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Abstract

Resonance problems arise in many fields of research. An example are pho-
tonic crystals, in which the propagation of waves is defined by resonances.
Photonic crystals with band gaps are of special interest. Band gaps are
regions of frequencies which cannot propagate through the crystal. To
calculate the band structure of photonic crystals many linear resonance
problems need to be solved. Fast and reliable linear eigenvalue solvers
are needed. Lately, metallic photonic crystals have become more interest-
ing. Differently from photonic crystals the electric permittivity of metallic
photonic crystals depends on the frequency leading to rational resonance
problems. These problems come with a high computational cost.

In this thesis, we introduce an efficient eigenvalue solver for large rational
eigenvalue problems. At first, the resonance problems for two and three di-
mensional metallic photonic crystal are derived from Maxwell’s equations.
Then, they are discretised with Bloch periodic high order finite elements
in Netgen/NGSolve. The arising large rational matrix eigenvalue prob-
lems are linearised with a rational linearisation schema and solved by the
shift-and-invert Arnoldi method. By combining linearisation with the shift-
and-invert Arnoldi, systems of linear equations with dimensions larger than
the original matrix size have to be solve in each iteration. With the intro-
duced rational linearisation these large systems of linear equations can be
reduced to the original problem size.

The proposed combination of these two algorithms is applied to two and
three dimensional metallic photonic crystals and compared to the shift-and-
invert Arnoldi with a standard polynomial linearisation. The appearance of
plasmon frequencies is witnessed and the influence on the solver is studied.

We show that the proposed method is a reliable and fast solver for large
rational eigenvalue problems.
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1 Introduction

Resonance problems arise in many fields of research. An example are photonic
crystals (PHCs), in which the propagation of waves is defined by resonances.
Photonic crystals with band gaps are of special interest. Band gaps are regions
of frequencies which cannot propagate through the crystal. Usually, non-metallic
materials are used as dispersive material, but lately also metallic materials have
been taken into account. In the non-metallic material linear resonance problems
appear. This changes in metallic materials. They give rise to rational resonance
problems, which are numerically more challenging.

There are different ways to tackle these problems. For example, the finite-
difference time-domain method in [FYS+13, IS01] uses excitation and Fourier
analysis. Another method is the multiple multipole method proposed in [MEH02]
and a Newton-type method is proposed in [HLM16]. The Newton-type method is
specialised on calculating the smallest resonances of a three dimensional metallic
photonic crystal (MPHC). In this thesis we introduce a method based on lineari-
sation and the shift-and-invert Arnoldi method.

In a metallic photonic crystal the electric and magnetic fields are governed by
Maxwell’s equations, introduced in Section 2. From them the resonance problems
for the electric and magnetic field are derived and put in the framework given
by metallic photonic crystals. This leads to two and three dimensional rational
resonance problems with Bloch periodic boundary conditions.

Most of the time these resonance problems cannot be solved analytically. There-
fore, in Section 3 the finite element method is used to discretise the resonance
problems into rational matrix eigenvalue problems of the form: Find pairs (ω, u)
with ω ∈ C, u ∈ CN \ {0}, N ∈ N such that

T(ω)u = 0, T(ω) ∈ CN×N .

The rational problem depends linearly on the eigenfunction, but the matrix valued
operator T(ω) depends rationally on the eigenvalue. In the generalised linear
eigenvalue problem the operator would be T(ω) = A− ωB with A,B ∈ CN×N .

The generated matrices are large and sparse making it necessary to apply iterative
eigenvalue solvers. Such a solver is the shift-and-invert Arnoldi, introduced in
Section 4. The solver is restricted to linear eigenvalue problems, hence it is
adapted to fit the rational eigenvalue problem setting. This is done by linearising
the rational problem first. As linearisation a rational and a polynomial approach
are introduced. One of the topics of this thesis is to highlight the differences and
the similarities of the two linearisations.

After the linearisation we end up with a k-times larger eigenvalue problem: Find
pairs (ω, v) with ω ∈ C, v ∈ CkN \ {0} such that

Âv = ωB̂v, Â, B̂ ∈ CkN×kN .

The factor k is fixed for a rational eigenvalue problem. In the shift-and-invert
Arnoldi algorithm the system of linear equations (Â − σB̂)x̂ = ŷ with x̂, ŷ ∈
CkN , σ ∈ C has to be solved for x̂ in each iteration. Usually, solving these systems
of linear equations is more expensive than solving systems of linear equations of
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Figure 1: Example of 1D, 2D and 3D photonic crystal structure. The dispersive
and non-dispersive materials are indicated in different colours.

the original problem size. The rational and the polynomial linearisation have
been chosen so that only the system of linear equations T(σ)x = y with x, y ∈
CN , σ ∈ C has to be solved for x. The main idea is that a big part of the large
matrix of the linear system of equations can be analytically inverted by applying
a Schur complement.

As stated above, there are different methods to solve the rational eigenvalue
problems. Two of them are shortly introduced in Section 5. The first one is the
Newton-type method proposed in [HLM16] and the second one is Beyn’s method
proposed in [Bey12]. Beyn’s method is an eigenvalue solver that uses complex
analysis and can be applied to a large variety of non-linear eigenvalue problems.
Making it the most versatile method mentioned in this thesis.

In Section 6 the rational and polynomial Arnoldi algorithms are tested on two
and three dimensional metallic photonic crystals. Especially interesting is the
calculation of plasmon frequencies in a two dimensional metallic photonic crystal.

We conclude our findings in Section 7 and give a short overview on future prospects
in Section 8.

2 Maxwell’s equations in metallic photonic crys-

tals

At first, we introduce the necessary objects to state Maxwell’s equations in metal-
lic photonic crystals, starting with PHCs.

A photonic crystal is a combination of non-dispersive and dispersive materials
with a periodic structure. This structure can be periodic in one, two or three
directions resulting in one, two or three dimensional photonic crystals, see Figure
1. In dept information about photonic crystals can be found in [JJWM08].

The periodic structure of a PHC is formed by unit cells. For example in Figure
2 a two dimensional PHC with its unit cell can be seen and Figure 3 shows a
three dimensional PHC with diamond structure. These crystals are the objects
of interest in this thesis and used for the numerical tests. In a 2D photonic
crystal the extension in the z-direction can be omitted, because it is unnecessary
for computations, as will be seen later. Each crystal has a lattice constant a
describing its diameter. The up to three lattice translation vectors ai span the
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Figure 2: On the right, a 2D photonic crystal with rods as dispersive material
and on the left, the according unit cell with the lattice translation vectors ai.
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Figure 3: On the right, a 3D photonic crystal with a diamond structure as disper-
sive material and on the left, the according unit cell with the lattice translation
vectors ai.

unit cell.

Let us have a look at the defining system of equations of a PHC. In such crystals
the magnetic field H and the electric field E are governed by Maxwell’s equations
[JJWM08, p. 8]

curl E(r, t) = −∂tH(r, t), div H(r, t) = 0,

curl H(r, t) = ε(r)∂tE(r, t), div ε(r)E(r, t) = 0,

if no external current density and charge density exist and the magnetic perme-
ability is set to one, with r ∈ Ω being the spatial dimension and t ∈ (0, T ) the
temporal. At this point Ω is the unbounded R3. Later we will argue that Ω can
be restrict to the unit cell. The scalar function ε(r) is the electric permittivity.

Applying the time harmonic ansatz [JJWM08, p. 9]

E(r, t) := E(r) e−iωt, H(r, t) := H(r) e−iωt,

3



with i :=
√
−1 being the imaginary unit and ω ∈ C, leads to the time independent

system of equations

curl E(r) = iωH(r), div H(r) = 0,

curl H(r) = −iωε(r)E(r), div ε(r)E(r) = 0.

This is a coupled system of E and H.

If E is smooth enough, then the curloperator can be applied to the first system of
equations. Substituting curl H(r) with the second system of equations afterwards
leads to the, in w2 linear, resonance problem: Find pairs (ω,E) with ω ∈ C,E 6= 0
such that

curl curl E(r) = ω2ε(r)E(r) (1)

is satisfied.

Remark 1 A solution of this resonance problem also satisfies the coupled prob-
lem, by introducing H := 1

iω
curl E. With this definition H is automatically di-

vergence free.

Exchanging the roles of E, H and assuming enough regularity of H, leads to the
resonance problem

curl ε(r)−1 curl H(r) = ω2H(r), (2)

where ω ∈ C and H 6= 0.

We stated Maxwell’s equations and derived resonance problems without applying
it to the specific case of photonic crystals. For a photonic crystal, there are
further simplifications. The structure and the electric permittivity are periodic:

ε(r + la1 +ma2 + na3) = ε(r), ∀l,m, n ∈ Z.

A resonance function H or E can be translated by any arbitrary vector t =
la1 +ma2 + na3 with l,m, n ∈ Z and is still a resonance function. Therefore, the
solutions have this property. An example of such functions are the plane waves

fk(r) := F eik·r, F ∈ C3,k ∈ R3.

The vector k is called the wave vector. These are just examples, but it can be
shown, that for a specific wave vector k, a general solution has the form

fk(r) :=
∑

l,m,n∈Z

Fk,l,m,n eik·r+i2π(mb1+lb2+nb3)·r

= eik·r
∑

l,m,n∈Z

Fk,l,m,n ei2π(mb1+lb2+nb3)·r,

where the vectors bi build the dual basis to the lattice translation vectors ai
and span the reciprocal space containing the wave vectors. Therefore, the wave
vector can also be written as k = k1b1 + k2b2 + k3b3. The function above is a
combination of two parts. The first is a plane wave defined by the wave vector
and the second is a Fourier series expansion of a periodic function. This results
in the general form

fk(r) := eik·r uk(r)

with an on the unit cell Ω periodic function uk(r).
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Remark 2 With this identity, it is also possible to state the resonance problem
for the periodic function. The operators in the systems of equations will be k
dependent, but the space for the solution is the same for each wave vector.

Resonance functions E and H have such a form. From this, the behaviour on the
boundary Γ of the unit cell Ω can be derived. For all vectors r on one face of the
unit cell with its opposing face being a translation along a vector ai away, the
periodicity

E(r + ai) = eik·ai E(r), H(r + ai) = eik·ai H(r).

has to hold. For a 3D photonic crystal, there are three pairs of faces and for a
2D photonic crystal two pairs of faces that are connected by this condition. This
periodicity is called Bloch periodicity.

With the argumentation above we narrowed down the form of the resonances in
PHCs. On the plus side, the problem only has to be solved on the unit cell, but
the disadvantage is that the resonance problem, or more specific the boundary
condition of the resonance problem, depends on the wave vector k in the reciprocal
space. At this point the reciprocal space is the unbounded R3.

This is a problem which can be solved. For different wave vectors the according
resonances are the same. For example all wave vectors, defined by

kl,m,n := k + 2πmb1 + 2πnb2 + 2πlb3, ∀m,n, l ∈ Z

result in the same resonance problem as with the original wave vector k = k0,0,0.
The solutions for the wave vectors in

R := {2π(ab1 + bb2 + cb3) : a, b, c ∈ [−0.5, 0.5]}

are the same as the solutions for wave vectors in

Rl,m,n := R+ 2πmb1 + 2πnb2 + 2πlb3, m, n, l ∈ Z.

We can cut of every wave vector which is outside of the cube R. There are
still more possible ways to cut the necessary space resulting in the first Brillouin
zone. The region which contains all necessary wave vectors. Examples of the first
Brillouin zone for two dimensional and three dimensional PHCs can be seen in
Figure 4.

The original resonance problems (1) and (2) evolve into:

Definition 1 (Resonance problem in a PHC for the electric field)

For k in the first Brillouin zone, find (ωk,Ek), ωk ∈ C,Ek 6= 0 such that Ek is
Bloch periodic and satisfies

curl curl Ek(r) = ω2
kε(r)Ek(r), r ∈ Ω.

Definition 2 (Resonance problem in a PHC for the magnetic field)

For k in the first Brillouin zone, find (ωk,Hk), ωk ∈ C,Hk 6= 0 such that Hk is
Bloch periodic and satisfies

curl ε(r)−1 curl Hk(r) = ω2
kHk(r), r ∈ Ω.

5
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(a) First Brillouin zone (square) of a 2D
photonic crystal with cylinders as dis-
persive material. The points Γ, X, M
and their connecting lines define the red
bounded region for wave vectors k.
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(b) First Brillouin zone of a face centred
cubic lattice. The points Γ, X, U, L, W,
K and their connecting lines define the
region for wave vectors k.

Figure 4: Examples of the first Brillouin zone and its symmetric points.

With more symmetry arguments the region for the wave vectors can be further
reduced to only a small fraction of the first Brillouin zone. Examples for these
parts are marked red in Figure 4.

Remark 3 Note that in the new resonance problems the frequency ωk depends
on the wave vector. Sorting the frequencies with positive real part in ascending
order, indexing them and interpreting them as a function in k results in functions
ωτ (k). The index τ can be, but need not be, a natural number. These functions
are the bands of the photonic crystal and define the band structure.

Usually, the problems are solved on a couple of connecting lines between specific
points, resulting in band structure diagrams [FYS+13, SC10]. More details on the
Bloch periodicity and the first Brillouin zone can be found in the book [JJWM08],
which was the source of this information.

Up to now, we analysed photonic crystals, but this work is about MPHCs. There
is a small but significant difference between PHCs and MPHCs, the electric per-
mittivity. The electric permittivity ε(r) has been introduced as a scalar function
only depending on the spatial dimension, but in metallic photonic crystals it also
depends on the frequency ω.

From now on the subscript ·n indicates that the object is confined to the non-
dispersive material and the subscript ·d indicates connection to the dispersive
material. For example the unit cell Ω is split into the non-dispersive part Ωn

and the dispersive part Ωd. The electric permittivity in the non-dispersive media,
always set to εn = 1 in this thesis, is independent of the frequency, but εd depends
on ω.
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Such a permittivity can be modelled by the Drude model

εd(w) := 1−
δ2
p

ω(ω + iγp)

or the more involved Drude-Lorentz model

εd(w) := ε∞ −
δ2
p

ω(ω + iγp)
+

2∑
j=1

δjρj

(
eiβj

δj − ω − iγj
+

e−iβj

δj + ω + iγj

)
.

ε∞, δp, γp, δj, ρj, βj, γj are material constants [ELRM06, ELRM07]. With these
models, the resonance problems in Definition 1 and Definition 2 evolve into the
non-linear resonance problems [HLM16]:

Definition 3 (Resonance problem in a MPHC for the electric field)

For k in the first Brillouin zone, find (ωk,Ek), ωk ∈ C,Ek 6= 0 such that Ek is
Bloch periodic and satisfies

curl curl Ek(r) = ω2
kε(r, ωk)Ek(r), r ∈ Ω. (3)

Definition 4 (Resonance problem in a MPHC for the magnetic field)

For k in the first Brillouin zone, find (ωk,Hk), ωk ∈ C,Hk 6= 0 such that Hk is
Bloch periodic and satisfies

curl ε(r, ωk)−1 curl Hk(r) = ω2
kHk(r), r ∈ Ω. (4)

2.1 2D metallic photonic crystal

In case of a 2D metallic photonic crystal, further simplifications can be made.
We will address the different coordinates of a specific vector or field F by F :=
(Fx,Fy,Fz)

>. Because of the materials infinite extension in the z-direction, the
solutions z-dependency is separable and has the form of a plane wave. In the other
two spatial dimensions the same argument as in a three dimensional MPHC can
be made. The resonance functions have the form

fk(x, y, z) := eikzz ei(kxx+kyy) uk(x, y)

with uk(x, y) being a periodic function on the lattice projected onto the x, y
plane. For simplifications in 2D photonic crystal the z-coordinate of the wave
vector is set to zero (kz := 0). This reduces the three dimensional first Brillouin
zone to a two dimensional projection, resulting in solutions of the form

fk(x, y, z) = fk(x, y) = ei(kxx+kyy) uk(x, y).

Applying the curl curloperator on such a function looks like

curl curl fk :=

 ∂y∂xfk,y − ∂y∂yfk,x
−∂x∂yfk,x − ∂x∂xfk,y
−∂x∂xfk,z − ∂y∂yfk,z

 .

In the third row the negative laplacian −∆x,y := −∂x∂x − ∂y∂y remains and is
applied to fk,z the z-coordinate of the field. The resonance problems can be stated
with the z-component of the vector fields. The problem in Definition 3 boils down
to:

7



Definition 5 (E-field resonance problem in a two dimensional MPHC)
For k in the 2D first Brillouin zone, find (ωk,Ek,z), ωk ∈ C,Ek,z 6= 0 such that
Ek,z is Bloch periodic in two dimensions and satisfies

−∆x,yEk,z(x, y) = ω2
kε(x, y, ωk)Ek,z(x, y), (x, y, 0)> ∈ Ω. (5)

The second problem in Definition 4 to:

Definition 6 (H-field resonance problem in a two dimensional MPHC)
For k in the 2D first Brillouin zone, find (ωk,Hk,z), ωk ∈ C,Hk,z 6= 0 such that
Hk,z is Bloch periodic in two dimensions and satisfies

−∇x,y · ε(x, y, ωk)−1∇x,yHk,z(x, y) = ω2
kHk,z(x, y), (x, y, 0)> ∈ Ω. (6)

The operator ∇x,y is defined by ∇x,y := (∂x, ∂y)
>.

Solutions of Definition 5 are called transversal magnetic (TM) modes, because
the magnetic field H is orthogonal to the z-direction and solutions of Definition
6 are called transversal electric (TE) modes [MEH02, IS01].

3 Finite elements for photonic crystals

In Section 2 we ended up with non-linear resonance problems for 2D and 3D
metallic photonic crystals, for which we would like to know the resonances. The
analytic calculation of them is, most of the time, not possible. This issue is solved
in two steps. First the problems are discretised with the finite element method,
resulting in non-linear matrix eigenvalue problems. These are still not analytically
solvable. In the second step, the matrix eigenvalue problems are solved with
iterative methods. The iterative methods are described in the Sections 4 and 5.
The first step, discretisation into a non-linear matrix eigenvalue problem, is the
focus of this section.

3.1 Finite element discretisation for 3D metallic photonic
crystals

At first, the resonance problem in Definition 3 is transferred into a Hilbert space
setting. The space has to contain functions defined on the unit cell Ω, that are
Bloch periodic on the boundary and smooth enough to apply the curloperator.
A space which holds functions with a curl, at least in a weak sense, is according
to [Néd80, Néd86, Zag06]

H(curl,Ω) := {f ∈ L2(Ω,C)3 : curl f ∈ L2(Ω,C)3}.

For functions in this space only the tangential trace f × ν is defined on the
boundary with ν being the outward pointing normal vector. Therefore, we can
only claim tangential Bloch periodicity on the boundary. The final space is

Hk(curl,Ω) := {f ∈ H(curl,Ω) : f × ν Bloch periodic on Γ}.

8



Remark 4 The Hilbert space Hk(curl,Ω) changes with each wave vector, because
the boundary condition changes. This is indicated by the subscript that the space
carries. Although the weak formulation for each wave vectors looks the same it is
not, because the solution space itself changes.

We define the complex conjugation of c ∈ C by the symbol c. For a vector field
the complex conjugation is applied to each component. The weak formulation of
Equation (3) is derived by partial integration and looks like∫

Ω

curl Ek · curl vk dr = ω2
k

∫
Ω

ε(., ωk)Ek · vk dr, ∀vk ∈ Hk(curl,Ω), (7)

with Ek ∈ Hk(curl,Ω) and the weak formulation of Equation (4) is∫
Ω

ε(., ωk)−1 curl Hk · curl vk dr = ω2
k

∫
Ω

Hk · vk dr, ∀vk ∈ Hk(curl,Ω), (8)

with Hk ∈ Hk(curl,Ω).

The finite element method (FEM) uses a set of basis functions φj ∈ Hk(curl,Ω), j ∈
{1, . . . , N}, spanning the space Vk,h := [φ1, . . . , φN ] ⊂ Hk(curl,Ω). The problem
is projected on to this finite dimensional subspace.

Remark 5 The subscript indicating the wave vector k dependency will be omitted
at the FEM discretisation matrices later. It should not be forgotten that they
change with each wave vector.

The basis functions need to be elements of the Hilbert space, which means they
have to be Bloch periodic. In the FEM software Netgen/NGSolve [Sch97,
Sch14] this space Vk,h can be generated.

Quasi periodic geometries and spaces in Netgen/NGSolve: An example
code for a 2D quasi periodic square region is illustrated in Listing 1. First, the
geometry is generated. The ‘periodic’ keywords, in rows 4 to 7, indicate the
periodicity. The parameters ‘copy=bottom’ tells the newly added line that it
actually is a copy of the line ‘bottom’. Here the orientation is important, because
the mesh is copied from one line to the other. In row 9 the periodicity coefficients
are specified. Note that each number corresponds to a line in the geometry sorted
in the same way as the lines were added before. The first two coefficients are zero
or could be anything, because they are not used. These lines in the geometry
are original and not copied. The last two coefficients carry the quasi periodicity
coefficients and the finite element space is generated such that the basis function
are quasi periodic over the specified two lines. In the end, the finite element space
is generated in row 10 with the quasi periodicity factors.

For 3D geometries the definition is a little different. An example of a simple cube
in three dimensions can be seen in Listing 2. The first nine rows are standard
3D geometry generation in Netgen/NGSolve. To add periodic surfaces the
commands in line 10 to 12 are needed. The first argument indicates the surface
to copy, the second to which surface it is copied and the third specifies along

9



1 geo = SplineGeometry()

2 pnts = [ (−a/2,−a/2), (a/2,−a/2), (a/2,a/2), (−a/2,a/2) ]
3 pnums = [geo.AppendPoint(∗p) for p in pnts]
4 bottom = geo.Append ( ["line", pnums[0], pnums[1]],bc="periodic")

5 right = geo.Append ( ["line", pnums[1], pnums[2]], bc="periodic")

6 geo.Append ( ["line", pnums[3], pnums[2]], leftdomain=0, rightdomain

=1, copy=bottom, bc="periodic")

7 geo.Append ( ["line", pnums[0], pnums[3]], leftdomain=0, rightdomain

=1, copy=right, bc="periodic")

8 mesh = Mesh(geo.GenerateMesh(maxh=h))

9 factors = [0,0,f1,f2]

10 fes = Periodic(H1(mesh,order=p,complex=True),phase=factors)

Listing 1 Generating a 2D quasi periodic square in Netgen/NGSolve.

1 left = Plane(Pnt(0,0,0),Vec(−1,0,0))
2 right = Plane(Pnt(1,0,0),Vec(1,0,0))

3 bot = Plane(Pnt(0,0,0),Vec(0,0,−1))
4 top = Plane(Pnt(0,0,1),Vec(0,0,1))

5 back = Plane(Pnt(0,0,0),Vec(0, −1, 0))
6 front = Plane(Pnt(0,1,0),Vec(0, 1, 0))

7 cube = left ∗ right ∗ top ∗ bot ∗ back ∗ front
8 geo = CSGeometry()

9 geo.Add(cube)

10 geo.PeriodicSurfaces(left,right,Trafo(Vec(1,0,0)))

11 geo.PeriodicSurfaces(back,front,Trafo(Vec(0,1,0)))

12 geo.PeriodicSurfaces(bot,top,Trafo(Vec(0,0,1)))

13 mesh = Mesh(geo.GenerateMesh(maxh=h))

14 factors = [f1,f2,f3]

15 fes = Periodic(HCurl(mesh,order=p,complex=True),phase=factors)

Listing 2 Generating a 3D quasi periodic cube in Netgen/NGSolve.

which direction the surface is moved. This is necessary for geometries with skew
faces. For example the lattice in Figure 3 has such faces. Generating the mesh
and the space are almost the same as in the 2D case. The only difference is that
the factors for the periodicity need to be ordered in the same way as the periodic
surfaces have been added in rows 12 to 14.

Later on the finite element method matrices A,Ad,M,Md ∈ CN×N defined by

(A)i,j :=

∫
Ω

curlφi · curlφj dr, (Ad)i,j :=

∫
Ωd

curlφi · curlφj dr,

(M)i,j :=

∫
Ω

φi · φj dr, (Md)i,j :=

∫
Ωd

φi · φj dr

for i, j ∈ {1, . . . , N}, will be needed. The finite element basis functions φj have
local support and therefore, the matrices, although their dimension N may be
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large, are sparse. Especially Ad and Md have zero entries for all basis function
without support in the dispersive material Ωd.

3.1.1 Drude model discretisation

Using the Drude model for ε, Equation (7) and (8) look like∫
Ω

curl Ek · curl vk dr = ω2
k

∫
Ω

Ek · vk dr− ωk

δ2
p

ωk + iγp

∫
Ωd

Ek · vk dr, (9)∫
Ω

curl Hk · curl vk dr +
δ2
p

β(ωk)

∫
Ωd

curl Hk · curl vk dr = ω2
k

∫
Ω

Hk · vk dr,

(10)

with β(ωk) := ωk(ωk + iγp)− δ2
p. Using the discretisation with FEM spaces, this

results in

Au = ω2Mu− ω
δ2
p

ω + iγp
Mdu, Au+

δ2
p

ω(ω + iγp)− δ2
p

Adu = ω2Mu, (11)

with ω ∈ C, u ∈ CN \{0}. To calculate the band structure these non-linear matrix
eigenvalue problems need to be solved for wave vector k in the first Brillouin zone.

3.1.2 Drude-Lorenz model discretisation

The Drude-Lorenz model is more evolved than the Drude model, luckily the same
FEM matrices can be used. Applying the same steps as for the Drude model to
Equation (7) lead to

Au = ω2Mu− ω2

(
1− ε∞ +

δ2
p

α(ω)
+

2∑
j=1

δjρj

(
eiβj

αj − ω
+

e−iβj

αj + ω

))
Mdu, (12)

with αj := δj − iγj and α(ω) := ω(ω + iγp). The discrete eigenvalue problem
for the magnetic field is not stated here, because of the structure of the electric
permittivity of the Drude-Lorenz model.

3.2 Finite element discretisation for 2D metallic photonic
crystals

The discretisation of 2D metallic photonic crystals follows the same steps with
some slight differences. Matrix and function names from the 3D crystal will be
reused. First, Equation (5) and Equation (6) are transferred into a Hilbert space
setting.

A space which holds function with a gradient is

H1(Ω) := {f ∈ L2(Ω,C) : ∇f ∈ L2(Ω,C)2}.

For functions in this space boundary evaluation integrals are well defined. There-
fore, we can claim Bloch periodicity on them. The final space is

H1
k(Ω) := {f ∈ H1(Ω) : f Bloch periodic on Γ}.

11



Remark 6 As in the case of Hk(curl,Ω), the Hilbert space H1
k(Ω) depends on

the wave vector.

The weak formulations in this space look like∫
Ω

∇x,yEk,z · ∇x,yvk d(x, y) = ω2
k

∫
Ω

ε(., ωk)Ek,zvk d(x, y), ∀vk ∈ H1
k(Ω),∫

Ω

ε(., ωk)−1∇x,yHk,z · ∇x,yvk d(x, y) = ω2
k

∫
Ω

Hk,zvk d(x, y), ∀vk ∈ H1
k(Ω),

with Ek,z, Hk,z ∈ H1
k(Ω). Let φj ∈ H1

k(Ω), j ∈ {1, . . . , N} be the finite element
basis functions and defining the matrices A,Ad,M,Md ∈ CN×N by

(A)i,j :=

∫
Ω

∇x,yφi · ∇x,yφj d(x, y), (Ad)i,j :=

∫
Ωd

∇x,yφi · ∇x,yφj d(x, y),

(M)i,j :=

∫
Ω

φiφj d(x, y), (Md)i,j :=

∫
Ωd

φiφj d(x, y),

for i, j ∈ {1, . . . , N}. These matrices have a sparse structure for the same reason
as the matrices in the 3D case. Using the Drude and the Drude-Lorentz model
result in exactly the same matrix eigenvalue problems as in the 3D case, the
Equations (11) and (12), with the matrices defined here.

We arrived at non-linear matrix eigenvalue problems, which we got by applying
the finite element method to the non-linear resonance problems. Additionally,
we noticed that, although 2D and 3D lattices have different Hilbert spaces, their
according matrix eigenvalue problem structures are comparable.

4 Arnoldi with a rational linearisation

In the last section we derived non-linear matrix eigenvalue problems, more specific
rational eigenvalue problems. The question is how do we solve them in an efficient
way. They are large and calculating all eigenvalues will not be possible most of the
time. The approach is to calculate a small amount of eigenvalues in a desirable
vicinity. This is done by linearisation and applying the shift-and-invert Arnoldi
solver.

Rational eigenvalue problems can be linearised in many ways [SB11]. A common
approach is to transform them into polynomial problems, linearise and solve with
a linear eigenvalue solver. For the linear eigenvalue solver the Arnoldi algorithm
[Arn51] has been chosen. But instead of transforming it into a polynomial prob-
lem, an alternative linearisation, which is directly applied to the rational problem,
is used. For the purpose of comparison also the polynomial approach has been
applied to the problems.

4.1 Shift-and-invert Arnoldi method

We introduce the shift-and-invert Arnoldi algorithm for calculating a small amount
of eigenpairs in the vicinity of the shift σ ∈ C of the generalised eigenvalue prob-
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lem

Ax = λBx A,B ∈ Cn×n, n ∈ N.

The Arnoldi algorithm calculates the biggest eigenvalues first. To get eigenvalues
in the vicinity of σ, a shift and an inversion has to be made resulting in

(A− σB)−1Bx = µx, λ = σ +
1

µ
.

In the new eigenvalue problem the biggest eigenvalues µ correspond to the eigen-
values λ closest to σ. Let us define C := (A− σB).

The idea of the Arnoldi algorithm is to restrict the matrix C−1B to the Krylov
subspace Kl := {x0,C

−1Bx0, . . . , (C
−1B)l−1x0} and solve the smaller problem.

Then the calculated eigenvalues are used and transformed by λ = σ + 1
µ

into

approximate eigenvalues of (A,B). The vector x0 ∈ Cn is an arbitrary starting
vector.

At first, an orthonormal basis Vl := {v0, v1, . . . , vl−1} of Kl is needed and then
C−1B is restricted to

Tl = VT
l C−1BVl Tl ∈ Cl×l.

Next, the small eigenvalue problem for matrix Tl is solved.

The orthonormal basis is generated by orthonormalizing the next Krylov subspace
vector against each preceding one, and adding it to the already existing basis.
The matrix C−1B is applied to the new basis vector, or better, the system of
linear equations Crj = Bvj−1 is solved. The vector rj is the next candidate for a
basis vector and has to be orthogonalised. This algorithm results in the recursion

Crj = Bvj−1,

tj+1,jvj = rj −
j−1∑
l=0

tl+1,jvl,

for j ∈ {1, . . . , l−1}, with tl+1,j := vl·rj, l ≤ j−1 the orthogonalisation coefficients
and tj+1,j the coefficient to normalise the new vector. The scalar product is the
Euclidean product in Cn.

The coefficients have not been named by chance. It turns out they are the entries
of Tl at the corresponding position described by their indices. All positions of T
which are not defined are zero, giving it a Hessenberg structure.

An algorithm based on these systems of equations can be seen in Algorithm 1.

If the matrix B is hermitian and positive definite Euclidian, the Euclidian scalar
product can be exchanged with the by B induced scalar product. If, addition-
ally, matrix A is symmetric, the algorithm becomes the shift-and-invert Lanczos
method.

4.2 Polynomial linearisation schema

The rational eigenvalue problems in Section 3 can be transformed into polynomial
eigenvalue problems by multiplying with the denominators. The general form of

13



Algorithm 1 Shift-and-invert Arnoldi method

Require: A,B ∈ Cn×n, Start-vector r0 ∈ Cn \ {0}
1: t1,0 = (r0 · r0)1/2

2: j = 0
3: while j < maximum number of iterations do
4: vj = rj/tj+1,j

5: (A− σB)rj+1 = Bvj (solve system of linear equations)
6: l = 0
7: while l ≤ j do
8: tl+1,j+1 = vl · rj+1

9: rj+1 = rj+1 − tl+1,j+1vj

10: tj+2,j+1 = (rj+1 · rj+1)1/2

11: j = j + 1
12: Compute the eigenvalues of Tj and the corresponding error bounds.
13: Stop if enough eigenvalues have been found.

polynomial eigenvalue problems look like: Find pairs (ω, u) with ω ∈ C, u ∈
CN \ {0} such that

T(ω)u =
k∑
j=0

ωjAju = 0, Aj ∈ CN×N .

The polynomial eigenvalue problem is linearised by introducing new vectors y0 :=
u, yj := ωyj−1, j ∈ {1, . . . , k − 1}. Substituting u with the vectors yj leads to the
system of equations

A0y0 + ω
k∑
j=1

Ajyj−1 = 0.

Combining this system of equations with the definition of the vectors yj results
in the bigger linear eigenvalue problem Ãx̃ = ωB̃x̃ with x̃ := (y0, . . . , yk−1)> and
the matrices

Ã :=


A0 0 · · · 0

0 I
. . .

...
...

. . . . . . 0
0 · · · 0 I

 , B̃ :=


−A1 −A2 . . . −Ak

I 0 · · · 0

0
. . . . . .

...
0 0 I 0

 .

The shift-and-invert Arnoldi method needs the with σ shifted and then inverted
matrix (Ã− σB̃)−1 at each iteration step, as can be seen in Algorithm 1 Line 5.

Usually, the inversion of a matrix k-times larger is more expensive, but the lower,
right part of the shifted matrix can be analytically inverted:

I 0 · · · · · · 0

−σI I
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . I 0
0 · · · 0 −σI I



−1

=


I 0 · · · · · · 0

σI I
. . . . . .

...

σ2I
. . . . . . . . .

...
...

. . . . . . I 0
σk−1I · · · σ2I σI I

 .
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An ideal case to apply the Schur complement(
C11 C12

C21 C22

)−1

=

(
I 0

−C−1
22 C21 I

)(
(C11 − C12C−1

22 C21)−1 0
0 C−1

22

)(
I −C12C−1

22

0 I

)
with matrices C11 := A0 + σA1, C12 :=

(
σA2 σA3 . . . σAk

)
and

C21 :=


−σI

0
...
0

 , C22 :=


I 0 · · · · · · 0

−σI I
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . I 0
0 · · · 0 −σI I

 .

Only systems of linear equations with the matrix T(σ) = C11 − C12C−1
22 C21 have

to be numerically solved.

4.3 Rational linearisation schema for the Drude model in
electric form

The form of the matrix eigenvalue problem with the Drude model is independent
of the problem dimension. Therefore, a general schema for both cases can be
developed. The eigenvalue problem for the Drude model in electric form

Au = ω2Mu− ω
δ2
p

ω + iγp
Mdu,

can be linearised by introducing new vectors v := ωu and x := 1
ω+iγp

u. The

variable x is an unusual substitution, but with it the rational part is directly
linearised. Otherwise, the whole system of equations would have to be multiplied
by the denominator. Substituting the vectors leads to

Au = ωMv − ωδ2
pMdx.

Combining the new system of equations with the definitions of v and x leads to
the bigger linear eigenvalue problem Ãx̃ = ωB̃x̃ with the matrices

Ã :=

A 0 0
0 I 0
I 0 −iγpI

 , B̃ :=

0 M −δ2
pMd

I 0 0
0 0 I


and the vector x̃ := (u, v, x)>.

As in the polynomial linearisation the lower right part of the shifted matrix can
be analytically inverted(

I 0
0 −(σ + iγp)I

)−1

=

(
I 0
0 − 1

σ+iγp
I

)
.
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1 v0 = vec[0].CreateVector()

2 v0.data = M∗vec[1] − op∗op∗Md∗vec[2]
3 v1 = vec[1].CreateVector()

4 v1.data = vec[0]

5 v2 = vec[2].CreateVector()

6 v2.data = vec[2]

7

8 v0.data += sig∗M∗v1 + sig∗op∗op/(sig + 1J∗gp)∗Md∗v2
9

10 v0.data = invS∗v0
11 v2.data = (−1)/(sig + 1J∗gp)∗v2
12

13 v1.data += sig∗v0
14 v2.data += 1/(sig + 1J∗gp)∗v0

Listing 3 Applying (Ã− σB̃)−1B̃ to a vector in Netgen/NGSolve

Applying the Schur complement results in

(Ã− σB̃)−1 =

 A −σM σδ2
pMd

−σI I 0
I 0 −(σ + iγp)I

−1

=

 I 0 0
σI I 0
1

σ+iγp
I 0 I

S(σ)−1 0 0
0 I 0
0 0 − 1

σ+iγp
I


I σM σ

δ2p
σ+iγp

Md

0 I 0
0 0 I

 ,

with the matrix valued function S(ω) := A−ω2M +ω
δ2p

ω+iγp
Md, ω ∈ C. Note that

the original matrix eigenvalue problem is S(ω)u = 0.

Although a big eigenvalue problem is created by rational linearisation, only an
inverse with the original problem size has to be calculated. The rest is handled
by matrix vector multiplications. The implementation of applying (Ã− σB̃)−1B̃
to the last Krylov vector can be seen in Listing 3.

The modified shift-and-invert Arnoldi has vectors of three times the finite element
space size. Therefore, calculating scalar products is three times more expensive.
As is the whole orthogonalisation process. The cost to calculate the eigenvalues
of the small matrix Tl stays the same. Applying (Ã−σB̃)−1B̃ requires four more
matrix vector multiplications and three vector scalings. In the matter of storage,
one additional matrix has to be stored and each vector is three times the usual
size.
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4.4 Rational linearisation schema for the Drude model in
magnetic form

There also exists a linearisation for the magnetic form

Au+
δ2
p

ω(ω + iγp)− δ2
p

Adu = ω2Mu,

which yields the same benefits as the one for the electric form. At first, the
denominator has to be factorised into ω(ω + iγp) − δ2

p = (ω − ω1)(ω − ω2) and
introducing new vectors v := ωu, x := 1

ω−ω1
u, y := 1

ω−ω2
x leads to

Au+ δ2
pAdy = ωMv,

which in combination with the definition of v, x, y has the form of the linear
eigenvalue problem

A 0 0 δ2
pAd

0 I 0 0
I 0 ω1I 0
0 0 I ω2I



u
v
x
y

 = ω


0 M 0 0
I 0 0 0
0 0 I 0
0 0 0 I



u
v
x
y

 .

This problem is four times the original size. As before the lower, right part of the
shifted matrix can be analytically inverted and the Schur complement applied.

4.5 Rational linearisation schema for the Drude-Lorentz
model in electric form

Finally, let us have a look at the Drude-Lorentz model and its linearisation.

For the Drude-Lorentz model in electric form,

Au = ω2Mu− ω2

(
1− ε∞ +

δ2
p

α(ω)
−

2∑
j=1

δjρj

(
eiβj

αj − ω
+

e−iβj

αj + ω

))
Mdu,

a couple more vectors are needed. With the new vectors v = ωu, (ω + iγp)x =
u, (δj − ω − iγj)yj = v, (δj + ω + iγj)zj = v, j ∈ {1, 2} the system of equations
looks like

Au = ω (M− (1− ε∞) Md) v + ωδ2
pMdx− ω

2∑
j=1

δjρj
(
eiβj Mdyj + e−iβj Mdzj

)
.

In combination with the definition of v, x, y1, y2, z1, z2, it is a linear eigenvalue
problem seven times the original size. As in the Drude model, the Schur comple-
ment can be used for this linear eigenvalue problem as well.

We have seen a nice property of the rational linearisation. We only need to invert
a matrix of the original problem size to be able to apply the Arnoldi method.
The drawback is the orthogonalisation has to be done on the bigger vectors.
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Remark 7 The shown linearisation can be applied to every rational eigenvalue
problem, because the lower, right part of the linear problem is always analytically
invertible. A quick glance at it reveals that, although it looks like a big matrix,
the actual dimension is exactly the amount of used help vectors, which should be
relatively small and just a small matrix has to be analytically inverted to apply
the Schur complement trick.

Although the explicit dependency on the wave vector k has been omitted in this
sections, the matrices depend on it.

5 Alternative methods

Apart from the polynomial and rational Arnoldi, there are other solvers for ra-
tional eigenvalue problems. One such solver is introduced in [HLM16]. It is
a Newton-type method applied to the 3D metallic photonic crystal, as seen in
Figure 3. The same crystal has been used for tests in this thesis.

The second solver, Beyn’s method [Bey12], belongs to a new family of eigenvalue
solvers. These solvers are based upon contour integrals in the complex plane.

5.1 A Newton-type method with non-equivalence defla-
tion

A short introduction to the main cornerstones of this method will be given here.
More information can be found in [HLM16].

The algorithm is constructed to calculate one eigenpair at a time for non-linear
eigenvalue problems of the form

Ax = ω2B(ω)x, A ∈ Cn×n,∀ω ∈ C,B(ω) ∈ Cn×n,

where matrix B(ω) is diagonal. Note that the non-linearity is only in matrix
B(ω). In each step the eigenpair with the smallest positive real part eigenvalue is
calculated and the problem deflated such that the already converged eigenvalue is
transformed into an infinite eigenvalue, to not disturb further eigenvalue searches.
The deflated eigenvalue problem looks like

Ax = ωB̃(ω)x,

with the new matrix B̃(ω).

To find the next eigenvalue a Newton-type method is introduced. For a given ω
the authors consider the general eigenvalue problem

βAx = B̃(ω)x,

with β and x depending on ω.

Remark 8 In the Newton-type method, different eigenvalue problems are stated,
with dependance on ω. Note that ω is fixed in these eigenvalue problems. β is the
desired eigenvalue.
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If β(ω) = ω−1 would hold, then (β−1, x) would be the new eigenpair. Therefore
a root of the function

f(ω) := β(ω)− ω−1

is needed.

A Newton iteration is applied. In each iteration a eigenvalue problem has to
be solved, but it has an eigenspace for the eigenvalue zero. This eigenspace
influences the convergence badly. The authors solved this issue by applying a
second deflation by projecting away from the kernel of the matrix A. For the
Newton iteration the inverse B̃(ω)−1 is needed. B̃(ω) changes with each deflation,
but the inverse can be calculated by using the inverse of the original matrix B(ω).

Remark 9 The matrix B(ω) is diagonal, because of the finite difference discreti-
sation schema. The inverse can be analytically calculated.

We note the only needed inverse is that of B(ω), which is a diagonal matrix.
To solve the arising standard eigenvalue problems, they used either the Jacobi-
Davison method or the Shift-invert residual Arnoldi method.

One issue still remained, the Newton convergence depends on the start value and
only with a good start value, a fast convergence can be assured. To calculate
such a start value the non-linear Arnoldi or the non-linear Jacobi Davidson has
been used. Whenever the Newton iteration did not converge a new start value
has been computed.

5.2 Beyn’s method

Beyn’s method, introduced in [Bey12] by Wolf-Jürgen Beyn, is an eigenvalue
solver based on contour integrals in the complex plane. It belongs to the new
class of moment-based eigenvalue solvers [ST07]. This section is a short overview
of this method and based on [Bey12]. Beyn’s method can be applied to non-linear
eigenvalue problems of the form

T(ω)v = 0, v ∈ Cm, v 6= 0, ω ∈M ⊂ C,

with M a simply connected domain and T :M→ Cm×m holomorphic.

Remark 10 The setting in this section including Keldysh’s theorem can be gen-
eralised to holomorphic Fredholm operators. For details see [MM03, Chapter 1].

The pair (ω, v), such that T(ω)v = 0, is called an eigenpair. The main point of
the algorithm is that the inverse T(ω)−1 is meromorphic inM and in the vicinity
U of a pole λ ∈M it has a Laurent expansion of the form

T(ω)−1 =
∞∑

j=−κ

Sj(ω − λ)j, Sj ∈ Cm×m,

with κ being the order of the pole. For simplicity, the algorithm will be explained
for an eigenvalue problem with strictly simple eigenvalues. For simple eigenvalues
the order of the pole is always κ = 1.
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The matrix S−1 is unknown for the operator T, but according to Keldysh’s the-
orem [MM03, Chapter 1], it can be represented with the left eigenvector u and
the right eigenvector v satisfying

T(λ)v = 0, u∗T(λ) = 0, u∗T
′
(λ)v = 1.

Then the inverse has the form

T(ω)−1 =
1

ω − λ
vu∗ + R(ω), ω ∈ U \ {λ},

with a holomorphic function R : U → Cm×m in U . The pole of the Laurent series
is expressed in left and right eigenvectors and the remaining rest is holomorphic.

With more than one eigenvalue in U the inverse has the similar form,

T(ω)−1 =
k∑

n=1

1

ω − λn
vnu

∗
n + R(ω), ω ∈ U \ {λ1, . . . , λk},

with un, vn left and right eigenvectors to λn satisfying u∗nT
′
(λn)vn = 1.

Applying the residue theorem from complex analysis to a contour C in U , which
encloses the eigenvalues of interest, leads to

1

2πi

∫
C
f(ω)T(ω)−1dω =

k∑
n=1

f(λn)vnu
∗
n, (13)

for any in U holomorphic scalar function.

With this information, an eigenvalue solver can be proposed. We will need the ma-
trices V := (v1, . . . , vk),U := (u1, . . . , uk) ∈ Cm×k. They store the left and right
eigenvectors. In [ST07] methods with higher moments are introduced. Beyn’s
method only needs the first two moments:

A0 :=
1

2πi

∫
C

T(ω)−1V̂dω ∈ Cm×l,

A1 :=
1

2πi

∫
C
ωT(ω)−1V̂dω ∈ Cm×l.

The matrix V̂ ∈ Cm×l, k ≤ l ≤ m is randomly chosen such that U∗V̂ has rank
k, which also implies full rank for U. The space spanned by the columns of V̂ is
also revered to as ansatz space. Matrix V should also have full rank k.

Remark 11 For linear eigenvalue problems the rank conditions on U and V are
trivial. For non-linear eigenvalues this does not hold, eigenvectors to different
eigenvalues may be linear dependent.

The current forms of A0 and A1 are not helpful, but with Equation (13) they
have the form,

A0 =
k∑

n=1

vnu
∗
nV̂ = VU∗V̂, (14)

A1 =
k∑

n=1

λnvnu
∗
nV̂ = VΛU∗V̂, Λ := diag(λ1, . . . , λk). (15)
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Matrix A1 has the eigenvalues stored, but they and the matrices U,V are un-
known. There is a way to extract the eigenvalues from these matrices.

First, a singular value decomposition of A0 in reduced form

VU∗V̂ = A0 = V0Σ0U∗0

is calculated, where V0 ∈ Cm×k,Σ0 := diag(σ1, . . . , σk),U0 ∈ Cl×k,V∗0V0 =
Ik,U

∗
0U0 = Ik. The rank of A0 is k, hence A0 has singular values

σ1 ≥ · · · ≥ σk > 0 = σk+1 = · · · = σl.

Because of the rank condition earlier the range of A0,V and V0 is the same.
Therefore, there exists a regular matrix S ∈ Ck×k such that

V = V0S, S := V∗0V. (16)

V0 spans the same space as V, which is the eigenspace. Combining Equation (14)
and (16) leads to

V0SU∗V̂ = V0Σ0U∗0 ⇐⇒ U∗V̂ = S−1Σ0U∗0.

With this, U∗V̂ in Equation (15) can be eliminated, obtaining

V∗0A1 = SΛU∗V̂ = SΛS−1Σ0U∗0 ⇐⇒ SΛS−1 = V∗0A1U0Σ−1
0 .

The right hand matrix can be calculated from the matrices A0,A1 and has the
same eigenvalues as Λ, which are desired. By calculating the eigenvalues of it,
the algorithm is concluded.

Remark 12 The matrices A0 and A1 hold all the necessary information to calcu-
late the eigenvalues. The main goal of the algorithm is to make these informations
accessible through a singular value decomposition.

Computing A0 and A1 There is still the question of how to calculate the
contour integrals for A0 and A1. The discrete integrals cannot be calculated, a
numerical quadrature rule has to be applied. It turns out that the composite
rectangle rule for the quadrature is good enough. For a contour given by a 2π-
periodic smooth parametrisation ψ(t) the approximation of A0 looks like

A0,Nc :=
1

iNc

Nc−1∑
j=0

T(ψ(tj))
−1V̂ψ

′
(tj)

and the approximation for A1 is

A1,Nc :=
1

iNc

Nc−1∑
j=0

T(ψ(tj))
−1V̂ψ(tj)ψ

′
(tj).

The integration nodes are taken equidistant tj := 2jπ
Nc
, j ∈ {0, . . . , Nc}. For each

integration node l systems of linear equations with the vectors in V̂ have to be
solved.
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The computational effort of the algorithm increases with l the rank of V̂. In
theory, l can be set to l = k. The algorithm has been introduced for k ≤ m. In
non-linear eigenvalue problems it can occur that there are more eigenvalues than
the matrix has dimension. Usage of more than the first two moments solves this
issue. More details can be found in [Bey12].

In this section, two different solver for non-linear eigenvalues have been intro-
duced. The first was for a very specific problem and combined different methods
to tackle the issues of this problem. The second algorithm is very different in this
perspective. It can handle a wide range of non-linear problems.

5.3 Comparison

We collected all necessary tools to handle the arising rational eigenvalue problem.
Four different eigenvalue solvers were introduced. In this section we are going to
compare them with each other.

Beyn’s method Beyn’s method is based on contour integrals. It is not an
iterative eigenvalue solver. The contour integrals are calculated once and the
eigenvalues extracted. Theoretically, it calculates all eigenvalues in the contour
and none on the outside. It separates the eigenvalues in the complex plane. The
solver has to be restarted if the results are not satisfying. Convergence can only
be achieved by increasing the number of quadrature points. An increase of the
ansatz space is not enough. On the other side, Beyn’s method can handle a
variety of non-linear problems. With this property it stands out amongst the
introduced solvers.

To the subject of computational costs. The contour integrals have to be calcu-
lated. For that a number of systems of linear equations at quadrature points in
the complex plane have to be solved. If a factorisation can be applied, then for
each quadrature point a factorisation has to be calculated and used. In conse-
quence, Nc factorisations have to be generated and with each l systems of linear
equations solved. If no factorisation is possible N times l systems of linear equa-
tions have to be solved. The advantage is that all those systems of equations can
be handled in parallel, making the algorithm optimal for parallelisation. After
that a singular value decomposition of the matrix A0 is needed.

Newton-type method with non-equivalence deflation The Newton-type
eigenvalue solver proposed in [HLM16] is adapted to a very special case of non-
linear eigenvalue problems. Those which have the non-linearity in a diagonal
matrix, but this is at the same time the advantage of the method. Not a single
system of linear equations has to be solved numerically, because the matrices can
be analytically inverted. The disadvantage is in the Newton method itself. Good
start values have to be calculated to ensure convergence to the desired eigenvalues.
If the eigenvalues are clustered, then it may not be possible to ensure convergence
to the correct eigenvalue. Additionally, the eigenvalues have to be computed one
after another.
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Rational and polynomial Arnoldi There is not a large difference between
the rational and polynomial Arnoldi. The convergence for both is comparable, as
will be seen later. Only at roots of denominators the polynomial Arnoldi behaves
differently. Both calculate eigenvalues closest to the shift. Compared to Beyn’s
method they are not as versatile, but they are iterative solvers and work till
convergence. Additionally, the ratio of eigenvalue accuracy to needed system of
linear equations solves is much better.

Disadvantage is that the Arnoldi algorithm is sequential, the systems of linear
equations cannot be solved parallel at the same time and also the orthogonal-
isation gets more expensive with each iteration step and might at some point
outweigh the system of equations solve. If a factorisation is applied, Arnoldi has
the advantage that this factorisation can be used in each iteration step, making
the algorithm very efficient in this case. If a factorisation is not possible, the
systems of linear equations have to be solved iteratively one after the other. In
this regard Beyn’s method is better.

Compared to the Newton-type method, it is more stable in finding a large amount
of eigenvalues. Another advantage of it is, that a-priori and a-posteriori error
estimators for the Arnoldi method may be applied.

6 Numerical results

We want to see if the finite element framework in combination with rational
linearisation and Arnoldi eigenvalue solver can handle metallic photonic crystals.
The rational Arnoldi from Section 4 is applied to a 2D and a 3D metallic photonic
crystal and the band structure along specific points is calculated. In these band
structure diagrams only the real part of the eigenvalues are plotted. We are going
to compare them to the results of a polynomial linearisation.

6.1 2D metallic photonic crystal

First, the square lattice of circular cross-section cylinders, see Figure 2, a 2D
example. The same crystal has been analysed in [MEH02, IS01]. As in the
referenced papers the Drude model is applied to this lattice.

The interesting region of the first Brillouin zone is spanned by the points Γ :=
(0, 0)>, X := ( 1

2a
, 0)>,M := ( 1

2a
, 1

2a
)>. It is marked with red lines in Figure 4a.

Thirty equidistant wave vectors k have been chosen on each of these lines. The
Drude model constants have been set to δp = 1, γp = 10−2 and the lattice constant
a = 2π has been chosen. For the finite element method Netgen/NGSolve was
used, the mesh can be seen in Figure 5.

Earlier it was stated that two dimensional MPHCs have two different types of
resonances, transversal magnetic and transversal electric ones.
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Figure 5: Finite element mesh generated in Netgen/NGSolve and refined on
the metallic surface. The length of its border is a = 2π and the radius of the
circle r = 0.3a. The maximal triangulation diameter is hmax = 1 and the maximal
diameter on the material boundary hbnd = 1

3
hmax.

6.1.1 Transversal magnetic resonances

Equation (9) defines the transversal magnetic resonances. Applying the rational
Arnoldi and the polynomial Arnoldi to it, the band structure for the TM modes
looks like Figure 6. Note that only the real part of ω is used in band structure
diagrams. They have been computed by the polynomial and the rational Arnoldi,
with the shift σ = 0.9 and finite element order p = 4 on the mesh given in Figure
5. In each solver l = 150 iterations have been made per wave vector k. To the
eye, both solvers generate the same band structure.

6.1.2 Transversal electric resonances

The transversal electric modes are defined through Equation (10) and have an
interesting mathematical and numerical effect. Especially interesting is the in-
verse electric permittivity, because it has a singular point in the spectral region
of interest. This leads to a very curious effect resulting in the band structure seen
in Figure 7. The band structure is a combination of two separate runs with each
the polynomial and the rational Arnoldi. In the first run, the shift has been set
to σ = 0.4 and in the second run σ = 0.85. The finite element order was p = 4
on the mesh given in Figure 5 and each solver made l = 150 iterations per wave
vector k.

In the band structure diagram a cluster of flat bands can be seen around ω = 0.7.
A more detailed view of this interesting part is highlighted in Figure 8 and Figure
9. These band structures have been computed by the polynomial and the rational
Arnoldi with the shift σ = 0.695 and finite element order p = 4.

The fact that they are flat lines means that they are independent of the Bloch
boundary condition. These resonance functions are localised on the surface of
the metallic rod and are, so called, plasmon resonances. A couple of theme can
be seen in Figure 10. They correspond to waves that travel around the metallic
rod. It is notable that the wavelengths of these resonances along the metallic

24



rational
polynomial

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

R
e(
ω

)

Γ X M Γ

Figure 6: Transversal magnetic band structure of a square lattice with metallic
cylinders as dispersive material, computed by polynomial and rational Arnoldi.
Two band gaps can be seen.

surface are very short and grow shorter. This is challenging for the finite element
method, because the eigenfunctions need to be properly resolved. The solution
is a local refined mesh around the metallic surface, as can be seen in Figure 5.
A global refinement is unnecessary, because the eigenfunctions are very smooth
away from the surface and a local refinement is therefore more efficient yielding
the same results.

In the vicinity of the interesting wavelength resonances with very high frequencies
along the metallic surface exist. With a finite mesh size, those cannot be resolved
properly, resulting in fractions of modes. A couple of these fractions can be seen
in Figure 11. These correspond to eigenpairs of the matrix eigenvalue problem,
which converged in the iterative solvers, but are not resonances of the continuous
problem. Further refining the mesh does not resolve this issue.

Although more resonance functions with higher frequency are resolved, there
are always fractions of resonance functions with even higher frequencies. These
resonances are not well separated from the others, see Figure 8 and Figure 9,
and can not be filtered by the eigenvalue, but only by the resonance function.
Another property of them is their local support making them independent of the
Bloch boundary, meaning they will appear as a line in the band structure.

Additionally, a flat line at around one can be seen in Figure 7. Only the poly-
nomial solver generates this line. It is exactly at the root of the denominator
and in the polynomial solver the system of equations is multiplied with it. In
the end, the system of equations is multiplied with zero for this eigenvalue and
wrong resonances are generated.

6.2 3D metallic photonic crystal

Finally, we are at a complex three dimensional problem in the Hilbert space
Hk(curl,Ω). As 3D lattice the diamond structured cubic lattice with spheres

25



rational
polynomial

0.0 0.0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1.0 1.0

1.2 1.2

R
e(
ω

)

Γ X M Γ

Figure 7: Transversal electric band structure of a square lattice with metallic
cylinders as dispersive material.

connected by ellipsoids, as in [HLM16], has been used. Its unit cell can be seen
in Figure 3. It is spanned by the lattice translation vectors

a1 :=
a√
2

(1, 0, 0)>, a2 :=
a√
2

(
1

2
,

√
3

2
, 0

)>
, a3 :=

a√
2

(
1

2
,

1

2
√

3
,

√
2

3

)>
.

The vectors

b1 :=
2

a

(
1√
2
,− 1√

6
,− 1

2
√

3

)>
,b2 :=

2

a

(
0,

√
2

3
,− 1

2
√

3

)>
,b3 :=

2

a

(
0, 0,

√
3

2

)>
span the reciprocal space. These come very handy in defining the first Brillouin
zone, or better the interesting points in it. The lattice constant is a = 2π, the
radius of the spheres is r = 0.08a and the minor axis of the connecting spheroids
is s = 0.06a. The permittivity parameters are δp = 10π

a
, γp = 2π

14500
,Ω1 = 2π

470
,Ω2 =

2π
325
γ1 = 2π

1900
, γ2 = 2π

1060
, ε∞ = 1.54, A1 = 1.27, A2 = 1.1, β1 = −π

4
and β2 = −π

4
.

Its Brillouin zone points are defined through the dual vectors bi as following: X :=
1
2
(b1 + b3), U := 1

8
(5b1 + 2b2 + 5b3), L := 1

2
(b1 + b2 + b3),Γ := (0, 0, 0)>,W :=

1
2
(2b1 + b2 + 3b3) and K := 1

8
(3b1 + 3b2 + 6b3). For this crystal both the Drude

and the Drude-Lorentz model have been applied to the electric field Equation
(7).

6.2.1 Drude model

Let us start with the Drude model. It can be linearised in different ways, by mul-
tiplication and then applying a polynomial approach, or with a rational approach
as can be seen in Section 4. The calculated band structure for the electric field
formulation in Equation (9) can be seen in Figure 12. The rational and polyno-
mial Arnoldi deliver the same visual results. The Arnoldi solver has been started
with a shift σ = 1 and 50 iteration have been done for each wave vector k. This
problem is comparable to the transversal magnetic modes in the 2D example.
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Figure 8: In depth view of the transversal electric band structure of a square
lattice with metallic rods as dispersive material.

6.2.2 Drude-Lorentz model

The band structure for the Drude-Lorentz model looks similar to the band struc-
ture of the Drude model. Only small differences in the resonances appear. The
first 16 resonances for both models have been calculated for the wave vector
k = 3

7
X and can be seen in Table 1.

In [HLM16] the same problem was solved and a couple of reference values are
stated. In the paper, the authors find a cluster of resonances around ω = 1.3, for
both the Drude and the Drude-Lorentz model. We did not find these resonances.
The Band structure for the first six resonances are optically the same.

The calculations were done with a finite element order p = 3 and mesh size
h = 0.3 resulting in ndof = 532272 degrees of freedom.

6.3 Convergence comparison

We compared rational and polynomial Arnoldi in band structures, but this is
only an visual comparison and unsatisfying. We are going to take a closer look.
They are both measured in the 2D lattice problem setup from Section 6.1 at the
wave vector k = Γ.

We are going to analyse convergence toward the discretised eigenvalues of the ex-
amples. For this, reference values for the matrix eigenvalue problems are needed.
It would be possible to use the rational or polynomial Arnoldi solver with very
high iteration numbers to calculate them, but this way mistakes made in the lin-
earisation would not be highlighted. To solve this issue, the reference values have
been computed by the different eigenvalue solver in Section 5.2. This is a solver
which can be directly applied to the non-linear problem without a linearisation.

In each example, the data for rational, polynomial Arnoldi and the reference
values have been calculated with exactly the same finite element discretisation.
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Figure 9: In depth view of the transversal electric band structure of a square
lattice with metallic rods as dispersive material.

6.3.1 Convergence for TM modes

The finite element order has been set to p = 4 and the mesh size to h = 1. The
first step generates reference values with Beyn’s method. Five reference values for
the smallest eigenvalues have been calculate. For each value the method has been
applied anew, with a circle as contour closely around the specific eigenvalue. The
calculated reference values are cumulated in Table 2. The following convergence
test for the eigenvalue solvers is based upon convergence toward these values.

In each iteration step both solvers deliver an approximate eigenvalue and the
relative error of these develop as can be seen in Figure 13. The figure illustrates
the convergence of the first five eigenvalues with positive real part. Both solvers
show the same rate of convergence.

6.3.2 Convergence for TE modes

The transversal electric modes showed a strange behaviour. There exist plasmon
frequencies and a clustered region of eigenvalues. We could test the convergence
at eigenvalues far away from this cluster, but we will not. As before, reference
values have been calculated with Beyn’s method, but it is quite impossible to
separate the eigenvalues in this region by circles. A brute force approach has
been chosen. Only one contour containing the whole region has been used. The
circles middle point was mp = 0.7 and its radius r = 0.1. In this circle, a lot of
eigenvalues were found. To be precise, Beyn’s method calculated 142 eigenvalues
from which many were fraction eigenvalues. Only five not fraction eigenvalues
have been chosen as reference values for the convergence test and can be seen in
Table 3.

In each iteration step, both solvers deliver an approximate eigenvalue and the
relative error of these develop as can be seen in Figure 14. The figure illustrates
the convergence for five eigenvalues to the reference values. From all calculated
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Figure 10: Transversal electric resonance functions at wave vector k = Γ for the
2D lattice given in Figure 2. The plasmon resonance functions are ordered with
increasing resonance.

Figure 11: Transversal electric fraction resonance functions at wave vector k = Γ
for the lattice given in Figure 2.

eigenvalues in each iteration, the closest one has been taken as the approximation
for the respective solver. Again, they show the same rate of convergence.

In the matter of convergence, both linearisations show the same behaviour. The
iterations until convergence are almost the same.

7 Conclusion

In this thesis the rational Arnoldi algorithm has been formulated by combining ra-
tional linearisation, Schur decomposition and shift-and-invert Arnoldi. The main
purpose was to state a matrix eigenvalue solver which is fast, reliable and can
handle any rational eigenvalue problem. The rational linearisation has been com-
pared to the polynomial linearisation. Band structures for two dimensional and
three dimensional metallic photonic crystals have been calculated and compared
to solutions from other papers. Additionally mathematically interesting transver-
sal electric modes, which are challenging for the used finite element method, have
been analysed and the convergence rates for rational and polynomial Arnoldi have
been compared.

From the tests we concluded that the rational linearisation is as good as the
polynomial linearisation and the shift-and-invert Arnoldi solver shows the same
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Figure 12: Band structure diagram for a diamond structured lattice with connec-
tion spheroids, size a = 2π, with the Drude model and the electric field formula-
tion. Solved by rational and polynomial Arnoldi, finite element order p = 2 and
mesh size h = 0.3.

convergence. The rational linearisation has the advantage for computing eigen-
values around the roots of the denominators, where the polynomial linearisation
may produce wrong eigenvalues.

Compared to the Newton-type solver introduced in [HLM16], the rational Arnoldi
is easier to implement, works with the Arnoldi a-posteriori and a-priori error es-
timates and can be applied to every type of rational eigenvalue problem. Addi-
tionally, it has the advantage of calculating a multitude of eigenpairs at once.

Another big advantage is that the usually big systems of linear equations in
linearised eigenvalue problems can be reduced to systems of linear equations of
the same size as the original rational matrix eigenvalue size.

All these properties make the rational Arnoldi method a fast and reliable rational
eigenvalue solver.

8 Future prospects

There are many ways to improve the introduced eigenvalue solver. For example,
in the algorithm only systems of linear equations of the original problem size have
to be solved numerically reducing the computational costs. The issue of the three
times more expensive orthogonalisation still stands and should be handled in a
more efficient way.

One could also invest some time into the fraction resonances of the transversal
electric example. They cannot be filtered by the linear eigenvalue solver. A post
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Drude model Drude-Lorentz model
µ1 0.65675903638− 0.00007751022i 0.65593337614− 0.00024711616i
µ2 0.65697377973− 0.00007746811i 0.65639174526− 0.00024724518i
µ3 0.86184052633− 0.00004180947i 0.86086029148− 0.00020300389i
µ4 0.86186928038− 0.00004181119i 0.86086907548− 0.00020298735i
µ5 1.10246492272− 0.00001578311i 1.10595885996− 0.00047921043i
µ6 1.10247044276− 0.00001578066i 1.10600675273− 0.00047958820i
µ7 1.10972368440− 0.00006618165i 1.10156906633− 0.00011597750i
µ8 1.10974830362− 0.00006618999i 1.10157791710− 0.00011622408i
µ9 1.35372928977− 0.00001178461i 1.35237742754− 0.00012708095i
µ10 1.35374564981− 0.00001178273i 1.35238877944− 0.00012709179i
µ11 1.37176054343− 0.00001154696i 1.37036405283− 0.00012740894i
µ12 1.37183556470− 0.00001154595i 1.37052504910− 0.00012760363i
µ13 1.44662475251− 0.00002242831i 1.44333905164− 0.00027838356i
µ14 1.44666440357− 0.00002240315i 1.44335588464− 0.00027790251i
µ15 1.54790395724− 0.00011036558i 1.52872762977− 0.00146856847i
µ16 1.54839966307− 0.00011032100i 1.52938546458− 0.00146893979i

Table 1: First 16 eigenvalues of the 3D example at wave vector 3
7
X.

Transversal magnetic
µ0 0.42463251715047362067− 0.00307862191626115042i
µ1 1.03915857553789936496− 0.00031144787450729239i
µ2 1.09449573834616176171− 0.00056426930890006140i
µ3 1.09449574420785955553− 0.00056426932180721158i
µ4 1.19296512079353855817− 0.00110969096317216354i

Table 2: Reference values for the first five eigenvalues at wave vector Γ in the 2D
transversal magnetic example.

processing might be possible. An approach could be an error estimator which
checks the smoothness of the tangential derivation on the metallic surface.

Another approach may be to have a look at other fully non-linear eigenvalue
solvers. For example Beyn’s method or the non-linear Feast algorithm [GMP18].
The non-linear Feast algorithm is a new method, which combines the contour
integral approach in Beyn’s method with common iterative eigenvalue solvers.

Finally, the territory of larger eigenvalue problems may be explored. With it
comes a smaller discretisation error and the possibility for more complex and
interesting applications. But also the necessity to apply an iterative system of
linear equations solver, because factorisations are not feasible anymore. Not even
for the original matrix size. While being at the subject of iterative system of
linear equations solvers, the influence of inexact solves on eigenvalue solvers may
be explored.
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Figure 13: Convergence in iterations for the first five TM modes with positive

real part, at wave vector Γ. The relative error ε =
∣∣∣µi−µref,iµref,i

∣∣∣ is plotted over the

iteration number.

Transversal electric
µ0 0.63778866426117453159− 0.00351199656565298873i
µ1 0.67884275659042558893− 0.00459978824916659149i
µ2 0.69094160873694443481− 0.00470948628252337853i
µ3 0.70212655269656787382− 0.00492824109492175783i
µ4 0.70314885136315641301− 0.00494305888291618738i

Table 3: Reference values for five eigenvalues at wave vector Γ in the 2D transver-
sal electric example.

rat µ0

poly µ0

rat µ1

poly µ1

rat µ2

poly µ2

rat µ3

poly µ3

rat µ4

poly µ4

101

10−2

10−5

10−8

10−11

10−14

0 10 20 30 40 50 60 70 80 90 100 110 120
Iteration number

R
el
at
iv
e
er
ro
r

Figure 14: Convergence in iterations for TE modes next to the reference values

in Table 3 at wave vector Γ. The relative error ε =
∣∣∣µi−µref,iµref,i

∣∣∣ is plotted over the

iteration number.
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