
Mitigating Rowhammer Attacks
with Software Diversity

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Manuel Wiesinger, BSc
Matrikelnummer 00825632

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dr.techn. Edgar Weippl

Wien, 30. April 2018
Manuel Wiesinger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Mitigating Rowhammer Attacks
with Software Diversity

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Manuel Wiesinger, BSc
Registration Number 00825632

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dr.techn. Edgar Weippl

Vienna, 30th April, 2018
Manuel Wiesinger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Manuel Wiesinger, BSc
Goldschlagstraße 112/48
1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. April 2018
Manuel Wiesinger

v

Acknowledgements

I would like to thank my advisor Univ.-Prof. Dr. Stefan Brunthaler for initiating the idea
of this thesis, for constantly giving helpful advise and motivation whenever I needed it.
He always supported me generously and encouraged me to attempt a scientific career.
Moreover, I want to thank Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr. techn. Edgar
Weippl for his advice and supervision.

Furthermore, I want to express my gratitude to SBA Research, the company that has
employed me for working on operation system security and is giving me the opportunity
to continue my research as employee.

My gratitude goes to my parents Brigitte and Thomas, as their generosity allowed me to
study without pressure. They always kept supporting me during my studies. Especially I
want to thank my father who awakened my interests for natural science, technology and
computer science. Furthermore, I want to thank my sister who always listened to me
and made me laugh. I also want to thank my grandmother Gertrud for showing interest,
supporting me and constantly believing in me.

I want to thank my girlfriend Klara for her interminable support throughout my studies,
for always listening to me and giving me essential advice. I cannot imagine finishing this
thesis without her.

Finally, I to thank my university friends Florian Schweikert, Simon Wolfsteiner, Kristoffer
Kleine and Albert Dengg with whom I attended many classes, had lunch and coffee
during my studies. Additionally, my gratitude goes to Christoph Roschger who took the
part of a mentor since my first semester.

vii

Kurzfassung

Die Rowhammer-Schwachstelle ist ein drastisches Sicherheitsrisiko für moderne Compu-
tersysteme. Bösartige Angreifer können damit gezielt Daten manipulieren bzw. Kontrolle
über ganze Copmutersysteme erlangen, indem sie Daten ohne jegliche Autorisierung modi-
fizieren. Die vorliegende Arbeit analysiert die öffentlich bekannten Rowhammer-Angriffe
auf Betriebssysteme und präsentiert erstmals eine alternative, auf Softwarediversität
beruhende Lösung für dieses Problem. Da die bekannten Angriffe stets auf der Vor-
hersagbarkeit von in modernen Betriebssystemen eingesetzten Algorithmen basieren,
beabsichtigen wir, diese Vorhersagbarkeit mittels Softwarediversität zu unterbinden. In
concreto stellen wir page sacrifice vor: eine leicht umzusetzende, effiziente Modifika-
tion bestehender Mechanismen, die Rowhammer Angriffe verhindert, indem bei jeder
Speicherzuweisung physisch benachbarte Speicherblöcke zufällig freigelassen und somit
Speicherzuweisungen unvorhersehbar werden. Der Speicher wird dadurch allerdings nicht
dauerhaft belegt — sobald das Betriebssystem einen Speicherblock wieder frei gibt, wer-
den auch die freigelassenen Blöcke wieder verfügbar. Um unsere Verteidigungmaßnahme
zu evaluieren, wurde ein Prototyp für Linux entwickelt, der anhand weitverbreiteter
Messmethoden untersucht wurde. page sacrifice stellt eine neue Maßnahme gegen
Rowhammer-Angriffe dar.

ix

Abstract

The Rowhammer vulnerability allows the modification of arbitrary data without au-
thorization. This is poses a dramatic security risk for modern computing systems, as
it allows malicious attackers to manipulate data or even gain the control over entire
systems. This thesis analyzes publicly available attacks based on Rowhammer as well
as known defenses against them. Finally, it suggests a novel solution to the problem
based on software diversity. As existing attacks are typically based on the predictability
of algorithms used in modern operating systems, we aim to prevent these predictability
using software diversity. In concreto we present page sacrifice, an easy-to-implement,
efficient modification of existing operating system mechanisms which prevents Rowham-
mer attacks by making the locations of memory blocks unpredictable. This is done by
randomly leaving neighboring blocks free when memory is allocated. Leaving memory
blocks free does not mean that they remain occupied: As soon as the operating system
frees a memory block, it also frees the blocks which were left empty during the memory
allocation. To evaluate our defense, we implemented a prototype for Linux which we
evaluated using widely known benchmarks. page sacrifice is a new defense against
Rowhammer based attacks.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Structure of the Thesis . 2

2 Background 3
2.1 Hardware Architecture . 3
2.2 CPU Cache and Main Memory Structure 5
2.3 Memory Management . 6
2.4 Paging . 6
2.5 Huge Pages . 9
2.6 Page Cache . 10
2.7 Kernel Space And User Space . 10
2.8 Rowhammer . 10
2.9 CPU Cache Eviction Strategies . 15

3 State of the Art 19
3.1 B-CATT . 19
3.2 G-CATT . 20
3.3 Kernel Page-Table Isolation . 21
3.4 Static Binary Analysis . 21
3.5 Rowhammer Defenses based on CPU Performance Counters 22

4 Design 25
4.1 The Buddy System . 25
4.2 Rowhammer-based Attacks . 27
4.3 Phys Feng Shui . 29
4.4 Software Diversity . 35

5 Design and Implementation of Page Sacrifice 37

xiii

5.1 Overview . 37
5.2 Implementation . 38
5.3 Preliminaries . 38

6 Evaluation 47
6.1 Memory Usage . 47
6.2 CPU Benchmarks . 48
6.3 Security evaluation . 49

7 Conclusion 51
7.1 Contribution . 51
7.2 Limitations . 51
7.3 Future Work . 52

A SPEC CPU2006 Benchmarks 53

List of Figures 55

List of Tables 57

List of Algorithms 59

Bibliography 61

CHAPTER 1
Introduction

Modern society relies heavily on secure computing infrastructure. This infrastructure
must be protected against any kind of vulnerability, because cybercriminals and intel-
ligence agencies use vulnerabilities of digital infrastructure to acquire or manipulate
information. Therefore, recent hardware vulnerabilities such as Meltdown [1] and the
Spectre-family [2] [3] have attracted great media interest as they affect almost any
computer. Another serious hardware vulnerability is the so called Rowhammer bug [4].
It affects most memory modules and consequently most computers. Rowhammer can
be used to modify arbitrary data if attackers succeed to execute code on their victim’s
machine. Similarly, to Meltdown and the Spectre family, it may be sufficient if victims
are tricked to visit vulnerable websites. Avoiding these hardware vulnerabilities is difficult
though. Unlike software vulnerabilities hardware vulnerabilities cannot be easily fixed by
installing software updates, instead hardware vulnerabilities require hardware replace-
ment. If critical vulnerabilities affect widely used hardware, it is not feasible to deploy
fixes in time. Instead of replacing hardware, software often can be used to circumvent
hardware bugs. Circumvention makes it possible to timely deploy software-based fixes
for critical hardware problems. Proposed defenses against circumventing the Meltdown,
the Spectre-family and Rowhammer vulnerabilities introduce significant performance loss
tough [1] [2] [5].

This thesis aims to approach the problem of Rowhammer attacks by analyzing existing
attacks and defenses. Based on our analysis we propose page sacrifice, a novel
mitigation strategy inspired by the ideas of software diversity (which we discuss in section
4.4). To the best of our knowledge all publicly available attacks based Rowhammer
take advantage of deterministic operating system behavior. Applying software diversity
allows us to eliminate these determinisms. To evaluate our ideas, we provide a proof of
concept implementation of non-deterministic memory allocation for the Linux kernel.
Finally, we analyze the effects of our proposed solution on operating system performance.
This analysis covers memory consumption benchmarks, CPU benchmarks and a security

1

1. Introduction

evaluation. We hope that this work will lead to further research questions for the
applicability of software diversity in modern operating systems.

1.1 Structure of the Thesis
This thesis is structured as following: Chapter 2 gives preliminary background information
on hardware architectures and fundamental operating system tasks relevant for under-
standing Rowhammer attacks and page sacrifice. Chapter 3 gives a comprehensive
overview of proposed software and hardware defenses against Rowhammer attacks. In
chapter 4 we explain the mechanisms necessary to understand the design of our proposed
defense. Chapter 5 we extensively discuss how we implemented a prototype of our defense
for Linux. Finally, we evaluate our implementation in chapter 6 and draw our conclusions
about our work in chapter 7.

2

CHAPTER 2
Background

This chapter gives the background information necessary to understand our page sacri-
fice mitigation strategy against Rowhammer based attacks. First, we briefly revisit the
fundamental operating system principles, as they can be found in any undergraduate
course book such as Operating Systems: Internals and Design Principles by William
Stallings [6] and describe the Rowhammer problem.

2.1 Hardware Architecture

In today’s computers the memory bus connects the central processing unit (CPU) with
the Dual In-line Memory Modules (DIMM).

CPU

memory ctl.

← data →
command
→

address →

Chip

Bank

Figure 2.1: The CPU is physically connected to the primary memory via the memory
bus.

3

2. Background

Kim et al. [4] and Brasser et al. [7] summarize the low-level structure of DIMMs as
following. Figure 2.1 gives a high-level view about the logical structure of the interaction
of CPU and DIMMs as well as the DIMM structure. DIMMs follow a hierarchic structure,
they consist of one or two ranks, which correspond to its front and backside. A rank
consists of multiple interconnected chips containing one or more memory banks. Memory
banks consist of horizontal rows and vertical columns of memory cells. The wordline
connects the cells horizontally and the bitline connects them vertically. Memory cells are
capacitors whose charged or uncharged state represents a binary data value (zero or one).
The access-transistor manages the read and write access to the word lines and bit lines.
Figure 2.2 depicts the structure of a memory bank.

row-buffer

wordline
bitline

Figure 2.2: Structure of a DRAM bank.

A row of cells has typically the length of one word, the unit in which the CPU processes
data. Today, the word size is typically 32 bit, 64 bit and for some architectures even 128
bit.

Memory Access

When the memory controller of the CPU issues a command to read a word, the reading
operation triggers higher voltage on the word line, which in turn enables all access-
transistors, connects the cells to the respective bit line and transfers the charge to the
row-buffer. This is commonly referred to as opening a memory row. The row-buffer
serves as interface to the memory bank, it carries out any operation on the data stored
in a bank. Since opening rows is a destructive operation, the row-buffer immediately
restores the data in the row, to preserve the data. Before another row can be accessed,
the currently open row needs to be closed, i.e. the voltage of the word line is lowered
again and the row-buffer is cleared.

4

2.2. CPU Cache and Main Memory Structure

2.2 CPU Cache and Main Memory Structure

Modern CPUs perform operations on integrated registers. Hence, data has to be loaded
into registers prior to any data operation. As CPUs perform operations on registers
faster than they can load blocks from primary memory, is sensible to store frequently
used data blocks in faster but smaller cache memory, physically closer to the CPU. Cache
memory allows CPUs to access frequently used data blocks faster. Commonly, CPUs
employ several cache levels; If a block gets less frequently used, the CPU moves it to a
larger but slower cache level; Typically CPUs use three cache levels, some cheaper CPUs
use only two. Usually each core has its own first and second level cache, the third level
is shared among all CPU cores. If a block is not accessed for a certain amount of time
finally, the CPU removes it from cache. In case the data in it was modified, it is written
back to main memory, otherwise it is simply removed as the data is still available in main
memory. Figure 2.3 illustrates three-level caching.

Shared L3 Cache

Core Core Core Core

Core Core Core Core

L1 L1 L1 L1

L1 L1 L1 L1

L2 L2 L2 L2

L2 L2 L2 L2

I/O

M
em

or
y
C
on

tr
ol
le
r

M
ai
n
M
em

or
y

Figure 2.3: Schematic representation of an Intel Core i7-5960X (cf. Operating Systems:
Internals and Design Principles [6])

The frequency the CPU loads a certain block to its registers is often described with a
metaphor: frequently used blocks are called hot blocks and less frequently are called cold
blocks. The principal of locality, states that practically memory blocks tend to reference
physically close memory blocks [6]. Hence, data currently processed by the CPU is likely
to reference to data that can be loaded quickly from cache.

Since CPU caches have rather limited storage capacities compared to the amount of
main memory, the processor removes less frequently used pages (i.e. cold pages) by more
frequently ones (warm blocks). The replacement strategies vary from CPU model to

5

2. Background

CPU model and manufacturers generally do not publish them.

2.3 Memory Management

Multi tasking operating systems memory divide and manage memory to accommodate
multiple processes. This fundamental task of modern operating system is called memory
management [6]. In the following we discuss how memory management eases application
development by providing virtual memory and how memory is subdivided for this purpose
using paging.

2.3.1 Virtual Memory

Modern memory management provides virtual memory, such that each process can
virtually address the whole system memory. The operating system instructs the CPU
to translate virtual addresses used by applications to physical ones. This abstraction
dramatically eases application and compiler development, as software developers do not
need to take care about address translation and cannot accidentally interfere with other
processes memory. If a program requires more memory than the operating system can
provide, memory blocks storing data that can easily be reloaded (e.g. from secondary
memory) can be removed. Additionally, less frequently used memory blocks can be
temporarily swapped-out, i.e removed from memory and stored on secondary storage.
This means that only the parts of an executable binary that are currently processed have
to be in main memory, the same applies to files stored on secondary storage. The actual
value of virtual addresses depends on the operating system and the processor architecture,
however virtual addresses can be imagined to be enumerated from 0 to n, where n is the
number of blocks the memory is subdivided into. Even memory addresses are continuous
from an application’s perspective, the memory blocks may be scattered across the whole
memory. If virtually continuous blocks are physically stored in two or more chunks, they
are called fragmented. The more logically continuous blocks are fragmented, the more
address translation overhead is necessary to translate virtual addresses to physical ones.
Consequently, fragmentation reduces system performance, to mitigate this operating
systems typically attempt to minimize memory fragmentation (see section 4.1. To be
able to remove parts of continuous blocks from main memory, the blocks have to be
subdivided into smaller blocks. This can be achieved using the memory segmentation
technique or the paging technique [6]. As the paging is the de facto standard method
today we discuss it in the next section.

2.4 Paging

The prevailing method to implement virtual memory is paging. It divides physical
memory into fixed-size chunks referred to as frames or page frames. A page frame stores
one virtual page, which is a block of virtual memory of the same size. To map virtual
addresses to physical addresses it is necessary to perform an address translation. The

6

2.4. Paging

Process 1 Process 2 Process 3

Figure 2.4: A possible mapping of virtual addresses to physical ones. Process 1 and
process 3 are fragmented.

information which virtual address maps to which physical address is stored in a multilevel
hierarchy of page tables (see section 2.4.1). The processor architecture defines their
hierarchy as well as their structure so it can transparently perform address translation. 1

Each process running on the operating system has its own page table hierarchy.

Even though the address translation process is transparently done by hardware, it is the
operating system’s responsibility to ensure that the lower level page tables are present
in memory. When a page is not in memory gets requested a page fault occurs and the
processor raises an interrupt, and the page fault handler routine of the operating system
gets executed. It loads the requested page and updates the translation tables accordingly.
A page fault is, contrary to what the name suggests not an error but a normal operation.
Often data is not loaded into memory until necessary, when a process requires a page not
yet present in memory a page fault is raised to load it. When memory becomes scarce, the
operating system removes (pages out) less frequently used pages from main memory. If
the information stored in the removed page is available somewhere else (like on secondary
memory), the relevant pages are cleared and marked as available, if the information is
newer than on the backing storage, the dirty flag is set and the content is updated in the
backing storage, before it is released. A typical example of a dirty pages, is a file modified
and saved by the user. The file is first updated in memory, until the pages containing the
file are written back to disk, they have their dirty flag set. Most operating systems also
support to move pages from main memory temporarily to secondary memory, this way it
is possible to remove pages containing data not available somewhere else. When memory
pressure is high and the operating system therefore stores a lot of pages to secondary
memory, it can come into a state, where more system resources are used for storing and
loading pages than for systems’ actual tasks. This state is called trashing.

The transition lookaside buffer (TLB) which is part of most modern processors, caches
virtual to physical address translations. Because memory references tend to be local (i.e.
to physically close memory blocks), caching is very effective (cf. section 2.2).

1The part of the CPU responsible for the memory translation is often referred to as memory
management unit (MMU). On modern CPUs the MMU is incorporated into the CPU.

7

2. Background

2.4.1 Page Tables Hierarchies

The most simple page table hierarchy is simply a virtual address consisting of a pointer
to the page table and an offset, the CPU can calculate the physical address by adding the
address in the page table entry (PTE) and the offset. The page table entry typically also
stores control information, such as bits indicating if the page is currently in memory or if
it is dirty (i.e. modified but not yet updated on the backing storage). The page table for
each process has to be permanently in memory. Figure 2.5 depicts simple paging.

offsetPage number

Virtual address

Page table

PTE

+
Physical addresses

PFN

Figure 2.5: Simple paging, the physical address is calculated by adding the page table
entry and the offset.

Current processors and operating systems extend the abstraction of virtual addresses, by
employing several levels of page tables. Using page levels makes it possible to store page
tables in virtual memory, consequently not all page tables have to be present in memory,
because pages holding a page table can be paged out like any other page. Typically,
operating systems lazily generate parts of page tables when they are required. Lazy
generation of page table is one a core precondition of many Rowhammer attacks (see
section 4.2).

Current x86_64 processors support four page levels [8]. A virtual address consists of
48 bits, of which the first nine bits (39-47) point to the top level page table, the next
nine (30-38) point to the third level, bits 21-29 to the second level, bits 12-20 point to
the page table entry and finally the least significant bits (0-11) are the offset. In Linux
the top most level is termed page global directory (PGD), the fourth level page upper
directory (PUD), the third page middle directory (PMD) and the second page table entry
(PTE). Figure 2.6 depicts the four-level page hierarchy of the x86_64 architecture using
the Linux kernel parlance.

Other operating systems such as FreeBSD use different terms [9]. The x86 architecture
only supports a three level page hierarchy, to support that the Linux kernel skips the
PUD and the PMD level on these architectures. The following table summarizes the

8

2.5. Huge Pages

Figure 2.6: Four-level page table hierarchy of Linux for a x86_64 processor. Graphic by
Jonathan Corbet https://lwn.net/Articles/717293/

page tables levels as for the Linux kernel. For the sake of completeness it important to
mention that this summary does not mention page address extension (PAE), a feature
of some x86 processors, allowing to use more than 32 bit (the processors word length)
for addressing memory. Using more than 32 bit makes it possible to use more than four
gigabyte of memory, however 64 bit CPUs do not have this limitation.

Bits used
Level PGD PUD PMD PTE page

Architecture x86_64 39-47 30-38 21-29 12-20 0-11
x86 22-31 12-21 0-11

Table 2.1: Bits used for four-level paging by the Linux kernel

During a context switch the operating system stores the address of the top most table
associated with a process to a special register, so the CPU can transparently can translate
the addresses, on the x86_64 architecture this is the cr3 register.

In 2017 Intel announced CPUs supporting five-level paging, using 52 address bits [10].
Even though no hardware is available yet, the Linux kernel already implemented support
for five-level paging [11]. Currently, the top most level works transparently as the top
most level is a simple pointer to the fourth level.

2.5 Huge Pages
At hardware level only pages of a fixed size exist. On the x86 and the ARM architecture
this is typically 4 KB. Recent CPUs support larger pages (known as huge pages), which

9

https://lwn.net/Articles/717293/

2. Background

can be used to allocate large amounts (e.g. up to 1 GB on ARM) of consecutive memory,
with only one page. Huge pages can be requested from the kernel by user land applications
using the mmap() or the shared memory systems calls shmget and shmat. The purpose
of huge pages is to save management information (especially in the TLB buffer) and
to reduce complexity, because a huge page can be addressed with one single address.
Because Rowhammer based attacks, aiming to flip bits at certain locations, such as Phys
Feng Shui require a page size as small as possible to be able to control the bit to be
flipped, huge pages are not discussed further in this thesis.

2.6 Page Cache

As of Linux 2.4 there is a unified cache for all block device I/O. Caching block devices is
beneficial for two reasons: Pages can be ordered, so the operating system can write them
back to disk more efficiently. Because memory references tend to cluster, it is very likely
that pages can be served from the page cache again. Other operating systems provide
similar features [6].

Because data in the page cache mostly consists of pages, that can be regenerated from
secondary storage at any time, as much unused memory as reasonable is used for this
cache. For this reason the Linux kernel does not count the page cache to the amount of
used memory. It is important to mention that this behavior is Linux specific, as other
operating systems do their I/O caches to memory statistics. For instance, FreeBSD
displays much less free memory as Linux, because it counts block device caches to used
memory [12].

2.7 Kernel Space And User Space

Most modern processors support at least two modes of operation: the user mode, in
which the processor executes normal user application and the kernel mode in which the
operating system runs. The kernel mode typically has full access to all memory locations
and can use all instructions. When a system call is performed the operating systems is
responsible to set and remove a control bit indicating the mode in which the processors
runs. When a user mode application tries to execute an instruction or access a memory
location that is not allowed in user mode, an interrupt is raised [6].

2.8 Rowhammer

At hardware level dynamic random-access memory (DRAM) is organized in two dimen-
sional arrays of memory cells. A memory cell stores one bit of information in a capacitor,
whose charge state represents a binary value. Memory banks group memory cells in rows
and columns, individual rows and columns can be accessed via an access transistor (cf.
section 2.1).

10

2.8. Rowhammer

Because capacitors loose their charge, they have to be periodically refreshed at least
every 64 milliseconds according to the DDR 3 specification [13]; this refreshing operation
is done row-by-row.

The memory cells laid out so densely, that disturbance errors may occur when neighboring
cells are accessed. Disturbance errors normally do not occur under normal circumstances
and not every memory module is vulnerable. Susceptibility to disturbance errors depends
on various properties, such as manufacturer, manufacture date, or the refresh rate of
each specific memory module.

Often disturbance errors can cause interference among memory cells, in a way that a bit
changes its value; this change is called a bit flip. Even though not every memory module
is vulnerable, tests showed that about 85% of DDR3 memory modules are vulnerable [4].
It is important to mention that newer DDR4 memory modules are also vulnerable to bit
flips [5].

Kim et al. [4] demonstrated that bit flips in memory cells can be triggered by performing
a large amount of consecutive reading operations, on physically neighboring memory
rows. This process is known as Row hammer or Rowhammer. The literature also refers
to it as rowhammering, row hammering or hammering a memory cell. These terms were
introduced by a patent, assigned to Intel [14] and are now common terms.

As not every memory cell is vulnerable to row hammering, attackers first have to search
for vulnerable memory cells. Once a cell vulnerable to a bit flip has been found, it is very
likely, that it can be repeated later. Repeatability is a big advantage for exploiting bit
flips for privilege escalation attacks: if attackers succeed to place critical access control
data (such as user credentials etc.) at memory locations where they can flip a bit of this
critical data and eventually increase their privileges though.

Even memory error correction-codes (ECC) do not reliably protect from this issue. Kim
et al. state:

While most words have just a single victim, there are also some words with
multiple victims. This has an important consequence for error-correction
codes (ECC). For example, SECDED (single error-correction, double error-
detection) can correct only a single-bit error within a 64-bit word. If a word
contains two victims, however, SECDED cannot correct the resulting double-
bit error. And for three or more victims, SECDED cannot even detect the
multi-bit error, leading to silent data corruption. Therefore, we conclude that
SECDED is not failsafe against disturbance errors.

To be able to hammer a memory row it is necessary to bypass all CPU caches, because
otherwise the data form the target cells would be loaded from these caches when they
are frequently accessed. There exist several techniques for bypassing CPU caches, they
are discussed in section 2.9.

11

2. Background

Hammering one row to introduce bit flips in a neighbor row is known as single-sided row
hammering. The chances to cause bit flips increase if not only one neighboring memory
row are hammered, but if both neighboring cells are hammered. Hammering from two
sides is a second variant of Rowhammer known as double-sided Rowhammer. A third
variant for some memory modules that allow to keep the connection to a memory row
open was presented by Gruss et al. is one-location hammering. We introduce these three
variants in the following.

The ability to cause reproducible bit flips itself, is not sufficient for performing a serious
attack (expect data attacks aiming to corrupt Chances to cause a bit flip in critical
data are relatively low, especially as many computer systems implement some sort of
checksums for critical data. Attackers usually scan the whole available memory until
they find one or more bit flips, with suitable alignment for their need. Then they trick
the operating system to place critical data at a memory location vulnerable to a bit flip.
Several techniques exist to trick operating systems to place critical data (such as user
credentials) into memory rows vulnerable to a bit flip. They are discussed in section 4.2.

2.8.1 Single-sided Rowhammer

Attacking memory cells by row hammering one neighboring memory cell is known as
single-sided row hammering. Contrary to what the name suggests, this technique can
attack multiple cells at once; however hammering is always performed on one neighboring
cell. Dullien and Seaborn successfully induced bit flips in neighboring cells by hammering
four or eight locations at once [15].

Listing 2.1 shows the x86 assembly code used by Kim et al. [4] to perform single-sided
Rowhammer attacks based on two memory locations, X and Y . To successfully perform
bit flips the addresses X and Y must point to different memory rows in the same memory
bank. The first line defines the label code1a marking a location to which the code can
later jump (i.e. return) to; the label therefore marks the begin of a loop. Line 2 moves
reads the content from address X to the eax register. Similarly, line 3 reads from address
Y to the ebx register. Line 4 and 5 force the CPU to flush the data stored in X and Y
from CPU caches. The last line jumps back to the label code1a in line 1 and the code
is executed again, beginning with line 2.

Because the CPU cache is emptied by the clflush instruction in every iteration of
the loop, the data stored in X and Y is always read from the RAM (i.e. X and Y are
hammered), possibly more often than the refresh cycle of a capacitor storing a single bit.

A big advantage of singe-sided row hammering is that no knowledge about the underlying
memory architecture is required, in order to successfully flip bits in neighboring memory
rows, because each memory row has at least one neighbor.

12

2.8. Rowhammer

row-buffer

wordline
bitline

hammering
expect flips

Figure 2.7: Single-sided Rowhammer is the most simple Rowhammering technique. Its
advantage is that it does not require knowledge abort the inner memory structure.
.

1 code1a:
2 mov (X), %eax // Read from address X
3 mov (Y), %ebx // Read from address Y
4 clflush (X) // Flush cache for address X
5 clflush (Y) // Flush cache for address Y
6 mfence
7 jmp code1a

Listing 2.1: The x86 assembly used to perform single-sided row hammering

2.8.2 Double-sided Rowhammer

Double-sided hammering is the Rowhammer technique with the highest rate of success-
ful bit-flips. Because, both neighboring memory rows are hammered the changes of
successfully flipping a bit in a victim row increase. Hammering from both neighboring
cells requires precise knowledge about the physical geometry of the hammered memory
module. Attackers must be able to allocate exactly both neighboring memory rows of
the victim row.

Seaborn and Dullien [15] found that a memory row of 256 KB is effective for several
laptops of one vendor they tested. This means that for inducing bit flips in a vulnerable
row an attacker must succeed to allocate 256 KB of memory physically above and below of
the target cell. The authors suspect that this value is different for other hardware vendors.
Figure 2.8 depicts a double-sided row hammer attack. Double-sided row hammering is
the hammering technique producing the most bit flips.

13

2. Background

row-buffer

wordline
bitline

expect flips
hammer

Figure 2.8: Double-sided row hammering induces bit flips by performing reading opera-
tions from both physically neighboring memory rows. This technique induces more bit
flips than single-sided Rowhammering and One-location Hammering
.

2.8.3 One-location Row Hammering

One-location row hammering makes use of performance optimizations of newer memory
controllers, which close the connection between row and a row buffer earlier than necessary.
Repeatedly reading (i.e. hammering) a single address causes the row in which the data
the address points to is stored, to be contiguously re-opened. Frequently, re-opening
memory rows influences the charge of memory cells sufficiently to cause bit flips [5].
As a consequence, the one-location row hammering technique is not based on inducing
interference among memory rows, like single sided- or double sided row hammering, but
on effects caused by repeatedly opening a cell. The differences to the other row hamming
variants are that only a single address is hammered, not one or two memory rows, and
that any memory cell in the hammered bank can be subject to bit flips. Like in the
other two row hammer variants, bit flips are reproducible, once they are found. Gruss et
al. successfully performed one-location row hammering on DDR3 and DDR4 memory
modules [5]. Similar to singe-sided row hammering this, one-location row hammering
does not require knowledge about the underlying memory geometry; to cause bit flips it
is sufficient to hammer a random location.

Figure 2.9 shows where bit flips can be expected when performing one-location hammering.
A big advantage of one-location hammering is that Rowhammer defenses based on
observing memory patterns are not able to detect the hammering, because only one
location is constantly accessed, which is a common and inconspicuous operation [5].
One-location hammering is the least effective row hammering method, as is produces less
bit flips than the other two methods.

14

2.9. CPU Cache Eviction Strategies

row-buffer

wordline
bitline

expect flips
hammer

Figure 2.9: One-location hammering can induce bit flips not only in neighboring memory
rows, making it a powerful row hammering technique [5]. The bit flips are not caused by
row interference but by effects caused from repeatedly re-opening a memory location
.

2.8.4 Bit flip Attacks Before Rowhammer

The potential exploitation of bit flips was known long before Kim et al. [4] revealed the
Rowhammer bug. In 2003 Govindavajhala et al. [16] presented an attack allowing a
specially crafted Java application to take full control over the Java Virtual Machine 2

or Microsoft’s .NET 3 virtual machine, once a bit flip occurs. Even though bit flips are
rare, attackers can exploit them if the circumstances allow them to run their attack for a
long period of time. They state that in 1996 one bit flip per month is to be expected
on a end-user PC. 70% of the flips, occurring in rare events such as hardware defect or
influence of cosmic rays are suitable for their attack.

2.9 CPU Cache Eviction Strategies

Modern processor architectures cache frequently accessed data in smaller but faster cache
memory (see section 2.2). Because Rowhammer attacks need to repeatedly perform
reading operations directly from memory, attackers need to circumvent processor caches
to cause bit flips in a memory module. Circumvention can either be done by flushing or
evicting data from the cache. Flushing means to force removal of the data block from
cache by using a CPU instruction. Eviction means loading other data into the cache until
the CPU replaces the target data block in course of normal operation. Both methods
make it necessary, that the CPU loads the data from main memory again if it is accessed
subsequently. Loading data from memory triggers a read operation. By repeatedly
evicting and reloading data bit flips can be triggered, as explained in section 2.8. On

2https://www.java.com
3https://www.microsoft.com/net

15

https://www.java.com
https://www.microsoft.com/net

2. Background

some platforms the operating systems memory management provides direct uncached
memory access, in such cases the cache does not need to be circumvented for flipping a
bit in memory. In the following we discuss various techniques for flushing data from CPU
caches as well as tricks for evicting data backed by victim memory rows from caches.

2.9.1 Flushing CPU Caches using CPU Instructions

The easiest way to circumvent CPU caches is using special instructions that empty it.
x86 processors supporting the SSE2 4 (that is virtually any modern x86 compatible CPU)
instruction set extension, provide the clflush instruction, allowing user-level code to
flush variables from CPU cache. Repeatedly reading from a memory location and flushing
the cache afterwards can cause a bit flip (cf. section 2.1).

2.9.2 CPU Cache Eviction using Memory Access Patterns

On platforms where no instructions to flush CPU caches exist, special methods to
circumvent the CPU caches are necessary to cause repeated read operations directly
from memory. All cache access pattern based eviction strategies aim to find a pattern
that when loaded by the CPU, reliably replaces the data backed by the target cell (i.e. a
memory row that is row hammered) in memory. Therefore, subsequent instructions using
the data in the target cell need to reloaded it from main memory. Repeatedly eviction
and reloading often causes many fast, consecutive reading operations and can therefore
be used for row hammering [18] [19].

Even though generic eviction strategies exist (see section 2.9.5, most of them require exact
knowledge about the replacement algorithm the victim CPU uses to replace data in cache
slots. The replacement algorithms usually replace lease frequently used slots, however they
do not exactly employ a least recently used strategy [18]. CPU manufacturers usually do
not publish documentation on the cache replacement strategies they employ. Nevertheless,
it is possible to observe the CPU cache’s timing behavior and draw conclusions about the
employed eviction strategy. Based on these observations an eviction set can be created.
An eviction set is a set of memory locations that, when loaded in into CPU cache, in the
right order, replace specific data from its cache slot. The order an eviction set has to be
accessed, in order to remove a page is called access pattern.

An eviction set in combination with a suitable access pattern can remove data from the
CPU cache reliably. Once attackers have crafted a suitable eviction set and a suitable
access pattern, they can remove data of their choice from CPU cache. Repeatedly
evicting and reloading the target data by performing read operations, causes repeated
read operations from main memory. This is fast enough to row hammer the target a
memory row and consequently induce bit flips.

Gruss et al. define four types of eviction strategies [19]:
4SSE 2 stands for Streaming SIMD Extensions 2, it is an extension to the standard x86 instruction

set. [17]

16

2.9. CPU Cache Eviction Strategies

• Static eviction set and static access pattern: Eviction set and access pattern are
pre-computed prior to performing the actual attack. Pre-computing requires precise
knowledge about the microarchitecture used on the target system, but no searching
for necessary parameters on the victim machine. This approach is similar to the
eviction presented by Awke et al. (see section 2.9.3.

• Dynamic eviction set and static access pattern: Based on knowledge about the
replacement strategy of the victim system attackers pre-compute an access pattern
and generate eviction sets at run-time. This method is very efficient for attacks as
pre-computation of access patterns, needs to be done only once for every target
architecture. Various algorithms exist for finding static access patterns [20] [21] [19].

• Dynamic eviction set and dynamic access pattern: Brute-force search for eviction
set and access pattern at run time. This method comes at the cost of a long run
time but has the advantage, attackers do not need to know the target system and
consequently allows wide ranging, fully automated attacks.

• Static eviction set and dynamic access pattern: Using a pre-defined evicting set
and a randomly generated access pattern. According to the authors this has no
advantage over randomly testing static access patterns.

2.9.3 Cache Eviction based on Knowledge about the target
Microarchitecture

Aweke et al. [18] created an eviction strategy for Intel Sandy Bridge processors, by loading
arbitrary addresses and subsequently searching for other addresses the CPU maps to
the same cache slot. Reverse engineered documentation about the Intel Sandy Bridge
microarchitecture provided them with information about the exact replacement strategies
and allowed them to craft effective precisely access patterns. The exact functioning
requires a detailed discussion of the microarchitecture and is therefore out of scope of
this thesis. However, the basic idea is similar to the generic eviction strategy presented
by Gruss et al. (see section 2.9.5).

2.9.4 Direct Memory Access on Android Devices

The ARM architecture does not provide an instruction to evict the CPU caches, like
clflush does on x86_64. To evict page from CPU caches Van der Veen et al. constructed
cache eviction for ARMv7 and ARMv8 CPUs, similar to the method presented by Aweke
et al. [18] (see 2.9.3), however it turned out that this technique is too slow for
practical use [22]. Consequently, page cache eviction on ARM is not practical for
Rowhammer attacks. However, it is possible to gain direct, uncached memory access
on this architecture. With Android 4.0 ICS (Ice Cream Sandwich) Google introduced
the ION memory manager [23], a memory pool manager for the Android kernel (which
is basically a modified Linux kernel), allowing unprivileged applications direct memory

17

2. Background

access without caching, via the /dev/ion device. Consequently, ION can be used to
hammer memory cells and thus to induce bit flips [22].

2.9.5 Generic Cache Eviction Strategies

Gruss et al. developed a platform independent generic way to find eviction strategies
based on memory access patterns. The key idea is to constantly access physically
neighboring memory cells (e.g. by iterating over an arrays). Finding an optimal eviction
strategy is not feasible in reasonable time, therefore Gruss et al. reduced the search space
using heuristics [19]. As this strategy allows to search for eviction strategies independent
form the execution environment it enables attackers to evict data from cache slots from
high-level run time environments such as JavaScript [19]. The authors presented two
ways to determine eviction sets and access patterns suitable to hammer memory rows
from JavaScript run time environments of web browsers.

18

CHAPTER 3
State of the Art

This chapter summarizes defense strategies for attacks based on Rowhammer induces
bit flips. First we introduce B-CATT [24] and G-CATT [25] two mechanisms preventing
bit flips by searching for vulnerable memory locations in advance and subsequently
prevent access to them. In section 3.3 we explain Kernel Page-Table Isolation [26]
(formerly known as KAISER), a method to separate kernel page tables from user land
page tables. This separation makes it impossible for attackers to row hammer kernel
memory. Furthermore, section 3.5 introduces ANVIL, a strategy to detect Rowhammer
attacks and consequently stop the attackers’ process. Section 3.4 presents MASCAT an
approach detecting patterns of Rowhammer attacks in executable binaries. Finally in
section 3.5.1, we provide a brief overview about proposed hardware-based defenses.

3.1 B-CATT

The principal idea of B-CATT 1 is fairly simple, before the boot loader loads the operating
system, it scans the whole memory for locations vulnerable to bit flips, that means it
row hammers the whole memory. Brasser et al. implemented B-CATT by adapting the
well known GRUB2 2 boot loader. During the boot process the firmware (typically BIOS
or UEFI 3 on newer machines) reports the areas of available memory to the boot loader,
which reports it to the operating system. Before GRUB reports the operating system
about the available memory blocks, B-CATT scans the entire memory for bit flips and
reports only non-vulnerable memory blocks to the operating system. Therefore, this
defense is fully transparent to the operating system and consequently does not require
any modifications on operating systems. Being an operating system independent defense

1Brasser et al. explain the name as following: “The name B-CATT is composed of two parts: B
refers to our Bootloader based solution, CATT abbreviates CAn’t Touch This.”

2https://www.gnu.org/software/grub/
3https://www.uefi.org/

19

https://www.gnu.org/software/grub/
https://www.uefi.org/

3. State of the Art

is the biggest advantage of B-CATT. The authors reported a minor memory overhead
of less than one megabyte on their testing systems. Furthermore, they did extensive
benchmarks using various benchmarks suites and could not detect any measurable impact
on the systems performance.

B-CATT is considered an effective, but unpractical defense for Row hammer attacks.
Kim et al. [4] observed that 95% of the main memory would be blocked by B-CATT in
realistic scenarios, Gruss et al. verified this result [5] Moreover, B-CATT requires row
hammering the entire memory each time the system boots. Frequent row hammering is
problematic as it may cause permanent physical damage of memory modules.

3.2 G-CATT

G-CATT (Generic CAn’t Touch This) is a further development of B-CATT (see section 3.1)
by the same authors [25]. The defense is similar to its predecessor, a low-level defense
against Rowhammer attacks, however unlike its predecessor G-CATT does not require
row hammering during boot-time and is implemented in the operating systems, physical
memory allocator rather than the boot loader. The defense does not prevent row
hammering, but aims to limit the negative consequences of Rowhammer based attacks.

G-CATT divides the physical memory in two security domains: One for kernel memory
and one for user space memory. Hence, memory storing kernel memory (such as page
tables) can only be allocated in predefined physical memory areas. Using pre-defined
memory areas thwarts Row hammer attacks such as Phys Feng Shui (see section 4.3 for
an explanation of the attack).

Brasser et al. implemented a prototype for Linux, due to the generic architecture of
the Linux kernel, the prototype is architecture independent, its authors successfully
thwarted Rowhammer based exploits against ARM and x86_64 platforms. To study
the performance impact the authors did a huge amount of benchmarks and concluded
that G-CATT has no significant impact on the system’s computational power or memory
usage. Even though the defense has no performance impact, it can only mitigate Row
hammer attacks targeting the kernel memory. Gruss et al. presented a Rowhammer
based privilege escalation attack targeting user space programs [5] Furthermore, in early
2018 Cheng et al. [27] exploited the Rowhammer bug in the presence of G-CATT using
special purpose memory (e.g. video buffers) that is shared between user space and kernel
space.

20

3.3. Kernel Page-Table Isolation

3.3 Kernel Page-Table Isolation

The idea of Kernel Page-Table Isolation (KPTI) 4 is similar to G-CATT (see section 3.2):
kernel space and user space memory is separated. The difference is KPTI does not
physically separate kernel memory and user space memory; it rather uses separate page
tables for kernel space and user space. This separation makes hammering kernel memory
impossible, as page tables of user space applications are stored in separate physical
locations; hammering attacks requires them to be physically neighboring (see section 2.8.
Before KPTI operating systems used the same top level page table for the kernel and
user space applications. Using only one top level page table is problematic; there are at
least three published attacks not related to the Rowhammer vulnerability [29] [26] based
on that.

The basic principle of KPTI is quite simple, each time the context is switched (i.e. the
processor changes the process it currently executes) from a user space process to a kernel
process (or vice versa), the kernel changes the pointer to the highest page table (cf.
section 2.4), to another independent page table hierarchy. However, the x86 architecture
requires some parts of the kernel (e.g. interrupt handler routines and system calls etc.)
to be mapped in the user space address space. KPTI patch minimizes these parts to the
absolute minimum required by the hardware architecture. The Linux kernel developers
included KPTI in kernel version [28] and backported it to the long-term support releases.

The authors of KAISER report a performance overhead of only 0.28% [26].

3.4 Static Binary Analysis

MASCAT [30] is a binary analysis tool to scan software binaries for unusual instruction
patterns. As many low-level attacks use typical instruction sequences, harmless code can
be distinguished from attack code. The tool is capable to detect a wide range of attack
patterns, including side-channel attacks and Rowhammer attacks.

Single-sided and double-sided row hamming (see section 2.8 typically uses many cache
flush instructions (e.g. clflush on the x86 architecture) in loops. Another indicator
MASCAT uses to detect potential Rowhammer attacks is are instructions which trigger
direct (i.e. uncached) memory access in loops (e.g. monvnti and movntdq). MASCAT
does not only rely on these patterns to detect row hammering: it scans for unusual
instruction patterns containing timing instructions such as rdtscp and rdtsc. These
instructions are often used by timing side-channel attacks, which attackers may use to
craft an eviction strategies, which can be later used to hammer a memory row (see
section 2.9).

4KPTI is also known under the name KAISER (Kernel Address Isolation to have Side-channels
Efficiently Removed), however the Linux kernel developers decided to name their implementation
KPTI [28].

21

3. State of the Art

Gruss et al. [5] demonstrated that any static binary analysis can be circumvented by
hiding attack code secure memory areas, such as SGX enclaves5. SGX enclaves allow
user space applications to protect memory areas [31] by encrypting them. The CPU
does the encryption completely independent of the operating system, therefore, even
code running with maximum privileges [31] or in kernel mode, cannot access an enclaves’
content. Currently, SGX enclaves are supported exclusively by recent Intel CPUs [31],
however some AMD processors provide similar features [32].

MASCAT supports only scanning for instruction patterns and does not perform semantic
analysis or code execution, hence it cannot guarantee that a certain pattern means an
attack. Similarly, they cannot detect all kinds of attacks; skilled attackers knowing
the target microarchitecture likely can circumvent static analysis tools, the authors of
MASCAT state: “if an expert attacker knows the approach taken by our tool, he can
always find a way to bypass it”. For these two reasons, pure static analysis is a valuable
tool but no ultimate solution for Rowhammer based attacks.

3.5 Rowhammer Defenses based on CPU Performance
Counters

ANVIL is a Rowhammer mitigation technique aiming to detect and prevent single-sided
and double-sided Rowhammer attacks. A kernel module monitors the behavior of all
operating system processes; if the module detects potential row hammering it thwarts
the attack by refreshing the relevant memory cells.

ANVIL counts the number of last-level cache misses, if the number exceeds a predefined
limit, the defense kernel module instructs the processor to monitor which virtual memory
addresses contain the code responsible to the increased amount of cache misses. Counting
cache misses and evaluating the virtual memory addresses causing them requires special
CPU support, typically this can be achieved by using performance monitoring features.
Even though the proof of concept implementation of ANVIL relies on Intel performance
counters 6, the authors point out that their defense can be implemented on any processor
architecture providing such features; they state that this includes some AMD processors.

ANVIL makes use of the fact Intel performance monitor counters do not only report
the number of cache misses, but also the source location from where a page was served.
Consequently, the kernel modules can distinguish if a page was loaded from CPU cache
or from main memory. If a page is repeatedly loaded from memory, even tough it is
frequently used, ANVIL suspects that the page is used for row hammering (cf. section
2.8). As the mitigation is implemented as kernel modules it always runs in kernel
mode and can therefore legally access the entire memory, thus it can access the process
description data structures of the kernel (struct task_struct in Linux) and can

5https://software.intel.com/en-us/sgx
6https://software.intel.com/en-us/articles/intel-performance-counter-monitor

22

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

3.5. Rowhammer Defenses based on CPU Performance Counters

consequently figure out which operating system process causes the observed suspicious
behavior.

ANVIL refreshes the suspected victim cell performing a reading operation on it. To do so
it relies on information about how the RAM maps physical memory addresses to memory
cells. In general RAM manufacturers do not publish documentation on this, therefore
the authors of ANVIL relied on reverse engineered mapping information.

The defense has generally little overhead and no significant impact on normal applications,
the authors report a peak overhead (measured by SPEC CPU2006), of 3.18% and 1.7%
on average.

ANVIL is a reliable defense against Rowhammer induced bit flips, however it requires
special CPU features, relies on internal memory module information which is generally
not available and does not protect against one-location Rowhammer attacks [5].

The Linux Kernel developers discussed if a Rowhammer defense based on performance
counters should be included in the kernel [33]

Run time detection of single-sided and double-sided row hammering using performance
counters is also supported by intrusion detection systems such as HexPADS [34] and
CloudRadar [35].

3.5.1 Hardware-based Defenses

Various researches proposed hardware-based defenses against Rowhammer based attacks.
Most hardware defenses provide reliable protection against row hammering, however the
enormous amount of vulnerable devices employed globally makes hardware replacement
impossible.

• In the first paper describing the Rowhammer bug, Kim et al. [4] suggested PARA,
a state-less, probabilistic Rowhammer defense for low-level memory controllers;
Each time a row is opened or closed, one neighboring cell is also opened and
therefore refreshed. During Rowhammer attacks the neighboring cells are opened
and closed repeatedly, which finally can cause memory disturbances leading to bit
flips (cf. section 2.8). When hammering memory row are opened frequently, PARA
randomly refreshes neighboring memory rows, each time a row is opened. Because
frequent accesses cause many random refreshes, the authors conclude that it is
statistically guaranteed, that row hammering is mitigated, because the neighboring
cells of the victim cell will be refreshed in time. To the best of our knowledge,
PARA was not adapted by the industry.

• ARMOR (A Run-time Memory Hot-Row DetectOR) [36] is a further hardware
solution eliminating the possibility to hammer memory rows. The authors suggest
to add an additional cache to memory controllers. As a consequence hammering
neighboring cells is prevented, since the data stored inf frequently accessed memory

23

3. State of the Art

cells is read from the hardware-cache rather than from memory modules, vulnerable
to row hammering. Because, there is not software control about the hardware
cache introduced by ARMOR the possibility to perform Rowhammer attacks is
eliminated. At the time of writing this thesis, to the best of our knowledge no
memory module on the market employs ARMOR.

• The LPDDR4 specification [37] defines two strategies against Rowhammer attacks.

– Target Row Refresh (TRR) which introduces a counter for each memory row.
Each time a memory row is accessed the counter of the neighboring cells
is increased; Once the number of accesses exceeds a threshold the memory
modules refreshed all neighboring memory cells.

– Maximum Activation Count (MAC) sets an upper limit how often a cell can
be accesses before it has to be refreshed.

Both methods prevent row hammering, as memory cells are refreshed before memory
disturbances suitable for causing bit flips can occur.

3.5.2 Rowhammer related Firmware Updates

Several hardware manufacturers (e.g. HP [38], Lenovo [39]) and Apple [40] pro-
vided firmware updates doubling the refresh rates of memory cells. The DDR3
specification [13] requires memory modules to refresh memory rows at least every
64 milliseconds. Doubling the refresh rate makes (i.e. using refresh intervals of
32 milliseconds) makes bit flips less likely when attackers hammer memory cells,
however it does not make them impossible. Aweke et al. [18] were able to perform
double-sided row hammering, even with memory modules configured with a refresh
interval of 15ms (i.e. more than four times of the required refresh rate). Furthermore,
the authors state that increasing the refresh interval comes at the cost of increased
power usage and reduced data throughput. For these reasons firmware updates are
neither a satisfying nor a effective mitigation against row hammering. According to
Corbet a refresh rate of 8ms is required to reliably prevent Rowhammer attacks [33].

24

CHAPTER 4
Design

While bit flips at random locations may cause serious malfunctions of computing systems
and the data it processes, attacks become much more powerful if attackers can precisely
control in which data they flip.

This chapter discusses the attacks based on the Rowhammer vulnerability, publicly known
by the time of writing this thesis. First, we discuss the buddy system for physical memory
management, as it is essential for understanding privilege escalation attacks as well as
our proposed solution (see chapter 5). Then we discuss Flip Feng Shui and Phys Feng
Shui, two attacks based on the deterministic nature of the buddy system. Furthermore,
we discuss Linux kernel internals relevant for the prototype, we implemented. Finally, we
provide a discussion of software diversity, as it is the fundamental concept used for our
Rowhammer defense (see section 4.4).

4.1 The Buddy System
A fundamental task of operating systems is allocating physical memory to processes.
Typically, operating systems do physical memory allocation in various different sizes.
The buddy system is an algorithm to efficiently manage allocations of different sizes.
Basically the algorithm splits memory blocks into halves until it finds a block of optimal
size; similarly, it merges previously split blocks to larger ones. Because block sizes have
to be divided by 2, their size is usually a power of two. Empirical experiments by Donald
Knuth showed that the buddy system works very efficiently [41], he also states that
the buddy system has a good memory balance as during his experiments no memory
overflows occurred until 95% of the memory blocks were reserved.

A typical size for the smallest addressable memory block that can be addressed by
hardware (i.e. a page frame) is 4096 (4 KB), older architectures may use different
values [6]. Some architectures even support page sizes of different size 2.5. During

25

4. Design

memory initialization the memory initialization routine of the operating system divides
the whole usable memory into blocks of size 2n × page_size. On Linux n currently
defaults to 11, which results in memory blocks of size 211 × 4096 bytes (8 MB), for
page_size = 4096. When the memory allocation subsystem processes a memory request,
smaller than the maximum block size, it divides memory blocks in two parts until further
division would result in a memory block too small for the memory request. The remaining
half of a split block is marked as buddy of the block used to fulfill the request. When a
block is freed it is merged (or coalesced) to a block of double size. After merging, the
resulting block has the size of both buddies (i.e. buddy_size × 2). If the buddy of the
resulting free block is also free, they are merged again. Merging continues until one
buddy is reserved of the maximal block size is reached. If no free block of a certain size
is available the next largest block is split.

Figure 4.1 depicts the functioning of the buddy system, using a maximum block size of
2048 KB = 211 in nine steps.

(1) Initially a free memory block of maximum size is available.

(2) The buddy system receives a request for a 512 block. It splits the 2048 block into
two 1024 blocks; As a 1024 block is large enough for two 512 block, they are split
into two 512 blocks. Without the last split operation one 512 block would remain
unused.

(3) The system gets a request for a 256 block, as the smallest available block is the
buddy of the 512 allocated in step 2, this block gets split into two 256 blocks.

(4) A process requested a 128 block, consequently the 256 buddy is split into two 128
buddies.

(5) The 256 block is freed. As the 128 block is still in use, no merging is done.

(6) Another 128 block gets allocated. As a suitable block is already available the buddy
system immediately reserves it to fulfill the request.

(7) Both 128 blocks are freed. This triggers a several merge operations.

(8) Because both 128 blocks are free, they are merged to one 256 block.

(9) Since the buddy of the block resulting from the merging operation in step 8 is also
free, they are merged to a 512 block.

Due to its high efficiency the buddy system is used in many general purpose operating
systems [42][43].

26

4.2. Rowhammer-based Attacks

2048

split

512 512 1024

split

512 256 256 1024

split

512 256 128 128 1024

512 256 128 128 1024

512 256 128 128 1024

512 256 128 128 1024

merge

512 256 256 1024

merge

512 512 1024

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Figure 4.1: Example of the buddy allocation principle.

4.2 Rowhammer-based Attacks
This section gives an overview about state of the art attacks based on Rowhammer
induced bit flips.

On a high-level all attacks based on bit flips can be divided into three steps.

• Memory templating: The attackers scan the entire memory for blocks vulnerable to

27

4. Design

row hammering.

• Memory massaging: The attackers force that the operating system stores critical
data in a location where they can induce bit flips.

• Exploitation: The neighboring cells (which are always in the control of the attacker)
are hammered and a bit flip in the critical data is induced).

4.2.1 Escaping the Sandbox of Google Chrome using Rowhammer

In 2015 Seaborn et al. published the first privilege escalation exploit based on the
Rowhammer vulnerability. The exploit allows malicious web site operators to gain root
privileges by escaping from the Native Client (NaCl)1 sandboxing environment of the
Google Chrome browser 2. NaCl allows execution of native machine code instructions
directly form the web browser. By using native machine code instructions attackers were
able to hammer memory cells by using the clflush instruction (see section 2.8 for a
detailed explanation).

Once attackers found a memory location vulnerable to row hammering, a second step
is necessary to flip a bit at a critical location. They contiguously map the same file to
memory using the mmap system call. This repeated mapping causes many second-level
page table allocations (cf. section 2.4), therefore the whole memory is sprayed with
second level page tables. This makes it likely that a page table is placed in a memory
location vulnerable to memory bit flips. Flipping the right bit in a second level page
table (i.e. the page middle directory (PMD)), changes the pointer of the page table entry
(PTE, see section 2.4) such that it points to memory of the attackers process, figure 4.2
depicts this effect. As the PMD now points to memory under the control of the attackers
they can control the memory addresses the PTE points to. Therefore, they can scan the
whole memory for critical data. Seaborn et al. suggest to overwrite parts of executable
binaries with can be executed by unprivileged users, but require system calls with root
privileges 3 code to open a root shell (i.e. shell code).

To prevent row hammering from the NaCl environment Google disallowed the use of the
clflush instruction [45]. However, Gruss et al. showed that memory attacks from web
browsers are possible, even without using the clflush instruction [19] (cf. section 2.9.5.

4.2.2 Flip Feng Shui

Flip Feng Shui (FFS) [46] is an attack technique against virtualization servers hosting
several virtual machines. Attackers can force data to physical locations where they can
induce a bit flip. The attack exploits the fact that virtualization software typically store
data that is equivalent on one or more virtual machines only once in physical memory.

1https://developer.chrome.com/native-client
2https://www.google.com/chrome/
3On Linux and UNIX operating systems, these are applications with the setuid bit set. setuid stands

for set-user-ID and allows the executable to run with privileges different from the user who started it [44]

28

https://developer.chrome.com/native-client
https://www.google.com/chrome/

4.3. Phys Feng Shui

0-to-1 flip

1-to-0 flip
PTE

PTE
bitflip

Figure 4.2: No matter in which direction a bit in the page table is flipped, it always
points to attacker controlled memory.

Typically, virtualization software regularly checks for duplicate memory blocks, frees all
but one of them and updates all reference pointers to the removed blocks, such that
they point to the remaining block with identical data. This is a common situation, since
operating system kernels, application software and libraries need to be mapped in the
memory of each virtual machine. The more identical operating systems instances run
on one physical host the more blocks are deduplicated. Naturally, attackers can use
various techniques (such as operating system fingerprinting, or header information of
services, etc.) to learn which operating system configurations run on virtual machines on
the same physical host and install them on a virtual machine under their control. Once
the attackers have setup a virtual machine identical one they aim to attack, they can
assume that the virtualization software will deduplicate their memory blocks. As next
step the attackers craft memory blocks identical to those known to be mapped in the
victim virtual machines’ memory. Finally, they hammer physically neighboring memory
cells to cause bit flips. Because the memory block is only stored once, the bit is also
flipped for the victim virtual machine.

Razavi et al. [46], presented a proof of concept implementation for manipulating SSH
keys and domain names used to obtain software updates. When the attackers know about
public SSH keys, a single bit flip is sufficient to make calculation of a private key feasible
in many cases [46]. In particular several domains exists which differ by just one bit from
ubuntu.com.

4.3 Phys Feng Shui

Phys Feng Shui [22] is a method for placing second-level page tables at a vulnerable
memory location, similar to Seaborn et al. (see section 4.2.1). The difference is that
attackers make use of the buddy allocator to force allocation of a second-level page table
at a location vulnerable for bit flips.

Van der Veen et al. [22] implemented a proof of concept exploit for Android devices.

29

4. Design

blocks allocated by exploit vulnerable blocks blocks owned by other processes
free blockspadding predictable page table location

512 512

512 512

512 512

64 64 128 256 512

512 512

512 512

512 512

64 64 64 64 64 64 64 64 512

512 512

512 512

512 512

64 64 64 64 64 64 64 64 512

512 512

64 64 64 64 64 64 64 64 512

512 512

64 64 64 64 64 64 64 64

64

512

1024

64 64 64 64 64 64 64 64 512

1024

64 64 64 64 64 64 64 64

64

512

1024

64 64 64 64 64 64 64 64 512

1024

64

64

512

1024

64 64 64 64 64 64 64 64 512

1024

64 512

1024

64 64 64 64 64 64 64 64 512

1024

64 512

(1)

(3)

(5)

(7)

(2)

(4)

(6)

(8)

Figure 4.3: Example of Phys Feng Shui

Once their exploit has control over a PTE, they used it to scan the entire memory for the
memory block containing the structure containing the credentials of the attackers process
(struct cred on Linux). As they can read and write to the page (cf. section 4.2.1) they
simply can increase their privileges and become root. The CPU’s and operating system’s
access controls cannot prevent the attackers’ process from raising its own privileges,
because it just changes a page in memory allocated for it, which is a perfectly valid and
common operation. The whole process of Phys Feng Shui is illustrated in figure 4.3.

(1) Exhauste the whole memory by allocating 512KB blocks. Probe each allocated

30

4.3. Phys Feng Shui

block for suitable, vulnerable bit flips.

(2) Allocate all remaining blocks (i.e. those smaller than 512KB), by allocating 64
KB blocks. This step ensures, that the next 64KB allocation will be done in the
vulnerable block.

(3) Free the vulnerable 512KB block, so it is the only free memory block of the system.

(4) Allocate eight 64KB blocks. It is guaranteed that they will be mapped to the
vulnerable 512KB block.

(5) To avoid an out of memory state, immediately free all 512KB blocks. the buddy
system coalesces them to 1024KB blocks. Then free the 64KB block, so it can be
allocated in the next steps.

(6) Allocate 4KB (page size) blocks until the vulnerable 64KB block is used. The at-
tacks can easily determine if the vulnerable block is used by reading /proc/zoneinfo
and /proc/pagetypeinfo, both are world readable.

(7) Allocate 4KB until the 4KB block, containing the vulnerable bit flip is used.

(8) Trigger a page table allocation by calling mmap(MAP_FIXED)

4.3.1 Memory Waylaying

Memory waylaying is a reliably alternative method for placing attacker chosen memory
blocks at vulnerable memory locations [5]. The method consists of two steps, the Prefetch-
based Prediction Oracle telling attackers the location of data they want to row hammer,
and repeated Page Cache Evictions to place the place the data at a location vulnerable
to row hammering.

Prefetch-based Prediction Oracle

The first step tells attackers if two distinct virtual memory addresses map to the same
physical address (i.e. page frame address). They can gather this information by a timing
side channel-attack. To be able to exploit this side-channel, attackers preliminary need to
measure the time prefetch instructions need to load memory blocks from each CPU cache
level and the main memory. Prefetch instructions allow programmers and compilers to
fetch to CPU caches prior to performing operations on them; Proper prefetching can
drastically reduce cache misses and therefore increase performance. According to the
authors Intel CPUs as well as ARM CPUs support prefetch instructions [5].

To learn the timing behavior of prefetch instructions for different cache levels, the
attackers perform three steps. The trick is that the most processors load prefetched data
blocks, without any access control.

The attackers first need to load interesting data to the processor caches. For instance,
if attackers want to find out the address of an executable file, it is sufficient to map it

31

4. Design

to memory (e.g. by using the mmap system call on Linux or UNIX) and flush or evict a
block p containing the binary from the CPU cache (cf. section 2.9). Then the attackers
prefetch a random address p̄ and reload the previously flushed block, by reading it. If the
reload operation is fast (i.e corresponds with the load time for a cache level, learned in the
first step) the attackers can conclude that p is loaded from cache with high probability.
This is happens only if the page addresses by p is mapped by another application. The
following list summarizes the three steps (cf. section [47].

1. Flush a address p (e.g. by mmapgin a file to memory)

2. Prefetch a inaccessible address p̄

3. Reload p

On a typical system 10 million such measurements can be done. Therefore, attackers are
able to probe the whole memory, i.e. then can sequentially use all memory addresses for
p̄ [47].

Gruss et al. call named step prefetch-based prediction oracle.

Alternatively, attackers can learn if two memory addresses map to the same physical
one by performing a Evict+Prefetch side-channel attack. This attack is similar to the
prefetch-based prediction oracle, the difference is that the attackers do not know p̄, they
learn that p is used by a system call or library function [47].

The first of the attack requires more effort, as the blocks are evicted from cache, rather
than flushed; This means the attackers fill the processor cache until they can assume
the CPU has removed the target block from cache (see section 2.9 for details). In the
second step the attackers perform steps to load a target address p̄ (e.g. by calling a
library function or a system call). In the third they prefetch p and consequently measure
the timing differences. The following steps summarize the Evict+Prefetch method (cf.
section [47].

1. Evict a known address address p

2. Execute function or system call, that accesses an inaccessible address p̄

3. prefetch p

Initially, Prefetch-based Prediction Oracle and Evict+Prefetch were invented to side-
channel attack were developed to bypass ASLR. However, as they can be used to tell
attackers if two memory addresses are physically neighboring, they help attackers aiming
to a Rowhammer attacker [47] (see section 2.8).

32

4.3. Phys Feng Shui

Page Cache Eviction

Evicting contents of the page cache (see section 2.6) is especially interesting for attackers
intending to perform a Rowhammer attack, as the page cache stores binary executable,
and evicting them may allow attackers to place them memory locations vulnerable to bit
flips. Page cache eviction must not be confused with CPU cache eviction (section 2.9),
which removes data from CPU caches, page cache eviction evicts data cached in primary
memory that was previously loaded from secondary memory.

The Page Cache Eviction procedure [5] fills the page cache (see section 2.6 and conse-
quently evicts an executable file (e.g. the sudo binary). Because on Linux the page
cache uses only memory which would remain unused otherwise (cf. section 2.6), this
procedure is likely not to arise attention. For instance, the commonly known free tool
telling users the amount of free memory available on the system does not count the page
cache to the used memory.

Mapping very large files (several gigabyte) to memory and iterating over its content
requires the kernel to remove other data from the page cache.

The mincore system call allows unprivileged to test if a page is currently cached in
the page cache or not. This system call is also available on other UNIX-like operating
systems such as FreeBSD and OpenBSD.

Memory Waylaying

The Prefetch-based Prediction Oracle and Page Cache Eviction combined can now be
combined. This combination is known as Memory WaylayingAttackers need to repeatedly
evict pages and check if a page in which they intend to flip a bit gets loaded to a location
they can hammer. Because memory waylaying performs most operations on the page
cache, it does not raise attention by increasing memory usage.

A disadvantage of the method is that it may take several hours or even days [5] until a
page interesting for attackers gets loaded to a location where they can induce a bit flip.

Memory Chasing

An alternative variant of memory waylaying is memory chasing. To enforce frequent
relocation of pages containing the victim binary, memory chasing exploits the copy-
on-write nature of the Linux kernel’s process management. Gruss et al. describe the
procedure as following [5].

1. Map the whole victim binary using the mmap system call.

2. Invoke the fork4 system call.
4The fork system call creates a child process with an identical process image, which the kernel

copies once the child process performs write operations (copy-on-write). The system call is available on
most UNIX-like operating systems.

33

4. Design

3. Overwrite parts of the binary in the child process. Due to the copy-on-write nature
of t ensures that the binary gets copied to a new physical page

4. Kill the parent process so the original unmodified pages are released

5. Repeat this until the victim page is placed at a vulnerable memory location (i.e. a
location where a bit flip can be induced by row hammering). This can be checked
by the prefetch-based prediction oracle described above.

Attackers now face the problem that with the procedure explained above the modified
page (i.e. the page that child process wrote to) is placed at the vulnerable location,
consequently attackers need to trick the kernel to place the original (i.e. unmodified) page
from the binary at this location. This can be done by evicting the page from page cache
using the page cache strategy explained above and immediately mapping the original
binary again. Then the target binary is immediately released, the authors claim that
this ensures that the same physical pages are used. However, they did not state a reason
for this.

This approach is considerably faster than memory waylaying, however it has higher CPU
usage and uses a lot of fork system calls, hence it can easier be easier detected by
intrusion detection software.

Gruss et al. implement a proof of concept attack which flips a bit of the sudo binary.
The flip turns je x86 assembly instruction turn into a jne instruction. Consequently
another program branch is selected and the attacker can gain root access. In their
analysis they figured out that the sudo binary has 29 locations where a bit flip can lead
to a privilege escalation exploit [5].

This attack is an example for an user space to user space Rowhammer attack, it does
not rely on to tricking page tables (which belong to kernel memory space) to vulnerable
locations.

4.3.2 Page Types

The Linux kernel distinguishes different mobility types of pages, this distinction allows
the kernel to group pages by their ability to be moved to other locations. This helps the
kernel to store page belonging together in physically grouped locations. Storing memory
pages grouped is beneficial due to the principal of locality (see section 2.2). Furthermore,
grouped storage helps to minimize fragmentation effects [42].

As of Linux 4.13 three different page types exist:

• MIGRATE_UNMOVABLE pages of core kernel components, their fixed location is
essential for the operation of the kernel.

34

4.4. Software Diversity

• MIGRATE_RECLAIMABLE pages containing content that can easily be regenerated.
A typically example for pages of this type are pages containing data stored on
secondary memory, which can be loaded again at any time.

• MIGRATE_MOVABLE pages without special position requirements, they can be
moved to any physically memory location at any time. For example, pages containing
data of user land applications are always movable. When pages are moved, the kernel
updates the entry in the page tables referencing them. This happens completely
transparently for user land applications.

4.3.3 Page Lists

The buddy system (cf. section 4.1) implemented in the Linux kernel keeps lists of free
pages for each combination of block order and migrate type. For example, there is a list
of movable pages of order n, one for reclaimable pages of order n and one for non-movable
pages of order n, and so on.

Often systems with more than one processor have special memory areas, which are faster
accessible for specific processors. These systems are called Non-uniform memory access
(NUMA) systems [42]. When an application is executed on a specific processor, the kernel
can move them to a memory area faster accessible by the processor

Pages of order 0 are treated specially by the kernel, it organizes them in page lists for
each order. The kernel users these lists for serving all memory allocations of order 0 (i.e.
typically 4 KB). On non-NUMA systems (i.e systems with only one CPU) the kernel
uses the same special lists only for one CPU.

The rmqueue() function (in the file mm/page_alloc.c is responsible for taking an
appropriate page from a page list. If the function finds a suitable block, it removes a
page from the respective list. Depending on how often the page was loaded into the
CPU registers, rmqueue() takes the first or the last list element from the list. This is
because the kernel guesses that a frequently used page (even if it is free), is still cached
and consequently does not need updating the TLB (see section 2.4).

Allocations work similarly for (physically continuous) allocations of more than one page.
As the kernel removes the an entry in the respective list, which represents the first page
of the new allocation.

4.4 Software Diversity

The success of any Rowhammer attack depends on the attacker’s ability to place a
memory block at a location vulnerable to a bit flip (cf. section 2.8). If the memory
placement strategy of the operating system places memory blocks in a manner, not
predictable for user land applications the attacker cannot craft a reliable strategy to trick
the operating system to place a memory block at a vulnerable location.

35

4. Design

Software diversity is the idea to make the inner functioning of each copy of a software
product as unique as possible, while the functionality remains equivalent. An example is
a web browser, distributed over a website, each time an end user downloads a copy, the
web server changes the control flow and variable locations of the web browser’s binary,
so each end user receives a different version of the binary. Therefore, an attacker cannot
download the web browser and study its vulnerabilities and craft a large-scale automated
attack by exploiting e.g. buffer overflow vulnerability, because the attack cannot predict
where the memory area containing the buffer overflow is located. Naturally, a willing
attacker who can access the binary version of the target system is — given enough time
and persistence — will eventually be successful, however the crafted exploit will most
likely not work on a similar system using the same web browser.

In his 1992 paper, Cohen [48] explained the motivation behind software diversity:

The ultimate attack against any system begins with physical access, and
proceeds to disassembly and reverse engineering of whatever programmed
defenses are in place. Even with a cryptographic key provided by the user,
an attacker can modify the mechanism to examine and exploit the key, given
ample physical access. Eventually, the attacker can remove the defenses by
finding decision points and altering them to yield altered decisions.

Without physical protection, nobody has ever found a defense against
this attack, and it is unlikely that anyone ever will. The reason is that any
protection scheme other than a physical one depends on the operation of a
finite state machine, and ultimately, any finite state machine can be examined
and modified at will, given enough time and effort. The best we can ever do
is delay attack by increasing the complexity of making desired alterations.

Software diversity is also an effective method against side-channel attacks [49], code reuse
attacks [50].

As Rowhammer attacks are typically not done by an attacker with decent knowledge of
the target system software diversity is an effective method against this kind of attacks.

The main idea of this thesis is to apply the ideas from software diversity to the memory
allocator of the Linux kernel, in order to make it as hard as possible for an attacker to
place a memory block at a location vulnerable to a bit flip.

36

CHAPTER 5
Design and Implementation of

Page Sacrifice

In this chapter we describe how we implemented page sacrifice, our proposed defense
against attacks based on deterministic memory allocation. First, we give an overview
about the core concepts, then we explain the functioning and effectiveness of our defense
on the basis of Phys Feng Shui (explained in section 4.3). Finally, we discuss our prototype
implementation for the Linux kernel in depth.

5.1 Overview

Basically page sacrifice adds a random length padding both, before and after page
frames and besides that it skips merging and splitting operations of the buddy system
(see section 4.1). In detail padding and skipping operations work as following.

• Adding padding: Before the memory allocator reserves a page frame, it does a
random decision; Based on this decision a page frame is either reserved or skipped.
Skipping means that the kernel ignores this page frame, to fulfill the request for a
free page frame it continues to either skip or reserve page frames until the decision
is made to reserve a particular page frame or a maximum is reached. The kernel
keeps track of which page frames were sacrificed while reserving each physical block.
When the kernel frees page frames, it also frees all pages that were skipped while
allocating it. Subsequently, we refer to skipped blocks are referred to as sacrificed
page frames or simply sacrificed pages. Figure 5.1 illustrates a rather extreme case
of page sacrifice: A 128 KB block consisting of 32 4KB pages without page
sacrifice all pages are used, with page sacrifice employed only 11 are used and
21 are sacrificed pages, a sacrifice rate of ca. 66%

37

5. Design and Implementation of Page Sacrifice

128k
normal

diversified

4k

0

4k

1

4k

2

4k

3

4k

4

4k

5

4k

6

4k

7

4k

8

4k

9

4k

10

4k

11

4k

12

4k

13

4k

14

4k

15

4k

16

4k

17

4k

18

4k

19

4k

20

4k

21

4k

22

4k

23

4k

24

4k

25

4k

26

4k

27

4k

28

4k

29

4k

30

4k

31

4k

0

4k

1

4k

2

4k

3

4k

4

4k

5

4k

6

4k

7

4k

8

4k

9

4k

10

4k

11

4k

12

4k

13

4k

14

4k

15

4k

16

4k

17

4k

18

4k

19

4k

20

4k

21

4k

22

4k

23

4k

24

4k

25

4k

26

4k

27

4k

28

4k

29

4k

30

4k

31

Figure 5.1: Witout page sacrifice all blocks are deterministically allocated and used.
With page sacrifice not all pages are used, but their positioning is unpredictable in
advance.

• Skipping splitting and merging operations: Whenever the buddy system
splits a block into two buddies or merges them to a larger block, page sacrifice
makes a random decision if the operating is skipped.

– Skipping splitting operations: For splitting operations this means, that
the block the buddy system wants to split into smaller parts, keeps its physical
size but subsequently uses it as if the skipping operation was done. This means
that buddy system uses only parts of a physical memory block.

– Skipping merging operations: In case of merging operations this means
that previously split blocks are not merged and thus remain at their current
size. The buddy system subsequently continues to works like if the unused
pages do not exist. As both buddies keep buddies, the buddy blocks may be
merges later, when one of the buddies gets freed.

All changes page sacrifice does to the buddy system are depicted in figure 5.4.

5.2 Implementation
To prove the functioning of our idea, we adapted the buddy system of the Linux kernel.
The choice for Linux was natural as it is the base of the Android operating system and
the source code is available under a free software license.

5.3 Preliminaries
The Linux kernel needs to store information about each page frame (cf. section 2.4), the
data structure for this is struct page. It is important to understand, that the order and
alignment of struct page hardware defined. Therefore it cannot be modified without
adapting large parts of the kernel, however it is possible to extended the structure
by adding further data at its end. page sacrifice makes use of that and extends
struct page by a linked list used to store page frame that were sacrificed during
allocation of a page in use. This list is later used to free sacrificed pages, when the page
gets freed.

The random decisions, if a split or merge operation shall be skipped or how many pages
shall be sacrificed is done with the help of the cryptographically secure kernel function

38

5.3. Preliminaries

get_random_bytes(). A buffer of N bytes is filled, to increase performance. Only the
random bits necessary for a decision are used. For example, the kernel is configured to
do skip a merge operation with probability P = 0.5, only one bit is used. The remaining
bits of the buffer are right shifted. If less bits are available for the current decision, the
buffer is refilled.

5.3.1 Implementation of Skipping Page Frames

The source code of the Linux kernels’ physical memory allocation and the buddy system is
implemented in several functions the mm/page_alloc.c file. The rmqueue_pcplist
function is responsible for removing pages from the CPU specific list of free pages (cf.
section 4.3.3.

The following code listing shows the function including our modifications.

1 static struct page *rmqueue_pcplist
2 (
3 struct zone *preferred_zone, struct zone *zone,
4 unsigned int order, gfp_t gfp_flags, int migratetype) {
5 ...
6 local_irq_save(flags);
7 pcp = &this_cpu_ptr(zone->pageset)->pcp;
8 list = &pcp->lists[migratetype];
9

10 sacrifice_stats_total_alloc++;
11

12 sacrifice_pages(list, &(pcp->count),
13 &preceding_sacrifice);
14

15 page = __rmqueue_pcplist(zone, migratetype, cold, pcp,
16 list);
17

18 sacrifice_pages(list, &(pcp->count),
19 &succeeding_sacrifice);
20

21 add_sacrifice_to_page(page, &preceding_sacrifice,
22 &succeeding_sacrifice);
23 ...
24 local_irq_restore(flags);
25 return page;
26 }

Listing 5.1: The modified kernel function for allocation of physical page frames.
Note that variable declaration are skipped for simplicity.

39

5. Design and Implementation of Page Sacrifice

• Line 8-12: Structures to store the beginning and the end of sacrificed pages are
initialized.

• Line 13-15: Unmodified kernel code, local_irq_save disables interrupts for the
current CPU. The following other two lines get a variable the list of free pages,
associated with the current CPU.

• Line 19: Sacrifice page frames physically preceding the page that actually gets
reserved for the request. The sacrifice_pages function does a random decision
how many pages are sacrificed and removes them form the list of free pages.

• Line 22: Remove the page used to fulfill the memory request.

• Line 25: Similar to Line 19, we sacrifice physically succeeding pages.

• Line 28: Associates the sacrificed pages with the page that actually gets used.

• Line 33: Finally, interrupts are enabled again on the current CPU.

5.3.2 Implementation of Skipping Split Operations

The buddy system splits blocks into smaller blocks until it reaches a suitable block size
(see section 4.1). Splitting is done by the expand function1

1 static inline void expand(
2 struct zone *zone, struct page *page,
3 int low, int high,
4 struct free_area *area, int migratetype) {
5 unsigned long size = 1 << high;
6 while (high > low) {
7 area--;
8 high--;
9 size >>= 1;

10 ...
11 sacrifice_stats_total_splits++;
12 if (high == 0 && make_random_sacrifice_decision()) {
13 sacrifice_stats_splits++;
14 return;
15 }
16 list_add(&page[size].lru, &area->free_list[migratetype]);
17 area->nr_free++;
18 set_page_order(&page[size], high);
19 } }

Listing 5.2: Skipping split operations happens in the expand function

1Note that the function name expand might be misleading, expand means to expand the amount of
free blocks of a certain order.

40

5.3. Preliminaries

The expand function uses a while loop to iterate to the lowest block order suitable for
the allocation. If the variable high has value 0, the function splits two blocks of order
1 into two of order 0, we make a random decision if the skipping operation should be
skipped or not. The rest of the function is kernel internal bookkeeping and not part of
page sacrifice.

5.3.3 Implementation of Skipping Merge Operations

When the kernel frees a physical page, it calls the __free_one_page function an checks,
if the page has a buddy, it not it immediately continues freeing without merging, by
jumping to the done_merging label. page sacrifice reuses this label, according to a
random decision the buddy blocks get merge or not. It is important to mention, that
skipping merging operations, does not mean sacrificed memory, since the blocks can still
be used.

1 static inline void __free_one_page(struct page *page,
2 unsigned long pfn,
3 struct zone *zone, unsigned int order,
4 int migratetype)
5

6 ...
7 if (!page_is_buddy(page, buddy, order))
8 goto done_merging;
9

10

11 if (order == 0 && make_random_sacrifice_decision()) {
12 sacrifice_stats_merges++;
13 goto done_merging;
14 }
15 ...

Listing 5.3: page sacrifice skips merge operations in the __free_one_page
function

5.3.4 Configuration

Because the Linux kernel has a broad user base and sacrificing pages for higher security
may not be an option for every use case, the feature and default parameters can be
configured in the kernel configuration. Fine grained control at run time is also possible
via the sysctl interface. Users can configure the following parameters:

• vm.page_sacrifice if set to a nonzero value page sacrifice is enabled.

41

5. Design and Implementation of Page Sacrifice

Figure 5.2: page sacrifice can be enabled at compile time using standard Linux tools.
Here the menuconfig is shown.

• vm.page_sacrifice_max_order highest order to sacrifice blocks. This is in
particular useful, because sacrificing blocks of high order can cause a serious memory
overhead which easily leads to out of memory situations.

• vm.page_sacrifice_max_at_once integer defining the maximum number of
pages (or blocks if the order is greater than zero) sacrificed in one allocation. This
defines the maximum size of a gap in memory.

• vm.page_sacrifice_prob_bits integer defining the number p of bits used for
the random decision if a block shall be sacrificed or not. A bit is sacrificed if all p
bits are set to zero. This means that each time a block is allocated it is sacrificed
with probability of 1

2p . Accordingly, setting this parameter to 1 means: scarify with
probability of 1

2 , to 2 means: 1
4 and so on. Note that setting this parameter to 0

makes no sense, since the first page allocation is sacrificed until the whole memory
is sacrificed.

5.3.5 Effectiveness of Page Sacrifice

When page sacrifice is deployed exploits such using Phys Feng Shui (cf. section 4.3
cannot assume predictable locations of page frames. Figure 5.4 depicts an attempted
Phys Feng Shui attack prevented by page sacrifice. Additionally, determining if a
coalescing or split operation is performed becomes impossible. Another advantage of
page sacrifice is that pages are physically placed at a location far away of the usual.
This is because the buddy systems does not know about the sacrificed pages, when a

42

5.3. Preliminaries

4KB 4KB 8KB 16KB free blocks 8KB

blocks 4KB 4KB4KB 4KB 8KB 16KB

deterministically used next time 4KB are requested

sacrificed, would be mapped next normally

Block is split into two 4KB blocks and allocated

normal

diversied

Figure 5.3: Often pages are stored at a physical location very different from where the
original kernel would place it.

block is requested the buddy allocator assumes that pages are stored contiguously in
memory. As this is not the case with page sacrifice pages may be stored at memory
locations hard to predict. Figure 5.3 illustrates this effect.

(1) Like in figure 4.3, the whole memory is filled by allocating 512KB blocks, here the
split operation of the buddy system was skipped. So the physical 1024KB block is
seen as 512KB block, by the buddy system.

(2) All remaining 64KB blocks are filled. During these allocation operations two 64KB
blocks are sacrificed.

(3) This step is equivalent to what would happen without page sacrifice. The
512KB block is freed.

(4) The exploit fills 64KB blocks until the previously freed 512KB block, containing
the vulnerable page is filled. In this example two 64KB blocks are sacrificed.

(5) This step is very similar to what would happen, without our defense deployed:
The vulnerable 64KB block is freed, and all remaining 512KB blocks are freed, to
avoid an out of memory situation. The only difference is that in this example two
512KB blocks (depicted in the third row) are not merged to a 1024KB block.

(6) Like without the page sacrifice technique, 4KB blocks are allocated, until the
vulnerable 64KB block is used. While allocating a a large number of blocks of
different size is sacrificed.

(7) The vulnerable 64KB block has been reached. The Phys Feng Shui inserts padding
blocks until the vulnerable block is reached. Because, in this example two blocks
are sacrificed, two more padding blocks are inserted, physically right behind the
vulnerable block.

43

5. Design and Implementation of Page Sacrifice

blocks allocated by exploit vulnerable blocks blocks owned by other processes
free blockspadding predictable page table location

512 512

512 512

512 512

64 64 128 256 512

512 512

512 512

512 512

64 64 64 64 64 64 64 64 512

512 512

512 512

512 512

64 64 64 64 64 64 64 64 512

512 512

64 64 64 64 64 64 64 64 512

512 512

64 64 64 64 64 64 64 64

64

512

1024

64 64 64 64 64 64 64 64 512

1024

64 64 64 64 64 64 64 64

64

512

1024

64 64 64 64 64 64 64 64 512

512 512

64 64

64

512

1024

64 64 64 64 64 64 64 64 512

512 512

64 64

64

512

1024

64 64 64 64 64 64 64 64 512

512 512

64 64

64

512512

(1)

(3)

(5)

(7)

(2)

(4)

(6)

(8)

Figure 5.4: A Phys Feng Shui attack is repelled by page sacrifice.

44

5.3. Preliminaries

(8) The attacker forces a page table allocation, in this case two pages are sacrificed
and the page table is not allocated at the block, vulnerable to a bit flip induced by
a Rowhammer attack.

In summary there are three reasons why Phys Feng Shui fails. Each reason alone would
prevent a successful privilege escalation exploit:

• Unpredictable padding: The number required padding blocks cannot be deter-
mined, because pages can be sacrificed when they are allocated.

• Unpredictable page table location: The page table allocation enforced by the
attacker is not allocated at the vulnerable physical block, because a random number
of sacrificed pages is inserted.

• Vulnerable block sacrificed The block containing the vulnerable page is sacri-
ficed and is therefore not used by the operating system.

45

CHAPTER 6
Evaluation

This chapter evaluates and discusses the page sacrifice technique we presented in the
last chapter. We analyze the effects on memory usage and performance and evaluate the
improved system security.

6.1 Memory Usage

It is in the nature of things that page sacrifice increases memory usage. The increase
depends on the probability parameter p, which controls the probability of a page sacrifice.
Table 6.1 shows memory usage for the Chromium and Mozilla Firefox web browsers
with different parameters. To perform memory tests we set up a virtual machine using
the Kernel Virtual Machine (KVM) 1. We chose the Debian 9 2 Linux distribution as
platform for our tests, with a page sacrifice-enabled Linux kernel version 4.13. The
test environment ran only the minimum amount of processes, necessary to start our
tests. Notably the X Window System3 as graphical user interface, the LightDM 4 display
manager and the xterm 5 terminal emulator. After ten seconds our evaluation process
killed the web browser’s process and determined the amount of used memory and the
total number of sacrificed pages. The total memory usage was determined by observing
the total amount of physically available free memory, before and after the start of the
application. It is important to note that the total memory usage is an approximate value,
since the Linux does not keep track of the exact physical memory usage per process.

1https://www.linux-kvm.org
2https://www.debian.org/
3https://www.x.org/
4https://freedesktop.org/wiki/Software/LightDM/
5http://invisible-island.net/xterm/xterm.html

47

https://www.linux-kvm.org
https://www.debian.org/
https://www.x.org/
https://freedesktop.org/wiki/Software/LightDM/
http://invisible-island.net/xterm/xterm.html

6. Evaluation

Browser p Sacrificed pages Mem.sacrificed Total mem. usage Overhead rate

Chromium

0.125 20771 81 MB 158 MB 51.27 %
0.25 37706 147 MB 192 MB 76.56 %
0.5 99472 389 MB 326 MB 119.33 %
1 346016 1352 MB 875 MB 154.51 %

Firefox

0.125 12636 49 MB 245 MB 20.00 %
0.25 34644 135 MB 308 MB 43.83 %
0.5 94393 369 MB 478 MB 77.20 %
1 263025 1027 MB 931 MB 110.31 %

Table 6.1: Memory overhead of web browsers

6.2 CPU Benchmarks

To quantify the impact of our solution on the computing power of the system, we ran
the SPEC CPU20066 benchmark suite on a Intel Core i5-8350U processor on a notebook
with 16 GB memory. The test system used Debian 97, with the GNU C compiler (GCC)8

version 6.3.0 using Linux 4.13 with page sacrifice enable as kernel. Figure 6.1 shows
the performance degradation. A Detailed of our benchmarks can be found in appendix
A.

Figure 6.1: The performance degradation of page sacrifice is negligible for most uses
cases.

6https://www.spec.org/cpu2006/
7https://www.debian.org/
8https://gcc.gnu.org/

48

https://www.spec.org/cpu2006/
https://www.debian.org/
https://gcc.gnu.org/

6.3. Security evaluation

6.3 Security evaluation
A key idea of page sacrifice is that processes cannot enforce to get the same physical
page again. To evaluate the security of page sacrifice, we examined how many
attempts are requires until Linux reserves the same physical page frame for a process,
which constantly allocates and frees memory. The Linux kernel provides information on
the allocated physical pages of a process in the /proc/self/pagemap file. This file is
only accessible by the root user executing binaries with the cap_sys_admin captive
set.

In our test environment, this allowed us to reliably access page mapping information,
however in a real world attack scenario, attackers aim to escalate their privileges, so when
their process has already root access and the cap_sys_admin captive set, there is no
reason to perform further attacks, since the maximum privileges are already reached and
the attacker has full control over the system.

We wrote a test application simulating the Phys Feng Shui attack (see section 4.3). The
tool probes how many attempts it takes until the Linux kernel assigns the same page
frame, it does so by constantly allocating, filling and freeing heap memory. Table 6.2
shows the results of our experiments. If at least one page is sacrificed the operating
system never assigned the same page frame to the process. However, if we artificially
increased the memory pressure, by running another process constantly allocating and
freeing memory, we were able to force the operating system to assign the same page to
the process simulating an attack. Due to lacking memory, the operating system kernel
was forced to assign the same page frame again after less than 10000 iterations.

Hence, if attackers succeed to fill the entire memory and free a page frame vulnerable
to a bit flip at the right moment, they will eventually succeed to place a page table
entry at a vulnerable location and consequently hammer it gain write-access to the whole
memory, despite the page sacrifice defense. However, in this case it is very likely that
the attack fails because the attacking process runs of memory. Additionally, it is likely
the attacker’s process abnormal behavior get detected by system monitoring services or
system administrators.

p same page after n runs run time
0.125 1 < 1 s
0.25 1 < 1 s
0.5 < 8 < 1 s
1 never 1.5 h

Table 6.2: Attempts needed to return the same physical page.

49

CHAPTER 7
Conclusion

7.1 Contribution
In this thesis we discussed the fundamental techniques necessary to exploit a producible
bit flip in main memory (known as Rowhammer) to a working privilege escalation exploit.
We introduced the underlying software and hardware architectures and presented an in
depth discussion of techniques to tamper operating system design principles to successfully
run privilege escalation attacks.

We presented page sacrifice (see chapter 5), a modification of the well known buddy
allocation mechanism, based on the principles of software diversity. Our defense dramati-
cally increases the efforts for an attacker trying to perform a Phys Feng Shui attack (see
section 4.3.

We implemented our idea for the Linux kernel version 4.13 and ran tests for real world
applications. Moreover, we evaluated the impact of our solution on computational power
using the SPEC CPU2006 benchmark suite. To evaluate the effect on memory usage,
we measured the memory usage of current web browsers, running on a Linux system
equipped with page sacrifice. While the impact on the computing power is rather
moderate and might be acceptable for many use cases, we found out that the memory
consumption of our current solution is extremely high.

7.2 Limitations
It turned out that only sacrificing pages is not satisfying in terms of memory usage.
Our experiments revealed that the memory pressure increases drastically for real world
applications such as web browsers. Therefore, we consider that the current implementation
of only page sacrifice will not gain broad acceptance. However, we consider page
sacrifice as a first part of an effective solution the Rowhammer bug.

51

7. Conclusion

7.2.1 When page sacrifice is not suitable

Hardware supporting direct memory access (DMA), i.e. hardware components (such as
secondary storage) can access memory directly, without the need to load the data to
CPU registers, expects physically contiguous data. Therefore page sacrifice is not
suitable for memory locations used for DMA. Furthermore, no pages are sacrificed when
the allocator is called with the __GFP_NOFAIL bit set. When called with this flag the
system is in a critical state and must at all cost allocate usable memory. For instance
this happens when memory is scarce and the kernel needs memory for critical operations.
For performance reasons requests that are made with the GFP_ATOMIC flag set are also
not sacrificed. It is important to note that only the kernel can request these flags, so
disabling memory in these cases, does not mean that attackers can use them to weaken
our defense.

7.3 Future Work
We intend to develop page sacrifce further to achieve only a constant memory overhead.
This can either be done by keeping lists of pages that are returned to requesting processes,
when memory is scarce or by constantly returning sacrificed memory. Furthermore, we
aim to tackle the Rowhammer problem and apply the ideas of software diversity to
other core components of modern operating systems and compiler toolchains. Another
motivation for our future research is that our work showed, that software diversity is a
suitable, effective and promising method to invalidate the assumption of current and
future side-channel attacks.

52

APPENDIX A
SPEC CPU2006 Benchmarks

Benchmark Run 1 Run 2 Run 3 avg.
400.perlbench 216 sec 217 sec 216 sec 216 sec
401.bzip2 370 sec 376 sec 375 sec 374 sec
403.gcc 237 sec 235 sec 236 sec 236 sec
429.mcf 314 sec 318 sec 359 sec 330 sec
445.gobmk 369 sec 377 sec 373 sec 373 sec
456.hmmer 285 sec 285 sec 285 sec 285 sec
458.sjeng 394 sec 406 sec 405 sec 402 sec
462.libquantum 249 sec 249 sec 245 sec 248 sec
464.h264ref 383 sec 384 sec 384 sec 384 sec
471.omnetpp 329 sec 339 sec 339 sec 336 sec
473.astar 349 sec 355 sec 361 sec 355 sec
483.xalancbmk 188 sec 195 sec 203 sec 195 sec

53

List of Figures

2.1 The CPU is physically connected to the primary memory via the memory
bus. 3

2.2 Structure of a DRAM bank. 4
2.3 Schematic representation of an Intel Core i7-5960X (cf. Operating Systems:

Internals and Design Principles [6]) . 5
2.4 A possible mapping of virtual addresses to physical ones. Process 1 and

process 3 are fragmented. 7
2.5 Simple paging, the physical address is calculated by adding the page table

entry and the offset. 8
2.6 Four-level page table hierarchy of Linux for a x86_64 processor. Graphic by

Jonathan Corbet https://lwn.net/Articles/717293/ 9
2.7 Single-sided Rowhammer is the most simple Rowhammering technique. Its

advantage is that it does not require knowledge abort the inner memory
structure. 13

2.8 Double-sided row hammering induces bit flips by performing reading operations
from both physically neighboring memory rows. This technique induces more
bit flips than single-sided Rowhammering and One-location Hammering . 14

2.9 One-location hammering can induce bit flips not only in neighboring memory
rows, making it a powerful row hammering technique [5]. The bit flips are not
caused by row interference but by effects caused from repeatedly re-opening a
memory location . 15

4.1 Example of the buddy allocation principle. 27
4.2 No matter in which direction a bit in the page table is flipped, it always points

to attacker controlled memory. 29
4.3 Example of Phys Feng Shui . 30

5.1 Witout page sacrifice all blocks are deterministically allocated and used.
With page sacrifice not all pages are used, but their positioning is unpre-
dictable in advance. 38

5.2 page sacrifice can be enabled at compile time using standard Linux tools.
Here the menuconfig is shown. 42

55

https://lwn.net/Articles/717293/

5.3 Often pages are stored at a physical location very different from where the
original kernel would place it. 43

5.4 A Phys Feng Shui attack is repelled by page sacrifice. 44

6.1 The performance degradation of page sacrifice is negligible for most uses
cases. 48

56

List of Tables

2.1 Bits used for four-level paging by the Linux kernel 9

6.1 Memory overhead of web browsers . 48
6.2 Attempts needed to return the same physical page. 49

57

List of Algorithms

59

Bibliography

[1] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In: 27th
USENIX Security Symposium (USENIX Security 18). 2018.

[2] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: 40th
IEEE Symposium on Security and Privacy (S&P’19). 2019.

[3] US-CERThttps://www.us-cert.gov/ncas/alerts/TA18-141A. Side-Channel Vulnera-
bility Variants 3a and 4. May 2018. url: https://www.us-cert.gov/ncas/
alerts/TA18-141A.

[4] Yoongu Kim et al. “Flipping Bits in Memory Without Accessing Them: An Experi-
mental Study of DRAM Disturbance Errors”. In: Proceeding of the 41st Annual
International Symposium on Computer Architecuture. ISCA ’14. Minneapolis, Min-
nesota, USA: IEEE Press, 2014, pp. 361–372. isbn: 978-1-4799-4394-4. url: http:
//dl.acm.org/citation.cfm?id=2665671.2665726.

[5] Daniel Gruss et al. “Another Flip in the Wall of Rowhammer Defenses”. In: 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA. 2018, pp. 245–261. doi: 10.1109/SP.2018.
00031. url: https://doi.org/10.1109/SP.2018.00031.

[6] William Stallings. Operating Systems: Internals and Design Principles. 9th. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2017. isbn: 978-0134670959.

[7] Ferdinand Brasser et al. “CAn’T Touch This: Software-only Mitigation Against
Rowhammer Attacks Targeting Kernel Memory”. In: Proceedings of the 26th
USENIX Conference on Security Symposium. SEC’17. Vancouver, BC, Canada:
USENIX Association, 2017, pp. 117–130. isbn: 978-1-931971-40-9. url: http:
//dl.acm.org/citation.cfm?id=3241189.3241200.

[8] Four-level page tables merged. Jan. 2005. url: https://lwn.net/Articles/
117749/.

[9] FreeBSD Architecture Handbook. url: https://www.freebsd.org/doc/en/
books/arch-handbook/vm-pagetables.html.

[10] Intel. 5-Level Paging and 5-Level EPT White Paper. May 2017. url: https:
//software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf.

61

https://www.us-cert.gov/ncas/alerts/TA18-141A
https://www.us-cert.gov/ncas/alerts/TA18-141A
http://dl.acm.org/citation.cfm?id=2665671.2665726
http://dl.acm.org/citation.cfm?id=2665671.2665726
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1109/SP.2018.00031
http://dl.acm.org/citation.cfm?id=3241189.3241200
http://dl.acm.org/citation.cfm?id=3241189.3241200
https://lwn.net/Articles/117749/
https://lwn.net/Articles/117749/
https://www.freebsd.org/doc/en/books/arch-handbook/vm-pagetables.html
https://www.freebsd.org/doc/en/books/arch-handbook/vm-pagetables.html
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf

[11] Five-level page tables. Mar. 2017. url: https://lwn.net/Articles/717293/.
[12] The FreeBSD Documentation Project. Frequently Asked Questions for FreeBSD

10.X and 11.X. url: https://www.freebsd.org/doc/en/books/faq/
misc.html.

[13] Jedec Solid State Technology Association. DDR3 SDRAM Standard. July 2012. url:
https://www.jedec.org/standards-documents/docs/jesd-79-3d.

[14] Kuljit S Bains et al. Row hammer refresh command. US Patent 9,236,110. 2016.
[15] Mark Seaborn and Thomas Dullien. Exploiting the DRAM rowhammer bug to gain

kernel privileges. Mar. 2015. url: https://googleprojectzero.blogspot.
com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html.

[16] S. Govindavajhala and A. W. Appel. “Using memory errors to attack a virtual
machine”. In: 2003 Symposium on Security and Privacy, 2003. May 2003, pp. 154–
165. doi: 10.1109/SECPRI.2003.1199334.

[17] Intel R© Streaming SIMD Extensions Technology. July 2017. url: https://www.
intel.com/content/www/us/en/support/articles/000005779/
processors.html.

[18] Zelalem Birhanu Aweke et al. “ANVIL: Software-Based Protection Against Next-
Generation Rowhammer Attacks”. In: Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’16. Atlanta, Georgia, USA: ACM, 2016, pp. 743–755. isbn:
978-1-4503-4091-5. doi: 10.1145/2872362.2872390. url: http://doi.acm.
org/10.1145/2872362.2872390.

[19] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer.Js: A
Remote Software-Induced Fault Attack in JavaScript”. In: Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721. DIMVA 2016. San Sebastián, Spain: Springer-Verlag
New York, Inc., 2016, pp. 300–321. isbn: 978-3-319-40666-4.

[20] Yossef Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and Their Implications”. In: Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. CCS ’15. Denver, Colorado, USA: ACM,
2015, pp. 1406–1418. isbn: 978-1-4503-3832-5. doi: 10.1145/2810103.2813708.
url: http://doi.acm.org/10.1145/2810103.2813708.

[21] Fangfei Liu et al. “Last-Level Cache Side-Channel Attacks Are Practical”. In: Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy. SP ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 605–622. isbn: 978-1-4673-6949-7. doi:
10.1109/SP.2015.43. url: https://doi.org/10.1109/SP.2015.43.

[22] Victor van der Veen et al. “Drammer: Deterministic Rowhammer Attacks on Mobile
Platform”. In: Proceedings of the 23rd Conference on Computer and Communica-
tions Security (CCS 2016). Oct. 2016.

62

https://lwn.net/Articles/717293/
https://www.freebsd.org/doc/en/books/faq/misc.html
https://www.freebsd.org/doc/en/books/faq/misc.html
https://www.jedec.org/standards-documents/docs/jesd-79-3d
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1109/SECPRI.2003.1199334
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://doi.org/10.1145/2872362.2872390
http://doi.acm.org/10.1145/2872362.2872390
http://doi.acm.org/10.1145/2872362.2872390
https://doi.org/10.1145/2810103.2813708
http://doi.acm.org/10.1145/2810103.2813708
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43

[23] Thomas M. Zeng. The Android ION memory allocator. Feb. 2012. url: https:
//lwn.net/Articles/480055/.

[24] Franz Ferdinand Brasser et al. “CAn’t Touch This: Practical and Generic Software-
only Defenses Against Rowhammer Attacks”. In: CoRR abs/1611.08396 (2016).
arXiv: 1611.08396. url: http://arxiv.org/abs/1611.08396.

[25] Franz Ferdinand Brasser et al. “CAn’t Touch This: Practical and Generic Software-
only Defenses Against Rowhammer Attacks”. In: CoRR abs/1611.08396 (2016).
arXiv: 1611.08396. url: http://arxiv.org/abs/1611.08396.

[26] Daniel Gruss et al. “KASLR is Dead: Long Live KASLR”. In: Engineering Secure
Software and Systems. Ed. by Eric Bodden, Mathias Payer, and Elias Athanasopou-
los. Cham: Springer International Publishing, 2017, pp. 161–176. isbn: 978-3-319-
62105-0.

[27] Yueqiang Cheng, Zhi Zhang, and Surya Nepal. “Still Hammerable and Exploitable:
on the Effectiveness of Software-only Physical Kernel Isolation”. In: CoRR abs/1802.07060
(2018). arXiv: 1802.07060. url: http://arxiv.org/abs/1802.07060.

[28] Jonathan Corbet. The current state of kernel page-table isolation. Dec. 2017. url:
https://lwn.net/Articles/741878/.

[29] Dave Hansen. KAISER: unmap most of the kernel from userspace page tables. Oct.
2017. url: https://lwn.net/Articles/737940/.

[30] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “MASCAT: Stopping Mi-
croarchitectural Attacks Before Execution”. In: IACR Cryptology ePrint Archive
2016 (2016), p. 1196. url: http://eprint.iacr.org/2016/1196.

[31] Intel Corporation. Intel R© Software Guard Extensions (Intel R© SGX). url: https:
//software.intel.com/en-us/sgx.

[32] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory Encryption White
Paper. Mar. 2016. url: http://amd-dev.wpengine.netdna-cdn.com/
wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_
v7-Public.pdf.

[33] Jonathan Corbet. Defending against Rowhammer in the kernel. Oct. 2016. url:
https://lwn.net/Articles/704920/.

[34] Mathias Payer. “HexPADS: A Platform to Detect “Stealth” Attacks”. In: Engi-
neering Secure Software and Systems. Ed. by Juan Caballero, Eric Bodden, and
Elias Athanasopoulos. Cham: Springer International Publishing, 2016, pp. 138–154.
isbn: 978-3-319-30806-7.

[35] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. “CloudRadar: A Real-time
Side-channel Attack Detection System in Clouds”. In: Sept. 2016.

[36] M.Ghasempour, M. Lujan, and J.Garside. ARMOR: A Run-time Memory Hot-
Row Detector. 2015. url: http://apt.cs.manchester.ac.uk/projects/
ARMOR/RowHammer/armor.html.

63

https://lwn.net/Articles/480055/
https://lwn.net/Articles/480055/
https://arxiv.org/abs/1611.08396
http://arxiv.org/abs/1611.08396
https://arxiv.org/abs/1611.08396
http://arxiv.org/abs/1611.08396
https://arxiv.org/abs/1802.07060
http://arxiv.org/abs/1802.07060
https://lwn.net/Articles/741878/
https://lwn.net/Articles/737940/
http://eprint.iacr.org/2016/1196
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://lwn.net/Articles/704920/
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/armor.html
http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/armor.html

[37] Jedec Solid State Technology Association. Low Power Double Data Rate 4. Mar.
2017. url: http : / / www . jedec . org / standards - documents / docs /
jesd209-4b.

[38] Hewlett-Packard Inc. HP Servers - "Rowhammer" Security Vulnerability. Mar. 2015.
url: https://support.hpe.com/hpsc/doc/public/display?docId=
emr_na-c04639675.

[39] Lenovo Inc. Row Hammer Privilege Escalation Lenovo Security Advisory: LEN-
2015-009. July 2016. url: https://support.lenovo.com/at/en/product_
security/row_hammer.

[40] Apple Inc. About the security content of Mac EFI Security Update 2015-001. Jan.
2017. url: https://support.apple.com/en-us/HT204934.

[41] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-
mental Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing
Co., Inc., 1997. isbn: 0-201-89683-4.

[42] Wolfgang Mauerer. Professional Linux Kernel Architecture. Birmingham, UK, UK:
Wrox Press Ltd., 2008. isbn: 9780470343432.

[43] Jason Evans. A Scalable Concurrent malloc(3)Implementation for FreeBSD. Apr.
2006. url: https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/
jemalloc.pdf.

[44] setuid(2) Linux Programmer’s Manual. Sept. 2017.
[45] JF Bastien. Disallow the x86 "clflush" instruction due to DRAM "rowhammer"

problem. Mar. 2015. url: https://bugs.chromium.org/p/nativeclient/
issues/detail?id=3944#c15.

[46] Kaveh Razavi et al. “Flip Feng Shui: Hammering a Needle in the Software Stack”.
In: 25th USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX
Association, 2016, pp. 1–18. isbn: 978-1-931971-32-4. url: https : / / www .
usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/razavi.

[47] Daniel Gruss et al. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. 2016, pp. 368–379.
doi: 10.1145/2976749.2978356. url: http://doi.acm.org/10.1145/
2976749.2978356.

[48] Frederick B. Cohen. “Operating System Protection Through Program Evolution”.
In: Comput. Secur. 12.6 (Oct. 1993), pp. 565–584. issn: 0167-4048. doi: 10.1016/
0167-4048(93)90054-9. url: http://dx.doi.org/10.1016/0167-
4048(93)90054-9.

[49] Stephen Crane et al. “Thwarting Cache Side-Channel Attacks Through Dynamic
Software Diversity.” In: NDSS. 2015, pp. 8–11.

64

http://www.jedec.org/standards-documents/docs/jesd209-4b
http://www.jedec.org/standards-documents/docs/jesd209-4b
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04639675
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04639675
https://support.lenovo.com/at/en/product_security/row_hammer
https://support.lenovo.com/at/en/product_security/row_hammer
https://support.apple.com/en-us/HT204934
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://bugs.chromium.org/p/nativeclient/issues/detail?id=3944#c15
https://bugs.chromium.org/p/nativeclient/issues/detail?id=3944#c15
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/razavi
https://doi.org/10.1145/2976749.2978356
http://doi.acm.org/10.1145/2976749.2978356
http://doi.acm.org/10.1145/2976749.2978356
https://doi.org/10.1016/0167-4048(93)90054-9
https://doi.org/10.1016/0167-4048(93)90054-9
http://dx.doi.org/10.1016/0167-4048(93)90054-9
http://dx.doi.org/10.1016/0167-4048(93)90054-9

[50] Andrei Homescu et al. “Profile-guided Automated Software Diversity”. In: Proceed-
ings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). CGO ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 1–11. isbn: 978-1-4673-5524-7. doi: 10.1109/CGO.2013.6494997.
url: http://dx.doi.org/10.1109/CGO.2013.6494997.

65

https://doi.org/10.1109/CGO.2013.6494997
http://dx.doi.org/10.1109/CGO.2013.6494997

	Kurzfassung
	Abstract
	Contents
	Introduction
	Structure of the Thesis

	Background
	Hardware Architecture
	CPU Cache and Main Memory Structure
	Memory Management
	Paging
	Huge Pages
	Page Cache
	Kernel Space And User Space
	Rowhammer
	CPU Cache Eviction Strategies

	State of the Art
	B-CATT
	G-CATT
	Kernel Page-Table Isolation
	Static Binary Analysis
	Rowhammer Defenses based on CPU Performance Counters

	Design
	The Buddy System
	Rowhammer-based Attacks
	Phys Feng Shui
	Software Diversity

	Design and Implementation of Page Sacrifice
	Overview
	Implementation
	Preliminaries

	Evaluation
	Memory Usage
	CPU Benchmarks
	Security evaluation

	Conclusion
	Contribution
	Limitations
	Future Work

	SPEC CPU2006 Benchmarks
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

