessionStorage/function/innerHtml
• /dom/toxicdom/sessionStorage/function/documentWrite
• /dom/toxicdom/sessionStorage/property/documentWrite
• /dom/toxicdom/external/sessionStorage/array/eval
• /dom/toxicdom/external/sessionStorage/function/eval
• /dom/toxicdom/external/sessionStorage/function/innerHtml
• /dom/toxicdom/external/sessionStorage/function/documentWrite
• /dom/toxicdom/external/sessionStorage/property/documentWrite

Escaped XSS Number of test cases: 45.

These tests are of reflected type. The value of a query parameter “q” is used as the
source of the payload. On the server, one of two filtering mechanisms is applied which
either encodes HTML entities or applies URL-encoding on the input. The data is then

46

/address/locationpathname/documentwrite
/address/URLUnencoded/documentwrite
/dom/toxicdom/localStorage/array/eval
/dom/toxicdom/localStorage/function/eval
/dom/toxicdom/localStorage/function/innerHtml
/dom/toxicdom/localStorage/function/documentWrite
/dom/toxicdom/localStorage/property/documentWrite
/dom/toxicdom/external/localStorage/array/eval
/dom/toxicdom/external/localStorage/function/eval
/dom/toxicdom/external/localStorage/function/innerHtml
/dom/toxicdom/external/localStorage/function/documentWrite
/dom/toxicdom/external/localStorage/property/documentWrite
/dom/toxicdom/sessionStorage/array/eval
/dom/toxicdom/sessionStorage/function/eval
/dom/toxicdom/sessionStorage/function/innerHtml
/dom/toxicdom/sessionStorage/function/documentWrite
/dom/toxicdom/sessionStorage/property/documentWrite
/dom/toxicdom/external/sessionStorage/array/eval
/dom/toxicdom/external/sessionStorage/function/eval
/dom/toxicdom/external/sessionStorage/function/innerHtml
/dom/toxicdom/external/sessionStorage/function/documentWrite
/dom/toxicdom/external/sessionStorage/property/documentWrite


5.2. Test Cases

reflected into various contexts: into the DOM, CSS sections, JavaScript or URL contexts.
Many of the tests are secure, because of the escaping of meta characters. Especially the
URL encoding makes the tests safe in most cases:

• /escape/serverside/escapeHtml/body?q=a
• /escape/serverside/encodeUrl/body?q=a
• /escape/serverside/escapeHtml/head?q=a
• /escape/serverside/encodeUrl/head?q=a
• /escape/serverside/escapeHtml/body_comment?q=a
• /escape/serverside/encodeUrl/body_comment?q=a
• /escape/serverside/escapeHtml/textarea?q=a
• /escape/serverside/encodeUrl/textarea?q=a
• /escape/serverside/encodeUrl/tagname?q=a
• /escape/serverside/escapeHtml/attribute_unquoted?q=a
• /escape/serverside/encodeUrl/attribute_unquoted?q=a
• /escape/serverside/escapeHtml/attribute_singlequoted?q=a
• /escape/serverside/encodeUrl/attribute_singlequoted?q=a
• /escape/serverside/escapeHtml/attribute_quoted?q=a
• /escape/serverside/encodeUrl/attribute_quoted?q=a
• /escape/serverside/escapeHtml/attribute_name?q=a
• /escape/serverside/encodeUrl/attribute_name?q=a
• /escape/serverside/escapeHtml/css_style?q=a
• /escape/serverside/encodeUrl/css_style?q=a
• /escape/serverside/escapeHtml/css_style_value?q=a&escape=HTML_ESCAPE
• /escape/serverside/encodeUrl/css_style_value?q=a
• /escape/serverside/escapeHtml/css_style_font_value?q=a
• /escape/serverside/encodeUrl/css_style_font_value?q=a
• /escape/serverside/encodeUrl/js_assignment?q=a
• /escape/serverside/encodeUrl/js_eval?q=a
• /escape/serverside/encodeUrl/js_quoted_string?q=a
• /escape/serverside/encodeUrl/js_singlequoted_string?q=a
• /escape/serverside/encodeUrl/js_slashquoted_string?q=a
• /escape/serverside/encodeUrl/js_comment?q=a
• /escape/serverside/escapeHtml/attribute_script?q=a
• /escape/serverside/encodeUrl/attribute_script?q=a
• /escape/serverside/escapeHtml/href?q=a testbed bugged
• /escape/serverside/encodeUrl/href?q=a testbed bugged
• /escape/serverside/escapeHtml/css_import?q=a
• /escape/serverside/encodeUrl/css_import?q=a
• /escape/js/escape?q=a

Redirect XSS Number of test cases: 3.

These reflected XSS test cases will perform a redirect to the URL that is provided in the
query parameter value. The first two will perform a server side redirect through HTTP
status codes, the third will do this through a meta tag. Test number two does not accept
URLs using the javascript:-protocol.

Reflected XSS Number of test cases: 48.

This is the main category for reflected XSS. The payload is extracted from the query
parameter. Many different HTML contexts are featured where the payload gets embedded.
Also a few tests with filtering mechanisms exist that enforce case sensitivity or only
allow a certain type of quotes. There are a few browser specific test cases and one where
guessing plays a major role, which are excluded:

47

/escape/serverside/escapeHtml/body?q=a
/escape/serverside/encodeUrl/body?q=a
/escape/serverside/escapeHtml/head?q=a
/escape/serverside/encodeUrl/head?q=a
/escape/serverside/escapeHtml/body_comment?q=a
/escape/serverside/encodeUrl/body_comment?q=a
/escape/serverside/escapeHtml/textarea?q=a
/escape/serverside/encodeUrl/textarea?q=a
/escape/serverside/encodeUrl/tagname?q=a
/escape/serverside/escapeHtml/attribute_unquoted?q=a
/escape/serverside/encodeUrl/attribute_unquoted?q=a
/escape/serverside/escapeHtml/attribute_singlequoted?q=a
/escape/serverside/encodeUrl/attribute_singlequoted?q=a
/escape/serverside/escapeHtml/attribute_quoted?q=a
/escape/serverside/encodeUrl/attribute_quoted?q=a
/escape/serverside/escapeHtml/attribute_name?q=a
/escape/serverside/encodeUrl/attribute_name?q=a
/escape/serverside/escapeHtml/css_style?q=a
/escape/serverside/encodeUrl/css_style?q=a
/escape/serverside/escapeHtml/css_style_value?q=a&escape=HTML_ESCAPE
/escape/serverside/encodeUrl/css_style_value?q=a
/escape/serverside/escapeHtml/css_style_font_value?q=a
/escape/serverside/encodeUrl/css_style_font_value?q=a
/escape/serverside/encodeUrl/js_assignment?q=a
/escape/serverside/encodeUrl/js_eval?q=a
/escape/serverside/encodeUrl/js_quoted_string?q=a
/escape/serverside/encodeUrl/js_singlequoted_string?q=a
/escape/serverside/encodeUrl/js_slashquoted_string?q=a
/escape/serverside/encodeUrl/js_comment?q=a
/escape/serverside/escapeHtml/attribute_script?q=a
/escape/serverside/encodeUrl/attribute_script?q=a
/escape/serverside/escapeHtml/href?q=a
/escape/serverside/encodeUrl/href?q=a
/escape/serverside/escapeHtml/css_import?q=a
/escape/serverside/encodeUrl/css_import?q=a
/escape/js/escape?q=a


5. Testing Environment

• /reflected/parameter/json?q=a
• /reflected/contentsniffing/json?q=a
• /reflected/contentsniffing/plaintext?q=a
• /reflected/jsoncallback

Remote inclusion XSS Number of test cases: 5.

These reflected tests embed the payload in the src attribute of script and data
attribute of object elements. Only URL-like payloads will get through.

Tag based XSS Number of test cases: 13.

In this category of reflected vulnerabilities the payload is filtered such that only certain
HTML tags as well as specific tag-attribute combinations are allowed.

URL-based DOM XSS Number of test cases: 26.

This category of DOM-based XSS tests focus on URL payloads. Those are extracted
from location.hash or location.search. Then they are injected to attributes of
DOM elements that retrieve the resource or need additional user interaction to trigger
the payload.

5.2.2 XSS Playground

This testbed is structured and separated into three different high level categories following
the three types of XSS. Those three are then again divided into subcategories that depict
the variant of the vulnerability. It provides a total of 1598 test cases.

DOM-based XSS

This category contains all DOM-based XSS test cases. Common DOM-sources for the first
four subcategories are: location, location.href, location.hash, location.
search, location.pathname, document.documentURI, document.URL, document.
baseURI, document.cookie, document.referrer.

unsafe codegeneration Number of test cases: 40.
This group is all about creating and executing the payload as if it was valid
JavaScript code. The four functions for code generation eval, setTimeout,
setInterval and the function constructor (new Function) are combined with
all sources. Strings that are passed to these functions will be interpreted by the
JavaScript engine and executed.

unsafe domgeneration Number of test cases: 150.
The focus of this group is inserting the payload into the DOM. The payload is
interpreted as HTML and converted to the corresponding DOM-nodes. 15 variants
of how this can be achieved are permuted with the common DOM-sources.

48

/reflected/parameter/json?q=a
/reflected/contentsniffing/json?q=a
/reflected/contentsniffing/plaintext?q=a
/reflected/jsoncallback


5.2. Test Cases

unsafe locationchange Number of test cases: 50.
Contains different methods that change the current URL of the browser window as
well as opening a new window with the payload data as new target.

codegeneration with garbage interference Number of test cases: 5.
This subcategory is similar to unsafe codegeneration since those tests try to interpret
the payload as JavaScript code. The difference is that not all sources are used and
that additional code is added to the raw payload. This might lead to syntax errors
when it is evaluated, so the payload needs to adapt to the added “garbage” and try
to either include it or somehow avoid its interference.

user triggered Number of test cases: 10.
These tests will not automatically execute the payload, but require additional user
interaction like clicking on a link or submitting a form.

restricted input Number of test cases: 81.
Here test cases for multiple client side filters together with a mixture of DOM-
generating, code generating and location changing sinks are provided. Four of them
are not exploitable because of too restrictive filters:

• /xss/dom/restrictedInput/source/location.hash/method/document.write/filter/stripUnsafeHTML/
#insertPayload

• /xss/dom/restrictedInput/source/location.hash/method/createElementIframe/filter/
stripUnsafeHTML/#insertPayload

• /xss/dom/restrictedInput/source/location.hash/method/document.write/filter/stripLtGt/
#insertPayload

• /xss/dom/restrictedInput/source/location.hash/method/createElementIframe/filter/
stripLtGt/#insertPayload

cross window communication Number of test cases: 2.
These tests handle mechanisms that allow cross-window and cross-frame commu-
nication and data exchange, even with different origins, which can be potentially
dangerous. More precisely the postMessage API and setting window.name are
exercised in the test cases.

Reflected XSS

There are four different subcategories for the reflected type. Each one stands for where
the payload will be taken from or in other words where the entry point is. If the payload
should be provided somewhere in the URL it is indicated by the placeholder token
“insertPayload”.

vulnerable URL path Number of test cases: 252.
The payload is taken from the last section of the path of the URL.

vulnerable request parameter Number of test cases: 252.
The payload should be provided as the value of the query parameter.

49

/xss/dom/restrictedInput/source/location.hash/method/document.write/filter/stripUnsafeHTML/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/document.write/filter/stripUnsafeHTML/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/createElementIframe/filter/stripUnsafeHTML/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/createElementIframe/filter/stripUnsafeHTML/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/document.write/filter/stripLtGt/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/document.write/filter/stripLtGt/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/createElementIframe/filter/stripLtGt/#insertPayload
/xss/dom/restrictedInput/source/location.hash/method/createElementIframe/filter/stripLtGt/#insertPayload


5. Testing Environment

vulnerable request headers Number of test cases: 252.
A special HTTP header, indicated by the test case URL, is required which will
then be embedded in the page on the server-side in the response.

reflected POST bodies Number of test cases: 252.
In this case a HTML form with a single input field can be found in the HTML of
the page which needs to be submitted. The payload of the input field will then be
reflected after the POST request was made.

For each of these categories 28 contextually different exit points are combined with each
of 9 filters. These contexts are as follows:

eventhandler The payload will be inserted into the onload attribute of a body tag.
The value is surrounded by double quotes.

eventhandlerUserTriggered Similar to the previous context, the payload will be
inserted into a double quoted attribute of a body tag. Instead of onload, the
onclick attribute is used. To execute the payload a user interaction is required
or it needs to break out of the context.

htmlComment The payload will be located inside a HTML comment which means it is
surrounded by <!-- and -->. Escaping from this context is absolutely necessary.

htmlElementContent Standard HTML context in the HTML body without restric-
tions. Can be any element.

htmlElementNeedsBreakout The payload will be placed inside a style element in
the body. This element needs to be closed in order to use an executable payload.

script The payload is embedded as the content of an inline script tag in the body.
scriptAssignment Similar to the previous one, but the payload data is additionally

assigned to a JavaScript variable. So the form is of var v = PAYLOAD;.
scriptAssignmentString Variation of scriptAssignment. The payload is surrounded

by double quotes and thus treated as a string (var v = "PAYLOAD";).
scriptAssignmentTemplatestring Another variant of the previous context. Instead

of double quotes backticks are used to enclose the string.
scriptCdata The payload will be used inside a CDATA section of an inline script

element.
scriptComment This variation of the script context puts the payload inside a JavaScript

line comment. Format: // PAYLOAD.
scriptCommentMultiline This is the same as scriptComment but a multi-line JavaScript

comment is used instead. Simply ending the line will not work here. Format:
/* PAYLOAD */.

scriptFunctionCall The payload will be placed as argument of a JavaScript function call
in an inline script element of the body. Format: somefunction(PAYLOAD);.

scriptRegex Here the payload is embedded in a regex that is assigned to a variable.
Format: var v = /PAYLOAD/g;.

specialFormAction A button that is part of a form element and has a formaction
attribute which will receive the payload data. This is interesting for URL payloads.
It needs user interaction to trigger.

50



5.2. Test Cases

specialHrefMath Usage of the math environment. The payload will be set as the
value of the href attribute of a math element.

specialHrefMath2 Here the payload will be set as the value of the xlink:href
attribute of maction element inside a math environment.

specialLinkImport The payload will be the value of the href attribute of a HTML
import (<link rel=import>).

specialMetaRedirect The payload will be embedded as the URL part of a meta-tag
redirect.

specialObjectData The data attribute of a object tag will be set to the payload
data.

specialSrcDocIframe The payload will be the value of the srcdoc attribute of an
iframe.

specialSrcEmbed The payload will be the value of the src attribute of an embed tag.
specialSrcImg The payload will be the value of the src attribute of an img tag.
tagAttributeName Here the name of an attribute of a p tag will be set to the payload

data. The attribute name is followed by ="value" and is the only attribute of
this element.

tagAttributeValueDoubleQuoted The payload gets inserted as the value of a a
style attribute of a p tag. The attribute value delimiters are double quotes.

tagAttributeValueSingleQuoted Same as the previous one, but single quotes are
used instead of double quotes.

tagAttributeValueUnQuoted Again similar like the previous one, but no quotes are
used around the attribute value.

tagName The payload is inserted as the name of a tag with text content. It is surrounded
by angle brackets and occurs twice in the page, once as open and once as closing
tag.

The available filters that can be paired with the test cases are:

none just returns the payload itself and does nothing.
stripWhitespace strips all kinds of whitespace characters, like applying the regex group

\s.
stripQuotes removes double and single quotes. This prevents breaking out from at-

tribute delimiters. The application of this filter makes some contexts secure against
exploitation. Those are: specialSrcImg, tagAttributeValueDoubleQuoted, tagAt-
tributeValueSingleQuoted.

stripLtGt removes angular brackets (<>). Injecting new HTML elements is not possi-
ble anymore. This makes the following contexts not exploitable: htmlComment,
htmlElementContent, htmlElementNeedsBreakout, specialSrcImg, tagAttributeName,
tagAttributeValueDoubleQuoted, tagAttributeValueSingleQuoted, tagAttributeValue-
UnQuoted.

stripUnsafe strips characters that might be dangerous in a HTML context (&"’<>).
Makes most contexts secure against standard XSS injections however not against
context aware ones. By applying this filter these contexts are secure and cannot

51



5. Testing Environment

be exploited: htmlComment, htmlElementContent, htmlElementNeedsBreakout,
scriptAssignmentString, specialSrcDocIframe, specialSrcImg, tagAttributeName,
tagAttributeValueDoubleQuoted, tagAttributeValueSingleQuoted, tagAttributeValue-
UnQuoted.

escapeEventHandler replaces all event handler attributes, i.e. all strings that start
with on*. This will break many payloads.

escapeCommonTag escapes several (but not all) HTML tags that can be used for auto-
executing payloads: script img iframe svg link body audio video.

escapeUnsafeAttrib escapes some attributes that are very likely to be dangerous
when they can be injected into the DOM: src data href srcdoc onload
onerror.

escapeProtocolVectors replaces the protocol of URLs starting with data: or javascript:.

Stored XSS

Number of test cases: 252. Only a simple standard group is included which just provides
a HTML form with an input field and a submit button, that will perform a POST request
once submitted. The payload will get stored and can be retrieved on a different URL
that is linked from the page of the form. The same filter and exit context combinations
that are available for reflected XSS can also be found here. The difference is that the
payloads are stored until they are either overwritten by a different payload or until the
testbed is restarted. Also the exit point of the payload contains one level of indirection.
The triggering of the XSS payload is not located on the same page.

52



CHAPTER 6
Evaluation

The performance of the prototype of FOXSS as well as the already existing individual XSS
analysis tools were evaluated and compared in the specially tailored testing environment.
It was hosted on a remote server located in Germany. Since several scanners incorporate
a large number of HTTP requests in their analysis strategy a very low network latency
significantly lowers the time required for analyzing the different test cases. If they
supported multi-threaded execution they could profit of not having to share the CPU
with the test environment. Furthermore in an initial assessment of the scanners it was
discovered that a handful of tools could not perform scans of loopback addresses. Some
of them stated that, others just behaved strange and did not produce proper results when
a web application running on the localhost was analyzed. Using a remote server solved
that issue. On the other hand there are tools that are limited to the local network only
when the demo version is used like Milescan ParosPro. For those the test environment
was hosted on the localhost.

The local machine contained an Intel Core i7-3630QM CPU @ 2.40GHz and 8GB of RAM.
The remote machine an Intel Core i7-3770 CPU @ 3.40GHz and 16GB of RAM and was
using Ubuntu 64bit 16.04 as operating system. The test environment was running inside
Docker [141] containers, the Docker version used was 17.09.1-ce. All scanners were
executed on a Windows 10 64bit version 1709 operating system. The only exception was
w3af which discouraged the usage of Windows on their website, so Ubuntu 64bit 16.04
was used for it.

6.1 XSS Vulnerability Scanners

Numerous XSS scanners that are publicly available at least to a certain degree were
investigated. Publicly available means they can be found through search engines, security
related websites and blogs (like [36, 63–68]), scientific papers [35, 69, 70, 73] or source

53



6. Evaluation

code hosting websites like Github1 or Bitbucket2. A lot of time was spent to discover all
relevant tools. A total of 67 third party scanners were examined this way.

While many tools that claim to be able to detect XSS can be “found”, a deeper inspection
in this evaluation revealed that many have very poor detection capabilities and show
little robustness when evaluating a web application. A few acceptance criteria had to
be met by each scanner in order to be considered for a deeper evaluation in the testing
environment and to ensure the comparability of the results:

Free: The tool must be obtainable for free, at least for a limited time period, to perform
the evaluation.

No major limitations: The program version that is used must not have any major
limitations like not being able to perform scans of custom domains, IP addresses
or network ports. Also there must not be any restriction on the number of scans
that can be made. This is especially important for programs where a commercial
and a free version exists. The free versions of those are often limited in its analysis
capabilities.

Original: It must be obtainable through official sources provided or accepted by the
original author. If there exist only mirrors or third party sources, that are not
actively developing or improving the scanner it will not be considered.

Not outdated: Only applications that are still maintained. More specifically, it was
last updated not further back than in 2013. In other words it was maintained
in the last five years. This is necessary because of the rapid changes in the web
application landscape and the ongoing additions to the HTML and JavaScript
standards. A scanner that is not aware of modern web features will not be able to
detect vulnerabilities that depend on those.

Automated: It must support automatic scanning of web applications, such that no
additional user interaction is required. Possible input channels and parameters must
be identified by the program itself. Ideally providing a URL for a XSS scan should
be enough. No manual browsing on web pages (passive scanning) or explicitly
specifying which parts of the URL, headers, etc. should be necessary.

For each scanner first the documented information was considered and checked against
the acceptance criteria in order to sieve out the tools that lack important features. Then
in an initial assessment the tool configuration was discovered. After that the settings were
tested in an analysis run against the testbed. When problems appeared in the evaluation
process or result generation, like program crashes, premature termination of the scan
process or completely wrong results the configuration was refined and tested again until
a correct analysis could be ensured. If it was not possible to get analysis results or to

1https://github.com/
2https://bitbucket.org/

54

https://github.com/
https://bitbucket.org/


6.1. XSS Vulnerability Scanners

run the tool at all it was discarded in this second stage. Finally the scanner was run
against all test cases of the test environment twice and the results were aggregated and
are presented in section 6.2.

6.1.1 Evaluated Scanners

Open Source

Supported OS Detecting XSS Types

Name (Version) W L M DOM-
based

Reflected Stored Auto-
mated

Crawling

PoC
Payload

GUI CLI

IronWASP (0.9.8.6) x x x x

Vega (1.0) x x x x x x

Zed Attack Proxy
(2.7.0 2017-11-28)

x x x x x x x x

Arachni (v1.5.1-0.5.12) x x x x x x x x x

Wapiti (2.3.0) x x x x x x x

XSSer (1.7-1) x x x x x x

w3af (git e269868) x x x x x x

Nikto (2.1.6) x x x x x x

DSXS (git 7fd87d0) x x x (x) x x

Free / Demo

Syhunt Community
Edition (6.0 RC1
(10.10.2017))

x x x x x

Tinfoil x x x

MileSCAN ParosPro
(1.9.12)

x x x x

Table 6.1: XSS analysis tools that were successfully evaluated in the test environment.
The “Supported OS” column describes the operating system that is supported. W stands
for Windows, L for Linux and M for MacOS. Tinfoil has no OS because it is provided as
SaaS. “Detecting XSS Types” is based on the actual results in the test environment, not
on what the tools claim.

In Table 6.1 we can see an overview of all 12 scanners that satisfied the criteria and
could be successfully tested. The table is divided into open source tools and free or
demo-version tools that are proprietary but can be used without major limitations for
at least a limited time period. The tool name and the specific version that was used
can be seen in the first column, followed by the operating system the tool can run on
and is not actively discouraged in its documentation. The next three columns show
which types of XSS were detected in the test runs against the testbed. The following
four columns show some meta information: Whether the tool can automatically crawl
and discover sub-pages of a full web application when just a single URL is provided. If
the tool creates and/or uses proof-of-concept payloads that can be reproduced by a user
to verify a vulnerability. The last two indicate if the scanner provides a graphical user
interface and/or a command line interface.

Some general remarks about the free versions of commercial scanners: The commercial

55



6. Evaluation

tools are all either Windows executables or provided as a SaaS solution. For those that
are provided as download, all but MileSCAN ParosPro require you to provide some
personal information and an email address. After those are provided and run through
some validation either the download link is emailed or you are directly redirected on the
website itself.

6.1.2 Excluded and Failed Scanners

The table 6.2 shows all 55 scanners that were examined and either failed the criteria or
raised some problems during their execution in the evaluation. The first three columns
show the name, the date they were checked the last time and a URL to their website.
After that comes the reason why they were rejected or could not be evaluated. The
problems that were encountered while trying to execute the analysis with the tool are
described.

Table 6.2: XSS analysis tools that did not meet the acceptance criteria or failed during
execution of the vulnerability detection.

Name Last
Checked

URL Reason

Skipfish 11.12.2017 https://github.com/
spinkham/skipfish

Not original, only a mirror exists, outdated
2012.

ProxyStrike 11.12.2017 http://www.edge-security.
com/proxystrike.php

Not original / down, outdated 2009.

Grabber 11.12.2017 https:
//github.com/neuroo/grabber

Author discourages usage, recommends w3af.

XSSS 11.12.2017 https://www.sven.de/xsss/ Outdated 2005.

Andiparos 11.12.2017 http://code.google.com/p/
andiparos/

Not original / down, outdated 2010.

WSTool 11.12.2017 https://sourceforge.net/
projects/wstool/

Outdated 2007, not automated.

Oedipus 11.12.2017 http://rubyforge.org/
projects/oedipus

Not original / down, outdated 2006.

Paros Proxy 11.12.2017 https://sourceforge.net/
projects/paros/

Outdated 2006.

PowerFuzzer 11.12.2017 http://www.powerfuzzer.com/ Outdated 2009.

XSSploit 11.12.2017 http://www.scrt.ch/en/
attack/downloads/xssploit

Outdated 2008.

Gamja 11.12.2017 https://sourceforge.net/
projects/gamja/

Outaded 2006.

ScreamingCSS 11.12.2017 http://www.devitry.com/
screamingCSS.html

Outdated 2002.

crawlfish 11.12.2017 https://code.google.com/
archive/p/crawlfish/

Not original / down, Outdated 2007.

Grendel Scan 11.12.2017 https://sourceforge.net/
projects/grendel/

No download available, only libraries. It was
moved to github, but there is no
documentation.

56

https://github.com/spinkham/skipfish
https://github.com/spinkham/skipfish
http://www.edge-security.com/proxystrike.php
http://www.edge-security.com/proxystrike.php
https://github.com/neuroo/grabber
https://github.com/neuroo/grabber
https://www.sven.de/xsss/
http://code.google.com/p/andiparos/
http://code.google.com/p/andiparos/
https://sourceforge.net/projects/wstool/
https://sourceforge.net/projects/wstool/
http://rubyforge.org/projects/oedipus
http://rubyforge.org/projects/oedipus
https://sourceforge.net/projects/paros/
https://sourceforge.net/projects/paros/
http://www.powerfuzzer.com/
http://www.scrt.ch/en/attack/downloads/xssploit
http://www.scrt.ch/en/attack/downloads/xssploit
https://sourceforge.net/projects/gamja/
https://sourceforge.net/projects/gamja/
http://www.devitry.com/screamingCSS.html
http://www.devitry.com/screamingCSS.html
https://code.google.com/archive/p/crawlfish/
https://code.google.com/archive/p/crawlfish/
https://sourceforge.net/projects/grendel/
https://sourceforge.net/projects/grendel/


6.1. XSS Vulnerability Scanners

Name last
checked

URL Reason

jsky free
edition

11.12.2017 http://www.sectoolmarket.
com/web-application-
scanners/15.html

Not original / down, outdated 2008.

safe3wvs 11.12.2017 https://sourceforge.net/
projects/safe3wvs/

Outdated 2011, source code not available
anymore.

WebScarab 11.12.2017 https://www.owasp.org/
index.php/Category:
OWASP_WebScarab_Project

Outdated 2011, superseeded by Zed Attack
Proxy.

Uber Web
Security
Scanner

11.12.2017 http://www.sectoolmarket.
com/web-application-
scanners/17.html

Not original / down, outdated 2009.

SecuBat 11.12.2017 http://secubat.codeplex.
com/SourceControl/list/
changesets

Outdated 2010, source code not available
anymore.

iScan 11.12.2017 http://www.sectoolmarket.
com/web-application-
scanners/49.html

Not original / down, outdated 2009.

openAcunetix 11.12.2017 http://www.sectoolmarket.
com/web-application-
scanners/41.html

Not original / down, outdated 2009.

VulnDetector 11.12.2017 https://github.com/BCable/
vulndetector

Outdated 2006.

Xcobra 11.12.2017 http://www.sectoolmarket.
com/web-application-
scanners/18.html

Not original / down, outdated 2010.

Watcher 11.12.2017 http://websecuritytool.
codeplex.com/

Only passive analysis or manual testing
possible.

Zero Day Scan 11.12.2017 http://www.zerodayscan.com/ Not original / down, outdated

Trustwave App
Scanner

27.11.2017 https://www.trustwave.com/
Products/Application-
Security/App-Scanner-
Family/

Not free.

Retina Web
Security
Scanner

27.11.2017 https://www.beyondtrust.
com/products/retina-web-
security-scanning/

Not free. Powered by acunetix which is
evaluated separately.

HP
WebInspect

27.11.2017 http://www8.hp.com/us/en/
software-
solutions/webinspect-
dynamic-analysis-dast/

Not free, only scanning of their test
application in the trial version.

IBM AppScan 27.11.2017 http://www-03.ibm.com/
software/products/en/
appscan-standard

Not free.

GamaScan 27.11.2017 http://www.gamasec.com/
Gamascan.aspx

Not free.

x5s 11.12.2017 http://xss.codeplex.com/ Outdated 2010, not automated.

ratproxy 11.12.2017 https://github.com/wallin/
ratproxy

Outdated 2008.

Burp Web
Vulnerability
Scanner

27.11.2017 https://portswigger.net/
burp/scanner.html

Not free.

57

http://www.sectoolmarket.com/web-application-scanners/15.html
http://www.sectoolmarket.com/web-application-scanners/15.html
http://www.sectoolmarket.com/web-application-scanners/15.html
https://sourceforge.net/projects/safe3wvs/
https://sourceforge.net/projects/safe3wvs/
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
http://www.sectoolmarket.com/web-application-scanners/17.html
http://www.sectoolmarket.com/web-application-scanners/17.html
http://www.sectoolmarket.com/web-application-scanners/17.html
http://secubat.codeplex.com/SourceControl/list/changesets
http://secubat.codeplex.com/SourceControl/list/changesets
http://secubat.codeplex.com/SourceControl/list/changesets
http://www.sectoolmarket.com/web-application-scanners/49.html
http://www.sectoolmarket.com/web-application-scanners/49.html
http://www.sectoolmarket.com/web-application-scanners/49.html
http://www.sectoolmarket.com/web-application-scanners/41.html
http://www.sectoolmarket.com/web-application-scanners/41.html
http://www.sectoolmarket.com/web-application-scanners/41.html
https://github.com/BCable/vulndetector
https://github.com/BCable/vulndetector
http://www.sectoolmarket.com/web-application-scanners/18.html
http://www.sectoolmarket.com/web-application-scanners/18.html
http://www.sectoolmarket.com/web-application-scanners/18.html
http://websecuritytool.codeplex.com/
http://websecuritytool.codeplex.com/
http://www.zerodayscan.com/
https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/
https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/
https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/
https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/
https://www.beyondtrust.com/products/retina-web-security-scanning/
https://www.beyondtrust.com/products/retina-web-security-scanning/
https://www.beyondtrust.com/products/retina-web-security-scanning/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
http://www-03.ibm.com/software/products/en/appscan-standard
http://www-03.ibm.com/software/products/en/appscan-standard
http://www-03.ibm.com/software/products/en/appscan-standard
http://www.gamasec.com/Gamascan.aspx
http://www.gamasec.com/Gamascan.aspx
http://xss.codeplex.com/
https://github.com/wallin/ratproxy
https://github.com/wallin/ratproxy
https://portswigger.net/burp/scanner.html
https://portswigger.net/burp/scanner.html


6. Evaluation

Name last
checked

URL Reason

Wikto 11.12.2017 https://github.com/
sensepost/wikto

Described as "Nikto clone for windows" on
the website. Nikto is useless as seen in tests
and this wikto does not have any additional
features for XSS.

XSS-
Scanner.com

11.12.2017 http://xss-scanner.com/ Not automated: Manual specification of entry
points is required.

AppSpider 27.11.2017 https://www.rapid7.com/
products/appspider/

Not free.

edgescan 23.11.2017 https://www.edgescan.com/
index.php#solutions

Not free.

IKare 23.11.2017 http://www.ikare-
monitoring.com/

Not free.

Websecurify
Webreaver

23.11.2017 http://www.webreaver.com/ Not free.

WebCruiser
Free Edition

11.12.2017 http://www.janusec.com/ Not original / down, outdated.

UpGuard 23.11.2017 https:
//app.upguard.com/webscan

Not free.

Wfuzz 11.12.2017 https:
//github.com/xmendez/wfuzz

Not automated: Manual provision of
payloads and entry points.

Shuriken 11.12.2017 https://github.com/
shogunlab/shuriken

Not automated: Manual specification of entry
points.

Xenotix XSS
Exploit
Framework

11.12.2017 https://www.owasp.org/
index.php/OWASP_Xenotix_
XSS_Exploit_Framework

Not automated.

Golismero 11.12.2017 https://github.com/
golismero/golismero

It just aggregates third party tools. The only
one which does XSS detection is XSSer that
is already tested separately.

XssPy 12.12.2017 https://github.com/
faizann24/XssPy

Tried all different kinds of invocations, even
with the extensive mode it does not find
anything. Documentation on Github is wrong.
Usage documentation on website only
provides blank window.

V3n0M-
Scanner

12.12.2017 https://github.com/v3n0m-
Scanner/V3n0M-Scanner

Just random Internet scanning by getting
targets from a search engine, not able to
target a specific host.

Acunetix 13.12.2017 https://www.acunetix.com/
vulnerability-
scanner/download/

Trial version does not display the URL or
path where a vulnerability was found (only
the host), thus not able to analyze the results
in detail.

Netsparker
(4.9.5.17070)

13.12.2017 https://www.netsparker.com/
web-vulnerability-
scanner/download/

Trial version does not display the URL or
path where a vulnerability was found (only
the host), thus not able to analyze the results
in detail.

Nstalker Free
Edition

14.12.2017 https://www.nstalker.com/
products/editions/free/
download/

Not being able to download since no email
which should contain the download link gets
sent.

Watobo
(0.9.23)

16.12.2017 http://watobo.sourceforge.
net/index.html

Not being able to run it: Fails with 3
different ruby versions (2.1, 2.3, 2.4) and 2
different devkit versions that were tried.

58

https://github.com/sensepost/wikto
https://github.com/sensepost/wikto
http://xss-scanner.com/
https://www.rapid7.com/products/appspider/
https://www.rapid7.com/products/appspider/
https://www.edgescan.com/index.php#solutions
https://www.edgescan.com/index.php#solutions
http://www.ikare-monitoring.com/
http://www.ikare-monitoring.com/
http://www.webreaver.com/
http://www.janusec.com/
https://app.upguard.com/webscan
https://app.upguard.com/webscan
https://github.com/xmendez/wfuzz
https://github.com/xmendez/wfuzz
https://github.com/shogunlab/shuriken
https://github.com/shogunlab/shuriken
https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework
https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework
https://www.owasp.org/index.php/OWASP_Xenotix_XSS_Exploit_Framework
https://github.com/golismero/golismero
https://github.com/golismero/golismero
https://github.com/faizann24/XssPy
https://github.com/faizann24/XssPy
https://github.com/v3n0m-Scanner/V3n0M-Scanner
https://github.com/v3n0m-Scanner/V3n0M-Scanner
https://www.acunetix.com/vulnerability-scanner/download/
https://www.acunetix.com/vulnerability-scanner/download/
https://www.acunetix.com/vulnerability-scanner/download/
https://www.netsparker.com/web-vulnerability-scanner/download/
https://www.netsparker.com/web-vulnerability-scanner/download/
https://www.netsparker.com/web-vulnerability-scanner/download/
https://www.nstalker.com/products/editions/free/download/
https://www.nstalker.com/products/editions/free/download/
https://www.nstalker.com/products/editions/free/download/
http://watobo.sourceforge.net/index.html
http://watobo.sourceforge.net/index.html


6.2. Analysis Results

Name last
checked

URL Reason

XSStrike (1.2,
git 286b53d)

16.12.2017 https://github.
com/UltimateHackers/XSStrike

Thinks urls are POST urls and exits. It was
retried with the testbeds hosted on a remote
server which had the same bug.

BC Detect 18.12.2017 https://www.blueclosure.
com/product/bc-detect

No email with demo version got sent.

Scan My
Server

18.12.2017 https:
//www.scanmyserver.com/

Cannot connect to server (maybe because of
non-default HTTP port that was used).
Trying to register redirects to the start page
where a url must be provided, resulting in the
same issue ("Oops! We cannot reach this host.
Please try again.").

Detectify 18.12.2017 https://detectify.com/ When starting a scan it always says that it
could not connect to the server, which is not
true since the webapp is running and no
firewalls are active. However the initial
verification of website ownership was
successful.

6.2 Analysis Results
This section shows the results of all vulnerability scanners that passed our acceptance
criteria and could be examined and evaluated. Furthermore the analysis results of the
prototype implementation of the scanner are included. For each tool the number of
detected vulnerabilities, false positive and false negative results were collected (Figure 6.1,
Figure 6.2 and Figure 6.3). Table views for the exact absolute numbers of detections and
relative detection ratios in percent can be found in the Appendix.

A scanner was required to explicitly categorize a test case as vulnerable. This means
it was necessary for the tool to indicate that a XSS vulnerability was detected in a
specific test case associated with a specific URL. It did not matter if they got some level
of severity or any other meta information associated with the result. However it must
explicitly state that it identified a vulnerability. Only those results were counted as a
detection. It was not necessary that the program provided a working exploit but it must
provide the URL to the test case of the XSS incident.

Scan times FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 10 30 60 6 10 1 16 3 1 1 10 29 2

xss playground 96 68 310 168 82 26 254 28 7 7 375 7 15

Table 6.3: Scan times of different scanners for each testbed. Measured in minutes and
rounded up to full minutes.

In Table 6.3 the times each scanner took for a complete scan of a particular testbed are

59

https://github.com
https://github.com
https://www.blueclosure.com/product/bc-detect
https://www.blueclosure.com/product/bc-detect
https://www.scanmyserver.com/
https://www.scanmyserver.com/
https://detectify.com/


6. Evaluation

Figure 6.1: Detected XSS vulnerabilities (in %) of the test cases per testbed and scanner.

compared. The numbers are the average time of two independent test runs measured in
minutes. Higher scan times do not correlate with higher detection ratios. Most of the
scanners that took much more time also have bad results when compared to those who
only took a fraction of their time.

6.2.1 FOXSS

The detection ratio of FOXSS significantly outperforms all other scanners. Most of the
vulnerabilities that were undetected lie in the category of HTTP header entry points.
Furthermore the two exit contexts that end in the HTML context of the math environment
pose problems when combined with filters that do not allow to break out of it. This
happens because the underlying Chrome browser engine currently does not support
this environment. So exploits cannot be verified if they try to use this context in the
payload, since the MathML related tags do not get interpreted. Also some filters can
not be bypassed in the current prototype because some of the obfuscation methods are
not implemented yet. Furthermore a few implementation bugs exist which prevent the
automated verification of URL-style payloads that are injected into object or embed
contexts. They do not get verified because of yet unknown reasons and thus do not
appear as detections. However manual tests of the payloads suggested by FOXSS for
these test cases were successful.

The verification of XSS payloads guarantees zero false positives which the analysis results
have proven. Also the time required to analyze the test environment lies in the range of
the top 3 tested third party scanners.

60



6.2. Analysis Results

Figure 6.2: Percentage of false positive results each scanner detected per testbed.

Figure 6.3: Percentage of missed vulnerabilities for each scanner and testbed.

61



6. Evaluation

6.2.2 IronWasp

IronWASP [142] is a multi-vulnerability scanner. It is open source and extensible with
plug-ins written in several languages including Python and Ruby. Analysis of restricted
areas is possible. Latest updates added JavaScript tracing and WebSocket fuzzing.
Everything can be configured through a graphical user interface. The website provides
several tutorial videos that show how to perform different kinds of vulnerability scans.
Analysis reports can be exported in HTML and RTF format. The scanner was written
in C# and designed for Windows. Third party solutions exist which allow this tool to
run on Linux and MacOS.

On the first run this tool crashed because of some incompatibilities between the packaged
“chromedriver” library and Windows 10. Downloading the most recent version3 and
replacing the existing one solved this problem. The browser based crawler that can be
used optionally proved useless. Crawling Firing Range with it took already 30 minutes
because IronWasp waits at least one second for every page and the browser based scanner
sometimes hangs up and waits for 10 seconds until it gets restarted. So the default scan
approach was used. While performing a test scan after 1312 “ScanJobs” IronWasp hung
up. It is possible to save the current state and resume after a restart of the program, but
not even a restart made it possible to continue. So the collected data was wiped and the
scan was completely restarted which somehow solved the problem. Luckily this issue was
not encountered again.

Another tool that is not integrated in the default scan is the DOM-XSS analyzer. Testing
it on the Firing Range shows that it is done statically and just searches certain JavaScript
functions in the code of a page. It produces results that can only assist a human analyst
by showing which of those functions were found, but it does not find vulnerabilities on
its own.

For the vulnerability scans the following configuration options were used: 4 threads,
disable directory and file guessing since all test cases can be reached via URLs. The “scan
settings” were adapted that all fields are scanned and only tested for XSS vulnerabilities.
Under “scan filter” the skipping of the analysis of the User-Agent and Referrer
headers was removed. In the last configuration step the “prompting for assistance” during
the scan was disabled.

In the scanning process real payloads are only used sometimes like in css imports,
otherwise just string identifiers are used to predict XSS heuristically.

Regarding the analysis results IronWASP could achieve good results in the reflected XSS
category which was also the only category where vulnerabilities were found. It could find
exploits for most contexts and most filters there.

3https://chromedriver.storage.googleapis.com/index.html?path=2.33/

62

https://chromedriver.storage.googleapis.com/index.html?path=2.33/


6.2. Analysis Results

6.2.3 Vega

Vega [143] detects XSS, shell injection, SQL injection and remote file inclusion among
other bugs. Further the tool “probes for TLS / SSL security settings and identifies
opportunities for improving the security of your TLS servers” [143]. After a scan the
detected vulnerabilities can be seen in the GUI. No methods for exporting a report were
found. Its analysis modules can be extended with JavaScript and supports automated
and manual analysis. Passive security testing by running the browser through Vegas
proxy is also possible. Vega was programmed in Java and uses the Eclipse framework.
It can be run on all three major operating systems.

The crawler does not work when providing a url that ends in a file extension like “.html”.
Also a big disadvantage is that the results of a scan cannot be exported in any way, which
makes an automated dissection of the results impossible.

The following scan settings were used: In the injection modules only “xss injection checks”
were activated. In the response analysis modules the default settings were used.

Only XSS test cases of the reflected category were identified correctly. No vulnerabilities
could be detected when the entry point was located in the URL path or in a HTTP
header. The tool could also not handle several test cases with “special” contexts when in
combination a filter was used. It had many false positive detections, the most in Firing
Range and the third most in XSS Playground among the scanners.

6.2.4 ZAP (Zed Attack Proxy)

Zed Attack Proxy [144] is an OWASP project and as such open source, featuring fully
automated and passive scanning, forced browsing and fuzzing. Several different types of
web vulnerabilities can be detected. This application was also written in Java.

Among all tested tools this one has the most complicated user interface of all. Options
and different tools are scattered everywhere and can be accessed through multiple menus.
It takes a long time to find correct settings and the work flow to perform the intended
scan.

When starting a new scan by providing localhost as the destination, it ends in the creation
of tens of thousands of requests of non existent URLs that are tried to be scanned. None
of those are meaningful and it seems like some brute force directory scanning based on a
word list is performed. Trying to scan a subcategory results in response code 400 and
that ZAP failed to attack it. Starting the “spider” to find entry points does not find
anything useful, again it reports the 400 error that does not exist. Using the “new scan”
option on the URLs found by the spider does not yield anything useful. The solution is
hosting the testbeds on a remote server. This strange and faulty behavior only happened
when trying to scan localhost.

Regarding the settings a new scan policy was created through the policy manager. All
attacks other than XSS (located under injection) were disabled. The strength level was

63



6. Evaluation

set to maximum. The testbeds were scanned with the spider with the following settings:
The base url was provided as a starting point. Under “Scope” the option to spider the
subtree only was activated. Under “Advanced” the maximum crawl depth was set to 10.
Then an “active scan” was performed where we activate the following: Under “scope”
we selected the base url. Under “input vectors” enabled URL path, HTTP headers and
cookies. All built-in input vector handlers but JSON were disabled because no tests
where they are used exist. Under “policy” we selected the previously created XSS scan
policy.

ZAP was one of the few scanners that could detect stored XSS. With 46,3% it achieved
the highest detection ratio under third party scanners in the XSS Playground. It often
had problems to find an exploit in the meta redirect context when combined with a filter.
Also in the entry point category of HTTP headers no detections were made. Together
with w3af this tool had the most false positive results in XSS Playground among the
third party scanners.

6.2.5 Arachni

Arachni [145] is an open source web application penetration testing framework. A
browser environment was integrated to improve JavaScript application analysis, especially
dynamically generated data channels of websites. It seems like all variants of web
vulnerabilities can be tested. The tool can be controlled through a web interface, where
a pre-configured option for an XSS scan can be found. Alternatively the command line
interface can be used to execute a scan. This scanner was programmed in Ruby and also
uses PhantomJS for automated browser testing.

It is not documented where exactly the web interface (under which port) can be found.
This can be found out when reading the console output after starting the tool. Also it
cannot scan loopback interfaces like localhost. By default a profile for XSS tailored scans
is provided. All scans were performed by selecting “New Scan” in the user interface and
then inserting the base URL of the testbed.

Arachni was the only scanner other than FOXSS that was able to detect vulnerabilities
in test cases of all three XSS categories. No other third party scanner was able to detect
DOM-based XSS. However the detection rate in the stored and DOM-based categories is
very low. Script contexts often posed a problem for vulnerability detection.

6.2.6 Wapiti

Wapiti [146] was created for black-box scanning and is open source. It extracts entry
points of web applications and performs fuzzing of the detected input channels afterwards.
According to the authors the following vulnerabilities can be discovered: “File disclosure
(Local and remote include/require, fopen, readfile...), Database Injection (PHP/JSP/ASP
SQL Injections and XPath Injections), XSS (Cross Site Scripting) injection (reflected
and permanent), Command Execution detection (eval(), system(), passtru()...), CRLF
Injection (HTTP Response Splitting, session fixation...), XXE (XML External Entity)

64



6.2. Analysis Results

injection, Use of know potentially dangerous files (thanks to the Nikto database), Weak
.htaccess configurations that can be bypassed, Presence of backup files giving sensitive
information (source code disclosure), Shellshock (aka Bash bug)” [146]. Some authentica-
tion methods, basic examination of JavaScript and newer HTML5 objects are included as
well. Attacks can be carried out through HTTP GET and POST. Analysis reports can
be exported in multiple formats including HTML, XML, JSON and TXT. This scanner
was written in Python.

Scan runs on localhost are much faster than on a remote host, this means a large part of
its scan time is spent on HTTP-requests. Some intelligent payload finding was observed.
For example when < is stripped by filters it is recognized and payloads that do not depend
on this character are tested.

The configuration that was used can be seen in the following command line invocations
of the tool for both testbeds. Basically unnecessary sub-categories were excluded from
the scan, only XSS checks were performed and the results saved in a specific directory.
.\wapiti.exe "http://144.76.18.131:8080/" -x "http://144.76.18.131:8080/angular/index'

.html" -x "http://144.76.18.131:8080/badscriptimport/index.html" -x "http'
://144.76.18.131:8080/cors/index.html" -x "http://144.76.18.131:8080/'
flashinjection/index.html" -x "http://144.76.18.131:8080/mixedcontent/index.html"'
-x "http://144.76.18.131:8080/reverseclickjacking/" -x "http'
://144.76.18.131:8080/vulnerablelibraries/index.html" -m "-all,xss" -o ".\reports'
\firing-range"

.\wapiti.exe "http://144.76.18.131:8080/" -x "http://144.76.18.131:8080/entry points"'
-m "-all,xss" -o ".\reports\xss-playground"

Only XSS test cases belonging to the reflected category were identified correctly. It could
not detect any test cases where the URL path or HTTP headers were used as entry point.
The rate of test cases that were wrongly detected as positives is the lowest among the
third party tools (excluding Nikto and Tinfoil since they barely detected any test case).

6.2.7 XSSer

XSSer [147] is a open source Python tool dedicated to detecting XSS vulnerabilities in
websites. It can automatically bypass filters and certain web application firewalls and
can create images or Flash files containing payloads. However those Flash based exploits
can not be created automatically on the fly for automated testing. Proxy servers can be
used and reports generated as XML or text.

This scanner was the most unstable of all. Multiple crashes and regular exceptions
plagued the analysis. The tool often crashed during report generation with -save
-silent parameters. So the two parameters were removed and the console output piped
into a file. Still always an exception by the internally used pycurl gets thrown, and at
the end after writing the results an error occurs that crashes the program:
Exception AttributeError: "Curl instance has no attribute ’_closed’" in <bound method'

Curl.__del__ of <core.curlcontrol.Curl instance at 0x76C4B918>> ignored

Sometimes this:

65



6. Evaluation

Traceback (most recent call last):
File "xsser", line 37, in <module>

app.run()
File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 1919, in'

run
self.poll_workers()

File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 1499, in'
poll_workers

self.pool.poll()
File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\threadpool.py", line '

348, in poll
request.callback(request, result)

File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 643, in '
_cb

query_string, url, newhash)
File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 774, in '

finish_attack_url_payload
query_string, url, orig_hash)

File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 1016, in'
_report_attack_success

self.add_failure(dest_url, payload, hashing, query_string, attack_type)
File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 1032, in'

add_failure
self.hash_notfound.append((dest_url, payload[’browser’], method, hashing))

MemoryError

Also often this happened:
Traceback (most recent call last):

File "xsser", line 38, in <module>
app.land(True)

File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\main.py", line 1966, in'
land

self.hub.shutdown()
File "C:\Users\test\Downloads\xsser_1.7-1\xsser-public\core\tokenhub.py", line 66, '

in shutdown
self.socket.shutdown(socket.SHUT_RDWR)

File "C:\Python27\lib\socket.py", line 228, in meth
return getattr(self._sock,name)(*args)

socket.error: [Errno 10057]

The program was configured to enable cookie and user-agent testing as well as using dom
injections and automatic payload generation. It tests through brute-forcing/fuzzing with
real payloads. The only plus was that in the report it explicitly states in which browser
and version a vulnerability exists and is exploitable for each test case that was detected
as vulnerable. The command line that was used for Firing Range and XSS Playground
respectively:
python2 xsser -i "scanlist_firing-range.txt" --auto --Coo --Xsa --Xsr --Dom --no-head'

> firing-range.txt

python2 xsser -i "scanlist_xss-playground.txt" --auto --Coo --Xsa --Xsr --Dom --no-'
head > xss-playground.txt

Only XSS test cases of the reflected category were identified correctly. The detection of
various contexts posed problems. The tool did not find HTTP header entry points and
also reflected POST test cases were undetectable for it.

66



6.2. Analysis Results

6.2.8 w3af

w3af [148] was also written in Python and was open sourced. Since 2006 it was continually
improved and now features scanning and detection of several classes of web vulnerabilities.
The following parts of a HTTP request are fuzzed: Query string, POST-data, Headers,
Cookie values, multipart/form file content, URL filename and URL path. Reporting
supports text, CSV, HTML and XML files. The dockerized CLI version was used for
testing.

The following configuration and run settings were used for the analysis of each testbed:
plugins
audit xss
output html_file, text_file
grep analyze_cookies, dom_xss
crawl web_spider
back
profiles
save_as test
back
target
set target http://144.76.18.131:8080/
back
start

Only XSS test cases of the reflected category were identified correctly. None of the test
cases that had the URL path or the HTTP header as an entry point could be identified
as vulnerable. Together with ZAP this tool had the most false positive results in XSS
Playground among the third party scanners.

6.2.9 Nikto

Nikto [149] is open source and was made for scanning web servers. The approach is
based on a database containing known vulnerabilities, misconfigurations and common
web application flaws. It brute-force tests the servers. Nikto was coded in Perl. It is
not suitable for XSS scanning, which can clearly be observed in a test run. It basically
just tries several static URL/path extensions and based on the web-server response it
decides if there is a vulnerability. So when scanning “/xss/reflected/urlpath/filter/none/-
context/eventhandler/insertPayload” for example it appends all its test URLs at the
end. Since this test allows arbitrary characters after “insertPayload” the scanner gets
confused and reports all kind of vulnerabilities it has in its database. In fact those are all
false positives and the actual vulnerability is not triggered. In general Nikto tries to test
URLs that are known to be vulnerable when a specific software is running on the server
like some content management system. It was not able to identify a single vulnerability
with this strategy, because it does not crawl or try to discover entry points. Instead it
just performs the static URL tests that are stored in its database.

The commandline for each testbed looked like this:
perl nikto.pl -h "http://144.76.18.131:8080/" -ask auto -Format txt -nointeractive -'

nossl -output "results" -Tuning 4

67



6. Evaluation

6.2.10 DSXS

DSXS [150] for “Damn Small XSS Scanner” is a minimalistic open source XSS scanner
written in Python. HTTP GET and POST parameters can be tested.

Since it cannot crawl and detect further URLs, a small wrapper script that executes the
program for all test cases was used. The script could be invoked with node script.js
<pathToUrlFile>. It will then call DSXS for each test case URL and will automatically
put the result in the correct format for the evaluation table.

1 const { exec } = require(’child_process’);
2 const fs = require("fs");
3 const path = require(’path’);
4
5 /////////////////////////////////////////////////////////////////////////////
6 // Config:
7 const toolName = "DSXS";
8 const cmdline = ‘python2 dsxs.py -u "{URL}"‘; // {URL} gets replaced with current url
9 const successStr = "scan results: possible vulnerabilities found";

10 /////////////////////////////////////////////////////////////////////////////
11
12 if (process.argv.length !== 3) {
13 console.log(‘Usage: node ${process.argv[1]} <urlFile>‘);
14 return;
15 }
16
17 console.log("start: "+ (new Date()).toTimeString());
18
19 const scanFile = process.argv[2].slice(process.argv[2].lastIndexOf(path.sep) + 1);
20 const urlList = fs.readFileSync(process.argv[2], "utf8");
21 const urls = urlList.split("\n").filter(x => x.length > 1);
22
23 var i = 0;
24 var results = "";
25 var resultsRaw = "";
26
27 if (!urls || urls.length === 0) {
28 console.log("No urls in file!");
29 return;
30 }
31
32 function testUrl() {
33 if (i === urls.length) {
34 fs.writeFileSync(toolName + scanFile +".rawout.txt", resultsRaw);
35 fs.writeFileSync(toolName + scanFile +".results.txt", results);
36 console.log("end: "+ (new Date()).toTimeString());
37 return;
38 }
39
40 const currentURL = urls[i++];
41 exec(cmdline.replace("{URL}", currentURL), (error, stdout, stderr) => {
42 if (error) {
43 console.error(‘exec error: ${error}‘);
44 results += "0\n";
45 return;
46 }
47
48 resultsRaw += stdout +"\n";
49 if (stdout.indexOf(successStr) !== -1) {

68



6.2. Analysis Results

50 results += "1\n";
51 }
52 else {
53 results += "0\n";
54 }
55
56 testUrl();
57 });
58 }
59
60 testUrl();

Only XSS test cases belonging to the reflected category were identified correctly, with the
exception of a single test case of the DOM-based category that was detected. The entry
points of URL path, HTTP header or reflected POST requests were not discoverable for
DSXS. Surprisingly this tool performed best of all third party scanners in Firing Range,
but very bad in XSS Playground.

6.2.11 Syhunt Community Edition

Syhunt Community Edition [151] is the free version of the commercial Syhunt scanner
suite. The features are limited, but sufficient for the XSS testing purposes. Unfortunately
the filter evasion components are not included. White-box code analysis and black-box
dynamic testing can be executed.
After an initial scan it was clear that we need to enable a depth limit or the scanner
will end up in an endless loop on some tests like those about iframe attributes in Firing
Range. So in the preferences under the crawling tab a depth limit of 10 was set.
Further the following settings were adapted:
Dynamic Scan ->
Select XSS scan
check Edit site preferences
edit exclusions > URLs:
exclude urls (firing-range):
http://localhost:8080/vulnerablelibraries/index.html
http://localhost:8080/reverseclickjacking/
http://localhost:8080/mixedcontent/index.html
http://localhost:8080/flashinjection/index.html
http://localhost:8080/cors/index.html
http://localhost:8080/badscriptimport/index.html
http://localhost:8080/angular/index.html
exclude urls (xss-playground):
http://localhost:8080/entry points

Trying to test XSS Playground with the same settings revealed a very annoying bug:
The depth limit could not be set again. The limit was always instantly overwritten. So
in order to test XSS Playground, the sub-URLs of the test case categories were used as a
starting point. Through this method the default depth limit of 2 (although it says 1)
could be used to avoid the endless loops of the crawler.
The only test cases that this tool was able to detect were reflected vulnerabilities when
the entry point was located in a query parameters.

69



6. Evaluation

6.2.12 Tinfoil

Tinfoil [152] is a SaaS security scanner. After registering one can add websites and needs
to prove ownership, before a free vulnerability scan can be executed. There are not much
configuration options. After the scan is started one just has to wait until the results
arrive.

Since this scanner is provided as a web-service one needed to verify the tested site
beforehand, so they can be sure that the server is owned by the one requesting the scan.
This can be done by placing a prebuilt file (txt with hash) at the root path of the website.
No settings about which types of vulnerabilities are scanned can be set.

Scanning XSS Playground was tried 3 different times but always with the same disap-
pointing result, that it ended after a few minutes, not detecting any of the test cases.
The port on which the testbed could be reached was varied but this did not lead to any
change.

The results are very poor. Not only that one of the testbeds could not be scanned at
all, even for the one that could be analyzed the number of detected vulnerabilities is
extremely low.

6.2.13 MileSCAN ParosPro

MileSCAN ParosPro [153] is a web vulnerability scanner for XSS and SQL injection. Also
Content Management System (CMS) fingerprinting can be executed and subsequently
misconfigurations can be detected. A demo version can be obtained, which is limited to
private networks but has no other restrictions. The full scanning capabilities can thus be
used. However all testing had to be performed on the localhost.

Some of the settings had to be changed:

Modify Settings > Global Settings
Under Vulnerbility Scanner > Vulnerability Checks tick Cross-site Scripting.
Under Spider set max number of concurrent threads to 4 and increase max links to be '

crawled to 5000. Max depth to crawl to 9, max concurrent spider threads to 4 and '
check "crawl domain on specified port only".

Then a new project was created for Firing Range and for XSS Playground.
Under the project name > functions > URL Spider the base url (http://localhost:8080/)'

was added and the scan started with "ok".
Under functions > vulnerability scanner make sure that the cross site scripting '

category is checked.

Like some other scanners only XSS test cases of the reflected category were identified
correctly. None of the test cases where the entry point could be found in the URL path
or the HTTP header could be identified as vulnerable.

70



6.3. Discussion of Results

6.3 Discussion of Results
This section examines the results of the tested scanning tools and compares which types
of XSS vulnerabilities they could handle and which stayed undetected. We will also
discuss possible reasons for the weaknesses in their detection capabilities and contrast
them with our approach.

The detection ratios that all evaluated scanners achieved in each testbed are shown in
Figure 6.1 . We can clearly see that the number of detected vulnerabilities of third
party tools is not quite high. Only a single tool managed to detect more than half of
all vulnerabilities in Firing Range. None of them was able to reach such a rate in XSS
Playground. FOXSS however achieved about ninety percent correct detections in both
testbeds underlining the success of our strategy.

When comparing and ranking the scanners purely by their numbers we can see the
following: The overall best third party scanner Zed Attack Proxy (ZAP) did not even
detect half of all vulnerable test cases. It is followed by IronWasp with a sightly lower
detection ratio and then by Arachni. When looking at Firing Range alone, interestingly
DSXS, the ultra small (by lines of code) XSS scanner achieved the highest result with
54,1%. The following tools all achieved very similar results: IronWasp (43,2%) takes
the second place and Vega (42,6%) the third. Then ZAP (41,9%) precedes Arachni and
Syhunt Community Edition (both 40,5%). Regarding XSS Playground Zed Attack Proxy
(46,3%) ranked first among existing black-box scanners, followed by IronWasp (44,2%)
and Arachni (38,8%). The rest has a much higher offset with w3af being the next (31,8%).
With all those sub 50% detection ratios it can be said that existing XSS analysis tools
lack a lot of detection capabilities.

After examining the individual results for each test case and its detection status among
the scanners we can see the reason behind this. Only Zed Attack Proxy and Arachni
were able to detect stored XSS vulnerabilities. However they also were not able to make
more than a handful of detections in this category. The results for DOM-based XSS
test cases are similar. Only Arachni was able to find at least some vulnerabilities of
this type. Surprisingly also DSXS detected a single vulnerable test case in this category.
Most certainly this was just a lucky guess, since several similar test cases like the one
it identified (/urldom/location/search/location.assign?//example.org)
which belongs to Firing Range are also available in XSS Playground. However these
slight variations of the test case were not detected. Vulnerabilities of all three different
XSS categories could only be detected by a single scanner (Arachni). There is a lot of
room for improvement regarding DOM-based and persistent XSS detection, especially
since so many scanners do not know how to handle these vulnerabilities at all. Five
scanners also had problems with test cases of the reflected type when the entry point of
the vulnerability appeared in the body of a POST request. It seems that they are not
able to handle POST requests at all and might even be limited to GET requests only.

In addition all of the third party scanners have problems when it comes to certain contexts
in combination with a certain filtering mechanism. These test cases would either require

71

/urldom/location/search/location.assign?//example.org


6. Evaluation

a special HTML tag or property to trigger the malicious code, or a special format of
the payload to be successful, depending on the context. The inability of the scanners to
detect many of those test cases is caused by the lack of diverse attack payloads and/or
the lack of being able to adapt and refine the payloads with regard to the context. Many
just try a fixed set of hard coded attack payloads and variations of them, but do not craft
them at runtime. In general it can be said there are a few free tools that are acceptable
at detecting reflected XSS, but none exists that reaches a similar quality in DOM-based
and stored XSS.

In contrast FOXSS nearly detected twice as many vulnerabilities as the best third party
scanner Zed Attack Proxy. This shows that the approach of data flow detection, context
information gathering and detection of filtering mechanisms combined with specially
crafted attack payloads and dynamic verification is a good strategy. FOXSS efficiently
detects XSS vulnerabilities of each category not just reflected ones. With a overall
detection rate of about 90% the approach significantly outperforms all other third party
scanners already at this early stage when there is still a lot of room for improvement
of the scanner. Several factors that impacted its results negatively are due to some
implementation bugs that exist in the current prototype. Some limitations imposed by
the underlying browser engine like the support of certain HTML5 features would be
necessary in order to automatically verify the proposed exploits. Currently they are
only reported as potential vulnerability and were not counted as real detections in the
evaluation.

When examining the diagram of the false positive results (Figure 6.2) we can see that
none of the other tools that scored at least one detection were also false positive free.
In relation to the detection rate Wapiti had the lowest number of false positive results
among third party scanners. Only FOXSS could achieve zero wrongly classified test cases,
because it verifies each exploit in a real browser engine dynamically by actually executing
it.

72



CHAPTER 7
Conclusion and Future Work

In this thesis I presented a new approach for efficiently detecting all types of XSS
vulnerabilities in web applications together with its prototype implementation called
FOXSS. While not all ideas are fully implemented yet, the evaluation shows that it already
outperforms similar existing open source vulnerability scanners in terms of detection
capabilities while not requiring significantly more time to analyze web applications
than existing solutions. The method of identifying data flows and gathering contextual
information about a data source and its corresponding sink allows the creation of payloads
that are specially adapted to its specific context. This minimizes brute force testing of a
large number of unsuccessful attack vectors and thus does not waste valuable time which
can be spent in other parts of the analysis process. Further it reduces the workload for
the system under test which might be important when we are bound to certain resource
constraints. Verifying every detected vulnerability by executing the attack payload in a
real browser engine allows to guarantee zero false positive results.
An extensive number of data sinks and sources in web applications and how they can be
mapped and exploited was discussed. Characteristics of interesting XSS vectors were
analyzed and possible obfuscation methods for creating variations thereof that might be
able to bypass input sanitization mechanisms were presented.
Furthermore I engineered and presented a testing environment featuring 1808 different
test cases in which automated vulnerability scanners can be evaluated. It is separated into
two parts, one is the already existing testbed Firing Range that contributes 210 test cases,
the other one is the newly created testbed XSS Playground that contributes 1598 test
cases. XSS Playground covers a large variety of data source and sink combinations which
can be combined with filtering mechanisms. test cases of all three XSS categories are
included. Each test case can be identified by its own URL and contains a single variant
of a XSS vulnerability. No complicated scanner setup is necessary and no additional
unnecessary styling, image or multimedia content is included. This testbed provides an
easy way to compare and examine new black-box scanning mechanisms.

73



7. Conclusion and Future Work

Numerous open source and free XSS scanning tools were examined and tested in the
testing environment. The results show that existing scanners have multiple deficiencies.
Only a single tool was able to detect vulnerabilities in all three XSS categories. Two
tools each were able to detect vulnerabilities of the stored XSS and the DOM-based
categories. Although only very few vulnerabilities were detected by them. Furthermore
also many third party scanners lack the detection of reflected XSS when the entry point
of the vulnerability is located in the body of a HTTP POST request. The results also
confirm that the new approach with FOXSS is significantly better. While the best other
scanners did not even identify half of all vulnerabilities, FOXSS was able to find about
90 percent, while also staying in the time range that the better third party tools required
for the whole analysis process.

Future work can expand on several aspects: First of all the prototype could be improved
in various areas. Currently the processing of analysis requests in a sandbox for the
various stages of data flow detection and exploit verification is completely sequential.
The sub-steps of identifying entry points, exit points, filters etc. will only happen one
after another. Every previous step is finished completely before the next step is started.
The sandboxed analysis can be easily parallelized by creating multiple sandboxes and
executing several scan requests from the same step (e.g. entry point analysis) at the
same time. When entry points are found they could also be instantly processed in the
exit point analyzing sandbox while the entry point analysis is not finished and continues
processing. This could further greatly improve the scan times.

Since real world web applications very often feature authorization or session management
and restricted areas or content that changes depending on a user login, performing tests
of similar applications would be interesting. Handling this was not a focus of this thesis
and for that reason is not implemented, as it would have caused a lot of additional
programming effort. These mechanisms would pose a problem for the analysis tool in its
current state. It would however be also interesting to test and evaluate the scanner and
also the third party scanners in test applications that model real world web applications
instead of focusing on test case diversity.

In the area of attack vectors some possibilities are not examined. These are CSP-bypassing
and file-based vectors. CSP is a strong defensive option against XSS attacks, but as
already discussed in the related work section, the many configuration options increase
potential misconfigurations that can be exploited. Testing web applications that deal
with files might reveal interesting vulnerabilities because files like images or videos have
several properties that could carry XSS payloads.

The data flow detection approach provides a solid base for web application analysis in
general. The adaption of other vulnerability detection mechanisms would be easy because
the design of the prototype allows adding or replacing scanner modules in the same
way the XSS analysis component is written. Only the detection, analysis and payload
generation features that are specific to a certain type of web application vulnerability
need to be implemented.

74



A comparison and evaluation of FOXSS and commercial scanners would also be very
interesting. The demo versions of Acunetix and Netsparker that did not show which test
case was detected as vulnerable, were able to find multiple DOM-based vulnerabilities
in their test run, according to the reported numbers. Since there exists a commercially
driven interest in having a high detection ratio, those scanners might perform much
better than their open source competitors.

75





List of Figures

3.1 Visualization of a reflected XSS attack. . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Visualization of a persistent XSS attack. . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Visualization of a DOM-based (client-side) XSS attack. . . . . . . . . . . . . . 22

4.1 High level view of the scanner architecture. . . . . . . . . . . . . . . . . . . . . 34

5.1 High level view of the XSS Playground implementation. . . . . . . . . . . . . 42
5.2 Composition of technologies used in the test environment. . . . . . . . . . . . 43
5.3 Firing range test case structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 XSS Playground test case structure. . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Number of test cases and category per testbed. . . . . . . . . . . . . . . . . . . 45

6.1 Detected XSS vulnerabilities (in %) of the test cases per testbed and scanner. 60
6.2 Percentage of false positive results each scanner detected per testbed. . . . . 61
6.3 Percentage of missed vulnerabilities for each scanner and testbed. . . . . . . . 61

List of Tables

4.1 Possible entry points and data sources. . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Possible exit contexts and data sinks. . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 List of XSS attack vectors used in FOXSS. . . . . . . . . . . . . . . . . . . . . 37

6.1 Successfully evaluated XSS analysis tools. . . . . . . . . . . . . . . . . . . . . . 55
6.2 Excluded and failed XSS analysis tools. . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Scan times of different scanners for each testbed . . . . . . . . . . . . . . . . . 59

1 Absolute number of detected test cases per scanner and testbed. . . . . . . . 99

77



2 Percentage of detected test cases for each scanner and testbed. . . . . . . . . 99
3 Absolute number of false positive results of non-detectable test cases for each

scanner and testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4 Percentage of false positive results of non-detectable test cases for each scanner

and testbed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5 Absolute number of missed vulnerabilities for each scanner and testbed. . . . 100
6 Percentage of missed vulnerabilities for each scanner and testbed. . . . . . . . 100

78



Glossary

clickjacking Clickjacking, also known as user interface (UI) redressing, is a method to
hide an attacker controlled action that will be triggered when a user performs a
seemingly legitimate action provided by a website. An example would be when an
attacker attaches an additional HTTP request to a button that sends a form, such
that the data will not only be sent to the original website but also to an attacker
controlled endpoint. . 1

concolic testing Concolic testing is a combination of symbolic execution and concrete
execution with specific input data. . 7

FOXSS FOXSS (Finding Only XSS) is the name of the prototype implementation of
the XSS analysis approach presented in this paper. . 2, 3, 17, 25, 28, 33, 37, 39, 53,
60, 64, 71–75, 77

fuzzing Is a testing technique in which many different kinds of invalid or unintended
input is sent to the communication interfaces of an application. The processing and
results of the testing input can be observed and possible flaws and vulnerabilities
can be uncovered. . 2, 9, 11

fuzzy logic In fuzzy logic certain aspects are not only exactly true or false, but are
rather measured in degrees of truth. Truth values can be any real numbers from 0
to 1. . 8

obfuscation Is the process of disguising the actual functionality of some program code,
in order to make it hard for a human analyst to understand the actual behavior. .
1

SaaS SaaS, short for software as a service, is the concept of providing a software solution
and its functionality over the network instead of distributing the software. The
provider is responsible for the infrastructure, administration and maintenance,
while the customer can concentrate on using the service. . 55, 70

SPA SPA stands for single page application. It consists of just one HTML document.
Displaying of different sections of the content or interacting with servers is done
dynamically with JavaScript. . 29

79





Acronyms

CMS Content Management System. 70

CSP Content Security Policy. 11, 13, 14, 74

CSS Cascading Style Sheet. 43, 47

DDoS Distributed Denial of Service. 19

DOM Document Object Model. 2, 4, 7, 10, 13, 14, 19, 21, 22, 24–26, 28, 29, 36, 40–42,
45–49, 52, 55, 62, 64, 69, 71, 72, 74, 75, 77

PoC Proof of Concept. 55

WAF Web Application Firewall. 11, 14

XSS Cross-Site Scripting. 1–25, 28–30, 33, 35, 37, 39–43, 45, 47, 48, 51–56, 58–60,
62–74, 77

81





Bibliography

[1] OWASP. Owasp top ten project, 2013. URL https://www.owasp.org/index.
php/Top10#OWASP_Top_10_for_2013. [Online] (visited on 2016-09-15).

[2] Bob Martin, Mason Brown, Alan Paller, Dennis Kirby, and Steve Christey. 2011
cwe/sans top 25 most dangerous software errors, 2011. URL http://cwe.mitre.
org/top25/. [Online] (visited on 2016-10-05).

[3] Guy Podjarny. Xss attacks: The next wave, 2017. URL https://snyk.io/
blog/xss-attacks-the-next-wave/. [Online] (visited on 2017-11-21).

[4] Alexandre Vernotte, Frédéric Dadeau, Franck Lebeau, Bruno Legeard, Fabien
Peureux, and François Piat. Efficient Detection of Multi-step Cross-Site Scripting
Vulnerabilities, pages 358–377. Springer International Publishing, Cham, 2014.
ISBN 978-3-319-13841-1. doi: 10.1007/978-3-319-13841-1_20. URL http://dx.
doi.org/10.1007/978-3-319-13841-1_20.

[5] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A. Vela Nava, and
Martin Johns. Code-reuse attacks for the web: Breaking cross-site scripting
mitigations via script gadgets. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages 1709–1723, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4946-8. doi: 10.1145/3133956.3134091.
URL http://doi.acm.org/10.1145/3133956.3134091.

[6] Lucian Constantin. Xss flaw in popular video-sharing site allowed ddos attack
through browsers, 2014. URL http://www.computerworld.com/article/
2489547/malware-vulnerabilities/xss-flaw-in-popular-video-
sharing-site-allowed-ddos-attack-through-browsers.html. [On-
line] (visited on 2016-09-15).

[7] Dennis Fisher. Researchers uncover interesting browser-based botnet, 2014.
URL https://threatpost.com/researchers-uncover-interesting-
browser-based-botnet/105250/. [Online] (visited on 2016-09-15).

[8] Lisa Vaas. ebay xss bug left users vulnerable to (almost) undetectable phishing
attacks, 2016. URL https://nakedsecurity.sophos.com/2016/01/13/

83

https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Top10#OWASP_Top_10_for_2013
http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/
https://snyk.io/blog/xss-attacks-the-next-wave/
https://snyk.io/blog/xss-attacks-the-next-wave/
http://dx.doi.org/10.1007/978-3-319-13841-1_20
http://dx.doi.org/10.1007/978-3-319-13841-1_20
http://doi.acm.org/10.1145/3133956.3134091
http://www.computerworld.com/article/2489547/malware-vulnerabilities/xss-flaw-in-popular-video-sharing-site-allowed-ddos-attack-through-browsers.html
http://www.computerworld.com/article/2489547/malware-vulnerabilities/xss-flaw-in-popular-video-sharing-site-allowed-ddos-attack-through-browsers.html
http://www.computerworld.com/article/2489547/malware-vulnerabilities/xss-flaw-in-popular-video-sharing-site-allowed-ddos-attack-through-browsers.html
https://threatpost.com/researchers-uncover-interesting-browser-based-botnet/105250/
https://threatpost.com/researchers-uncover-interesting-browser-based-botnet/105250/
https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/
https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/
https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/


ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-
phishing-attacks/. [Online] (visited on 2016-09-15).

[9] Rodolfo Assis. baidu.com security vulnerability, 2015. URL https://www.
openbugbounty.org/incidents/59483/. [Online] (visited on 2016-09-15).

[10] R3NW4. yahoo.com security vulnerability, 2016. URL https://www.
openbugbounty.org/incidents/139816/. [Online] (visited on 2016-09-15).

[11] Bini Shala. amazon.com security vulnerability, 2016. URL https://www.
openbugbounty.org/incidents/152371/. [Online] (visited on 2016-09-15).

[12] Bini Shala. Google stored xss-es, 2016. URL http://bini.tech/google-
stored-xss-es/. [Online] (visited on 2016-09-15).

[13] OWASP. Cross-site scripting (xss), 2016. URL https://www.owasp.org/
index.php/Cross-site_Scripting_(XSS). [Online] (visited on 2016-09-
15).

[14] dionach. The real impact of cross-site scripting, 2016. URL https://www.
dionach.com/blog/the-real-impact-of-cross-site-scripting.
[Online] (visited on 2016-09-15).

[15] Martin Johns. Code-injection vulnerabilities in web applications—exemplified at
cross-site scripting. It-Information Technology Methoden und innovative Anwen-
dungen der Informatik und Informationstechnik, 53(5):256–260, 2011.

[16] Andrea Avancini and Mariano Ceccato. Security testing of web applications: A
search-based approach for cross-site scripting vulnerabilities. In Source Code Analy-
sis and Manipulation (SCAM), 2011 11th IEEE International Working Conference
on, pages 85–94, Sept 2011. doi: 10.1109/SCAM.2011.7.

[17] Isatou Hydara, Abu Bakar Md. Sultan, Hazura Zulzalil, and Novia Admodisastro.
Current state of research on cross-site scripting (xss) – a systematic literature
review. Information and Software Technology, 58:170 – 186, 2015. ISSN 0950-
5849. doi: http://dx.doi.org/10.1016/j.infsof.2014.07.010. URL http://www.
sciencedirect.com/science/article/pii/S0950584914001700.

[18] V Nithya, S Lakshmana Pandian, and C Malarvizhi. A survey on detection and
prevention of cross-site scripting attack. International Journal of Security and Its
Applications, 9(3):139–151, 2015.

[19] Sunil Arora. Javascript frameworks: The best 10 for modern web apps,
2016. URL http://noeticforce.com/best-Javascript-frameworks-
for-single-page-modern-web-applications. [Online] (visited on 2016-
09-15).

84

https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/
https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/
https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/
https://nakedsecurity.sophos.com/2016/01/13/ebay-xss-bug-left-users-vulnerable-to-almost-undetectable-phishing-attacks/
https://www.openbugbounty.org/incidents/59483/
https://www.openbugbounty.org/incidents/59483/
https://www.openbugbounty.org/incidents/139816/
https://www.openbugbounty.org/incidents/139816/
https://www.openbugbounty.org/incidents/152371/
https://www.openbugbounty.org/incidents/152371/
http://bini.tech/google-stored-xss-es/
http://bini.tech/google-stored-xss-es/
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.dionach.com/blog/the-real-impact-of-cross-site-scripting
https://www.dionach.com/blog/the-real-impact-of-cross-site-scripting
http://www.sciencedirect.com/science/article/pii/S0950584914001700
http://www.sciencedirect.com/science/article/pii/S0950584914001700
http://noeticforce.com/best-Javascript-frameworks-for-single-page-modern-web-applications
http://noeticforce.com/best-Javascript-frameworks-for-single-page-modern-web-applications


[20] Mikito Takada. Single page apps in depth, 2016. URL http://
singlepageappbook.com/goal.html. [Online] (visited on 2016-09-15).

[21] Mozilla Developer Network and individual contributors. HTML5, 2016. URL
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
HTML5. [Online] (visited on 2016-09-15).

[22] Creative Bloq Staff. The top 10 realtime web apps, 2013. URL
http://www.creativebloq.com/app-design/top-10-realtime-
web-apps-5133752. [Online] (visited on 2016-09-15).

[23] Ian Fette and Alexey Melnikov. The websocket protocol. RFC 6455, RFC Editor,
December 2011. URL http://www.rfc-editor.org/rfc/rfc6455.txt.
http://www.rfc-editor.org/rfc/rfc6455.txt.

[24] Adam Bergkvist, Daniel Burnett, Cullen Jennings, Anant Narayanan, and Bernard
Aboba. Webrtc 1.0: Real-time communication between browsers. Working draft,
W3C, 7 2016. https://www.w3.org/TR/2016/WD-webrtc-20160913/.

[25] Mozilla Developer Network and individual contributors. Server-sent events,
2015. URL https://developer.mozilla.org/en-US/docs/Web/API/
Server-sent_events/Using_server-sent_events. [Online] (visited on
2016-09-15).

[26] Mozilla Developer Network and individual contributors. Xmlhttprequest level
2, 2016. URL https://developer.mozilla.org/en-US/docs/Web/API/
XMLHttpRequest. [Online] (visited on 2016-09-15).

[27] Mozilla Developer Network and individual contributors. Using web workers,
2016. URL https://developer.mozilla.org/en-US/docs/Web/API/
Web_Workers_API/Using_web_workers. [Online] (visited on 2016-09-15).

[28] Mozilla Developer Network and individual contributors. Fetch api, 2016.
URL https://developer.mozilla.org/en-US/docs/Web/API/Fetch_
API. [Online] (visited on 2016-09-15).

[29] Wei Xu, Fangfang Zhang, and Sencun Zhu. The power of obfuscation techniques
in malicious javascript code: A measurement study. In Malicious and Unwanted
Software (MALWARE), 2012 7th International Conference on, pages 9–16, 10 2012.
doi: 10.1109/MALWARE.2012.6461002.

[30] Benoît Bertholon, Sébastien Varrette, and Pascal Bouvry. Jshadobf: A javascript
obfuscator based on multi-objective optimization algorithms. In International
Conference on Network and System Security, pages 336–349. Springer, 2013.

[31] Guowei Dong, Yan Zhang, Xin Wang, Peng Wang, and Liangkun Liu. Detecting
cross site scripting vulnerabilities introduced by html5. In Computer Science and

85

http://singlepageappbook.com/goal.html
http://singlepageappbook.com/goal.html
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
http://www.creativebloq.com/app-design/top-10-realtime-web-apps-5133752
http://www.creativebloq.com/app-design/top-10-realtime-web-apps-5133752
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API


Software Engineering (JCSSE), 2014 11th International Joint Conference on, pages
319–323, May 2014. doi: 10.1109/JCSSE.2014.6841888.

[32] cure53. Html5 security cheatsheet - a collection of html5 related xss attack vectors,
2016. URL https://html5sec.org/#html5. [Online] (visited on 2017-11-20).

[33] Fabien Duchene. How i evolved your fuzzer: Techniques for black-box evolutionary
fuzzing. In Sec-T, 2014.

[34] Enrico Bazzoli, Claudio Criscione, Federico Maggi, and Stefano Zanero. XSS
PEEKER: Dissecting the XSS Exploitation Techniques and Fuzzing Mechanisms
of Blackbox Web Application Scanners, pages 243–258. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-33630-5. doi: 10.1007/978-3-319-33630-
5_17. URL http://dx.doi.org/10.1007/978-3-319-33630-5_17.

[35] Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. Kameleonfuzz:
Evolutionary fuzzing for black-box xss detection. In Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy, CODASPY ’14, pages
37–48, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2278-2. doi: 10.1145/
2557547.2557550. URL http://doi.acm.org/10.1145/2557547.2557550.

[36] Shay Chen. The reflected xss detection accuracy of web application scanners,
2016. URL http://www.sectoolmarket.com/reflected-cross-site-
scripting-detection-accuracy-unified-list.html. [Online] (visited
on 2017-11-22).

[37] FAKHRELDEEN ABBAS SAEED and E ABED ELGABAR. Assessment of
open source web application security scanners. Journal of Theoretical and Applied
Information Technology, 61(2), 2014.

[38] Dengfeng Xia. Comparing web application scanners for xss attacks, 2013.

[39] Natasa Suteva, Dragi Zlatkovski, and Aleksandra Mileva. Evaluation and testing
of several free/open source web vulnerability scanners. In The 10th Conference for
Informatics and Information Technology (CIIT 2013), 18-21 Apr 2013 , Bitola,
Macedonia, 2013.

[40] Kinnaird McQuade. Open source web vulnerability scanners: The cost effective
choice. In Proceedings of the Conference for Information Systems Applied Research
ISSN, volume 2167, page 1508, 2014.

[41] Claudio Criscione. Ready, aim, fire: an open-source tool to test web security scan-
ners, 2014. URL https://security.googleblog.com/2014/11/ready-
aim-fire-open-source-tool-to-test.html. [Online] (visited on 2016-10-
07).

86

https://html5sec.org/#html5
http://dx.doi.org/10.1007/978-3-319-33630-5_17
http://doi.acm.org/10.1145/2557547.2557550
http://www.sectoolmarket.com/reflected-cross-site-scripting-detection-accuracy-unified-list.html
http://www.sectoolmarket.com/reflected-cross-site-scripting-detection-accuracy-unified-list.html
https://security.googleblog.com/2014/11/ready-aim-fire-open-source-tool-to-test.html
https://security.googleblog.com/2014/11/ready-aim-fire-open-source-tool-to-test.html


[42] Takeshi Matsuda, Daiki Koizumi, and Michio Sonoda. Cross site scripting attacks
detection algorithm based on the appearance position of characters. In Communi-
cations, Computers and Applications (MIC-CCA), 2012 Mosharaka International
Conference on, pages 65–70, Oct 2012.

[43] Yu Sun and Dake He. Model checking for the defense against cross-site scripting at-
tacks. In Computer Science Service System (CSSS), 2012 International Conference
on, pages 2161–2164, Aug 2012. doi: 10.1109/CSSS.2012.537.

[44] Isatou Hydara, Abu Bakar Md Sultan, Hazura Zulzalil, and Novia Admodisastro.
Cross-site scripting detection based on an enhanced genetic algorithm. Indian
Journal of Science and Technology, 8(30), 2015. doi: 10.17485/ijst/2015/v8i30/
86055. URL http://dx.doi.org/10.17485/ijst/2015/v8i30/86055.

[45] Abdalla Wasef Marashdih, Zarul Fitri Zaaba, and Herman Khalid Omer. Web
security: Detection of cross site scripting in php web application using genetic algo-
rithm. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE
AND APPLICATIONS, 8(5):64–75, 2017.

[46] Lwin Khin Shar and Hee Beng Kuan Tan. Automated removal of cross site scripting
vulnerabilities in web applications. Information and Software Technology, 54(5):
467 – 478, 2012. ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2011.
12.006. URL http://www.sciencedirect.com/science/article/pii/
S0950584911002503.

[47] Jinkun Pan and Xiaoguang Mao. Detecting dom-sourced cross-site scripting in
browser extensions. In Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on, pages 24–34. IEEE, 2017.

[48] Lwin Khin Shar and Hee Beng Kuan Tan. Mining input sanitization patterns
for predicting sql injection and cross site scripting vulnerabilities. In Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pages
1293–1296, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-1-4673-1067-3. URL
http://dl.acm.org/citation.cfm?id=2337223.2337399.

[49] Mukesh Kumar Gupta, Mahesh Chandra Govil, and Girdhari Singh. Predicting
cross-site scripting (xss) security vulnerabilities in web applications. In Com-
puter Science and Software Engineering (JCSSE), 2015 12th International Joint
Conference on, pages 162–167, July 2015. doi: 10.1109/JCSSE.2015.7219789.

[50] Julian Thome, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand. An
integrated approach for effective injection vulnerability analysis of web applications
through security slicing and hybrid constraint solving. Technical report, SnT
Centre-University of Luxembourg, 2017.

[51] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand. Search-
driven string constraint solving for vulnerability detection. In Proceedings of the

87

http://dx.doi.org/10.17485/ijst/2015/v8i30/86055
http://www.sciencedirect.com/science/article/pii/S0950584911002503
http://www.sciencedirect.com/science/article/pii/S0950584911002503
http://dl.acm.org/citation.cfm?id=2337223.2337399


39th International Conference on Software Engineering, pages 198–208. IEEE Press,
2017.

[52] Michelle E. Ruse and Samik Basu. Detecting cross-site scripting vulnerability using
concolic testing. In Information Technology: New Generations (ITNG), 2013 Tenth
International Conference on, pages 633–638, April 2013. doi: 10.1109/ITNG.2013.
97.

[53] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. Andromeda: Accurate and Scalable Security Analysis of Web Appli-
cations, pages 210–225. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
ISBN 978-3-642-37057-1. doi: 10.1007/978-3-642-37057-1_15. URL http:
//dx.doi.org/10.1007/978-3-642-37057-1_15.

[54] Mukesh Kumar Gupta, Mahesh Chandra Govil, Girdhari Singh, and Priya Sharma.
Xssdm: Towards detection and mitigation of cross-site scripting vulnerabilities in
web applications. In Advances in Computing, Communications and Informatics
(ICACCI), 2015 International Conference on, pages 2010–2015, Aug 2015. doi:
10.1109/ICACCI.2015.7275912.

[55] R Suguna, T Kujani, N Suganya, and C Krishnaveni. Hunting pernicious attacks
in web applications with xprober. American Journal of Applied Sciences, 11(7):
1164, 2014.

[56] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gautam Nagesh
Peri. Code injection attacks on html5-based mobile apps: Characterization, de-
tection and mitigation. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 66–77, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2957-6. doi: 10.1145/2660267.2660275. URL
http://doi.acm.org/10.1145/2660267.2660275.

[57] Mahmoud Mohammadi, Bill Chu, and Heather Ritcher Lipford. Poster: Using
unit testing to detect sanitization flaws. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 1659–1661,
New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3832-5. doi: 10.1145/2810103.
2810130. URL http://doi.acm.org/10.1145/2810103.2810130.

[58] Mahmoud Mohammadi, Bill Chu, Heather Richter Lipford, and Emerson Murphy-
Hill. Automatic web security unit testing: Xss vulnerability detection. In Proceedings
of the 11th International Workshop on Automation of Software Test, AST ’16, pages
78–84, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4151-6. doi: 10.1145/
2896921.2896929. URL http://doi.acm.org/10.1145/2896921.2896929.

[59] Mahmoud Mohammadi, Bill Chu, and Heather Richter Lipford. Detecting cross-
site scripting vulnerabilities through automated unit testing. In Software Quality,
Reliability and Security (QRS), 2017 IEEE International Conference on, pages
364–373. IEEE, 2017.

88

http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://doi.acm.org/10.1145/2660267.2660275
http://doi.acm.org/10.1145/2810103.2810130
http://doi.acm.org/10.1145/2896921.2896929


[60] Andrea Avancini and Mariano Ceccato. Comparison and integration of genetic algo-
rithms and dynamic symbolic execution for security testing of cross-site scripting vul-
nerabilities. Information and Software Technology, 55(12):2209 – 2222, 2013. ISSN
0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2013.08.001. URL http://www.
sciencedirect.com/science/article/pii/S0950584913001602.

[61] Andrea Avancini and Mariano Ceccato. Towards security testing with taint analysis
and genetic algorithms. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Secure Systems, SESS ’10, pages 65–71, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-965-7. doi: 10.1145/1809100.1809110. URL http:
//doi.acm.org/10.1145/1809100.1809110.

[62] Hossain Shahriar and Hisham Haddad. Risk assessment of code injection vulnera-
bilities using fuzzy logic-based system. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC ’14, pages 1164–1170, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2469-4. doi: 10.1145/2554850.2555071. URL
http://doi.acm.org/10.1145/2554850.2555071.

[63] Shay Chen. Top 10: The web application vulnerability scanners
benchmark, 2012 - commercial & open source scanners, 2012. URL
http://sectooladdict.blogspot.co.at/2012/07/2012-web-
application-scanner-benchmark.html. [Online] (visited on 2017-11-22).

[64] Chandan Kumar. 12 online free tools to scan website security vulnerabilities
& malware, 2017. URL https://geekflare.com/online-scan-website-
security-vulnerabilities/. [Online] (visited on 2017-11-22).

[65] Brian Shura. Web application security scanner list, 2010. URL http:
//projects.webappsec.org/w/page/13246988/Web%20Application%
20Security%20Scanner%20List. [Online] (visited on 2017-11-22).

[66] OWASP. Vulnerability scanning tools, 2016. URL https://www.owasp.org/
index.php/Category:Vulnerability_Scanning_Tools. [Online] (visited
on 2017-11-23).

[67] Gordon Lyon. Top 125 network security tools, 2015. URL http://sectools.
org/tag/web-scanners/. [Online] (visited on 2017-11-22).

[68] Pavitra Shankdhar. 14 best open source web application vulnerability scanners,
2014. URL http://resources.infosecinstitute.com/14-popular-
web-application-vulnerability-scanners/. [Online] (visited on 2017-
11-22).

[69] Abdulrahman Alzahrani, Ali Alqazzaz, Ye Zhu, Huirong Fu, and Nabil Almashfi.
Web application security tools analysis. In Big Data Security on Cloud (Big-
DataSecurity), IEEE International Conference on High Performance and Smart
Computing (HPSC), and IEEE International Conference on Intelligent Data and

89

http://www.sciencedirect.com/science/article/pii/S0950584913001602
http://www.sciencedirect.com/science/article/pii/S0950584913001602
http://doi.acm.org/10.1145/1809100.1809110
http://doi.acm.org/10.1145/1809100.1809110
http://doi.acm.org/10.1145/2554850.2555071
http://sectooladdict.blogspot.co.at/2012/07/2012-web-application-scanner-benchmark.html
http://sectooladdict.blogspot.co.at/2012/07/2012-web-application-scanner-benchmark.html
https://geekflare.com/online-scan-website-security-vulnerabilities/
https://geekflare.com/online-scan-website-security-vulnerabilities/
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
http://sectools.org/tag/web-scanners/
http://sectools.org/tag/web-scanners/
http://resources.infosecinstitute.com/14-popular-web-application-vulnerability-scanners/
http://resources.infosecinstitute.com/14-popular-web-application-vulnerability-scanners/


Security (IDS), 2017 IEEE 3rd International Conference on, pages 237–242. IEEE,
2017.

[70] Yuan-Hsin Tung, Shian-Shyong Tseng, Jen-Feng Shih, and Hwai-Ling Shan. W-vst:
A testbed for evaluating web vulnerability scanner. In 2014 14th International
Conference on Quality Software, pages 228–233, Oct 2014. doi: 10.1109/QSIC.2014.
50.

[71] Jinkun Pan, Xiaoguang Mao, and Weishi Li. Taint inference for cross-site scripting
in context of url rewriting and html sanitization. ETRI Journal, 38(2):376–386,
2016. doi: 10.4218/etrij.16.0115.0570. URL http://dx.doi.org/10.4218/
etrij.16.0115.0570.

[72] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu,
and Prateek Saxena. Dexterjs: Robust testing platform for dom-based xss vul-
nerabilities. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 946–949, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/2786805.2803191. URL
http://doi.acm.org/10.1145/2786805.2803191.

[73] Thiago S. Rocha and Eduardo Souto. Etssdetector: A tool to automatically detect
cross-site scripting vulnerabilities. In Network Computing and Applications (NCA),
2014 IEEE 13th International Symposium on, pages 306–309, Aug 2014. doi:
10.1109/NCA.2014.53.

[74] B. A. Vishnu and K. P. Jevitha. Prediction of cross-site scripting attack using
machine learning algorithms. In Proceedings of the 2014 International Conference
on Interdisciplinary Advances in Applied Computing, ICONIAAC ’14, pages 55:1–
55:5, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2908-8. doi: 10.1145/
2660859.2660969. URL http://doi.acm.org/10.1145/2660859.2660969.

[75] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: Large-scale
detection of dom-based xss. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer &#38; Communications Security, CCS ’13, pages 1193–1204, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2477-9. doi: 10.1145/2508859.2516703.
URL http://doi.acm.org/10.1145/2508859.2516703.

[76] Claudio Criscione. Google firing range on github, 2014. URL https://github.
com/google/firing-range. [Online] (visited on 2016-10-07).

[77] Xiaobing Guo, Shuyuan Jin, and Yaxing Zhang. Xss vulnerability detection using
optimized attack vector repertory. In Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2015 International Conference on, pages 29–36,
Sept 2015. doi: 10.1109/CyberC.2015.50.

[78] Josip Bozic and Franz Wotawa. Xss pattern for attack modeling in testing. In
Proceedings of the 8th International Workshop on Automation of Software Test, AST

90

http://dx.doi.org/10.4218/etrij.16.0115.0570
http://dx.doi.org/10.4218/etrij.16.0115.0570
http://doi.acm.org/10.1145/2786805.2803191
http://doi.acm.org/10.1145/2660859.2660969
http://doi.acm.org/10.1145/2508859.2516703
https://github.com/google/firing-range
https://github.com/google/firing-range


’13, pages 71–74, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-6161-3.
URL http://dl.acm.org/citation.cfm?id=2662413.2662429.

[79] Adam Barth. Chromium blog: Security in depth: New security fea-
tures, 2010. URL https://blog.chromium.org/2010/01/security-in-
depth-new-security-features.html. [Online] (visited on 2016-10-21).

[80] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered
harmful in client-side xss filters. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, pages 91–100, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-799-8. doi: 10.1145/1772690.1772701. URL http://doi.acm.
org/10.1145/1772690.1772701.

[81] David Ross. Ie8 security part iv: The xss filter, 2008. URL https:
//blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-
iv-the-xss-filter/. [Online] (visited on 2016-10-21).

[82] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin
Johns. Precise client-side protection against dom-based cross-site scripting.
In 23rd USENIX Security Symposium (USENIX Security 14), pages 655–670,
San Diego, CA, August 2014. USENIX Association. ISBN 978-1-931971-
15-7. URL https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/stock.

[83] Nick Nikiforakis. Bypassing chrome’s anti-xss filter, 2011. URL http://blog.
securitee.org/?p=37. [Online] (visited on 2016-10-21).

[84] Rodolfo Assis. Chrome xss bypass, 2016. URL http://brutelogic.com.br/
blog/chrome-xss-bypass/. [Online] (visited on 2016-10-21).

[85] Mario Heiderich, Alex Inführ, Fabian Fäßler, Nikolai Krein, Masato Kinugawa,
Tsang-Chi Hong, Dario Weißer, and Paula Pustułka. Cure53 browser security
white paper, 9 2017. URL https://github.com/cure53/browser-sec-
whitepaper.

[86] Mozilla Developer Network and individual contributors. Same-origin pol-
icy, 2016. URL https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy. [Online] (visited on 2016-10-25).

[87] Adam Barth. The web origin concept. RFC 6454, RFC Editor, 12 2011. URL
https://tools.ietf.org/html/rfc6454.

[88] Giorgio Maone. Noscript - javascript/java/flash blocker for a safer firefox experience!,
2016. URL https://noscript.net/features. [Online] (visited on 2016-10-
21).

91

http://dl.acm.org/citation.cfm?id=2662413.2662429
https://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
https://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
http://doi.acm.org/10.1145/1772690.1772701
http://doi.acm.org/10.1145/1772690.1772701
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/stock
http://blog.securitee.org/?p=37
http://blog.securitee.org/?p=37
http://brutelogic.com.br/blog/chrome-xss-bypass/
http://brutelogic.com.br/blog/chrome-xss-bypass/
https://github.com/cure53/browser-sec-whitepaper
https://github.com/cure53/browser-sec-whitepaper
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://tools.ietf.org/html/rfc6454
https://noscript.net/features


[89] Andrew Y. Scriptsafe, 2016. URL https://chrome.google.com/webstore/
detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf. [Online]
(visited on 2016-10-21).

[90] Raymond Hill. umatrix, 2016. URL https://chrome.google.com/
webstore/detail/umatrix/ogfcmafjalglgifnmanfmnieipoejdcf?
hl=en. [Online] (visited on 2016-10-21).

[91] Shashank Gupta and Brij Bhooshan Gupta. Xss-immune: a google chrome extension-
based xss defensive framework for contemporary platforms of web applications.
Security and Communication Networks, 2016. ISSN 1939-0122. doi: 10.1002/sec.
1579. URL http://dx.doi.org/10.1002/sec.1579. SCN-16-0123.R1.

[92] Shashank Gupta and Brij Bhooshan Gupta. Bds: browser dependent xss sanitizer.
Book on Cloud-Based Databases with Biometric Applications, IGI-Global’s Advances
in Information Security, Privacy, and Ethics (AISPE) series, pages 174–191, 2014.

[93] Bhawna Mewara, Sheetal Bairwa, Jyoti Gajrani, and Vinesh Jain. Enhanced browser
defense for reflected cross-site scripting. In Reliability, Infocom Technologies and
Optimization (ICRITO) (Trends and Future Directions), 2014 3rd International
Conference on, pages 1–6, Oct 2014. doi: 10.1109/ICRITO.2014.7014761.

[94] Brandon Sterne and Adam Barth. Content security policy 1.0. Candidate recommen-
dation, W3C, November 2012. http://www.w3.org/TR/2012/CR-CSP-20121115/.

[95] Mike West, Adam Barth, Dan Veditz, and Brandon Sterne. Content
security policy level 2. Candidate recommendation, W3C, July 2015.
http://www.w3.org/TR/CSP2/.

[96] Mike West. Content security policy level 3. Working draft, W3C, September 2016.
http://www.w3.org/TR/CSP3/.

[97] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. Data exfiltration in
the face of csp. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’16, pages 853–864, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4233-9. doi: 10.1145/2897845.2897899. URL
http://doi.acm.org/10.1145/2897845.2897899.

[98] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. Csp
is dead, long live csp! on the insecurity of whitelists and the future of content
security policy. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security, Vienna, Austria, 2016.

[99] Michael Weissbacher, Tobias Lauinger, and William Robertson. Why Is CSP Fail-
ing? Trends and Challenges in CSP Adoption, pages 212–233. Springer International
Publishing, Cham, 2014. ISBN 978-3-319-11379-1. doi: 10.1007/978-3-319-11379-
1_11. URL http://dx.doi.org/10.1007/978-3-319-11379-1_11.

92

https://chrome.google.com/webstore/detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf
https://chrome.google.com/webstore/detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf
https://chrome.google.com/webstore/detail/umatrix/ogfcmafjalglgifnmanfmnieipoejdcf?hl=en
https://chrome.google.com/webstore/detail/umatrix/ogfcmafjalglgifnmanfmnieipoejdcf?hl=en
https://chrome.google.com/webstore/detail/umatrix/ogfcmafjalglgifnmanfmnieipoejdcf?hl=en
http://dx.doi.org/10.1002/sec.1579
http://doi.acm.org/10.1145/2897845.2897899
http://dx.doi.org/10.1007/978-3-319-11379-1_11


[100] Mattia Fazzini, Prateek Saxena, and Alessandro Orso. Autocsp: Automati-
cally retrofitting csp to web applications. In Proceedings of the 37th Interna-
tional Conference on Software Engineering - Volume 1, ICSE ’15, pages 336–
346, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5. URL
http://dl.acm.org/citation.cfm?id=2818754.2818797.

[101] Shukai Liu, Xuexiong Yan, Qingxian Wang, Xu Zhao, Chuansen Chai, and Yajing
Sun. A protection mechanism against malicious html and javascript code in
vulnerable web applications. Mathematical Problems in Engineering, 2016, 2016. doi:
10.1155/2016/7107042. URL http://dx.doi.org/10.1155/2016/7107042.

[102] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages 601–610, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-654-7. doi: 10.1145/1242572.1242654. URL
http://doi.acm.org/10.1145/1242572.1242654.

[103] Stefan Prandl, Mihai Lazarescu, and Duc-Son Pham. A Study of Web Application
Firewall Solutions, pages 501–510. Springer International Publishing, Cham, 2015.
ISBN 978-3-319-26961-0. doi: 10.1007/978-3-319-26961-0_29. URL http://dx.
doi.org/10.1007/978-3-319-26961-0_29.

[104] Michael Becher. Web Application Firewalls. VDM Verlag, Saarbr&#252;cken,
Germany, Germany, 2007. ISBN 383640446X, 9783836404464.

[105] G. Rama Koteswara Rao, R. Satya Prasad, and M. Ramesh. Neutralizing cross-
site scripting attacks using open source technologies. In Proceedings of the Sec-
ond International Conference on Information and Communication Technology
for Competitive Strategies, ICTCS ’16, pages 24:1–24:6, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3962-9. doi: 10.1145/2905055.2905230. URL
http://doi.acm.org/10.1145/2905055.2905230.

[106] Metin Sahin and Ibrahim Sogukpınar. An efficient firewall for web applications
(efwa). In Computer Science and Engineering (UBMK), 2017 International Con-
ference on, pages 1150–1155. IEEE, 2017.

[107] Piyush A. Sonewar and Nalini A. Mhetre. A novel approach for detection of sql
injection and cross site scripting attacks. In Pervasive Computing (ICPC), 2015
International Conference on, pages 1–4, Jan 2015. doi: 10.1109/PERVASIVE.2015.
7087131.

[108] Matthew Van Gundy and Hao Chen. Noncespaces: Using randomization to defeat
cross-site scripting attacks. Computers & Security, 31(4):612 – 628, 2012. ISSN
0167-4048. doi: http://dx.doi.org/10.1016/j.cose.2011.12.004. URL http://www.
sciencedirect.com/science/article/pii/S0167404811001477.

93

http://dl.acm.org/citation.cfm?id=2818754.2818797
http://dx.doi.org/10.1155/2016/7107042
http://doi.acm.org/10.1145/1242572.1242654
http://dx.doi.org/10.1007/978-3-319-26961-0_29
http://dx.doi.org/10.1007/978-3-319-26961-0_29
http://doi.acm.org/10.1145/2905055.2905230
http://www.sciencedirect.com/science/article/pii/S0167404811001477
http://www.sciencedirect.com/science/article/pii/S0167404811001477


[109] Shashank Gupta and Brij Bhooshan Gupta. Xss-safe: A server-side approach to
detect and mitigate cross-site scripting (xss) attacks in javascript code. Arabian
Journal for Science and Engineering, 41(3):897–920, 2016. ISSN 2191-4281. doi: 10.
1007/s13369-015-1891-7. URL http://dx.doi.org/10.1007/s13369-015-
1891-7.

[110] Hossain Shahriar, Sarah M North, YoonJi Lee, and Roger Hu. Server-side code
injection attack detection based on kullback-leibler distance. International Journal
of Internet Technology and Secured Transactions 8, 5(3):240–261, 2014.

[111] A Duraisamy, M Sathiyamoorthy, and S Chandrasekar. A server side solution
for protection of web applications from cross-site scripting attacks. International
Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN, pages
2278–3075, 2013.

[112] M Ridwan Zalbina, Tri Wanda Septian, Deris Stiawan, Moh Yazid Idris, Ahmad
Heryanto, and Rahmat Budiarto. Payload recognition and detection of cross
site scripting attack. In Anti-Cyber Crimes (ICACC), 2017 2nd International
Conference on, pages 172–176. IEEE, 2017.

[113] Swaswati Goswami, Nazrul Hoque, Dhruba K Bhattacharyya, and Jugal Kalita.
An unsupervised method for detection of xss attack. IJ Network Security, 19(5):
761–775, 2017.

[114] Swati Maurya. Positive security model based server-side solution for prevention of
cross-site scripting attacks. In 2015 Annual IEEE India Conference (INDICON),
pages 1–5, Dec 2015. doi: 10.1109/INDICON.2015.7443473.

[115] Joel Kamdem Teto, Ruth Bearden, and Dan Chia-Tien Lo. The impact of defen-
sive programming on i/o cybersecurity attacks. In Proceedings of the SouthEast
Conference, pages 102–111. ACM, 2017.

[116] Mike Samuel, Prateek Saxena, and Dawn Song. Context-sensitive auto-sanitization
in web templating languages using type qualifiers. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 587–600,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0948-6. doi: 10.1145/2046707.
2046775. URL http://doi.acm.org/10.1145/2046707.2046775.

[117] Jonas Ceponis, Lina Ceponiene, Algimantas Venckauskas, and Dainius Mockus.
Evaluation of Open Source Server-Side XSS Protection Solutions, pages 345–356.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-41947-8. doi:
10.1007/978-3-642-41947-8_29. URL http://dx.doi.org/10.1007/978-3-
642-41947-8_29.

[118] Dimitris Mitropoulos, Panagiotis Louridas, Michalis Polychronakis, and Angelos D
Keromytis. Defending against web application attacks: Approaches, challenges and
implications. IEEE Transactions on Dependable and Secure Computing, 2017.

94

http://dx.doi.org/10.1007/s13369-015-1891-7
http://dx.doi.org/10.1007/s13369-015-1891-7
http://doi.acm.org/10.1145/2046707.2046775
http://dx.doi.org/10.1007/978-3-642-41947-8_29
http://dx.doi.org/10.1007/978-3-642-41947-8_29


[119] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand. Joanaudit:
a tool for auditing common injection vulnerabilities. In 11th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering. ACM, 2017.

[120] Adam Doupé, Weidong Cui, Mariusz H. Jakubowski, Marcus Peinado, Christopher
Kruegel, and Giovanni Vigna. dedacota: toward preventing server-side xss via
automatic code and data separation. In Proceedings of the 2013 ACM SIGSAC
conference on Computer &#38; communications security, CCS ’13, pages 1205–
1216, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2477-9. doi: 10.1145/
2508859.2516708. URL http://doi.acm.org/10.1145/2508859.2516708.

[121] Vikas K. Malviya, Saket Saurav, and Atul Gupta. On security issues in web
applications through cross site scripting (xss). In 2013 20th Asia-Pacific Software
Engineering Conference (APSEC), volume 1, pages 583–588, Dec 2013. doi: 10.
1109/APSEC.2013.85.

[122] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z.
Yang. mxss attacks: Attacking well-secured web-applications by using innerhtml
mutations. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
&#38; Communications Security, CCS ’13, pages 777–788, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2477-9. doi: 10.1145/2508859.2516723. URL http:
//doi.acm.org/10.1145/2508859.2516723.

[123] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. The unexpected
dangers of dynamic javascript. In 24th USENIX Security Symposium (USENIX
Security 15), pages 723–735, Washington, D.C., August 2015. USENIX Associa-
tion. ISBN 978-1-931971-232. URL https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/lekies.

[124] Jeremiah Grossman. XSS Attacks: Cross-site scripting exploits and defense. Syn-
gress, 2007.

[125] Haneet Kour and Lalit Sen Sharma. Tracing out cross site scripting vulnerabilities
in modern scripts. International Journal of Advanced Networking and Applications,
7(5):2862, 2016.

[126] Ankita Singh and Amit Saxena. Cross site scripting: A survey paper. prevention, 1
(02), 2014.

[127] Philippe Le Hégaret, Jonathan Robie, Mike Champion, Lauren Wood,
Steven B Byrne, Gavin Nicol, and Arnaud Le Hors. Document object model
(DOM) level 3 core specification. W3C recommendation, W3C, April 2004.
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407.

95

http://doi.acm.org/10.1145/2508859.2516708
http://doi.acm.org/10.1145/2508859.2516723
http://doi.acm.org/10.1145/2508859.2516723
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies


[128] Amit Klein. Dom based cross site scripting or xss of the third kind. Web Application
Security Consortium, 2005. URL http://www.webappsec.org/projects/
articles/071105.shtml.

[129] Gareth Heyes. Shazzer - shared fuzzer, 2017. URL http://shazzer.co.uk/
vectors. [Online] (visited on 2017-11-22).

[130] R3NW4. New and 0day xss vectors collected from everywhere, 2015. URL https:
//www.openbugbounty.org/forum/viewtopic.php?t=7. [Online] (visited
on 2017-11-22).

[131] Rodolfo Assis. Xss cheat sheet, 2017. URL http://brutelogic.com.br/
blog/cheat-sheet/. [Online] (visited on 2017-11-22).

[132] Robert Hansen, Adam Lange, and Mishra Dhiraj. Xss filter evasion cheat sheet,
2017. URL https://www.owasp.org/index.php/XSS_Filter_Evasion_
Cheat_Sheet. [Online] (visited on 2017-11-22).

[133] Fraser Howard. Malware with your mocha: Obfuscation and anti emulation tricks in
malicious javascript, 2010. URL http://www.sophos.com/medialibrary/
PDFs/technical%20papers/malware_with_your_mocha.pdf.

[134] Kazumasa Itabashi. Portable document format malware. Symantec Secu-
rity Response, 2011. URL http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/portable_
document_format_malware.pdf.

[135] Martin Kleppe. Jsfuck - write any javascript with 6 characters, 2010. URL http://
www.jsfuck.com/. Original idea of http://sla.ckers.org/forum/read.
php?24,32930.

[136] OWASP. Owasp webgoat project, 2016. URL https://www.owasp.org/index.
php/Category:OWASP_WebGoat_Project. [Online] (visited on 2016-10-26).

[137] DVWA team. Damn vulnerable web application (dvwa), 2016. URL https:
//github.com/ethicalhack3r/DVWA. [Online] (visited on 2016-11-03).

[138] @filedescriptor. Css: Cascading style scripting, 2016. URL https://blog.
innerht.ml/cascading-style-scripting/. [Online] (visited on 2018-01-
09).

[139] netmarketshare.com. Browser market share, 2017. URL https:
//www.netmarketshare.com/browser-market-share.aspx?options=
%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%
3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%
22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%
22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%

96

http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://shazzer.co.uk/vectors
http://shazzer.co.uk/vectors
https://www.openbugbounty.org/forum/viewtopic.php?t=7
https://www.openbugbounty.org/forum/viewtopic.php?t=7
http://brutelogic.com.br/blog/cheat-sheet/
http://brutelogic.com.br/blog/cheat-sheet/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://www.sophos.com/medialibrary/PDFs/technical%20papers/malware_with_your_mocha.pdf
http://www.sophos.com/medialibrary/PDFs/technical%20papers/malware_with_your_mocha.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/portable_document_format_malware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/portable_document_format_malware.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/portable_document_format_malware.pdf
http://www.jsfuck.com/
http://www.jsfuck.com/
http://sla.ckers.org/forum/read.php?24,32930
http://sla.ckers.org/forum/read.php?24,32930
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://github.com/ethicalhack3r/DVWA
https://github.com/ethicalhack3r/DVWA
https://blog.innerht.ml/cascading-style-scripting/
https://blog.innerht.ml/cascading-style-scripting/
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D


22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-
1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%
22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%
2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-
1000%22%7D. [Online] (visited on 2017-12-22).

[140] w3counter.com. Browser & platform market share november 2017,
2017. URL https://www.w3counter.com/globalstats.php?year=
2017&month=11. [Online] (visited on 2017-12-22).

[141] Docker Inc. Docker, 2017. URL https://www.docker.com/. [Online] (visited
on 2017-12-20).

[142] Lavakumar Kuppan. Ironwasp - iron web application advanced security testing
platform, 2014. URL http://ironwasp.org/. [Online] (visited on 2016-10-18).

[143] Subgraph. Vega vulnerability scanner, 2014. URL https://subgraph.com/
vega/index.en.html. [Online] (visited on 2016-10-18).

[144] OWASP. Owasp zed attack proxy project, 2016. URL https://www.owasp.
org/index.php/OWASP_Zed_Attack_Proxy_Project. [Online] (visited on
2016-10-18).

[145] Sarosys OOD. Arachni - web application security scanner framework, 2016. URL
http://www.arachni-scanner.com/. [Online] (visited on 2016-10-18).

[146] Nicolas Surribas. Wapiti : a free and open-source web-application vulnerability
scanner in python for windows, linux, bsd, osx, 2014. URL http://wapiti.
sourceforge.net/. [Online] (visited on 2016-10-18).

[147] "psy". Xsser: Cross site "scripter", 2016. URL https://xsser.03c8.net/.
[Online] (visited on 2016-10-18).

[148] Andres Riancho. w3af - open source web application security scanner, 2013. URL
http://w3af.org/. [Online] (visited on 2016-10-18).

[149] Chris Sullo and David Lodge. Nikto2, 2016. URL https://cirt.net/nikto2.
[Online] (visited on 2016-10-18).

[150] Miroslav Stampar. Damn small xss scanner, 2016. URL https://github.com/
stamparm/DSXS. [Online] (visited on 2016-10-18).

[151] Syhunt Security. Web application security scanner - syhunt, 2016. URL http:
//www.syhunt.com/en/. [Online] (visited on 2016-10-18).

[152] Tinfoil Security Inc. Website security | recurring, affordable, and usable, 2016. URL
https://www.tinfoilsecurity.com/. [Online] (visited on 2016-10-18).

97

https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.netmarketshare.com/browser-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%2C%22Desktop%2Flaptop%22%2C%22Tablet%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Custom%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersMobile%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222017-11%22%2C%22dateEnd%22%3A%222017-11%22%2C%22segments%22%3A%22-1000%22%7D
https://www.w3counter.com/globalstats.php?year=2017&month=11
https://www.w3counter.com/globalstats.php?year=2017&month=11
https://www.docker.com/
http://ironwasp.org/
https://subgraph.com/vega/index.en.html
https://subgraph.com/vega/index.en.html
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
http://www.arachni-scanner.com/
http://wapiti.sourceforge.net/
http://wapiti.sourceforge.net/
https://xsser.03c8.net/
http://w3af.org/
https://cirt.net/nikto2
https://github.com/stamparm/DSXS
https://github.com/stamparm/DSXS
http://www.syhunt.com/en/
http://www.syhunt.com/en/
https://www.tinfoilsecurity.com/


[153] MileSCAN Technologies. Milescan parospro, 2013. URL http://www.milescan.
com/software.html. [Online] (visited on 2017-11-23).

98

http://www.milescan.com/software.html
http://www.milescan.com/software.html


Appendices

Appendix A: Detection Results

Detected FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 133 64 63 62 60 46 44 57 0 80 60 20 39

xss playground 1346 658 437 690 578 422 187 473 0 218 236 0 350

total 1479 722 500 752 638 468 231 530 0 298 296 20 389

Table 1: Absolute number of detected test cases per scanner and testbed.

Detected FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 89,86% 43,24% 42,57% 41,89% 40,54% 31,08% 29,73% 38,51% 0,00% 54,05% 40,54% 13,51% 26,35%

xss playground 90,40% 44,19% 29,35% 46,34% 38,82% 28,34% 12,56% 31,77% 0,00% 14,64% 15,85% 0,00% 23,51%

total 90,35% 44,11% 30,54% 45,94% 38,97% 28,59% 14,11% 32,38% 0,00% 18,20% 18,08% 1,22% 23,76%

Table 2: Percentage of detected test cases for each scanner and testbed.

False positive FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 0 12 20 9 8 2 18 10 0 14 12 1 8

xss playground 0 22 25 28 16 8 13 28 0 7 12 0 10

total 0 34 45 37 24 10 31 38 0 21 24 1 18

Table 3: Absolute number of false positive results of non-detectable test cases for each
scanner and testbed.

99



False positive FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 0,00% 19,35% 32,26% 14,52% 12,90% 3,23% 29,03% 16,13% 0,00% 22,58% 19,35% 1,61% 12,90%

xss playground 0,00% 20,18% 22,94% 25,69% 14,68% 7,34% 11,93% 25,69% 0,00% 6,42% 11,01% 0,00% 9,17%

total 0,00% 19,88% 26,32% 21,64% 14,04% 5,85% 18,13% 22,22% 0,00% 12,28% 14,04% 0,58% 10,53%

Table 4: Percentage of false positive results of non-detectable test cases for each scanner
and testbed.

False negative FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 15 96 105 95 96 104 122 101 148 82 100 129 117

xss playground 143 853 1077 827 927 1075 1315 1044 1489 1278 1265 1489 1149

total 158 949 1182 922 1023 1179 1437 1145 1637 1360 1365 1618 1266

Table 5: Absolute number of missed vulnerabilities for each scanner and testbed.

False negative FO
XS
S

Iro
nW

asp

Ve
ga

ZA
P

Ar
ach

ni

W
ap
iti

XS
Se
r

w3
af

Ni
kto

DS
XS

Sy
hu
nt
CE

Ti
nfo
il

Pa
ros
Pr
o

firing range 10,14% 64,86% 70,95% 64,19% 64,86% 70,27% 82,43% 68,24% 100,00% 55,41% 67,57% 87,16% 79,05%

xss playground 9,60% 57,29% 72,33% 55,54% 62,26% 72,20% 88,31% 70,11% 100,00% 85,83% 84,96% 100,00% 77,17%

total 9,65% 57,97% 72,21% 56,32% 62,49% 72,02% 87,78% 69,95% 100,00% 83,08% 83,38% 98,84% 77,34%

Table 6: Percentage of missed vulnerabilities for each scanner and testbed.

100


	Kurzfassung
	Abstract
	Contents
	Introduction
	Approach
	Contributions
	Structure of the Thesis

	Related Work
	XSS Vulnerability Detection
	XSS Execution Prevention

	Background
	Cross-site Scripting
	Cross-site Scripting Types
	Black-box Vulnerability Testing

	FOXSS
	Data Flow Analysis
	Payload Generation
	Exploit Verification
	Scanner Structure

	Testing Environment
	Structure
	Test Cases

	Evaluation
	XSS Vulnerability Scanners
	Analysis Results
	Discussion of Results

	Conclusion and Future Work
	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography
	Appendices
	Appendix A: Detection Results


