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Kurzfassung

Chat-Bots sind eines der meistbeachteten Themen der letzten Jahre. Der Hauptfokus der
wissenschaftlichen Publikationen, sowie der existierenden Implementationen liegt jedoch
auf Chat-Bots in Englischer Sprache. Es ist daher nicht klar, ob die beschriebenen und
verwendeten Methoden sowie Werkzeuge auch in anderen Sprachen in der gleichen Art
und Weise eingesetzt werden können. Diese Arbeit setzt sich zum Ziel, den aktuellen Stand
der Technik im Bereich der Chat-Bot Entwicklung darzulegen, und die Anwendbarkeit
der meistverbreiteten und aktuell angewendeten Methoden und Werkzeuge in Deutscher
Sprache anhand einer Fallstudie zu evaluieren.
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Abstract

Chat-bots have seen increased public interest over the last few years. The main focus of
scientific publications, as well as that of existing implementations, however, has been
almost solely on English language applications. It is therefore unclear, if the methods and
tools mentioned or applied are applicable in languages other than English, and if so, to
what degree. The goal of this thesis is to describe the current state-of-the-art in chat-bot
development, and to evaluate the applicability of the most widely used state-of-the-art
methods and tools in German language with the help of a custom case study.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Chat-bots have recently gained increased public interest. This can be explained by a
multitude of reasons. Increased diffusion of technology into our everyday lives - like
the now ubiquitous smartphones or navigation systems in cars - have lead to a renewed
interest in natural language based interfaces [Song et al., 2017, Xu et al., 2017, Hearst,
2011, Bang et al., 2015, Braslavski et al., 2017]. The inherent restrictions that come
with those small or integrated devices, such as small or no screens and limited input
possibilities, showed that common practices of graphic-based user interfaces are not
always viable, and that the intuitive and simple nature of speech- or text-only interfaces
provide a good answer to that challenge [Fadhil and Villafiorita, 2017, Følstad and
Brandtzæg, 2017, Radlinski and Craswell, 2017, Graf et al., 2015, Cimiano et al., 2007].
An alternative approach to speech- and text-based interfaces is presented in [Neidhardt
et al., 2015], where the authors use a picture-based interaction to bridge gaps in the
user’s domain-literacy. Another reason is the steady growth of the world wide web, which
demands more efficient and natural interfaces to effectively search and filter the enormous
amount of data available to us [Cimiano et al., 2007, Kolomiyets and Moens, 2011], and
gives a large number of people access to natural language based systems [Webber and
Webb, 2010]. The latter part is especially true when we look at the popularity of instant
messaging systems, which have recently surpassed social networks in both size of the
user base and usage rates [Intelligence, 2016]. These applications serve as platforms
for text-based natural language based systems and contribute a lot to the increased
interest in chat-bot technology [Avula, 2017, Graf et al., 2015, Hill et al., 2015]. Steady
advancements in natural language processing and information retrieval, especially driven
by conferences like “Text REtrieval Conference” (TREC) [Webber and Webb, 2010],
combined with access to scalable cloud computing technology have also added to the
popularity [Kincaid and Pollock, 2017, Webber and Webb, 2010]. Figure 1.1 visualizes
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1. Introduction

Figure 1.1: The global Google search volume for the topic of “chatbot”, relative to the
peak interest within the chosen time frame from 01.01.2015 until 01.11.2017. A significant
increase in interest can be seen in March of 2016 and a constant growth from that
time onwards. Source: https://trends.google.com/trends/explore?date=
2015-01-01%202017-11-01&q=%2Fm%2F01305y

the significance of the rise in public interest. Google Trends1 offers data on the relative
popularity of a search term or topic within a given time-frame.

This increase in academic and public interest is also reflected, and contributed to by,
major releases from big IT companies, like IBM, Google, Apple and Microsoft [Moore
et al., 2017, Ameixa et al., 2014]. The most famous examples are IBM’s Watson [Ferrucci
et al., 2010], a question answering system which has famously participated in and won a
game of Jeopardy, WolframAlpha2, a large-scale expert system with free-form natural
language interface, and, more recently, the launch of a new generation of intelligent
personal assistants. Some famous examples are Apple’s Siri3, Microsoft’s Cortana4 and
Amazon’s Alexa5 system, all of them capable of interpreting natural language utterances
in both text and speech. Interest from developers has also been fueled by the releases of
easy to use platforms and APIs [Zamora, 2017], to either integrate an existing chat-bot
application into an instant messenger ecosystem, like Slack6 or Facebook Messenger7, or

1https://trends.google.com/trends/
2http://www.wolframalpha.com
3https://www.apple.com/ios/siri/
4http://microsoft.com/cortana
5https://developer.amazon.com/alexa
6https://slack.com
7https://www.messenger.com
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1.1. Motivation and Problem Statement

Figure 1.2: The number of publications containing the terms “chatbot”, “chatterbot”,
“chat-bot” or “chat bot” released in the years 2000 - 2017 (as of November of 2017). The
search was conducted using scopus.com. A significant increase in volume can be seen in
the years 2016 and 2017. Source: http://www.scopus.com

to create, host and integrate chat-bot applications, e.g. using Microsoft’s Bot Framework8

or IBM’s Watson Assistant (formerly known as Watson Conversation Services)9. Due
to the large increase in literature output under that topic, it is hard to get an overview
over the current state-of-the-art in the field of chat-bots. As can be seen in Figure 1.2,
the number of publications has risen significantly after several announcements in 2016,
with the release of Microsoft’s first Twitter bot Tay [Dewey, 2016], based on their Bot
Framework, as well as allowing access to Facebook Messenger via a public API [Rosenberg,
2016].

However, most of these publications concentrate on using English as the language of
choice, as it is the language of choice in scientific literature [van Weijen, 2012], and the
market for English speaking customers is obviously much larger compared to German
speaking customers. There is, however, a market for German speaking chat-bots, and
to the best of my knowledge there is no literature on the efficiency and practicality of
state-of-the-art methods, tools and services used in chat-bot development using German
as the language of choice.

8https://docs.microsoft.com/en-us/azure/bot-service/?view=
azure-bot-service-3.0

9https://www.ibm.com/watson/services/conversation/
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1. Introduction

1.2 Aim of the Work

The aim of this work is to give an overview of the current state-of-the-art in chat-bot
development, and to evaluate the most commonly used methods and tools regarding their
efficiency and practicality in both English and German language. Efficiency and practi-
cality in this context means comparable features like availability of tools, documentation
and available models for the latter, and performance measures like recall or precision for
the former. The goal is to find out whether or not the current state-of-the-art methods
and tools deliver a competitive German language performance, and if there are methods
or tools which should be avoided or preferred.

1.3 Research Questions

This leads to the following research questions:

RQ1: Is there a common definition of the term chat-bot, and if so, what is it?

RQ2: What is the current state-of-the-art regarding language-dependent methods, tools
and services involved in creating chat-bots?

RQ3: Is there a measurable difference in the performances of current methods, tools and
services when using German language, as compared to English?

RQ3.1: If so, are there methods, tools or services for which these differences are smaller
or non-existent?

1.4 Methodology

First, an introduction to the domain and a definition of the used terminology is given. To
provide a better overview of the terminology, a literature review is conducted to identify
the most commonly used terms and definitions. Then, a taxonomy is derived, defined
and visualized using the terms and definitions found in the literature review as a basis.

To find the current state-of-the-art, a thorough literature review is conducted and the
methods and tools mentioned in the literature are presented, explained and filtered based
on a quantitative evaluation.

Further evaluation of the filtered number of methods and tools is done by implementing
a case study as a testing framework. This case study is situated in the sports domain,
more precisely Football. The supported languages are English and German. To evaluate
the performance and practicality of the implemented methods and tools in both English
and German, an evaluation and training dataset is manually created which contains (i)
utterances in German language, (ii) the same utterances translated into English language,
and (iii) the intent, following a domain-specific taxonomy. This dataset is used to train

4



1.5. Structure of the Work

a custom implementation called “GermaNLU", using only the most popular methods
and tools identified in the aforementioned literature review. This system is then used
for a quantitative evaluation to identify the best combinations of methods and tools in
both English and German language. The results of this evaluation are then analyzed and
discussed.

These performances of the best methods and feature combinations within the “GermaNLU"
system are then compared to the performances state-of-the-art publicly available com-
mercial services to provide a point of reference for the performance achieved. These
systems are trained using the same training data as the “GermaNLU" system, and also
evaluated using the same evaluation data.

The results of this comparison are then analyzed and discussed.

1.5 Structure of the Work
First, we provide an introduction into the terminology used in the field of chat-bots. This
is followed by a description of the anatomy of a chat-bot system, presenting the current
state-of-the-art. Next, the findings of the literature review regarding the state-of-the-art
methods and tools in the field of chat-bot development are presented, followed by a
detailed description of the case study implementation, the evaluation results and a
closing summary and discussion of the findings. A detailed review of the literature is
provided in the appendix, covering existing surveys, as well as detailed descriptions of
the analyzed systems. Lastly, examples of training data used to train the state-of-the-art
publicly available commercial services used in the final evaluation are also provided in
the appendix.
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CHAPTER 2
Terminology

As already established, the topic of chat-bots has seen a surge of interest in recent months.
What became apparent during the initial research for this thesis was that the meaning of
the term is not clearly defined. Definitions given in media and academic publications
vary, from being specifically non-task oriented gadgets for entertainment purposes only,
to more generic definitions as natural language interfaces to some form of service. But
this blurry definition makes it hard to communicate the scope and applicability of a
chat-bot. But not only the definition of the term chat-bot is unclear (and sometimes even
contradictory to the popular usage of the term), there is also a multitude of different,
often synonymously used terms, especially in academic literature. While in popular media
systems are most commonly just labeled chat-bots, “virtual private assistants", “question
answering systems", “intelligent personal assistants" or “conversational recommender
systems" are just a few of the terms currently used in recent publications. The systems
that are described vary heavily in functionalities and scope. In the following we present
an overview of current terms and their definitions used in academic literature, and present
a novel taxonomy to map these terms and definitions onto a shared and clear terminology.
This taxonomy is based on functional attributes which define and distinguish the terms
used. Common features are deduced from the literature and assigned to the different
terms. Features in this context are all capabilities, system behaviors and attributes
attributed to one or more chat-bot systems in the the cited literature.

2.1 Related Work

Very little literature explicitly approach the topic of chat-bot or conversational system
classification. [Jurafsky and Martin, 2017a] provide a basic classification of conversational
systems into “non-task oriented" and “task oriented systems", chat-bots being members
of the non-task oriented class, and systems like Apple’s Siri being associated to the
task-oriented class. It is also stated there, that the actual usage of the term chat-
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2. Terminology

bot in both media and industry does not always adhere to that classification. [Rubin
et al., 2010] aim to classify conversational systems according to their purpose and the
environment that they are used in. Initially focused on conversational systems in the
context of a library, they define four distinct classes for conversational systems outside of
a library environment: (i) educational, i.e. for training and instructional purposes, (ii)
informational, i.e. for information seeking or promotions, (iii) assistive, i.e. supporting
individuals with disabilities and (iv) socially interactive, i.e. for entertainment or social
companionship. [Mazur et al., 2012] do not attempt to introduce a new taxonomy or
classification, but argues that the existing classification of conversational systems into
task-oriented and non-task oriented (as defined in [Jurafsky and Martin, 2017a]) is
not sufficient to describe modern chat-bots, as they are showing traits of both classes.
[Klopfenstein et al., 2017] argue in a similar fashion, that the current definition of
chat-bots being non-task oriented is not sufficient to describe such systems, as it creates
expectations in the users it might not be able to fulfill. The literature found focuses
primarily on the shortcomings of the current classification of conversational systems,
or suggests a classification with regard to the purpose of a conversational system. To
my best knowledge, there is no publication dealing with the unclear landscape of terms
used in both academia and media based on a system’s features. Therefore, a more clear
definition is needed to find out which features are relevant and central in the field of
chat-bot development.

2.2 Definitions in the Literature

The following sections summarize the definitions used in scientific literature for terms
used in the topic of chat-bots and conversational systems. The terms in use have been
identified during the initial phase of literature review as being closely related to each other,
and the definitions given for those terms are included to provide a better understanding
of the current state-of-the-art in the field of conversational systems.

2.2.1 Conversational Systems

Conversational system, also known as dialog systems, are computer programs which
communicate with users using natural language [Jurafsky and Martin, 2017a]. They
fall into two distinct classes: task-oriented conversational systems and non-task-oriented
conversational systems.

Task-oriented conversational systems: These are systems “designed for a particular
task and set up to have short conversations” [Jurafsky and Martin, 2017a], with a “deep
strategic purpose of conversation and directing it to achieve a certain goal” [Mazur et al.,
2012]. These systems attempt to “get the conversation back on track using its rule base
and knowledge obtained during the conversation” [Mazur et al., 2012]. Examples for such
systems are virtual private assistants and conversational recommender systems.

Non-task-oriented conversational systems: These are systems “set up to mimic the

8



2.2. Definitions in the Literature

unstructured conversational or ’chats’ characteristic of human-human interaction, rather
than focused on a particular task like booking plane flights” [Jurafsky and Martin, 2017a]
and “mostly for entertainment purposes” [Mazur et al., 2012]. [Jurafsky and Martin,
2017a] argue that chat-bots belong to this group.

2.2.2 Chat-Bot Systems

Already the term chat-bot itself is not uniquely defined. Amongst the terms used
synonymously are “chatterbot”, “chat-bot” and “chat bot”. To get a complete picture of
the definitions currently in use, all of these terms were included in the search for literature.
The search was conducted using the scientific literature search engine “scopus”1. An
analysis of the literature found showed that besides the previously introduced variations,
also a number of different terms are explicitly said to also be synonymous for the term
chat-bot (or it’s common derivations). The terms and the publications that introduce
them as synonymous to chat-bot are listed in Table 2.1.

Alternative Term References
Commercial conversational agent [Radlinski and Craswell, 2017]
(Intelligent) Virtual assistant [Kincaid and Pollock, 2017, Dale, 2016]
Digital assistant [Dale, 2016]
Conversational Interface [Dale, 2016, Al-Zubaide and Issa, 2011]
Human-computer dialog systems [Hirzel et al., 2017]
Dialogue system [Madhu et al., 2017]
Virtual agent [Hirzel et al., 2017, Madhu et al., 2017]
Chat-oriented dialogue system [Bang et al., 2015]
Chatting system [Bang et al., 2015]
Machine conversation system [Madhu et al., 2017]
Talkbot [Juang et al., 2015]
Artificial conversation system [Juang et al., 2015]

Table 2.1: A list of the terms proposed as synonymous to the term “chat-bot” in the
literature analyzed.

Some of the terms can be seen as in lieu with the classification used in [Jurafsky and
Martin, 2017a], chat-bots being merely chit-chat systems for entertainment purposes
(“chatting system”, “talkbot”, “chat-oriented dialogue system”). Some are very unspecific
and leave a lot of room for interpretation, e.g. “virtual agent”, while others indicate
synonymity to the term conversational system itself (“artificial conversation system”,
“human-computer dialog system”) or indicate a task orientation (“intelligent virtual
assistant”, “digital assistant”). The latter two kinds of terms are in direct conflict with
the definition used in [Jurafsky and Martin, 2017a]. It can be argued that we are either

1https://www.scopus.com/
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2. Terminology

seeing a concept drift of the concept of “chat-bots”, or that the academic community
is not fully aware of the existing classifications. The chat-bot definitions proposed in
the literature also supports the findings from the analysis of the synonyms given. While
all sources agree that chat-bots are systems conducting natural language conversations,
they do not agree upon the question whether or not a chat-bot is task-oriented or not.
Table 2.2 lists the defining features extracted from the literature and aggregates them
into 2 groups, supporting non-task orientation and supporting task-orientation.

Non-task Oriented Task Oriented
Feature References Feature References
Emulate hu-
man conver-
sation only

[Ferrara et al.,
2016, Song et al.,
2017, Bang et al.,
2015, Jurafsky and
Martin, 2017a, Madhu
et al., 2017, Hill et al.,
2015, Juang et al., 2015]

Fulfill spe-
cific task

[Radlinski and Craswell,
2017, Xu et al., 2017,
Kincaid and Pollock,
2017, Fadhil and Vil-
lafiorita, 2017, Dale,
2016, Vtyurina et al.,
2017, Madhu et al., 2017,
Juang et al., 2015]

For enter-
tainment
only

[Jurafsky and Martin,
2017a, Papaioannou and
Lemon, 2017]

Spread
fraudulent
content

[Gianvecchio et al.,
2011]

Conduct
smalltalk

[Hill et al., 2015, Bang
et al., 2015, Jurafsky
and Martin, 2017a, Wei
et al., 2017]

Give assis-
tance and
guidance

[Kincaid and Pollock,
2017, Dale, 2016, Juang
et al., 2015]

Give sugges-
tions

[Radlinski and Craswell,
2017, Juang et al., 2015]

Answer
questions

[Radlinski and Craswell,
2017, Xu et al., 2017,
Kincaid and Pollock,
2017, Setiaji and Wi-
bowo, 2017, Juang et al.,
2015]

Table 2.2: A list of features taken from definitions of the terms chat-bot and chatterbot
grouped into features connected to the two types of conversational systems defined in
[Jurafsky and Martin, 2017a]. Features in this context are capabilities, behaviors or
attributes attributed to one or more chat-bot systems in the cited literature. Chat-bots
are assumed to be a non-task oriented system, but a lot of features contradict this
assumption.

As can be seen in Table 2.2, some sources give chat-bots features that are in line with

10
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the definitions of both task orientated and non-task oriented behavior, which further
supports the issues brought up in [Mazur et al., 2012] and [Klopfenstein et al., 2017] and
supports the need for an updated taxonomy.

Related terms and expanded literature analysis: the analysis of the definitions
gathered for the term chat-bot has shown that there is an enormous amount of synonymous
terms, as well as features that can usually be found in different systems. Therefore the
literature search is expanded by common names for systems which are described by said
features. Table 2.3 shows a mapping of the expanded set of search terms to the features
from Table 2.1.

Search Terms Feature
Conversational recommender system Give suggestions
Conversational search system, interactive
information retrieval

Give guidance, answer ques-
tions

Virtual private assistant, intelligent private
assistant

Give assistance, answer ques-
tions

Question answering system Answer questions

Table 2.3: A set of additional search terms deduced from the features attributed to
chat-bots. The names are either directly taken from the list of synonymous terms in
Table 2.1, or identified via an online search for commonly used terms for systems showing
those features

In the following the describing features for the above search terms are extracted from
the definitions found in the search results. The search was conducted using scopus.
Multiple search terms in the same field indicate the use of an “OR” operator in the
conducted search, e.g. “conversational search system" OR “interactive
information retrieval".

Conversational recommender system: these are systems inspired by conversations
of customers with sales persons, with the goal to guide the user through a potentially big
product space, and to ultimately present the user with one or more suggestions according
to the preferences the system could identify. The preferences of the user are deduced via
a multi-step, mixed-initiative natural language conversation, either directly by asking or
by inference. Usually these system offers the possibility to make a transaction, e.g. to buy
a product. Table 2.4 lists the identified features from the literature and the references.

11



2. Terminology

Feature References
Inspired by conversation
with sales person

[Baizal et al., 2016b, Baizal et al., 2016a]

Mixed initiative (i.e.
user and system can
both inquire informa-
tion)

[Baizal et al., 2016b, Genc and O’Sullivan, 2017, Aha
et al., 2001, McCarthy et al., 2004, McGinty and Smyth,
2003, De Carolis et al., 2017, Reilly and Reilly, 2004,
Mcginty and Smyth, 2003, Bridge, 2002, Allen et al.,
1999, Mahmood and Ricci, 2007]

Multi-step dialogue [Baizal et al., 2016b, Baizal et al., 2016a, Genc and
O’Sullivan, 2017, Aha et al., 2001, McCarthy et al.,
2004, McGinty and Smyth, 2003, De Carolis et al.,
2017, Reilly and Reilly, 2004, Mcginty and Smyth,
2003, Mahmood and Ricci, 2007]

Use conversation to
elicit information about
the user

[Baizal et al., 2016b, Baizal et al., 2016a, Aha et al.,
2001, De Carolis et al., 2017, Mcginty and Smyth,
2003, Mahmood and Ricci, 2007]

Interactive decision pro-
cess to meet users re-
quirements

[Baizal et al., 2016b, Baizal et al., 2016a, Genc and
O’Sullivan, 2017, Aha et al., 2001, De Carolis et al.,
2017]

Integrate user feedback [Baizal et al., 2016b, Baizal et al., 2016a, Genc and
O’Sullivan, 2017, Aha et al., 2001, McCarthy et al.,
2004, McGinty and Smyth, 2003, Mcginty and Smyth,
2003, Mahmood and Ricci, 2007]

Progressively adapt to
the user

[Baizal et al., 2016b, Baizal et al., 2016a, Genc and
O’Sullivan, 2017, Aha et al., 2001, McCarthy et al.,
2004, McGinty and Smyth, 2003, Mcginty and Smyth,
2003]

Guides the user through
the product space

[Baizal et al., 2016b, Genc and O’Sullivan, 2017, Mc-
Carthy et al., 2004, McGinty and Smyth, 2003, Reilly
and Reilly, 2004, Mahmood and Ricci, 2007]

Navigation by asking [Shimazu, 2002]
Navigation by proposing [Shimazu, 2002]

Table 2.4: A list of the features of conversational recommender systems, as found in
current literature.

Conversational search system: these are systems that use multi-step, mixed-initiative
natural language conversation to improve search quality. They assist the potentially
ill-literate user in formulating her/his information need. They differ from normal search
engines in providing concise results, if possible a single fact, rather than a list of relevant
documents. Table 2.5 lists the identified features from the literature and the references.
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2.2. Definitions in the Literature

Feature References
Model the user’s infor-
mation need

[Radlinski and Craswell, 2017, Vtyurina et al., 2017,
Bickmore et al., 2016, Shiga et al., 2017]

Mixed-initiative [Radlinski and Craswell, 2017, Vtyurina et al., 2017,
Joho et al., 2017, Bickmore et al., 2016]

Use conversation to im-
prove search quality

[Vtyurina et al., 2017]

Multi-step dialogue [Radlinski and Craswell, 2017, Vtyurina et al., 2017,
Joho et al., 2017, Bickmore et al., 2016]

Give concise answers [Radlinski and Craswell, 2017, Trippas et al., 2017,
Trippas et al., 2015]

Assist non-literate users
which are unaware of do-
main vocabulary

[Radlinski and Craswell, 2017, Bickmore et al., 2016]

Use fully formulated sen-
tences as input rather
than sets of keywords

[Shiga et al., 2017]

Table 2.5: A list of the features of conversational search systems, as found in current
literature

Intelligent personal assistant: also known as virtual private assistants, virtual assis-
tants or digital assistants, these systems provide assistance for various different tasks.
Sometimes anthropomorphised, they usually offer search, command & control of applica-
tions and devices, question answering and/or recommender system functionalities. They
are capable of autonomous and proactive behavior and continuously keep track and assess
the user’s intent. Most often they offer a speech interface. Famous examples are Apple’s
Siri and Microsoft’s Cortana. Table 2.6 lists the identified features from the literature
and the references.
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2. Terminology

Feature References
Provide assistance for
various different tasks

[Vtyurina et al., 2017, Fonte et al., 2016, Weeratunga
et al., 2016, ?, Cowan et al., 2017, Kumar and Joshi,
2017, Porcheron et al., 2017, Yuksel et al., 2017, Gu-
naratna et al., 2017, Tintarev et al., 2016, Graus et al.,
2016, Chung et al., 2017, Hauswald et al., 2016]

Anthropomorphised to
some degree

[Porcheron et al., 2017]

Provide complex,
context-rich search

[Vtyurina et al., 2017, Kiseleva et al., 2016, Weeratunga
et al., 2016]

Control a device [Weeratunga et al., 2016, Porcheron et al., 2017, Cowan
et al., 2017]

Control services or appli-
cations

[Porcheron et al., 2017, Weeratunga et al., 2016, Cowan
et al., 2017, Kumar and Joshi, 2017, Graus et al.,
2016, Chung et al., 2017, Hauswald et al., 2016]

Usually with speech in-
terface

[Kiseleva et al., 2016, Porcheron et al., 2017, Cowan
et al., 2017, Chung et al., 2017, Hauswald et al., 2016]

Control connected de-
vices (IoT)

[Porcheron et al., 2017, Chung et al., 2017]

Answer questions [Porcheron et al., 2017, Fonte et al., 2016, Cowan
et al., 2017, Kumar and Joshi, 2017, Sun et al., 2017,
Gunaratna et al., 2017, Graus et al., 2016, Chung et al.,
2017, Hauswald et al., 2016]

Make recommendations [Fonte et al., 2016, Cowan et al., 2017, Kumar and
Joshi, 2017, Sun et al., 2017, Porcheron et al., 2017,
Gunaratna et al., 2017, Tintarev et al., 2016, Chung
et al., 2017, Hauswald et al., 2016]

Act reactively and proac-
tively

[Sun et al., 2017, Yuksel et al., 2017, Graus et al., 2016]

Continuously track and
assess the users intent

[Sun et al., 2017, Yuksel et al., 2017]

Show autonomous be-
havior

[Sun et al., 2017, Yuksel et al., 2017, Chung et al.,
2017]

Table 2.6: A list of the features of intelligent personal assistants, as found in current
literature.

Question answering system: these are systems giving concise answers to questions
formulated in natural language. They use conversation to elicit information on the user.
Table 2.7 lists the identified features from the literature and the references.
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Feature References
Answer questions for-
mulated in natural lan-
guage

[Li et al., 2017, Bouziane et al., 2015, Jijkoun and
de Rijke, 2007, Razzaghnoori et al., 2018, Jurafsky and
Martin, 2017c, Xie et al., 2017]

Give concise answers [Bouziane et al., 2015, Jijkoun and de Rijke, 2007,
Razzaghnoori et al., 2018, Xie et al., 2017]

Mixed initiative [Bodoff and Raban, 2016, Li et al., 2016]
Use conversation to
elicit information about
the user

[Bodoff and Raban, 2016, Li et al., 2016]

Table 2.7: A list of the features of question answering systems, as found in current
literature.

2.3 Updated Taxonomy

For this taxonomy, we propose to use already well established terms, extended by the
relationships they have to each other. The analysis so far could identify four distinct
systems that can be considered chat-bots:

• Non-task oriented conversational system

• Intelligent personal assistants

• Conversational recommender systems

• Question answering systems

Non-task oriented conversational systems is one of the currently used definitions for the
term chat-bot, but as we could establish in the previous sections, this is clearly not
sufficient. As new term, that is both well-known and descriptive of the chit-chat and
generally light nature of such systems, we propose the use of “chatterbot” as synonym
for “non-task-oriented conversational systems". “Chatterbot” is therefore no longer a
synonym of chat-bot, but rather a distinct class of systems with focus on non-goal-oriented
conversation. What is currently regarded as “task-oriented conversational systems" should
be considered synonymous to the term “chat-bot” and is extended by three subgroups: (i)
“intelligent personal assistants”, (ii) “conversational recommendation systems” and (iii)
“question answering systems”. This updated taxonomy and concept shift more efficiently
reflects the common use of the terminology, while maintaining some compatibility to the
existing, often insufficient, definitions by using the term “chatterbot” as a stand-in for the
previous definition of chat-bots. Figure 2.1 shows a visualization of this new taxonomy.
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Figure 2.1: A visualization of the proposed taxonomy. It shows the relations between the
different terms and their relative position within the taxonomy.

2.4 Summary

It became clear during the research phase that there is no definitive terminology in
the field of chat-bots and conversational systems in general. While some classification
attempts exist, they do not seem to be thoroughly applied. Especially the term “chat-
bot” is often used in contradiction to the most common definition of the term, defining
chat-bots as conversational systems which do not fulfill a specific task. It is unclear if
this definition is unknown to those authors who use the term in a different manner, or
that we are witnessing a general change in the way that chat-bots are generally defined
and perceived. With regard to the research question 1 (“Is there a common definition
of the term chat-bot, and if so, what is it?”), the answer is twofold: for one, yes, an
explicit definition of the term “chat-bot” exists, however, neither scientific literature nor
commercial publications are following it, and a large number is even directly contradicting
it. Therefore, we come to the second part of the answer: while there is no explicitly
stated, official definition for the term “chat-bot”, one can be deduced by analyzing the
way that chat-bot systems are described in the literature. In doing so, we present a
novel taxonomy, with “chat-bot” being defined as “task-oriented conversational system”,
which is, at the most basic level, a software agent capable of interactions using natural
language, which is used to fulfill a specific task. Also, several subtypes could be identified
during the literature analysis, namely “intelligent personal assistants” (e.g. Apple’s Siri),
“conversational recommender systems” (i.e. conversational systems with internal user
modeling) and “question answering systems” (i.e. conversational systems capable of
answering questions formulated in natural language). Combining the updated definition
with these subtypes, we can build a novel taxonomy which can support future literature
research, as it is more in lieu with the common usage of the terms. In the next chapter,
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2.4. Summary

we will have a look at proposed and existing architectures of chat-bots, and try to deduce
a common denominator, which will define what to concentrate on in the search for
state-of-the-art methods and tools.
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CHAPTER 3
Anatomy of a Chat-Bot

As laid out in the previous sections, neither the term chat-bot itself nor the scope of such
systems are clearly defined in the literature. Therefore there is also no ground truth as to
how a high level architecture of a chat-bot system should look like. However, a thorough
analysis of architectures presented in recent literature shows several shared concepts
which can be used to create a unified, high level architecture of a general chat-bot system.
In the following this basic architecture is presented. The following section will show the
findings of the literature analysis. Section 3.2 gives an overview of the shared architecture
(see Figure 3.2), the modules and their interactions. As it would go beyond the scope
of this thesis, speech functionalities are omitted, all inputs and outputs are assumed
to be text-based, either coming directly from the user or produced by some form of
speech-to-text technology.

3.1 Related Work

As the terminology in the domain of chat-bots is still unclear, it is non-trivial to find fitting
literature presenting generic architectures. Some publications use the term “conversational
system/agent”, others use “chat-bots”, while others use “question answering system” or
“digital assistants”. To give an overview of a basic architecture shared amongst all these
systems, all of these terms are considered in the literature search. Some publications
present a generic high-level architecture, [Sansonnet et al., 2006] for example present
a very basic architecture of a embodied digital assistant. [Babar et al., 2017], [Amit
et al., 2017] and [Braun et al., 2017] introduce an approach towards a generic chat-bot
architecture and give an overview of the possible actions that are happening in each
module. [Kolomiyets and Moens, 2011], [Frank et al., 2007], [Damiano et al., 2017]
and [Jurafsky and Martin, 2017c] show high level architectures for question answering
systems, [Bang et al., 2015] and [Shimazu, 2002] for conversational recommender systems.
[Waltinger et al., 2011], [Al-Zubaide and Issa, 2011], [Schwarzer et al., 2016], [Hoque and
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3. Anatomy of a Chat-Bot

Figure 3.1: Generic chat-bot architecture proposed by [Braun et al., 2017]. It shows in
high detail the inner functionalities of each module and their interactions.

Quaresma, 2015], [Frank et al., 2007], [Xie et al., 2017], [Freitas et al., 2011], [Cabrio
et al., 2012], [Belyaev et al., 2017], [Damiano et al., 2017], [Kwok et al., 2001], [Lopez
et al., 2012], [Lopez et al., 2007] and [Chandurkar and Bansal, 2017] present more specific
examples of chat-bot system architectures of implemented systems. [Konstantinova
and Orasan, 2013], [Jaya Kumar et al., 2017] and [Hirzel et al., 2017] present very
basic architectures of systems using automated speech recognition and speech synthesis
components to convert spoken utterances to textual input and to convert textual answers
from the chat-bot system to speech, showing where these components are situated within
the architectures and how they interact with the other components. An example of a
generic chat-bot architecture can be seen in Figure 3.1

3.2 Architecture, Modules and Interactions

Combining the architectures from the literature, some shared concepts emerge. In
the following these concepts are presented and merged into modules and explained.
Figure 3.2 shows a graphical depiction of the proposed architecture. For example, all
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3.2. Architecture, Modules and Interactions

Figure 3.2: Basic unified architecture of a chat-bot system. It is derived from the
architectures presented in the cited works. Four distinct modules could be identified, as
well as their interactions.

architectures mentioned above contained one or more components to manage the textual
inputs generated by a user, and the outputs generated by the system. Besides that, all
systems rely on some form of mechanism to interpret these inputs via natural language
understanding. How the systems generate the aforementioned outputs varies greatly, but
all the systems employ one method or another to generate a textual output depending on
the interpretation of the user’s inputs. Figure 3.1 for example depicts in more detail that
response candidates are retrieved from a knowledge base, a detail which is omitted in this
combined architecture. The data sources used are part of the answer generation module,
and further details about the nature of this data source is considered out of scope in
this context. Some of the more sophisticated systems like conversational recommender
systems inherently rely on some form of context that is used in addition to the user’s
inputs to generate a fitting answer. Also intelligent personal assistants sometimes rely on
sensor inputs, data from external services or stored previous conversations to provide
better answers. This can be interpreted as a separate "context module", which, depending
on the use-case, can range in complexity from a very minimalistic conversation storage,
to a highly sophisticated user model.

3.2.1 User

The user provides the chat-bot system with textual input, and receives textual output
generated by the system. The input can either be natural language utterances or
interactions with structured message types provided by an intermediary service, e.g. lists
in Facebook Messenger (see Figure 3.3).
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Figure 3.3: Example of a structured list message type provided by Facebook Messenger.
The user can select one item, and the selection is communicated to the chat-bot system.
Source: List-Template - Messenger Platform ( https://developers.facebook.
com/docs/messenger-platform/send-messages/template/list).

3.2.2 Dialog Management Module

This module is responsible for input/output handling. It manages the utterances received
from the user and how to present the answers from the system to the user. In case of
structured answers, e.g. user choices from a list of elements, it can update the state of
the conversation. It is also responsible to provide the possibility for context switching,
i.e. a user changing the focus of a conversation.

3.2.3 Natural Language Understanding Module

This module contains the natural language processing (NLP) functionalities necessary to
extract the meaning of a natural language utterance. This includes (i) pre-processing,
i.e. steps to clean the input and prepare it for further processing, using e.g. automated
spelling correction, (ii) feature extraction, i.e. annotating the utterance with extracted
structural and semantic information, e.g. part-of-speech (POS) tags and (iii) intent
classification, i.e. to classify the core point of an utterance, e.g. according to a predefined
taxonomy. All theses steps can be context-sensitive, i.e. depending on the state of the
conversation and the data available about the user, the results can differ. An example
would be the disambiguation of named entities depending on previous utterances, e.g.
when using relative terms like “before” or “after”.
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3.3. Summary

3.2.4 Answer Generation Module

In this module the annotated input utterance and the user’s intent are used to query for
potentially fitting answers. These could be facts, a list of recommendations, responses
from connected services or retrieved or generated chit-chat utterances. The generation of
potential answers can be dependent on the context of a conversation, e.g. generating only
recommendations for restaurants in the near vicinity of the user, according to meta-data
available from the context.

3.2.5 Context Module

This module functions as the state manager and memory of the systems. It can hold
meta-data available about the user, e.g. the user’s location or language, the current
state of the conversation, e.g. the intent and previous utterances in a multi-step order
process, or even a complex user model modeling the preferences of a user to provide fitting
recommendations. This module interacts with both the natural language understanding
module and the answer generation module, and can vary in complexity.

3.3 Summary
Combining the architectures described in the literature, we could deduce a common, basic
architecture which consists of four modules: the dialog management module, which is
responsible for input/output handling, the natural language understanding module, which
interprets the natural language inputs, the answer generation module, which produces
output depending on the interpretation of the input and the state of the application, and
the context module, which manages the state of the chat-bot application. It becomes
clear, that only the natural language understanding module is consistently dependent on
the language the application is used with. While it can be argued that to some extent this
also holds true for the answer generation module, which might need to interpret natural
language texts to provide a fitting answer, the methods and tools applied there are the
same as are used in the natural language understanding module. Many publications
even explicitly suggest reusing the same module which is used for interpretation of the
natural language input for handling natural language sources in such cases. Therefore,
the following analysis of the current state-of-the-art methods and tools will be limited to
those involved in natural language understanding. The following chapter will present the
findings of this literature analysis.
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CHAPTER 4
Methods and Tools:

State-of-the-Art

In this section we will present the current state-of-the-art methods and tools used in
developing chat-bots which are affected by the language used in the interaction. As
previously introduced, the general chat-bot architecture consists of several distinct
modules, and most of these modules are not affected by the language used. Relating
to the unified architecture shown in Figure 3.2, the only module actually affected by
the language spoken by the user is the natural language understanding module (see
Section 3.2.3). In the following we will present the findings of a thorough literature review,
concentrating on question answering systems. First we will present the reasoning behind
choosing question answering systems as the main focus of the literature review. Then we
will give a summary of existing surveys in the field of question answering systems, followed
by a detailed listing of all analyzed question answering systems, and the natural language
understanding methods the authors applied. Since for most of the systems no source
code is available, a qualitative analysis of the methods used is considered out of scope in
the context of this thesis. The underlying assumption is, that if a method was applied
to the final approach presented by the authors, it contributes positively to the overall
performance of the system. Finally, we will present the most popular methods and tools
used in the analyzed systems in more detail. To measure the popularity of used methods
and tools, they are grouped into 8 different groups, following existing classifications where
applicable. The popularity score of a method in this context is measured by the number
of applications relative to the total number of systems, i.e. if a method group was applied
by 9 out of 10 systems, the popularity measure would be 9/10. No further analysis of
popularity is made within a method group. The focus of this chapter lies on the natural
language understanding methods and tools used in chat-bot development, as they form
the very center of every conversational system: to identify the intention behind a natural
language utterance and to extract all the necessary information to provide the user with
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a meaningful answer. It can be argued, that question answering systems (QAS) are the
most basic chat-bot systems. Therefore they were chosen as the main research target,
as it has the least “overhead” compared to intelligent personal assistants (IPAs) and
conversational recommender systems (CRS). As a reminder, IPAs offer a multitude of
functionalities and their most defining trait is some degree of autonomous behavior, as
is the interaction with external services or devices. These functionalities lie beyond the
scope of this research, as does the focus on conversational capabilities, i.e. the quality
of the conversation. CRS are also defined by functionalities beyond natural language
understanding (NLU), which is, as is the case with IPAs, a prerequisite. CRS require
some form of user modeling, to give the system some idea of a users preferences, as
well as some form of projection of those preferences into a complex product space, for
which the user requests recommendations. QAS also offer the most commonly used and
most concisely defined terminology, which leads to a large quantity of available literature,
which also helps in the research effort. These reasons combined offer an explanation
as to why the state-of-the-art research focuses on QAS-specific literature. As most of
the literature available is about English language systems, this chapter mainly describes
the state-of-the-art in English language. The following sections are organized as follows:
Section 4.1 is an introduction to the field of natural language understanding (NLU), its
definition and relation and/or difference to natural language processing, Section 4.2 will
present existing NLU surveys and their relation to this work. Section 4.4 will give an
overview of existing QAS surveys, Section 4.5 will give an overview of existing systems,
Section 4.6 will focus on existing question answering systems in languages other than
English, Section 4.7 on current trends and challenges in QAS development. Lastly,
Section 4.8 will give an overview of the methods and tools used for the interpretation of
natural language utterances.

4.1 What is Natural Language Understanding?

To properly react to a natural language utterance, a computer system needs to be able to
gain a certain understanding of the utterance it was provided with. The process of gaining
this understanding is called “natural language understanding” (NLU). To extract an
understanding from a natural language utterance, one or more natural language processing
techniques are applied, e.g. tokenization, lemmatization, part-of-speech tagging, named
entity recognition and tree parsing. These techniques provide an NLU system with
morphological, syntactic and semantic feature information to infer the meaning of the
natural language expression in a structured and repeatable way. Therefore the process of
natural language understanding can be split into two steps: (i) extraction of features
from a natural language text, and (ii) classification of the natural language text based on
the extracted features.
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4.2 Existing Natural Language Understanding Surveys

To the best of my knowledge, only one recent survey on natural language understanding
methods and tools exists. [Braun et al., 2017] compare the performances of several
popular NLU services, namely “Microsoft LUIS”, “IBM Watson Conversation”, “API.ai”
(now Google Dialogflow) and the open-source alternative “rasa”. They compare the
performances when classifying intents and named entities using different English lan-
guage datasets: (i) Chatbot Corpus, (ii) StackExchange - Ask Ubuntu Corpus and (iii)
StackExchange - Web Apps Corpus. The StackExchange corpora were created using the
StackExchange Data Explorer. The authors come to the conclusion that Microsoft LUIS
offers the best performance for all of the corpora used, and that the open-source alterna-
tive rasa offers competitive performance, outperforming both Watson Conversation and
API.ai in an overall comparison. As this evaluation was only done in English language,
it does not provide any insights into potential performance differences when using other
languages. It does, however, present an overview of current and popular NLU services.

4.3 Literature Sources for Question Answering Systems

First, we conducted a search for existing survey in the field of question answering systems.
we used the search engines Scopus1 and Google Scholar2 . The search was conducted
between August of 2017 and January of 2018. The search terms used were:

(“question" AND “answering" AND “system") AND “survey"
(“question" AND “answering" AND “systems") AND “survey"
(“question" AND “answering" AND “system") AND “overview"
(“question" AND “answering" AND “systems") AND “overview"
question answering system survey
question answering systems survey

The literature connected to the question answering systems analyzed in the surveys was
taken from the corresponding bibliographies. To further the scope, another search was
conducted, concentrated on literature on recent question answering systems. Recent in
this context means a publication year of 2016 and onwards. The search was conducted
between August of 2017 and February of 2018. Again, the search engines Scopus and
Google Scholar were used. The search terms were:

“question" AND “answering" AND “system"
question answering system

1http://www.scopus.com
2http://scholar.google.com
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The search for surveys on the field of question answering systems returned more than 250
results, of which 190 were released in 2010 or later. Of those candidates, 11 surveys were
taken into closer consideration, based upon an analysis of the titles and abstracts. Closer
inspection lead to a final number of 6 surveys used for this chapter. Most of the 190
initial search results were either out of scope (e.g. about visual question answering, which
does not focus on textual inputs), about specific methods or techniques used in question
answering (e.g. neural networks), or about a specific subset of question answering systems,
like question answering systems in Arabic language. The explicit search for question
answering systems provided more than 9000 results, of which 1500 were published in 2015
or later. Only the most recent publications with at least 10 citations were considered for
further consideration, which again was based on titles and abstracts. At the time of the
initial search this included 50 publications. Again, most of the search results could be
considered out of scope in the context of this thesis, as they concentrated on very specific
sub-topics like training datasets, or methods used in the field of answer generation, while
the focus of this search was on methods and tools used in natural language understanding
applied to textual inputs. Out of these 50 candidates, 29 publications were chosen for
further consideration. After closer inspection, 16 of those candidates were included in
this chapter.

4.4 Question Answering System Surveys

In this section we present a short overview of the findings of the identified QAS surveys.
[Liu et al., 2016] give an overview of the different approaches in QAS development,
especially noting that rule-based approaches are not flexible enough to compete with
more modern, machine learning based approaches. [Höffner and Lehmann, 2017] note
that the language specific tasks in QAS development lie in combining natural language
processing methods with methods from information retrieval, and that the lack of mature
methods and tools is still a problem. [Bouziane et al., 2015] argue, that the type of data
source a QAS uses defines the way their natural language understanding pipeline works,
structured data sources demanding an approach more akin to transforming the input into
a statement in a structured query language, and unstructured data sources demanding
more sophisticated focus on information extraction methods. [Diefenbach et al., 2017] give
a very thorough overview of the state-of-the-art approaches used in question answering
over linked data (QALD). They identify the part of the QAS process that is affected by
the language to be the question analysis phase, where a syntactic analysis of the input
utterance is executed. Semantics are resolved in a language-independent manner in the
following steps, highly intertwined with the data sources used. [Kolomiyets and Moens,
2011] present an overview of QAS using information extraction techniques, therefore
focused on unstructured, textual data sources. They present main approaches used, such
as “bag-of-words", and define the types of features that can be extracted from a natural
language text, e.g. morpho-syntactic features like part-of-speech tags. [Mishra and Jain,
2016] present a classification scheme for QAS, depending - amongst other criteria - on
the data source (structured/unstructured) and the domain (open/closed), the question
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types (e.g. asking for facts or lists) or the kinds of features extracted (e.g. semantic or
syntactic).

Thorough summaries of the mentioned surveys can be found in the appendix.

4.5 State-of-the-Art Question Answering Systems

In this section we will describe the approach used to analyze the question answering
systems found either via references from the surveys, or directly via the literature research.
Over the course of this analysis over eighty publications have been included and analyzed.
As previously established, this thesis concentrates on the natural language understanding
parts of the systems, therefore the answer retrieval and presentation techniques were not
further analyzed, as they lie beyond the scope of this thesis. The goal of this analysis
is to identify methods and tools shared amongst the question answering systems in
regard to their natural language understanding pipelines. A method in this context
is corresponding to ways how to extract features and how to apply them to aid with
natural language understanding within a question answering system. A tool refers to an
existing implementation which offers the functionality to apply one or more methods. To
achieve this, we relied on the written descriptions of said natural language understanding
pipeline elements in the corresponding publications. First, the shared methods were
identified. Afterwards a quantitative analysis of the methods and tools was conducted to
identify which of them were most often used in the field of question answering systems.
No qualitative analysis of the methods or tools was conducted, as it both lies beyond the
scope of this thesis, and would be nigh-impossible due to the very different domains as
well as often non-available source code and data sets.

4.5.1 Feature Types

To provide the necessary information to interpret a textual natural language input, this
information needs to be extracted from the natural language utterances in a repeatable and
structured way. These features can be divided into four distinct types: (i) morphological,
(ii) syntactic, (iii) lexical and (iv) semantic features. Every system uses at least one of
those features, while some use multiple features from every kind.

Morphological features: these set of features concentrates on the surface form of
words. These features can be used on a sentence level, were the number or length
of words is described, or on a word level, using e.g. normalization, lemmatization or
stemming.

Syntactical features: here the “shape” of a sentence is at the center of interest. The
syntax of a sentence, the order in which specific words in specific forms are forming a
sentence, can be described using different methods. They concentrate on the contextual
type of words, their syntactic “role” in the context of the words before and after it, like
part-of-speech tags, dependency relations and syntactic chunks or phrases.
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Lexical features: in this set of features the connections between words is described.
Words can form a hierarchical structure amongst each other, where they share connections
of different kinds amongst each other. These can be homonymity/synonymity, hyponymity
or hypernymity, depending on their relative position within the hierarchy.

Semantic features: these features try to describe the meaning or semantic role of
words or phrases in a sentence. To describe this, several different approaches are used,
e.g. named entity recognition, semantic role labeling and word embeddings.

4.5.2 Method Groups

Different methods and tools are used to augment the input text and extract the kinds of
features described in the previous section. These features belong to one of the feature
types mentioned above, e.g. morphological or semantic. The method groups are based on
the chapter structure used in [Jurafsky and Martin, 2018], and new groups were added
for methods which were not mentioned in the book. The following groups of methods
are used for further analysis (a detailed description of the methods can be found in
Section 4.8):

Controlled vocabulary: The use of a defined and finite subset of allowed words. Words
outside of this vocabulary are not allowed.

Text normalization: All methods connected to create a cleaned and homogeneous repre-
sentation of different surface forms of the natural language utterances. This encompasses
character mappings, stemming and lemmatization.

Part-of-speech tagging: Assigning labels to tokens depicting their grammatical role
within a sentence.

Named entity recognition: The detection and classification of mentions of named
entities in an utterance.

Tree parsing: This describes a family of methods using the surface form of a sentence
to detect locations and type of segments and their interdependencies within a natural
language sentence.

Lexical databases: Manually created databases containing information about relations
between words.

Word embeddings: Vector representations of words used to calculate sentence-sentence
or word-word similarities.

Handwritten rules: Heuristic rules written by the authors, e.g. mappings of intents to
interrogative words or regular expressions to identify common phrases.

4.5.3 Analyzed Systems

In this section we will present the findings of the question answering system analysis.
Due to the number of analyzed systems, we will apply an adapted classification following
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[Mishra and Jain, 2016], using the application domain and data source type to provide
a better overview of the results, as well as ordering the systems by the publishing date
of the corresponding publication. The question answering systems were found by using
the surveys and the question answering systems that they refer to, and a custom search
using scopus.com and Google Scholar. A detailed verbal description of each analyzed
system can be found in the appendix. In the following, we will only present the results of
the quantitative analysis.

Closed domain systems: This refers to question answering systems which are limited
to questions from a specific domain, e.g. pharmacological products or sports results.

Open domain systems: This refers to question answering systems which are not
limited to any specific domain, using large-scale knowledge bases to retrieve an answer,
e.g. Wikipedia.

Structured data sources: Typically a relational database or triple-store. Basically
any knowledge source that can be queried with a structured query language like SQL or
SPARQL.

Unstructured data sources: Usually refers to a text-corpus, e.g. documents from the
web. Basically any data source which needs some form of natural language preprocessing
to be able to be queried.

Table 4.1 shows the method usage in closed domain question answering systems using
unstructured data sources.

Table 4.2 shows the method usage in closed domain question answering systems using
structured data sources.

Table 4.3 shows the method usage in open domain question answering systems using
unstructured data sources.

Table 4.4 shows the method usage in open domain question answering systems using
structured data sources.

4.5.4 Findings

As shown in Figure 4.1 and more detailed in Table 4.5, there are 4 method groups that are
clearly more popular overall than the others: (i) part-of-speech tagging, (ii) named entity
recognition, (iii) tree parsing and (iv) lexical databases. When comparing the relative
number of method applications amongst the different categories, especially the categories
“Closed/Unstructured” and “Open/Structured” show big differences. The reasons for
that can be seen in (1) the category “Closed/Unstructured” contains a relatively large
number of very recent systems, as compared to the other categories, and (2) the category
“Open/Structured” in very much dominated by the “Question Answering over Linked
Data” (QALD) evaluation campaign hosted by the ISWC3 and ESWC4 conferences.

3http://swsa.semanticweb.org/content/international-semantic-web-conference-iswc
4https://eswc-conferences.org/
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Method Group C/U C/S O/U O/S Overall
Controlled vocabulary 0% 15% 0% 4% 5%
Text normalization 67% 20% 32% 35% 32%
Part-of-speech tagging 83% 55% 68% 83% 70%
Named entity recognition 33% 25% 57% 83% 55%
Tree parsing 33% 70% 64% 87% 70%
Lexical database 33% 40% 50% 57% 48%
Word embeddings 67% 10% 21% 17% 21%
Handwritten rules 17% 25% 11% 13% 16%
Number of systems 6 20 28 23 78

Table 4.5: Relative number of method group application by QAS category. “C" stands
for “Closed domain", “O" for “Open domain", “U" for “Unstructured data source", and
“S" for “Structured data source". In the column labeled “Overall” the overall relative
application per method group can be found. Notice the differences in word embedding and
text normalization usage for the category closed/unstructured, as well as the increased
application of named entity recognition methods in the category open/structured.

These challenges require the participating systems to identify and link named entity
mentions, therefore all of these systems are using one method or another to reach that
goal, explaining the high number of systems applying this method group as compared to
the overall number of systems. More recent developments, however, show that especially
word embeddings have gained increasing interest. As can be seen in Figure 4.2 and
Table 4.6, almost 50% of analyzed question answering systems released in 2017 used
word embeddings. The reasons for this can be seen in the increasing popularity of neural
networks, which on the one hand use word embeddings of words as inputs, e.g. in [An
et al., 2017], while on the other hand are also responsible for the generation of these
word embeddings. Especially the release of the word2vec dense vector representations
[Mikolov et al., 2013] has led to widespread application in natural language understanding.
Another trend that could be observed is the decline in usage of lexical databases in recent
years. While one of the most popular methods used in the past, Figure 4.3 and Table 4.6
show a drop in the relative number of systems using lexical databases. Due to the limited
sample size, no assumptions towards the statistical significance are made. A possible
explanation for this observation is that with increasing focus on multilinguality (e.g. the
current QALD-9 challenge, with a task for multilingual question answering5), the benefits
from using language-specific lexical databases are declining, and therefore the use of such
systems is less likely to occur.

5https://project-hobbit.eu/challenges/qald-9-challenge/
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Figure 4.1: Visualization of the relative method group popularity in the different types
of question answering systems.

Figure 4.2: Visualization of the trend in relative usage of word embeddings in question
answering systems. Note the rise after 2013, which coincides with the release of the
word2vec dense word embeddings implementation by [Mikolov et al., 2013]

.
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Figure 4.3: Visualization of the trend in relative usage of lexical databases in question
answering systems. With increasing popularity of multilingual benchmarks and conference
workshops the usage is continuously decreasing.

.

4.6 Question Answering Systems in Other Languages

Only very few of the analyzed systems offer support for languages other than English. Of
those system, most of them support German language ([Zheng and Arbor, 2002, Waltinger
et al., 2011, Schwarzer et al., 2016]), followed by Italian and Chinese with two systems
both ([Zheng and Arbor, 2002, Damiano et al., 2017, Zhang et al., 2017, Ruan et al.,
2017]). The other languages were French ([Zheng and Arbor, 2002]), Spanish ([Zheng and
Arbor, 2002]), Portuguese ([Zheng and Arbor, 2002]), Russian ([Belyaev et al., 2017]) and
Romanian ([Marginean, 2017]), each with one system. Due to the low number of systems
supporting other languages, no statements regarding the significance of the difference in
relative method group application are being made. Some of the authors regard the lack
of mature models as a major issue [Belyaev et al., 2017, Marginean, 2017]. The other
publications do not describe any issues regarding the language-specific quality of the
methods, tools or services used, therefore any assumption on the impact of the language
used on the performance of the system would be speculative at best. In Table 4.7 and
Figure 4.4 the distribution of methods can be found.

4.7 Trends and Challenges

One of the findings in the analysis was that the publications regarding natural language
understanding and question answering systems are heavily influenced by conferences,
workshops and challenges. Especially the “Text REtrieval Conference” (TREC) workshop
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4.7. Trends and Challenges

Figure 4.4: Visualization of the relative popularity of the eight method groups in non-
English language systems.

series in general, and their question answering track in particular, as well as the “Question
Answering over Linked Data” (QALD) challenges are connected to a large portion of
the publications that were analyzed in the previous sections. Another example would
be the “COmpetition on Legal Information Extraction/Entailment” (COLIEE), which
produced several publications regarding question answering using Recognition of Textual
Entailment (RTE) methods. Among the conferences that host these challenges and tracks
are the “International Conference on Artificial Intelligence” (ICAIL), the “International
Semantic Web Conference” (ISWC) as well as the “Extended Semantic Web Conference”
(ESWC). On a more general level targeted towards the field of natural language processing
as a whole, the most commonly named are the “Conference on Computational Natural
Language Learning” (CoNLL), which is especially known for the contributions towards
named entity recognition and dependency parsing, and the “Annual Meeting of the
Association for Computational Linguistics” (ACL) with multiple workshops organized in
the field of question answering. The main reason for this heavy influence is the fact that
alongside the workshops and tracks that are held at the aforementioned conferences goes
the release of high-quality datasets for training and evaluation, providing a shared point of
reference. Releases like the CoNLL 2003 dataset for multilingual named entity recognition
are to this day a main point of reference for developments in named entity recognition
and part-of-speech tagging. Another trend is a shift towards deep learning methods,
with complex neural networks being applied to tasks like named entity recognition,
word/document embeddings and machine translation. Especially in the field of word and
document embeddings the more recent approaches like neural-network-based dense word
embeddings like word2vec [Mikolov et al., 2013], FastText [Bojanowski et al., 2016] and
GloVe [Pennington et al., 2014], as well as document or sequence embeddings like doc2vec
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[Le and Mikolov, 2014], have all but replaced previous approaches such as term frequency
- inverse document frequency (TF-IDF) or point-wise mutual information (PMI) weighed
vector representations, as well as topic-embeddings like explicit semantic analysis (ESA)
[Gabrilovich and Markovitch, 2007]. In the field of named entity recognition, there is a
special interest in the application of recurrent neural networks, especially Long-Short-
Term-Memory Networks (LSTMN) [Hochreiter and Schmidhuber, 1997], to solve the
challenge of correctly labeling sequences of tokens, e.g. in [Chiu and Nichols, 2015].
Another interesting finding was, that with the increased quality web search engines offer
nowadays, the application of previously popular approaches using web search engines
as data sources for question answering have also gained significant performance boosts.
[Tsai et al., 2015] could show that the advances in web search engine performance have
rendered most of their natural language processing pipeline useless, if not harmful to
the overall performance. Amongst the foremost challenges relevant to natural language
understanding currently faced by the question answering systems community are (i)
bridging the lexical gap, (ii) dealing with complex queries and (iii) dealing with ambiguity.
The lexical gap refers to the situation when different words or phrases have the same
meaning, e.g. “automobile” and “car”, or “season following summer” and “autumn”.
Different approaches have been used so far, like hand-made lexical databases containing
information about synonymitiy relations between words, offering so-called “synsets” for
given words. In the example of “automobile” and “car”, the lexical database WordNet
[Miller et al., 1990] provides as synset for the word “automobile” the words “car”, “auto”,
“automobile”, “machine” and “motorcar”. The issue of complex queries in this context
refers to queries which require multiple facts to be resolved. These queries need to
be thoroughly understood, requiring complex semantic analysis of the query as well
as possibly the data source. Such semantic analysis encompass the identification and
correct interpretation of modifier and quantifier terms such as “all”, “non”, “with” or
“without”, and their relation to other constituents of the analyzed text,or the resolution
of co-references, where typically pronouns such as “she” or “they” are used in place of
an entity or object. Ambiguity in this context can be seen as a kind of complementary
challenge to the lexical gap, where a single word can have multiple meanings, which
is defined by the context the word is used in. An example would be the word “bank”,
which can refer to a seating opportunity, a building or a company, the meaning of the
word being determined by the context it is used in. The same issue is also present in the
challenge of named entity linking, where a mention of a named entity has to be linked to
an existing entity in a knowledge base, e.g. in the sentence “Thomas is a striker playing
for Munich”, the named entity mentions “Thomas” and “Munich” have to be resolved
to the correct entities inside a knowledge base. In the given example, “Thomas” might
have hundreds of possible candidate entities in the knowledge base, while only “Thomas
Müller” is the correct one, and “Munich” can refer to the location “Munich” as well as
the football team “Bayern Munich”. This disambiguation can only be done with some
form of knowledge of the context the mentions were used in. This disambiguation is
target of ongoing research, e.g. in [Moro et al., 2014].
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4.8 Methods and Tools for Natural Language
Understanding

In the following section we will present in more detail the most common methods and
tools used in the systems analyzed. First, we will start with the most basic approach,
bag-of-words, followed by the individual methods and tools used in the methods groups
previously established.

4.8.1 Bag-of-Words

In this approach, the input text is considered a set, or “bag”, of words, and the presence
of a word in the given sentences is used as feature information. The input text is
tokenized, and the individual words are added to a set, representing the original text,
while punctuation marks are usually ignored. Sometimes the words are also normalized to
limit the vocabulary size. Normalization methods are presented in Section 4.8.3. In doing
so, any information about the order of the words is lost, as well as possible information
contained in the capitalization and surface form of a word, if normalization is applied.
An example:

The input text:

E1 : “When is the next game of Rapid V ienna?”

will be represented by the set:

set(E1) : [“is”, “game”, “next”, “of”, “Rapid”, “the”, “V ienna”, “When”]

This set representation is then used to calculate similarity to other texts, or to classify
a text using a pre-trained classifying algorithm. To calculate those similarities, the
set representation is embedded into a high-dimensional vector space, where every word
represents a dimension. Going back to the initial example, we consider another use case,
in which one would want to classify the utterance “When is the next game of Rapid
Vienna”. In a very simple setting, we will classify the utterance using only two labeled
utterances, in which the labels (in uppercase) represent the class of the utterance:

U1 : “When is the next game of Austria V ienna?”, SCHEDULE

U2 : “What was the last result of Austria V ienna?”, RESULT

The word sets representing those sentences are

set(U1) = [“Austria”, “is”, “game”, “next”, “of”, “the”, “V ienna”, “When”]

set(U2) = [“Austria”, “last”, “of”, “result”, “the”, “V ienna”, “was”, “What”]

In the next step, we combine the vocabularies of both examples, resulting in this set
containing 12 words:

V = [“Austria”, “is”, “game”, “last”, “next”, ..., “was”, “What”, “When”]
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Using the vocabulary as the basis for a vector space embedding, the vector representation
is built by having each word of the vocabulary representing a dimension, in the example
above the first dimension would be representing the word “Austria”, the second the word
“is”, and so on. For every utterance to be embedded into this vector space, for every
word that is present in both the the utterance to be embedded and in the vocabulary,
the dimension corresponding with the word is set to “1”, while all the other dimensions
corresponding to words in the vocabulary which were not present in the utterance are
set to “0”. Therefore the vector representations of the example utterances are:

vec(U1) = [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1]

vec(U1) = [1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0]

To classify our original example E1: “When is the next game of Rapid Vienna?”, we first
also convert it into a set of words, and embed this set into the same vector space as the
utterances U1 and U2. Notice that the word “Rapid” is not inside the vocabulary, and
therefore must be discarded in the embedding process. The vector representation of E1
is:

vec(E1) = [0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1]

Now to classify, the simplest method is to calculate a similarity measure with every
labeled utterance, and take the label of the most similar utterance. The most commonly
used similarity measures in this context are (i) number of overlapping words, and (ii)
cosine similarity, which is the dot product of the vector representation normalized by the
product of the magnitudes of the vectors. The closer the value is to 1, the more similar
the vectors are considered. In the given example, the number of overlapping words is
represented by the function sim1(v1, v2), and the cosine similarity is represented by the
function sim2(v1, v2). The cosine of two vectors can be calculated like this:

cos(v1, v2) = < v1, v2 >

||v1||.||v2||
, with ||v|| =

√
< v, v > (4.1)

Using the above equation 4.1, the similarity measures calculated for the input vector
vec(E1) and the vector representations vec(U1) and vec(U2) of the labeled examples U1
and U2 are:

sim1(E1, U1) = 7

sim1(E1, U2) = 2

sim2(E1, U1) = 0.94

sim2(E1, U1) = 0.29

Both similarity measures in this very simple example would lead to the classification of
the utterance “When is the next game of Rapid Vienna?” with the label “SCHEDULE”,
as both similarity measures show a higher value for the similarities between vector
vec(E1) and vec(U1) than for the similarities between vectors vec(E1) and vec(U2). In
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a real-world implementation, one would obviously use much more labeled examples to
cover more possible inputs. Another possible implementation would be to not calculate
the individual similarities between the input and all labeled examples, but to use the
labels and vector representations of the labeled examples to train a machine learning
algorithm such as Naive Bayes [Maron and Kuhns, 1960] to classify the input vector.

Known Issues: This basic approach, while very simple and easy to implement, does
not work well in some use cases, as the order of the words and therefore the semantic
information included in this, is lost. An example of such a problem would be these two
utterances, and the assumption that lowercase normalization is applied:

set(“This is a good toy, dog.”) = [“a”, “dog”, “good”, “is”, “this”, “toy”]

set(“Is this a good dog toy?”) = [“a”, “dog”, “good”, “is”, “this”, “toy”]

As can be seen, the set representation of the two words are similar (as would their vector
representations be), while the two sentences have very different meanings.

Another issue presented by this approach can be visualized by the following example:

E2 : “How much is this car?”

E3 : “What is the price of this automobile?”

set(E2) = [“car”, “how”, “is”, “much”, “this”]

set(E3) = [“automobile”, “is”, “of”, “price”, “the”, “this”, “what”]

V = [“automobile”, “car”, “how”, “is”, “much”, “of”, “price”, “the”, “this”, “what”]

As can be easily seen just by looking at the sets and vector representations, the similarity
measures above would not be applicable to measure the semantic equivalence of the two
utterances. While they have the same meaning, in both cases someone wants to know the
price of a car, the vocabulary used is so different, that a bag-of-words approach without
further augmentation could not bridge this so-called “lexical gap” (see also Section 4.7).
No specific tools were used in the analyzed literature to apply this method.

4.8.2 Controlled Vocabulary

This methods refers to the limitation of the words that are allowed inside the input text.
While in an open vocabulary approach, any word is allowed inside the input text, in
a controlled vocabulary approach only a limited subset of natural language is allowed.
This approach is used to prevent problems that come with the ambiguous nature of
natural language, like the previously discussed lexical gap. To refer to the previous
example with the words “car” and “automobile”, if only the use of the word “car” was
allowed, this particular problem would not be an issue. There are several approaches how
this controlled vocabulary is build: (i) using a pre-existing general purpose vocabulary
like the “Semantics of Business Vocabulary and Business Rules” (SBVR) [Šukys et al.,
2017], (ii) extracting the vocabulary from a knowledge base [Bernstein et al., 2006], or
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Figure 4.5: Example of the application of a controlled vocabulary approach using a naive
auto-complete functionality. Source: [Bernstein et al., 2006]

.

(iii) a combination of both approaches, where a limited set of predefined vocables is
combined with the extracted ones [Marginean, 2017]. Different approaches are also used
in how the user is presented with this limitation, [Bernstein et al., 2006] use a naive
auto-complete functionality, where the user is presented with all the possible vocables that
share the same prefix (Figure 4.5), whereas [Song et al., 2015] present a more intuitive
and intelligent auto-complete functionality, where only those vocables are suggested,
which are allowed following a step of logical inference, where the existing types and
relations from the underlying ontology are evaluated against the user input. Another
approach is used by [Šukys et al., 2017], where the user’s input is ingested as written by
the user, and if one or more words in the input could not be mapped to a word from
the controlled vocabulary, the user is asked to clarify these words by either defining it
as a synonym of an existing vocable, mark it so that the system ignores it, or explicitly
state it to be a proper name. No specific tools were used in the literature analyzed to
support in the use or generation of a controlled vocabulary except the use of SBVR,
which, however, does only refer to a defined standard, not an implementation.

4.8.3 Text Normalization

The goal of this group of methods is to augment and/or annotate the individual words in
such a way, as to help reduce the ambiguity that may be faced in following processing steps.
But while the previously presented approach attempts to minimize the word ambiguity
by reducing the choices a user can make in formulating her intent, normalization methods
take free form input. Multiple different methods are used in text normalization, namely
(i) character mapping, (ii) stemming, and (iii) lemmatization. Each of these steps either
replaces or appends as an annotation to the original word a simplified version of the
original word. [Jurafsky and Martin, 2017d] does also include tokenization and sentence
segmentation in text normalization.

Character mapping: this refers to a technique in which one or more characters are
replaced or removed from the input to make further processing easier. This is usually
solved using regular expressions [Jurafsky and Martin, 2017d]. One example would be to
replace special characters like ampersand (“&”) with the word “and”, or umlauts like “ä”
or “ö” with either their non-umlaut counterparts like “a” or “o”, or with “ae” or “oe”.
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Figure 4.6: Visualization of the stemming of an example text using the NLTK Porter
Stemmer. Notice that the words “was” and “are” do not share the same stem.

One reason for this is to capture the semantics better (in the case of the ampersand), or
to mitigate possible encoding issues when using characters outside the standard ASCII
table.

Stemming: this refers to a technique in which a word is reduced to a naive base form,
by using simple heuristics to cut off suffixes or words. For example the word “cats” would
be reduced to the stem “cat”, a stem shared with the word “cat” itself. This is especially
useful in morphologically simple languages like English, where nouns know only two
surface forms - one for singular, and one for plural. This naive approach, however, does
come with some drawbacks, as it relies on naive heuristics, which do not over complex
surface forms of the same word, for example the word “be”, which can have multiple
different forms like “was” or “are”. These different surface forms do not share a common
stem, and naive stemmers are not able to identify the shared morpheme of those words.
To give an example, the popular “Porter stemmer” [Porter, 1980] stems the word “was”
down to “wa”, and the word “are” down to “are”. The most popular tools used for
stemming in the analyzed literature were Stanford CoreNLP [Manning et al., 2014] and
OpenNLP6.

Lemmatization: this refers to a more complex version of stemming, in which a word is
reduced down its basest form, the morpheme. While for the above example of the words
“cat” and “cats” the result would be the same as with normal stemming - the morpheme
“cat” - proper lemmatization helps also with more complex morphological forms. The
words “are”, “was” and “am” would all be lemmatized to its morpheme base of “be”. This,
however, requires both in-depth lexical and grammatical knowledge of the language to
which it is applied. The most popular tools used to apply lemmatization in the analyzed
literature were Stanford CoreNLP, TreeTagger [Schmid, 1994], LanguageTool7, NLTK
WordNetLemmatizer [Bird and Loper, 2004], OpenNLP and GATE [Cunningham et al.,
2001].

6https://opennlp.apache.org/
7https://languagetool.org/
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Figure 4.7: Visualization of the lemmatization of an example text using the NLTK
WordNet Lemmatizer [Bird and Loper, 2004]. Notice that the words “was” and “are”
share the same stem.

4.8.4 Part-of-Speech Tagging

Part-of-speech tagging refers to a technique which assigns a label to every word within a
sentence depicting its syntactic category or word class in the context of the given sentence.
The most commonly used word classes are taken from the Penn treebank [Marcus et al.,
1993]. In this tagset 45 different word classes and their corresponding and abbreviated
tags are defined, e.g. singular proper nouns (NNP), past tense verbs (VBD) or adjectives
(JJ). Figure 4.8 depicts the application of part-of-speech tags to an example text using
the Stanford CoreNLP part-of-speech tagger. The class of a word is useful information
which can be used to infer the neighboring words, as well as their general syntactic
structure [Jurafsky and Martin, 2016a]. This information is also used by other feature
extraction methods like lemmatization (see Section 4.8.3) or named entity recognition, as
the information about the word class helps in the disambiguation of ambiguous word
like “land”, which can be both an action (as in “land the account”) or an entity (as in
“land of the free”). The most common techniques used to apply part-of-speech tags to
a given text are hidden Markov models and maximum entropy models, both trying to
apply the most likely sequence of tags to a given sequence of tokens. The most commonly
used tools for applying part-of-speech tags in the literature analyzed were the Stanford
CoreNLP POS Tagger, TreeTagger, SENNA [Collobert et al., 2011], the HipHep Tagger
used by ANNIE (GATE) [Dimitrov, 2002], OpenNLP, clearNLP [Choi and Palmer, 2011]
and RASP [Briscoe and Carroll, 2002].

Hidden Markov models: a hidden Markov model (HMM) assumes that an unobserved
stochastic process is the underlying cause for an observed series of events. In the case of
part-of-speech tagging, the observed events are the individual words of a sentence, and
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Figure 4.8: Visualization of the application of the Stanford CoreNLP part-of-speech
tagger to an example text. The tags are following the Penn treebank tagset.

the unobserved - or hidden - events are the part-of-speech tags, which explain why a
certain words are following each other. Another, more obvious example of such a causal
connection between observed and hidden events is given by [Jurafsky and Martin, 2016a],
in which the observed events are a diary, containing information about the number of
ice creams eaten, and the unobserved event being the temperature, which, while being
unobserved, can be deduced by assuming that a higher temperature will result in a larger
quantity of ice creams eaten, while a lower temperature will result in a lower amount.
The basic goal of a HMM-based part-of-speech tagger is to infer the most likely label
series for a given series of words. They also make two simplifying assumptions: the (i)
independence and (ii) bigram assumption. The first assumes that the probability of a
word appearing only depends on its own tag, and not on anything else, and the latter
states that a tag (or label) is only dependent on its immediate predecessor, and nothing
else. An annotated corpus is used to train the emission probabilities P (wi|ti), which
denote the probability of observing word wi given the hidden state ti, and the transition
probabilities P (ti|ti−1), which denote the probabilities of the hidden process transitioning
to state ti given the previous state ti−1. These emission and transition probabilities are
used to calculate the joint distribution of a sequence of observations (e.g. a sequence of
words W ) and a sequence of hidden states (e.g. a sequence of tags T ) (see Equation 4.2).
This joint distribution can then be used to calculate the optimal sequence of hidden
states T̂ best explaining the observed sequence (see Equation 4.3.

P (W, T ) = P (W |T )× P (T ) =
n∏

i=1
P (wi|ti)×

n∏
i=1

P (ti|ti−1) (4.2)

T̂ = arg max
T

P (W, T ) (4.3)

Maximum entropy Markov model: a maximum entropy Markov model (MEMM)
is an adaption of the MaxEnt classifier [Adwait Ratnaparkhi, 1996]. In contrast to a
HMM, a MEMM computes the posterior probabilities (i.e. how likely is sequence of tags
T given a sequence of words W ) directly. The following Equation 4.4 and Equation 4.5
depict how a MEMM discriminates the best possible tag sequence T̂ :

P (T |W ) =
n∏

i=1
P (ti|tt−1, wi) (4.4)
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Figure 4.9: Trellis diagram visualizations of the main difference between a hidden Markov
model (HMM) and a maximum entropy Markov model (MEMM). The edges correspond
to the terms that define the joint/conditional probabilities of the hidden and observed
states. Notice the direction of the transition between tags and words: in contrast to
HMMs, MEMMs are able to calculate the posterior probabilities directly, i.e. it is a
discriminative model, as opposed to the generative HMM, which “generates” the observed
states using the hidden states. P (tk+1|tk) is the transition probability of transitioning
from a specific state tk to another state tk+1, P (wk|tk) and P (tk|wk) are the emission
probabilities for a specific observed state wk given a specific hidden state tk or vice versa.

T̂ = arg max
T

P (T |W ) (4.5)

In practice however, a MEMM-based tagger does not only include the current word and
the previous tag (like a HMM-based tagger), but usually looks at all the words and
tokens within given windows sizes, backward looking and forward looking for words, and
backward looking for tokens. A MEMM, like a HMM, is trained using an annotated
training set. Figure 4.9 visualizes the basic difference between a hidden Markov model
and maximum entropy Markov model.

4.8.5 Tree Parsing

This section refers to a family of methods using tree parsing to produce tree-like represen-
tations of an input sentence based on its syntactic structure. Tree parsing in this context
refers to the identification and classification of segments containing valuable information
and their interdependencies [Jurafsky and Martin, 2017b]. There are two types of tree
representations that such parsers usually produce: (i) constituency based trees and (ii)
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dependency based trees. The type of representation a parser produces is defined by the
type of grammar that is used to create the tree structure, constituency trees are usually
defined by context free grammars, while dependency trees are defined by dependency
grammars.

Constituency based trees: they represent the phrases - or chunks - of a sentence, and
the hierarchy within those phrases. The most simple approach is to divide a sentence into
non-overlapping segments and classify them. This approach is called “chunking”. The
classes usually used in such a representation are verb-phrases (VP) and noun phrases (NP)
and such phrases can contain one or more words. An example for a noun phrase would
be “the cat”, which consists of a determiner (“the”) and a noun (“cat”). A verb phrase
in the context of a chunker is one or more verbs, an example would be “has awoken”. In
the complete example sentence “The cat has awoken” the basic chunker output could
be represented using a simple bracket notation, e.g. [(NP) The cat] [(VP) has
awoken]. More complex implementations of constituency based representations allow for
overlapping, and so result in a tree-like representation. These chunks are built based upon
a predefined grammar consisting of rules how - based on their word class - words can be
combined to form valid chunks. An example of such a rule would be NP → Det Nominal
as well as Nominal → Noun which are the rules that define the noun phrase “a cat”,
consisting of a determiner and a noun. Figure 4.10 depicts a constituency tree of the
example sentence “The cat has awoken”. Constituency trees are especially helpful in
named entity recognition, as entity mentions are most often reflected by noun phrases,
and therefore can help identifying or validating mention detection. The tools most often
used to create constituency trees in the literature analyzed were Stanford CoreNLP,
ASSERT [Pradhan et al., 2004], TreeTagger and Cymfony [Srihari and Li, 1999].

Dependency based trees: based on dependency grammar they represent the con-
nections and dependencies between the individual words within a sentence. These
dependencies are defined by the parser, the Stanford CoreNLP dependency parser uses
the Stanford Dependencies [De Marneffe and Manning, 2008], consisting of 50 grammatical
relations like “nominal subject” (nsubj) and “determiner” (det). The dependencies follow
a predefined formalism, guaranteeing that the resulting graph is acyclic and directed,
with only one root and only one path from the root to each vertex. This tree can be
created using a “shift-reduce parser” [Jurafsky and Martin, 2017b], in which each word
is shifted onto a stack, and for the last two words the parser asks a so-called “oracle”
to check if an action can be applied (e.g. if a grammatical relation is defined for those
two words). If an action can be applied, the two words are replaced by the word with
the outgoing edge representing the relation, and the next word is pushed onto the stack,
repeating the cycle until no further words can be pushed onto the stack and no more
action can be applied. To illustrate, see Table 4.8 for a simplified trace of the parse
of the example sentence “The cat has awoken.”. Figure 4.11 illustrates the resulting
tree. The previously mentioned oracle, which defines the actions to be taken by the
parser is trained using supervised machine learning and an annotated training corpus
to create transition mappings which define which actions the oracle advises the parser
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Figure 4.10: Visualization of the application of the Stanford CoreNLP constituency parser
to an example sentence. Notice that all words are terminal nodes, and their immediate
parent nodes are their corresponding part-of-speech tags.

to take. The most popular tools used in the analyzed literature to create dependency
trees were Stanford CoreNLP basic [De Marneffe and Manning, 2008] and universal
dependencies [de Marneffe et al., 2014], MiniPar [Lin, 2003], Collins parser [Koo et al.,
2008], TreeTagger, CHAOS parser [Basili et al., 1998], MaltParser [Nivre et al., 2007]
and OpenNLP.

4.8.6 Named Entity Recognition

Named entity recognition (NER) refers to the identification and classification of mentions
of named entities in a given text. Named entities are, generally speaking, objects that
can be given a proper name. There is no formal definition as to what constitutes a named
entity, however, most general purpose NER systems support between 3 and 7 classes of
entities that can be identified e.g. persons, locations, organizations and numerical values
like monetary amounts, dates, times and percentages. Much like part-of-speech tagging,
named entity recognition is a sequence labeling problem, in which the tagger tries to
apply an optimal sequence of labels to a sequence of words. The tagging system needs
to be either hand-written, e.g. using regular expressions, or trained using an annotated
training corpus. The annotations in this corpus define which classes of entities the tagger
will support. An important training corpora for German language natural language
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Step Stack Words Action Relation
0 [root] [the,cat,has,awoken] SHIFT
1 [root,the] [cat,has,awoken] SHIFT
2 [root,the,cat] [has,awoken] LEFTARC (the←cat)
3 [root,cat] [has,awoken] SHIFT
4 [root,cat,has] [awoken] SHIFT
5 [root,cat,has,awoken] [ ] LEFTARC (has←awoken)
6 [root,cat,awoken] [ ] LEFTARC (cat←awoken)
7 [root,awoken] [ ] RIGHTARC (root→awoken)
8 [root] [ ] done

Table 4.8: This is a simplified example parse of the example sentence “The cat has
awoken”. The parser shifts asks an oracle what actions to take providing the two latest
additions to the stack as parameters. The possible actions are SHIFT, LEFTARC and
RIGHTARC. The parser then applies the action to the words in the stack until there are
no more words in the word list and the stack only consists of the root node.

Figure 4.11: Visualization of the application of the Stanford CoreNLP dependency parser
to an example sentence. Notice that the relations are a product of a parse similar to the
one in Table 4.8
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Word POS-Tag Named-Entity-Tag
<word> NE I-ORG
<word> NE I-ORG
<word> $. O

Table 4.9: An example sentence from the dataset provided for the CoNLL 2003 shared
task. The first column contains placeholders for any word, the second column denotes
the part-of-speech tag the word needs to have, and the last column contains tags for
named entities, in this case denoting an organization.

processing is the dataset provided for the CoNLL 2003 language independent named
entity recognition task. It provides training data sets for both German and English
language, and covers 4 classes: PERSON, LOCATION, ORGANIZATION and MISC. The
data are annotated using a specific annotation style, called “IOB" (inside, outside, begin),
which is used to mark each word as being outside a named entity mention (O), being the
beginning word of a multi-word mention (B), or the only word, or on the inside or at
the end of a multi-word mention (I). Extensions like BILOU (begin, inside, last, outside,
unit) also give the annotator the possibility to mark the last word of a mention covering
multiple words (L), as well as explicitly annotating single word mentions as a singular
unit (U). To differentiate the different classes, each annotation, except the outside (O)
annotation, is given a suffix denoting the class of the mention, e.g. B-PERS could stand
for the beginning of a mention of a person. Table 4.9 shows an excerpt of the CoNLL
2003 German named entity recognition dataset.

Named entity recognition needs to solve two separate problems: (i) identifying mentions
of named entities (mention detection), and (ii) classifying the mention (mention classifi-
cation). Figure 4.12 shows the visualization of the those two steps using the Stanford
CoreNLP named entity recognizer. More advanced systems also try to disambiguate
and link the identified and classified mentions to items in an existing knowledge base.
This task is called named entity recognition, disambiguation and linking (NERDL).
Amongst the fields where this method is applied are knowledge base population (KBP)
or question answering over linked data (QALD), where the former is used to populate
a knowledge base with facts and artifacts from a natural language text, and the latter
uses linked data to answer natural language questions. To solve the first two parts of
named entity recognition (identifying and classifying mentions in a natural language
text), any method capable of solving a sequence labeling problem can be applied, like
the previously presented hidden Markov models, or maximum entropy Markov models.
The method used by the most prominently used named entity recognizer tool, Stanford
CoreNLP [Finkel et al., 2005], however, is conditional random fields, which are a approach
very similar to MEMMs, while solving a major issue that MEMMs are suffering from,
namely label bias. In recent years however, neural networks have established themselves
as a viable competitor to conventional conditional random field approaches. Especially
long-short-term-memory (LSTM) networks have proven to achieve state-of-the-art perfor-
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Figure 4.12: Visualization of the application of the Stanford CoreNLP named entity
recognizer to an example sentence. Notice the three distinct classes of identified entity
mentions.

mance [Lample et al., 2016]. The most popular tools used for named entity recognition in
the literature analyzed were Stanford CoreNLP, FOX [Speck and Ngomo, 2017], SENNA,
MetaMap [Aronson and Lang, 2009] and GATE. It has to be noted, that many systems use
custom implementations, especially when combining mention named entity recognition
with disambiguation and linking. One of the most common approaches is to naively take
sequences of nouns up to a predefined number of tokens as mention candidates, and use
a local search engine like Apache Lucene8 or DBPedia Spotlight [Mendes et al., 2011] to
find candidate entities in the underlying knowledge base. Disambiguation is then custom
implemented using contextual features to rank the candidates and link to the candidate
with the highest score.

Conditional random fields (CRF): a CRF [Lafferty et al., 2001] models a full sequence
of labels given a sequence of inputs (in the case of named entity recognition, this input is
the words). Like a maximum entropy Markov model (MEMM), a CRF is used to identify
the optimal combination of labels given a sequence of words, using a pre-learnt model.
These models are learnt using supervised machine learning and datasets usually containing
millions of annotated words. The main advantage between CRF and MEMM lies in the
way that they apply normalization9: MEMM applies a normalization term on a per-state
basis, while CRF normalizes over the entire sequence in one step. Normalizing on a
per-state basis can lead to the situation that states with a low number of transitions are
preferred over states with a larger number of transitions, since the individual transition
probabilities will be smaller due to the per-state normalization. Imagine a state with two
transitions, the average probability of each transition is going to be 0.5, as compared to a
state with five transitions, which will have an average probability of only 0.2. Extending
Equation 4.2, Equations 4.6 shows the application of the normalization term Z in a
MEMM. ω is the weight vector applied to the values returned by feature function f .
Equation 4.7 shows how the normalization term is applied in a CRF. Note that in a CRF
the normalization term only applied once. Also note, that in a CRF the entirety of the
observed sequence is taken into account, not only the current word.

P (T |W ) =
n∏

i=1
P (ti|tt−1, wi) =

n∏
i=1

exp(ωT f(ti, ti−1, wi))
Z(ti−1, wi)

(4.6)

8https://lucene.apache.org/core/
9Applying a normalization term ensures that the sum of the probabilities equals 1.
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P (T |W ) = 1
Z(w1:n, ω)

n∏
i=1

exp(ωT f(ti, ti−1, w1:n)) (4.7)

Long-short-term-memory networks (LSTM): LSTM networks [Hochreiter and
Schmidhuber, 1997] are a special kind of neural network which have seen a large increase
in interest in the last couple of years. Generally speaking, there are several major families
of neural networks that are referred to when one speaks about “deep learning”: (i)
convolutional neural networks (CNN), (ii) recurrent networks (RNN), and, more recently,
(iii) generative adversarial neural networks (GAN). Each of those families of networks have
different domains in which they excel, CNNs for example are used for image classification,
GANs can be used for machine translation, and one of the major fields of application of
RNNs is sequence labeling, like part-of-speech tagging or named entity recognition. One
of the major differences between RNNs and the other neural networks is that recurrent
networks retain information about past outputs, which is used for the calculation of
future outputs. An LSTM network is a recurrent network composed of LSTM memory
cells, which do not retain information statically, but learn what kind of information to
retain, and what kind of information to forget depending on the inputs during training
of the network. This kind of retained information is especially helpful when dealing with
sequences, where prior (or following) items can give additional information about the
nature of the currently processed item.

4.8.7 Lexical Databases

Lexical databases contain information about the relation between words, or the nature
of a word. As already established in prior sections, one of the major challenges in
natural language understanding is the ambiguity of words. Not only can different words
share the same meaning (synonymity), but one word can also have different meanings,
depending on the context (polysemity). Without additional knowledge, a natural language
understanding system would struggle to infer that the words “automobile” and “car”
share the same meaning, and what a user’s intent might be in the question “Where is
the next bank?”, as the user could be referring to bank as in the monetary institution, or
bank as in sandbank. Lexical databases provide information to help with these issues, as
they contain information about related words and concepts. This additional information
might help in the disambiguation of ambiguous terms, or to enrich a text to e.g. better
find corresponding items and concepts in an underlying knowledge base. Figure 4.13
visualizes the response from the lexical database WordNet when searching for information
about the word “automobile”. As can be seen, the word “car” is amongst the so-called
synset of the word “automobile”, which means that these are words with the same
meaning. Figure 4.14 shows the response for the the word “bank”, a word with many
different possible meanings. Notice that the database also provides short descriptions
for the different word meanings. The most popular tools used in the analyzed literature
were WordNet [Miller et al., 1990], Patty [Nakashole et al., 2012], BOA [Gerber and
Ngomo, 2011], ReVerb [Fader et al., 2011], LexInfo [Cimiano et al., 2011] and Wortschatz
[Quasthoff et al., 2006]. ReVerb is actually a tool for Open Information Extraction
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Figure 4.13: Response from the lexical database WordNet for the search term “automobile”.
The database responds with a set of words with similar meaning, like “car” or “auto”.

(OIE), but includes lexical information for relation mapping. Besides these tools, many
systems use either pre-prepared gazetteers, containing terms, most often proper names,
of a defined type. This can be seen as a mixture between named entity recognition and
lexical databases, as the presence of a word in such a list gives the system additional
information about the nature of the word and its relation to other, similar, words.

4.8.8 Word Embeddings

Natural language understanding tasks often involve the use of machine learning algo-
rithms, like decision trees or support vector machines. As input, however, they do not
expect characters, but vectors of fixed length. So one of the issues of natural language
understanding is the transformation of words into a numerical representation without
losing its morphological and semantic information. This transformation can be seen
as the embedding of a word into a predefined vector space, therefore the term “word
embeddings”. The result of such an embedding is a numerical vector of fixed length,
which can be used in further processing steps. The most naive approach would be to
convert all the characters of a word into numerical representations, e.g. their ASCII
code. But this representation would not result in a vector of fixed length, as words can
have different numbers of characters, and any attempt to apply padding (i.e. defining a
fixed maximum length and filling up all non-used dimensions with zeros) would result in
very sparse vectors, as the length of the vector is dependent on the longest word in the
vocabulary.

One-hot vector representation: The most commonly used naive approach is the use
of a one-hot representation. In such a vector representation each word in the vocabulary
represents exactly one dimension in the vector resulting in a very sparse, but fixed length
vector representation unique for every word, in which only the dimension associated
with the word is set to “1”, and all other dimensions are set to “0”. Besides the high
dimensionality of such a vector representation (the number of dimensions is equal to the
size of the vocabulary), no semantic information is contained in these representations,
as the position of the single “1” is only depending on the order of the words in the
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Figure 4.14: Response from the lexical database WordNet for the search term “bank”.
Notice the number of different word meanings, and the short descriptions provided by
the database.

vocabulary, which could be alphabetically, by length or just random, and the euclidean
distance between all words is equal. One approach solving the problem with the lack of
semantic information contained in such a naive representation would be to follow the
assumption of context-dependency of meaning, subsummized in the famous bon-mot
uttered by J. R. Firth: “You shall know a word by the company it keeps”.

Co-occurrence matrix: A naive approach to convert a words into a fixed length vector
representation with regard to its context is to define a co-occurrence matrix, in which
every row is a word, and every column is a word used in its context, resulting in a matrix
of size NxN, where N is the size of the vocabulary. Taking this co-occurrence matrix,
every row would be the context in which a word has been used in a given text. Having
captured the contexts of a word, one can apply distance measures like cosine similarity
(the dot product between two vectors) to measure the semantic relatedness between two
words. One problem with this however, is that not all words carry equal amounts of
information. Some words are used very frequently, as are e.g. determiners like “the” or
“a”, while others are used less frequently, like proper names. So the information that
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a word has a lot of co-occurrences with a word like “a” or “the” carries less semantic
information as compared to its co-occurrence with the word “phonology”.

Pointwise mutual information: To capture this concept of relative importance of
words, one can replace the number of co-occurrences by the pointwise mutual information
(PMI) [Fano and Hawkins, 1961] between two words. It is, simply put, the ratio between
the actually observed co-occurrences and the expected co-occurrences between words
under the assumption of independence. It is defined by the following equation:

PMI(w1, w2) = log2
P (w1, w2)

P (w1)P (w2) , w1, w2 ∈ V (4.8)

The following illustrates the differences between these approaches given three sentences:

A mouse is a small mammal.
A goose is a big bird.
A rhino is a big mammal.

Resulting vocabulary:

V = [a, mouse, is, small, mammal, goose, big, bird, rhino]

|V | = 9

Looking at the vector representations of the words “mouse”, “goose” and “rhino”:

One-hot:

vec(mouse) = [0, 1, 0, 0, 0, 0, 0, 0, 0]

vec(goose) = [0, 0, 0, 0, 0, 1, 0, 0, 0]

vec(rhino) = [0, 0, 0, 0, 0, 0, 0, 0, 1]

Naive co-occurrence, context window is the co-occurrence within the same sentence:

vec(mouse) = [2, 1, 1, 1, 1, 0, 0, 0, 0]

vec(goose) = [2, 0, 1, 0, 0, 1, 1, 1, 0]

vec(rhino) = [2, 0, 1, 0, 1, 0, 1, 0, 1]

To get the PMI-weighed vector representation, we need to calculate the pointwise mutual
information for each dimension, taking the co-occurrences of the word “mouse” as an
example:

cooc(mouse) = (a(2), mouse(1), is(1), small(1), mammal(1), ..., rhino(0))

From that we can calculate P (w1, w2) for each (mouse, w2) tuple, where w2 ∈ V by
taking the co-occurrences and dividing them by the number of words in the text (N = 18):
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P (mouse, a) = 2/18, P (mouse, mouse) = 1/18, P (mouse, is) = 1/18, P (mouse, small) =
1/18, P (mouse, mammal) = 1/18, P (mouse, goose) = 0/18, P (mouse, big) = 0/18,
P (mouse, bird) = 0/18, P (mouse, rhino) = 0/18

Now we need the values for P (wi), which is the number of occurrences of each word
divided by N , the total number of words in the text:

P (a) = 6/18, P (mouse) = 1/18, P (is) = 3/18, P (small) = 1/18, P (mammal) = 2/18,
P (goose) = 1/18, P (big) = 2/18, P (bird) = 1/18, P (rhino) = 1/18

With those values we can calculate each value for pointwise mutual information (see
Equation 4.8), e.g. for the tuple (mouse, a):

PMI(mouse, a) = log P (mouse,a)
P (mouse)P (a)

PMI(mouse, a) = log2
2

18
1

18
6

18
= log2 6 = 2.58

Applying this to all tuples, we can calculate the final vectors:

vec(mouse) = [2.58, 4.17, 2.58, 4.17, 3.17, 0, 0, 0, 0]

vec(goose) = [2.58, 0, 2.58, 0, 0, 4.17, 3.17, 4.17, 0]

vec(rhino) = [2.58, 0, 2.58, 0, 3.17, 0, 3.17, 0, 4.17]

Calculated similarities using cosine similarity:

sim(v1, v2) = v1.v2
|v1||v2|

(4.9)

Based on naive co-occurrence vectors:

sim(vec(mouse), vec(goose)) = 0.63

sim(vec(mouse), vec(rhino)) = 0.75

Based on PMI-weighed co-occurrence vectors:

sim(vec(mouse), vec(goose)) = 0.23

sim(vec(mouse), vec(rhino)) = 0.43

As can be seen in this (somewhat synthetic) example, the PMI-weighed vectors were
able to better capture the semantic similarity between the words “mouse” and “rhino”.
This is due to the fact that the weights corresponding to the co-occurrences with more
common words were reduced as compared to the weights for less common words. The
co-occurrences with the words “a” and “is” were treated with relatively less emphasis as
the co-occurrence with the word “mammal”, leading to a larger difference in similarities.

Document embeddings: A similar approach is also used to embed documents into a
vector space, using the number occurrences of words as weights for an vector with the
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dimensionality of the size of the vocabulary. With this embedding, semantic similari-
ties between documents can be calculated. In this approach similar issues emerge, as
some words are very common and therefore their occurrences within a text bear little
information as compared to the occurrence of a less-common word. This is also solved
using weighted values based on the frequencies of a word occurring in a given document.
This approach is called “TF-IDF”, as in “term frequency - inverse document frequency”,
in which the the frequency of a term within a document is multiplied by the inverse
frequency of the word occurring in all documents, effectively dampening the impact of
words that occur in many (or all) documents:

tfidf(t, d) = ft,d∑
t′∈d ft′,d

log N

nt
(4.10)

with ft,d being the raw count of term t in document d, N the number of documents, and
nt the number of documents containing term t.

Dense word embeddings: A shared problem of all these embeddings, however, is their
high dimensionality and sparsity. High dimensionality will lead to increased effort in
machine learning applications, as the number of weights increase with the number of input
features, and sparsity can lead to overfitting models to the training data [Jurafsky and
Martin, 2016b]. To solve those issues, one needs to reduce the dimensionality of the word
embeddings. Several approaches exists, like latent semantic analysis [Deerwester et al.,
1990], which applies singular value decomposition to high dimensional co-occurrence
matrices, resulting in a more dense representation where the columns do no longer
represents individual context words, but a latent, “semantic” features. Another, now
very popular, approach is the application of neural networks to create dense word vectors.
The general idea behind it is that words which share similar contexts, should also have
similar vector representations. Given that expectation a neural network is trained on
very large text corpora to assign vectors of a predefined length to words in such a way,
that assigned vectors of words with similar contexts have large dot products, indicating
semantic relatedness, whereas the dot products with words outside of the context should
be minimized, indicating semantic non-relatedness. The most popular word in this field
is word2vec [Mikolov et al., 2013], which optimized the training process to enable the
learning of dense word representations on huge training corpora, containing billions of
words. In recent years other neural network-based dense vector embeddings have emerged,
like GloVe [Pennington et al., 2014] or FastText [Bojanowski et al., 2016]. Beside the
obvious property of the aforementioned word embeddings, capturing semantic relatedness
between words, by doing so they also capture relational meanings. As vectors for words
used in similar contexts are similar, so are the offsets created by relations between
concepts, e.g. country - capital. As the vectors for the words “Berlin”, “Rome” and
“London” are similar - so are the vectors for “Germany”, “Italy” and “England”. This
leads to the offsets between related terms, e.g. vec(Rome) - vec(Italy), to also be similar,
capturing, in this case, the relationship “capital city”. One could use this to approximate
vectors either not in the vocabulary, or to provide evidence for the plausibility of an
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Figure 4.15: Illustration of possible uses of relationship information provided by vector
offsets. In the left panel, the known offset between “Germany” and “Berlin” is used to
estimate the word vector for “Vienna”. In the right, the known offset between “France”
and “Paris” is used as evidence that the assumption that “Munich” is the capital city of
“Germany” is wrong.

assumed relationship. An example for the former would be, if for some reason the word
“Vienna” does not exist in the vocabulary the embeddings were trained on, but the word
“Austria” does, one could use the knowledge that Vienna is the capital of Austria to
estimate a fitting vector representation by using an existing offset:

vec(V ienna) ≈ vec(Austria) + (vec(Germany)− vec(Berlin))

In the latter use case, one could use the offsets as evidence that an assumed relationship is
wrong, e.g. when assuming that Munich was the capital of Germany, the offsets between
a known correct relationship of the same kind could be used as a comparison:

vec(Germany)− vec(Munich) ≈ vec(France)− vec(Paris)

Figure 4.15 provides a visual illustration of this behavior.

The most popular tools used in the literature analyzed were pretrained models by
word2vec and FastText, as well as the original implementation of word2vec provided by
Google10. Several libraries exist to provide easy access to pretrained models, e.g. gensim
for Python.

4.8.9 Handwritten Rules

This refers to those methods, which are not covered by the previous method groups, and
are manually implemented for very specific use cases. One example of such a method
would be the application of regular expressions or grammar rules to directly classify a
question based on the interrogative word, see Table 4.10 and Table 4.11 for examples.

10https://code.google.com/archive/p/word2vec/source/default/source
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ID Regular expression Intent
1 “Ŵhen .+” TIME
2 “Ŵhere .+” LOCATION
3 “Ŵho .+” PERSON

Table 4.10: A basic ruleset consisting of regular expressions and intents. When an input
is matched by one of the regular expressions, the input is classified with the corresponding
intent.

Input Matching rule ID Applied intent
Where is the next gas station? 2 LOCATION
When does the next train leave? 1 TIME
Who is responsible for the tickets? 3 PERSON

Table 4.11: Example inputs and the rules that match them. The third column shows the
intent the input was classified with.

Another approach would be grammatical rules, like they are used in tree parsing tasks
(see Section 4.8.5), or rules written in the “Java Annotation Pattern Engine" (JAPE)
[Cunningham et al., 2000] which uses both patterns applied on the string-level, as
well as patterns applied to annotations. These kinds of approaches lead to quick and
reliable results, however, they do not scale well, as every rule has to be manually
prepared by qualified people. Approaches like this have been mostly replaced by machine
learning based methods, where some of these techniques are incorporated, e.g. in feature
engineering (e.g. applying rules to inputs to augment the feature vectors) or tree parsers.
The tools used in the analyzed literature were GATE (applying JAPE grammars), as
well as the Grammatical Framework (GF) [Ranta, 2004].

4.8.10 Intent Classification

Intent classification is not only a family of methods, but an essential, and mostly final,
step in a natural language understanding pipeline. In this step, the input text together
with all the information extracted by the aforementioned groups of methods are used
to classify the general intent of the input, i.e. what the user wants. There are multiple
different concepts that are used synonymously, like expected answer type (EAT) detection
or question classification. For the remainder of this thesis however, we will use the term
“intent classification” to refer to the generic task of classifying the input following a defined
set of types. Such a taxonomy can be created by hand, or automatically using lexical
databases [Jurafsky and Martin, 2017c]. The most famous general-purpose taxonomy was
defined in [Li and Roth, 2002], consisting of 56 classes in a two-layer hierarchy. Table 4.12
shows an excerpt of these classes. The most important role of intent classification is that
it enables efficient filtering of candidate responses [Li and Roth, 2006]. Usually the intent
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Class Class
HUMAN LOCATION
group city
individual country
title mountain
description other

state

Table 4.12: An excerpt of the taxonomy defined by [Li and Roth, 2002]. The taxonomy
consists of two layers in a hierarchical structure, with six coarse classes, like ENTITY,
HUMAN or LOCATION, and 50 fine-grained classes, like HUMAN/individual. The
above example shows two of those six coarse classes and their fine-grained “child”-classes.

classification is done using machine learning approaches, but, as mentioned in the previous
section, naive approaches might use manually created sets of rules. Any machine learning
algorithm can be applied to this task, as the previous steps in the natural language
pipeline usually provide the intent classification step with a numerical vector of fixed
length. Amongst the algorithms applied in the literature analyzed were support vector
machines (SVM) [Romeo et al., 2017], sparse networks of winnows (SNOW) [Carlson
et al., 1999, Li and Roth, 2006] or convolutional neural networks (CNN) [Kim et al.,
2017]. These algorithms all rely on labeled training sets where the vector representation
of an input is labeled with the corresponding class taken from the taxonomy.

4.9 Summary
In this section we have analyzed the current state-of-the-art of methods and tools used
in natural language understanding, focusing on question answering systems as our main
source of literature. This was done upon the consideration that question answering
systems can be viewed as the most basic version of a chat-bot, and also because of the
large number of available literature. We have seen that the majority of systems are using
English as the language of choice, and that authors describe a similar set of issues when
creating a system in a language other than English, specially the lack of mature models
and tools. One of the reasons for this lack of models and tools in other languages is due
to the fact that development in the field of question answering (and natural language
processing in general) is driven by the availability of large-scale training and evaluation
corpora. Many of the tools and models currently in use in state-of-the-art tools are trained
and fine-tuned using publicly available corpora created in the course of conferences and
workshops like CoNLL. As many of these corpora have to be manually created, and the
necessary number of training examples for modern machine learning based methods is
very large, the effort necessary to produce high-quality corpora is enormous, they are
therefore mainly focused on the smallest common denominator in the field of natural
language processing: the English language. Another interesting observation was the
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shift towards deep-learning models starting around 2016. Especially methods using
sequence tagging are now dominated by deep neural networks, but also many current
systems are implemented as complete end-to-end neural network architectures. The
majority of systems, however, are using a similar ensemble of methods and tools, leading
us with a set of popular methods and tools which can be considered the state-of-the-
art. Using the relative popularity of methods as a ranking mechanism, we have also
given a detailed overview of the most popular methods and their most commonly used
implementations, i.e. tools. Coming back to our second research question (“What is
the current state-of-the-art regarding language-dependent methods, tools and services
involved in creating chat-bots?”), we could identify a set of the most popular methods
and tools currently in use, with some methods being far more popular than others -
for example part-of-speech tagging, named entity recognition, tree parsing and use of
lexical databases being the most popular. The complete list can be found in Table 4.5, a
visualization of the popularity distribution in Figure 4.1. The most popular tools used
to apply these methods are listed in the detailed descriptions of the methods. In the
next chapter we will present the results of a case study using these most popular tools to
implement a custom natural language understanding module, and will evaluate it against
publicly available commercial systems, as well as a naive baseline, using only a basic
bag-of-words approach.
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CHAPTER 5
Case Study

In the previous chapter we have presented the current state-of-the-art regarding methods
and tools used in natural language understanding. Most of the analyzed systems only
support English language inputs, and only two recent systems explicitly support German.
One of these systems is a open domain question answering system using Wikipedia
articles as data source [Waltinger et al., 2011], the other is a question answering system in
the e-government domain [Schwarzer et al., 2016]. Both use methods and tools from very
different method groups, the only overlap is the support for German language and the
use of part-of-speech tagging. The lack of a robust number of existing systems presents a
problem, as one can not rely on the findings presented in these publications to be relevant
for a different domain. Neither has there been any interest - academic or otherwise -
to approach the question of applicability of natural language processing methods and
tools in a German language natural language understanding system. If one decides to
implement an English language natural language understanding system, she is presented
with both a robust number of existing implementations, both academic and commercial,
as well as with comparative studies [Braun et al., 2017]. To help alleviate this a bit, we
will present a custom German language natural language understanding based on the
most popular methods and tools, identified in the previous chapter. First, we will present
the findings of a survey of existing natural language understanding services which offer
support for German language, then we will describe the domain and structure of the
custom created parallel English and German language training and evaluation corpus,
as well as the process of creating it. In the following section, we will present the chosen
methods and tools with the reasoning for why they were selected. In the next section,
we will present the architecture of the custom natural language pipeline, followed by
a description of the feature engineering process and subsequent training of the custom
implementation and the existing services.
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Figure 5.1: Mandatory features in a basic natural language understanding service. Marked
in red is the “Intent Classification” submodule, which classifies the intent of an input text
based upon the output of the feature extraction submodules (marked in green and blue).
These are affected by the explicit language support, as many of them (e.g. part-of-speech
tagging, word embeddings) depend on pre-trained language-specific models. Named
entity recognition is different from the other feature extractors as their output depends
on the application domain and is most often provided side by side with the intent as the
output of a natural language understanding service.

5.1 Natural Language Understanding Services
To have a point of reference for the performance of a custom implementation of a natural
language understanding pipeline, we performed a survey of existing and publicly available
implementations. Using the systems mentioned in [Braun et al., 2017] as a basis, the
systems were analyzed with regard to specific features that have to be fulfilled. These
features make it possible to properly compare a custom, German language implementation
with other systems. These features are: (i) the intent classification has to be trainable, (ii)
the system must support trainable named entity recognition, (iii) German language must
be explicitly supported and (iv) a free evaluation version must be accessible. Figure 5.1
depicts which parts of a natural language understanding service are connected to the
mandatory features.

Trainable intent classification: this has to be fulfilled as the main goal of a natural
language understanding system is to find out what the intent of a user’s utterance is.
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These intents, however, are closely related to the application domain. To give an example,
a service application for public transport might be able to provide the user with train
schedules, but does not support users ordering a pizza. Therefore the natural language
understanding system of a public transportation application should be able to properly
classify utterances with the intent to get a train schedule, and a food ordering system
should be able to classify utterances revolving around ordering a pizza. To properly
classify the user queries, one could create custom rules, e.g. regular expressions. But
this requires a lot of manual labor and does not scale well (see Section 4.8.9). Therefore
the classification process should be solved using machine learning approaches, teaching
the system how to properly classify using a manually created dataset consisting of a
large number of examples. All systems must provide an interface to train the intent
classification with a custom dataset.

Trainable named entity recognition: besides classifying the intent of an utterance,
extracting and classifying mentions of named entities is another main purpose of a
natural language understanding system. To properly react to a user’s query, the intent
alone might not be enough. To use the same example as before, a public transportation
application can not properly answer a question only knowing that the user wants to know
a train schedule. It must also be provided with additional information like a train line or
a station name. The natural language understanding system must be able to find and
classify mentions of such named entities. As the class of entities, much as the intent,
depends on the application domain, the system must provide an interface to train the
named entity recognition.

Explicit support for German language: the classification of intent, as well as the
identification and classification of named entities depend either directly or indirectly
on large annotated training corpora. Directly in the case when the system can learn
directly from a given dataset, or indirectly, when the system needs to use methods that
themselves need to be trained on large datasets, like e.g. part-of-speech tagging. As the
system should be trainable using only a dataset with the domain-specific annotations
about the intents and named entities, they must explicitly support German language.
This means that that they either learn directly from the provided dataset, or they come
with pre-trained models, already supporting German language input when internally
applying methods like part-of-speech tagging.

Free evaluation version: for practical reasons within the scope of this thesis, the
systems must either be free, or provide a free evaluation version.

Candidate systems: taking the existing comparative study [Braun et al., 2017], which
compared the performances of several natural language understanding systems in English
language as a point of reference, the following systems were used as candidates for
comparison in German language: (i) wit.at1, (ii) Microsoft LUIS2, (iii) IBM Watson

1https://wit.ai/
2https://www.luis.ai/
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System/Feature Custom Intents Custom NEs German Free
wit.ai yes yes yes yes
Microsoft LUIS yes yes yes yes
IBM Watson yes yes yes yes
Amazon Lex yes yes no yes
API.ai yes yes no* yes
rasa yes yes yes yes
Google Cloud NL no no no* yes

Table 5.1: Comparison of the candidate natural language understanding systems with
regard to the mandatory features they must support to be considered a viable system
for the case study (custom trainable intents and named entities, support for German
language, free evaluation copy) as of November 2017. Features marked with (*) have
since changed, but were not considered.

Conversational Service (now Watson Assistant)3, (iv) Amazon Lex4, (v) API.ai (now
Dialogflow)5 and (vi) rasa6. Additionally, Google Cloud Natural Language7 was also
taken into account. All systems were analyzed with regard to the mandatory features
established above. The results of the analysis can be found in Table 5.1. It has to be
noted, that the analysis was performed in November of 2017, and that some systems
have expanded their functionalities since that time. Especially API.ai (now Dialogflow),
and Google Cloud Natural Language have now official support for German language, but
were not considered viable candidates since that support was only added sometime after
November 2017. One of the systems also changed their official name, from IBM’s Watson
Conversational Services to IBM Watson Assistant. However, the functionality relevant
for the evaluation performed did not change.

As can be seen in Table 5.1, only four of the seven systems provide all of the necessary
features, namely (i) wit.ai, (ii) Microsoft LUIS, (iii) IBM’s Watson Conversational Services
and (iv) rasa. It also has to be noted that of all the candidates, only rasa is completely
free of charge and open source.

5.2 Selection of Methods and Tools
For the implementation of the custom German language natural language understanding
system, a set of methods and tools needs to be chosen which will serve as the systems
base. As previously introduced, one way to implement a natural language understanding
system is to extract features from the input text, and to use these features to train a

3https://www.ibm.com/blogs/watson/2018/03/the-future-of-watson-conversation-watson-assistant/
4https://aws.amazon.com/de/lex/
5https://dialogflow.com/
6https://nlu.rasa.com/
7https://cloud.google.com/natural-language/
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Rank Method Tools
1 Part-of-speech tagging Stanford CoreNLP [Manning et al., 2014]

TreeTagger [Schmid, 1994]
SENNA [Collobert et al., 2011]

2 Tree parsing Stanford CoreNLP
TreeTagger

3 Named entity recognition Stanford CoreNLP
Fox [Speck and Ngomo, 2017]
SENNA

4 Lexical databases WordNet [Miller et al., 1990]
Patty [Nakashole et al., 2012]
BOA [Gerber and Ngomo, 2011]
Wortschatz [Quasthoff et al., 2006]

5 Text normalization Stanford CoreNLP
TreeTagger

6 Word embeddings Word2vec [Mikolov et al., 2013]
GloVe [Pennington et al., 2014]
FastText [Bojanowski et al., 2016]

7 Handwritten rules JAPE [Cunningham et al., 2000]
Grammatical Framework [Ranta, 2004]

8 Controlled vocabulary -

Table 5.2: A summarized listing of the most popular methods and their corresponding
tools with regard to the literature analysis performed in Section 4. As can be seen,
Stanford CoreNLP is by far the most prominently used tool, offering implementations
for several different methods. No tools were found for the application of controlled
vocabulary.

machine learning algorithm. Following the research of the state-of-the-art regarding
language natural language processing methods and tools, only the most popular feature
extraction methods and their corresponding most popular tools were considered for
further analysis. To be considered a viable choice, a method/tool combination must have
the following features: (i) the tool must be publicly available and (ii) German language
must be explicitly supported (i.e. explicit German language models must be available).
As a quick recap of Section 4, Table 5.2 summarizes the most popular methods together
with their most popular tools considering the literature analyzed.

To minimize the overhead and to limit the scope of this thesis, only one viable tool per
method will be used in further evaluation steps. To find appropriate tools, the most
popular were analyzed with regard to the mandatory featured established above. The
results of this evaluation can be seen in Table 5.3.

Following the findings of the above evaluation, the following set of tools was chosen for
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Tool (Method) Publicly Available Supporting German
Stanford CoreNLP (POS) yes yes
TreeTagger (POS) yes yes
SENNA (POS) yes no
Stanford CoreNLP (parse trees) yes yes
TreeTagger (parse trees) yes yes
Stanford CoreNLP (NER) yes yes
Fox (NER) yes yes
SENNA (NER) yes no
WordNet (lexical DB) yes no
Patty (lexical DB) yes no
BOA (lexical DB) no -
Wortschatz (lexical DB) no* yes
Stanford CoreNLP (text norm.) yes yes
TreeTagger (text norm.) yes yes
Word2vec yes yes**
GloVe yes no
FastText yes yes

Table 5.3: Overview of the availability and German language capabilities of the candidate
tools. Bold text denotes those tools, which were used later on in the custom implemen-
tation. *: word relations like synonymity are not publicly available. **: available at
https://devmount.github.io/GermanWordEmbeddings/

the implementation of the custom natural language understanding service:

Stanford CoreNLP: this tool will be used to apply the following methods: (i) sentence
separation and tokenization (text normalization), (ii) part-of-speech tagging, (iii) con-
stituency and dependency trees (tree parsing) and (iv) named entity recognition. This
tool was chosen because of its popularity, the well-documented Java library and its wide
coverage of a large number of different natural language processing methods.

Word2Vec + gensim: this tool will be only be used indirectly. A pre-trained German
model will be used in combination with the Python library gensim8. The model was
trained using a dump of the German language version of Wikipedia, and consists of a set
of word-vector tuples, which can be loaded and looked up using the gensim library.

Since none of the lexical databases publicly available support German language in a way
comparable to WordNet, no such tool will be used. The use of handwritten rules and
grammars is inherently language-independent, but they have to be manually created
by a native speaker, and the quality of the rules depends on both the qualification
and effort put in by the person writing them. To limit the scope of this thesis and to

8https://pypi.org/project/gensim/
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avoid introducing an unwanted bias, no handwritten rules will be applied. As no tool is
available to provide a controlled vocabulary, this method group will also not be covered.

5.3 Test and Training Data

To be able to compare the performances of the most popular methods and tools in both
English and German, we need a shared evaluation dataset which provide comparable
content in both languages. Specialized, multilingual datasets are common in natural
language processing, e.g. the CoNLL 2003 English-German dataset for named entity
recognition [Tjong Kim Sang and De Meulder, 2003]. However, parallel datasets, where
every datapoint is present in more than one language, are much harder to procure,
and are especially driven by machine translation use cases, e.g. the Europarl parallel
corpora [Koehn, 2005]. These texts usually do not include named entity annotations, and
neither do they include sentence-level discourse information like intents. Therefore, there
currently is no English-German parallel corpus to evaluate the performances of natural
language understanding services on. To still be able to make some form of evaluation, a
new sports-themed corpus is manually created and used for further evaluation. Following
the basic idea of bootstrap learning [Mintz et al., 2009], a pre-existing database consisting
of scraped competition, team and player names, as well as a set of 85 handwritten patterns
created by the author were used to emulate a larger data set. To provide parallelity, each
German pattern was translated verbatim by the author into English. Table 5.4 shows
examples of such patterns, which are emulating football-related user questions. The
actual training and evaluation datasets were created using random named entities from
the pre-existing database and using them as replacements for the placeholders in the
manually created patterns. Figure 5.2 depicts such a replacement process from the basic
unfilled pattern to the final labeled datapoint in a format used by the rasa system. This
way training datasets of slightly below 12000 labeled utterances were created for every
system, as well as a shared evaluation dataset consisting of 288 labeled utterances, created
from a separate set of patterns and named entities. This size was chosen due to training
size limitations in the free evaluation version of Watson Conversational Services, limiting
training dataset sizes to 12000 utterances. Figure 5.3 shows some of the different data
formats for each of the external natural language understanding services participating
in the evaluation. The patterns were classified into 6 distinct intents: (i) schedule, (ii)
result, (iii) standing, (iv) squad, (v) player statistics and (vi) player information. The
aforementioned existing database was used as a basis for three types of named entities:
(i) competitions, (ii) teams and (iii) players. In the following each of the intents and
named entity types is presented with a short description.

Schedule (intent): the user wants to know the schedule of upcoming matches, either
for a given team or a given competition. An example question and a corresponding
answer would be:

Q: When does Real Madrid play next?
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A: Dec. 12th, 9pm against Barcelona

Result (intent): the user wants to know the results of one or more finished or currently
running matches, either for a given team or a given competition. An example of such a
question and a corresponding sample answer would be:

Q: How did Manchester United play yesterday?
A: Yesterday Manchester United won 3-0 against Stoke City.

Standing (intent): the user wants to know the current standings of a given competition
and (optionally) a given team. An example question-answer pair would be:

Q: What is the current position of RB Leipzig in the German Bundesliga?
A: RB Leipzig is currently placed 4th in the German Bundesliga.

Squad (intent): the user wants to know the current roster of a given team. An example
question and its corresponding (abbreviated) answer would be:

Q: Who is currently playing for Bayern Munich?
A: 1: Manuel Neuer, 2: [...]

Player statistics (intent): the user wants to know performance statistics of a given
player, optionally restricted to a given competition. An example would be:

Q: How many goals did Marko Arnautovic score in the Champions League?
A: None.

Player information (intent): the user wants to know biographical and contractual
information about a given player. An example would be:

Q: How old is Diego Costa?
A: Diego Costa is 29 years old.

Note: the generation of answers like the ones provided is not within the scope of this
thesis. They are only presented to illustrate the nature of the intents.

Competition (named entity): a named entity of type competition, also known as
league. An example of such a named entity would be “German Bundesliga” or “Premier
League”.
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Pattern Intent Language
Wer ist Tabellenführer in der [COMP]? standings German
Wer spielt bei [TEAM]? squad German
Which team is leader in the [COMP]? standings English
Who is playing for [TEAM]? squad English

Table 5.4: Examples of patterns used to generate a larger dataset by populating the
placeholder slots identified by square brackets and the named entity type that can be
filled with. The [COMP] slot can be filled with a random named entity of the type
“competition”, a [TEAM] slot can be filled with a random named entity of type “team”.

Team (named entity): a named entity of type team depicts a football team, or club.
An example of such an entity would be “Real Madrid” or “Rapid Wien”.

Player (named entity): a named entity of type player depicts a person playing for
a football club. An example of such a named entity would be “Marko Arnautovic” or
“Lionel Messi”.

5.4 Implementation

To evaluate the performance of the identified most popular methods and tools, as well
as the external natural language understanding systems, in both English and German
language, the following software artifacts were implemented: (i) a custom natural language
understanding system combining the most popular methods and tools called GermaNLU,
(ii) a training framework to generate data in a format fitting for the external services and
to execute the training process, (iii) a naive bag-of-words based custom natural language
understanding system to serve as a baseline, and (iv) an evaluation framework measuring
the performances of each system using a shared evaluation dataset. The implementation
was done using the programming languages Java9 and Python10, as well as the popular
frameworks Spring Boot11, flask12 and gensim13. For intent classification, the machine
learning toolkit Weka14 was used for feature selection and model training. Additionally,
the multi-container tool docker compose15 as well as multiple BASH-scripts16 were used
for deployment and execution. The sources can be found on GitHub17.

9https://java.com/en/
10https://www.python.org/
11https://spring.io/projects/spring-boot
12http://flask.pocoo.org/
13https://radimrehurek.com/gensim/
14https://www.cs.waikato.ac.nz/ml/weka/
15https://docs.docker.com/compose/
16https://www.gnu.org/software/bash/
17https://github.com/nathaniel-boisgard
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Figure 5.2: Visualization of the replacement process used to generate the dataset. For
every pattern the slots are filled with replacement labels, generating multiple outputs,
which are in turn converted to a training format expected by one of the natural language
understanding services.
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Custom natural language understanding system (GermaNLU): this tool was
implemented using Java and Python as the main implementation languages. As laid out
in Section 5.2, the tools to be used are Stanford CoreNLP and word2vec-based word
embeddings with a custom Python wrapper to make it accessible from the main Java
application. This wrapper is a flask web-application which returns the word2vec word
vector in text/plain format for a given word. The main application can be accessed via
command line, or via a Spring Boot web-application. The command line version can be
used for bulk-classification, which is especially useful when evaluating, the web-application
can only be used with only one input sentence. The pre-trained models for named entity
recognition provided by Stanford CoreNLP, however, do not cover the named entity
types used by the training set, therefore a custom model needed to be trained before any
other implementation steps could be made. The training dataset was converted into an
IOB-tagged format, and the Stanford CoreNLP conditional random field (CRF) based
implementation was used to train a new model. Listing 5.1 shows some examples of the
IOB-tagged training data in TSV (tab-separated values) format.
Which O
team O
i s O
l ead ing O
the O
German B−COMP
Bundes l iga I−COMP
Table O
? O
Listing 5.1: An IOB- style tagged example sentence. The “O” tag denotes all tokens
outside a named entity mention, tags starting with “B” denote the start of an entity, and
the second part of the tag, separated by a hyphen, denotes the type of an entity, in the
above case “COMP”, a competition. “I”-tags denote all tokens following the first, that
are part of an entity mention spanning more than one token.

The main application was written in Java using the Spring Boot framework as a basis.
The base version of the application reads in CSV files containing the labeled training data,
extracts all possible features and creates a numerical vector representation of the labeled
input text based on the extracted features, saving them in the Weka file format “ARFF”.
While some features already provide numerical representations (e.g. the vectors provided
by the word2vec model), others only provide categorical information, like part-of-speech
tags, pase trees and named entities. These features need to be converted to a numerical
representation before they can be added to the feature vector. One such method is the
so-called “one hot” vector representation (see Section 4.8.8 on sparse word embeddings),
where each categorical type is represented by a separate dimension. For example, to
encode the information whether a word is a noun or an adjective, a 2-dimensional vector
representation can be used, where the first dimension represents the category “noun”,
and the second dimension represents the category “adjective”. To encode the information
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Figure 5.4: Visualization of the problem of converting sentences of different lengths into
vectors on a per-token base, resulting in vectors of different lengths. As illustrated, every
token is converted into n-dimensional feature vectors, which are concatenated to represent
the sentence. This results in vectors of different lengths, 3n and 4n, respectively.

that an observed word is a noun, the corresponding one-hot encoded vector would be
[1,0], and the vector corresponding to the fact that a word is an adjective would be
[0,1]. Another way to encode categorical data is to use an integer encoding, where each
different category is assigned a distinct numerical value. To use the example from before,
“noun” could be represented by the number 1, and “adjective” by the number 2. While
this is a less sparse representation, no approximate mappings can be done, where e.g. a
machine learning classifier outputs a probability distribution over the categorical space.
Converting a sentence into a vector that can be used by a machine learning algorithm
provides an additional challenge: sentences are not always of the same length, therefore
fixed representations of each word feature do not work, as the resulting feature vectors
would have different lengths. Figure 5.4 shows how such an encoding would look like.

Most machine learning algorithms, however, demand the training data input to be of
equal length. One way to solve this problem is to use padding, i.e. to take the largest
dimensionality that any of the training data would produce, and use this as the standard
dimensionality. Any feature vector shorter than that would be filled up with fixed values,
most often 0 - this is called “zero padding”. This padding can be added to the front or
the back of the vector. While this is the most straightforward approach, this results in
very large, and often very sparse, vectors. This can have negative implications regarding
the further use of such vectors, described as the “curse of dimensionality” in [Bellman,
1957]. This refers to dynamic programming, but the basic problems described there also
apply to machine learning approaches, where any level of significance has to be ensured.
Also, the number of parameters to be estimated during learning phase scales with the
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number of dimensions, as does the necessary number of training data [Theodoridis and
Koutroumbas, 2009]. This goes hand in hand with the remarks provided by [Jurafsky
and Martin, 2016b], where the authors point to possible overfitting issues when using
high-dimensional vectors in machine learning. To avoid this, a set of custom generated
featured closely following the literature were designed for this implementation. These
custom features are:

The average of all word vector for all verb phrases in the input sentence: verb phrases
often describe the relation between objects, and are especially used in relation extraction.
For this reason, this feature was chosen.

The word vector of the word identified as root of the dependency tree: the dependency
tree root can naively be considered the most important, as all other words are directly or
indirectly depending on it. For this reason, this feature was chosen.

The average of the word vectors for the first 1,2 or 3 words of the sentence: in questions
the first words often define the nature of the question, e.g. questions starting with “When
is” might expect a date in the future, while questions starting with “When was” might
expect a date from the past. Likewise, questions starting with “Who” might expect a
person name. It can therefore be assumed that the first words of a question are important
to the nature of the expected answer, and for this reason this feature was chosen.

The number of named entities of type “competition”: in the context of the training data
used for this thesis, the number of named entities of competition type might give an
indication as to which intent is most likely, as questions concerning the intent “squad”
are less likely to contain a competition name as are questions of the intent “standing”.
This is the reason why this feature was chosen.

The number of named entities of type “team”: analogous to the number of “competition”
entities, this might give hints about the intent. This is why this feature was chosen.

The number of named entities of type “player”: analogous to the number of “competition”
entities, this might give hints about the intent. This is why this feature was chosen.

The average word vector over all words: this is a very naive approach to create a
representation of the whole sentence. It can be best described as a “bag of embeddings”.
This is the reason why this feature was added.

The word vector with the smallest magnitude: an outlier might provide information about
the nature of the intent. This is the reason why this feature was added.

The word vector with the largest magnitude: analogous to the vector with the smallest
magnitude, this feature is added under the assumption that outliers might provide some
additional insight.

The resulting feature vectors for the input sentences are produced by concatenating
all the individual feature vectors used, plus one dimension for the intent. In the next
step, a machine learning algorithm was trained using these vector representations as a
basis. As mentioned above, high dimensional vectors can cause problems when used in
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machine learning, therefore further analysis was done to evaluate the benefit of reducing
the number of dimensions. [Yang and Pedersen, 1997] report that information gain
is a valuable measure to indicate the importance of a feature in the context of text
classification. Information gain is defined as the difference in entropy if a feature is
present or not. The built-in information gain calculation feature of the machine learning
tool Weka was used to calculate which features provide the best discriminative power
towards the intents the feature vectors are labeled with. This was done separately for
each language.

Using the results from the information gain calculation to train several machine learning
algorithms with several different hyperparameter settings, the best performing models
were then saved and used in the resulting end-to-end natural language pipeline to classify
the intent of a new utterance.

Figure 5.5 visualizes the process of generating and evaluating the optimal models for
intent classification. Figure 5.6 shows the general architecture of the final end-to-end
natural language understanding system, while Listing 5.2 shows some example inputs
and their corresponding outputs.

Input :
Wer s p i e l t be i Real Madrid

Response :
{

" query " : "Wer s p i e l t be i Real Madrid " ,
" i n t en t " : " squad " ,
" e n t i t i e s " : [

{
" s t a r t " : 15 ,
" end " : 19 ,
" va lue " : " Real " ,
" e n t i t y " : "B−TEAM"

} ,
{

" s t a r t " : 20 ,
" end " : 26 ,
" va lue " : "Madrid " ,
" e n t i t y " : " I−TEAM"

}
]

}

Input :
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Figure 5.5: Visualization of the feature and algorithm evaluation and training process.
First, we extract all features using the methods and tools identified in Section 5.2.
Then, we calculate the information gain for each of the features to identify those which
have the most discriminative power. Then, we train a multitude of different machine
learning algorithms with different hyperparameter settings to identify the optimal fea-
ture/algorithm/hyperparameter combination. The optimal model is then used for further
evaluations.
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Wie i s t d i e Tabe l l e der Bundes l iga

Response :
{

" query " : "Wie i s t d i e Tabe l l e der Bundes l iga " ,
" i n t en t " : " s tand ings " ,
" e n t i t i e s " : [

{
" s t a r t " : 24 ,
" end " : 34 ,
" va lue " : " Bundes l iga " ,
" e n t i t y " : "B−COMP"

}
]

}
Listing 5.2: Examples of input data and corresponding responses of the implemented
webservice wrapper.

Training framework: the training framework is a combination of an application
generating and converting the training data into the formats fitting for every application,
as well as a set of bash scripts using the programmable interfaces provided by the services
to upload the training data and train the systems. The base application is written in
Java, using the Spring Boot framework as basis. The application takes a set of CSV
files containing patterns and named entities as input, and creates training data for every
service as output. Figure 5.7 depicts the basic architecture of the application. As the
training formats are different for each system, the application first converts generates
the training data in an internal, homogeneous data structure, as described in the UML
diagram depicted in Figure 5.8. From there, the individual training formats are generated
out of this homogeneous data structure. The patterns and some of the named entities
are different in English and German language, and training data for each language are
generated in separate steps and saved in separate locations. The actual training process
of the external natural language systems is done via bash scripts using the provided
programmable interfaces for batch training, if such are provided. Watson Conversational
Services for example provide a web interface via which the generated training data can
be uploaded. Before the training of the services can be done, however, each service needs
to be set up. For each service two separate service instances were initialized, one for
German language, the other for English language. Each of the service instances was
trained with the appropriate data sets. Listing 5.3 shows an example of a training script,
uploading the training data to the training endpoint provided by the service. Rasa had
to be treated separately, as it is self hosted and was initialized and executed using the
docker image provided by the authors18.

18https://hub.docker.com/r/rasa/rasa_nlu/
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Figure 5.7: Visualization of the basic architecture of the data-generator application.
Using basic CSV files containing patterns and entities, the application first fills all slots
in the patterns with fitting entity values, generating a large number of permutations.
These permutations are enriched with additional information during the conversion into
the internal, homogeneous data model, from which all training data for the specific
applications are generated in a data transformation step.

Figure 5.8: The internal homogeneous data format used by the data-generator application.
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#!/bin /bash

FILES=./data/ l u i s−t r a in ing −∗. j s on
LUIS_SUBKEY=SOMEKEY
LUIS_APPID=SOMEAPPID
LUIS_APPVERSION=0.1

f o r f in $FILES
do
p r i n t f "\nPROCESSING $f \n "
cu r l −s −o /dev/ nu l l −w "%{http_code }" \
−H "Content−Type : app l i c a t i o n / j son " \
−H "Ocp−Apim−Subscr ipt ion−Key :$LUIS_SUBKEY" \
−XPOST \
https : // westus . ap i . c o gn i t i v e . m i c ro so f t . com/\
l u i s / api /v2 .0/ apps/$LUIS_APPID/ ve r s i on s /\
$LUIS_APPVERSION/examples −d @$f
done

cu r l −H "Ocp−Apim−Subscr ipt ion−Key :$LUIS_SUBKEY" \
−−data " " \
https : // westus . ap i . c o gn i t i v e . m i c ro so f t . com/\
l u i s / api /v2 .0/ apps/$LUIS_APPID/ ve r s i on s /\
$LUIS_APPVERSION/ t r a i n
Listing 5.3: Bash script used for uploading the prepared training data to the training
API provided by Microsoft LUIS.

It has to be noted, that wit.ai could not be trained in English language, despite multiple
tries. No error message was provided and wit.ai support did not respond to inquiries
regarding this issue.

Naive baseline: to provide a baseline to compare all natural language understanding
services (external and also the custom implemented) to, a basic naive natural language
understanding service was implemented, relying only on a bag-of-words approach. As
approaches like this do not use any semantic features provided by the text or tools,
it can be considered language-independent, as it only relies on proper tokenization, a
problem that can be considered solved for English and German language on an intra-
sentence level. The reasoning behind this is, that a more sophisticated implementation
using additional syntactic and semantic information should perform at least equally well,
and any performance below the one provided by the baseline should be investigated
thoroughly.

Evaluation framework: the evaluation framework was implemented as a Java applica-
tion, using the programmable interfaces provided by the services to classify intents from

86



5.4. Implementation

an evaluation dataset and compare the returned classification with the actual one. All
systems are evaluated using the same evaluation dataset. Listing 5.4 shows examples of
such evaluation utterances, Listing 5.5 shows an example of how the service interfaces
are called within the application.

{
" t ex t " : " Which team i s l e ad ing the German Bundes l iga ? " ,
" i n t en t " : " s tand ings "

}
{

" t ex t " : "Who i s p lay ing f o r Rapid ? " ,
" i n t en t " : " squad "

}
{

" t ex t " : " The next match between Austr ia Vienna and Austr ia Vienna ? " ,
" i n t en t " : " s chedu le "

}
Listing 5.4: Examples of the utterances used to evaluate the intent classification perfor-
mance.

pub l i c c l a s s WatsonService {
p r i va t e f i n a l Conversat ion s e r v i c e ;

pub l i c WatsonService ( ){

s e r v i c e = new Conversat ion (
Conversat ion .VERSION_DATE_2017_05_26

) ;
s e r v i c e . setUsernameAndPassword (

[USERNAME] ,
[PASSWORD]

) ;
}

pub l i c MessageResponse r eques t ( S t r ing inputSt r ing ){

InputData input = new InputData . Bui lder (
inputSt r ing

) . bu i ld ( ) ;

MessageOptions opt ions = new MessageOptions
. Bu i lder ( [APPID ] )
. input ( input )
. bu i ld ( ) ;
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MessageResponse response = nu l l ;
i n t maxTries = 20 ;
whi l e ( re sponse == nu l l

&& maxTries−− > 0){

try {
response = s e r v i c e

. message ( opt ions )

. execute ( ) ;
break ;

} catch ( Exception e ){
System . e r r . p r i n t l n (

"Oooops ! "
) ;
cont inue ;

}
}

re turn response ;
}

}

WatsonService watsonServ ice = new WatsonService ( ) ;
DataService dataSe rv i c e = new DataService ( ) ;
t e s t I n t e n t s = dataServ i c e

. getWatsonData ( )

. getCommonExamples ( ) ;
L i s t<RuntimeIntent> watsonIntents = new ArrayList <>();
f o r ( In tent i : t e s t I n t e n t s ){

MessageResponse watsonResponse = watsonServ ice
. r eque s t ( i . getText ( ) ) ;

watsonIntents . add ( watsonResponse . g e t I n t en t s ( ) ) ;
}

Listing 5.5: Code excerpt showing how the service is called within the testing framework.
First, a class is defined wrapping the communication with the IBM Watson Assistant
service.Then a data service class is instantiated providing the evaluation data. Then for
each of the evaluation sentences the trained Watson application is called and and the
response is added to a list, which is formatted and saved in CSV format.
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5.5 Summary
In this chapter we have introduced our custom natural language understanding service
implementation and the necessary infrastructure tools. We have described how a cus-
tom, sports-themed English/German parallel dataset was created following an adapted
approach taken from bootstrapping, in which we generate additional data by replacing
parts of a limited seed. This was necessary as there exist no fitting publicly available
dataset which could be used to train English and German language natural language
understanding services in parallel to compare their performances. We presented a total of
six services: Microsoft LUIS, IBM Watson Assistant, wit.ai, rasa NLU, a custom natural
language understanding service using the most popular tools (GermaNLU ), and a naive
bag-of-words baseline. We also described in detail which tools were selected and how
they were used in the internal architecture of the custom implementation. In the next
chapter we will present the results of the evaluation of the feature selection, the machine
learning/parameter combination selection to define which features are used internally by
the custom service to classify the input text. Finally, we will present and compare the
evaluation results of all systems.
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CHAPTER 6
Evaluation

The aforementioned implementation, together with the training and evaluation datasets,
were used to train and evaluate all services. In the following section we present the results
of the evaluations of all trained models and services involved.

First, we evaluate the models used for named entity recognition. We have trained the
named entity recognizer provided by Stanford CoreNLP in both German and English
language in the previous chapter. We then compare the performances of the two models.
The results are presented as confusion matrices, comparing the classification results with
the actual ground truth in tabular form, as well as the common classification performance
measures precision, recall and F-score. Each of the mentioned evaluation methods is
shortly introduced below.

We then evaluate the intent classification model used at the heart of the GermaNLU
system. This evaluation consists of two steps: (i) the evaluation of the methods and tools
(i.e. the features used for classification), and (ii) the evaluation of the machine learning
algorithm and the hyperparameter values used. The methods and tools were identified in
Section 4.5.4, and subsequently implemented in Section 5.4.

Finally, we compare the performance achieved by the best-performing model within
the GermaNLU system with the performances of state-of-the-art publicly available
commercial natural language understanding system and a naive bag-of-words based
baseline, all of which have been introduced in the previous chapter.

6.1 Methodology

This quantitative evaluation is done by comparing the expected labels from the labeled
evaluation dataset with the results from the classification results provided by the evaluated
service. To evaluate the quality of the results, following the evaluations presented in
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[Braun et al., 2017] these methods and measures are used: (i) confusion matrices, (ii)
precision, (iii) recall and (iv) F-score.

Confusion matrix: this is the tabular visualization of the comparison of the predictions
generated by a model and the pre-labeled data. Usually, rows are used to indicate the
expected results, and columns the predictions. The intersection of rows and columns, i.e.
the matrix cells, are filled with the number of items for which the expected and predicted
results match the row and column indices. The most important of these values are: (i)
true positives, (ii) false positives, (iii) true negatives and (iv) false negatives.

True positives: the number of data points of a given class = X, correctly classified as
class X

True negatives: the number of data points of given class 6= X, not classified as X

False positives: the number of data points of a given class 6= X, incorrectly classified
as X

False negatives: the number of data points of a given class = X, incorrectly classified
as not X

Table 6.1 shows a simple example of a multi-class confusion matrix with 3 classes.
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Class A
(pred)

Class B
(pred)

Class C
(pred)

Class A (exp) Correctly clas-
sified as A =
TP of A

A, misclassified
as B

A, misclassified
as C

Row-sum of
misclassifica-
tions = FN of
A

Class B (exp) B, misclassified
as A

Correctly clas-
sified as B =
TP of B

B, misclassified
as C

Row-sum of
misclassifica-
tions = FN of
B

Class C (exp) C, misclassified
as A

C, misclassified
as B

Correctly clas-
sified as C =
TP of C

Row-sum of
misclassifica-
tions = FN of
C

Column-sum
of misclassifica-
tions = FP of
A

Column-sum
of misclassifica-
tions = FP of
B

Column-sum
of misclassifica-
tions = FP of
C

Table 6.1: An example of a confusion matrix for a three-class classification. The rows
depict the expected classification results, i.e. as defined by the labels provided by the
evaluation dataset. The column depict the classifications predicted by the classifier to
be evaluated. The fields provide an explanation how the values for true positives, false
negatives and false positives are calculated for each class, as these numbers are necessary
for the calculation of precision, recall and F-score. Legend: TP = True Positives, FP =
False Positives, FN = False Negatives

Precision: this measure (also defined in [Ting, 2010]) shows how precise the classification
results of an evaluated classifier are. It is defined as the ratio between correctly classified
instances to all classifications predicted by the classifier. For example, if a classifier is
supposed to classify images as showing people or not showing people, the precision of
this classifier would be calculated as follows:

Expected results:

• 5 images showing people, 3 not (total of 8 images)

Classification results:

• 4 out of 5 images showing people were correctly classified as showing people

• 1 image showing people was incorrectly classified as not showing people
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• 1 image not showing people was incorrectly classified as showing people

• the rest was classified as not showing people

The resulting confusion matrix is illustrated in Table 6.2.

People (pred) Not people (pred)
People (exp) 4 (=TP) 1 FN=1

Not people (exp) 1 2
FP=1

Table 6.2: Example of a confusion matrix showing the classification performance of
a fictional image classifier. Legend: True Positive = TP, False Positive = FP, False
Negative = FN

Again, precision is defined as the ratio of correctly classified instances compared to all
classifications given. In the above example, 4 out of 5 “people” classifications were correct,
resulting in a precision value of 0.8. The following Equation 6.1 shows the general formula
how to calculate precision:

Precision = True Positive

True Positive + False Positive
(6.1)

Precision in a multi-class classification environment is calculated in a similar fashion, with
the exception that values for false positives are the column-sums of all misclassifications
(see Table 6.1), resulting in a per-class precision value. Overall precision is then calculated
by taking the average over all per-class precision values, a method also known as “macro
average precision”, or alternatively via a method called “micro-average precision”, where
a each classes contribution to the overall precision value is weighed by the number of
classified instances. This method is especially helpful if there is a large imbalance in class
distribution. In the following, the value calculated by “macro-averaging” is used, as the
class distribution of the evaluation dataset is close to even.

Recall: this measures (also defined in [Ting, 2010]) how good a classifier is at finding
instances of a specific class. Is is defined as the ratio between correctly classified instances
to all actual instances that the classifier should have identified. Reusing the example
provided to explain precision, recall would be calculated in the following way: Of the 5
pictures that show people, the classifier was only able to find 4, therefore the recall value
ids 4/5, or 0.8. The following Equation 6.2 shows the general formula how to calculate
recall:

Recall = True Positive

True Positive + False Negative
(6.2)
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Analogous to precision, also recall can be calculated for a multi-class classification setup,
but in this case the false negatives (FN) are the row-sums of all misclassifications. Also, the
calculations of overall recall can be calculated using the same macro- or micro-averaging
method, and like with precision, for the evaluation done in this thesis “macro-average
recall” will be used.

F-score: this measure (also defined in [Sammut and Webb, 2010]) takes into account
both the precision and recall. It is a commonly used measure to assess the quality of a
classification. The basic idea behind it is to evaluate both how exact and how exhaustive
a classification is. It is used to devalue those classification models that are either highly
precise, but with low recall, or vice versa. An example would be that a named entity
recognizer model correctly labels two out of ten possible person mentions and nothing
else, which would result in a perfect precision, since all the labels depicting a token to be
a person were correct. The recall value, however, of this named entity recognizer would
be a woeful 2/10. The F-score would take into account both values, providing us with
a more realistic quality measure as either precision or recall on their own. The F-score
value in this example would be 1/3, a value more consistent with the experienced quality
of the labeling. Its most basic version the F1-score is the harmonic average between
precision and recall. The following Equation 6.3 describes how the F1-Score is calculated:

F1− Score = 2 ∗ Precision ∗Recall

Precision + Recall
(6.3)

Within the scope of this evaluation, the term “F-score” refers to the “F1-score” measure.

6.2 Evaluation of Custom-Trained Named Entity
Recognizer

To identify the custom named entity types used in both the training and evaluation
datasets, a custom named entity recognition model was trained. Using the provided
conditional random fields - based implementation from Stanford CoreNLP, two models
have been trained and evaluated - one for German language, and another for English
language. Listing 6.1 shows the commands for training and testing, Table 6.3 shows the
confusion matrix of the evaluation of the German model, Table 6.4 the confusion matrix
for the English model. Figure 6.1 shows the per-type and macro-averaged precision and
recall values for the German model, Figure 6.2 for the English model.

# TRAIN GERMAN
echo " Train ing German NER model "
java −cp "∗ " −Xmx8g edu . s tan fo rd . nlp . i e . c r f . CRFClass i f i e r \
−prop corenlp−ner−t r a i n i n g . de . prop \
−readerAndWriter \
edu . s tan fo rd . nlp . sequences . CoNLLDocumentReaderAndWriter \
−inputEncoding UTF−8 −outputEncoding UTF−8
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# TEST GERMAN
echo " Test ing German NER model "
java −cp "∗ " −Xmx8g edu . s tan fo rd . nlp . i e . c r f . CRFClass i f i e r \
− l o a dC l a s s i f i e r ner−model . spor t . de . s e r . gz \
−t e s t F i l e corenlp−ner−t e s t . de . t sv −readerAndWriter \
edu . s tan fo rd . nlp . sequences . CoNLLDocumentReaderAndWriter \
−e n t i t y S u b c l a s s i f i c a t i o n iob2 −inputEncoding UTF−8 \
−outputEncoding UTF−8

Listing 6.1: Training and evaluation command for the custom-trained German language
Stanford CoreNLP named entity recognizer.

COMP TEAM PLAY NONE
COMP 252 0 0 0
TEAM 0 427 2 88
PLAY 0 0 176 0
NONE 0 0 0 2390

Table 6.3: Confusion matrix for the German named entity recognition model evaluation.
“COMP”, “TEAM”, and “PLAY” are the different classes of named entities. “NONE”
includes any token that is not part of a named entity.

COMP TEAM PLAY NONE
COMP 244 0 0 8
TEAM 0 463 0 54
PLAY 0 0 176 0
NONE 0 0 0 2417

Table 6.4: Confusion matrix for the English named entity recognition model evaluation.
“COMP”, “TEAM”, and “PLAY” are the different classes of named entities. “NONE”
includes any token that is not part of a named entity.

As can be seen, the per-class performances of the models are quite similar, and especially
the overall macro-averaged precision and recall values are virtually identical. No indication
for a language-induced bias could be identified during training and evaluation.

96



6.2. Evaluation of Custom-Trained Named Entity Recognizer

Figure 6.1: Per-class and macro-averaged precision and recall of the German named
entity recognition model evaluation.

Figure 6.2: Per-class and macro-averaged precision and recall of the English named entity
recognition model evaluation.
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Feature Dimensionality AIG (German) AIG (English)
Smallest Word Vector 300 1.26 0.77
Biggest Word Vector 300 1.29 0.60
Average Word Vector 300 1.80 1.63
Dependency Root Word
Vector

300 1.88 1.82

Average Verb Word Vec-
tor

300 0.00 1.53

Average Word Vector of
First 3 Words

300 1.80 1.63

Bag-of-Words Vector 251/254* 0.06 0.06
Number of COMP enti-
ties

1 0.48 0.48

Number of TEAM enti-
ties

1 0.86 0.84

Number of PLAYER en-
tities

1 0.83 0.80

Table 6.5: Results of the information gain analysis of the calculated features of the
German and English language training sets. *: English and German language dataset
vocabularies have slightly different sizes, with the German vocabulary containing 3 words
less compared with the English dataset vocabulary. Legend: AIG = Average Information
Gain

6.3 Evaluation of Feature Selection for Custom NLU
Pipeline

As previously described (see Section 5.4), this step was taken to limit the potential
impact of the so-called “curse of dimensionality”. To identify a set of features to best
predict the intent, the information gain for each of the features was calculated using the
vector representations calculated internally by the custom NLU service implementation
for the German and English language training datasets. As most of the features are
n-dimensional vectors, the average information gain for each of the features was used as
the deciding factor. The calculation was done using the in-built functionality provided by
the machine learning tool Weka and some post-processing in Microsoft Excel. Table 6.5
shows the results of the information gain evaluation of both the German and English
language features.

The biggest difference between the two languages is the impact of the average verb word
vector, which can be explained by the shortcomings of the German language word2vec
model, which exclude many of the basic verbs like “hat”, “ist” or “sein”. As words outside
the vocabulary are represented by either a completely random vector, an all-zero vector
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or the overall average vector of the whole vocabulary, this feature should arguably have
no positive impact on the classification, an intuition that can be verified by the calculated
information gain values. Another difference can be observed in the differences between
the averages information gain of the biggest and smallest word vectors. This can be also
interpreted as a result of the differences in the natures of the word vector models.

6.4 Evaluation of Machine Learning Algorithms for
Intent Classification

To infer the intent from a natural text utterance, we train a machine learning algorithm
to predict the intent of a text utterance based on a set of training data. Several different
algorithms can be used, and many of these algorithms have parameters affecting the way
that their predictions are built using the training data. To find the algorithm/parameter
combination providing the best results, we will train several combinations and evaluate
the performance of the classifier using a shared evaluation dataset. The algorithms and
their tunable parameters are listed in Table 6.6.

Algorithm Kernels Parameters
Random forests (ensemble) n/a n/a
Decision tree n/a Confidence factor [0.05,

0.10, 0.15]
Support vector machine [Linear, Radial base

function]
Complexity parameter
[0.01, 0.1, 1, 2, 5, 10, 50,
100]

Table 6.6: List of the machine learning algorithms and the parameters with values used
in the evaluation process.

Following the findings presented in the evaluation of machine learning algorithms in text
classification in [Sebastiani, 2002], we chose three different approaches, which showed
the best performances: (i) ensemble methods, (ii) decision trees and (iii) support vector
machines.

Ensemble methods: technically not a algorithm, but a method combining multiple
classifiers using one or more algorithms. We chose to use random forests [Breiman, 2001]
as the ensemble method of choice. Random forests operate by creating a multitude of
decision trees, combining the results. The machine learning tool Weka offers a mature
implementation, and it is also often referred to in the literature we analyzed, e.g. in
[Baudiš and Šedivý, 2015] or [Braslavski et al., 2017].

Decision trees: in this approach an algorithm is used to create tree structures, where
the leaf nodes are class labels, and the non-terminal node are if-then-else style choices,
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e.g. if y<=1 then go left, else right. We chose to use the C4.5 algorithm [Quinlan, 1993],
as the Weka machine learning tool provides a mature implementation.

Support vector machines: a linear classifier, the main advantage lies in applying so-
called kernel functions, mapping the non-linearly separable inputs into a high-dimensional
space where the data points can then be linearly separated [Cristianini and Shawe-Taylor,
2000]. support vector machines have been used in many of the analyzed systems, e.g. in
[Zhang and Lee, 2003], [Carvalho et al., 2017] or [Asiaee et al., 2015]. Weka also offers an
implementation offering linear and radial base function-based kernel functions [Keerthi
and Lin, 2003].

The tunable parameters “confidence factor” and “complexity parameter” affect the
algorithm behavior in such a way that the “confidence factor” is used to decide when to
prune nodes during training a decision tree model, smaller values incurring more pruning,
while the “complexity parameter” is used to weigh hyperplane optimization against
allowing misclassifications when training a Support Vector Machine, smaller values giving
more weight towards hyperplane optimization, allowing more misclassifications during the
training process. Both parameters can be interpreted in such a way that smaller values
should result in better generalization, while bigger values will result in a more precise fit
regarding the training set. The evaluation was done on four different feature combinations
from the training set: (i) including all features, (ii) including all features except the
bag-of-words features, (iii) only the best features with regard to the information gain
evaluation results, and (iv) only the bag-of-words features, the latter representing the
model used for the naive bag-of-words baseline. The reasoning behind this is to find out
what the impact of feature selection according to the information gain value is compared
to the use of all features, and to see what the performance would be if we combined
the naive bag-of-words features with the custom high-level features. Table 6.7 shows a
detailed description of the different training set variations.

Table 6.8 presents the results of the evaluation, showing the best performing algorithm/-
parameter combination for every dataset version, with the model achieving the highest
F-score considered the best. If more than one algorithm/parameter combination share
the same F-score, the model with the highest precision is considered best. If still more
than one combinations are considered best, then all the models are considered equally
good and are included in this listing.
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6. Evaluation

Dataset Algorithm Parameter F-Score (Pr.)
DE-ALL SVM with linear

Kernel
C=0.01 0.82 (0.84)

DE-SEM SVM with linear
Kernel

C=0.01 0.77 (0.81)

DE-BEST SVM with linear
Kernel

C=0.01 0.78 (0.83)

DE-BOW SVM with linear
Kernel, SVM with
RBF Kernel

C=[0.01, 0.1, 1, 2,
5, 10, 50, 100]

0.71 (0.86)

EN-ALL Random Forests n/a 0.71 (0.81)
EN-SEM SVM with linear

Kernel
C=0.1 0.70 (0.80)

EN-BEST SVM with linear
Kernel, SVM with
RBF Kernel

C=[0.01, 0.1, 1, 2,
5, 10, 50, 100]

0.72 (0.78)

EN-BOW SVM with linear
Kernel

C=0.01 1.00 (1.00)

Table 6.8: Performance evaluation of the machine learning algorithms on different
variations of the training and test data. Note the perfect score achieved for the English
language bag-of-words dataset, and the German language variation with only the best
custom features outperforming the German language naive bag-of-words approach.

Looking at the result, immediately the perfect score achieved for the English language
naive bag-of-words baseline comes to attention. Comparably high scores could be achieved
by all SVM kernel/parameter combinations. Evaluation of the German language dataset
variations has shown that neither the custom nor the bag-of-words features show the best
results on their own, but the combination of both. Interestingly, the dataset variation
using only the best custom features performs better than the naive baseline, a result
which, if at all, was expected for the English language datasets. Regarding the approach
to mitigate the impact of the “curse of dimensionality”, slightly better results could
be achieved for both languages when reducing the dimensions. The reduction was 303
dimensions in the case of German language, and 603 dimensions in the case of English
language. For the final custom natural language service, both language versions used only
the best custom features and their best performing algorithm/parameter combinations.
The generated models were then used in the comparison with the commercial natural
language understanding services to evaluate the quality of our extracted features and the
classification models.
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6.5. Evaluation of Natural Language Understanding Services

6.5 Evaluation of Natural Language Understanding
Services

Until now we have only evaluated the performances of different feature and classification
algorithm combinations within the custom implementation. Using the results from
the best sets of features and algorithm/parameter combinations, we will compare their
performance with that of commercial and publicly available natural language systems
which have been trained with the same training data, and evaluated using the same
evaluation data as our custom service. As the named entity recognition approaches of the
systems differ too much, no fair overall comparison is possible, and is therefore not part
of this evaluation. We will evaluate based on the macro-averaged F-score and precision
values, like in previous section. The systems used in this evaluation are (the systems
implemented for this thesis are emphasized):

• Microsoft LUIS

• IBM Watson Assistant

• wit.ai

• rasa NLU

• GermaNLU, the custom NLU system using the most popular state-of-the art
methods and tools

• Bag-of-words baseline, a custom baseline NLU system using a naive bag-of-words
approach

Table 6.9 shows the raw results of the evaluation, Figure 6.3 a visualization. The
corresponding confusion matrices can be found in the appendix.

What all commercial services had in common, was that their English language perfor-
mances are better than their corresponding performances in German language. The
intent classification performance they provided in English language was consistently
above that of our custom implementation, but below the naive baseline. Interestingly, our
custom implementation was consistently better in German language intent classification
performance, which show comparable performance to that of the naive baseline. The
promising results provided by rasa NLU in the evaluation done in [Braun et al., 2017]
could not be reproduced.

6.6 Summary
In this chapter we have presented the results of the evaluation of the case study. First,
we had a look at the performance of the custom-trained named entity recognition
models in German and English language, which showed virtually identical results for
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6. Evaluation

Figure 6.3: F-scores and precision values of evaluation results of all systems. The majority
of German language evaluation results are below their English language counterparts,
with the exception of the custom implementation. Note: wit.ai could not be trained in
English language. Also notice that precision values are closer together than F-scores, as
recall values are all slightly worse than their corresponding precision values.
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6.6. Summary

Service Language F-Score Precision Recall
IBM Watson English 0.87 0.90 0.85
IBM Watson German 0.70 0.73 0.68
Microsoft LUIS English 0.95 0.95 0.94
Microsoft LUIS German 0.69 0.71 0.66
wit.ai English n/a n/a n/a
wit.ai German 0.73 0.78 0.69
rasa NLU English 0.85 0.89 0.82
rasa NLU German 0.60 0.61 0.58
GermaNLU English 0.76 0.78 0.75
GermaNLU German 0.81 0.83 0.78
Baseline English 1.00 1.00 1.00
Baseline German 0.80 0.86 0.75

Table 6.9: The macro-averaged f-score, precision and recall values measured during evalu-
ation of the custom implementations and the commercial natural language understanding
systems. Note: wit.ai could not be trained in English language.

either language. Then, we evaluated the impact feature engineering could have on the
classification performance. With the assumption that high-dimensional feature vectors
could have negative impact on the predictive performance of a model, we first calculated
the information gain measure as a ranking metric on the features to find out which features
promise the strongest discriminative impact. Then, we trained different version of the
dataset, each with different sets of features used, against several combinations of machine
learning algorithms and their corresponding training parameters. The findings presented
in Table 6.8 showed that selecting the features with the highest average information
gain did show a slight positive impact on the quality of the model. The biggest impact
on predictive quality, however, was the choice of machine learning algorithm and their
training parameters. A total of 20 different combinations have been evaluated, showing
that in the context of this dataset support vector machines with a linear kernel function
and a complexity parameter of 0.01 had the best overall performance. Using the best
sets of features and intent classification models, we then evaluated the custom natural
language understanding system against the other systems, which had been trained using
the same datasets, and evaluated using the same evaluation dataset. The results showed
that our custom implementation could not compete with commercial systems in English
language, in German language, however, the performance of our custom system was
better than that of any of the commercial systems, suggesting that the methods and
tools identified during the state-of-the-art research can indeed be successfully applied to
German language systems.

With regard to the third research question (“Is there a measurable difference in the
performances of current methods, tools and services when using German language, as
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compared to English?”) and its corresponding sub-question (“If so, are there methods,
tools or services for which these differences are smaller or non-existent?”), yes, we could
identify some methods that show differences when applied in either language. Word
embeddings and lexical databases showed differences in their behaviors, the former
because the available German language models are of inferior quality as compared to
their English language counterparts, the latter because German language equivalents for
English language lexical databases are either not usable in the same manner, or simply
do not exist. As can be seen in Table 6.5, the other methods and their corresponding
tools have not shown any language-dependent differences in the context of the evaluation
of this case study, assuming that any such difference would manifest itself in a large
discrepancy in average information gain provided by the resulting features. In the next
chapter, we will discuss these findings in more details, and following that, present a final
summary.
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CHAPTER 7
Summary and Discussion

In this chapter we will discuss the combined findings presented in this thesis. The findings
will be organized around the research questions.

7.1 RQ1: Is there a common definition of the term
chat-bot, and if so, what is it?

To find an answer to this question, we first did a literature analysis to find out what
definitions are used in publications using “chat-bots” either within their titles, their
abstracts or their keywords. Also, the definitions provided in books with dedicated
chapters on the subject were included. The analysis of the definitions provided in the
literature quickly showed that no definitive definition for the term “chat-bot” exists.
It is often used synonymously with other terms, like conversational systems, and the
definitions provided in the literature often contradict each other. To be exact, [Jurafsky
and Martin, 2017a] explicitly state that chat-bots are “non-task-oriented”, while other
sources - e.g. [Kincaid and Pollock, 2017, Dale, 2016] - use it synonymously with the
term “virtual assistant”, which is a direct contradiction. However, when looking at a
larger number of definitions, an adapted taxonomy can be deduced, which is more in lieu
with the terminology used in most publications. It can be seen in Figure 7.1

It is unclear if the authors are unaware of the definition postulated by [Jurafsky and
Martin, 2017a], or if it is simply outdated. Another possible explanation for this
divergence is the fact that the term “chat-bot” saw such a big hype, that many researcher
felt compelled to include the term in their work even when only remotely relevant, or
just labeled their implementations “chat-bots” to benefit from the heightened attention.
This, however, is pure speculation, and can not be proven. When considering use of
the term in the majority of publications analyzed, the updated taxonomy provides a
much better fit than any other definition or classification attempt so far. By splitting

107



7. Summary and Discussion

Figure 7.1: The deduced taxonomy locating the terminology within the field of conversa-
tional systems and defining their interconnections.

up the hitherto synonymously used terms “chatterbot” and “chat-bot”, and defining the
former as non-task-oriented, effectively taking over the definition of the term “chat-bot”
postulated in [Jurafsky and Martin, 2017a], and defining the latter as synonymous to all
task-oriented conversational systems, we provide a better fit between the definition of the
term and its actual usage in the literature. Another addition was the emergence of three
distinct subclasses of chat-bots/task-oriented conversational systems, which were also
included in the proposed taxonomy. We postulate that this updated taxonomy better
reflects the status quo as presented by the current literature, as well as provides a relative
positioning of the most common terms between each other, which should help in future
searches for fitting literature. To circle back to the research question, while no official
definition of the term exists, it can be deduced from analyzing the current literature,
that the best fit is the definition of task-oriented conversational systems, i.e.:

Chat-bots are software agents capable of natural language based interactions, supporting
the user in fulfilling a specific task.

7.2 RQ2: What is the current state-of-the-art regarding
language-dependent methods, tools and services
involved in creating chat-bots?

First we analyzed the architectures of chat-bots described in the literature, to find which
parts of a chat-bot are actually affected by the language used. Deriving a common, basic
architecture, four distinct modules could be identified: (i) a dialog management module,
responsible for handling text input and output, (ii) a natural language understanding
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7.2. RQ2: What is the current state-of-the-art regarding language-dependent methods, tools and
services involved in creating chat-bots?

Figure 7.2: Basic unified architecture of a chat-bot system. It is derived from the
architectures presented in the cited works. Four distinct modules could be identified, as
well as their interactions.

module, responsible for extracting information from the natural language input, as well as
classifying the intent of it, (iii) a context module responsible for handling the state of the
chat-bot application, and (iv) an answer generation module, responsible for producing
a fitting answer depending on the state and the extracted data from the input. The
architecture can be seen in Figure 7.2. As only the natural language understanding
module is interpreting the natural language utterances, the search for state-of-the-art
methods and tools affected by the language used was focused on that field. Methods
used in I/O handling, holding conversation state or generating answers from an attached
knowledge base were considered out of scope, as they are not directly affected by the
type of language used.

During the initial research phase it became apparent that for one, question answering
systems can be considered one of the basic types of chat-bot, and that since question
answering systems carry a long history, the term is well established and a large number of
literature can be found using it as a search term. Therefore a large number of publications
describing question answering systems was analyzed with a focus on the methods and
tools used in natural language understanding. Following the structure of the work of
[Jurafsky and Martin, 2018], eight method groups were defined, and assuming that
methods and tools that are more commonly used present a good approximation of the
current state-of-the-art, a quantitative analysis was done using the question answering
systems and the eight method groups. As a result of this analysis, the most commonly
used methods could be identified, and were described in detail. The most commonly used
tools were also listed in the detailed description of the methods. Figure 7.3 shows the
relative number of question answering systems applying the methods in their natural
language understanding modules.

In reference to the research question, the presented distribution of methods used can be
considered the state-of-the-art in natural language understanding, with the exception of
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7. Summary and Discussion

Figure 7.3: Relative number of question answering systems using the eight method groups
in their natural language understanding modules. Note that the question answering
systems themselves have been split into several different groups, depending on the domain
and type of data source to find out if some bias exists towards specific types of question
answering systems.

word-embedding, which, as part of a large-scale trend that could be identified, can now be
considered one of the most important methods used in natural language understanding.
This large scale trend is the now ubiquitous application of deep neural nets to practically
every sub-field in natural language understanding. Especially sequence labeling tasks
such as part-of-speech tagging, named entity recognition and dependency parsing are now
dominated by deep neural network implementations. There is no indication that this trend
will change, in fact it can be assumed that within the next years practically “conservative”
approaches will be replaced by deep neural networks. Some implementations go so far as
to use end-to-end neural network implementations to replace and merge their natural
language understanding, answer generation and context modules. If this will become the
state-of-the-art, however, is left to be seen.

7.3 RQ3: Is there a measurable difference in the
performances of current methods, tools and services
when using German language, as compared to
English?

Taking the most popular tools described in the analyzed literature, we first evaluated if
the tool supports German language. During that evaluation phase it became obvious that
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7.3. RQ3: Is there a measurable difference in the performances of current methods, tools and
services when using German language, as compared to English?

especially lexical databases pose a problem in German language. Most lexical databases
used in the literature have either no publicly available German language pendant (e.g.
WordNet), or the German language version that exist, can not be used in a similar fashion
(e.g. Wortschatz, which provides detailed lexical information only on its website). While
some methods are language independent, like regular expressions or grammars, tools or
models explicitly supporting German language could be found for all of the most popular
methods. The most popular methods and tools that were identified as potentially viable
for use in a German language natural language understanding implementation are: (i)
Stanford CoreNLP (used for text normalization, part-of-speech tagging, named entity
recognition and tree parsing) and (ii) word2vec (used for word embeddings).

Using these tools, a custom natural language service was implemented. The implementa-
tion works as follows: First, the natural language input is tokenized, and all methods
are applied to annotate the input text. These annotations (e.g. part-of-speech tags or
word vector representations) are used to calculate a fixed length vector representation of
the input text. This fixed length vector representation is the concatenation of multiple
features, like the number of identified named entities, or the word vector of the depen-
dency tree root. This vector is then used as input for a intent classification model, which
predicts the intent type of the text.

To optimize intent classification performance, we evaluated several different feature
combinations, as well as several machine learning algorithm/parameter combinations. The
feature selection was done using the information gain measure to rank the discriminatory
power of a feature, and the selection of the machine learning algorithm and their
parameters was done by training 20 different combinations with four different combinations
of features. The evaluation showed that the best performance for English language could
be achieved with a 1500 dimension feature vector and a support vector machine with
linear kernel function. For German language, a 1200 dimension feature vector showed
the best results, also in combination with a support vector machine with linear kernel
function. The evaluation results for those two best combinations were then compared
with the evaluation results of four commercial systems, IBM Watson, Microsoft LUIS,
wit.ai and rasa NLU, as well as with a naive baseline using a bag-of-words approach. The
results of this evaluation can be seen in Figure 7.4.

The results showed that within the context of the case study training and evaluation data,
our custom implementation reached comparable, even slightly better results in German
language as compared with the commercial system. English language performance,
however, was clearly inferior. Interestingly, the naive baseline showed a perfect result for
English language, and also the second-best result for German language. The difference
in English language performance was to be expected, as the main focus of all the
commercial systems is clearly the English language, and competing performance from an
implementation with limited engineering effort would seem unlikely. German language
performance differences, however, showed that even with limited effort, using off-the-shelf
tools, a competitive performance was reachable. This could indicate that either the
commercial systems do not focus on German language, a fact that would reflect the
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7. Summary and Discussion

Figure 7.4: The comparison of the performances of four commercial services with the
custom implementation using the most popular natural language understanding methods
and tools and a naive bag-of-words baseline.

status-quo in natural language processing as a whole. The performance of the naive
baseline has shown, that for simple use cases like our sports-themed corpus consisting of
short questions, a bag-of-words approach is viable and can show good results.

As to the research question: yes, there are differences in the methods when comparing
English and German languages. For one, there are some methods that are inherently
language independent, like regular expressions and grammars. The quality of the results
can be attributed to the author of the rules, and not the language. Then there are
methods for which explicit and mature support for German language is provided, e.g. for
part-of-speech tagging, named entity recognition and tree parsing. Then there is word
embeddings, for which at the time of authoring the implementation, no publicly available
high quality models for German language could be found. During feature selection we
could identify that the German model had large gaps in the supported vocabulary, which
rendered the use of some features impractical. A problem the English language model did
not have. It has to noted however, that in the meantime alternative word embeddings
like FastText have published official German models. As we did not use FastText, no
comments about the quality of the German model can be made, but it can be assumed
that the quality is at least comparable to the word2vec model. Lastly, there is the use of
lexical databases which is prevalent in almost every English language system analyzed.
Sadly, there are no publicly available German language alternatives for the most widely
used English databases, which means that approaches using lexical databases can not
easily be translated to German language systems.
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7.4 Contributions
In the scope of this thesis, we have provided an overview of the current terminology used
in the field of chat-bots, and conversational systems in general. We have shown that the
official definition of the term chat-bot does not match with the usage in academic and
commercial publications. With some adaptations however, a fitting taxonomy can be
defined, covering the most important branches in current chat-bot development.

To identify the language-dependent components of a chat-bot, we have also derived a
general, low-level architecture. It shows that in the context of chat-bot development, a
dedicated natural language understanding module can be identified. This module is the
only component of a chat-bot that needs to be adapted to the language used.

Conducting a broad literature review, we have identified the most commonly applied
methods in natural language understanding. The main focus of this literature review was
on the natural language understanding methods applied in question answering systems,
due to the popularity of the field and the well-definedness of the term, providing us with
a large number of publications for analysis.

We then implemented a custom natural language understanding system called “Ger-
maNLU”, using only the most popular methods and tools. We have shown that most of
the methods and tools used in the development of English language natural language
understanding systems can be applied to German language systems. The “GermaNLU”
system can be adapted to other domains, given appropriate training data.

We have also identified those methods and tools which will need additional work to
provide equivalent functionality in German language, and should be either avoided or
used with care. Evaluating this system using a sports-themed parallel English/German
dataset against the some of the most popular commercial natural language understanding
systems, we have also shown that even with limited implementation effort and using only
off-the-shelf tools and models, state-of-the-art performance could be achieved.
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CHAPTER 8
Lessons Learned and Future Work

The most interesting learning was that there is a good coverage for German language
considering the availability of high-quality tools and models, and that the basic approaches
used in English language systems could be reused in a German language implementation.
Another interesting aspect is the recent trend towards deep learning. With the advent of
more and more sophisticated neural network architectures, capable of capturing high-level
semantic features using only unlabeled raw data as input, it can be expected that the
gap between languages might soon be closed, or close to it.

This leads directly to another interesting aspect, the availability of training data. As
supervised machine learning approaches depend on manually labeled data, or, as shown
in our case, on external knowledge bases to produce usable training and evaluation data,
the number of publicly available high-quality datasets is limited. Without a common
baseline however, results presented in the scope of a publication can not easily be verified
or reproduced. This dependence on a limited number of datasets has lead to the the
situation that advances in the individual subfields of natural language processing were
often triggered by the emergence of usable datasets. Shifting towards unsupervised, or
distantly supervised training methods, however, might solve this issue, as the manual
effort will be limited to the production of baseline evaluation sets. Therefore it can be
expected, that the evolution cycles of advances in the field of natural language processing
are getting shorter and shorter. Combined with the recent advances in automated
machine translation, differences in languages might possibly disappear in the near future.

Regarding the learnings gathered during the implementation of the case study, it has
turned out that Java is not an optimal choice. Especially when it comes to machine
learning, Python provides both a much larger community, as well as mature and well
documented libraries, something that cannot be said about Java in that field. Also,
Python, in combination with Jupyter notebooks, provides a much more flexible approach
towards data-driven experiments as any Java-based alternative. If tasked again with
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the implementation of a natural language understanding system, Python would be the
obvious choice.

With regard to future works, this thesis provides a multitude of potential extensions.
For one, an evaluation of the intent classification performance based on several different
datasets could lead to more sophisticated insights regarding the behavior of the evaluated
tools and methods. Another addition would be the creation of a structured mapping
survey of the field of conversational systems, based on the literature analysis already
done. Also, the existing system “GermaNLU” while needing some additional work, could
serve as a basis for a domain-independent, German language natural language system
alternative. And finally, an integration and evaluation of deep-learning approaches would
provide the chance to evaluate their language-independence, and point towards future
adaptations in that field.

116



List of Figures

1.1 The global Google search volume for the topic of “chatbot”, relative to the
peak interest within the chosen time frame from 01.01.2015 until 01.11.2017.
A significant increase in interest can be seen in March of 2016 and a constant
growth from that time onwards. Source: https://trends.google.com/
trends/explore?date=2015-01-01%202017-11-01&q=%2Fm%2F01305y 2

1.2 The number of publications containing the terms “chatbot”, “chatterbot”,
“chat-bot” or “chat bot” released in the years 2000 - 2017 (as of November of
2017). The search was conducted using scopus.com. A significant increase
in volume can be seen in the years 2016 and 2017. Source: http://www.
scopus.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 A visualization of the proposed taxonomy. It shows the relations between the
different terms and their relative position within the taxonomy. . . . . . . 16

3.1 Generic chat-bot architecture proposed by [Braun et al., 2017]. It shows in
high detail the inner functionalities of each module and their interactions. 20

3.2 Basic unified architecture of a chat-bot system. It is derived from the architec-
tures presented in the cited works. Four distinct modules could be identified,
as well as their interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Example of a structured list message type provided by Facebook Messen-
ger. The user can select one item, and the selection is communicated to the
chat-bot system. Source: List-Template - Messenger Platform ( https://
developers.facebook.com/docs/messenger-platform/send-messages/
template/list). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Visualization of the relative method group popularity in the different types of
question answering systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Visualization of the trend in relative usage of word embeddings in question
answering systems. Note the rise after 2013, which coincides with the release
of the word2vec dense word embeddings implementation by [Mikolov et al.,
2013] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Visualization of the trend in relative usage of lexical databases in question
answering systems. With increasing popularity of multilingual benchmarks
and conference workshops the usage is continuously decreasing. . . . . . . 39

117

https://trends.google.com/trends/explore?date=2015-01-01%202017-11-01&q=%2Fm%2F01305y
https://trends.google.com/trends/explore?date=2015-01-01%202017-11-01&q=%2Fm%2F01305y
http://www.scopus.com
http://www.scopus.com
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list
https://developers.facebook.com/docs/messenger-platform/send-messages/template/list


4.4 Visualization of the relative popularity of the eight method groups in non-
English language systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Example of the application of a controlled vocabulary approach using a naive
auto-complete functionality. Source: [Bernstein et al., 2006] . . . . . . . . 46

4.6 Visualization of the stemming of an example text using the NLTK Porter
Stemmer. Notice that the words “was” and “are” do not share the same stem. 47

4.7 Visualization of the lemmatization of an example text using the NLTK Word-
Net Lemmatizer [Bird and Loper, 2004]. Notice that the words “was” and
“are” share the same stem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Visualization of the application of the Stanford CoreNLP part-of-speech tagger
to an example text. The tags are following the Penn treebank tagset. . . . 49

4.9 Trellis diagram visualizations of the main difference between a hidden Markov
model (HMM) and a maximum entropy Markov model (MEMM). The edges
correspond to the terms that define the joint/conditional probabilities of the
hidden and observed states. Notice the direction of the transition between
tags and words: in contrast to HMMs, MEMMs are able to calculate the
posterior probabilities directly, i.e. it is a discriminative model, as opposed
to the generative HMM, which “generates” the observed states using the
hidden states. P (tk+1|tk) is the transition probability of transitioning from a
specific state tk to another state tk+1, P (wk|tk) and P (tk|wk) are the emission
probabilities for a specific observed state wk given a specific hidden state tk

or vice versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.10 Visualization of the application of the Stanford CoreNLP constituency parser

to an example sentence. Notice that all words are terminal nodes, and their
immediate parent nodes are their corresponding part-of-speech tags. . . . 52

4.11 Visualization of the application of the Stanford CoreNLP dependency parser
to an example sentence. Notice that the relations are a product of a parse
similar to the one in Table 4.8 . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Visualization of the application of the Stanford CoreNLP named entity recog-
nizer to an example sentence. Notice the three distinct classes of identified
entity mentions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.13 Response from the lexical database WordNet for the search term “automobile”.
The database responds with a set of words with similar meaning, like “car” or
“auto”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.14 Response from the lexical database WordNet for the search term “bank”.
Notice the number of different word meanings, and the short descriptions
provided by the database. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.15 Illustration of possible uses of relationship information provided by vector
offsets. In the left panel, the known offset between “Germany” and “Berlin”
is used to estimate the word vector for “Vienna”. In the right, the known
offset between “France” and “Paris” is used as evidence that the assumption
that “Munich” is the capital city of “Germany” is wrong. . . . . . . . . . 62

118



5.1 Mandatory features in a basic natural language understanding service. Marked
in red is the “Intent Classification” submodule, which classifies the intent of
an input text based upon the output of the feature extraction submodules
(marked in green and blue). These are affected by the explicit language
support, as many of them (e.g. part-of-speech tagging, word embeddings)
depend on pre-trained language-specific models. Named entity recognition
is different from the other feature extractors as their output depends on the
application domain and is most often provided side by side with the intent as
the output of a natural language understanding service. . . . . . . . . . . 68

5.2 Visualization of the replacement process used to generate the dataset. For
every pattern the slots are filled with replacement labels, generating multiple
outputs, which are in turn converted to a training format expected by one of
the natural language understanding services. . . . . . . . . . . . . . . . . 76

5.3 Examples of the training formats used to train some of the natural language
understanding services, namely Microsoft LUIS, rasa NLU and wit.ai. Notice
that every format is slightly different, as there is no defined public standard
for tasks like this. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Visualization of the problem of converting sentences of different lengths into
vectors on a per-token base, resulting in vectors of different lengths. As
illustrated, every token is converted into n-dimensional feature vectors, which
are concatenated to represent the sentence. This results in vectors of different
lengths, 3n and 4n, respectively. . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Visualization of the feature and algorithm evaluation and training process.
First, we extract all features using the methods and tools identified in Sec-
tion 5.2. Then, we calculate the information gain for each of the features to
identify those which have the most discriminative power. Then, we train a
multitude of different machine learning algorithms with different hyperpa-
rameter settings to identify the optimal feature/algorithm/hyperparameter
combination. The optimal model is then used for further evaluations. . . 82

5.6 General architecture of the custom natural language understanding service
implementation. The input text is normalized and converted into a feature
vector. Based on this feature vector the intent is classified and a response is
generated consisting of the intent and the identified named entities. . . . 83

5.7 Visualization of the basic architecture of the data-generator application.
Using basic CSV files containing patterns and entities, the application first
fills all slots in the patterns with fitting entity values, generating a large
number of permutations. These permutations are enriched with additional
information during the conversion into the internal, homogeneous data model,
from which all training data for the specific applications are generated in a
data transformation step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 The internal homogeneous data format used by the data-generator application. 85

119



6.1 Per-class and macro-averaged precision and recall of the German named entity
recognition model evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Per-class and macro-averaged precision and recall of the English named entity
recognition model evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 F-scores and precision values of evaluation results of all systems. The majority
of German language evaluation results are below their English language
counterparts, with the exception of the custom implementation. Note: wit.ai
could not be trained in English language. Also notice that precision values
are closer together than F-scores, as recall values are all slightly worse than
their corresponding precision values. . . . . . . . . . . . . . . . . . . . . . 104

7.1 The deduced taxonomy locating the terminology within the field of conversa-
tional systems and defining their interconnections. . . . . . . . . . . . . . 108

7.2 Basic unified architecture of a chat-bot system. It is derived from the architec-
tures presented in the cited works. Four distinct modules could be identified,
as well as their interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Relative number of question answering systems using the eight method groups
in their natural language understanding modules. Note that the question
answering systems themselves have been split into several different groups,
depending on the domain and type of data source to find out if some bias
exists towards specific types of question answering systems. . . . . . . . . 110

7.4 The comparison of the performances of four commercial services with the cus-
tom implementation using the most popular natural language understanding
methods and tools and a naive bag-of-words baseline. . . . . . . . . . . . 112

120



List of Tables

2.1 A list of the terms proposed as synonymous to the term “chat-bot” in the
literature analyzed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A list of features taken from definitions of the terms chat-bot and chatterbot
grouped into features connected to the two types of conversational systems
defined in [Jurafsky and Martin, 2017a]. Features in this context are capabili-
ties, behaviors or attributes attributed to one or more chat-bot systems in
the cited literature. Chat-bots are assumed to be a non-task oriented system,
but a lot of features contradict this assumption. . . . . . . . . . . . . . . . 10

2.3 A set of additional search terms deduced from the features attributed to
chat-bots. The names are either directly taken from the list of synonymous
terms in Table 2.1, or identified via an online search for commonly used terms
for systems showing those features . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 A list of the features of conversational recommender systems, as found in
current literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 A list of the features of conversational search systems, as found in current
literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 A list of the features of intelligent personal assistants, as found in current
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 A list of the features of question answering systems, as found in current
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Overview of the usage of the eight methods groups in closed domain question
answering systems with unstructured data sources. . . . . . . . . . . . . . 32

4.2 Overview of the usage of the eight methods groups in closed domain question
answering systems with structured data sources. . . . . . . . . . . . . . . 33

4.3 Overview of the usage of the eight methods groups in open domain question
answering systems with unstructured data sources. . . . . . . . . . . . . . 34

4.4 Overview of the usage of the eight methods groups in open domain question
answering systems with structured data sources. . . . . . . . . . . . . . . 35

121



4.5 Relative number of method group application by QAS category. “C" stands
for “Closed domain", “O" for “Open domain", “U" for “Unstructured data
source", and “S" for “Structured data source". In the column labeled “Overall”
the overall relative application per method group can be found. Notice the
differences in word embedding and text normalization usage for the category
closed/unstructured, as well as the increased application of named entity
recognition methods in the category open/structured. . . . . . . . . . . . 36

4.6 Development of method group usage over time. The method usage was
grouped by year of publication release. Notice the decline of lexical database
usage, and the increase in word embedding usage. . . . . . . . . . . . . . 38

4.7 Question answering systems supporting non-English languages and the method
groups they are applying. Notice the limited number of only 9, with only 3 of
them offering support for German language. . . . . . . . . . . . . . . . . . 40

4.8 This is a simplified example parse of the example sentence “The cat has
awoken”. The parser shifts asks an oracle what actions to take providing the
two latest additions to the stack as parameters. The possible actions are
SHIFT, LEFTARC and RIGHTARC. The parser then applies the action to
the words in the stack until there are no more words in the word list and the
stack only consists of the root node. . . . . . . . . . . . . . . . . . . . . . 53

4.9 An example sentence from the dataset provided for the CoNLL 2003 shared
task. The first column contains placeholders for any word, the second column
denotes the part-of-speech tag the word needs to have, and the last column
contains tags for named entities, in this case denoting an organization. . . 54

4.10 A basic ruleset consisting of regular expressions and intents. When an input
is matched by one of the regular expressions, the input is classified with the
corresponding intent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.11 Example inputs and the rules that match them. The third column shows the
intent the input was classified with. . . . . . . . . . . . . . . . . . . . . . 63

4.12 An excerpt of the taxonomy defined by [Li and Roth, 2002]. The taxonomy
consists of two layers in a hierarchical structure, with six coarse classes,
like ENTITY, HUMAN or LOCATION, and 50 fine-grained classes, like
HUMAN/individual. The above example shows two of those six coarse classes
and their fine-grained “child”-classes. . . . . . . . . . . . . . . . . . . . . . 64

5.1 Comparison of the candidate natural language understanding systems with
regard to the mandatory features they must support to be considered a
viable system for the case study (custom trainable intents and named entities,
support for German language, free evaluation copy) as of November 2017.
Features marked with (*) have since changed, but were not considered. . . 70

122



5.2 A summarized listing of the most popular methods and their corresponding
tools with regard to the literature analysis performed in Section 4. As can be
seen, Stanford CoreNLP is by far the most prominently used tool, offering
implementations for several different methods. No tools were found for the
application of controlled vocabulary. . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Overview of the availability and German language capabilities of the can-
didate tools. Bold text denotes those tools, which were used later on in
the custom implementation. *: word relations like synonymity are not
publicly available. **: available at https://devmount.github.io/
GermanWordEmbeddings/ . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Examples of patterns used to generate a larger dataset by populating the
placeholder slots identified by square brackets and the named entity type that
can be filled with. The [COMP] slot can be filled with a random named entity
of the type “competition”, a [TEAM] slot can be filled with a random named
entity of type “team”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 An example of a confusion matrix for a three-class classification. The rows
depict the expected classification results, i.e. as defined by the labels provided
by the evaluation dataset. The column depict the classifications predicted
by the classifier to be evaluated. The fields provide an explanation how the
values for true positives, false negatives and false positives are calculated for
each class, as these numbers are necessary for the calculation of precision,
recall and F-score. Legend: TP = True Positives, FP = False Positives, FN
= False Negatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Example of a confusion matrix showing the classification performance of a
fictional image classifier. Legend: True Positive = TP, False Positive = FP,
False Negative = FN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Confusion matrix for the German named entity recognition model evaluation.
“COMP”, “TEAM”, and “PLAY” are the different classes of named entities.
“NONE” includes any token that is not part of a named entity. . . . . . . 96

6.4 Confusion matrix for the English named entity recognition model evaluation.
“COMP”, “TEAM”, and “PLAY” are the different classes of named entities.
“NONE” includes any token that is not part of a named entity. . . . . . . 96

6.5 Results of the information gain analysis of the calculated features of the
German and English language training sets. *: English and German language
dataset vocabularies have slightly different sizes, with the German vocabulary
containing 3 words less compared with the English dataset vocabulary. Legend:
AIG = Average Information Gain . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 List of the machine learning algorithms and the parameters with values used
in the evaluation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

123

https://devmount.github.io/GermanWordEmbeddings/
https://devmount.github.io/GermanWordEmbeddings/


6.7 Listing and description of the datasets used in machine learning algorithm eval-
uation. Each of the datasets was used to train and evaluate all of the machine
learning algorithm-parameter combinations shown in Table 6.6. The best com-
bination was used to calculate a model for the final language understanding
pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8 Performance evaluation of the machine learning algorithms on different varia-
tions of the training and test data. Note the perfect score achieved for the
English language bag-of-words dataset, and the German language variation
with only the best custom features outperforming the German language naive
bag-of-words approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.9 The macro-averaged f-score, precision and recall values measured during
evaluation of the custom implementations and the commercial natural language
understanding systems. Note: wit.ai could not be trained in English language. 105

124



Bibliography

[Abacha and Zweigenbaum, 2015] Abacha, A. and Zweigenbaum, P. (2015). MEANS:
A medical question-answering system combining NLP techniques and semantic Web
technologies. Information Processing and Management, 51(5):570–594.

[Adwait Ratnaparkhi, 1996] Adwait Ratnaparkhi (1996). A maximum entropy model for
part-of-speech tagging. In Proceedings of the Empirical Methods in Natural Language
Processing Conference, 1(49):133–142.

[Aggarwal and Buitelaar, 2012] Aggarwal, N. and Buitelaar, P. (2012). A system de-
scription of natural language query over DBpedia. CEUR Workshop Proceedings,
913(Ild):96–99.

[Aha et al., 2001] Aha, D. W., Breslow, L. A., and Muñoz-Avila, H. (2001). Conversa-
tional Case-Based Reasoning. Applied Intelligence, 14(1):9–32.

[Al-Zubaide and Issa, 2011] Al-Zubaide, H. and Issa, A. A. (2011). OntBot: Ontology
based ChatBot. 2011 4th International Symposium on Innovation in Information and
Communication Technology, ISIICT’2011, pages 7–12.

[Allen et al., 1999] Allen, J., Guinn, C., and Horvtz, E. (1999). Mixed-initiative interac-
tion. IEEE Intelligent Systems and their Applications, 14(5):14–23.

[Allen and Hayes, 1989] Allen, J. F. and Hayes, P. J. (1989). Moments and points in an
interval-based temporal logic. Computational Intelligence, 5(3):225–238.

[Ameixa et al., 2014] Ameixa, D., Coheur, L., Fialho, P., and Quaresma, P. (2014). Luke,
I am your father: Dealing with out-of-domain requests by using movies subtitles.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8637 LNAI:13–21.

[Amit et al., 2017] Amit, P., Marimuthu, K., Nagaraja, R., and Niranchana, R. (2017).
Comparative study of cloud platforms to develop a chatbot. International Journal of
Engineering & Technology, 6(3):57–61.

[An et al., 2017] An, C., Huang, J., Chang, S., and Huang, Z. (2017). Question similarity
modeling with bidirectional long short-term memory neural network. Proceedings -

125



2016 IEEE 1st International Conference on Data Science in Cyberspace, DSC 2016,
(2006):318–322.

[Androutsopoulos et al., 1995] Androutsopoulos, I., Ritchie, G. D., and Thanisch, P.
(1995). Natural Language Interfaces to Databases - An Introduction. Journal of
Natural Language Engineering, (709):50.

[Aronson and Lang, 2009] Aronson, A. R. and Lang, F.-M. (2009). The Evolution
of MetaMap, a Concept Search Program for Biomedical Text. In AMIA Annual
Symposium Proceedings, page 1990.

[Asiaee et al., 2015] Asiaee, A. H., Minning, T., Doshi, P., and Tarleton, R. L. (2015).
A framework for ontology-based question answering with application to parasite
immunology. Journal of Biomedical Semantics, 6(1):1–25.

[Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehman, J., Cyganiak, R., and
Ives, Z. (2007). DBpedia: A Nucleus for a Web of Open Data. The Semantic Web.
Lecture Notes in Computer Science, 4825:722–735.

[Avula, 2017] Avula, S. (2017). Searchbots: Using Chatbots in Collaborative Information-
seeking Tasks. Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval - SIGIR ’17, (2010):1375–1375.

[Babar et al., 2017] Babar, Z., Lapouchnian, A., and Yu, E. (2017). Chatbot design -
Reasoning about design options using i* and process architecture. In CEUR Workshop
Proceedings, pages 73–78.

[Baizal et al., 2016a] Baizal, Z. A., Widyantoro, D. H., and Maulidevi, N. U. (2016a).
Factors Influencing User’s Adoption of Conversational Recommender System Based on
Product Functional Requirements. TELKOMNIKA (Telecommunication Computing
Electronics and Control), 14(4):1575.

[Baizal et al., 2016b] Baizal, Z. K. A., Widyantoro, H., and Maulidevi, U. (2016b). Design
of Knowledge for Conversational Recommender System Based on Product Functional
Requirements. In Design of knowledge for conversational recommender system based
on product functional requirements." Data and Software Engineering (ICoDSE), 2016
International Conference on, pages 1–6.

[Baker et al., 1998] Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley
FrameNet Project. In Proceedings of the 17th international conference on Computational
linguistics, pages 86–90.

[Bang et al., 2015] Bang, J., Noh, H., Kim, Y., and Lee, G. G. (2015). Example-based
chat-oriented dialogue system with personalized long-term memory. 2015 International
Conference on Big Data and Smart Computing, BIGCOMP 2015, pages 238–243.

126



[Basili et al., 1998] Basili, R., Pazienza, M. T., and Zanzotto, F. M. (1998). Efficient Pars-
ing for Information Extraction. In 13th European Conference on Artificial Intelligence
(ECAI98).

[Baudiš and Šedivý, 2015] Baudiš, P. and Šedivý, J. (2015). Modeling of the question
answering task in the YodaQA system. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9283:222–228.

[Beaumont et al., 2015] Beaumont, R., Grau, B., and Ligozat, A.-L. (2015). Sem-
graphqa@ qald5: Limsi participation at qald5@ clef. In CLEF (Working Notes).

[Bellman, 1957] Bellman, R. E. (1957). Dynamic Programming. Princeton University
Press.

[Belyaev et al., 2017] Belyaev, S. A., Kuleshov, A. S., and Kholod, I. I. (2017). Solution
of the answer formation problem in the question-answering system in Russian. In
Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and
Electronic Engineering Conference, ElConRus 2017, pages 360–365.

[Berant and Liang, 2014] Berant, J. and Liang, P. (2014). Semantic Parsing via Para-
phrasing. Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–1425.

[Bernstein et al., 2006] Bernstein, A., Kaufmann, E., Kaiser, C., and Kiefer, C. (2006).
Ginseng: A guided input natural language search engine for querying ontologies. 2006
Jena User Conference, (May):2–4.

[Bickmore et al., 2016] Bickmore, T. W., Utami, D., Matsuyama, R., and Paasche-Orlow,
M. K. (2016). Improving access to online health information with conversational agents:
a randomized controlled experiment. Journal of medical Internet research, 18(1).

[Bird and Loper, 2004] Bird, S. and Loper, E. (2004). NLTK : The natural language
toolkit. In Proceedings of the ACL 2004 on Interactive poster and demonstration
sessions., pages 31–34.

[Blackburn and Bos, 2005] Blackburn, P. and Bos, J. (2005). Representation and infer-
ence for natural language. A first course in computational semantics. CSLI.

[Bodoff and Raban, 2016] Bodoff, D. and Raban, D. (2016). Question Types and Interme-
diary Elicitations. Journal of the Association for Information Science and Technology,
67(2):289–304.

[Bojanowski et al., 2016] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016).
Enriching Word Vectors with Subword Information. Technical report.

127



[Bouziane et al., 2015] Bouziane, A., Bouchiha, D., Doumi, N., and Malki, M. (2015).
Question Answering Systems: Survey and Trends. Procedia Computer Science,
73(Awict):366–375.

[Braslavski et al., 2017] Braslavski, P., Savenkov, D., Agichtein, E., and Dubatovka,
A. (2017). What Do You Mean Exactly? Proceedings of the 2017 Conference on
Conference Human Information Interaction and Retrieval - CHIIR ’17, pages 345–348.

[Braun et al., 2017] Braun, D., Hernandez-Mendez, A., Matthes, F., and Langen, M.
(2017). Evaluating Natural Language Understanding Services for Conversational
Question Answering Systems. In Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue, number August, pages 174–185.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[Bridge, 2002] Bridge, D. G. (2002). Towards Conversational Recommender Systems: A
Dialogue Grammar Approach. ECCBR Workshops, pages 9–22.

[Briscoe and Carroll, 2002] Briscoe, T. and Carroll, J. (2002). Robust Accurate Statisti-
cal Annotation of General Text. Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC), pages 1499–1504.

[Burke et al., 1997] Burke, R. D., Hammond, K. J., Kulyukin, V. a., Lytinen, S. L.,
Tomuro, N., Schoenberg, S., and Burke, R. D. (1997). Question answering from
frequently-asked question files: Experiences with the FAQ finder system. AI Magazine,
18(2):57–66.

[Cabrio et al., 2012] Cabrio, E., Cojan, J., Aprosio, A. P., Magnini, B., Lavelli, A., and
Gandon, F. (2012). QAKiS: An open domain QA system based on relational patterns.
In CEUR Workshop Proceedings, volume 914, pages 9–12.

[Carlson et al., 1999] Carlson, A., Cumby, C., Rosen, J., and Roth, D. (1999). The
SNoW Learning Architecture. page 24.

[Carvalho et al., 2017] Carvalho, D. S., Nguyen, M. T., Tran, C. X., and Nguyen, M. L.
(2017). Lexical-morphological modeling for legal text analysis. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 10091 LNCS:295–311.

[Chandurkar and Bansal, 2017] Chandurkar, A. and Bansal, A. (2017). Information
Retrieval from a Structured KnowledgeBase. In Proceedings - IEEE 11th International
Conference on Semantic Computing, ICSC 2017, pages 407–412.

[Chiu and Nichols, 2015] Chiu, J. P. C. and Nichols, E. (2015). Named Entity Recognition
with Bidirectional LSTM-CNNs. Technical report.

128



[Choi and Palmer, 2011] Choi, J. D. and Palmer, M. (2011). Getting the Most out of
Transition-based Dependency Parsing. Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL ’11): shortpapers, 2:687–692.

[Chung et al., 2017] Chung, H., Iorga, M., Voas, J., and Lee, S. (2017). Alexa, Can I
Trust You? Computer, 50(9):100–104.

[Cimiano et al., 2011] Cimiano, P., Buitelaar, P., McCrae, J., and Sintek, M. (2011).
LexInfo: A declarative model for the lexicon-ontology interface. Journal of Web
Semantics, 9(1):29–51.

[Cimiano et al., 2007] Cimiano, P., Haase, P., and Heizmann, J. (2007). Porting natural
language interfaces between domains. Proceedings of the 12th international conference
on Intelligent user interfaces - IUI ’07, pages 180–189.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu,
K., and Kuksa, P. (2011). Natural Language Processing (Almost) from Scratch. Journal
of Machine Learning Research, 12:2493–2537.

[Cowan et al., 2017] Cowan, B. R., Pantidi, N., Coyle, D., Morrissey, K., Clarke, P.,
Al-Shehri, S., Earley, D., and Bandeira, N. (2017). "What can i help you with?":
Infrequent Users’ Experiences of Intelligent Personal Assistants. In Proceedings of the
19th International Conference on Human-Computer Interaction with Mobile Devices
and Services - MobileHCI ’17, pages 1–12.

[Cristianini and Shawe-Taylor, 2000] Cristianini, N. and Shawe-Taylor, J. (2000). An
introduction to support vector machines.

[Cunningham et al., 2001] Cunningham, H., Maynard, D., Bontcheva, K., and Tablan,
V. (2001). GATE: an Architecture for Development of Robust HLT Applications.
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics
- ACL ’02, (July):168–175.

[Cunningham et al., 2000] Cunningham, H., Maynard, D., and Tablan, V. (2000). JAPE:
a Java Annotation Patterns Engine. 2000, page Technical Report.

[Dale, 2016] Dale, R. (2016). The return of the chatbots. Natural Language Engineering,
22(05):811–817.

[Damiano et al., 2017] Damiano, E., Spinelli, R., Esposito, M., and Pietro, G. D. (2017).
Towards a Framework for Closed-Domain Question Answering in Italian. Proceedings -
12th International Conference on Signal Image Technology and Internet-Based Systems,
SITIS 2016, pages 604–611.

[Damljanovic et al., 2010] Damljanovic, D., Agatonovic, M., and Cunningham, H. (2010).
Natural language interfaces to ontologies: Combining syntactic analysis and ontology-
based lookup through the user interaction. Lecture Notes in Computer Science (in-

129



cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 6088 LNCS(PART 1):106–120.

[De Carolis et al., 2017] De Carolis, B., de Gemmis, M., Lops, P., and Palestra, G. (2017).
Recognizing users feedback from non-verbal communicative acts in conversational
recommender systems. Pattern Recognition Letters, 99:87–95.

[de Marneffe et al., 2014] de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K.,
Ginter, F., Nivre, J., and Manning, C. D. (2014). Universal Stanford Dependencies:
A cross-linguistic typology. In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), pages 4585–4592.

[De Marneffe and Manning, 2008] De Marneffe, M.-C. and Manning, C. D. (2008). Stan-
ford typed dependencies manual. Technical report.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
and Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–407.

[Dewey, 2016] Dewey, C. (2016). Meet Tay, the creepy-realistic robot who talks just like
a teen.

[Diefenbach et al., 2017] Diefenbach, D., Lopez, V., Singh, K., and Maret, P. (2017). Core
techniques of question answering systems over knowledge bases: a survey. Knowledge
and Information Systems, pages 1–41.

[Dima, 2013] Dima, C. (2013). Intui2: A prototype system for question answering over
linked data. In CLEF (Working Notes).

[Dima, 2014] Dima, C. (2014). Answering natural language questions with Intui3. CEUR
Workshop Proceedings, 1180:1201–1211.

[Dimitrov, 2002] Dimitrov, M. (2002). A Light-weight Approach to Coreference Resolution
for Named Entities in Text. PhD thesis.

[Fader et al., 2011] Fader, A., Soderland, S., and Etzioni, O. (2011). Identifying relations
for open information extraction. Proceedings of the Conference on . . . , pages 1535–1545.

[Fader et al., 2013] Fader, A., Zettlemoyer, L., and Etzioni, O. (2013). Paraphrase-Driven
Learning for Open Question Answering. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, pages 1608–1618.

[Fadhil and Villafiorita, 2017] Fadhil, A. and Villafiorita, A. (2017). An Adaptive Learn-
ing with Gamification & Conversational UIs. Adjunct Publication of the 25th Conference
on User Modeling, Adaptation and Personalization - UMAP ’17, pages 408–412.

[Fano and Hawkins, 1961] Fano, R. and Hawkins, D. (1961). Transmission of information:
A statistical theory of communications. American Journal of Physics, 29:793–794.

130



[Ferrara et al., 2016] Ferrara, E., Varol, O., Davis, C., Menczer, F., and Flammini, A.
(2016). The Rise of Social Bots. Communications of the ACM, 59(7):96–104.

[Ferret et al., 2002] Ferret, O., Grau, B., Hurault-Plantet, M., Illouz, G., Monceaux, L.,
Robba, I., and Vilnat, A. (2002). Finding an answer based on the recognition of the
question focus. NIST Special Publication, pages 362–370.

[Ferrucci et al., 2010] Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D.,
Kalyanpur, A. A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J., Schlaefer, N.,
and Welty, C. (2010). Building Watson: An Overview of the DeepQA Project. AI
Magazine, 31(3):59–79.

[Figueroa, 2017] Figueroa, A. (2017). Automatically generating effective search queries
directly from community question-answering questions for finding related questions.
Expert Systems with Applications, 77:11–19.

[Finkel et al., 2005] Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating
non-local information into information extraction systems by Gibbs sampling. Pro-
ceedings of the 43rd Annual Meeting on Association for Computational Linguistics -
ACL ’05, (1995):363–370.

[Følstad and Brandtzæg, 2017] Følstad, A. and Brandtzæg, P. B. (2017). Chatbots and
the new world of HCI. Interactions, 24(4):38–42.

[Fonte et al., 2016] Fonte, F. A., Nistal, M. L., Rial, J. C., and Rodriguez, M. C. (2016).
NLAST: A natural language assistant for students. IEEE Global Engineering Education
Conference, EDUCON, 10-13-Apri(April):709–713.

[Frank et al., 2007] Frank, A., Krieger, H. U., Xu, F., Uszkoreit, H., Crysmann, B., Jörg,
B., and Schäfer, U. (2007). Question answering from structured knowledge sources.
Journal of Applied Logic, 5(1):20–48.

[Freitas and Curry, 2014] Freitas, A. and Curry, E. (2014). Natural Language Queries
over Heterogeneous Linked Data Graphs: A Distributional-Compositional Seman-
tics Approach. Proceedings of the 19th international conference on Intelligent User
Interfaces - IUI ’14, pages 279–288.

[Freitas et al., 2011] Freitas, A., Oliveira, J. G., O’Riain, S., Curry, E., and Pereira Da
Silva, J. C. (2011). Treo: Best-effort natural language queries over linked data. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 6716 LNCS:286–289.

[Frost et al., 2014] Frost, R. A., Donais, J., Mathews, E., Agboola, W., and Stewart,
R. (2014). A demonstration of a natural language query interface to an event-based
semantic web triplestore. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8798:343–
348.

131



[Gabrilovich and Markovitch, 2007] Gabrilovich, E. and Markovitch, S. (2007). Com-
puting semantic relatedness using wikipedia-based explicit semantic analysis. IJCAI
International Joint Conference on Artificial Intelligence, pages 1606–1611.

[Gallagher and Zadrozny, 2016] Gallagher, S. and Zadrozny, W. (2016). Leveraging Large
Corpora using Internet Search for Question Answering. In 2016 IEEE/WIC/ACM
International Conference on Web Intelligence, Proceedings, pages 532–535.

[Genc and O’Sullivan, 2017] Genc, B. and O’Sullivan, B. (2017). Improving navigation
in critique graphs. Proceedings - 2016 IEEE 28th International Conference on Tools
with Artificial Intelligence, ICTAI 2016, pages 134–141.

[Gerber and Ngomo, 2011] Gerber, D. and Ngomo, A.-C. N. (2011). Bootstrapping the
linked data web. In 1st Workshop on Web Scale Knowledge Extraction@ ISWC, volume
2011.

[Giannone et al., 2013] Giannone, C., Bellomaria, V., and Basili, R. (2013). A HMM-
based approach to question answering against linked data. CEUR Workshop Proceedings,
1179.

[Gianvecchio et al., 2011] Gianvecchio, S., Xie, M., Wu, Z., and Wang, H. (2011). Hu-
mans and bots in internet chat: Measurement, analysis, and automated classification.
IEEE/ACM Transactions on Networking, 19(5):1557–1571.

[Graf et al., 2015] Graf, B., Krüger, M., Müller, F., Ruhland, A., and Zech, A. (2015).
Nombot – Simplify Food Tracking. In Proceedings of the 14th International Conference
on Mobile and Ubiquitous Multimedia - MUM ’15, pages 360–363.

[Graus et al., 2016] Graus, D., Bennett, P. N., White, R. W., and Horvitz, E. (2016).
Analyzing and Predicting Task Reminders. In Proceedings of the 2016 Conference on
User Modeling Adaptation and Personalization - UMAP ’16, pages 7–15.

[Green Jr. et al., 1961] Green Jr., B. F., Wolf, A. K., Chomsky, C., and Laughery,
K. (1961). Baseball: an automatic question-answerer. In AFIPS Joint Computer
Conferences, pages 219–224.

[Gunaratna et al., 2017] Gunaratna, K., Yazdavar, A. H., Thirunarayan, K., Sheth, A.,
and Cheng, G. (2017). Relatedness-based multi-entity summarization. In IJCAI
International Joint Conference on Artificial Intelligence, pages 1060–1066.

[Hakimov et al., 2015] Hakimov, S., Unger, C., Walter, S., and Cimiano, P. (2015).
Applying Semantic Parsing to Question Answering Over Linked Data: Addressing
the Lexical Gap. In Proceedings of the International Conference on Applications of
Natural Language to Information Systems 2015, pages 103–109.

[Hamon et al., 2014] Hamon, T., Grabar, N., Mougin, F., and Thiessard, F. (2014).
Description of the POMELO system for the task 2 of QALD-4. CEUR Workshop
Proceedings, 1180:1212–1223.

132



[Hamp and Feldweg, 1997] Hamp, B. and Feldweg, H. (1997). GermaNet - a Lexical-
Semantic Net for German. Proceedings of ACL workshop Automatic Information
Extraction and Building of Lexical Semantic Resources for NLP Applications, pages
9–15.

[Harabagiu et al., 2000] Harabagiu, S., Moldovan, D., and Pasca, M. (2000). Falcon:
Boosting knowledge for answer engines. In Proceedings of the Ninth Text REtrieval
Conference (TREC 2000), volume 1, pages 479–488.

[Hauswald et al., 2016] Hauswald, J., Laurenzano, M. A., Zhang, Y., Li, C., Rovinski,
A., Khurana, A., Dreslinski, R. G., Mudge, T., Petrucci, V., Tang, L., and Mars,
J. (2016). Sirius Implications for Future Warehouse-Scale Computers. IEEE Micro,
36(3):42–53.

[He et al., 2014] He, S., Zhang, Y., Liu, K., and Zhao, J. (2014). CASIA@V2: A MLN-
based question answering system over Linked Data. CEUR Workshop Proceedings,
1180(61272332):1249–1259.

[Hearst, 2011] Hearst, M. A. (2011). ’Natural’ search user interfaces. Communications
of the ACM, 54(11):60–67.

[Hill et al., 2015] Hill, J., Randolph Ford, W., and Farreras, I. G. (2015). Real con-
versations with artificial intelligence: A comparison between human-human online
conversations and human-chatbot conversations. Computers in Human Behavior,
49:245–250.

[Hirzel et al., 2017] Hirzel, M., Mandel, L., Shinnar, A., Siméon, J., and Vaziri, M. (2017).
I Can Parse You : Grammars for Dialogs. In LIPIcs-Leibniz International Proceedings
in Informatics, vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, number 71,
pages 1–15.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long
short-term memory. Neural Computation, 9(8):1–32.

[Höffner and Lehmann, 2014] Höffner, K. and Lehmann, J. (2014). Towards question
answering on statistical linked data. Proceedings of the 10th International Conference
on Semantic Systems - SEM ’14, pages 61–64.

[Höffner and Lehmann, 2017] Höffner, K. and Lehmann, J. (2017). Survey on Challenges
of Question Answering in the Semantic Web. Semantic Web, 8(6):895–920.

[Hoque and Quaresma, 2015] Hoque, M. M. and Quaresma, P. (2015). Semontoqa. In
Proceedings of the Forum for Information Retrieval Evaluation on - FIRE ’14, pages
10–20.

[Hoque and Quaresma, 2017] Hoque, M. M. and Quaresma, P. (2017). A content-aware
hybrid architecture for answering questions from open-domain texts. 19th International
Conference on Computer and Information Technology, ICCIT 2016, pages 293–298.

133



[Intelligence, 2016] Intelligence, B. (2016). Messaging apps are now bigger than
social networks. https://www.businessinsider.de/the-messaging-app-report-2015-
11?r=US&IR=T, visited 2018-07-07.

[Jaya Kumar et al., 2017] Jaya Kumar, A., Schmidt, C., and Köhler, J. (2017). A
knowledge graph based speech interface for question answering systems. Speech
Communication, 92:1–12.

[Jijkoun and de Rijke, 2007] Jijkoun, V. and de Rijke, M. (2007). The task first, please.
In Proceedings of the SIGIR 2007 Workshop on Focused Retrieval, pages 23–27.

[Joho et al., 2017] Joho, H., Cavedon, L., Arguello, J., Shokouhi, M., and Radlinski, F.
(2017). First International Workshop on Conversational Approaches to Information
Retrieval (CAIR’17). Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval - SIGIR ’17, pages 1423–1424.

[Juang et al., 2015] Juang, J., Li, Q., Xue, Y., Cheng, T., Xu, S., Jia, J., and Feng, L.
(2015). Teenchat: a chatterbot system for sensing and releasing adolescents’ stress. In
International Conference on Health Information Science, pages 133–145.

[Jurafsky and Martin, 2017a] Jurafsky, D. and Martin, J. (2017a). Dialog Systems and
Chatbots. In Speech and Language Processing., chapter 28, pages 418–440. 3rd edition.

[Jurafsky and Martin, 2016a] Jurafsky, D. and Martin, J. H. (2016a). Part-of-speech
tagging. In Speech and Language Processing, chapter 10. 3rd edition.

[Jurafsky and Martin, 2016b] Jurafsky, D. and Martin, J. H. (2016b). Semantics with
Dense Vectors. In Speech and Language Processing, 3rd edition, volume 3. 3rd edition.

[Jurafsky and Martin, 2017b] Jurafsky, D. and Martin, J. H. (2017b). Dependency
Parsing. In Speech and Language Processing, chapter 14. 3rd edition.

[Jurafsky and Martin, 2017c] Jurafsky, D. and Martin, J. H. (2017c). Question Answer-
ing. In Speech and Language Processing, chapter 28, pages 400–417. 3rd edition.

[Jurafsky and Martin, 2017d] Jurafsky, D. and Martin, J. H. (2017d). Regular Expres-
sions, Text Normalization, Edit Distance. In Speech and Language Processing, chapter 2,
pages 10–33. 3rd edition.

[Jurafsky and Martin, 2018] Jurafsky, D. and Martin, J. H. (2018). Speech and Language
Processing. 3rd edition.

[Kalyanpur et al., 2012] Kalyanpur, A., Boguraev, B. K., Patwardhan, S., Murdock,
J. W., Lally, A., Welty, C. a., Prager, J. M., Coppola, B., Fokoue-Nkoutche, A., Zhang,
L., Pan, Y., and Qui, Z. M. (2012). Structured data and inference in DeepQA. IBM
Journal of Research and Development, 56(3):351–364.

134



[Kaufmann et al., 2007] Kaufmann, E., Bernstein, A., and Fischer, L. (2007). NLP-
Reduce: A "naïve" but Domain-independent Natural Language Interface for Querying
Ontologies. 4th European Semantic Web Conference ESWC 2007, pages 1–2.

[Keerthi and Lin, 2003] Keerthi, S. S. and Lin, C.-J. (2003). Asymptotic behaviors of
support vector machines with gaussian kernel. Neural computation, 15(7):1667–1689.

[Khvalchik et al., 2017] Khvalchik, M., Pithyaachariyakul, C., and Kulkarni, A. (2017).
Answering the Hard Questions. In International Conference on Language, Data and
Knowledge, pages 253–261.

[Kim et al., 2017] Kim, M. Y., Xu, Y., and Goebel, R. (2017). Applying a convolutional
neural network to legal question answering. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 10091 LNCS:282–294.

[Kincaid and Pollock, 2017] Kincaid, R. and Pollock, G. (2017). Nicky: Toward a Virtual
Assistant for Test and Measurement Instrument Recommendations. Proceedings - IEEE
11th International Conference on Semantic Computing, ICSC 2017, pages 196–203.

[Kiseleva et al., 2016] Kiseleva, J., Williams, K., Jiang, J., and Crook, A. C. (2016).
Understanding User Satisfaction with Intelligent Assistants. In Proceedings of the
2016 ACM on Conference on Human Information Interaction and Retrieval, volume 1,
pages 121–130.

[Klopfenstein et al., 2017] Klopfenstein, L. C., Delpriori, S., Malatini, S., and Bogliolo,
A. (2017). The Rise of Bots: A Survey of Conversational Interfaces, Patterns, and
Paradigms. Proceedings of the 2017 Conference on Designing Interactive Systems -
DIS ’17, pages 555–565.

[Knox et al., 2011] Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A.,
Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eisner, R., Guo, A. C., and Wishart,
D. S. (2011). DrugBank 3.0: A comprehensive resource for ’Omics’ research on drugs.
Nucleic Acids Research, 39(SUPPL. 1):1035–1041.

[Koehn, 2005] Koehn, P. (2005). Europarl : A Parallel Corpus for Statistical Machine
Translation. MT Summit, 11:79–86.

[Kolomiyets and Moens, 2011] Kolomiyets, O. and Moens, M. F. (2011). A survey on
question answering technology from an information retrieval perspective. Information
Sciences, 181(24):5412–5434.

[Konstantinova and Orasan, 2013] Konstantinova, N. and Orasan, C. (2013). Interactive
Question Answering. Emerging Applications of Natural Language Processing: Concepts
and New Research, (October):149 —- 169.

135



[Koo et al., 2008] Koo, T., Carreras Pérez, X., and Collins, M. (2008). Simple semi-
supervised dependency parsing. 46th Annual Meeting of the Association for Computa-
tional Linguistics, (June):595–603.

[Kumar and Joshi, 2017] Kumar, V. and Joshi, S. (2017). Incomplete Follow-up Question
Resolution using Retrieval based Sequence to Sequence Learning. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval - SIGIR ’17, pages 705–714.

[Kwok et al., 2001] Kwok, C., Etzioni, O., and Weld, D. S. (2001). Scaling question
answering to the web. ACM Transactions on Information Systems, 19(3):242–262.

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. C. N. (2001). Con-
ditional random fields: Probabilistic models for segmenting and labeling sequence
data. ICML ’01 Proceedings of the Eighteenth International Conference on Machine
Learning, 8(June):282–289.

[Lample et al., 2016] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and
Dyer, C. (2016). Neural architectures for named entity recognition. arXiv preprint
arXiv:1603.01360.

[Le and Mikolov, 2014] Le, Q. and Mikolov, T. (2014). Distributed representations of
sentences and documents. In International Conference on Machine Learning, pages
1188–1196.

[Li et al., 2016] Li, H., Min, M. R., Ge, Y., and Kadav, A. (2016). A Context-aware
Attention Network for Interactive Question Answering. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 927–935.

[Li et al., 2017] Li, J., Liu, H., Zhang, Y., and Xing, C. (2017). A Health QA with
Enhanced User Interfaces. In Proceedings - 13th Web Information Systems and
Applications Conference, WISA 2016 - In conjunction with 1st Symposium on Big
Data Processing and Analysis, BDPA 2016 and 1st Workshop on Information System
Security, ISS 2016, pages 173–178.

[Li and Roth, 2002] Li, X. and Roth, D. (2002). Learning Question Classifiers. COLING
’02 Proceedings of the 19th international conference on Computational linguistics, pages
1–7.

[Li and Roth, 2006] Li, X. and Roth, D. (2006). Learning question classifiers: The role
of semantic information. Natural Language Engineering, 12(3):229–249.

[Lin, 2003] Lin, D. (2003). Dependency-Based Evaluation of Minipar. Treebanks -
Building and Using Parsed Corpora, pages 317–329.

[Linckels and Meinel, 2005] Linckels, S. and Meinel, C. (2005). a Simple Solution for an
Intelligent Librarian System. In IADIS AC, pages 495–503.

136



[Litkowski, 2001] Litkowski, K. C. (2001). Syntactic clues and lexical resources in
question-answering. NIST SPECIAL PUBLICATION SP, (249):157–166.

[Liu et al., 2016] Liu, Y., Yi, X., Chen, R., and Song, Y. (2016). A Survey on Frameworks
and Methods of Question Answering. In Proceedings - 2016 3rd International Conference
on Information Science and Control Engineering, ICISCE 2016, pages 115–119.

[Lopez et al., 2012] Lopez, V., Fernández, M., Motta, E., and Stieler, N. (2012). Power-
Aqua: Supporting users in querying and exploring the Semantic Web. Semantic Web,
3(3):249–265.

[Lopez et al., 2013] Lopez, V., Unger, C., Cimiano, P., and Motta, E. (2013). Evaluating
Question Answering over Linked Data. Web Semantics: Science, Services and Agents
on the World Wide Web, 21:3–13.

[Lopez et al., 2007] Lopez, V., Uren, V., Motta, E., and Pasin, M. (2007). AquaLog: An
ontology-driven question answering system for organizational semantic intranets. Web
Semantics, 5(2):72–105.

[Madhu et al., 2017] Madhu, D., Jain, C. J., Sebastain, E., Shaji, S., and Ajayakumar,
A. (2017). A novel approach for medical assistance using trained chatbot. Proceedings
of the International Conference on Inventive Communication and Computational
Technologies, ICICCT 2017, (Icicct):243–246.

[Mahmood and Ricci, 2007] Mahmood, T. and Ricci, F. (2007). Towards learning user-
adaptive state models in a conversational recommender system. Proceedings of the 15th
Workshop on Adaptivity and User Modeling in Interactive Systems, ABIS, 7:373–378.

[Manning et al., 2014] Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and
McClosky, D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit.
Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

[Marcus et al., 1993] Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993).
Building a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

[Marginean, 2017] Marginean, A. (2017). Question answering over biomedical linked
data with Grammatical Framework. Semantic Web, 8(4):565–580.

[Maron and Kuhns, 1960] Maron, M. E. and Kuhns, J. L. (1960). On relevance, proba-
bilistic indexing, and information retrieval. Journal of the Association for Computing
Machinery, 7:216–244.

[Mazur et al., 2012] Mazur, M., Rzepka, R., and Araki, K. (2012). Chatterbots with
occupation - Between non task and task oriented conversational agents. AISB/IACAP
World Congress 2012: Linguistic and Cognitive Approaches to Dialogue Agents, Part
of Alan Turing Year 2012, pages 61–66.

137



[McCarthy et al., 2004] McCarthy, K., Reilly, J., McGinty, L., and Smyth, B. (2004).
On the Dynamic Generation of Compound Critiques in Conversational Recommender
Systems. In International Conference on Adaptive Hypermedia and Adaptive Web-Based
Systems, volume 3137, pages 176–184.

[McGinty and Smyth, 2003] McGinty, L. and Smyth, B. (2003). On the role of diversity
in conversational recommender systems. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2689:276–290.

[Mcginty and Smyth, 2003] Mcginty, L. and Smyth, B. (2003). Tweaking Critiquing. In
Proceedings of the Workshop on Personalization and Web Techniques at the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-03), pages 20–27.

[Mendes et al., 2011] Mendes, P. N., Jakob, M., García-Silva, A., and Bizer, C. (2011).
DBpedia spotlight: shedding light on the web of documents. In Proceedings of the 7th
International Conference on Semantic Systems - I-Semantics ’11, volume 95, pages
1–8.

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J.
(2013). Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems, pages 3111–3119.

[Miller et al., 1990] Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller,
K. J. (1990). Introduction to wordnet: An on-line lexical database. International
journal of lexicography, 3(4):235–244.

[Mintz et al., 2009] Mintz, M., Bills, S., Snow, R., and Jurafsky, D. (2009). Distant
supervision for relation extraction without labeled data. Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 2 - ACL-IJCNLP
’09, 2(2005):1003.

[Mishra and Jain, 2016] Mishra, A. and Jain, S. K. (2016). A survey on question an-
swering systems with classification. Journal of King Saud University - Computer and
Information Sciences, 28(3):345–361.

[Moldovan et al., 1999] Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Goodrum,
R., Girju, R., and Rus, V. (1999). Lasso: A tool for surfing the answer net. In TREC,
volume 8, pages 65–73.

[Moore et al., 2017] Moore, R. J., Arar, R., Ren, G.-J., and Szymanski, M. H. (2017).
Conversational UX Design. Proceedings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems - CHI EA ’17, pages 492–497.

[Moro et al., 2014] Moro, A., Raganato, A., and Navigli, R. (2014). Entity Linking meets
Word Sense Disambiguation: a Unified Approach. Transactions of the Association for
Computational Linguistics (TACL), 2(0):231–244.

138



[Nakashole et al., 2012] Nakashole, N., Weikum, G., and Suchanek, F. M. (2012).
PATTY: A Taxonomy of Relational Patterns with Semantic Types. EMNLP-CoNLL,
(July):1135–1145.

[Nam et al., 2017] Nam, S., Choi, G., and Choi, K.-s. (2017). SRDF: A Novel Lexical
Knowledge Graph for Whole Sentence Knowledge Extraction. In First International
Conference, LDK 2017, volume 10318, pages 315–329.

[Neidhardt et al., 2015] Neidhardt, J., Seyfang, L., Schuster, R., and Werthner, H. (2015).
A picture-based approach to recommender systems. Information Technology and
Tourism, 15(1):49–69.

[Nivre et al., 2007] Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S.,
Marinov, S., and Marsi, E. (2007). Maltparser: A language-independent system for
data-driven dependency parsing. Natural Language Engineering, 13(2):95–135.

[Nyberg et al., 2005] Nyberg, E., Frederking, R., Mitamura, T., Bilotti, M., Hannan,
K., Hiyakumoto, L., Ko, J., Lin, F., Lita, L., Pedro, V., and Schlaikjer, A. (2005).
JAVELIN I and II Systems at TREC 2005 JAVELIN I : Main Track Run. Analysis,
pages 1–12.

[Oh et al., 2017] Oh, J.-H., Torisawa, K., Kruengkrai, C., Iida, R., and Kloetzer, J. (2017).
Multi-column convolutional neural networks with causality-attention for why-question
answering. WSDM 2017 - Proceedings of the 10th ACM International Conference on
Web Search and Data Mining, pages 415–424.

[Palmer et al., 2005] Palmer, M., Gildea, D., and Kingsbury, P. (2005). The Proposition
Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–
106.

[Papaioannou and Lemon, 2017] Papaioannou, I. and Lemon, O. (2017). Combining
Chat and Task-Based Multimodal Dialogue for More Engaging HRI. Proceedings of
the Companion of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction - HRI ’17, pages 365–366.

[Park et al., 2014] Park, S., Shim, H., and Lee, G. G. (2014). ISOFT at QALD-4:
Semantic similarity-based question answering system over linked data. CEUR Workshop
Proceedings, 1180:1236–1248.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global Vectors for Word Representation. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

[Porcheron et al., 2017] Porcheron, M., Fischer, J. E., McGregor, M., Brown, B., Luger,
E., Candello, H., and O’Hara, K. (2017). Talking with Conversational Agents in
Collaborative Action. Companion of the 2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing - CSCW ’17 Companion, pages 431–436.

139



[Porter, 1980] Porter, M. (1980). An algorithm for suffix stripping. Program, 14(3):130–
137.

[Pradel et al., 2012] Pradel, C., Haemmerlé, O., and Hernandez, N. (2012). A semantic
web interface using patterns: the SWIP system. Graph Structures for Knowledge . . . ,
pages 172–187.

[Pradhan et al., 2004] Pradhan, S., Ward, W., Hacioglu, K., Martin, J., and Jurafsky, D.
(2004). Shallow Semantic Parsing using Support Vector Machines. Proceedings of the
Human Language Technology Conference/North American chapter of the Association
for Computational Linguistics annual meeting (HLT/NAACL-2004).

[Qiu et al., 2007] Qiu, X., Li, B., Shen, C., Wu, L., Huang, X., and Zhou, Y. (2007).
FDUQA on TREC2007 QA Track.

[Quasthoff et al., 2006] Quasthoff, U., Richter, M., and Biemann, C. (2006). Corpus por-
tal for search in monolingual corpora. Proceedings of the fifth international conference
on language resources and evaluation, pages 1799–1802.

[Quinlan, 1993] Quinlan, J. (1993). C4. 5, programs for machine learning. In In Proc.
of 10th International Conference on Machine Learning, pages 252–259.

[Radlinski and Craswell, 2017] Radlinski, F. and Craswell, N. (2017). A Theoretical
Framework for Conversational Search. Proceedings of the 2017 Conference on Confer-
ence Human Information Interaction and Retrieval - CHIIR ’17, pages 117–126.

[Ramshaw and Marcus, 1995] Ramshaw, L. A. and Marcus, M. P. (1995). Text Chunking
using Transformation-Based Learning. Natural language processing using very large
corpora, pages 1–13.

[Ranta, 2004] Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar
Formalism. The Journal of Functional Programming, 14(2):145–189.

[Razzaghnoori et al., 2018] Razzaghnoori, M., Sajedi, H., and Jazani, I. K. (2018). Ques-
tion classification in Persian using word vectors and frequencies. Cognitive Systems
Research, 47:16–27.

[Reilly and Reilly, 2004] Reilly, J. and Reilly, J. (2004). Thinking Positively-Explanatory
Feedback for Conversational Recommender Systems. Proceedings of the European
Conference on Case-Based Reasoning (ECCBR-04) Explanation Workshop, pages
115–124.

[Romeo et al., 2017] Romeo, S., da San Martino, G., Barrón-Cedeño, A., and Moschitti,
A. (2017). A multiple-instance learning approach to sentence selection for question
ranking. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 10193 LNCS:437–449.

140



[Rosenberg, 2016] Rosenberg, S. (2016). How To Build Bots for Messenger.
https://developers.facebook.com/blog/post/2016/04/12/bots-for-messenger/, visited
2018-06-08.

[Ruan et al., 2017] Ruan, H., Li, Y., Wang, Q., and Liu, Y. (2017). A Research on
Sentence Similarity for Question Answering System Based on Multi-feature Fusion.
Proceedings - 2016 IEEE/WIC/ACM International Conference on Web Intelligence,
WI 2016, pages 507–510.

[Rubin et al., 2010] Rubin, V. L., Chen, Y., and Thorimbert, L. M. (2010). Artificially
intelligent conversational agents in libraries. Library Hi Tech, 28(4):496–522.

[Ruseti et al., 2015] Ruseti, S., Mirea, A., Rebedea, T., and Trausan-Matu, S. (2015).
Qanswer-enhanced entity matching for question answering over linked data. In CLEF
(Working Notes).

[Saany et al., 2017] Saany, S. I. A., Mamat, A., Mustapha, A., Affendey, L. S., and
Rahman, M. N. A. (2017). Syntax and Semantics Question Analysis Using User Mod-
elling and Relevance Feedback. International Journal on Advance Science Engineering
Information Technology, 7(1):329–337.

[Sammut and Webb, 2010] Sammut, C. and Webb, G. I., editors (2010). F1-Measure,
pages 397–397. Springer US, Boston, MA.

[Sansonnet et al., 2006] Sansonnet, J.-P., Leray, D., and Martin, J.-c. (2006). Architec-
ture of a Framework for Generic Assisting Conversational Agents. In International
Workshop on Intelligent Virtual Agents, number January 2014, pages 145–156.

[Schmid, 1994] Schmid, H. (1994). Probabilistic part-o-speech tagging using decision
trees. In Proceedings of the International Conference on New Methods in Language
Processing, pages 1–9.

[Schwarzer et al., 2016] Schwarzer, M., Düver, J., Ploch, D., and Lommatzsch, A. (2016).
An interactive e-government question answering system. In CEUR Workshop Proceed-
ings, volume 1670, pages 74–82.

[Sebastiani, 2002] Sebastiani, F. (2002). Machine learning in automated text categoriza-
tion. ACM computing surveys (CSUR), 34(1):1–47.

[Setiaji and Wibowo, 2017] Setiaji, B. and Wibowo, F. W. (2017). Chatbot Using a
Knowledge in Database: Human-to-Machine Conversation Modeling. Proceedings -
International Conference on Intelligent Systems, Modelling and Simulation, ISMS,
pages 72–77.

[Shekarpour et al., 2015] Shekarpour, S., Marx, E., Ngonga Ngomo, A. C., and Auer,
S. (2015). SINA: Semantic interpretation of user queries for question answering on
interlinked data. Journal of Web Semantics, 30:39–51.

141



[Shiga et al., 2017] Shiga, S., Joho, H., Blanco, R., Trippas, J. R., and Sanderson, M.
(2017). Modelling Information Needs in Collaborative Search Conversations. Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval - SIGIR ’17, pages 715–724.

[Shimazu, 2002] Shimazu, H. (2002). ExpertClerk: A conversational case-based reasoning
tool for developing salesclerk agents in e-commerce webshops. Artificial Intelligence
Review, 18(3-4):223–244.

[Song et al., 2017] Song, D., Oh, E. Y., and Rice, M. (2017). Interacting with a Con-
versational Agent System for Educational Puroposes in Online Courses. In 10th
International Conference on Human System Interactions (HSI), pages 78–82.

[Song et al., 2015] Song, D., Schilder, F., Smiley, C., Brew, C., Zielund, T., Bretz, H.,
Martin, R., Dale, C., Duprey, J., Miller, T., and Harrison, J. (2015). TR Discover: A
Natural Language Interface for Querying and Analyzing Interlinked Datasets. Proceed-
ings of the ISWC 2015, Part II, pages 21–37.

[Speck and Ngomo, 2017] Speck, R. and Ngomo, A.-C. N. (2017). Ensemble Learning of
Named Entity Recognition Algorithms using Multilayer Perceptron for the Multilingual
Web of Data. Proceedings of the Knowledge Capture Conference on - K-CAP 2017,
pages 1–4.

[Srihari and Li, 1999] Srihari, R. and Li, W. (1999). Information Extraction Supported
Question Answering. CYMFONY NET INC WILLIAMSVILLE NY, pages 1–6.

[Srihari and Li, 2000] Srihari, R. and Li, W. (2000). A question answering system
supported by information extraction. Proceedings of the sixth conference on Applied
natural language processing -, pages 166–172.

[Šukys et al., 2017] Šukys, A., Nemuraitė, L., and Butkienė, R. (2017). SBVR based
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Appendix A: Question Answering
System Surveys

“A Survey on Frameworks and Methods of Question Answering" ([Liu et al.,
2016]) give an overview of different approaches commonly used in QAS development.
They group the methods and tools into different groups of application: (i) question
classification, (ii) question similarity, (iii) answer extraction, (iv) answer scoring and (v)
question translation.

Question classification: the authors state that classic approaches stemming from pregen-
erated linguistic patterns are not flexible enough to provide comparable results to current
machine learning based approaches, which rely on extracting features from an input
text and a subsequent classification based upon that features using machine learning
algorithms like support vector machines, k-nearest-neighbour or Bayesian classifiers.

Question similarity: if the QAS is based upon FAQs or upon a community answering
questions (community based question answering, or CQA), then a common approach
is to calculate a similarity measure between a users question and the already answered
questions in the data source. If an already answered question can be found with a
similarity measure above a certain threshold, the existing answer is presented to the user.
The authors present different approaches, based upon the extraction and comparison
of (i) syntactic features and (ii) semantic features. Syntactic features include word
frequencies, word order, sentence length and dependency structure, semantic features
include latent topic distributions, synonymous relations, is-a relations and semantic paths.
These features can be evaluated using statistical or machine learning approaches.

Answer extraction: depending on the data source used by the QAS, different strategies
are used to extract a fitting answer. The authors compare the tradeoffs between small,
closed domain data sources and big, open domain data sources like Wikipedia, with the
latter providing higher recall but lower precision, and the former providing good precision
but potentially lower recall. Also depending on the data source and the type of question,
techniques like text retrieval and information extraction are used to extract either facts
or similar questions with connected answers.

Answer scoring: if the QAS identifies more than one potential answer, they are called
“answer candidates” and must be scored, with the highest scoring candidate being
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presented to the user. The authors list different approaches like ranking based on ordinal
similarity measures, relevance of the data source, occurrence frequency of the answer
candidate and professionality level of the answer.

Question translation: if the QAS uses a structured data source like a relational database
or linked data, the question must be translated into a formal language like SQL or
SPARQL. These translated questions are used to query the data source for a fitting
answer. The commonly used technology is semantic parsing.

“Survey on Challenges of Question Answering in the Semantic Web" ([Höffner
and Lehmann, 2017]) give an overview of the most common challenges faced when
implementing a QAS, and the most common ways to confront these challenges. The
authors suggest that the implementation of a QAS is a non-trivial task, as it combines
and mixes “NL techniques on top of traditional IR systems”. They identify two main
stages which semantic question answering system are typically composed of: (i) query
analyzer and (ii) retriever. The former “generates or formats the query that will be used
to recover the answer at the retrieval stage” [Höffner and Lehmann, 2017]. Most of the
challenges identified fall in the field of natural language understanding.

Lack of mature and/or commonly available methods and tools: for some of the techniques
applied in the query analysis phase, such as part-of-speech tagging, mature methods
and tools exist, while for others, such as answer candidate disambiguation, they are not
commonly available or domain-specific. Therefore high quality systems have to implement
a lot of the necessary components from scratch.

Lexical gap: the same meanings can be expressed in several ways, using disjunct vo-
cabularies. Common solutions are: query expansion: by using synonyms from a lexical
database (e.g. WordNet [Miller et al., 1990]), alternative versions of the original queries
are generated and used in processing steps further down the pipeline pattern matching: by
using pattern libraries like PATTY [Nakashole et al., 2012] or BOA [Gerber and Ngomo,
2011], common semantic patterns in the original query can be identified and mapped
to semantic frames, which can be used to easily identify RDF triples in a knowledge
base. string similarity functions: after normalization of the input words (e.g. stemming,
special character transliteration), similarity functions can be applied to identify matching
entities or relations in a knowledge base. Such similarity functions are Jaro Winkler,
largest common substring or Levenshtein Automatons.

inferring the meaning via textual entailment: an existing knowledge base of world
knowledge is used as the source for entailment, where synonyms or hyponyms are used
to extend the facts from the world KB. An example would be that the word KB holds
the fact “birds fly”. Using a lexical database, the system can answer the question “can
sparrows fly?” by inferring from the lexical relation of “sparrows” being a hyponym of
“bird”, that sparrows can indeed fly.

Ambiguity: contrary to the problem raised by the lexical gap, where morphologically
different phrases or words can have the same meaning, ambiguity is the issue of morpho-
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logically similar phrases or words having different meaning, depending on the context.
The authors present the following common solutions:

• Corpus-based methods: based upon the distributional hypothesis (i.e. that
words that share similar contexts also share similar meanings), an existing text-
corpus is used to calculate contextual features. This contextual information is
used to calculate similarities between phases or words. Methods used to calculate
those contextual features are, amongst others, words within a defined window,
part-of-speech tags and parse-tree structures. More complex approaches use context
from outside the question, such as a user’s previous utterances

• Resource-based methods: taking advantage of RDF-based data sources, the
resources to be disambiguated are compared to candidate concepts from the knowl-
edge base, and are assigned similarity scores. Methods used to identify the most
fitting candidates are, amongst many others, hidden Markov models or Markov
logical networks

Multilingualism: knowledge is expressed in different languages, which might be different
from the language the question is formulated in. Linked data can be queried using language
tags, but unstructured data sources are usually available in a single language only. To
bridge this language gap, the authors report of two approaches used in question answer
systems: multilingual lexical databases: using a database to translate the query keywords
into the language of the data source, e.g. the German language lexical database GermaNet
[Hamp and Feldweg, 1997], as part of the multilingual lexical database EuroWordNet
provides word- and concept-level mappings to several languages like English, French,
Spanish and Italian. wikipedia-based: use existing language mappings from Wikipedia
automated translation of query parts: only translates parts of a query and use those to
infer the translations of the remaining entities using a knowledge base

Complex queries: questions where multiple facts have to have to be found to correctly
answer the question, such as nested questions, or questions with modalities, filters or
aggregations often cause problems. Approaches to solve this are, amongst others:

• Using ontology-specific lexica: a prebuilt lexicon to resolve quantifiers, com-
parisons and superlatives focus extraction: the identification of the question focus
to predict the lexical answer type. This can be used to narrow down the search
space

• Subtree-matching: matching subtrees of the questions parse-tree to concepts
from the knowledge base translation into logic form: translating the query into an
intermediary logical form and translating that into a query in a structured query
language
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Distributed knowledge: sometimes the facts necessary to answer a question are distributed
amongst several different linked knowledge bases. To efficiently query multiple knowledge
bases and merge the results, the authors list, amongst others, those approaches:

• Query decomposition and substitution: complex queries are decomposed into
subqueries using co-reference resolution, aligned using custom ontologies and used
to query the separate knowledge bases

• Result consolidation: using similarity metrics to rank candidate entities from
different knowledge bases and consolidating them to formulate an answer

Procedural, temporal and spatial questions: heavily summarized as “how”-questions
(procedural), “when/how long”-questions (temporal) and “where/how far”-questions
(spatial), these types of questions require processing beyond fact retrieval from a data
source. Some approaches used to answer questions of these types are presented by the
authors:

• Procedural question answering: using predefined patterns of part-of-speech
tags to identify procedural texts from an unstructured data source

• Temporal question answering: (i) the application of Allen’s Interval Based
Temporal Logic [Allen and Hayes, 1989] to answer questions by having an under-
standing of the concepts “before” and “after”, (ii) using the implicit spatial and
temporal context of the user to resolve ambiguities

• Spatial question answering: (i) using commonly used RDF schema, expressing
locations as 2-dimensional geo-coordinates, and modeling relationships on top of
them, (ii) enriching of named entity recognition with metadata such as nearness,
inclusion or crossing

Templates: to answer complex questions which result in complex SPARQL queries, a
question answering system needs to use sophisticated approaches. The authors distinguish
two kinds of approaches: (i) template based and (ii) template-free approaches. The
former maps the input to either manually or automatically created query templates,
whereas the latter try to build the SPARQL queries based on the syntactic structure
of the input. The authors present, amongst others, the following approaches to this
challenge:

• Graph pattern templates: using information about the question type, the
named entities and part-of-speech tags present in the question, a graph pattern
template is generated and mapped to resources using lexical and pattern databases
like WordNet and PATTY, as well as similarity measures. The graph pattern
combinations are then converted to SPARQL queries and evaluated against the
knowledge base
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• Manually created templates: for closed, narrow domains, query templates are
manually created and questions are mapped onto them

• Assignment of semantic roles: assigning semantic labels like “variable”, “entity”
or “relation” to words in the query, and creating SPARQL queries from the resulting
set of labeled words

“Question Answering Systems: Survey and Trends" ([Bouziane et al., 2015])
give an overview of current trends and existing question answering systems to lay down
a foundation to build an Arabic language question answering system of their own. The
authors claim that the type of data source is the main influencer on the quality and
architecture of a question answering system, and that they “are most effective to interact
with structured knowledge bases”. They distinguish between question answering systems
for the web of documents and unstructured text on the one side, and question answering
systems for the web of data on the other. While the former is a shared issue between
information retrieval and natural language processing, the latter is mainly focused on
transforming a natural language input into a query in a structured language. The authors
provide an extensive list of different question answering systems, grouping them into
natural language interfaces to databases (NLIDB) and IR-based systems in one group,
and ontology and web-of-data-based systems in the other, giving a very basic introduction
to the techniques used by each system. These techniques listed are, amongst others:

• Question classification: identifying the type of question defines the way an
answer is searched for and presented

• Intermediate language representation: convert a natural language input into
an intermediate formal representation, which is used to create queries in a structured
query language

• Named entity recognition: identifying tokens within the text that represent a
certain class or concept, e.g. persons, locations or dates

• Expected answer type: identifying the lexical type of the answer and mapping
it to existing classifications of retrieved named entities

• Lexical databases: using the classification information and relations to other
words to extend the initial query

In the context of their goal of implementing an Arabic language question answering
system, the authors come to the conclusion that maturity of natural language research
for a specific language is a primordial factor for the development of a question answering
system.

“Core techniques of question answering systems over knowledge bases: a
survey" ([Diefenbach et al., 2017]) give a very thorough and detailed overview of
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question answering over linked data, especially focusing on question answering systems
that participate in the QALD challenges [Lopez et al., 2013]. They describe the datasets
that are used in these challenges, like DBPedia [Auer et al., 2007] or Drugbank [Knox et al.,
2011], and what metrics are used to rank the participants. An total number of 26 question
answering systems participating in a QALD challenge is presented and the techniques
used are listed in tabular form. The authors split the question answering process into
four distinct tasks: (i) question analysis, (ii) phrase mapping, (iii) disambiguation and
(iv) query construction. For each of the analyzed systems the techniques used in each
tasks in the question answering process are listed.

Question analysis: the syntactic analysis of the user utterance, this task determines the
segmentation of a question, as well as identifies if such segments correspond to a certain
subject or object instance and if and how these segments form any kind of dependency
structure. The authors list the following key techniques used in this task:

• Named entity recognition (NER): it is described the identification of “contigu-
ous spans of tokens that refer to a resource”. The authors mention several strategies
that are implemented by different question answering systems, these strategies
are: (i) using natural language processing NER tools, e.g. the Stanford CoreNLP
NER tool [Manning et al., 2014], to identify named entities in the question, (ii) an
n-gram strategy, i.e. trying to map n-grams from the question to entities in the
underlying knowledge base, or (iii) using entity linking tools, which do not only
identify spans of tokens in the question, but also link them to existing entities in
the underlying knowledge base, e.g. DBPedia Spotlight [Mendes et al., 2011] or
AIDA [Yosef et al., 2011]

• Part-of-speech tagging: it is described as the mapping of phrases to subject or
object instances, properties or classes, which enables for better mapping to resources
inside a knowledge base. The authors mention two strategies to implement POS-
tagging, (i) handmade rules, i.e. manually created patterns like regular expressions
and predefined question templates (e.g. using the GATE NLP tool [Cunningham
et al., 2001]), or (ii) learning rules using machine learning, i.e. using an manually
annotated corpus to train a POS tagging model, using annotation like the CoNLL
IOB format [Ramshaw and Marcus, 1995] and tools like the Stanford CoreNLP
POS tagger

• Dependency-parsing: this is the identification of the relations of chunks of a
question with each other. Different strategies towards that goal are listed by the
authors, like, amongst others, (i) phrase-structure-grammar based strategies, where
the parser breaks down a sentence into its constituent parts and chunking them
together, (ii) dependency-grammar based strategies, where the parser identifies and
classifies the kind of the dependencies of each word. Dependency trees can be used
to extract relations by (a) searching for the biggest connecting subtree which can
be mapped to a property, or (b) searching for the shortest path between named
entities. Stanford CoreNLP provides tools for both these strategies. Additionally,

152



the authors also mention a strategy merging the former two approaches, identifying
dependencies between phrases, resulting in a directed acyclic graph, rather than a
tree

Phrase mapping: in this step tries to find sets of resources from the underlying knowledge
base which correspond to one or more words in the question with a high probability. The
authors present an overview of techniques to provide this functionality:

• Knowledge base labels: using the RDF1 (Resource Description Framework)
property “rdfs:label” to find entities in the knowledge base. These labels are human-
readable versions of of a resource and can be used to find matches using search
engines like Virtuoso2 or Apache Lucene3. While this approach is not without
problems, all question answering systems the authors have analyzed are using some
form of phrase mapping.

• String similarity: in case of misspelled words, string similarity measures can be
applied to still find viable labels in the knowledge base. There are many different
distance or similarity measures like Levenshtein distance or Jaccard distance, and
some search engines like Apache Lucene offer this functionality via fuzzy searches.
Stemming is also a possible solution to this issue, allowing different lexeme of the
same word being correctly matched

• Semantic similarity: also referred to as the “lexical gap”, an issue arises when
two words share the same meaning, but have different forms, i.e. they only share
a semantic relationship. The authors present different approaches to solve this
problem, amongst others via (i) lexical databases like WordNet, which store semantic
relationships between words, like synonymy, hyponymy and hypernymy, (ii) via
redirects in the RDF schema, e.g. “owl:sameAs” links, via (iii) pattern databases
like PATTY, which store different forms of the same relations, or via (iv) using
big text corpora, e.g. by extracting facts using tools like ReVerb [Fader et al.,
2011], TEXTRUNNER or WOE, or by extracting distributional information with
word embeddings like word2vec [Mikolov et al., 2013] or Explicit Semantic Analysis
(ESA) [Gabrilovich and Markovitch, 2007], where a metric like the cosine similarity
can be used to infer semantic similarity

Disambiguation: the authors describe two distinct ambiguity problems that can arise.
First, the case that segmentation in the question analysis task could lead to different
results, where for example the segmentation and dependency parsing can return different
results. The second type describes the case when during the phrase mapping phase
several different candidate resources are found in the underlying knowledge base, and the

1https://www.w3.org/RDF/
2https://github.com/openlink/virtuoso-opensource
3https://lucene.apache.org/
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question answering system needs to decide which resource is the best fit. The authors
list, amongst others, the following approaches to solve these problems:

• Local disambiguation: to decide which resource is the best fit, the system needs
to rank them. Two features are mainly used for this task: (i) string or semantic
similarity of the phrase to the resource label, and (ii) a type consistency check
between properties and their attributes. While the first feature is used to rank the
results, the second is used to exclude those resources that are not of the correct
type. All systems the authors analyzed use this kind of disambiguation

• Graph Search: in this approach the graph structure of the underlying knowledge
base is used to disambiguate the candidate resources. The authors write about two
main strategies: (i) tries to disambiguate the resources under the assumption that
a question can be translated into a graph, and that the correct resources from the
knowledge base have to form a graph of similar shape, while the second strategy (ii)
is only applying phrase mappings to named entities, and searches the underlying
knowledge base for all relations and properties that are connected to the candidate
mappings, looking for string similarities in the original natural language query. If
a connected relation matches a relational phrase from the query, the candidate
resource is assumed to be a correct mapping. The authors claim that while he first
approach has higher precision, the second has a higher recall, as more potential
resources from the underlying knowledge base are used for comparison, and that for
both of the strategies performance becomes an issue if ambiguity becomes too high

• Hidden Markov models (HMM): this approach assumes that the words of a
question resemble an observable stochastic process, while the candidate resources
from the underlying knowledge base are the states of a hidden stochastic process,
explaining the observations. The correct mappings form the hidden process in such
a way, that they produce the most probable explanation of the observations. This
can be calculated using the Viterbi algorithm

• Integer linear programming (ILP): in this approach the assignment of the
correct resources to their corresponding phrases is formulated as an optimization
problem, and solved using an integer linear programming solver.

• Markov logical network (MLN): in this approach the assignment of the correct
resources is - similar to the ILP approach - formulated in such a way, that a MLN
can be trained and applied to form phrases and find fitting resources.

• Neural nets: training a perceptron using different features like label similarity and
resource popularity, the output of this neural network is maximal for the correct
mapping

Query construction: this is the task where the question answering system needs to
construct a SPARQL query to retrieve answers from the underlying knowledge base.
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The authors describe a problem they call the “semantic gap”, which refers to the fact
that information in the underlying knowledge base might be encoded differently as could
be deduced from the question alone. A question answering system therefore needs to
implement a strategy to bridge this gap to be able to give answers in such cases. The
authors present several different approaches to solve this:

• Templates: this refers to the use of predefined queries with slots to be filled. They
can range from fully predefined queries covering a specific question type, or smaller
templates, which are combined to generate the final query. These approaches are
mostly limited to a small number of linguistic input triples

• Using information from question analysis: using the information gathered
during segmentation, phrase matching, and disambiguation, intermediary represen-
tations as linguistic triples can be constructed from the input, using, amongst other
features, (i) the associated resources, (ii) the order of the resources and relations,
(iii) part-of-speech tags or (iv) dependency trees. These features are used to deduce
SPARQL queries. The authors present many different approaches to achieve this,
like, amongst others, (i) creating graphs where the arguments are represented by
the vertices, and relations are represented by edges, using this graph to create the
SPARQL query, or (ii) very much like in disambiguation, searching the dependency
tree for sub-trees corresponding to resources. According to the authors, all of these
approaches suffer from the same shortcoming, as they assume that it is possible to
construct a working SPARQL query from the structure of the query alone, without
knowing how the information is encoded in the underlying knowledge base

• Semantic parsing: this refers to a particular kind of parser, providing semantic
interpretations of an input sentence. All of the approaches listed by the authors are
grammar-based, but differ in the kind of grammar they use, like, amongst others, (i)
GF grammars, (ii) context-free grammars, (iii) combinatory categorical grammars
or (iv) lexical tree-adjoint grammars. These grammars are used to convert the
input into e.g. lambda calculus, from which the SPARQL query is generated. The
authors argue that while these approaches are very powerful in the sense that one
can immediately generate a query from a given input, they suffer from the limitation
that for every item a corresponding semantic representation must be available,
which results in a large number of rules and different semantic representations.
Question answering systems using this approach try to mitigate this issue by using
machine learning approaches to train representations using an annotated corpus,
or to use part-of-speech tags to create default-representations for lexical items not
covered by specific rules

• Machine learning: using the features extracted during the question analysis and
phrase mapping phase, machine learning approaches can be used to disambiguate the
candidate resources and build valid SPARQL query representations of a question.
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• Semantic information: using only the semantic information retrieved during
phrase mapping, in this approach the system tries to create a valid graph using all
mapped classes and resources as vertices, and all mapped relations as edges. All
the possible graphs are translated into SPARQL queries and evaluated upon the
underlying knowledge base

Querying distributed knowledge: this refers to a scenario where knowledge bases are
not already interlinked and might refer to the same entities using different URIs. The
question answering system has to identify equivalent resources in the different knowledge
bases to able to retrieve connected information which might be available only in a specific
knowledge base. According to the authors this is usually solved by retrieving results from
all available knowledge bases and comparing the labels, creating an aligned set of URIs
which can be used to query for additional information. The authors also note that in
these scenarios scalability is a major problem.

The authors conclude that most systems analyzed share many common techniques, and
the teams behind the development of those systems usually concentrate on only a few
components, leaving out the others. They also make the point that the used techniques
can hardly be compared, as it is impossible to fairly judge the performance of a small
component in a monolithic pipeline, as its impact on the overall performance is hard to
measure and its local performance is highly dependent on the other components in the
pipeline, and - as an example - high recall or precision measures are also dependent on
the purpose of a component. To provide better comparability, the authors suggest the
use of a modular architecture.

“A survey on question answering technology from an information retrieval
perspective" ([Kolomiyets and Moens, 2011]) gives an overview of information
retrieval techniques commonly used in question answering, as well as a general introduction
into the field. The authors provide a short historic overview of the developments in
the question answering field in the last 50+ years, as well as a typical architecture of a
question answering system. The main methods presented by the authors are:

Bag-of-words representations: with this approach the question is considered a - sometimes
preprocessed - set of words, without taking into accord any grammatical features. Multiple
ways of using this kind of representation to identify matches are presented: (i) Boolean
models, where an exact match is searched for, (ii) algebraic models where the bag-of-
words representation is interpreted as a p-dimensional vector, where p is the size of the
vocabulary, and similarity measures like cosine similarity can be calculated between two
representations, or (iii) probabilistic models, such as the language model. The authors
suggest that using lexical databases like WordNet can improve the performance of such
approaches.

Morpho-syntactic analysis: this subsummizes a whole group of approaches where the
word form and syntactic structure of a sentence are used to gather information about the
input. The authors present the following approaches: (i) stemming and lemmatization,
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where the former reduces a word to a “stem” which does not change during flexation,
while the latter reduces words to its base lexeme, (ii) n-grams to represent the structure
of a sentence, (iii) part-of-speech tags to detect the syntactic word class, (iv) chunking,
where sentences are split up into base noun- and verb-phrases, and (v) dependency trees,
where a sentence is broken up into its constituents and their dependencies are represented
in tree form. These approaches can be used to calculate similarities between sentences,
e.g. by using syntactic tree kernels or tree edit models.The authors also note that the
application of morpho-syntactic analysis approaches has been proven to results in an
increased performance, while also increasing computational complexity.

Semantic classification of the expected answer type: in this approach one assumes that the
question provides additional information about the type of information it requests. The
task of this approach is to identify this type. The authors present several implementations
of this, mostly based on taxonomies which predefine the classes an expected answer type
(EAT) can be classified as. These taxonomies range from 27 classes in flat hierarchy to
taxonomies with 200 different classes and others with multiple hierarchies. The most
famous taxonomy for expected answer type classification is the hierarchical taxonomy by
Li and Roth [Li and Roth, 2006], with 6 coarse-grained main classes, and 50 fine-grained
subclasses. Methods to identify the EAT class are also presented: (i) manually created
grammars, or (ii) machine learning methods like tree learners, support vector machines,
maximum entropy classifiers and conditional random fields. The authors note that
machine learning approaches have become more popular, as hand-crafting of complex
grammars is time consuming and requires rule-writing skills, while annotating a training
dataset is also time-consuming but requires less qualification. The classification itself can
be interpreted in a deterministic or probabilistic way, where the latter uses a distribution
over the possible classes. Furthermore, the application of EAT classification has shown
to significantly improve question answering performance.

Semantic classification of the constituents: in this approach the constituents of a question
are mapped to slots within a semantic frame, a so-called “case”, mostly determined by the
main verb of the sentence. The authors mention two tools that provide the functionality
for using semantic frames, namely FrameNet [Baker et al., 1998] and PropBank [Palmer
et al., 2005]. The mappings created using this this technique can be used to constrain
the number of potential answer sentences, and the mappings can be used to find matches
without the actual lexical instantiations. The authors also suggest the use of a logical
retrieval model to infer the answer to a query. The application of semantic frames has
shown to increase performance.

Identification of discourse relationships: the information need of the user might not be
properly defined by only one question, but my multiple consecutive ones, where the user
refines or broadens the initial question. But discourse relationships are not only limited
to the user input, but also the data source, where information might be split across
several sentences, and it has to be identified in a very similar way. The authors refer to
“noun phrase co-reference resolution”, where pronouns are replaced by the noun they are
referring to. This approach can be extended by not only taking into account equivalence,
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but also concepts like hyper- or hyponymy and spatial or temporal references. The
authors note that at the time of writing the survey, the field of co reference resolution
still needs substantial research to obtain accurate results.

Translation into a Structured Language: this describes the task of the translation of a
natural language input into a query in a structured query language, which is used to
gather an answer from a structured data source like a relational database. Techniques
like (i) semantic role labeling or (ii) sets of symbolic rules and mappings can be used to
create such queries.

Translation into and reasoning with a logical representation: in this approach, which
is similar to the translation into a structured query language, the input is translated
into a logical representation, like, amongst others, (i) first order logic, (ii) meaning
representation language (MRL) [Blackburn and Bos, 2005], (iii) lambda calculus or
(iv) direct natural language representations. To translate natural language sentences
into these representations often integrates semantic role labeling, which relies on (i)
handwritten symbolic rules, or (ii) machine learning, and there especially on probabilistic
relational learners. A major advantage of such a representation is that if the question as
well as the answers are represented using a logical formalism, the relevance of an answer
can easily be deduced using current theorem prover models, even if the information is
spread across several data sources. The authors note that this kind of approaches have a
large potential to increase performance, but at the cost of computational complexity.

The authors conclude that with the advances made from moving from simple bag-of-words
models towards complex structured or logical queries obtained from natural language
input, the differences between closed-domain systems and open-domain systems become
less pronounced.

“A survey on question answering systems with classification ([Mishra and
Jain, 2016])": in this survey the authors use criteria deduced from a literature survey
to classify existing question answering systems to provide a basis upon which the current
successes and future needs towards question answering systems should be identified.
These criteria are: (i) application domain, (ii) question type, (iii) applied text analysis,
(iv) data source type, (v) data source characteristics, (vi) matching functions and retrieval
models, and (vii) generated answer forms. Based upon these criteria, the authors propose
the following classification:

Application domain: this classifies a question answering system based on the application
domain for which the system can answer questions. The authors propose the distinction
into:

• General domain question answering systems: such systems are able to answer
questions from practically any domain. The authors note that such systems are
more suitable for casual users, as they do not require the use of domain-specific
vocabulary, nor do they require any prior preparation by the user, however, the
answer quality is usually low and unsatisfactory for expert users
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• Restricted domain question answering systems: such systems answer ques-
tions from one specific domain, e.g. medicine or patents, using only domain specific
data sources. The authors note that such systems offer more utility for expert users,
and the quality of answers is usually high. This also means however, that the such
a system is only able to answer a limited number of questions. The authors also
note that while attempts exist to integrate restricted domain systems into general
domain systems, the problem of identifying when to hand a question over to a
specific sub-system remains unsolved

Question type: this differentiates question answering systems by the types of questions
they are built to answer. The correctness of the classification of the question type has a
massive impact on the question answering system’s performance. The authors propose
five different categories:

• Factoid questions: this refers to questions that can be answered with a fact of a
certain type. Usually these are questions starting with “what”, “when”, “which”
or “who”. These systems usually provide a satisfactory performance, as, for one,
the answers are usually named entities which can be identified via named entity
recognition (NER), and large and structured data sources like Wikipedia can be used
as a fitting data source. However, these systems rely on the correct classification of
the expected answer types, which on itself is a research topic in the field of question
answering systems

• List questions: this refers to questions that expect a set of entities of facts as an
answer. They can be interpreted as a series of consecutive factoid questions, where
the previous answers are removed from the set of possible answers. A lot of the
techniques used in factoid question answering can also be applied here„ however, it
remains a problem to find a threshold to define the number of items that should be
returned

• Hypothetical questions: this refers to questions that ask for information related
to a hypothetical event, e.g. “what would happen if. . . ”. But while expert users
might like to use such a system to find optimal answers for hypothetical questions,
the implementation of a question answering system capable of answering these
types of questions is cumbersome, as it requires a data source upon which the
system has to be able to infer the answers, rather than just extract is

• Causal questions: this refers to the type of questions which ask for the cause for
a certain fact or event, e.g. “why did. . . ”. The authors note that answering those
kinds of questions is quite problematic, as for one it is hard to find a the correct
reason(s) to complex questions, and that current models suffer from problems
originating from their bag-of-words retrieval models

• Confirmation questions: this refers to questions expecting a “yes” or “no”
answer. Similar to answering hypothetical questions, this requires a question
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answering system to be able to reason over their knowledge base, which requires a
higher level of knowledge acquisition and retrieval techniques, which are still under
development

Applied text analysis: the authors propose a classification based upon the types of analysis
done on questions in a question answering system. They present the following categories:

• Morphological analysis: this is the type of analysis which focuses on the surface
forms of words. Through stemming and lemmatization morphemes and lexeme
are extracted. While this analysis is required for effective searches, it also takes
away semantic information when words share the same stemmed word, but are
semantically different

• Syntactic analysis: this is the analysis of the grammatical construction of words
in a sentence. An examples for such an analysis is the generation of parse trees.
The authors note that syntactic analysis can improve performance by reducing the
search space when looking for a fitting answer, as it takes into account not only the
surface form of a word but also extends it with information about its role within
the sentence, however, Incorrect assignments are an issue here

• Semantic analysis: this is the deduction of meaning of questions based on the
words. According to the authors, usually the parse trees from the syntactic analysis
are used to interpret the possible meaning. One task in the semantic analysis is
semantic role labeling. The authors note that while the implementation of such
techniques results in more effective searches and solves the problem of finding the
expected answer type, the techniques (e.g. named entity recognition, part-of-speech
tagging) used to gather semantic information are limited to the sentence level, and
are also a source of potential problems.

• Pragmatic and discourse analysis: this is the kind of analysis that takes into
account the context of an utterance, where previous utterances are also taken into
account. The authors list some techniques used in the course of this analysis, (i)
anaphora resolution, where, e.g. the relations of pronouns to proper nouns are
resolved, and (ii) discourse structure recognition, which identifies logical connections
between parts of a text. According to the authors this kind of analysis is necessary
to be able to answer complex questions and to deduce the meaning of a text,
but current implementations are still far from ideal, and problems from previous
analysis steps like named entity recognition and part-of-speech tagging make it
even harder to correctly analyze

• Expected answer type analysis: in this analysis the question answering system
determines the entity type of an answer based on the category of the question. The
authors note that this is helpful for factoid questions, but does not provide helpful
insights in causal and procedural questions
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• Focus recognition: in this step the question answering system tries to identify
the parts of the question that are most relevant for finding the correct answer

Data source type: the authors propose three categories, (i) structured data sources, (ii)
semi-structured data sources and (iii) unstructured data sources.

• Structured data sources: data is structured into semantic sets of entities,
connected with relations. The description of all entities and relations is called a
schema, and a structured data source can be queried using a corresponding query
language. The authors note that while structured data sources are more reliable
and do not require complex natural language processing on their end, but are also
usually limited and hard to construct, and there are also many different formats
and query languages

• Semi-structured data sources: this refers to data formats where the schema
and data is not separated. According to the authors this kind of data representation
provides a high level of flexibility, but building such data sources is labor intensive,
and references are hard to reconcile

• Unstructured data sources: this refers to all data sources without any rules.
Usually this means to heaps of text documents. Using this kind of data source
requires the application of natural language processing and information retrieval
techniques. The authors note that while data sources like this are easy to update,
they also cause problems with paraphrasing and reliability.

Data source characteristics: data sources can further be classified by other features
besides their structure. The authors propose five such characteristics, (i) the source size,
(ii) the language the data is available in, e.g. German, English, etc., (iii) the heterogeneity
of the data, meaning the number of different data formats used, (iv) the genre and (v)
the media, i.e. text, image, video, etc..

Matching functions and retrieval models: here the authors propose a classification based
on the types of matching functions used in the different retrieval models. They propose
six different categories, (i) set theoretic models, (ii) algebraic models, (iii) probabilistic
models, (iv) feature based models, (v) expected answer type analysis, and (vi) conceptual
graph based models.

• Set theoretic models: treats documents and sentences as sets of words or phrases,
and the matching is done by carrying out operations on sets

• Algebraic models: refers to models using vector or matrix representations of
texts, calculating matching scores as scalar values

• Probabilistic models: these models treat “documents and questions in terms of
probability relevance”
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• Feature models: refers to models texts are represented as vectors consisting of
different features extracted by feature functions, matching is done via calculation
of a scalar matching score

• Conceptual graph based models: representing a sentence as a graph, matching
is done by means of graph similarity measures

Forms of generated answers: The authors differentiate between (i) extracted answers,
and (ii) generated answers, where the former refers to the retrieval of whole passages
of text, where the latter refers to the construction of answer sentences based upon the
findings of the question answering system, e.g. through reasoning.

The authors conclude that not all factors can be categorized, as they are hidden, like the
skill of the user who is asking the questions. This could be solved by using conversational
capabilities, which are still in development, or by using contextual information like
browsing history.
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Appendix B: Analyzed Question
Answering Systems

Note: The referenced sources can be found in the thesis bibliography.

[Green Jr. et al., 1961] (BASEBALL): One of the first question answering systems ever
created, it uses a database-like structured data source to answer baseball-related questions.
The methods used to extract the necessary information from the users utterance are the
use of controlled vocabulary, part-of-speech tagging, tree parsing and using interrogative
words to classify the users questions.

[Androutsopoulos et al., 1995] (MASQUE/SQL): A natural language frontend for rela-
tional databases, it transforms a user’s utterance into an SQL query, retrieves facts from
a database and presents them to the user. The methods used to extract the necessary
information from the users utterances are tree parsing and the use of a lexical database.

[Burke et al., 1997] (FAQ Finder): A question answering system using text files containing
frequently asked questions (FAQs) as data source. It uses the lexical database WordNet
to bridge the lexical gap and enhance the retrieval quality. Besides the lexical database
it uses stemming and TF-IDF word embeddings to calculate a similarity score between a
users question and an existing question, and returns the answer corresponding to the
question with the highest score.

[Moldovan et al., 1999] (LASSO): A question answering system using documents as
data source. It introduces so-called “paragraph indexing”, in which paragraphs are the
main focus of indexing, and not the documents, allowing for more fine-granular search
results when looking for an answer. The natural language understanding methods used
are part-of-speech tagging, tree parsing, named entity recognition and use of a lexical
database.

[Harabagiu et al., 2000] (FALCON): Also a question answering system relying on para-
graph indexing, the methods concerning natural language understanding are part-of-
speech tagging, tree parsing, named entity recognition and use of a lexical database.

[Srihari and Li, 2000] (TextractQA): A question answering system built atop an infor-
mation extraction engine called “Textrect”. The methods used for natural language
understanding are part-of-speech tagging, tree parsing and named entity recognition.
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[Litkowski, 2001] (DIMAP-QA): A question answering system using text documents as
data source. The NLU-relevant methods are part-of-speech tagging, tree parsing, named
entity recognition and using a lexical database.

[Kwok et al., 2001] (Mulder): A question answering system using a web search engine
to search for text documents as data sources. The users query is analyzed, expanded
and relayed to the web search engine, the results provided by it are parsed and a fitting
answer is extracted. The natural language understanding related methods used are
part-of-speech tagging, tree parsing, the use of a lexical database and using TF-IDF
weighted word embeddings.

[Zheng and Arbor, 2002] (AnswerBus): Similar to MULDER, it is a question answering
system using a web search engine to retrieve documents potentially containing a fitting
answer to a user’s question. It also uses a simple coreference resolution in adjacent sen-
tences to improve the retrieval of answer candidates. The natural language understanding
methods used are lemmatization and named entity recognition.

[Ferret et al., 2002] (QALC): A question answering system using text documents as
data source. It relies on recognizing the focus words of a question to retrieve a fitting
answer. The natural language understanding methods used are part-of-speech tagging,
tree parsing, named entity recognition and use of a lexical database.

[Wu et al., 2004] (ILQUA): A question answering system using text documents and a web
search engine as data sources. It retrieves potential answers from relevant text passages,
and uses as web search to try to confirm the answer candidates. The relevant natural
language understanding methods used are tree parsing, named entity recognition and
using a lexical database.

[Nyberg et al., 2005] (JAVELIN): A question answering system using text documents
as data source. The natural language understanding methods used are part-of-speech
tagging, tree parsing, named entity recognition and use of a lexical database.

[Linckels and Meinel, 2005] (CHESt): A question answering system for retrieving doc-
uments in a library setting. The methods used in understanding the natural language
questions are the use of a controlled vocabulary and a lexical database.

[Wong, 2005] (NaLURI): A framework capable of answering natural language questions
using an underlying ontology. The methods used in natural language understanding
involve part-of-speech tagging, tree parsing, named entity recognition and the use of a
gazetteer.

[Bernstein et al., 2006] (GINSENG): A natural language interface for OWL knowledge
bases, it differs from similar systems in the way it deals with the lexical gap. It relies
on the vocabulary used by the underlying knowledge base, suggesting fitting terms to
the user on the fly. This use of controlled vocabulary is the method used for natural
language understanding by this system.
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[Qiu et al., 2007] (FDUQA): A question answering system using text documents as
data source. The natural language understanding methods used are lemmatization,
part-of-speech tagging and tree parsing.

[Cimiano et al., 2007] (ORAKEL): Also a natural language interface for knowledge bases,
it focuses on portability between different domains. The methods used in terms of natural
language understanding are the use of domain-aligned lexica, part-of-speech tagging and
tree parsing

[Kaufmann et al., 2007] (NLP-Reduce): Another natural language interface for ontologies
trying to avoid complex linguistic and semantic methods, offering a “naive” approach.
The methods used by the system are stemming and the use of automatically generated
lexica with the help of a lexical database.

[Lopez et al., 2007] (AquaLog): A portable question answering system using one or
more knowledge bases as data source. The methods employed to solve natural language
understanding are part-of-speech tagging, tree parsing and using a lexical database.

[Wang et al., 2007] (PANTO): A portable natural language interface for ontologies with
focus on nominal phrases, the methods used for natural language understanding are using
custom lexica, part-of-speech tagging, tree parsing and the use of a lexical database.

[Damljanovic et al., 2010] (FREyA): A natural language interface for ontologies, capable
of asking clarification questions if the system failed to retrieve an answer. The methods
used for natural language understanding are part-of-speech tagging, tree parsing and
usage of a lexical database.

[Unger and Cimiano, 2011] (Pythia): An ontology-based question answering system.
This system uses custom generated lexica, tree parsing and named entity recognition for
natural language understanding.

[Waltinger et al., 2011]: A German language question answering system using a Wikipedia
dump as data source. The natural language understanding methods used are lemmatiza-
tion, part-of-speech tagging, tree parsing and named entity recognition.

[Kalyanpur et al., 2012] (DeepQA/Watson): A very famous question answering system
using a multitude of different data sources, both unstructured text and structured
knowledge bases. It applies a large number of different methods relevant to the task of
natural language understanding: stemming and lemmatization, part-of-speech tagging,
tree parsing, named entity recognition, using lexical databases and custom weighted word
embeddings.

[Pradel et al., 2012] (SWIP): Another natural language interface for ontologies, this
system differs in such a way that it translates the natural language utterance provided
by the user into several natural language queries aligned with the vocabulary of the
underlying ontology, and lets the user decide which query best fits his or her information
need. This query is subsequently used to query the underlying knowledge base. The
only relevant method used for natural language understanding is the use of controlled
vocabulary.
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[Aggarwal and Buitelaar, 2012]: A question answering system using the linked data
as data source. The natural language understanding methods used are part-of-speech
tagging, tree parsing, named entity recognition, dense word embeddings and the use of a
lexical database.

[Cabrio et al., 2012] (QAKiS): Another question answering system using linked data
as data source. The natural language understanding methods used are named entity
recognition and the use of a pattern library.

[Lopez et al., 2012] (PowerAqua): A question answering system using linked data as data
source. The natural language understanding methods used are part-of-speech tagging,
tree parsing and named entity recognition, disambiguation and linking.

[Unger and Bühmann, 2012] (TBSL): A question answering system using linked data
as data source. The natural language understanding methods used are part-of-speech
tagging, tree parsing, named entity recognition and the use of a lexical database.

[Walter et al., 2012] (BELA): Also a question answering system using linked data as data
source. The natural language understanding-relevant methods used are part-of.speech
tagging, tree parsing, named entity recognition and the use of a lexical database.

[Yahya et al., 2012] (DEANNA): A question answering system using linked data as data
source. The natural language understanding methods used are part-of-speech tagging,
tree parsing, named entity recognition and the use of a lexical database.

[Dima, 2013] (Intui2): A question answering system using linked data as data source.
The natural language understanding methods used are lemmatization, part-of-speech
tagging, tree parsing and the use of a lexical database.

[Giannone et al., 2013] (RTV): A question answering system using linked data as data
source. It relies on a hidden Markov model approach to identify fitting answer candidates.
The natural language understanding methods used are lemmatization, part-of-speech
tagging, tree parsing and dense pointwise mutual information weighted word embeddings.

[Fader et al., 2013] (PARALEX): A paraphrase-driven question answering system using
question-answer pairs as data source. The natural language understanding methods used
is the use of a lexical database.

[Berant and Liang, 2014] (PARASEMPRE): A question answering system using both
unstructured text and a knowledge base as data sources. It uses a large text corpus to
build paraphrases of the question which are better aligned to the knowledge base. The
natural language understanding methods used are lemmatization, part-of-speech tagging,
tree parsing, use of a lexical database and dense word embeddings.

[Freitas and Curry, 2014] (Treo): A question answering system using linked data as data
source. The authors use a special vector space embedding based on “Explicit Semantic
Analysis” (ESA), and a reference text corpus, to embed the knowledge base into, and
to retrieve the answers from. The natural language methods used are part-of-speech
tagging, tree parsing, named entity recognition and word embeddings.
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[Frost et al., 2014] (DEV-NLQ): A natural language query interface for event-based
triplestores, it uses internally represents a user’s query as lambda calculus expressions to
evaluate them. The methods used for natural language understanding are part-of-speech
tagging and the use of a controlled vocabulary.

[Hamon et al., 2014] (POMELO): A question answering system for the biomedical
domain, it was one of the participants of the QALD-4 challenge. To solve natural
language understanding, the authors used lemmatization, part-of-speech tagging, tree
parsing and named entity recognition.

[Dima, 2014] (Intui3): A question answering system using linked data as data source. The
successor to Intui2, the natural language understanding methods used are lemmatization,
part-of-speech tagging, tree parsing, named entity recognition and use of a lexical
database.

[He et al., 2014] (CASIA): A Markov Logic Network based question answering system
using linked data as data source. The natural language understanding methods used
are part-of-speech tagging, tree parsing, custom implemented named entity recognition,
dense word embeddings and the use of a lexical database.

[Höffner and Lehmann, 2014] (CubeQA): A question answering system specializing on
statistical data using a knowledge base as data source. The natural language understand-
ing methods used are part-of-speech tagging, tree parsing, named entity recognition and
the use of a lexical database.

[Park et al., 2014] (ISOFT): A question answering system using linked data as data
source. The natural language understanding methods used are part-of-speech tagging,
tree parsing, named entity recognition, dense word embeddings and the use of a lexical
database.

[Xu et al., 2014] (Xser): Another question answering system using linked data as data
source. The relevant natural language understanding methods used are part-of-speech
tagging and named entity recognition.

[Zou et al., 2014]: A question answering system using linked data as data source. The
natural language understanding methods used are part-of-speech tagging, tree parsing,
named entity recognition and the use of a lexical database.

[Beaumont et al., 2015] (SemGraphQA): Also a question answering system using linked
data as data source. The natural language understanding methods used by the authors
are part-of-speech tagging, tree parsing, named entity recognition and the use of a lexical
database.

[Hakimov et al., 2015]: Also a question answering system using linked data as data
source. The natural language understanding methods used are part-of-speech tagging,
tree parsing and the use of a lexical database.

[Ruseti et al., 2015] (QAnswer): A question answering system using linked data as data
source. The natural language understanding methods used are stemming, part-of-speech
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tagging, tree parsing, named entity recognition and the use of a lexical database.

[Shekarpour et al., 2015] (SINA): A question answering system using linked data as data
source. The natural language understanding methods used are lemmatization and named
entity recognition.

[Song et al., 2015] (TR Discover): A question answering system using a knowledge base
as data source, it maps English language fragments to first order logic statements using
a feature-based grammar. The natural language understanding methods used is the use
of a controlled vocabulary, tree parsing and named entity recognition.

[Usbeck et al., 2015] (HAWK): A question answering system using both unstructured text
and linked data. The natural language understanding methods used are part-of-speech
tagging, tree parsing and named entity recognition.

[Abacha and Zweigenbaum, 2015] (MEANS): A medical question answering system
extracting answers from MEDLINE articles. The articles are converted to semantic
graphs and queried using SPARQL, while the queries are produced by converting the
natural language questions from the users. The methods used to extract the information
from both the source documents and the users questions are similar and involve part-of-
speech tagging, named entity recognition and tree parsing.

[Asiaee et al., 2015] (OntoLNQA/AskCuebee): A framework for question answering
in the biomedical field, applied in a system called AskCuebee for questions concerning
parasite immunology data. The methods used for natural language understanding are
stemming, part-of-speech tagging, tree parsing and named entity recognition.

[Tsai et al., 2015]: A revitalization of AskMSR, an older web search-based question
answering system. The authors evaluate how the improvements made by search engine
providers have affected systems built around older, less precise versions. The natural
language understanding methods used are named entity recognition and the use of a
lexical database.

[Baudiš and Šedivý, 2015] (YodaQA): A question answering system framework using
unstructured text as data source. The natural language understanding methods used are
lemmatization, part-of-speech tagging, tree parsing, named entity recognition and using
a lexical database.

[Sun et al., 2015] (QuASE): A question answering system using both unstructured text
and structured knowledge bases as data sources, the unstructured text is retrieved via a
web search engine. The only relevant method used for natural language understanding is
bag-of-words embeddings.

[Gallagher and Zadrozny, 2016] (Watsonism): A question answering system modeled
after the basic structure used by IBM’s Watson question answering system. The natural
language understanding methods used by this system are part-of-speech tagging, named
entity recognition and tree parsing.
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[Damiano et al., 2017] : An Italian language question answering system using textual
data sources capable of answering factual questions in the field of cultural heritage. It
uses deep neural nets trained to classify the questions. The techniques used to extract the
features used for classification involve stemming, lemmatization, part-of-speech tagging
and named entity recognition.

[Schwarzer et al., 2016] A German language question answering system using internal
documents from public administration as a data source to answer questions concerning
governmental services. The methods used for natural language understanding are TF-IDF
word embeddings, part-of-speech tagging and the use of a German lexical database.

[Zhang et al., 2016]: A question answering system capable of using multiple aligned knowl-
edge bases as data source. The method used relevant to natural language understanding
is tree parsing.

[Zhu et al., 2016]: A question answering system using linked data as data source, the
methods used for natural language understanding are part-of-speech tagging, tree parsing
and named entity recognition.

[Nam et al., 2017] (OKBQA extended): A framework for creating question answering
systems using knowledge bases as data source. The natural language understanding
methods used are part-of-speech tagging, tree parsing and named entity recognition.

[Chandurkar and Bansal, 2017]: A question answering system using a knowledge base as
data source. The NLU methods used are part-of-speech tagging, tree parsing and named
entity recognition.

[Carvalho et al., 2017]: A question answering system in the legal domain, using legal
texts as data sources. It uses recognition of textual entailment to to provide evidence to
decide upon the correct answer. The methods relevant to natural language understanding
are lemmatization, part-of-speech tagging and dense word embeddings.

[Kim et al., 2017]: Also a question answering system in the legal field using recognition
of textual entailment, the methods used here are lemmatization, part-of-speech tagging,
tree parsing and dense word embeddings.

[Saany et al., 2017] (QAUF): A natural language interface for knowledge bases, it es-
pecially considers the use of modifier terms. It also incorporates user modeling and
relevance feedback to improve the answer quality. The methods used for natural lan-
guage understanding are part-of-speech tagging, tree parsing and custom-weighed word
embeddings.

[Šukys et al., 2017]: A natural language interface for ontologies based on the controlled
vocabulary SBVR. The natural language understanding methods used are the use of a
controlled vocabulary, lemmatization, tree parsing and part-of-speech tagging.

[Yin et al., 2017]: A question answering system relying heavily on the use of deep neural
nets, based on the constituency trees of user utterances. The NLU-relevant methods
used are tree parsing and dense word embeddings.
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[Marginean, 2017] (GFMed): A question answering system for using linked biomedical
data as data source, it uses custom grammars to evaluate controlled language queries.
The method used for natural language understanding is the use of controlled vocabulary
and language.

[An et al., 2017]: A question answering system approach using an unstructured corpus
of questions and corresponding answers. Neural nets are used to compute similarities
between a user’s question and existing questions in the corpus. The only methods used
relevant in this context of natural language understanding is the use of dense word
embeddings.

[Figueroa, 2017]: A question answering system in the field of community Question-
Answering platforms (cQA), where users post questions and other users with more
domain knowledge answer them. One of the challenges is to identify questions which have
already been satisfactorily answered and present those already existing answers to newly
posted questions. The natural language understanding methods used are part-of-speech
tagging, tree parsing, named entity recognition and the use of a lexical database.

[Hoque and Quaresma, 2017] (SEMONTOQA extended): A question answering system
using unstructured text, web search engines and knowledge bases as data sources. It is
also capable of integrating user feedback to improve the answer candidate ranking. The
natural language understanding methods used are tree parsing, named entity recognition
and the use of a lexical database.

[Romeo et al., 2017]: A question answering system using cQA forum entries as data
source. The natural language understanding relevant method used is tree parsing.

[Ruan et al., 2017]: A question answering system using unstructured text as data source.
It concentrates on feature merging to calculate sentence similarity and subsequently train
a neural net with the extracted and merged features. The natural language understanding
methods used are dense word embeddings and use of a lexical database.

[Yue et al., 2017]: A question answering system using unstructured text as data source
bases on an end-to-end neural net implementation. The natural language understanding
relevant method used is dense word embeddings.

[Oh et al., 2017]: A question answering system concentrated on causal questions using
unstructured text as data source and an end-to-end neural network. The natural language
understanding methods used is dense word embeddings to represent the natural language
inputs.

[Belyaev et al., 2017]: A Russian language question answering system using web search
engines as data source. The system extracts fitting passages from the results returned by
the search engines and converts them to an internal RDF-triple representation, which
is used for answer candidate extraction. The natural language understanding methods
used are lemmatization, part-of-speech tagging and named entity recognition.
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[Khvalchik et al., 2017]: A question answering system concentrating on non-factoid
questions, using commercial web search engines as data source. The natural language
understanding methods used are stemming, part-of-speech tagging and tree parsing.
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Appendix C: Training Data
Formats

Microsoft LUIS

Training API expects JSON documents containing training objects such as this:

{
" t ex t " : " Which team i s l e ad ing the German Bundes l iga t ab l e ? " ,
" intentName " : " s tand ings " ,
" en t i t yLabe l s " : [

{
" startCharIndex " : 2 6 ,
" endCharIndex " : 4 3 ,
" entityName " : "COMP"

}
]

}

IBM Watson Assistant

Training API expects separate CSV files for intents and named entities, format as detailed
below:

Intents:

TEXT,INTENT
Which team i s l e ad ing the German Bundes l iga t ab l e ? , s tand ings

Entities

TYPE,NAME,ALTERNATIVE_NAME_1, . . . ,ALTERNATIVE_NAME_N
COMP, Erste Liga , Austr ia Erste Liga , 2 nd League Austr ia

wit.ai

Training API expects JSON documents containing training objects such as this:
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{
" t ext " : " Which team i s l e ad ing the German Bundes l iga t ab l e ? " ,
" e n t i t i e s " : [

{
" va lue " : " s tand ings " ,

" e n t i t y " : " i n t en t "
} ,
{

" va lue " : " German Bundes l iga " ,
" e n t i t y " : "COMP" ,
" s t a r t " : 2 6 ,
" end " : 4 3

}
]

}

rasa NLU

Training API expects training objects such as this:

{
" t ex t " : " Which team i s l e ad ing the German Bundes l iga t ab l e ? " ,
" i n t en t " : " s tand ings " ,
" e n t i t i e s " : [

{
" s t a r t " : 2 6 ,
" end " : 4 3 ,
" va lue " : " German Bundes l iga " ,
" e n t i t y " : "COMP"

}
]

}
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