

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Systematical conception, design and

development of a C++ software for transfer

of biomedical data via the hardware API of

a clinical patient monitor

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Biomedical Engineering

eingereicht von

Jakub Matta

Matrikelnummer 1026447

an der

Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität Wien

Betreuer:

Projektass. Dipl-Ing. Florian Thürk

Ao.Univ.Prof. Dipl.Ing. Dr.techn. Eugenijus Kaniusas

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

 i

Abstract

Patient monitoring in hospitals belongs to the most important clinical instruments to evaluate

the health status of critically ill patients. Especially in the perioperative setting, the probability

of patients experiencing adverse health conditions is still very high. Cardiopulmonary

complications notably contribute to the patients´ health deteriorations, however, the acute

organ injuries are the most serious reasons of perioperative mortality. Additional adverse

effects such as patient comorbidity and surgical complexity increase the 48-hour and 30-day

postoperative mortality about the 12 times and 4 times, respectively. Thus, early and accurate

identification of the unfavorable effects is exceedingly important. Nevertheless, the common

patient monitoring systems of modern hospitals merely capture the standard vital signs of

patients missing novel vitals such as cumulative time of desaturation and hypotension. What´s

more, the recorded biosignals are rarely persisted with a sufficient sampling resolution for

further processing. Those restrictions make the evaluation process of biosignals much more

difficult and substantially limit the decision-making process of clinicians in the perioperative

setting. Although the most hospitals dispose of a sufficient hardware equipment, the recorded

data isn´t processed after its storage. This fact substantially limits the effectiveness of the risk

prediction systems evoking a timely intervention of the clinical personnel. The present work

introduces an easy-to-use, vital sign assessment system supporting the real-time evaluation and

high-resolution, multiparametric analysis. The developed tool, Vital-signs REal-time Analysis

for Clinical Translation (VREACT) provides a simple graphical environment facilitating the

real-time, vital sign tracking as well as flexible biosignal recording ensuring a consistent data

storage. The tool interacts with the specific patient monitoring device, Infinity® Delta ensuring

the access to the physiological information. Finally, a short experiment evaluating the accuracy

and consistency of the recorded experimental measurements was conducted. Hereby, a test

measurement storing the recorded vital parameters across 3 different ICUs was performed. The

experiment confirmed the potential of the high-resolution vital sign recorder in the

perioperative setting. The tool delivered 20 consistent biosignal records consisted of standard

and novel physiological parameters. Conclusively, the software enhanced the automation of

the whole signal acquisition process and enabled a real-time remote tracking of the novel

physiological parameters. In the future work, additional functions like an advanced database

search or a predictive alarm system might extend the capabilities of the tool.

ii

Kurzfassung

Patientenüberwachung in Krankenhäusern stellt eine wichtige Basis für Evaluierung von

Gesundheitsrisiken kritisch erkrankter Patienten dar. Vor allem im perioperativen Umfeld ist

das Risiko unvorhersehbarer Gesundheitskomplikationen sehr hoch. Während die

kardiopulmonalen Erkrankungen nachweislich zur Gesundheitszustandsverschlechterung

führen, tragen akute Organverletzungen am meisten zur perioperativen Mortalität. Diese wird

zusätzlich durch weitere negative Einflüsse wie z.B. die Komorbidität oder Komplexität der

chirurgischen Eingriffe gestärkt. Gleichzeitig steigt die Mortalität während der postoperativen

Phase um einen Faktor 12 innerhalb der ersten 48 postoperativen Stunden und um einen Faktor

4 innerhalb der ersten 30 postoperativen Tage. Es ist daher unabdingbar, derartige Effekte

möglichst früh und verlässlich zu erkennen. Die heutigen Patientenüberwachungssysteme

nehmen bloß die Standard-Vitalparameter auf und verzichten auf neue, mittlerweile gut

bewährte Parameter wie z.B. Kumulative Zeit der Sauerstoffsättigung oder des

Blutdruckabfalls. Außerdem werden die aufgenommenen Vitalparameter kaum oder nur mit

unzureichender Auflösung gespeichert. Das macht eine genaue Evaluierung von

kontinuierlichen Biosignalen fast unmöglich und schränkt die Entscheidungsfähigkeiten des

medizinischen Personals erheblich ein. Trotz einer hinzureichenden Datenspeicherung seitens

der meisten Krankenhäuser werden die physiologischen Daten nur selten weiterverarbeitet.

Dieser Fakt vermindert die Effektivität der klinischen Prognosesysteme, die die frühzeitigen

Warnmeldungen generieren sollen. Diese Arbeit präsentiert ein neuartiges System zur

Evaluierung von Biosignalen mit einer einfachen graphischen Oberfläche. Es soll eine

hochauflösende multiparametrische Echtzeitanalyse von Biosignalen gewährleisten. Das

entwickelte Tool, Vital-signs REal-time Analysis for Clinical Translation (VREACT) bietet

einerseits eine vielseitige graphische Oberfläche für Echtzeitüberwachung, andererseits einen

Recorder zum Aufnehmen und Speichern von physiologischen Daten. VREACT wurde für

einen speziellen Patientenmonitortyp, Infinity® Delta Monitor entworfen, welcher als Quelle

jeglichen physiologischen Informationen dient. Schließlich wurde die Software im Rahmen

eines kurzen Experiments eingesetzt und deren Messungen auf die Genauigkeit und Konsistenz

geprüft. Die Daten wurden aus 3 verschiedenen Pflegestationen aufgenommen. Die Software

wies im Grunde ein hohes Einsatzpotential auf. Sie hinterließ 20 konsistente biomedizinische

Aufnahmen, die nicht nur die üblichen, sondern auch die neuartigen physiologischen Parameter

enthielten. Ferner, die Software trug wesentlich zur Automatisierung des gesamten

Signalakquisitionsprozesses bei und legte eine gute Basis für die Fernüberwachung neuartiger

Vitalparameter fest. Das Tool könnte noch in der Zukunft um zusätzliche Funktionen wie z.B.

die Datenbanksuche oder prädiktive Alarmsysteme erweitert werden.

 iii

Acknowledgments

I would like to thank Prof. Eugenijus Kaniusas for the possibility to enter the board of this

fascinating project as well as acknowledge his valuable suggestions and constructive feedback.

I would also like to express my deepest appreciation to Florian Thürk for his professional

mentoring, intensive support and constructive opinions during the entire project work. His

valuable advices contributed to a better quality of this scientific work and helped me

(personally) develop new valuable technical skills. I would also like to appreciate the

collaboration with my colleagues Fatih Kartal and Max Schnetzinger, which essentially

contributed to the realization of the project. Thanks to Max, the data for the final test

experiment was easily organized. Finally, I wish to thank my girlfriend Andrea as well as the

whole family for their optimism and tireless encouragement during the whole research work.

iv

Table of Contents

Abstract .. i

Kurzfassung .. ii

Acknowledgments ... iii

1. Introduction .. 1
1.1. Motivation .. 1
1.2. Definition and History ... 3
1.3. Real-time assessment systems ... 6

1.3.1. WvAPITest .. 7

1.3.2. WvRecorder ... 9

1.3.3. Other scientific tools .. 10

1.3.4. Dräger Infinity Delta ... 14
1.4. Biomedical signal analysis ... 15

1.4.1. Standard physiological parameters ... 16

1.4.2. Novel physiological parameters... 20
1.5. Aim of this work .. 24

2. Real-time assessment using VREACT .. 25
2.1. Software design .. 25

2.1.1. Stakeholders .. 26

2.1.2. UML Use Case diagram .. 27

2.1.3. Workflow diagram ... 30

2.1.4. UML Class diagram ... 31

2.1.5. Design patterns .. 35
2.2. System implementation .. 40

2.2.1. Technology ... 41

2.2.2. Infinity® Network ... 42

2.2.3. Dynamic linking .. 44

2.2.4. Application tier structure ... 46

2.2.5. Multithreading ... 48
2.3. User Interface ... 50

2.3.1. Requirements Engineering... 51

2.3.2. UI Requirements .. 53

2.3.3. Connection Management .. 55

2.3.4. Patient Recorder .. 57

2.3.5. Patient Viewer.. 59

3. Clinical experiment .. 61
3.1. Introduction .. 62
3.2. Methods ... 62
3.3. Results .. 65
3.4. Discussion ... 73

4. Discussion ... 76

Appendix .. 80

 v

List of Figures

FIGURE 1. THE EINTHOVEN´S STRING GALVANOMETER DEVELOPED IN 1903 [12]. ... 4
FIGURE 2: CONNECTION OF SENSOR EQUIPMENT TO THE COMMERCIAL COMPUTER IBM 1710 [13]. .. 5
FIGURE 3. WVAPITEST TOOL USER INTERFACE ENCOMPASSING FUNCTIONS FOR ACCESS TO PHYSIOLOGICAL DATA. 8
FIGURE 4. THE USER INTERFACE OF WVRECORDER FACILITATES THE CONNECTION TO MONITORS AND RECORDING OF SAMPLES. 10
FIGURE 5. REAL-TIME, VITAL SIGN ANALYSIS USING INTENSIVE CARE WINDOW TOOL [23]. .. 12
FIGURE 6. THE MAIN PANE OF THE VITALRECORDER CURRENTLY OPERATED IN THE “TRACK MODE“ [24]. AT THE TOP OF THE

WINDOW, THE MENU BAR WITH MANY USEFUL FUNCTIONS SUCH AS DATA EXPORT IS PLACED. “TRACK LIST” KEEPS THE LIST OF

AVAILABLE (ONLINE) END-POINT DEVICES, WHEREAS THE “TRACK WINDOW” PRESENTS THE PHYSIOLOGICAL DATA IN REAL TIME.
THE “TIME SLIDER” PROVIDES AN ACCESS TO HISTORY OF THE RECORDINGS. THE THREE PANES ON THE RIGHT SIDE AID TO SETUP

THE END-POINT DEVICES, TO LOG THE EVENTS AND TO START ANALYSIS BY OTHER THIRD-PARTY ALGORITHMS [24]. 13
FIGURE 7. INFINITY DELTA MONITORS ACT AS WAVEFORM AND VITAL SIGN SOURCES [25]. . .. 15
FIGURE 8. (A) THE TYPICAL ECG CURVE OF HEALTHY INDIVIDUALS, (B) 12-ELECTRODE SYSTEM LOCATED AROUND THE HEART [27]. 17
FIGURE 9. THE EMITTED LIGHT OF THE INITIAL INTENSITY 𝑰𝟎 PASSES THROUGH THE DIFFERENT STRUCTURES IN LIVING TISSUE ENDING

UP WITH THE INTENSITY I. THE LIGHT IS ABSORBED DURING THE PRESENCE AND ABSENCE OF THE PULSATILE COMPONENT

DIFFERENTLY [37]. ... 20
FIGURE 10. (A) EXAMPLES OF DIFFERENT SPECTRAL COMPONENTS EXTRACTED FROM ORIGINAL HRV WAVEFORM [8], (B) POINCARÉ

PLOT FITTED BY ELLIPSE CONSECUTIVELY PLOTS TWO NEIGHBORING RR INTERVALS AGAINST EACH OTHER [41]. 21
FIGURE 11. LIST OF STAKEHOLDERS PARTICIPATING ON THE DEVELOPMENT OF VREACT. THE PROJECT LEADER {ENGINEER} ABSOLVED

REGULAR MEETINGS WITH PROJECT LEADER {CLINICIAN} WHERE THE SYSTEM REQUIREMENTS HAVE BEEN FORMULATED. THE

REQUIREMENTS HAVE BEEN COLLECTED FROM OTHER CLINICIANS AND STUDENTS PERFORMING CLINICAL RESEARCH. THE

PHYSIOLOGICAL DATA SAMPLED FROM MONITORING UNITS WAS ACQUIRED AFTER PATIENTS´ AGREEMENT. THE STUDENT

{ENGINEER} PROPOSED AND DEVELOPED SOLUTIONS TO FULFILL PROJECT LEADERS´ REQUIREMENTS. 27
FIGURE 12. THE UML USE CASE DIAGRAM OF VREACT PORTRAYING THE INITIAL DESIGN OF THE SYSTEM. THE SOFTWARE WAS

DESIGNED TO MANAGE THE CONNECTION TO ONE OR MORE BEDS (OR PATIENT MONITORS) SIMULTANEOUSLY, TO RECORD AND

TO VIEW THE BIOMEDICAL SIGNALS FETCHED FROM THE SELECTED INFINITY DELTA MONITORS. FURTHERMORE, THE USER IS

ABLE TO REFRESH THE LIST OF BEDS, VIEW A LICENSE INFO AS WELL AS TO DETERMINE THE STARTING AND END POINT OF SIGNAL

RECORDING. .. 29
FIGURE 13. BPM FLOWCHART ILLUSTRATING THE WORKFLOWS OF PHYSICIANS AND SCIENTISTS USING OUR CLINICAL SOFTWARE

VREACT. THE SOFTWARE (SW) RETRIEVES THE AVAILABLE BEDS ON THE SERVER TO WHICH THE USER MIGHT CONNECT. AFTER

SUCCESSFUL CONNECTION TO ONE OR MORE BED MONITORS, THE USER CAN RECORD AND/OR VIEW THE BIOMEDICAL SIGNALS

FOR THE GIVEN PATIENTS. AFTER THE REAL-TIME ANALYSIS IS FINISHED, THE BEDS ARE DISCONNECTED AND THE SOFTWARE IS

CLOSED. ... 31
FIGURE 14A-B. THE UML CLASS DIAGRAM (PART 1 AND 2) DEPICTING THE BASIC STRUCTURE OF VREACT INCLUDING THE CLASSES

(INSTANCES) AND THEIR POSSIBLE COMMUNICATION PATHS (RELATIONSHIPS). EACH CLASS BELONGS TO A PACKAGE (WHICH

KEEPS LOGICALLY SIMILAR CLASSES) WRITTEN BEFORE THE CLASS NAME. THE MULTIPLICITIES (SMALL NUMBERS) LIMIT THE

NUMBER OF INSTANCES COMMUNICATING WITH EACH OTHER USING A PARTICULAR PATH (LINE). THE BLACK ARROW PLACED

NEXT TO THE LINE GIVES THE READING DIRECTION OF THE TEXT SPECIFYING THE RESPECTIVE COMMUNICATION PATH. 34
FIGURE 15. MODEL-VIEW-CONTROLLER (MVC) PATTERN INVOLVES AT LEAST THREE INDIVIDUAL COMPONENTS INTERACTING TO

EACH OTHER. THE MODEL CONTROLS THE DATA, THE CONTROLLER HANDLES THE USER INPUTS AND REACTS ON CHANGES IN

MODEL. THE VIEW UPDATES THE UI AFTER THE MODEL STATE IS CHANGED [55]. .. 37
FIGURE 16. VREACT CLASSES PARTICIPATING ON THE COMMUNICATION BETWEEN THE MODEL AND THE VIEW ACCORDING TO THE

OBSERVER PATTERN. WVAPICONNECTION KEEPS THE STATUS OF THE SERVER CONNECTION AND THE BED AVAILABILITY.
THEREFORE, IT REPRESENTS THE SUBJECT. IN COMPARISON, WVCONTROLLER AND MAINWINDOW PERFORMS SPECIFIC

UPDATES BASED ON THE MODEL´S STATE. THEY ARE SEEN AS OBSERVERS. .. 38
FIGURE 17. (A) BEDENTITY REPRESENTS THE MOST FREQUENTLY USED DTO IN VREACT. IT TRANSPORTS DATA ABOUT THE

CONNECTED BED SUCH AS CONNECTION ID, BED LABEL, PATIENT ID AND THE CURRENTLY AVAILABLE CONNECTION STATUS. (B)

WVAPICONNECTION WAS IMPLEMENTED AS SINGLETON HAVING A PRIVATE CONSTRUCTOR, COPY CONSTRUCTOR AND

DESTRUCTOR (IN BOLD). THIS PREVENTS THE OBJECT INSTANTIATION AND DESTRUCTION FROM OUTSIDE OF THE CLASS. THE

INSTANCE CAN ONLY BE ACCESS USING A STATIC METHOD “GETINSTANCE()”... 39
FIGURE 18. THE RELATIONSHIP BETWEEN THE DRÄGER´S INFINITY® NETWORK AND EXISTING HOSPITAL NETWORK. THE INFINITY®

GATEWAY SERVER ENABLES THE EXCHANGE OF ADMINISTRATIVE AND/OR PHYSIOLOGICAL DATA BETWEEN BOTH NETWORKS.
VREACT PERFORMS A REAL-TIME ASSESSMENT, HIGH RESOLUTION PARAMETER ANALYSIS BASED ON PATIENT MONITORS

vi

ACTIVE ON INFINITY® NETWORK. THE GATEWAY SERVER ENABLES THE CONNECTION TO ANY DEVICE OF THE INFINITY®

NETWORK. ... 43
FIGURE 19. DYNAMIC LIBRARIES AS SPECIAL FUNCTIONAL MODULES ARE LINKED TO THE APPLICATION AS SOON AS IT IS COMPILED.

THEY HAVE TO BE DISTRIBUTED WITH THE APPLICATION, SINCE THEIR CONTENT IS NOT EXPLICITLY EMBEDDED INTO THE

APPLICATION EXECUTABLE. THEY ARE LOADED LATER AT APPLICATION RUNTIME [66]. .. 45
FIGURE 20. THE 3-TIER ARCHITECTURE OF THE SOFTWARE AFTER THE IMPLEMENTATION. THE PRESENTATION LAYER FOCUSES ON THE

VISUAL PRESENTATION OF BEDS, NOTIFICATIONS AND VISUALIZATION OF BIOSIGNALS. THE BUSINESS LAYER HOUSES THE BUFFER

OF BIOSIGNALS, FURTHER PROCESSING ALGORITHMS AS WELL AS THE SAMPLING LOOP FOR BIOSIGNALS. THE INFINITY NETWORK

HAS A ROLE OF THE DATA ACCESS LAYER MANAGING THE RESOURCES CRITICAL FOR THE HIGH-RESOLUTION, REAL-TIME

ANALYSIS. ... 47
FIGURE 21. POSSIBLE PROGRAM FLOWS IN (A) SINGLE-THREADED AND (B) MULTI-THREADED APPLICATIONS [72]. THE TASKS IN

SINGLE-THREADED APPLICATIONS CAN ONLY BE FINISHED IN A SEQUENCE ORDER, WHEREAS THE TASKS IN THE MULTI-THREADED

APPLICATIONS CAN BE EXECUTED IN PARALLEL. ... 49
FIGURE 22. THE IMPLEMENTATION OF THE ‚LOOPMANAGER’ CONSTRUCTOR. THIS CLASS REPRESENTS THE SIGNAL SAMPLING LOOP

FOR ONE SINGLE BED ENTITY. THE TIMER DETERMINES THE SAMPLING FREQUENCY, THE BUFFER STORES THE REFERENCES TO THE

STORED BIOSIGNALS. SINCE EACH ‘LOOPMANAGER’ INSTANCE PERFORMS DEMANDING OPERATIONS IN RESPECT TO THE

CENTRAL SAMPLING LOOP, THE INSTANCES ARE MOVED TO THEIR OWN THREADS MANAGING THEIR OWN RESOURCES. 50
FIGURE 23. THE RESULTS AFTER IMPLEMENTATION OF THE CONNECTION MANAGEMENT MODULE PRESENTING THE AVAILABLE

MONITORS. THE USER HAS AN OPTION TO SELECT AND CONNECT TO THE INDIVIDUAL MONITORING DEVICES. (A) THE AVAILABLE

PATIENT MONITORS HAVE SUCCESSFULLY BEEN CONNECTED, I.E. THE BIOMEDICAL SIGNAL ANALYSIS MAY BE STARTED, (B) THE

AVAILABLE PATIENT MONITOR IS CURRENTLY OFFLINE (BUT REGISTERED ON THE SERVER). ... 56
FIGURE 24. THE APPLICATION INFORMS ABOUT THE PROGRESS OF THE RECORDER MODULE PERSISTING ALL THE BIOSIGNALS AVAILABLE

ON THE CORRESPONDING MONITORS. (A) AFTER THE BUTTON “RECORD” IS CLICKED, ITS NAME IS CHANGED TO THE “STOP”

BUTTON AND THE CSV EXPORT STARTS. (B) AFTER PUSHING THE BUTTON “STOP”, THE SAMPLES AREN´T STORED ANYMORE

AND THE BUTTON CHANGES TO THE “RECORD” BUTTON AGAIN. .. 58
FIGURE 25. PATIENT RECORDER CREATES A SPECIFIC FOLDER AND FILE STRUCTURE FOR EACH SINGLE MONITORING DEVICE. AFTER

STARTING THE RECORDER, A FOLDER DEFINING THE CURRENT RECORDING RUN WITH A SPECIAL NAME IS CREATED. WITHIN THIS

FOLDER, A FOLDER PER CARE UNIT AND A FOLDER PER BED POSITION ARE CREATED. FINALLY, SEVERAL CSV FILES (IN

DEPENDENCE OF THE SIZE AND THE NUMBER OF THE RECORDED BIOSIGNALS) MIGHT BE CREATED AND STORED. 59
FIGURE 26. PATIENT VIEWER PRESENTS THE BIOSIGNALS OF A SINGLE PATIENT. ON THE LEFT SIDE OF THE SCREEN, THE OVERVIEW

ABOUT THE AVAILABLE BIOMEDICAL SIGNALS IS GIVEN. UNDERNEATH THIS WINDOW, AVAILABLE CHART TYPES FOR THE

SELECTED BIOSIGNAL ARE PRESENTED. THE SIGNALS CAN BE THEN EASILY DRAG & DROPPED TO THE TWELVE INDEPENDENT

SLOTS PREPARED FOR VISUAL ANALYSIS (RIGHT SIDE). .. 60
FIGURE 27. THE FINAL HOSPITAL INFRASTRUCTURE USED FOR THE BIOSIGNAL RECORDING. CA. 2-HOUR MEASUREMENT ON 20

PATIENTS WAS ACHIEVED BY RUNNING VREACT ON THE TOSHIBA LAPTOP (ORANGE). THE VITAL SIGNS WERE PRIMARILY

RECORDED ON (DRÄGER INFINITY® DELTA) PATIENT MONITORS (GREEN) AVAILABLE WITHIN THE SURGICAL AND RECOVERY

ROOMS. VREACT ALSO SUPPORTS POSTPROCESSING OF THE PRIMARILY RECORDED DATA AND CALCULATES NOVEL

PHYSIOLOGICAL PARAMETERS (E.G. HRV). THIS FIGURE WAS DRAFTED AND PUBLISHED IN THE SUBMITTED CONFERENCE PAPER

[3]. ... 63
FIGURE 28. A BIOSIGNAL SET COMPARISON ACROSS ALL ANALYZED CARE UNITS. THE PARAMETERS P1 M, P1 D, P1 S AND GP1 ARE

RECORDED BY ONLY ONE PATIENT, WHEREAS THE OTHER TOP 10 PARAMETERS SUCH AS CUMULATIVE TIME OF DESATURATION

(HYPOXEMIA), HEART RATE (HR), OXYGEN SATURATION (SPO2), ETC. ARE OBSERVED BY ALL PATIENTS IN ANALYSIS. 67
FIGURE 29. EXAMPLES OF THE BIOSIGNAL RECORDED BY VREACT. (A) THE HR PARAMETER EXTRACTED FROM THE UNDERLYING ECG

RECORDING, (B) THE MEAN ARTERIAL PRESSURE (ART M) EXPORTED FROM MONITOR, DIRECTLY AND (C) THE CUMULATIVE

TIME OF HYPOXEMIA EXTRACTED FROM THE UNDERLYING SPO2 (OXYGEN SATURATION MEASURE) SIGNAL. 69
FIGURE 30. STATISTICAL DISTRIBUTION OF 8 DIFFERENT BIOSIGNALS RECORDED OVER ALL PATIENTS IN THE 3 ICUS, 13B1, 13C2, 9D.

THE STANDARD PARAMETERS EXPORTED FROM THE INFINITY® DELTA MONITORS (A) ART M, (B) SPO2, (C) HEART RATE AS

WELL AS NOVEL PARAMETERS (D) VLF POWER, (E) LF POWER, (F) HF POWER, (G) SDNN, (H) RMSSD ARE CHARACTERIZED

UPON ITS DISTRIBUTION OF THE DIFFERENT ICUS. IN GENERAL, ALL PLOTS CONTAIN RATHER VARYING DISTRIBUTIONS, THOUGH

THE PARAMETERS (D) LF POWER AND (G) SDNN SHOW (ALMOST) UNIFORM MEDIANS ACROSS ALL ICUS. THE MOST EQUALLY

DISTRIBUTED SERIES ARE OBSERVED IN (B) SPO2 AND (C) HEART RATE ON THE GROUP “ALL”. 7 BOXPLOTS EXHIBIT AN

OUTLINER APART FROM THE WHISKERS. ALL THE DISTRIBUTIONS ARE COMPOSED OF BIOSIGNAL MEDIANS, I.E. EACH

REPRESENTATIVE VALUE PER BIOSIGNAL WAS OBTAINED AS MEDIAN OF THE WHOLE BIOSIGNAL DATA SERIES. THIS VALUE WAS

SUBSEQUENTLY USED AS THE REPRESENTATIVE OF THAT PARTICULAR PATIENT. .. 71
FIGURE 31. THE FINAL UML CLASS DIAGRAM OF VREACT. THE DIAGRAM GIVES A GLIMPSE ABOUT THE STRUCTURE OF THE

APPLICATION BACKBONE (EXCEPT OF THE PATIENT VIEWER CLASSES). TO THE MOST IMPORTANT COMPONENTS OF THE

SOFTWARE BELONG THE CLASSES OF THE MVC PATTERN (MAINWINDOW, WVCONTROLLER, WVCONNECTION). THESE

 vii

CLASSES ARE RESPONSIBLE FOR THE CENTRAL CONNECTION MANAGEMENT OF PATIENT MONITORS (SEE SECTION 2.1.5).
FURTHER, THE LOOPMANAGER ALONG WITH THE BEDENTITY ARE THE BASIC COMPONENTS OF THE SAMPLING LOOP USED FOR

THE SAMPLE ACQUISITION. OTHER ENTITIES SUCH AS WAVEENTITY, VSIGNENTITY AND BIOSIGNALS ARE THE CENTRAL CARRIERS

OF THE BIOMEDICAL SAMPLES FROM THE MONITOR TO THE APPLICATION BUFFER. ... 80
FIGURE 32. OVERVIEW ABOUT THE RECORDED BIOSIGNALS ON THE ICU LABELED AS 13B1. 26 OUT OF 40 BIOSIGNALS ARE EXPORTED

FOR EVERY MONITORING UNIT IN 13B1 AND 13C2, WHICH IS THE HIGHEST FREQUENCY AMONG THE THREE CARE UNITS.
HOWEVER, THERE ARE 6 BIOSIGNALS (RA.1, RA, P1 M, P1 D, P1 S, GP1) WHICH ARE OBSERVED BY NONE OF THE PATIENTS

IN THE ICU. .. 85
FIGURE 33. OVERVIEW ABOUT THE RECORDED BIOSIGNALS ON THE ICU LABELED AS 13C2. 26 OUT OF 40 BIOSIGNALS ARE EXPORTED

FOR EVERY MONITORING UNIT IN 13C2 AND 13B1, WHICH IS THE HIGHEST FREQUENCY AMONG THE ALL THREE CARE UNITS.
HOWEVER, 13C2 EXHIBITS THE HIGHEST NUMBER OF UNTRACKED BIOSIGNALS FROM ALL ICUS BEING ANALYZED. 86

FIGURE 34. OVERVIEW ABOUT THE RECORDED BIOSIGNALS ON THE ICU LABELED AS 9D. ONLY 11 OUT OF OVERALL 40 BIOSIGNALS

ARE EXPORTED FOR EVERY PATIENT, WHICH IS THE LOWEST FREQUENCY AMONG THE ALL THREE CARE UNITS. HOWEVER, 9D

KEEPS NO BIOSIGNALS WITH THE ZERO OCCURRENCES, I.E. THE PARTICULAR CARE UNIT MEASURES MUCH MORE BIOSIGNAL

TYPES THAN THE OTHER ICUS 13B1 AND 13C2. .. 87
FIGURE 35. THE SUMMARY OF THE EXPORTED BIOSIGNALS FOR A PATIENT VISUALIZED IN PYTHON. CA. 2-HOUR MEASUREMENT WAS

DONE VIA THE VREACT BIOSIGNAL RECORDER. THE EXPORTED DATA HAVE BEEN PROCESSED AND VISUALIZED BY UTILIZING

PYTHON ALONG WITH JUPYTER NOTEBOOK [85]. THE X-AXIS REPRESENTS THE TIME (IN MINUTES) IN THE RECORDING AND THE

Y-AXIS KEEPS THE RANGE OF VALUES FOR THE GIVEN BIOSIGNALS BEING EXPORTED BY VREACT. THE Y-AXIS WAS LABEL

ACCORDING TO THE EXPORTED BIOSIGNAL. THE MEASUREMENT INCLUDES BOTH THE STANDARD (E.G. ECG, ART, RESP) AND

NOVEL (CUMULATIVE TIME OF HYPOXEMIA, ECG-RMSSD, ECG-SDNN) PARAMETERS. SINCE THE NOVEL PARAMETERS WERE

EXTRACTED FROM THEIR BASIC COUNTERPARTS, ITS LABEL COMPRISES THE NAME OF THE BASE PHYSIOLOGICAL PARAMETER

(FROM WHICH IT´S ACTUALLY DERIVED). ... 89

viii

List of Tables

TABLE 1. THE SYSTEM ENGINEERING REQUIREMENTS ON VREACT FORMULATED ACCORDING TO THE ISO/IEC AND IEEE

INTERNATIONAL STANDARDS [76] AND IEEE RECOMMENDATIONS [78] IN SOFTWARE ENGINEERING. THESE REQUIREMENTS

WERE PRIMARILY FORMULATED FOR THE BED MANAGEMENT AND RECORDER PART OF THE SOFTWARE, WHICH ARE ALSO THE

CENTRAL TOPIC OF THIS WORK. ... 53
TABLE 2. OVERVIEW ABOUT THE CARE UNITS AND THEIR RELATED PATIENT MONITORING DEVICES ACCESSED DURING THE EXPERIMENT.

INSTEAD OF PATIENT NAMES, THE MONITOR LABELS (E.G. BETT-01) WERE RETRIEVED FOR THE BIOSIGNAL ANALYSIS. THE TABLE

PRESENTS ALL 20 MONITORING POSITIONS ACROSS THE 3 DIFFERENT CARE UNITS. THE “SUM” COLUMNS REVEAL THE NUMBER

OF BIOSIGNALS BEING RECORDED AT THE RESPECTIVE MONITORING POSITION. .. 64
TABLE 3. UTILIZED DISK SPACE ON THE TOSHIBA LAPTOP AFTER FINISHING THE BIOMEDICAL RECORDING. THE DATA SIZE OF THE CA. 2-

HOUR RECORDING WAS MAPPED ONTO THE AVERAGED DISK SPACE OCCUPIED BY A CARE UNIT, A PATIENT (OR BED POSITION)

AND A BIOSIGNAL. THE REQUIRED AVERAGED DISK SPACE WAS SPECIFIED FOR DIFFERENT TIME PERIODS, PER HOUR, DAY,
MONTH AND YEAR. ... 65

file:///D:/Desktop/Master_Thesis_Jakub_Matta.docx%23_Toc524857420
file:///D:/Desktop/Master_Thesis_Jakub_Matta.docx%23_Toc524857420
file:///D:/Desktop/Master_Thesis_Jakub_Matta.docx%23_Toc524857420
file:///D:/Desktop/Master_Thesis_Jakub_Matta.docx%23_Toc524857420

 ix

List of Abbrevations

Abbrevation Definition

AKH Vienna General Hospital

AKI Acute Kidney Injury

API Application Programming Interface

BP Blood Pressure

BPM Business Process Modeling

CO Cardiac Output

CSV Comma Separated Value

DLL Dynamic Link Libraries

DTO Data Transfer Object

ECG Electrocardiogram

EMR Electronic Medical Record

HR Heart Rate

HRV Heart Rate Variability

ICU Intensive Care Unit

IQR Interquartile Range

LOS Length of Stay

MAP Mean Arterial Pressure

MVC Model View Controller

OR Operating Room

UML Unified Modeling Language

VR Vascular Resistance

VREACT Vital-signs Real-time Analysis for Clinical Translation

x

List of Symbols

Symbol Definition

aVF augmented vector foot

aVL augmented vector left

aVR augmented vector right

dBP diastolic pressure

𝑅𝑅𝑖 heart´s beat-to-beat interval

𝑅𝑅𝑖−1 previous heart´s beat-to-beat interval

𝑆𝑎𝑂2 oxygen saturation

𝑆𝑝𝑂2 pulse oximetry

sBP systolic pressure

𝜏𝑅−𝑅 peak-to-peak time

V1-6 precordial leads one to six

1

1. Introduction

Clinical patient monitoring as the most commonly used method for continuous collection of

biomedical data in hospitals has gained a great popularity in the recent years. The main

objective of a monitoring system is the continuous recording of vital parameters on patients at

risk [1], [2]. Many of those variables are subsequently used to assess an immediate patient´s

health condition, e.g. heart rate, respiration, blood pressure and oxygen saturation etc. [1].

Furthermore, long-term detection of various vital parameters provides ideal input data for other

analytical algorithms, which may reliably predict further patient care complications and

deteriorations. Thus, the supported monitoring systems must include or at least offer an

interface for connection to a robust warning system indicating any patient deterioration [2].

However, the common monitoring devices in today´s hospitals often deliver only the golden

standard parameters and miss the novel parameters e.g. cumulative time of desaturation or

hypotension, heart rate variability (HRV) etc. [3]. Moreover, the mass-manufactured

biomedical appliances deliver robust detection procedures, but they usually suffer from

insufficient sampling resolutions of data, what in turn introduces further limitations for

physicians and complicates their patient-care oriented decisions [3].

1.1. Motivation

Though the patient care monitoring systems are still evolving and the vital parameter stack is

gradually extended, the general mortality rate of patients with cardiopulmonary complications

reaches considerable values (4 – 17% p.a.) [2], [4]. Correspondingly, an adequate, on-time

prediction of high risk patients can assist to detect the unexpected patients´ state deteriorations.

For example, early detection of sepsis, which typically results in heavy organ malfunction or

even organ failure, is crucial and can drastically decrease the mortality rates [4]. Especially,

the perioperative patients tend to experience unexpected health conditions mostly induced by

acute organ injuries (e.g. myocardial infarction) representing the major cause of the patients´

death [3], [5]. After the surgery, the patients are usually transported to the intensive care units

(ICUs) and connected to the bedside monitors ensuring full access to the patients´ vital signs

and waveforms. In the postoperative phase, it is crucial to perform an accurate, real-time

measurement of vital parameters, since the mortality during the first 48-hour period after

surgery is considered to be the highest [6].

2

The postoperative mortality is caused by numerous risk factors such as presence of co-

occurring diseases or disorders, application of anesthesiologic substances and complexity of

the surgical interventions. Those and many other perioperative adverse events are clearly

associated with higher mortality rates after patient´s surgery [7]. Detrimental cardiovascular

and pulmonary events emerging during the surgical procedure increased the 48-hour and 30-

day postoperative mortality about the 12 times and 4 times, respectively. Furthermore, an

application of an invasive monitoring environment during surgery such as arterial line,

cardiovascular catheter or pulmonary artery catheter intensifies the negative effect on the 48-

hour and 30-day postsurgical mortality [7]. Conclusively, it is crucial to identify the adverse

effects on the therapeutic care immediately during or after surgery and introduce an easy-to-

use, non-invasive and accurate detection environment. In addition, more and more biomedical

information is being stored in the electronic medical records (EMR), which provide valuable

sources for visual, real-time analysis and can definitely support the decision-making process

in hospitals [2].

Paradoxically, the most of the hospital departments still lack an appropriate sensing and

monitoring technology essential for recording of vital parameters [2]. E.g. in general wards,

the vitals are measured manually by nurses at irregular intervals and an additional, early-

warning system is hardly applicable. Although the most ICUs are equipped by a modern

sensing technology, a continuous data collection linked with other data-mining systems is

typically excluded. Therefore, it is extremely difficult to predict and handle risky situations

without the underlying real-time recordings of vitals [2], [4]. Although the larger hospitals

usually dispose of a storage capacity for the huge amount of physiological data recorded

perioperatively, the data is sampled at a too low resolution and is only accessible through a

couple of stationary appliances. This limits the capability to add novel vital sign parameters to

the real-time signal analysis and prevents the on-time evaluation of parameters (e.g. HRV [8])

being crucial for advanced patient care [3].

According to the recent study [9] “the health care in the 21st century will require the intensive

use of information technology and clinical informatics to acquire and manage data, transform

the data to actionable information, and then disseminate this information so that it can be

effectively used to improve patient care”. That means, the data acquisition will play a crucial

role in the next years and influence further information processing steps included in real-time

analysis techniques as well as the application of machine learning algorithms. Hand by hand

3

with the better information exchange and continuous clinical education among physicians, it

should be possible to access the required clinical information timely and evaluate the

pathophysiological factors more precisely [9].

1.2. Definition and History

Patient monitoring systems have significantly evolved over the last few decades and have

become an integral part in the “care of critically ill patients” [1]. According to Hudson in [10],

patient monitoring represent “repeated or continuous observations or measurements of the

patient, his or her physiological function, and the function of life support equipment, for the

purpose of guiding management decisions, including when to make therapeutic interventions,

and assessment of those interventions”. Conclusively, a monitoring system must deliver

repeatedly sampled physiological data portraying the health conditions of currently monitored

patients. It is considered as a tangible apparatus, “something that watches for—and warns

against—serious or life-threatening events in patients, critically ill or otherwise” [1]. In

conjunction with ICUs, such a device “follows the patient´s cardiac, hemodynamic and

respiratory statuses” [11]. Therefore, valuable tracking systems are extremely important

within the perioperative state of patients and stationary patients admitted to ICUs.

To evaluate a monitoring system in respect to its operational characteristics, a short insight to

the history has to be given. In the early 17th century, Santorio from Venice has been

investigating methods for measuring the body temperature by using a spirit thermometer [1].

In the nearly same time, he also collaborated with the famous scientist Galileo developing a

simple pendulum system, which oscillated at uniform periodicity at his own pulse frequency.

The work of both scientists, however, has longer been overlooked, until 1707, when the

memorable work “Pulse-Watch” from Sir John Floyer emerged. In 1852, Ludwig Taube was

the first man, who published a longer fever curve of a patient. Some years after, the

“temperature, pulse and respiratory rate became the standard vital signs” [1].

At the end of the 19th century, an Italian physician Scipione Riva-Rocci invented the

“sphygmomanometer” or “blood pressure cuff”, which allowed for the first time to have a look

at the arterial blood pressure (BP) [1]. Subsequently, the Russian physician Nikolai Korotkoff

developed a method of auscultation for listening to body sounds generated by internal anatomic

structures such as heart, lung, blood vessels etc. However, the actual breakthrough in the vital

4

sign monitoring came true in 1903, when Willem Einthoven developed his “string

galvanometer” applicable for measuring the electrocardiogram (ECG), a continuous wave chart

of electrical potential curves derived from the heart activity [1], [12]. His refined ECG

apparatus delivered much more accurate results and reduced the electrode number from five to

three (Figure 1) [12]. After his inventory, the ECG has become soon an essential part of the

daily clinical routine and is still acting as one of the most frequently used tools in the today´s

hospital diagnostics [12].

In the 20th century, a new epoch of monitoring has started with the development of the all-

purpose computer “Electronic Numerical Integrator and Computer” and the first computer for

the public sector introduced by IBM [9]. Increased popularity of those commercial systems,

which have been primarily developed for the business sector, encouraged hospitals to develop

their own information management systems similar to the today´s EMR. However, the EMR

systems technically differed from systems in other hospitals and had no connection to real-time

assessment modules, what have led to further development and introduction of the bedside

monitors in 1966 [9], [13].

Around that time, the usage of the analog-to-digital converter for connection between a

commercial computer and bedside monitor enabled the physicians to collect biomedical data

during and after surgery in ICU. Hereafter, the first analytical software solutions (e.g. for

calculation of trend data) have been developed and integrated to the existing data acquisition

tools [9], [13]. Figure 2 depicts the recording system proposed from Shubin and Weil in 1966.

The analog physiological data of a patient is converted into the digital bit stream processed by

the central processing unit. This central unit receives the signal after it was selected by the

 Figure 1. The Einthoven´s string galvanometer developed in 1903 [12].

5

multiplexer and digitized by the analog-to-digital converter. The physiological signal is then

forwarded to the processing unit by using a multiplexer. Finally, the information is stored to

both the punch card serving for the subsequent statistical analysis and the disk card used for

temporary data storage [13].

In 1980s, Hewlett-Packard developed its own healthcare management system known as

“Patient Data Management System”, integration of what was associated with high costs and

low adaptability [9]. In surgical and ICU division, the software couldn´t keep pace to constant

changes of such a dynamic environment. Subsequent improvements in the computer graphics,

digital system architecture, computer networks and graphical user interfaces (UIs) led to the

emergence of electronic flow sheets, server/client architectures, local area networks and more

user-friendly graphical interfaces [14], [15]. At that time in anesthesiology, the anesthetists

must spend heaps of time to conscientiously prepare their patients for intubation or surgery.

Because of that, Gravenstein (1986) proposed an extensive “anesthesia recording system” to

track the patient´s health state during the operational tasks such as preparation and placing of

endotracheal tubes, regulation of gas flow and preparation of the surgical drapes and kits for

the subsequent use [9], [16]. The aim of the work was to facilitate and automate the process of

recording vital signs during these time-consuming tasks. The software should improve the

sampling accuracy, storage and visualization of perioperative data and support not only the

anesthetists, but also other physicians contributing to the individual patient care [9], [16].

Despite all these improvements in the clinical monitoring area, the monitoring systems missed

Figure 2: Connection of sensor equipment to the commercial computer IBM 1710 [13].

6

intercommunicating components to freely exchange and accumulate the physiological data at

one place. This issue has successfully been resolved by introduction of internet technologies,

i.e. web-based browsers for creating modern user interfaces in 1990s [9].

1.3. Real-time assessment systems

Real-time data acquisition and processing tools became popular in time, the microcomputer

units appeared on the market [1]. Those tools represent the essential parts of the modern

bedside monitors using the microchips to provide much more powerful analysis than their

predecessors from the past. According to Meyer et al [17], a real-time integrated system is

considered as a tool for analysis of “preoperative and operative data aimed to ensure that all

members of the operating room (OR) team hold the same basic information, might improve OR

communication, team performance, OR efficiency, and patient safety by increasing situational

awareness”. Moreover, they discuss the advantages of some non-expensive, portable systems

with high-level synchronization and data extraction during different perioperative phases [17].

Georgia at all [9] developed a promising real-time assessment tool, an integrated system for

data storage and visualization on the local storage media. It is able to connect to a variety of

medical appliances, access and parse the data for calculation of the novel physiological

parameters. Moreover, it “provides real-time data acquisition, integration, time-

synchronization, and data annotation of multimodal physiological waveform data (both analog

and digital)” [9]. In addition, the authors proposed an intelligent open middleware architecture

for a complex multi-systemic data analysis. The data recorded from bedside monitors and other

portable accessories was stored to a local database ready for a full access. By this, the clinicians

got “an integrated overview of the patient state (past, present, and predicted futures)” every

time about every patient [9].

Mothukuri and Kumar [18] utilized a low-cost technology to develop a remote monitoring

system with an integrated microcontroller and mobile phone interface. Basically, they see a

great potential in use of a wireless technology and describe a real-time assessment as

“continuous monitoring of the patient”. Improvements in signal detection accuracy and

warning system infallibility are essentials being seriously handled in their work. The defined

such a system as “patient management system” according to [19], which “deals with the

7

constant monitoring of health parameters using a palm-top like device and informing the

service providers when ambulating conditions arise. It acts like a point-to-point system” [18].

The following sections present some examples of the existing real-time vital sign assessment

tools used in the clinical research and discuss their capabilities and limitations in respect to the

biomedical data acquisition and real-time patient monitoring. At the very end of this chapter,

the standard monitoring device, Dräger Infinity® Delta [20], used for tracking of the

biomedical information of critically ill patients, is thoroughly discussed.

1.3.1. WvAPITest

WvAPITest software was developed for demonstration purposes rather than for a high-

resolution data acquisition and real-time analysis. The specialty of the tool is, that it was

developed for programmers of the third-party applications using the recorded physiological

data of patient monitors sold by Drägerwerk AG & Co. KGaA company. This meanwhile

international company founded in Lübeck produces a broad palette of medical equipment,

especially for anesthesiology, emergency, intensive care and pediatrics [21]. Since the tool

needs at least one monitoring unit registered on the Infinity® Network, representing the

Dräger´s proprietary secure network, it has to be installed on devices being in the same

network. A detailed description about how the Infinity® Network devices are interconnected

and how the data is retrieved from that network is presented in section 1.4.

Figure 3 presents the user interface (UI) of the WvAPITest tool. At first glance, it seems to be

very complicated to identify, what all the functions actually mean and how they work.

Moreover, it is not fully clear, how the monitoring device is accessed and what steps are

relevant for the physiological data retrieval. In regards to the UI, the software can be divided

into two separate components; the feature set component covers the operational units

performing special data management tasks such as connection to the desired monitoring unit,

whereas the feedback component notifies the user about the status of currently executing

actions. In addition to the initial confusion about a huge variety of buttons, the software does

not provide any information about the action´s order required to fetch and record new

physiological samples.

8

WvAPITest interestingly offers its users a possibility to retrieve the momentary information

from a single, currently available monitor operating on the Infinity® Network. However, it is

not possible to retrieve the data from more than one bedside monitor at once. Therefore, the

software has to be run ten times, if ten different monitors are being accessed. This results to

additional complexity for physicians and scientist monitoring several patients and makes their

biomedical analysis unnecessarily difficult. In addition, the software does not provide constant

monitoring of vital signs, it retrieves and stores only few samples in time, i.e. it is nearly

impossible to perform any real-time analysis of vitals on patients at risk.

Finally, the tool does not provide any additional modules for data annotation and visual

analysis of waveforms and vitals. The whole information fetched from the connected bedside

monitor is presented by a series of symbols and timestamps (Figure 3). Moreover, the data

fetched from the monitor is only exportable for a couple of seconds, what makes the successive

data transfer for deeper analysis impossible. That´s a huge drawback limiting the software

application in real-time assessment area.

Figure 3. WvAPITest tool user interface encompassing functions for access to physiological data.

9

1.3.2. WvRecorder

WvRecorder has been developed by our Institute of Electrodynamics, Microwave and Circuit

Engineering, Vienna University of Technology to support the data mining and data evaluation

procedures conducted by the physicians and researchers in Vienna General Hospital. The new

software implementation should address some of the problems related to the WvAPITest tool

such as feedback transparency, short-term recording times as well as data storage and export

management. The most significant improvement against the old tool was definitely achieved

by simplification of the whole recording process, i.e. by listing of available monitors, managing

their connections and finally implementation of a one-click export function for storage of

physiological samples fetched from multiple monitors.

Figure 4 presents the results after WvRecorder development. The huge number of buttons on

the previous tool was drastically reduced and a new table listing all currently available monitors

was added. Thus, the user is able to view all monitors displayed in the alphabetical order

according to the corresponding care unit. Furthermore, the identification of the patient became

more transparent, since a more detailed information about the monitoring device was provided

to the user, e.g. patient´s name, its managing care unit, status about the connection and

recording procedure (if clicking on the buttons connect and start, respectively). The whole

process of data acquisition was stabilized and automatized, hence the users must only select

their monitors of interest and start recording over a long period of time. All available

biomedical signals were exported to one or more comma separated value (CSV) files and

processed within more sophisticated analysis tools such as MATLAB from Mathworks [22].

Nevertheless, there are still some limitations worthy to discuss in regard to the WvRecorder´s

feature set. The monitoring systems doing a real-time analysis in e.g. anesthesiology must

address the issue about the too low sampling resolution of the standard monitoring units [3],

[9]. Although WvRecorder simplified the data acquisition procedure, it merely exports the data

from the connected monitors, ignoring the calculation of novel vital signs and waveforms at

higher resolution rates. This is a serious problem limiting the capabilities of physicians to

explore and interpret the crucial adverse events [9]. The next issue associated with the

WvRecorder´s UI refers to presentation of the sluggish log information, which often raised

confusion and time investment for studying of unnecessary messages having no relation to the

vital sign and waveform data analysis. Finally, a sophisticated, real-time analysis tool has to

10

provide a convenient and highly-adaptable UI supporting proper data visualization [3], [9].

However, WvRecorder does not provide any graphical interface suitable for continual signal

visualization. Thus, the user can only verify its exported data by either looking at the related

beside monitor at the same time or using additional scientific tools (e.g. MATLAB) to check

the data in retrospect.

1.3.3. Other scientific tools

Though some non-commercial data acquisition tools successfully demonstrated their

effectivity and efficiency in physiological data acquisition, storage and identification of the

novel physiological trends, these tools are not always available for a wider spectrum of

biomedical community and are mostly applied within the specific clinical research [9]. This

limits a broader clinical acceptance as well as the integration of the tools into the hospital´s

daily routine. This chapter takes a focus on further developed tools having great impacts on

health care and patient´s safety. It also gives some examples of such tools and explains

limitations in respect to their availability and adoption to patient´s perioperative monitoring.

Meyer at all [17] utilized the common computer technology used in the modern ORs and

developed a system for multimodal data acquisition from monitoring devices used in surgery

and anesthesiology. The software run on the available technology, used the OR´s secure

Figure 4. The user interface of WvRecorder facilitates the connection to monitors and recording of samples.

11

network and employed both the standard and the proprietary communication protocols

provided by device´s manufactures. Furthermore, it should ensure the availability of the

recorded data after surgical interventions and avoid possible data losses to increase the data

consistency and real-time data evaluation, in general. Next, a special attention was paid for

appropriate data selection and display´s justification presenting only the most important

clinical information relevant for participated surgeons and anesthetists. In addition, the

software should sophistically select and present only sets of vital parameters critical for at least

two participants on the surgery. This should minimize additional user interaction with the

system and increase the personnel´s attention to patients in surgery.

However, there should be mentioned, that the patient´s real-time analysis performed by [17] is

primarily focused on standard physiological parameters exported from ORs devices improper

for high-resolution vital sign analysis as reported in [3], [9]. Furthermore, the underlying

relational database running on a standard desktop computer archives the whole physiological

data accumulated at disparate OR devices. Therefore, masses of data being potentially unused

are stored to the database increasing the storage capacity demands. While the authors attach

great importance to introduction of reliable alarm systems, there is no discussion about the

integration of those systems to their existing software.

Stylianides at all [23] developed a promising vital sign assessment tool called “Intensive Care

Window” acquiring real-time samples exported from diverse sensory systems. The tool was

developed as an open-source software and supports consolidated data acquisition and

evaluation on ICUs. It should also address several issues occurring during the real-time vital

sign analysis such as lack of interoperability between disparate sensing and monitoring

systems, use of heterogeneous communication protocols, discontinuity of signal acquisition as

well as missing post-processing units evaluating the data in retrospect. The tool is basically

composed of the ICW bedside controller and ICW application, ensuring a stable

communication to the data sources as well as long-term data acquisition, respectively.

Moreover, the developers successfully enhanced the central real-time assessment unit and

integrated some additional algorithms for post-processing of the recorded data.

As shown in [17], a well-designed, easily-structured user interfaces for data visualization along

with automatic display configuration can significantly reduce the times of physicians needed

for interaction with the software. However, the Intensive Care Window tool partially requires

12

a lot of user interaction for e.g. a deeper signal and vital sign search, alignment of particular

signals within a single pane, marking adverse events during the analysis [23]. Allowing further

configuration steps, the medical professional may spend several minutes for tool operation

during the surgery. Many powerful features like playback of data history or visualization of

numerous standard parameters might be useful, but they also contribute to the increased

complexity in software operability and could negatively influence the recording accuracy

(which wasn´t verified during the project, yet), if retrieving data from multiple devices. The

users of the tool have also missed an export tool for recorded biomedical information displayed

only in “textual and graphical views” [23] as shown in Figure 5.

Recently, Lee & Young [24] proposed a very promising tool, VitalRecorder, facilitating the

“high-resolution”, “time-synchronized” signal analysis. It also supports automated recording

of the physiological data on a variety of medical devices, especially “patient monitors”,

“infusion pumps”, “anesthesia machines” as well as “cardiac output monitors” [24].

Furthermore, the recordings provide a high-resolution data in dependence on the analog-to-

digital converter. E.g. 500Hz sampling frequency is typically applied during the ECG

recording. VitalRecorder is runnable on almost on each Windows platform occupying the

minimum amount of disk space (10MB). During recording, the data is exported to a local

Figure 5. Real-time, vital sign analysis using Intensive Care Window tool [23].

13

Windows machine as well as backed up on a network-attached storage. In conclusion, the

VitalRecorder offers an effective multiparametric analysis performed on multiple devices

simultaneously. It utilizes a minimum of disk space and is executable on all common Windows

platforms leading to a better software usability and portability.

In comparison to other tools, VitalRecorder offers several unique functions on area of biosignal

acquisition such as “automatic recording” or “remote monitoring”. However, the devices of

various brands require additional hardware for operation (e.g. analog-to-digital or serial-to-

USB converters). Moreover, the configuration of several communication protocols on the end-

point devices is necessary before the real-time analysis [24]. This can mightily rise the costs of

the initial software configuration in the ORs and cause synchronization problems during the

subsequent recording procedures. Figure 6 presents the graphical UI of software. Although the

device setup procedure (using the “Device pane”) seems to be straightforward, the “Track list”

along with the “Track window” presents all vital parameter tracked in real time. Hence, the UI

is rapidly flooded by masses of curves, numbers, acronyms and setting options being worthless

for the actual real-time analysis. Finally, the tool supports a variety of the anesthesia and

monitoring devices, however our target monitoring device, Dräger Infinity® Delta [20], which

Figure 6. The main pane of the VitalRecorder currently operated in the “track mode“ [24]. At the top of the window,
the menu bar with many useful functions such as data export is placed. “Track list” keeps the list of available
(online) end-point devices, whereas the “Track window” presents the physiological data in real time. The “Time
slider” provides an access to history of the recordings. The three panes on the right side aid to setup the end-point
devices, to log the events and to start analysis by other third-party algorithms [24].

14

is a standard of patient monitoring in Vienna General Hospital (AKH) is unfortunately not

supported. Therefore, the biosignals sampled by the attached sensors and accessories of the

monitor cannot be stored nor analyzed in real-time.

1.3.4. Dräger Infinity Delta

Dräger Infinity® Delta [20] represents a multiparametric monitoring device utilized for

monitoring of the vital signs of critically ill patients [25] (see Figure 7). It is one of the

commercial medical systems applied within the current ICUs (especially on those in AKH

Vienna). The device makes use of the manufacturer´s patented technology “Pick and Go®”

supporting continuous patient monitoring, especially during periods of patient´s absence and

transport. Thus, it ensures a sustained data collection, reduces the patient´s unsupervised times

and minimizes the usage of additional technical equipment during transport and visits of other

house-intern specialists [20], [25].

As a bedside monitor, it is usually put on, so called “docking stations”, which provide a

capability to set, edit and store the properties about the presented waveforms and vital signs

(e.g. location on screen, colors or numeric alarm limits). Furthermore, the Infinity® Delta

monitors automatically establish a wireless connection if they are picked up from their docking

stations. Thus, the recorded vital parameters are sent over the network to the central station,

where they are remotely accessed [20]. Due to this feature, Infinity® Delta monitors ensure a

continuous data acquisition throughout the whole perioperative period and represent therefore

an ideal source of the biomedical information.

Each Infinity® Delta monitor facilitates a visual presentation of a variety of vital parameters.

Examples for those represent the electrocardiography (ECG), respiration, pulse oximetry

(𝑆𝑝𝑂2), temperature, the invasive and noninvasive BP, ST segment detection etc. [25]. Those

parameters are regularly sampled and visualized (as continuous waves or discrete values) on

the screens of those monitors. Nevertheless, the devices are capable of displaying standard

physiological parameters only, missing the acquisition and visualization of the novel, clinically

important parameters such as HRV, cumulative times of desaturation or hypotension [3]. The

next chapter explains the advantages of the biosignal analysis based on the novel physiological

parameters.

15

1.4. Biomedical signal analysis

The previous sections present various data acquisition and real-time assessment tools and

discuss their important features and limitations in regard to the biomedical signal analysis.

Moreover, the standard patient monitor, Infinity® Delta, fetching the valuable biomedical

information of critically ill patients, is introduced for the first time. Because of its unique

features [20], it represents an ideal source of biomedical information crucial for real-time

analysis and subsequent data processing. This work introduces a novel real-time assessment

tool “Vital-signs REal-time Analysis for Clinical Translation” (VREACT) addressing the

problems of the modern data acquisition and processing tools in the perioperative setting [3].

The tool was systematically designed and developed to access the biomedical information of

the monitors and to ensure a consistent data evaluation and visualization. The target

information sources represent the commercially available multiparametric monitors, Infinity®

Delta, described in the previous section. Unfortunately, those monitoring devices doesn´t

natively support the visualization of the novel physiological parameter. This chapter presents

the important clinical parameters being exported and visualized by VREACT. It especially

focuses on the novel physiological parameters extending the capabilities of the current patient

monitoring systems [3].

Figure 7. Infinity Delta Monitors act as waveform and vital sign sources [25]. .

16

1.4.1. Standard physiological parameters

This chapter presents the most important physiological parameters measured and visualized

from a wide spectrum of commercial monitoring systems found in the modern hospitals.

Especially, the parameters being fetched and stored by VREACT from the Infinity® Delta

monitors are examined in a more detail. The novel parameters showing a great clinical

importance, however, are not the topic of this section and are thoroughly discussed in next

section 1.4.2.

Electrocardiogram

An electrocardiogram (ECG) records the electrical activity of the heart and represents a

valuable characteristic of the cardiac fitness. It is examined by placing electrodes on the

specific body positions and by measuring the electrical potential differences between them

[26]. The currents produced by the sinus node of the heart are conducted across the heart

muscle, triggering the contractions of atria and ventricles filled with oxygenated and

deoxygenated blood. The electrical pulses are introduced by changes of ionic forces as

described in [27]. Dynamic changes in electrical conductivity of the heart can be summed up,

creating an electric dipole, whereas its direction and size adapts according to the repetitive

heart rhythm. Hence, the ECG represents a projection of the electric dipole onto the respective

electrode axes in the course of some specific time period [26]. As a result, a continuous voltage-

over-time curve is coined and measured by e.g. 12-lead system approved by Society for

Cardiological Science & Technology [28].

Figure 8a [27] describes the most important part of the ECG curve mapping the process of

cardiac activity. The P-wave starts the repetitive sequence of curve deflections towards the

positive (depolarization) and negative (repolarization) voltage areas. It reflects the

depolarization of atria. The consecutive QRS complex lasts up to 100 𝑚𝑠 and represents the

ventricular muscle contraction. After repolarization of ventricles (known as a T-wave), the U-

wave reflects either the residual repolarization currents or activity of Purkinje fibers. The PR-

time represents the time between depolarization of atria and ventricles, whereas the QT interval

reflects the period of ventricular depolarization terminated by their complete repolarization.

17

The standard 12-lead ECG combines the electrode configurations proposed by Einthoven,

Goldberger and Wilson. It consists of 3 limbed leads (I, II, III), 3 augmented leads (aVF, aVR,

aVL) and 6 precordial leads (V1-6) [29]. Thus, the combination of horizontal and vertical axes

supports a more advanced analysis of the electric heart vector. Figure 8b visualizes the position

of the heart and surrounding electrodes. The heart lies in the center and the leads surround the

heart creating an abstract triangle [27]. Whereas the limb electrodes does not necessarily have

to be placed on wrist and ankles, the placement of precordial leads is critical [29]. E.g. the

electrode V1 maps the horizontal plane of the vector must be placed at “fourth intercostal space

at the right sternal border”; V2 must be stuck at “fourth intercostal space at the left sternal

border”, etc. Since the resulting ECG curves, especially their amplitudes and corresponding

axes, are prone to the position of the body and recording electrodes as well as surface (skin)

preparation before measurement [29], the clinical practices should comply with the guidelines

and recommendations of international committees as described in [28].

Heart rate

Heart rate (HR) represents the number of heart beats per minute and is derived from ECG´s

peak-to-peak (R-R) times 𝜏𝑅−𝑅 as stated in [26] :

𝐻𝑅 =

60

𝜏𝑅−𝑅
 [𝑚𝑖𝑛−1] (1)

According the American Heart Association [30], HR is very effective and easy-to-do measure

indicating the physiological fitness of each individual. It can easily be measured by counting

the beats on the wrists, elbows, on the neck or even “top of the foot” [30]. The other handy and

Figure 8. (a) The typical ECG curve of healthy individuals, (b) 12-electrode system located around the heart [27].

a b

18

noninvasive approach for HR measurement is so called photo-plethysmography method [26].

Hereby, the HR of an individual is determined upon its blood oxygenation level by measuring

the overall absorbance of light passing through body´s anatomic structures, especially arteries.

A less common method for measurement of HR is impedance plethysmography [26]. In this

case, small currents of 20 − 100 𝑘𝐻𝑧 frequency are injected into the body measuring the

impedance changes caused by pulsating blood vessels. However, there are reasonable

limitations about IPG in respect to high energy consumption and artefacts created by

movements and small cardiac and muscular currents.

Arterial blood pressure

Arterial BP is a measure of stress exposed to arteries during the blood ejection caused by

contractile heart ventricles [31]. It can be decomposed into two separate measures, systolic and

diastolic BP. The systolic BP defines the maximal force exerted on arteries after the heart´s

blood ejection, whereas the diastolic BP defines the minimal pressure in arteries, immediately

before the ventricular contraction occurs. It is measured in 𝑚𝑚𝐻𝑔 meaning “millimeters of

mercury” [32], since mercury was frequently used for precise BP measurements in the past.

The overall mean BP in arteries (MAP) is determined by multiplication of cardiac output (CO)

by vascular resistance (VR) [31], [33]:

 𝑀𝐴𝑃 = 𝐶𝑂 ∗ 𝑉𝑅 [𝑚𝑚𝐻𝑔] (2)

whereby the CO specifies how much blood is being transported by cardiovascular system per

unit of time and the VR reflects to the “resistance of blood vessels to blood flow” [33]. Hereby,

MAP is used to determine the strength of the arterial blood flow crucial for organ nutrient

delivery. A next suitable approach for the MAP evaluation is its representation as the double

of the diastolic BP (dBP) multiplied by the systolic BP (sBP), divided by number of BPs in

formula [31]:

 𝑀𝐴𝑃 =
2 ∗ 𝑑𝐵𝑃 + 𝑠𝐵𝑃

3
 [𝑚𝑚𝐻𝑔] (3)

The clinical importance of regularly examined BP values can be critical in respect to patients

with hyper- or hypotension [31], [32]. Whereas the hypertension is clearly associated with

development of acute cardiovascular diseases (e.g. stroke, heart attack, etc.) and kidney

malfunction, the hypotension is mostly a result of the insufficient CO [31].

19

Oxygen saturation

In anesthesiology, a regular and systematical verification of the organ oxygenation is crucial

for early detection of hypoxia and hypoxemia [34], [35]. Furthermore both, oxygen saturation

𝑆𝑎𝑂2 and hemoglobin concentration [𝐻𝑏], exhibit a great clinical importance in respect to

amount of oxygen in arteries [34]. Cardiopulmonary disturbances can already appear during

the earlier metabolic phases such as pressure-driven oxygen uptake in capillaries or relate to

the later oxygen transport phases, such as cellular respiration. Due to the complexity of the

whole aerobic metabolism in our bodies, it is extremely difficult to develop one monitoring

procedure to ensure a reliable run-time evaluation of the “oxygenation” profiles [34].

Spectrophotometry, a concept based on the Labert-Beer´s law, has already been used for

determination of the [𝐻𝑏] in early 1930s [35]. Several invasive and non-invasive techniques

utilize this approach to measure “fractional” or “functional” saturation based on the

hemoglobin type [34]. Especially, oxygenated and deoxygenated hemoglobin differ in their

optical and structural properties, i.e. the oxygenated hemoglobin absorbs more light at the

infrared electromagnetic spectrum and less light in the red spectrum than the deoxygenated

hemoglobin. Pulse Oximetry (𝑆𝑝𝑂2) exploits the concept of light absorbance at different

wavelengths (typically 940 nm and 660nm) and represents the current standard for oxygen

saturation monitoring in both ambulatory and critical care [34], [35]. Pulse oximetric devices

are typically composed of two Light Emitter Diodes (LEDs) alternately emitting in the red and

infrared spectrum [36]. The emitted light passes through various body structures at different

times being absorbed and finally caught by the opposite photodetector [36], [37]. The arrived

signal carries two separate components, AC representing the light absorbance of the pulsatile

arterial blood and DC referring to the absorbance of light by other surrounding structures as

portrayed in Figure 9. The 𝑆𝑝𝑂2 parameter depends on both AC and DC measures examined

at two different wavelengths as mentioned above. Thus, the final 𝑆𝑝𝑂2 value is determined as

ratio of the pulsatile and non-pulsatile component obtained for two different wavelengths:

 𝑆𝑝𝑂2 =
𝐴𝐶660 𝐷𝐶660⁄

𝐴𝐶940 𝐷𝐶940⁄
 (4)

where 660 and 940 correspond to the wavelengths in [𝑛𝑚] [34], [36].

Similar technique used for more accurate oxygen saturation detection is referred to as

reflectance spectrophotometry, which continuously monitors the status of oxygenation inside

20

a blood vessel. However, this technique is highly invasive and merely applicable in conjunction

with an intravascular catheter [34].

1.4.2. Novel physiological parameters

This chapter takes a focus on the novel physiological parameters, which have not fully been

integrated into the most hospital monitoring devices yet, but gained popularity in specialized

clinical studies of surgical patients. These parameters (such as HRV, cumulative time of

hypoxemia or hypotension) may reveal severe adverse effects and organ failures in the

perioperative time periods such as atrial fibrillation [38], respiratory arrests [39] or acute

kidney injury (AKI) [40]. Therefore, their studying and integration to the modern real-time

assessment tools is exceedingly important. This chapter introduces the novel clinical

parameters, reviews their essential metrics and discusses their relevance for the real-time

analysis within the perioperative care.

Heart rate variability

HRV is a measure, closely related to ECG and HR measures, representing the extent of the

heart beat fluctuations in time. Thus, the parameter describes the variations in beat-to-beat (RR)

interval lengths [38]. HRV is a result of highly-adaptive, physiological reactions of organisms,

especially of the cardiovascular system, to abrupt environmental changes influencing the

homeostasis of each individual. A detailed investigation of the HRV parameter within the

 Figure 9. The emitted light of the initial intensity 𝑰𝟎 passes through the different
structures in living tissue ending up with the intensity I. The light is absorbed
during the presence and absence of the pulsatile component differently [37].

21

different physiological setting revealed its non-linear association to other dynamic regulatory

systems, especially autonomous nervous system (ANS) [38], [8]. Thus, HRV is the essential

physiological measure evaluating the “self-regulatory capacity, adaptability, or resilience” of

organisms and helps to predict severe cardiovascular complications such as post-myocardial

infarction or coronary atherosclerosis [8].

In general, there are several measures and notations expressing the HRV in terms of detection

time. There exist long-term (ca. 24h), short-term (ca. 5min) and ultra-short-term (< 5min) HRV

measures belonging to the one of the three analytical approaches [38]:

 Time domain analysis is the simplest approach among those three, providing the

statistical measures derived from variations in RR interval times. The most common

parameters calculated upon a sequence of numerical values are standard deviation of

normal-to-normal (SDNN), the mean of all standard deviations index (SDNNI) and the

root mean square of successive differences (RMSSD) [38], [8]. The word “normal” in

this context relates to the RR interval origin, i.e. those intervals generated by sinoatrial

node are considered as “normal”, whereas the ectopic beats triggered outside the node

are considered as “abnormal” [38]. In addition, HRV triangular index (HTI) belongs to

geometric HRV measures calculating “the integral of the density of the RR interval

histogram divided by its height” [38]. HTI along with RMSSD are strong indicators of

arrhythmia.

Figure 10. (a) Examples of different spectral components extracted from original HRV waveform [8], (b) Poincaré
plot fitted by ellipse consecutively plots two neighboring RR intervals against each other [41].

a b

22

 Frequency domain analysis offers broader analytical insights to the heart beat

variations monitored over a long period of time (long-term HRV). Usually, those

variations are detected as oscillations within a particular frequency range, hence, they

overall frequency spectrum is divided into the four specific frequency bands [8]:

 High frequency (HF) ranging from 0,15 Hz to 0,4 Hz is known as respiratory

arrhythmia band, since it captures variations associated with the normal

respiratory cycle,

 Low frequency (LF) band ranging from 0,04 Hz to 0,15 Hz comprises the

variations triggered by baroreceptors inside the heart and blood vessels,

 Very-low frequency (VLF) range from 0,0033 Hz to 0,04 Hz is related to higher

“all-cause” mortality rates rather than to a specific physiological phenomenon,

 Ultra-low frequency (ULF) band comprises the variations with frequency less

than 0,0033 Hz. “Circadian rhythms, core body temperature, metabolism,

hormones and intrinsic rhythms generated by the heart” are the most influential

contributors within this frequency spectrum [8].

Figure 10a presents an example of an HRV waveform being decomposed into three

individual frequency components. Usually, a power spectral analysis is applied to

visualize the different frequencies against its respective power (or amplitude) [8].

 Non-linear analytics assumes that RR interval variations exhibit a certain amount of

dynamics and have no “fixed period” in time [38]. Thus, the variations neither happen

randomly nor follow an exact repetitive pattern. Those methods account on

unpredictable events resulting from the complex interplay of various regulatory

systems. Thus, they occasionally deliver more accurate predictions and show

correlation to certain time- and frequency domain measures [38]. E.g. A greater non-

linear HRV index is generally associated with cardiovascular mortality and represents

a better risk determinant in respect to patients with cardiovascular disease [41]. A

Poincaré plot is very common graph utilized to capture those non-linear relations. It

plots the RR interval times 𝑅𝑅𝑖 against their predecessors 𝑅𝑅𝑖−1 out of the whole

interval time series and reveals new (normally masked) HRV patterns as stated in [41].

Fitting an ellipse to the transcribed Poincaré plot results in formation of new indices

SD1, SD2 and their ratio SD12 as depicted in Figure 10b.

23

Cumulative time of hypotension

Intraoperative hypotension, as a physiological reaction on homeostatic disturbances, has been

closely associated with acute organ injuries caused by reperfusion of tissues after surgical

intervention [39], [42]. Next, ischemia largely increases the prevalence of those injuries

because it disturbs oxygen supply balance in organic tissues and may actually result in

postoperative myocardial infarction. However, the postoperative AKI is more common [42].

Despite several definitions and indicators about the intraoperative hypotension, there is still a

doubt about how to characterize an optimal measure for evaluation of this phenomenon. One

possibility could be the detection of the lowest MAP (see section 1.4.1, Mean Arterial Pressure)

or measurement of the time periods during hypotension by definition of absolute and relative

MAP thresholds as reported in [42]. Therefore, cumulative times of intraoperative hypotension

may be linked to other postoperative adverse effects, however no clear correlation to their exact

duration times has been evidenced. Cumulative time of MAP can be understood as the duration

in [min], at which the patient´s MAP is less than a specific hypotonic threshold, e.g. for

65mmHg would be the time 𝜏𝑀𝐴𝑃<65 [40], [42].

Cumulative time of desaturation

Similar to intraoperative hypotension, the postoperative desaturation is attributed to severe

clinical complications such as “brain dysfunction, dysrhythmias, and myocardial ischemia”

[39]. Those life-threatening complications may occur independent on type of surgery due to

the low level of oxygen saturation followed by the “respiratory insufficiency” or even

“respiratory arrests”. Moreover, the oxygen saturation is usually recorded manually in irregular

time intervals and at patients waking hours. Therefore, the hypoxemia of patients at rest or

during the sleep is often not recognized. Hence, a continuous, uninterrupted and regular

measurement can reliably detect the times during hypoxemia and advise the nursing personnel

for immediate intervention [39]. Analogous to intraoperative hypotension, cumulative times of

desaturation can be interpreted as periods of time in [min], which are spent by patients below

a specific oxygen saturation value, e.g. 𝑆𝑝𝑂2< 85% corresponds pulse-oximetric saturation

level lower than 85% [39].

24

1.5. Aim of this work

The previous sections discuss the common problems associated with standard patient

monitoring and data acquisition tools used in the modern patient care. A couple of data

acquisition and real-time analysis tools utilized in the modern clinical research are presented.

In spite of numerous attempts to develop a versatile data recording system, there is still no

golden standard tool on the market satisfying the needs of both, the medical and scientific

community. Although many patient monitors applied within the perioperative setting (e.g.

Dräger Infinity® Delta [20] from section 1.3.4) produce a high-resolution data, the data is

rarely used for the consecutive expertise, i.e. no retrospective analysis or scientific data

processing are done. Moreover, calculations of some vital parameters (such as HR or HRV)

lack accuracy or are completely missing. The above-mentioned aspects have a great impact on

the real-time biosignal analysis and the results of studies based on the recorded physiological

data.

This work tries to address the discussed limitations and propose a novel, real-time analysis,

data acquisition tool, VREACT. Our tool facilitates a continuous, high-resolution vital sign

monitoring and recording during the whole perioperative care, i.e. application of anesthetics,

surgery, recovery room and intensive care unit treatment. It supports the anesthetists and

surgeons by multiparametric real-time tracking of biosignals and offers more flexibility in the

visual biosignal presentation. Moreover, it supports the clinical research by providing the

automatic data acquisition on several monitoring devices simultaneously. Finally, the software

is easily extendable, i.e. new software modules can be implemented and easily integrated to

the existing software. Hence, the currently available set of parameters is easily extendable

about the novel parameters, every time.

Beside the scientific analysis, we wish the tool will improve the decision-making processes

made during the perioperative phase and contribute to a better patient-oriented care. What is

more, we seriously handle the functional as well as the non-functional requirements of the

software regarding its usability and portability. The tool should provide a more accurate and

multimodal sample acquisition for multiple patients, simultaneously. By this, the clinicians

should get much more flexibility to analyze the patients of interest by tracking the important

biosignals in real-time and/or by exporting the biosignals for the ensuing clinical research.

25

2. Real-time assessment using VREACT

The previous chapter has introduced several analytical tools suitable for real-time

measurements in the clinical area, especially in anesthesiology and on the ICUs. Since a

continuous and effective biomedical signal analysis can assist the physicians and researchers

with evaluation of the patient´s state of health, a real-time assessment tool must minimize the

user interaction times, support transparency of the software interface and provide more

comprehensive data analysis than the standard monitors actually do. This work proposes an

easily portable recording software called VREACT allowing a deeper analysis of vital signs in

real-time.

The tool was developed at Vienna University of Technology (TU Wien) and successfully

introduced to the clinical routine of anesthesiologists and intensivists in AKH. It consists of

three different modules, namely the Connection management, Patient recorder and Patient

viewer (as thoroughly discussed in Chapter 2.3). The design and evolution of the first two

components (connection management and recorder) are the topics treated by this thesis. The

viewer module, on the other hand, was developed by Fatih Kartal, a college from the equal

field of study, Biomedical Engineering. The whole project was organized by our common

project assistant Florian Thürk, which took a role of the project leader managing the most

important resources of the project.

This chapter describes the design and development process of the VREACT software (with

special regard to the Connection management and Patient recorder module) in more detail and

reveals the technology and heuristics used during the software evolution. Furthermore, it

examines the problems and difficulties coming out during the project and suggests clever

design solutions and implementation methods. Finally, this chapter summarizes the

requirements on the software and presents the results after the software development phase.

2.1. Software design

Before the implementation of the software started, a user domain and system analysis was

performed to familiarize with the requirements of clinicians and with the current software

development techniques guiding programmers to achieve a better software quality in a short

period of time. Furthermore, an application of the structural patterns in the programming phase

26

could minimize the written amount of code and support the readability and understandability

by other developers or programmers touching the software after a long time. Adding new

components as well as applying extra patches on existing modules shouldn´t cause grave issues,

if a system of rules is followed during the whole development process. Several books have

been issued helping developers to solve many problems of early software lifecycle including

the process of software design [43], [44], [45]. Besides the evaluation of architectural and

design patterns suitable for development purposes, the application domain and participating

actors (stakeholders) have to be defined followed by definition and formation of the structure

and workflow diagrams emphasizing the relationships between fundamental application

components.

2.1.1. Stakeholders

Stakeholders play an important role in software projects and include all representatives coming

from different industrial sectors and business areas [46]. Hence, there are several roles and

institutions participating on software projects delivering a solution for a specific user domain.

Each project role put a variety of requirements on the system influencing the construction

process of the software product. E.g. users of the system usually require functions facilitating

their daily routine, the owners and managers of the company prepare a budget needed for the

software development and finally the system administrators call for easy customizability of the

system running in the product environment [46].

In addition, the requests from stakeholders shape the overall design of the system and have a

great impact on its functional and non-functional properties (e.g. “performance and reliability,

memory utilization, extensibility, usability and interoperability with other systems”) [46].

Therefore, requirements coined by the project participants was thoroughly analyzed and

evaluated. Thereafter, a system was proposed and divided into the smaller functional pieces,

such as administrative component (presenting the available care units and patient monitoring

units), sampling loop component (gathering samples of physiological parameters), recording

unit (exporting the samples to persisted files) and patient viewer (visualizing the available

patients´ vital parameters). Those design decisions have been met upon a deeper analysis of

requirements worked out (primarily) from the clinicians, which have also become the main

users of the system.

27

Figure 11 lists the stakeholders participating on the VREACT project. The project was

organized by Vienna University of Technology along with AKH. At the hospital side, a senior

doctor from department of anesthesiology took over a role of the project lead gathering the

requirements from other medical specialists, especially other surgeons and anesthesiologists.

The nurses and students were also potential users of the developed software. On the university

side, the project lead engineer helped programmers to derive and clarify tasks resulting from

the requirements. What is more, both project leaders kept regular meetings to discuss the

project key parameters and features being implemented by programmers in the next time. Since

the physiological data primarily originated from perioperative patients hospitalized for a

surgical intervention, particular declarations of consent had to be obtained before the recording

procedure. The software was developed by two students coming from biomedical engineering

discipline split to the two independent sections organized as two master thesis projects. The

third (medical) student conducted a research study using the data visualized and recorded by

our software implementation of VREACT. Thus, he operated as a software tester and

verification engineer as well.

2.1.2. UML Use Case diagram

Use case diagrams usually offer an overview of the application domain and demonstrate

possible interactions between the users and the systems [47], [48]. The diagrams highlight the

Figure 11. List of stakeholders participating on the development of VREACT. The project leader {engineer} absolved
regular meetings with project leader {clinician} where the system requirements have been formulated. The
requirements have been collected from other clinicians and students performing clinical research. The physiological
data sampled from monitoring units was acquired after patients´ agreement. The Student {engineer} proposed and
developed solutions to fulfill project leaders´ requirements.

28

most important situations which may happen during the user interaction with the system. Even

the best IT professionals recommend this modelling method as an addition to the textual

definition of the requirements [47]. Use case diagrams merely portray the behavior of a system

from the functional point of view, hiding specific details about complex structures and

technologies integrated in the system. Thereby, the “goals”, “scenarios” as well as the primary

“scope” of the system can be constantly followed by different roles and organizations during

the project to avoid confusions and to encourage discussions about the evolved system [47],

[48].

Unified Modeling Language (UML) defines the descriptive notation of modeling components

crucial for formation of the use case diagrams. The most important model elements in UML

use case diagrams are the system, actors, use cases and associations as described in [47], [48]:

 A system represents a collection of related use cases or actions being implemented

under a specific scope. Usually, it is modelled as a rectangle with solid borders

including one or more use cases related to the intended functionality.

 An actor “is a person, organization, local process (e.g., system clock), or external

system that plays a role in one or more interactions with your system” [48]. Usually, an

actor is visualized as a sticky figure outside the system.

 A use case represents a self-contained list of activities being performed to achieve a

measurable and visible output for the actor. It is represented by a concise text

surrounded by a solid-line ellipse usually placed within a system box.

 An association represents a defined relationship between two actors, two use cases or

an actor and a use case. It mostly specifies allowed interactions, i.e. which actor is

permitted to perform which action or denotes the generalization concept between actors

and use cases.

Figure 12 presents the use case diagram of VREACT system. On the left side of the diagram,

two main human actors of the system are described, a clinician and a scientist. Normally, a

clinician wants to have a look at the currently available beds and the biomedical signals

available for the particular bed. Therefore, a simple list over all available monitors (and

patients) within a particular care unit must be presented first. In addition, the software must

inform the user about the status of connection after each connection attempt. Since another

actor, Gateway Server is requested to establish connections to the correct beds, a couple of use

cases (e.g. connect to beds, list beds, refresh bed list, etc.) need both, a user interaction and

29

system respond as described in the Figure 12. Moreover, the system must list all the beds

registered on the server and let the user select only the beds, he is interested in.

At the bottom of the diagram, two central components supporting the real-time analysis of the

biomedical data are presented, the viewer and the recorder. The viewer must include a clear

and concise list of all available biomedical signals for a given bed. The user must get the

possibility to open a plot window, select one or more biomedical parameters and track them as

continuous graphs or constantly changing numbers in real time. In contrast, the recorder must

fetch new physiological samples from the Infinity® Delta Monitors in a continuous manner

and persist the information without any gaps on a local machine. These two components must

be run independently, i.e. the user can either record samples, view signals or perform both

Figure 12. The UML Use Case diagram of VREACT portraying the initial design of the system. The software was
designed to manage the connection to one or more beds (or patient monitors) simultaneously, to record and to
view the biomedical signals fetched from the selected Infinity Delta monitors. Furthermore, the user is able to
refresh the list of beds, view a license info as well as to determine the starting and end point of signal recording.

30

actions simultaneously. Conclusively, the system should be very flexible including all features

needed for real-time analysis in the biomedical field. Similarly, it shouldn´t constrain the user

to accomplish his analytical tasks and orders without others´ help or additional support.

2.1.3. Workflow diagram

Previous sections introduced the most essential roles of the project and several feature

requirements put on our real-time assessment tool, VREACT. The imperative requirements

have been defined and summarized, several use case scenarios were tested bringing us to the

diagram as specified in Figure 12. Unfortunately, a use case diagram doesn´t map the

chronological aspect of user interaction focusing merely on functional views of the system.

What is more, the stakeholders are usually coming from different sectors and business areas.

Therefore, we need a clear modeling method which provides a good understanding of all

participants about the project´s scope and of course, the technology fulfilling the requirements

and specifics of the particular business sector.

Business Process Modeling (BPM) is a broad discipline often applied during the early software

development phases [49], [50]. It is primarily used to design workflows of different

organizations supporting the analysts to identify the most important steps within a business

process. Second, BPM should encourage the optimization and implementation of the whole

business process. A result of the modeling is normally a rigorous flowchart consisted of several

model elements (e.g. blocks and transitions) resembling the procedural (step-by-step)

programming approach [49]. Data flow approach “outlines the flow of the activities in the

model” [50] and is the most commonly used technique utilizing the text and visual graphics at

once.

Figure 13 presents the flowchart diagram portraying the workflows of clinicians performing a

real-time analysis using VREACT. After starting the software, a connection to a server is

automatically established and the list of currently available beds is retrieved. Subsequently, the

user selects one or more beds to connect getting an immediate feedback about the success of

the connection for each single bed. If no bed is present, the user may register a new bed on the

server and then refresh the list of available beds. All the registered monitors being online should

then appear in the list. If the connection to the monitors succeeds, the software starts sampling,

i.e. retrieving the biomedical samples from the connected beds. The samples are stored (at

31

least) in a short-term buffer, which is the main resource for the constant visual presentation and

the biomedical recording of physiological values. After the user finishes the above-mentioned

operations, he simply disconnects from the recorded beds and the program can be closed.

Since the core functionality of the software is associated with the recording and visualization

of biomedical parameters, the special attention to these processes must be paid. Generally, the

user has an option to open a plot window for any bed, getting an overview about the signals

which are actually sampled and presented on the given patient monitor. He merely selects the

signals of interests and starts the signal visualization for some time. Simultaneously, the user

can record samples for any bed of choice. Thus, the software exports the samples to a specific

file which might be imported and processed by another software environment (e.g. MATLAB).

In both cases, the user takes a control over the processes and must terminate the procedures

after finishing his analysis.

2.1.4. UML Class diagram

Class diagrams enable a structural view of the system and belong to the best formal modeling

methods in area of conceptual analysis [51], [52]. They are often used in the object-oriented

programming world to clarify relationships, structure and behavior of instances living within a

certain domain. Each instance follows a recipe or a template being used for its construction.

Figure 13. BPM flowchart illustrating the workflows of physicians and scientists using our clinical software VREACT.
The software (SW) retrieves the available beds on the server to which the user might connect. After successful
connection to one or more bed monitors, the user can record and/or view the biomedical signals for the given patients.
After the real-time analysis is finished, the beds are disconnected and the software is closed.

32

Those templates are known as classes [52]. Moreover, the classes specify the attributes, i.e.

the static properties of instances as well as their operations, i.e. functional units stashing a

certain logic behind a precise single-row definition. Since a great majority of the classes

represent objects of real world, the class diagrams describe relationships between them in an

intuitive way. Thus, all usual UML concepts such as “associations, aggregation, composition,

dependencies, inheritance, and realizations” [52] are applicable for modelling a system

structure with classes.

Similar to other software modeling techniques, the class diagrams utilize several model

elements worthy to mention. The classes are normally modelled as solid-line rectangles divided

into the (at least) three separate parts. The first section describes the class name, whereas the

second encompasses all class and object specific attributes. The last section lists the operations

modifying the object states. The “interactions” between the classes define their mutual

relationship and are visualized by solid lines traveling from one class boundary towards the

other one [53]. Adding arrows to the specific line positions usually defines the direction of

communication, i.e. the relationship can be limited to “one class uses the other” (unidirectional

relationship) or “both classes correlate with each other” (bidirectional relationship). Finally,

the multiplicities (small numbers near the line arrows) determine the number of instances (of

class A) being in relation to other instances (of class B). Usually, they are specified as numeric

intervals (e.g. “0. .2”, “1. .∗”) to restrict the actual number of instances existing in the same

time. Those numbers are positioned near the second class in the reading direction, i.e. the class

to which the arrows points [52], [53].

Figure 14a-b illustrates the UML class diagram of VREACT´s connection management and

recorder part. Hereby, the most important classes represent WvAPIConnection and

LoopManager, since they both maintain connections to the patient monitors by using specific

WvAPI function calls. If the connection succeeds, the user interacts with the main panel

(MainWindow class), which in turn delegates his queries to the WvController keeping the event

handling logic. The controller modifies the state of WvAPIConnection model and waits for

notifications from the model. If some notification arrives, the controller executes the

corresponding logic and informs the view component (MainWindow class), if the model

haven´t done so, yet. This programming approach is very powerful and commonly used as the

Model-View-Controller (MVC) pattern [54]. For more reading, see the section in 2.1.5, MVC

pattern.

33

34

Figure 14a-b. The UML class diagram (part 1 and 2) depicting the basic structure of VREACT including the classes
(instances) and their possible communication paths (relationships). Each class belongs to a package (which keeps
logically similar classes) written before the class name. The multiplicities (small numbers) limit the number of
instances communicating with each other using a particular path (line). The black arrow placed next to the line
gives the reading direction of the text specifying the respective communication path.

35

Beyond the connection procedure, which is primarily managed by classes designed according

to the MVC pattern, there must be a way for getting new samples from the monitors in a

periodic manner. A LoopManager instance may exist only for a single BedEntity instance. The

class covers the central functionality for signal detection and sample storage. Its instances

facilitate the detection of biomedical signals, retrieve the physiological samples and persist the

corresponding samples on the underlying local machine. The lifecycle of the LoopManager

instances is managed by the WvController, which controls the whole sampling process. In

addition, the LoopManager instances constantly add new physiological samples to the pertinent

biosignal buffers (BioSignal class) and transport data throughout application tiers by using

data transfer objects (DTOs) [55]. The DTOs are objects storing data, which is passed either

through different processes or application tiers. Our class diagram presents three different DTO

object classes:

 BedEntity instances carry the information about the connected bed such as patient and

care unit name, patient ID, bed connection ID, list of available vital parameters, etc.

 WaveEntity instances store the information about the vital parameters available as

sample sequences, i.e. waves. They also keep a detailed information about the sampling

rate and timestamps specifying the number of samples and times of their recording.

 VSignEntity instances carry a single vital sign value sampled at the particular

timestamp. They also store the information about the vital sign name and measuring

units needed for plots (or files), to which the data is sent and visualized (or stored).

2.1.5. Design patterns

Over many years, tones of successful software applications enjoyed a broad acceptance

throughout the heterogeneity of industrial sectors. Long-time experiences of many project

leaders and engineers have demonstrated useful approaches contributing to a better software

quality and a solubility of dozens technical problems [43]. These effective methodologies have

gradually evolved to powerful tools inevitable for modern programming praxis and are known

as ”patterns”[43]. Design patterns represent a majority of them and solve repetitive problems

emerging during the conception of the software design [54]. They provide practical templates

guiding engineers to identify possible implementation defects and propose concrete solutions

across several application domains. The following sections focus on the most important design

patterns applied during the software design and development phase of VREACT. A short

summary about the advantages and disadvantages of those patterns is also given.

36

MVC pattern

The MVC pattern gives an elegant solution for separation of the UI from the underlying logic

[54], [55]. Its use goes back into the 1970s, when a first MVC framework was developed.

Using this pattern, the application´s backbone consists of (at least) three smaller object groups:

 a model, which represents an object operating on the data,

 a view with the aim to graphically present the data after processing,

 a controller managing the communication between the model and the view.

Figure 15 depicts the roles of the individual MVC components and describes the relations to

each other. The model contains the domain data providing various operations in dependence

on the character of business. Those operations are triggered by the controller (or the view),

which typically receives and verifies the user input. After that, the input data is passed to the

model for processing. The view waits for the output data and forces updates on different UI

widgets (e.g. tables, lists, labels etc.) [54], [55]. Conclusively, there are two important

separations achieved using the MVC approach: (1) the separation of the model from the view

and (2) the separation of the view from the controller [55].

In case of VREACT, the core application components have been designed according to the

MVC pattern as follows:

 WvController class enjoys the properties of a typical controller depicted in Figure 15.

Its implementation includes two important pointers referencing the model and the view.

Since the controller object is already associated with the view during its instantiation,

the information about the bed availability is presented to the UI in a timely manner.

Thereafter, the controller is prepared to take any inputs from the view or send updates

to it, if necessary. Figure 14b demonstrates the structure of the WvController. The class

provides an access to the most important components of the application: the recording

and visual presentation of the biomedical signals. In addition, it implements a simple

error messaging system informing users about restrictions and failures occurring during

the real-time analysis.

 MainWindow class (Figure 14a) is the starting window of the application. According to

the MVC methodology (Figure 15), the class is considered as a view, since it specifies

the UI widgets and their layout on the screen. It is derived from the QMainWindow

class which provides an additional framework-specific code to it. MainWindow

instance contains important UI widgets like buttons, lists and bars utilized for a user

37

interaction. Since the cross-platform application framework from QT has been used for

implementation of the UI, various features enhanced the visual presentation of the UI

components and improved the communication between various application modules

(such as Signal & Slot mechanism [56]).

 WvAPIConnection class (Figure 14b) defines the model of our MVC. It provides the

connection to the server, which in turn maintains the connections to the individual bed

monitors. Furthermore, it creates and updates the list of available bed monitors being

accessed from the user. The state of the model is constantly changing, since the

information about the connections and monitors is highly dynamic. WvAPIConnection

can occasionally throw WvAPIException objects in case of errors. After an error

message is created, it is sent to the controller, formatted and presented in the UI.

Observer pattern

The Observer pattern belongs to other popular patterns solving the “one-to-many” object

communication problems [44]. It focuses on objects (subjects), changes of which affect other

objects (observers, listeners) reacting on these modifications. Usually, a subject has several

observers being automatically notified if the state of the subject changes. Therefore, the

subjects don´t necessarily need to know about its observers, i.e. they merely send information

about the particular changes to all subscribers waiting for any kind of observer´s notification

[44].

This pattern is commonly applied along with other design patterns, such as MVC pattern [44].

Figure 15. Model-View-Controller (MVC) pattern involves at least three individual components interacting
to each other. The model controls the data, the controller handles the user inputs and reacts on changes
in model. The view updates the UI after the model state is changed [55].

38

It efficiently solves the problems with fast updates of different UI components and drastically

reduces the coupling between the UI and business logic. Moreover, several implementations

of the graphical UI can be run without a need to reimplement the underlying model [44], [55].

Figure 16 presents some classes of VREACT designed according to the Observer pattern.

Besides the list of available monitoring devices, WvAPIConnection maintains a vector of

observers being registered by the addObserver() method. Whenever the status of the object

changes, the function notifyObservers() triggers updates on all “concrete” observers including

the WvController and the MainWindow. Thus, the WvController changes its internal state and

notifies further external modules belonging to the recorder or the viewer part (see Figure 12).

Analogously, the UI object MainWindow retrieves new data from the model and triggers

updates on other UI widgets ensuring the consistency of the presented content.

DTO pattern

The Data Transfer Object (DTO) pattern solves the problem of passing objects throughout

different structure layers and processes in applications [55], [57]. It allows a consistent transfer

of data being sent throughout various application modules using only one single call. A DTO

represents a container, which stores the domain specific data missing any additional logic,

which could otherwise modify the state of the DTO. The Observer pattern helps to bundle the

associated data and to reduce coupling between the different application layers [57]. Finally, it

optimizes the number of calls and the size of formal parameter lists [55], which might

negatively influence the code complexity and its readability.

Figure 16. VREACT classes participating on the communication between the model and the view according to the
Observer pattern. WvAPIConnection keeps the status of the server connection and the bed availability. Therefore, it
represents the subject. In comparison, WvController and MainWindow performs specific updates based on the
model´s state. They are seen as observers.

39

Figure 14 presents three DTO classes transferring a bed specific (BedEntity) and patient related

(WaveEntity, VSignEntity) information throughout different layers of application. The classic

3-tier architecture was applied [54]. Each individual patient monitor in hospital provides

information about the network connection, care unit and physiological data of patient being

monitored. Since this information is extremely important for the user, the data must be

transferred to the UI in a consistent and efficient way. For example, the BedEntity instances

focus on the most critical data required for identification of patient monitors across different

care units (Figure 17a). The remaining DTOs, WaveEntity and VSignEntity, transport the

physiological information of hospitalized patients. Moreover, they serve as temporary buffers

storing the recorded samples and transport samples to the global biosignal buffer (WvData).

Since the pattern is very powerful if using a rather smaller amount of domain entities [57], its

positive effects on the application structure were immediately evident.

Singleton pattern

The Singleton pattern allows the existence of only one instance of the same class at the same

time [44]. In comparison to others, the instance can be accessed globally, i.e. from any program

location. However, programmers have to be careful if they use Singletons in multi-threaded

applications [55]. Since VREACT is built as a multithreaded application, i.e. various code

sequences can basically be executed in parallel [58], the usage of singletons is restricted to

minimum implementing only the WvAPIConnection class maintaining the access to the server.

Figure 17b presents the exact implementation of the WvAPIConnection having the typical

Singleton class features. The private constructors and destructors prevent any repetitive object

Figure 17. (a) BedEntity represents the most frequently used DTO in VREACT. It transports data about the
connected bed such as connection ID, bed label, patient ID and the currently available connection status. (b)
WvAPIConnection was implemented as Singleton having a private constructor, copy constructor and destructor
(in bold). This prevents the object instantiation and destruction from outside of the class. The instance can only be
access using a static method “getInstance()”.

a b

a

40

construction or destruction. The static method getInstance() provides a global access to the

singleton instance passing its reference to the caller. The instance is created during the program

start and has a role of the model. Since it is merely accessed from the main thread of the

program, no synchronization code was required.

Summary

In general, design patterns definitely contributed to a better code quality and offered effective

instruments to solve serious design problems during the early software development phase.

Furthermore, they simplified sharing of the global application resources and introduced useful

functions for UI synchronization. Next, they facilitated the extensibility of the existing modules

and enabled the exchangeability of application code, i.e. the UI layer code can be easily

exchanged any time without touching the underlying logic. Finally, the application of patterns

improved the speed and the consistency of the data transfer throughout the application tiers and

raised the cohesion of the transported data. Conclusively, the effort put into the studying and

realization of the design patterns was profitable.

2.2. System implementation

The previous chapter presents the crucial design methods applied before and during the

development of the software. In addition, it takes a focus on several design and modelling

techniques reflecting the software structure and its functionality. Finally, it briefly reports about

the project environment, supported clinical workflows as well as code design techniques

facilitating the product implementation and its future application. By this, the chapter

summarizes all methods and techniques contributing to a better software quality and software

extensibility for other features implemented in the future.

In contrast, this chapter presents the technology used for the development of the software. It

primarily focuses on the tools and technical environments necessary to accomplish the most

challenging programming tasks. As a next, the operation of the proprietary hospital´s

environment acting as underlying platform for the software application, is thoroughly

discussed. Infinity® Gateway Developer’s Tools from Dräger [59] offer important instruments

and standards for communication between the proprietary hospital networks and other third-

party applications. Along with the common 3-tier application structure, they produce other

41

important topics for discussion in this chapter. Finally, the chapter introduces the concept of

multithreading being crucial for the biomedical signal acquisition and recording procedure.

2.2.1. Technology

At the very beginning of the project, there was a deeper discussion about the technologies and

tools being relevant for a realization of the real-time analysis tool, VREACT. Generally, two

programming languages came into question: (1) MATLAB and (2) C++ language [60]. Both

languages are high-level programming languages, however there are some essential differences

worthy to mention. MATLAB scripts are parsed directly on an interpreter, whereas C++ code

must be translated into the machine code before it´s executed. This seems to be a plus for

MATLAB missing the time-consuming compiling process. However, larger projects require

storing code in MATLAB proprietary .m file format limiting the speed of the interpreter. This

is a common issue if using several loops in systems performing demanding real-time operations

[60].

The next problem of MATLAB programs is their portability. Since MATLAB code must be

translated into the C code before the deployment on target machines can start, C/C++ code is

highly portable on different platforms bypassing additional installation of interpreters and

another runtime environment. C also gained its popularity due to the availability of built-in

compilers in processors of various brands [60]. Although the proprietary programming

environment of MATLAB is highly optimized for rapid prototyping in its pertinent

programming language, many external C++ frameworks were improved (especially in the last

decades) and offer convenient programming in C++. One of the most popular C++ frameworks

is definitely QT application framework, which is a cross-platform and (partially) free

environment offering many profitable features extending the standard libraries of C++ [54].

VREACT was primarily developed for the patient monitoring devices used in the AKH. Since

all those biomedical appliances have been distributed from Dräger company [21], which in

turn introduced its own proprietary network and tools, the license for Infinity® Gateway

Developer’s Tools must be obtained first. These tools actually grant an access to a variety of

medical information. By using their application programming interfaces (APIs), other external

C and C++ applications access information hosted on the proprietary network. The above-

mentioned criterions favor the selection of C++ programming language, i.e. the whole project

was developed in this programming language.

42

The technology stack used during the development of VREACT was extended by:

 QT framework. QT framework represents a mature framework proved by the industry

over 20 years. It facilitates the development of cross-platform desktop applications and

is often a choice for engineers developing in the “in-vehicle, medical and industrial

automation” context [61].

 VirtualBox. Virtual box is the “cross-platform virtualization platform” [62]. It is

usually installed as a classical desktop application supporting various AMD or Intel-

based computers irrespective of theirs running operating system. What is more, it is

able to run multiple operating systems different to the host operating system, i.e. the

system which physically runs on the computer. Since the Infinity® Gateway Server as

a part of the Infinity® Network operates on the Windows Server 2008 R2 platform [59],

VirtualBox is a perfect choice to easily install and switch to the platform during the

development and deployment of the software [62].

 GitLab. GitLab is a universal project management platform including a powerful

version control system Git. It facilitates the process of code sharing by managing the

existing Git repositories, supporting testers and project leaders to track issues and

automates the code integration and delivery. For programmers, it provides a simple

access to the codebase any time at any place. In our project, this feature was used to

keep our code secure and ready for immediate download, review or supervision [63].

2.2.2. Infinity® Network

Infinity® Gateway Suite provides a simple access to biomedical information in hospitals and

facilitates the exchange of physiological data being recorded during the patient monitoring

periods. It includes the above mentioned licensed Infinity® Gateway Developer’s Tools

delivering libraries necessary for access to the proprietary Infinity® networks [59]. Infinity®

network contains several patient monitoring and signal recording devices being grouped to a

particular care unit or another organizational entity [64]. In contrast, the standard hospital

network grants an access to administrative data of patients, diagnostic reports, electronic

medical records, disparate billing systems etc. The particular data is usually retrieved from one

of many software solutions being integrated into the single clinical system [65].

Figure 18 illustrates how those existing networks interoperate. The hospital network provides

an access to the administrative data as well as the medical record of patients. Once any

43

information about the patient must be sent to an Infinity® Network device, the host sending the

data is authenticated by Infinity® Gateway Server, which acts as an intermediary component

routing the data to the target device. The same occurs in the opposite way, if any biomedical

data recorded by an Infinity® device need to be transferred to an external device or application.

In case of VREACT, the ideal location for the software deployment is any runtime environment

inside the Infinity® Network. This simple strategy resulted in the configuration of the Windows

Server 2008 R2 platform, where the Gateway Server was installed. Next, the application was

moved and executed on the same platform as the Gateway Server, i.e. Windows Server 2008

R2. The whole computer environment was configured for the existing Infinity® Network in

anesthesiology department, where the patient monitors were located.

After the above-mentioned configuration of the server and application environment, the

application was finally able to communicate with the Infinity® Gateway Server and was able

to obtain the physiological data from monitors in network. The whole communication

procedure between the server and the application was actually realized by specifying special

API queries by using the central C/C++ library from Dräger, WvAPI. This library found in the

Infinity® Gateway Developer’s Tools is the next topic of our discussion.

Figure 18. The relationship between the Dräger´s Infinity® Network and existing hospital network. The Infinity®
Gateway server enables the exchange of administrative and/or physiological data between both networks. VREACT
performs a real-time assessment, high resolution parameter analysis based on patient monitors active on Infinity®
Network. The Gateway server enables the connection to any device of the Infinity® Network.

44

2.2.3. Dynamic linking

Dynamic libraries represent files, which contain special functions utilized by other custom

applications. Normally, those files are loaded later, during the application runtime [66]. They

provide necessary implementations distributed to other third-party developers, which may

incorporate the files into their evolved software application. The names used for the libraries

slightly differ from platform to platform. E.g. on Windows, which is also the underlying

platform of VREACT, the notion Dynamic Link Library (DLL) with the same file extension

.dll is common. Microsoft defines a DLL as “a module that contains functions and data that

can be used by another module (application or DLL)” [67].

Figure 19 depicts the process of the DLL file distribution. Although a DLL is linked to another

module at the compile time of the application, it is not loaded until any of its functions is

required. That means, the DLL being linked to the compiled application must be available

during the whole application run. If the DLL depends on other libraries, those libraries must

be loaded at runtime as well [66]. After successful linking, the library cannot be exchanged by

another version of library or be moved somewhere else, since the DLL search path became

invalid. DLL sharing is easy and efficient. It enables integration of the same functionality into

more than one application without foregoing compilation. Finally, DLLs bring advantages

against static libraries in the memory management, caching and file replaceability [66].

WinView Application Programming Interface (WvAPI) is the most important DLL used for a

standardized access of biomedical data hosted on the Infinity® Network. It is a C library

distributed within the Infinity® Gateway Developer’s Tools [59]. It provides access to the

physiological patient data such as “demographics, parameters, alarms, and waveforms”.

Furthermore, it offers other useful functions like WvStart, WvStop, WvConnect and

WvDisconnect needed for proper connection to the Gateway server and other monitoring

devices. The DLL functions are implemented as prototypes in the WvAPI C++ header file,

which must merely be incorporated into the existing QT application template.

After studying the technology and the Infinity® Network architecture, the embedding of DLLs

to applications built within the QT framework was considered. In general, three separate files

having the same name (WvAPI) and different file extensions (.h, .lib, .dll) were provided.

Hence, two different ways of linking were possible [68]:

45

 Load-time dynamic linking requires the import library (.lib) containing information

about how to link a DLL to its target application,

 Run-time dynamic linking omits the import library by using other helper functions.

Those helpers fetch the addresses of the DLL functions, which are loaded at runtime.

Infinity Gateway Developer’s Tools deliver both a WvAPI.dll and a WvAPI.lib file. Therefore,

the load-time dynamic linking approach was followed.

Next, the Dräger libraries had to be linked to the QT Widget Application template. The whole

procedure was achieved by following the QT documentation about the shared libraries [69].

Thus, the following steps were necessary:

1. The header file of the dynamic-link library (WvAPI.h) was moved into the source

code directory. Then, it was included to other header files (of the WvAPIConnection

and LoopManager class).

2. The library file of the dynamic-link library (WvAPI.lib) was moved into the source

code directory Libraries.

3. The dynamically linked library (WvAPI.dll) was moved into the build directory of

the project, since the application´s executable file (which is created there) must find

and load the corresponding DLL at runtime.

4. The other dynamically linked library files (WvSvc.dll, IGAcsMsg.dll,

Wvresources_**.dll) acting as dependencies of the WvAPI.dll were moved into the

same directory, where the executable and WvAPI.dll files are located.

5. The directories containing the header (.h) and the library (.lib) files were registered

in the project file. The QT project file (.pro, .pri) keeps the build-specific

Figure 19. Dynamic libraries as special functional modules are linked to the application as soon as it
is compiled. They have to be distributed with the application, since their content is not explicitly
embedded into the application executable. They are loaded later at application runtime [66].

46

information of the project including the resources and other platform-specific

instructions [70]. The project file of the application part (not the viewer part) can

be viewed in appendix below.

6. After inclusion of the files´ directory, the header (.h) and library (.lib) files were

registered in sections “HEADERS” and “LIBS” of the project file, respectively.

7. The remaining library files (WvAPI.lib, WvScv.lib, IGAcsMsg.lib) were then

registered in the project file using the compiler specific variable “LIBS” as well.

Special attention was paid to the prefix “-l” before names of linked files.

8. In the last step, the application was rebuilt and run within the linked libraries.

At the very end of this procedure, the fundamental application structure containing all

necessary tools was given. Now, the application utilized the framework specific code as well

as the functions specified in the integrated library. Before any of the application specific

features was developed, the application as a whole was split into three (logically different)

tiers. The next section describes this strategical decision and its advantages.

2.2.4. Application tier structure

The section 2.1.5 introduced the design patterns as powerful means, which produce effective

solutions for smaller architectural problems and affect certain classes in a local context [54].

However, the implementation of a larger software requires a definition of the global policies,

which are followed during the whole development process. Presence of the large software

applications and complex “domain logic” largely contributed to the formation of application

layers (or tiers) [43], [71]. Since VREACT will provide transparent graphical interface for the

biomedical signal visualization and simultaneously perform demanding operations on a large

physiological data, the three-tier architecture would imply the best architectural solution for

the tier decomposition [71].

Three-tier architecture represents the most common layer decomposition approach splitting

the system into the presentation, domain (business), data access constituents [54], [71]. Each

constituent (called as tier) contains classes accomplishing their specific jobs such as visual

presentation of data, data storage or data processing procedure. Our application takes advantage

of this architectural model in order to increase transparency of intermodular communication,

enable code exchangeability and finally reduce internal coupling [54], [71].

47

Figure 20 depicts the result of the decomposition getting three separate tiers. Controllers were

implemented according to the MVC pattern as described in the section 2.1.5. They define

essential interfaces specifying the contract between the presentation and business layer.

Analogously, the WvAPI library implements a bridge to the data access layer (Infinity®

Network layer) containing the resources of interest (e.g. Gateway Server, patient monitors etc.).

The entity objects (BedEntity, WaveEntity, VSignEntity) transferred across the layers doesn´t

necessarily belong to any of the layers, i.e. they primarily encapsulate the monitor specific

information and transfer biological samples and other metainformation from the Infinity®

Network up to the presentation layer. The remaining classes were assigned to one of the tiers

as defined in [71].

The presentation layer concerns with the visualization of data on the screen [54]. Therefore, it

is made up of classes, which represent the graphical part of the application such as

MainWindow, InfoWindow, PlotWindow and other message boxes. Those classes specify other

widgets and their properties related to the structure, size and layout within the containing

window. E.g. The plotting rectangle can be set for presentation of biomedical information on

Figure 20. The 3-tier architecture of the software after the implementation. The presentation layer
focuses on the visual presentation of beds, notifications and visualization of biosignals. The
business layer houses the buffer of biosignals, further processing algorithms as well as the
sampling loop for biosignals. The Infinity network has a role of the data access layer managing the
resources critical for the high-resolution, real-time analysis.

48

the screen. Furthermore, the QT Framework offers several graphical widgets like

QTreeWidget, QStatusBar, QMenuBar, QPushButton, being useful in UI programming.

Finally, there are further classes being necessary for communication between the widgets or

widgets and other controller classes. In this case, QT proprietary concepts such as Signals and

Slots mechanism were employed [56].

The domain (business) layer houses the processing algorithms operating on the domain specific

data [71]. The layer also maintains the communication between the outermost (presentation)

and the innermost (data access) using strong-typed interfaces. The classes here store

information about the connection status of various monitoring devices (WvAPIConnection),

fetch, process and store the biomedical samples returned from monitors (LoopManager) or

temporarily fill buffers with new biological samples (Biosignal). Moreover, there are further

classes derived from Biosignal calculating physiological parameters such as HR, HRV or

evaluating the experimental data using Fourier analysis. Finally, the standard exception

concept (WvAPIException along with MessageBoxFormatter) of error handling was employed

in order to present the failure specific notifications coming from the Infinity® Gateway Server.

The data access layer covers the topics of data encapsulation and persistence [54]. It contains

classes providing external (API-specific) and internal operations used for the access to the

Infinity® Network resources. The external part of the data access layer is represented by the

libraries from Infinity® Gateway Developer’s Tools, especially by the WvAPI library, which

can be seen as the entrance door to the Infinity® Gateway Server. In contrast, the internal part

includes other dependencies and functions being managed by the server itself. Next, the server

maintains connections to the monitoring devices and cares for secure transfers of biomedical

data from the monitors to the third-party applications. The necessity of a proper server

configuration is therefore crucial, otherwise no monitors and biosignals could be obtained.

2.2.5. Multithreading

Multi-threaded applications parallelize the execution of instructions by using several threads

[72]. Usually, an application requires at least one single thread, i.e. “a single stream of

instructions” [72] to be started. A single-threaded application executes their instructions (tasks)

by using a strict sequence order. That means, the task 2 can only be executed, if the task 1

finished. This way of program flow is illustrated in Figure 21a.

49

Multi-threading mechanism introduces more threads running simultaneously. Basically, there

is a “primary (main) thread”, which is created by the underlying operating system during the

application start. Then, the program starts additional (“secondary”) threads at certain places in

code defined by programmers. Depending on the application runtime environment, the tasks

are executed in parallel on systems with multiple integrated processors [73]. Figure 21b

demonstrates the completion of three tasks running in different threads. The task1, task2 and

task3 are normally assigned to different processor cores running the instructions at the same

time [72]. If fewer processor cores were available, their built-in schedulers would regulate the

reserved processor times of threads, i.e. each single thread would get a while to operate on its

particular processor core. Therefore, a certain parallelism degree is still given [73].

QT framework offers its own multi-threading concept and allows outsourcing the CPU-

intensive operations to separate threads [74]. VREACT should keep its UI components

responsive to the user. Thus, the demanding operations such as sampling and real-time plotting

of biosignals may negatively influence the UI responsiveness and let the application freeze.

Therefore, those operations need to be run in their own threads.

QThread class represents the central component of multithreading in QT [74]. Usually, a

custom class extends the QThread class, i.e. the programmers may reimplement the logic in

the thread´s specific function run(). Conclusively, the framework executes the code

implemented in the function by using a new thread. Another approach for running new threads

a b

Figure 21. Possible program flows in (a) single-threaded and (b) multi-threaded applications [72]. The tasks in single-
threaded applications can only be finished in a sequence order, whereas the tasks in the multi-threaded applications
can be executed in parallel.

50

// Create the timer and the central buffer for the sampling loop
p_timer = new QTimer(this);
p_buffer = new WvData();

// Create a new thread instance and move the ‘worker’ instance to it

p_loopThread = new QThread();
this->moveToThread(p_loopThread);

// Connect timer to the sampling loop function
connect(p_timer, SIGNAL(timeout()), this, SLOT(slot_getSamples()));

// Notify the ‘controller’ to perform the necessary clean up.
connect(this, SIGNAL(stopLoop(std::shared_ptr<BedEntity>)),
p_controller, SLOT(slot_stopBedLoop(std::shared_ptr<BedEntity>)));

// Initialize the sampling loop, if the thread is started

connect(p_loopThread, SIGNAL(started()), this, SLOT(slot_startThread()));

// Terminate the sampling loop, if the thread is finished
connect(p_loopThread, SIGNAL(finished()), this, SLOT(slot_stopThread()));

Figure 22. The implementation of the ‚LoopManager’ constructor. This class represents the signal sampling loop
for one single bed entity. The timer determines the sampling frequency, the buffer stores the references to the
stored biosignals. Since each ‘LoopManager’ instance performs demanding operations in respect to the central
sampling loop, the instances are moved to their own threads managing their own resources.

is known as “worker model” [74]. A worker represents a special object with the QOBJECT

macro keeping the code for the new thread. Figure 22 presents an example of a worker class,

the LoopManager. The code snippet stems from the constructor of this class. LoopManager

implements the logic of sample retrieval and buffering, i.e. the samples are pulled from the

already connected patient monitors and temporarily stored in the versatile memory (RAM). It

is also responsible for sample export to a .csv file as thoroughly described in section 2.3.2.

Although the instances of LoopManager are created in the primary thread, they are

immediately moved to their own secondary threads. The pointer to the QThread instances are

defined as their instance variables. After starting the secondary thread, the function

startThread() is executed, initializing the central sampling component for the particular patient

monitor. Analogously, the sampling loop is stopped after stopping the corresponding thread of

the instance. If any problem with the connection occurs, the WvController (a controller instance

according to the MVC pattern as discussed in section 2.1.5) is requested to terminate the

sampling loop by using slot_stopBedLoop() function. Conclusively, WvController keeps the

control over all sampling loops running their separate threads.

2.3. User Interface

The previous section examined the most important technical concepts employed by the

application programming. It introduced the entire technology stack and discussed special

51

criterions needed for the selection of appropriate tools. Furthermore, it thoroughly described

the application runtime environment with a special regard to the hospital and the proprietary

Infinity® network. Other topics like dynamic linking, software tier architecture and

multithreading in QT have been discussed due to its importance during the software

development phase.

However, this section presents the results from the design (section 2.1) and development

(section 2.2) phase and goes through the most important functional aspects of the application

in regard of the real-time analysis procedure. It also gives a glimse of the dynamic process of

UI implementation and link the postulated functional requirements of clinicians with the

individual UI functions of the software. Finally, the graphical UI components being critical for

the real-time assessment system will be explained in the more detail.

2.3.1. Requirements Engineering

Requriements Engineering is a special field of the software engineering with the goal to

explore, derive, document and verify requirements of a specific domain shaping the system of

interest [75], [76]. It provides useful concepts about the requirements´ specification and

management, what has a great impact on the subsequent design and development phases in

software projects. There exist several definitions of requirements [75], however Sommerville

and Sawyer describe requirements as “a specification of what should be implemented. They are

descriptions of how the system should behave, or of a system property or attribute. They may

be a constraint on the development process of the system” [77]. I.e. the requirements basically

describe the product´s features and specify the behavior of the developed system.

Table 1 presents the most important requirements on VREACT, which were intensively

discussed among the whole stakeholder community, especially during the early development

phases. The most of the requirements have been prioritized, i.e. the content of the highest

priority was treated as the first. Simultanously, all the requirements were formulated according

to the recommendations and standards specified by ISO, IEC and IEEE [76], [78]. The

underlying IEEE policy was issued under its unique reference number ISO/IEC/IEEE

29148:2011(E)© [76]. Table 1 focuses on the functional requirements explicitely discussed in

conjuction with the application as a whole. Next sections address the problem of requirements

in regard of the UI and present the results of their implementation.

52

Requirement

ID

Description Priority

1. After starting the system, the system shall list all available monitors. HIGH

1.1 The system should list all available monitors within five seconds. LOW

1.1.1 Each monitor should be characterized by its label name and the

corresponding care unit, to which it belongs.

LOW

1.2 If any monitors are available, the system should sort the available

monitors according to their care unit.

MEDIUM

1.3 If any monitors are available, the system should support sorting of

the monitors within a single care unit.

LOW

1.4 The system shall provide a simple selection system for the available

monitors.

HIGH

1.4.1 If any monitors are selected, the system shall connect to the monitors

using one single function / user click.

HIGH

1.4.1.1 The system shall provide a color-based feedback according to

success of connection within five seconds. The successfully

connected monitors should be labelled by a “green” color. The other

(connected) monitors should be marked with a “red” color.

HIGH

1.4.1.2 For all successfully connected monitors, the system shall enable a

function for opening a biosignal analysis slot.

MEDIUM

1.4.1.3 For each successfully connected monitor, the biosignal analysis slot

function should appear within the list (within the same list item).

LOW

1.4.1.4 For each successfully connected monitor, the system shall

implement a sampling loop (i.e. a loop, which pull all the biomedical

samples for a given monitor repetitive in a specified time interval).

HIGH

1.4.1.5 For each successfully connected monitor, the system shall

temporarily store the fetched samples for at least five minutes.

HIGH

1.4.1.6 For all successfully connected monitors, a function for storing the

biomedical samples (to a CSV file) shall be enabled.

HIGH

1.4.2 If any monitors are deselected, the system shall disconnect from the

monitors via one single function / click.

MEDIUM

1.5 The system shall provide function to refresh the list of available

monitors every time.

MEDIUM

53

Table 1. The system engineering requirements on VREACT formulated according to the ISO/IEC and IEEE
international standards [76] and IEEE recommendations [78] in software engineering. These requirements were
primarily formulated for the bed management and recorder part of the software, which are also the central topic of
this work.

2.3.2. UI Requirements

User Interface (UI) involves the interactive part of the software or environment, which

communicates with the user by triggering reactions on the operated system. It is a part of the

software, that “people can see, hear, touch, talk to, or otherwise understand or direct” [79]. It

is composed of widgets receiving “inputs” from the user and presenting “outputs” after

successful processing. The best UIs follow the needs of users as closely as possible and

perfectly adhere to the rules of the corresponding business domain. Therefore, “the best

interface is one that it not noticed” [79].

Before presenting the VREACT´s UI structure, some advantages of the graphical UIs will be

discussed. There is a lot of research published in respect to the design of appropriate graphical

user interfaces [79]. E.g. It is well-known, that the graphical symbols are preceived more

precisely than a text of any length. Therefore, any message being shown to the user be

presented with an graphical symbol such as “i” meaning information, “?” emphasising question

1.6 The system shall export the biomedical samples for all connected

monitors and biosignals being accessible from that monitors.

HIGH

1.6.1 The system should inform the user about the start of the CSV export. LOW

1.6.2 The system should inform the user about the end of the CSV export. LOW

1.7 The system shall facilitate the selection of paths for the CSV file

export.

MEDIUM

1.8 The system should present the license information about the licensed

development tools.

LOW

1.9.1 When the application main window is closed, the system should

close all the other opened windows as well.

LOW

1.9.2 When the application main window is closed, the system should

automatically disconnect from the already connected monitors.

LOW

1.10 If system start or the connection to the Gateway Server fails, the

system prints an error message and closes after user´s confirmation.

LOW

54

or exclamation depicting a warning about the particular action [79]. Those messages have

therefore been integrated to the VREACT software and presented by means of the dialog boxes.

Quick and easy learning process of working with the software was a special requirement of

clinicians. According to [79], a proper “visual or spatial representation of information” may

encourage the learning and memorizing effects of users with regard to the operational aspects.

I.e. the clinicians looking at a well-structured graphical component (e.g. list of available beds)

can easily learn and remember the operations performed in association with it. This implies a

more accurate and faster completing of tasks relalized by the underlying software.

Graphical presentation of biosignals was the next important clinical requirement being

intensively discussed and translated into the graphical UI. Since the biosignals are normally

represented by a long series of numbers (as a function of time), a spacial representation of

biosignals could support the “visual thinking” of each individual [79]. Therefore, various

curves, lines and histograms have been implemented. The visual presentation may also

intensify the context of the information. By this, the relationship between the graphics and the

presented information can be easier to notice.

As introduced in section 1.3, the real-time assessment systems such as VREACT should not

only support the clinicians in their daily clinical rountine, but should also improve the patients`

safety and reduce the mortality numbers. The is probably the most important requirement on

the system. A higher degree of concretization results in fewer errors and lower numbers of

error situations in general [79]. Therefore, transparent description of widgets and the possibility

to repeat (or to revert) the executed functions was also given.

Fast feedback represents the next valuable requirement on the UI. The UI should be self-

explained and should inform users about the important milestones and progresses [79].

Immediate feedback delivery represents the on of the most important UI charachteristics.

VREACT implements a powerful messaging system including various message boxes,

message colors and status bars in accordance with this requirement.

Despite various recipies for a proper UI programming, there are some disadvantages of the

graphical UIs worthy to mention [79]. Typically, the design of graphical UIs is much more

55

complex than the design of the text-based screens. The enourmous number of different controls

and their properties does not necessarly simplify the process of UI evolution. What is more,

the process of familirazing with the software lasts typically longer, since the diverse controls,

icons and labels are often misunderstood. Finally, various companies deploy similar software

solutions using its own terms and notations in the UI. This considarably complicates the

learning process of users and leads to further confusions in the operatibility of the system [79].

2.3.3. Connection Management

Before starting the real-time analysis and recording of biomedical signals, a desired patient

monitoring device must be accessed and connected. Figure 23a-b presents the simple main

application window after starting and connection to the corresponding devices. First, the

application asks the server for a list of currently available monitors and presents it to the user.

Subsequently, the checkboxes are enabled for each single item of the list, which stands for one

single monitor. Finally, the monitors are sorted and grouped according to the corresponding

care units, i.e. after the application start, merely the care units are presented to the user. The

user is able to expand the care unit item and select individual monitors. The second option is

to check the care unit item. In this case, all monitors of the care units are automatically checked.

The list of available monitors can be easily refreshed, whenever a new monitoring device is

added, removed or simply turned off. In addition, the new monitors can be plugged in and

configured for the current Infinity® network. The implementation of the refresh functionality

ensures the consistency of the already running recordings, i.e. the (already started) analysis

doesn´t necessarily have to be interrupted, if new devices appear. Only the list of available

monitors and their corresponding care units will be updated.

After device selection, the monitors can be connected and disconnected at once by making a

single click on the connect button. This feature significantly simplified the whole process of

resource management and assisted users by their selection of the appropriate devices for

analysis. Furthermore, the user gets immediate visual feedback about the status of the

connected devices. If the devices are online, the list items are marked with the green

background color (Figure 23a), however if they are offline or unplugged from the operating

network, the device´s background color will be red (Figure 23b). By this, the user immediately

sees the devices ready for analysis and the other ones being problematic.

56

A next important feature of the software is the data persistence. The user must have an option

to export the recorded data into some other flexible format. The CSV files are commonly

applied for data storage, export or exchange with other “spreadsheet” systems [80]. Thus, the

physiological data stored within the CSV files can be processed by other powerful tools like

Excel or MATLAB. Generally, the data is only exported from the successfully connected

monitors providing some kind of physiological information, i.e. the monitors and its connected

sensors must be online and record any physiological information. Thus, the user simply

connects to the desired beds and press the record button. After some time of data recording, he

can stop the running export algorithm and open the CSV file of interest.

In conjunction with the data persistence feature, the user is allowed to select any preferred

folder for the data export (at the bottom of the Figure 23a, b). Furthermore, this feature

facilitates the usage of any external medium connected to the running machine. The selected

folder path is retained after each program´s reboot. Therefore, the user needs to choose his

desired folder once only, i.e. at the very beginning of the program usage.

Figure 23. The results after implementation of the connection management module presenting the available
monitors. The user has an option to select and connect to the individual monitoring devices. (a) The available
patient monitors have successfully been connected, i.e. the biomedical signal analysis may be started, (b) the
available patient monitor is currently offline (but registered on the server).

a b

57

Each single item of the list, which represents a monitoring device (not the care unit), contains

an icon representing a monitor with the magnifier glass. This icon is clicked to open the

biosignal analysis window for the given monitor after the its successful connection (Figure

23a). If the connection to the monitor wasn´t established, the icon is changed and disabled

(Figure 23b). The more information about the visual biosignal analysis is given in section 2.3.5.

Table 1 contains the functional requirements shaping the resulting UI in the Figure 23.

However, the requirements #1.4.1.2 - 6 and #1.6, 1.6.1-2 specify the functionality of the Patient

recorder and Patient viewer components discussed in the following two sections. Other

requirements reflect functions of the main application window and are associated with the

functionality of the Connection management module.

2.3.4. Patient Recorder

Patient Recorder implements the transfer and recording of the biomedical samples from

monitors accessed by the Connection management module. The samples are transferred from

the monitors via the Infinity® Gateway Server to the data access layer of the software (see

section 2.2.4). From there, the samples are stored to the DTO objects and transported either to

the central biosignal buffer or to the UI (for visual presentation) as discussed in one of the

subsections 2.1.5, DTO pattern. Figure 20 illustrates the process of the biomedical sample

transfer throughout different application tiers using special entity objects having a role of the

DTOs.

Aside from adding the transported samples to the central biosignal buffer, the data can also be

exported to the CSV files as mentioned in section 2.3.3. Before the samples are actually

transported, a short interaction with the user is required. First, the user must connect to the

desired monitors and press the “Record” button placed in the main application window (Figure

23a). The button´s name and icon change to the “Stop” state and the recorder is started (Figure

24a). If the user decides to stop the recorder, he must press the same button again. By this, the

data export function immediately stops and the button´s name and icon change to the original

“Record” state as presented in the Figure 24b.

In background, the application retrieves current information about the DTOs created by the

sampling loop and generates the required folder and file structure (see Figure 25) on the local

58

machine. The DTOs are regularly filled up with new data in dependence of the sampling

frequency. The content of the objects is then written to CSV files for each single biosignal

(defined as a CSV file column) and timestamp (represented as one single CSV file row). The

samples are stored in a row-wise order until the user stops the recorder or the file becomes

larger than 100MB of size. In this case, the CSV file is immediately closed and a new file is

created. The recorder proceeds the export procedure by storing the samples to the second file.

Beyond intensive discussions of the entire sample storage procedure providing one or more

CSV files, there have been concerns about the management of the stored information. In

general, there are dozens of monitoring devices registered within a care unit representing a

potential source for the recorder. Furthermore, several physicians (or researchers) export the

clinical data several times per day. This may result in tens of recordings a day and thousands

of samples being exported to the corresponding files. To find those files after each data

analysis, a simple data location system was proposed.

Figure 25 depicts the specific autogenerated folder structure after starting the data export.

Normally, a user specifies the path to the folder, to which the samples are stored (Figure 24a-

b). After pressing the “Record” button, the application autogenerates several folders and files

for each single monitoring device being recorded in the predefined folder. The structure is

composed as follows:

 a folder specifying the current recording,

 one or more folders specifying the care units of the corresponding monitors,

 one or more folders specifying the bed positions or patient monitors,

 one or more CSV files storing the actual names and samples of biosignals.

a

b

Figure 24. The application informs about the progress of the recorder module persisting all the
biosignals available on the corresponding monitors. (a) After the button “Record” is clicked, its name
Is changed to the “Stop” button and the CSV export starts. (b) After pushing the button “Stop”, the
samples aren´t stored anymore and the button changes to the “Record” button again.

59

The aforementioned folders and files are generated in the order presented in Figure 25. First,

the recording folder is generated and named by using a specific date-time format. Since any

recording might access monitors of different hospital care units, folders with particular care

unit names are created as the next. In addition, different bed positions (corresponding to the

different patient monitors) obtain different folders carrying the name of the corresponding

position. At the very end of this structure, one or more CSV files are generated to store

biosignal samples from the different monitoring units.

2.3.5. Patient Viewer

Patient Viewer enables visual presentation of the biomedical parameters on data sampled from

the connected patient monitors. Hence, it allows the user to track not only the standard, but

also the novel physiological parameters calculated by the software in real time. On the one

hand, it promotes the selection of biosignals and the appropriate plot-visualization style. On

the other hand, it enables a remote long-term tracking of biosignals and other physiological

parameters (e.g. HR, HRV, etc.), which are determined by using more accurate algorithmic

solutions. It provides several visualization techniques such as bar charts, dot and scatter plots

as well as live curves and numeric presentation.

Figure 26 presents the main window of the viewer being opened for a single patient. The

patient´s name, bed position and care unit are presented on the top left side of the window. All

available physiological parameters of the patient are listed in the tree-like structure. Since a

couple of standard biosignals (such as ECG, 𝑆𝑝𝑂2) provide data suitable for calculation of

Figure 25. Patient Recorder creates a specific folder and file structure for each single monitoring device. After starting
the recorder, a folder defining the current recording run with a special name is created. Within this folder, a folder per
care unit and a folder per bed position are created. Finally, several CSV files (in dependence of the size and the number
of the recorded biosignals) might be created and stored.

60

additional (derived) biosignals (e.g. HR, SDNN, RMSSD, etc.), the tree-like structure for data

selection was suitable to implement. After any of the biosignals is selected, the possible charts

for the plotting appear below the list. The user selects the symbol representing the chart of

interest, drags and drops it to one of the twelve slots prepared for the real-time analysis. The

respective slot starts the visual presentation of samples in real time. Subsequently, the user may

visualize other biosignals using different charts transferred to their own slots at the same time.

Some visualizations require more space to ensure a consistent analysis. Therefore, some charts

use two slots simultaneously.

Constant plotting requires a constant data delivery. Therefore, the exported physiological

samples are temporarily stored in the central biosignal buffer for at least five minutes. It is an

important implementation step to ensure continuance of the plotted curves and provide a short

history of the recordings. In addition, the algorithms extracting the derived biosignal

parameters require data accumulated over a longer period of time (e.g. for calculation of HRV

parameters). Thus, the novel parameters (see section 1.4.2) can be determined more accurately.

Since the buffer collects samples of the derived biomedical parameters too, those parameters

are easily exported to the CSV files as they were the standard parameters of the monitor. The

implementation of the central biosignal buffer reflects the req. # 1.4.1.5 from Table 1.

Figure 26. Patient Viewer presents the biosignals of a single patient. On the left side of the screen, the overview about the
available biomedical signals is given. Underneath this window, available chart types for the selected biosignal are presented.
The signals can be then easily drag & dropped to the twelve independent slots prepared for visual analysis (right side).

61

3. Clinical experiment

The previous chapters discuss the current difficulties in the perioperative monitoring and

propose the easy-to-use real-time assessment tool, VREACT. Our software allows tracking of

the novel vital parameters to enhance the real-time biosignal analysis and to record the

physiological data at higher resolution rates. Other state-of-the-art systems similar to VREACT

were introduced and thoroughly discussed. However, many of them are close-sourced and

don´t meet the most critical requirements on the continuous patient monitoring, especially

within the anesthesia and surgical units. Next, the most essential standard and novel

physiological parameters affecting the patient´s state evaluation by clinicians are presented.

Finally, the requirements on the developed real-time analysis system were obtained thanks to

the clinical specialists from the Department of Anesthesia, Critical Care and Pain Medicine in

AKH. The tool was subsequently developed, tested and applied within the above-mentioned

department to support the real-time biosignal analysis and the running clinical research.

This chapter introduces a short experiment conducted at the Department of Anesthesia, Critical

Care and Pain Medicine in AKH. The aim of the experiment was to assess the tool and its

capability to record biological samples for the successive analysis. The provided measurement

consists of recordings carried out on 20 anonymized ICU patients. The experiment

demonstrates the utility of the analytical software assisting by a clinical research. Beside this,

it examines the association of the recorded biomedical signals by inspecting different patients

across 3 different care units. Finally, the biosignals recorded by VREACT are assessed and

graphically visualized.

In the course of this master thesis project, the scientific paper “Real-time assessment of high

resolution vital signs recording for calculation of perioperative clinical parameters“ [3] was

submitted. The paper substantiated the necessity of the real-time assessment and high-

resolution recording tools in the perioperative setting. Generally, the paper discussed the

current issues of the biosignal monitoring in the perioperative periods and introduced the tool

VREACT along with its integrated modules (e.g. HR, HRV, BP, SpO2). It also gave a short

glimpse on the architecture and integration of the software into the existing hospital

environment. Finally, it presents a few examples of studies working with the physiological data

recorded by VREACT [3]. The next sections show a short experiment utilizing VREACT.

62

3.1. Introduction

A short clinical experiment was organized during the evaluation of VREACT. An

approximately 2-hour measurement over the currently hospitalized patients from 3 different

ICUs was taken. The analyzed ICUs belonged to the clinical departments of Anesthesia and

Surgery in AKH, especially the Department of Anesthesia, Critical Care and Pain Medicine

and the Department of Surgery. In total, 20 patient recordings have been exported by VREACT

during the real-time biomedical analysis. The patients were fully anonymized, i.e. no

personally identifiable information was neither stored nor used for the subsequent analysis.

The tool was deployed and run on the Windows Server 2008 R2 platform being preinstalled on

the notebook Toshiba Satellite Pro with Intel Core i3-6006U processor, 4GB RAM and

1000GB HDD. A detailed information about the hardware requirements and installation

procedure of the Windows Server is provided in [81].

3.2. Methods

Before starting the analysis of the biomedical recording, the most important features of the

VREACT´s recorder were analyzed. The feature of the concurrent export of biosignals for

several patients was verified at first. Concurrent export of biosignals includes measurements

of the biomedical data over multiple patients and ICUs and is normally triggered by a one

single button click. The consistency and validity of the multiparametric biosignal recording

was the next important point of analysis. A biomedical recording should contain all exportable

biosignals and store a continuous data vector for every recorded parameter during the whole

measurement time. The recorded data must be easily attributed to the corresponding biosignal

label to avoid confusions. Although the modern digital storage media are constantly enhanced

and furnished with more and more memory power, the size of the recorded data wasn´t known

before the experiment. Hence, the tool´s memory utilization was examined in a more detail and

the several records of multiple patients were done. Since VREACT is able to extract novel

physiological parameters such as HRV measures or cumulative time of desaturation, those

parameters were (similar to the standard physiological parameters) written to the CSV export

files and were subsequently used within the short experiment. The analytical and graphical

analysis was realized in Python, where the exported physiological parameters were processed

and finally visualized by means of the powerful Python tools presented in the next sections.

63

To assess the above-mentioned features of the VREACT´s recorder, the tool was deployed to

the Toshiba Satellite Pro laptop, where the Infinity® Gateway Server has already been

launched (see Figure 27 adapted from [82]). First, the patient monitors (out of the Dräger

Infinity® Delta series) out of the 3 different surgical and anesthesia ICUs were registered on

the Infinity® Gateway Server to access the recorded biomedical information. Then, a

connection to the Dräger Infinity® Network was established by using a standard network

switch as described in the Figure 27. The recording tool was started and the registered

monitoring units were successfully accessed. Finally, a recording of the current patient

population was started. The measurement took approximately 2 hours and 10 minutes. During

the measurement, the software recording was regularly checked for the continuity of the

exported samples. After that, the recorder was stopped and the exported data underwent the

automated biosignal analysis in Python.

The programming language Python belongs to the scripting languages, since its source code

needs to be merely parsed and run by the powerful Python interpreter without any additional

steps as compilation and linking [83]. It is a very flexible programming language suitable for

both, fast undemanding prototyping of a variety of systems as well as evolving of complex

solutions for the most challenging tasks. Furthermore, it provides useful libraries in the

scientific data analysis area [84]. Because of these unique features, the whole scientific data

analysis was primarily realized in Python and its helpful scientific libraries NumPy and Pandas

[84]. All the necessary data evaluation algorithms were written in an easy-to-use, open-source

web editor, Jupyter Notebook [85].

Figure 27. The final hospital infrastructure used for the biosignal recording. Ca. 2-hour measurement on 20 patients
was achieved by running VREACT on the Toshiba laptop (orange). The vital signs were primarily recorded on (Dräger
Infinity® Delta) patient monitors (green) available within the surgical and recovery rooms. VREACT also supports
postprocessing of the primarily recorded data and calculates novel physiological parameters (e.g. HRV). This figure
was drafted and published in the submitted conference paper [3].

64

In the course of the biomedical recording (as described in Figure 27), 3 folders with the ICU

names containing 20 patient folders and 174 CSV files were created according to Figure 25. In

total, 529 biosignal slots were active during the measurement of the 20 patient monitoring units.

Some biosignals were merely exported from the patient monitors, whereas the other (novel)

biosignals were continually calculated from standard parameters by the post-processing HRV

and SpO2 modules. However, it has to be mentioned, that not every biosignal slot was active

during the whole measurement time (i.e. 2 hour and 10 minutes), since VREACT detects and

adds new connected slots in real time. In such a case, a completely new CSV file with an

updated header is created without a recording interrupt. The same situation happens, if some

biosignal slots are unexpectedly removed.

Table 2 presents the particular monitoring units and the corresponding biosignal numbers

recorded on each of the positions. The equal number of biosignals on diverse positions doesn´t

necessarily mean, that the same types of biosignals were measured. While the care unit 13C2

shows rather uniform distribution of the recorded biosignals, the distributions of the both other

care units 13B1 and 9D are more heterogenic. The positions POS-03 and POS-09 from 9D

exhibit the highest and the lowest number of recorded biosignals, respectively. This summary

table gives an overview about the contents of the measurement, which underwent a more

detailed scientific analysis in Python. The next section presents the results of the analysis.

 Care Unit Patient Monitor Sum Care Unit Patient Monitor Sum

1 13B1 BETT-01 31 11 13C2 BETT-06 26

2 13B1 BETT-02 26 12 13C2 BETT-07 26

3 13B1 BETT-04 28 13 13C2 BETT-08 26

4 13B1 BETT-05 31 14 9D POS-01 22

5 13B1 BETT-08 29 15 9D POS-03 35

6 13C2 BETT-01 26 16 9D POS-04 31

7 13C2 BETT-02 26 17 9D POS-06 31

8 13C2 BETT-03 29 18 9D POS-07 18

9 13C2 BETT-04 26 19 9D POS-09 14

10 13C2 BETT-05 26 20 9D POS-10 22

Table 2. Overview about the care units and their related patient monitoring devices accessed during the experiment.
Instead of patient names, the monitor labels (e.g. Bett-01) were retrieved for the biosignal analysis. The table presents
all 20 monitoring positions across the 3 different care units. The “sum” columns reveal the number of biosignals being
recorded at the respective monitoring position.

65

3.3. Results

This section describes the results of the short clinical experiment based on the VREACT

measurement analysis in Python. The main goal of the short experiment was to assess the

features of the VREACT recorder (see section 3.1). A proper data visualization is crucial for

its subsequent interpretation [86], [87]. To achieve a consistent analysis of the physiological

data (recordings) and other categorical data (based on the different care units and monitoring

positions), several visualization graphs and charts such as box plots, 2D line plots, histograms

and bar charts were taken into account. Concerning the type of the visualized data (nominal,

numerical, textual, etc. [87]), the particular chart technique was carefully selected.

Memory utilization

Starting with the Table 3, the disk space utilization of the VREACT recorder is presented. First,

the disk space of the recording for each bed position as well as each care unit was retrieved.

First, the applied Python algorithm checked the individual CSV file sizes and summed them

up to a final value per patient and care unit. Then, the final sum (per patient) was divided by

the number of biosignals of the particular position to get the average disk space taken by

recording of a one single parameter. Finally, the values were scaled for different time periods

as shown in Table 3.

According to the Table 3, the longer the recording and the more biosignal slots present, the

more is the size of the whole recording on disk. Less than 1GB constantly recorded data per

patient a day (including the novel as well as the standard parameters) is basically a very

promising outcome. In the US and European countries lies the mean length of stay (LOS) on

the ICUs by ca. 3-4 days [88], [89], which is in comparison to the median of LOS on the

Table 3. Utilized disk space on the Toshiba laptop after finishing the biomedical recording.
The data size of the ca. 2-hour recording was mapped onto the averaged disk space
occupied by a care unit, a patient (or bed position) and a biosignal. The required averaged
disk space was specified for different time periods, per hour, day, month and year.

66

hospital in general (i.e. 11-14 days [89]), relatively short. Therefore, an average patient would

require the storage capacity of less than 3GB high-resolution physiological data per admission.

Concurrent biosignal analysis

Parallel recording of multiple biosignals is often achieved by utilization of multiparametric

sensors [90]. In general, the (target) Infinity® Delta monitors allow an integration of external

sensors like MultiMed, HemoMed pod, etc. [25]. The physiological data is often transferred via

several ports, simultaneously. The arrived data is stored in the monitor´s cache for short, i.e.

VREACT continuously reads and assigns the heterogeneous samples to the correct biosignal

slot. Due to this fact, VREACT matches the requirements on a multiparametric recorder, since

it allows to store samples of different biosignals and patients at the same time.

Figure 28 gives an overview about the biosignals and their frequencies in the patient

recordings, i.e. the occurrences of the biosignals over all care units and patients in analysis.

The special Infinity® Delta parameters with labels P1 M (Pressure1-Mean), P1 D (Pressure1-

Diastole), P1 S (Pressure1-Systole) and GP1 (General Pressure 1) were present by only one

single patient. In contrast, the top 10 biosignals (on the bar chart) such as Cumulative time of

hypoxemia, Heart rate (HR), Oxygen saturation (SpO2), etc. are available in all patient records.

Except of the Cumulative time of hypoxemia, there are other novel physiological parameters

calculated by VREACT post-processing modules such as SDNN, SD1, SD2, RMSSD etc.

Those parameters are derived from the ECG II data slot, so, the name of the exported parameter

contains the name of the slot as well. Since those derived parameters are automatically

determined if any ECG recording is running, the frequency of the underlying ECG II slot and

its derived parameters must perfectly match. This is also the case, since the frequency of the

discussed biosignals is exactly 19 (see Figure 28). Measurements of the arterial BP (ART M,

ART S, ART D, ART) on patients in the three different ICUs is also quite common, since 18

out of the 20 available patients had the arterial BP records. Finally, there are a couple of

exported biosignals with acronyms, which aren´t clear at the first glance. Therefore, a further

research on this area is necessary. All available acronyms and its (available) meanings have

been taken from the official guide, Infinity® Gateway Suite [59].

Basically, there is a certain heterogeneity in biosignal types and their occurrences in the

recording across the different ICUs (see appendix, figures Figure 32, Figure 33, Figure 34).

67

Whereas the most biosignals measured on all patients are present in 13B1 and 13C2, the care

unit 9D carries the largest biosignal set among the all three ICUs. 26 out of overall 40 biosignals

were exported from all available inpatients of the 13B1 and 13C2 (Figures Figure 32, Figure

Figure 28. A biosignal set comparison across all analyzed care units. The parameters P1 M, P1 D, P1 S and GP1
are recorded by only one patient, whereas the other top 10 parameters such as cumulative time of desaturation
(hypoxemia), Heart Rate (HR), oxygen saturation (SpO2), etc. are observed by all patients in analysis.

68

33). Only 11 out of the 40 biosignals were obtained or calculated within the care unit 9D

(Figure 34). However, the top 10 measured biosignals were:

 %PACED, STdV5, PCV/min, STdV2, PLS, SpO2, ARR, HR, SPO2 belonging to the

standard vital signs,

 Cumulative time of hypoxemia derived from the standard vital signs.

On 13C2, there are only three different occurrences detected among patients (Figure 33). The

most biosignals (26) are coming from the whole patient population. By one patient, three

additional body temperature curves (Ta, Tb, dT) were detected. The rest of biosignals (11)

wasn´t exported, i.e. no measurements of those signals were done on the ICU.

Consistency of biomedical records

Figure 26 presents a snapshot from a multiparametric patient recording monitored by

VREACT, consisted of both the standard and novel vital parameters. The consistency and

validity of the measurement was done on both parameter types. The standard vital parameters

visualized on the VREACT´s interface can be easily compared to the vitals displayed on the

Infinity® Delta monitors. Since the biosignals are visualized and exported from the monitor to

the application at the (nearly) same time, both screens can be verified simultaneously. Second,

the novel vital parameters, which haven´t been integrated into the Infinity® Delta series yet,

must be compared with similar measurements achieved by other tools (e.g. WvRecorder

presented in section 1.3.2). However, this procedure is still complex due to the synchronization

of measurements, because both measurements must be started and stopped at the same time.

To make a brief validation of exported biosignals, the contents of the CSV export files were

processed in Python, i.e. the whole analytical process was automatized. The results of the

analysis were charted as continuous 2D line plots, each biosignal was plotted in a separate slot.

Finally, the patient´s data was replaced and the data of another patient was processed in the

same way. Figure 29 presents three plots visualized in Python. The complete results of

processing for the particular patient are demonstrated in the appendix (Figure 35).

Figure 29 presents an example of three different biosignals stored by VREACT´s recorder.

Each of the presented biosignals has its unique properties in regard to the origin and type. E.g.

ECG II-Heart Rate measures HR of the patient based on its ECG data recorded on the second

ECG slot. The biosignal is calculated by VREACT and its post-processing HRV module on

69

the raw ECG data retrieved from the Infinity® Delta monitor. HR is similar to the pulse and

can be defined as the “number of heartbeats per minute” [38]. Figure 29a presents the diagram

charting the HR against the time of the measurement. Except of the most visible artefact

occurring shortly before the 60th minute, the HR seems to have less variations in the first half

of the measurement. In the second half, there are more obvious variations, ± 50 of the HR.

Without knowing the patient medical record and his exact diagnosis, it can´t be definitely

decided, what the deviations mean and why they occur. Thus, a detailed knowledge about the

subjects of analysis would be very helpful in the future work.

Figure 29. Examples of the biosignal recorded by VREACT. (a) The HR parameter
extracted from the underlying ECG recording, (b) the mean arterial pressure (ART M)
exported from monitor, directly and (c) the cumulative time of hypoxemia extracted from
the underlying SpO2 (oxygen saturation measure) signal.

a

c

b

70

The biosignal labeled as ART M (see Figure 29b), which actually represents the MAP according

to Dräger [59], belongs to the group of standard parameters. Its samples are exported one after

the another from the Infinity® Delta monitor, i.e. there are no modifications of the biosignal

by the recording software. MAP is a powerful indicator about the blood pressure in arteries

[31]. The particular MAP in Figure 29b is slightly varying between 75 and 80. Around the 70th

minute of the recording, there is a clear peak of the measurement by ~125 representing

(probably) an artefact in the measurement. This interpretation is the most likely, since the peak

lasts only a couple of seconds. In the last half of the measurement, the MAP reaches higher

values, up to 90. This could imply an event changing the patient condition, e.g. by application

of drugs, some post-surgical intervention or similar.

Cumulative time of hypoxemia is a completely novel parameter being intensively studied as

e.g. in [39]. It represents the overall duration of desaturation, i.e. “the raw minute-by-minute

values below various hypoxemic thresholds” [39]. Its calculation is treated by the VREACT´s

post-processing SpO2 module, i.e. the continuous raw SpO2 signal is received and regularly

checked for drops below the defined threshold value of 90%. Figure 29c summarizes the

hypoxemia times of a patient during the measurement. Though the patient has been reaching

the SpO2 values over the hypoxemia threshold for almost 80 minutes, the value suddenly

dropped below the threshold for exactly 10 seconds. After this time, the patient didn´t

experienced any desaturation event up to the end of the measurement time.

Example for a biosignal analysis

Suppose, there would be a question about the distribution of the parameters among the patients

hospitalized on the specific care units or across all care units present in the measurement. In

order to determine the characteristics of the statistical distributions, box plots offer a powerful

tool of visualization for “quantities associated with a set of items” [91]. The box typically starts

with the first quartile (Q1) and ends with the third quartile (Q3) of the distribution, i.e. it covers

its “interquartile range (IQR)” [91]. The line traversing the box represents the median of the

mathematical series. The whiskers are defined as lines, which protrude from the boxes, starting

at the quartiles (Q1, Q3) and ending (typically) by the values within “Q1 – 1.5 × IQR” and

“Q3 + 1.5 × IQR”, respectively. The values being outside of the box are represented by other

marks, such as points or crosses [91]. Figure 30 presents the box plots of the different ICUs

and all ICUs for eight representative biosignals.

71

Figure 30. Statistical distribution of 8 different biosignals recorded over all patients in the 3 ICUs, 13B1, 13C2, 9D. The
standard parameters exported from the Infinity® Delta monitors (a) ART M, (b) SpO2, (c) Heart Rate as well as novel
parameters (d) VLF Power, (e) LF Power, (f) HF Power, (g) SDNN, (h) RMSSD are characterized upon its distribution
of the different ICUs. In general, all plots contain rather varying distributions, though the parameters (d) LF Power and
(g) SDNN show (almost) uniform medians across all ICUs. The most equally distributed series are observed in (b)
SpO2 and (c) Heart Rate on the group “ALL”. 7 boxplots exhibit an outliner apart from the whiskers. All the distributions
are composed of biosignal medians, i.e. each representative value per biosignal was obtained as median of the whole
biosignal data series. This value was subsequently used as the representative of that particular patient.

a

c

e

b

d

f

g h

72

Figure 30 presents the results of the statistical biosignal analysis considering the individual

ICUs as well as all ICUs at once. The analysis was automatized in Python. First of all, the

contents of the CSV export files have been transferred to the Python code and the long biosignal

sample vectors for each patient were read. Then, a representative value for each biosignal

vector was calculated. The values representing biosignals of patients have been sorted

according to the care unit, to which the patient belonged. Finally, four different box plots on

four different distributions (13B1, 13C2, 9D, ALL) were plotted for each biosignal of interest.

Three standard biosignals were chosen during the analysis as described in Figure 30a-c. All of

them depend on a continuous stochastic variable X keeping mathematical distributions of

around thousands of values pro signal. Per patient and biosignal, only one single representative

value is accepted, since the overall distribution across the ICUs is needed. Therefore, the

median value as the representative of X was obtained from each biosignal data series.

Considering the box plots of the ART M, which corresponds to the above-mentioned MAP

(Figure 30a), the box variations are slightly fluctuating on the individual ICUs. The IQRs of

the boxes are markedly of similar lengths and the highest MAP value is on the unit 13B1,

whereas the lowest value is observed on the 9D. Similar to the MAP, the SpO2 value exhibits

only slight variations across different ICUs (Figure 30b). Looking at the overall distribution

(“ALL”) of the chart, the median achieves 99% (with ±1 distance to quartiles Q1 and Q3).

There is also at least one patient with the averaged SpO2 95%. Finally, the analysis of the HR

parameter (Figure 30c) brought interesting results. Considering the median values on 13B1 and

13C2; the medians are identical, the both distributions significantly differ, though. The IQR of

the 13C2 is almost four times higher than the IQR of the 13B1. The highest value among all

distributions is reached by 130bpm on the unit 13C2. Although the distributions of HR across

the individual ICUs vary, the overall distribution (see “ALL”) is of a nearly uniform structure.

Five novel HRV parameters were chosen for the distribution analysis to demonstrate the

utilization of the VREACT´s recorder (see Figure 30d-h). The hereby mentioned HRV

parameters are thoroughly discussed in the section 1.4.2 and its subsection “Heart rate

variability”. Let´s consider the most interesting distributions out the five visualized biosignals,

SDNN and RMSSD. In case of SDNN, the medians across different ICU distributions are

almost identical. That means, that the overall mean value over all patients (the box plot of

“ALL”) must be around those three medians, what is actually correct if looking at the box plot

73

of the variable “ALL” (Figure 30g). The IQR of the SDNN box plots is varying from ICU to

ICU. The largest variation is observed on the 13C2, whereas the narrowest SDNN variation is

visible on 13B1. In contrast, 9D contains one outliner reaching the value around 130ms.

RMSSD is the next HRV parameter having an unusual statistical distribution. Similar to

SDNN, the RMSSD variation of 13B1 is extremely small probably due to the smallest number

of patients (5) as shown in the appendix (Figure 32-Figure 34). The highest median value was

found in 9D unit, its IQR is double as small as in case of the 13C2, though. The IQR of the

13C2 reaches approximately a value of 100ms, which is rather high in comparison to 70ms

reached on the distribution across all ICUs. Out of the 5 patients hospitalized on 13B1, there is

one outliner lying slightly below the 100ms. This value is much higher than its remaining four

representatives lying between 20 – 35ms.

3.4. Discussion

The objective of this experiment was to evaluate the properties of the VREACT´s recorder as

well as to demonstrate the utilization of the tool in the perioperative setting. VREACT is a

powerful tool allowing real-time assessment and high-resolution recording of the biomedical

data. It consists of three different components, the Connection management, Patient viewer

and Patient recorder, which all perform different operations such as connection to monitors,

visualization and recording of the biomedical information. The short clinical experiment

primarily focused on the evaluation of the Patient recorder, since it belongs to the main

objectives of this thesis. Despite the technical point of analysis, VREACT was utilized for

recording of the ca. 2-hour biosignal measurement at the Department of Anesthesia, Critical

Care and Pain Medicine in AKH. The resulting biomedical data was obtained from 20 ICU

patients involved in the analysis. All data was anonymized and deleted after the experiment.

The tool was compiled and deployed to the notebook Toshiba Satellite Pro with Intel Core i3-

6006U processor, 4GB RAM and 1000GB HDD. These hardware requirements were sufficient

for installation on the Windows Server 2008 R2 [81]. Although the laptop was satisfactory for

this particular measurement, it should be noted, that a future database server environment might

enhance the existing hospital setup in order to facilitate longer multiparametric measurements

by multiple patients at once. Furthermore, the application of the server within the setup might

increase its whole performance as well as automate the backup procedure of the recorded

74

biomedical data [24]. During the experiment, however, the recorded data was only persisted

on the laptop´s local storage and transferred to another machine for the successive data analysis.

The biomedical measurement consisted of 20 patient folders and 174 CSV files, which

corresponds to the (approximately) 19 files per patient recording. Despite several rules

implementing the new CSV file generation, the number of files (per patient) containing the

exported physiological vectors is still too high in comparison to the current patient number.

The recorded data should be immediately ready for analysis without a necessity of further

processing or advanced file manipulation. On the other hand, the 529 parallel recorded

biosignals stored as continuous alphanumerical vectors represent a promising result in respect

to the multiparametric biosignal analysis. Several of the recorded biosignal slots consists of the

novel physiological parameters, which extend the patient´s state analysis and contribute to a

better decision-making process on the ICU rooms. Since the examined biomedical

measurement took the 2 hours and 10 minutes, the presented results are limited to this

(relatively) short period of time. Thus, a more accurate evaluation of the (mostly) long-term

recordings is planned for the future.

Regarding the memory utilization of VREACT´s recorder, the 34,13 MB of data in average

recorded during the 24 hours seems to be very promising outcome (Table 3). By this, a

multiparametric patient recording would occupy approximately 930,77 MB of disk space per

patient in average, what in turn results in the 18,41 GB disk space for 20 parallel records (a

day). Usually, the researchers must perform more than 20 measurements at once and expect

rather long-term biomedical records, i.e. the tool should seamlessly record samples for several

days. Integration of the data compression algorithms, such as GZip [24], during the storage on

local disk could be an acceptable solution for this problem. Integration of some additional logic

for a proper data selection before analysis would represent a second solution. On the other

hand, it should be noted, that implementation of (at least) one of the above-mentioned solutions

would increase the complexity regarding the software manipulation and prolong the analysis

times due to the necessity for the initial configuration.

One of the main ambitions towards the recorder implementation was the consistency of

multiparametric records as well as the possibility to record biosignals of multiple patients at

the same time. This feature was successfully realized and verified at AKH by using the setup

described in Figure 27. At the end of the measurement, the software realized 20 continuous

75

recordings without any visible dropouts and distortions in records. The records were

thoroughly analyzed in Python and a whole multiparametric record is presented in appendix

(section VREACT recorder example). In terms of the software reliability, the results of the 2-

hour duration test were principally positive, i.e. the software was running until stopping the

measurement, manually. It neither crashed nor froze and exported both the standard and novel

parameters to their full extend. Despite this great success, it must be noted, that some additional

long-term measurements across more than 3 ICUs must be done yet, to verify the longstanding

operation of the recording software.

The utilization of the recorder unit has more and less no limitation in the perioperative setting.

The researcher may select and choose several patients from different care units starting and

stop his recording any time. In the previous chapter, an example for the biosignal analysis based

on a 20-patient recording was done. The standard and novel vital parameters and their

distributions on the corresponding ICUs (and over all ICUs) were examined. According to the

Figure 30, the most variations were noticed on the 13C2 unit, while the largest distribution (the

broadest box plot) was observed by the derived RMSSD. Similar to the presented analysis (and

its results), a more comprehensive study working on a much larger data set is also realizable

(assumed that the study is allowed by EUREC [92] and the patient explicitly gives his consent

about the usage of his personally identifiable information).

In conclusion, the utilization of the VREACT´s recorder during the short clinical experiment

was advantageous, since the novel physiological parameters, especially the HRV measures and

the cumulative time of desaturation, were calculated and exported along with the standard

vitals. 20 parallel records were actually present in the measurement, i.e. the recorder reliably

exported the biosignal set for each of the patients in analysis. 529 biosignal vectors consisted

of the continuously exported samples. The subsequent analysis in Python confirmed the

consistency of the exported data. An example for the biosignal analysis demonstrated the

application of the tool in the perioperative setting. Despite these powerful features of

VREACT, the number of the exported files is still too high and must be decreased in the future.

In addition, the user is currently forced to export all the signals during the patient´s recording.

Hence, a simple signal selection process (implemented on the recorder) would suppress the

export of a superfluous data. Finally, additional duration tests of the recorder are necessary to

validate the data in analysis. Few of them have already been passed successfully (especially

the 4-day recording). However, this is an objective of another thesis authored by Fatih Kartal.

76

4. Discussion

The primary objective of this work was to design and develop a system for acquisition and

visualization of both, the standard and novel physiological parameters. The work outlines the

importance of the patient monitoring systems in current hospitals and deals with their

limitations in the modern intensive care. In spite of the enormous progresses within the

intensive care achieved during the last years, the basic culture in the biomedical data acquisition

and visualization hasn´t significantly changed. According to the current clinical research [3],

[9], the resolution of the recorded perioperative data is fairly limited on the most commercial

monitoring systems. Due to the large heterogeneity of the recorded data and massive

incompatibilities between the sensing, monitoring and storage systems, the recorded

perioperative data is hardly integrated to the existing EMRs. Lastly, the novel physiological

parameters such as HRV [8] or cumulative time of hypoxemia [39] bear a huge potential to be

integrated for the patient monitoring technology. This work deals with the current

technological limitations within the perioperative setting and proposes a novel, real-time

assessment and high-resolution recording software, VREACT.

The system was developed in cooperation with the anesthetists and surgeons from the

Department of Anesthesia, Critical Care and Pain Medicine in AKH Vienna. Later, it was

thoroughly tested and finally introduced into the perioperative setting of the hospital. The

whole project focused on the design and evolution of the three elementary software

components, namely the Connection management, Patient recorder and Patient viewer. The

first component solved the problem of the parallel monitoring, i.e. the user may now select

more patient monitoring devices at once without any configuration in advance. The second

component enabled the storage of the novel perioperative data to a local storage medium. The

third component was implemented as an extensible module system responsible for the

biosignal visualization facilitating the analysis of the novel physiological parameters.

Implementation of the first and the second component was the main topic of this thesis, whereas

the third component was developed by Fatih Kartal, a college from the equal field of study.

The ICUs in AKH Vienna dispose of various appliances tracking the patients´ state of health.

Nevertheless, the monitoring devices of the Infinity® Delta series [24] belong to the most

common tracking systems utilized within that perioperative setting. Those monitors are

77

primarily used for a real-time analysis of the vital parameters ensuring a continuous data

acquisition on patients being bedside and on transport [25]. Due to the high acceptance of the

system and availability of the Infinity® Gateway Developer’s Tools [59] (and its special

hardware API, WvAPI), VREACT was evolved for this particular device type. Nevertheless,

the utilization of the famous architectural and design patterns (e.g. MVC Pattern) ensured a

better software extendibility and adaptability. This was mainly achieved by a clear logical

separation of the UI and the underlying logic [54]. Hence, the current implementation can be

(theoretically) adapted to any monitoring device omitting a large rework of the graphical UI.

The Infinity® Delta monitors [24] continuously track and visualize the biomedical information

of the ICU patients. However, the stored physiological information isn´t utilized by default. To

ensure a smooth data analysis, the data must be exported either to a machine hanging on the

Infinity® Network or by using the (physical) serial ports of the devices. The first solution would

mean a certain overhead and would load the corresponding network if transferring the

additional data. The second solution would mean that the exporting storage medium must

constantly be around the monitor (due to the serial connection cables). Moreover, the physical

storage medium keeping the samples shall be easily portable to ensure the communication with

other computer systems, e.g. those, primarily applied for the research purposes. Because of

this, the application was deployed on the Windows Server 2008 R2 installed on the

“virtualization platform” called Virtual Box [62]. In spite of the initial effort, put into the

installation and configuration of both platforms, the system became much more portable to

systems configured at other hospital departments. By this, the exporting device didn´t

necessarily need to be located near the ORs, it must only access the corresponding Infinity®

Network. This substantially simplified the process of the biomedical data acquisition and

enabled the remote-tracking of the (even novel) physiological parameters.

In addition, the standard patient monitors such as Infinity® Delta don´t naturally support

recording of the novel physiological parameters such as HRV [8] or cumulative time of

hypoxemia [39]. Though VREACT calculates and routinely evaluates the both respective

vitals, their relevance in the clinical setting and during the decision-making process has to be

proven, yet. Similarly, the recorded parameters must additionally be evaluated for the

appropriate recording resolution in order to produce consistent and precise measurements.

Therefore, a deeper evaluation is planned in the future.

78

Basically, VREACT´s recorder exports samples of both, standard and novel physiological

parameters to the one specific location, i.e. the clinician doesn´t necessarily need to process

multiple export files during analysis. The implementation of this feature was challenging

because of the issues with time synchronization of the exported samples. This feature was

finally enabled and works surprisingly well. Nevertheless, there is still some potential to

improve the storage management of the VREACT´s recorder. For example, the current

implementation allows a new (CSV) file generation in some special cases (such as exceeding

the 100MB threshold size or adding/removing of biosignals during the patient´s record). A next

unresolved problem was the exportability of some novel biosignals (such as HRV interpolation,

HRV Fourier Transform) delivering samples with delay i.e. the samples attributed to the

timestamps from the past. Those issues must definitely be addressed in a future work.

To verify the implemented features of the software, a short test measurement was performed.

The measurement took ca. 2 hours and consisted of 20 individual patient records. Finally, the

recorder could successfully generate 174 export files containing 529 biosignals. After that, the

data underwent the automated biosignal analysis in Python. The processed data included

records out of the three different ICUs of Anesthesia and Surgery in AKH. The results of the

analysis confirmed the functionality of the recorder against its specification in Table 1.

The described test measurement was primarily supposed to evaluate the consistency of the

recorded data. This was partially achieved by visualization of the physiological data in Python

3.7 [83] and Jupyter Notebook [85]. The results present the biosignals of an unknown patient

(Figure 29 and 35). 6 out of 18 recorded biosignals represent the novel physiological

parameters calculated by the VREACT´s post-processing modules. E.g. the hypoxemia times

(Figure 29c) for this particular patient are rather minimal during the 2-hour perioperative

period. In the ca. 80th minute of the measurement, the value suddenly drops below the threshold

for exactly 10 seconds. After this time, the patient didn´t experienced any desaturation event

up to the end of the measurement time. Considering an example for a standard physiological

measure, HR was also analyzed during the test measurement (Figure 29a). Except the

numerous artifacts in the diagram, the HR of the patient slightly varies between 70 – 90 bpm

during the whole measurement time. The highest variation is observed between the 40th and

80th minute of the measurement. The above-mentioned examples let me to a conclusion, that

VREACT delivered consistent biosignal records, however, the exact evaluation of the

perioperative data and its significance must be proven, yet.

79

In conclusion, this work addressed several issues associated with the current perioperative

patient monitoring. The developed tool, VREACT, enables a high-resolution recording and a

real-time tracking of multiple biosignals and automates the biosignal acquisition and the

remote-tracking of the standard and especially the novel physiological parameters. VREACT´s

connection manager and recorder, representing the most important software components of

this work, facilitate handling of multiple monitoring devices on several ICUs and ensure the

high-resolution multiparametric export of biosignals, respectively. In general, the tool fulfilled

the most important functional requirements of clinicians and passed the initial system tests in

the clinical environment. Subsequently, the tool´s recorder was utilized during the 2-hour test

measurement, demonstrating its functionality and capability to provide a consistent biosignal

analysis on the recorded data.

On the other hand, there are still some requirements on the software, which haven´t been

realized yet. First, the most clinicians desire to run the tool several days by making tens of

records in parallel. This requirement has partially been addressed in the Fatih Kartal´s work

including the duration and load testing of the software in the perioperative setting. Second, the

recorder should export the physiological samples to the (ideally) one export file. This feature

would eliminate the need to handle multiple files by other processing tools like MATLAB or

Python. Third, there are currently two post-processing modules extending the tool´s parameter

set, namely the HRV and SpO2 module. In the future, further meaningful modules such as

cumulative time of hypotension or blood pressure variation are planned to be integrated. In

regard to the existing modules, some of the derived biosignals (such as HRV interpolation or

HRV Fourier Transform) aren´t exportable at present. This is because of the difficulty to

modify entries of the already stored CSV rows. For that reason, the current way of the file

manipulation must be enhanced in the future. Fourth, VREACT doesn´t include any warning

system, which would currently alarm the medical personnel in case of severe patients´ state

deteriorations. However, this feature plays an important role within the perioperative setting,

because the most patients are considered as the critically ill patients. Altogether, this work

points out the current problems of the perioperative monitoring and presents an easy-to-use,

real-time analysis system as a solution for some of them. Finally, it should motivate other

scientists and engineers to enhance the monitoring technology on the current ICUs and

encourage for further clinical research on this critical area.

80

Appendix

UML Class Diagram in summary

The section presents the application class diagram of VREACT. Especially a look at the whole

connection management and recorder classes is given. The diagram gives a structural view on

the system. For more detail, refer to section 2.1.4

Figure 31. The final UML class diagram of VREACT. The diagram gives a glimpse about the structure of the application backbone
(except of the Patient Viewer classes). To the most important components of the software belong the classes of the MVC Pattern
(MainWindow, WvController, WvConnection). These classes are responsible for the central connection management of patient
monitors (see section 2.1.5). Further, the LoopManager along with the BedEntity are the basic components of the sampling loop
used for the sample acquisition. Other entities such as WaveEntity, VSignEntity and Biosignals are the central carriers of the
biomedical samples from the monitor to the application buffer.

81

QT project file

This section presents the contents of the project file template of the Connection management

and Patient recorder part. The file contains the necessary source and header file paths used for

linking during the application build. The file also contains the information about the dynamic

linking of the delivered DLLs (section 2.2.3) and specifies the directory and rules for the

application build (and deployment).

#--

Project created by QtCreator 2017-08-23T12:29:00

#---

QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = WvApp

TEMPLATE = app

The following define makes your compiler emit warnings if you use any feature of
Qt which as been marked as deprecated (the exact warnings depend on your compile
Please consult the documentation of the deprecated API in order to know how to p
port your code away from it.

DEFINES += QT_DEPRECATED_WARNINGS

QT flag to prevent Windows to create additional folders "debug" and "release"
which are not available for another OS.
 CONFIG -= debug_and_release

Include the PatientViewer.pri file, which will be added to this file if qmake is
invoked. The WvApi.pri file defines classes from the PatientViewer subproject
which are supposed to be used in this subproject (DEFINE AND USE ONLY API
CLASSES!).

include(C:/Users/Administrator/Desktop/QT Projects/Repository/WvRecorder/Premerg
e/WvRecorder/src/PatientViewer/PatientViewer.pri)
INCLUDEPATH += $$PWD/UILogic \
 $$PWD/BusinessLogic \
 $$PWD/FormLogic \
 $$PWD/Libraries \
At this point, HEADERS (WvAPI.h) and LIBRARIES (e.g WvAPI.lib, ...) are found or
pointed to. Don´t forget to put the corresponding .dll file in the application
directory or in the global PATH. # 'WvAPI', 'WvSvc', 'IGAcsMsg' are mandatory
Dräger-related libraries, 'qtcsv' is an open-handling the .csv format files.
LIBS += -L $$PWD/Libraries/ -lWvAPI -lWvSvc -lIGAcsMsg -lqtcsv

SOURCES += $$PWD/main.cpp \
 $$PWD/BusinessLogic/WvController.cpp \
 $$PWD/UILogic/MainWindow.cpp \
 $$PWD/BusinessLogic/WvAPIConnection.cpp \
 $$PWD/BusinessLogic/BedEntity.cpp \

82

 $$PWD/BusinessLogic/WvAPIException.cpp \
 $$PWD/UILogic/MessageBoxFormatter.cpp \
 $$PWD/Libraries/easylogging++.cc \

 $$PWD/UILogic/WvObserver.cpp \
 $$PWD/UILogic/QBedButton.cpp \
 $$PWD/BusinessLogic/WaveEntity.cpp \

 $$PWD/BusinessLogic/LoopManager.cpp \
 $$PWD/BusinessLogic/VSignEntity.cpp \
 $$PWD/UILogic/InfoWindow.cpp

HEADERS += $$PWD/BusinessLogic/WvController.h \
 $$PWD/UILogic/MainWindow.h \
 $$PWD/BusinessLogic/WvAPIConnection.h \

 $$PWD/Libraries/WvAPI.h \
 $$PWD/Libraries/easylogging++.h \

 $$PWD/BusinessLogic/BedEntity.h \
 $$PWD/BusinessLogic/WvAPIException.h \

 $$PWD/UILogic/MessageBoxFormatter.h \
 $$PWD/UILogic/WvObserver.h \
 $$PWD/UILogic/QBedButton.h \
 $$PWD/BusinessLogic/WaveEntity.h \
 $$PWD/Libraries/stringdata.h \
 $$PWD/Libraries/writer.h \
 $$PWD/Libraries/reader.h \
 $$PWD/Libraries/qtcsv_global.h \
 $$PWD/Libraries/abstractdata.h \

 $$PWD/Libraries/variantdata.h \
 $$PWD/BusinessLogic/LoopManager.h \
 $$PWD/BusinessLogic/VSignEntity.h \

 $$PWD/UILogic/InfoWindow.h

FORMS += $$PWD/FormLogic/mainwindow.ui \

 $$PWD/FormLogic/infowindow.ui

RESOURCES += $$PWD/resources.qrc \

RC_FILE = $$PWD/ConfigFiles/WindowsResources.rc

83

Biosignal sets on diverse ICUs

This section presents the bar chart diagrams depicting the biosignal occurences on the special

ICUs (13B1, 13C2, 9D). Although, the biosignal sets measured on the different care units

slightly differ from each other, the occurrences of a biosignal on the ICUs are similar. E.g. 24

out of the 40 measured biosignals enjoy full or almost full representation on a given care unit,

i.e. the group of biosignals found in all patient records except of one or two patients, by which

the biosignals are missing (Figure 28). The most biosignals enjoying a maximal representation

were observed on the care units 13B1 (Figure 32) and 13C2 (Figure 33). However, the largest

set of exported biosignals was obtained in 9D (Figure 34).

84

Figure 32. Overview about the recorded biosignals on the ICU labeled as 13B1. 26 out of 40 biosignals are exported
for every monitoring unit in 13B1 and 13C2, which is the highest frequency among the three care units. However,
there are 6 biosignals (RA.1, RA, P1 M, P1 D, P1 S, GP1) which are observed by none of the patients in the ICU.

85

Figure 33. Overview about the recorded biosignals on the ICU labeled as 13C2. 26 out of 40 biosignals are exported
for every monitoring unit in 13C2 and 13B1, which is the highest frequency among the all three care units. However,
13C2 exhibits the highest number of untracked biosignals from all ICUs being analyzed.

86

Figure 34. Overview about the recorded biosignals on the ICU labeled as 9D. Only 11 out of overall 40 biosignals
are exported for every patient, which is the lowest frequency among the all three care units. However, 9D keeps
no biosignals with the zero occurrences, i.e. the particular care unit measures much more biosignal types than the
other ICUs 13B1 and 13C2.

87

VREACT recorder example

This chapter presents the different vital parameters of the patient on position Bett-04 being a

part of the ICU 13B1 in AKH. The exported biosignals were obtained during the ca. 2-hour

recording of vitals of stationary patients (see Chapter 3). All of the parameters were recorded

by the newest version of VREACT.

Exemplary export of biosignals

88

Figure 35. The summary of the exported biosignals from an anonymized patient visualized in Python. Ca. 2-hour measurement
was done via the VREACT biosignal recorder. The exported data was processed and visualized by utilizing Python along with
Jupyter Notebook [85]. The x-axis represents the time (in minutes) in the recording and the y-axis keeps the range of values
for the given biosignals being exported by VREACT. The y-axis was labeled according to the exported biosignal. The
measurement includes both the standard (e.g. ECG, ART, RESP) and novel (Cumulative time of hypoxemia, ECG-RMSSD,
ECG-SDNN) parameters. Since the novel parameters were derived from their basic counterparts, their labels keep the name
of the base physiological parameter (from which it was actually derived).

89

References

[1] Reed M. Gardner and M. Michael Shabot, “Patient-Monitoring Systems,” in

Biomedical Informatics, New York: Springer, New York, NY, 1995, pp. 585–625.

[2] Y. Mao et al., “An Integrated Data Mining Approach to Real-time Clinical Monitoring

and Deterioration Warning,” 2012.

[3] F. Thürk et al., “Real-time assessment of high resolution vital signs recording for

calculation of perioperative clinical parameters,” Med. Meas. Appl. (MeMeA), 2018

IEEE Int. Symp., 2018.

[4] O. Chipara et al., “Reliable Real-time Clinical Monitoring Using Sensor Network

Technology,” 2009.

[5] G. W. Smetana, S. L. Cohn, and V. A. Lawrence, “Update Update in Perioperative

Medicine,” Ann. Intern. Med., pp. 452–461, 2004.

[6] F. Cavaliere et al., “Intensive care after elective surgery: a survey on 30-day

postoperative mortality and morbidity,” MINERVA Anestesiol. 459 MINERVA

ANESTESIOL, vol. 7474, no. 9, pp. 459–68, 2008.

[7] K. Fecho, A. T. Lunney, P. G. Boysen, P. Rock, and E. A. Norfleet, “Postoperative

mortality after inpatient surgery: Incidence and risk factors,” Ther. Clin. Risk Manag.,

vol. 4, no. 4, pp. 681–688, 2008.

[8] R. McCraty and F. Shaffer, “Heart rate variability: New perspectives on physiological

mechanisms, assessment of self-regulatory capacity, and health risk,” Glob. Adv. Heal.

Med., vol. 4, no. 1, pp. 46–61, 2015.

[9] M. A. De Georgia, F. Kaffashi, F. J. Jacono, and K. A. Loparo, “Information

Technology in Critical Care: Review of Monitoring and Data Acquisition Systems for

Patient Care and Research,” Sci. World J., vol. 2015, pp. 1–9, Feb. 2015.

[10] L. D. Hudson, “Design of the intensive care unit from a monitoring point of view,” in

Respir Care, 7th ed., 1985, pp. 549–559.

[11] S. Miodownik, “Intensive Care,” in Clinical Engineering Handbook, Joseph F. Dyro,

Ed. Academic Press, 2004, pp. 373–376.

[12] M. Alghatrif and J. Lindsay, “A brief review: history to understand fundamentals of

electrocardiography,” 2012.

[13] H. Shubin and M. H. Weil, “Efficient monitoring with a digital computer of

cardiovascular function in seriously ill patients.,” Ann. Intern. Med., vol. 65, no. 3, pp.

453–460, 1966.

[14] F. Booth, “Patient monitoring and data processing in the ICU,” Crit. Care Med., vol.

11, no. 1, pp. 57–58, 1983.

[15] A. S. Sado, “Electronic medical record in the intensive care unit,” Crit. Care Clin.,

90

vol. 15, no. 3, pp. 499–522, 1999.

[16] J. S. Gravenstein, “The automated anesthesia record Department of Anesthesiology ,

University of Florida College of Medicine ,” Int. J. Clin. Monit. Comput., vol. 3, no. 2,

pp. 131–132, 1986.

[17] M. A. Meyer et al., “A computerized perioperative data integration and display

system,” Int. J. Comput. Assist. Radiol. Surg., vol. 2, no. 3–4, pp. 191–202, 2007.

[18] C. Mothukuri and K. C. P. Kumar, “Patient Monitoring System,” Int. J. Sci. Res., vol.

2, no. 2, pp. 418–422.

[19] A. V. Halteren et al., “Mobile Patient Monitoring: The MobiHealth System.,” in The

Journal on Information Technology in Healthcare, 2004, vol. 2, pp. 365–373.

[20] Drägerwerk AG & Co. KGaA, “Infinity® Delta Monitor,” 2018. [Online]. Available:

https://www.draeger.com/en-us_us/Hospital/Products/Patient-Monitoring/Patient-

Monitors/Infinity-Delta-Series. [Accessed: 25-Apr-2018].

[21] “Dräger, Technik für das Leben,” 2018. [Online]. Available:

https://www.draeger.com/de_de/Home. [Accessed: 20-Apr-2018].

[22] © 1994-2018 The MathWorks. Inc., “What is MATLAB?,” 2018. [Online]. Available:

https://www.mathworks.com/discovery/what-is-matlab.html. [Accessed: 22-Apr-

2018].

[23] N. Stylianides, M. D. Dikaiakos, H. Gjermundrød, G. Panayi, and T. Kyprianou,

“Intensive care window: real-time monitoring and analysis in the intensive care

environment.,” IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 1, pp. 26–32, 2011.

[24] H. C. Lee and C. W. Jung, “Vital Recorder- A free research tool for automatic

recording of high-resolution time-synchronised physiological data from multiple

anaesthesia devices,” Sci. Rep., vol. 8, no. 1, pp. 1–8, 2018.

[25] Draeger Medical Systems (Inc), “Infinity® Delta and Delta XL Patient Monitors,”

2018. [Online]. Available: https://www.draeger.com/products/content/delta-xl-ds-

9051660-en.pdf. [Accessed: 25-Apr-2018].

[26] A. Dosinas, M. Vaitkunas, and J. Daunoras, “Measurement of human physiological

parameters in the systems of active clothing and wearable technologies,” Elektron. IR

Elektrotechnika, vol. 7, no. 7, pp. 77–82, 2006.

[27] R. Vecht and N. S. Peters, ECG Diagnosis in Clinical Practice Second Edition ECG

Diagnosis in Clinical Pratice Second Edition. London: Springer-Verlag, 2009.

[28] J. Eldridge et al., “Clinical guidelines by consensus recording a standard 12-lead

electrocardiogram an approved methodology by the society forr cardiological science

& technology,” Soc. Cardiol. Sci. Technol., pp. 1–26, 2017.

[29] P. Kligfield et al., “Recommendations for the standardization and interpretation of the

electrocardiogram: Part I: The electrocardiogram and its technology: A scientific

statement from the American Heart Association Electrocardiography and Arrhythmias

91

Committee, Council on Cli,” Circulation, vol. 115, no. 10, pp. 1306–1324, 2007.

[30] American Heart Association, “All About Heart Rate (Pulse),” 2015. [Online].

Available:

http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/GettheFactsAbout

HighBloodPressure/All-About-Heart-Rate-

Pulse_UCM_438850_Article.jsp#.WuHm1S5ubIU. [Accessed: 26-Apr-2018].

[31] W. Brzenzinski, “Blood Pressure; Clinical Methods - The History, Physical and

Laboratory Examinations,” in Clinical Methods, 3rd edition, Emory Univ., M. Editors:

H Kenneth Walker, MD, W Dallas Hall, MD, and J Willis Hurst, Ed. Boston:

Butterworths, 1990, pp. 95–97.

[32] American Heart Association, “Understanding Blood Pressure Readings,” 2017.

[Online]. Available:

http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/KnowYourNumbe

rs/Understanding-Blood-Pressure-

Readings_UCM_301764_Article.jsp#.WuH6qi5ubIU. [Accessed: 26-Apr-2018].

[33] J. M. Maier, “What Is the Formula for Calculating Blood Pressure?,” Leaf Group

Lifestyle, 2017. [Online]. Available: https://healthfully.com/formula-calculating-blood-

pressure-6328819.html. [Accessed: 29-Apr-2018].

[34] P. Schober and L. A. Schwarte, “From system to organ to cell: Oxygenation and

perfusion measurement in anesthesia and critical care,” J. Clin. Monit. Comput., vol.

26, no. 4, pp. 255–265, 2012.

[35] K. K. Tremper, T. W. Rutter, and J. A. Wahr, “Monitoring Oxygenation,” Curr.

Anaesth. Crit. Care, vol. 4, pp. 213–222, 1993.

[36] S. Lopez, “Pulse Oximeter Fundamentals and Design,” Free. Semicond. Inc., pp. 1–39,

2012.

[37] E. Kaniusas, Biomedical Signals and Sensors II. 2015.

[38] F. Shaffer and J. P. Ginsberg, “An Overview of Heart Rate Variability Metrics and

Norms,” Front. Public Heal., vol. 5, no. September, pp. 1–17, 2017.

[39] Z. Sun et al., “Postoperative Hypoxemia Is Common and Persistent: A Prospective

Blinded Observational Study,” Anesth. Analg., vol. 121, no. 3, pp. 709–715, 2015.

[40] M. Walsh et al., “Relationship between Intraoperative Mean Arterial Pressure and

Clinical Outcomes after Noncardiac Surgery,” Anesthesiology, vol. 119, no. 3, pp.

507–515, 2013.

[41] P. K. Stein and A. Reddy, “Non-linear heart rate variability and risk stratification in

cardiovascular disease,” Indian Pacing Electrophysiol. J., vol. 5, no. 3, pp. 210–220,

2005.

[42] V. Salmasi et al., “Relationship between Intraoperative Hypotension, Defined by

Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and

Myocardial Injury after Noncardiac Surgery,” Anesthesiology, vol. 126, no. 1, pp. 47–

92

65, 2017.

[43] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns of

enterprise application architecture. Addison-Wesley Professional, 2002.

[44] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns – Elements of

Reusable Object-Oriented Software,” Pearson Education, 1994, pp. 144–152, 249,

326–337.

[45] S. Mcconnell, Code Complete: A practical handbook of software construction, 2nd ed.

Redmond, Washington: Microsoft Press, A Division of Microsoft Corporation, 2004.

[46] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.

Addison-Wesley Professional, 2003.

[47] Lucid Software Inc., “UML Use Case Diagram Tutorial,” 2018. [Online]. Available:

https://www.lucidchart.com/pages/uml-use-case-diagram. [Accessed: 30-May-2018].

[48] S. W. Ambler, “The Elements of UMLTM 2.0 Style,” Cambridge University Press,

2005, pp. 33–46.

[49] M. Havey, Essential Business Process Modeling. O’Reilly Media, Inc., 2005.

[50] R. C. Papademetriou and D. A. Karras, “Business Modeling and Software Design: 6th

International Symposium, BMSD 2016, Rhodes, Greece, June 20-22, 2016, Revised

Selected Papers,” B. Shishkov, Ed. Rhodes: Springer, 2017, pp. 161–183.

[51] A. Calì, G. Gottlob, G. Orsi, and A. Pieris, “Querying UML class diagrams,” in

Foundations of Software Science and Computational Structures, Springer, Berlin,

Heidelberg, 2012, pp. 1–25.

[52] S. W. Ambler, “The Elements of UMLTM 2.0 Style,” in The Elements of UMLTM 2.0

Style, Cambridge: Cambridge University Press, 2005, pp. 47–72.

[53] “UML Class Diagram Tutorial,” Lucid Software Inc., 2018. [Online]. Available:

https://www.lucidchart.com/pages/uml-class-diagram. [Accessed: 05-Jun-2018].

[54] A. B. Singer, “Practical C ++ Design,” in Library of Congress Control Number, 2017,

p. xviii, 9-17.

[55] M. Fowler, “Patterns of Enterprise Application Architecture,” in Source, vol. 48, no. 2,

Pearson Education, Inc., 2003, pp. 330–333, 401–415.

[56] “Signals & Slots,” Qt Company Ltd. Documentation contributions, 2018. [Online].

Available: http://doc.qt.io/qt-5/signalsandslots.html. [Accessed: 07-Jun-2018].

[57] D. Esposito, “Cutting Edge - Pros and Cons of Data Transfer Objects,” MSDN

Magazine, 2009. [Online]. Available: https://msdn.microsoft.com/en-

us/magazine/ee236638.aspx. [Accessed: 08-Jun-2018].

[58] “Threading Basics,” Qt Company Ltd. Documentation, 2018. [Online]. Available:

http://doc.qt.io/qt-5/thread-basics.html. [Accessed: 08-Jun-2018].

93

[59] Draeger Medical Systems Inc., “Instructions for Use Infinity Gateway Suite,” Telford,

USA, 2014.

[60] N. Kehtarnavas and M. Gamadia, “Software Methods for Real-Time Image and Video

Processing,” in Real-Time Image and Video Processing, Morgan & Claypool

Publishers, 2006, pp. 55–78.

[61] “QT Official Homepage,” © 2018 The Qt Company, 2018. [Online]. Available:

https://www1.qt.io/company/. [Accessed: 12-Jun-2018].

[62] “Welcome to Oracle VM VirtualBox!,” Oracle, 2018. [Online]. Available:

https://www.virtualbox.org/manual/ch01.html. [Accessed: 12-Jun-2018].

[63] “GitLab is the first single application for all stages of the DevOps lifecycle.,” GitLab

B.V., 2018. [Online]. Available: https://about.gitlab.com/product/. [Accessed: 12-Jun-

2018].

[64] “Infinity® Gateway Suite,” Draeger Medical Systems (Inc), 2018. [Online]. Available:

https://www.draeger.com/en-us_us/Hospital/Products/Patient-

Monitoring/Connectivity-and-Remote-Access/Infinity-Gateway-Suite. [Accessed: 13-

Jun-2018].

[65] M. D. Ciampa and M. Revels, “Document Imaging and Problem Solving,” in

Introduction to Healthcare Information Technology, Course Technology, 2012, pp.

191–193.

[66] M. Reddy, “Libraries,” in API Design for C++, Morgan Kaufmann, 2011, pp. 391–

399.

[67] “Dynamic-Link Libraries,” © Microsoft 2018, 2018. [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682589(v=vs.85).aspx.

[Accessed: 14-Jun-2018].

[68] “About Dynamic-Link Libraries,” © Microsoft 2018, 2018. [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx.

[Accessed: 14-Jun-2018].

[69] “How to link to a dll,” © 2018 The Qt Company. [Online]. Available:

https://wiki.qt.io/How_to_link_to_a_dll. [Accessed: 14-Jun-2018].

[70] “qmake Project Files,” © 2018 The Qt Company. [Online]. Available:

http://doc.qt.io/archives/qt-4.8/qmake-project-files.html. [Accessed: 14-Jun-2018].

[71] K. Brown et al., “Introduction,” in Enterprise Java Programming with IBM

WebSphere, 2nd ed., Addison-Wesley Professional, 2003, pp. 4–13.

[72] M. Walmsley, “Introduction,” in Multi-Threaded Programming in C++, London:

Springer London, 2000, pp. 1–8.

[73] M. Walmsley, “Threads,” in Multi-Threaded Programming in C++, London: Springer

London, 2000, pp. 9–24.

94

[74] G. Lazar and R. Penea, “Keeping Your Sanity with Multithreading,” in Mastering Qt

5, Packt Publishing Ltd, 2016, 2016, pp. 307–340.

[75] K. E. Wiegers, “On Essential Requirements Concepts,” in More About Software

Requirements : Thorny Issues and Practical Advice., Microsoft Press, 2006, pp. 3–11.

[76] © ISO/IEC 2011 and © IEEE 2011, “International Standard - ISO/IEC/IEEE: Systems

and software engineering — Life cycle processes — Requirements engineering,”

2011.

[77] I. Sommerville and P. Sawyer, “What are Requirements?,” in Requirements

Engineering: A Good Practice Guide, John Wiley & Sons, 1997, p. 4.

[78] J. Doe, “Recommended Practice for Software Requirements Specifications,” 2011.

[79] W. O. Galitz, “Characteristics of Graphical and Web User Interfaces,” in The Essential

Guide to User Interface Design: An Introduction to GUI Design Principles and

Techniques, Robert Elliott and Emilie Herman, Eds. John Wiley & Sons, Inc, 2002,

pp. 15–27.

[80] Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values

(CSV) Files,” The Internet Society, 2005. [Online]. Available:

https://www.ietf.org/rfc/rfc4180.txt. [Accessed: 21-Jun-2018].

[81] T. Smith, “Install Windows Server 2008 and Windows Server 2008 R2,” 2009.

[Online]. Available: https://docs.microsoft.com/en-us/iis/install/installing-iis-7/install-

windows-server-2008-and-windows-server-2008-r2. [Accessed: 20-Jul-2018].

[82] Drägerwerk AG & Co., “Infinity® OneNet,” 2018. [Online]. Available:

https://www.draeger.com/de_de/Hospital/Products/Patient-Monitoring/Network-

Solutions/Infinity-OneNet. [Accessed: 20-Jul-2018].

[83] Python Software Foundation, “The Python Tutorial,” 1. Whetting Your Appetite, 2018.

[Online]. Available: https://docs.python.org/3/tutorial/appetite.html. [Accessed: 22-

Jul-2018].

[84] M. Fuxjaeger, “Numeric and Scientific,” 2018. [Online]. Available:

https://wiki.python.org/moin/NumericAndScientific. [Accessed: 22-Jul-2018].

[85] Jupyter Project, “Jupyter,” 2018. [Online]. Available: http://jupyter.org/. [Accessed:

22-Jul-2018].

[86] C. Chen, W. Härdle, and A. Unwin, “Scientific Design Choices in Data Visualization,”

in Handbook of Data Visualization, 2008, pp. 63–70.

[87] A. a T. Bui and W. Hsu, “Medical data visualization: Toward integrated clinical

workstations,” Med. Imaging Informatics, no. Mvc, pp. 139–193, 2010.

[88] C. M. Lilly, I. H. Zuckerman, O. Badawi, and R. R. Riker, “Benchmark data from

more than 240,000 adults that reflect the current practice of critical care in the United

States,” Chest, vol. 140, no. 5, pp. 1232–1242, 2011.

95

[89] M. Capuzzo et al., “Hospital mortality of adults admitted to Intensive Care Units in

hospitals with and without Intermediate Care Units: a multicentre European cohort

study,” Crit Care, vol. 18, no. 5, p. 551, 2014.

[90] E. Kaniusas, “Fundamentals of biosignals,” in Biomedical Signals and Sensors I:

Linking Physiological Phenomena and Biosensors, 2012, pp. 1–27.

[91] M. Streit and N. Gehlenborg, “Points of View: Bar charts and box plots,” Nature

Methods, vol. 11, no. 2. p. 117, 2014.

[92] D. Lanzerath, “European Network of Research Ethics Committees - EUREC,” 2018.

[Online]. Available: European Network of Research Ethics Committees - EUREC.

[Accessed: 18-Aug-2018].

96

Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln zur

Sicherung guter wissenschaftlicher Praxis, insbesondere ohne unzulässige Hilfe Dritter und

ohne Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen

Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle

gekennzeichnet. Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in

ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, 16.09.2018

...

 Jakub Matta

