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Chapter 1.

Introduction

More than 30 years ago Ashkin and his collaborators published a seminal paper in
which they introduced optical trapping [1], a technique that allowed them to trap
nano-scale dielectric particles immersed in water with a laser beam, i.e., holding
the particles in place. This advance laid the foundation of a whole new field in
physics, that exploits the transfer of momentum from laser light to mesoscopic ob-
jects, allowing to exert forces on these objects [2–4]. Optical trapping is a rich field
of research since it is relevant for many important applications like cellular ma-
nipulation [5, 6], fluid dynamics [7, 8], micro-robotics [9] and tests of fundamental
physics [10, 11].

Light cannot only transfer linear momentum to nanoparticles allowing the con-
struction of an optical trap, but can also be used to transfer angular momentum to
a target enabling more advanced micromanipulation schemes. The latter has first
been experimentally realized in the 1990s via the absorption of light by nanoparti-
cles [12, 13]. It has also been shown that angular momentum can be transferred to
trapped birefringent [14] and asymmetric particles exhibiting shape birefringence
[15]. These methods mostly rely on the transfer of spin angular momentum car-
ried by a circularly polarized laser beam. Trapped particles, like microfabricated,
asymmetric particles can be rotated via the transfer of orbital and spin angular
momentum [16]. One can also take advantage of the intrinsic angular momentum
carried by helical beams [17, 18].

What all the above mentioned techniques have in common is that the nanoparti-
cles are immersed in a liquid with uniform refractive index. However, if one wants
to trap and manipulate organic structures like biological cells, one has to over-
come the hurdle of them being embedded within biological tissue which is a highly
turbid and disordered medium due to its spatially non-uniform refractive index.
This, in turn, results in optical abberations [19] and complex scattering processes
which distort the wave front such that a Gaussian laser beam which is typically
used in optical traps is not the optimal solution for the problem at hand anymore.
Therefore, such disordered media pose a great challenge for micromanipulation of
particles with light and finding a suitable laser configuration still remains a problem
under consideration [20].
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Such challenges do not only appear in the field of optical trapping but also in
the wave front shaping community. Here one deals with the question of how to
optimally engineer a wave front by using spatial light modulators [21] to achieve
desired results, like focusing onto a point inside a disordered medium or control-
ling the propagation through such a medium [22]. Proof-of-principle experiments
showed the power of wave front shaping techniques by demonstrating that a dis-
ordered material can be used to focus light [23, 24] and to recover images after
transmission through highly scattering samples [25].

One of the major challenges in the wave front shaping community is to focus light
inside a disordered medium [26]. Especially guidestar based methods are explored
in the literature, either using conjugation guidestars [27–37] or feedback guidestars
[38–48]. These methods offer a number of interesting applications like the photo-
chemical activation of drugs [49], the photorelease of biomolecules [50], stimulation
of neural activity through optogenetic tags [51] and imaging with fluorescent mark-
ers [52]. Moreover, focusing techniques can also be used to produce images at higher
resolution than before [53].

The implementation of wave front shaping techniques to optical trapping and
micromanipulation has only recently started to gain attention [20]. In Ref. [19] the
authors achieved trapping for the first time through a highly turbid medium utiliz-
ing an iterative complex modulation procedure. Even without the presence of any
aberrations caused by turbid media there still exist – to the best of our knowledge
– only iterative computational optimization schemes to enhance optical trapping
and micromanipulation capabilities [54–57]. These, however, can get stuck in lo-
cal minima and convergence to the global minimum representing the optimal state
cannot be guaranteed.

In this thesis we introduce a protocol that enables the manipulation of particles
inside disordered media in many possible ways, such as applying force, pressure or
torque, without the need of any optimization schemes. Moreover, we show that our
protocol can also be used to achieve optimal focus on such embedded targets.



Chapter 2.

Theoretical Background
As the achievement of the goals listed in the introduction relies heavily on the
scattering matrix of the system under consideration, we start by introducing the
scattering formalism used throughout this work. We continue by explaining the
Wigner-Smith time-delay operator [58, 59] and extend its idea to form the Gener-
alized Wigner-Smith (GWS) operator [60], which serves as the foundation of this
work. We conclude this chapter by reviewing the physics of a rectangular waveguide
as this is the model system of our choice.

2.1. Scattering Formalism
The primary goal of this section is to introduce the quantity that allows us to
connect the incoming flux to the outgoing flux for an arbitrary scattering system
[22]. This quantity is the system’s scattering matrix 𝑆, which allows us to do the
bookkeeping of all incoming and outgoing “channels”. The states connected by
the scattering matrix 𝑆 are always taken to be in the asymptotic regions of the
scattering system, such that all evanescent waves have already decayed.

We consider now the scattering system depicted in Fig. 2.1, which consists of a
scattering region bounded by hard walls connected to the outside via two leads, on
the left and right, respectively. Such a system has the advantage that all waves
either enter or leave through the left or right lead and no radiation is lost (assuming
that the scattering potential 𝑉 (x) does not feature regions with gain and loss).
Next, we suppose that we have a complete and orthogonal set of basis states which
we will call lead modes in the following, then any given field configuration in the
leads is uniquely characterized by the complex expansion coefficients 𝑐±𝛾,𝑛, where 𝑛
ranges from 1 to 𝑁 with 𝑁 being the finite number of flux-carrying lead modes. The
coefficients in the left and right lead are denoted by 𝛾 = 𝑙 and 𝛾 = 𝑟, respectively.
The superscripts ± denote either right-moving (+) or left-moving (−) modes, which
can be either ingoing or outgoing depending on the lead. The scattering matrix 𝑆
now connects all incoming coefficients to all outgoing ones, i.e.,

cout = 𝑆cin with cin ≡
(︂

c+𝑙
c−𝑟

)︂
and cout ≡

(︂
c−𝑙
c+𝑟

)︂
. (2.1)
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Fig. 2.1. Sketch of a generic scattering geometry bounded by hard walls shown as
black lines. The gray-shaded area indicates the scattering region, which described
by a spatially dependent potential 𝑉pot(x). Incoming and outgoing waves pass
through the surface areas indicated by red lines and are indicated by their respective
expansion coefficients.

The 2𝑁 × 2𝑁 matrix 𝑆 can be divided up into four block matrices,

𝑆 =

(︂
𝑟 𝑡′

𝑡 𝑟′

)︂
, (2.2)

where the reflection matrix 𝑟 (𝑟′) tells us how an incoming wave from the left (right)
lead is reflected back into the left (right) lead and the transmission matrix 𝑡 (𝑡′)
contains the transmission amplitudes that characterize the transmission from the
left (right) to the right (left).

If the number of modes, 𝑁 , in the left lead is different from the number of
modes, 𝑀 , in the right lead we can still define a scattering matrix 𝑆 in Eq. (2.2),
with the only difference that 𝑟 and 𝑟′ are now matrices of size 𝑁 ×𝑁 and 𝑀 ×𝑀
respectively and 𝑡 and 𝑡′ being 𝑀 ×𝑁 and 𝑁 ×𝑀 -dimensional respectively. The
total transmission 𝑇𝑛 and reflection 𝑅𝑛 associated to the incoming flux from the
left lead of a certain mode 𝑛 can be calculated by 𝑇𝑛 =

∑︀𝑀
𝑚=1 |𝑡𝑚𝑛|2 and 𝑅𝑛 =∑︀𝑁

𝑚=1 |𝑟𝑚𝑛|2, with equivalent relations for incoming flux from the right. Considering
a scattering process without gain and loss, the total transmission and reflection for
a given mode must add to 1, i.e., 𝑇𝑛 + 𝑅𝑛 = 1 and 𝑇 ′

𝑛 + 𝑅′
𝑛 = 1. If we want

to know the total transmission (reflection) of all incoming modes from the left we
have to sum over all 𝑇𝑛 (𝑅𝑛), i.e., 𝑇 =

∑︀𝑁
𝑛=1 𝑇𝑛 (𝑅 =

∑︀𝑁
𝑛=1𝑅𝑛), with similar

relations for the incoming flux from the right. The sum of these quantities is given
by 𝑇 +𝑅 = 𝑁 and 𝑇 ′ +𝑅′ = 𝑀 . We can show that in a system without gain and
loss the scattering matrix is unitary, 𝑆†𝑆 = 1, since the norm of all incoming flux∑︀

𝑛 |𝑐in,𝑛|
2 = c†incin is equal to the norm of all outgoing flux

∑︀
𝑛 |𝑐out,𝑛|

2 = c†outcout:

c†outcout = c†incin → c†in
(︀
𝑆†𝑆 − 1

)︀
cin = 0, (2.3)

which is only satisfied if 𝑆†𝑆 = 1. Note that the lead modes need to be flux-
normalized for the scattering matrix 𝑆 to be unitary. If we expand 𝑆 into the
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block-matrix form of Eq. (2.2) the unitary condition gives

𝑡†𝑡+ 𝑟†𝑟 = 𝑡′†𝑡′ + 𝑟′†𝑟′ = 1,

𝑟†𝑡′ + 𝑡†𝑟′ = 𝑡′†𝑟 + 𝑟′†𝑡 = 0.
(2.4)

The unitarity of 𝑆 can be reformulated to 𝑆𝑆† = 1, which gives

𝑡𝑡† + 𝑟′𝑟′† = 𝑡′𝑡′† + 𝑟𝑟† = 1,

𝑟𝑡† + 𝑡′𝑟′† = 𝑡𝑟† + 𝑟′𝑡′† = 0.
(2.5)

The scattering matrix 𝑆 also obeys so-called reciprocity conditions, known as On-
sager relations. These relations written out in terms of reflection and transmission
matrices are given by 𝑟𝑇 = 𝑟, 𝑟′𝑇 = 𝑟′ and 𝑡𝑇 = 𝑡′, which in short corresponds to
a transposition-symmetric scattering matrix 𝑆 = 𝑆𝑇 . Loosely speaking, these rela-
tions tell us that the scattering process from mode 𝑚 to mode 𝑛 happens with the
same amplitude as the reverse process. This property is, however, not the same as
time-reversal symmetry, because the Onsager relations may still hold in a medium
with absorption for which time-reversal symmetry is broken. After introducing the
scattering matrix 𝑆, we will now use it to construct the Wigner-Smith time-delay
operator and generalizations thereof.

2.2. The Wigner-Smith Time-Delay Operator and
Beyond

More than 50 years ago Eugene Wigner and Felix Smith introduced an operator
in the context of nuclear scattering theory that allows one to measure the time-
delay associated with a scattering process [58, 59]. This Wigner-Smith time-delay
operator 𝑄 is constructed out of a system’s scattering matrix 𝑆 and its derivative
with respect to the frequency 𝜔,

𝑄 = −i𝑆−1d𝑆

d𝜔
. (2.6)

It is easy to show that for flux-conserving systems, i.e., for a unitary scattering
matrix 𝑆†𝑆 = 1, the time-delay operator is Hermitian featuring real eigenvalues
and a complete and orthogonal set of eigenvectors. The eigenstates u𝑖 of 𝑄, also
known as principal modes, have the feature that the orientation of their output
vectors v𝑖 = 𝑆u𝑖 (in a certain basis) stays invariant under a small change ∆𝜔 in
the frequency 𝜔,

dv𝑖

d𝜔

⃒⃒⃒⃒
𝜔0

= i𝜃𝑖v𝑖 (𝜔0) → v𝑖 (𝜔0 + ∆𝜔) ≈ 𝑒i𝜃
𝑖Δ𝜔v𝑖 (𝜔0) , (2.7)
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with 𝜃 being the eigenvalue of 𝑄, 𝜔0 the initial frequency and 𝑖 denotes the 𝑖th
time-delay eigenvector or eigenvalue [61–66]. In ballistic scattering setups some
principal modes feature a particle-like behavior, i.e., their wavefunctions follow
classical trajectory-like patterns [61, 65, 66]. The eigenvalues 𝑞𝑛 of the time-delay
operator 𝑄 are the proper delay times of a scattering state, i.e., they measure the
duration of the scattering process [59].

Having explained the Wigner-Smith time-delay we now consider the generalized
Wigner-Smith (GWS) operator, introduced in Ref. [60], where the authors extend
the Wigner-Smith time-delay operator 𝑄 in the sense that the derivative of the
scattering matrix 𝑆 is now taken with respect to some arbitrary parameter 𝛼 which
the scattering matrix 𝑆 depends on, i.e.,

𝑄𝛼u
𝑖
𝛼 = −i𝑆−1d𝑆

d𝛼
u𝑖
𝛼 = 𝜃𝑖𝛼u

𝑖
𝛼, (2.8)

where 𝛼 can either be a global parameter, like the position of the whole scattering
system [67], or a local parameter, like the position of a single scatterer inside the
scattering system [60]. If 𝛼 is a global parameter the eigenstates of 𝑄𝛼 are invariant
with respect to a small parametric shift in 𝛼 by construction, as can be shown by
replacing 𝜔 → 𝛼 in Eq. (2.7). Just like the frequency-derivative in the time-
delay operator yields eigenvalues which correspond to the conjugate quantity 𝜔,
i.e., the time 𝑡, also the GWS-operator 𝑄𝛼 yields eigenvalues which correspond to
the conjugate quantity to 𝛼. To elucidate this point we give the argument from
Ref. [60] here. We start by defining an operator 𝐶𝛼 ≡ −id/d𝛼, which is the operator
corresponding to the conjugate variable of 𝛼. The components of 𝐶𝛼 in a basis 𝜓𝑛

are given by

[𝐶𝛼]𝑚𝑛 =

[︂
−i

∫︁
𝜕Ω

d𝜉𝐷𝜓*
𝑚 (𝑥, 𝜉)

d𝜓𝑛 (𝑥, 𝜉)

d𝛼

]︂
𝑥=𝑥𝑠

, (2.9)

where 𝑥 is the longitudinal coordinate and 𝜉 = (𝑦, 𝑧)𝑇 is the transversal coordinate.
The integral is performed over a 𝐷-dimensional surface 𝜕Ω and evaluated at the
longitudinal position 𝑥𝑠. Having defined 𝐶𝛼 we can use it to construct a “transla-
tion” operator exp(i𝐶𝛼∆𝛼), where ∆𝛼 is the shift in the parameter 𝛼. We can use
this insight to write the scattering matrix for a shifted parameter 𝛼 + ∆𝛼 as

𝑆 (𝛼 + ∆𝛼) = 𝑒−i𝐶𝛼Δ𝛼𝑆 (𝛼) 𝑒i𝐶𝛼Δ𝛼, (2.10)

which can be approximated for small shifts ∆𝛼 by

𝑆 (𝛼 + ∆𝛼) ≈ (1− i𝐶𝛼∆𝛼)𝑆 (𝛼) (1 + i𝐶𝛼∆𝛼)

≈ 𝑆 (𝛼) − i𝐶𝛼𝑆 (𝛼) ∆𝛼 + i𝑆 (𝛼)𝐶𝛼∆𝛼, (2.11)

where we neglect all non-linear terms in ∆𝛼. From this we can construct the
derivative of 𝑆 with respect to 𝛼,

d𝑆

d𝛼
= lim

Δ𝛼→

𝑆(𝛼 + ∆𝛼) − 𝑆(𝛼)

∆𝛼
= i𝑆(𝛼)𝐶𝛼 − i𝐶𝛼𝑆(𝛼), (2.12)
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which we need to calculate 𝑄𝛼,

𝑄𝛼 = −i𝑆−1d𝑆

d𝛼
= 𝐶𝛼 − 𝑆−1𝐶𝛼𝑆. (2.13)

If we now calculate the expectation value of 𝑄𝛼 with respect to some arbitrary
input vector cin we can see that 𝑄𝛼 measures the shift in the conjugated variable
to 𝛼, if 𝑆†𝑆 = 1,

c†in𝑄𝛼cin = c†in𝐶𝛼cin − c†out𝐶𝛼cout = ⟨𝐶𝛼⟩in − ⟨𝐶𝛼⟩out, (2.14)

where we again used the input-output relation cout = 𝑆cin. This concludes the
proof as given in [60] that 𝑄𝛼 measures the shift in the conjugate variable to 𝛼
between incoming and outgoing waves. Note that this proof is only valid if 𝛼 is a
global parameter. For the case when 𝛼 is, for example, the longitudinal position
𝑥 of a single scatterer inside a disordered medium, i.e., 𝛼 is a local parameter, we
can still show numerically in one and two dimensions that the expectation value
of 𝑄𝑥 measures the shift in the conjugate variable to 𝑥. This conjugate quantity
is, however, now the longitudinal momentum shift between incoming and outgoing
waves in the vicinity of the single scatterer [60]. This implies that the momentum
difference is then transferred onto this target scatterer, providing us with a tool to
push a target around, as will be discussed later in detail.

2.3. Waveguide Physics
In this section we review the physics of a semi-infinite rectangular waveguide as
depicted in Fig. 2.2a, closely following Refs. [22, 68]. We then show under which
circumstances this three-dimensional geometry can be described by a scalar wave
equation, the Helmholtz equation, and review its properties.

We start by giving the full solution of Maxwell’s equations for a transverse electric
field in an empty waveguide in three dimensions, which is

𝐸𝑥 (𝑡, r) = 0,

𝐸𝑦 (𝑡, r) = −𝐴𝑦 cos
(︁𝑚𝜋𝑦
𝑊

)︁
sin
(︁𝑛𝜋𝑧
𝐻

)︁
𝑒i(𝑘𝑥𝑥−𝜔𝑡),

𝐸𝑧 (𝑡, r) = 𝐴𝑧 sin
(︁𝑚𝜋𝑦
𝑊

)︁
cos
(︁𝑛𝜋𝑧
𝐻

)︁
𝑒i(𝑘𝑥𝑥−𝜔𝑡),

(2.15)

where𝑚,𝑛 ∈ N, the longitudinal wavenumber is 𝑘2𝑥 = 𝜔2/𝑐2 − (𝑚𝜋/𝑊 )2 − (𝑛𝜋/𝐻)2

and the amplitudes 𝐴𝑦 and 𝐴𝑧 contain all constant prefactors. They are not inde-
pendent of each other but are related by

𝐻𝑚𝐴𝑦 = 𝑊𝑛𝐴𝑧. (2.16)
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𝑧

𝑥 𝑦

𝑊

𝐻

𝐿

𝑊

a b

𝑥

𝑦

Fig. 2.2. a, Sketch of an infinite rectangular empty waveguide with hard walls of
height 𝐻 and width 𝑊 . b, Depiction of a generic scattering system, consisting of
a scattering region (textured region) with length 𝐿 and width 𝑊 . It is embedded
inside a two-dimensional waveguide with hard walls at 𝑦 = 0 and 𝑦 = 𝐿 attached
to semi-infinite leads on the left and right of the scattering region. The red lines
depict the intensity of the first three waveguide modes at a well-defined value of 𝑥.

The magnetic field is now simply given by one of Maxwell’s equations,

∇× E = −1

𝑐
𝜕𝑡B, (2.17)

where we plug in the expression for the electric field given in Eq. (2.15). When
split up into its three components, the magnetic field reads

𝐵𝑥 (𝑡, r) = −i
𝑐

𝜔

[︁𝑚𝜋
𝑊

�̂�𝑧 +
𝑛𝜋

𝐻
�̂�𝑦

]︁
cos
(︁𝑚𝜋𝑦
𝑊

)︁
cos
(︁𝑛𝜋𝑧
𝐻

)︁
𝑒i(𝑘𝑥𝑥−𝜔𝑡),

𝐵𝑦 (𝑡, r) = −𝑐𝑘𝑥
𝜔
�̂�𝑧 sin

(︁𝑚𝜋𝑦
𝑊

)︁
cos
(︁𝑛𝜋𝑧
𝐻

)︁
𝑒i(𝑘𝑥𝑥−𝜔𝑡),

𝐵𝑧 (𝑡, r) = −𝑐𝑘𝑥
𝜔
�̂�𝑦 cos

(︁𝑚𝜋𝑦
𝑊

)︁
sin
(︁𝑛𝜋𝑧
𝐻

)︁
𝑒i(𝑘𝑥𝑥−𝜔𝑡).

(2.18)

If we consider a waveguide whose height 𝐻 (in 𝑧-direction) is small compared to
its width 𝑊 (in 𝑦-direction) such that there is no 𝑧-dependence in the fields or
equivalently that the eigenmodes in the 𝑧-direction are not excited, i.e., 𝑛 = 0,
Eq. (2.15) tells us that �̂�𝑦 = 0 and therefore we are only left with 𝐸𝑧(𝑡, r). Assum-
ing a monochromatic electric field, which features a harmonic time dependence,
𝐸𝑧(𝑡, r) = 𝜓(r)𝑒−i𝜔𝑡, the spatially varying part of the electric field can be described
by the stationary scalar Helmholtz equation for locally homogeneous media:[︀

∆ + 𝑘2𝑛2 (r)
]︀
𝜓 (r) = 0, (2.19)

where ∆ is the Laplacian in two dimensions, 𝑘 = |k| = 𝜔/𝑐 the wavenumber,
𝑛(r) the spatially varying refractive index and r = (𝑥, 𝑦)𝑇 . This scalar Helmholtz
equation is the wave equation we solve in chapters 3 and 4 to describe the scattering
problems considered. Another feature of the Helmholtz equation is the close relation
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to the Schrödinger equation that can be seen if we define 𝐸light = (~𝜔)2/(2𝑚𝑐2)
and 𝑉light = 𝐸light[1 − 𝑛2(r)] leading to{︂

∆ − 2𝑚

~2
[𝑉light (r) − 𝐸light]

}︂
𝜓 (r) = 0. (2.20)

This has the consequence that the results we derive in the following chapters are
not only valid for electromagnetic radiation, but also for matter waves described
by the Schrödinger equation, e.g., electrons. However, there are still fundamental
differences in the scattering of light and electrons. First, there are different disper-
sion relations for light waves (𝐸 ∝ 𝑝) and matter waves (𝐸 ∝ 𝑝2). This has the
consequence that the temporal dynamics of light and matter waves are very differ-
ent. Second, for free space propagation the group and phase velocity, 𝑣𝑔 = 𝑣𝜑 = 𝑐
for light waves are the same resulting in the fact that wave packets preserve their
shape. This is not the case for matter waves whose group velocity, 𝑣𝑔 = ~𝑘/𝑚, is
different from their phase velocity, 𝑣𝜑 = ~𝑘/(2𝑚), resulting in a spreading of wave
packets in free space. Third, since 𝑛(r) ≥ 1 implies that the light energy is always
larger than the light potential, 𝑉light < 𝐸light, there can never be a tunneling barrier
in a dielectric medium.

Suppose now that we have a two-dimensional waveguide geometry as depicted in
Fig. 2.2b, with a scattering region bounded on two sides by hard walls and attached
to semi-infinite leads on the left and right. Then (2.19) tells us that the most gen-
eral solution in the asymptotic region far away from the scattering region either on
the left (𝛾 = 𝑙) or on the right (𝛾 = 𝑟) is given by a superposition of right-moving
(+) and left-moving (−) modes,

𝜓(x) =
𝑁∑︁

𝑛=1

[︃
𝑐+𝛾,𝑛𝜒𝑛(𝑦)

𝑒i𝑘
𝑥
𝑛𝑥√︀
𝑘𝑥𝑛

+ 𝑐−𝛾,𝑛𝜒𝑛(𝑦)
𝑒−i𝑘𝑥𝑛𝑥√︀
𝑘𝑥𝑛

]︃
, (2.21)

where the transverse mode profiles are given by 𝜒𝑛(𝑦) =
√︀

2/𝑊 sin (𝑛𝜋𝑦/𝑊 ). The
sum is taken over all flux-carrying modes (evanescent modes have died out in the
asymptotic region), whose number is 𝑁 , which is fixed such that the wavenumber
in 𝑥-direction,

𝑘𝑥𝑛 =
√︀
𝜔2/𝑐2 − (𝑛𝜋/𝑊 )2, (2.22)

has to be real. This means that the number of modes is given by 𝑁 = ⌊𝜔𝑊/(𝑐𝜋)⌋,
where ⌊. . . ⌋ denotes the floor operation.

Suppose now that we know the wavefunction 𝜓(r, e𝑙,𝑟𝑛 ) at every point in space
for a generic waveguide geometry as depicted in Fig. 2.2b. The wavefunction was
calculated for an injection from the left (right) lead with a modal input coefficient
vector e𝑙𝑛 (e𝑟𝑛) of size 𝑁 , which is zero everywhere except for a one at the 𝑛-th
position. This corresponds to an injection with exactly one transverse mode, either
from the left or right. In order to calculate the scattering matrix S in mode basis



2.3. Waveguide Physics 10

with this information, we have to perform overlap integrals of 𝜓(r, e𝑙,𝑟𝑛 ) with the
waveguide modes 𝜒𝑛(𝑦). The transmission and reflection amplitudes for injection
from the left are given by [69]

𝑡𝑚𝑛 =
√︀
𝑘𝑥𝑚/𝑘

𝑥
𝑛

∫︁ 𝑊

0

𝜒𝑚(𝑦)𝜓(𝑥 = 𝐿, e𝑙𝑛)d𝑦, (2.23)

𝑟𝑚𝑛 =
√︀
𝑘𝑥𝑚/𝑘

𝑥
𝑛

∫︁ 𝑊

0

𝜒𝑚(𝑦)𝜓(𝑥 = 0, e𝑙𝑛) − 𝛿𝑚𝑛d𝑦, (2.24)

where the prefactor
√︀
𝑘𝑥𝑚/𝑘

𝑥
𝑛 are flux normalization terms needed to ensure that

the scattering matrix is unitary [70]. One important detail is that the solution
𝜓(r, e𝑙,𝑟𝑛 ) has to be calculated without the flux normalization factors in Eq. (2.21).
Thus, the flux normalization terms have to be added manually for the calculation
of 𝑡 and 𝑟. In analogy to Eqs. (2.23) and (2.24), the transmission and reflection
amplitudes for an input from the right read

𝑡′𝑚𝑛 =
√︀
𝑘𝑥𝑚/𝑘

𝑥
𝑛

∫︁ 𝑊

0

𝜒𝑚(𝑦)𝜓(𝑥 = 0, e𝑟𝑛)d𝑦, (2.25)

𝑟′𝑚𝑛 =
√︀
𝑘𝑥𝑚/𝑘

𝑥
𝑛

∫︁ 𝑊

0

𝜒𝑚(𝑦)𝜓(𝑥 = 𝐿, e𝑟𝑛) − 𝛿𝑚𝑛d𝑦. (2.26)

Equipped with these tools we will show in the following how we can use the GWS-
operator to micromanipulate a target inside a disordered medium.



Chapter 3.

Micromanipulation of a Target

In this section we introduce new methods for manipulating a target embedded in-
side a disordered medium based on the GWS-operator 𝑄𝛼 = −i𝑆−1d𝑆/d𝛼. First,
controlling the momentum transferred onto such a target and thus pushing it in a
certain direction was already investigated in [60]. Here we will give a new interpre-
tation of this situation. Next, we utilize the radius 𝑅, the rotation angle 𝜙 and the
refractive index 𝑛 of a single scatterer to apply pressure, exert a torque or focus
onto it, thus introducing new protocols to micromanipulate a target. Throughout
this chapter, we assume that we have access to the full scattering matrix S of the
system, however, a more realistic case where only a subpart of the scattering matrix
is known will be covered in section 4.5.

Our investigations are carried out in two-dimensional waveguide systems which
are filled with randomly distributed dielectric scatterers made out of Teflon, where
either dielectric or metallic squares or circles of various sizes serve as target scat-
terers (see Fig. 3.1). We, however, want to stress that our protocols are universally
applicable (not only to waveguide systems) as they only rely on the scattering ma-
trix 𝑆 of the system and its derivation with respect to some arbitrary parameter.

3.1. Momentum Transfer onto a Target – Revisited
The eigenvalues of 𝑄𝑥, that is the GWS-operator constructed when we use the
position of a single target scatterer as our parameter 𝛼, can be interpreted as
the momentum difference between incoming and outgoing waves in direction of the
position shift, 𝜃𝑥 = ∆𝑘 [60]. The authors showed this by considering the momentum
difference between the incoming and outgoing wave,

∆𝑘 = u†𝑄𝑥u = u†𝑘inu− v†𝑘outv = 𝜃𝑥, (3.1)

where v = 𝑆u and the last equality holds if u is an eigenvector of 𝑄𝑥. As we
already elucidated in section 2.2, conservation of mometum then implies that this
momentum difference between the incoming and outgoing wave is transferred onto
the target scatterer, enabling us to push it around.

In this section we want to show that the eigenvalues of 𝑄𝑥 cannot only be brought
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𝐿

𝑊

𝑥

𝑦𝑧

Fig. 3.1. Graphical representation of the waveguide geometry used in the numerical
simulations. Depicted is a two-dimensional waveguide geometry with hard walls on
the long edges (𝐿 = 6𝑊 ) attached to semi-infinite leads on the short edges. The
red cylinders indicate the position of randomly distributed Teflon scatterers with
a refractive index of 𝑛 = 1.44 and radius 𝑅 = 0.0255𝑊 . The blue cylinder tells
us the position of the target scatterer, which is of varying size, material and shape
depending on the problem. The red-shaded area indicates the region shown in all
plots throughout this thesis that depict a spatial intensity distribution.

into a relation with ∆𝑘 but also with a local quantity constructed out of the intensity
at or close to the target’s boundary.

3.1.1. Dielectric Target

To motivate the quantity with which we will associate the eigenvalues 𝜃𝑥 of 𝑄𝑥 in
the presence of a dielectric target, we first study the situation in one dimension. We
start with a potential barrier extending from 𝑥 = −𝐿 to 𝑥 = 𝐿 of uniform height
𝑛 > 1 (the refractive index in the asymptotic region is 𝑛0 = 1). A depiction of
this set-up can be found in Fig. 3.2a. We will prove that there exists a strict linear

a b

Fig. 3.2. Sketches of the potential barriers (red lines) used for the study of 𝑄𝑥

in one dimension. They have a width of 2𝐿 and the black arrows indicate that
plane waves can be injected from both sides to construct the scattering state. The
dashed gray lines show that the barriers are shifted slightly to the right (and left)
in order to construct 𝑄𝑥. a, Dielectric potential barrier of height 𝑛− 1. b, Metallic
potential barrier of infinite height.
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relation between the eigenvalues of 𝑄𝑥, which is constructed by moving the target
slightly to the left and right, and the difference in intensities at the boundaries
of the potential barrier. The scattering matrix of such a barrier – calculated by
demanding that the wave function and its first derivative are continuous at 𝑥 = −𝐿
and 𝑥 = 𝐿 – reads,

𝑆11 = 𝑆22 = −
𝑒−2i𝑘𝐿

(︀
−1 + 𝑒4i𝑘𝐿𝑛

)︀
(𝑛2 − 1)

𝑒4i𝑘𝐿𝑛(𝑛− 1)2 − (𝑛+ 1)2
, (3.2)

𝑆12 = 𝑆21 = − 4𝑒2i𝑘𝐿(𝑛−1)𝑛

𝑒4i𝑘𝐿𝑛(𝑛− 1)2 − (𝑛+ 1)2
. (3.3)

We then construct 𝑄𝑥 with the help of Eqs. (2.13) and (3.1), where

𝑘in =

(︂
𝑘 0
0 −𝑘

)︂
= −𝑘out, (3.4)

whose matrix elements then read

𝑄𝑥,11 = 𝑄𝑥,22 =
1

Γ

[︁
4𝑘
(︀
𝑛2 − 1

)︀2
sin2 (2𝑘𝐿𝑛)

]︁
, (3.5)

−𝑄𝑥,12 = 𝑄𝑥,21 =
1

Γ

[︀
8i𝑘𝑛

(︀
𝑛2 − 1

)︀
sin (2𝑘𝐿𝑛)

]︀
, (3.6)

with Γ = − (𝑛2 − 1)
2

cos (4𝑘𝐿𝑛) +𝑛2 (𝑛2 + 6) + 1 > 0 ∀𝑛, 𝑘, 𝐿. The solution of the
eigenproblem associated with 𝑄𝑥 is

𝜃1,2𝑥 = ±
√

8𝑘 (𝑛2 − 1) sin (2𝑘𝐿𝑛)√
Γ

, (3.7)

u1,2
𝑥 = ∓ 1

𝑁1,2

(︂
−i

4𝑛

[︁√
2Γ ± 2

(︀
𝑛2 − 1

)︀
sin (2𝑘𝐿𝑛)

]︁
, 1

)︂𝑇

, (3.8)

where 𝑁1,2 = |u1,2
𝑥 | is the norm of the eigenvectors. We then calculate the difference

in intensities at the boundaries of the potential barrier

𝐹1 ≡
⃒⃒
𝜓
(︀
u1
𝑥, 𝑥 = −𝐿

)︀⃒⃒2 − ⃒⃒𝜓 (︀u1
𝑥, 𝑥 = +𝐿

)︀⃒⃒2
= −4

√
2 sin (2𝑘𝐿𝑛)√

Γ
, (3.9)

𝐹2 ≡
⃒⃒
𝜓
(︀
u2
𝑥, 𝑥 = −𝐿

)︀⃒⃒2 − ⃒⃒𝜓 (︀u2
𝑥, 𝑥 = +𝐿

)︀⃒⃒2
=

4
√

2 sin (2𝑘𝐿𝑛)√
Γ

, (3.10)

where the first argument in the parenthesis tells us which eigenvector of 𝑄𝑥 was
used to construct the scattering state. We then compare these two quantities with
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b ca

Fig. 3.3. Numerical simulation in the waveguide geometry introduced as in Fig. 3.1
in the presence of a Teflon target (radius 𝑅 = 0.0825𝑊 , refractive index 𝑛 = 1.44)
with 𝑁 = 20 propagating modes and a wavelength of 𝜆 ≈ 0.1𝑊 . a, Linear relation
between the eigenvalues 𝜃𝑥 of the GWS-operator and the quantity 𝐹 (3.12). The
deviation from perfect correlation (see appendix A.1) is only ∆𝑟 ≈ 10−5. b, c,
Spatial intensity distribution of scattering states constructed by eigenvectors of 𝑄𝑥

corresponding to the largest negative and positive eigenvalues, pushing the target to
the left and right, respectively. We show the red-shaded area as depicted in Fig. 3.1
and indicate the position of the scatterers by white circles. The color scale in both
plots and all other plots in this thesis has been adjusted to match the maximum
intensity in each figure (shown in dark red).

the eigenvalues 𝜃1,2𝑥 of 𝑄𝑥 and see that

𝜃1𝑥
𝐹1

=
𝜃2𝑥
𝐹2

= −𝑘 (𝑛2 − 1)

2
. (3.11)

This result concludes the prove that there is a linear relation between the eigen-
values of 𝑄𝑥 and the difference in intensities at the boundaries of the potential
barrier. Since we also know that the momentum difference between the incoming
and outgoing wave and thus the momentum transfer onto the barrier is equal to the
eigenvalues 𝜃𝑥, we can state that 𝐹1,2 ∝ ∆𝑘. The average force experienced by the
target is the momentum transfer per unit time interval. In the stationary case this
is the same at all times and thus the momentum transfer is equal to the force. This
warrants the naming of the quantity defined above as 𝐹 . We can use this insight to
smoothly tune the momentum transfer onto the potential barrier and also control
the directionality of it.

In two dimensions we were not able to provide an analytical expression for 𝑄𝑥,
however, we are still able to show numerically that the radiation force 𝐹 exerted
by the electric field, as given below [55], has an almost perfect correlation to the
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eigenvalues of the GWS-operator associated to the shift of a single scatterer:

𝐹
(︀
u𝑖
n̂

)︀
≡ (𝑛2 − 1)

∫︁ 2𝜋

0

n̂ ·
(︂

cos𝜙
sin𝜙

)︂
|𝜓 (𝜌 = 𝑅)|2 d𝜙, (3.12)

which can be shown (see Fig. 3.3) to be proportional to the eigenvalues of 𝑄n̂, i.e.,

𝐹
(︀
u𝑖
n̂

)︀
∝ 𝜃𝑖n̂, (3.13)

where the shift of the target scatterer was considered in an arbitrary direction with
unit vector n̂. 𝜓 is the electric field distribution of the corresponding eigenstate u𝑖

n̂

and the integral is performed along the boundary of the circular target with radius
𝑅. The spatial intensity distribution of two eigenstates u𝑖

𝑥 of 𝑄𝑥, i.e., the GWS-
operator for a shift of the scatterer in longitudinal direction 𝑥, calculated using an
advanced higher-order finite element discretization technique [71, 72] are shown in
Fig. 3.3. It is easy to see that there is an intensity build-up on one side of the tar-
get, pushing it in positive (right picture) or negative (middle picture) 𝑥-direction.
In the same figure we also show the almost perfect linear relation, quantified by
Pearson’s correlation coefficient 𝑟 (see appendix A.1), between 𝜃𝑥 and the force in
direction of the shift 𝐹 , empirically proving (3.13).

This result allows us to control the transfer of force over several orders of mag-
nitude in an arbitrary direction n̂, thus providing us with a powerful tool for mi-
cromanipulation. The only caveat, however, is that the eigenvalues 𝜃𝑖n̂ only include
information about the momentum transfer in direction of n̂. In general this is ac-
companied also by a momentum transfer in the direction orthogonal to n̂, which
is not controlled by 𝑄n̂, however, a solution to this problem is presented in section
4.2. A considerable advantage of this approach is, that it allows us to construct
a scattering state that transfers the optimal amount of momentum onto a target.
This is due to the fact that the Hermitian operator 𝑄n̂ has a complete and orthog-
onal eigenbasis in which every scattering state can be expanded into. This implies
that the momentum transfer of an arbitrary scattering state can only be as good
as that of the eigenstate associated to the largest eigenvalue. Next, we show how
to control the force exerted onto a metallic target.

3.1.2. Metallic Target

As in the preceding section we start the investigation of momentum transfer onto
a metallic target with a simple calculation in one dimension. Again, we consider a
potential barrier of infinite height extending from 𝑥 = −𝐿 to 𝑥 = 𝐿, as is shown in
Fig. 3.2b. The scattering matrix for this configuration is

𝑆 = −𝑒−2i𝑘𝐿
1, (3.14)
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which agrees with Eqs. (3.2) and (3.3) when we take lim
𝑛→∞

𝑆. Using Eqs. (2.13) and
(3.4) we arrive at

𝑄𝑥 = 2𝑘

(︂
1 0
0 −1

)︂
, (3.15)

whose eigenvalues and eigenvectors read

𝜃1𝑥 = 2𝑘, u1
𝑥 = (1, 0)𝑇 , (3.16)

𝜃2𝑥 = −2𝑘, u2
𝑥 = (0, 1)𝑇 . (3.17)

Due to the infinitely high barrier, these eigenstates are now given by plane waves
which come either from the left or from the right, thus pushing the target in the
corresponding direction.

In two dimensions we cannot just use Eq. (3.12) to find a quantity which is
proportional to the eigenvalues of 𝑄n̂, since the wavefunction 𝜓 is exactly zero at
the boundary. Instead, we calculate 𝐹 as

𝐹
(︀
u𝑖
n̂

)︀
≡
∫︁ 2𝜋

0

n̂ ·
(︂

cos𝜙
sin𝜙

)︂
|𝜓 (𝜌 = 𝑅 + 𝜖)|2 d𝜙, (3.18)

where 𝜖 is a small positive real number. The integration path is, compared to a
dielectric target, now slightly outside the target’s boundary, because the wavefunc-
tion at the boundary is exactly zero. This path still gives the correct result because
for a small distance outside the target the incidence angle of the waves remains
approximately the same. 𝐹 can once again be shown to be proportional to the
eigenvalues of 𝑄n̂, i.e.,

𝐹
(︀
u𝑖
n̂

)︀
∝ 𝜃𝑖n̂. (3.19)

For n̂ = (1, 0)𝑇 we show in Figs. 3.4b and 3.4c the spatial intensity distribution of
eigenstates u𝑥 associated to large eigenvalues 𝜃𝑥. One can see that in the middle
(right) plot the intensity builds up on the left (right) side, pushing the target to
the right (left). Just as in the previous section, we observe an almost perfect linear
relation between 𝜃𝑥 and 𝐹 (see Fig. 3.4a) which empirically confirms our prediction.
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Fig. 3.4. Numerical simulation in the waveguide geometry as introduced in Fig. 3.1
in the presence of a metallic target (radius 𝑅 = 0.0825𝑊 ) with 𝑁 = 20 propagating
modes and a wavelength of 𝜆 ≈ 0.1𝑊 . a, Linear relation between the eigenvalues
𝜃𝑥 of 𝑄𝑥 and the quantity 𝐹 (3.18). The deviation from perfect correlation is only
∆𝑟 ≈ 10−5. b, c, Spatial intensity distribution of scattering states constructed by
eigenvectors of 𝑄𝑥 corresponding to the largest negative and positive eigenvalues,
pushing the target to left and right, respectively.

3.2. Applying Pressure
After showing how to transfer linear momentum onto a target we move on to
the next micromanipulation technique, namely applying pressure onto a target.
We achieve this goal by considering the derivate of the scattering matrix 𝑆 with
respect to the radius 𝑅 of the target, i.e., we construct 𝑄𝛼 with 𝛼 = 𝑅. We once
again consider a metallic as well as a dielectric target and start by looking at a
one-dimensional system to gain first insights. We then expand these insights to
two dimensions by considering our two-dimensional waveguide geometry.

3.2.1. Metallic Target

To start the investigation of 𝑄𝑅, we consider a one-dimensional system in which
𝑄𝑅 turns into 𝑄𝐿, the GWS-operator we get when taking the derivative of 𝑆 with
respect to 𝐿, which is half of the length of the potential barrier. The metallic
scatterer is modeled by an infinitely high potential barrier extending from 𝑥 = −𝐿
to 𝑥 = 𝐿, as is depicted in Fig. 3.5a. The scattering matrices of this configuration
reads:

𝑆 = −𝑒−2i𝑘𝐿
1, (3.20)

The corresponding GWS-Operator, 𝑄𝐿, then reads

𝑄𝐿 = −i𝑆−1d𝑆

d𝐿
= −2𝑘1. (3.21)
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a b

Fig. 3.5. Sketches of the potential barriers (red lines) used for the study of 𝑄𝐿 in
one dimension. They have a width of 2𝐿 and the black arrows indicate that plane
waves can be injected from both sides to construct the scattering state. The dashed
gray lines show that the barriers are shifted slightly outwards (and inwards) in
order to construct 𝑄𝑅. a, Metallic potential barrier of infinite height. b, Dielectric
potential barrier of height 𝑛− 1.

If we now take the expectation value of𝑄𝐿 with an arbitrary unit vector u, the result
is always u†𝑄𝐿u = −2𝑘. The momentum transfer of a plane wave at wavenumber
𝑘 that is backreflected at a hard wall is 2𝑘. This leads us to the conclusion that
𝑄𝐿 measures the sum of the magnitudes of the momentum transferred onto the
barrier by arbitrary incoming plane waves from the left and right, which is akin to
the radiation pressure.

After getting some intuition for the problem in one dimension we now turn our
attention to the two-dimensional problem. Again, an analytical treatment was out
of reach for us, but defining in analogy to Eq. (3.18) the following quantity

𝑃
(︀
u𝑖
𝑅

)︀
≡
∫︁ 2𝜋

0

|𝜓 (𝜌 = 𝑅 + 𝜖)|2 d𝜙, (3.22)

it can be shown that
𝑃
(︀
u𝑖
𝑅

)︀
∝ 𝜃𝑖𝑅. (3.23)

In Fig. 3.6b we show that this linear relation is excellently fulfilled in the simula-
tion, thereby empirically confirming our prediction. We depict the spatial intensity
distribution of 𝑄𝑅-eigenstates corresponding to the largest and smallest eigenvalues
in Fig. 3.7. One can see a focus on the boundary of the metal circle for the large
eigenvalues and we also see how our eigenstates corresponding to small eigenvalues
completely avoid the target. This provides us with a tool that allows us to smoothly
vary the pressure applied to the target over many orders of magnitude. Since 𝑄𝑅

has a complete eigenbasis, the maximum amount of pressure we can apply is when
we inject the eigenvector corresponding to the eigenvalue with the largest absolute
value into the scattering system. Like in the case of 𝑄n̂, we also get an unwanted
linear momentum transfer onto the target in the case of 𝑄𝑅 – an issue that will be
covered and solved in section 4.3.
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Fig. 3.6. Linear relations of the GWS-eigenvalues with the quantities defined
in Eqs. (3.47), (3.22), (3.33), (3.35) and (3.37), for 𝑁 = 20 open modes and a
wavelength of 𝜆 ≈ 0.1𝑊 . a, Stored intensity 𝐼 in a Teflon target (𝑛 = 1.44) as a
function of the eigenvalues 𝜃𝑛. The deviation from perfect correlation (see appendix
A.1) is ∆𝑟 ≈ 10−5 and the mean squared error with respect to 𝐼 = 𝜃𝑛/(𝑛𝑘

2) is of
the order of 10−16. b, Upper (lower) plot shows the pressure 𝑃 as a linear function
of the eigenvalues 𝜃𝑅 in the case of a metallic (Teflon) target. For both linear
relations the deviation from perfect correlation is ∆𝑟 ≈ 10−5. c, Upper (lower)
plot shows the torque 𝑀𝑧 as a linear function of the eigenvalues 𝜃𝜙 in the case of a
metallic (Teflon) target. Again, for both linear relations the deviation from perfect
correlation is ∆𝑟 ≈ 10−6.

3.2.2. Dielectric Target

To learn something about 𝑄𝑅 in the presence of a dielectric target we once again
consider the potential barrier (shown in Fig. 3.5b) used in 3.1.1. The scattering
matrix is then,

𝑆11 = 𝑆22 = −
𝑒−2i𝑘𝐿

(︀
−1 + 𝑒4i𝑘𝐿𝑛

)︀
(𝑛2 − 1)

𝑒4i𝑘𝐿𝑛(𝑛− 1)2 − (𝑛+ 1)2
, (3.24)

𝑆12 = 𝑆21 = − 4𝑒2i𝑘𝐿(𝑛−1)𝑛

𝑒4i𝑘𝐿𝑛(𝑛− 1)2 − (𝑛+ 1)2
. (3.25)
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a b c d

Fig. 3.7. Numerical simulation in the waveguide setup with a metallic target
(radius 𝑅 = 0.0825𝑊 ). The number of propagating modes used is 𝑁 = 20 and
the wavelength is 𝜆 ≈ 0.1𝑊 . a, b, Spatial intensity distribution of the two 𝑄𝑅-
eigenstates corresponding to the eigenvalues 𝜃𝑅 with the largest negative value. A
strong focusing over a broader area of the target can be observed. c, d, Spatial
intensity distribution of the two 𝑄𝑅-eigenstates with the eigenvalues 𝜃𝑅 closest to
zero. A strong avoidance of the target scatterer can be clearly observed.

The components of 𝑄𝐿 = −i𝑆−1d𝑆/d𝐿 then read

𝑄𝐿,11 = 𝑄𝐿,22 = −2𝑘 (𝑛2 − 1) [3𝑛2 + (𝑛2 − 1) cos(4𝑘𝐿𝑛) + 1]

− (𝑛2 + 6)𝑛2 + (𝑛2 − 1)2 cos(4𝑘𝐿𝑛) − 1
, (3.26)

𝑄𝐿,12 = 𝑄𝐿,21 = − 8𝑘𝑛2 (𝑛2 − 1) cos(2𝑘𝐿𝑛)

− (𝑛2 + 6)𝑛2 + (𝑛2 − 1)2 cos(4𝑘𝐿𝑛) − 1
. (3.27)

The solution of 𝑄𝐿’s eigenproblem is

𝜃1𝐿 =
−4𝑘 (𝑛2 − 1) cos2(𝑘𝐿𝑛)

(𝑛2 − 1) cos(2𝑘𝐿𝑛) − 𝑛2 − 1
, u1

𝐿 =
1√
2

(︂
1
1

)︂
, (3.28)

𝜃2𝐿 =
4𝑘 (𝑛2 − 1) sin2(𝑘𝐿𝑛)

(𝑛2 − 1) cos(2𝑘𝐿𝑛) + 𝑛2 + 1
, u2

𝐿 =
1√
2

(︂
−1
1

)︂
. (3.29)

In view of Eq. (3.21), which tells us that the eigenvalues of 𝑄𝐿 are proportional to
the pressure applied to the potential barrier, we conjecture that the 𝑄𝐿-eigenvalues
are proportional to the sum of the intensities on the target edges, which are

𝑃1 ≡
⃒⃒
𝜓
(︀
u1
𝐿, 𝑥 = −𝐿

)︀⃒⃒2
+
⃒⃒
𝜓
(︀
u1
𝐿, 𝑥 = 𝐿

)︀⃒⃒2
=

−8 cos2(𝑘𝐿𝑛)

(𝑛2 − 1) cos(2𝑘𝐿𝑛) − 𝑛2 − 1
, (3.30)

𝑃2 ≡
⃒⃒
𝜓
(︀
u2
𝐿, 𝑥 = −𝐿

)︀⃒⃒2
+
⃒⃒
𝜓
(︀
u1
𝐿, 𝑥 = 𝐿

)︀⃒⃒2
=

8 sin2(𝑘𝐿𝑛)

(𝑛2 − 1) cos(2𝑘𝐿𝑛) + 𝑛2 + 1
, (3.31)

where the first argument of the parentheses tells us which eigenvector of 𝑄𝐿 was
used to calculate 𝑃𝑖. From those two expressions it’s easy to conclude that there is
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a b c d

Fig. 3.8. Numerical simulation in the waveguide setup with a Teflon target scat-
terer (radius 𝑅 = 0.0825𝑊 , refractive index 𝑛 = 1.44). The number of propagating
modes used is 𝑁 = 20 and the wavelength is 𝜆 ≈ 0.1𝑊 . a, b, Spatial intensity
distribution of the two 𝑄𝑅-eigenstates with the largest eigenvalues 𝜃𝑅. A strong
focusing on the boundary of the target scatterer can be clearly observed. c, d, Spa-
tial intensity distribution of the two 𝑄𝑅-eigenstates with the smallest eigenvalues
𝜃𝑅. A strong avoidance of the target scatterer can be clearly observed.

a strict linear relation between 𝑃𝑖 and 𝜃𝑖𝐿,

𝜃1𝐿
𝑃1

=
𝜃2𝐿
𝑃2

=
𝑘

2

(︀
𝑛2 − 1

)︀
, (3.32)

which proves our conjecture.
From these one-dimensional considerations we now generalize this result to two

dimensions. Just as for the metallic target, we introduce the quantity

𝑃
(︀
u𝑖
𝑅

)︀
≡
∫︁ 2𝜋

0

|𝜓 (𝜌 = 𝑅)|2 d𝜙, (3.33)

which can again be shown to be proportional to the 𝑄𝑅-eigenvalues, i.e.,

𝑃
(︀
u𝑖
𝑅

)︀
∝ 𝜃𝑖𝑅. (3.34)

We confirm this conjecture by observing an almost perfect linear correlation in
our simulations which can be seen in Fig. 3.6b. To further support our argument
we show in Fig. 3.8 the spatial intensity distribution of the two eigenstates of 𝑄𝑅

corresponding to the largest eigenvalues and two eigenstates of 𝑄𝑅 corresponding
to the smallest eigenvalues. One can clearly observe the focus onto the target’s
boundary, applying strong pressure and the avoidance of the target, exerting almost
no pressure. We also know that the pressure exerted by the eigenstate corresponding
to the largest eigenvalue is the theoretical maximum, since 𝑄𝑅 has a complete
eigenbasis. This makes our approach particularly attractive.

3.3. Exerting Torque
The third and last technique we present to manipulate a target is to apply torque
on it, e.g., with the purpose to rotate the target. We can achieve this goal by
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considering the rotation angle 𝜙 of the target as the parameter 𝛼. Since the rotation
of a circle around its center leads, of course, to no changes, we consider a metallic
or dielectric square as the target. Because there is no one-dimensional analog to a
rotation, we will immediately consider the two-dimensional waveguide depicted in
Fig. 3.1.

3.3.1. Metallic Target

In analogy to the quantities we have defined so far, we directly introduce the torque
applied to a metallic square target by the electric field. Putting a Cartesian coor-
dinate system right at the center of the square, the torque in its natural definition
("r× F", with r the distance to the center and F the force) is given by

𝑀𝑧

(︀
u𝑖
𝜙

)︀
≡
∫︁ 𝐶2

𝐶1

𝑦 |𝜓 (𝑥 = −𝑏𝜖, 𝑦)|2 d𝑦 +

∫︁ 𝐶3

𝐶2

𝑥 |𝜓 (𝑥, 𝑦 = −𝑏𝜖)|2 d𝑥

−
∫︁ 𝐶4

𝐶3

𝑦 |𝜓 (𝑥 = 𝑏𝜖, 𝑦)|2 d𝑦 −
∫︁ 𝐶1

𝐶4

𝑥 |𝜓 (𝑥, 𝑦 = 𝑏𝜖)|2 d𝑥,

(3.35)

where 𝑥 and 𝑦 measure the distance to the center respectively and |𝜓(r)|2 gives the
radiation force at a certain point in space. We also use 𝑏𝜖 = 𝐿/2 + 𝜖, where 𝐿 is the
side length of the square and 𝜖 is a small positive real number. The 𝐶𝑖’s stand for
the square’s four corners, starting in the upper left corner (𝐶1), where the addition
of 𝜖 in 𝑏𝜖 gives an integration path slightly outside the boundary of the square. Also
this expression can be shown to be linear proportional to the eigenvalues of 𝑄𝜙,
i.e.,

𝑀𝑧

(︀
u𝑖
𝜙

)︀
∝ 𝜃𝑖𝜙, (3.36)

which provides us with a technique to smoothly vary the torque applied to the
square by choosing superpositions of eigenstates with large or small eigenvalues.
Moreover, we can control whether the applied torque rotates the target in a clock-
wise or counterclockwise direction by considering the sign of the eigenvalues 𝜃𝜙.
In Fig. 3.6c we empirically confirm the above statement by showing the almost
perfect correlation of the eigenvalues 𝜃𝑖𝜙 and the torque 𝑀A

𝑧 (u𝑖
𝜙). To support our

argument we show in Fig. 3.9 the spatial intensity distribution of the eigenstates
corresponding to the two eigenvalues with the largest absolute value and the two
smallest eigenvalues. One can clearly see for the case of large eigenvalues that the
intensity builds up on the corners in such a way that torque can be transferred,
whereas for the case of small eigenvalues, the wave avoids the scatterer. Follow-
ing the same arguments as for the other GWS-operators, we conclude that also
for 𝑄𝜙 the eigenstate corresponding to the largest eigenvalue gives us the maximal
transferable torque onto the target scatterer. In the next section we show that the
transfer of torque is also possible for a dielectric target.
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a b c d

Fig. 3.9. Numerical simulation in the waveguide setup with a metallic square (side
length 𝐿 = 0.165𝑊 ) as the target scatterer. The number of propagating modes
used is 𝑁 = 20 and the wavelength is 𝜆 ≈ 0.1𝑊 . a, b, Spatial intensity distribution
of the two 𝑄𝜙-eigenstates associated to the eigenvalues 𝜃𝜙 with the largest absolute
value. A strong focus onto the corners of the target can be clearly observed leading
to a torque. c, d, Spatial intensity distribution of the two 𝑄𝜙-eigenstates with the
smallest eigenvalues 𝜃𝜙. A strong avoidance of the target scatterer can clearly be
observed.

3.3.2. Dielectric Target

In analogy to section 3.2 we now look at the quantity 𝑀𝑧 in the case of a dielectric
target

𝑀𝑧

(︀
u𝑖
𝜙

)︀
≡
∫︁ 𝐶2

𝐶1

𝑦 |𝜓 (𝑥 = −𝑏, 𝑦)|2 d𝑦 +

∫︁ 𝐶3

𝐶2

𝑥 |𝜓 (𝑥, 𝑦 = −𝑏)|2 d𝑥

−
∫︁ 𝐶4

𝐶3

𝑦 |𝜓 (𝑥 = 𝑏, 𝑦)|2 d𝑦 −
∫︁ 𝐶1

𝐶4

𝑥 |𝜓 (𝑥, 𝑦 = 𝑏)|2 d𝑥,

(3.37)

whose definition differs from Eq. (3.35) only by the integration path which now
follows the scatterer’s boundary, i.e., 𝑏𝜖 → 𝑏 = 𝐿/2. As expected, one can show
that – as in the case of a metallic scatterer – there exists a linear relation, i.e.,

𝑀𝑧

(︀
u𝑖
𝜙

)︀
∝ 𝜃𝑖𝜙, (3.38)

which is to be confirmed in the same ways as before by numerical simulations. The
result for one such simulation is depicted in Fig. 3.6c. To support our argument
we show in Fig. 3.10 the spatial intensity distribution for the eigenstates with the
two largest and smallest eigenvalues. For the eigenstates with large eigenvalues one
can clearly see that intensity builds up mainly on the square’s corners, transferring
torque whereas the eigenstates with small eigenvalues once again avoid the target.
We also emphasize that, since 𝑄𝜙 has a complete eigenbasis, the transferred torque
we get when constructing the scattering state with the eigenvector associated to
the largest eigenvalue is the theoretical maximum. Having shown how to apply a
force, pressure or torque onto a target, we will show next a method for focusing
onto a target.
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a b c d

Fig. 3.10. Numerical simulation in the waveguide setup with a Teflon square (side
length 𝐿 = 0.165𝑊 , refractive index 𝑛 = 1.44) as the target scatterer. The number
of propagating modes used is 𝑁 = 20 and the wavelength is 𝜆 ≈ 0.1𝑊 . a, b, Spatial
intensity distribution of the two 𝑄𝜙-eigenstates corresponding to the eigenvalues 𝜃𝜙
with the largest absolute value. A strong focusing on the corners of the target
scatterer, evidently transferring torque, can be clearly observed. c, d, Spatial
intensity distribution of the two 𝑄𝜙-eigenstates with the smallest eigenvalues |𝜃𝜙|,
showing a strong avoidance of the target scatterer can be clearly observed.

3.4. Focusing onto a Target
The GWS-operator cannot only be used to manipulate a target, but can also be
utilized to focus onto it. We achieve this by considering the derivative of the
scattering matrix 𝑆 with respect to the refractive index 𝑛 of a dielectric target,
i.e., 𝛼 = 𝑛. Before we consider focusing in two dimensions we analytically derive
in one dimension that there is a strict linear relation between the eigenvalues of
𝑄𝑛 and the degree of focus at a target scatterer. From now on we define focusing
as dumping as much intensity as possible into a target area, i.e., maximizing the
integrated spatial intensity of the scattering state inside the target.

Our proof considers the same set-up as in Sec. 3.1.1, which is a rectangular
potential barrier of height 𝑛 > 1 extending from 𝑥 = −𝐿 to 𝑥 = 𝐿 and we show
it in Fig. 3.11. To calculate 𝑄𝑛 = −i𝑆−1d𝑆/d𝑛, we need the system’s scattering

Fig. 3.11. Sketch of the poten-
tial barrier (red line) used for the
study of 𝑄𝑛 in one dimension. It
has a width of 2𝐿 and a height of
𝑛−1. The black arrows indicate that
plane waves can be injected from
both sides on order to construct the
scattering state. The dashed gray
line shows that the height of the bar-
rier was slightly extended (and con-
tracted) in order to calculate 𝑄𝑛.
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matrix, which is already given in Eqs. (3.2) and (3.3) and is repeated below for the
sake of clarity:

𝑆11 = 𝑆22 = −
𝑒−2i𝑘𝐿

(︀
−1 + 𝑒4i𝑘𝐿𝑛

)︀
(𝑛2 − 1)

𝑒4i𝑘𝐿𝑛(𝑛− 1)2 − (𝑛+ 1)2
, (3.39)

𝑆12 = 𝑆21 = − 4𝑒2i𝑘𝐿(𝑛−1)𝑛

𝑒4i𝑘𝐿𝑛(𝑛− 1)2 − (𝑛+ 1)2
. (3.40)

The components of 𝑄𝑛 are then

𝑄𝑛,11 = 𝑄𝑛,22 =
−8𝑘𝐿 (𝑛3 + 𝑛) − 2 (𝑛2 − 1) sin(4𝑘𝐿𝑛)

− (𝑛2 + 6)𝑛2 + (𝑛2 − 1)2 cos(4𝑘𝐿𝑛) − 1
, (3.41)

𝑄𝑛,12 = 𝑄𝑛,21 =
−8𝑘𝐿𝑛 (𝑛2 − 1) cos(2𝑘𝐿𝑛) − 4 (𝑛2 + 1) sin(2𝑘𝐿𝑛)

− (𝑛2 + 6)𝑛2 + (𝑛2 − 1)2 cos(4𝑘𝐿𝑛) − 1
. (3.42)

The solution of the eigenproblem associated to 𝑄𝑛 is

𝜃1𝑛 =
−4𝑘𝐿𝑛− 2 sin(2𝑘𝐿𝑛)

(𝑛2 − 1) cos(2𝑘𝐿𝑛) − 𝑛2 − 1
, u1

𝑛 =
1√
2

(︂
1
1

)︂
, (3.43)

𝜃2𝑛 =
4𝑘𝐿𝑛− 2 sin(2𝑘𝐿𝑛)

(𝑛2 − 1) cos(2𝑘𝐿𝑛) + 𝑛2 + 1
, u2

𝑛 =
1√
2

(︂
−1
1

)︂
. (3.44)

The intensities integrated over length of the potential barriers are

𝐼1 ≡
∫︁ 𝐿

−𝐿

⃒⃒
𝜓
(︀
u1
𝑛

)︀⃒⃒2
d𝑥 =

−4𝑘𝐿𝑛− 2 sin(2𝑘𝐿𝑛)

𝑘𝑛 [(𝑛2 − 1) cos(2𝑘𝐿𝑛) − 𝑛2 − 1]
,

𝐼2 ≡
∫︁ 𝐿

−𝐿

⃒⃒
𝜓
(︀
u2
𝑛

)︀⃒⃒2
d𝑥 =

4𝑘𝐿𝑛− 2 sin(2𝑘𝐿𝑛)

𝑘𝑛 [(𝑛2 − 1) cos(2𝑘𝐿𝑛) + 𝑛2 + 1]
, (3.45)

where the argument in the parentheses indicates which eigenvector of 𝑄𝑛 is injected
into the system. From these expressions it is easy to see that there is a strict linear
relation between 𝐼𝑖 and 𝜃𝑖𝑛:

𝐼1
𝜃1𝑛

=
𝐼2
𝜃2𝑛

=
1

𝑘𝑛
. (3.46)

This concludes the proof and fixes the proportionality constant of the direct linear
relation to 1/(𝑘𝑛).

In two dimensions the analytical expression of 𝑄𝑛 cannot be given, however, we
are able to show that the intensity integrated over the area 𝐴 of the target,

𝐼
(︀
u𝑖
𝑛

)︀
≡
∫︁ ⃒⃒

𝜓
(︀
u𝑖
𝑛

)︀⃒⃒2
d𝐴, (3.47)

is in a strict linear relation with the eigenvalues of 𝑄𝑛, i.e.,

𝐼
(︀
u𝑖
𝑛

)︀
=

𝜃𝑖𝑛
𝑛𝑘2

, (3.48)
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a b c d

Fig. 3.12. Numerical simulation in the waveguide setup with a Teflon target
(radius 𝑅 = 0.0165𝑊 , refractive index 𝑛 = 1.44). The number of propagating
modes used is 𝑁 = 20 and the wavelength is 𝜆 = 0.1𝑊 . a, b, Spatial intensity
distribution of the two 𝑄𝑛-eigenstates with the largest eigenvalues 𝜃𝑛. A strong
focus onto the inside of the target scatterer can be clearly observed. c, d, Spatial
intensity distribution of the two 𝑄𝑛-eigenstates with the smallest eigenvalues 𝜃𝑛,
showing a strong avoidance of the target scatterer.

where we fix the proportionality constant by dimensional analysis. We empirically
verify this result in Fig. 3.6a. In Fig. 3.12 we show the spatial intensity distribution
of scattering states corresponding to the largest and smallest eigenvalues of𝑄𝑛. One
can clearly observe the strong focus achieved by the scattering states associated to
large eigenvalues and the avoidance of the target by the scattering states associated
to small eigenvalues. This allows us to smoothly tune the degree of focusing over
several orders of magnitude by choosing superpositions of eigenstates with large or
small eigenvalues – ranging from perfect focus to complete avoidance. To support
our claim of optimal focus we compare our approach to an established method for
optimal focus [73] in section 4.1 and show that our technique indeed also gives the
optimal focus onto a point. Our method, however, surpasses the method given in
Ref. [73] when we consider focusing into an extended area.



Chapter 4.

Discussion

In this chapter we discuss the results achieved so far. We start by showing that
we indeed achieve an optimal focus by comparing our approach to an already ex-
isting technique that was developed specifically for that purpose. Moreover, we
demonstrate that the different realizations of the GWS-operator can be used as
building blocks for more complex applications, like transferring linear momentum
in an arbitrary direction, constructing two different methods for an optical trap or
for applying torque to a target while maintaining its position. We will also discuss
the situation where we do not consider the ideal case with a Hermitian operator
𝑄𝛼 but a non-ideal one taking into account experimental restrictions to show that
our ideas also work in envisioned experimental realizations.

4.1. Comparing the GWS-Focus to the Field
Matrix Method

In Ref. [73] the authors use the field matrix 𝑒(𝑥) to achieve optimal focus onto a
point inside a scattering medium. This matrix with components 𝑒𝑏𝑎(𝑥) relates the
field inside the medium at depth 𝑥 and transverse position 𝑏, 𝐸𝑏(𝑥), to the field in
the leads at the transverse position 𝑎, 𝐸𝑎, i.e., 𝐸𝑏(𝑥) =

∑︀
𝑎 𝑒𝑏𝑎(𝑥)𝐸𝑎. In order to

focus in an optimal way onto a target point 𝛽, one needs to construct a scattering
state at the input as

𝐸opt
𝑎 = 𝑒*𝛽𝑎𝐼

−1/2
𝛽 (𝑥), (4.1)

where 𝐼𝛽(𝑥) =
∑︀

𝑎 |𝑒𝛽𝑎(𝑥)|2 normalizes the input vector and * denotes complex
conjugation. This claim was proven in Ref. [74] for the case of a focus behind a
scattering medium utilizing the transmission matrix 𝑡. For the sake of completeness,
we give this proof in the following. The field inside the scattering medium at the
transverse position 𝛽 is given by

𝐸𝛽(𝑥) =
𝑁∑︁
𝑎=1

𝑒𝛽𝑎(𝑥)𝐸𝑎, (4.2)
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where 𝐸𝑎 is the field in the leads and 𝑁 is the number of incident channels. Maxi-
mizing the field’s intensity at 𝛽 is equivalent to maximizing |𝐸𝛽(𝑥)|. This quantity
has an upper bound given by the Cauchy-Schwarz inequality, i.e.,

|𝐸𝛽(𝑥)| ≤
𝑁∑︁
𝑎=1

|𝑒𝛽𝑎(𝑥)||𝐸𝑎|. (4.3)

This upper bound is reached if and only if 𝐸𝑎 = 𝐶𝑒*𝛽𝑎, where 𝐶 is an arbitrary
complex constant. Thus, the input field for maximizing the intensity at 𝛽 is given
by

𝐸opt
𝑎 = 𝐶𝑒*𝛽𝑎. (4.4)

𝐶 is fixed by the condition that the incident intensity is normalized to one, i.e.,

𝑁∑︁
𝑎

⃒⃒
𝐸opt

𝑎

⃒⃒2
=

𝑁∑︁
𝑎

⃒⃒
𝐶𝑒*𝛽𝑎

⃒⃒2
= 1. (4.5)

Resolving for 𝐶 gives

𝐶 =

(︃
𝑁∑︁
𝑎

|𝑒𝛽𝑎|2
)︃−1/2

≡ 𝐼
−1/2
𝛽 . (4.6)

In Fig. 4.1a we compare the field matrix method, which maximizes the intensity
at a certain point with the highest 𝑄𝑛-eigenstate, which maximizes the intensity in
the target area where the refractive index 𝑛 is varied. The waveguide geometry in
which we contrast the two methods is the same as in section 3.4. The target has a
diameter of 𝐷 = 0.033𝑊 , with 𝑊 being the width of the waveguide, and is thus
slightly smaller than half the wavelength 𝜆𝑠 ≡ 𝜆/𝑛 ≈ 0.07𝑊 inside the scatterer. As
long as this condition is fulfilled, we observe that the state calculated with the field
matrix method and the highest 𝑄𝑛-eigenstate are in excellent agreement with each
other, featuring a single peak inside the target area (see Fig. 4.1b). For a diameter
larger than this limit, i.e., 𝐷 ≥ 0.5𝜆𝑠, the highest 𝑄𝑛-eigenstate forms two peaks
inside the target area in order to maximize the stored intensity (see Fig. 4.1c), while
the field matrix method still only gives a single peak at the target’s center. This
single peak has the consequence that the integrated intensity inside the target is
approximately 0.4 times lower than that of the highest 𝑄𝑛-eigenstate. In principle,
maximizing the intensity in such an extended area would also be possible with the
field matrix method, but one would have to find the required multiple focus spots
via an iterative optimization procedure.
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Fig. 4.1. a, Intensity distribution at 𝑥 = 𝐿/2 along the transverse coordinate 𝑦
for the field matrix state and the highest 𝑄𝑛-eigenstate, which are identical due to
the small size of the target’s diameter 𝐷 = 0.33𝑊 = 0.48𝜆𝑠 = 0.48𝜆/𝑛. In case
of the field matrix state, we calculated the field matrix 𝑒𝛽,𝑎 at 𝑥 = 𝐿/2 and set
𝛽 = 𝑊/2. The gray shaded region marks the target scatterer. b, Spatial intensity
distribution of the highest 𝑄𝑛-eigenstate in an area around the target scatterer,
which is identical to intensity distribution of the field matrix state. The dashed line
indicates at which position the cut in a was made. c, Spatial intensity distribution
of the highest 𝑄𝑛-eigenstate for a target with diameter 𝐷 = 0.75𝜆𝑠. In order to
maximize the stored intensity, the state features two peaks inside the target. This
allows the highest 𝑄𝑛-eigenstate to have an integrated intensity inside the target
that is 2.5 times higher than the integrated intensity of the field matrix-state for
this configuration, which is calculated to still focus onto the target’s center.

4.2. Pushing a Target in an Arbitrary Direction
One application, that shows the strength of the GWS-concept is the ability to push
a target in an arbitrary direction in a disordered medium. As a model system we
once again use the waveguide geometry depicted in Fig. 3.1, where the target is in
this case a metallic circle of radius 𝑅 = 0.0825𝑊 .

In Ref. [60] it was shown that an eigenstate of the GWS-operator 𝑄𝑥, i.e., the
GWS-operator for a shift of a target in the longitudinal direction, has a well de-
fined momentum transfer onto that target in the direction of the shift, 𝑥. It does
not, however, carry information about the momentum transfer in the orthogonal
direction to 𝑥, i.e., 𝑦, which can be even larger than the momentum transfer in
longitudinal direction. In the following we will show how to construct a superpo-
sition of 𝑄𝑥-eigenstates that have a drastically reduced momentum transfer in the
𝑦-direction, which enables us to push a target into a certain direction without a
push in an unwanted direction.

This is achieved by taking two 𝑄𝑥-eigenstates, u1
𝑥 and u2

𝑥 (depicted in Fig. 4.2),
with a large parallel momentum transfer in the longitudinal direction. To reduce
the momentum transfer in the orthogonal direction, we have further chosen eigen-
states which also feature a transversal momentum transfer of opposite signs, which
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a b c

Fig. 4.2. Numerical simulation in the waveguide setup depicted in Fig. 3.1 with a
metallic target (radius 𝑅 = 0.0825𝑊 ), a wavelength of 𝜆 ≈ 0.1𝑊 and 𝑁 = 20 open
modes. a, b, Spatial intensity distribution of two 𝑄𝑥-eigenstates, u1

𝑥 and u2
𝑥, whose

superposition, is used to create a scattering state that transfers momentum only in
the 𝑥-direction with no momentum transfer into the orthogonal 𝑦-direction. Both
states push the target to the left, while the one in the left (middle) plot pushes
the central scatterer also upwards (downwards). c, Spatial intensity distribution
of the scattering state s = 𝑐u1

𝑥 + u2
𝑥, where 𝑐 ∈ R is calculated using a root

finding algorithm solving s†𝑄𝑦s = 0, i.e., the transversal momentum transfer onto
the target is minimized. In this scattering geometry, the transversal momentum
transfer is damped by a factor of 104.

is calculated via the expectation value of the corresponding GWS-operator 𝑄𝑦, i.e.,
(u1,2

𝑥 )
†
𝑄𝑦u

1,2
𝑥 . We then construct a superposition s = 𝑐u1

𝑥 + u2
𝑥, with 𝑐 ∈ R, where

𝑐 is calculated by solving s†𝑄𝑦s = 0 using a root finding algorithm. This gives
us a state that transfers momentum in a certain direction with minimal unwanted
orthogonal contributions. The spatial intensity distribution for such a state s is
depicted in Fig. 4.2c. It is clear from a quick glance that the incident angle is
exactly in the longitudinal direction.

Momentum transfer into an arbitrary direction can easily be achieved by shifting
the target scatterer in any direction [60]. There is, however, a second method for
constructing a GWS-operator that allows to control the momentum transfer in an
arbitrary direction. It is given by the linear combination of two GWS-operators
that were calculated by considering shifts in orthogonal directions, like 𝑄𝑥 and 𝑄𝑦,
i.e.,

𝑄𝑎,𝑏 =
1√

𝑎2 + 𝑏2
(𝑎𝑄𝑥 + 𝑏𝑄𝑦) , (4.7)

where the vector (𝑎, 𝑏)𝑇 tells us the direction into which the eigenstates of𝑄𝑎,𝑏 trans-
fer momentum. This claim is verified by numerical simulations shown in Fig. 4.3a.
Next we show in Fig. 4.3b that the eigenvalues of 𝑄𝑎,𝑏 are exactly the same as the
eigenvalues of the GWS-operator we get by shifting the target in the direction of
(𝑎, 𝑏)𝑇 . In Fig. 4.3c we show the spatial intensity distribution of the largest 𝑄3,1-
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Fig. 4.3. Numerical evidence that a momentum transfer into an arbitrary direction
(𝑎, 𝑏)𝑇 can be achieved by superimposing two orthogonal shift GWS-operators, e.g.
𝑄𝑎,𝑏 ∝ 𝑎𝑄𝑥 + 𝑏𝑄𝑦. a, Linear relation between between the eigenvalues 𝜃𝑎,𝑏 of
𝑄𝑎,𝑏 and the applied force in direction of (𝑎, 𝑏)𝑇 = (3, 1)𝑇 . The deviation from
perfect correlation is 10−7. b, Linear relation between the eigenvalues 𝜃𝑎,𝑏 and
the eigenvalues of 𝑄n̂, i.e., the GWS-operator we get when shifting the target in
direction of n̂ = (3, 1)𝑇/

√
10. These eigenvalues are the same up to a mean squared

error of the order of 10−10. c, Spatial intensity distribution of the 𝑄𝑎,𝑏-eigenstate
that corresponds to the eigenvalue with the largest magnitude, i.e., |𝜃𝑎,𝑏|. One can
see that the incident angle is approximately 18∘ with the waveguide’s walls, which
is the angle we want when choosing (𝑎, 𝑏) = (3, 1).

eigenstate with (𝑎, 𝑏)𝑇 = (3, 1)𝑇 . One can see that the incidence angle is about 18∘

with the waveguide’s walls, which is the same angle as that of (𝑎, 𝑏)𝑇 = (3, 1)𝑇 with
the waveguide’s walls. This empirically confirms that 𝑄𝑎,𝑏 is a suitable choice when
one wants to shift a target in an arbitrary direction.

4.3. Optical Trapping
In this section we show two realizations of an optical trap that can be realized with
GWS-operators and also compare them with each other. The concepts are once
again demonstrated in the waveguide geometry depicted in Fig. 3.1.

Both concepts rely on minimization of the following quantity,

[(s†𝑄𝑥s)
2 + (s†𝑄𝑦s)

2]1/2 → min, (4.8)

which measures the magnitude of the total momentum transferred onto the target
of a linear superposition s of GWS-eigenstates.

The first idea uses the eigenstates of 𝑄𝑥 as introduced in section 3.1. In the first
step we select the four eigenstates of 𝑄𝑥 that contain all four possible sign combi-
nations for longitudinal and transversal momentum transfer and whose momentum
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transfer’s magnitude is as large as possible. In the second step we construct a su-
perposition out of those four states, i.e., s =

∑︀4
𝑖=1 𝑐𝑖u

𝑖
𝑥, with 𝑐𝑖 ∈ R. The 𝑐𝑖 are

calculated using an optimization algorithm minimizing Eq. (4.8), i.e., the total mo-
mentum transfer onto the target. The spatial intensity distribution of the resulting
state s is shown in Fig. 4.4b. One can see the wave intensity building up on almost
the whole boundary of the target, resulting in a tight trapping.

The second idea utilizes a superposition, t =
∑︀4

𝑖=1 𝑑𝑖u
𝑖
𝑅, of eigenstates of 𝑄𝑅.

The eigenstates are selected using similar criteria as in the preceding paragraph, i.e.,
they need to have opposite momentum transfer in the longitudinal and transversal
direction (calculated using expectation values of 𝑄𝑥 and 𝑄𝑦), while their eigenval-
ues 𝜃𝑅 should be as large as possible. The 𝑑𝑖 are calculated using an optimization
algorithm minimizing Eq. (4.8) when replacing s by t, i.e., the total momentum
transfer onto the target. The spatial intensity distribution of the resulting state t
is depicted in Fig. 4.4c, depicting an intensity build-up on four points along the
boundary of the target, resulting in a tight trapping.

In order to compare these two ideas, we displace the target longitudinally and
transversally while injecting the same scattering state s and t, respectively, and

b ca

Fig. 4.4. Two different realizations for the use of the GWS-concept as an optical
trap. a, Restorative force experienced by the target, pushing it back in direction of
the displacement plotted over the displacement normalized to the target’s radius 𝑅.
∆𝑑⊥ (∆𝑑‖) denotes that the displacement happened in transversal (longitudinal)
direction. The optical trap is stiffer (measured by the greater slope at ∆𝑑 = 0)
when the displacement happens in longitudinal direction, because the waveguide’s
walls make it harder for the wave to provide a restorative force from below or above.
b, Spatial intensity distribution of the state s =

∑︀4
𝑖=1 𝑐𝑖u

𝑖
𝑥, where the 𝑐𝑖 ∈ R are

calculated using an optimization algorithm minimizing [(s†𝑄𝑥s)
2 +(s†𝑄𝑦s)

2]1/2 and
the u𝑖

𝑥 are eigenstates of 𝑄𝑥. This state has a ratio 𝑡𝑠 = 3.5 × 10−5. c, Spatial
intensity distribution of the state t =

∑︀4
𝑖=1 𝑑𝑖u

𝑖
𝑅, where the 𝑑𝑖 ∈ R are calculated

using an optimization algorithm minimizing [(t†𝑄𝑥t)
2+(t†𝑄𝑦t)

2]1/2 and the u𝑖
𝑅 are

eigenstates of 𝑄𝑅. This state has a ratio 𝑡𝑠 = 5.6 × 10−5.
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calculate the restorative force using Eq. (3.18) in dependence of the displacement
∆𝑑. The result for this consideration is depicted in Fig. 4.4a, showing that these
two ideas are of comparable capability. To classify their initial trapping strength we
compute the ratio 𝑡𝑠 ≡ |𝐹 |/𝑃 , which is the total momentum transfer’s magnitude
divided by the pressure.

4.4. Applying Torque without Linear Momentum
Transfer

In section 3.3.1 we show how to transfer torque onto a metallic target using 𝑄𝜙,
whose eigenvalues 𝜃𝜙 quantify the amount of torque transferred. These eigenvalues,
however, carry no information about the linear momentum transfer that inevitably
accompanies such an exertion of torque. As is evident from Figs. 4.5a and 4.5b
the eigenstates u𝜙 of 𝑄𝜙 also transfer a considerable amount of momentum onto
the target and thus push it in a certain direction, because the intensity build-up is
mainly on one side. In this section we develop a protocol that allows us to apply
torque onto a target, ideally near the theoretical maximum, while simultaneously
holding it in place, like in an optical trap. We investigate this protocol in the
waveguide geometry that is shown in Fig. 3.1.

All we need for this protocol are the GWS-operators 𝑄𝑥 and 𝑄𝑦, as introduced
in section 4.2 and 𝑄𝜙 as introduced in section 3.3.1. We select two eigenstates
of 𝑄𝜙 that apply as much torque as possible onto the target and have a longitu-
dinal and transversal momentum transfer of opposite signs, which are measured
via the expectation values of 𝑄𝑥 and 𝑄𝑦. Out of those two states we construct a
superposition

s = 𝑐1u
1
𝜙 + 𝑐2u

2
𝜙, (4.9)

where the coefficients 𝑐𝑖 ∈ C are calculated using an optimization algorithm mini-
mizing Eq. (4.8), i.e., the magnitude of the total momentum transferred onto the
target. The spatial intensity distributions of the resulting state s and its con-
stituents u1

𝜙 and u2
𝜙 are shown in Fig. 4.5. One can see that the state s focuses

onto opposite sides of the square such that a sizeable torque but only minimal lin-
ear momentum is transferred. Note that this procedure can be generalized to more
general superpositions of 𝑄𝜙-eigenstates.
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Fig. 4.5. a, b, Spatial intensity distribution of two 𝑄𝜙-eigenstates, u1 and u2. It
is evident from a quick glance that in the left (middle) picture clockwise torque
is applied onto the target while also pushing it to the left (right). c, Spatial in-
tensity distribution of the state defined in Eq. (4.9), constructed out of the 𝑄𝜙-
eigenstates shown in a and b. The coefficients 𝑐𝑖 ∈ C are calculated minimizing
[(s†𝑄𝑥s)

2 + (s†𝑄𝑦s)
2]1/2, i.e., the linear momentum transfer’s magnitude that in-

evitably accompanies a 𝑄𝜙-eigenstate, using an optimization algorithm. In this
setup, these unwanted contributions could be reduced by a factor of 102. By com-
bining different 𝑄𝜙-eigenstates it is therefore possible to apply torque onto a target
while transferring a minimized amount of linear momentum.

4.5. Non-Ideal Conditions
So far we have only demonstrated the capabilities of the GWS-operator in a setting
where we have full access to the unitary scattering matrix 𝑆, resulting in a Hermi-
tian operator 𝑄𝛼 featuring real eigenvalues. If we want to show that our concept
also works in the experiment we have to study our ideas also in the subunitary
regime, where we only have access to a subpart of the scattering matrix 𝑆. In order
to give one example that the GWS-concept also works in the subunitary regime,
we consider the same waveguide as depicted in Fig. 3.1, but now fill it with 300
randomly distributed Teflon scatterers and one square metallic target scatterer. We
change the set-up compared to previous chapters to increase the total reflectivity of
the system. The necessity of this step will be made clear below. In order to get into
the subunitary regime we consider only the reflection matrix 𝑟, which is accessible
in many experiments. Furthermore, to simulate a low numerical aperture, we cut
the 𝑀 highest modes out of 𝑟 such that we are left with a (𝑁 −𝑀) × (𝑁 −𝑀)-
dimensional matrix 𝑟, where 𝑁 is the number of modes in the waveguide. The
subunitary regime of the GWS-operator was already studied in [60], where it is
shown in the supplementary material that the eigenvalues of the GWS-operator
built from only a subpart of the scattering matrix, 𝑞𝜙 = −i𝑟−1d𝑟/d𝜙 are

𝜃𝑖𝜙 ∝𝑀𝑧(u
𝑖
𝜙) − iu𝑖,†

𝜙 𝑡
† d𝑡

d𝜙
u𝑖
𝜙 (4.10)
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Fig. 4.6. Numerical simulation of the waveguide setup filled with 300 randomly
distributed Teflon scatterer (radius 𝑅 = 0.025𝑊 , refractive index 𝑛 = 1.44) and
a metallic square target (side length 0.165𝑊 ) at 𝑥-position 𝐿/6. The number of
propagating modes used is 𝑁 = 40, we discard the 𝑀 = 10 highest modes in
order to simulate a low numerical aperture and the wavelength is 𝜆 ≈ 0.05𝑊 .
In the SVD-procedure we project on the 15 highest reflecting states in order to
select states with low transmission. a, Linear relation between the real part of
𝑞𝜙’s eigenvalues and the total torque transferred onto the target scatterer. The
correlation coefficient is 𝑟 = 0.997 which shows that this concept still works in
non-ideal conditions. b, c, Spatial intensity distribution of two 𝑞𝜙-eigenstates with
the largest absolute value of Re(𝜃𝜙). A strong focusing on the corners of the target
scatterer, evidently transferring torque, can be clearly observed.

with 𝑡 being the transmission matrix. Note that in [60] the analogous case of a
GWS-operator built out of the transmission matrix 𝑡 was considered. The loss
of information due to the venture into the subunitary regime manifests itself in
complex eigenvalues due to the second term, which is not available in our approach.
In order to minimize the second term and to still maintain a relation between the
eigenvalues 𝜃𝜙 and the total torque𝑀𝑧 we use a projection of 𝑟 onto highly reflecting
channels by means of a singular value decomposition (SVD) of the reflection matrix
𝑟 = 𝑈Σ𝑉 †. The unitary matrices 𝑈 and 𝑉 contain column-wise the left and right
singular vectors and the matrix Σ = diag({𝜎𝑛}) contains the singular values on its
diagonal. In order to project onto the highly reflecting states we select a subset
of large singular values Σ̃ = diag({�̃�𝑛}) with corresponding left and right singular
vectors stored in �̃� and 𝑉 . Equipped with these tools we can construct an effective
inverse 𝑟−1 = 𝑉 (�̃� †𝑟𝑉 )−1�̃� † = 𝑉 Σ̃−1�̃� †. We also need to project the derivative of 𝑟
onto this subspace with the proper projection operators 𝑃�̃� = �̃� �̃� † and 𝑃𝑉 = 𝑉 𝑉 †.
We then arrive at the following expression for the GWS-operator

𝑞𝜙 = −𝑖𝑉 (�̃� †𝑟𝑉 )−1�̃� †�̃� �̃� † d𝑟

d𝜙
𝑉 𝑉 †. (4.11)
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In Fig. 4.6 we show the spatial intensity distribution of the two 𝑞𝜙-eigenstates that
transfer the largest torque onto the target. It is clearly observable that there is an
intensity build-up at the corners of the target, such that torque is transferred onto
it. In Fig. 4.6a we show the relation (3.35) which is still almost perfectly fulfilled.
This result strongly suggests that we can use all GWS-operators in the subunitary
regime.



Chapter 5.

Summary

In this thesis we present a whole class of operators that allows us to manipulate a
target inside a disordered system in many different ways. These GWS-operators𝑄𝛼,
are based on the Wigner-Smith time-delay operator. Depending on the choice of
the parameter 𝛼 we can perform different tasks. The first choice for the parameter
𝛼 is the position of the target, which we want to manipulate, allowing us to control
the force applied to it. We also study the GWS-operator we get by considering the
radius of the target as the parameter 𝛼, enabling us to apply a well-defined pressure
onto it. Moreover, we can control the torque exerted onto the target by considering
the orientation angle of a non-circular target as the parameter. Last but not least,
we use the refractive index of the target as the parameter 𝛼 to control the total
intensity, i.e., the degree of focusing, inside the target [75]. Our technique allows
us to smoothly tune the respective quantity transferred to the target over several
orders of magnitude. We want to emphasize here that the presented techniques are
applicable to dielectric as well as to metallic targets and for almost any shapes and
sizes.

We also show that we are able to achieve the theoretical maximum of transferred
force, pressure or torque onto the target as well as the optimal focus in the target.
Especially finding the best focus onto a certain spot is a task that has challenged
researchers over the last decades. We compare our approach to an already existing
technique and confirm that we are indeed able to achieve this optimal focus.

The key feature of our concept is that the four different GWS-operators we have
studied can be used as a toolbox of building blocks for more sophisticated appli-
cations. We show how push a target into an arbitrary direction and discuss two
different realizations of an optical trap. Finally we present a method for transfer-
ring torque onto it without any linear momentum transfer, i.e., we can rotate a
target without pushing it into one direction.

In order to show that an envisioned experimental realization in the optical or
microwave regime is a worthwhile endeavor, we numerically confirm that our tech-
nique is still applicable when considering experimental imperfections such as low
numerical aperture and limited access to the scattering matrix.

All of the above mentioned investigations have been carried out in a two di-
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mensional waveguide model in which the propagation of electromagnetic waves
is described by the Helmholtz equation. Due to its structural similarity to the
Schrödinger equation, we conclude that all these approaches are also valid in the
context of quantum mechanics. Since the GWS-operator involves only the system’s
scattering matrix 𝑆 and its derivative with respect to the parameter 𝛼, we believe
that our approach for micromanipulation is universally applicable to linear systems
that can be characterized by a scattering matrix S.

We conclude this thesis with an outlook on further research. The Wigner-Smith
time-delay operator shares a deep connection with the density of states of an open
scattering system [76, 77]. We want to investigate this connection also for the
GWS-operator and we expect to gain new physical insight such as certain invariance
properties of a scattering systems. Although we have shown that our GWS-concept
can be applied under experimental limitations, there are still some other factors,
such as absorption, that have to be considered. Furthermore, we plan to investigate
in which way GWS-eigenstates that focus onto an object in a disordered medium
can be used to reconstruct an image of this object.

The promising numerical results in this thesis pave the way for new methods of
micromanipulation of an embedded object as well as for focusing onto a target.
In the long run could this lead to exciting applications, especially in biomedical
imaging. The technique for optimal focus presented in this thesis is particularly
elegant. Our method also gives the theoretical maximum for applied force, pressure
and torque onto a target, which is – at least to the best of our knowledge – the first
time this has been achieved.



Appendix A.

Statistical Tools

A.1. Correlation Coefficient
Given two variables 𝑋 and 𝑌 , we can find the degree of linear correlation between
them by calculating Pearson’s correlation coefficient 𝑟 ∈ [−1, 1]. 𝑟 = 1 and 𝑟 = −1
refer to total positive or negative correlation respectively, while 𝑟 = 0 means no
correlation at all. For a sample of size 𝑛, 𝑟 is calculated by

𝑟 =

∑︀𝑛
𝑖=1 (𝑥𝑖 − �̄�) (𝑦𝑖 − 𝑦)√︁∑︀𝑛

𝑖=1 (𝑥𝑖 − �̄�)2
√︁∑︀𝑛

𝑖=1 (𝑦𝑖 − 𝑦)2
, (A.1)

where 𝑥𝑖 and 𝑦𝑖 are the individual sample points and �̄� and 𝑦 are the corresponding
mean values. We measure deviation from perfect positive or negative correlation
by computing,

∆𝑟 ≡ ±1 − 𝑟. (A.2)

A.2. Mean Squared Error
Given two vectors 𝑌 and 𝑌 , where 𝑌 contains the predictions and 𝑌 the observed
values then the mean-squared error (MSE) of the predictor is computed as

MSE =
1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 , (A.3)

where 𝑛 is the number of data points and 𝑦𝑖 and 𝑦𝑖 are the individual sample points.
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