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Kurzfassung

In dieser Arbeit präsentieren wir BiCFlows, einen neuartigen Ansatz zur interaktiven Ex-
ploration großer bipartiter Graphen. Die Entwicklung wurde durch die Medientransparenz-
Datenbank angeregt. Diese öffentlich zugängliche Datenbank wurde von der österrei-
chischen Bundesregierung eingerichtet, um Informationen über staatliche Werbe- und
Subventionsausgaben bereitzustellen. Diese Datenbank weist dabei die Eigenschaften
eines großen, gewichteten bipartiten Graphen auf.

Aktuelle Ansätze, die sich mit der Visualisierung der Medientransparenz-Datenbank
befassen, sind dadurch limitiert, dass sie keinen ausreichenden Überblick über den
gesamten Datensatz bieten. Andere Ansätze, die nicht speziell für die Medientransparenz-
Datenbank entwickelt wurden, sich jedoch mit der Visualisierung von bipartiten Graphen
befassen, sind zusätzlich durch ihre mangelnde Skalierbarkeit bei großen Datensätze
begrenzt.

Aggregation ist ein häufig verwendetes Konzept, um die Datenmenge durch Gruppieren
ähnlicher Datenobjekte zu reduzieren. Dies funktioniert nur, wenn die entsprechenden
Eigenschaften in den Daten vorhanden sind, um sie für die Aggregation zu verwenden.
Wenn diese zusätzlichen Informationen, wie in der Medientransparenz-Datenbank fehlen,
müssen andere Aggregationstechniken verwendet werden. Da wir uns in unserem Ansatz
mit bipartiten Graphen beschäftigen, verwenden wir das Konzept des Biclusterns um
eine hierarchische Struktur innerhalb der Daten zu erstellen, die vom Benutzer interaktiv
erkundet werden kann.

Wir haben gezeigt, dass BiCFlows nicht nur für die Medientransparenz-Datenbank,
sondern auch für andere Datensätze verwendet werden kann, die die Eigenschaften
eines gewichteten bipartiten Graphen aufweisen. Darüber haben wir eine Benutzerstudie
durchgeführt, um BiCFlows mit bestehenden Konzepten zu vergleichen und Vor- und
Nachteile zu diskutieren. Wir haben gezeigt, dass BiCFlows die Anwender in ihrem
Explorationsprozess unterstützt und ihnen mehr Einblicke als mit bestehenden Ansätzen
ermöglicht.
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Abstract

In this thesis we introduce BiCFlows, a novel interactive visualization approach to explore
large bipartite graphs. We were motivated by the Media Transparency Database, a
public database established by the Austrian government to provide information about
governmental advertising and subsidies expenses, which holds the characteristics of a
large, weighted bipartite graph.

Current approaches that deal with the visualization of the Media Transparency Database
are limited by the fact that they do not offer a sufficient overview of the whole dataset.
Other existing approaches that are not particularly designed for the Media Transparency
Database, but deal with the visualization of bipartite graphs are in addition limited by
their lack of scalability for large datasets.

Aggregation is an often used concept in reducing the amount of data by grouping together
similar data objects. This only works if the appropriate object properties are present in
the data to use them for the aggregation. If this additional information is missing, like in
the Media Transparency Database, other aggregation techniques have to be used. Since
we are dealing with bipartite graphs in our approach, we use the concept of biclustering
to establish a hierarchical structure within the data that can be interactively explored by
the user.

We showed that BiCFlows cannot only be used for the Media Transparency Database,
but also for other datasets that share the characteristics of a weighted bipartite graph.
Furthermore, we conducted an insight-based user study to compare BiCFlows with
existing concepts and discussed advantages and drawbacks. We showed that BiCFlows
supported users in their exploration process and let them gain more insight than with
existing approaches.
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CHAPTER 1
Introduction

1.1 Motivation
To offer more transparency in dealing with tax money and the possible influence of
press opinion through media advertisement, the Austrian government passed a law
concerning this matter in 2011. The law pledged public authorities and other organizations
supervised by the Autrian Court of Audit to disclose their press subsidies and advertising
objectives [Rec17]. This so-called Medienkooperations- und -förderungs-Transparenzgesetz
[Bun17] came into force in July 2012 and henceforth obligated these organizations to
quarterly report their expenses, exceeding AC 5000, to the Kommunikationsbehörde Austria
(KommAustria). There are three paragraphs that form the legal basis for the obligation
of disclosure:

• §2: Advertising objectives,

• §4: press subsidies, and

• §31: program fees of the Austrian Broadcasting Corporation (ORF).

The data is quarterly published at the website [uTRG17] of the Rundfunk- und Telekom-
Regulierungs-GmbH, the office of KommAustria. There, the colloquially called Media
Transparency Database is organized as shown in Figure 1.1. The properties of this
database, which in fact holds the characteristics of a bipartite graph, will be covered in
detail in Section 2.2.

This database can be used by journalists to reveal interesting relationships between
public and media organizations, by media organizations themselves to see if they are
disadvantaged in comparison to their competitors concerning advertises or funding, and
by the general public, to find out where and how their taxes are spent. There are several
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1. Introduction

Figure 1.1: Description of columns (left to right) in the Media Transparency Database:
legal entity, year with trailing quarter, legal basis of publication (§2=advertising, §4=sub-
sidies), media organization, sum.

points that are of interest for journalists and for their readers. One of the primary
interest lies in the expenses of the current federal government [der18]. This includes,
besides the federal chancellery, all federal ministries. Moreover, it would be of interest if
certain ministries advertise in the same media and also if there is a connection between
ministries administrated by ministers of the same political party. Following ministry
expenses over time could be problematic, since the names of most of the ministries change
with every legislative period. This happens because certain departments are merged or
split. Besides ministries, the expenses of all nine federal states can be of interest, again,
also to determine if there are differences between politically different ministered states.
These political differences can also be investigated during election years. Depending on
the type of election, it can be interesting which ministry or state advertises in which
media organization the most.

According to a domain expert we interviewed, it is very difficult to determine the
full amount of advertising objects or press subsidies for certain media organizations.
The reason for this lies in their corporate structure. There are media organizations,
like Mediengruppe Österreich GmbH , which not only comprises the daily newspaper
Österreich, but also Madonna, wetter.at, oe24.at, and more than 50 other media organiza-
tions. These organizations are all listed separately in the Media Transparency Database,
making it difficult to connect them or to understand them as a whole.

Until 2017, around 1200 legal entities reported their advertising spendings to over 4200
media companies for the past 18 quarters, resulting in a database with more than 34000
entries that will continue to grow every quarter. Moreover, these cash flows are not
normally distributed (see Figure 1.2). There is only a minority of organizations that
exchanged a large amount of money. The vast majority share smaller sums. This
characteristic will play an important role when we talk about the design choices in
Chapter 4.

1.2 Problem Statement
Currently, there are a few websites that deal with the visualization of the Media Trans-
parency Database, but each one has their own drawbacks. Paroli-Magazin [Mag17]
published a couple of visualizations (see Figure 1.3), but their interactivity is very re-
stricted. They only list governmental departments and federal states as legal entities

2



1.2. Problem Statement

(a)

(b)

Figure 1.2: Histograms showing the distribution of aggregated cash flows over all years
of: (a) legal entities and (b) media organizations.

and moreover, there is no way to distinguish between advertising and subsidies. The
dashboard visualization by Rind et al. [RPNA16], which is also available online [Pfa17],
offers different linked views and the possibility to filter the data (see Figure 1.4). However,
this visualization lacks a general overview of the data, since it only shows the ten legal
entities and media organizations associated with the highest cash flows, respectively.
The web-based tool by Salhofer et al. [Sal17] of FH Joanneum also offers interactive
exploration of the data and provides different visualizations (see Figure 1.5), but they
are spread over several websites, which makes it difficult for the user to combine the
gathered information from the different visualizations. What all of these visualizations
have in common is that they lack some sort of overview that gives a broad survey of the
interconnections between the different governmental and media organizations. Although
the visualization in the top left corner of Figure 1.5 shows a geographical overview and
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Figure 1.3b shows aggregated daily newspapers, the corresponding properties are not
available in the raw data of the Media Transparency Database. Hence, these assignments
had to be done manually.

1.3 Contribution
Since there are several thousands of data objects, they cannot be visualized in classical
diagrams and therefore have to be aggregated somehow to reduce the number of depicted
entities. The aggregation cannot be applied by geographical regions or other hierarchies
due to the fact that these additional categories are not available in the dataset. Thus, there
are two possible approaches: a Cut-Off approach, where only a few single data objects are
shown and the rest gets aggregated to one single new data object or a clustering approach,
where the data objects are iteratively grouped based on their similarity. Clustering
is a commonly used aggregation technique to establish a better overview over large
data [EF10]. In our case, we focus on how bipartite data with no inherent hierarchical
structure can be explored using the concept of biclustering.

In this thesis we therefore present BiCFlows, a novel visual exploration interface for large
bipartite graphs. The difference to already existing approaches, like the ones covered
in Section 1.2, is that our exploration interface scales with the size of the underlying
dataset. We kept the aspect of a web-based visualization, since it offers not only better
accessibility, but also helps to separate computationally expensive operations of data
processing on the server from the user interface on the client side. Besides this, offering
a software that has to be installed on the user’s computer runs into the problem with
having to handle different operating systems. Even if the software is developed in an
operating system independent programming language, it will be still too cumbersome for
technically unversed users to install it. To examine assets and drawbacks of our approach,
we conducted a user study where we compared BiCFlows with the concept of traditional
Cut-Off approaches.

The contributions of this thesis are summarized in the following list:

• A visual encoding that is able to visualize weighted bipartite graphs with several
thousands of nodes and edges by using the concept of biclustering (see Section 2.3).

• The technical infrastructure to visualize and interactively explore this huge amount
of data in a web-client (see Section 4 and 5).

• A formal insight-based evaluation, where the advantages and disadvantages of
BiCFlows compared to unclustered approaches were examined (see Chapter 7).

4
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(a)

(b)

Figure 1.3: Two examples of visualizations at the website of Paroli-Magazin [Mag17]: (a)
expenses of Stadt Wien and (b) expenses of ministries for daily newspapers. 5
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CHAPTER 2
Data Characteristics

This chapter aims to give some background information on the data characteristics and
the techniques used in the implemented visualization tool. First, the definition of a
graph and its properties are covered. Then, the special type of bipartite graph and its
connection to the Media Transparency Database and similar datasets is discussed, after
which the concept of Biclustering is explained.

2.1 Graphs
Graphs are widely used to depict connections or relationships between elements in
different disciplines, such as biology, transportation, sociological, sociology or physics.

A definition for graphs is given by Gross et al. [GYZ13] as:

Definition. A graph G = (V,E) consists of two sets V and E, where the elements of V
are called nodes and the elements of E are called edges. Each edge has a set of two nodes
associated to it, which are called its endpoints. An edge is said to join its endpoints.

Graphs can be divided into two classes: directed and undirected ones. While in directed
graphs, edges are ordered pairs of vertices E(v0, v1) and determine some sort of flow, in
undirected graphs the pairs of vertices are unordered. Every edge can also have a weight
ω. Directed, weighted graphs are sometimes referred to as networks [vLKS+11].

Every graph can be further distinguished by its properties. These properties include
the number of nodes |V |, the number of edges |E|, density D or connectivity κ. The
density is a ratio between number of edges and number of vertices and is defined as
D = 2|E|

|V |(|V |−1) . In dense graphs the number of edges is close to |V |2, hence D ' 1,
whereas sparse graphs have a much smaller number of edges than |V |2. The connectivity
of a graph is defined as the minimum number of vertices that must be removed to get
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2. Data Characteristics

a disconnected graph [Rah17]. Another property of a graph is its completeness, where
a graph is called complete if every node in the graph is connected to every other node
through an edge. Furthermore, a clique is a complete subgraph of any arbitrary graph.

When talking about large graphs, there are different definitions. Graphs can be described
as large with 100 or with 1 million nodes. Although there is no exact definition of large
graphs, the number of edges, density, and connectivity contribute to it as well [vLKS+11].

2.2 Bipartite Graph
If a graph can be partitioned into k different set of nodes, which are independent and
disjoint, the graph is called k-partite graph. A special case where k = 2 is called a
bipartite graph.

The definition of a bipartite graph is given by Rahman [Rah17] as:

Definition. Let G = (V,E) be a graph. G is called a bipartite graph if the vertex set
V of G can be partitioned into two disjoint nonempty sets V1 and V2, both of which are
independent. A subset of vertices V ′ ⊆ V is called an independent set in G if for every
pair of vertices u, v ∈ V ′, there is no edge in G joining the two vertices u and v. Each
edge of a bipartite graph G thus joins exactly one vertex of V1 to exactly one vertex of V2.

Moreover, in a weighted bipartite graph, every edge connecting a vertex of V1 with a
vertex of V2 has a weight ω ≥ 0. Figure 2.1 shows an example of a bipartite graph and
its two independent, disjoint sets of vertices.

Figure 2.1: Example of a bipartite graph and its two independent sets of nodes (white
and black) [Rah17].

As mentioned in Section 1.1, the Media Transparency Database holds the characteristics
of a weighted bipartite graph. In our case, the two independent sets of nodes are on the
one hand the legal entities and on the other hand the media organizations. The edges
connecting nodes from one set with nodes from the other one represent the cash flows
between legal entities and media organization, where the sum of money acts as edge
weight. Other examples, that are covered in detail in Chapter 6, are publication and

10



2.3. Biclustering

movie data. In publication data, the two sets of nodes are authors and keywords where
the edges between them represent how often authors use certain keywords. The movie
data consists of movies and viewers where their interconnection is represented by the
sum a viewer spent for a certain movie.

2.3 Biclustering

To offer a better overview of large bipartite graphs, where many data objects are present,
some sort of aggregations has to be applied. In this context, it is important to understand
that a bipartite graph can also be illustrated as a weighted biadjacency matrix, where
the rows represent nodes of one set, the columns nodes of the other set and each matrix
element the corresponding edge weight between two nodes. Figure 2.2 shows an example
of such a matrix.

Figure 2.2: Example of a weighted bipartite graph with corresponding biadjacency matrix.

The idea is now to find groups of rows and columns where their corresponding elements
are most similar [EB15]. Finding and determining such groups is called Clustering and is
a well known data mining technique used in many different scientific disciplines over the
last decades [Ber06, Jai10]. In case of bipartite graphs, an approach called Biclustering
[Mir98] or Co-Clustering [Dhi01] has been developed. It has been extensively studied
over the last couple of years, mostly in Bioinformatics for analyzing gene expression data
[MO04, JTZ04, PGAR15] and in document classification [Dhi01, RDF06, Bic10].

The concept of biclustering is that it simultaneously rearranges rows and columns of a
biadjacency matrix to form clusters of certain (dis)similarity. These clusters are called
biclusters. Madeira and Oliveira [MO04] identified four different types of biclusters that
can be found, in terms of similarity:

1. Constant values, where all values within a bicluster are the same.

2. Constant values on rows or columns, where all values within a row or column are
the same.

11



2. Data Characteristics

3. Coherent values, where rows and columns can be obtained by adding or multiplying
each with a constant value.

4. Coherent evolutions, where not the values, but the additive or multiplicative
behavior within a bicluster is the same.

Figure 2.3a-e show examples of type 1-3, where the numeric values are directly used to
define similarity. Figure 2.3f-j are examples of type 4, where not the numeric value, but
the coherent behavior is considered.

Figure 2.3: Different types of biclusters: (a) constant bicluster, (b) constant rows, (c)
constant columns, (d) coherent values (additive), (e) coherent values (multiplicative), (f)
overall coherent evolution, (g) coherent evolution on the rows, (h) coherent evolution on
the columns, (i) coherent evolution on the columns, (j) coherent sign changes on rows
and columns [MO04].

During the process of finding similar clusters, biclustering algorithms assume a specific
structure of the underlying data matrix. Figure 2.4 shows some examples of these
structures. The most commonly assumed structures are the block diagonal structure (see
Figure 2.4b), where every row and column are assigned to exactly one cluster and the
checkerboard structure (see Figure 2.4c), where every row and column are assigned to
multiple clusters.

Since biclustering is an NP-hard problem [TSS02], many different algorithms have been
developed that try to improve the clustering process by optimizing the search heuristics.
Pontes et al. [PGAR15] categorized two different types of biclustering algorithms:
algorithms based on evaluation measures and non metric-based algorithms. The former
use a quality measure during the search process to further improve the clustering. Different
quality measures for biclustering have been proposed over the time, such as variance
[Har72], Mean Squared Residue [CC00] or relevance index [YCN04]. Non metric-based

12



2.3. Biclustering

Figure 2.4: Different bicluster structures: (a) single bicluster, (b) exclusive row and column
biclusters (block diagonal), (c) checkerboard structure, (d) exclusive rows biclusters, (e)
exclusive columns biclusters [MO04].

algorithms do not use evaluation measures within their search for biclusters, but use
different techniques that are, e.g., based on probabilistic models or linear mappings
between vector spaces to determine the optimal clusters. Examples for this are the
Bayesian Biclustering model developed by Gu and Liu [GL08] or the use of Singular
Value Decomposition by Kluger et al. [KBCG03].

One evaluation-based algorithm not discussed by Pontes et al. [PGAR15] is of high
relevance for this thesis. This approach is based on the modularity measure, originally
introduced by Newman et al. [NG04, New06, WS05] as a measure for graph partitioning.
Modularity is a metric that gives information about how densely nodes are connected
together in a partition compared to the rest of the network. This measure has lately
been adopted and proposed for biclustering by Labiod and Nadif [LN11]. An improved
variation of their algorithm by Ailem et al. [ARN15], based on direct maximization of
bipartite modularity, is used in this thesis. An important choice for using this algorithm
is that it can also handle weighted biadjacency matrices, since the Media Transparency
Database has this property. Most of the other proposed algorithms can only handle binary
matrices. Although every weighted biadjacency matrix can be transformed into a binary
biadjacency matrix, the weight property would be lost and would not be considered for
the calculation of the modularity. As a consequence, this would distort the clustering
result.

The idea behind this algorithm is that it iteratively tries to maximize the graph modularity
for a predefined number of clusters. It starts with a random partitioning of the biadjacency
matrices. This means that in the initial state, the matrix will be clustered randomly
with the given number of clusters. Modularity is calculated for this partitioning and
then iteratively optimized. Ailem et al. [ARN15] empirically evaluated that around 15
iterations are enough for their algorithm to determine the best partition. They compared
it to other biclustering algorithms with different datasets containing binary and non-binary
data, and showed that their approach outperforms all other algorithms. As metrics they
used the normalized mutual information as well as the accuracy, where they determined
how many data points were clustered correctly. They also made their algorithm publicly
available as Python package, which we used in our server-side implementation (see
Section 5.1).

13





CHAPTER 3
Related Work

While the previous chapter already covered the concept of biclustering and proposed bi-
clustering algorithms, this chapter mainly focuses on related work regarding visualizations
of graphs, especially bipartite graphs and biclustered data.

3.1 Visualizations of Graphs

One of the main reasons to visualize graphs is to explore and analyze the relationships of
its nodes. There are two types of graphs that can be distinguished in regards of their
time dependency. Static graphs are independent of time, whereas dynamic graphs can
change over time. The change can involve their overall structure as well as their node
or edge attributes. Beck et al. [BBD09] defined certain aesthetic criteria for dynamic
graphs that can also be applied to static ones.

One of the main criteria is the visual readability, meaning that visual clutter through
overlapping nodes, edges or other elements used in the visualization of the graph should
be reduced. The graph should also use the space in which it is drawn into efficiently in
the sense of keeping the graph in a compact form. Another criterion is the scalability
of the visualization. Even if the number of vertices or edges increases, the visualization
should still retain its readability.

In graph visualization, the most often used techniques are node-link diagrams and matrix-
based representations. Node-link diagrams, the typical representation of graphs where
nodes are connected through links, have been studied for various types of connections and
diagram layouts [HMM00]. Von Landesberger et al. [vLKS+11] classified the following
types of layouts based on their node placement:
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3. Related Work

• Force-directed layouts: Here, physical forces are simulated between nodes and
edges. While attractive forces get assigned to endpoints of edges, repulsive forces
are used between nodes.

• Constraint-based layouts: These layouts constrain the position of nodes. These
constraints can include the alignment, the direction of edges, or the distance between
nodes. An example can be seen in Figure 3.1, where the orthogonal layout consists
only of straight vertical and horizontal edges.

• Hierarchical layouts: In this type of layout, the graph is divided into layers.
The nodes are then, e.g., placed on these horizontal parallelly aligned layers.

Figure 3.1: Three different layout types of node-link diagrams [BBDW17].

In matrix-based visualizations, nodes are represented as row and column keys of a matrix
and a matrix cell depicts the interconnection between them (see Figure 3.2). If the
graph is weighted, the matrix cells can also encode edge weights, either numerical or by
color. Moreover, if the underlying graph is undirected, the matrix will be symmetrical.
For bipartite graphs, the row and column keys will correspond to the nodes of the two
independent sets, respectively (see Section 2.2).

Figure 3.2: Example of a matrix-based layout [BBDW17].
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Dependent on the type of data, node-link diagrams and matrix-based approaches have
their own advantages and drawbacks. According to Ghoniem et al. [GFC04] node-link
diagrams benefit from their intuitiveness and flexibility and are well suited for smaller
and sparse datasets. Matrix-based visualizations profit from their better readability by
eliminating occlusion problems and are thus more suitable for larger and dense datasets.
However, there are also ideas of combining these two representations. Henry et al.
[HFM07] proposed the concept of NodeTrix, which is a hybrid approach of node-link
diagrams and matrix-based visualizations. It was developed to analyze and explore
small-world networks [WS98] that are locally dense but globally sparse. The network
is visualized as node-link diagram, where communities (densely connected nodes) are
represented as adjacency matrices (see Figure 3.3). This concept allows one to explore
relations within communities without visual clutter and also to follow connections between
different communities.

Figure 3.3: Example of NodeTrix showing a network of InfoVis co-authorship [HFM07].

3.2 Visualizations of Bipartite Graphs
As mentioned in Section 2.2, the Media Transparency Database can be seen as a bipartite
graph, but has too many nodes and edges to display them all at once. Several approaches
have been published that deal with an improved visualization of bipartite graphs. Misue
et al. [Mis06] use a node-link diagram and suggest that one set of the vertices should be
drawn at fixed positions (anchors) while the vertices of the other set should be drawn
freely at suitable positions near the anchors (see Figure 3.4). This results in a circular
shaped graph. A similar graph can be constructed with the method of Dumas et al.
[DMRW11], where one set of vertices is placed in the middle of a circle and the other set
around them using an edge bundling technique to reduce the number of edges. These
methods assume that one set of vertices is rather small and thus cannot be used for our
purpose.
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Figure 3.4: Example of bipartite graph visualization with the method proposed by Misue
et al. [Mis06].

Another typical visualization type is the use of two lists representing the two sets of nodes
and then showing the connection between the nodes through edges. Such techniques
were proposed by Stasko et al. [SGL07] as part of their visualization tool Jigsaw (see
Figure 3.5a), Ghani et al. [GKL+13] in their Parallel node-link bands (see Figure 3.5b),
or by Schulz et al. [SJUS08] in their visual analysis framework for biological networks.
Jigsaw is a visual analytic toolkit for exploring documents and their relationships and
consists of four connected views. These views are a node-link diagram, a scatter plot,
a text view, and the already mentioned list view. In Figure 3.5a, one list shows people
and the other one places. Multiple entities can be selected within each list and their
corresponding relations are highlighted in orange, where the strength of the connection
is encoded in the color’s brightness. Additionally, lines are drawn between connected
entities. If many entities need to be displayed, the list becomes scrollable.

PivotPaths by Dörk et al. [DRRD12] does not only use two lists, but also adds a third
between them representing the attribute shared by the other two. This results in a
user interface that lets one explore the data as a tripartite graph. The interface is
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(a)

(b)

Figure 3.5: Two example of list views: (a) part of Jigsaw by Stasko et al. [SGL07], (b)
Parallel node-link bands by Ghani et al. [GKL+13].

divided into three regions, each representing a different set of the graph. Figure 3.6
shows how these regions are displayed in PivotPaths. The three regions thereby represent
people, resources, and concepts. The middle region shows samples of resources, which
act as main exploration objects. The other regions give additional information about the
resources and the size of their elements scale according to the number of connections to
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the resources. This concept can also be changed and people or concepts can be switched
with the middle region to explore those samples, respectively. The resources of interest
can be filtered by using any entity of the three regions as an anchor. If, for instance, one
person of the people-region is set as anchor, only connected resources and their concepts
will be displayed. If there are too many samples of resources to display, the number
will be automatically limited by showing only the most recent resources, the most cited
resources, or a random subset of the resources.

Figure 3.6: Concept of PivotPaths by Dörk et al. [DRRD12].

The limitation of these list views lies in their scalability if a huge number of entities need
to be displayed. The problem can be solved either by offering the possibility to scroll
large lists like in Jigsaw or by only displaying a subset of the data like in PivotPaths.
The visual analysis framework by Schulz et al. [SJUS08] offers additional features to
overcome the problems of visualizing large sets of entities and edges. For very long lists,
they use a focus+context approach where all list elements that are not hovered will be
minimized, resulting in a reduction of the overall list height. For large sets of edges, they
use edge crossing minimization algorithms and the possibility to highlight edges.

3.3 Aggregation

If a graph with several thousands of nodes and edges needs to be displayed, showing it as
a whole is no option. Exploration will be nearly impossible because of edge clutter and
performance reasons. The graph therefore has to be abstracted to reduce its size and offer
a overview, while still maintaining the possibility to explore particular elements of the
original graph. This also follows Ben Shneiderman’s [Shn03] visual information seeking
mantra “overview first, zoom and filter, then details on demand”. This abstraction can
happen in data space or visual space [EF10]. While abstraction in data space uses the
original data objects to generate new abstracted items, abstraction in visual space only
abstracts the visual representation of visible data objects.

Von Landesberger et al. [vLKS+11] defined filtering and aggregation as two approaches to
abstract and consequently reduce the size of graphs. The concept of filtering or sampling
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is that it reduces the size by removing nodes and edges of the graph. This can happen
either as a preprocessing step, where certain data elements are removed before the graph
is visualized or during the visualization process, where only certain node and edges
are displayed. The criteria which nodes and edges to remove can be based on different
attributes. For instance, a minimum edge weight or minimum centrality can be used to
determine which edge or node to remove. There are also stochastic filtering methods that
randomly remove nodes and edges while still maintaining the overall properties of the
original graph [LF06].

With aggregation on the other hand, nodes and edges are grouped together to new
meta nodes and edges. By iteratively aggregating the newly created groups of nodes,
a hierarchical tree-like structure of aggregated elements can be created. Elmquist and
Fekete [EF10] refer to this structure as aggregation tree. The hierarchical aggregation
can be accomplished by using a bottom-up or top-down approach. While bottom-up
techniques start with a single element and consecutively aggregate similar elements
together, top-down approaches start with the aggregation of all elements and iteratively
split them up.

To display these aggregation trees, a suitable visualization technique must be provided.
This technique must not only be able to handle hierarchical structures, but also offer
a way to represent the underlying aggregated elements. To visualize these underlying
elements in an abstracted way, certain derived characteristics can be used. Andrienko
and Andrienko [AA06] have defined some of the most frequently derived characteristics
of these aggregated elements:

• the number of aggregated elements,

• the accumulated sum of the aggregated elements’ data values,

• the mean of the aggregated elements’ data values,

• the value range of the aggregated elements,

• the most frequent value occurring within the aggregated elements, and

• the median of the aggregated elements’ data values.

Depending on the underlying data structure, different visualizations types can be used
to offer the possibility of visualizing and exploring aggregation trees. Elmquist and
Fekete [EF10] defined overlapping and space-filling visualizations as the two main layout
types. While overlapping visualizations are not restricted by a predefined layout, thus
resulting in possible overlaps of elements, space-filling techniques are. Typical types of
the former are scatterplots, node-link diagrams, or parallel coordinates, while adjacency
matrices or treemaps are examples of space-filling approaches. Since we are dealing with
graphs, we will focus on visualization techniques used in node-link diagrams and matrix
representations. However, in Section 3.5 we will also show examples of concepts used
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in Parallel Coordinates due to the fact that they can be adapted for list approaches
presented in Section 3.2.

An example for exploring hierarchical graph structures using node-link diagrams is
GrouseFlocks proposed by Archambault et al. [AMA08]. GrouseFlocks enables users
to interactively construct graph hierarchies by searching and selecting attributes of the
underlying graph data. With those selections, an aggregation tree based on similarities
of the selected attributes is constructed. GrouseFlocks then visualizes certain cuts in the
hierarchy of the aggregation tree as superimposition on top of the graph (see Figure 3.7).
The user interface consists of a tree-view in form of a list and a graph-view similar
to the one in Figure 3.7b. Users can navigate inside the aggregation tree by either
interacting with the tree- or the graph-view. Through their interaction, different cuts,
i.e., thus different levels of the aggregation tree are visualized. The main disadvantage of
GrouseFlocks is that it heavily relies on data attributes. If a graph only consists of nodes
and edges and lacks additional node attributes, it will hardly be possible to explore it
with GrouseFlocks.

(a) (b)

Figure 3.7: Example of a graph hierarchy cut: (a) original graph with cut (gray curve)
and (b) graph cut superimposed on top of the graph [AMA08].

An approach that is similar to NodeTrix described in Section 3.1 is TreeMatrix. TreeMatrix
is a matrix-based approach proposed by Rufiange et al. [RMF12] for exploring hierarchical
graph structures. It combines several different visualization techniques. For visualizing
subtrees of the aggregation tree, it uses collapsible matrices. Figure 3.8 shows the user
interface of TreeMatrix with a detail view of an opened adjacency matrix. The black
squares inside the matrix indicate its tree structure. The lists on the left and top represent
the nodes of this subtree in gray, whereas further subtrees and their children are colored
in yellow. Edges between nodes are depicted by their corresponding matrix cell, where the
color encodes their edge weight. Additionally, they are represented by arcs between nodes
at the list on top. These can also lead to other opened or closed matrices. Although using
collapsible matrices representing subtrees is a space-saving concept, it faces problems if a
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subtree with many nodes needs to be opened. Furthermore, there can be also problems
with visual clutter if many edges lead from one matrix to another one.

The following approach could be used to overcome the problem of effectively visualizing
a large number of edges. In case of aggregating edges, the concept of edge bundling was
introduced. Edge bundling approaches exist for hierarchical graph structures [PXYH05]
as well as for general graphs. The concept is either based on using the hierarchal
properties or a control mesh [CZWL08] to bundle the edges. However, Holten and
van Wjik [HvW09] proposed a self-organizing edge bundling approach, where edges are
modeled as springs. An attracting force is used between these springs to enable them
to form a bundled structure (see Figure 3.9). This approach is neither dependent on a
hierarchical graph structure nor on a generated control mesh.

3.4 Biclustering in Visualization

In case of bipartite graphs, biclustering (see Section 2.3) can be used as aggregation
method. Parallel to the development of biclustering algorithms, new visualization
approaches were proposed that made use of theses biclustering techniques. One often
used method is a simple colored matrix-based visualization of the underlying biadjacency
data matrix. Barkow et al. [BBP+06] proposed BicAT, a tool for analyzing bipartite
data (see Figure 3.10a). It has different clustering algorithms implemented and offers a
matrix visualization were each element is colored according to its data value. This makes
it easier to spot and select found clusters. Similar approaches have been suggested by
Filippova et al. [FGK12], who developed Corel, a suite for comparing clusterings, and
Sun et al. [SNR14], who suggested a matrix-based visualization in their five-level design
framework (see Figure 3.10b).
The limitation of this kind of visualization lies in its scalability, since it becomes very
difficult to illustrate and explore larger matrices with thousands of rows and columns.

Another visualization technique that makes use of biclustering was proposed by Sun
et al. [SMNR16] and Onoue et al. [OKSK16], who use edge bundling approaches to
minimize clutter and edge overlap (see Figure 3.11). Due to the fact that only edges are
bundled and not nodes, they face the same problem if several thousand nodes need to be
visualized.

Santamaría et al. [STQ08] proposed BicOverlapper, a tool designed to visualize biclustered
gene expression data. The idea is to display the data as a graph where nodes represent
either genes or conditions, which are interconnected through edges if they share the same
bicluster (see Figure 3.12a). Biclustered nodes are then enclosed in a semi-transparent hull
and the edges between the nodes are removed to avoid visual clutter (see Figure 3.12b).
Since these hulls are basically Euler diagrams, they face the same problem for finding a
suitable visualization if a group of nodes share more than three hulls [RD10].

The concept of NodeTrix, mentioned in Section 3.1, was also picked up in more recent
publications that are dealing with the visualization of biclustered data such as BixPlorer
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(a)

(b)

Figure 3.9: Example of force-directed edge bundling proposed by Holten and van Wjik
[HvW09]: (a) original graph, without bundling and (b) graph with bundled edges.

by Fiaux et al. [FSB+13], Furby by Streit et al. [SGG+14] or the exploration interface
developed by Xu et al. [XCQS16]. All of them use the NodeTrix concept in a similar way
by representing the biclustered sub-matrices as nodes in a node-link diagram. BixPlorer
relies completely on this concept and was developed for finding patterns in textual
datasets on a high resolution display (10240×3200 pixels). Furby additionally uses a
combination with heatmaps and bar charts to offer the possibility to further examine
single clusters. Whereas Xu et al. [XCQS16] use treemaps to reveal attribute patterns
within clusters, besides utilizing the concept of NodeTrix for relational patterns between
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(a)

(b)

Figure 3.10: Examples of matrix-based visualizations: (a) BicAT: A Biclustering Analysis
Toolbox proposed by Barkow et al. [BBP+06], (b) data matrix with two mined biclusters
suggested by Sun et al. [SNR14].
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Figure 3.11: Example of edge bundling in BiSet proposed by Sun et al.: (a) original
edges, (b) after semantic edge bundling [SMNR16].

clusters. A limitation of these approaches are the number of biclusters and also their
size. If there are many biclusters with numerous rows and columns to visualize, this will
result in large adjacency matrices taking up a lot of screen space.

BiDots, a very recent approach by Zhao et al. [ZSCC18] tries to overcome this limitation
by displaying biclusters in separate rows (see Figure 3.13). A row thereby consists of
two sets of entities and a rectangle where their relationship is encoded. Entities are
represented as gray circles with a unique line pattern. The darker the circle, the more
often it is shared by different biclusters. Between the two sets of entities, vertical orange
line strips in a rectangle represent the weighted relationships between those entities. The
position of the line strips reflects the weight of each relationship. This means that lines
on the left side of the rectangle represent lower and on the right side higher weights.
To explore the data, BiDots offers different interaction techniques. Besides reordering
rows and fading out unutilized entities or relationships, it is also possible to pin certain
entities. This results in a new column showing only the pinned entity colored in blue.
All other entities connected to the pinned one are also colored blue to emphasize their
connection. By representing biclusters as rows, it scales better if visualizing datasets
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(a) (b)

Figure 3.12: Concept of BicOverlapper proposed by Santamaría et al.: (a) sets of
biclustered vertices and their corresponding interconnected graph, (b) semi-transparent
hull enclosing the biclustered vertices [STQ08].

with many biclusters. However, it has limitations if there are a lot of unique entities
within a bicluster, due to the fact that all containing entities are visualized side by side
in the corresponding row.

3.5 Sankey Diagrams and Parallel Sets

The following two approaches are not explicitly designed for bipartite graphs. However,
they both use a similar visual encoding for quantitative data that we adapted for our
implementation of BiCFlows.

Sankey Diagrams can be found in very early illustrations, like “Napoleon’s Russian
campaign of 1812” by Charles Joseph Minard (see Figure 3.14). Here, he visualized not
only the geographic position of Napoleon’s troops at certain moments in time, but he
also encoded the size of his army. Minard did this by mapping the number of troops to
the thickness of the lines pointing from one geographic location to another one. This
type of diagram, where flows and their quantitative transformations are visualized, is
called Sankey Diagrams. The underlying data structure of Sankey Diagrams are directed
weighted graphs, where the edge weight is represented by the thickness of the line in the
diagram. The graph thereby follows a specific flow property, where the incoming sum of
edge weights for each node equals the outgoing sum of edge weights [RHF05].

As described in Section 2.2, edges of a bipartite graph only connect nodes from one set
with nodes of the other one. Thus, these edges can also be drawn as directed edges and
furthermore be interpreted as a flow. Because the nodes of these two sets have only
outgoing or incoming edges and not both, the flow property described above also fits
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Figure 3.13: User interface of BiDots. Rows represent biclusters, circles represent unique
entities and orange line strips represent weighted relationships between entities [ZSCC18].

for bipartite graphs. For this reason, the concept of Sankey Diagrams, where the edge
weight is mapped to the thickness of the edges and the summed edge weights of a node
to it size, can also be applied to bipartite graphs.
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Figure 3.14: “Napoleon’s Russian campaign of 1812” drawn by Charles Joseph Minard in
1869 [KM13].

Parallel Coordinates is a technique to visualize multidimensional data. Every dimension
is thereby represented as a vertical axis. A data object is then visualized as a polygonal
line connecting every axis at a certain value. Figure 3.15a shows an example of Parallel
Coordinates where ten dimensions are visualized. A problem arises if many data objects
need to be visualized, which often results in clutter (see Figure 3.15b). Another drawback
of Parallel Coordinates is, that it is not suitable for categorical data.

To overcome these limitations, Parallel Sets, an extension of the Parallel Coordinates
layout was proposed. Bendix et al. [BKH05] describe their Parallel Sets approach as
a combination of the advantages of Parallel Coordinates where dimensions are treated
independently and includes the possibility to use frequency-based categorical data. The
idea of Parallel Sets is that instead of continuous axes, sets of boxes are used. Each box
represents either a category or aggregated data points on this specific axis. The size of
each box scales with the frequency of the category or the number of items aggregated,
respectively. The thickness of the polygonal bands connecting each of these boxes also
scale in the exact same manner. Figure 3.16 shows an example of Parallel Sets, where a
dataset of Titanic passengers is visualized. It shows the three dimensions Class, Sex, and
Survived, where each dimension has different categories. In this example the categories
of Class are colored all differently to follow their connections more easily. For example,
one can see that all crew members are male and the majority of them did not survive.
Bendix et al. [BKH05] also offered the possibility to interactively analyze the data.
These interactions include adding, removing, merging, or splitting categories, reordering
dimensions and categories as well as highlighting connected polygonal bands.
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(a)

(b)

Figure 3.15: Examples of Parallel Coordinates with (a) ten dimensions [Ins09] and (b)
eight dimensions (cluttered) [EF10].

3.6 Comparative Evaluation

Since one of our contributions is also a comparative evaluation between a clustered and
an unclustered approach, we show some related work here.

Hearst and Pedersen [HP96] evaluated the document browsing technique Scatter/Gather.
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Figure 3.16: Example of Parallel Sets by Bendix et al. [BKH05].

Scatter/Gather clusters documents based on their topical similarity. For each cluster,
a textual summary is provided. Theses summaries consist of terms derived from the
documents’ topics inside these clusters. The concept of Scatter/Gather can be used in
combination with a preceding query, where the search results are clustered afterwards.
Since these clusters are topic-coherent, they can support users to find documents on a
certain topic more easily. Furthermore, it would be possible to cluster the documents of
a cluster again to split them into new topically similar groups.
In their evaluation, they first investigated if this clustering approach really does group
together more relevant documents. They took the top n documents of a query result and
used Scatter/Gather to cluster them into five clusters. They used the containing number
of documents per cluster as ranking measure, where the cluster with the most documents
was ranked best. Then they ordered the documents from the highest rated cluster by
closeness to the query and by closeness to the cluster centroid and compared them to an
equivalent number of documents from the top n documents. For n = 100, 250, 500 and
1000, their results showed that the clustering does indeed reveal more relevant documents
than an equivalent number of documents from the top of the originally unclustered query
result.
In a user study, they further examined how often users chose the cluster with the most
documents based on its summary. The task was to find as many relevant documents
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for certain topics as they can in 30 minutes. In their results and discussion, Hearst and
Pedersen showed that on the one hand users were able to interpret the summaries, and
on the other hand, to find the cluster with the most relevant documents. Moreover, users
mentioned that they found the concept of clustering useful to determine groups of similar
topics.

Chen et al. [CSBT09] proposed TagClusters, a semantic clustering concept for tags. Tags
are a way to categorize and organize digital items and are provided by many online
communities, where music or photos are shared, for instance. TagClouds are a way to
visualize popular tags with different font-sizes or colors depending on their frequency or
newness. However, they lack hierarchical relations and can have linguistic issues such as
different meanings for the same tag. TagClusters tries to overcome these problems by
clustering tags based on their semantic similarity.
To evaluate their approach, they conducted a user study, where they compared TagClusters
to TagClouds. They used a repeated measures within-subjects design with 12 participants
and a task-based evaluation approach. This means that every user had to perform
six predefined tasks with each interface, where the completion time, answer precision,
task easiness, and usefulness of the current system were recorded. Their evaluation
results revealed that grouping together semantically similar tags helped users to discover
smaller tags, which were not that visually prominent in TagClouds. As an example, they
mention the sub-genres of “rock”, which were hardly noticed due to their small font-size
in TagClouds (see Figure 3.17a), but are better visible in TagClusters (see Figure 3.17b),
because of their closeness and connection to the “rock”-cluster. Users were also able
to determine relationships between different genres better with TagClusters than with
TagClouds.

Cao et al. [CGSQ11] conducted a user study where they investigated if their developed
approach DICON supports users in comparing and interpreting clusters. DICON is
a multidimensional cluster visualization where statistical information is embedded in
icons. They use a treemap or Voronoi-like layout within the icons to represent the
different dimensions. Each dimension is colored differently and the number of data
objects clustered is represented by the size of the icon. In their design guidelines, they
suggest to rearrange the positions of each dimension so they are equal for every icon and
thus more comparable.
In a case study, they compared DICON to other multidimensional visualization approaches
like scatterplot-matrix and parallel coordinates, by using a dataset of 407 cars with seven
dimensions. Figure 3.18 shows the results of visualizing this dataset with parallel
coordinates and DICON, respectively. DICON not only encodes the data in a compact
form, but also immediately reveals the size of each cluster, which is not possible with
parallel coordinates. Through the consistent arrangement of dimension within the clusters,
it is also possible to see that European and Japanese cars share very similar features
compared to American cars.

Cao et al. also conducted a user study, where they compared three types of cluster-icons
with each other. One layout used random order packing (see Figure 3.19a), one used
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(a)

(b)

Figure 3.17: Example of (a) TagCloud and (b) TagClusters by Chen et al. [CSBT09].

ordered packing following the DICON design guidelines (see Figure 3.19a), and the last
one additionally encodes the statistical distribution in the shape of the cluster-icons (see
Figure 3.19c). They used a between-subjects design for their user study, where they split
the 30 participants into three groups of 10 people. Each group was presented with a
different type of cluster-icon and had to perform two predefined tasks for two different
datasets. One dataset consisted of 300 entities within nine clusters and the other one of
1000 entities within 50 clusters. Their tasks were to find similar cluster in one dataset
and groups of similar clusters in the other. They recorded the task completion time and
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(a)

(b)

Figure 3.18: Dataset of 407 cars with seven dimensions visualized with (a) parallel
coordinates and (b) DICON [CSBT09].

the success rate during the study and conducted a usability questionnaire afterwards.
Their results showed that their proposed packing types outperformed the random packing
type in both, completion time and success rate. Users were able to successfully compare
and identify similar clusters even with the larger dataset.

In all conducted user studies, where clustered approaches were compared with unclustered
ones, clustering could reveal more information when looking for similar data entities.
It was described as a good approach for initially grouping together entities to get a
better overview of the data. Especially for large datasets, where it is not possible to
display everything at once, clustering showed to be a good choice for aggregation and
size reduction.
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(a) (b)

(c)

Figure 3.19: Three examples of cluster-icons used for the user study: (a) random order
packing, (b) ordered packing using the DICON design guidelines, and (c) ordered packing
with different shapes [CGSQ11].
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CHAPTER 4
Visualization and Interaction

This chapter describes BiCFlows, a novel visual exploration interface for large bipartite
graphs. The main idea is to overcome the limitations of existing visualization approaches
when dealing with bipartite graphs that contain thousands of nodes and edges. As
discussed in Chapter 3, these approaches do not scale effectively if large datasets are
used. Moreover, the goal is to support non-targeted exploration, where the user discovers
information without a predefined question in mind. It should allow users to find negligible
entities without explicitly looking for them and follow Thomas and Cook’s mantra “detect
the expected and discover the unexpected” [CT05, CT06].

Because of its properties as a bipartite graph, it makes sense to split the nodes into
two sets, which is a useful concept also applied in existing approaches (see Section 3.2).
Moreover, since the underlying data represents directed edges from nodes of one set to
nodes in the other set, it lends itself to a parallel alignment from left to right, which
emphasizes the reading order. These two parallelly aligned sets can be displayed as two
lists of nodes. This results in an approach similar to BiSets and JigSaw mentioned in
Chapter 3. Since the edges between nodes of these two sets are also weighted and edge
weight is often encoded in terms of line width, it makes sense to adopt this concept for
the parallel lists as well. This means that edges with a higher edge weight will be drawn
thicker than the ones with a smaller weight. Since the nodes in each set are represented
as list elements, the height of these elements can also be used to encode weight. The
weight of a node is determined by the sum of its edge weights. This sum can then be used
to define the height of each list element. In case of the Media Transparency Database,
we are dealing with cash flows. So, each edge weight is represented by the amount of
money going from list elements of one set to list elements in the other set. The smallest
edge weight is AC 5000, and if all edge weights from one set to the other one are added
together it results in the total money exchanged, which is AC 1100 million. We can use
this information to think about the appropriate display size needed to visualize all these
list elements. If the smallest weight is represented by only 1px in height, we would still
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need 220,000px to display every element. This fact makes it neither possible to visualize
nor to effectively explore the data.

This is where aggregation, a commonly used approach in big data visualization [AA06],
comes into play. If there are already inherent hierarchies present in the dataset, they can
be used to aggregate the data and reduce the number of initially visible elements. If like
in the Media Transparency Database, these hierarchies are missing, other aggregation
concepts have to be used. One of the most often applied approaches is clustering [EF10].
Consecutive clustering can be used to create an artificial hierarchy within the data,
based on existing data object properties or their relationships. Since we are dealing with
bipartite graphs, the concept of biclustering can be applied. With the help of biclustering,
list elements are hierarchically aggregated to clusters, where each cluster will be split
into smaller subclusters upon user interaction. The idea is to aggregate all elements to a
limited number of clusters. These clusters are visualized initially to provide an overview
between cluster interconnections. Every cluster can then be further explored through
user interaction. Here, the exploration is accomplished by clustering existing clusters
again. This results in a cluster hierarchy where single elements form the lowest level.

As biclustering algorithm, we used CoClust proposed by Ailem et al. [ARN15] (see
Section 2.3), but any other algorithm that can handle weighted biadjacency matrices
and assumes an underlying block diagonal structure (see Figure 2.4) can be used. The
structure is important, since every list element should only be part of exactly one single
cluster. Otherwise, if elements are part of multiple clusters, these clusters cannot be
used for a hierarchical composition. To determine the number of clusters, there are two
possibilities, depending on the algorithm used. Either the number must be predefined or,
like in the case of CoClust, the best number of clusters can be determined by an internal
evaluation method. For the Media Transparency Database, we determined nine clusters.
The process will be explained in Chapter 5.

Displaying only clusters and their interconnections without showing any containing
element will not be helpful, since there will be no information gained from this visualization.
Also, displaying every element within a cluster will be no option, since it results in the
same problem as described before. The idea is now to combine the clustered elements with
a cut-off approach. This means that not all elements per cluster will be displayed but the
ones with the largest sums of its edge weights. The other ones will be aggregated to a new
list element. Additionally, the maximum weight that can be displayed with 1px (ω1px) is
also restricted. It gets determined by the ratio of the sum of all edge weights (

∑
ω) from

one set into the other one to the display height (hdisplay):

ω1px =
∑
ω

hdisplay

Below, we describe how these clusters and elements (entities) are visualized and how
they can be interactively explored.
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4. Visualization and Interaction

4.1 Cluster Bars

One cluster is made up of two opposing Cluster Bars (see Figure 4.2). The height of each
Cluster Bar is determined by the aggregated sum of edge weights of its containing entities.
These clusters are also sorted by their accumulated edge weights in descending order.
The edges between Cluster Bars represent the aggregated connections between entities,
whereas the thickness also scales with the corresponding summed edge weights. If a
cluster has no edge to another cluster, it means that the underlying graph is disconnected
and hence this cluster represents the disconnected subgraph of the original graph.

Figure 4.2: Example of a cluster consisting of two opposing Cluster Bars (purple and
green).

For coloring the bars, we considered the qualitative color schemes suggested by Harrower
and Brewer [HB03]. Those schemes were actually proposed for coloring maps with a
non-numeric attribute, thus offering a good possibility to distinguish between the different
attributes. However, in our visualization we also use two different sets of entities and
thus can adapt the scheme for our purpose. The colors should have the same saturation
and should also be colorblind safe, meaning that although the bars are geometrically
separated, they should have colors that do not look the same for people suffering of color
blindness. We decided on purple (RGB(143, 122, 184)) and green (RGB(70, 180, 119))
for the two sets and mongoose (RGB(184, 163, 122)) as the complementary color of these
two for the edges.

Figure 4.3 illustrates how these Cluster Bars are connected to the underlying biadjacency
matrix. The example shows a matrix with a block diagonal structure and its three
biclusters. The black squares represent the connections between each row and column
element (gray squares). Every cluster consists of several row and column elements,
which form the Cluster Bars. They are colored accordingly to emphasize their usage in
BiCFlows.

4.2 Stacked Bars

To show the containing entities of every Cluster Bar, Stacked Bars are introduced. Those
bars are placed next to every Cluster Bar. Every bar thereby represents a single entity,
where its summed edge weight is encoded in its height. As mentioned above, only a
limited number of entities are shown. Every Stacked Bar that has a height smaller than
2px will be aggregated to a single darker bar (see Figure 4.4a). Consequently, the height
of this darker bar is the summed height of its containing entities. The limit of 2px was
used, because it is the smallest height that can be used to still be able to hover over the
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4.3. Labeling

Figure 4.3: Example of a biclustered biadjacency matrix and its connection to Cluster
Bars (purple and green).

bar and get detailed information. We did not color the Stacked Bars the same way we did
the Cluster Bars, but used a light gray (RGB(211,211,211)) for all entities, independently
of their set affiliation. This was done because there is no gap between single entities
to separate them from each other and thus it would be difficult to distinguish between
each of them if the same coloring scheme as for the Cluster Bars would be used (see
Figure 4.4b).

4.3 Labeling

BiCFlows has a specific labeling scheme. Labels could have been put next to its corre-
sponding stacked bar, if the height of the bar is at least as high as the label’s height,
which is 12px in our case. However, this will result in a very small number of labels and
there will also be clusters without any label, as can be seen in Figure 4.5a. Hence, for
every Cluster Bar, the containing entities with the largest sums of edge weights will be
displayed next to it. The number of labels is limited by the height of the Cluster Bar (see
Figure 4.5b). For aggregated stacked bars, the label of its largest entity will be displayed
within squared brackets to indicate that this label does not belong to a single entity, but
an aggregated group of it.

4.4 Highlighting

There are two possibilities in BiCFlows to highlight or focus on individual connections.
If the interest lies in interconnections of a certain Cluster Bar, it is possible to hover over
it. Hovering a Cluster Bar brings out only the other Cluster Bars connected with it.
This means that only connections of entities in the hovered Cluster Bar are taken into
account. The Cluster Bars and their Stacked Bars on the opposite site connected with
the hovered Cluster Bar change their heights accordingly. Figure 4.6a shows how this
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4. Visualization and Interaction

(a)

(b)

Figure 4.4: Example of Stacked Bars: (a) As used in BiCFlows; the light gray bars
represent entities, whereas the dark gray bar consists of all other aggregated entities
within this Cluster Bar. (b) Example if Stacked Bars were colored the same way as
Cluster Bars.

fanned out representation looks like. All other edges are faded out to keep the focus on
the hovered Cluster Bar and its connections.

If the interest lies in a single entity, represented as a Stacked Bar, it is possible to hover
over it as well. Hovering a single entity shows its connections to every other entity on
the opposite site. The connections are illustrated as red edges, where the thickness of
the edge scales with its weight. Additionally, all labels corresponding to the connected
entities will be highlighted in red as well. Figure 4.6b shows an example where Land
Oberösterreich is hovered. Like with highlighting Cluster Bars, all other connections are
faded out to keep the focus on the hovered entity.

In both cases it is also possible to lock the highlighting by clicking on the Cluster Bar or
Stacked Bar, respectively. This allows the user to examine single edges. Figure 4.7 shows
an example where Stadt Wien was locked and then a single edge is inspected. Again,
hovering over an edge fades out to other connections.
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(a)

(b)

Figure 4.5: Labeling: (a) label per stacked bar, if bar height is greater than label height
(12px); (b) maximum labels per cluster bar.
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4. Visualization and Interaction

(a)

(b)

Figure 4.6: Hovering over: (a) a Cluster Bar and (b) a Stacked Bar

44



4.5. Navigation

Figure 4.7: Example of hovering over an edge after locking the highlighting of a Stacked
Bar.

4.5 Navigation
To get more information about entities within a cluster and especially about the aggregated
stacked bar, it is possible to move one level down in the bicluster hierarchy by double-
clicking on a Cluster Bar. By doing so, the entities contained by this cluster get biclustered
again and result in a similar view like the initial one (see Figure 4.8).

The difference is that entities that were part of other clusters in the previous view, but
are connected to entities in the current cluster are aggregated to new Cluster Bars with
yellowish color (RGB(175, 192, 23)). To better understand this subclustering process,
Figure 4.9 illustrates the procedure. The red-bordered cluster is the one that was double-
clicked. During the biclustering process its rows and columns get rearranged to find new
clusters. These clusters form the base for the new Cluster Bars and its entities. The
yellowish Cluster Bars however, consist of entities from the previous cluster that shared
a connection to the double-clicked cluster.

The reason for this is the following: If a cluster gets selected, the main interest consists of
the entities within this cluster and its interconnections. To omit no information or give
the false impression that entities of the selected cluster only share intrinsic connections,
the entities of the other clusters will be aggregated in this way. It also indicates how
enclosed a cluster is. The smaller the yellowish Cluster Bars are, the fewer connections
are shared with entities outside of this cluster.

Every new cluster can be further explored the same way as described above. This leads
to levels where fewer and fewer entities are present. There are two cases where further
subclustering does not change the output. In the first case, the underlying biadjacency
matrix that will be clustered becomes 1-dimensional, meaning that it only consists of
one row or one column. This results in only one cluster where one of the two Cluster
Bars consist of only one entity. In the other case, every row element is connected to
every column element in the underlying biadjacency matrix. This results also in only one
cluster, but here the Cluster Bars consist of every row and column element, respectively.

4.6 Context Bars
When going down the cluster hierarchy through subclustering as described above, there
is also the need to return to previous hierarchy levels. To navigate up and also to keep
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4.7. Additional Views

Figure 4.9: Example of the subclustering procedure resulting in a new biclustered cluster.

track of the current level within the hierarchy, each side of the two sets of lists provides
so-called Context Bars (see Figure 4.1g). They can be understood as a minified version
of the Cluster Bars. Every time a Cluster Bar is double-clicked, thus navigated one level
down in the hierarchy, a new Context Bar will be added to each side. The Cluster Bar
that was double-clicked will be highlighted within the last Context Bar (see Figure 4.8).
This allows for tracing back one’s navigation within the hierarchy. At the same time,
these Context Bars serve as possibility to navigate up again. By clicking a Context Bar,
the level of this specific cluster hierarchy will be loaded. This does not mean that one
can navigate up one level at a time, but also several levels can be traversed at the same
time or even completely up to reach the initial view.

4.7 Additional Views

To follow Shneiderman’s information seeking mantra mentioned in Section 3.3, BiCFlows
offers some additional views to further explore and filter the data. Moreover, detailed
information is provided in the form of tooltips as can be seen in Figures 4.6 and 4.7.
Whenever a certain element, like bar or edge, is hovered, its properties will be displayed.

4.7.1 Bar Charts

If the data contains additional attributes, BiCFlows offers two bar charts where these
attributes can be displayed (see Figure 4.1a and b). The edge weights will be aggregated
per bar. The bar charts can be used to compare and filter by the assigned attribute. In
case of the Media Transparency Database, the three paragraphs that form the legal basis
of its disclosures and the quarters are used. Multiple bars can be selected to filter the
data, whereas selected bars are colored differently.

4.7.2 Tables

In order to directly search for well-known entities or to sort entities by their accumulated
edge weights, BiCFlows offers two tables (see Figure 4.1c and d). The tables can be
sorted in ascending or descending order by name and weight. If an entity is selected in

47



4. Visualization and Interaction

the table, it will be highlighted in the main view. If the selected entity is not present as
an independent Stacked Bar in the main view, but is part of an aggregated bar because
its weight sum is too small, the aggregated bar will be highlighted.
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CHAPTER 5
Implementation

BiCFlows was implemented using a client-server infrastructure. This architecture was
chosen to separate the computationally more intensive biclustering procedure from the
user interface on the client side. In the following sections, we will first deal with the
server side, explain how the biclustering is handled in BiCFlows, and then focus on the
client side, as well as their server-client-interactions.

5.1 Server
The server backend was implemented with Python (version 3.6.1) [Fou18] using Flask
(version 0.12.2) [Ron18], which is a micro web-framework used to easily set up web-
applications. This framework was used, because it offers the possibility to quickly set up
a suitable application with routing functionality without having to deal with more bloated
and sophisticated web-frameworks like Django. Since we are also dealing with a large data
set with several thousand entries that need to be aggregated and manipulated, we use the
Python library Numpy (version 1.13.1) [Oli17], which can process large, multi-dimensional
arrays and matrices faster than Python’s built-in data structures [WCV11]. Moreover,
Python offers – in comparison to JavaScript – access to powerful libraries, like NetworkX
(version 1.11) [HSS17], which we used to generate the biadjacency matrix from the raw
data.

If biclustering was done in the browser, this could lead to delays due to inefficiencies in
JavaScript and limited computing power on the client-side, which will in turn have a
negative impact on the exploration experience. That is why we handle the computation
on the server using Python, where the following bicluster implementations exist:
Ailem et al. [ARN15] made their biclustering approach publicly available as a Python
package CoClust (version 0.2.1) [FSM17]. Moreover, the biclustering module [Bic17] as
part of the scikit-learn (version 0.18.2) [PVG+11] machine learning package for Python
offers two implementations that assume different underlying bicluster structures (see
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Section 2.3). The one by Dhillon [Dhi01] assumes a block diagonal structure and the
other one by Kluger et al. [KBCG03] assumes a checkerboard structure.

In our implementation, we used the algorithm proposed by Ailem et al. [ARN15] since
it can – compared to Dhillon’s approach – handle weighted biadjacency matrices and
assumes a block diagonal structure that we need for our data, because we are looking for
rows and columns in our biadjacency matrix that are part of only a single bicluster.

CoClust also offers the possibility to determine the best number of clusters by using an
internal evaluation method. This method takes a biadjacency matrix and a range of
numbers as input and returns the number where the graph modularity has its maximum.
Figure 5.1 shows that the highest modularity for the Media Transparency Database in a
range between two and twelve clusters was found for nine clusters. On a system with
an Intel i7-4790K CPU with 4GHz and 8GB RAM, this method takes five seconds to
evaluate the best number of clusters. While it would be acceptable to run this method
once on startup for the whole dataset, it cannot be called on-the-fly for every subset
that results through subclustering. This would make a responsive interaction impossible.
That is why we decided to calculate the number of clusters beforehand and then use it
as fixed value. If a completely different dataset will be used, the best number of clusters
has to be recalculated.

Another aspect to mention is that CoClust uses random seed values by default to
determine the biclusters and its entities. In Section 2.3 we explained that the algorithm
initially assigns random cluster memberships to the entities before it iteratively improves
the clustering. The seed values can thereby be understood as these initially random
assignments. This results in different assignments after every call. However, it offers the
possibility to use fixed seed values, which we did, to reach a consistent biclustering.

5.2 Client

The client was implemented using JavaScript, the D3.js [BOH11] library for visualization,
and Viz [Viz17], a collection of visualization layouts, where the bipartite layout serves as
basis for our implementation. D3.js offers the possibility to easily create individual visu-
alizations using HTML, SVG, and CSS. It follows a data-driven approach to manipulate
the Document Object Model (DOM) and is thus very flexible [Bos17].
Furthermore, DataTables [Spr17], a table plug-in for jQuery [jF17] was used to show
all the single entries of media organizations and legal entities in two separate tables.
Besides providing the possibilities to search and sort the table’s content, it offers a virtual
rendering plug-in. This plug-in makes it possible to display large data sets, because only
the visible entries and not the whole data set are rendered.
To quickly update these tables and the bar charts if the user filters the data by quarter
or legal basis, Crossfilter [Squ17] was used. Crossfilter is a JavaScript library that is able
to filter data on multiple dimensions very quickly and is thus ideal for the application in
a coordinated views setup.
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Figure 5.1: The output of the internal evaluation method of CoClust shows the highest
modularity for nine clusters.

it is also able to display large data set, by using a

5.3 Server-Client-Interaction

Since the biclustering process is completely outsourced to the server, the client has to
call server-side methods to get the updated data, if a user interaction has occurred. The
procedures in Figure 5.2 show, how client and server interact with each other.

Figure 5.2a deals with the initial routine when the system is started. On start-up, the
client calls the server’s method to get the data, which parses the data that is stored in a
.csv file and sends it back to the client. The client then uses this data to fill the tables
and bar charts. Additionally, it calculates the number of clusters based on the height
of the current browser window, where the visualization will be displayed and sends this
number back to the server, where it is stored for future cluster-calls. Based on an average
monitor with an aspect ratio of 16:9 and a Full HD resolution of 1920×1080 pixels, we
defined nine clusters as a default value for a display height of 1080 pixels and above. For
smaller resolutions, we used a function that linearly maps the interval between 400 and
1080 pixels to the interval between two and nine clusters. This allows us to automatically
scale the number of clusters based on the display height, since too many clusters on
a small display will crowd the visualization too much. Afterwards, the client calls the
server’s method to get the biclustered data, which will be calculated on the server-side
using the previously received number of clusters and then sent back to the client where
the clustered data will be displayed. Once the data was sent to the client, the whole
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(a)

(b)

Figure 5.2: Client-Server-Interaction: (a) initial routine, (b) subclustering.

visualization part including hovering, expanding, and highlighting effects is done at the
client-side. For this purposes no interaction with the server is needed.

Interaction is only needed if clusters must be newly determined. Thus, the client listens
for click events on Cluster Bars or Context Bars. Figure 5.2b shows that after a cluster
is clicked, the server calculates the subclusters of this cluster and sends the data back to
the client. Likewise, if the user wants to navigate a level up in the cluster hierarchy and
clicks a Context Bar, the data is calculated and sent back to the client.
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CHAPTER 6
Case Studies

In this chapter, we first introduce the “Cut-Off approach” that was used as comparative
user interface in our user study and then we present some use cases. Besides the Media
Transparency Database, we will have a look at the possibility of using BiCFlows for
publication data as well as for movie data.

6.1 Cut-Off Approach
The Cut-Off approach was implemented to serve as a comparison visualization for our
evaluation (see Chapter 7). Basically, it is similar to the visualization shown in Figure 1.4,
with the exception that the radial layout has been replaced by a list to be more comparable
to BiCFlows. Figure 6.1 shows the initial view of the cut-off approach. In this approach,
only entities with the largest sums will be displayed and the rest will be aggregated within
a new bar. Like in BiCFlows, the sums are encoded in the bar heights. The aggregation
starts at the point where the bar height would be smaller than its label height. In our
implementation, we used a label height of 12px. Apart from that, we used a very similar
visual encoding to BiCFlows to establish a good basis for comparison. We used the same
color scheme, the same layout, and also the same label height. The only difference is that
the colored bars, which were introduced in BiCFlows as Cluster Bars (see Section 4.1),
now here serve as bars representing single entities, because the Cut-Off approach does
not use clustering. We also kept the gap between the bars to visually separate entities
better from each other.

The highlighting also works similarly to the one in BiCFlows. Initially, the edges of
all visible entities are displayed. Hovering over a certain entity brings out only the
connections of this specific entity. All other edges are faded out, to better trace the
connections of the hovered entity (see Figure 6.2a). Similarly, if only a single edge is
hovered, this specific edge will be displayed and the others are faded out (see Figure 6.2b).
To explore the data, it is possible to select an entity in the main view or the lists. As a
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result, the connections of this entity will be shown as illustrated in Figure 6.3. It is also
possible to select multiple entities to compare them with each other.

6.2 Media Transparency Database

Our main motivation in developing BiCFlows was the lack of appropriate tools to explore
large bipartite data like the Media Transparency Database. We already explained the
general design choices in Chapter 4, but here we will discuss data specific decisions. In our
design, we offer the possibility to aggregate and filter data by two additional attributes
(see Section 4.7), which is also provided in the Cut-Off approach. In case of the Media
Transparency Database, these two attributes are the legal bases and the quarters. As
mentioned in Section 1.1, the Media Transparency Database has three paragraphs that
form the legal basis of its disclosures. Figure 6.4a shows these paragraphs as bar chart,
where the sums of all entities are aggregated for each paragraph respectively. This allows
the user to compare the legal bases with each other and also to filter the data accordingly.
The same principle applies for quarters, where transaction sums are aggregated for each
quarter. Thus, time periods can be compared with each other and also be filtered by
them (see Figure 6.4b).

Answering predefined questions, like which entity spent or received the most or less in a
certain year or period is possible in both, BiCFlows and the Cut-Off approach. However,
the main advantage of BiCFlows lies in its capability to support free exploration, thus
finding unexpected information without a specific problem in mind. We examined this
exploration process in our user study and some of the findings that users made during
their exploration will be discussed in Section 7.6.

If we compare the Cut-Off approach to BiCFlows in terms of exploration options, we
see that the only possibility to explore the data here is by interacting with the initially
visible entities or by scrolling through the tables. However, most users will be looking for
entities that they are familiar with in the tables, thus not finding anything new. A specific
question, like How much money did entity X receive? could in fact be answered faster by
looking at the tables. However, it would be also interesting to find similar entities that
receive money from the same entities. We try to illustrate this in the following scenario:

A user is interested in her local newspaper Salzburger Nachrichten and explores it with
BiCFlows. Since Salzburger Nachrichten is already visible in the initial view, she can
open up the cluster containing it and go even further down the cluster hierarchy a few
more times. During her exploration, she discovers that Salzburger Woche and Salzburger
Fenster, which she had never heard of, receive money from the same legal entities as
Salzburger Nachrichten does (see Figure 6.5).

In the Cut-Off approach however, Salzburger Nachrichten is not visible in the initial
view, because its total receiving sum is too small to be displayed and consequently gets
aggregated. Therefore, she has to search for it in the table and select it from there. By
selecting it, only legal entities that are advertising in Salzburger Nachrichten are displayed
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(a)

(b)

Figure 6.2: Examples of hovering in the Cut-Off approach: (a) over an entity, and (b)
over an edge.

but no other media organizations (see Figure 6.3). This makes it nearly impossible to
find similar media organizations.

If Salzburger Nachrichten would not have been visible initially in BiCFlows, the user
could have also searched for it in the table. After selection, either the entity or - if it is
aggregated - the dark gray aggregation bar containing it would have been highlighted.
From then on, the exploration process would be the same as described above.

The fact that in the previous example Salzburger Nachrichten was visible in BiCFlows
in the initial view is also conditioned by the labeling scheme described in Section 4.3.
Compared to the Cut-Off approach where 30 labels are visible initially, BiCFlows shows
95 labels. This also influences other use cases, for example, if a user is interested in
finding all media organization where VERBUND AG is advertising in. Figure 6.6 shows
that there are initially more connected media organizations visible in BiCFlows (38) than
in the Cut-Off approach (12). This is also the case after going into detail in both user
interfaces, thus selecting VERBUND AG in the Cut-Off approach and going down the
cluster hierarchy in BiCFlows to a level where only VERBUND AG is visible on the left
side. In both cases the number of labels increases, but BiCFlows shows still more (53)
than the Cut-Off approach (25) (see Figure 6.7).

Nevertheless, the Cut-Off approach benefits from its capability of comparing two or more
entities with each other. Figure 6.8 shows an example where ORF eins and ORF 2
are selected. This enables the user to compare these two entities and their cash flows
directly, which is not possible in the current version of BiCFlows. However, it would be
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Figure 6.3: Cut-off approach with selected entity Salzburger Nachrichten.
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(a)

(b)

Figure 6.4: Two additional views in BiCFlows showing aggregated sums per attribute:
(a) legal bases with §2 and §4 selected, and (b) quarters.

conceptually possible and definitely a good point of improvement for future works.

6.3 Publication Database

In 2014, Isenberg et al. [IHK+17] started to collect data about IEEE Visualization
Publications. Currently, the dataset covers all publications from 1990 to 2015 of all
constituent conferences (InfoVis, VAST, SciVis and Vis) and is available at their website
vispubdata.org [IHK+18]. The information of each paper includes its title, authors, year,
IEEE terms, author keywords, DOI, etc. The idea was to make the dataset publicly
available to other researchers and encourage them to develop visualizations for exploring
this data. The following three visualizations tools are examples they developed themselves.
CiteVis2 [IHK+17] is focused on determining citation counts per year and conference and
also on finding specific cross-referenced papers. CiteMatrix [IHK+17] is a matrix-like
visualization that shows how often papers in different conferences cite each other as well
as the citation trend over time. Finally, VISLists [IHK+17] is a visualization that can
be used to find out more about an author’s publication output across all conferences
including their most frequent co-authors (see Figure 6.9).
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Figure 6.5: Looking for similar media organizations like Salzburger Nachrichten in
BiCFlows. The red rectangle marks media organizations that receive money from the
same legal entities as Salzburger Nachrichten does.
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Figure 6.8: Cut-off approach with two selected entities ORF eins and ORF 2.
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Figure 6.9: VISLists by Isenberg et al. [IHK+17] showing the co-authorship of author
Ribarsky.

Isenberg et al. [IHK+17] also offer the possibility to search for author keywords at the
website of KeyVis [IIS+18]. At the website, one can search for a specific keyword and
it shows the papers that used this keyword, other keywords that co-occurred with the
searched one and which higher-level topic it belongs to. Though this website delivers
good result when looking for explicit keywords, it is not very exploratory. That is why
we decided to use the publication dataset with BiCFlows. For this purpose we adapted
the data to our needs. We were interested in the relation between authors and keywords.
For keywords we did not use author keywords, but IEEE terms since they are more
coherent and follow the IEEE taxonomy [IEE18]. As additional information, we used the
publication’s year and the conference’s name, to offer the possibility to filter by these
attributes through the same charts as presented in Figure 6.4. The final dataset consists
of 4976 authors and 2120 terms. We determined seven as the best number of clusters
with the method described in Chapter 5, though the modularity is generally low for this
dataset (see Figure 6.10).

Figure 6.11 shows this dataset visualized using BiCFlows. A notable aspect is the fact
that there are more stacked bars visible on the right side than on the left side. This
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Figure 6.10: The output of the internal evaluation method of CoClust for the publication
dataset shows the highest modularity for seven clusters.

is because some IEEE terms are used far more often on average than others like data
visualization, visualization, rendering, or computer graphics, while on the other side there
are no authors who use that much more IEEE terms than others do. Another interesting
aspect is that, through the clustering approach, authors and keywords are now grouped
together offering the possibility of revealing co-authorships or groups of people using
similar keywords. This can be useful for researchers looking for possible future co-authors.
We can also compare BiCFlows here with VisList by Isenberg et al. [IHK+17], which
offers an overview of co-authorships as well. We can take the example in Figure 6.9,
where the author Ribarsky is selected and look for authors in the same group as Ribarsky
in BiCFlows. Figure 6.12 shows the cluster containing Ribarsky in BiCFlows. When
comparing the authors, we see that all of them are also listed as co-authors in VisList.
The different order is due to the fact that VisList is based on mutual publications, whereas
BiCFlows uses common keywords. Nevertheless, this example shows that BiCFlows can
in fact be used to find co-authorships.
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6. Case Studies

Figure 6.12: Cluster of authors containing Ribarsky in BiCFlows.

6.4 Movie Database
Another database that was also used as test dataset in our user study (see Section 7.2)
consists of movies and viewers. Their relation is expressed through the money a viewer
spent on a particular movie. As additional attributes, the genre of the movie and the
year it was watched were provided. The dataset was created artificially by using a list of
movies provided by the ggplot2movies [Wic17] package of RStudio in combination with a
list of randomly generated names from the website [App17] of Joe Apple. The finally
produced dataset consists of 943 viewers and 1611 movies limited to three genres and
four quarters. For this dataset, we determined four clusters with a modularity of around
0.27. Figure 6.13 shows this dataset visualized using BiCFlows.
Although the dataset was created artificially, it has a real background. Current movie-
streaming-websites may have a similar database structure, but unfortunately make their
data not publicly available for research purposes. When exploring the data with BiCFlows,
users may find groups of people with similar movie taste or discover unknown movies
that match their favorite genres.

66



6.4. Movie Database

Fi
gu

re
6.
13

:
V
ie
w
er

an
d
m
ov

ie
re
la
tio

n
vi
su
al
iz
ed

us
in
g
B
iC

Fl
ow

s.

67





CHAPTER 7
User Study

Basically, there are two types of evaluation methods, namely quantitative and qualitative
ones [Car08]. In quantitative evaluations, users have to perform predefined tasks where
the accuracy and the task-completion-time are typically evaluated. Amar et al. [AES05]
collected around 200 questions for analyzing five different sets of data from different
domains. They grouped them to categories covering similar questions. On its basis, they
defined ten categories of low-level analytical tasks:

• Value retrieving: Finding a certain value for a specific case.

• Filter: Finding values that satisfy predefined conditions.

• Value deriving: Computing aggregations of given data, like mean or median.

• Extrema: Finding minimum or maximum of given data objects.

• Sort: Ordering data objects by their attributes.

• Range: Determining a range, where for a given attribute entities lie within.

• Distribution: Characterizing the distribution of data objects for a certain at-
tribute.

• Anomalies: Identifying unexpected data values, like outliers in a distribution.

• Cluster: Finding groups of similar data objects.

• Correlate: Determining relationships between two attributes of data objects.

The metrics measured for completing tasks of these categories can then be used to
compare different visualizations with each other. Many evaluations that used these
empirical methods exist [CY00] and they are still used [HW12, FFHW15].
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7. User Study

The other type of evaluations are qualitative evaluations. The key principle in these
evaluations is that they omit predefined tasks and gain a deeper understanding of the
users’ exploration process. One example is a concept proposed by North et al. [Nor06]
called insight-based evaluation, which is also employed in our user study. Here, users
verbally comment on everything they see or experience during their exploration with the
user interface. This so-called think-aloud protocol serves as basis for the comparative
evaluation. Insights will be coded afterwards and quantified to serve as evaluation measure.
Recent approaches, e.g., by Gomez et al. [GGZL14] are combining both, task-based and
insight-based evaluation methods, to better estimate which of their visualizations fit best
for their objectives.

We conducted an insight-based user study to compare BiCFlows to a visualization
approach without biclustering. While there is no formal definition of insights, Saraiya et
al. [SND05] describes them as “individual observation about the data by the participant”
and North et al. [Nor06] listed some key characteristics to gain a better understanding
of them:

• Complex. Insights are complex, since they involve not only single data values,
but large amounts of data.

• Deep. Insights are not present from the beginning, but build up over time, bringing
up more questions and thus generating depth.

• Qualitative. Insights can be subjective and ambiguous and are thereby not exact.

• Unexpected. Insights are often unforeseeable.

• Relevant. Insights give domain knowledge relevant meaning, because they are
embedded in the data and can connect the data to the existing domain.

To measure these insights, North et al. [Nor06] suggest to get rid of predefined benchmark
tests, where the users are told which insights to gain. Instead, insights gained by the
users on their own will be observed. For this approach, they defined three concepts:

• Open-ended protocol,

• qualitative insight analysis, and

• domain relevance.

The open-ended protocol ensures that the users can take as long as they need to explore
the data. During their exploration, they verbally report their findings, which can then be
analyzed afterwards using a qualitative insight analysis. Each of these findings is counted
as new insight, which will then be coded. Austin and Sutton et al. [AS14] describe
coding as a process, where findings of all users are taken to determine similar themes
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or ideas. Those can then be used to form thematic categories. Using a coding method
to assign each insight to a specific category enables the creation of quantified metrics
and further statistical analyses. Among others, the following codes were defined in our
user study: entities, transaction sums, or geographical connections. The complete coding
scheme will be explained in detail in Section 7.2.

In our user study, we were mainly interested if users can gain more insight using BiCFlows
compared to an unclustered approach and whether this increased insight also comes with
a higher cognitive effort. We therefore state our two major hypotheses, which we further
sub-divided:

H1: With BiCFlows, users will gain more insights.

We reason that users are able to explore the data in a more structured way using
BiCFlows, because of its clustering approach. Thus, we assume that users will generate
more insights. More specifically, we expect that they will find more entities during their
exploration. We also believe that users will not only be looking for already known, but
will also discover unknown entities or unexpected information. Because of the hierarchical
biclustering and the ability to navigate within it, we also expect that there will be more
mentions of entities with smaller transaction sums. The biclustered structure could lead
to reasoning about commonalities and links between entities. Altogether, we assume that
BiCFlows encourages the users to invest more time on their exploration. We therefore
expect the following results:

H1.1: With BiCFlows, users will mention more entities and their transaction sums.

H1.2: With BiCFlows, users will mention more entities with smaller transaction sums.

H1.3: With BiCFlows, users will make more links between entities or find more
commonalities between them.

H1.4: With BiCFlows, users will discover more unknown entities and unexpected
information.

H1.5: With BiCFlows, users will spend more time on their exploration.

H2: BiCFlows will be perceived as more complex.

We assume that the biclustered structure will also come with a drawback in user experience.
We reason that BiCFlows will not be perceived as intuitive as the alternative user interface
and thus will be experienced as more complex.
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7.1 Tasks
To analyze advantages and disadvantages of BiCFlows in comparison to already existing
approaches, the Cut-Off approach that we introduced in Section 6.1 was used. The users
were presented with BiCFlows and the Cut-Off approach to explore data of the Media
Transparency Database. Their task was to explore the data with each interface in a
think-aloud protocol. This means that they should verbally comment on everything
they do and observe during their exploration [Nie94]. After they finished exploring
the data with an interface, they had to additionally answer a questionnaire regarding
the interface’s usability. We employed the system usability scale (SUS) [Bro96], a
questionnaire containing the following ten statements that can be rated on a five-point
Likert-scale ranging from Strongly Disagree, Somewhat Disagree, Neutral, Somewhat
Agree to Strongly Agree:

1. I think I would like to use this tool frequently.

2. I found the tool unnecessarily complex.

3. I thought the tool was easy to use.

4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this tool were well integrated.

6. I thought there was too much inconsistency in this tool.

7. I would imagine that most people would learn to use this tool very quickly.

8. I found the tool very cumbersome to use.

9. I felt very confident using the tool.

10. I needed to learn a lot of things before I could get going with this tool.

The score of every statement, in a range from 0 to 4, contributes to the calculation of
the final score. For every statement with an odd number, the contribution is the scale
position minus 1 and for every statement with an even number, the contribution is 5
minus the scale position. The sum of all ten statement scores multiplied by 2.5 gives the
final SUS score. This score ranges from 0 to 100 where a higher score indicates better
usability. To get an understanding of what a certain score means in terms of usability,
Bangor et al. [BKM09] evaluated SUS by comparing the final score with an adjective
scale. They determined the score range for seven subjective labels: Worst Imaginable
(0-12), Awful (13-20), Poor (21-36), OK (37-51), Good (51-70), Excellent (71-85) and
Best Imaginable (86-100). More generally, they determined tools scoring below 50 as
unacceptable, between 70-80 as better and above 90 as superior ones [BKM08]. In our
evaluation, we compared not only the final scores, but every statement score separately.
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7.2 Design

The study was conducted using the Mozilla Firefox web browser on a 27" monitor. In
the beginning of the study, users had to fill in a consent form, followed by a demographic
questionnaire and then they were asked to read a printed task description. We used
a within-subjects design with the two user interfaces BiCFlows (BiC) and the Cut-Off
approach (CO) as independent variable. To compensate the learning effect during the
study, we counterbalanced the order of the visualizations, as well as the task assignments to
the visualizations, as shown in Table 7.1. Since we wanted to use the Media Transparency
Database for both interfaces, we varied the data by selecting only a specific legal basis
(§2 or §4) for each run. For §2, there are 1226 legal entities and 3544 media organizations,
with a modularity of 0.39 for nine clusters. §4 includes 68 legal entities and 885 media
organizations, with a modularity of 0.62 for nine clusters. Thus §4 represents a smaller
data set with clusters that are more coherent and share less connections among each
other.

User Run 1 Run 2

1 BiC §2 CO §4

2 CO §2 BiC §4

3 BiC §4 CO §2

4 CO §4 BiC §2

Table 7.1: Counterbalancing table for the first four users.

During the users’ exploration, their comments as well as their interactions with the
interface were recorded. The recording was stopped after the user thought that there
were no more observations to report. Before the users started exploring the Media
Transparency Database, they were given a tutorial about the interaction techniques and
a test-dataset for each interface that allowed them to familiarize themselves with its
functionality. During this test run nothing was recorded and the users could take as
much time as they need as well as ask any questions concerning the study or the user
interface. Besides their interaction, like list clicks, bar chart clicks, and their overall
exploration time, we also logged the users’ ratings from the post-study questionnaire.
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7.3 Coding of Think-Aloud Transcripts
After transliterating all recordings, we performed open coding on the users’ insights. We
grouped utterances into ten categories:

• Entities. A mentioned legal entity or media organization.

• Sums. Mentioned transaction sums between one legal entity and one media orga-
nization, or a total sum spent by a legal entity or received by a media organization.

• Unexpected findings. Unexpected findings or astonishments, i.e., “I can’t believe
Stadt Wien spends that much money.” or “Heute receives that much money? -
That’s madness!”.

• Unknown entities. Entities that were unknown to the user, i.e., “a3ECO? -
Never heard of it before.” or “What’s KT1?”

• Duplicates. Discovered entities with same or similar name, i.e., google.at and
google.de, where users explicitly mentioned that these are the same.

• Time. Quarters, years, or periods mentioned.

• Comparisons. Comparisons between entities or time periods, i.e., “ÖBB spent AC
19 million, but compared to Stadt Wien that’s nothing.” or “Österreich Werbung
spent AC 20 million in total, but in the fourth quarter of 2016 only AC 17,500.”

• Reasoning. Reasonings made on the basis of certain observations, i.e., “Heute
receives less from Land Niederösterreich than from Stadt Wien, most likely because
Heute is only available in Vienna’s subways.” or “Heute, Krone, and Österreich
receive the most money, that’s probably because they have the most readers.”

• Geographical connection. Geographical connections made for certain entities,
i.e., “DORF TV is probably from Upper Austria too, because it’s in the same
group as other media organizations from Upper Austria.”

We then used the number of insights per category to check our hypotheses with further
statistical analysis. We made an additional count of unique entities, thus eliminating all
multiple entities mentioned.

7.4 Participants
Twelve users participated in the study (four female, eight male), aged 25 to 56. Only
one of the users has a background in computer science, but all of them use computers
and the Internet on a daily basis. Eight users stated that they have very few experiences
with scientific or information visualization, three apply them sometimes, and one user
very often. Furthermore, only one user had prior knowledge of the Media Transparency
Database, two have heard of it before, and nine did not know it at all.
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7.5 Results

If we have a look at the number of mentioned entities, we notice that both the total
number of entities and the number of unique entities mentioned are on average higher
for BiC than for CO (see Figure 7.1). A Wilcoxon Signed-Rank test showed that there
is no significant difference for the total number of entities (Z = 22, p = .182), but for
the number of unique entities mentioned (Z = 10.5, p = .045). Since the number of
unique entities do not contain multiple mentions, they are more meaningful than the
total number of entities, where the same entity could have been mentioned over and
over again. For the mentioned transaction sums we also found a significant difference
(Z = 1.5, p = .005). When comparing the number of sums mentioned, we see that there
were more mentions using BiC than CO (see Figure 7.1c). We can thereby confirm our
hypothesis H1.1: Users mention more entities and transaction sums using BiCFlows.

(a) (b)

(c)

Figure 7.1: Boxplots showing the number of insights per interface for: (a) total number
of entities, (b) unique entities and (c) mentioned transaction sums.

To test hypothesis H1.2, we calculated the quartiles of the uniquely mentioned entities.
This allowed us to examine if there were more mentions of entities with smaller transaction
sums. When comparing the quartiles of uniquely mentioned entities with each other (see
Figure 7.2), we see that the means for both Q1 are equal (1.17) and for Q2, Q3, and Q4
BiC has only slightly higher averages. Furthermore, a Wilcoxon Signed-Rank test for
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each of the quartiles showed no significant difference for any of them: Q1 (Z = 22, p
= .952), Q2 (Z = 19, p = .383), Q3 (Z = 31, p = .859) and Q4 (Z = 9.5, p = .066).
This disproves our hypothesis H1.2: Users do not mention more entities with smaller
transaction sums using BiCFlows.

Figure 7.2: Boxplot showing the number of unique entities split into quartiles.

To test hypothesis H1.3, we compared the mentions of geographical connections, since
they indicate that the users found links through the user interface that are not clearly
visible in the data. An example is the following comment from a user “So, in this group
there are mostly legal entities from Lower Austria and they understandably advertise
mostly in newspapers from Lower Austria.”, where she observed that certain legal entities
only advertise in a federal state. Figure 7.3 discloses that users were only able to establish
these geographical connections while using BiC. This confirms our hypothesis H1.3: Users
made more links between entities using BiCFlows.

Figure 7.3: Boxplot showing the number of geographical connections made.

For hypothesis H1.4, we compared the number of unknown entities and unexpected
findings. Figure 7.4a shows that slightly more unknown entities were mentioned using
CO, but a Wilcoxon Signed-Rank test showed that there is no significant difference
(Z = 18.5, p = .633). Looking at the unexpected findings, which include astonished and
disbelieving reactions during exploration, we see that there were more findings on average
with BiCFlows than with CO (see Figure 7.4b). A Wilcoxon Signed-Rank test also
showed a significant difference (Z = 8, p = .045). Thus, we can partially confirm our
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hypothesis H1.4: Users discovered more unexpected information using BiCFlows, but did
not find more unknown entities.

(a) (b)

Figure 7.4: Boxplots showing the number of insights per interface for: (a) number of
unknown entities, (b) unexpected findings.

To test hypothesis H1.5, we compared the time each user spent exploring the two different
interfaces. Figure 7.5a shows that users spent more time on average exploring the data
using BiC (23 min) than CO (17.5 min). A Wilcoxon Signed-Rank test also showed a
significant difference (Z = 6.5, p = .032). When comparing the number of unique entities
mentioned per minute (see Figure 7.5b), we see that on average CO (2.13) has more
than BiC (2.08) and when comparing the median BiC (1.86) has more then CO (1.81).
However, they differ only marginally and a Wilcoxon Signed-Rank test also showed no
significant difference (Z = 35, p = .754). This confirms our hypothesis H1.5: Users
invested more time in exploring the data using BiCFlows.

(a) (b)

Figure 7.5: Boxplot showing: (a) the minutes users spent exploring and (b) the number
of unique entities mentioned per minute.

For the sake of completeness, we also tested the remaining categories: duplicates, temporal
mentions, comparison, and reasoning. Figure 7.6 reveals that BiC generated more insights
on average than CO in all remaining categories, but their differences are not significant:
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duplicates (Z = 2, p = .257), temporal mentions (Z = 14, p = .310), comparison (Z =
16, p = .774) and reasoning (Z = 20, p = .234).

(a) (b)

(c) (d)

Figure 7.6: Boxplots showing the number of insights per interface for: (a) duplicates, (b)
number of temporal mentions, (c) comparisons, (d) reasonings.

Finally, we compared the users’ ratings of the SUS questionnaire, to test hypothesis
H2. A Wilcoxon Signed-Rank test showed a significant difference for the final SUS score
(Z = 4, p = .028), where CO (82) scores higher than BiC (72) (see Figure 7.7a). After
testing every statement of the SUS questionnaire separately, only three of them showed a
significant difference, namely “I found the tool unnecessarily complex” (Z = 0, p = .008),
“I thought the tool was easy to use” (Z = 0, p = .038) and “I felt very confident using the
tool” (Z = 0, p = .014). Comparing the averages of these three statements, respectively
(see Figure 7.7), showed that the user felt that BiC (2.0) was more complex than CO
(1.5), CO (4.42) was easier to use than BiC (3.83) and they felt more confident using CO
(4.25) than BiC (3.5). This confirms our hypothesis H2: Users perceived BiCFlows as
more complex than the Cut-Off approach.

78



7.6. Discussion

(a) (b)

(c) (d)

Figure 7.7: Boxplots showing the ratings of the SUS questionnaire: (a) final score, (b) “I
found the tool unnecessarily complex”, (c) “I thought the tool was easy to use”, (d) “I
felt very confident using the tool”.

7.6 Discussion

Our study showed that we could confirm most of our hypotheses. In the following, we
will discuss some of our results.

If we have a look at the comparison between the mentioned transaction sums that we
examined in H1.1, we see that the users mentioned more sums in BiCFlows. We reason
that this is mainly because it correlates with the mentioned entities, i.e., if they mention
more entities, they will also mention their corresponding sums. The fact that the number
of mentioned entities and the number of mentioned sums are not equal, could be due to
the fact that users are not always interested in the sum, but rather the entity itself.

In H1.2 we expected the users to find more entities with smaller transaction sums using
BiCFlows, but our user study disproved this. We assumed that there would be fewer
findings with CO due to the fact that entities with small sums always get aggregated and
thus cannot be explored, except if users are explicitly looking for these entities in the
tables. BiCFlows offers the possibility to explore these entities, but to find them users
have to go multiple levels down in the cluster hierarchy to reach a level where entities
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with small transaction sums are present. However, many users only went down one or
two levels and thus never advanced far enough to explore these entities. That is the
reason why the number of entities mentioned using BiCFlows is as low as using CO for
Q1 and Q2.

If we have a look at H1.3, where we compared unexpected findings, we saw that more
unexpected information was discovered using BiCFlows. However, what did the users
find and why were there more findings in BiCFlows? When looking at the raw data,
we observe similar findings for BiCFlows and CO. During every session, users were
very surprised when looking at advertising expenditures and seeing Kronen Zeitung,
Heute, and Österreich at the very top of the receiving media organizations. Furthermore,
they were irritated about the fact that ORF1 receives less money than ORF2, since
they assumed ORF1 will be watched by more people and is thus more interesting for
advertisers than ORF2. Another observation that astonished many users is the fact that
the Bundeskanzleramt is funding many Croatian clubs. However, since it is responsible for
the funding of ethnic groups and Burgenland-Croatians are the second largest minority
in Austria, it is not that surprising. Regarding the higher number of findings using
BiCFlows, the following could be observed. Although Stadt Wien was mentioned in
both, BiCFlows and CO, as the legal entity having the largest advertising budget, it
was mentioned more often using BiCFlows in matters of having the most receivers. We
assume that is because in BiCFlows, Stadt Wien’s connections are more present than in
CO. Figure 7.8 shows how Stadt Wien will be perceived in BiCFlows, not only showing
up as the entity with the largest sum, but also revealing its huge number of receivers in
comparison to CO (see Figure 7.9).

As tested in H1.5, users spent more time exploring the data on average with BiCFlows
than with CO. This means that when using CO, users had the feeling that they will not
gain more insight if they keep exploring and thus ended the session, whereas BiCFlows
encouraged them to keep exploring. This can also explain the higher number of entities
mentioned in H1.1. The rate of mentioned unique entities per minute is approximately
the same, which emphasizes the assumption that the users found more entities because
they also explored longer.

When investigating the differences in complexity of the two user interfaces (H2), we found
out that users perceived BiCFlows as more complex. We assumed that the hierarchical
clustering and its interaction possibilities would be harder to understand. In fact, some
users stated afterwards that in the beginning of the session they found the clustering
concept irritating, but gained an understanding of it during their exploration.

As for the SUS final score, BiCFlows scored 72 and CO scored 82. Although BiCFlows
has a lower average rating than CO, it is still in a good position. The subjective rating
defined by Bangor et al. [BKM09] and described in Section 7.1, characterizes both user
interfaces as Excellent (71-85), even though their scores are on the lower and upper ends
of the range, respectively.
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7.7. Limitations

7.7 Limitations
One limitation of our user study is that there is a potential confounding factor regarding
the entity labels. While in the Cut-Off approach every entity has a label (see Figure 6.1),
we chose a different approach in BiCFlows as described in Section 4.3. This results in
approximately three times more labels in BiCFlows than in the Cut-Off approach. In
reference to our results confirming H1.2, we therefore cannot exclude the possibility of
users finding more entities due to the fact that there were more labels visible initially.

Furthermore, we did not evaluate if the clustering concept was overestimated in the
sense that user drew wrong conclusions with it. An example would be that users see a
cluster including many newspapers from the same region and therefore conclude that
this specific cluster represents only this regions newspapers and no others.
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CHAPTER 8
Conclusion

In this thesis, we developed BiCFlows, a novel exploration interface for large bipartite
graphs. We presented the limitations and difficulties of existing approaches and showed
how BiCFlows can overcome them. We discussed different use cases such as the use
for exploring publication or movie data. The main motivation however, was the Media
Transparency Database that we also used as data source for our evaluation. In our user
study, we could confirm our hypothesis that the employed clustering approach helped
users to gain more insight than with unclustered approaches. With BiCFlows, they
mentioned more entities and their corresponding sums. Additionally, the exploratory
approach helped them to discover unexpected findings. Moreover, we could confirm that
BiCFlows can help to derive relations between entities that are not present in the raw
data, like geographical connections. However, the deeper insights gained through the
clustered representation also comes with a drawback, as it is perceived as more complex
than unclustered visualizations.

Although the usability of BiCFlows was rated lower than the visualization we compared
it with, it was still perceived as a very useful tool by the study participants, who mainly
have no background in computer science. This gives us confidence that BiCFlows is also
useful to non-specialists without a technical or scientific background.

When comparing the two approaches for different tasks, we would argue that BiCFlows
is definitely better in its ability of supporting untargeted exploration and finding similar
entities. For quickly determining specific predefined questions, however, the Cut-Off
approach will be of better use. Therefore, it would be reasonable for future works to
integrate the ability to select multiple entities and directly compare them with each other
also into BiCFlows. This would combine the strengths of both approaches and would
lead to a more comprehensive tool.
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