
Ein generisches Framework für
Entscheidungsunterstützende

Systeme im medizinischen
Bereich

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Daniel Gepp, B.Sc.
Matrikelnummer 01228976

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gernot Salzer

Wien, 1. Jänner 2001
Daniel Gepp Gernot Salzer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Generic Framework for Medical
Decision Support Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Daniel Gepp, B.Sc.
Registration Number 01228976

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gernot Salzer

Vienna, 1st January, 2001
Daniel Gepp Gernot Salzer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Daniel Gepp, B.Sc.
Naglern 19, 2113 Karnabrunn

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Jänner 2001
Daniel Gepp

v

Acknowledgements

At first I would like to thank my parents for supporting me in every possible way during
my studies.

Furthermore, I would like to thank my advisor, Gernot Salzer, for the possibility of
contributing to his research through this thesis. Your advices on numerous occasions
were very important for me.

vii

Kurzfassung

Diese Arbeit zielt darauf ab einen Prototypen eines generisches Framework für Ent-
scheidungsunterstützende Systeme im medizinischen Bereich zu implementieren. Für
die ausgewählte medizinische Domäne erstellt das Framework ein Backend, welches eine
REST Schnittstelle zur Verfügung stellt, und ein einfaches Frontend, welches die Eingabe
von Informationen von Patienten, bzw. Krankheiten ermöglicht. Da das Framework von
Personen ohne professionellem Hintergrund in Informatik verwendet werden soll, wird
eine abstrakte Methode spezifiziert um Merkmale und Krankheiten abzubilden.

Für das Ranking von Krankheiten werden zwei Ansätze präsentiert und implementiert:
ein probabilistischer Ansatz und ein Ansatz, welcher lose auf der Idee von term frequency-
inverse document frequency (TFIDF)-Ähnlichkeit basiert. Ein System, welches mit dem
vorgestellten Framework erstellt wird, wird mit dem bestehenden, Entscheidungsunter-
stützende System Dermtrainer verglichen, welches für dermatologische Erkrankungen
optimiert ist.

Das resultierende Framework basiert auf einem yeoman Codegenerator. Dieser Generator
erstellt ein Spring Boot backend und ein Vue.js frontend entsprechend den Eingaben
des Benutzers. Für die Repräsentation der Merkmale entschieden wir uns gegen eine
benutzerdefinierte domain specific language (DSL) zugunsten einer einfachen JSON-
Struktur mit dazugehörigen JSON Schemas für die Validierung von Nutzereingaben.
Krankheiten werden mit Hilfe von Spreadsheets abgebildet und dem System übermittelt.

Um die Korrektheit des Frameworks zu zeigen, konstruieren wir ein System, welches auf
der Domäne von Dermtrainer basiert. Wir vergleichen die gestellten Diagnosen beider
Systeme mit Patienten- und Krankheitsdaten, welche im originalen Dermtrainer-Projekt
erstellt wurden.

Die Ergebnisse zeigen, dass ein System, welches mit dem vorgestellten Frameworks erstellt
wurde, vergleichbare Qualität in puncto Ranking der Krankheiten, wie Dermtrainer
erreicht.

Obwohl das vorgestellte Framework von einem Laien im Bereich der Informatik alleine
nicht realistisch bedienbar ist, können wir einen Anwendungsfall präsentieren, in welchem
die Verwendung des Frameworks durch einen Laien realistisch ist.

ix

Abstract

This thesis aims to implement a prototype of a framework for medical decision support
systems. For the specified medical domain, the framework will generate both the backend
providing REST functionality and a basic frontend that provides simple means of input for
patient information. Since the framework is to be used by persons without a background
in computer science, we will specify an abstract method to characterize features and
diseases.

For the ranking of diseases, two generic approaches will be presented and implemented: a
probabilistic approach and an approach loosely based on the idea of term frequency-inverse
document frequency (TFIDF)-similarity. Finally, a system built with the framework
will be compared to Dermtrainer, which is an optimized dermatology decision support
system.

The resulting framework is built as a yeoman code-generator. This generator builds
a Spring Boot backend and a Vue.js frontend according to the input of the user. For
representing features we decided against a custom DSL in favor of a simple JSON structure
alongside with JSON Schemas for validating user input. Diseases are represented as
spreadsheets.

In order to demonstrate the correctness of the framework, we construct a system based
on the domain of Dermtrainer with the framework. We compare the diagnoses made of
the systems with patient and disease data from the original Dermtrainer project.

The results show that a system constructed with the proposed framework achieves
comparable overall quality when compared to Dermtrainer.

Although, the implemented framework is not usable by a layperson in the field of computer
sciences, we can show a use case in which a layperson can realisticly use the framework,
when the initial setup is already done.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aim of the Work . 1
1.2 Methodological Approach . 2

2 Related Work 3
2.1 Decision Support Systems . 3
2.2 Recommender Systems . 4
2.3 Dermtrainer . 6

3 Methods for Ranking Diseases 9
3.1 Probabilistic Approach . 10
3.2 Approach based on TFIDF . 11
3.3 Mixing of Rank and Similarity Metrics 13

4 Feature Definition and Disease Format 17
4.1 Running Example . 17
4.2 Disease Metadata . 18
4.3 Disease Format . 22

5 Medical Decision Support Framework 27
5.1 Framework Structure . 28
5.2 Generation Workflow . 28

6 Generated System 33
6.1 Server . 34
6.2 Persistence . 37
6.3 Client . 37

xiii

7 Evaluation 43
7.1 Evaluation of correctness . 43
7.2 Analysis of usability . 44

8 Conclusion 47

A Running Example 49
A.1 Disease Metadata . 49
A.2 Disease Format . 52
A.3 Client . 54
A.4 Server . 55

List of Figures 67

List of Tables 69

Listings 69

List of Algorithms 69

Bibliography 71

CHAPTER 1
Introduction

Medical Expert Systems provide support for general practitioners in helping them diagnose
rare illnesses of medical fields that they are not specialized in. While there is ongoing
research and projects on Medical Expert Systems for specialized fields, there is little
research aiming at frameworks for decision support systems.

In a recently finished project funded by FFG the “Theory and Logic” group of the
Technical University of Vienna developed a decision support system for dermatological
diseases. Analysing the final system it seems to be possible to generalize the reasoning
component as well as the user interface to arbitrary medical fields, provided the data can
be organized in a similar way.

The aim of this thesis is to understand the conditions under which it is possible to use a
similar approach and to develop a generic framework for such medical decision support
systems. This framework then can be used to generate specialized decision support
systems like the dermatological one.

One particular problem of generic frameworks is what sometimes is called the knowledge
acquisition bottleneck: They require expertise in computer science as well as in the
application domain. For this reason we intend to define an interface that allows medical
processionals to set up a decision support system without extensive knowledge in computer
science. The overall aim of this thesis is to examine under which conditions a decision
support system derived from a generic framework can compete with a system developed
for specifically for the domain.

1.1 Aim of the Work
The aim of this work is to implement a framework for medical decision support systems.
For the specified medical domain, the framework will generate both the server providing
REST functionality and a basic frontend that provides simple means of input for patient

1

1. Introduction

information. Since the framework is to be used by persons without a background in
computer science, we will develop an appropriate user interface for configuring the
framework, like a domain specific language. For ranking the diseases, two generic
approaches will be presented and implemented: a probabilistic approach and an approach
loosely based on the idea of TFIDF-similarity.

The following research questions will be addressed:

• How can we specify the features and characteristics of diseases in an abstract way?

• Is it possible to generate a specific decision support system from a generic framework
that yields results comparable to an existing system that is optimized for diagnosing
a specific medical field (dermatology in our case)?

1.2 Methodological Approach

1. Literature Review: background information build the theoretical basis for this
thesis.

2. Definition of Disease metadata and Disease Format

3. Implementation of the Framework with an eye on user-friendliness.

4. Evaluation of the framework

• Evaluation of correctness: Comparison of a medical decision support system
created by the framework with an already existing system for dermatology
that has been specifically constructed and tuned.

• Evaluation of usability: A proper evaluation would have to involve physicians
not scared by computers. While we know some from prior projects, it is
unrealistic to assume that they will devote their time to this project. Therefore
we will analyse the proposed interface for configuring the framework regarding
the required skills. It is likely that this interface will have to be adapted in
future projects.

2

CHAPTER 2
Related Work

Although this thesis describes a new framework for decision support systems, due to the
conceptual similarity of decision support systems to recommender systems, we present
related work to both types of system and frameworks.

Furthermore, we describe the Dermtrainer project that this thesis is partially based on.

2.1 Decision Support Systems

A decision support system is a information system used to provide support in the process
of making decisions for the user. The main goal of decision support systems is to make
knowledge of specialists, from a specific domain, available to non-specialists. Components
of a decision support system comprise a knowledge base, an inference engine, a user
interface and tools for knowledge acquisition [1].

State of the Art

We could not find recent research regarding medical decision support system frameworks
aiming at non-technical users. However, work can be found that focuses on the inference
component of medical decision support systems.

There is a framework using weighted scoring and the first inference, then aggregate
(FITA) method for inferencing. Additionally it uses a neural network for learning, which
is decoupled from the decision support system that aims at helping to identify similar
diagnoses. The system takes patient symptoms, history and laboratory data as input.
The framework is explored theoretically and an exemplary patient data flow is given. It
comprises five parts: initial gathering of subjective information, generation of probable
diagnoses, gathering objective evidence, evaluating the hypothesis, confirmation of the
disease [2].

3

2. Related Work

Abudahab et al. [3] propose a rule based framework that is constructed so that physicians
are able to model the rule and knowledge base. Additionally, the system supports
inferencing based on this data. The framework itself provides no diagnosing of patients.

The Generic Medical Fuzzy Expert System for Diagnosis of Cardiac Diseases proposed
by Sikchi et al. [4] uses a fuzzy rule system. Besides patient symptoms, this system also
takes laboratory parameters into consideration, when diagnosing a patient. In the study,
the framework was tested in the domain of cardiac diseases. The system is based on
Matlab Fuzzy Logic Toolbox.

Much more work can be found regarding specialized decision support systems. Recent
research does not seem to focus on probabilistic or term frequency-inverse document
frequency (TFIDF) based classifiers, but rather fuzzy logic [1, 5, 6, 7], machine learning [8,
9, 10] or rule based approaches [11, 12].

Although extensive literature review has been conducted, no recent research for completely
generic decision support systems could be found. It seems that developed frameworks
need to have a domain for which it can be used in a generic way.

2.2 Recommender Systems
Recommender systems are algorithms and information systems that suggest items to a user,
based on the preferences of the user and certain predefined constraints. Recommender
systems need to collect preferences from users in order to complete this computational
task. Preferences can be classified as explicitly expressed, e.g., ratings given on other
items, or as inferred preferences. Inferred preferences may be for instance the repeated
visit of a product page [13].

State of the Art

It seems that a lot more research is conducted in the area of recommender system
frameworks than in the area of decision support system frameworks.
This could be explained, inter alia, by the fact that recommender systems play an
important role in profitable Internet services like Amazon, Netflix and YouTube, with
Netflix awarding one million dollar to the team1 that would develop a system that could
beat the recommender system of Netflix [13].

Therefore, research also led to the development of generic recommender system frameworks
that are successfully used and further developed outside the academic domain:

MyMediaLite [14] is a framework for developing recommender systems, implemented
in C#. It includes libraries for recommendation algorithms and tools for evaluating
recommender systems. The frameworks features k-nearest neighbor, simplest baseline
methods and matrix factorization for the rating of predictions. Command line tools
enable developers to train recommender systems without having to write code.

1Which was awarded to team “BellKor’s Pragmatic Chaos” on September 21, 2009.
https://www.netflixprize.com/

4

2.2. Recommender Systems

A more recently developed framework is RankSys [15] which was developed with Java
8. RankSys is specialized in the evaluation and experimentation on recommendation
technologies. The framework includes collaborative filtering recommendation algorithms,
such as nearest neighbor, matrix factorization and factorization machines, as well as
quality metrics and re-ranking algorithms.

Another recent framework is the, also for Java developed, recommendation library
LibRec [16]. LibRec features 65 recommendation algorithms and data structures used in
the most common tasks for recommender systems.

While the above mentioned frameworks are actively used and under development, there
is more recent research in the field of general recommender system frameworks conducted
like context-aware [17, 18] or location-aware [19, 20] frameworks.

Since more and more data of the health states of patients, diagnoses and medication
is stored in databases, recommender system frameworks are also a field of research in
medical computer science.

OrderRex [21] is a recommender system that predicts hospital admission and the outcomes
based on the data of the patient that is inserted on the hospital counter. The broad goal
of the framework is to be completely integrated in the clinical workflow and make clinical
order suggestions based on data in the electronic medical record (EMR) of the patient.
For this, EMR data has to be preprocessed, such that clinical data is mapped on time
points per patient. Recommendations are built from this timeline using co-occurrence
statistics.

A recommendation framework based on neighborhood based collaborative filtering for
skin diseases is presented in [22]. Grasser et al. also integrate evidence based exclusion
rules, which remove inappropriate recommendations. Although the evaluated data set in
this study is settled in the domain of dermatology, the underlying framework is designed
to be flexible enough to be used in other medical disciplines.

[23, 24] independently describe frameworks for the recommendation of drugs by general
practitioners.

All of these frameworks provide algorithms and tools commonly needed to start the
development of a recommender system and therefore mainly focus on professional devel-
opers. They are well equipped for experimenting and applying metrics on algorithms,
but are not intended to be setup by a person not having a professional computer science
background2.

Additionally, setting up a system with one of the mentioned libraries requires the user to
write additional code, which is not the case in the framework presented in this thesis.

2An exception here is the framework presented in [25] where an already set up system can be
configured by “non-technical users”. However, it is not described to what extent the system can be
configured.

5

2. Related Work

2.3 Dermtrainer

As the resulting framework partially builds on the findings made during the development
of Dermtrainer [26], the project is briefly described in this section.

The goal of the project was to develop a prototype of a dermatology decision support
system that assists general practitioners and serves as a training platform for dermatolo-
gists in education. As a result of the interdisciplinary nature of the system, the following
teams were involved in the development:

• Dermatologists from Medical University of Vienna (MUW) - contributed a sys-
tematic way of diagnosing skin diseases, description of the diseases and images of
skin lesions. MUW also carried out a clinical study that compared the accuracy
of general practitioners diagnosing skin lesions using Dermtrainer vs. a standard
encyclopedia.

• Software Engineers from emergentec biodevelopment GmbH - implemented the
GUI and the infrastructure for storing disease data and images.

• Computer Scientists from Vienna University of Technology (TUW) - developed
and analysed methods for selecting diagnoses based on observations on the patient.

2.3.1 Patient Data

Patient information is entered by the physician via a web interface which provides
information about arrangement, localization, morphology and color of the lesions, timing,
and additional signs that are observed. The form does not have to be completed, although
more information leads to more precise diagnoses.

2.3.2 Disease Data

The disease knowledge base contains 620 diseases, each described by 131 fields relevant
for diagnosis.
Due to the uncertainty of the real probability that a symptom occurs with a disease,
most of these fields hold one of three values that are estimated by dermatologists:

• “yes” - the symptom can be observed with the disease

• “no” - the symptom cannot be observed with the disease

• “unlikely” - the symptom is unlikely to be observed with the disease

The overall frequency of a disease is an exception with higher precision. The epidemiology
of a disease can be classified from “exceptional” to “very common” in six steps.

6

2.3. Dermtrainer

2.3.3 Ranking of Diseases

The ranking of diseases can be divided into 3 phases:

1. Elimination of diseases where certain symptoms that are observed on the patient,
but correspond to a “no” in the disease. This approach can only be used for
symptoms that cannot be mistaken. Due to subjective judgement of non-specialists
that differs to the dermatologists opinion, certain symptoms are not excluded, but
rather penalized. In this case a “no” can be seen as a “more unlikely than unlikely”.

2. Computation of scores that reflect the similarity of diseases to the patient data. The
computer scientists of TUW developed two methods: one probabilistic approach
and one based on the TFIDF method3. Each method results in two metrics per
disease.

3. Selection of the diagnoses to be displayed. Diseases are shown in the order of the
internal ranking, but no scores are shown to the user. These scores could give a
wrong impression of precision.

2.3.4 Evaluation

For the evaluation of the decision support system a total of 422 test cases were created.
These cases consist of virtual patients4 that were diagnosed by residents of MUW and
physicians from different disciplines of a hospital in New York. The analysis of these cases
led to modifications in the disease database and improvements of the scoring methods.

In the final version, Dermtrainer ranks the correct diagnosis in 94% of the test cases
among the displayed diseases. On average seven diseases are shown.

2.3.5 Current status

The rights on Dermtrainer have been sold. A current version of the system is served on
http://www.dermtrainer.com/.

3In the final version of Dermtrainer, only the probabilistic method is used.
4A virtual patient comprises images of the lesions and additional information that can be observed.

7

http://www.dermtrainer.com/

CHAPTER 3
Methods for Ranking Diseases

One of the biggest challenge for physicians in diagnosing lesions lies within the diagnosis
itself. Besides the high grade of subjective judgement of the physician, making a diagnosis
almost non-repeatable [27], the fuzziness of medical data and knowledge leads to a grade
of uncertainty in diagnoses. Due to this uncertainty and subjectivity of features, a
physician can observe within a lesion, methods for diagnosing have to take into account
this uncertainty. In this thesis we decided to rely on variations of the methods already
used in Dermtrainer. This way we can also draw direct comparisons with the system.

Each of the presented methods results two metrics:

• similarity: a measure of similarity of a patient input to a disease that ignores
epidemiology

• rank: the similarity of a disease to a patient input combined with the overall
frequency of the disease

Throughout this chapter the notations presented in table 3.1 are used.

Additionally the following helper functions are used in both algorithms:

• Function for checking whether feature mi belongs to the category c:

ccheck(mi, cat) =
{

1 for cat = c(mi)
0 otherwise (3.1)

• Function that counts the number of features of a category c given by the patient
input ~p

nfpatient(~p, c) =
j∑

l=0
ccheck(ml, cat) (3.2)

9

3. Methods for Ranking Diseases

D a disease in the disease knowledge base
~p = (m1 . . . mj) feature vector representing a patient with

j <= k observed features
P (D) the overall frequency of a disease d

P (mi | D) likelihood that a feature mi occurs given a
disease D

c(mi) function assigning a category c unambigu-
ously to a feature mi

w(c) function that assigns the weight for each
category c. If no weight is specified this
function returns 1.

Table 3.1: Base notations used by both methods.

3.1 Probabilistic Approach
The idea behind the probabilistic algorithm is that the probability of a disease after
the observation of a number of features can be computed with the probabilities of the
features given the disease and the probability of the disease itself.

The base form for this equation is derived from Bayes’ theorem:

P (D | ~p) = P (~p | D) · P (D)
P (~p) (3.3)

with

P (D | ~p) . . . probability for D after observing m1, . . . , mj

P (~p | D) . . . probability of observing m1, . . . , mj given disease D
P (D) . . . probability of disease D
P (~p) . . . probability of observing m1, . . . , mj simultaneously

We assume that all observations mi are disjoint events1 which allows us to rewrite
P (D | ~p) as:

P (D | ~p) = P (m1 | D) · P (m2 | D) · · ·P (mj | D) · P (D)
P (m1) · P (m2) · · ·P (mj) (3.4)

Since the probability of observations P (~p) is the same for all diseases, we can ignore it
for ranking diseases, which results in R(D | ~p):

R(D | ~p) = P (m1 | D) · P (m2 | D) · · ·P (mj | D) · P (D) (3.5)
1We are aware that medical observations are rarely disjoint events. The here presented equation

represents an approximation of the probability of a disease given certain observations. Probabilities of
the observations can only be estimated anyway.

10

3.2. Approach based on TFIDF

n number of diseases in the knowledge base
miyes number of diseases d that contain the fea-

ture mi

idf(mi) = log(n
miyes

) IDF of the feature mi

Table 3.2: Notations used by the method based on TFIDF.

Inserting weights for the respective categories that express the difference in relevance
leads to:

R(D | ~p) = P (m1 | D)w(c(m1)) · P (m2 | D)w(c(m2)) · · ·P (mj | D)w(c(mj)) · P (D) (3.6)

To lower the computational effort, this equation only uses the logarithmic form of
probabilities. We then add the reciprocal value of nfpatient to attenuate the influence of
features, based on the number of features of the corresponding category that are observed.
This leads to the rank being defined as follows:

rankp(~P , D) =
j∑

i=0

(
log(P (m1 | D)) ∗ w(c(mi))

nfpatient(~P , c(mi))
)

+ log(P (D)) (3.7)

The probabilistic similarity of a patient ~P = (m1 . . . mj) is then defined as:

simp(~P , D) =
j∑

i=0

(
log(P (m1 | D)) ∗ w(c(mi))

nfpatient(~P , c(mi))
)

(3.8)

3.2 Approach based on TFIDF
Basically, the idea behind this algorithm is that a disease, as well as a patient can be
seen as documents that contain features instead of terms. Since we should consider that
symptoms are not equally meaningful, we use IDF to calculate the weight of a symptom.
If a symptom occurs in many diseases, this symptom can be declared as less significant,
which results in a lower IDF weight and vice versa. This leads to a feature significance
weighted scoring.

3.2.1 TFIDF Foundations and Notations

Additionally to the base notations, the definitions presented in table 3.2 are used in this
section.

The basic concept behind the TFIDF method, a method used in information retrieval, is
to weight a document doc based on the terms it comprises with a search term ti. The
term frequency (TF) is defined as TF (doc, ti) = |occurrences of ti in doc|, which means
the weight of the document is higher, the more often the search term occurs in it.

11

3. Methods for Ranking Diseases

On the other hand, the inverse document frequency (IDF) is defined as IDF (ti) = log(N
ni

),
where N is the overall number of documents and ni is the number of documents containing
the term ti. This value is higher if the number of occurrences of the search term is low.
The intuition behind the inverse document frequency is that a term that occurs in many
documents is not a good discriminator and should get less weight than a term that occurs
in few documents.

Calculating the TFIDF weight is defined as follows [28]:

TFIDF (doc, ti) = TF (doc, ti) ∗ IDF (doc, ti) (3.9)

With the TFIDF weight we can determine the weight of a document regarding to a term.
To use TFIDF for computing the similarity of two documents (a patient and a disease in
this case) we need a metric of similarity. Therefore, the cosine similarity can be used.
We denote ~V (doc) the vector of a document doc with one dimension for every term in the
dictionary. These vector components are computed using the TFIDF weight. The cosine
similarity of two documents d1, d2 is then defined as the cosine of the angle between the
two document vectors [29]:

cossim(d1, d2) =
~V (d1) · ~V (d2)
|~V (d1)||~V (d2)|

(3.10)

Since the algorithm used in this thesis uses a combination of TFIDF and probabilistic
elements we need to establish the relationship between the IDF weight and the probability
P (ti) that a term ti appears in a document [28, 30]:

IDF (ti) = −log(P (ti)) (3.11)

3.2.2 TFIDF based scoring Algorithm

The following definition represents a helper function used for the algorithm, such that
the weighting factor is only applied to already positive values:

wf (x, k) =
{

x ∗ w(k) for x > 0
x otherwise (3.12)

The TFIDF based similarity of a patient ~P = (m1 . . . mj) and a disease D is defined as
follows:

simt(~P , D) =
j∑

i=0

(
wf

(
(idf(mi)+log(P (m1 | D)))∗ 1

nfpatient(~P , c(mi))
, c(mi)

))
(3.13)

Although this method is based on the concept of TFIDF the equation given above shows
that it is merely a combination of IDF values and the probabilities of features. More

12

3.3. Mixing of Rank and Similarity Metrics

Metric Threshold
rank -4
similarity -8

Table 3.3: Thresholds used for the respective metrics. NOTE: Due to the logarithmic
representation of all scores, so are the thresholds.

specifically it is an extension of the algorithm described in section 3.1 adding idf(mi)
and conditional weighting achieved by the helper function wf .

The rank is defined analogously to the rank in the probabilistic method:

rankt(~P , D) = simt(~P , D) + log(P (D)) (3.14)

3.3 Mixing of Rank and Similarity Metrics
During the development of Dermtrainer it has been discovered that the overall quality of
the ranking could be improved by ranking diseases with a combination of the similarity
and rank metric, compared to the usage of only one metric. The result of this combination
is referred to as mixed ranking in the context of this thesis.

A pseudo code representation of the algorithm for mixing the metrics is given by al-
gorithm 3.1. The thresholds used in this algorithm have been determined empirically
during the development of Dermtrainer and can be seen in table 3.3.

3.3.1 Algorithm for ranking diseases

Algorithm 17 shows the pseudo code used for ranking diseases that combines the calcula-
tion and mixing of metrics. The overall structure is based on Dermtrainer.

The initialization in line 1 loads the disease database and creates structures used for the
calculation of metrics, dependent on the type of score used.

The structure of the algorithm comprises two main for-each loops. The first loop checks
for every disease profile whether it conflicts with the patient data. A conflict condition is
fulfilled when a disease has a “no” as value for a feature that is observed in the patient,
which results in the disease being removed from the list of potential diagnoses. Two
circumstances can prevent the check of a conflict for a category:

1. The category does not have hard conflicts.

2. The category is in the list of excluded categories of the current disease.

The second loop computes similiarity and rank metrics for the remaining diseases with
the selected scoring method.

13

3. Methods for Ranking Diseases

Algorithm 3.1: Ranking of diagnoses by mixing similarity and rank metrics.
Data: list of all diagnoses D
Result: ranked list of diagnoses

1 r := empty diagnose list;
2 for score s in [’rank’, ’similarity’] do
3 r_1 := empty diagnose list;
4 n := 6;
5 t := threshold(s);
6 sort D after score s in descending order;
7 for diagnose d in D do
8 if n <= 0 OR score s of d < t then
9 break;

10 end
11 if score ’similarity’ of d >= threshold(’similarity’) then
12 add d to r_1;
13 end
14 n−−;
15 if n = 0 then
16 n := MAX of Integer;
17 t := score s of d;
18 end
19 end
20 add all diagnoses of r_1 to r;
21 end
22 eliminate duplicates in r;
23 return r;

Then, all scores are normalized by determining the maximum similiarity, respectively
rank of all scores and subtracting it from each score2.

At the end of the algorithm, the top diagnoses are ranked, using mixed ranking.

2The maximum is subtracted because all scoring methods are using logarithmic scale.

14

3.3. Mixing of Rank and Similarity Metrics

Algorithm 3.2: Generic algorithm to calculate the ordered diagnoses for a patient
input.
Data: Patient input P
Result: A ordered list of disease scores

1 load disease profile list D from database;
2 S ← empty List;
3 foreach disease profile di ∈ D do
4 foreach non-empty category ci ∈ P do
5 if ci has hard conflict and not di(ci) has conflict exclusion then
6 if P (ci) conflicts di(ci) then
7 remove di from D;
8 end
9 end

10 end
11 end
12 foreach disease profile di ∈ D do
13 calculate simi and ranki of di and P ;
14 add (di, simi, ranki) to S;
15 end
16 normalize rank and sim of all scores in S;
17 return mixScores(S)

15

CHAPTER 4
Feature Definition and Disease

Format

For the setup of a medical decision support system, a wide range of categories and disease
features, respectively different constraints between them have to be specified.

Based on the requirements that emerged during the development and analysis of
Dermtrainer, we specified the information needed in order to generate a flexible and
complete framework. This chapter describes the structures used for defining medical
data and the main ideas behind it.

4.1 Running Example

For the sake of clarity we construct a small running example of disease feature categories
which will be used throughout this thesis1: site, color, amount of lesions, formation,
border, age, gender. The features of these categories can be seen in table 4.1.

Additionally, the following constraints apply to the example:

• site has transitive features, e.g. if a lesion is on the toes of the patient it is also on
the feet of the patient.

• A value for the category formation may only be given if the a disease has an amount
of lesions of many. This applies to both, disease and patient input.

1Due to copyright reasons we cannot include the original feature categories of the disease knowledge
base used in Dermtrainer. The values of this example are for explanatory purposes only and do not
comprise a working system.

17

4. Feature Definition and Disease Format

category features
site head, torso, breast, stomach, arms,

hands, fingers, legs, feet, knees, toes
color red, white, brown, black
amount of lesions single, few, many
formation scattered, cumulative
border delimited, irregular
age infant, child, adult, elder
gender male, female

Table 4.1: Category features of the running example.

• age is a category without hard conflict, meaning that if the patient input does not
match the possible features of a disease, the disease is not excluded, but rather the
score of the disease is lowered accordingly.

• The categories color, formation, amount of lesions, border, age and gender can
only yield to a single observation of the patient.

• Values of the categories color, amount of lesions, formation and border have
likelihoods that describe the possibility that the features can be observed with
a disease. age and site have a number of possible values that can occur with a
disease, there is no explicit probability necessary. gender has the occurrence ratio
of the values as possible disease input.

• Due to the importance of the location of a lesion for the diagnosis, the partial score
of the category site should be up-weighted by a factor of 3.0.

• Features can have three different likelihood values: “yes”, “improbable” and “no”.
They have respective numerical probabilities of 1.0, 0.03 and 0.0005. The value
“improbable” can be considered as a “yes” value with lower probability.

• A disease can have an overall frequency of “rare” (0.00001), “less common” (0.001),
“common” (0.01) or “very common” (0.1).

4.2 Disease Metadata
When we analysed the disease data and the ranking methods of Dermtrainer, we concluded
that most parts of the system could be built in a abstract way. The structures that need
to be domain specific are those that describe the diseases.

In order to describe a disease, respectively the symptoms of a patient, categories and
manifestations of those have to be defined. Additionally, dependencies between categories
and features have to be modeled.

18

4.2. Disease Metadata

To describe the likelihood a feature occurs in a disease, concrete values have to be defined.

Furthermore, to depict the epidemiology of a disease, values for the overall frequency
have to be specified.

In order to specify this information, such that it is both human- and machine-readable,
JSON2 is an effective format which allows the interchange of large amount of structured
data. Additionally, formats constructed with JSON can be extended easily and without
breaking changes that would invalidate existing structures. Therefore, the disease
metadata is formalized using JSON Schema3 files, that also allow to validate given JSON
files.

Alternatives for the representation of the metadata that we considered, but decided
against, are:

• XML4: Allows the creation of large, structured configuration files. Provides with
XML Schema Definition5 a similar formalization support as JSON. XML files are
potentially less human-readable compared to JSON files.

• YAML6: YAML provides similar if not better human-readability than JSON. The
lack of an official formalization syntax is a big disadvantage of YAML.

Sample input JSON structures with data from the running example can be seen in
section A.1.

4.2.1 Categories

The formalization of a category with its respective features can be described by the
context-free grammar given in listing 4.1. User input for feature categories is then an
array of categories defined by this grammar.

The following elements are defined for each category:

• name: The name of the category, respectively the feature.

• values: The features of a category. A value can be a simple string, or an object
with a name and a dependent or parts attribute.

• type: Defines the type of input a category has for the disease data. Possible values
are:

– contain: this category takes an array of features per disease as input.
2http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
3https://tools.ietf.org/html/draft-handrews-json-schema-01
4https://www.w3.org/TR/2008/REC-xml-20081126/
5https://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
6http://yaml.org/spec/1.2/spec.pdf

19

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://yaml.org/spec/1.2/spec.pdf

4. Feature Definition and Disease Format

Listing 4.1: Context-free grammar for a category in EBNF notation
category → "{"

"\"name\":" varName ","
"\"values\":" "[" varValues "],"
"\"type\":" varType
["," patient]
["," conflict]
["," weight]
["," least]
"}"

varValues → value { "," value }
value → depValue | partValue | varName
depValue → "{\"name\":" varName

", \"dependent\": [" categories "]}"
partValue → "{\"name\":" varName

", \"parts\": [" varParts "]}"
varParts → varPart { "," varPart }
varPart → varName | partValue
varType → "\"likelihood\"" | "\"contain\"" | "\"ratio\""
patient → "\"patient\" : {\"exclusive\":" boolean "}"
conflict → "\"noHardConflict\":" boolean
weight → "\"weight\":" posDec
least → "\"atLeast\":" posInt
categories → category { "," category }
varName → "\"" alpha { alpha | "_" } "\""
alpha → "a" | "b" | ... | "z" | "A" | "B" ... | "Z"
posDec → "0." nums nonZeroNum | posInt "." nums nonZeroNum
posInt → nonZeroNum [nums]
nums → { num }
num → "0" | "1" | ... | "9"
nonZeroNum → "1" | ... | "9"
boolean → "true" | "false"

– likelihood: this category takes a likelihood per feature per disease as input.
– ratio: this category takes a ratio of the features per disease as input.

• patient: Object that holds options for the patient input of the resulting system. In
this thesis the only option that can be given is exclusive, which is a boolean value
that states, whether the patient input is an array of features or a single feature.

• noHardConflict: Upon a mismatch of a feature the default behavior of the system
is to exclude the mismatching disease for the patient. With this option set, a

20

4.2. Disease Metadata

mismatch of a feature in this category will only lead to a downweighting of the
disease, rather than excluding it.

• weight: A multiplicative weight applied to the sub score of a category during the
ranking of the diseases.

• atLeast: Positive integer value that describes a constraint. The constraint depends
on the given type of the category:

– contain: a minimum of atLeast features of the category have to be given in
the disease input.

– likelihood: a minimum of atLeast features of the category have to have the
likelihood “yes” in the disease input.

– ratio: this property is ignored.

Furthermore, if a feature value of a category is an object, it has one the following
properties besides name:

• dependent: Property of a feature that holds categories that are dependent on the
containing feature. This means values for these dependent categories may only be
given in a disease if the dependency feature is potentially present in the disease.
The attribute of being “potentially present” is defined differently depending on the
type of the dependency category:

– contain: the dependency feature has to be present in the disease.
– likelihood: the dependency feature has to have a likelihood other than “no”.
– ratio: the dependency constraint is ignored.

• parts: Property of a feature that describes parts of this feature in a transitive
relationship. Parts can be simple strings or feature objects containing parts
themselves.

4.2.2 Frequency

The input for the frequency (listing 4.2) is a simple mapping of names to a positive
number below or equal to 1 where at least one property must be given. The property
names of this object are then the values used to define the overall frequency of diseases.

4.2.3 Likelihood

Input for the likelihood is defined analogously to the frequency input, with the exception,
that the properties “no” and “yes” are mandatory. These are fixed values that are
essential for describing disease data. Other values are optional and can be simple value
mappings, with positive numbers below or equal to 1, or complex objects.

A likelihood object has the following properties:

21

4. Feature Definition and Disease Format

Listing 4.2: Context-free grammar for frequency input in EBNF notation
frequency → "{" variables "}"
variables → variable { "," variables }
variable → varName ":" posDecBelowEqualOne
varName → "\"" alpha { alpha } "\""
alpha → "a" | "b" | ... | "z" | "A" | "B" ... | "Z"
posDecBelowEqualOne → "0." comNum | "1.0"
comNum → num { num }
num → "0" | "1" | ... | "9"

• value: positive numbers below or equal to 1

• yesGroup: boolean property that states whether this likelihood should be grouped
with the “yes” value, when grouping of likelihood values is performed7.

The corresponding context-free grammar can be seen in listing 4.3.

Listing 4.3: Context-free grammar for likelihood input in EBNF notation
likelihood → "{"

"\"yes\":" posDecBelowEqualOne ","
"\"no\":" posDecBelowEqualOne
variables
"}"

variables → { "," variable }
variable → varName ":" posDecBelowEqualOne | varYesGroup
varYesGroup → "{\" value \":" varName

", \"yesGroup\":" boolean "}"
varName → "\"" alpha { alpha } "\""
alpha → "a" | "b" | ... | "z" | "A" | "B" ... | "Z"
posDecBelowEqualOne → "0."comNum | "1.0"
comNum → num { num }
num → "0" | "1" | ... | "9"
boolean → "true" | "false"

4.3 Disease Format
In order to use the decision support system, the disease knowledge base has to be filled
beforehand. Therefore, a structured way of capturing and validating diseases is needed

7This grouping of likelihood values is only done during the scoring in the TFIDF based method.

22

4.3. Disease Format

that is also accepted by health professionals.

Experience from the Dermtrainer project shows that the acquisition of disease data with
a customized, highly structured tool, with branching menus and automatic validation, is
poorly accepted by physicians.

Identified problems with this approach were the inability to quickly change features of
diseases, and the fact that only one disease could be edited, respectively viewed at a
time. Physicians reported that this contradicts their workflow. They wanted to view
all diseases and their features in a structured list without the need to browse branching
menus.

Therefore, we decided on using Excel spreadsheets8 for capturing disease data. The usage
of spreadsheets for the description of disease data yields several advantages for the user:

• All major operating systems provide tools for creating and editing Excel spread-
sheets.

• Spreadsheets let the health professional check and edit whole disease or category
groups efficiently.

• Allows grouping of related categories in different sheets.

• Existing disease spreadsheets can be easily adapted to changed or new metadata.
This is especially useful, when experimenting with the framework.

• Spreadsheets can be considered as generally common in the medical environment.

The disease spreadsheet has to comply to the following structure:

• The file may have as many sheets as the user needs for grouping categories.

• Completely empty sheets are ignored.

• All input is case-insensitive.

• Each sheet needs to have the first row filled with the category names the application
can expect from each column. This row is called “header” from here on.

• The first column of each sheet has to be named “ID” and provide unique ids for
each disease.

• Lists of values are separated by a “,” character.

• Mandatory columns that are not dependent on the medical domain, are the following:

– “NAME”: name of the disease
8For compatibility reasons we use Excel 97/2000/XP .xls spreadsheets

23

4. Feature Definition and Disease Format

– “FREQUENCY”: overall occurrence frequency of the disease. Expects a
frequency as input.

– “CONFLICT_EXCLUSION”: a list of category names for which the disease
should have non-excluding conflicts.

• The input of features and the header representation is dependent on the type of
the category and whether the category is dependent on another feature:

– likelihood: Each feature of the category needs to have a likelihood value
and therefore an entry in the disease spreadsheet. To prevent non-unique
entries, the headers of such features are structured as: “<CATEGORY
NAME>_<FEATURE NAME>”.

– contain and ratio: The name of the category is put in the header for the
category.

– contain categories take a list of features as cell value.

– ratio categories take a ratio in the form of xratio : yratio for feature x to y,
whereas the order of features is the same as the order in the category input.
xratio and yratio have to be positive numbers.

– If a category is dependent on a feature, all headers concerning this category
have a prefix describing the dependency that is defined as: “<DEPENDENCY
CATEGORY NAME>_<DEPENDENCY FEATURE NAME>_”.

• Null values are expressed with “DNA” (does not apply).

Of course, due to the missing validation upon input in simple spreadsheets, the spreadsheet
has to be validated before the data can be used for diagnoses. Besides syntactic correctness,
the following constraints have to be met:

• Header entries have to be successively.

• Each id (disease) has to be provided in each sheet that is not empty exactly once.

• Each row containing a disease has to be complete, such that for each header there
is a valid value supplied9.

• If the category has an atLeast constraint, the number of features that can appear
with a disease have to be at least atLeast.

• If the feature, a category depends on, is not present in the disease, “DNA” has to be
put in all corresponding cells of the dependent category. Furthermore, a potential
atLeast constraint of the dependent category is overridden.

9Note that a cell can still be empty, due to an empty list being a valid value for certain features.

24

4.3. Disease Format

• If the feature, a category depends on, is present in the disease, all corresponding
cells of the dependent category have to contain valid values other than “DNA”.

• “ID”, “NAME” and “FREQUENCY” are mandatory fields and have to be provided
in the spreadsheet. Other fields are optional as long as they are not provided in
the header of a sheet.

• Headers, other than“ID”, must not be provided in multiple sheets.

A sample input file with categories of the running example can be seen in figure A.1.

25

CHAPTER 5
Medical Decision Support

Framework

Usually when reading about a “framework” in the domain of computer science, one
expects a collection of software defined, generic functionality that can be used and
adapted by additional code written by the user. This implies that a user needs at least
basic knowledge on how to write code in order to use a software framework. The overall
goal of this thesis is to enable physicians to use this framework without the assistance of
a computer scientist.

Since we assume that the majority of physicians do not have this kind of knowledge,
we decided to adapt the term “framework” in this thesis: Instead of using custom code
as primary mean of customization, this framework is defined as a code generator, only
needing the structures defined in section 4.2, in addition to some trivial information to
be configured properly1.

In order to provide a robust and extensible code generator, yeoman2 is a useful collection
of best practice open source tools for scaffolding web applications:

• yeoman generators are, at their core, Node.js3 modules. This makes a generator
easy to extend due to having access to the Node.js ecosystem via its package
manager npm4.

1Of course, the code generated by this framework can also be used as proper software framework by
computer scientists.

2http://yeoman.io/
3https://nodejs.org/
4https://www.npmjs.com/

27

http://yeoman.io/
https://nodejs.org/
https://www.npmjs.com/

5. Medical Decision Support Framework

• yeoman uses adapters as an abstraction layer for user interaction. This makes it
particular easy to integrate a yeoman generator into another application and for
instance, provide a custom graphical user interface5.

• yeoman offers comprehensive documentation and tutorials for setting up a genera-
tor6.

We considered Grunt7 and Gulp8 as alternatives for yeoman, which are tools for au-
tomating recurring tasks during development. Both tools would allow for to create a
automated code generator, but user input, file access and the overall workflow of the
generator would have to be implemented, in comparison to yeoman which delivers these
functionalities out of the box.

Therefore, this chapter describes the yeoman generator and the data structures used to
create the decision support system.

5.1 Framework Structure
Yeoman generators are built on the concept of sub generators. Specific sub generators
can be called separately from the user. Sub generators themselves can be composed
with other sub generators. The generator presented in this thesis comprises three sub
generators, as can be seen schematically in figure 5.1:

1. app: The default sub generator that started when no sub generator is selected
explicitly by the user. This sub generator collects the information needed from the
user for the client and the server sub generator and then starts both.

2. client: Generates the client side of the decision support system.

3. server : Generates the server that contains the business logic of the decision support
system.

5.2 Generation Workflow
A yeoman generator uses a run loop which is a queue system that supports different
priorities for tasks. Since the proposed generator is composed of three generators, we do
not run tasks sequentially, but use the predefined priority groups that are supported by
yeoman:

1. initializing - initialization of the generator
5By default yeoman generators are operated via the command line.
6yeoman even provides a “generator-generator” that scaffolds the basic structures for a new generator.
7https://gruntjs.com/
8https://gulpjs.com/

28

https://gruntjs.com/
https://gulpjs.com/

5.2. Generation Workflow

User

default
sub generator

Experts
GUI

backendfrontend

<generates>

{or}

client
sub generator

server
sub generator

<generates>

experts-system
generator

<starts> <starts>

Command
Line

<starts>

Figure 5.1: Schematic structure of the framework. Dashed rectangles represent the
generated parts of the framework. Doted rectangles represent parts that are out of scope
for this thesis, but could enhance the usability of the framework.

2. prompting - asking the user for input

3. configuring - configuring the project and saving the given input

4. default - all methods without an explicit priority

5. writing - writing files to the disk

6. conflicts - handling of conflicts - Not needed in this generator.

7. install - installing of dependencies for the generated code - Not needed in this
generator.

8. end - cleanup - Not needed in this generator.

In the following sections, the tasks executed in the priority groups that are used in this
generator are described in detail.

29

5. Medical Decision Support Framework

5.2.1 Initializing

First, after starting the generator or a specific sub generator, the previously saved
configuration is loaded from the disk9 if the generator is started in an already existing
project. This step is skipped if the sub generator is called from another sub generator,
since the calling generator provides the initializing configuration as parameters.

5.2.2 Prompting

The user is prompted options that configure the decision support system. Options, in
the order they are prompted, are as follows:

• Project name: The name of this decision support system. This will only be
displayed in the frontend. Default: “ExpertSystem”

• Input format: The format for the frequency, category and likelihood input. For-
mats to choose from are JSON and DSL. In the scope of this thesis only JSON is
supported, the option for DSL is deactivated. However, preparatory actions have
been carried out, such that adding a DSL support can be integrated.

• Frequency input: JSON input for the Frequency object, expected to be structured
as described in section 4.2.2.

• Likelihood input: JSON input for the Likelihood object, expected to be struc-
tured as described in section 4.2.3.

• Category input: JSON input for the Category objects, expected to be structured
as described in section 4.2.1.

• Java package name: Advanced option for specifying the package name of the
backend Java application. Default: “com.mycompany.myexpertsystem”

• Score: The method that should be used to calculate scores for the disease ranking.
Options are “TFIDF” for the TFIDF based or “Probabilistic” for the probability-
based algorithm.

JSON input provided by the user is validated with the JSON Schemas described in the
respective sections. Non-compliant Input is not excepted and an error message is shown
to the user.

If the generator is started in an already existing project, only the options Frequency
input, Likelihood input, Category input and Score are prompted. This allows the
user to change disease metadata and the score algorithm of an existing decision support
system.

JSON input objects for the running example can be seen in the appendix in section A.1.
9Yeoman stores configuration properties that are explicitly marked to be saved in a generator in the

project directory in a .yo-rc.json file.

30

5.2. Generation Workflow

5.2.3 Configuring

First, the JSON input objects are parsed. Folders and package structures are set up.
Finally, files that should be written to disk are specified and properly configured with
the given configuration.

5.2.4 Default

The configuration is saved to the .yo-rc.json file of the project.

5.2.5 Writing

Files are written to disk according to the configuration. Static files are only copied,
template files are adopted to the specified domain information using the Embedded
JavaScript (EJS)10 templating syntax, as it is a simple way of templating with pure
JavaScript and is included in yeoman generators by default.

10http://ejs.co/

31

http://ejs.co/

CHAPTER 6
Generated System

The next goal is to provide a web application that can be deployed by the generator
defined in chapter 5. This chapter describes the overall structure and main components
of this generic decision support system.

Since the system needs to be adapted to the specific domain, we need to specify constant
domain specific information in a deployed system. This is possible by providing EJS
templates in files that need to contain domain specific information.

For the overall structure of the system, we decided for a basic three tier architecture
as can be seen in figure 6.1. This allows for the client and the server to be deployed
and started separately which correlates with the structure of the generator. The main

frontend
<Vue.js>

backend
<Spring Boot>

database
<MongoDB>

REST calls Queries

physician

diseases,
patient data

Figure 6.1: Schematic structure of a system generated by the framework. Dotted
components represent dependencies that need to be provided by the user.

components of the system are as follows:

• A Vue.js1 web application as GUI, facing the user.
1https://vuejs.org/

33

https://vuejs.org/

6. Generated System

• The server exposes REST endpoints for the web application to call. The implemen-
tation is done in Java 8, using the Spring Framework2.

• For persisting disease data, a MongoDB3 instance is used. NOTE: The database
has to be provided by the user, exposed on the default port 27017.

6.1 Server

As mentioned above, the server is a Java 8 application based on the Spring Framework.
To minimize the configurational effort of Spring, Spring Boot4 is used.
Spring Boot provides an embedded Tomcat, automatically configures Spring and third-
party libraries and does not require XML configuration. Spring boot also offers “starter”
dependencies that bundle preconfigured parts of the Spring Framework for specific
application areas. In this application the starters web, for setting up REST endpoints
and data-mongodb to abstract the MongoDB database connection are used.

6.1.1 Structure

Structurally we opted for a best practice layered architecture (figure 6.2) with controller,
service and persistence layer.

The rest package provides controller classes that serve the REST endpoints. Input is
passed directly to the corresponding service classes in the service package with the
exception of disease spreadsheets. Spreadsheets are validated for completeness of diseases
and parsed into rest.model entities.

Validation of user input is done using annotation based Bean Validation5 on rest.model
classes. The validation is triggered before a rest.model entity enters the service
layer.
Since we introduced disease category specific constraints in section 4.3, we implemented
custom Bean Validation field annotations and corresponding validators:

• @AtLeast: Takes an integer x as parameter. If the annotated field is a java.util.Collection
and holds feature category enum values, the validator checks that at least x values
can be observed with the disease6. This annotation can only be applied to fields of
the disease model.

• @DependentOn: Models a dependency that a category has on a feature. Takes a
string s as parameter that has to be in the form of

2https://spring.io/
3https://www.mongodb.com/
4https://spring.io/projects/spring-boot
5https://beanvalidation.org/
6This depends on the type of the category the annotated field belongs to. Please refer to section 4.2.1

for detailed description.

34

https://spring.io/
https://www.mongodb.com/
https://spring.io/projects/spring-boot
https://beanvalidation.org/

6.1. Server

“<category_field_name>.<dependent_feature_name>”, all in lower case. There-
fore, the field of the category containing the dependency and the feature that
represents the actual dependency are specified.
The annotated field has to be a java.util.Collection that holds feature category
enum values, or a simple category enum field.
Input is valid if the annotated field only holds values when the dependency feature
occurs with the disease.
Additionally, the annotation can be given an atLeast integer parameter that models
the same constraint like the @AtLeast annotation, but in conjunction with the
dependency.
This annotation can be used in disease and patient models, but the atLeast
parameter is ignored for patient models.

The business logic of the server is provided by the service package. Before processing the
input data, entities are mapped from rest.model to core.profile entities to achieve
a clear separation between controller and service. Saving new disease data triggers the
renewDiseaseBasemethod that reloads all disease data within the PatientService.
This PatientService expects the existence of a ScoreFactory Bean that is used
to create scores and rank diseases accordingly. This usage of dependency injection makes
it particular easy to change the implementation of the actual scoring algorithm.

The core package comprises enum constants and profiles used to describe patient and
disease data. Additionally, the interface ScoreFactory and its implementations are
included in this package.

A ScoreFactory provides the following methods used by the system:

• calculateScores takes a patient profile and calculates scores for all diseases
that this factory holds. A score holds the rank and the similarity metrics, as well
as information about the disease.

• bestOf takes a list of scores and selects the “best”. This can be as simple as
sorting the scores for the highest values and returning the first x scores.

• getScoreName returns the name of the score.

• setDisesaes method to update the disease base of the score factory.

For each category defined by the user during the setup, an enum is created by the
framework in the core.featurecategory package. Both frequency and likelihood
enums are created in the core.enumeration package. This package also holds the
category enum which lists all generated categories. The generated enums for the running
example can be seen in figures A.2 - A.5.
Other classes that are derived from templates that depend on the generated category,
frequency and likelihood enums are as follows:

35

6. Generated System

• rest.model.DiseaseModel: Model class for diseases. Category fields are
dependent on the type of the category.

• rest.model.PatientModel: Model class for patient data. Category fields are
dependent on the type and the patient options of the category.

• core.profile.DiseaseProfile: Service class for diseases. Analogous to the
model class.

• core.profile.PatientProfile: Service class for patient data. Analogous to
the model class.

• rest.file.Attributes: Class that holds string constants, naming all possible
header values for disease spreadsheets.

• core.score.*.*MethodFactory: Implementations for the respective score
factories. Weights of categories are added.

• core.score.*.*Computations: Implementations for the actual score compu-
tations per category for the respective scores. All categories are statically referenced
and their scores calculated. Additionally, the configuration whether a category has
hard conflicts is set.

All other files only get package and import statements set.

6.1.2 REST endpoints

A REST API is served by the application to communicate with the frontend which serves
the following endpoints:

• POST /api/diseases/xls: Expects a multipart request containing a .xls file that is
structured as described in section 4.3. Validates and saves the diseases provided in
the file and updates the disease base of the system.

• GET /api/diseases: Returns an array of all disease profiles.

• POST /api/patient: Expects a patient profile and returns an array of ordered
diseases.

A Swagger API documentation7 of the running example can be seen in listing A.5.

7https://swagger.io/solutions/api-documentation/

36

https://swagger.io/solutions/api-documentation/

6.2. Persistence

6.2 Persistence
As mentioned before, the system uses a MongoDB to store the disease data. We decided
for a document-oriented database because of the following reasons:

• Conceptually a disease can be seen as a document which contains a number of key
value pairs. Since there can be dependencies defined between categories, keys may
have no values. If the system would use a relational database system we therefore
would have a lot of unnecessary null values. Diseases are queried only completely,
so no indexing or query optimization is necessary.

• The framework presented in this thesis is designed, so that the user can experiment
with it and change the disease metadata in an easy way. Therefore, when the user
changes the structure of the system, either by using the framework or manually, no
migration scripts have to be written for the database in order keep already saved
data. This allows for quick iterations during the development process.

6.3 Client
The frontend of the system uses Vue.js8 and is based upon the free version of CoreUI9.
Vue.js is a versatile JavaScript framework for constructing user interfaces. At its core
Vue.js only focuses on the view layer, but can be extended by an adoptable ecosystem
of libraries. Since scaffolding and configuring a web application from scratch can be a
tedious task, we decided to use a template as a baseline to work with.
In CoreUI basic development, as well as production environment are preconfigured. It
features a custom CSS theme and fully integrated Bootstrap 410 for the styling of the
application. Furthermore, basic routing is configured and the overall structure is set up,
such that new pages and features can be implemented without large changes.

The web application is designed to be as generic as possible, what results in config.js
being the only file holding user defined information adapted by the framework. In this
file categories, features and their dependencies are defined which are used to render the
user interface. Due to the domain of this application being a decision support system, we
decided that the user interface should be divided in two sections: one for providing and
altering the disease base (figures 6.5) and one for diagnosing patients (figure 6.3 and 6.4).

A small, custom-built Express11 based web-server serves the application. Besides hosting
the application, this server proxies all requests to the actual server, except PUT requests
on /feature which are used to save feature figures directly on the web-server. We decided
against storing feature figures in the database, because this would weaken the separation
of the tiers.

8https://vuejs.org/
9https://coreui.io/

10https://getbootstrap.com/
11http://expressjs.com/

37

https://vuejs.org/
https://coreui.io/
https://getbootstrap.com/
http://expressjs.com/

6. Generated System

core

rest

service

DiseaseController

+postXlsDiseases(excelFile:MultipartFile,
 redirectAttributes:RedirectAttributes): String
+getDiseases(): List<DiseaseModel>

PatientController

+postPatient(patient:PatientModel): List<ScoreModel>

DiseaseService

+saveDiseases(diseases:List<DiseaseModel>): void
+getDiseases(): List<DiseaseModel>

PatientService

+diagnosePatient(patient:PatientModel): List<ScoreModel>
+renewDiseaseBase(): void

score

<<interface>>

ScoreFactory

+calculateScores(patient:PatientProfile): List<Score>
+bestOf(diagnoses:List<Score>): List<Score>
+getScoreName(): String
+setDiseases(diseases:List<DiseaseProfile>): void

profile
<<generated>>

featurecategory
<<generated>>

enumeration
<<generated>>

exception

file

model
<<generated>>

validation

mapper

Figure 6.2: Class structure of the server application. The core package does not represent
a separate layer, but rather the core structures used to compute diagnoses. Due to the
persistence layer being provided by the Spring Framework, it is not illustrated here.

38

6.3. Client

Figure 6.3: Interface for entering patient findings. The side bar on the left side represent
the possible categories, on the right side are the corresponding features with graphical
representation. Greyed out categories cannot be chosen, due to the dependency not
fulfilled (In this case amountOfLesions has to have the value “MANY” to unlock the
dependent category). Selected features have a blue background.

39

6. Generated System

Figure 6.4: Popup that shows the user the diseases that match the patient input according
to the used score.

40

6.3. Client

Figure 6.5: Interface for submitting disease data to the server and setting the figures for
features. The feature figures for the color categories have been set beforehand and are
not part of the framework. When generating a new system, all features will show the
“NO IMAGE” figure.

41

CHAPTER 7
Evaluation

In the following chapter, we evaluate the correctness of the framework and analyse its
usability.

7.1 Evaluation of correctness
This section evaluates the correctness of a generated system in conjunction with the
configuration flexibility the framework provides. For this we attempt to configure the
framework with the disease metadata found in Dermtrainer and compare the diagnoses
of the generated system to the diagnoses from Dermtrainer.

Test data1 is taken from the original development project of Dermtrainer and includes a
disease knowledge base of 620 diseases and 422 patient cases diagnosed by dermatologists,
respectively medical students. Metrics used for comparing scores are the number of
“good”, “best” and “correct” diagnoses that are among the first six diseases. These terms
were assigned to diseases per patient case by a dermatologist and can be described by
the following definitions:

• “good”: A disease that matches the symptoms of the patient “good”. The disease
could be a possible diagnosis a dermatologist might make.

• “best”: A disease that matches the symptoms of the patient “best”. The disease
most likely could be a possible diagnosis a dermatologist might make.

• “correct”: The correct diagnosis in a particular case.

The results (table 7.1) show that both, the systems created with the framework and
Dermtrainer, achieve comparable overall diagnostic quality.

1Unfortunately, due to copyright reasons we cannot include the test data in this thesis.

43

7. Evaluation

System “correct” “best” “good”
Framework with score based on TFIDF 373 487 180
Framework with Probabilistic score 354 435 133
Dermtrainer 387 457 164

Table 7.1: The accumulated numbers of “correct”, “best” and “good” diseases a system
diagnosed in the test data. The framework based systems are set up equivalently, only
the score implementations differ.

This proves that the framework presented in this thesis can be used to construct decision
support systems that deliver comparable results when compared to an already existing
system for dermatology that has been specifically constructed and tuned for the domain.
Additionally, it shows that the configuration options of the framework are flexible enough,
such that the domain of an existing decision support system can be modeled.

It is worth mentioning, that although the number of “correct” diagnoses is lower for the
system using the TFIDF score, it has considerably higher numbers for “best” and “good”
diagnoses than Dermtrainer.

7.2 Analysis of usability
This framework is intended to be used by physicians directly, which might not have the
specific knowledge necessary to operate and configure the generator from the command
line without assistance. Since, as stated before, it is unrealistic to assume that physicians
will devote their time to this project for a proper evaluation, we will analyse the proposed
interface for configuring the framework regarding the required skills.

For this we want to consider two use cases for the framework and analyse these, whether
they are suitable for a layperson in the field of computer science:

1. The user is left alone with the framework and has this thesis as reference work.

2. The user gets an instance of the framework that has already been set up with
exemplary category, frequency and likelihood JSON files. An exemplary disease
spreadsheet containing the example categories is available. Someone that is familiar
with the framework and the input structures explains these to the user.

Although it was our initial goal, the prototype of the framework presented in this thesis
cannot be operated without profound knowledge in the field of computer science, which
renders the first use case unrealistic. A layperson can not be expected to operate the
generator and configure/start the application via the command line, let alone provide
the necessary database or other dependencies.

However, when the user is given an already set up system with the corresponding JSON
structures, it basically leaves the user to adapt or add properties in these JSON structures

44

7.2. Analysis of usability

and the disease spreadsheet to effectively change the system. Due to the already existing
JSON files, the user can grasp the meaning of single properties easier. Basically, in this
use case all steps that need more knowledge in the field of computer science than we can
expect from a layperson, are taken over by a computer scientist. This way the user only
has to focus on the domain specific elements.

During the development of Dermtrainer, the introduction of new categories by the
dermatologist had been stopped due to the high implementation effort at some point.
This reduced the amount of experiments that could be conducted with different category
configurations. If the dermatologists would have gotten the preconfigured framework as
described in the second use case, they would have had virtually no limitations on how
often disease metadata could be modified.

Having reduced the complexity of configuring the framework in the second use case, the
skills required by a user reduce to having a basic knowledge of abstract concepts and
computer science related terms like object, array and string.

The use of a graphical JSON editor like Visual JSON Editor2 or JSON Formatter3 could
alleviate some of those requirements further, because it reduces the effort of changing
JSON structures to entering data into simple input forms input. Due to the inconclusive
definition of some properties (e.g. a feature value of a category can be a simple string or
a more complex object) a straight-forward generation of a input form from the JSON
Schema is not possible.

For the first use case to potentially become realistic, we identified the following improve-
ments for the framework:

• A custom graphical user interface that is adapted to the needs of health professionals
and meets the following requirements:

– A diagram of the created entities with drag and drop functionalities should
be rendered for easy dependency and entity management.

– The input should be editable directly as text, for quick, precise changes.

– Validation of the input should be done by the GUI as well.

– A custom DSL language should be established that formalizes all input char-
acteristics.

• Plausible example configurations for categories, frequency and likelihood input that
demonstrates all possible types and optional properties for entities based in existing
medical domains.

• A manual that describes all properties and options for entities and the framework.
2https://github.com/rsuter/VisualJsonEditor
3https://jsonformatter.org/json-editor

45

https://github.com/rsuter/VisualJsonEditor
https://jsonformatter.org/json-editor

7. Evaluation

Figure 7.1: Web editor for JDL documents with diagram rendering [31]. The structure
of this editor could be used as a model for the development of a GUI for the decision
support system framework.

As a model for these improvements, we propose the JHipster Domain Language (JDL)
Studio4 from JHipster which can be seen in figure 7.1. Although it misses the essential
drag and drop feature of entities, so that it can be used without using a domain specific
language at all, we think that this is a solid design starting point for the development of
a GUI. Additionally, it includes entity examples and a comprehensive description of the
language and the editor.

4https://start.jhipster.tech/jdl-studio/

46

https://start.jhipster.tech/jdl-studio/

CHAPTER 8
Conclusion

This thesis gave a contribution to generic frameworks for medical decision support systems
and the description of disease metadata.

A generic framework was developed that allows for the setup of a medical decision support
without the need to write additional code. Input structures were defined that describe
disease metadata such that features of diseases, their occurrence probability and the
epidemiology of diseases can be specified. Two generic methods for the computation of
the similarity of disease and patient data were presented.

To evaluate the framework, we replicated the existing dermatology decision support
system Dermtrainer, using only the presented framework and its structures. The domain
of Dermtrainer could be completely mapped and the resulting system achieved comparable
results to Dermtrainer.

Although the framework was found to be not usable for a laymen in the field of computer
science on their own, we presented a use case in which the framework could be used by a
laymen successfully.

This offers a range of possibilities for future work with this framework. A GUI should be
implemented for the usage of the framework, so that a user does not have to use the CLI.
Also exemplary configurations and a proper manual could help to make the framework
easier to use.

The framework proved to be flexible enough to depict the dermatology domain of
Dermtrainer, therefore, experimenting with other medical domains is a potential area. As
for the decision support system itself, new methods of calculating the similarity between
disease and patient data should be explored and implemented to further increase the
diagnostic quality.

47

APPENDIX A
Running Example

A.1 Disease Metadata

Listing A.1: Category input for the running example
[

{
"name": "site",
"values": [

"head",
{
"name": "torso",
"parts": [

"breast",
"stomach"

]
},
{
"name": "arms",
"parts": [

{
"name": "hands",
"parts": [

"fingers"
]

}
]

},
{

49

A. Running Example

"name": "legs",
"parts": [

{
"name": "feet",
"parts": [
"toes"

]
},
"knees"

]
}

],
"type": "contain",
"weight": 3

},
{
"name": "color",
"values": [

"red",
"white",
"brown",
"black"

],
"type": "likelihood",
"atLeast": 1,
"patient": {

"exclusive": true
}

},
{
"name": "amountOfLesions",
"values": [

"single",
"few",
{

"name": "many",
"dependent": [

{
"name": "formation",
"values": [
"scattered",
"cumulative"

],

50

A.1. Disease Metadata

"type": "likelihood",
"atLeast": 1,
"patient": {

"exclusive": true
}

}
]

}
],
"type": "likelihood",
"atLeast": 1,
"patient": {

"exclusive": true
}

},
{
"name": "border",
"values": [

"delimited",
"irregular"

],
"patient": {

"exclusive": true
},
"type": "likelihood"

},
{
"name": "age",
"noHardConflict": true,
"values": [

"infant",
"child",
"adult",
"elder"

],
"patient": {

"exclusive": true
},
"type": "contain",
"atLeast": 1

},
{
"name": "gender",

51

A. Running Example

"values": [
"male",
"female"

],
"patient": {

"exclusive": true
},
"type": "ratio"

}
]

Listing A.2: Likelihood input for the running example
{

"yes": 1.0,
"no": 0.0005,
"improbable": {

"value": 0.03,
"yesGroup": true

}
}

Listing A.3: Frequency input for the running example
{

"rare": 0.00001,
"less_common": 0.001,
"common": 0.01,
"very_common": 0.1

}

A.2 Disease Format

52

A
.2.

D
isease

Form
at

(a) Sheet 1 with mandatory category input.

(b) Sheet 2.

Figure A.1: Exemplary disease input spreadsheet for the running example with two sheets.

53

A. Running Example

A.3 Client

Listing A.4: Configuration of the categories for the frontend of the running example
{
"site": {
"values": [

"HEAD",
{

"name": "TORSO",
"dependent": []

},
{

"name": "ARMS",
"dependent": []

},
{

"name": "LEGS",
"dependent": []

}
],
"exclusive": false

},
"color": {
"values": [

"RED",
"WHITE",
"BROWN",
"BLACK"

],
"exclusive": true

},
"amountOfLesions": {
"values": [

"SINGLE",
"FEW",
{

"name": "MANY",
"dependent": [

"amountOfLesionsManyFormation"
]

}
],
"exclusive": true

54

A.4. Server

},
"amountOfLesionsManyFormation": {
"values": [

"SCATTERED",
"CUMULATIVE"

],
"exclusive": true

},
"border": {
"values": [

"DELIMITED",
"IRREGULAR"

],
"exclusive": true

},
"age": {
"values": [

"INFANT",
"CHILD",
"ADULT",
"ELDER"

],
"exclusive": true

},
"gender": {
"values": [

"MALE",
"FEMALE"

],
"exclusive": true

}
}

A.4 Server

Listing A.5: Swagger API documentation for the running example
{

"swagger": "2.0",
"info": {
"description": "Api Documentation",
"version": "1.0",
"title": "Api Documentation",

55

A. Running Example

"license": {
"name": "Apache 2.0",
"url": "http://www.apache.org/licenses/LICENSE-2.0"

}
},
"host": "localhost:8090",
"basePath": "/api",
"tags": [
{

"name": "disease-controller",
"description": "Disease Controller"

},
{

"name": "patient-controller",
"description": "Patient Controller"

}
],
"paths": {
"/diseases": {

"get": {
"tags": [

"disease-controller"
],
"summary": "getDiseases",
"operationId": "getDiseasesUsingGET",
"produces": [

"*/*"
],
"responses": {

"200": {
"description": "OK",
"schema": {
"type": "array",
"items": {

"$ref": "#/definitions/DiseaseModel"
}

}
},
"401": {

"description": "Unauthorized"
},
"403": {

"description": "Forbidden"

56

A.4. Server

},
"404": {
"description": "Not Found"

}
}

}
},
"/diseases/xls": {

"post": {
"tags": [

"disease-controller"
],
"summary": "postXlsDiseases",
"operationId": "postXlsDiseasesUsingPOST",
"consumes": [

"multipart/form-data"
],
"produces": [

"*/*"
],
"parameters": [

{
"name": "excelFile",
"in": "formData",
"description": "excelFile",
"required": true,
"type": "file"

}
],
"responses": {

"200": {
"description": "OK",
"schema": {

"type": "string"
}

},
"201": {
"description": "Created"

},
"401": {
"description": "Unauthorized"

},
"403": {

57

A. Running Example

"description": "Forbidden"
},
"404": {

"description": "Not Found"
}

}
}

},
"/patient": {

"post": {
"tags": [

"patient-controller"
],
"summary": "postPatient",
"operationId": "postPatientUsingPOST",
"consumes": [

"application/json"
],
"produces": [

"*/*"
],
"parameters": [

{
"in": "body",
"name": "model",
"description": "model",
"required": true,
"schema": {
"$ref": "#/definitions/PatientModel"

}
}

],
"responses": {

"200": {
"description": "OK",
"schema": {
"type": "array",
"items": {

"$ref": "#/definitions/ScoreModel"
}

}
},
"201": {

58

A.4. Server

"description": "Created"
},
"401": {
"description": "Unauthorized"

},
"403": {
"description": "Forbidden"

},
"404": {
"description": "Not Found"

}
}

}
}

},
"definitions": {
"DiseaseMetaModel": {

"type": "object",
"properties": {
"diseaseName": {

"type": "string"
},
"id": {

"type": "string"
},
"overallFrequency": {

"type": "string",
"enum": [
"RARE",
"LESS_COMMON",
"COMMON",
"VERY_COMMON"

]
},
"softConflictCategories": {

"type": "array",
"items": {
"type": "string",
"enum": [

"GENDER",
"AGE",
"BORDER",
"AMOUNT_OF_LESIONS",

59

A. Running Example

"AMOUNT_OF_LESIONS_MANY_FORMATION",
"COLOR",
"SITE"

]
}

}
},
"title": "DiseaseMetaModel"

},
"DiseaseModel": {

"type": "object",
"properties": {

"age": {
"type": "array",
"items": {

"type": "string",
"enum": [
"INFANT",
"CHILD",
"ADULT",
"ELDER"

]
}

},
"amountOfLesions": {

"type": "object",
"additionalProperties": {

"type": "string"
}

},
"amountOfLesionsManyFormation": {

"type": "object",
"additionalProperties": {

"type": "string"
}

},
"border": {

"type": "object",
"additionalProperties": {

"type": "string"
}

},
"color": {

60

A.4. Server

"type": "object",
"additionalProperties": {
"type": "string"

}
},
"diseaseName": {

"type": "string"
},
"gender": {

"type": "object",
"additionalProperties": {
"type": "number",
"format": "double"

}
},
"id": {

"type": "string"
},
"overallFrequency": {

"type": "string",
"enum": [
"RARE",
"LESS_COMMON",
"COMMON",
"VERY_COMMON"

]
},
"site": {

"type": "array",
"items": {
"type": "string",
"enum": [

"HEAD",
"TORSO",
"TORSO_BREAST",
"TORSO_STOMACH",
"ARMS",
"ARMS_HANDS",
"ARMS_HANDS_FINGERS",
"LEGS",
"LEGS_FEET",
"LEGS_FEET_TOES",
"LEGS_KNEES"

61

A. Running Example

]
}

},
"softConflictCategories": {

"type": "array",
"items": {

"type": "string",
"enum": [
"GENDER",
"AGE",
"BORDER",
"AMOUNT_OF_LESIONS",
"AMOUNT_OF_LESIONS_MANY_FORMATION",
"COLOR",
"SITE"

]
}

}
},
"title": "DiseaseModel"

},
"PatientModel": {

"type": "object",
"properties": {

"age": {
"type": "string",
"enum": [

"INFANT",
"CHILD",
"ADULT",
"ELDER"

]
},
"amountOfLesions": {

"type": "string",
"enum": [

"SINGLE",
"FEW",
"MANY"

]
},
"amountOfLesionsManyFormation": {

"type": "string",

62

A.4. Server

"enum": [
"SCATTERED",
"CUMULATIVE"

]
},
"border": {

"type": "string",
"enum": [
"DELIMITED",
"IRREGULAR"

]
},
"color": {

"type": "string",
"enum": [
"RED",
"WHITE",
"BROWN",
"BLACK"

]
},
"gender": {

"type": "string",
"enum": [
"MALE",
"FEMALE"

]
},
"site": {

"type": "array",
"items": {
"type": "string",
"enum": [

"HEAD",
"TORSO",
"TORSO_BREAST",
"TORSO_STOMACH",
"ARMS",
"ARMS_HANDS",
"ARMS_HANDS_FINGERS",
"LEGS",
"LEGS_FEET",
"LEGS_FEET_TOES",

63

A. Running Example

"LEGS_KNEES"
]

}
}

},
"title": "PatientModel"

},
"ScoreModel": {

"type": "object",
"properties": {

"disease": {
"$ref": "#/definitions/DiseaseMetaModel"

},
"explanation": {

"type": "number",
"format": "double"

},
"rank": {

"type": "number",
"format": "double"

},
"similarity": {

"type": "number",
"format": "double"

}
},
"title": "ScoreModel"

},
"View": {

"type": "object",
"properties": {

"contentType": {
"type": "string"

}
},
"title": "View"

}
}

}

64

A.4. Server

<<enumeration>>

Age

+INFANT
+CHILD
+ADULT
+ELDER

<<enumeration>>

Color

+RED
+WHITE
+BROWN
+BLACK

<<enumeration>>

NumberManyFormation

+SCATTERED
+CUMULATIVE

<<enumeration>>

Number

+SINGLE
+FEW
+MANY

<<enumeration>>

Gender

+MALE
+FEMALE

<<enumeration>>

Site

+HEAD
+TORSO
+TORSO_BREAST
+TORSO_STOMACH
+ARMS
+ARMS_HANDS
+ARMS_HANDS_FINGERS
+LEGS
+LEGS_FEET
+LEGS_FEET_TOES
+LEGS_KNEES

<<enumeration>>

Border

+DELIMITED
+IRREGULAR

Figure A.2: Generated category enums for the running example. The dashed arrow
represents the dependency the category NumberManyFormation has on the value “MANY”
of the category Number. This dependency is also expressed through the name of the
depending category.

<<enumeration>>

Frequency

+RARE(0.00001)
+LESS_COMMON(0.001)
+COMMON(0.01)
+VERY_COMMON(0.1)
+frequency: double

Figure A.3: Generated frequency enum for the running example.

65

A. Running Example

<<enumeration>>

Likelihood

+IMPROBABLE(0.03)
+YES(1)
+NO(0.0005)
+probability: double

+yesValues(): Likelihood[]

Figure A.4: Generated likelihood enum for the running example.

<<enumeration>>

Category

+GENDER
+AGE
+BORDER
+NUMBER
+NUMBER_ANY_FORMAT
+COLOR
+SITE

Figure A.5: Generated category enum for the running example.

66

List of Figures

5.1 Structure of the framework . 29

6.1 Structure of a system generated by the framework 33
6.2 Class structure of the server application 38
6.3 User interface for entering patient findings 39
6.4 Diagnoses popup of the user interface . 40
6.5 User interface for submitting disease related data 41

7.1 JDL Studio . 46

A.1 Exemplary disease input spreadsheet . 53
A.2 Generated category enums for the running example 65
A.3 Generated frequency enum for the running example. 65
A.4 Generated likelihood enum for the running example. 66
A.5 Generated category enum for the running example. 66

67

List of Tables

3.1 Base notations used by both methods. 10
3.2 Notations used by the method based on TFIDF. 11
3.3 Thresholds used for the respective metrics for mixing 13

4.1 Category features of the running example. 18

7.1 Results comparing Dermtrainer and a system built with the framework . 44

Listings

4.1 Context-free grammar for a category in EBNF notation 20
4.2 Context-free grammar for frequency input in EBNF notation 22
4.3 Context-free grammar for likelihood input in EBNF notation 22
A.1 Category input for the running example 49
A.2 Likelihood input for the running example 52
A.3 Frequency input for the running example 52
A.4 Configuration of the categories for the frontend of the running example 54
A.5 Swagger API documentation for the running example 55

69

Bibliography

[1] F. M. Amiri, A. Khadivar, and A. Dolatkhah, “A fuzzy expert system for response
determining diagnosis and management movement impairments syndrome,” In-
ternational Journal of Business Information Systems, vol. 24, no. 1, pp. 31–50,
2017.

[2] W. W. Melek and A. Sadeghian, “A theoretic framework for intelligent expert
systems in medical encounter evaluation,” Expert Systems, vol. 26, pp. 82–99, 2009.

[3] K. Abudahab, D.-l. Xu, Y.-w. Chen, and A. T. Rules, “Generic Expert System and
its Application in Knowledge Modelling and Inference,” in Generic Expert System
and Its Application in Knowledge Modelling and Inference, pp. 1367 – 1372, 2013.

[4] S. S. Sikchi, M. S. Ali, and S. S. Sikchi, “Generic Medical Fuzzy Expert System for
Diagnosis of Cardiac Diseases,” International Journal of Computer Applications,
vol. 66, no. 13, pp. 35–44, 2013.

[5] H. A. Mohammadi Motlagh, B. Minaei Bidgoli, and A. A. Parvizi Fard, “Design
and implementation of a web-based fuzzy expert system for diagnosing depressive
disorder,” Applied Intelligence, vol. 48, pp. 1302–1313, may 2018.

[6] A. Soltani, T. Battikh, I. Jabri, and N. Lakhoua, “A new expert system based on
fuzzy logic and image processing algorithms for early glaucoma diagnosis,” Biomedical
Signal Processing and Control, vol. 40, pp. 366–377, 2018.

[7] A. A. S. Asl and M. H. F. Zarandi, “A type-2 fuzzy expert system for diagnosis
of leukemia,” Advances in Intelligent Systems and Computing, vol. 648, pp. 52–60,
2018.

[8] M. N. Desai, V. Dahiya, and A. K. Singh, “Proposed Model for an Expert System
for Diagnosing Degenerative Diseases – Using Digital Image Processing with Neural
Network,” in Information and Communication Technology for Intelligent Systems
(ICTIS 2017) - Volume 1 (S. C. Satapathy and A. Joshi, eds.), (Cham), pp. 68–73,
Springer International Publishing, 2018.

[9] S. B. Chaudhuri and M. Rahman, “Design of a Medical Expert System (MES)
Based on Rough Set Theory for Detection of Cardiovascular Diseases,” Advances in
Intelligent Systems and Computing, vol. 563, pp. 325–332, 2018.

71

[10] O. M. Alade, O. Y. Sowunmi, S. Misra, R. Maskeliūnas, and R. Damaševičius,
“A Neural Network Based Expert System for the Diagnosis of Diabetes Mellitus,”
Advances in Intelligent Systems and Computing, vol. 724, pp. 14–22, 2018.

[11] E. Avuçlu and F. Ba¸sçiftçi, “Computer Methods and Programs in Biomedicine An
expert system design to diagnose cancer by using a new method reduced rule base,”
Computer Methods and Programs in Biomedicine, vol. 157, pp. 113–120, 2018.

[12] C. P. C. Munaiseche, D. R. Kaparang, and P. T. D. Rompas, “An Expert System
for Diagnosing Eye Diseases using Forward Chaining Method,” in IOP Conference
Series: Materials Science and Engineering, vol. 306, 2018.

[13] F. Ricci, L. Rokach, and B. Shapira, “Introduction to Recommender Systems
Handbook,” in Recommender Systems Handbook, pp. 1–35, Springer US, 2011.

[14] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “MyMediaLite :
A Free Recommender System Library,” in Proceedings of the fifth ACM conference
on Recommender systems, (New York), pp. 305–308, ACM, 2011.

[15] S. Vargas, “Novelty and diversity enhancement and evaluation in recommender
systems and information retrieval,” in Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval, (New
York), pp. 1281–1281, ACM, 2014.

[16] G. Guo, J. Zhang, Z. Sun, and N. Yorke-smith, “LibRec : A Java Library for
Recommender Systems,” in UMAP Workshops, vol. 2, 2015.

[17] S. Inzunza and R. Juárez-Ramirez, “A Comprehensive Context-Aware Recommender
System Framework,” in Studies in Systems, Decision and Control, pp. 1–24, Springer,
2018.

[18] T. Hussein, T. Linder, W. Gaulke, and J. Ziegler, “Hybreed : A software framework
for developing context-aware hybrid recommender systems,” User Modeling and
User-Adapted Interaction, vol. 24, no. 1, pp. 121–174, 2014.

[19] X. Ma, H. Li, J. Ma, Q. Jiang, S. Gao, N. Xi, and D. Lu, “APPLET : a privacy-
preserving framework for location-aware recommender system,” Science China
Information Sciences, vol. 60, no. 9, 2017.

[20] W. Wang, H. Yin, S. Sadiq, L. Chen, M. Xie, and X. Zhou, “SPORE : A Sequential
Personalized Spatial Item Recommender System,” in 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pp. 954–965, 2016.

[21] J. H. Chen, T. Podchiyska, and R. B. Altman, “OrderRex : clinical order decision
support and outcome predictions by data-mining electronic medical records,” Journal
of the American Medical Informatics Association, vol. 23, no. 2, pp. 339–348, 2016.

72

[22] F. Gräßer, H. Malberg, S. Zaunseder, S. Beckert, and S. Abraham, “Neighborhood-
based Collaborative Filtering for therapy decision support,” in CEUR Workshop
Proceedings, pp. 22–26, 2017.

[23] Q. Zhang, G. Zhang, J. Lu, and D. Wu, “A Framework of Hybrid Recommender
System for Personalized Clinical Prescription,” in 2015 10th International Conference
on Intelligent Systems and Knowledge Engineering (ISKE), pp. 189–195, 2015.

[24] Y. Bao and X. Jiang, “An Intelligent Medicine Recommender System Framework,”
in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA),
pp. 1383–1388, 2016.

[25] N. Michalopoulos, G. E. Raptis, M. Mamalakis, C. Katsini, and A. Vigotsky, “A
Personalised Monitoring and Recommendation Framework for Kinetic Dysfunctions
: The Trendelenburg Gait,” in ACM International Conference Proceeding Series,
p. Article number a8, 2016.

[26] E. Riedl, “Dermtrainer – A novel decision support system for training and di-
agnosis in dermatology.” url: https://iktderzukunft.at/en/projects/
dermtrainer.php [Accessed on 2018-07-26].

[27] A. Masood and A. A. Al-Jumaily, “Computer aided diagnostic support system
for skin cancer: A review of techniques and algorithms,” International Journal of
Biomedical Imaging, vol. 2013, pp. 1–22, 2013.

[28] S. Robertson, “Understanding inverse document frequency : on theoretical arguments
for IDF,” Journal of Documentation, vol. 60, no. 5, pp. 503–520, 2004.

[29] C. D. Manning, P. Raghavan, and H. Schütze, Scoring, term weighting, and the
vector space model, pp. 100–123. Cambridge University Press, 2008.

[30] T. Roelleke and J. Wang, “TF-IDF Uncovered : A Study of Theories and Probabili-
ties,” in Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, (Singapore), pp. 435–442, 2008.

[31] JHipster, “JDL-Studio.” url: https://start.jhipster.tech/
jdl--studio/ [Accessed on 2018-08-02].

73

https://iktderzukunft.at/en/projects/dermtrainer.php
https://iktderzukunft.at/en/projects/dermtrainer.php
https://start.jhipster.tech/jdl--studio/
https://start.jhipster.tech/jdl--studio/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Work
	Methodological Approach

	Related Work
	Decision Support Systems
	Recommender Systems
	Dermtrainer

	Methods for Ranking Diseases
	Probabilistic Approach
	Approach based on TFIDF
	Mixing of Rank and Similarity Metrics

	Feature Definition and Disease Format
	Running Example
	Disease Metadata
	Disease Format

	Medical Decision Support Framework
	Framework Structure
	Generation Workflow

	Generated System
	Server
	Persistence
	Client

	Evaluation
	Evaluation of correctness
	Analysis of usability

	Conclusion
	Running Example
	Disease Metadata
	Disease Format
	Client
	Server

	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Bibliography

