DIPLOMARBEIT

Gitik's Model

Or

A model of ZF where all uncountable cardinals are singular

Ausgeführt am Institut für
Diskrete Mathematik und Geometrie der Technischen Universität Wien
unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Martin Goldstern
durch
Johannes Philipp Schürz, BSc

Inhaltsverzeichnis

1 Abstract 3
2 The forcing and other prerequisites 4
3 The symmetric extension 7
4 Separation and Replacement 10
5 The axiom of Power Set in N_{G} 12

1 Abstract

In my Master's Thesis I want to show the following result by Gitik [G]: Assuming the consistency of arbitrarily large strongly compact cardinals, we show the consistency of ZF $+\forall \alpha \in \operatorname{Lim}: \operatorname{cf} \alpha=\omega$, where Lim is the class of all limit ordinals.

To this end, we will start with a countable transitive model M of

$$
\mathrm{ZFC}+‘ \forall \alpha \in \mathrm{On} \exists \kappa>\alpha: \kappa \text { is strongly compact', }
$$

force with a proper class forcing to get a model $M[G]$ satisfying $\mathrm{ZF}^{-}+{ }^{~} \forall x: x$ is countable', where ZF $^{-}$is ZF without Power Set but Collection included, and finally define a symmetric submodel N_{G}, which will have the required properties.

The logic behind the consistency result can be found in Kunen $[\mathrm{K}]$.

2 The forcing and other prerequisites

We start with a ctm M of $\mathrm{ZFC}+{ }^{'} \forall \alpha \in \mathrm{On} \exists \kappa>\alpha: \kappa$ is strongly compact'. W.l.o.g. we can assume, that there is no regular limit of strongly compact cardinals in M, since if there were one, the smallest such α, named α^{\prime}, would be strongly inaccessible, and the set $\left\{x \in M: \operatorname{rank}^{M}(x)<\alpha^{\prime}\right\}$ would be a model with the required properties. Furthermore, we can assume, that M has a predicate $W O_{M}$, which is a global well-order of M, and the model satisfies Replacement with respect to the predicate $W O_{M}$. This can be easily seen, as we can always add such a global well-order by class forcing (see Felgner [F]).

Let $\left(\kappa_{\alpha}\right)_{\alpha \in \text { On }}$ list the strongly compact cardinals in M, where $\kappa_{0}=\omega$. Now we consider $\alpha \in$ Reg, the class of regular cardinals, and want to distinguish 3 cases:

- $\alpha<\kappa_{1}$: Let $\Phi_{\alpha}=\{X \subseteq \alpha:|\alpha-X|<\alpha\}$ be the co-bounded filter on α.
- There exist a maximal strongly compact cardinal $\kappa \leq \alpha$: Let Φ_{α} be the least κ - complete uniform ultrafilter on α. By least we refer to the well-order $W O_{M}$ and by uniform we mean that $X \in \Phi_{\alpha}$ implies $|X|=\alpha$.
- There is no such κ : Let $\beta=\sup \{\kappa: \kappa<\alpha \wedge \kappa$ is strongly compact $\}$. By our earlier assumption β must be singular. Let $\gamma=\operatorname{cf} \beta$. Let $\left(\kappa_{\nu}\right)_{\nu \in \gamma}$ be the least γ-sequence of strongly compact cardinals cofinal in β. We now define $\Phi_{\alpha, \nu}$ to be the least κ_{ν}-complete uniform ultrafilter on α for all $\nu<\gamma$.

In the second case we define $\mathrm{cf}^{\prime} \alpha:=\alpha$, and in the third case we shall say $\mathrm{cf}^{\prime} \alpha:=\gamma$.
We now consider the class $\operatorname{Reg} \times \omega \times$ On. For $x \subseteq \operatorname{Reg} \times \omega \times$ On we shall now define $\operatorname{dom}_{1}(x):=\{\alpha: \exists n \exists \beta(\alpha, n, \beta) \in x\}$ and $\operatorname{dom}_{1,2}(x):=\{(\alpha, n): \exists \beta(\alpha, n, \beta) \in x\}$. Furthermore, we define

$$
P_{1}:=\{p \subseteq \operatorname{Reg} \times \omega \times \mathrm{On}:
$$

$$
\left.p: \operatorname{Reg} \xrightarrow{\text { par }}(\omega \xrightarrow{\text { par }} \mathrm{On}) \wedge\left|\operatorname{dom}_{1,2}(p)\right|<\omega \wedge \forall \alpha \in \operatorname{dom}_{1}(p)[p(\alpha) \text { is } 1-1 \wedge \operatorname{ran}(p(\alpha)) \subseteq \alpha]\right\} .
$$

For $p_{1}, p_{2} \in P_{1}$ we shall say $p_{1} \approx p_{2}$, if $p_{1}\left|\left(\operatorname{Reg}-\kappa_{1}\right)=p_{2}\right|\left(\operatorname{Reg}-\kappa_{1}\right)$.
For technical reasons we are only going to use a subclass of P_{1}. Define P_{2} as the class of $p \in P_{1}$ such that the following conditions hold:

- $\forall \alpha \in \operatorname{dom}_{1}(p):$ cf' $^{\prime} \alpha \in \operatorname{dom}_{1}(p)$.
- $\forall \alpha \in \operatorname{dom}_{1}(p): \operatorname{dom}(p(\alpha)) \subseteq \operatorname{dom}\left(p\left(\mathrm{cf}^{\prime} \alpha\right)\right)$.
- $\exists \alpha \in \operatorname{dom}_{1}(p), \alpha \geq \kappa_{1}, \exists n \in \omega$:
$\forall \alpha^{\prime} \in\left(\operatorname{dom}_{1}(p)-\alpha\right) \operatorname{dom}\left(p\left(\alpha^{\prime}\right)\right)=n \wedge \forall \alpha^{\prime} \in \operatorname{dom}_{1}(p) \cap\left(\alpha-\kappa_{1}\right) \operatorname{dom}\left(p\left(\alpha^{\prime}\right)\right)=n+1$.
Since α and n are obviously uniquely determined, we shall set $\alpha(p)=\alpha$ and $n(p)=n$. $(\alpha(p), n(p))$ will be the first coordinate we will have to fill, if we want to extend p.

Definition 2.1. We shall call $p \in P_{2}$ extendable, iff $\exists q \in P_{2}: \operatorname{dom}_{1}(q)=\operatorname{dom}_{1}(p) \wedge$ $q\left|\kappa_{1}=p\right| \kappa_{1} \wedge p \nsubseteq q$. Therefore we see that a function p is extendable iff either cf $^{\prime} \alpha(p)=\alpha(p)$ or $\left(\mathrm{cf}^{\prime} \alpha(p), n(p)\right) \in \operatorname{dom}_{1,2}(p)$.

So we see that if cf' $\alpha(p) \geq \kappa_{1}, p$ is extendable.

Definition 2.2. We can now define the forcing. We set P_{3} to be the class of pairs (p, U) such that the following conditions hold:
(P1) $p \in P_{2}$.
(P2) $U \subseteq P_{2}$.
(P3) $p \in U$.
(P4) $\forall q \in U: p \subseteq q \wedge \operatorname{dom}_{1}(p)=\operatorname{dom}_{1}(q)$.
(P5) $\forall r \in U, r \approx p, \forall(\alpha, n)$:
$(\alpha, n) \in\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right) \times \omega-\operatorname{dom}_{1,2}(r) \Rightarrow\{\beta: r \cup\{(\alpha, n, \beta)\} \in U\} \in \Phi_{\alpha}$.
(P6) $\forall r_{1}, r_{2} \in U, r_{1}, r_{2} \approx p:\left(r_{1} \cup r_{2} \in P_{1} \Rightarrow r_{1} \cup r_{2} \in U\right) \wedge\left(r_{1} \subseteq r_{2} \Rightarrow T_{r_{1}} \subseteq T_{r_{2}}\right)$, where $T_{r}=T_{r}^{U}:=\left\{q \in U: q\left|\kappa_{1}=r\right| \kappa_{1}\right\}$ for $r \approx p$. The sign \subseteq should be interpreted as the embedding $\iota: T_{r_{1}} \ni q \mapsto q \cup r_{2}$.
(P7) $\forall q \in U \forall a \subseteq \kappa_{1} \times \omega \times \kappa_{1}: p \cup(q \cap a) \in U$.
(P8) $\forall q \in U, \mathrm{cf}^{\prime} \alpha(q)=\alpha(q):\{\beta: q \cup\{(\alpha(q), n(q), \beta)\} \in U\} \in \Phi_{\alpha(q)}$.
(P9) $\forall q \in U, \mathrm{cf}^{\prime} \alpha(q)<\alpha(q)$:
$n(q) \in \operatorname{dom}\left(q\left(\mathrm{cf}^{\prime} \alpha(q)\right)\right) \Rightarrow\{\beta: q \cup\{(\alpha(q), n(q), \beta)\} \in U\} \in \Phi_{\alpha(q), q\left(\mathrm{cf}^{\prime} \alpha(q)\right)(n(q))}$.
(P10) $\forall q \in U, q \not \approx p, \exists q^{\prime} \in U \exists(\alpha, n) \in \operatorname{dom}_{1,2}(q) \exists \beta \in \mathrm{On}:$
$q=q^{\prime} \cup\{(\alpha, n, \beta)\} \wedge\left(\alpha\left(q^{\prime}\right), n\left(q^{\prime}\right)\right)=(\alpha, n)$. We shall denote this q^{\prime} by q^{-}.

The partial order will be defined at the end of this chapter.
If q is extendable, then we shall denote the corresponding ultrafilter by Φ_{q}.

Lemma 1. Let (p, U) be a forcing condition and $a \subseteq \operatorname{Reg}$ such that $\alpha \in a \Rightarrow \mathrm{cf}^{\prime} \alpha \in a$, then $(p|a, U| a)$, where $U \mid a=\{q \mid a: q \in U\}$, is a forcing condition too.

Proof. As can be easily seen, only conditions (P5), (P6) and (P10) are non-trivial. For (P5) let $q \in U|a, q=r| a$ with some $r \in U$ and $q \approx p \mid a$. By (P7) we can assume that $r \approx p$. Let $(\alpha, n) \in\left(\operatorname{dom}_{1}(p \mid a) \cap \kappa_{1}\right) \times \omega-\operatorname{dom}_{1,2}(q)$, and it follows that also $(\alpha, n) \in\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right) \times \omega-\operatorname{dom}_{1,2}(r)$. So we see that $\{\beta: r \cup\{(\alpha, n, \beta)\} \in U\} \subseteq$ $\{\beta: q \cup\{(\alpha, n, \beta)\} \in U \mid a\} \in \Phi_{\alpha}$.
For (P6) let $q_{1}, q_{2} \in U \mid a$ with $q_{i}=r_{i} \mid a$ for $i=1,2$. Again by (P7) and $q_{i} \approx p \mid a$ we can assume that $r_{i}=p \cup q_{i}$. Now if $q_{1} \cup q_{2} \in P_{1}$ then also $r_{1} \cup r_{2} \in P_{1}$, and since U satisfies (P6), we have $q_{1} \cup q_{2}=\left(r_{1} \cup r_{2}\right)|a \in U| a$. Since $T_{r_{1}}\left|a \subseteq T_{r_{2}}\right| a$, if $r_{1} \subseteq r_{2}$, it follows that $T_{q_{1}}^{U \mid a}=\bigcup_{r \in U: r \approx p \wedge r \mid a=q_{1}} T_{r}\left|a \subseteq \bigcup_{r \in U: r \approx p \wedge r \mid a=q_{1}} T_{r \cup r_{2}}\right| a \subseteq T_{q_{2}}^{U \mid a}$, if $q_{1} \subseteq q_{2}$.
For (P10) let $q \in U \mid a$ with $q=t \mid a$ and t minimal with respect to cardinality. It must be that $t \not \approx p$, since $q \not \approx p \mid a$. Now $t=t^{-} \cup\{(\alpha, n, \beta)\}$. We see that $(\alpha, n, \beta) \in q$ due to the minimality of t. It easily follows that $(\alpha, n)=(\alpha(q), n(q))$ and $q=t^{-} \mid a \cup\{(\alpha, n, \beta)\}$, so that $q^{-}=t^{-}|a \in U| a$.

Lemma 2. If (p, U) is a forcing condition and $s \in U$, then $\left(s, U_{s}\right)$ is a forcing condition too, where $U_{s}=\{t \in U: s \subseteq t\}$.

Proof. Only (P5)-(P7) are non-trivial. For (P5) let $q \in U_{s}$ and $q \approx s$. Since U satisfies (P7), we have $p \cup q \mid \kappa_{1} \in U$. Let $(\alpha, n) \in\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right) \times \omega-\operatorname{dom}_{1,2}(q)$. Then we have that $E=\left\{\beta: p \cup q \mid \kappa_{1} \cup\{(\alpha, n, \beta)\} \in U\right\} \in \Phi_{\alpha}$. Now since $\forall \beta \in E: T_{p \cup q \mid \kappa_{1}} \subseteq$ $T_{p \cup q \mid \kappa 1 \cup\{(\alpha, n, \beta)\}}$, we see that $\forall \beta^{\prime} \in E: q \cup\left\{\left(\alpha, n, \beta^{\prime}\right)\right\} \in U$. Therefore it holds that $E \subseteq\left\{\beta: q \cup\{(\alpha, n, \beta)\} \in U_{s}\right\} \in \Phi_{\alpha}$.

For (P6) let $r_{1}, r_{2} \in U_{s}$ and $r_{i} \approx s$ for $i=1,2$. Again by (P7), $p \cup r_{i} \mid \kappa_{1} \in U$ for $i=1,2$. It follows that $\left(p \cup r_{1} \mid \kappa_{1}\right) \cup\left(p \cup r_{2} \mid \kappa_{1}\right) \in P_{1}$, since we assume that $r_{1} \cup r_{2} \in P_{1}$. Therefore $\left(p \cup r_{1} \mid \kappa_{1}\right) \cup\left(p \cup r_{2} \mid \kappa\right) \in U$. By $(\mathrm{P} 6) r_{1} \cup r_{2} \in T_{p \cup\left(r_{1} \cup r_{2}\right) \mid \kappa_{1}}$, so that $r_{1} \cup r_{2} \in T_{s \cup\left(r_{1} \cup r_{2}\right) \mid \kappa_{1}}^{U_{s}}$. It easily follows that if $r_{1} \subseteq r_{2}$, then $T_{r_{1}}^{U_{s}} \subseteq T_{r_{2}}^{U_{s}}$.
For (P7) let $q \in U_{s}$ and let $a \subseteq \kappa_{1} \times \omega \times \kappa_{1}$. We have that $p \cup(q \cap a) \in U$ and therefore also $p \cup(q \cap a) \cup s \mid \kappa_{1} \in U$. By (P6) it follows that $s \cup(q \cap a) \in T_{p \cup(q \cap a) \cup s \mid \kappa_{1}}$ and so it follows that $s \cup(q \cap a) \in U_{s}$.

Definition 2.3. If $p \in P_{2}, b \supseteq \operatorname{dom}_{1}(p)$ such that b is closed under cf' and $b \subseteq \operatorname{Reg}$ finite, then we call $p^{\prime} \in P_{2}$ a $\underline{b-\text {-extension }}$ of p, if $\operatorname{dom}_{1}\left(p^{\prime}\right)=b$ and $p^{\prime} \mid \operatorname{dom}_{1}(p)=p$.

Lemma 3. Let $(p, U) \in P_{3}, b \supseteq \operatorname{dom}_{1}(p)$, closed under cf', and $b \subseteq \operatorname{Reg}$ finite. Let p^{\prime} be a b-extension of p and set $U^{\prime}:=\left\{q^{\prime} \in P_{2}: q^{\prime} \supseteq p^{\prime} \wedge \exists q \in U\left[q^{\prime}\right.\right.$ is a b-extension of $\left.\left.q\right]\right\}$. Then $\left(p^{\prime}, U^{\prime}\right)$ is a condition.

Proof. Straightforward checking of the conditions (P1)-(P10).

Lemma 4. If $(p, U),(p, V) \in P_{3}$ then $(p, U \cap V)$ is a condition too.
Proof. We note that $q \in P_{2}$ being extendable only depends on $\operatorname{dom}_{1,2}(q)$. All the conditions follow, since filters are closed under intersection.

We can now define the partial order of the forcing.
Definition 2.4. Let $(p, U),(q, V) \in P_{3}$. We say that (q, V) is stronger than (p, U), in terms $(q, V) \geq(p, U)$, if $V \mid \operatorname{dom}_{1}(p) \subseteq U$.

3 The symmetric extension

We consider the group of partial permutations of $\operatorname{Reg} \times \omega \times$ On. We define a subclass $G r$ as the permutations π satisfying:

1. $\left|\operatorname{dom}_{1}(\operatorname{dom}(\pi))\right|<\omega$.
2. For every $\alpha \in \operatorname{dom}_{1}(\operatorname{dom}(\pi))$ there is a permutation π^{α} of α with finite domain, such that $\forall n<\omega$: 'If $\beta \in \operatorname{dom}\left(\pi^{\alpha}\right)$ then $\pi((\alpha, n, \beta))=\left(\alpha, n, \pi^{\alpha}(\beta)\right)$, and $\pi((\alpha, n, \beta))=(\alpha, n, \beta)$ otherwise'.

If $a \subseteq$ Reg finite we define

$$
H_{a}:=\left\{\pi \in G r: \forall \alpha \in a \cap \operatorname{dom}_{1}(\operatorname{dom}(\pi))\left[\pi^{\alpha} \text { is the identity function }\right]\right\} .
$$

We easily see that H_{a} is a normal subgroup of $G r$. Furthermore, for each $\pi \in G r$ we define a dense subclass $P^{\pi} \subseteq P_{3}$ as the forcing conditions (p, U) with the following properties:

1. $\operatorname{dom}_{1}(p) \supseteq \operatorname{dom}_{1}(\operatorname{dom}(\pi))$.
2. $\forall \alpha \in \operatorname{dom}_{1}(p): \operatorname{dom}\left(p\left(\mathrm{f}^{\prime} \alpha\right)\right)=\operatorname{dom}(p(\alpha))$.
3. $\forall \alpha \in \operatorname{dom}_{1}(\operatorname{dom}(\pi)): \operatorname{rng}(p(\alpha)) \supseteq\left\{\beta \in \operatorname{dom}\left(\pi^{\alpha}\right): \exists q \in U \beta \in \operatorname{rng}(q(\alpha))\right\}$.

The density follows easily.
For a $(p, U) \in P^{\pi}$ we define $\pi((p, U))$ to be $(\pi p, \pi U)$ with

$$
\begin{gathered}
\pi p:=\pi\left[p \mid \operatorname{dom}_{1}(\operatorname{dom}(\pi))\right] \cup p-p \mid \operatorname{dom}_{1}(\operatorname{dom}(\pi)) \text { and } \\
\pi U:=\left\{\pi\left[q \mid \operatorname{dom}_{1}(\operatorname{dom}(\pi))\right] \cup q-q \mid \operatorname{dom}_{1}(\operatorname{dom}(\pi)): q \in U\right\} .
\end{gathered}
$$

The reason why we restrict ourselves to P^{π} is the following lemma.
Lemma 5. For every $\pi \in G r$ the mapping $(p, U) \mapsto(\pi p, \pi U)$ is an automorphism of $\left(P^{\pi}, \geq\right)$.

Proof. First we need to check that $(\pi p, \pi U)$ is a forcing condition. Only condition (P9) is non-trivial. Let $q \in U$ be extendable and we note that $(\alpha(q), n(q))=(\alpha(\pi q), n(\pi q))$. Now let $\mathrm{cf}^{\prime} \alpha(q)<\alpha(q)$ and assume that $\gamma=q\left(\mathrm{cf}^{\prime} \alpha(q)\right)(n(q)) \in \operatorname{dom}\left(\pi^{\mathrm{cf}^{\prime}}{ }^{\prime} \alpha(q)\right)$. Now it follows that $\gamma \in \operatorname{ran}\left(p\left(\mathrm{cf}^{\prime} \alpha(q)\right)\right)$ and that ($\left.\mathrm{cf}^{\prime} \alpha(q), n(q)\right) \notin \operatorname{dom}_{1,2}(p)$. But this is a contradiction to $q\left(\mathrm{cf}^{\prime} \alpha(q)\right)$ being 1-1. Therefore $\gamma \notin \operatorname{dom}\left(\pi^{\mathrm{cf}^{\prime} \alpha(q)}\right)$ and we see that
$\{\beta: \pi q \cup(\alpha(q), n(q), \beta) \in \pi U\} \supseteq\{\beta: q \cup(\alpha(q), n(q), \beta) \in U\} \backslash \operatorname{dom}\left(\pi^{\alpha(q)}\right) \in \Phi_{\alpha(q), \gamma}=\Phi_{\pi q}$.
Since $\operatorname{dom}(\pi)=\operatorname{ran}(\pi)$ we immediately see that $(\pi p, \pi U) \in P^{\pi}$. Similarly, it follows that $P^{\pi^{-1}}=P^{\pi}$ and therefore the mapping is an automorphism.

We note that P_{3} has a unique Boolean completion $\mathrm{RO}\left(P_{3}\right)$, since all M-definable antichains are sets in M, which we will show later. Therefore, every $\pi \in G r$ uniquely extends to an automorphism of $\mathrm{RO}\left(P_{3}\right)$.

Now let G be a M-generic subclass of P_{3}, i.e. G meets all M-definable dense subclasses, and denote the generic extension by $M[G]$.

Definition 3.1. By N_{G} we shall denote the symmetric extension generated by the filter base $\left\{H_{a}: a \subseteq\right.$ Reg finite $\}$. In more detail: Call a name \mathbf{x} symmetric iff $\exists a \subseteq$ Reg finite such that $\operatorname{sym}(\mathbf{x})=\{\pi \in G r: \tilde{\pi}(\mathbf{x})=\mathbf{x}\} \supseteq H_{a}$, where $\tilde{\pi}$ is defined recursively by $\tilde{\pi}(\mathbf{x}):=\{(\tilde{\pi}(\boldsymbol{\sigma}), \pi(p)):(\boldsymbol{\sigma}, p) \in \mathbf{x}\}$. Define $H S$ as the class of all hereditarily symmetric names. Set the symmetric extension $N_{G}:=\left\{\mathbf{x}^{G}: \mathbf{x} \in H S\right\}$ (see Jech[J]).

It can be easily seen that $M[G]$ and N_{G} are models of Extensionality, Pairing, Union and Infinity.

For $\alpha \in \operatorname{Reg}$ we shall set $P_{\alpha}:=\left\{(p, U) \in P_{3}: \operatorname{dom}_{1}(p) \subseteq \alpha\right\}$ and $G_{\alpha}=G \cap P_{\alpha}$.

Lemma 6. $\forall \alpha \in \operatorname{Reg}: P_{\alpha}$ is a complete subforcing of $P_{3}, M[G]=\bigcup_{\alpha \in \operatorname{Reg}} M\left[G_{\alpha}\right]$ and $N_{G}=\bigcup_{\alpha \in \operatorname{Reg}} N_{G_{\alpha}}$.

Proof. We shall show that every maximal antichain in $P_{\alpha}, \alpha \in \operatorname{Reg}$ arbitrary, is also maximal in P_{3}. Let A be a maximal antichain in P_{α} and $(p, U) \in P_{3}$. W.l.o.g. $(p|\alpha, U| \alpha) \neq(\emptyset,\{\emptyset\})$ and it follows that $(p|\alpha, U| \alpha)$ is compatible with some element $r \in A$. Let $(q, V) \geq(p|\alpha, U| \alpha), r$ with $(q, V) \in P_{\alpha}$ and w.l.o.g. we can assume that $\exists m \in \omega \forall \alpha^{\prime} \in \operatorname{dom}_{1}(q): \operatorname{dom}\left(q\left(\alpha^{\prime}\right)\right)=m$. Let $t=q\left|\left(\operatorname{dom}_{1}(p) \cap \alpha\right) \in U\right| \alpha$ and let $s \in U$ with $s \mid \alpha=t$. We note that $\left(s, U_{s}\right) \geq(p, U)$. Now $s \cup q \in P_{2},(s \cup q) \mid \operatorname{dom}_{1}(q)=q$ and $(s \cup q) \mid \operatorname{dom}_{1}(s)=s$, since $s|\alpha=q| \operatorname{dom}_{1}(s)$. Therefore $(s \cup q, W) \geq(q, V)$ as a b-extension of (q, V) and $(s \cup q, X) \geq\left(s, U_{s}\right)$ as a b-extension of $\left(s, U_{s}\right)$. So we see that $(s \cup q, W \cap X) \geq(q, V),\left(s, U_{s}\right) \geq r,(p, U)$.
The second statement follows easily, since every (symmetric) P_{3}-name is a (symmetric) P_{α}-name for some $\alpha \in \operatorname{Reg}$, and G_{α} is an M-generic filter of P_{α}.

Lemma 5

Lemma 6

Note that the definability of the forcing relation and the forcing theorem are nontrivial, but we will take care of these technicalities later. The following lemma is a generalization of the Symmetry lemma. It refers to \Vdash as well as to $\Vdash^{H S}$.

Lemma 7. Let $\varphi\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ be a formula with $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}} \in H S$. Let $a \subseteq \operatorname{Reg}$ finite such that a is closed under cf' and $\operatorname{sym}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right) \supseteq H_{a}$. If $(p, U) \Vdash \varphi\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$, then already $(p|a, U| a) \Vdash \varphi\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$.

Proof. Suppose not. Then there is $(q, V) \geq(p|a, U| a)$ and $(q, V) \Vdash_{\operatorname{RO}\left(P_{3}\right)} \neg \varphi\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$. Again, let q be of the form $\exists m \in \omega \forall \alpha \in \operatorname{dom}_{1}(q): \operatorname{dom}(q(\alpha))=m$. It will now suffice to show that there are conditions $\left(p^{\prime}, U^{\prime}\right) \geq(p, U)$ and $\left(q^{\prime}, V^{\prime}\right) \geq(q, V)$ and a permutation $\pi \in H_{a}$ with $\left(p^{\prime}, U^{\prime}\right) \in P^{\pi}$ such that $\pi\left(\left(p^{\prime}, U^{\prime}\right)\right)=\left(q^{\prime}, V^{\prime}\right)$. This will yield a contradiction, since $\pi\left(\left(p^{\prime}, U^{\prime}\right)\right) \Vdash_{\mathrm{RO}\left(P_{3}\right)} \varphi\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$.
Since $(q, V) \geq(p|a, U| a)$ it follows that $q\left|\left(a \cap \operatorname{dom}_{1}(p)\right) \in U\right| a$. Let $t \in U$ with $t|a=q|\left(a \cap \operatorname{dom}_{1}(p)\right)$ and such that $t \cup q \mid a \in P_{2}$. We set $p^{\star}=t \cup q \mid a$ and let $\left(p^{\star}, U^{\star}\right) \geq(p, U)$,
as a b-extension, with $p^{\star}|a=q| a$. We can now extend $\left(p^{\star}, U^{\star}\right)$ and (q, V) to $\left(p_{1}, U_{1}\right)$ and $\left(q_{1}, V_{1}\right)$ such that $\operatorname{dom}_{1}\left(p_{1}\right)=\operatorname{dom}_{1}\left(q_{1}\right)$,

$$
\forall \alpha \in \operatorname{dom}_{1}\left(p_{1}\right): \operatorname{dom}\left(p_{1}(\alpha)\right)=\operatorname{dom}\left(p_{1}\left(\mathrm{cf}^{\prime} \alpha\right)\right)=\operatorname{dom}\left(q_{1}\left(\mathrm{cf}^{\prime} \alpha\right)\right)=\operatorname{dom}\left(q_{1}(\alpha)\right),
$$

and still $p_{1}\left|a=q_{1}\right| a$, since the filters are closed under intersection. We define

$$
\begin{gathered}
U_{1}^{\prime} \\
:=\left\{t \in U_{1}: \forall \alpha \in \operatorname{dom}_{1}\left(p_{1}\right)-a \quad\left[\operatorname{ran}(t(\alpha))-\operatorname{ran}\left(p_{1}(\alpha)\right) \cap \operatorname{ran}\left(q_{1}(\alpha)\right)=\emptyset\right]\right\} \text { and } \\
V_{1}^{\prime}
\end{gathered}:=\left\{t \in V_{1}: \forall \alpha \in \operatorname{dom}_{1}\left(q_{1}\right)-a \quad\left[\operatorname{ran}(t(\alpha))-\operatorname{ran}\left(q_{1}(\alpha)\right) \cap \operatorname{ran}\left(p_{1}(\alpha)\right)=\emptyset\right]\right\} .
$$

We can now define the permutation π : For every $\alpha \in \operatorname{dom}_{1}\left(p_{1}\right)-a$ and $n \in \omega$ we set $\pi^{\alpha}\left(p_{1}(\alpha)(n)\right)=q_{1}(\alpha)(n)$, if defined. Since $q_{1}(\alpha)$ is 1-1, we can extend every π^{α} to a finite permutation. Of course, it holds that the resulting $\pi \in G r$. Furthermore, one can easily show that $\left(p_{1}, U_{1}^{\prime}\right) \in P^{\pi}$. We set $\left(q^{\prime}, V^{\prime}\right):=\left(\pi p_{1}^{\prime}, \pi U_{1}^{\prime} \cap V_{1}^{\prime}\right) \geq\left(q_{1}, V_{1}^{\prime}\right)$ and $\left(p^{\prime}, U^{\prime}\right):=\pi^{-1}\left(\left(\pi p_{1}^{\prime}, \pi U_{1}^{\prime} \cap V_{1}^{\prime}\right)\right) \geq\left(p_{1}^{\prime}, U_{1}^{\prime}\right)$.

4 Separation and Replacement

Now we want to introduce three new predicates for the model $M[G]: B\left(x_{1}\right)$ will assert that $x_{1} \in M, A\left(x_{1}, x_{2}\right)$ will assert that $\left(x_{1}, x_{2}\right) \in G$ and $W O\left(x_{1}, x_{2}\right)$ will assert that $x_{1}, x_{2} \in M$ and $\left(x_{1}, x_{2}\right) \in W O_{M}$.

Furthermore, we extend the forcing language by the following predicates:

- $t \Vdash \check{B}\left(\mathbf{x}_{\mathbf{1}}\right)$ iff $\forall t^{\prime} \geq t \exists t^{\prime \prime} \geq t^{\prime} \exists y: t^{\prime \prime} \Vdash \mathbf{x}_{\mathbf{1}}=\check{y}$.
- $t \Vdash \check{A}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ iff
$\forall t^{\prime} \geq t \exists t^{\prime \prime} \geq t^{\prime} \exists y_{1}, y_{2}:\left(y_{1}, y_{2}\right) \in P_{3} \wedge t^{\prime \prime} \Vdash \mathbf{x}_{\mathbf{1}}=\check{y_{1}} \wedge t^{\prime \prime} \Vdash \mathbf{x}_{\mathbf{2}}=\check{y_{2}} \wedge t^{\prime \prime} \geq\left(y_{1}, y_{2}\right)$.
- $t \Vdash W \check{ } \because\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ iff
$\forall t^{\prime} \geq t \exists t^{\prime \prime} \geq t^{\prime} \exists y_{1}, y_{2}: W O_{M}\left(y_{1}, y_{2}\right) \wedge t^{\prime \prime} \Vdash \mathbf{x}_{1}=\check{y_{1}} \wedge t^{\prime \prime} \Vdash \mathbf{x}_{\mathbf{2}}=\check{y_{2}}$.
Lemma 8. The forcing relation for the expanded language is definable. Furthermore, let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula in the language $(\in,=, A, B, W O)$. Then $M[G] \vDash \varphi\left(\mathbf{x}_{1}{ }^{G}, \ldots, \mathbf{x}_{\mathbf{n}}{ }^{G}\right)$ iff $\exists t \in G: t \Vdash \check{\varphi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$.

Proof. Define the forcing relation for atomic formulas as follows: $p \Vdash \mathbf{x} \in \mathbf{y}$ iff

$$
\exists \alpha \in \operatorname{Reg} \forall \alpha^{\prime} \geq \alpha: p \in P_{\alpha^{\prime}} \wedge p \Vdash_{P_{\alpha}^{\prime}} \mathbf{x} \in \mathbf{y}
$$

Similarly for $\mathbf{x}=\mathbf{y}$. This definition works, because Δ_{0}-formulas are absolute between transitive models. The general case is defined by the usual induction over the number of quantifiers, e.g. $p \Vdash \forall x \check{\varphi}(x)$ iff $\forall \mathbf{x} \in M^{P_{3}}: p \Vdash \check{\varphi}(\mathbf{x})$. For more details see Shoenfield [S] and Zarach [Z].

Lemma 9. $M[G]$ can be definably well-ordered.
Proof. First we note that $\forall \alpha \in \operatorname{Reg}: M\left[G_{\alpha}\right]$ is definable in $M[G]$. The definition is the same formula defining ' $M\left[G_{\alpha}\right]$ as the forcing extension of M with poset P_{α} and filter $G_{\alpha}{ }^{\prime}$ in $M\left[G_{\alpha}\right]$, i.e.
$M\left[G_{\alpha}\right]=\left\{y: \exists \mathbf{z} \in M^{P_{\alpha}} \phi_{G_{\alpha}}(\mathbf{z}, y)\right\}$ where $\phi_{G_{\alpha}}(\mathbf{z}, y)$ is the formula for $\mathbf{z}^{G_{\alpha}}=y$ in $M\left[G_{\alpha}\right]$.
Note that $\phi_{G_{\alpha}}(\mathbf{z}, y)$ is of the form $\exists x \psi(x, \mathbf{z}, y)$ and $\psi(x, \mathbf{z}, y)$ is Δ_{0}. By the upward absoluteness of Σ_{1}-formulas $M[G] \vDash \forall \mathbf{z} \in M^{P_{\alpha}} \exists y: \phi_{G_{\alpha}}(\mathbf{z}, y)$. Finally, one can easily check by induction that $M[G] \vDash \forall \mathbf{z} \in M^{P_{\alpha}} \exists!y: \phi_{G_{\alpha}}(\mathbf{z}, y)$ and that the recursion is absolute.
For $x \in M[G]$ we define $\Delta(x):=\min \left\{\alpha \in \operatorname{Reg}: x \in M\left[G_{\alpha}\right]\right\}$. For $x, y \in M[G]$ we say $x<y$ iff either $\Delta(x)<\Delta(y)$ or

$$
\Delta(x)=\Delta(y) \text { and } \min _{W O}\left\{\mathbf{z} \in M^{P_{3}}: \mathbf{z}^{G}=x\right\}<W O \min _{W O}\left\{\mathbf{z} \in M^{P_{3}}: \mathbf{z}^{G}=y\right\} .
$$

Theorem 10. $M[G]$ satisfies Collection, i.e.

$$
\forall a: \forall x \in a \exists y \varphi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \varphi(x, y),
$$

for any formula $\varphi(x, y)$ in the language $(\epsilon,=, A, B, W O)$.
Proof. First we show that every definable antichain of P_{3} is a set in M. Suppose not. Let $\left(\left(p_{\alpha}, U_{\alpha}\right)\right)_{\alpha \in \text { On }}$ be an M-definable antichain. W.l.o.g. we can assume that $\left|\operatorname{dom}_{1}\left(p_{\alpha}\right)\right|$ is independent of α and $\operatorname{dom}\left(p_{\alpha}\left(\alpha^{\prime}\right)\right) \subseteq \omega$ is independent of α and α^{\prime}. Let $f_{i}(\alpha)$ denote the i th $\alpha^{\prime} \in \operatorname{dom}_{1}\left(p_{\alpha}\right)$ for $i<\left|\operatorname{dom}_{1}\left(p_{\alpha}\right)\right|$. Now there must be a i such that $\left\{f_{i}(\alpha): \alpha \in \mathrm{On}\right\}$ is unbounded. Choose i minimal. Let $\beta=\sup \left\{f_{j}(\alpha): j<i \wedge \alpha \in \mathrm{On}\right\}$ and choose $\left(\left(p_{\alpha}^{\prime}, U_{\alpha}^{\prime}\right)\right)_{\alpha \in \text { On }}$ such that $\operatorname{dom}_{1}\left(p_{\alpha}^{\prime}\right)$ are pairwise disjoint above β. Now choose $\left(\left(p_{\alpha}^{\prime \prime}, U_{\alpha}^{\prime \prime}\right)\right)_{\alpha \in \text { On }}$ such that $p_{\alpha}^{\prime \prime} \mid \beta^{+}$are identical. But this is a contradiction, since now all ($p_{\alpha}^{\prime \prime}, U_{\alpha}^{\prime \prime}$) are compatible.

Now to Collection: Let $\varphi(x, y)$ be a given formula, and $a \in M[G]$. Let us assume that $M[G] \vDash \forall x \in a \exists y: \varphi(x, y)$. For $x \in a$ let $\psi(x, \alpha)$ denote ' α is the least regular cardinal such that $\exists y \in R_{\alpha}^{M\left[G_{\alpha}\right]}: \varphi(x, y)^{\prime}$. Note that for every $\mathbf{x} \in \operatorname{dom}(\mathbf{a})$ there is a $\beta_{\mathbf{x}}$ such that $\forall \gamma \geq \beta_{\mathbf{x}} \forall t \in P_{3}: t \Vdash \neg \check{\psi}(\mathbf{x}, \check{\gamma})$, since otherwise we would obtain a M - definable antichain which would not be a set in M. Now we use Replacement in M to define $\beta=\sup \left\{\beta_{\mathbf{x}}: \mathbf{x} \in \operatorname{dom}(\mathbf{a})\right\}$. Let α be the least regular cardinal $\geq \beta$. Now $M[G] \vDash \forall x \in a \exists y \in R_{\alpha}^{M\left[G_{\alpha}\right]}: \varphi(x, y)$. It follows that $R_{\alpha}^{M\left[G_{\alpha}\right]} \in M\left[G_{\alpha}\right] \subseteq M[G]$, since $M\left[G_{\alpha}\right]$ satisfies ZFC.

Theorem 11. $M[G]$ satisfies Separation for any formula in the language $(\epsilon,=, A, B, W O)$.
Proof. Let $\varphi(x)$ be a given formula, and $a \in M[G]$. For $(\mathbf{x}, p) \in \mathbf{a}$ we define $A_{(\mathbf{x}, p)}$ to be a maximal antichain below p such that $\forall t \in A_{(\mathbf{x}, p)}: t \Vdash \check{\varphi}(\mathbf{x})$. We set $\tau:=\bigcup_{(\mathbf{x}, p) \in \mathbf{a}}\{\mathbf{x}\} \times A_{(\mathbf{x}, p)}$. We are left to show $M[G] \vDash \forall x: x \in \tau^{G} \leftrightarrow x \in a \wedge \varphi(x)$. Let $x \in \tau^{G}$. This means that there is a $(\mathbf{x}, q) \in \tau$ with $q \in G$ and $(\mathbf{x}, p) \in \mathbf{a}$ with $q \geq p$ and $q \Vdash \check{\varphi}(\mathbf{x})$. It follows that $x \in a$ and $\varphi(x)$. Now let $x \in a$ and $\varphi(x)$. It follows that there is a $(\mathbf{x}, p) \in \mathbf{a}$ with $p \in G$. Therefore, G must meet with $A_{(\mathbf{x}, p)}$, so that $x \in \tau^{G}$.

Now Replacement easily follows from Collection and Separation in $M[G]$.
Replacement in N_{G} can be shown similarly, although one has to work for Separation to show that the name τ is symmetric. A more elegant proof uses replacement in $M[G]$ and the fact that $N_{G} \vDash$ Power Set, which we will show without using any axioms in N_{G}.

Theorem 12. N_{G} satisfies Replacement for any formula in the language $(\in,=)$.
Proof. Let $\varphi(x, y)$ be a given formula, $a \in N_{G}$ and $N_{G} \vDash \forall x \in a \exists!y: \varphi(x, y)$. Now $N_{G}=\bigcup_{\alpha \in \mathrm{On}}\left(R_{\alpha}^{N_{G}}\right)$ is a definable subclass of $M[G]$. Note that $R_{\alpha}^{N_{G}} \in N_{G}$ only because $N_{G} \vDash$ Power Set and if λ is a limit ordinal then $R_{\lambda}^{N_{G}} \in M[G]$ and $R_{\lambda}^{N_{G}} \subseteq N_{G_{\alpha}}$ for some $\alpha \in$ Reg. Since $N_{G_{\alpha}} \vDash$ ZF and rank is absolute, it follows that $R_{\lambda}^{N_{G}} \in N_{G_{\alpha}} \subseteq N_{G}$. Since $M[G] \vDash$ Replacement, we can now use Reflection. So we get an α such that $R_{\alpha}^{N_{G}} \preccurlyeq \varphi_{, \psi} N_{G}$ and $a \in R_{\alpha}^{N_{G}}$, where $\psi(z)$ is the formula $\forall x \in z \exists!y: \varphi(x, y)$. Let α^{\prime} be the least regular cardinal such that $R_{\alpha}^{N_{G}} \in N_{G_{\alpha^{\prime}}}$. Finally we use Separation in $N_{G_{\alpha^{\prime}}}$ to get $b=\left\{y \in R_{\alpha}^{N_{G}}: \exists x \in a \varphi^{R_{\alpha}^{N_{G}}}(x, y)\right\} \in N_{G_{\alpha^{\prime}}} \subseteq N_{G}$.

5 The axiom of Power Set in \mathbf{N}_{G}

The problem with Power set is that it does not hold in $M[G]$. Indeed, since all limit ordinals have cofinality ω and AC holds within $M[G]$, every set must be countable in $M[G]$. So even the reals form a proper class, and so do all the R_{α} 's for $\alpha>\omega$.

Let $\mathbf{x} \in H S$ be a hereditarily symmetric name. First we define the support of such a name: $\operatorname{supp}(\mathbf{x}):=\min _{\subseteq}\left\{a \subseteq \operatorname{Reg}\right.$ finite $\left.: \operatorname{sym}(\mathbf{x}) \supseteq H_{a}\right\}$. Note that this minimum exists, since if $\pi \in H_{a_{1} \cap a_{2}}$ then $\pi=\pi_{2} \circ \pi_{1}$ with $\pi_{i} \in H_{a_{i}}$. So if \mathbf{x} is supported by a_{1} and a_{2}, then it is also supported by $a_{1} \cap a_{2}$.

Let $x \in N_{G}$. In contrast to the other axioms, it might be that the supports of names \mathbf{y} for subsets of x are cofinal in the ordinals, such that at each α new subsets arise. Therefore, we shall show that $\mathcal{P}^{N_{G}}(x) \in M[G]$, which will yield Power Set, since with Replacement in $M[G]$ we get an α with $\mathcal{P}^{N_{G}}(x) \subseteq N_{G_{\alpha}}$ and $x \in N_{G_{\alpha}}$, and since $N_{G_{\alpha}} \vDash$ ZF and being a subset of x is absolute for transitive models, we get $\mathcal{P}^{N_{G}}(x) \in N_{G_{\alpha}} \subseteq N_{G}$.

Let \mathbf{x} be a symmetric name for x. We define $\delta:=\sup \{\bigcup \operatorname{supp}(\mathbf{z}) \cup \bigcup \operatorname{supp}(\mathbf{x}): \mathbf{z} \in$ $\operatorname{dom}(\mathbf{x})\}$. Let κ be the smallest strongly compact cardinal $>\delta^{+}$. We shall call $\alpha<\kappa$ small coordinates and $\alpha \geq \kappa$ big ones.

Lemma 13. Let (p, U) be a forcing condition. Then there is a $(q, V) \geq(p, U)$ such that the following conditions hold:

- $\forall t \in V: \alpha(t) \geq \kappa \Rightarrow \Phi_{t}$ is κ-complete.
- for every $s \in V$ such that s is extendable and $\alpha(s)<\kappa$ the set

$$
E_{s}:=\{\beta \in \alpha(s): s \cup\{(\alpha(s), m(s), \beta)\} \in V\}
$$

of possible extensions is independent of the values at the big coordinates, i.e. if $q_{1}\left|\kappa=q_{2}\right| \kappa$ then $E_{q_{1}}=E_{q_{2}}$.

Proof. First we want to find $\left(p^{\prime}, W\right) \geq(p, U)$ with $p^{\prime} \in U$ and $n \in \omega$ such that $\forall \alpha \in \operatorname{dom}_{1}\left(p^{\prime}\right): \operatorname{dom}\left(p^{\prime}(\alpha)\right)=n$ and $\forall t \in W: \alpha(t) \geq \kappa \Rightarrow \Phi_{t}$ is κ-complete. Find such a p^{\prime} and consider the condition $\left(p^{\prime}, U_{p^{\prime}}\right)$. For $\alpha \in \operatorname{dom}_{1}\left(p^{\prime}\right)$ with $\gamma=\operatorname{cf}^{\prime} \alpha<\alpha$ and $\alpha \geq \kappa$ let $c_{\gamma, \alpha}:=\min \left\{\nu \in \gamma: \gamma_{\alpha}(\nu) \geq \kappa\right\}$. Note that γ_{α} was the $W O_{M}$ minimal cofinal sequence of length γ in $\sup \left\{\kappa^{\prime}: \kappa^{\prime}<\alpha \wedge \kappa^{\prime}\right.$ is strongly compact $\}$. For $\gamma \in \operatorname{dom}_{1}\left(p^{\prime}\right)$ we define $c_{\gamma}:=\max \left\{c_{\gamma, \alpha}: \alpha \in \operatorname{dom}_{1}\left(p^{\prime}\right) \wedge \alpha \geq \kappa \wedge \gamma=\operatorname{cf}^{\prime} \alpha<\alpha\right\}$. We define $W:=\left\{t \in U_{p^{\prime}}: \forall \gamma \in \operatorname{dom}_{1}\left(p^{\prime}\right) \forall m \geq n t(\gamma)(m) \geq c_{\gamma}\right\} .\left(p^{\prime}, W\right)$ is now a condition with the required property. So w.l.o.g we can assume that the condition (p, U) also has this property.

Choose $q \in U$ with $\alpha(q) \geq \kappa$. We will now work with the condition $\left(q, U_{q}\right)$. Let $r \in U_{q}, r \approx q$. Let $k_{r} \leq \omega$ denote the number of levels of the tree T_{r}. For $i<k_{r}$ let T_{r}^{i} denote the tree, where we cut off T_{r} above the i 'th level. We set $F_{r}^{i}:=T_{r}^{i} \backslash T_{r}^{i-1}$. Let $x_{r}(i):=\operatorname{dom}_{1,2}(s)$ for $s \in F_{r}^{i}$. This is obviously well defined. We fix i and shall inductively define $T_{r}^{i, j}$ for $1 \leq j \leq i$.

We set $T_{r}^{i, i}:=T_{r}^{i}$. Now let $T_{r}^{i, j}$ be defined. We set

$$
V_{r}^{i, j}:=\left\{s \in T_{r}^{i-1}: \forall n \in\{j, \ldots, i-1\} s \mid x_{r}(n) \in T_{r}^{i, n}\right\} .
$$

We assume as induction hypothesis that for $s, t \in V_{r}^{i, j}$ and $s \mid x_{r}(j) \in F_{r}^{j}$ if $s \mid x_{r}(j-1)=$ $t\left|x_{r}(j-1), s\right| \kappa=t \mid \kappa$ and $\alpha(s)<\kappa$, then we have $E_{s}=E_{t}$.

Now let $s \in F_{r}^{j-1}$. If $\alpha\left(s^{-}\right)<\kappa$ we set $T_{r}^{i, j-1}:=T_{r}^{j-1}$. Obviously, for $t, u \in V_{r}^{i, j-1}$ and $t \mid x_{r}(j-1) \in F_{r}^{j-1}$ if $t\left|x_{r}(j-2)=u\right| x_{r}(j-2), t|\kappa=u| \kappa$ and $\alpha(t)<\kappa$, then we have $E_{t}=E_{u}$, since we can deduce $t\left|x_{r}(j-1)=u\right| x_{r}(j-1)$ and use the induction hypothesis. Note that if $t \in F_{r}^{j-1}$ then $t=u$.

If $\alpha\left(s^{-}\right) \geq \kappa$ we do the following: First fix

$$
f \in C_{s^{-}}:=\left\{g \in P_{2}: \exists h \in V_{r}^{i, j}\left[h \supseteq s^{-} \wedge h \mid \kappa=g\right]\right\} .
$$

Let $t \supseteq s^{-}, t \in V_{r}^{i, j}$ with $t \mid x_{r}(j-1) \in F_{r}^{j-1}$ and $t \mid \kappa=f$. We know that if $\alpha(t)<\kappa$, then E_{t} only depends on $t\left(\alpha\left(s^{-}\right)\right)\left(n\left(s^{-}\right)\right)$. Since $|\mathcal{P}(\alpha(t))|<\kappa$ and $\Phi_{s^{-}}$is κ-complete, there exists an $A \in \Phi_{t}$ such that
$D_{s^{-}, f}:=\left\{\beta \in \alpha\left(s^{-}\right): \forall u \supseteq s^{-} \cup\left\{\left(\alpha\left(s^{-}\right), n\left(s^{-}\right), \beta\right)\right\}\left[u \mid \kappa=f \wedge \alpha(u)<\kappa \Rightarrow E_{u}=A\right]\right\} \in \Phi_{s^{-}}$.
Note that $A,(\alpha(t), n(t))$ and Φ_{t} only depend on f. We define $D_{s^{-}}:=\bigcap_{f \in C_{s^{-}}} D_{s^{-}, f} \in \Phi_{s^{-}}$. We set $T_{r}^{i, j-1}:=T_{r}^{j-2} \cup \bigcup_{s \in F_{r}^{j-1}}\left\{s^{-} \cup\left\{\left(\alpha\left(s^{-}\right), n\left(s^{-}\right), \beta\right)\right\}: \beta \in D_{s^{-}}\right\}$. Again we see that for $t, u \in V_{r}^{i, j-1}$ and $t \mid x_{r}(j-1) \in F_{r}^{j-1}$ if $t\left|x_{r}(j-2)=u\right| x_{r}(j-2), t|\kappa=u| \kappa$ and $\alpha(t)<\kappa$, then we have $E_{t}=E_{u}$, since we can deduce that $\exists s \in F_{r}^{j-1}: t, u \supseteq s^{-}$and for $f=t|\kappa=u| \kappa$ the set $D_{s^{-}} \subseteq D_{s^{-}, f}$ is homogeneous.

We set $V_{r}^{\prime}:=\left\{t \in T_{r}: \forall i<k_{r}\left[t \in T_{r}^{i} \Rightarrow t \in V_{r}^{i, 1}\right]\right\}$ and $V^{\prime}:=\bigcup_{r \in U_{q}: r \approx q} V_{r}^{\prime}$. Now let $s, t \in V^{\prime}$ with $s|\kappa=t| \kappa$ and $\alpha(s)<\kappa$. Suppose that $E_{s} \neq E_{t}$. Then there exists a $r \in U_{q}, r \approx q$ and an i such that $s, t \in V_{r}^{i, 1}$, which contradicts the homogeneity of $V_{r}^{i, 1}$. (q, V^{\prime}) satisfies all conditions except possibly (P6). Therefore, we set $T_{r}^{V}:=\bigcap_{s \supseteq r: s \approx q} V_{s}^{\prime}$ and $V:=\bigcup_{r \in U_{q}: r \approx q} T_{r}^{V}$. Obviously, if $s \supseteq r$ then $T_{s}^{V} \supseteq T_{r}^{V}$. So (q, V) is the desired condition.

The following graphics show the process from the previous lemma with a condition whose domain consists only of one small and one big coordinate:

Tree at level 1

Tree made homogeneous at level 1

Tree at level 3 , small extension at level 2 , homogeneous at level 1

Tree made homogeneous at level 3 , depending on small extension at level 2

Coloring level 1 with the possible small extensions and corresponding homogeneous sets

Tree made homogeneous at level 3 independent of small extension at level 2

Note that in the previous lemma, as well as in all the following lemmas the strengthened condition (q, V) has the following property: if $t \in V$ with $\alpha(t)<\kappa$, then $\{\beta \in \alpha(t): t \cup\{(\alpha(t), n(t), \beta)\} \in U\}=\{\beta \in \alpha(t): t \cup\{(\alpha(t), n(t), \beta)\} \in V\}$.

The following lemma will give an idea why Power Set might hold.
Lemma 14. The strongly compact cardinals κ are not collapsed in N_{G}, i.e. they remain cardinals.

Proof. Let κ be strongly compact and let τ be a symmetric name such that $(p, U) \Vdash \tau: \lambda \rightarrow \kappa$ onto, with $\lambda<\kappa, \operatorname{dom}_{1}(p) \subseteq \operatorname{supp}(\tau)$ and (p, U) has the properties from the previous lemma.

Let $\varphi_{n, \beta}$ be the formula $(n, \beta) \in \tau$ for $n \in \lambda$ and $\beta \in \kappa$. Now we want to make V homogeneous: Find a $W \subseteq V$ such that for $s, t \in W, s|\kappa=t| \kappa$ and $\operatorname{dom}_{1,2}(s)=\operatorname{dom}_{1,2}(t)$ the following holds:

- $\exists X \subseteq W_{s}:(s, X) \Vdash \neg \varphi_{n, \beta}$ iff $\exists X \subseteq W_{s}:(t, X) \Vdash \neg \varphi_{n, \beta}$
- $\exists Y \subseteq W_{s}:(s, Y) \Vdash \varphi_{n, \beta}$ iff $\exists Y \subseteq W_{s}:(t, Y) \Vdash \varphi_{n, \beta}$.

Note that (s, X) and (s, Y) cannot contradict each other, since they are compatible. We use the notation from the previous lemma. Let $r \in V$ with $r \approx p$. We fix $i<k_{r}$ and shall define $T_{r}^{i, j}$ for $0 \leq j \leq i$. Again we set $T_{r}^{i, i}:=T_{r}^{i}$. Now let $T_{r}^{i, j}$ be defined. We set $W_{r}^{i, j}:=\left\{s \in T_{r}^{i}: \forall n \in\{j, \ldots, i\} s \mid x_{r}(n) \in T_{r}^{i, n}\right\}$. Set $F_{n, \beta}(s)$ to be

- 0 if $\exists X \subseteq W_{s}:(s, X) \Vdash \neg \varphi_{n, \beta}$
- 1 if $\exists Y \subseteq W_{s}:(s, Y) \Vdash \varphi_{n, \beta}$
- 2 otherwise.

For $s, t \in W_{r}^{i, j}, s|\kappa=t| \kappa, \operatorname{dom}_{1,2}(s)=\operatorname{dom}_{1,2}(t)$ and $s \mid x_{r}(j) \in F_{r}^{j}$ we assume inductively that $F_{n, \beta}(s)=F_{n, \beta}(t)$.

Now let $s \in F_{r}^{j-1}$. If $\alpha(s)<\kappa$ we set $T_{r}^{i, j-1}:=T_{r}^{j}$. Obviously, for $t, u \in W_{r}^{i, j-1}$ and $t \mid x_{r}(j-1) \in F_{r}^{j-1}$ if $t\left|x_{r}(j-1)=u\right| x_{r}(j-1), t|\kappa=u| \kappa$ and $\operatorname{dom}_{1,2}(t)=\operatorname{dom}_{1,2}(u)$, then we have $F(t)=F(u)$, since we can prove $t\left|x_{r}(j)=u\right| x_{r}(j)$ and use the induction hypothesis. Note that if $t \in F_{r}^{j-1}$ then $t=u$.

If $\alpha(s) \geq \kappa$ we do the following: Let us fix $f \in C_{s}:=\left\{g \in P_{2}: \exists h \in W_{r}^{i, j}[h \supseteq s \wedge h \mid \kappa=g]\right\}$. Let $t \supseteq s, t \in W_{r}^{i, j}$ with $t \mid x_{r}(j) \in F_{r}^{j}$ and $t \mid \kappa=f$. We know that $F(t)$ only depends on $t(\alpha(s))(n(s))$ and $\operatorname{dom}_{1,2}(t)$. Therefore, for every $m \in \omega$ there is $l<3$ such that
$D_{s, f, m}:=\left\{\beta \in \alpha(s): \forall u \supseteq s \cup\{(\alpha(s), n(s), \beta)\}\left[u|\kappa=f \wedge| \operatorname{dom}_{1,2}(u) \mid=m \Rightarrow F_{n, \beta}(u)=l\right]\right\}$
is in the filter $\in \Phi_{s}$. So $D_{s}:=\bigcap_{f \in C_{s}} \bigcap_{m \in \omega} D_{s, f, m} \in \Phi_{s}$. We set

$$
T_{r}^{i, j-1}:=T_{r}^{j-1} \cup \bigcup_{s \in F_{r}^{j-1}}\left\{s \cup\{(\alpha(s), n(s), \beta)\}: \beta \in D_{s}\right\}
$$

We also set $W_{r}^{\prime}:=\left\{t \in T_{r}: \forall i<k_{r}\left[t \in T_{r}^{i} \Rightarrow t \in W_{r}^{i, 0}\right]\right\}$ and $W_{n, \beta}^{\prime}:=\bigcup_{r \in V: r \approx q} W_{r}^{\prime}$. Obviously, $W_{n, \beta}^{\prime}$ is homogeneous with respect to $F_{n, \beta}$.

Choose $\nu \in \operatorname{Reg}$ with $\kappa>\nu>\lambda,\left|(V \mid \kappa) \times \aleph_{0}\right|$. Let $(p, W) \geq(p, V)$ be a condition which is homogeneous with respect to $F_{n, \beta}$ for every $n \in \lambda$ and $\beta \in \nu$. We get such a condition by intersecting $W_{n, \beta}^{\prime}$ for $n \in \lambda$ and $\beta \in \nu$ and fixing (P6). It follows that there are only $\left|(V \mid \kappa) \times \aleph_{0}\right|$ equivalence classes (for $s, t \in W$ define $s \approx_{\Vdash} t$ iff for every $n \in \lambda$ and every $\beta \in \nu F_{n, \beta}(s)=F_{n, \beta}(t)$ holds) of what can be forced below (p, W). But then τ cannot even be onto ν, because for every $n \in \lambda$ and $\beta \in \nu$ the formula $(n, \beta) \in \tau$ must be decided below (p, W).

Definition 5.1. For $q \in V$ and $s \in V \mid \kappa$ with $q \mid \kappa \subseteq s$ we say that $q \cup s$ reaches V if either $q \cup s \in V$ or the set $V_{q \cup s}^{\star}:=\left\{t \in T_{p \cup s \mid \kappa_{1}}: \exists u \in V[u \supseteq q \cup s \wedge u \mid \kappa=s \wedge t \subseteq u]\right\}$ satisfies the following property: $V_{q \cup s}^{\star}$ is non-empty and for $t \in V_{q \cup s}^{\star}$ if $q \subseteq t, \alpha(t) \geq \kappa$ and $t \mid \kappa \neq s$, then $\left\{\beta \in \alpha(t): t \cup\{(\alpha(t), n(t), \beta)\} \in V_{q \cup s}^{\star}\right\} \in \Phi_{t}$.

A pruned tree: Only the corresponding values of s are allowed at the small extensions

Lemma 15. Let (p, V) be a condition as in the lemma 13. Then there exists a $W \subseteq V$ such that (p, W) is a condition and for $s \in W \mid \kappa$ and $q \in W$ with $q \mid \kappa \subseteq s$ we have that $q \cup s$ reaches W.

Proof. First we shall show that $\forall q \in V: p \cup q \mid \kappa$ reaches V. If $q=r$ with $r \approx p$ this is obvious. Now let $q \in V$ such that $p \cup q \mid \kappa$ reaches V : If $\alpha(q) \geq \kappa$ and q is extendable then obviously

$$
\forall \beta \in \alpha(q): q \cup\{(\alpha(q), n(q), \beta)\} \in V \Rightarrow p \cup(q \cup\{(\alpha(q), n(q), \beta)\}) \mid \kappa
$$

reaches V. If $\alpha(q)<\kappa$ and q is extendable, then let $\beta \in \alpha(q)$ with $q \cup\{(\alpha(q), n(q), \beta)\} \in V$ be arbitrary. If $p \cup q \mid \kappa \in V$ then $p \cup q \mid \kappa=q$, so that trivially $\cup(q \cup\{(\alpha(q), n(q), \beta)\}) \mid \kappa \in V$. Otherwise let $u \supseteq p \cup q \mid \kappa$ with $u|\kappa=q| \kappa, u \in V$ and u is not extendable in $V_{p \cup q \mid \kappa}^{\star}$. It follows that $(\alpha(u), n(u))=(\alpha(q), n(q))$. From lemma 13 we may assume that $E_{u}=E_{q}$, so that $u \cup\{(\alpha(q), n(q), \beta)\} \in V$. This shows that $V_{p \cup q \mid \kappa}^{\star} \subseteq V_{p \cup(q \cup\{(\alpha(q), n(q), \beta)\}) \mid \kappa}^{\star}$. If $t \in V_{p \cup(q \cup\{(\alpha(q), n(q), \beta)\}) \mid \kappa}^{\star}$ with $t|\kappa \neq(q \cup\{(\alpha(q), n(q), \beta)\})| \kappa$ and $\alpha(t) \geq \kappa$, then it easily follows that $t \in V_{p \cup q \mid \kappa}^{\star}$. Now if $t|\kappa \neq q| \kappa$ then $\left\{\beta \in \alpha(t): t \cup\{(\alpha(t), n(t), \beta)\} \in V_{p \cup q \mid \kappa}^{\star}\right\} \in \Phi_{t}$ by definition. If $p \cup q \mid \kappa \subseteq t$ then $\left\{\beta \in \alpha(t): t \cup\{(\alpha(t), n(t), \beta)\} \in V_{p \cup q \mid \kappa}^{\star}\right\} \in \Phi_{t}$ by definition of the forcing. So that $p \cup(q \cup\{(\alpha(t), n(t), \beta)\}) \mid \kappa$ reaches V.

Inductively, we shall now define W^{\prime} and show that $\forall q \in W^{\prime} \forall s \in V|\kappa: q| \kappa \subseteq s \Rightarrow q \cup s$ reaches V. We put $r \approx p$ with $r \in V$ in W^{\prime}. Let $s \in V \mid \kappa$ with $r \mid \kappa \subseteq s$. Since $r \cup s=p \cup s$ the statement follows from what we have shown before.

Now let $q \in W^{\prime}$ and assume $\forall s \in V|\kappa: q| \kappa \subseteq s \Rightarrow q \cup s$ reaches V as the induction hypothesis. If q is extendable and $\alpha(q)<\kappa$ we put $q \cup\{(\alpha(q), n(q), \beta)\}$ with $q \cup\{(\alpha(q), n(q), \beta)\} \in V$ in W^{\prime}. For $s \supseteq(q \cup\{(\alpha(q), n(q), \beta)\})|\kappa, s \in V| \kappa$ we see that $q \cup\{(\alpha(q), n(q), \beta)\} \cup s=q \cup s$ and we can us the induction hypothesis to show that $q \cup\{(\alpha(q), n(q), \beta)\} \cup s$ reaches V.

If $\alpha(q) \geq \kappa$, we fix $s \supseteq q \mid \kappa$ with $s \in V \mid \kappa$. Since $q \cup s$ reaches V, if $q \cup s \notin V$ then we have

$$
\left.C_{s}:=\{\beta \in \alpha(q): q \cup\{\alpha(q), n(q), \beta)\} \in V \wedge(q \cup\{(\alpha(q), n(q), \beta)\}) \cup s \mid \kappa_{1} \in V_{q \cup s}^{\star}\right\} \in \Phi_{q}
$$

by definition. It easily follows that $\forall \beta \in C_{s}:(q \cup\{(\alpha(q), n(q), \beta)\}) \cup s$ reaches V. Therefore, if we set $C:=\bigcap_{s \in V \mid \kappa} C_{s} \in \Phi_{q}$, it follows that

$$
\forall \beta \in C \forall s \in V \mid \kappa:(q \cup\{(\alpha(q), n(q), \beta)\}) \cup s
$$

reaches V. Note that if $q \cup s \in V$, then $q|\kappa \cup s| \kappa_{1}=s$ so that $(q \cup\{(\alpha(q), n(q), \beta)\}) \cup s=$ $(q \cup\{(\alpha(q), n(q), \beta)\}) \cup s \mid \kappa_{1} \in V$, if $q \cup\{(\alpha(q), n(q), \beta)\} \in V$. As in the previous lemma, $\left(p, W^{\prime}\right)$ satisfies all conditions except possibly (P6). But as before, we can fix this to get a $W \subseteq W^{\prime}$.

Now we show $\forall q \in W \forall s \in W|\kappa: q| \kappa \subseteq s \Rightarrow q \cup s$ reaches W. Let $q \in W$ and $s \in W \mid \kappa$ be arbitrary. If $q \cup s \in V$ and $\alpha(q)<\kappa$, we note that $q \cup s \mid \kappa_{1} \in W$ and that $q \cup s \mid \kappa_{1}$ only has to be extended at small coordinates to become $q \cup s$, so with induction on $\left|q \cup s-q \cup\left(s \mid \kappa_{1}\right)\right|$ it can be shown that $q \cup s \in W^{\prime}$. If $r \in V$ with $r \approx p$ and $r\left|\kappa_{1} \supseteq(q \cup s)\right| \kappa_{1}$, then $q \cup r \in W \subseteq W^{\prime}$. With the same argument as before, one can inductively show that $(q \cup s) \cup r=(q \cup r) \cup s \in W^{\prime}$. It follows that $q \cup s \in W$.

If $q \cup s \notin V$ we shall show that $W_{q \cup s}^{\star}=V_{q \cup s}^{\star} \cap W$ which will obviously yield that $q \cup s$ reaches W. The \subseteq inclusion is trivial. Now let $t \in V_{q \cup s}^{\star} \cap W$. We shall show that $\exists u \in W: u \supseteq q \cup s \wedge u \mid \kappa=s \wedge t \subseteq u$. If $t \supseteq q \cup s$ we are done. Otherwise we shall inductively define increasing $t_{0}, \ldots, t_{n} \in V_{q \cup s}^{\star} \cap W$ such that $t_{n} \supseteq q \cup s \wedge t_{n} \mid \kappa=s$. W.l.o.g. $t=q \cup s \mid \kappa_{1}$ and we set $t_{0}=t$. Let t_{i} be defined, and assume that $t_{i} \nsupseteq q \cup s$, since otherwise we are done. Then we shall define t_{i+1} as follows: If $\alpha\left(t_{i}\right) \geq \kappa$ we set $t_{i+1}=t_{i} \cup\left\{\left(\alpha\left(t_{i}\right), n\left(t_{i}\right), \beta\right\}\right.$ for some β which belongs to
$\left\{\beta^{\prime} \in \alpha\left(t_{i}\right): t_{i} \cup\left\{\left(\alpha\left(t_{i}\right), n\left(t_{i}\right), \beta^{\prime}\right)\right\} \in V_{q \cup s}^{\star}\right\} \cap\left\{\beta^{\prime} \in \alpha\left(t_{i}\right): t_{i} \cup\left\{\left(\alpha\left(t_{i}\right), n\left(t_{i}\right), \beta^{\prime}\right)\right\} \in W\right\} \in \Phi_{t_{i}}$.
If $\alpha\left(t_{i}\right)<\kappa$ then we see that $t_{i} \cup\left\{\left(\alpha\left(t_{i}\right), n\left(t_{i}\right), s\left(\alpha\left(t_{i}\right)\right)\left(n\left(t_{i}\right)\right)\right)\right\} \in V$, so that $t_{i+1}=$ $t_{i} \cup\left\{\left(\alpha\left(t_{i}\right), n\left(t_{i}\right), s\left(\alpha\left(t_{i}\right)\right)\left(n\left(t_{i}\right)\right)\right)\right\} \in W . t_{i+1} \in V_{q \cup s}^{\star}$ follows trivially. Therefore (p, W) is the required condition.

In $M[G]$ we shall define a 1-1 mapping from $\mathcal{P}^{N_{G}}(x)$ onto $3^{\operatorname{dom}(\mathbf{x}) \times P_{2} \mid \kappa}$. For $y \in \mathcal{P}^{N_{G}}(x)$ let \mathbf{y} be the smallest symmetric name for y. For convenience in the proofs we will assume that $\max (\operatorname{supp}(\mathbf{y}) \cap \kappa) \geq \delta^{+}$and $\kappa_{1} \in \operatorname{supp}(\mathbf{y})$, where δ was defined at the beginning of this chapter.

Lemma 16. Let (p, U) be a condition with $\operatorname{dom}_{1}(p)=\operatorname{supp}(\mathbf{x}, \mathbf{y}),(p, U) \Vdash \mathbf{y} \subseteq \mathbf{x}$ and the property from the previous lemma. Then there is a $V \subseteq U$ such that (p, V) is a condition and the following property holds: For every $\mathbf{z} \in \operatorname{dom}(\mathbf{x})$ and for every $s \in P_{2} \mid(\max (\operatorname{supp}(\mathbf{y}) \cap \kappa))^{+}$the set V is homogeneous meaning that exclusively one statement holds:

- $\exists q \in V \exists W \subseteq P_{2}: q \mid \kappa \subseteq s \wedge P_{3} \ni(q \cup s, W) \geq(p, V) \wedge(q \cup s, W) \Vdash \neg \mathbf{z} \in \mathbf{y}$
- or $\exists q \in V \exists W \subseteq P_{2}: q \mid \kappa \subseteq s \wedge P_{3} \ni(q \cup s, W) \geq(p, V) \wedge(q \cup s, W) \Vdash \mathbf{z} \in \mathbf{y}$
- or neither holds.

Proof. Let us fix $\mathbf{z} \in \operatorname{dom}(\mathbf{x})$ and $s \in P_{2} \mid(\max (\operatorname{supp}(\mathbf{y}) \cap \kappa))^{+}$. First we note that $(q \cup s, X)$ and $(q \cup s, Y)$ cannot contradict each other, since they are compatible. Next we check if $s\left|\operatorname{dom}_{1}(p) \in U\right| \kappa$. If not, then we are done, since neither of the first two statements can hold. In this case we set $V_{\mathbf{z}, s}:=U$. Otherwise we define

$$
U_{\mathbf{z}, s}^{\star}:=\left\{t \in T_{p \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right)}: \exists u \in U\left[u \supseteq t \wedge u \mid \kappa \subseteq s \wedge u \cup\left(s \mid \operatorname{dom}_{1}(p)\right) \in U\right]\right\} .
$$

Now for every $t \in U_{\mathbf{z}, s}^{\star}$, if $\alpha(t) \geq \kappa$ and t is extendable, then

$$
\left\{\beta \in \alpha(t): t \cup\{(\alpha(t), n(t), \beta)\} \in U_{\mathbf{z}, s}^{\star}\right\} \in \Phi_{t}
$$

since $t \cup s \mid \operatorname{dom}_{1}(p)$ reaches U. Note that if $q \in U, q \mid \kappa \subseteq s$ and $\exists W: P_{3} \ni(q \cup s, W) \geq(p, V)$, then $q \in U_{\mathbf{z}, s}^{\star}$.

For $q \in\left\{t \in U_{\mathbf{z}, s}^{\star}: t\right.$ is not extendable in $\left.U_{\mathbf{z}, s}^{\star}\right\}$ we define $F(q)$ to be

- 0 iff $\exists W \subseteq P_{2}: q \mid \kappa \subseteq s \wedge P_{3} \ni(q \cup s, W) \geq(p, V) \wedge(q \cup s, W) \Vdash \neg \mathbf{z} \in \mathbf{y}$,
- 1 iff $\exists W \subseteq P_{2}: q \mid \kappa \subseteq s \wedge P_{3} \ni(q \cup s, W) \geq(p, V) \wedge(q \cup s, W) \Vdash \mathbf{z} \in \mathbf{y}$
- 2 otherwise.

We can make $U_{\mathbf{z}, s}^{\star}$ homogeneous with respect to $F(q)$. The homogeneous set we shall call $U_{\mathbf{z}, s}^{\prime}$. We define
$V_{\mathbf{z}, p \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right)}:=\left\{t \in T_{p \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right)}: t \in U_{\mathbf{z}, s}^{\prime} \vee\left[t \notin U_{\mathbf{z}, s}^{\star} \wedge \exists t^{\prime} \in U_{\mathbf{z}, s}^{\prime}\left(t \supseteq t^{\prime} \vee t \cup s \notin P_{1}\right)\right]\right\}$.
We set $V_{\mathbf{z}, s}:=\bigcup_{r \in U: r \approx p \wedge r \neq p \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right)} T_{r} \cup V_{\mathbf{z}, p \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right)}$. Next we intersect with respect to \mathbf{z} and $s: V^{\prime}:=\bigcap_{\mathbf{z} \in \operatorname{dom}(\mathbf{x})} \bigcap_{s \in P_{2} \mid(\max (\operatorname{supp}(\mathbf{y}) \cap \kappa))^{+}} V_{\mathbf{z}, s}$. Furthermore, we fix condition (P6) and get a forcing condition (p, V).

Now we must show that (p, V) satisfies the required property. Let us fix $\mathbf{z} \in \operatorname{dom}(\mathbf{x})$ and $s \in P_{2} \mid(\max (\operatorname{supp}(\mathbf{y}) \cap \kappa))^{+}$. Assume that there exist $t_{1}, t_{2} \in V$ and $W_{1}, W_{2} \subseteq P_{2}$ such that $t_{i} \mid \kappa \subseteq s,\left(t_{i} \cup s, W_{i}\right)$ are conditions stronger than (p, U) and they contradict each other. First we note that w.l.o.g. we can assume $t_{i} \in T_{p \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right)}$, since $t_{i} \cup s=t_{i} \cup s \mid\left(\operatorname{dom}_{1}(p) \cap \kappa_{1}\right) \cup s$. Next we may assume that t_{i} are not extendable in $U_{\mathbf{z}, s}^{\star}$. This follows because one can show by induction on $\left|\operatorname{dom}_{1,2}\left(t^{\prime}\right)-\operatorname{dom}_{1,2}\left(t_{i}\right)\right|$ for some $t^{\prime} \in U_{\mathbf{z}, s}^{\star}$, which is not extendable in $U_{\mathbf{z}, s}^{\star}$, that

$$
\left\{t \in U_{\mathbf{z}, s}^{\star}: t \text { is not extendable in } U_{\mathbf{z}, s}^{\star}\right\} \cap W_{i} \mid \operatorname{dom}_{1}(p)
$$

is non-empty, since the t_{i} 's need only be extended at big coordinates and the filters are closed under intersection. Let q_{i} witness that the intersection is non-empty. It follows that $q_{i} \cup s \in W_{i}$ so that $\left(q_{i} \cup s, W_{i q_{i} \cup s}\right)$ contradict each other. So w.l.o.g. $q_{i}=t_{i}$. But if the t_{i} 's are not extendable in $U_{\mathbf{z}, s}^{\star}$, they contradict the homogeneity of $U_{\mathbf{z}, s}^{\prime}$.

Now we can define the mapping: For $y \in \mathcal{P}^{N_{G}}(x)$ let $(p(\mathbf{y}), U(\mathbf{y}))$ be the least condition in G with $\operatorname{dom}_{1}(p(\mathbf{y}))=\operatorname{supp}(\mathbf{x}, \mathbf{y}),(p(\mathbf{y}), U(\mathbf{y})) \Vdash \mathbf{y} \subseteq \mathbf{x}$ and the property from the previous lemma. We define $f(y): \operatorname{dom}(\mathbf{x}) \times P_{2} \mid \kappa \rightarrow 3$ as follows:

- ($\mathbf{z}, s) \mapsto 0$ iff $s \in P_{2} \mid(\max (\operatorname{supp}(\mathbf{y}) \cap \kappa))^{+} \wedge \exists q \in U(\mathbf{y}) \exists W \subseteq P_{2}$: $q \mid \kappa \subseteq s \wedge P_{3} \ni(q \cup s, W) \geq(p, V) \wedge(q \cup s, W) \Vdash \neg \mathbf{z} \in \mathbf{y}$
- ($\mathbf{z}, s) \mapsto 1$ iff $s \in P_{2} \mid(\max (\operatorname{supp}(\mathbf{y}) \cap \kappa))^{+} \wedge \exists q \in U(\mathbf{y}) \exists W \subseteq P_{2}$: $q \mid \kappa \subseteq s \wedge P_{3} \ni(q \cup s, W) \geq(p, V) \wedge(q \cup s, W) \Vdash \mathbf{z} \in \mathbf{y}$
- and $(\mathbf{z}, s) \mapsto 2$ otherwise.

Note that only due to the previous lemma the mapping is well defined. Assuming that $f(\cdot)$ is $1-1$, we see that $\mathcal{P}^{N_{G}}(x)=f^{-1}\left[3^{\operatorname{dom}(\mathbf{x}) \times P_{2} \mid \kappa}\right] \in M[G]$.

Theorem 17. The mapping $f(\cdot): \mathcal{P}^{N_{G}}(x) \rightarrow 3^{\operatorname{dom}(\mathbf{x}) \times P_{2} \mid \kappa}$ is 1 -1, so the Power Set axiom holds in N_{G}.

Proof. Let $y_{1}, y_{2} \in \mathcal{P}^{N_{G}}(x)$ with $y_{1} \neq y_{2}$. Case 1: $\max \left(\operatorname{supp}\left(\mathbf{y}_{1}\right) \cap \kappa\right)>\max \left(\operatorname{supp}\left(\mathbf{y}_{2}\right) \cap \kappa\right)$. W.l.o.g. let y_{1} be non-empty and $\mathbf{z} \in \operatorname{dom}(\mathbf{x})$ such that $\mathbf{z}^{G} \in \mathbf{y}_{1}^{G}$. Let $G \ni(t, V) \geq$ $\left(p\left(\mathbf{y}_{1}\right), U\left(\mathbf{y}_{1}\right)\right)$ with $\operatorname{dom}_{1}(t)=\operatorname{dom}_{1}\left(p\left(\mathbf{y}_{1}\right)\right) \cup \operatorname{supp}(\mathbf{z})$ and $(t, V) \Vdash \mathbf{z} \in \mathbf{y}_{1}$. If we set $s=t \mid \kappa, W=V$ and $q=t \mid \operatorname{dom}_{1}\left(p\left(\mathbf{y}_{1}\right)\right) \in U\left(\mathbf{y}_{1}\right)$ we see that $(t, V)=(q \cup s, W) \Vdash \mathbf{z} \in \mathbf{y}_{1}$. So it follows that $f\left(y_{1}\right)(\mathbf{z}, s)=1$ while $f\left(y_{2}\right)(\mathbf{z}, s)=2$, since $s \notin P_{2} \mid\left(\max \left(\operatorname{supp}\left(\mathbf{y}_{2}\right) \cap \kappa\right)\right)^{+}$.

Case 2: $\max \left(\operatorname{supp}\left(\mathbf{y}_{1}\right) \cap \kappa\right)=\max \left(\operatorname{supp}\left(\mathbf{y}_{2}\right) \cap \kappa\right)$. Since $y_{1} \neq y_{2}$ there is a $\mathbf{z} \in \operatorname{dom}(\mathbf{x})$ such that w.l.o.g. $\mathbf{z}^{G} \in \mathbf{y}_{1}^{G}$ but $\mathbf{z}^{G} \notin \mathbf{y}_{2}^{G}$. Let $G \ni(t, V) \geq\left(p\left(\mathbf{y}_{i}\right), U\left(\mathbf{y}_{i}\right)\right)$ for $i=1,2$ such that $\operatorname{dom}_{1}(t)=\operatorname{dom}_{1}\left(p\left(\mathbf{y}_{1}\right)\right) \cup \operatorname{dom}_{1}\left(p\left(\mathbf{y}_{2}\right)\right) \cup \operatorname{supp}(\mathbf{z})$ and $(t, V) \Vdash \mathbf{z} \in \mathbf{y}_{1} \wedge \mathbf{z} \notin \mathbf{y}_{2}$. We set $s=t\left|\kappa, W_{i}=V\right|\left(\operatorname{dom}_{1}\left(p\left(\mathbf{y}_{i}\right)\right) \cup \kappa\right)$ and $q_{i}=t \mid \operatorname{dom}_{1}\left(p\left(\mathbf{y}_{i}\right)\right) \in U\left(\mathbf{y}_{i}\right)$. If we set $a_{i}=\operatorname{dom}_{1}\left(p\left(\mathbf{y}_{i}\right) \cup \kappa\right)$ it follows that $\left(t\left|a_{i}, V\right| a_{i}\right)=\left(q_{i} \cup s, W_{i}\right)$. Since $\operatorname{supp}\left(\mathbf{y}_{i}, \mathbf{z}\right) \subseteq a_{i}$, we see that $\left(q_{1} \cup s, W_{1}\right) \Vdash \mathbf{z} \in \mathbf{y}_{1}$ and $\left(q_{2} \cup s, W_{2}\right) \Vdash \mathbf{z} \notin \mathbf{y}_{2}$. Therefore, $f\left(y_{1}\right)(\mathbf{z}, s)=1$ and $f\left(y_{2}\right)(\mathbf{z}, s)=0$.

Now $\mathcal{P}^{N_{G}}(x) \in M[G]$ holds by Replacement. Again by Replacement we get an $\alpha \in \operatorname{Reg}$ such that $\mathcal{P}^{N_{G}}(x) \subseteq N_{G_{\alpha}}$. Now being a subset of x is absolute for transitive models, and $N_{G_{\alpha}} \vDash$ ZF, so that $\mathcal{P}^{N_{G}}(x)=\mathcal{P}^{N_{G_{\alpha}}}(x) \in N_{G_{\alpha}} \subseteq N_{G}$ follows.

Bibliography

[F] Felgner Ulrich: Comparison of the axioms of local and universal choice, Fundamenta Mathematicae 71 no. 1, 1971, pp. 43-62.
[G] Gitik Moti: All uncountable cardinals can be singular, Israel Journal of Mathematics, Vol. 35 no. 1-2, 1980, pp. 61-88.
[J] Jech Thomas: Set Theory, Springer, Berlin, 2002.
[K] Kunen Kenneth: Set Theory, College Publications, London, 2011.
[S] Shoenfield Joseph Robert: Unramified forcing, Axiomatic Set Theory - Proceedings of Symposia in Pure Mathematics, Vol. 13, 1967, pp. 357-381.
[Z] Zarach Andrzej: Forcing with proper classes, Fundamenta Mathematicae 81 no. 1, 1973 pp. 1-27.

