
Developing a Type System for a
Configuration Specification

Language

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Armin Wurzinger, BSc.
Matrikelnummer 1528532

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam
Mitwirkung: Dipl.-Ing. Dr. Markus Raab

Wien, 30. August 2018
Armin Wurzinger Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Developing a Type System for a
Configuration Specification

Language

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Armin Wurzinger, BSc.
Registration Number 1528532

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam
Assistance: Dipl.-Ing. Dr. Markus Raab

Vienna, 30th August, 2018
Armin Wurzinger Franz Puntigam

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Armin Wurzinger, BSc.
Schubertstraße 7
3371 Neumarkt/Ybbs
Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. August 2018
Armin Wurzinger

v

Acknowledgements

Many thanks to Dipl.-Ing. Dr. Markus Raab for guiding me through this thesis, for all of
his valuable inputs and ideas regarding Elektra and for the professional way in which he
maintains the whole project.

I would also like to thank René Schwaiger and Lukas Winkler for helping me out with
build-related questions and concerns. Thanks to Stefan Oberender for proofreading my
thesis.

I also want to give gratitude to Ao.Univ.Prof. Dipl.-Ing. Dr. Franz Puntigam for all his
helpful input, ideas and help regarding type systems and formal methods.

Last, I am grateful of all the support I got from my family while I wrote my thesis, and
thanks to all the other people who supported me during that time.

vii

Kurzfassung

Elektra ist eine Initiative zur Entwicklung, Wartung und Bereitstellung einer universellen
Programmbibliothek für Konfiguration. Die Programmbibliothek abstrahiert über ver-
schiedene Konfigurationsbestandteile um einheitlich darauf über Schlüssel-Werte-Paare
zugreifen zu können. Es können auch Metainformationen zu diesen Schlüssel-Werte-
Paaren gespeichert werden. Diese Metainformationen können verwendet werden um
Konfigurationsspezifikationen zu definieren, welche die Semantik von Konfigurationen
beschreibt. Beispiele für solche Metainformationen sind Bedingungen auf dem Wert
eines Schlüssels, Verbindungen um Beziehungen zwischen Schlüssel-Werte-Paaren zu
spezifizieren, und Transformationen, um Konfigurationsbestandteile aus anderen ableiten
zu können. Konfigurationsspezifikationen können fehlerhaft sein, was zu unerwartetem
oder falschem Verhalten zur Laufzeit führen kann.

In dieser Diplomarbeit wird das Problem von fehlerhaften Konfigurationsspezifkationen
gelöst indem ein Typsystem für Elektra entwickelt wird. Dieses Typsystem erkennt
manche Fehler in einer Konfigurationsspezifikation statisch, um daraus resultierende
Fehler zur Laufzeit zu reduzieren. Das HM(X)-Gerüst wird als die formale Basis des zu
entwickelnden Typsystems HM(RGX) verwendet. HM(X) ist ein generisches formales
Gerüst um domänenspezifische Hindley-Milner-artige Typsysteme zu spezifizieren. Die
nötigen Beweisauflagen, die vom HM(X) Gerüst vorgegeben werden, werden erfüllt, um
zu zeigen, dass das Typsystem in sich konsistent ist.

Ein Prototyp dieses Typsystems wird in Form einer eingebetteten domänenspezifischen
Sprache (EDSL) in der Programmiersprache Haskell entwickelt. Dafür wird ein Plugin
für den Glasgow Haskell Compiler (GHC) geschrieben, mit dem die Semantik von
HM(RGX) bei der Typüberprüfung umgesetzt wird. Es wird ebenso ein Plugin für Elektra
entwickelt das Konfigurationsspezifikationen, die mit dieser EDSL beschrieben werden,
auf Typfehler überprüft. Darüber hinaus wird ein weiteres Elektra Plugin geschrieben, das
Metainformationen von Elektra über Schlüssel-Werte-Paare in die EDSL übersetzt. Eine
Fallstudie wird durchgeführt um zu analysieren welche von Elektra aktuell unterstützten
Metainformationen mit HM(RGX) beschrieben werden können.

ix

Abstract

Elektra is an initiative for developing, maintaining and providing a universal library for
system- and application configuration. This library abstracts over various configuration
items to provide a unified access, based on key-value pairs. Key-value pairs can store
meta-information. This meta-information can be used to write configuration specifica-
tions describing the semantics of configuration. Examples for such meta-information
are conditions on the value of a key, links to specify relationships between keys, and
transformations to derive information based on other keys. Configuration specifications
can be erroneous, leading to unexpected or faulty behavior at runtime.

We improve the problem of erroneous configuration specifications by developing a type
system for Elektra. This type system detects some errors in a configuration specification
statically to reduce failures at runtime. We use the HM(X) framework as the foundation to
describe our type system HM(RGX). HM(X) is a generic formal framework for specifying
Hindley-Milner-style type systems. We fulfill the necessary proofs as imposed by this
framework in order to show that our type system is sound and supports type inference.

We implement a protoype of our type system by creating an embedded domain specific
language (EDSL) in the general purpose programming language Haskell. We extend the
Glasgow Haskell Compiler (GHC) by using a typechecker plugin to realize the semantics
of HM(RGX). We develop a plugin for Elektra that typechecks configuration specifications
written in our EDSL. We create another Elektra plugin that translates key-value pairs
and their meta-information into our EDSL so it can be typechecked. We conduct a case
study where we analyzed what kind of meta-information currently supported by Elektra
can be described using HM(RGX).

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Goal of this Thesis . 2
1.2 Methodological Approach . 3
1.3 Structure of this Thesis . 4

2 Background 5
2.1 Elektra . 5

2.1.1 Unified Configuration Framework 5
2.1.2 Plugins . 6
2.1.3 Configuration Specifications . 8

SpecElektra . 8
Sharing Configuration . 10
Type Checking . 11
Advantages . 12

2.2 Type Systems . 12
2.2.1 Advantages . 13
2.2.2 Simply Typed Lambda Calculus 13
2.2.3 The polymorphic lambda calculus (System F) 17
2.2.4 HM(X) . 19

3 HM(RGX) 23
3.1 Case Study . 23

3.1.1 Categorizing the Metakeys . 23
3.1.2 Mapping the Categories to Type System Features 24

Theoretical Foundation . 25
Checks . 26
Transformations . 29
Links . 29

xiii

Structural Types . 30
3.2 Formal Definition . 31

3.2.1 Defining RGX . 32
3.2.2 Proofing the Soundness of RGX 38
3.2.3 Type Inference for HM(RGX) 42

3.3 Examples . 46

4 Implementation 49
4.1 Specelektra . 51

4.1.1 Haskell Extensions . 52
4.1.2 GHC Typechecker Plugins . 53
4.1.3 EDSL . 54
4.1.4 GHC Typechecker Plugin . 56

4.2 Spectranslator . 58
4.2.1 Libelektra Haskell Bindings and Plugins 58
4.2.2 Parsing . 59
4.2.3 Translation . 60
4.2.4 Example . 61

4.3 Elektra Typechecker Plugin . 62
4.3.1 Libelektra Haskell Plugins . 62
4.3.2 Type Checking . 64

4.4 Regexdispatcher . 65
4.5 Case Study . 66

5 Related and Future Work 71
5.1 Related Work . 71

5.1.1 Dhall . 71
5.1.2 ConfigV . 72

5.2 Future Work . 72
5.2.1 Error Messages . 72
5.2.2 Data Types . 73
5.2.3 Structural Types . 73
5.2.4 Dependent Types . 73
5.2.5 Implementation of Metakeys 73
5.2.6 Contextual and Circular Links 73

6 Conclusion 75

Bibliography 77

Appendix I 81

CHAPTER 1
Introduction

Currently software systems are getting more and more complex. To cope with the rising
complexity systems are usually built by combining and configuring existing components
to create new systems. A frequent issue when combining such modular components
is that they specify their configuration in different syntaxes with a varying amount of
expressiveness. This makes it difficult to have a uniform way of accessing the configuration
of other software towards developing a system-oriented integration between applications.
Therefore an external specification of configuration items is required to abstract differences
between incompatible component configurations. [Raa16]

To unify configuration access, the open-source initiative Elektra has been formed, devel-
oping the library libelektra. The initiative maintains several tools and libraries related
to libelektra, we refer to the whole ecosystem as Elektra. It is in essence a key-value
database providing unique keys as a common denominator for accessing configuration
items. It can integrate existing configuration files in different widely-used file formats
like INI, XML and JSON to directly manipulate and interact with configuration files
using its unified key-value approach. [Raa16] [RB17]

Elektra offers a unified way of accessing configuration items, thus abstracting syntactical
differences between them. Some issues still remain to be solved. When integrating config-
uration items of several different origins to achieve system-wide integration, configuration
items can differ in terms of their semantics. An example of such semantics is that a
given configuration item is a positive number to be interpreted as seconds, whereas
another configuration item represents a positive number to be interpreted as minutes.
Initially there was no uniform way of specifying the semantics of configuration items
in Elektra. This gap has then been filled by the configuration specification language
SpecElektra. [RB17]

SpecElektra allows us to specify the semantics of configuration items by describing them
with meta-information, stored as metakeys, on keys residing in a special part of the key-

1

1. Introduction

value database. Following the modular approach of Elektra the effects of those semantics
are implemented at runtime via plugins. The task of writing such specifications is error-
prone, as inconsistencies or missing transformations within a configuration specification
can lead to problems during execution. Therefore it is beneficial to utilize formal methods
to help ensuring that configuration specifications are sound. This helps in avoiding these
pitfalls, easing the task of specifying. According to [Pie02] there are various formal
methods which can be used for this goal with varying amounts of power, such as Hoare
logic and denotational semantics. An important goal of SpecElektra is its ease of use,
which rules out such sophisticated approaches. A popular, lightweight and easily usable
approach is to develop a type system to specify rules for configuration specifications to
ensure their correctness. [Raa15] states that SpecElektra also includes code generation
techniques to generate statically typed configuration access code, which also promotes
the usage of a type system for configuration specifications instead of other methods.

1.1 Goal of this Thesis

We propose to implement a type system for SpecElektra which allows us to assign types
to various configuration items described in specifications. By encoding the semantic
meaning of configuration items into types, it allows us to detect erroneous configuration
specifications before they can result in runtime failures. For instance, type abstractions
can be used to declare some configuration items to be of different units of measurement.
Linking between such configuration items without a proper transformation would then
yield a type checking error, as their semantics differ.

The main goal of this thesis is to formalize a type system for the configuration specification
language SpecElektra. This type system should be easy to use while still providing
increased safety during the development of configuration specifications. SpecElektra
itself is highly-modular with hardly any built-in metakeys. Instead keys describe various
aspects of configurations, like constraints or links.

Newly created plugins can introduce additional metakeys which may or may not have an
influence on the type of configuration items. This yields the necessity to keep the type
system itself extensible to support new plugins. Towards fulfilling this requirement, we
intend to allow users to express the effect of metakeys on the type of keys using functions.
Doing so we avoid having to adjust the type system specification every time to support
new metakeys.

We develop a formal specification of a type system including a few predefined metakeys. It
is used to cover the basic functionality required for expressing the effects of other metakeys.
We implement our formal specification as an instance of the HM(X) framework, a general
framework for defining domain-specific type systems based on the Hindley-Milner type
system presented in [Sul00]. Using this basic feature set users of the type system should
be able to express the typing information for most of the currently known metakeys of
SpecElektra. We formally prove the soundness and completeness of our specification.

2

1.2. Methodological Approach

Plugins for Elektra that implement the runtime behavior of metakeys can be written
in various programming languages. We only create a type system using functions to
express the influence of metakeys on the type of keys. However, we do not intend to
enable plugin developers implementing the actual runtime effect of such metakeys, i.e.,
we do not create a programming language, just a type system. Users of our proposed
type system have to guarantee that their plugins handle the effects of metakeys according
to the definition of the corresponding function in our type system.

Moreover, we develop an implementation of the proposed type system for Elektra which
supports all the features of the specification. We also develop a plugin for Elektra which
checks the type of a configuration specification when it is being used, notifying the user
about errors in a specification that might lead to runtime issues.

1.2 Methodological Approach

To implement the proposed goal, we first perform a literary research on the lambda
calculus and HM(X) to form a theoretical foundation for our thesis. We then categorize
the metakeys of SpecElektra that are currently known to be used by plugins to decide
which features we include in our type system.

Based on that we formalize an instance of HM(X) by defining each element of the five-
tupel parameterizing HM(X). Along the way we also show how our type system fulfills
the required axioms imposed by the HM(X) framework to guarantee that the instance is
also sound with a sound and complete type inference algorithm. This step constitutes
our first research question:

Research Question 1. Is the developed type system specification for SpecElektra sound
and complete, i.e., does it fulfill the required axioms imposed by the HM(X) framework?

The next step is to implement a prototype of our type system to use in Elektra. We
implement it in the functional programming language Haskell. Haskell has a powerful
type system that can be utilized to specify our own type checking rules without having
to worry about the underlying type checking algorithms. This allows to experiment with
different type system features offered by Haskell. As a prerequisite we need to develop a
language binding to use Elektra within Haskell. Furthermore we provide a plugin which
uses the developed type checker to check specifications that are being used in Elektra,
notifying the user about detected errors. To show the usefulness of our type system we
answer our second research question:

Research Question 2. How many metakeys of SpecElektra that are currently known to
be used by plugins, i.e., specified in the METADATA.ini file of the Elektra project with
the status of being implemented, can have their behavior described by our type system?

3

1. Introduction

1.3 Structure of this Thesis
Chapter 2 introduces some background knowledge about Elektra, SpecElektra and type
systems. This aims at helping the reader to understand the topics and concepts of this
thesis. It explains general information about type systems resulting from our literary
research. The other results of the literary research will be introduced later, when we
discuss various specific type system techniques building upon the basics.

Chapter 3 starts with an analysis of the currently available metakeys of SpecElektra,
their implementation status and their requirements on a type system towards answering
our second research question. Building upon the analysis we discuss which type system
techniques are useful for typing the analyzed metakeys, based on the remaining results
of our literary research. The chapter then continues with a formal specification of our
type system based on the findings presented in Chapter 2. First we introduce the
HM(X) framework and explain the foundation it offers and how to define a domain-
specific instance of it. Then we continue to define each parameter of the five-tuple that
parameterizes HM(X) for our target domain. Along the way we show that our instance
fulfills the axioms imposed by the HM(X) framework to have a sound instance with
a sound and complete type inference algorithm, answering our first research question.
We finish the chapter with a small example showing the type checking according to our
defined rules.

After we have established the formal ground of our type system we describe its im-
plementation in Chapter 4. We will present the different modular parts of our type
system. Furthermore we explain how they interact with each other to check configuration
specifications for correctness. At the end of the chapter we answer our second research
question. Building upon the analyis of the currently available metakeys of SpecElektra
in Section 3.1.1 we check which of them can have their effects expressed via our type
system.

We present some related works on configuration type checking in Chapter 5 and also
state some ideas on areas where our type system can be improved. Chapter 6 finishes
this thesis by concluding and recapping its outcome.

4

CHAPTER 2
Background

In this chapter we introduce the results of our literary research as specified in the
methodological approach. First we introduce the universal configuration library liblektra
in Section 2.1. We start with some general information about libelektra and its architecture
in the sections 2.1.1 and 2.1.2. Then we introduce SpecElektra, a configuration specification
language for which we develop a type system, in Section 2.1.3. After having elaborated on
Elektra, we recap some general information about type systems in Section 2.2. We explain
some advantages of using type systems in Section 2.2.1. Afterwards we introduce a variant
of the lambda calculus, a basic model of computation that is often used for expressing
type systems and even programming languages, called the simply typed lambda calculus
in Section 2.2.2. In Section 2.2.3 we introduce more expressive variants of the lambda
calculus. We finish this Chapter by introducing HM(X), a framework for creating a
domain-specific type system that we are going to use for our own problem domain in
Section 2.2.4.

2.1 Elektra

Elektra is an initiative for developing, maintaining and providing a universal library for
configuration. The core library itself is called libelektra. As the goal of this thesis is not
directly related to the library’s core and uses other libraries provided by the initiative, we
will refer to the project using its general name Elektra. It serves as the basis of several
additional components built on top of it. [Raa10]

2.1.1 Unified Configuration Framework

Elektra abstracts over various configuration items such as user settings or system pref-
erences in a uniform way as key-value pairs, referred to as keys, serving as the atomic
unit of the library. Keys also store additional meta-information about them. A number

5

2. Background

of different keys together form a keyset to describe an application’s whole configuration
in an easy way [Raa10]. For persisting an application’s configuration over time, Elektra
stores keysets in a global database called KDB. The KDB and keysets are organized in a
hierarchical manner. Each key consists of a unique name formed out of its own name
appended to the parent key names, separated by slashes. Therefore the naming scheme
resembles the naming scheme of file systems. [Raa10]

A key’s name does not have to be unique in the KDB as a whole, but actually Elektra’s
concept of namespaces requires it to be unique per namespace. A namespace is simply
another component of a key’s name, prepended to it. Thus it is possible to distinguish
between keys with the same name residing in different namespaces. At the time of writing,
the following namespaces are supported:

• system, containing default configurations settings predefined by system administra-
tors

• user, containing configuration settings for particular users, where each user has his
own user namespace isolated from each other.

• dir, containing configuration settings for particular working directories

• proc, containing in-memory keys which are not stored in the KDB

• spec, containing specifications and constraints for another key to ensure they will
behave as expected

The main purpose of namespaces is to support the concept of cascading. Keys can be
either adressed directly in regard to a specific namespace, or they can be adressed in a
cascading style by omitting a specific namespace. When accessing a specific key from a
keyset, Elektra will first check the spec namespace. It will only retrieve meta-information
from the spec namespace, but never use a key’s value from there. This meta-information
is used to verify a key’s specification later on, given that a specification is defined for
it. After eventually having collected some metadata, it will look for a key’s value in
the proc namespace. If there is no key with that name in this namespace, it will fall
back to the dir namespace, then to the user namespace and ultimately it will refer to
the system namespace. This concept allows users to override default settings provided
by application developers by overriding the configuration using the user namespace.
The system-wide configuration will not be altered and other users will not see such
configuration changes. The system-wide configuration is read-only for users without
administrative privileges. [Raa10]

2.1.2 Plugins

Elektra uses a modular architecture. The core libelektra defines a plugin interface, which
can be used to extend it with additional functionality while keeping the core small, fast

6

2.1. Elektra

and platform-independent. A plugin’s interface consists of five functions, though it is
not necessary to implement all of them depending on its purpose. Each function of a
plugin deals with different concerns according to Elektra’s plugin interface. The first
function is Open, which allows plugins to initialize themselves. The next function is Get
which gets called whenever Elektra reads from the KDB. Set complements Get by being
called upon writing to the KDB. In case of an error, Error is called to give plugins a
chance to cleanup allocated resources. Close gets called to allow plugins to deallocate
all resources they use for their functionality. In Elektra a keyset gets passed between
all plugins in a certain order according to the backend’s composition. There are various
placements where a plugin can intercept the default behavior of Elektra when reading
from or writing to the KDB. The placements that are going to be used in the plugin that
we develop in the course of this thesis are postgetstorage, allowing us to check keys when
they are being retrieved from the KDB, and presetstorage, to check keys before they are
being written to the KDB.

Plugins can have different dependencies and can possibly be much more heavy than the
core. Plugins use a contract which is a description of their properties. For instance, a
contract can describe the version of Elektra a plugin is written for or additional plugins
that a plugin depends on. A contract can also contain various metakeys describing
different aspects of a plugin in terms of their maintenance status, implementation details,
potential memory leaks, and similar. There are different types of plugins, the most
important being storage plugins, check plugins and filter plugins. [Raa10]

A major goal of Elektra is to unify access to configuration, so applications do not have
to know where a configuration is actually stored. This goal is backed by the concept of a
backend, which implements the detail of actually accessing a configuration. A backend
can be seen as the combination of several plugins, executed in a specific order.

Storage Plugins Storage plugins are used to read configuration settings in a given
format from the system and expose it in Elektra’s key-value format. They are also
responsible for persisting keys in a system in a specific configuration format, a common
example of such a file format is the INI format. The KDB stores all the information in a
single configuration file per default. Users often want a more fine grained control over
where different parts of the whole system configuration is stored. In UNIX-based systems
it is usual to have an application’s configuration reside in a folder called /etc. A variety
of different configuration file formats is common nowadays and some software is using
customized file formats for their configurations. This creates the need for integrating
all the different configuration formats into the global KDB, while giving the KDB the
possibility to persist different parts of the global configuration into different files. This
requirement is fulfilled by having the concept of Mounting, which resembles mounting
file systems into other existing file systems. In the context of Elektra this means that
different parts of the configuration can be mapped into a mountpoint. In Elektra storage
plugins are utilized to take care about syntactic differences between the KDB and the
target configuration mountpoint. [Raa10]

7

2. Background

Checker Plugins Checker plugins ensure that keys fulfill certain pre- and post-
conditions. In case there is a violation, such a plugin will prevent a key not fulfilling the
conditions from being persisted to the KDB, issuing an error message instead. There-
fore this kind of plugins can be utilized to keep a configuration valid, consistent and
complete [Raa10]. Metakeys in the spec-namespace are used to specify for which keys
of a keyset a checker plugin should be executed. Such guarantees are useful to avoid
implementing the same check into each program that is able to modify a certain part of
a configuration. [Raa10]

Filter Plugins Filter plugins are used for pre- and/or post-processing keys and values.
Their main purpose is to deal with different encoding and decoding problems. Such
problems are the conversion between different string encodings like ASCII, UTF, and
base64. Such plugins should work in both directions. If we read keys encoded in a specific
format, we want to be able to write modifications back in that format, and vice-versa.
Another notable problem handled with filter plugins is the handling of null-values. A key
can store a special value null that is different from containing an empty string. Depending
on the context it can be desirable not to have such a distinction, so a filter plugin can
take care of appropriate renaming of null values. [Raa10]

2.1.3 Configuration Specifications

One of Elektra’s goals is the system-wide integration of application configurations via
one universal interface while still maintaining modularity. However, software often is not
part of a global integration strategy. Software usually only supports changing its settings
through specific configuration files, or via graphical user interfaces at runtime. This makes
system administration more complicated because each application has to be adjusted
individually without a common denominator. Even if several applications share a common
configuration file format like INI, there might be still semantic differences between them.
For instance, one application may store a hypothetical update interval setting in seconds,
while the other stores it in milliseconds. From the outside both configuration settings
would look like numbers. Without documentation, reverse-engineering, or trial-and-error,
it is often not possible to infer this extra unspecified semantic information. [Raa16]

Towards achieving this goal of system-wide integration of all applications, Elektra uses
configuration specifications to externally describe the semantics of various configuration
items independent of their syntax and target configuration file format. In Elektra
a configuration specification is described by the configuration specification language
SpecElektra.

SpecElektra

SpecElektra enables us to specify the semantics of unstandardized configuration file
formats in an external und modular way. It is a semi-structured language built on top of
Elektra’s concept of keys and metakeys. Such a specification is simply a collection of

8

2.1. Elektra

metakeys in the spec-namespace describing the properties of a part of the KDB. One
example of such a part are the semantics of keys appearing in a mounted configuration file.
Metakeys used to represent configuration specifications are called specification metakeys.
However, as we generally refer to specification metakeys in this thesis, we leave the prefix
“specification“ away for brevity. A notable property of SpecElektra is that it has hardly
any built-in language constructs. Following Elektra’s goal of modularity, the actual
functionality of such configuration specifications is realized using plugins for processing
the metakeys in appropriate ways. Further notable differences to other configuration
specification languages are that a specification is intended to be present on every system
making use of Elektra. Therefore a specification can be dynamically rechecked and
altered to meet system-specific goals. A configuration specification based on SpecElektra
also specifies how configuration items are accessed. It aims to be simple to use. [Raa16]

Another way to view specification keys is that they represent different contexts. Each
context depends on the requirements it describes. Contexts are usually composed through
a combination of layers, each layer being associated with a certain run-time behavior. To
connect configuration items present in the KDB in new ways, we can also use configuration
specifications to describe existing data in new ways by altering the contextual composition.
This way only small parts of a system’s configuration have to be adjusted when contexts
change. [Raa16]

SpecElektra tries to improve modularity in two different dimensions, vertical and horizon-
tal modularity. Vertical modularity describes the separation between different applications
throughout a system. Applications using a common configuration provider, like the
Registry present on the Windows operating system, are tightly coupled through this
provider. It is not possible to exchange the configuration provider to other means, for
instance to configuration files, without changing the applications. Therefore SpecElektra
uses three concepts to improve this kind of modularity. One approach is that applications
continue to access their respective configuration files directly, but they are then also
exposed via Elektra to other applications. This way while the main application still
accesses the configuration file directly, other applications can make use of its configuration
items in a standardized way without having to know about the underlying access. The
second approach is that an application uses an adapter library to integrate with Elektra
directly by translating the required key structures. While this requires changes in the
original application, it is possible to use code generation techniques to create code that
matches the underlying configuration specification directly. Thus SpecElektra can enforce
a specification’s properties. The third way is to intercept an application’s configuration
library, replacing it with an implementation that uses Elektra instead of the original way
of modifying its configuration. This way the application does not have to be modified
but can fully benefit from Elektra. [Raa16]

The second degree of modularity is horizontal modularity. This refers to how modular
a single application’s configuration access code is. Ideally it is possible to combine
any configuration access code in a modular way, support code reuse and to abstract
differences in the way each application accesses configuration. Some applications may

9

2. Background

include comprehensive validation checks and others use custom file formats, yet Elektra
aims at providing a uniform access to them. This is not solely achieved via the uniform key
interface provided by Elektra. SpecElektra helps by combining several generic metakeys
with each other. This procedure can be seen as analogous to the so called pipes-and-filters
pattern known by various UNIX-like operating systems. The actual implementation of
these metakeys via plugins is separated from the specification itself. Several plugins may
fulfill the requirements of a metakey, so the best plugin under the given circumstances
can be used. As mentioned in Section 2.1.2 plugins provide a contract. In this contract
a plugin may define which metakeys it will handle. SpecElektra allows us to specify
how mountpoints integrate different configurations into the KDB by specifying plugins
required for the mounting process. Cross-cutting concerns can be implemented which
effect a whole part of the KDB as opposed to individual keys. A notable example of such
a concern is for instance the en- and decryption of configuration items. [Raa16]

As we can see SpecElektra is an important piece towards Elektra’s vision of a modular
system-wide integration of configuration. The unified configuration access enables having
a single API to modify the configuration of a whole system. It is possible to automatically
generate suitable user interfaces for nearly any configuration item just based on SpecElek-
tra’s abstraction of a configuration item’s semantics. Due to the vertical modularity
provided by SpecElektra different applications do not have to be coupled to work together
in a system. There are generic ways to access common configuration file formats like INI or
JSON. A configuration specification language is important for integrating all applications
together by following the pipes-and-filters pattern to view existing configuration items in
a different context. Combined with the possibility of specifying cross-cutting concerns
with generic plugins, SpecElektra provides a solid foundation for specifying configuration
specifications. [Raa16]

Sharing Configuration

Another use case of configuration specifications is sharing. There are not many factors
that determine whether an application is integrated in a certain software system. The
main aspects are logging, user interfaces and user interactions like key shortcuts. While
these points are usually configurable in modern-day software, these configurations often
only apply to a single application, or to a closed software system like a specific desktop
environment. However, an integration crossing those boundaries towards a system-wide
global integration is usually not possible. Therefore this has to be done several times in
different configuration files, which is a cumbersome and error-prone process. [Raa15]

To cope with this shortcoming, Elektra introduces some additional metakeys describing the
relationship between different keys, namely fallback, override and default [Raa15]. This
concept is called links. As keys are often not directly compatible, there is an additional
category of metakeys called transform, describing how one key can be converted to
another key while preserving its respective semantics. Corresponding metakeys are added
to a configuration specification, so these possibilities are not built into the core of Elektra.

10

2.1. Elektra

As the name suggests, the metakey fallback can be used to specify a list of arbitrary
length of other keys. In case the annotated key contains the special value null upon a
lookup, Elektra will use the value of a linked key, respecting the order of the keys in the
configuration specification. If no key specified by fallback has a non-null value either, it
will still result in null. Complementing fallback, the metakey override follows the same
but inversed principle. If any of the keys specified in a key’s override metakey has a
value, that value will be used instead of the current value of the annotated key. The
metakey default is used to specify a default value in case there is neither an existing
value in any of the keys specified by fallback, nor a value in any key overriding the one
annotated with override. The values covered by an override or fallback mapping may
share the same logical information, but their format can be different. Therefore one can
use the transform metakey to specify how to translate from a given key to another key.
A key associated with transform does not get persisted but is just a virtual construct to
allow linking in all kinds of situations. [Raa15]

Type Checking

Given the possibility offered by the configuration specification language SpecElektra,
described in Section 2.1.3, it is essential to provide methods of validating such configuration
specifications. Generally one can view a key’s specification as its type. A type is basically
an abstract representation of its semantics. In our case the semantics are described via
metakeys. Hence keys that share the same properties can be seen as having the same
type. In general there are two different approaches regarding type checking, i.e. ensuring
the validity of the semantics:

1. Static type checking happens when a specification is read. It verifies that configu-
ration specifications themselves are valid, i.e., uses its types consistently.

2. Dynamic type checking happens when a configuration is stored or read. This is
done by plugins that implement the functionality of metakeys. If a key to be read
or written does not comply with its specification, Elektra will issue an error as this
violation can lead to unwanted behavior.

This concept leads to the separationt of the metakeys residing in the spec namespace to
the actual validation of the respective target keys in other namespaces. First it utilizes a
plugin called spec. This plugin copies all the metakeys of a configuration specification
into the target keys, thus effectively preparing the checks. Structural checks are executed
in this phase, these kind of checks ensures that keys can have interrelations between
them. The second phase executes the plugins on the keys before they are getting written
back into the KDB, preventing the commit in case a validation fails and thus resembles
dynamic type checking. [Raa10]

Static type checking is especially interesting in a global integrated scenario where new
configuration items can be formed by linking or transforming existing configuration items

11

2. Background

in new ways, as explained in Section 2.1.3. Using static type checking for specifications
ensures that only compatible configuration items are linked. This prevents possible
runtime inconsistencies beforehand as common pitfalls can already be detected when
a configuration specification is being written. Imagine different units of measurement.
Assume a configuration item that is intended to represent seconds, and another one that
represents milliseconds. While both are numbers, their semantics differ. It is easy to see
that they should not be linked without a proper transformation that converts between
the two different units of measure. Such a mistake is difficult to detect at runtime if
there is only a check whether the two configuration items are numbers. Therefore it is
important to specify such semantical differences already in the configuration specification
and additionally having a way of checking such specifications for their validity.

Currently there is no way in Elektra to statically check configuration specifications. It is
the goal of this thesis to develop an extensible type system supporting the validation
of specifications described using SpecElektra. This type system has to comply with
the modular nature of Elektra and work on the level of metakeys. It abstracts away
the underlying plugins implementing the effects of such metakeys. The implementation
of these metakeys may be written in various programming languages with different
and incompatible type systems. These type systems are usually specialized to the
general-purpose needs of programming languages.

Advantages

As [Raa15] states, a configuration specification combined with a global configuration
framework instead of application-specific configuration handling yields several advantages.
As an application’s configuration resides in a global database, it can be easily edited with
external tools and not only inside an application itself. While this makes it easier for
advanced users to configure their system to their liking, it also helps administrators in
deploying configuration for a system environment. A configuration specification makes it
possible to apply several constraints on single configuration items. Applications accessing
such configuration items can already assume that the constraints are enforced, thus they
do not have to check constraints again.

2.2 Type Systems

To help software developers ensuring that an application works correctly, a variety of
formal methods has been developed. The power of such formal methods varies. There
are complex logical frameworks like denotational semantics that can be utilized to prove
various properties. The downside is that such advanced techniques can hardly be applied
automatically to a program, and the user needs a deep and thorough understanding of
how to utilize them. Therefore various more lightweight techniques have been developed
which can be easily implemented directly in a compiler. Another goal was that those
techniques can be used without having to have a deep understanding of the logical
principles behind them. The most well-known example of such a lightweight verification

12

2.2. Type Systems

technique is a type system. While a type system is typically associated with programming
languages, these use cases are basically just an implementation of various techniques
developed in the field of type theory, incorporating both mathematics and logic. [Pie02]

2.2.1 Advantages

According to [Pie02], making use of a logical framework such as a type system yields
several advantages. While due to the origin of type systems most of these advantages
seem to only apply to their use inside programming languages, they also have applications
in further disciplines such as computer security, theorem proving and database safety.

The most prominent advantage is that type systems support catching common mistakes
in advance, before a program is actually executed. [Pie02] states that programmers using
such languages that make a rich use of types tend to work once checking the types is
successful. Catching mistakes in advance is also the most useful application of type
systems for specifications. According to [LP99] it is important that specifications get
checked automatically using a type checker for instance. They state that in practice
specifications are not validated otherwise. A second advantage is that types aid in creating
useful abstractions. For instance types can be used to describe the interface of certain
parts of a program, thus already expressing various constraints of the interface without
having the programmer to know its exact implementation. Therefore they document
programs additionally and can make some comments obsolete. Type checking occurs
on every change, forcing the types to be correct. Opposed to simple textual comments
the documentary value of types is enforced to be up-to-date as such. Ultimately this
leads to the notion of language safety. While this seems to coincide with the ability to
prevent certain kinds of errors, it actually refers to a language’s ability to enforce its own
abstractions. Depending on the expressiveness of the used type system, some properties
cannot be guaranteed when compiling the program, such as boundaries of an array. To
make up for that it is possible to add additional checks in a program’s execution which
enforce the behavior which is formulated by types. Ultimately type systems allow more
efficient programs by enabling a series of further optimizations depending on certain
guarantees that can be ensured by using types.

2.2.2 Simply Typed Lambda Calculus

Over time different techniques and approaches have been developed for type systems. The
design space of a type system can be seen as a trade-off between various boundaries, such
as the ease of use, the time- and space-complexity of the type checker, the expressiveness
of a type system, and many more [Pie02]. A popular formal foundation for type systems
is the lambda calculus, which can be used to describe the definition of mathematical
functions combined with their parameters. While the lambda calculus itself only expresses
whether a function can be calculated or not, it cannot be used to formulate logic properties
that a computation has to fulfill. Due to that reason this formulation is known as the
untyped lambda calculus. For expressing certain logical properties on top of the lambda

13

2. Background

calculus, typed variants have been developed. Simply speaking the main principle of
a typed lambda calculus is that parameters of a function can be enriched with certain
labels (the types), and a series of inference rules governs how those parameters can be
used together in the context of a function.

The basic rules constituting the simply typed lambda calculus, often referred to as λ→,
are shown in Figure 2.1. Note that we present the pure simply typed lambda calculus
only involving functions, lacking any actual types likes numbers or boolean values. These
additions can be easily added later on to the pure version of λ→ and may be proved
separately. As we only want to show the basic principle of the simply typed lambda
calculus, we decided to omit such extensions.

We first express the syntax of a language with expressions and values, followed by a
collection of transition functions that specify how an expression translates to another
expression until the system finally reaches a value. These transition rules represent the
semantics of λ→ and are expressed using Small-Step Style Operational Semantics in
our case, a variant of Operational Semantics. This representation specifies semantics
for languages by assuming some abstract machine executing it. This abstract machine
“executes” our language following the rules specified by our transition functions. They
define how an expression in a language, representing the current state of execution, gets
mapped to the next state, i.e. the next expression. Another common way of specifying
semantics is Denotational Semantics, which does not assume a series of states being
executed by an abstract machine, but map expressions to mathematical objects. Therefore
it abstracts over the details of evaluation and shows the main concepts. The last common
way of semantics specification is via Axiomatic Semantics. Opposed to the other two
approaches it does not define the behavior of a language and then introduce rules based
on that behavior. Instead it introduces rules directly which dictate the behavior. While
denotational and axiomatic semantics seem more powerful at first, due to their more
mathematical nature, they tend to be complicated to handle for certain properties of a
type system such as procedures or concurrency.[Pie02]

As we will stick to the described notation first seen in Figure 2.1 in the course of this
thesis, we give a explanation upfront. Note that our representation differs slightly from
the original one in [Pie02] to match the notation used in the HM(X) framework. Instead
of terms t we say expressions e, and instead of types T we say types τ . The first
part describes the syntax of our lambda calculus written in a variant of the Backus-
Naur-Form (BNF), a common meta language for describing context-free grammars. It
basically represents an inductive definition of abstract syntax trees of our lambda calculus,
including:

expressions arbitrary expressions in our lambda calculus

values fully normalized expressions. An expression is normalized if it matches no
evaluation rule. Values are often not treated as a separate syntactical domain,

14

2.2. Type Systems

however [Pie02] uses this approach to allow an easier understanding of evaluation
rules

types containing the possible types, which is only the function type in our simple
calculus

contexts storing information about variable bindings during type checking

The evaluation rules are written as derivation rules. The upper part of a derivation rule
above the line represents conditions, the lower part the result of the given evaluation step.
When evaluating some arbitrary expression in our variant of the simply typed lambda
calculus, we always apply the rule that fits in each step. Fitting means that the syntax
of the expression applies to one of the evaluation rules, so the front part under the line
of each derivation rule before the ⇒ arrow. The ⇒ arrow can be read as “evaluates to”
and it is used to specify the result of a rule given that its premises are fulfilled. Only
one rule per step is evaluated to keep the computation deterministic. We encounter the
symbol ` in the presence of contexts Γ. This symbol denotes entailment, meaning that
the right side of the entailment is true under the assumptions being specified on the left
side of it, which is often a context containing current assumptions of types during some
state of evaluation. Obviously if the assumptions do not conclude the right side of the
entailment, the rule does not fit.

Therefore E-App1 from Figure 2.1 reads as “If e1 evaluates to e′
1, then the application

of e2 on e1 evaluates to e′
1e2”. As we can see, nothing got actually applied but e1 got

evaluated one step further. Note that e and derivations like e1 represent the corresponding
part of the syntax, expressions in that case. The same principle applies for the other
so-called metavariables used in derivation rules. At some point it is no longer possible
to evaluate e1 any further. It is then represented in its normal form v1. Hence E-App2
reads as “If e2 evaluates to e′

2 then the application of e′
2 on v1 evaluates to v1 e

′
2”. This

already implies the order in which expressions are evaluated. [Pie02] uses this approach
to allow beginners in the domain to easily understand the process of evaluation. From a
type checking point of view, the order of evaluation is irrelevant as long as the typing
rules are obeyed. The last evaluation rule E-AppAbs is slightly more interesting, it has no
preconditions so the only implied condition is that the syntax matches. It reads as “If we
have a lambda abstraction which expects a parameter x of type τ11 with the expression
e12 as its body, and we apply an arbitrary value v2 to it, then we get the expression e12
where every occurrence of the bound parameter got replaced with the value v2”.

Last, the typing rules are also written as derivation rules similar to the evaluation rules.
Upon evaluation of an expression, these rules have to be evaluated. If there is a possible
evaluation rule of a step of a computation, but no possible typing rule applies, then the
computation is treated as being stuck and cannot continue without breaking our rules.
We also see how the context syntax is now introduced in the rules, which basically stores
information about free variables and their type assumptions in an evaluation steps. The
first typing rule T-Var simply states that if the type assumed for x is τ in the current

15

2. Background

Syntax Meaning

〈v〉 ::= λx : τ.e fully normalized expression with regards to a type

〈e〉 ::= x variable
| λx : τ.e abstraction with regards to a type
| e e application

〈τ〉 ::= τ → τ function type

〈Γ〉 ::= � empty context
| Γ, x : τ expression variable binding

〈v〉 . . . values 〈e〉 . . . expressions 〈τ〉 . . . types 〈Γ〉 . . . contexts

Evaluation Rules

E-App1
e1 ⇒ e′

1
e1e2 ⇒ e′

1e2

E-App2
e2 ⇒ e′

2
v1e2 ⇒ v1e

′
2

E-AppAbs
(λx : τ11.e12)v2 ⇒ [x 7→ v2]e12

Typing Rules

T-Var x : τ ∈ Γ
Γ ` x : τ

T-Abs
Γ, x : τ1 ` e2 : τ2

Γ ` λx : τ1.e2 : τ1 → τ2

T-App
Γ ` e1 : τ11 → τ12 Γ ` e2 : τ11

Γ ` e1e2 : τ12

Figure 2.1: The Simply Typed Lambda Calculus according to [Pie02]

context Γ, then the context entails the variable of the given type, thus the typing rule is
correct. The next rule T-Abs is a bit more complex and describes the typing semantics
of function abstraction. It can be interpreted as “If the variable x of type τ1 is entailed
in the expression e2 of type τ2 given the current context Γ, then the context entails the
abstraction λx : τ1.e2 which has the type τ1 → τ2”. Last, the rule T-App deals with the
typing semantics of function application and states “If the expression e1 evaluates to a
function that maps arguments of the type τ11 to results of type τ12, and the expression
e2 has the type τ11 in the current context, then the application of e2 on e1 will yield a
result of type τ12”.

Proofing the Simply Typed Lambda Calculus After having formulated a variant
of a type system, it is generally interesting to mathematically proof that the properties
expressed in a type system “make sense”. According to [Pie02] this is done by proofing its
safety, also known as soundness. This can be seen as the proof that any expression which
corresponds to the rules expressed with our type system cannot “go wrong” and will at
least successfully be reduced to a final expression. To guarantee that this will happen
two theorems have to be shown. The first theorem is called the progress theorem. This

16

2.2. Type Systems

means that an expression will not get stuck, so it is either a value or a further evaluation
step applies. The second theorem is called the preservation theorem, this means that in
case an expression gets evaluated further, these intermediary steps always have to remain
well-typed and not only the final result. These theorems are typically proofed using the
proof technique of induction.

2.2.3 The polymorphic lambda calculus (System F)

In Section 2.2.2 we looked at a variant of the simply typed lambda calculus which can
be used to describe the evaluation and typing semantics of a simple form of functional
abstraction. As one can imagine, the simply typed lambda calculus serves mainly as
a theoretical foundation and there is a number of more powerful variants of it, which
actually serve as the foundation of whole programming languages.

[Bar91] tried to classify the expressiveness of such typed variants of the lambda calculus
with the lambda cube. As it can be seen in Figure 2.2 the cube’s axes represent a way
of abstracting the relationship between values (acting as a function’s parameter) and
their respective types. The different variants of lambda calculi are increasing their power
following the direction of the arrows starting from the simply typed lambda calculus
λ→ , but therefore their complexity increases. In λ→ values can only depend on other
values, but more complex relationships are not possible. Following the vertical axis
we get the second order lambda calculus λ2, also known as System F, where values
can additionally depend on types, commonly known as polymorphism in programming
languages. Following the first horizontal axis we get types which depend on other types,
so called type operators known as λω. Type operators are like normal functions, except
they exist on the type-level and thus can be used to add additional rules to an existing
type system. The other horizontal axis leads to types depending on values, commonly
known as dependent types. An example usage of dependent types is the division operation.
It is commonly known that a division through zero is not defined and thus not possible.
Using dependent typing one could express this by adding the constraint “a number
that is not zero” for the divisor, so the type of the divisor depends on the value. The
main difference to normal programming languages, which usually handle this case with
exceptions or additional checks, is that this property can be statically guaranteed and thus
an additional check is not necessary. The downside is that depending on the conditions
it is often hard to prove such properties, and manual proofs by the programmer are often
required. As Figure 2.2 shows these three directions can be arbitrarily combined, steadily
increasing the expressiveness. For instance, the combination of λ2 and λω is known as λω,
or System Fω, forming the theoretical foundation for advanced functional programming
languages like Haskell. The lambda cube originates back to 1991 and is primarily used for
languages based on the lambda calculus. Object oriented programming languages usually
make use of Subtyping, a technique used to express a hierarchy between types. There are
systems built upon the lambda calculus describing such techniques, for instance System
Fω<:.

For this thesis we have chosen to use a variant of System F as the formal basis for our

17

2. Background

λω λΠω

λ2 λΠ2

λω λΠω

λ→ λΠ

Figure 2.2: The Lambda Cube according to [Bar91], showing the relationship of expres-
siveness between various variants of the lambda calculus

own type system. More specifically, we use a subset of it known as the Hindley-Milner
type system [Pie02]. A Hindley-Milner type system is a subset of System F that allows
full type reconstruction. Type reconstruction, also known as type inference, is the task
of inferring the type of an arbitrary expression from the context without having to
explicitly specify it. Type inference in Hindley-Milner style type systems typically works
by creating unification problems out of a term. It is always decidable while yielding
efficient type checking algorithms. One of the original algorithms for a Hindley-Milner
type system is Algorithm W [DM82]. Large and complex configurations can be checked
efficiently. The functional model without state is suitable for our proposed type system.
We primarily want to describe the effects of checker plugins, links and transformations
as explained in Section 2.1.3. We do not intend to perform any actual computations,
though it is possible. This can be easily expressed as a chain of function applications.

As [Gre31] states it is a difficult objective to create a customized type system. Therefore
[Gre31] proposes the idea to take an advantage of existing type systems by utilizing
a certain subset of it to express domain-specific needs. We also use this approach to
implement our own type system by expressing it in the type system of the functional
programming language Haskell. Therefore we can implement our own type system without
having to develop our own type checking- and inference algorithms, which is a non-trivial
and time-consuming task.

According to [WHE13] the Glasglow Haskell Compiler (GHC), a popular compiler for
Haskell, uses a type system called System FC. It is an extension to System Fω with other
ideas from System FΠ. System Fω, being an extension to System F, allows us to express
everything that we can express in System F. So ultimately we can make use of System
FC to implement our own simple Hindley-Milner type system. We can take advantage
of the expressiveness of System FC to implement a few domain-specific extensions for
our type system for the target usage. This approach gives us quick prototyping and

18

2.2. Type Systems

exploration of typing techniques inside the design space of System FC.

2.2.4 HM(X)

In [Sul00] a generic framework for Hindley-Milner type systems gets introduced called
HM(X). It allows us to retrieve a domain-specific type system by parameterizing the
framework with a specific term constraint system describing the types and their relations.
As introduced in [Sul00], a term constraint system is a cylindrical constraint system
with a special notion of substitution suitable for expressing type systems. A cylindrical
constraint system is a quadruple (Ω,`e,Var, {∃α|α ∈ Var}). The first two elements
(Ω,`e) form a simple constraint system. A simple constraint system is a structure (Ω,`e).
Ω is a set consisting of both tokens and primitive constraints that are built on top of
tokens. The entailment relation `e⊆ pΩ × Ω describes the entailment of an arbitrary
finite subset of Ω to the primitive set Ω. Var is an unbounded set of variables, and the
projection operator is an operator that allows to replace variables with concrete tokens or
primitive constraints. A term constraint system over a term algebra T requires predicates
p(τ1, ...τn) to only work on terms τ from the term algebra T . One of those predicates
has to be an equality predicate τ1 = τ2.

The main advantage of using such a framework is that it is easy to experiment with
various constraint domains while having a generic basis. This eases the burden of proofing
the type system. The generic basis provided by HM(X) has already been proven to be
sound. Domain-specific instances of HM(X) are sound as long as the underlying constraint
system is sound. This is shown by proving a few axioms about the constraint system. It
is not required to fully proof every part of the type system. There is already a generic
type inference algorithm available in case the principal type property can be shown. The
principal type property means that for an arbitrary program the most general type can
be given to, so that all other possible types are just instances of that type. [Sul00]

The basic logical system behind HM(X) is shown in Figure 2.3. The syntax basically
resembles a standard Hindley-Milner type system based on the lambda calculus with
let-polymorphism. Values are defined as variables x, constants c and the basic lambda
abstraction λx.e. Expressions are either values v, application e e or let statement
let x = e in e. Types τ contain a placeholder in the generic basis, meaning it is intended
to be extended to support a domain-specific type language. Types either consist of type
variables α or function types τ → τ . Last, type schemes σ are either a specific type τ
or a type scheme ∀α.C ⇒ ω that acts as a placeholder for types fulfilling the imposed
constraints C. The quantifier allows us to bind type variables α into the constraints. An
additional restriction is that such constraints always have to be satisfiable. Generally
speaking types τ are called monomorphic types. This means there is only one specific
representation for a type that is only equal to itself. Conversely type schemes σ are called
polymorphic types, meaning that a polymorphic type describes a range of monomorphic
types given certain constraints. A typing judgement is a judgement of the form γ ` e : σ.
The context γ describes how variables are bound to types in a context. Such a judgement

19

2. Background

is valid in case the given context γ implies the type scheme σ for a given expression e is
derivable through the typing rules. [Sul00]

The typing rules, as shown in Figure 2.3, mostly correspond to standard typing rules
of a Hindley-Milner type system. We are shortly going to recap them. T-Var states
that a variable x of schema σ has to appear in the typing context C,Γ. T-Sub expresses
subsumption and means that an expression e of type τ ′ is entailed in the context if the
context entails the same expression of type τ and that τ is smaller or equal to τ ′ according
to the subsumption relation. T-Abs expresses abstraction and states that λx.e is of type
τ → τ ′ if the given context entails the type τ ′ given some x of type τ . The notation Γx
refers to the context excluding the variable x. T-App describes application and means
that the application of an expression e2 onto an expression e1 yields the type τ2 if e1 is a
function type τ1 → τ2 and e1 is of type τ1. T-Let describes let bindings and states that
the expression e bound by the binding variable x is entailed by the context if the type
scheme σ of the expression e is entailed by the context and that the inner expression e′

of type τ ′ has to be entailed by the context given some type scheme σ for the binding
variable x. The last two rules are a bit more interesting. T-∀-Introduction deals with the
binding of type variables into a constraint. It builds type schemes by appending a new
constraint D into the inference chain. The existential quantification ∃α.D ensures that
the final constraint of an inference chain requires that all intermediate constraints are
satisfiable. Technically speaking it states that the extended context by combining the
existing constraints C with the newly introduced constraints D that follows from a type
scheme on an expression e of type τ is entailed by the context. This is only the case if
the combined context entails the expression of type τ and the bound variables from the
new constraints D are not free in the existing contexts. T-∀-Elimination then deals with
the checking of such introduced constraints. It describes that when the type variables
α of a constraint C get substituted with some actual types τ the actual types have to
satisfy the constraints specified by their type scheme. [Sul00]

As elaborated in [Sul00] an instance of HM(X) is defined using a five-tuple (X,�, T, S,Γ0)
that is usually just being referred to as X. The first parameter of the tuple X is a term
constraint system describing the domain-specific properties. � is a subsumption relation
that has to fulfill reflectivity, antisymmetry, transitivity and contravariance. It has been
added for formalizing type systems that have some kind of subsumption relation, for
instance a subtyping relation. It can be an equality relation, as that fulfills all the four
axioms. T is the term algebra describing the basic building blocks of the type system.
S is the so called set of solved forms, i.e. constraints that may appear in actual typing
judgments in the type system. The constraint language defined in X may be richer than
S. The last parameter Γ0 describes the initial type environment and is used to define
built-in operators and functions for the type system.

If it a given constraint domain has the principal normal form property, the principal type
property is fulfilled. This allows us to benefit from a generic sound and complete type
inference algorithm without having to design and proof one ourselves as described in
[Sul00].

20

2.2. Type Systems

Syntax Meaning

〈v〉 ::= c constant
| x variable
| λx.e abstraction value

〈e〉 ::= v value
| e e application
| let x = e in e let statement

〈τ〉 ::= α type variable
| τ → τ function type
| ... further types for the target domain

〈σ〉 ::= τ type
| ∀α.C ⇒ σ type scheme

〈v〉 . . . values 〈e〉 . . . expressions 〈τ〉 . . . types 〈σ〉 . . . type schemes

Typing Rules
T-Var

C,Γ ` x : σ (x : σ ∈ Γ)

T-Sub
C,Γ ` e : τ C `e (τ � τ ′)

C,Γ ` e : τ ′

T-Abs
C,Γx.x : τ ` e : τ ′

C,Γx ` λx.e : τ → τ ′

T-App
C,Γ ` e1 : τ1 → τ2 C,Γ ` e2 : τ1

C,Γ ` e1e2 : τ2

T-Let
C,Γx `: e : σ C,Γx.x : σ ` e′ : τ ′

C,Γx ` let x = e in e′ : τ ′

T-∀-Introduction
C ∧D,Γ ` e : τ α /∈ fv(C)

⋃
fv(Γ)

C ∧ ∃α.D,Γ ` e : ∀α.D ⇒ τ

T-∀-Elimination
C,Γ ` e : ∀α.D ⇒ τ ′ C `e [τ/α]D

C,Γ ` e : [τ/α]τ ′

Figure 2.3: The HM(X) system according to [Sul00]

21

2. Background

As stated in [Sul00] the basic Hindler-Milner type system can be derived from the HM(X)
framework by parameterizing X to be a Herbrand constraint system over the types τ ,
� to type equality based on their syntax, τ to be a set of types that can be compared
using syntactic equality and S to be the empty set of constraints that is trivially always
satisfiable. As it can be seen it does not support any domain-specific constraints to
appear. This instance is called HM(HERBRAND) in [Sul00].

22

CHAPTER 3
HM(RGX)

Before expressing a type system for configuration specifications, we first need to evaluate
our design space in Section 3.1. We formalize an instance of the HM(X) framework for
our target domain called HM(RGX) in Section 3.2. While defining our instance we fulfill
the proof obligations imposed by the HM(X) framework to show that our instance is
also sound and supports a sound and complete type inference algorithm. We close this
chapter by providing an example in HM(RGX) that we explain and type check manually
according to our rules in Section 3.3.

3.1 Case Study

Towards answering our second research question presented in Section 1.2 we first evaluate
which metakeys of SpecElektra are relevant:

Research Question 2. How many metakeys of SpecElektra that are currently known to
be used by plugins, i.e., specified in the METADATA.ini file of the Elektra project with
the status of being implemented, can have their behavior described by our type system?

First we categorize the metakeys in Section 3.1.1. Then we elaborate why we have
chosen to create a Hindley-Milner style type system and evaluate how we model the
domain-specific extensions that we need for expressing configuration specifications in
Section 3.1.2.

3.1.1 Categorizing the Metakeys

We have categorized the currently existing metakeys in Table 1 in the Appendix. We sum
up the results of this categorization in Table 3.1. We have recognized five categories of
metakeys. The first category, referred to as U in the table, stands for metakeys which are
unrelated to the type system. Examples are simple comments or additional information

23

3. HM(RGX)

Category/Status implemented proposed reserved idea unclear deprecated

U 21 4 8 6 0 2
L 4 0 0 0 0 0
C 21 3 0 7 0 2
T 4 0 0 2 0 0
S 5 2 0 0 3 0

Relevant 34 5 0 9 3 2

Total 55 9 8 15 3 4

Table 3.1: An analyzation of the metakeys categorized in Table 1.

stored by plugins playing no role for configuration specifications. The second category L
stands for links, therefore referring to metakeys that define some kind of link between keys
as mentioned in Section 2.1.3. The third category C refers to checks imposed by checker
plugins explained in Section 2.1.1. The fourth category T relates to transformations
between keys regarding their values. This is a concern when linking between keys, also
explained in Section 2.1.1. This category also applies to plugins which do transform a
key’s value unrelated to links, such as the encryption or renaming of keys. The main
difference to category C is that a transformation replaces the current value and thus
alters the types. It does not simply limit the values a key can contain. The category
S also refers to transformations, but this time it refers to structural transformations
altering a key’s structure, such as its name or the relationship between a key and other
keys that are independent of its value, such as arrays.

As Table 3.1 shows of the 55 metakeys which are currently present and implemented, 34
are relevant i.e., have not been categorized as unrelated to types. Therefore we try to
design our type system in such way that a majority of those metakeys can be expressed
with it. Most metakeys are simply used to store some additional information used by
some plugins, or to add comments and similar meta-information. 21 of the implemented
relevant metakeys fall into the category C and thus resemble checker plugins. Other
notable results are that there are only 4 metakeys which are related to links, all of which
are implemented. Transformations make up only 4 relevant metakeys for our research
question while there are 5 metakeys dealing with structural constraints.

3.1.2 Mapping the Categories to Type System Features

We categorized and analyzed the current metakeys of a configuration specification in
Section 3.1.1. Based on that we now inspect which type system features we are going to
use to model the effects of relevant metakeys of configuration specifications. First we
decide the theoretical foundation for our type system. We already discussed this question
at the end of Section 2.2.3. Afterwards we evaluate which type system techniques could
be used to express the effects of different metakey categories.

24

3.1. Case Study

Theoretical Foundation

As indicated in Section 2.1.1 the effects of metakeys are implemented by plugins for Elektra,
following its modular nature. An exception to this rule are the five linking metakeys, which
are implemented directly in Elektra’s core library [Raa15]. A configuration specification
is enforced and realized by using a variety of different plugins combined as a backend. In
Elektra all the different plugins of a backend are executed in a serial fashion according to
a plugin’s contract. Following this serial execution of plugins we can model their effects
basically as a composition of function calls on a raw key, further refining or transforming
its type in each function.

This leads us to the decision that a typed variant of the lambda calculus is a good
basis for a type system for Elektra as it is suitable to describe functions and their
types. A major aspect is that the lambda calculus is already used as the theoretical
foundation for all kinds of different type system techniques and, built upon that, real-
world programming languages. Therefore research has been going on related to it, leading
to various publications. Using a variant of the lambda calculus to describe effects of
metakeys as opposed to hard-coding a few typing rules for the existing metakeys gives us
the big advantage that the type system is extensible. If we would choose to write typing
rules for the existing metakeys in a direct, static fashion we would have to extend the
type system each time a new relevant metakey gets introduced with rules for the new
metakey.

We have already examined a few different variants of the lambda calculus with varying
power, shown through the lambda cube explained in Section 2.2.3. We conclude that the
polymorphic lambda calculus, System F, is the best compromise between expressiveness,
complexity and ease-of-use. The simply typed lambda calculus is unable to express
polymorphic functions, while polymorphic functions appear to be a suitable way to
describe the effects of links between keys and transformations and form the basis for
type inference [Pie02]. This leads to the decision of using it, more specifically, a subset
of it known as a Hindley-Milner style type system, as a formal basis.

Following another axis of the lambda cube shown in Figure 2.2, we next take a look
at λω. In order to keep the type system easy to use we conclude that the possibilities
offered by type-level functions are already too advanced and complicated. As not many
programming languages offer type-level functions most plugin developers are expected
to be unfamiliar with that topic. The benefits are insignificant for typing configuration
specifications, as the different needs of the various categories of metakeys according to
Section 3.1.1 can be covered using polymorphism alone. It is however possible to include a
few built-in type-level functions. According to [Pie02], by defining their meaning directly
in the language specification we can avoid formulating a complete λω-style type system.

Last, we evaluate whether using the concepts of λΠ, dependent typing, would be useful
for our type system. Indeed it would be interesting to express the effects of certain
checker-plugins with the help of dependent typing. For instance, the implemented checker
plugin check/range, tests if the checked key’s value corresponds to a given range of

25

3. HM(RGX)

numbers. The type of the plugin would depend on a value, in that case, the range
given to it. We could conclude facts like a key falling back to either a number in the
range 1 to 3 or to a number in the range 2 to 7 via a link is a number in the range 1
to 7 from a type perspective. Another conclusion would be that different syntactical
representations for ranges like 1-3 and 1,2,3 are semantically equivalent. It is necessary
to decide the equality of dependent types in a configuration specification. As the effects
of metakeys may dependent on arbitrary additional information, deciding such equalities
is undecidable in general and often needs manual proofs by the implementor [XP99].
Therefore we conclude not to incorporate concepts of λΠ, though it would be interesting
to explore such techniques in future works.

As discussed at the end of Section 2.2.3, it is possible to use a language with a richer
type system to prototype our own type system. Wwe can implement it without having to
write a complete type checker from scratch. We can experiment with all the type features
prevalent in the host language. Future developments in the host language expand our
own possibilities. As many functional programming languages support at least a variant
of System F, often extended with various ideas from System Fω and/or System FΠ,
choosing System F seems appropriate.

We want to emphasize the fact that we do not aim to build an actual general-purpose
programming language even though we use System F as the foundation. In Elektra plugins,
defining the actual effects of metakeys, can be written in basically any programming
language. It would be useful to express transformations or checks directly in our own
language specification, already enforcing our proposed static typing. This would make
the language design more complicated due to various additional language constructs
having to be added to make it easy to program in it. Therefore we decide not to do this
for now. We simply develop a type system for a small domain-specific metalanguage to
check whether a typed configuration specification is sound.

Checks

After having decided the formal foundation of our type system, we now examine which
typing techniques can be utilized to express effects of the current checker plugins. We
will call those effects checks. As discussed in Section 2.1.1 a check ensures that a key’s
value will always correspond to some condition. This condition is enforced mainly upon
writing a key to the KDB. A plugin corresponding to the given metakey will evaluate the
value to be written, rejecting it upon violating the conditions expressed by the plugin.
It is perfectly possible that a key fulfills various conditions at once, for instance, a key
could be both a number in the range 1 to 3 and a valid ASCII string at the same time.

The first idea is to define a set of standard types that can be used to express the effects
of various metakeys. As Elektra already provides a checker plugin implementing the
specifications of the different CORBA types. CORBA is a standard for the communication
between software independent of their implementation language and their hardware
platform, covering a range of numerical and general-purpose types [Vin97]. A downside

26

3.1. Case Study

of this approach is that we would need additional language constructs to build up more
complex data types based on those basic data types, for instance records, to model more
sophisticated data types such as IPv4 addresses. This also raises the issue of ambiguity.
For instance an IPv4 address could be represented as a set of four numbers, each limited
to the range from 0 to 255. It could also be represented using a plain string, a binary form,
an array of digits or similar. Users would have to make a decision which representation to
use, and once this representation has been chosen and is relied upon in our type system
it is hard to change afterwards. It is not possible to express range checks in such a type
system without having to include the definition of our ranges directly in the type system.
Similar to range checks, it is not possible to include additional basic types that go beyond
the scope of CORBA types into the type system without altering it. For instance, the C
programming language already supports more data types natively than those provided
by CORBA. It would be interesting to make use of more fine-grained types in certain
scenarios. The non-modularity of CORBA conflicts with the modular nature of Elektra.

Building upon the idea of using CORBA types, we also had the idea to use concepts of
subtyping. By declaring a hierarchy that defines that numbers are a subtype of ASCII
strings and the range 1 to 3 is a subtype of a number, this would be easily possible.
Usually in practical programming languages, nominal subtyping is used [MA09]. This
goes against the modular nature of Elektra. A subtyping hierarchy has to be carefully
defined in advance as stated in [MA08] when using nominal subtyping. Later changes will
be hard to achieve. Structural subtyping on the other hand would enable more flexibility
as it only considers whether two elements share the same traits. There still needs to be
some kind of hierarchy defined [MA08]. We intended to express our type system in the
functional programming language Haskell as discussed at the end of Section 2.2.3. This
is a further argument against subtyping as that technique is not directly supported by
Haskell.

Next we came to the idea of using a variant of intersection types in order to express the
general idea of checks. According to [Pie02] an intersection type can be seen as a type
that represents the intersection of two types τ1 ∧ τ2, so terms of type τ1 ∧ τ2 belong to
both the types τ1 and τ2. Intersection types are very powerful and make the language
design more complex. A key has no type by default, which is represented via the most
general type any. Each check further restricts the type of a key. By adding a check that
checks for the key containing only ASCII characters, we would effectively get the refined
type any ∧ ascii, loosely following the general idea of intersection types. This key fulfills
every constraint implied by the type any, but due to the check it is ensured that it will
also fulfill the constraint ascii. By adding another range check, for instance a check for
the range 1-3, we get a new type that resembles the intersection of the previous types
with the range check, which could look like any ∧ ascii ∧ range1-3. While this approach
seems quite promising on the first glance, it fails to abstract any further information
about the semantics of different metakeys in its raw form. For instance, the intersection
type any ∧ range4-6 ∧ range1-3 is valid considering the basic idea of intersection
types. We see that there is no actual intersection between the ranges 4-6 and 1-3

27

3. HM(RGX)

considering the semantics of a range check. We would have to include the semantics of
various metakeys directly in our language. Again this conflicts with the modular nature
of Elektra.

Last, we thought about using regular expressions (regexes) as a basic type in our proposed
type system. Regular expressions are well-known in computer science and have a wide
range of applications. A regex is a string describing a regular language. This basically
means that there is no context involved in the language. In our use case we intend to use
regexes to describe the content of our keys. As each key in Elektra represents a string in
its untyped form, with the exception of binary data, this already seems promising.

A work that uses a type system based on regular expressions is called Boomerang.
According to [BFP+08], Boomerang is a programming language that is specialized for
the bidirectional transformation of string data, so called lenses. It defines a few general-
purpose combinators for string transformations that are type checked using regular
expressions to detect whether two different transformations are compatible with each
other.

The configuration management tool Augeas uses regular expressions in order to validate
configurations. As described in [Lut08], Augeas uses the type checker to ensure that
modified configuration files are valid before transforming them. A downside is that
regular expressions are not able to handle arbitrarily nested constructs, using the example
of the IfModule construct of the httpd.conf of the well-known Apache Webserver. This
is not directly an issue for the use with Elektra. When a configuration like that gets
mounted into the KDB, storage plugins split it into different parts that are then validated
key-per-key, avoiding the problem of nested constructs.

During our metakey categorization we noticed that many of them seem to be easily
expressible as regular expressions. We can directly express the metakey check/validation
as it resembles a regular expression check. We can describe all the basic CORBA types
directly as numbers with limited ranges as regular expressions. We can also identify
enumerations, range checks (basically a dynamic variant of numerical data types) and
IP addresses to be expressible as regular expressions. Regular expressions already carry
some semantics of the content they describe. We have already explained the issue of
intersection types not being able to detect the incompatibility of the two range checks
4-6 and 1-3 in the above paragraph. With regular expressions it is possible to determine
that there is no intersection between those two checks. The first check could be expressed
as the regular expression 4|5|6 and the second as 1|2|3 . As they refer to different
characters there is no regular expression that resembles the unification of both ranges. As
stated in [BK93], a regular expression can be converted into the representation of a finite
automaton and vice-versa. When modeled as a finite automaton, we can perform various
operations such as the intersection between two regular expressions, the containment of
a regular expression in another, and the union of two regular expressions [BL80].

Obviously we can only express regular languages with regular expressions. There are
also irregular languages, such a dates, depending on a certain context. For instance the

28

3.1. Case Study

number of days in the month February depends on whether the given year is a leap year
or not, thus it is irregular. We can still capture the general form of a date using a regular
expression ignoring such details.

We conclude that types based on regular expressions are a good compromise between
real-world usability, expressibility and developer-familiarity for our type system when
keeping our target domain in mind. As the theoretical foundation of our type system
will be based on a variant of the lambda calculus, it can be extended with further typing
techniques in the future.

Transformations

The next category of configuration metakeys, as categorized in Section 3.1.1, are trans-
formations. Transformation metakeys are used to convert a key’s value in a specific way
depending on the metakey. They are usually applied on keys to transform the values
they get assigned to different ones. They can be used to specify keys that are basically
different views on existing keys under new key names.

Transformations can be handled using our existing type system ideas. A transformation
basically takes a key of a given type and transforms it to a key of a different type. Such
a transformation can easily be modeled using polymorphic functions that we use as a
foundation for our type system. Transformations can make use of our regex types. We
use the example of a hypothetical metakey that expects a key to be an ASCII string and
hashes it, storing the result encoded as a hexadecimal number. Its function signature could
look like [\x00-\x7F]+ → 0[xX][0-9a-fA-F]+ , where the first regex represents
the range of ASCII characters and the second regex represents a hexadecimal number
prefixed with 0x (case insensitive). The arrow in the middle acts as a separator for
the two types. Suppose a key representing an integer number gets passed as the first
parameter, for instance [0-9]+ . As digits are a subset of the ASCII characters, this is
perfectly valid.

Links

The third category of configuration metakeys as categorized in Section 3.1.1 are links.
Links are used to specify certain relationships between keys. At the time of writing
there are four link-related metakeys implemented. Fallback expresses that the value of
the referenced key will be used in case the current key has no value. Override on the
other hand is the complement of fallback. It states that the referenced key will be used
instead of the referencing key in case the referenced key has a value. The last of the
three metakeys is default, specifying a default value to use in case another key overrides
the referencing key, the referenced key has no value and there is no fallback key with a
value to use either. It is debatable whether a default value can be classified as a link. We
concluded that a default value can be seen as a special version of fallback that does not
refer to another key but to a given input value. The remaining two link-related metakeys

29

3. HM(RGX)

are namespace and override, but as they do not really alter the values a key can take
they are irrelevant to the type system.

Links can be expressed via polymorphic functions. Following the example of fallback,
a possible type signature could be expressed as b → a → a, where the type variable a
denotes the type of the referencing key and the type variable b denotes the type of the
referenced key. As we use type variables here instead of actual types, this type scheme
can be used for any kind of fallbacks. The effect on the type system will be the same.
The resulting type has to be compatible to the referencing key. Compatibility means
that it represents the result of the override, which is either the key of type a itself, or a
compatible key it falls back to. Thus we naively assumed type a to be the result type.
However, there is more complexity involved into expressing links.

First of all, the compatibility between the two type parameters a and b has to be ensured.
Therefore we treat such link-related functions differently compared to transformation
functions. We propose to add an additional built-in compatibility check between regex
types, expressed as a constraint for link functions. Constraints are used to restrict the
input domain of a function. This check could be expressed using the symbol ⊆, inspired
by the mathematical subset notation. This then leads to the refined type signature of
b ⊆ a ⇒ b → a → a. We use Haskell’s notation of specifying constraints for functions
using the ⇒ symbol. The semantic of such a compatibility check is that the regex
represented by the type variable b either has to be the same regex as a, or is a subset of
it. This ensures that the link is always safe in terms of typing rules.

We demonstrate these thoughts with a short example. Consider a key with the ASCII
regex and a key with a hexadecimal number regex, both mentioned in Section 3.1.2. Now
we link the ASCII key to the hexadecimal number key. The resulting function signature
of the fallback with the types already applied would look like 0[xX][0-9a-fA-F]+ ⊆
[\x00-\x7F]+ ⇒ 0[xX][0-9a-fA-F]+ →
[\x00-\x7F]+ → [\x00-\x7F]+ . Note that the regex representing a hexadecimal
number is a subset of the regex representing ASCII characters, making this link valid.

Structural Types

The last category of configuration metakeys as categorized in Section 3.1.1 are structural
types. Structural types are used to impose some kind of structure between keys, for
instance that keys form an array of a specific size or that a hierarchy in the KDB contains
keys of certain types. We also include structural transformations in this category, i.e.,
the renaming of keys.

There are various approaches of how to introduce structural types in a language. Many
languages based on the lambda calculus include some kind of list, tuple and record notation
to represent basic structures. Including such specific language constructs directly again
interferes with the modular approach of Elektra. A more general approach to structural
types is presented in [HVP05]. The authors try to express the structure of hierarchical
tree-based data using operators commonly associated with regular expressions to express

30

3.2. Formal Definition

repetition, optional occurrences and alterations. This approach is quite different from our
idea of using regular expressions to describe the contents of a key as presented first in
Section 3.1.2. In essence this corresponds to the concept of a regular tree grammar instead
of regexes that resemble a regular word grammar. However, including structural types
based on a regular tree grammar would introduce more complexity to our type system.
The question remains how structural transformations can be treated in a language. Thus
we have decided to skip structural types in our type system. They may be added in
future extensions though.

3.2 Formal Definition

After having discussed the design space for our type system in Section 3.1.1, we now
formalize our type system. We describe our type system based on a generic framework
for Hindley-Milner style type systems called HM(X). This framework was introduced
in Section 2.2.4. Afterwards we add the extensions that we need for our regex types in
Section 3.2.1. Regex types act as our sole type for describing keys. Further, we explain
the link between regular expressions and finite automata. We elaborate how various
operations on finite automata, such as intersection and containment, can be expressed.
We prove the necessary obligations as imposed by the HM(X) framework along the way.
In Section 3.2.3 we describe how type inference is achieved and prove it.

In Table 3.2 we can see the metavariables that we are going to use in our formalizations.
To keep our typing rules symbolic and concise, we will mostly use 1- or 2-letter variables
to refer to different syntactical and semantical building blocks of our formal language.

Metavariable Usage Description
e Expression Expressions, can be reduced to values
v Value Values, can not be reduced further
τ, µ Type General and function types / Monotypes
α, β, γ Type Variables Placeholders for concrete types
σ Type scheme Constrained types / Polytypes
τr Regex Type Regex types
C,D Constraint A constraint that further restricts types
Γ Type Context Context with current type assumptions
r Arbitrary Regex
s Arbitrary String
p Elektra Key Name A valid key name

Table 3.2: Metavariables Overview

31

3. HM(RGX)

3.2.1 Defining RGX

In this section we are going to gradually introduce our regex types. A regex type describes
the type of a key in the global KDB as explained in Section 2.1. We have already
discussed the basic idea of our regex types in Section 3.1.2. Typically a type system gets
introduced along with some kind of programming language. A common way of defining a
typed programming language is to specify its grammar, evaluation rules that describe
how the different constructs of a programming language get evaluated at the time of
execution, and typing rules specifying further rules of how the programming language
constructs can be used with each other [Pie02]. Using regex types we can statically check
a configuration specification according to the rules of our type system without having to
deal with the actual implementation. This is due to the fact that the implementation
of checks or transformations is done using plugins in various programming languages.
Consequently, there are no evaluation rules required for our use case. We define a type
system for configuration specifications but not a complete programming language. This
is supported by the fact that the HM(X) framework, introduced in Section 2.2.4, is only
a type system framework. It only specifies basic grammar and typing rules along with a
type inference algorithm. We continue by defining the five-tuple for our domain-specific
extensions that parameterizes the HM(X) framework. We will refer to this tuple as RGX.
Therefore we call our instance of the HM(X) framework the HM(RGX) type system.

First we define our term algebra T , the third parameter of the five-tupel RGX. A term
algebra describes valid type terms and can be seen as some kind of syntax definition.
It is similar to the well-known Backus-Naur form, a general notation technique for
writing context-free grammars. We follow the same concept of how a term algebra for
representing physical dimensions is described in [Sul00]. The term algebra describing
physical dimension forms a two-sorted term algebra. This means that it distinguishes
between ordinary types, like type variables and function types, and dimension types. The
main consideration is that dimension types are a special kind of ordinary types tagged
with a certain type constructor. One cannot use ordinary types to build up more complex
dimension types. These two domains are separated so the number of cases that have to
be proofed are limited when reasoning about the type system’s soundness. We define T
to be a two-sorted term algebra consisting of regex types and ordinary types in Figure 3.1.
Both τ and τr have the same notion of type variables that are called α. This is modeled
the same way as in the dimension type system, so we can distinguish between regex type
variables and ordinary type variables syntactically. Regex intersection types can contain
type variables. The type inference process itself does not distinguish between those
different kinds of type variables thus they have the same notion. The remaining terms
are equal to the generic ones presented in Figure 2.3 that already exist in the HM(X)
framework, except for T-Const. T-Const simply defines that the only constants/values
we have in our type system are key constants that need an explicit type assignment
using the :: notation. This is the only place where explicit types have to be specified in
HM(RGX). The remaining constraints and types get inferred from the context.

We define our constraints C that can be used inside our adjusted term constraint system

32

3.2. Formal Definition

〈v〉 ::= ...
| Key :: r typed key constant

〈τ〉 ::= α type variable
| τ → τ function type
| Rgx τr regex type

〈τr〉 ::= α type variable for regex types
| r string specifying a regex
| τr ∩ τr regex intersection type

〈C〉 ::= {} empty constraint set, always satisfiable
| C ∧ C logical conjunction
| ∃α.C type variable quantification
| τ = τ type equality predicate
| τr ⊆ τr regex containment predicate
| Intersectable τr regex intersection predicate

〈S〉 ::= {} empty constraint set, always satisfiable
| ∃α.C type variable quantification
| C ∧ C logical conjunction
| τr ⊆ τr regex containment predicate
| Intersectable τr regex intersection predicate

〈v〉 . . . values 〈τ〉 . . . types 〈τr〉 . . . regex types 〈C〉 . . . constraints 〈S〉 . . . solved forms

Typing Rules
T-Const

C,Γ ` (Key :: r) : τr

Figure 3.1: The term language and typing rules of our type system HM(RGX), extending
the generic basis specified in Figure 2.3

TCSRGX in Figure 3.1. Besides the standard constraints for conjunction and variable
binding we include two regex-related predicates. Before we can define the semantics of
those two regex-related predicates, we introduce a few auxiliary functions and predicates
that we are going to use in further definitions in Definition 1. We need additional
predicates and functions so that we can abstract over the fact that regexes may have
different syntactical representations for the same semantical meaning. This is relevant
when using regex intersection types as defined in the term language in Figure 3.1 in
definitions.

Definition 1. We assume the availability of the following predicates and functions for

33

3. HM(RGX)

the use in further definitions of HM(RGX). In general we will use the lambda-like function
application notion functionName parameter1 parameter2 :

1. isRegexEqual is a predicate taking two regexes r1 and r2 as parameters, deciding
their equality via finite automata

2. intersect is a function taking two regexes r1 and r2 as parameters, returning a
regex representing the intersection of the two regexes

3. foldIntersect is a function that takes a non-empty set R of regexes r as its
parameter. It then folds the function intersect over the set R. This means it takes
two arbitrary regex r1 and r2 from the set, removing them from the set. It calculates
their intersection r12. Then the function takes the next regex r3 from the set and
intersects this with r12, and so on. This is done until there are no more regexes left
in the set and then it returns the resulting regex. In case there is only one regex
in the set, this regex is returned immediately. This function may return the empty
regex as a result if no intersection is possible.

4. collect is a function that takes a regex type τr as its parameter.

• In case τr is a regex type variable α, it returns a tuple ({α}, ∅).
• In case τr is a regex r, it returns a tuple (∅, {r}).
• If τr is an regex intersection type τr ∩ τr it traverses the intersection tree

recursively and and returns a tuple consisting of two sets. The first set
contains all regex type variables α encountered while traversing the intersection
tree, the second set contains all regexes r.

5. isIntersectable is a predicate taking a set R of regexes r as its parameter and
checks whether foldIntersect R does not equal to the empty regex. If the given set is
empty, this predicate is satisfied.

6. contains is a predicate taking two regexes r1 and r2 as parameters and decides
whether the alphabet represented by the first regex r1 can express at least the alphabet
represented by the second regex r2.

After having introduced the functions shown in Definition 1, we now define the semantics
of the constraints specified in our language definition in Figure 3.1.

Definition 2. The predicate Intersectable is defined by the following rule, making use of
predicates and functions defined in Definition 1:

Pred-Intersectable
collect τr = (V,R) isIntersectable R

Intersectable τr

34

3.2. Formal Definition

The predicate Intersectable, defined in Definition 2, is satisfied if its parameter τr is a
primitive regex or a possible intersection of regexes. Intersection between the two regexes
is possible in the sense that it does not yield the empty language that accepts no input
at all. Note that type variables have no influence on the outcome of this predicate as it
can be seen in its definition, it is solely determined by regexes. As long as there are still
any type variables involved it cannot be decided yet. Thus it is also a valid term in our
term constraint system.

Definition 3. The predicate ⊆ is defined by the following rules, making use of some
predicates and functions defined in Definition 1

Pred-Contains-Left-empty
collect τr1 = (V1, ∅)

τr1 ⊆ τr2

Pred-Contains-Right-empty
collect τr2 = (V2, ∅)

τr1 ⊆ τr2

Pred-Contains

collect τr1 = (V1, R1) collect τr2 = (V2, R2)
isIntersectable R1 isIntersectable R2
contains (foldIntersect R1) (foldIntersect R2)

τr1 ⊆ τr2

The predicate τr ⊆ τr indicates that the regex described by the second parameter accepts
everything that the regex described by the first parameter would accept as defined in
Definition 3. As long as there are still any type variables involved, it cannot be decided
yet thus it is also a valid term in our term constraint system. However there are two
exceptions to this rule that can make a term in our term constraint system involving ⊆
trivially valid. Pred-Contains-Left-empty states that if the left hand side of this binary
predicate involves no regex r we cannot decide the predicate yet. We have no pair of
regexes r to compare, thus we leave it as a valid term. Pred-Contains-Right-empty is the
equivalent of this rule for the right side of the binary predicate. We proceed by defining
some axioms about our regex related predicates and types.

Definition 4. The following axioms regarding our regex related predicates and types
apply to our term constraint system TCSRGX. The axioms RGX1, RGX2 and RGX3
deal with additional properties of regex intersection types as defined in Figure 3.1. They
are used to justify certain steps in further definitions. Axioms RGX4, RGX5, RGX6 and
RGX7 deal with properties of the containment predicate from Definition 3. Note that we
are defining axioms here, so they do not define the exact meaning of the operators but
instead additional higher-level properties about them that are guaranteed to hold in the
context of our term constraint system. Thus the axioms are notated as entailment rules
in the context of our term system, written as `e:

RGX1 `e τr1 ∩ τr2 = τr2 ∩ τr1

35

3. HM(RGX)

RGX2
`e τr1 ∩ (τr2 ∩ τr3) = (τr1 ∩ τr2) ∩ τr3

RGX3 `e τr ∩ τr = τr

RGX4
D `e τr1 ⊆ τr2 D `e τr2 ⊆ τr1

D `e τr1 = τr2

RGX5
D `e τr1 ⊆ τr2 D `e τr2 ⊆ τr3

D `e τr1 ⊆ τr3

RGX6 `e τr1 ⊆ .*
RGX7 `e τr ⊆ τr

The axioms RGX1 to RGX3, defined in Definition 4, rely on the fact that the intersection
of finite automata has the same properties as the operation of intersection on sets.
Thus RGX1 describes commutativity of intersection. RGX2 describes associativity of
intersection, and RGX3 describes that the intersection of a regex with itself results in
the same regex. The remaining axioms deal with properties of the predicate ⊆ as defined
in Definition 3. These also arise from the similarity between finite automata and set
operations. RGX4 describes equality in terms of containment. RGX5 expresses the
transitivity of containment. RGX6 describes that everything can be contained in the
regex .* . This arises from the fact that everything is trivially contained in the regex
.* , as it allows an arbitrary sequence of arbitrary characters, and that the predicate
only compares regexes as stated in its definition. RGX7 describes that everything is
trivially contained in itself.

As elaborated in Section 2.2.4 we have to define a type equality predicate =RGX, shown
in Definition 5. Our predicate does not refer to syntactic equality alone. Instead we
define our own equality predicate that supports non-syntatic regex equality. Regex
equality means that the regular language described by the first regex accepts exactly
the same input as the regular language described by the second regex in case regex
types get compared. This is expressed in our regex equality predicate =τr by rule
Pred-Eqτr-r. In case regex intersection types get compared, it calculates the actual
intersections recursively as defined by the rules Pred-Eqτr -∩-r-Right and Pred-Eqτr -∩-r-
Left. It handles cases where intersections do not have regex type variables on one side.
Pred-Eqτr-∩-α-Right and Pred-Eqτr-∩-α-Left handle cases where intersections do not
have regexes on one side. Pred-Eqτr -∩ handles the default case when there are regex and
regex type variables on both sides involved. Pred-Eqτr -α deals with the equality of regex
type variables using syntactic equality. Based on =τr we then define =RGX. The rules
Pred-EqRGX-α and Pred-EqRGX-τ define type equality for non-regex types. This arises
from the basic Hindley-Milner instance HM(HERBRANDT), introduced in Section 2.2.4.
Pred-EqRGX-RGX compares the regex types using =τr .

The equality of two regular expressions can be decided by using the fact that regular
expressions can be converted to a different representation, called finite automata (FA).

36

3.2. Formal Definition

As Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theorem 2.4 in [HMU01] state this
is possible because regexes and finite automata have been proven to be equivalent.
They are different representations for the same underlying problem. This theorem is
known as Kleene’s theorem. According to [NR05] well-known algorithms for this task
are Thompson’s Construction or Gluskov’s Construction, converting a regular expression
into a nondeterministic finite automaton (NFA). An NFA then gets converted to its
deterministic form, a deterministic finite automaton (DFA), for instance using the
powerset construction. It is then possible to decide whether the two resulting DFAs are
equivalent as stated in Theorem 3.8 in [HMU01]. There are different ways to test this,
for instance by constructing their symmetrical difference and testing whether that result
equals to the empty set. In that case they are indeed equal. We can also decide the
other two constraints by using finite automata. It is possible to calculate the intersection
of the two generated DFAs as elaborated in Theorem 3.3 in [HMU01], stating that the
intersection of two regular sets is closed under intersection. A regular set is just another
representation of a regex that is also equivalent according to [HMU01]. An operation on
regular sets is closed if the result is guaranteed to be a regular set, thus it can always be
converted back to a regex. In case an intersection does not equal to the empty regular
set our regex intersection predicate is satisfiable. Last, we can check for containment, i.e.,
the second regex type accepts everything the first regex type would accept and possibly
more. We can calculate the intersection between the two regexes and check whether it is
equal to the first regex. It is also possible to map the resulting DFA back to a regular
expression, for instance using Kleene’s algorithm presented in [HMU01]. This is useful to
normalize the type representations.

Definition 5. We split the definition of the equality predicate for our term constraint
system TCSRGX into two parts. We cannot define a regex type equality predicate by using
syntactic equality alone. We refer to the predicates and functions in Definition 1 and
the axioms defined in Definition 4. We define a regex type equality predicate =τr as the
reflexive transitive closure over regex types τr with the following properties:

emptyOrAny−empty
emptyOrAny ∅

emptyOrAny−any
foldIntersect R =τr .*

emptyOrAny R

Pred-Eqτr -r
isRegexEqual r1 r2

r1 =τr r2

Pred-Eqτr -α
α =τr α

Pred-Eqτr -∩-α-Right
collect(τr1 ∩ τr2) = (V,R) emptyOrAny R V = {α}

τr1 ∩ τr2 =τr α

Pred-Eqτr -∩-α-Left
collect(τr3 ∩ τr4) = (V,R) emptyOrAny R V = {α}

α =τr τr3 ∩ τr4

37

3. HM(RGX)

Pred-Eqτr -∩-r-Right
collect(τr3 ∩ τr4) = (∅, R) foldIntersect R =τr r

τr1 ∩ τr2 =τr r

Pred-Eqτr -∩-r-Left
collect (τr3 ∩ τr4) = (∅, R) foldIntersect R =τr r

r =τr τr3 ∩ τr4

Pred-Eqτr -∩

collect (τr1 ∩ τr2) = (V1, R1) collect (τr3 ∩ τr4) = (V2, R2)
V1 = V2 foldIntersect R1 =τr foldIntersect R2

τr1 ∩ τr2 =τr τr3 ∩ τr4

We define the equality predicate =RGX as the reflexive transitive closure over types τ that
makes use of =τr with the following properties:

Pred-EqRGX-α
α =RGX α

Pred-EqRGX-τ
τ1 =RGX τ3 τ2 =RGX τ4

τ1 → τ2 =RGX τ3 → τ4

Pred-EqRGX-RGX
τr1 =τr τr2

RGX τr1 =RGX RGX τr2

We now define our term constraint system TCSRGX to be a constraint system like
HM(HERBRAND) over the above-mentioned term algebra T , where we have the type
equality predicate =RGX from Definition 5 and the two predicates Intersectable and ⊆
from definitions 2 and 3. Furthermore the axioms stated in Definition 4 hold.

3.2.2 Proofing the Soundness of RGX

As mentioned in Section 2.2.4, we have to show that the conditions imposed by the
HM(X) framework hold for our customized term constraint system TCSRGX. This is
required so that the general soundness proof given in [Sul00] holds for our instance.
We start by showing the required conditions on a term constraint system as given in
Definition 7 in [Sul00] hold for TCSRGX.

Theorem 1. The term constraint system TCSRGX for our type system HM(RGX) fulfills
the conditions on a term constraint system. According to Definition 7 in [Sul00] the
following conditions have to be met:

A term constraint system TCSτ over the term algebra T is a cylindrical constraint system
with predicates of the form p(τ1, ..., τn)(τi ∈ T) such that the following holds:

For each pair of types τ , τ ′ there is an equality predicate (τ = τ ′) in the term constraint
system satisfying:

D1
`e (α = α)

D2
(α1 = α2) `e (α2 = α1)

38

3.2. Formal Definition

D3
(α1 = α2) ∧ (α2 = α3) `e (α1 = α3)

D4
(α1 = α2) ∧ ∃α.(C ∧ (α = α2)) `e C)
D5

(τ1 = τ2) `e (T [τ1] = T [τ2])
where T [] is an arbitrary term context

For each predicate p(τ1, ..., τn),

D6
[τ/α]p(τ1, ..., τn) =e ∃α.(p(τ1, ..., τn) ∧ (α = τ))

where α /∈ fv(τ)

Proof. We build upon our definition of our type equality predicate =RGX in Definition 5.
D1 is true according to our definition, meaning that each type τ is equal to itself. We can
proof this via structural induction on our types τ . Type variables and regex type variables
α are equal to themselves according to rules Pred-EqRGX-α and Pred-Eqτr -α. Function
types τ1 → τ2 are equal to themselves according to rule Pred-EqRGX-τ . Regex types
RGX τr are equal to themselves due to rule Pred-EqRGX-RGX that delegates to the regex
equality predicate =τr . Pred-Eqτr -r ensures that regexes r are equal to themselves due to
our definition of the auxiliary function isRegexEqual. The rule Pred-Eqτr -∩ ensures that
regex intersection types τ1 ∩ τ2 are equal to themselves. The auxiliary function collect
called on both τ1 and τ2 will result in the same pair of sets (V,R) on both sides according
to its definition. Thus any regex type variables in the set V are equal. foldIntersect will
also result in the same regexes r that are then being compared with our regex equality
predicate =τr . As foldIntersect results in a regex r, the rule Pred-Eqτr -r will then apply
as we have already shown. Thus we can conclude D1 holds. D2 holds as the equality
of two finite automata is commutative due to the fact that it is an equivalence relation
and thus symmetric. It can also be derived through our axioms RGX4 and RGX5 from
Definition 4. D3 holds as finite automata equality is also transitive, another property of
an equivalence relation. This can also be derived with the axioms RGX4 and RGX5. D4
states that type equality can be substituted by type equality in a constraint. It means
that if a type α1 is equal to another type α2, then we can satisfy a quantified constraint
∃α.(C ∧ (α = α2)) by instantiating α with α1. Our type equality predicate =RGX does
not depend on any context that could invalidate this rule according to its definition. D5
describes that type equality is a congruence relation, i.e., it is independent of the context.
In case two types τ1 and τ2 are equal, they have to be equal in each context. As already
mentioned when proofing D4, our types do not depend on any kind of context, hence
this also holds. Last, D6 simply connects substitution over predicates using projection
and equality. We see that the replacement of type variables into predicates still holds
given our two predicates ⊆ and Intersectable:

[τ/α](α ⊆ β ∧ ... ∧ α ⊆ γ) = [τ/α](α ⊆ β) ∧ ... ∧ [τ/α](α ⊆ γ)
[τ/α](Intersectable α ∧ ... ∧ Intersectable γ) =

[τ/α](Intersectable α) ∧ ... ∧ [τ/α](Intersectable γ)

39

3. HM(RGX)

We have now defined the term constraint system TCSRGX, the first element of the RGX
five-tupel and shown the conditions a term constraint system for a valid HM(X) instance
imposes. Next we are going to define the second element of the five-tupel RGX, the
subsumption relation �. Regardless of the symbol, it does not necessarily have to be a
subsumption relation. We use the equivalence relation defined by our equality predicate
=RGX as specified in Definition 5 for �. Our type system does not specify a subsumption
relation.

Theorem 2. Our subsumption relation � for HM(RGX) that is defined in Definition 5
fulfills the conditions regarding a partial ordering plus a contra-variance rule. According
to [Sul00] the following conditions have to be met:

Subsumption-REFL
(α1 = α2) `e (α1 � α2) ∧ (α2 � α1)

Subsumption-ANTISYM
(α1 � α2) ∧ (α2 � α1) `e (α1 = α2)

Subsumption-TRANS
D `e (α1 � α2) D `e (α2 � α3)

D `e (α1 � α3)

Subsumption-CONTRA
D `e (α′

1 � α1) D `e (α2 � α′
2)

D `e (α1 → α2 � α′
1 → α′

2)

Proof. Our type equality predicate =RGX defined in Definition 5 defines an equivalence
relation and we do not use subsumption in our type system. We have already shown
that =RGX is reflective when proofing D1 of Theorem 1, so Subsumption-REFL holds.
Transitivity of =RGX has also been shown when proofing D3 from Theorem 1, thus
Subsumption-TRANS holds. Subsumption-ANTISYM is fulfilled as =RGX is symmetric as
shown when proofing D2 from Theorem 1. Antisymmetry α1 � α2 ∧ α2 � α1 → α1 = α2
can be derived from symmetry α1 � α2 → α2 � α1. Subsumption-CONTRA is true for
our type system as types get compared via rule Pred-EqRGX-τ of Definition 5 in our
equality predicate.

We have also stated our definition of the fourth element of the five-tupel, the set of
solved forms S, in Figure 3.1. In solved forms we allow our two regex predicates ⊆ and
Intersectable to appear. We also have conjunction and projection as we need a way to
have both predicates in a single type scheme while still allowing for quantification to
support type variables. The empty constraint set {} is contained for terms not imposing
any further constraints. The equality predicate defined in C only gets used inside the
term constraint system to avoid equations in constraints.

We define a set of primitive functions in the initial type environment Γ0. We add a function
intersect that calculates a regex intersection defined as ∀α1∀α2.Intersectable (α1∩α2)⇒

40

3.2. Formal Definition

α1 → α2 → α1 ∩ α2 to the initial type environment. Intersection is primarily related to
checks. We also need a way to express links. We add another function link that checks
a link defined as ∀α1∀α2.α2 ⊆ α1 ⇒ α2 → α1 → α1. Concrete checks and links are
then expressed using lambda abstraction combined with those two primitive functions.
Therefore it is usually not necessary to add explicit type signatures stating constraints
for a term as they are inferred from those two primitive functions. This completes the
definition of the five-tupel RGX parameterizing the generic HM(X) framework.

It remains to show that HM(RGX) is indeed sound. According to Theorem 5 of [Sul00],
an instance of HM(X) is sound if the underlying constraint system is sound and the
subsumption predicate � is coherent.

Theorem 3. The term constraint system TCSRGX for our type system HM(RGX) is
sound as specified in Definition 9 of [Sul00], i.e., every satisfiable constraint has a
monotype solution, which is a type τ where no free variables appear.

Proof. Referring to Definition 9 of [Sul00], it means that for all type variables α and
constraints C ∈ S, if `e ∃α.C then there are monotypes µ such that `e ∃α.((α = µ∧C)).
This is the case for our constraints ⊆, Intersectable and our adjusted type equality
constraint =RGX. As defined in our term algebra in Figure 3.1 our regex types τr are all
monotypes as they are a sort of ordinary types τ using a special type constructor Rgx.
All three of our predicates are satisfiable. Assume an arbitrary regex type τr using its
representation in τ as Rgx τr. Now we can always use Rgx τr as monotype substitutions for
µ due to the fact that `e ∃α1∃α2.(α1 = Rgx τr ∧ α2 = Rgx τr ∧ Intersectable (α1 ∩ α2))
always holds in case a constraint is satisfiable. This follows from Axiom RGX3 in
Definition 4. The argument works the same with ⊆ where it follows from Axiom RGX4.
It also holds with =RGX where we have already proven reflectivity when proofing D1 of
Theorem 1, so Rgx τr is indeed a satisfiable monotype solution.

Theorem 4. The subsumption relation � for our type system HM(RGX) is coherent, i.e.,
if an arbitrary type τ subsumes a type τ ′, τ is a subset of τ ′ as specified in Definition 11
of [Sul00].

Proof. This is true as our subsumption relation is an equality relation as outlined when
proofing Theorem 2.

Summing up we can now conclude that we have defined a sound instance of HM(X):

Theorem 5. Our type system HM(RGX) is a valid sound instance of HM(X) as specified
in Theorem 5 of [Sul00], i.e., our term constraint system is sound and coherent.

Proof. This immediately follows from Theorem 1 and Theorem 2, showing that our term
constraint system is valid, Theorem 3, showing that our term constraint system is sound,
and Theorem 4, showing that our subsumption relation is coherent.

41

3. HM(RGX)

3.2.3 Type Inference for HM(RGX)

We have defined a sound type system.It needs to be shown that this type system satisfies
the lifting property. In that case the principal constraint property also holds. This allows
us to use a sound and complete type inference algorithm as outlined and proven in [Sul00].
As stated in Definition 25 [SMZ99] our type system HM(RGX) can make use of this
algorithm, if it fulfills the principal constraint property. As outlined by Theorem 10 in
[Sul00] this is the case if the lifting property specified in Definition 28 of [Sul00] holds.
We are going to recite it in Definition 6:

Definition 6. Given a term constraint system TCSτ over the term algebra T and a set
S of solved forms, we say that it satisfies the lifting property if the following conditions
hold:

• LC1 There exists a computable procedure normalize such that for each constraint
problem (D,φ) where D is projection free, normalize(D,φ) = (C,ψ) and (C,ψ) is
the principal normal form of (D,φ), or normalize(D,φ) reports failure if (D,φ)
does not have a normal form at all.

• LC2 S is equation-free. This is the case if given a constraint system X over a
term algebra T and a set S of solved forms, for each C ∈ S if C `e (τ = τ ′) then
`e (τ = τ ′).

• LC3 Given a constraint problem (D,φ) and a normal form (C,ψ) then C = ψD.

• LC4 For each ∃α.C ∈ S there exists τ and D ∈ S such that [τ/α]C = D ∈ S.

Normalization Procedure We define a normalization procedure that reduces arbi-
trary constraints D to a normal form C such that they cannot be reduced further and
are unique up to semantic equivalence with their respective normal form C [SMZ99].

In general regexes are ambiguous, there can be different representations for the same
language. For instance [a-b] = a|b and a|b = [a-b]∩[a-b] are semantically equal,
but not syntactically. This issue is resolved by using the equality of regexes and finite
automata. As stated in Theorem 3.10 and Theorem 3.11 in [HMU01] an arbitrary DFA
can be converted to an equivalent unique DFA that has the minimum number of states. A
way of doing this is using Hopcroft’s algorithm. This minimization allows us to compute
a unique normal form for all possible constraints involving regex types by using the DFA
representation of types throughout the constraint solving implementation. We define a
function normalizeRgx that normalizes regex types τr as outlined in Definition 7. We
can use normalizeRgx to convert any regex type τr appearing inside constraints to their
normal form. In case normalizeRgx returns the empty regex, we emit no normal form as
we treat this as a type error.

Definition 7. The function normalizeRgx takes a regex type τr as its parameter and
normalizes it as follows, using some auxiliary functions from Definition 1:

42

3.2. Formal Definition

1. Split the regex type τr into type variables and regexes using the function collect τr =
(V,R). Note that collect eliminates all duplicate type variables α and regexes r
applying set semantics. Note that equality is determined using our regex equality
predicate =τr to ignore syntactic differences for regexes r. This step is possible due
to commutativity of intersection and the fact that a regex intersected with itself is
exactly that regex, so α ∩ α = α and likewise r ∩ r = r. Furthermore according to
our definition of collect we get ({α}, ∅) if τr is a regex type variable α and (∅, {r})
if τr is a regex r.

2. Use foldIntersect R to reduce R to a single regex r. This is again possible due to
associativity and commutativity. If R = ∅, skip this step.

3. Sort the type variables in V by name and then fold regex intersection over the sorted
set V from the left to the right to get a single regex type v. For instance for three
arbitrary type variables α1, α2, α3 we get the type α1 ∩ (α2 ∩α3). If V = ∅, skip this
step.

4. Construct the final normalized type. If both R and V are not empty sets, intersect
the folded regex type v and the folded regex r to v ∩ r. Using the example for regex
type variables α from the previous step, we get (α1 ∩ (α2 ∩ α3)) ∩ r. If R = ∅, use
the last type variable α3 appearing in the sorted V for the right hand side instead
of r to get (α1 ∩ α2) ∩ α3. If V = ∅, return r.

We can normalize a single Intersectable predicate by applying the function normalizeRgx
to its argument. We also need a way to normalize multiple Intersectable predicates, as a
constraint may involve several such predicates appended with our logical conjunction
predicate, e.g. Intersectable (α1 ∩ r1) ∧ Intersectable (α1 ∩ (α2 ∩ r2)). We do this by
combining them to a single Intersectable predicate, e.g. Intersectable (α1∩α2)∩r3) where
r3 = r1 ∩ r2. Again this is possible due to commutativity and associativity of intersection.
If the first predicate of our example is satisfiable and the second predicate is satisfiable,
we can intersect and test the predicate on the result of the intersection.

We currently have no way to apply a similar procedure to constraints with ⊆ predicates
as it is the case with Intersectable predicates, because we do not support regex union
types. Assume two predicates α1 ⊆ α2 ∧ α1 ⊆ (α3 ∩ r1). An equivalent representation
would be α1 ⊆ (α2 ∪ (α3 ∩ r1)) but we do not support a ∪ type. The main reason
for this is that the predicate ⊆ is not symmetric. Therefore we do not try to unify
multiple ⊆ predicates but instead leave them as they are and only normalize their two
parameters using normalizeRgx. In case concrete regexes r appear on both sides of the
predicate, either inside an intersection type or directly, this predicate can already be
decided while type variables may still appear. We can already decide a predicate like
(α1 ∩ r1) ⊆ (α2 ∩ r2) by checking whether r1 ∩ r2 according to the definition of ⊆ in
Definition 3. If this is not the case, any intersection of r1 and r2 cannot allow more valid
inputs than described by the two regexes r1 and r2. Thus we cannot yield a normal form
for this constraint problem as it is unsatisfiable. We can furthermore apply the Axiom

43

3. HM(RGX)

RGX6 of Definition 4 to eliminate α ⊆ .* . Using Axiom RGX7 we can eliminate α ⊆ α
without altering the semantics. In case there are multiple ⊆ predicates in a constraint
we can merge them if they represent the same regex types after normalization.

Theorem 6. Our type system HM(RGX) fulfills the lifting property as specified in
Definition 6. Therefore it can make use of a generic sound and complete type inference
algorithm as outlined in [Sul00].

Proof. The lifting condition implies that for every possible constraint there is some
unique, most general representation for it. We first show LC1 by showing that our
normalization procedure yields principal normal forms if possible. A constraint problem
(C,ψ) is a principal normal form if for all other normal forms (C ′, ψ′) of an arbitrary
constraint problem (D,φ) it holds that ψ ⊆φ′

ψ′ and C ′ `e φ′C [SMZ99]. This property
is fulfilled for our normalization procedure. We show this by structural induction on
regex types τr. As Intersectable and ⊆ are independent from each other, we show it for
each of them separately.

The base cases for Intersectable are that a regex type τr is either a concrete regex r or a
regex type variable α. If it is a concrete regex r it can be omitted as it is true according to
the definition of Intersectable in Definition 2. We do not allow r to be the empty regex in
normalization procedures as outlined in our normalization procedure. collect r = (∅, {r})
and isIntersectable {r} can then be decided as foldIntersect {r} = r will not result in
the empty regex either. If τr is a regex type variable α it cannot be reduced further as it
can be instantiated with an intersection type so the constraint has to be retained. The
induction hypothesis is that we also cannot normalize regex intersection types further.
Due to commutativity and associativity we can take a look at a whole intersection chain
at once. Take an arbitrary intersection chain α1 ∩ α2 ∩ r1 ∩ ... ∩ αn ∩ rn. There are two
cases to distinguish. The first case is an intersection between concrete regex types r. Our
normalization procedure intersects those to a single regex type r′ that cannot be reduced
further. If this intersection would yield the empty regex, our normalization procedure
does not emit a normal form thus this is not possible. The second case is that we have
an intersection between the same type variables α1 ∩ α1. This gets eliminated to yield
simply α1 according to our normalization procedure that works with sets. Now we have
a normalized intersection type where each regex type variable α appears exactly once
and regexes r got intersected already to yield a single new regex r′. We cannot normalize
this further given our term constraint language. We can neither eliminate further regex
type variables nor can we intersect regexes anymore.

Next we show that it also holds for ⊆ according its definition in Definition 3. There are
five base cases:

1. The containment of α ⊆ .* is true according to RGX6 of Definition 4.

2. The containment of a type variable in itself α ⊆ α is true according to RGX7 of
Definition 4.

44

3.2. Formal Definition

3. The containment of two concrete regexes r1 ⊆ r2 can be decided and gets normalized
to either true or no possible normal form.

4. The containment of type variables α1 ⊆ α2 can not be normalized any further as
we cannot decide this predicate without substitutions for them.

5. The containment of a regex type variable in a concrete regex α ⊆ r or r ⊆ α cannot
be normalized further using the same argument.

The induction hypothesis is that this also holds for regex intersection types. According to
the definition of ⊆ it calculates the tuple collect τr = (V,R) for each of the two parameters.
If R 6= ∅ for both parameters, we emit no normal form if the first parameter r1 is not
contained in r2. Otherwise we can only normalize the parameters using normalizeRgx.
In case the normalization of the parameters resulted in a base case, it can be eliminated
depending on the normalized result.

Thus we can conclude that LC1 is indeed fulfilled given the normalization procedure
we described in Paragraph 3.2.3. It indeed reduces arbitrary constraints involving our
predicates Intersectable and ⊆ to a principal normal form up to semantic equivalence.

Next we show LC2. As Intersectable is no equality predicate, we cannot use it to define
equations. It is possible to define an equation using ⊆ due to RGX4. An example for such
constraint C would be (α ⊆ β) ∧ (β ⊆ α) as this leads to an equation with the solution
α = β. This still fulfills the condition that if C `e α = β then `e α = β according to our
rule. As we do not support the equality predicate in the set of solved forms this case
cannot happen otherwise.

The third condition LC3 implies that for each constraint problem (D,φ) where a normal
form (C,ψ) exists, it must hold that the normal form C is equal toD when C’s substitution
ψ is applied to D. As stated in [SMZ99] equality in this context simply implies a semantic
equality in terms of a congruence relation. Therefore LC3 states that a normal form
must have the same semantics as the problem it was derived from. This implies that
the substitution ψ has a use in D, or in case D has a less general substitution φ it has
no influence on the semantics. The property is not explicitly enforced by the principal
normal form, which only requires entailment instead of semantic equivalence with regards
to an arbitrary constraint problem D. Semantic equivalence is only required for a normal
form and its substituted form C = ψC by the principal normal form. Our normalization
procedure does indeed retain the original semantics. Reordering of intersections does not
violate the semantics due to commutativity and associativity of ∩. The intersection of
concrete regexes retains the semantics as they express exactly the same inputs as in their
non-intersected form. The intersection of a type variable with itself α ∩ α yields α and
thus this does not alter the semantics. The merging of Intersection constraints retains
the semantics due to commutativity and associativity as explained in the normalization
procedure. Eliminating α ⊆ α is possible as it is trivially true and does not add any
meaning. The containment of a type variable in .* can be eliminated as this is also

45

3. HM(RGX)

trivially true. Thus we can conclude that variables appearing in a substitution φ can only
disappear when they have no influence on the semantics, otherwise they are retained.

The last property LC4 means that for each quantified constraint C in the set of solved
forms there is some substitution so that we get a projection-free constraint D in S. This
is trivially true as we can always find some concrete regexes τ for quantified variables so
that we get a constraint consisting only of concrete regex types or intersections of such.
To show this satisfiability we argue that we can always use an arbitrary regex r for all
type variables. Regex intersections then get reduced to exactly this r which then satisfies
the Intersectable predicate. r ⊆ r is trivially true according to our definition of ⊆.

We have shown that all four lifting conditions hold. Therefore we can conclude that our
type system HM(RGX) supports a sound and complete type inference algorithm. Now
we have fulfilled all proof obligations as imposed by [Sul00]. This completes the formal
definition of our type system.

3.3 Examples
We now give a small example of how our type system can be used to express configuration
specifications in Listing 1. In Listing 2 we demonstrate what kinds of errors it can detect.

1 // define two keys
2 let exampleKey1 = Key :: ".*" in
3 let exampleKey2 = Key :: ".*" in
4 // define functions for checks and links
5 let lowerOrDigit = \key. intersect key (Key :: "[a-z0-9]*") in
6 let singleDigit = \key. intersect key (Key :: "[0-9]") in
7 let fallback = \key1. \key2. link key1 key2 in
8 let defaultVal = \key1. \key2. fallback key1 key2 in
9 // express the configuration

10 fallback (singleDigit exampleKey1)
11 (defaultVal (lowerOrDigit exampleKey2) (Key :: "3"))

Listing 1: An example term in HM(RGX).
\ stands for λ, the syntax is according to HM(RGX) defined in Figure 3.1, extending
HM(X) in Figure 2.3, link and intersect are primitive functions in HM(RGX). The only
minor difference is that we’ve enclosed regexes with quotes to distinguish them properly.
We assume that let expressions are inside parentheses from the left to the right for
readability, i.e., let x1 = e1 in (let x2 = e2 in (let x3 = e3 in (..)))

Assume two arbitrary keys exampleKey1 and exampleKey2, two checks lowerOrDigit and
singleDigit, and a link fallback. lowerOrDigit checks whether a key consists of digits
and lowercase letters in an arbitrary order, expressed by [a-z0-9]* . The expression
singleDigit checks whether its a digit, thus resembles the regex [0-9] . The link fallback
checks whether the regex of another key key1 a key key2 can be linked to has to be
contained in the regex describing key1. Then the first key exampleKey1 is restricted with

46

3.3. Examples

singleDigit, the second key exampleKey2 is restricted with lowerOrDigit and uses the link
fallback to exampleKey1. In our type system this can be expressed as follows. Note that
there are no explicit type specifications necessary apart from the trivial specifications
expressing the regex of keys. A key in Elektra resembles the regex .* initially if no
further specifications are applied, but our type system does not necessarily enforce this
so we could also express keys that are already initially restricted somehow. This is useful
for expressing default values as we can consider default values as virtual keys that already
have a more specific regex describing them, and then use defaultVal, an alias for fallback
to use the default value if it is compatible with the applied checks.

The term specified in Listing 1 passes the type checking successfully. The types for exam-
pleKey2 and exampleKey2 are explicitly specified and do not need further explanation.
The expression lowerOrDigit yields the polytype ∀α1.Intersectable (α1∩[a-z0-9]*)⇒
α1 → (α1 ∩ [a-z0-9]*). This follows immediately from the definition of the primitive
function intersect along with the lambda abstraction providing α1. The type for sin-
gleDigit gets inferred analogously to ∀α2.Intersectable (α2∩[0−9])⇒ α2 → (α2∩[0-9]).
The type for fallback is ∀α3∀α4.α3 ⊆ α4 ⇒ α3 → α4 → α4 following from our def-
inition of the primitive function link in the initial type environment. The type for
defaultVal is the same, as it is an alias for fallback. The term then gets the type
[a-z0-9]* . The application of lowerOrDigit to exampleKey2 is possible as the con-
straint Intersectable (.* ∩ [a-z0-9]*) is satisfied and the result of the intersection
is [a-z0-9]* . The application of defaultVal (Key :: 3) on that term works, as the
constraint arising from defaultVal would be 3 ⊆ [a-z0-9]* which is true. Analogously
the application of singleDigit to exampleKey1 results in [0-9] . Last, fallback gets
applied to those two applications. Its constraint [0-9] ⊆ [a-z0-9]* is satisfied, thus
this function returns the final type [a-z0-9]* .

1 // define three keys
2 let exampleKey1 = Key :: ".*" in
3 let exampleKey2 = Key :: ".*" in
4 let exampleKey4 = Key :: ".*" in
5 // define functions for checks and links
6 let regex = \key1. \key2. intersect key1 key2 in
7 let singleDigit = \key. regex key (Key :: "[0-9]") in
8 let fallback = \key1. \key2. link key1 key2 in
9 // apply a regex check on exampleKey2

10 let exampleKey2' = regex exampleKey2 (Key :: "[a-z]") in
11 // apply a singleDigit check on exampleKey2'
12 let exampleKey2'' = singleDigit exampleKey2' in
13 // express the remaining configuration
14 fallback (regex exampleKey3 (Key :: "[a-z0-9]"))
15 (singleDigit exampleKey1)

Listing 2: An erroneous example term in HM(RGX), the remarks regarding the syntax
in Listing 1 apply as well

Next, we look at two different kinds of errors that our type system detects in Listing

47

3. HM(RGX)

2. We use three keys exampleKey1, exampleKey2 and exampleKey3 with two checks
singleDigit from the previous example, and regex that serves for arbitrary regex checks.
This time we express singleDigit not directly but by parameterizing regex accordingly.
We also use the previous link fallback. We then apply two different checks on a single key
that are not compatible with each other as there is no input that would be accepted. We
use fallback to link a key that accepts single digits to another key that accepts single
characters, thus they are not compatible with each other either.

The term in Listing 2 contains two different kinds of errors. The first issue arises
when type checking exampleKey2”. The inferred type of exampleKey2’ is [a-z] .
Then exampleKey2” fails because the constraint in the type signature of singleDigit is
∀α2.Intersectable (α2∩[0-9]), but the type of exampleKey2’ is [a-z] . The constraint
Intersectable ([a-z]∩ [0-9]) is unsatisfied according to our definition of the predicate.

Similarly, when applying fallback on exampleKey3 this would result in the constraint
[a-z0-9] ⊆ [a-z] . It is unsatisfied because the key it falls back to may contain digits,
but the key exampleKey1 does only accept characters. Closing this chapter we have now
shown two examples demonstrating how our type system works. We also demonstrated
how type inference works. We presented two erroneous situations HM(RGX) can detect
and prevent.

48

CHAPTER 4
Implementation

In this chapter we explain our general approach of how we implement the specification
defined in Chapter 3. Following the KISS principle we separate our implementation into
two parts, both being orchestrated by a plugin for Elektra. We also include an additional
plugin that calculates regex representations for a subset of supported metakeys. The
general implementation approach is visible in Figure 4.1 and consists of the following
parts:

1. specelektra 1, a library containing the implementation of our type system specifica-
tion from Chapter 3 as a typechecker plugin for GHC

2. spectranslator 2, a library that reads specifications from the KDB and translates
them to specelektra

3. typechecker 3, a plugin for Elektra that orchestrates the whole process and interprets
specelektra files generated by the spectranslator using the GHC API and provides
feedback about type checking errors and inferred types

4. regexdispatcher 4, a plugin for Elektra that generates regular expressions for a
subset of supported metakeys that cannot be expressed directly, for instance the
regex for a range check varies depending on the allowed range

In Figure 4.2 we see an architectural overview of our implementation. Opposed to the
general implementation approach it shows which libraries and programming languages
are used in the implementation. We use Haskell bindings for libelektra in order to work

1https://master.libelektra.org/src/libs/typesystem/specelektra
2https://master.libelektra.org/src/libs/typesystem/spectranslator
3https://master.libelektra.org/src/plugins/typechecker
4https://master.libelektra.org/src/plugins/regexdispatcher

49

https://master.libelektra.org/src/libs/typesystem/specelektra
https://master.libelektra.org/src/libs/typesystem/spectranslator
https://master.libelektra.org/src/plugins/typechecker
https://master.libelektra.org/src/plugins/regexdispatcher

4. Implementation

��
KDB

→SP

TC

SESE

ST

SP

Figure 4.1: A T-Diagram of our Implementation Approach
SP = A Specification in the Elektra KDB in the /spec namespace
ST = spectranslator, translates the specification to specelektra
SE = specelektra, our type system implementation
TC = typechecker, type checks a configuration specification using
specelektra

libeaselibplugin libelektra
libplugin-
process*

libfa

libfa*libelektra-haskell*

specelektra*

spectranslator*typechecker*

regexdispatcher*

haskell*

Elektra C Libraries

Haskell LibrariesElektra Plugins

Haskell Bindings

binds depends Inherits

Augeas C Library

Figure 4.2: An architectural overview of the implementation approach. Components that
are implemented in this thesis are marked with an asterisk.

50

4.1. Specelektra

with the library. Our bindings also wrap other libraries provided by the Elektra project,
namely libease, libinvoke and libplugin. Haskell is already a very high level language,
so we concluded creating separate bindings for the different libraries of Elektra yields
little benefit. We assume that on platforms where we can effectively use Haskell, we also
have all Elektra libraries available. Additionally we create bindings for fa, a C library
for working with finite automata. The Haskell libraries specelektra and spectranslator
make use of the two bindings in order to realize their functionality. We create the C
library pluginprocess to execute Haskell plugins in a separate process. Furthermore we
use a generic foundation to realize Haskell plugins, a template plugin called haskell. The
Elektra plugins typechecker and regexdispatcher, both implemented in Haskell, make use
of these building blocks to wrap everything together.

Users of Elektra write configuration specifications in an own namespace in Elektra’s
KDB, the spec namespace. We use spectranslator for mapping the keys of configuration
specifications into our type system HM(RGX). We describe how keys and metakeys are
translated to specelektra in Section 4.2. HM(RGX) is implemented in specelektra as a
small custom EDSL along with a typechecker plugin for GHC 5 describing the semantics
of our domain-specific type system as introduced in Chapter 3. Other information is
ignored. spectranslator outputs a Haskell file using our term language that describe
the specifications in the spec namespace. We also develop a plugin for Elektra that
is called typechecker. This plugin is intended to be mounted along a configuration
specification. It then generates a specelektra representation using spectranslator out of
the mounted configuration specification, and interpretes it using the GHC API, presenting
the results to users of Elektra. We also include a second Elektra plugin that generates
regular expressions for dynamic metakeys that depend on some arguments, such as the
check/range metakey.

As we implement our type system as an EDSL embedded in Haskell, the resulting
implementation is more powerful than the type system defined in our specification. In
fact we could make full use of Haskell’s current type system for any experiments. We
state that everything that can be typed in our specification can also be typed in our
EDSL. We do not explicitly proof this statement in this work because the implementation
is only a proof of concept.

4.1 Specelektra
Specelektra is the implementation of our type system specification from Chapter 3. We
develop it as an EDSL (Embedded Domain Specific Language) in Haskell. We follow the
approach suggested by [Gre31] of embedding our type system into an exiting one that is
powerful enough to allow us to express our own needs, discussed at the end of Section 2.2.3.
Therefore Haskell takes care of the whole type checking and type inference procedure
guided by our custom typechecker plugin for the GHC to express the domain-specific
semantics of HM(RGX). To work with regexes and finite automata we created Haskell

5https://www.haskell.org/ghc/

51

https://www.haskell.org/ghc/

4. Implementation

bindings 6 for the C library libfa 7. At the time of writing there was no suitable native
Haskell library that supported all the functionality we needed.

4.1.1 Haskell Extensions

Haskell is a functional programming language with its roots going back to 1987 [HHPJW07].
Since then there were several revisions of the language that mark the current process
of development, called the Haskell Report. A notable milestone was Haskell98, which is
still a relatively simple language based on a Hindley-Milner style type system. It has a
few additions such as ad-hoc polymorphism using type classes. The main force behind
Haskell’s further development is the compiler GHC. GHC has evolved ever since and
lately adds many extensions to the core language defined by the Haskell Report. Most
importantly, it introduced features of System Fω, such as type operators in the form of
type families or the possibility to define custom kinds [WHE13]. Therefore we need to
use some of those extensions to model our own type system using Haskell. We follow up
with a short description of each necessary extension, taken from the Haskell User Manual
[GHC15]. The minimum GHC version required to provide all the necessary Extensions
is 8.0.1. This is also the current version of Haskell provided by the latest supported
version of Debian, called Debian Stretch, a popular stable linux distribution with a rather
conservative update policy 8.

TypeFamilies The extension TypeFamilies is one of the most important extensions for
our implementation. It extends Haskell with both open- and closed type-level functions
and equality constraints for the type checking [SPJCS08]. The difference is that open
type families only define a type signature, which can then be implemented by various
implementations, loosely resembling Haskell’s type class mechanism. Closed type families
are defined with all members in advance and thus the application of such function will pick
the first matching candidate from top to bottom [EVPJW14]. According to [EVPJW14]
this allows them to be non-injective, which is useful for instance to define equalities
between types at compile time by allowing overlapping expressions. We use closed type
families where their semantics are defined by our typechecker plugin.

DataKinds DataKinds adds kind polymorphism to Haskell, therefore we can use type
variables referring to different kinds for type-level functions. This effectively makes types
and kinds equal in Haskell’s type system. Ultimately it allows the language to support
type inference on a kind-level [WHE13]. It promotes algebraic data types to own kinds
[YWC+12]. This is required so we can lift the strings describing regexes onto the type
level in Haskell and work with them in type families.

6https://master.libelektra.org/src/libs/typesystem/libfa
7http://augeas.net/libfa/
8https://packages.debian.org/stretch/ghc

52

https://master.libelektra.org/src/libs/typesystem/libfa
http://augeas.net/libfa/
https://packages.debian.org/stretch/ghc

4.1. Specelektra

ConstraintKinds This extensions adds a new kind called Constraint. It allows us to
add type-level functions on custom types to be used in constraints for type signatures.
This gives us an easy way to express constraints on the input arguments as specified in
Section 3.2.1. [GHC15]

4.1.2 GHC Typechecker Plugins

Type checking in Haskell is realized as a constraint-generation and constraint-solving
problem. There are several kinds of constraints, the most important being equality
constraints that originate from typing rules. For instance, for a function application fx
the compiler has to check whether the function type of f corresponds to the domain of
the argument x. However, GHC only implements the constraint solving for type equality
constraints up to type families, and type classes. To allow domain-specific constraint
solving, the solver needs to be user-extensible. Support for compiler plugins has been
added to GHC in version 7.2.1 to allow custom optimizations of GHC’s underlying
language System FC . This way the compiler can be extended without having to be too
familiar with its internal structure. [Gun15]

Basic Procedure An important building block for our regex-based types are so called
type-level strings that have the kind Symbol. They are used to carry regular expressions
describing the contents of a key. Our closed type families RegexContains, representing ⊆
of our specification in Section 3.2.1, Intersectable and RegexIntersection, representing
∩ are then used to be processed by our typechecker plugin. This plugin deals with
constraint solving and type inference for regex types.

A typechecker plugin gets called by GHC when the compiler’s own constraint solver
has finished and is left with some constraints that it was not able to solve, so called
wanted constraints. The plugin can then either solve them directly, simplify them further
(possibly generating more constraints), or reject some constraints as unsolvable. In case
a constraint has been simplified or further constraints have been generated, GHC tries to
use its main constraint solver again to resolve them. Then the plugin may be called again
if there is still something left, and so on. There is a configurable limit on the number of
times this procedure runs to avoid the computation getting into an endless loop.

The type definition of the constraint solving function that has to be implemented in a
plugin is:

solveRegex :: RgxData
-> [Ct] -> [Ct] -> [Ct]
-> TcPluginM TcPluginResult

solveRegex customData given derived wanted = ...

• RgxData is an arbitrary data structure that gets initialized before the plugin begins
its execution and can be used to initialize additional external dependencies

53

4. Implementation

• Ct is the compiler’s representation of constraints, according to [Gun15]:

– given constraints are facts that the compiler has already inferred out of the
context

– derived constraints may arise from so called functional dependencies, but as
we do not use this feature we will not describe them here

– wanted constraints are those that the compiler’s built-in solver was not able
to handle. It is up to the plugin to treat them

• TcPluginM is a monad that abstracts internal functionality such as arbitrary IO,
debug messages or the creation of type variables

• TcPluginResult is a type formed by two data constructors:

– TcPluginOk takes a list of solved constraints along with their evidence, and a
list of new constraints that have been generated

– TcPluginContradiction includes a list of impossible constraints, resulting in a
type checking failure

Though the TcPluginM monad allows for arbitrary IO, it is important that a typechecker
plugin is pure in the sense that it creates the same output for the same inputs. It shall
contain correct evidence to keep the type system sound. [Gun15]

Soundness Evidence As [Gun15] states it is very easy that plugins can claim that an
arbitrary constraint is true without any proof by simply returning TcPluginOk. Therefore
GHC uses a different approach for typechecking, by lifting the constraints into SystemFC ,
its minimal core calculus. While this still cannot detect every possible compiler bug it
helps detecting faulty behavior.

This is also the reason why TcPluginOk does not only deliver the solved constraints but
also evidence for each of them. However it is not possible to proof every possible type
checking plugin. Thus there exists a special evidence that simply causes the evidence
to be true, regardless of any actual implementation. [Gun15] claims that this is a valid
approach if a plugin builds upon axioms that have already been proven elsewhere. As we
have already proven the soundness of our language in Sections 3.2.2 and 3.2.3 we are
going to make use of this.

4.1.3 EDSL

The definition of the EDSL representing the term language of HM(RGX) is shown in
Listing 3. First we define a new algebraic data type Key with a no-argument constructor
as we only use this data type for explicit type definitions for regexes. It takes a type-level
string containing its regex as a type parameter. We define the two constraints ⊆ and
Intersectable as closed type-level families. We haven chosen to use closed type families

54

4.1. Specelektra

1 {-# LANGUAGE DataKinds, TypeFamilies, ConstraintKinds #-}
2
3 module Elektra.RegexType (RegexContains, RegexIntersection, Intersectable,

Key (..), Regex, intersect, link) where↪→
4
5 import GHC.TypeLits
6 import GHC.Exts (Constraint)
7
8 -- Is the regex a contained in regex b?
9 type family RegexContains (a :: Symbol) (b :: Symbol) :: Constraint

10 where
11 -- trivial cases
12 RegexContains a (".*") = a ~ a
13 RegexContains a a = a ~ a
14 -- otherwise interpreted by the typechecker plugin
15
16 link :: RegexContains b a => Key b -> Key a -> Key a
17 link = undefined
18
19 -- Is the given regex non empty?
20 type family Intersectable (a :: Symbol) :: Constraint
21 where -- interpreted by the typechecker plugin
22
23 intersect :: Intersectable (RegexIntersection a b) => Key a -> Key b -> Key

(RegexIntersection a b)↪→
24 intersect = undefined
25
26 -- Calculate the regex that represents the intersection of regexes a and b
27 type family RegexIntersection (a :: Symbol) (b :: Symbol) :: Symbol
28 where
29 -- trivial cases
30 RegexIntersection a a = a
31 RegexIntersection a (".*") = a
32 RegexIntersection (".*") b = b
33 -- otherwise interpreted by the typechecker plugin
34
35 -- A key
36 data Key (a :: Symbol) = Key deriving Show
37 type Regex = Key

Listing 3: The definition of HM(RGX)’s term language as an EDSL for our proposed
type system in Haskell. Trivial cases of our predicates are expressed directly in the EDSL,
the remaining semantics are implemented in the GHC typechecker plugin.

55

4. Implementation

because like this we can guarantee that there is no way to alter the behavior of our
type families by adding additional instances. Their semantics are solely expressed by
our typechecker plugin and their definition. We specify trivial cases we can decide right
away directly in the definition of the type families. We use the trivially true constraint
a~a to express that those cases can be decided as true right away. As mentioned in
Section 4.1.2 we rely on type-level strings to carry our regexes in Haskell. We represent
regex intersection as a closed type family from two type-level strings to their intersected
representation. The semantics of regex intersection are also realized by the typechecker
plugin. We provide type definitions for the two primitive functions link and intersect as
defined in the initial type environment of HM(RGX). The EDSL in Listing 3 along with
the implementation of the typechecker plugin cannot be changed without invalidating
our proof for HM(RGX).

4.1.4 GHC Typechecker Plugin

Our GHC typechecker plugin gets invoked by GHC during typechecking. GHC first
tries to solve or simplify constraints as much as possible. It makes use of the trivial
simplifications defined in the type family definitions of our EDSL as shown in Listing 3.
Whenever there are unsolved constraints left after a run of the typechecker, it calls our
GHC typechecker plugin. The plugin then solves or simplifies the constraints further.
Since our two primitive functions intersect and link make use of those constraints in
their type signature, they have to be solved for any custom functions involving those two
primitive functions during typechecking.

1 {-# LANGUAGE DataKinds #-}
2 import Elektra.RegexType
3
4 exampleKey1 = Key :: Key ".*"
5 exampleKey2 = Key :: Key ".*"
6 lowerOrDigit key = intersect key (Key :: Key "[a-z0-9]+")
7 singleDigit key = intersect key (Key :: Key "[0-9]")
8 fallback key1 key2 = link key1 key2
9 defaultValue key1 key2 = fallback key1 key2

10
11 spec = fallback (singleDigit exampleKey1) (defaultValue (Key :: Key "3")

(lowerOrDigit exampleKey2))↪→

Listing 4: The first example from Section 3.3, shown in Listing 1, formalized in our EDSL

In Listing 4 we have expressed the example shown in Listing 1 in our EDSL. We show
how constraints are resolved by GHC when using the GHC typechecker plugin. The
first notable difference compared to our term language is that we make use of top-level
bindings offered by Haskell instead of declaring everything inside let expressions. We
need the DataKinds language extension again because it is required to use type-level
strings.

56

4.1. Specelektra

The first time our typechecker plugin is invoked with the following wanted constraints for
our target expression. This means that GHC is unable to solve these constraints itself:

RegexContains "[0-9]" "[a-z0-9]+" (CNonCanonical)
Intersectable "[0-9]" (CNonCanonical)
RegexContains "3" "[a-z0-9]+" (CNonCanonical)
Intersectable "[a-z0-9]+" (CNonCanonical)

We then normalize the constraints as elaborated in our normalization procedure in Section
3.2.3. In this case GHC has already applied the intersections as far as it is possible,
eliminating the intersections with .*. We end up with constraints that we can solve right
away without further normalization, as all type variables have already been substituted
with concrete regexes. In the next run, the type checker can successfully solve all three
normalized constraints. Thus it concludes that this is a valid configuration specification.
In case there are still type variables involved after normalization the typechecker cannot
decide the constraint and will leave it unsolved. The constraint then gets added to the
concerned expression’s type signature as an unsolved constraint. This is used for typing
functions involving regex types.

1 {-# LANGUAGE TypeInType #-}
2 import Elektra.RegexType
3
4 exampleKey1 = Key :: Key ".*"
5 exampleKey2 = Key :: Key ".*"
6 exampleKey3 = Key :: Key ".*"
7 regex key1 key2 = intersect key1 key2
8 singleDigit key = regex key (Key :: Key "[0-9]")
9 fallback key1 key2 = link key1 key2

10 exampleKey2' = regex exampleKey2 (Key :: Key "[a-z]")
11 exampleKey2'' = singleDigit exampleKey2'
12 spec = fallback (regex exampleKey3 (Key :: Key "[a-z0-9]")) (singleDigit

exampleKey1)↪→

Listing 5: The second example from Section 3.3, shown in Listing 2, formalized in our
EDSL

We take a look at the second example from Section 3.3 to demonstrate how our imple-
mentation handles invalid configuration specifications, shown in Listing 5. As elaborated
there are 2 errors in that configuration specification. The error messages show which
constraints cannot be solved. The constraints appearing in error messages use the type
family definitions from Listing 3. The first error message is:

Could not deduce: Intersectable
(RegexIntersection "[a-z]" "[0-9]")
arising from a use of ‘singleDigit’
In the expression: singleDigit exampleKey2'

57

4. Implementation

It means that it is not possible to add the singleDigit check to the key exampleKey2’.
The regexes are not intersectable. A key cannot be a character and a digit at the same
time. The error messages are Haskell-focused and not postprocessed, thus they refer to
keywords of our EDSL. The expression that is stated in the error message refers to the
example shown in Listing 4. In general expressions appearing in error messages refer to a
configuration specification written in our EDSL.

The second error message means that the fallback from exampleKey1 to exampleKey3
is not possible. Their regexes are not compatible with each other. exampleKey1 only
allows for single digits, while exampleKey3 may also be a character.

Could not deduce: RegexContains "[a-z0-9]" [0-9]"
arising from a use of ‘fallback’
In the expression: fallback (regex exampleKey3

(Key :: Key "[a-z0-9]")) (singleDigit exampleKey1)

4.2 Spectranslator

Spectranslator is a Haskell library that is used to read configuration specifications from
the KDB, transform them into an intermediate representation and then translating them
into our EDSL.

4.2.1 Libelektra Haskell Bindings and Plugins

To read configuration specifications from the KDB using Haskell we first had to imple-
ment bindings for Elektra. The core libraries of Elektra are implemented using the C
programming language. Haskell bindings for C libraries are implemented using Haskell’s
Foreign Function Interface (FFI). However, the FFI is quite verbose to use as developers
have to take care of the marshaling between Haskell’s and C’s data types manually in
bindings.

c2hs acts as a preprocessor for such bindings and allows developers to define them using
Hooks. It then generates bindings that are using the FFI, but one does not have to take
care of marshaling data types anymore. Hooks are used to specify type signatures and
marshaling procedures for bindings that are then generated by c2hs. The tool analyzes
the C header files and then replaces Hooks with plain FFI code in the resulting file. C2hs
automatically takes care of the marshaling between the most common data types of the
two languages so this does not have to be done manually. The bindings are not specific
to spectranslator and can be used to develop arbitrary Haskell plugins and applications
accessing Elektra. [Cha00]

Our Haskell binding is low-level, thus its usage is very close to the wrapped C library. Side
effects of the underlying C library that works using mutable pointers are encapsulated in
Haskell’s IO-Monad. The binding does not make use of any advanced Haskell features.

58

4.2. Spectranslator

Haskell offers many functions to work with monads in general, easing development with
the binding nevertheless.

4.2.2 Parsing

The first functionality that spectranslator offers is reading and parsing a configuration
specification into an intermediate representation. This intermediate representation con-
tains all relevant information for the translation process. We distinguish between two
different kinds of keys in a configuration specification. The first kind, called KeySpecifi-
cation represents ordinary keys of configuration specifications. This is where check, link
or transformation metakeys are specified.

The library reads all keys of a configuration specification, except those residing in a
specific part of a configuration specification prefixed with /elektra/spec. The keys in
such parts are called FunctionSpecification. They contain meta-information about how
different metakeys have to be translated into the EDSL and what effect they have
in terms of the type system. This part is relative to the configuration specification’s
mountpoint. For instance, if a configuration specification gets mounted to spec/example,
then the library interprets keys in spec/example/elektra/spec as FunctionSpecification
keys. In case the typechecker is mounted as a global plugin, it interprets keys in
spec/elektra/spec as FunctionSpecification keys. This library does not necessarily require
configuration specifications to be mounted in the spec namespace, it simply works relative
to a mountpoint. However configuration specifications should be mounted in the spec
namespace in general so libelektra applies them as expected.

The following metakeys guide the parsing- and translation process:

spec/type specifies the type signature of a specification metakey. The syntax of type
signatures is inspired from Haskell’s type signatures. The first part specifies
constraints on parameters, and the second part describes parameters and the
resulting type, separated by ⇒. Parameters are separated using →.
To show this, we express the type signatures for the metakeys fallback/# and
check/validation without the primitive functions link and intersect. The type
signature for fallback/# is RegexContains key2 :: . key1⇒ Key key1→ Key key2→
Key key1. It denotes that this specification metakey resembles a function taking
two keys as its parameters. The first key refers to another key, as specified by the
separator :: . . The value after :: is the metakey on a KeySpecification that contains
the path of the other key. In case it is . , it refers to the current specification
metakey, i.e., the value of the metakey fallback/# that contains a path to a key.
The second parameter key2 has no path separator. This means it implicitly refers
to the regex of the Key that is passed. It results in a Key described by the regex
key1, if the constraints hold.
The metakey check/validation has the type signature Intersectable (RegexIntersection
key rgx) ⇒ Key key → Regex rgx → Key (RegexIntersection key rgx). It denotes a

59

4. Implementation

function taking a key and a regex as its parameters, and resulting in the intersection
of the regex describing the key with the given regex, in case they can be intersected
without resulting in the empty regex.

Using these basic building blocks more complicated type signatures for specification
metakeys can be built by users if required. However most of the time specification
metakeys can be described using the primitive functions link and intersect. In that
case it is not necessary to explicitly specify a type signature, as it gets inferred
from the context.

spec/impl specifies the implementation of a specification metakey. The implementa-
tion can be described either by using the primitive functions intersect and link,
directly returning one of the parameters, or by specifying undefined. The syntax
of implementations is that first the parameters have to be specified. Parameter
names need to be valid Haskell identifiers. Note that no name for a function
has to be specified, it gets inferred by spectranslator by pruning the specification
metakey’s name to a valid Haskell identifier. The implementation then can make
use of the primitive functions link and intersect if the effect of the specification
metakey can be described by them. In that case it is not necessary to explicitly
specify a type signature using /spec/impl. One can specify undefined, but then
an explicit type signature has to be given. As an example, the metakey fall-
back/# has the implementation fallback key = link fallback key. The
metakey check/validation has the implementation regex key = intersect
key regex. A metakey where the regex is known can be expressed directly, for
instance, check/singleDigit would have the implementation key = intersect
key (Key :: Regex "[0-9]").

spec/order is used to specify the order in which metakeys are applied. It is supposed
to be a number. Higher numbers get applied after lower numbers. By default links
have the order 1000, checks have the order 500 and transformations have the order
0. The only restriction is that it fits into a 32-bit integer datatype. In case several
keys share the same order, they are sorted by name.

spec/rename is used to rename the functions representing configuration metakeys.
Usually their name is simply transformed by removing slashes from their key name.
This could interfere with keywords that are reserved in Haskell like default. Hence
they can be renamed to something else. For instance, the specification metakey
default would have its translation process described by the key /elektra/spec/default.
To resolve the reserved keyword issue, we can use the spec/rename metakey on the
key /elektra/spec/default to rename the resulting function to something else.

4.2.3 Translation

The second functionality provided by the spectranslator library is the translation of the
intermediate representation into Haskell source code that uses our EDSL described in

60

4.2. Spectranslator

Section 4.1.3. For this purpose it utilizes the library haskell-src-exts, containing the
official representation of Haskell’s AST. During the translation it first generates functions
that represent metakeys. It then generates a variable for each key of a configuration
specification labeled with the keyname. These variables are the application of the
functions representing metakeys in the given order on the unrestricted key, represented
via the regex .*. The generated Haskell source code can then be type checked by GHC.
In case any constraints of the functions are unsatisfiable during type checking, it gets
reported as a type checking problem as seen in the second example in Section 4.1.4.

4.2.4 Example

To demonstrate the parsing- and translation process we show a configuration specification
that is semantically equivalent to the example given in Listing 4. The configuration
specification shown in Listing 6 is written in the INI format and gets translated by
spectranslator to Haskell source code using our EDSL.

1 #@META spec/order = 1000
2 #@META spec/impl = fallbackKey key = link fallbackKey key
3 [/elektra/spec/fallback/#]
4
5 #@META spec/order = 1000
6 #@META spec/impl = overrideKey key = link overrideKey key
7 [/elektra/spec/override/#]
8
9 #@META spec/order = 1000

10 #@META spec/rename = defaultvalue
11 #@META spec/impl = value key = link value key
12 [/elektra/spec/default]
13
14 #@META spec/order = 500
15 #@META spec/impl = key = intersect key (Key :: Regex "[a-z0-9]+")
16 [/elektra/spec/check/lowerordigit]
17
18 #@META spec/order = 500
19 #@META spec/impl = key = intersect key (Key :: Regex "[0-9]")
20 [/elektra/spec/check/singledigit]
21
22 #@META check/singledigit =
23 [/examplekey1]
24
25 #@META default = 3
26 #@META check/lowerordigit =
27 #@META fallback/#1 = /examplekey1
28 [/examplekey2]

Listing 6: A semantical equivalent of the configuration specification shown in Listing 4.

Note that the type specifications are usually not contained in a configuration specification.

61

4. Implementation

Instead they are loaded from a separate file called prelude.ini 9 containing default type
definitions for commonly used metakeys. This gets translated to the Haskell source code
shown in Listing 7 that uses our EDSL. The generated code has already been described
in Section 4.1.4 and it is easy to see the semantic equivalence. The main difference is
that we have assigned the two described keys to their own variable.

1 {-# LANGUAGE DataKinds, NoImplicitPrelude #-}
2 module TestSpecification where
3 import Elektra.RegexType
4 import GHC.TypeLits
5 checklowerordigit key = intersect key (Key :: Regex "[a-z0-9]+")
6 checksingledigit key = intersect key (Key :: Regex "[0-9]")
7 defaultvalue value key = link value key
8 fallback fallbackKey key = link fallbackKey key
9 override overrideKey key = link overrideKey key

10 examplekey1 = checksingledigit (Key :: Regex ".*")
11 examplekey2 = defaultvalue (Key :: Regex "3") (fallback examplekey1

(checklowerordigit (Key :: Regex ".*")))↪→

Listing 7: The configuration specification in Listing 6 after being translated to Haskell
source code by spectranslator

4.3 Elektra Typechecker Plugin

Typechecker is a plugin for Elektra orchestrating the type checking of a configuration
specification by combining the libraries specelektra and spectranslator with the GHC
API that provides typechecking. It is intended to be mounted (see Section 2.1.1 for more
details about mounting plugins) along with a configuration specification. It also supports
loading a file that contains default definitions of translation metakeys for commonly used
metakeys for spectranslator as outlined in Section 4.2, referred to as prelude. The plugin
makes use of our Haskell libraries specelektra and spectranslator for the translation. It
uses the GHC API to type check configuration specifications. It is written in Haskell
itself as it is easier to use Haskell libraries and work with the GHC API from there.

4.3.1 Libelektra Haskell Plugins

Using the bindings we can use Elektra in Haskell applications and libraries. But we
also need to be able to develop plugins for Elektra using Haskell, which is a different
concern. As explained in Section 2.1.2, an Elektra plugin is usually written in C using a
specific interface. This interface consists of functions to start and stop a plugin, and to
handle key operations. We have written a plugin for Elektra called haskell that acts as a
blueprint for developing Elektra Plugins in Haskell. The plugin haskell contains both C
code and a Haskell library. The C code implements the plugin interface as usual and acts

9https://master.libelektra.org/src/plugins/typechecker/typechecker/prelude.
ini

62

https://master.libelektra.org/src/plugins/typechecker/typechecker/prelude.ini
https://master.libelektra.org/src/plugins/typechecker/typechecker/prelude.ini

4.3. Elektra Typechecker Plugin

as a bridge between Elektra and Haskell. It first initializes the Haskell runtime, then
forwards calls from Elektra to Haskell and last stops the Haskell runtime again. The
Haskell library of a plugin has to export the same functions as specified by Elektra’s
plugin interface using the FFI. Inside the Haskell library we use our binding described in
Section 4.2.1 to work with Elektra’s Keys and KeySets. The C code of the haskell plugin
then calls these exported methods after the runtime has been started, closing the gap
between Elektra and Haskell.

We also provide macros 10 for cmake 11, the build system of Elektra. These macros can
be used to create actual plugins in Haskell without having to implement the bridge in C
again. A plugin developer does not need to take care of the tedious compilation- and
linking procedure of Elektra and Haskell. The macros use the implementation of the
C bridge of the blueprint plugin haskell 12 and links the new plugin’s Haskell library
instead of the one provided by the haskell plugin.

During the implementation of Haskell plugins the issue arose that once the Haskell
runtime has been started and stopped in a single process, it cannot be started again.
This interferes with Elektra’s way of how plugins are handled. A single process using
Elektra may start and stop plugins several times throughout its lifetime. Therefore
we had to develop another C library for Elektra that is called pluginprocess 13. This
library is intended to be used when developing plugins. It provides functions to fork
Elektra processes, launch parts of a plugin inside the child process and it provides a
simple communication protocol based on KeySets serialized via Elektra itself over pipes
for bidirectional communication between forked processes. It is then used for the C
bridge in the haskell plugin. We use it to start and stop the Haskell runtime in the child
process instead of the parent process. As a child process is closed again after a plugin
gets stopped, the next time the main process starts a plugin using this library, it will
be executed in a new child process. This solves the restart fallacy. The pluginprocess
library is generic and not specific to Haskell plugins. For instance, it is used for Elektra’s
python plugin. The python plugin is used to execute scripts written in the programming
language Python that are accessing the KDB using Elektra’s bindings for Python. The
runtime of Python also can only be initialized once, so pluginprocess helps here as well.

Now we have a way to implement the typechecker Elektra plugin directly in Haskell. We
have decided to use this implementation approach because it is much easier to work with
the spectranslator and specelektra libraries directly in Haskell than to access them from
a C plugin. We make use of GHC to type check configuration specifications translated to
our EDSL via spectranslator, guided by our typechecker plugin specelektra. There are
already libraries that make it easy to work with GHC inside Haskell. We have created a
foundation that developers can use to create further Haskell plugins for Elektra.

10https://master.libelektra.org/cmake/Modules/LibAddHaskellPlugin.cmake
11https://cmake.org/
12https://master.libelektra.org/src/plugins/haskell
13https://master.libelektra.org/src/libs/pluginprocess

63

https://master.libelektra.org/cmake/Modules/LibAddHaskellPlugin.cmake
https://cmake.org/
https://master.libelektra.org/src/plugins/haskell
https://master.libelektra.org/src/libs/pluginprocess

4. Implementation

4.3.2 Type Checking

The typechecker plugin gets mounted along with a configuration specification into the
KDB. Elektra then calls the plugin whenever the KDB accesses the mounted configuration
specification. An overview of the type checking process is shown in Figure 4.3.

KDB

typechecker spectranslator

specelektra

GHC API
using hint

Intermediate
Representation

EDSL Haskell
Source File

prelude.ini

spectranslator

1: Load function definitions from prelude.ini and add them to the configuration
specification under /elektra/spec

2: Translate the combined configuration
specification to the intermediate representation

3: Translate the intermediate representation into
Haskell source code using our EDSL specelektra

uses

uses

4: Call the GHC API using hint to type check the generated Haskell
source file representing the configuration specification

store in temporary
file in /tmp

translates

type check

Figure 4.3: An overview of the type checking process

The first step is loading the default definitions from the file prelude.ini. The typechecker
plugin adds these definitions to the mounted configuration specification. In the second
step it uses the spectranslator library to translate the combined configuration specification
into an intermediate representation that is easier to process in Haskell. In the third step
it uses the spectranslator library to generate a Haskell file containing a representation of
the given configruation specification in our Haskell EDSL, described in Section 4.1.3. To

64

4.4. Regexdispatcher

generate a Haskell file we use the library haskell-src-exts 14. It is the official representation
of Haskell’s abstract syntax tree (AST) and also supports generating a Haskell source
code out of the AST. The generated source code gets stored in a temporary file. The
fourth step is using the library hint 15, a wrapper for the GHC API that makes it easy
to use, to type check the generated Haskell source file. In fact hint works in a similar
way to Haskell’s interpreter GHCi. We instruct hint to load our GHC typechecker plugin
contained in the specelektra library.

In case the type checking succeeds, our typechecker plugin returns successfully and
Elektra can continue with the remaining plugins of a given backend or store/retrieve
the result. If the type checking fails, there are two cases. If a mounted configuration
specification is being retrieved via the get function, the failure is being reported as a
warning in Elektra, indicating that the mounted configuration specification is not sound
according to the rules of the type system. Otherwise if a configuration specification is
being modified and there is a type checking failure, it is being reported as an error instead
so the modifications will not be persisted to the KDB to avoid unsound configuration
specifications. Error messages are displayed as shown in Section 4.1.4. The author of this
thesis believes that they indicate the point of failure in a precise enough way that users
are able to figure out what is wrong with an unsound configuration specification. We
have already shown and described error messages in Section 4.1.4 where we explained why
they show the involved keys and issues. Future work on the typechecker could improve
the error messages so they point out exactly which metakey causes an issue.

4.4 Regexdispatcher
Regexdispatcher is another plugin for Elektra. It preprocesses configuration specifications
by generating appropriate regexes to represent metakeys that depend on parameters.
Therefore it needs to be mounted along with the typechecker plugin so it can alter a
configuration specification with additional unparameterized metakeys before passing
it to the typechecker. This separation of concerns is important because we intend to
keep the typechecker as modular as possible. It should not need to know how to handle
parameterized metakeys. The regexdispatcher is also implemented in Haskell. Developers
are free to implement other plugins that serve the same purpose of handling different
parameterized metakeys in the language of their choice.

One example of parameterized metakeys is check/range that is parameterized with the
numerical range that can be assigned to a key’s value. Ranges can be expressed as regular
expressions, though their representation as a regex is hard to read for humans because
they get complex very quickly when representing large ranges. The calculated regex then
gets added back to the configuration specification as the parameter of a check/validation
metakey. As our type system natively handles regexes, it can then successfully interpret
this metakey without having to know about the conversion of numeric ranges to regexes.

14https://hackage.haskell.org/package/haskell-src-exts
15https://hackage.haskell.org/package/hint

65

https://hackage.haskell.org/package/haskell-src-exts
https://hackage.haskell.org/package/hint

4. Implementation

Furthermore it handles the metakey check/enum. The plugin does not aim to support
every parameterized metakey that is expressible in our type system HM(RGX). Instead
it acts as a proof of concept for our separation of concerns. The regexdispatcher plugin
uses the check/validation/message metakey to store the original specification metakey
that got preprocessed. In case there is both check/range and check/enum present on
the same key, regexdispatcher will unify the two regexes by intersecting them. In case
this intersection is not possible, it will emit the empty regex. The empty regex will then
cause a type checking failure. This information could be used upon a type check error
message to map the generated metakey back to the original metakey.

4.5 Case Study
To answer the second research question as stated in Section 1.2 we now finish the case
study started in Section 3.1. The research question asks how many metakeys of SpecElektra
that are currently known to be used by plugins, i.e., specified in the METADATA.ini file
of Elektra with the status of being implemented, can have their behavior described by our
type system. We analyze the metakeys per category as specified during the categorization
in Section 3.1.1. We distinguish between three levels of support:

• Full (F) means that a given metakey can have its effects fully described by the
type system

• Partial (P) means that a given metakey can have its effects partially described
by the type system, i.e., the type system will allow more inputs than a plugin
implementing the actual effect

• None (N) means that the effects of a given metakey cannot be expressed in our
type system without further extensions

Furthermore we have already implemented some of the effects of metakeys by adding
appropriate type signatures to the prelude.ini file as outlined in sections 4.2 and 4.3.2. In
case a metakey cannot have its effects expressed by our type system, we do not categorize
it, marked with a dash. Otherwise we distinguish between:

• prelude.ini (P) means that a given metakey has its effects described directly in
prelude.ini, a file containing common type definitions as described in Section 4.3

• regexdispatcher (R) means that the plugin regexdispatcher as described in
Section 4.4 adds more meta-information to keys describing its effect via a generated
regex depending on a metakey’s value

• unimplemented (N) means that the effect of the metakey has not been imple-
mented yet

66

4.5. Case Study

In the following tables the header S stands for the support categorization, and the header
I stands for the implementation categorization.

Checks 21 metakeys, 17 fully supported, 3 partially supported, 1 unsupported, 11
implemented

Metakey S I Remarks and Regexes

type F P by preprocessing the key and delegating to an
appropriate regex check using the primitive
function intersect.

binary N - binary values are currently unsupported
check/type F P same as type
check/range F R by generating a regex describing the given range

and then adding a check/validation metakey
check/math P N in case the input ranges and the operators are

known, a regex can be generated describing the
output range so it can be checked if the current
key is compatible with that range using the
primitive function intersect

check/ipaddr F P as the ipaddr plugin already validates keys using
regexes, we can use the same regexes in our type
system combined with the primitive function
intersect

check/path F P as this metakey checks for the existence of a
path on the system it can only be decided at
runtime. But we can use a regex to verify a
path’s format

check/validation F P as this plugin checks whether a key matches a
given regex, this regex can be directly lifted on
the type system level

check/validation/match F R by rewriting the regex so that it matches lines,
words or everything

check/validation/ignorecase F R by preprocessing the regex and replacing lower
case characters with a group including their
uppercase variant, e.g. [aA] for a

check/validation/invert F R by inverting the finite automata representing
the regex

check/enum/#
check/enum

F R by generating a regex describing the enum’s
values, separated via | . Regex metacharacters
appearing in enums have to be escaped

67

4. Implementation

Check case study continued from previous page
Metakey S I Remarks and Regexes

check/enum/multi F R by generating a regex describing the different
possibilities of a regex. This can be done by
listing all enums in an array and generating all
possible permutations, then combining them to
a single regex

check/calculate P N similarly to check/math, in case the calculation
and input domains are known, a regex could be
generated representing the allowed range

check/condition F N by traversing the conditions and generating a
regex representing the limitations imposed by
the conditions, such as range or equality con-
ditions. Conditions may refer to other keys, in
that case these will have no effect on a key itself

check/condition/any/# F N this metakey supplements check/condition and
means the check has to match any of the con-
ditions. This can be represented in regexes
by forming the union of the finite automata
representing conditions

check/condition/all/# F N this metakey supplements check/condition and
means the check has to match any of the con-
ditions. This can be represented in regexes by
forming the intersection of the finite automata
representing conditions

check/condition/none/# F N this metakey supplements check/condition and
means the check has to match any of the con-
ditions. This can be represented in regexes
by forming the union of the finite automata
representing conditions and then inverting the
resulting finite automaton

check/date P N as dates are an irregular languages, for exam-
ple the number of days in a month depends on
the year, they cannot be exactly represented
in regexes. However the general syntax of dif-
ferent date formats can be checked up to such
irregularities

68

4.5. Case Study

Check case study continued from previous page
Metakey S I Remarks and Regexes

check/date/format F N this metakey supplements check/date and spec-
ifies a date format. Date formats describe the
syntactic representation of dates. Semantical
differences such as different numbers of days in
a month depending on the year do not matter
for that. Thus date formats can be represented
as regexes

Transformations 4 metakeys, 3 fully supported, 0 partially supported, 1 unsupported,
1 implemented

Metakey S I Remarks and Regexes

assign/condition/#
assign/condition

F N by analyzing the conditionals and generating a regex out
of the assigned values by escaping regex metacharacters
appearing in them, or regexes in case keys are referenced

crypto/encrypt N - this metakey encrypts a key’s data so it is effectively a
binary value. Binary values are currently unsupported

unit/base F P this metakey transforms a key containing hexadecimal
values to decimals, thus the effect can be described as
a regex representing decimal values.

Links 4 metakeys, 3 fully supported, 1 partially supported, 0 unsupported, 3 imple-
mented

Metakey S I Remarks and Regexes

fallback/# F P with the primitive function link
override/# F P with the primitive function link
default F R with the primtive function link after regexdispatcher generated a

regex describing the default value by escaping all regex metachar-
acters in the default value

context P N with the primitive function link, but as there is no general way to
derive a regex describing the context it has to be done manually
and some contexts can be too complex to describe with regexes

Structural Types 5 metakeys, 0 fully supported, 0 partially supported, 5 unsupported,
0 implemented
As explained in Section 3.1.2 our type system does not support structural types, therefore
no metakey of this category is supported.

69

4. Implementation

Now we can answer our second research question:

Research Question 2. How many metakeys of SpecElektra that are currently known to
be used by plugins, i.e., specified in the METADATA.ini file of the Elektra project with
the status of being implemented, can have their behavior described by our type system?

We conclude that our type system HM(RGX) is currently able to describe the effects
of 27 out of 34 metakeys that are listed in the METADATA.ini file of Elektra with the
status of being implemented using regexes. Of those 27 metakeys, 23 can have their
effects fully described by our type system while 4 can be partially described. We have
implemented 15 of those metakeys for the use in our type system to show the feasibility
and practicality of our general concept.

70

CHAPTER 5
Related and Future Work

In Section 5.1 we present some other works that can supplement Elektra in useful ways.
In Section 5.2 we discuss some ideas how HM(RGX) can be improved.

5.1 Related Work

There is a number of works that deal with configuration and their specifications, or
ways to detect errors in configurations. In this section we present two papers that can
supplement Elektra in useful ways.

5.1.1 Dhall

Dhall [G+18] is a total programming language specialized for configuration files. It is
based on a variant of the lambda calculus to support functions used for abstraction, and
includes a few built-in types as well. Furthermore it supports type checking for the types
that are supported by the language.

Compilers can be implemented that take Dhall expressions as their input and generate
configuration files out of them. These compilers vary depending on the given target
domains. There can be also compilers that generate Dhall expressions out of configuration
files. Thus Dhall can be seen as an alternative way of representing configuration to
Elektra’s key-value model. The concept of compilation in Dhall is similar to the way
Elektra uses mountpoints to read and write configuration files.

Elektra is more general than Dhall and the concept of key-value pairs is easier to
grasp for users that do not have a programming background. The functionality of
Elektra can be greatly extended with plugins to not only support different configuration
formats (provided by storage plugins in Elektra), but also to add all kinds of checks to
a configuration or to handle other concerns such as notifications. Initially we took a

71

5. Related and Future Work

look at Dhall and considered using Dhall as the foundation of our type system instead
of HM(RGX). However, Dhall aims to stay a simple language while HM(RGX) tries to
model the effects of all kinds of metakeys. Thus it was decided not to use Dhall as the
foundation. Adding support for reading Dhall expressions as a storage plugin is a good
addition for Elektra so both projects can benefit from each other.

5.1.2 ConfigV

ConfigV [SZD+17] is a framework for the automated validation of configuration files. As
there are hardly any specifications written for configuration files this is a complicated task.
Thus ConfigV tries to generate a configuration specification of specific configurations by
analyzing examples and inferring constraints from those examples. This approach has
the advantage that the learning process is independent of a particular language or format,
however enough examples have to be analyzed in order to infer meaningful semantics.
ConfigV is able to learn relationships between configuration items in case a correlation
seems to exist.

After generating a configuration specification, ConfigV can use this inferred specification
to check configuration files. It not only aims to detect errors. It can also detect
suboptimal configuration values that may impact application performance by comparing
it to best-practices learned from analyzed files.

ConfigV differs from our type system HM(RGX) as we try to describe the effects of
metakeys of Elektra while ConfigV tries to automatically infer configuration specifications
from examples. It would be very interesting to be able to translate such inferred
configuration specifications back to Elektra, describing the semantics via Elektra’s
metakeys.

5.2 Future Work
In this thesis we have developed the formal foundation of a type system for checking
configuration specifications in Elektra statically. We developed an experimental imple-
mentation of this type system. There are several different areas where this foundation
can be improved.

5.2.1 Error Messages

Our type checker implementation is realized as an EDSL in the programming language
Haskell, along with a typechecker plugin for the Haskell compiler GHC to implement
our regex semantics. Thus error messages during type checking are Haskell-focused.
People familiar with this programming language should be able to correctly interpret
error messages. For ordinary users of Elektra a system can be developed to customize
the way Haskell generates error messages for this EDSL. Another idea is to postprocess
error messages, for instance with information accumulated by spectranslator, in order to
point the user to the cause.

72

5.2. Future Work

5.2.2 Data Types

Currently our system only supports types based on regular expressions. However in order
to describe more effects of metakeys with our type system, additional data types could
be introduced. Furthermore a way to introduce user-defined types is useful. Possible
use cases are the boxing of keys of a certain value inside a custom type, for instance to
denote an encrypted key that cannot be assigned to other keys without proper decryption.
Another use case could be the generation of structural types for keys. The support of
binary data is also desirable.

5.2.3 Structural Types

Our type system currently offers no way to describe a structure between keys. Therefore
it can be researched in which ways structures can be represented in a type system and
to implement such an extension. We have already outlined some ideas in Section 3.1.2.
One of the most promising ideas is expressed in [HVP05]. The authors try to model
the structure of hierarchical tree-based data using operators commonly associated with
regular expressions to express repetition, optional occurrences and alterations.

5.2.4 Dependent Types

Several metakeys have effects that depend on the value of keys. While in some use cases
these effects can be approximated using regex, for instance for the check/math plugin,
there is no way to represent such effects in a more precise way. As Haskell already
supports some operations on natural numbers on a type-level this could be used to handle
mathematical checks or similar use cases in a more precise way.

5.2.5 Implementation of Metakeys

We have already implemented the effect of some metakeys in our type system during the
development of our prototype. However a great amount of effort went into the creation
of the typechecker plugin, the Haskell bindings for Elektra, the Haskell plugin for Elektra
and the formal definition of the type system. There are still some metakeys that can
have their effects described by our type system but are not implemented yet.

5.2.6 Contextual and Circular Links

There is no way to express circular links in HM(RGX). Our prototype does support
circular links as the type system of Haskell allows it. Therefore it would be interesting
to add support for circular links directly to HM(RGX). Another interesting addition
are contextual links, expressed by the context keyword. A plugin can be created that
generates regexes describing contexts and dispatches the semantics to all involved keys
matched by a context as far as it is possible.

73

CHAPTER 6
Conclusion

We first introduced some general information about Elektra, the initiative providing the
library libelektra. This library provides unified access to configuration via key-value
pairs stored in a database in a hierarchical manner. We elaborate how Elektra uses
configuration specifications to describe the semantics of configuration. We also argue why
a type system for configuration specifications is important to prevent various kinds of
mistakes in advance. There are two kinds of mistakes our type system detects. The first
mistake is adding incompatible checks to keys, i.e., adding two range checks denoting
different ranges. This is typically expressed using the primitive function intersect in
our type system. The second mistake is linking between incompatible keys, i.e., from a
key accepting a certain range to another key representing a different range, even if they
partially overlap. This is typically expressed using the primitive function link in our type
system. It is not intended to replace runtime checks, as users can set arbitrary values on
keys that have to be checked each time.

We resumed with an introduction of type systems. We introduce some general information
about type systems and argue why using a type system is beneficial. Afterwards we
elaborated various variants of the lambda calculus, a notion of computation that is
often used as the formal foundation for type systems. We closed our introduction by
explaining HM(X), a generic framework for creating domain-specific type systems based
on a restricted version of the lambda calculus λ2 called a Hindley-Milner type system.

We analyzed the metakeys used in configuration specifications that are currently present
in Elektra and implemented by plugins for this library. In this analysis we categorized
the metakeys depending on the kind of effect they have on a key. Based on this analysis
we researched various type system techniques and evaluated how suitable they are for
the given target domain of configuration specifications. We came to the conclusion that
a type system based on regular expressions to express the semantics of configuration
specifications is a good compromise between ease of use, power and extensibility.

75

6. Conclusion

The type system has then been formally defined building upon the HM(X) type system
framework. Along the way we fulfilled the necessary proof obligations as imposed by the
framework in order to have a sound type system. Last, we also showed a normalization
procedure for our type system in order to gain type inference as well. Our type system
uses a common and well-researched formal basis as it is based on a Hindley-Milner-style
type system. This basis can be used for further improvements of the type systems to
incorporate more advanced typing techniques.

A prototype was developed for Elektra implementing the type system as a plugin. For the
prototype we first created a Haskell binding for Elektra. Furthermore we created a Haskell
binding for libfa, a C library to work with finite automata. Then we created a generic
foundation for writing Elektra plugins in Haskell. We also created the pluginprocess
library for Elektra to execute plugin logic in a separate process. This is required as
the Haskell runtime cannot be restarted after it has been closed inside a process, but
Elektra may open and close a plugin several times during runtime. This library now also
is used to execute the python plugin in its own process that has the same issue. The
generic foundation was used to create the typechecker plugin and the regexdispatcher
plugin for Elektra. All these parts constitute the prototype that serves to demonstrate
that our type system works as intended and has a practical use. These plugins can be
used to validate configuration specifications in Elektra. We then evaluated how many
metakeys can have their effects expressed by our type system. We described some similar
approaches for typed configuration in related work and closed the thesis by outlining
some fields where the type system can be improved to express the effect of additional
metakeys.

Our type system HM(RGX) is suitable to describe many metakeys that are listed in
the METADATA.ini file of Elektra with the status of being implemented. 27 out of 34
metakeys can have their effects expressed in our type system to aid in detecting errors
in configuration specifications. We conclude that using regular expressions to describe
values of configuration items is a good way to cover many cases. Further extensions to
HM(RGX) are required to handle structural constraints on configuration items. Non-
regular languages such as dates are not possible to express in the type system, however,
their exact semantics can often be approximated.

76

Bibliography

[Bar91] Henk Barendregt. Introduction to generalized type systems. Journal of
functional programming, 1(2):125–154, 1991.

[BFP+08] Aaron Bohannon, J Nathan Foster, Benjamin C Pierce, Alexandre Pilkiewicz,
and Alan Schmitt. Boomerang: resourceful lenses for string data. In ACM
SIGPLAN Notices, volume 43, pages 407–419. ACM, 2008.

[BK93] Anne Brüggemann-Klein. Regular expressions into finite automata. Theo-
retical Computer Science, 120(2):197–213, 1993.

[BL80] Janusz A. Brzozowski and Ernst Leiss. On equations for regular languages,
finite automata, and sequential networks. Theoretical Computer Science,
10(1):19–35, 1980.

[Cha00] Manuel M. T. Chakravarty. C −→ Haskell, or yet another interfacing
tool. In Pieter Koopman and Chris Clack, editors, Implementation of
Functional Languages, pages 131–148, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on principles of programming languages, pages 207–212. ACM, 1982.

[EVPJW14] Richard A Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. Closed type families with overlapping equations. In
ACM SIGPLAN Notices, volume 49, pages 671–683. ACM, 2014.

[G+18] Gabriel Gonzalez et al. The dhall configuration language. "https:
//github.com/dhall-lang/dhall-lang", 2018. [Online; accessed
13.08.2018].

[GHC15] GHC Team. GHC users guide. "https://downloads.haskell.org/
~ghc/8.0-latest/docs/html/users_guide/glasgow_exts.
html", 2015. [Online; accessed 08.03.2018].

[Gre31] Oleg Grenrus. Domain specific type systems. Master’s thesis, Aalto Univer-
sity, 2016-10-31.

77

https://github.com/dhall-lang/dhall-lang
https://github.com/dhall-lang/dhall-lang
https://downloads.haskell.org/~ghc/8.0-latest/docs/html/users_guide/glasgow_exts.html
https://downloads.haskell.org/~ghc/8.0-latest/docs/html/users_guide/glasgow_exts.html
https://downloads.haskell.org/~ghc/8.0-latest/docs/html/users_guide/glasgow_exts.html

[Gun15] Adam Gundry. A typechecker plugin for units of measure: Domain-specific
constraint solving in GHC Haskell. In ACM SIGPLAN Notices, volume 50,
pages 11–22. ACM, 2015.

[HHPJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A
history of Haskell: being lazy with class. In Proceedings of the third ACM
SIGPLAN Conference on history of programming languages, pages 12–1.
ACM, 2007.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
automata theory, languages, and computation, 2nd edition. SIGACT News,
32(1):60–65, March 2001.

[HVP05] Haruo Hosoya, Jérôme Vouillon, and Benjamin C Pierce. Regular expression
types for XML. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(1):46–90, 2005.

[LP99] Leslie Lamport and Lawrence C Paulson. Should your specification language
be typed. ACM Transactions on Programming Languages and Systems
(TOPLAS), 21(3):502–526, 1999.

[Lut08] David Lutterkort. Augeas - a configuration api. In Linux Symposium,
Ottawa, ON, pages 47–56, 2008.

[MA08] Donna Malayeri and Jonathan Aldrich. Integrating nominal and structural
subtyping. In European Conference on Object-Oriented Programming, pages
260–284. Springer, 2008.

[MA09] Donna Malayeri and Jonathan Aldrich. Is structural subtyping useful? An
empirical study. In European Symposium on Programming, pages 95–111.
Springer, 2009.

[NR05] Gonzalo Navarro and Mathieu Raffinot. New techniques for regular expres-
sion searching. Algorithmica, 41(2):89–116, 2005.

[Pie02] B.C. Pierce. Types and Programming Languages. Types and Programming
Languages. MIT Press, 2002.

[Raa10] Markus Raab. A modular approach to configuration storage. Master’s
thesis, Technical University of Vienna, 2010.

[Raa15] Markus Raab. Sharing software configuration via specified links and trans-
formation rules. In Kolloquium Programmiersprachen (KPS 2015), 2015.

[Raa16] Markus Raab. Improving system integration using a modular configuration
specification language. In Companion Proceedings of the 15th International
Conference on Modularity, MODULARITY Companion 2016, pages 152–157,
New York, NY, USA, 2016. ACM.

78

[RB17] Markus. Raab and Gergö Barany. Introducing context awareness in un-
modified, context-unaware software. In ENASE 2017-12th International
Conference on Evaluation of Novel Approaches to Software Engineering,
pages 1–8, February 2017.

[SMZ99] Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley-Milner
style type systems in constraint form. Res. Rep. ACRC-99-009, University
of South Australia, School of Computer and Information Science, 1999.

[SPJCS08] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. ACM Sigplan Notices,
43(9):51–62, 2008.

[Sul00] Martin Sulzmann. A general framework for Hindley-Milner type systems
with constraints. PhD thesis, Yale University, 2000.

[SZD+17] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruz-
ica Piskac. Synthesizing configuration file specifications with associa-
tion rule learning. Proceedings of the ACM on Programming Languages,
1(OOPSLA):64:1–64:20, October 2017.

[Vin97] Steve Vinoski. CORBA: Integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 35(2):46–55,
1997.

[WHE13] Stephanie Weirich, Justin Hsu, and Richard A Eisenberg. System fc with
explicit kind equality. In ACM SIGPLAN Notices, volume 48, pages 275–286.
ACM, 2013.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical program-
ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of programming languages, pages 214–227. ACM, 1999.

[YWC+12] Brent A Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving haskell a promotion.
In Proceedings of the 8th ACM SIGPLAN Workshop on types in language
design and implementation, pages 53–66. ACM, 2012.

79

Appendix I

Metakey Category Status

order U implemented
comment U deprecated
comment/# U implemented
comment/#/start U implemented
comment/#/space U implemented
line U proposed
fallback/# L implemented
override/# L implemented
namespace/# U implemented
default L implemented
context L implemented
callback U reserved
type C implemented
binary C implemented
array S proposed
mountpoint U implemented
infos U implemented
config U proposed
opt U implemented
opt/long U implemented
env C proposed
see/# U implemented
rationale U idea
requirement U idea
description U reserved
example U reserved
rename/toupper S implemented
rename/tolower S implemented
rename/cut S implemented
rename/to S implemented
origname S implemented

81

Analyzation continued from previous page
Metakey Category Status

conflict/_ U proposed
array/range C proposed
require S unclear
mandatory S unclear
required S unclear
error U implemented
warnings/# U implemented
struct S proposed
check/type C implemented
check/type/min C deprecated
check/type/max C deprecated
check/range C implemented
check/math C implemented
check/ipaddr C implemented
check/format C idea
check/path C implemented
check/validation C implemented
check/validation/message U implemented
check/validation/match C implemented
check/validation/ignorecase C implemented
check/validation/invert C implemented
check/validation/type U deprecated
check/enum C implemented
check/enum/# C implemented
check/enum/multi C implemented
check/calculate C implemented
check/condition C implemented
condition/validsuffix C proposed
check/condition/any/# C implemented
check/condition/all/# C implemented
check/condition/none/# C implemented
assign/condition T implemented
assign/condition/# T implemented
check/date C implemented
check/date/format C implemented
trigger/warnings U implemented
trigger/error U implemented
trigger/error/nofail U proposed
deprecated U idea
internal/<plugin>/* U implemented

82

Analyzation continued from previous page
Metakey Category Status

source U implemented
dependency/control C idea
dependency/value C idea
application/name U idea
application/version U idea
fixed T idea
restrict/write C idea
restrict/null C idea
restrict/binary C idea
restrict/remove C idea
evaluate/<language> T idea
accessibility U idea
visibility U implemented
uid C obsolete
gid C obsolete
mode C obsolete
atime C obsolete
mtime C obsolete
ctime C obsolete
spec U reserved
proc U reserved
dir U reserved
user U reserved
system U reserved
csv/order U implemented
crypto/encrypt T implemented
crypto/salt U implemented
xerces/rootname U implemented
unit/base T implemented

Table 1: A categorization of the metakeys currently present
in the METADATA.ini file of the Elektra project.
U ... Unrelated to types
T ... Transformation between keys
S ... Structural constraints and key path transformations
C ... Checks of checker plugins
L ... Link between keys
O ... Other type-related metakey

83

	Kurzfassung
	Abstract
	Contents
	Introduction
	Goal of this Thesis
	Methodological Approach
	Structure of this Thesis

	Background
	Elektra
	Unified Configuration Framework
	Plugins
	Configuration Specifications
	SpecElektra
	Sharing Configuration
	Type Checking
	Advantages

	Type Systems
	Advantages
	Simply Typed Lambda Calculus
	The polymorphic lambda calculus (System F)
	HM(X)

	HM(RGX)
	Case Study
	Categorizing the Metakeys
	Mapping the Categories to Type System Features
	Theoretical Foundation
	Checks
	Transformations
	Links
	Structural Types

	Formal Definition
	Defining RGX
	Proofing the Soundness of RGX
	Type Inference for HM(RGX)

	Examples

	Implementation
	Specelektra
	Haskell Extensions
	GHC Typechecker Plugins
	EDSL
	GHC Typechecker Plugin

	Spectranslator
	Libelektra Haskell Bindings and Plugins
	Parsing
	Translation
	Example

	Elektra Typechecker Plugin
	Libelektra Haskell Plugins
	Type Checking

	Regexdispatcher
	Case Study

	Related and Future Work
	Related Work
	Dhall
	ConfigV

	Future Work
	Error Messages
	Data Types
	Structural Types
	Dependent Types
	Implementation of Metakeys
	Contextual and Circular Links

	Conclusion
	Bibliography
	Appendix I

