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1 Abstract

In my Master's Thesis I want to show the following result by Gitik [G]: Assuming the
consistency of arbitrarily large strongly compact cardinals, we show the consistency of
ZF + ∀α ∈ Lim : cfα = ω, where Lim is the class of all limit ordinals.

To this end, we will start with a countable transitive model M of

ZFC + `∀α ∈ On∃κ > α : κ is strongly compact',

force with a proper class forcing to get a model M [G] satisfying ZF− + `∀x : x is coun-
table', where ZF− is ZF without Power Set but Collection included, and �nally de�ne a
symmetric submodel NG, which will have the required properties.

The logic behind the consistency result can be found in Kunen [K].
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2 The forcing and other prerequisites

We start with a ctm M of ZFC + `∀α ∈ On∃κ > α : κ is strongly compact'. W.l.o.g. we
can assume, that there is no regular limit of strongly compact cardinals in M , since if
there were one, the smallest such α, named α′, would be strongly inaccessible, and the set
{x ∈ M : rankM(x) < α′} would be a model with the required properties. Furthermore,
we can assume, that M has a predicate WOM , which is a global well-order of M , and
the model satis�es Replacement with respect to the predicate WOM . This can be ea-
sily seen, as we can always add such a global well-order by class forcing (see Felgner [F]).

Let (κα)α∈On list the strongly compact cardinals in M , where κ0 = ω. Now we con-
sider α ∈ Reg, the class of regular cardinals, and want to distinguish 3 cases:

• α < κ1: Let Φα = {X ⊆ α : |α−X| < α} be the co-bounded �lter on α.

• There exist a maximal strongly compact cardinal κ ≤ α: Let Φα be the least
κ - complete uniform ultra�lter on α. By least we refer to the well-order WOM

and by uniform we mean that X ∈ Φα implies |X| = α.

• There is no such κ: Let β = sup{κ : κ < α ∧ κ is strongly compact}. By our earlier
assumption β must be singular. Let γ = cf β. Let (κν)ν∈γ be the least γ-sequence
of strongly compact cardinals co�nal in β. We now de�ne Φα,ν to be the least
κν-complete uniform ultra�lter on α for all ν < γ.

In the second case we de�ne cf'α := α, and in the third case we shall say cf'α := γ.

We now consider the class Reg × ω × On. For x ⊆ Reg × ω × On we shall now de-
�ne dom1(x) := {α : ∃n∃β (α, n, β) ∈ x} and dom1,2(x) := {(α, n) : ∃β (α, n, β) ∈ x}.
Furthermore, we de�ne

P1 := {p ⊆ Reg× ω ×On :

p : Reg
par→ (ω

par→ On) ∧ |dom1,2(p)| < ω ∧ ∀α ∈ dom1(p) [p(α)is 1-1 ∧ ran(p(α)) ⊆ α]}.

For p1, p2 ∈ P1 we shall say p1 ≈ p2, if p1|(Reg− κ1) = p2|(Reg− κ1).

For technical reasons we are only going to use a subclass of P1. De�ne P2 as the class of
p ∈ P1 such that the following conditions hold:

• ∀α ∈ dom1(p) : cf'α ∈ dom1(p).

• ∀α ∈ dom1(p) : dom(p(α)) ⊆ dom(p(cf'α)).

• ∃α ∈ dom1(p) , α ≥ κ1,∃n ∈ ω :
∀α′ ∈ (dom1(p)−α) dom(p(α′)) = n∧ ∀α′ ∈ dom1(p)∩(α−κ1) dom(p(α′)) = n+1.

Since α and n are obviously uniquely determined, we shall set α(p) = α and n(p) = n.
(α(p), n(p)) will be the �rst coordinate we will have to �ll, if we want to extend p.
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De�nition 2.1. We shall call p ∈ P2 extendable, i� ∃q ∈ P2 : dom1(q) = dom1(p) ∧
q|κ1 = p|κ1 ∧ p  q. Therefore we see that a function p is extendable i� either
cf'α(p) = α(p) or (cf'α(p), n(p)) ∈ dom1,2(p).

So we see that if cf'α(p) ≥ κ1, p is extendable.

De�nition 2.2. We can now de�ne the forcing. We set P3 to be the class of pairs (p, U)
such that the following conditions hold:

(P1) p ∈ P2.

(P2) U ⊆ P2.

(P3) p ∈ U .

(P4) ∀q ∈ U : p ⊆ q ∧ dom1(p) = dom1(q).

(P5) ∀r ∈ U, r ≈ p, ∀(α, n) :
(α, n) ∈ (dom1(p) ∩ κ1)× ω − dom1,2(r)⇒ {β : r ∪ {(α, n, β)} ∈ U} ∈ Φα.

(P6) ∀r1, r2 ∈ U, r1, r2 ≈ p : (r1∪ r2 ∈ P1 ⇒ r1∪ r2 ∈ U)∧ (r1 ⊆ r2 ⇒ Tr1 ⊆ Tr2), where
Tr = TUr := {q ∈ U : q|κ1 = r|κ1} for r ≈ p. The sign ⊆ should be interpreted as
the embedding ι : Tr1 3 q 7→ q ∪ r2.

(P7) ∀q ∈ U ∀a ⊆ κ1 × ω × κ1 : p ∪ (q ∩ a) ∈ U .

(P8) ∀q ∈ U, cf'α(q) = α(q) : {β : q ∪ {(α(q), n(q), β)} ∈ U} ∈ Φα(q).

(P9) ∀q ∈ U, cf'α(q) < α(q) :
n(q) ∈ dom (q(cf'α(q)))⇒ {β : q ∪ {(α(q), n(q), β)} ∈ U} ∈ Φα(q), q(cf'α(q)) (n(q)).

(P10) ∀q ∈ U, q 6≈ p,∃q′ ∈ U ∃(α, n) ∈ dom1,2(q)∃β ∈ On :
q = q′ ∪ {(α, n, β)} ∧ (α(q′), n(q′)) = (α, n). We shall denote this q′ by q−.
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The partial order will be de�ned at the end of this chapter.

If q is extendable, then we shall denote the corresponding ultra�lter by Φq.

Lemma 1. Let (p, U) be a forcing condition and a ⊆ Reg such that α ∈ a⇒ cf'α ∈ a,
then (p| a, U | a), where U | a = {q| a : q ∈ U}, is a forcing condition too.

Proof. As can be easily seen, only conditions (P5), (P6) and (P10) are non-trivial. For
(P5) let q ∈ U | a, q = r| a with some r ∈ U and q ≈ p| a. By (P7) we can assume
that r ≈ p. Let (α, n) ∈ (dom1(p| a) ∩ κ1) × ω − dom1,2(q), and it follows that also
(α, n) ∈ (dom1(p) ∩ κ1)× ω − dom1,2(r). So we see that {β : r ∪ {(α, n, β)} ∈ U} ⊆
{β : q ∪ {(α, n, β)} ∈ U | a} ∈ Φα.
For (P6) let q1, q2 ∈ U | a with qi = ri| a for i = 1, 2. Again by (P7) and qi ≈ p| a we can
assume that ri = p ∪ qi. Now if q1 ∪ q2 ∈ P1 then also r1 ∪ r2 ∈ P1, and since U satis�es
(P6), we have q1 ∪ q2 = (r1 ∪ r2)| a ∈ U | a. Since Tr1| a ⊆ Tr2 | a, if r1 ⊆ r2, it follows that

T
U |a
q1 =

⋃
r∈U : r≈p∧r| a=q1 Tr| a ⊆

⋃
r∈U : r≈p∧r| a=q1 Tr∪r2| a ⊆ T

U |a
q2 , if q1 ⊆ q2.

For (P10) let q ∈ U | a with q = t| a and t minimal with respect to cardinality. It must be
that t 6≈ p, since q 6≈ p| a. Now t = t− ∪ {(α, n, β)}. We see that (α, n, β) ∈ q due to the
minimality of t. It easily follows that (α, n) = (α(q), n(q)) and q = t−| a∪{(α, n, β)}, so
that q− = t−| a ∈ U | a.

Lemma 2. If (p, U) is a forcing condition and s ∈ U , then (s, Us) is a forcing condition

too, where Us = {t ∈ U : s ⊆ t}.

Proof. Only (P5)-(P7) are non-trivial. For (P5) let q ∈ Us and q ≈ s. Since U satis�es
(P7), we have p ∪ q|κ1 ∈ U . Let (α, n) ∈ (dom1(p) ∩ κ1) × ω − dom1,2(q). Then we
have that E = {β : p ∪ q|κ1 ∪ {(α, n, β)} ∈ U} ∈ Φα. Now since ∀β ∈ E : Tp∪q|κ1 ⊆
Tp∪q|κ1∪{(α,n,β)}, we see that ∀β′ ∈ E : q ∪ {(α, n, β′)} ∈ U . Therefore it holds that
E ⊆ {β : q ∪ {(α, n, β)} ∈ Us} ∈ Φα.
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For (P6) let r1, r2 ∈ Us and ri ≈ s for i = 1, 2. Again by (P7), p∪ ri|κ1 ∈ U for i = 1, 2.
It follows that (p∪r1|κ1)∪ (p∪r2|κ1) ∈ P1, since we assume that r1∪r2 ∈ P1. Therefore
(p∪ r1|κ1)∪ (p∪ r2|κ) ∈ U . By (P6) r1∪ r2 ∈ Tp∪(r1∪r2)|κ1 , so that r1∪ r2 ∈ TUss∪(r1∪r2)|κ1 .
It easily follows that if r1 ⊆ r2, then T

Us
r1
⊆ TUsr2 .

For (P7) let q ∈ Us and let a ⊆ κ1 × ω× κ1. We have that p∪ (q ∩ a) ∈ U and therefore
also p ∪ (q ∩ a) ∪ s|κ1 ∈ U . By (P6) it follows that s ∪ (q ∩ a) ∈ Tp∪(q∩a)∪s|κ1 and so it
follows that s ∪ (q ∩ a) ∈ Us.

De�nition 2.3. If p ∈ P2, b ⊇ dom1(p) such that b is closed under cf' and b ⊆ Reg
�nite, then we call p′ ∈ P2 a b-extension of p, if dom1(p

′) = b and p′| dom1(p) = p.

Lemma 3. Let (p, U) ∈ P3, b ⊇ dom1(p), closed under cf', and b ⊆ Reg �nite. Let p′ be
a b-extension of p and set U ′ := {q′ ∈ P2 : q′ ⊇ p′∧∃q ∈ U [q′ is a b-extension of q]}.Then
(p′, U ′) is a condition.

Proof. Straightforward checking of the conditions (P1)-(P10).

Lemma 4. If (p, U), (p, V ) ∈ P3 then (p, U ∩ V ) is a condition too.

Proof. We note that q ∈ P2 being extendable only depends on dom1,2(q). All the condi-
tions follow, since �lters are closed under intersection.

We can now de�ne the partial order of the forcing.

De�nition 2.4. Let (p, U), (q, V ) ∈ P3. We say that (q, V ) is stronger than (p, U), in
terms (q, V ) ≥ (p, U), if V | dom1(p) ⊆ U .

3 The symmetric extension

We consider the group of partial permutations of Reg × ω × On. We de�ne a subclass
Gr as the permutations π satisfying:

1. |dom1(dom(π))| < ω.

2. For every α ∈ dom1(dom(π)) there is a permutation πα of α with �nite do-
main, such that ∀n < ω : `If β ∈ dom(πα) then π((α, n, β)) = (α, n, πα(β)),
and π((α, n, β)) = (α, n, β) otherwise'.

If a ⊆ Reg �nite we de�ne

Ha := {π ∈ Gr : ∀α ∈ a ∩ dom1(dom(π)) [πα is the identity function]}.

We easily see that Ha is a normal subgroup of Gr. Furthermore, for each π ∈ Gr we
de�ne a dense subclass P π ⊆ P3 as the forcing conditions (p, U) with the following
properties:
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1. dom1(p) ⊇ dom1(dom(π)).

2. ∀α ∈ dom1(p) : dom(p(cf'α)) = dom(p(α)).

3. ∀α ∈ dom1(dom(π)) : rng(p(α)) ⊇ {β ∈ dom(πα) : ∃q ∈ Uβ ∈ rng(q(α))}.

The density follows easily.

For a (p, U) ∈ P π we de�ne π((p, U)) to be (πp, πU) with

πp := π[p| dom1(dom(π))] ∪ p− p| dom1(dom(π)) and

πU := {π[q| dom1(dom(π))] ∪ q − q| dom1(dom(π)) : q ∈ U}.

The reason why we restrict ourselves to P π is the following lemma.

Lemma 5. For every π ∈ Gr the mapping (p, U) 7→ (πp, πU) is an automorphism of

(P π,≥).

Proof. First we need to check that (πp, πU) is a forcing condition. Only condition (P9)
is non-trivial. Let q ∈ U be extendable and we note that (α(q), n(q)) = (α(πq), n(πq)).
Now let cf'α(q) < α(q) and assume that γ = q(cf'α(q))(n(q)) ∈ dom(πcf'α(q)). Now
it follows that γ ∈ ran(p(cf'α(q))) and that (cf'α(q), n(q)) /∈ dom1,2(p). But this is a
contradiction to q(cf'α(q)) being 1-1. Therefore γ /∈ dom(πcf'α(q)) and we see that

{β : πq∪(α(q), n(q), β) ∈ πU} ⊇ {β : q∪(α(q), n(q), β) ∈ U}\dom(πα(q)) ∈ Φα(q),γ = Φπq.

Since dom(π) = ran(π) we immediately see that (πp, πU) ∈ P π. Similarly, it follows that
P π−1

= P π and therefore the mapping is an automorphism.

We note that P3 has a unique Boolean completion RO(P3), since allM -de�nable anti-
chains are sets inM , which we will show later. Therefore, every π ∈ Gr uniquely extends
to an automorphism of RO(P3).

Now let G be a M -generic subclass of P3, i.e. G meets all M -de�nable dense subclasses,
and denote the generic extension by M [G].

De�nition 3.1. By NG we shall denote the symmetric extension generated by the �lter
base {Ha : a ⊆ Reg �nite}. In more detail: Call a name x symmetric i� ∃a ⊆ Reg �nite

such that sym(x) = {π ∈ Gr :
∼
π(x) = x} ⊇ Ha, where

∼
π is de�ned recursively by

∼
π(x) := {(∼π(σ), π(p)) : (σ, p) ∈ x}. De�ne HS as the class of all hereditarily symmetric
names. Set the symmetric extension NG := {xG : x ∈ HS} (see Jech[J]).

It can be easily seen that M [G] and NG are models of Extensionality, Pairing, Union
and In�nity.

For α ∈ Reg we shall set Pα := {(p, U) ∈ P3 : dom1(p) ⊆ α} and Gα = G ∩ Pα.
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Lemma 6. ∀α ∈ Reg : Pα is a complete subforcing of P3, M [G] =
⋃
α∈RegM [Gα] and

NG =
⋃
α∈RegNGα.

Proof. We shall show that every maximal antichain in Pα, α ∈ Reg arbitrary, is al-
so maximal in P3. Let A be a maximal antichain in Pα and (p, U) ∈ P3. W.l.o.g.
(p|α, U |α) 6= (∅, {∅}) and it follows that (p|α, U |α) is compatible with some element
r ∈ A. Let (q, V ) ≥ (p|α, U |α), r with (q, V ) ∈ Pα and w.l.o.g. we can assume that
∃m ∈ ω ∀α′ ∈ dom1(q) : dom(q(α′)) = m. Let t = q| (dom1(p) ∩ α) ∈ U |α and let s ∈ U
with s|α = t. We note that (s, Us) ≥ (p, U). Now s ∪ q ∈ P2, (s ∪ q)| dom1(q) = q
and (s ∪ q)| dom1(s) = s, since s|α = q| dom1(s). Therefore (s ∪ q,W ) ≥ (q, V ) as a
b-extension of (q, V ) and (s ∪ q,X) ≥ (s, Us) as a b-extension of (s, Us). So we see that
(s ∪ q,W ∩X) ≥ (q, V ), (s, Us) ≥ r, (p, U).
The second statement follows easily, since every (symmetric) P3-name is a (symmetric)
Pα-name for some α ∈ Reg, and Gα is an M -generic �lter of Pα.

Lemma 5 Lemma 6

Note that the de�nability of the forcing relation and the forcing theorem are non-
trivial, but we will take care of these technicalities later. The following lemma is a
generalization of the Symmetry lemma. It refers to 
 as well as to 
HS.

Lemma 7. Let ϕ(x1, ...,xn) be a formula with x1, ...,xn ∈ HS. Let a ⊆ Reg �nite

such that a is closed under cf' and sym(x1, ...,xn) ⊇ Ha. If (p, U) 
 ϕ(x1, ...,xn), then
already (p| a, U | a) 
 ϕ(x1, ...,xn).

Proof. Suppose not. Then there is (q, V ) ≥ (p| a, U | a) and (q, V ) 
RO(P3) ¬ϕ(x1, ...,xn).
Again, let q be of the form ∃m ∈ ω ∀α ∈ dom1(q) : dom(q(α)) = m. It will now su�ce to
show that there are conditions (p′, U ′) ≥ (p, U) and (q′, V ′) ≥ (q, V ) and a permutation
π ∈ Ha with (p′, U ′) ∈ P π such that π((p′, U ′)) = (q′, V ′). This will yield a contradiction,
since π((p′, U ′)) 
RO(P3) ϕ(x1, ...,xn).
Since (q, V ) ≥ (p| a, U | a) it follows that q| (a ∩ dom1(p)) ∈ U | a. Let t ∈ U with
t| a = q| (a ∩ dom1(p)) and such that t∪q| a ∈ P2. We set p? = t∪q| a and let (p?, U?) ≥ (p, U),
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as a b-extension, with p?| a = q| a. We can now extend (p?, U?) and (q, V ) to (p1, U1) and
(q1, V1) such that dom1(p1) = dom1(q1),

∀α ∈ dom1(p1) : dom(p1(α)) = dom(p1(cf'α)) = dom(q1(cf'α)) = dom(q1(α)),

and still p1| a = q1| a, since the �lters are closed under intersection. We de�ne

U ′1 := {t ∈ U1 : ∀α ∈ dom1(p1)− a [ran(t(α))− ran(p1(α)) ∩ ran(q1(α)) = ∅]} and

V ′1 := {t ∈ V1 : ∀α ∈ dom1(q1)− a [ran(t(α))− ran(q1(α)) ∩ ran(p1(α)) = ∅]}.

We can now de�ne the permutation π: For every α ∈ dom1(p1) − a and n ∈ ω we
set πα(p1(α)(n)) = q1(α)(n), if de�ned. Since q1(α) is 1-1, we can extend every πα to
a �nite permutation. Of course, it holds that the resulting π ∈ Gr. Furthermore, one
can easily show that (p1, U

′
1) ∈ P π. We set (q′, V ′) := (πp′1, πU

′
1 ∩ V ′1) ≥ (q1, V

′
1) and

(p′, U ′) := π−1((πp′1, πU
′
1 ∩ V ′1)) ≥ (p′1, U

′
1).

4 Separation and Replacement

Now we want to introduce three new predicates for the model M [G]: B(x1) will assert
that x1 ∈ M , A(x1, x2) will assert that (x1, x2) ∈ G and WO(x1, x2) will assert that
x1, x2 ∈M and (x1, x2) ∈ WOM .

Furthermore, we extend the forcing language by the following predicates:

• t 
 B̌(x1) i� ∀t′ ≥ t∃t′′ ≥ t′ ∃y : t′′ 
 x1 = y̌.

• t 
 Ǎ(x1,x2) i�
∀t′ ≥ t∃t′′ ≥ t′ ∃y1, y2 : (y1, y2) ∈ P3 ∧ t′′ 
 x1 = y̌1 ∧ t′′ 
 x2 = y̌2 ∧ t′′ ≥ (y1, y2).

• t 
 W̌O(x1,x2) i�
∀t′ ≥ t∃t′′ ≥ t′ ∃y1, y2 : WOM(y1, y2) ∧ t′′ 
 x1 = y̌1 ∧ t′′ 
 x2 = y̌2.

Lemma 8. The forcing relation for the expanded language is de�nable. Furthermore, let

ϕ(x1, ..., xn) be a formula in the language (∈,=, A,B,WO). ThenM [G] � ϕ(x1
G, ...,xn

G)
i� ∃t ∈ G : t 
 ϕ̌(x1, ...,xn).

Proof. De�ne the forcing relation for atomic formulas as follows: p 
 x ∈ y i�

∃α ∈ Reg∀α′ ≥ α : p ∈ Pα′ ∧ p 
P ′α x ∈ y.

Similarly for x = y. This de�nition works, because ∆0-formulas are absolute between
transitive models. The general case is de�ned by the usual induction over the number of
quanti�ers, e.g. p 
 ∀x ϕ̌(x) i� ∀x ∈MP3 : p 
 ϕ̌(x). For more details see Shoen�eld [S]
and Zarach [Z].
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Lemma 9. M [G] can be de�nably well-ordered.

Proof. First we note that ∀α ∈ Reg : M [Gα] is de�nable in M [G]. The de�nition is the
same formula de�ning `M [Gα] as the forcing extension of M with poset Pα and �lter
Gα' in M [Gα], i.e.

M [Gα] = {y : ∃z ∈MPα φGα(z, y)} where φGα(z, y) is the formula for zGα = y in M [Gα].

Note that φGα(z, y) is of the form ∃xψ(x, z, y) and ψ(x, z, y) is ∆0. By the upward
absoluteness of Σ1-formulas M [G] � ∀z ∈ MPα ∃y : φGα(z, y). Finally, one can easily
check by induction that M [G] � ∀z ∈ MPα ∃!y : φGα(z, y) and that the recursion is
absolute.
For x ∈ M [G] we de�ne ∆(x) := min{α ∈ Reg : x ∈ M [Gα]}. For x, y ∈ M [G] we say
x < y i� either ∆(x) < ∆(y) or

∆(x) = ∆(y) and min
WO
{z ∈MP3 : zG = x} <WO min

WO
{z ∈MP3 : zG = y}.

Theorem 10. M [G] satis�es Collection, i.e.

∀a : ∀x ∈ a∃y ϕ(x, y)→ ∃b∀x ∈ a∃y ∈ b ϕ(x, y),

for any formula ϕ(x, y) in the language (∈,=, A,B,WO).

Proof. First we show that every de�nable antichain of P3 is a set in M . Suppose not.
Let ((pα, Uα))α∈On be an M -de�nable antichain. W.l.o.g. we can assume that |dom1(pα)|
is independent of α and dom(pα(α′)) ⊆ ω is independent of α and α′. Let fi(α) de-
note the ith α′ ∈ dom1(pα) for i < |dom1(pα)| . Now there must be a i such that
{fi(α) : α ∈ On} is unbounded. Choose i minimal. Let β = sup{fj(α) : j < i ∧ α ∈ On}
and choose ((p′α, U

′
α))α∈On such that dom1(p

′
α) are pairwise disjoint above β. Now choose

((p′′α, U
′′
α))α∈On such that p′′α| β+ are identical. But this is a contradiction, since now all

(p′′α, U
′′
α) are compatible.

Now to Collection: Let ϕ(x, y) be a given formula, and a ∈ M [G]. Let us assume
that M [G] � ∀x ∈ a ∃y : ϕ(x, y). For x ∈ a let ψ(x, α) denote `α is the least regu-

lar cardinal such that ∃y ∈ R
M [Gα]
α : ϕ(x, y)'. Note that for every x ∈ dom(a) there

is a βx such that ∀γ ≥ βx ∀t ∈ P3 : t 
 ¬ψ̌(x, γ̌), since otherwise we would obtain a
M - de�nable antichain which would not be a set in M . Now we use Replacement in
M to de�ne β = sup{βx : x ∈ dom(a)}. Let α be the least regular cardinal ≥ β. Now

M [G] � ∀x ∈ a∃y ∈ R
M [Gα]
α : ϕ(x, y). It follows that R

M [Gα]
α ∈ M [Gα] ⊆ M [G], since

M [Gα] satis�es ZFC.
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Theorem 11. M [G] satis�es Separation for any formula in the language (∈,=, A,B,WO).

Proof. Let ϕ(x) be a given formula, and a ∈M [G]. For (x, p) ∈ a we de�ne A(x,p) to be a
maximal antichain below p such that ∀t ∈ A(x,p) : t 
 ϕ̌(x). We set τ :=

⋃
(x,p)∈a{x} × A(x,p).

We are left to show M [G] � ∀x : x ∈ τG ↔ x ∈ a ∧ ϕ(x). Let x ∈ τG. This means that
there is a (x, q) ∈ τ with q ∈ G and (x, p) ∈ a with q ≥ p and q 
 ϕ̌(x). It follows that
x ∈ a and ϕ(x). Now let x ∈ a and ϕ(x). It follows that there is a (x, p) ∈ a with p ∈ G.
Therefore, G must meet with A(x,p), so that x ∈ τG.

Now Replacement easily follows from Collection and Separation in M [G].

Replacement in NG can be shown similarly, although one has to work for Separation
to show that the name τ is symmetric. A more elegant proof uses replacement in M [G]
and the fact that NG � Power Set, which we will show without using any axioms in NG.

Theorem 12. NG satis�es Replacement for any formula in the language (∈,=).

Proof. Let ϕ(x, y) be a given formula, a ∈ NG and NG � ∀x ∈ a ∃!y : ϕ(x, y). Now
NG =

⋃
α∈On(RNG

α ) is a de�nable subclass of M [G]. Note that RNG
α ∈ NG only because

NG � Power Set and if λ is a limit ordinal then RNG
λ ∈ M [G] and RNG

λ ⊆ NGα for
some α ∈ Reg. Since NGα � ZF and rank is absolute, it follows that RNG

λ ∈ NGα ⊆ NG.
Since M [G] � Replacement, we can now use Re�ection. So we get an α such that
RNG
α 4ϕ,ψ NG and a ∈ RNG

α , where ψ(z) is the formula ∀x ∈ z ∃!y : ϕ(x, y). Let α′ be the
least regular cardinal such that RNG

α ∈ NGα′
. Finally we use Separation in NGα′

to get

b = {y ∈ RNG
α : ∃x ∈ aϕR

NG
α (x, y)} ∈ NGα′

⊆ NG.

5 The axiom of Power Set in NG

The problem with Power set is that it does not hold in M [G]. Indeed, since all limit
ordinals have co�nality ω and AC holds within M [G], every set must be countable in
M [G]. So even the reals form a proper class, and so do all the Rα's for α > ω.

Let x ∈ HS be a hereditarily symmetric name. First we de�ne the support of such
a name: supp(x) := min⊆{a ⊆ Reg �nite : sym(x) ⊇ Ha}. Note that this minimum
exists, since if π ∈ Ha1∩a2 then π = π2 ◦ π1 with πi ∈ Hai . So if x is supported by a1 and
a2, then it is also supported by a1 ∩ a2.

Let x ∈ NG. In contrast to the other axioms, it might be that the supports of na-
mes y for subsets of x are co�nal in the ordinals, such that at each α new subsets arise.
Therefore, we shall show that PNG(x) ∈ M [G], which will yield Power Set, since with
Replacement in M [G] we get an α with PNG(x) ⊆ NGα and x ∈ NGα , and since NGα �
ZF and being a subset of x is absolute for transitive models, we get PNG(x) ∈ NGα ⊆ NG.

12



Let x be a symmetric name for x. We de�ne δ := sup{
⋃
supp(z) ∪

⋃
supp(x) : z ∈

dom(x)}. Let κ be the smallest strongly compact cardinal > δ+. We shall call α < κ
small coordinates and α ≥ κ big ones.

Lemma 13. Let (p, U) be a forcing condition. Then there is a (q, V ) ≥ (p, U) such that

the following conditions hold:

• ∀t ∈ V : α(t) ≥ κ⇒ Φt is κ-complete.

• for every s ∈ V such that s is extendable and α(s) < κ the set

Es := {β ∈ α(s) : s ∪ {(α(s),m(s), β)} ∈ V }

of possible extensions is independent of the values at the big coordinates, i.e. if

q1|κ = q2|κ then Eq1 = Eq2.

Proof. First we want to �nd (p′,W ) ≥ (p, U) with p′ ∈ U and n ∈ ω such that
∀α ∈ dom1(p

′) : dom(p′(α)) = n and ∀t ∈ W : α(t) ≥ κ ⇒ Φt is κ-complete. Find
such a p′ and consider the condition (p′, Up′). For α ∈ dom1(p

′) with γ = cf'α < α
and α ≥ κ let cγ,α := min{ν ∈ γ : γα(ν) ≥ κ}. Note that γα was the WOM mi-
nimal co�nal sequence of length γ in sup{κ′ : κ′ < α ∧ κ′ is strongly compact}. For
γ ∈ dom1(p

′) we de�ne cγ := max{cγ,α : α ∈ dom1(p
′) ∧ α ≥ κ ∧ γ = cf'α < α}.

We de�ne W := {t ∈ Up′ : ∀γ ∈ dom1(p
′)∀m ≥ n t(γ)(m) ≥ cγ}. (p′,W ) is now a condi-

tion with the required property. So w.l.o.g we can assume that the condition (p, U) also
has this property.

Choose q ∈ U with α(q) ≥ κ. We will now work with the condition (q, Uq). Let
r ∈ Uq, r ≈ q. Let kr ≤ ω denote the number of levels of the tree Tr. For i < kr
let T ir denote the tree, where we cut o� Tr above the i'th level. We set F i

r := T ir\T i−1r .
Let xr(i) := dom1,2(s) for s ∈ F i

r . This is obviously well de�ned. We �x i and shall
inductively de�ne T i,jr for 1 ≤ j ≤ i.

We set T i,ir := T ir . Now let T i,jr be de�ned. We set

V i,j
r := {s ∈ T i−1r : ∀n ∈ {j, ..., i− 1} s|xr(n) ∈ T i,nr }.

We assume as induction hypothesis that for s, t ∈ V i,j
r and s|xr(j) ∈ F j

r if s|xr(j− 1) =
t|xr(j − 1), s|κ = t|κ and α(s) < κ, then we have Es = Et.

Now let s ∈ F j−1
r . If α(s−) < κ we set T i,j−1r := T j−1r . Obviously, for t, u ∈ V i,j−1

r

and t|xr(j − 1) ∈ F j−1
r if t|xr(j − 2) = u|xr(j − 2), t|κ = u|κ and α(t) < κ, then we

have Et = Eu, since we can deduce t|xr(j − 1) = u|xr(j − 1) and use the induction
hypothesis. Note that if t ∈ F j−1

r then t = u.

If α(s−) ≥ κ we do the following: First �x

f ∈ Cs− := {g ∈ P2 : ∃h ∈ V i,j

r [h ⊇ s− ∧ h|κ = g]}.

13



Let t ⊇ s−, t ∈ V i,j

r with t|xr(j − 1) ∈ F j−1
r and t|κ = f . We know that if α(t) < κ,

then Et only depends on t(α(s−)) (n(s−)). Since |P(α(t))| < κ and Φs− is κ-complete,
there exists an A ∈ Φt such that

Ds−,f := {β ∈ α(s−) : ∀u ⊇ s−∪{(α(s−), n(s−), β)} [u|κ = f∧α(u) < κ⇒ Eu = A]} ∈ Φs− .

Note thatA, (α(t), n(t)) and Φt only depend on f . We de�neDs− :=
⋂
f∈Cs−

Ds−,f ∈ Φs− .

We set T i,j−1r := T j−2r ∪
⋃
s∈F j−1

r
{s− ∪ {(α(s−), n(s−), β)} : β ∈ Ds−}. Again we see that

for t, u ∈ V i,j−1
r and t|xr(j − 1) ∈ F j−1

r if t|xr(j − 2) = u|xr(j − 2), t|κ = u|κ and
α(t) < κ, then we have Et = Eu, since we can deduce that ∃s ∈ F j−1

r : t, u ⊇ s− and for
f = t|κ = u|κ the set Ds− ⊆ Ds−,f is homogeneous.

We set V ′r := {t ∈ Tr : ∀i < kr [t ∈ T ir ⇒ t ∈ V
i,1

r ]} and V ′ :=
⋃
r∈Uq : r≈q V

′
r . Now

let s, t ∈ V ′ with s|κ = t|κ and α(s) < κ. Suppose that Es 6= Et. Then there exists a
r ∈ Uq, r ≈ q and an i such that s, t ∈ V i,1

r , which contradicts the homogeneity of V i,1
r .

(q, V ′) satis�es all conditions except possibly (P6). Therefore, we set T Vr :=
⋂
s⊇r : s≈q V

′
s

and V :=
⋃
r∈Uq : r≈q T

V
r . Obviously, if s ⊇ r then T Vs ⊇ T Vr . So (q, V ) is the desired

condition.

The following graphics show the process from the previous lemma with a condition
whose domain consists only of one small and one big coordinate:

Tree at level 1

Tree made homogeneous at level 1

Tree at level 3, small extension at level 2, homogeneous at level 1

14



Tree made homogeneous at level 3, depending on small extension at level 2

Coloring level 1 with the possible small extensions and corresponding homogeneous sets

Tree made homogeneous at level 3 independent of small extension at level 2

Note that in the previous lemma, as well as in all the following lemmas the strengt-
hened condition (q, V ) has the following property: if t ∈ V with α(t) < κ, then
{β ∈ α(t) : t ∪ {(α(t), n(t), β)} ∈ U} = {β ∈ α(t) : t ∪ {(α(t), n(t), β)} ∈ V }.

The following lemma will give an idea why Power Set might hold.

Lemma 14. The strongly compact cardinals κ are not collapsed in NG, i.e. they remain

cardinals.

Proof. Let κ be strongly compact and let τ be a symmetric name such that (p, U) 
 τ : λ→ κ
onto, with λ < κ, dom1(p) ⊆ supp(τ) and (p, U) has the properties from the previous
lemma.

Let ϕn,β be the formula ˇ(n, β) ∈ τ for n ∈ λ and β ∈ κ. Now we want to make V ho-
mogeneous: Find a W ⊆ V such that for s, t ∈ W , s|κ = t|κ and dom1,2(s) = dom1,2(t)
the following holds:

• ∃X ⊆ Ws : (s,X) 
 ¬ϕn,β i� ∃X ⊆ Ws : (t,X) 
 ¬ϕn,β

• ∃Y ⊆ Ws : (s, Y ) 
 ϕn,β i� ∃Y ⊆ Ws : (t, Y ) 
 ϕn,β .
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Note that (s,X) and (s, Y ) cannot contradict each other, since they are compatible.
We use the notation from the previous lemma. Let r ∈ V with r ≈ p. We �x i < kr and
shall de�ne T i,jr for 0 ≤ j ≤ i. Again we set T i,ir := T ir . Now let T i,jr be de�ned. We set
W i,j
r := {s ∈ T ir : ∀n ∈ {j, ..., i} s|xr(n) ∈ T i,nr }. Set Fn,β(s) to be

• 0 if ∃X ⊆ Ws : (s,X) 
 ¬ϕn,β

• 1 if ∃Y ⊆ Ws : (s, Y ) 
 ϕn,β

• 2 otherwise.

For s, t ∈ W i,j
r , s|κ = t|κ, dom1,2(s) = dom1,2(t) and s|xr(j) ∈ F j

r we assume induc-
tively that Fn,β(s) = Fn,β(t).

Now let s ∈ F j−1
r . If α(s) < κ we set T i,j−1r := T jr . Obviously, for t, u ∈ W i,j−1

r and
t|xr(j − 1) ∈ F j−1

r if t|xr(j − 1) = u|xr(j − 1), t|κ = u|κ and dom1,2(t) = dom1,2(u),
then we have F (t) = F (u), since we can prove t|xr(j) = u|xr(j) and use the induction
hypothesis. Note that if t ∈ F j−1

r then t = u.

If α(s) ≥ κ we do the following: Let us �x f ∈ Cs := {g ∈ P2 : ∃h ∈ W i,j

r [h ⊇ s ∧ h|κ = g]}.
Let t ⊇ s, t ∈ W i,j

r with t|xr(j) ∈ F j
r and t|κ = f . We know that F (t) only depends on

t(α(s))(n(s)) and dom1,2(t). Therefore, for every m ∈ ω there is l < 3 such that

Ds,f,m := {β ∈ α(s) : ∀u ⊇ s∪{(α(s), n(s), β)} [u|κ = f∧|dom1,2(u)| = m⇒ Fn,β(u) = l]}

is in the �lter ∈ Φs. So Ds :=
⋂
f∈Cs

⋂
m∈ωDs,f,m ∈ Φs. We set

T i,j−1r := T j−1r ∪
⋃

s∈F j−1
r

{s ∪ {(α(s), n(s), β)} : β ∈ Ds}.

We also set W ′
r := {t ∈ Tr : ∀i < kr [t ∈ T ir ⇒ t ∈ W

i,0

r ]} and W ′
n,β :=

⋃
r∈V : r≈qW

′
r.

Obviously, W ′
n,β is homogeneous with respect to Fn,β.

Choose ν ∈ Reg with κ > ν > λ, |(V |κ) × ℵ0|. Let (p,W ) ≥ (p, V ) be a condition
which is homogeneous with respect to Fn,β for every n ∈ λ and β ∈ ν. We get such a
condition by intersecting W ′

n,β for n ∈ λ and β ∈ ν and �xing (P6). It follows that there
are only |(V |κ) × ℵ0| equivalence classes (for s, t ∈ W de�ne s ≈
 t i� for every n ∈ λ
and every β ∈ ν Fn,β(s) = Fn,β(t) holds) of what can be forced below (p,W ) . But then

τ cannot even be onto ν, because for every n ∈ λ and β ∈ ν the formula ˇ(n, β) ∈ τ must
be decided below (p,W ).

De�nition 5.1. For q ∈ V and s ∈ V |κ with q|κ ⊆ s we say that q ∪ s reaches V if
either q ∪ s ∈ V or the set V ?

q∪s := {t ∈ Tp∪s|κ1 : ∃u ∈ V [u ⊇ q ∪ s ∧ u|κ = s ∧ t ⊆ u]}
satis�es the following property: V ?

q∪s is non-empty and for t ∈ V ?
q∪s if q ⊆ t, α(t) ≥ κ

and t|κ 6= s, then {β ∈ α(t) : t ∪ {(α(t), n(t), β)} ∈ V ?
q∪s} ∈ Φt.
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A pruned tree: Only the corresponding values of s are allowed at the small extensions

Lemma 15. Let (p, V ) be a condition as in the lemma 13. Then there exists a W ⊆ V
such that (p,W ) is a condition and for s ∈ W |κ and q ∈ W with q|κ ⊆ s we have that

q ∪ s reaches W .

Proof. First we shall show that ∀q ∈ V : p ∪ q|κ reaches V . If q = r with r ≈ p this is
obvious. Now let q ∈ V such that p ∪ q|κ reaches V : If α(q) ≥ κ and q is extendable
then obviously

∀β ∈ α(q) : q ∪ {(α(q), n(q), β)} ∈ V ⇒ p ∪ (q ∪ {(α(q), n(q), β)})|κ

reaches V . If α(q) < κ and q is extendable, then let β ∈ α(q) with q ∪ {(α(q), n(q), β)} ∈ V
be arbitrary. If p∪q|κ ∈ V then p∪q|κ = q, so that trivially ∪(q ∪ {(α(q), n(q), β)})|κ ∈ V .
Otherwise let u ⊇ p ∪ q|κ with u|κ = q|κ, u ∈ V and u is not extendable in V ?

p∪q|κ. It

follows that (α(u), n(u)) = (α(q), n(q)). From lemma 13 we may assume that Eu = Eq,
so that u ∪ {(α(q), n(q), β)} ∈ V . This shows that V ?

p∪q|κ ⊆ V ?
p∪(q∪{(α(q),n(q),β)})|κ. If

t ∈ V ?
p∪(q∪{(α(q),n(q),β)})|κ with t|κ 6= (q ∪ {(α(q), n(q), β)})|κ and α(t) ≥ κ, then it easily

follows that t ∈ V ?
p∪q|κ. Now if t|κ 6= q|κ then {β ∈ α(t) : t ∪ {(α(t), n(t), β)} ∈ V ?

p∪q|κ} ∈ Φt

by de�nition. If p ∪ q|κ ⊆ t then {β ∈ α(t) : t ∪ {(α(t), n(t), β)} ∈ V ?
p∪q|κ} ∈ Φt by de�-

nition of the forcing. So that p ∪ (q ∪ {(α(t), n(t), β)})|κ reaches V .

Inductively, we shall now de�ne W ′ and show that ∀q ∈ W ′ ∀s ∈ V |κ : q|κ ⊆ s⇒ q ∪ s
reaches V . We put r ≈ p with r ∈ V inW ′. Let s ∈ V |κ with r|κ ⊆ s. Since r∪s = p∪s
the statement follows from what we have shown before.

Now let q ∈ W ′ and assume ∀s ∈ V |κ : q|κ ⊆ s ⇒ q ∪ s reaches V as the induc-
tion hypothesis. If q is extendable and α(q) < κ we put q ∪ {(α(q), n(q), β)} with
q ∪ {(α(q), n(q), β)} ∈ V in W ′. For s ⊇ (q ∪ {(α(q), n(q), β)})|κ, s ∈ V |κ we see
that q ∪ {(α(q), n(q), β)} ∪ s = q ∪ s and we can us the induction hypothesis to show
that q ∪ {(α(q), n(q), β)} ∪ s reaches V .

If α(q) ≥ κ, we �x s ⊇ q|κ with s ∈ V |κ. Since q ∪ s reaches V , if q ∪ s /∈ V then we
have

Cs := {β ∈ α(q) : q ∪ {α(q), n(q), β)} ∈ V ∧ (q ∪ {(α(q), n(q), β)}) ∪ s|κ1 ∈ V ?
q∪s} ∈ Φq
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by de�nition. It easily follows that ∀β ∈ Cs : (q ∪ {(α(q), n(q), β)}) ∪ s reaches V . The-
refore, if we set C :=

⋂
s∈V |κCs ∈ Φq, it follows that

∀β ∈ C ∀s ∈ V |κ : (q ∪ {(α(q), n(q), β)}) ∪ s

reaches V . Note that if q∪s ∈ V , then q|κ∪s|κ1 = s so that (q∪{(α(q), n(q), β)})∪s =
(q∪{(α(q), n(q), β)})∪ s|κ1 ∈ V , if q∪{(α(q), n(q), β)} ∈ V . As in the previous lemma,
(p,W ′) satis�es all conditions except possibly (P6). But as before, we can �x this to get
a W ⊆ W ′.

Now we show ∀q ∈ W ∀s ∈ W |κ : q|κ ⊆ s ⇒ q ∪ s reaches W . Let q ∈ W and
s ∈ W |κ be arbitrary. If q ∪ s ∈ V and α(q) < κ, we note that q ∪ s|κ1 ∈ W and
that q ∪ s|κ1 only has to be extended at small coordinates to become q ∪ s, so with
induction on |q ∪ s − q ∪ (s|κ1)| it can be shown that q ∪ s ∈ W ′. If r ∈ V with
r ≈ p and r|κ1 ⊇ (q ∪ s)|κ1, then q ∪ r ∈ W ⊆ W ′. With the same argument as be-
fore, one can inductively show that (q∪s)∪r = (q∪r)∪s ∈ W ′. It follows that q∪s ∈ W .

If q ∪ s /∈ V we shall show that W ?
q∪s = V ?

q∪s ∩ W which will obviously yield that
q ∪ s reaches W . The ⊆ inclusion is trivial. Now let t ∈ V ?

q∪s ∩W . We shall show that
∃u ∈ W : u ⊇ q ∪ s ∧ u|κ = s ∧ t ⊆ u. If t ⊇ q ∪ s we are done. Otherwise we shall
inductively de�ne increasing t0, ..., tn ∈ V ?

q∪s ∩ W such that tn ⊇ q ∪ s ∧ tn|κ = s.
W.l.o.g. t = q ∪ s|κ1 and we set t0 = t. Let ti be de�ned, and assume that ti + q ∪ s,
since otherwise we are done. Then we shall de�ne ti+1 as follows: If α(ti) ≥ κ we set
ti+1 = ti ∪ {(α(ti), n(ti), β} for some β which belongs to

{β′ ∈ α(ti) : ti∪{(α(ti), n(ti), β
′)} ∈ V ?

q∪s}∩{β′ ∈ α(ti) : ti∪{(α(ti), n(ti), β
′)} ∈ W} ∈ Φti .

If α(ti) < κ then we see that ti ∪ {(α(ti), n(ti), s(α(ti)) (n(ti)) )} ∈ V , so that ti+1 =
ti ∪ {(α(ti), n(ti), s(α(ti)) (n(ti)) )} ∈ W . ti+1 ∈ V ?

q∪s follows trivially. Therefore (p,W )
is the required condition.

InM [G] we shall de�ne a 1-1 mapping from PNG(x) onto 3dom(x)×P2|κ. For y ∈ PNG(x)
let y be the smallest symmetric name for y. For convenience in the proofs we will assume
that max(supp(y)∩ κ) ≥ δ+ and κ1 ∈ supp(y), where δ was de�ned at the beginning of
this chapter.

Lemma 16. Let (p, U) be a condition with dom1(p) = supp(x,y), (p, U) 
 y ⊆ x
and the property from the previous lemma. Then there is a V ⊆ U such that (p, V )
is a condition and the following property holds: For every z ∈ dom(x) and for every

s ∈ P2| (max(supp(y) ∩ κ))+ the set V is homogeneous meaning that exclusively one

statement holds:

• ∃q ∈ V ∃W ⊆ P2 : q|κ ⊆ s ∧ P3 3 (q ∪ s,W ) ≥ (p, V ) ∧ (q ∪ s,W ) 
 ¬z ∈ y
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• or ∃q ∈ V ∃W ⊆ P2 : q|κ ⊆ s ∧ P3 3 (q ∪ s,W ) ≥ (p, V ) ∧ (q ∪ s,W ) 
 z ∈ y

• or neither holds.

Proof. Let us �x z ∈ dom(x) and s ∈ P2| (max(supp(y) ∩ κ))+. First we note that
(q ∪ s,X) and (q ∪ s, Y ) cannot contradict each other, since they are compatible. Next
we check if s| dom1(p) ∈ U |κ. If not, then we are done, since neither of the �rst two
statements can hold. In this case we set Vz,s := U . Otherwise we de�ne

U?
z,s := {t ∈ Tp∪s| (dom1(p)∩κ1) : ∃u ∈ U [u ⊇ t ∧ u|κ ⊆ s ∧ u ∪ (s| dom1(p)) ∈ U ]}.

Now for every t ∈ U?
z,s, if α(t) ≥ κ and t is extendable, then

{β ∈ α(t) : t ∪ {(α(t), n(t), β)} ∈ U?
z,s} ∈ Φt,

since t∪s| dom1(p) reaches U . Note that if q ∈ U , q|κ ⊆ s and ∃W : P3 3 (q ∪ s,W ) ≥ (p, V ),
then q ∈ U?

z,s.

For q ∈ {t ∈ U?
z,s : t is not extendable in U?

z,s} we de�ne F (q) to be

• 0 i� ∃W ⊆ P2 : q|κ ⊆ s ∧ P3 3 (q ∪ s,W ) ≥ (p, V ) ∧ (q ∪ s,W ) 
 ¬z ∈ y,

• 1 i� ∃W ⊆ P2 : q|κ ⊆ s ∧ P3 3 (q ∪ s,W ) ≥ (p, V ) ∧ (q ∪ s,W ) 
 z ∈ y

• 2 otherwise.

We can make U?
z,s homogeneous with respect to F (q). The homogeneous set we shall call

U ′z,s. We de�ne

Vz,p∪s| (dom1(p)∩κ1) := {t ∈ Tp∪s| (dom1(p)∩κ1) : t ∈ U ′z,s∨[t /∈ U?
z,s∧∃t′ ∈ U ′z,s (t ⊇ t′∨t∪s /∈ P1)]}.

We set Vz,s :=
⋃
r∈U : r≈p∧r 6=p∪s| (dom1(p)∩κ1) Tr ∪ Vz,p∪s| (dom1(p)∩κ1). Next we intersect with

respect to z and s: V ′ :=
⋂

z∈dom(x)

⋂
s∈P2| (max(supp(y)∩κ))+ Vz,s. Furthermore, we �x con-

dition (P6) and get a forcing condition (p, V ).

Now we must show that (p, V ) satis�es the required property. Let us �x z ∈ dom(x)
and s ∈ P2| (max(supp(y) ∩ κ))+. Assume that there exist t1, t2 ∈ V and W1,W2 ⊆ P2

such that ti|κ ⊆ s, (ti ∪ s,Wi) are conditions stronger than (p, U) and they contra-
dict each other. First we note that w.l.o.g. we can assume ti ∈ Tp∪s| (dom1(p)∩κ1), since
ti∪ s = ti∪ s| (dom1(p)∩κ1)∪ s. Next we may assume that ti are not extendable in U

?
z,s.

This follows because one can show by induction on |dom1,2(t
′) − dom1,2(ti)| for some

t′ ∈ U?
z,s, which is not extendable in U?

z,s, that

{t ∈ U?
z,s : t is not extendable inU?

z,s} ∩Wi| dom1(p)

is non-empty, since the ti's need only be extended at big coordinates and the �lters are
closed under intersection. Let qi witness that the intersection is non-empty. It follows
that qi ∪ s ∈ Wi so that (qi ∪ s,Wi qi∪s) contradict each other. So w.l.o.g. qi = ti. But if
the ti's are not extendable in U

?
z,s, they contradict the homogeneity of U ′z,s.
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Now we can de�ne the mapping: For y ∈ PNG(x) let (p(y), U(y)) be the least condition
in G with dom1(p(y)) = supp(x,y), (p(y), U(y)) 
 y ⊆ x and the property from the
previous lemma. We de�ne f(y) : dom(x)× P2|κ→ 3 as follows:

• (z, s) 7→ 0 i� s ∈ P2| (max(supp(y) ∩ κ))+ ∧ ∃q ∈ U(y)∃W ⊆ P2 :
q|κ ⊆ s ∧ P3 3 (q ∪ s,W ) ≥ (p, V ) ∧ (q ∪ s,W ) 
 ¬z ∈ y

• (z, s) 7→ 1 i� s ∈ P2| (max(supp(y) ∩ κ))+ ∧ ∃q ∈ U(y)∃W ⊆ P2 :
q|κ ⊆ s ∧ P3 3 (q ∪ s,W ) ≥ (p, V ) ∧ (q ∪ s,W ) 
 z ∈ y

• and (z, s) 7→ 2 otherwise.

Note that only due to the previous lemma the mapping is well de�ned. Assuming that
f(·) is 1-1, we see that PNG(x) = f−1[3dom(x)×P2|κ] ∈M [G].

Theorem 17. The mapping f(·) : PNG(x)→ 3dom(x)×P2|κ is 1-1, so the Power Set axiom

holds in NG.

Proof. Let y1, y2 ∈ PNG(x) with y1 6= y2. Case 1: max(supp(y1) ∩ κ) > max(supp(y2) ∩ κ).
W.l.o.g. let y1 be non-empty and z ∈ dom(x) such that zG ∈ yG1 . Let G 3 (t, V ) ≥
(p(y1), U(y1)) with dom1(t) = dom1(p(y1)) ∪ supp(z) and (t, V ) 
 z ∈ y1. If we set
s = t|κ,W = V and q = t| dom1(p(y1)) ∈ U(y1) we see that (t, V ) = (q∪s,W ) 
 z ∈ y1.
So it follows that f(y1)(z, s) = 1 while f(y2)(z, s) = 2, since s /∈ P2| (max(supp(y2) ∩ κ))+.

Case 2: max(supp(y1) ∩ κ) = max(supp(y2) ∩ κ). Since y1 6= y2 there is a z ∈ dom(x)
such that w.l.o.g. zG ∈ yG1 but zG /∈ yG2 . Let G 3 (t, V ) ≥ (p(yi), U(yi)) for i = 1, 2
such that dom1(t) = dom1(p(y1))∪ dom1(p(y2))∪ supp(z) and (t, V ) 
 z ∈ y1 ∧ z /∈ y2.
We set s = t|κ, Wi = V | (dom1(p(yi)) ∪ κ) and qi = t| dom1(p(yi)) ∈ U(yi). If we set
ai = dom1(p(yi) ∪ κ) it follows that (t| ai, V | ai) = (qi ∪ s,Wi). Since supp(yi, z) ⊆ ai,
we see that (q1 ∪ s,W1) 
 z ∈ y1 and (q2 ∪ s,W2) 
 z /∈ y2. Therefore, f(y1)(z, s) = 1
and f(y2)(z, s) = 0.

Now PNG(x) ∈M [G] holds by Replacement. Again by Replacement we get an α ∈ Reg
such that PNG(x) ⊆ NGα . Now being a subset of x is absolute for transitive models, and
NGα � ZF, so that PNG(x) = PNGα (x) ∈ NGα ⊆ NG follows.
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