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1 Abstract

In my Master’s Thesis I want to show the following result by Gitik [G]: Assuming the
consistency of arbitrarily large strongly compact cardinals, we show the consistency of
ZF + Va € Lim: cfa = w, where Lim is the class of all limit ordinals.

To this end, we will start with a countable transitive model M of
ZFC + Va € Ondk > «a: kis strongly compact’,

force with a proper class forcing to get a model M[G] satisfying ZF~ + ‘Va: z is coun-
table’, where ZF~ is ZF without Power Set but Collection included, and finally define a
symmetric submodel Ng, which will have the required properties.

The logic behind the consistency result can be found in Kunen [K].



2 The forcing and other prerequisites

We start with a ctm M of ZFC + Va € Ondk > a: k is strongly compact’. W.l.o.g. we
can assume, that there is no regular limit of strongly compact cardinals in M, since if
there were one, the smallest such «, named o/, would be strongly inaccessible, and the set
{z € M: rank™(z) < o’} would be a model with the required properties. Furthermore,
we can assume, that M has a predicate WO, which is a global well-order of M, and
the model satisfies Replacement with respect to the predicate WO,,. This can be ea-
sily seen, as we can always add such a global well-order by class forcing (see Felgner [F]).

Let (Ka)acon list the strongly compact cardinals in M, where ko = w. Now we con-
sider o € Reg, the class of regular cardinals, and want to distinguish 3 cases:

o o < Ky Let &, = {X C a: |a — X| < a} be the co-bounded filter on «.

e There exist a maximal strongly compact cardinal x < a: Let &, be the least
k- complete uniform ultrafilter on «. By least we refer to the well-order WOy,
and by uniform we mean that X € ®, implies | X| = .

e There is no such k: Let § = sup{x: K < a A kis strongly compact}. By our earlier
assumption S must be singular. Let v = cf 5. Let (k,),ey be the least y-sequence
of strongly compact cardinals cofinal in 5. We now define ®,, to be the least
ky,-complete uniform ultrafilter on « for all v < 7.

In the second case we define c¢f’ @ := a, and in the third case we shall say cf’ a := 7.

We now consider the class Reg x w x On. For x C Reg x w x On we shall now de-
fine dom;(x) := {a: In3IB (a,n, ) € z} and dom;o(z) := {(a,n): I (a,n, B) € x}.
Furthermore, we define

P, :={p C Reg x w x On:

par par
(

p: Reg = (w = On) A |dom; »(p)| < w A Va € dom; (p) [p(a)is 1-1 Aran(p(a)) C o}
For py, ps € Py we shall say p; = po, if p1|(Reg — k1) = pa|(Reg — k7).

For technical reasons we are only going to use a subclass of P;. Define P, as the class of
p € Py such that the following conditions hold:

e Va € dom(p): cf’ a € dom(p).
e Va € dom(p): dom(p(a)) C dom(p(ct’ a)).

e Ja € domy(p),a > k1,3In € w:
Va! € (dom (p)—a) dom(p(a’)) = n AVa' € dom; (p)N(a—ky) dom(p(a’)) = n+1.

Since o and n are obviously uniquely determined, we shall set a(p) = a and n(p) = n.
(a(p), n(p)) will be the first coordinate we will have to fill, if we want to extend p.



Definition 2.1. We shall call p € P, extendable, iff 3¢ € P»: dom;(¢) = dom;(p) A

qlk1 = plr1 A p & q. Therefore we see that a function p is extendable iff either
cf” a(p) = a(p) or (cf’ a(p),n(p)) € domy 2(p).

So we see that if cf” a(p) > k1, p is extendable.

,,,,,,,,,,,

Definition 2.2. We can now define the forcing. We set P; to be the class of pairs (p, U)
such that the following conditions hold:

(a,n) € (domy(p) N k1) X w—domyo(r) = {B: rU{(a,n,B)} € U} € ®,.

(P6) Vri,ro € U, ri,ra = p: (mUry € PL=rUry € U)A(ry Cry =T, CT,), where
T, =TV :={q € U: q|x1 = r|k} for r ~ p. The sign C should be interpreted as
the embedding ¢: T,, 2 ¢ — qUra.

(P7) Vge UVa C ky xwxki:pU(gna)eU.
(P8) ¥g € U, alg) = a(a): {B: qU {(a(a), n(a), B)} € U} € Bogy.

(P9) Vg e U,ct’ a(q) < a(q):
n(q) € dom (q(cf’ a(q))) = {B: U {(a(q),n(q), B)} € U} € Pu(y), g(et’ alg)) (n(a))-

(P10) Yq € U,q % p,3¢' € U3(a,n) € dom; 5(q) 38 € On:
qg=q U{(a,n,8)} A (a(d),n(q)) = (a,n). We shall denote this ¢’ by ¢



The partial order will be defined at the end of this chapter.

If g is extendable, then we shall denote the corresponding ultrafilter by ®,.
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Lemma 1. Let (p,U) be a forcing condition and a C Reg such that o € a = cf’ a € a,
then (p|a,U|a), where Ula = {q|a: g € U}, is a forcing condition too.

Proof. As can be easily seen, only conditions (P5), (P6) and (P10) are non-trivial. For
(P5) let ¢ € Ula, ¢ = r|a with some r € U and ¢ ~ p|a. By (P7) we can assume
that 7 =~ p. Let (a,n) € (dom;(p|a) N k1) X w — dom; »(g), and it follows that also
(a,n) € (domy(p) N k1) X w—domyo(r). So we see that {5: r U {(a,n,p)} € U} C
{B: qU{(a,n, )} € Ula} € Pq.

For (P6) let ¢1, 2 € Ul a with ¢; = ;] a for : = 1,2. Again by (P7) and ¢; ~ p|a we can
assume that r; = pU ¢q;. Now if ¢; U gs € P; then also vy Ury € P;, and since U satisfies
(P6), we have ¢ Ugy = (r1Urg)|a € Ul a. Since T}, | a C T,,| a, if r; C ry, it follows that
qufla = UTGU: rRpAT| a=q1 TT| a g UT’EU: rRpAT| a=q1 TTUT2| a g qulaa if q1 g qs-

For (P10) let ¢ € U|a with ¢ = t| @ and ¢ minimal with respect to cardinality. It must be
that ¢ % p, since q % p|a. Now t =t~ U {(a,n, 5)}. We see that (o, n, 3) € ¢ due to the
minimality of ¢. Tt easily follows that (a,n) = (a(q),n(q)) and ¢ =t~ |aU{(a,n, 5)}, so
that ¢~ =t |a € U|a. O

Lemma 2. If (p,U) is a forcing condition and s € U, then (s,Usy) is a forcing condition
too, where Us = {t € U: s C t}.

Proof. Ounly (P5)-(PT7) are non-trivial. For (P5) let ¢ € U and g = s. Since U satisfies
(P7), we have pU ¢|r1 € U. Let (a,n) € (dom;(p) N K1) X w — domy 5(g). Then we
have that £ = {#: pUq|k1 U {(a,n,B)} € U} € ®,. Now since V3 € E: Tyuqg ., C
Tougl s1Uf(am,8)}, We see that V3 € E: qU {(a,n, )} € U. Therefore it holds that

EC{p:qu{(a,n,B)} € Us} € D,.



For (P6) let r1,ry € Us and r; = s for i = 1,2. Again by (P7), pUr;|ky € U for i = 1,2.
It follows that (pUry| k1)U (pUrs| K1) € P, since we assume that ry Ury € P;. Therefore
(pUri| k1)U (pUrs| k) € U. By (P6) ri U7y € Thu(ryurs)|xy» 50 that ri Uy € ng(mumlm.
It easily follows that if r; C ry, then T)7s C T,

For (P7) let ¢ € U, and let a C k1 X w X k1. We have that pU (¢Na) € U and therefore
also pU (¢Na)Us|ky € U. By (P6) it follows that s U (¢ N a) € Tpugnayusis, and so it
follows that s U (¢ Na) € Us. O

Definition 2.3. If p € P, b O dom;(p) such that b is closed under cf” and b C Reg
finite, then we call p’ € P, a b-extension of p, if dom;(p’) = b and p/| dom;(p) = p.

Lemma 3. Let (p,U) € P3, b O dom,(p), closed under cf’, and b C Reg finite. Let p' be
a b-extension of p and set U' :={q € Py: ¢ D p'ANq € U ¢ is a b-extension of q|}. Then
(p',U’) is a condition.

Proof. Straightforward checking of the conditions (P1)-(P10). O

Lemma 4. If (p,U), (p,V) € P3 then (p,UNV) is a condition too.

Proof. We note that ¢ € P, being extendable only depends on dom; »(g). All the condi-
tions follow, since filters are closed under intersection. O]

We can now define the partial order of the forcing.

Definition 2.4. Let (p,U), (q,V) € P;. We say that (q,V) is stronger than (p,U), in
terms (¢, V) > (p,U), if V|dom;(p) C U.

3 The symmetric extension

We consider the group of partial permutations of Reg x w x On. We define a subclass
Gr as the permutations 7 satisfying:

1. |dom;(dom(7))| < w.

2. For every a € dom;(dom(r)) there is a permutation 7 of « with finite do-
main, such that Vn < w : ‘If § € dom(n®) then 7((o,n,f)) = (a,n, 7)),
and 7((a,n, B)) = (a, n, B) otherwise’.

If a C Reg finite we define
H, :={m € Gr: Ya € andom;(dom(x)) [7*is the identity function]}.

We easily see that H, is a normal subgroup of Gr. Furthermore, for each 7 € Gr we
define a dense subclass P™ C Pj; as the forcing conditions (p,U) with the following
properties:



1. dom;(p) 2 dom;(dom(m)).
2. Ya € domy (p): dom(p(cf’ o)) = dom(p(«)).
3. Ya € dom; (dom(7)): rmg(p(a)) D {S € dom(n®): ¢ € US € rng(q(a))}.

The density follows easily.

For a (p,U) € P™ we define 7((p,U)) to be (mp, 7U) with
7p := 7[p| dom; (dom(r))] U p — p| dom; (dom(7)) and

wU = {r[q| dom;(dom(7))] U ¢ — ¢| dom;(dom(7)): ¢ € U}.

The reason why we restrict ourselves to P™ is the following lemma.

Lemma 5. For every m € Gr the mapping (p,U) — (np,wU) is an automorphism of
(P™,>).

Proof. First we need to check that (7p, 7U) is a forcing condition. Only condition (P9)
is non-trivial. Let ¢ € U be extendable and we note that (a(q),n(q)) = (a(7q),n(mq)).
Now let c¢f’a(q) < a(q) and assume that v = g(cf’ a(q))(n(q)) € dom(7F'*@). Now
it follows that v € ran(p(cf’ a(q))) and that (ct’ a(q),n(q)) ¢ dom;o(p). But this is a
contradiction to ¢(cf’ a(q)) being 1-1. Therefore v ¢ dom(7*f *@) and we see that

{8: mqu(a(q).n(q),B) € U} 2 {B: qU(a(q),n(q), B) € U}\dOHl(ﬂ'a(Q)) € Po(g)y = Prg-

Since dom(m) = ran(7) we immediately see that (mp, 7U) € P™. Similarly, it follows that
P™ " = P™ and therefore the mapping is an automorphism. O

We note that P; has a unique Boolean completion RO(P), since all M-definable anti-
chains are sets in M, which we will show later. Therefore, every © € Gr uniquely extends
to an automorphism of RO(P3).

Now let G be a M-generic subclass of Ps, i.e. G meets all M-definable dense subclasses,
and denote the generic extension by M[G].

Definition 3.1. By Ny we shall denote the symmetric extension generated by the filter
base {H,: a C Reg finite}. In more detail: Call a name x symmetric iff 3o C Reg finite

such that sym(x) = {r € Gr: n(x) = x} D H,, where 7 is defined recursively by
7(x) := {(7(o),7(p)): (o,p) € x}. Define HS as the class of all hereditarily symmetric
names. Set the symmetric extension Ng := {x%: x € HS} (see Jech[J]).

It can be easily seen that M[G]| and Ng are models of Extensionality, Pairing, Union
and Infinity.

For a € Reg we shall set P, := {(p,U) € P3: dom;(p) C a} and G, = GN P,.



Lemma 6. Va € Reg: P, is a complete subforcing of Ps, M[G] = UaERegM[Ga] and
NG = UaEReg NGa‘

Proof. We shall show that every maximal antichain in P,, o € Reg arbitrary, is al-
so maximal in P;. Let A be a maximal antichain in P, and (p,U) € P;. W.lLo.g.
(p| o, Ul ) # (0,{0}) and it follows that (p|a,Ul|«) is compatible with some element
r € A. Let (¢,V) > (p|o, Ul ), r with (¢,V) € P, and w.l.o.g. we can assume that
Im € wVa/ € dom;(q): dom(g(a’)) = m. Let t = ¢| (dom;(p) N ) € U] v and let s € U
with s|a = t. We note that (s,Us) > (p,U). Now sUq € P, (sUq)|dom;(q) = ¢
and (s U ¢)|dom;(s) = s, since s|a = ¢|dom;(s). Therefore (s Uq, W) > (q,V) as a
b-extension of (¢,V) and (sUq, X) > (s,Us) as a b-extension of (s,Us). So we see that
(sUqg,WnX)>(q,V), (s,Us) >, (p,U).

The second statement follows easily, since every (symmetric) P3-name is a (symmetric)
P,-name for some o € Reg, and G, is an M-generic filter of P,. O

4. [
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Note that the definability of the forcing relation and the forcing theorem are non-
trivial, but we will take care of these technicalities later. The following lemma is a
generalization of the Symmetry lemma. It refers to I as well as to IF7,

Lemma 7. Let o(X1,...,Xn) be a formula with Xq,....x, € HS. Let a C Reg finite
such that a is closed under cf’ and sym(xy,...,xn) 2 Hy. If (p,U) Ik ¢(X1,...,Xn), then
already (p| a, Ul a) IF (X1, ..., Xn).

Proof. Suppose not. Then there is (¢,V) > (p|a,Ula) and (q,V) IFror,) ~¢(X1, ..., Xn).
Again, let ¢ be of the form Im € wVa € dom;(q): dom(g(«)) = m. It will now suffice to
show that there are conditions (p',U’) > (p,U) and (¢/,V’) > (¢, V) and a permutation

7w € H, with (p',U’) € P™ such that 7 ((p’,U’)) = (¢/, V’). This will yield a contradiction,
since w((p',U")) IFropy) ©(X1, -..; Xn)-

Since (¢,V) > (p|a,U|a) it follows that ¢|(a N domy(p)) € Ul|a. Let t € U with

t| a = q| (a N dom; (p)) and such that tUq| a € P,. We set p* = tUq| a and let (p*, U*) > (p,U),



as a b-extension, with p*| a = ¢| a. We can now extend (p*, U*) and (¢, V) to (p1,U;) and
(¢1, V1) such that dom;(p;) = domy(q),

Vo € domy(py): dom(p;(«)) = dom(p;(cf’ @) = dom(gq; (cf’ @) = dom(qy(av)),
and still p1|a = ¢1| a, since the filters are closed under intersection. We define
Ul :={t € U;: Va € dom;(p;) —a [ran(t(a)) — ran(p;(a)) Nran(q; (o)) = 0]} and

Vi :={t € Vi:Va € domy(q;) — a [ran(t(a)) — ran(q;(a)) Nran(p;(a)) = 0]}.

We can now define the permutation 7: For every a € dom;(p;) — a and n € w we
set m¥(p1(a)(n)) = q1(a)(n), if defined. Since ¢;(«) is 1-1, we can extend every 7 to
a finite permutation. Of course, it holds that the resulting 7 € Gr. Furthermore, one
can easily show that (p;,U]) € P™. We set (¢, V') := (wpy, 7U; NV]) > (q1,V]) and
(P, U") =7 ((mph, 7UT N V) = (91, UY). =

4 Separation and Replacement

Now we want to introduce three new predicates for the model M[G]: B(x;) will assert
that =y € M, A(xy,z5) will assert that (z1,22) € G and WO(z1,x2) will assert that
x1,T9 € M and (x1,22) € WOy,.

Furthermore, we extend the forcing language by the following predicates:
o tIF B(xy) iff V&' >t 3" > ' Jy: t" Ik x1 = .

A A(Xl,XQ) iff
VU > 13" >ty s (y1,12) € AL IExy = i At IEXo = o A" > (Y1, 12)-

o tIF WO(xq,xs) iff
Vt’ Z tElt” Z t/ Elyl,ygi WOM(yl,yQ) A t// “_ X1 = yvl A t// “_ Xo = ZJQ.

Lemma 8. The forcing relation for the expanded language is definable. Furthermore, let
o(x1, ..., T,) be a formula in the language (€,=, A, B,WO). Then M[G] F o(x19, ..., x,%)
ff It e Gtk @(x1, ..., Xn).

Proof. Define the forcing relation for atomic formulas as follows: p IF x € y iff
Ja € RegVa' > a:pe Py Aplkp, x €.

Similarly for x = y. This definition works, because Ag-formulas are absolute between
transitive models. The general case is defined by the usual induction over the number of
quantifiers, e.g. p IF Vo @(x) iff Vx € M p Ik ¢(x). For more details see Shoenfield [S]
and Zarach [Z]. O
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Lemma 9. M[G] can be definably well-ordered.

Proof. First we note that Yo € Reg: M[G,] is definable in M[G]. The definition is the
same formula defining ‘M[G,] as the forcing extension of M with poset P, and filter
G, in M[G,], i.e.

M[G,) = {y: 3z € M ¢, (z,y)} where ¢g, (z,y) is the formula for z% =y in M[G.,)].

Note that ¢¢, (z,y) is of the form Jx¢(x,z,y) and ¢¥(x,z,y) is Ag. By the upward
absoluteness of i-formulas M[G] E Vz € MT*3y: ¢¢,_ (z,y). Finally, one can easily
check by induction that M[G] F Vz € M"3ly: ¢g, (z,y) and that the recursion is
absolute.

For x € M[G] we define A(z) := min{a € Reg: v € M[G,]}. For z,y € M|[G] we say
x < y iff either A(z) < A(y) or

A(z) = A(y) and %iél{z e MP: 2% =2} <yo IVII}%I{Z € M5 28 = y}.

Theorem 10. M|G| satisfies Collection, i.e.
Va: Ve € adyp(x,y) - IbVr € aJy € b p(z,y),
for any formula o(z,y) in the language (€,=, A, B, WO).

Proof. First we show that every definable antichain of P3 is a set in M. Suppose not.
Let ((pa,Ua))acon be an M-definable antichain. W.l.o.g. we can assume that |dom; (p,)]
is independent of o and dom(p,(a’)) € w is independent of a and /. Let fi(a) de-
note the ith o € dom;(p,) for ¢ < |dom;(p,)| . Now there must be a i such that
{fi(a): @ € On} is unbounded. Choose ¢ minimal. Let 8 = sup{fj(«): j <iAa € On}
and choose ((pl,, Ul))acon such that dom;(p!,) are pairwise disjoint above 5. Now choose
((pl,U"))acon such that pl’| 7 are identical. But this is a contradiction, since now all

!

(pl,U!) are compatible.

Now to Collection: Let ¢(x,y) be a given formula, and a € M[G]. Let us assume
that M[G] E Vz € a3Jy: p(x,y). For x € a let ¥(z,a) denote ‘a is the least regu-
lar cardinal such that 3y € RA/“; ¢o(x,y)’. Note that for every x € dom(a) there
is a fBx such that Vy > BVt € Ps: t IF —t(x,7), since otherwise we would obtain a
M - definable antichain which would not be a set in M. Now we use Replacement in
M to define f = sup{fx: x € dom(a)}. Let a be the least regular cardinal > . Now
M[G] E Vz € aTy € RA9L: oz, y). Tt follows that RA9l € M[G,] € M[G], since
MI|G,]| satisfies ZFC. O
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Theorem 11. M|[G] satisfies Separation for any formula in the language (€,=, A, B,WO).

Proof. Let ¢(x) be a given formula, and a € M|[G]. For (x,p) € a we define A ) to be a
maximal antichain below p such that V¢ € A p): tIF @(x). Weset 7 := Uy )y calXt X Apep)-
We are left to show M[G] EVz: z € 7% <3 2 € a A ¢(x). Let x € 79 This means that
there is a (x,¢q) € 7 with ¢ € G and (x,p) € a with ¢ > p and ¢ IF ¢(x). It follows that
x € a and p(z). Now let = € a and ¢(x). It follows that there is a (x,p) € a with p € G.
Therefore, G must meet with A ), so that x € 75, n

Now Replacement easily follows from Collection and Separation in M[G].

Replacement in Ny can be shown similarly, although one has to work for Separation
to show that the name 7 is symmetric. A more elegant proof uses replacement in M[G]
and the fact that Ng F Power Set, which we will show without using any axioms in Ng.

Theorem 12. Ng satisfies Replacement for any formula in the language (€,=).

Proof. Let ¢(x,y) be a given formula, a € Ng and Ng F Vz € aJly: ¢(x,y). Now
Ne = Uycon(RYe) is a definable subclass of M[G]. Note that RY¢ € Ng only because
Ng E Power Set and if ) is a limit ordinal then R\ € M[G] and R\ C Ng, for
some o € Reg. Since Ng, F ZI' and rank is absolute, it follows that RiVG € Ng, € Ng.
Since M[G] E Replacement, we can now use Reflection. So we get an « such that
RYe %4 Ng and a € RYG, where () is the formula Vz € 2 3ly: ¢(x,y). Let o/ be the
least regular cardinal such that RY¢ € Ng_,. Finally we use Separation in Ng_, to get

b= {y e RYe: EIangoRgG(a:,y)} € N¢, € Ng. O

5 The axiom of Power Set in N¢g

The problem with Power set is that it does not hold in M[G]. Indeed, since all limit
ordinals have cofinality w and AC holds within M[G], every set must be countable in
MIG]. So even the reals form a proper class, and so do all the R,’s for a > w.

Let x € HS be a hereditarily symmetric name. First we define the support of such
a name: supp(x) := minc{a C Reg finite: sym(x) O H,}. Note that this minimum
exists, since if m € H, 4, then m = m oy with m; € H,,. So if x is supported by a; and
as, then it is also supported by a; N as.

Let x € Ng. In contrast to the other axioms, it might be that the supports of na-
mes y for subsets of x are cofinal in the ordinals, such that at each a new subsets arise.
Therefore, we shall show that PN¢(x) € M[G], which will yield Power Set, since with
Replacement in M[G] we get an o with PNé(x) C Ng, and z € Ng,, and since Ng, F
ZF and being a subset of x is absolute for transitive models, we get PV¢ (x) € Ng, C Ng.
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Let x be a symmetric name for . We define § := sup{|Jsupp(z) U [Jsupp(x): z €
dom(x)}. Let x be the smallest strongly compact cardinal > §*. We shall call @ < &
small coordinates and o > k big ones.

Lemma 13. Let (p,U) be a forcing condition. Then there is a (q,V') > (p,U) such that
the following conditions hold:

e VteV:a(t) > k= b is k-complete.

o for every s € V such that s is extendable and a(s) < k the set

Ey={f € als): sU{(als),m(s), f)} € V}

of possible extensions is independent of the values at the big coordinates, i.e. if
1|k = @k then E,, = E,,.

Proof. First we want to find (p/,W) > (p,U) with p’ € U and n € w such that
Va € domy(p'): dom(p'(o)) = n and V& € W: at) > k = &, is k-complete. Find
such a p' and consider the condition (p/ Up) For a € dom,(p') with v = cf’a < «
and o > K let ¢,, = min{r € ~: %( ) > /1} Note that v, was the WO, mi-
nimal cofinal sequence of length 7 in sup{/-{ : K < « A K'is strongly compact}. For
v € domy(p') we define ¢, := max{c,o: @ € dom;(p) N > Kk Ay = cf’a < a}.
We define W := {t € Uy : Vy € dom (p') Vm > nt(y)(m) > ¢y }. (p/, W) is now a condi-
tion with the required property. So w.l.o.g we can assume that the condition (p, U) also
has this property.

Choose ¢ € U with a(q) > . We will now work with the condition (g,U,). Let
r € Uy, r =~ q. Let k, < w denote the number of levels of the tree 7,. For i < k,
let T? denote the tree, where we cut off T, above the i’th level. We set F! := T\T~'.
Let z,(i) := dom;(s) for s € F'. This is obviously well defined. We fix 7 and shall
inductively define T for 1 < j <.

We set 7% := T''. Now let T’ be defined. We set
Vi i={se T ':V¥ne{j..i—1}s|z.(n) € T"}.

We assume as induction hypothesis that for s,t € V" and s|z,.(j) € F? if s|z,(j —1) =
tlx.(j — 1), s|k = t| k and a(s) < k, then we have E; = E}.

Now let s € F/71 If a(s™) < k we set T~ := T~ Obviously, for t,u € V!
and t|z,.(j — 1) € FI7Vif t|z.(j — 2) = u|z,.(j — 2), t| k = u| k and a(t) < k, then we
have E;, = E,, since we can deduce t|z,(j — 1) = u|x,.(j — 1) and use the induction
hypothesis. Note that if t € F/~! then ¢t = u.

If a(s™) > k we do the following: First fix

fECS_ :{g€P2Hhev,jd[hgsi/\h"i:g]}
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then E; only depends on t(a(s™)) (n(s™)). Since |P(«a(t))| < k and P4 is k-complete,
there exists an A € ®, such that

Let t O s, t € V.” with t|z,(j —1) € F/~" and t|x = f. We know that if a(t) < &,

Ds-p={f€ca(s): Yuds U{(a(s7),n(s7),8)}ul k = fAa(u) < k= E, = A]} € Oy

Note that A, («(t),n(t)) and ®; only depend on f. We define Dy := nfecs, Dy ;e ®,-.
We set T~ = T7 2 U, {5~ U{(a(s7),n(s7),B)}: B € Ds-}. Again we see that
for t,u € V1 and t|z,.(j — 1) € FI7Vif t|x.(j — 2) = u|x.(j — 2), t|x = u|k and
a(t) < k, then we have E; = E,, since we can deduce that 3s € F/~': t,u4 D s~ and for
f =t|rk =u| kK the set D;— C Dy~ ¢ is homogeneous.

We set V) = {t € T,:Vi < k[t € T} =t € V"]} and V' := U,y 1y V- Now
let s,t € V' with s|k = t| k and «(s) < k. Suppose that E; # F;. Then there exists a
r € Uy, r = ¢ and an i such that s,t € V*' which contradicts the homogeneity of V!,
(¢, V') satisfies all conditions except possibly (P6). Therefore, we set T} := (N5, yuq V4
and V' := U, cpr,. rnq TV. Obviously, if s D 7 then TV 2 TY. So (q,V) is the desired
condition. ]

/

The following graphics show the process from the previous lemma with a condition
whose domain consists only of one small and one big coordinate:

Tr
|
A A A B C A

A
PN N PN PN N PN N

Tree at level 1

Tr

[
A A A A A
PN PN PN PN PN

Tree made homogeneous at level 1

Tr
T
A A A A A
x y x y x y x y X Y

T~ e T~ e T~
¢ A B C C B B A B B B C A B B C A B C C A A Cc CcC ¢ ¢ ¢ B B B ¢C ¢€C ¢ ¢ ¢ A B C A A C A A C C B A Cc B B

Tree at level 3, small extension at level 2, homogeneous at level 1
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x,C y,B x,B y,C x,C y,B x,C y.A x,C y,B
C/I\ e T~ — T~ /'c\c B/h /(I:\ T~ — T~ /I\B

Tree made homogeneous at level 3, depending on small extension at level 2

x,Cy,B x,By,C x,Cy,B x,Cy,A x,Cy,B
x,C y,B x,B y,C x,C y,B x,C v,A x,C y,B
— T T — T T — T — T T T~ — T — T
C Cc Cc B B B B B B B o] Cc Cc Cc (o] C B B B (o] C Cc Cc (o] A A A Cc Cc (o] B B B

Coloring level 1 with the possible small extensions and corresponding homogeneous sets

Tr
-
x,CyB x,Cy,B x,Cy,B
x,C y,B x,C y,B x,C y.B
— T T — T — T~ — T — T
C C C B B B B C (o} (o} B B B (03 C C B B B

Tree made homogeneous at level 3 independent of small extension at level 2

Note that in the previous lemma, as well as in all the following lemmas the strengt-
hened condition (¢,V) has the following property: if ¢ € V with «(t) < k, then

{8 €alt):tu{(a(t),n(t),5)} € U} = {8 € a(t): tU{(a(t),n(t), B)} € V}.
The following lemma will give an idea why Power Set might hold.

Lemma 14. The strongly compact cardinals k are not collapsed in Ng, i.e. they remain
cardinals.

Proof. Let k be strongly compact and let 7 be a symmetric name such that (p,U) IF 7: A — &
onto, with A\ < k, dom;(p) C supp(7) and (p,U) has the properties from the previous
lemma.

Let ¢, 3 be the formula (n:ﬁ) € 7 forn € XA and B € k. Now we want to make V ho-
mogeneous: Find a W C V such that for s,t € W, s|k = t| k and dom; »(s) = dom; »(¢)
the following holds:

o X CWi: (5,X)IF—p,piff 3X C Wi: (£, X) IF ¢,
o Y CWy: (s,Y) Ik, iff Y CW,: (£,Y) IF onp .
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Note that (s, X) and (s,Y’) cannot contradict each other, since they are compatible.
We use the notation from the previous lemma. Let r € V with r ~ p. We fix i < k, and
shall define T for 0 < j < i. Again we set T := T?. Now let T/ be defined. We set
Wii = {seT!:Vn€j..i}s|lz.(n) € T""}. Set F, 5(s) to be

e 0if IX C W,: (5, X) IF —pnp
o 1if IY CW,: (5,Y)IF oz
e 2 otherwise.

For s,t € Wb s|k = t| k, dom; o(s) = dom; o(t) and s|z,.(j) € F? we assume induc-
tively that F,, 5(s) = I, 5(t).

Now let s € F/7' If a(s) < k we set T»/~! := T7. Obviously, for t,u € W>~! and
tle.(j—1) € FI7tiftla,(j — 1) = ulz,.(j — 1), t| k = u| k and domy 5(t) = dom; 2(u),
then we have F(t) = F'(u), since we can prove t| z,(j) = u| x,.(j) and use the induction
hypothesis. Note that if ¢ € F/~! then t = u.

If a(s) > k we do the following: Let usfix f € Cy :={g € P,: 3h € W,” [h D s A h|r = g]}.
Let t D5, t € W" with t|x,.(j) € FY and t| k = f. We know that F(¢) only depends on
t(a(s))(n(s)) and domy o(t). Therefore, for every m € w there is | < 3 such that

Dy pm :=A{B € a(s): Vu D sU{(a(s),n(s), 5)} [u| k = fA|dom; o(u)| = m = F, 3(u) =]}
D ¢m € ;. We set

mew

is in the filter € ®,. So D, := mfeCS N

T =10 | {su{(a(s),n(s),8)}: B € D.}.

seF,?'_1

We also set W) == {t € T,: Vi < k[t € T =t € W,"]} and W} 5 == U, . g W}
Obviously, W), 5 is homogeneous with respect to F}, 5.

Choose v € Reg with k > v > A\ |(V|k) x Rg|. Let (p, W) > (p,V) be a condition
which is homogeneous with respect to F,, 3 for every n € A and § € v. We get such a
condition by intersecting W, 5 for n € X and 8 € v and fixing (P6). It follows that there
are only |(V|k) x Ng| equivalence classes (for s,t € W define s = ¢ iff for every n € A
and every § € v F, 3(s) = F, g(t) holds) of what can be forced below (p, W) . But then
T cannot even be onto v, because for every n € X and 8 € v the formula (n:ﬂ) € 7 must
be decided below (p, W). O

Definition 5.1. For ¢ € V and s € V| k with g|x C s we say that ¢ U s reaches V' if
either gU s € V or the set Vi, == {t € Tpugn,: Iu €V [u 2 qUsANulk=sAt Cul}
satisfies the following property: V7,  is non-empty and for t € Vi if ¢ C ¢, a(t) > &

and 1] 5 # s, then {8 € a(t): tU{(a(t),n(t), )} € Vi) € By
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ul u2 u3 u4 ub5 ub u’7 ul8 u9 uld u1l ul2 ul1ld u14 u15 u16 u_17 u_18 u_ 19 u20 u?21 u322 u23 u24 u?25 u326 u?27

A pruned tree: Only the corresponding values of s are allowed at the small extensions

Lemma 15. Let (p, V) be a condition as in the lemma 13. Then there exists a W CV
such that (p, W) is a condition and for s € W|k and ¢ € W with q| k C s we have that
qU s reaches W.

Proof. First we shall show that Vg € V': pU ¢| k reaches V. If ¢ = r with r ~ p this is
obvious. Now let ¢ € V such that p U ¢| k reaches V: If a(q) > k and ¢ is extendable
then obviously

VB € a(q): qU{(alg),n(q),B)} €V =pU(qU{(alq),n(q), )}k

reaches V. If a(q) < k and ¢ is extendable, then let 5 € a(q) with ¢ U {(a(q),n(q),5)} € V
be arbitrary. If pUg| k € V then pUq| k = ¢, so that trivially U(q U {(a(q),n(q),B)})|x € V.
Otherwise let u O p U q|k with u|x = ¢g| k, w € V and u is not extendable in Vool w16

follows that (a(u),n(u)) = (a(q),n(q)). From lemma 13 we may assume that £, = E,,

so that u U {(a(q),n(q), 8)} € V. This shows that Vi, .. C V¥ @@ 1L

t € Voula@mn(@).fp)] » Witb t|k # (qU{(alq),n(q),)})| k and «a(t) > &, then it easily
followsthatt € Vi Nowift| k # g| s then {8 € a(t): t U {(a(?), ( ), B)} € Vit € P
by definition. If pU ¢ & C ¢ then {8 € a(t): t U {(a(t),n(t), B)} € Vi, .} € @; by defi-
nition of the forcing. So that p U (¢ U {(«a(t),n(t), 3)})| k reaches V.

Inductively, we shall now define W’ and show that Vg € W/Vs € V|k: q|k Cs= qUs
reaches V. We put r ~ p with r € Vin W'. Let s € V| x with r| Kk C s. Since rUs = pUs
the statement follows from what we have shown before.

Now let ¢ € W’ and assume Vs € V|k: gk C s = qU s reaches V as the induc-
tion hypothesis. If ¢ is extendable and a(q) < k we put ¢ U {(a(q),n(q), )} with
q U {(a(q),n(q),s)} € Vin W'. For s O (qU {(a(q),n(q),8)})| kK, s € V|k we see
that ¢ U {(a(q),n(q),5)} Us = qU s and we can us the induction hypothesis to show
that ¢ U {(a(q),n(q), 8)} U s reaches V.

If a(q) > K, we fix s D ¢q|k with s € V| k. Since ¢ U s reaches V', if gU s ¢ V then we
have

Cs:={B€alq): qu{alq),n(q),B)} € VA(qU{(alqg),n(q),B)}) Us|r € Vi, } € D,
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by definition. It easily follows that V5 € Cs: (¢ U {(a(q),n(q),5)}) U s reaches V. The-
refore, if we set C':= [ oy, Cs € @y, it follows that

VB eCVseVl]k: (qU{(alq),n(q),B)})Us

reaches V. Note that if gUs € V, then ¢| kUs| k1 = s so that (¢qU{(a(q),n(q),B)})Us =
(qU{(a(q),n(q),5)})Us| k1 € V,if qu{(a(q),n(q), )} € V. As in the previous lemma,
(p, W) satisfies all conditions except possibly (P6). But as before, we can fix this to get
alW CW.

Now we show Vg € WVs € W|k: q/lk C s = qU s reaches W. Let ¢ € W and
s € W|k be arbitrary. If ¢U s € V and a(q) < k, we note that ¢ U s|k; € W and
that ¢ U s| k1 only has to be extended at small coordinates to become ¢ U s, so with
induction on |¢ U s — q U (s|k1)| it can be shown that U s € W’'. If r € V with
r~pandr/k 2D (¢Us)| ks, then qUr € W C W', With the same argument as be-
fore, one can inductively show that (qUs)Ur = (¢Ur)Us € W'. Tt follows that ¢Us € W.

If gUs ¢ V we shall show that W75, = Vi, N W which will obviously yield that
q U s reaches W. The C inclusion is trivial. Now let ¢t € V1,, N W. We shall show that

JueW:uDdqgUsAulk =sAt Cu Ift D qgUs we are done. Otherwise we shall
inductively define increasing to,...,t, € Vi, N W such that ¢, 2 qU s A tol K = s.
W.lo.g. t = qU s| K, and we set to = ¢. Let t; be defined, and assume that ¢; 2 qUs,
since otherwise we are done. Then we shall define ¢;.; as follows: If a(t;) > k we set

tiv1 =t; U{(a(t;),n(t;), B} for some S which belongs to
{6" € afti): t;u{(a(t:),n(t:), B)} € VL 3B € a(t): ti{(alti), n(t:), )} € W} € Py,

If a(t;) < k then we see that t; U {(a(t;),n(t;),s(a(t;)) (n(t;)))} € V, so that t;;1 =
t U{(a(ti),n(t:), s(a(ts)) (n(t;) )} € W. tiq € Vi, follows trivially. Therefore (p, W)
is the required condition.

[

In M[G] we shall define a 1-1 mapping from PN¢ (z) onto 34mE)*P2l% For ¢ € PN6 ()
let y be the smallest symmetric name for y. For convenience in the proofs we will assume
that max(supp(y) N k) > §* and k1 € supp(y), where § was defined at the beginning of
this chapter.

Lemma 16. Let (p,U) be a condition with dom;(p) = supp(x,y), (p,U) Iy C x
and the property from the previous lemma. Then there is a V. C U such that (p,V)
is a condition and the following property holds: For every z € dom(x) and for every
s € Py| (max(supp(y) N k))T the set V' is homogeneous meaning that exclusively one
statement holds:

e JqeVIWCP:qlk CsAP;> (qUs, W) > (p,V)A(qUs, W) IF—-zey
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e orJqeVIWCP:qlk CsAP;> (qUs, W) > (p,V)A(qUs,W)lFzey
e or neither holds.

Proof. Let us fix z € dom(x) and s € Py| (max(supp(y) N x))*. First we note that
(qU s, X) and (¢ U s,Y) cannot contradict each other, since they are compatible. Next
we check if s|dom;(p) € U|k. If not, then we are done, since neither of the first two
statements can hold. In this case we set V, ; := U. Otherwise we define

Uy s = {t € Tpus| domi(p)ner): U € U[u D2t Aulk C s AuU (s|domy(p)) € U}

Now for every t € U}, if a(t) > k and t is extendable, then

z,8)7

{6 €a(t): tu{(a(t),n(t),B)} € U} € Py,

since tUs| dom; (p) reaches U. Note thatif ¢ € U, q|x C sand IW: P35 (qU s, W) > (p,V),
then ¢ € U ;.

For g € {t € U;,: t is not extendable in Uy .} we define F'(q) to be
e 0Iff IW C Py:qlk CsAP33 (qUs, W) > (p,V)A(qUs,W)IF—-z€y,
o 1iff W C Pyl CsAPy3 (qUs, W) > (p,V)A(qUs,W)lFzey
e 2 otherwise.

We can make Uy, homogeneous with respect to F'(¢). The homogeneous set we shall call
U,.s We define

‘/;,pUs|(dom1(p)ﬂn1) = {t € TpUs|(d0m1(p)ﬁ/-e1): t e U;’S\/[t §7_f U;S/\Htl c U;S (t D t'VtUs §é Pl)]}

We set V, 5 = UTGU: rrpAr£pUs| (doma (p) 1) T, U V5 pus| (domy (p)nky)- Next we intersect with
respect to z and s: V' := sedom(x) | 1s€Py| (max(supp(y)))+ V,.s. Furthermore, we fix con-
dition (P6) and get a forcing condition (p, V).

Now we must show that (p, V') satisfies the required property. Let us fix z € dom(x)
and s € P| (max(supp(y) N k))". Assume that there exist t1,to € V and Wi, Wy C Py
such that ¢;|k C s, (t; U s, W;) are conditions stronger than (p,U) and they contra-
dict each other. First we note that w.lL.o.g. we can assume t; € Tpus| (dom, (p)ns), SIDCE
t;Us = t;Us| (dom;(p) Nky)Us. Next we may assume that ¢; are not extendable in Uy ..
This follows because one can show by induction on |dom; (') — dom; »(¢;)| for some
t' € Uy, which is not extendable in U}, that

Z,S? Z,S?

{t € U;,: tis not extendable inU; .} N W;| dom; (p)

is non-empty, since the t;’s need only be extended at big coordinates and the filters are
closed under intersection. Let ¢; witness that the intersection is non-empty. It follows
that ¢; Us € W, so that (¢; Us, W, 4us) contradict each other. So w.lo.g. ¢; = t;. But if
the ;’s are not extendable in Uy, they contradict the homogeneity of Uy . O

z,8)
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Now we can define the mapping: For y € PY¢(x) let (p(y), U(y)) be the least condition
in G with dom;(p(y)) = supp(x,y), (p(y),U(y)) F y C x and the property from the
previous lemma. We define f(y): dom(x) x P2|x — 3 as follows:

e (z,5) — 0iff s € P| (max(supp(y
gk CsAP;3(qUs, W) > (p,V

k)T AJqeU(y)IW C Py:
(qUs,W)IF—-z ey

o (z,5)—~ liff s € P2|(max(supp(
gk SsAP3 (qUs, W) = (p,

k)t AN3JgeU(y)3IW C Py
qUs,W)lFzey

> D >:)

\_/\_/ ~—

e and (z,s) — 2 otherwise.

Note that only due to the previous lemma the mapping is well defined. Assuming that
f(+) is 1-1, we see that PNe(x) = f~1[3domb)xP2lx] ¢ M[G].

Theorem 17. The mapping f(-): PN6(z) — 39mE)IxF2lr s 11 50 the Power Set axiom
holds in Ng.

Proof. Let yy,y2 € PN¢(z) with y; # yo. Case 1: max(supp(y;) N k) > max(supp(yz) N k).
W.lLo.g. let y; be non-empty and z € dom(x) such that z¢€ € y¥. Let G > (t,V) >
(p(y1),U(y1)) with dom;(t) = dom;(p(y1)) Usupp(z) and (¢,V) IF z € yy. If we set
s=t|k, W =V and g = t|dom;(p(y1)) € U(y1) we see that (t,V) = (qUs, W) IFz € y;.
So it follows that f(y1)(z, s) = 1 while f(y2)(z, s) = 2, since s ¢ P»| (max(supp(yz2) Nk))".

Case 2: max(supp(yl) N /{) = max(supp(yg) N k). Since y; # yp there is a z € dom(x)
such that w.lo.g. z¢ € y§ but z¢ ¢ y§. Let G > (t,V) > (p(y:),U(ys)) for i = 1,2
such that dom;(¢) = dom; (p(y1)) Udom;(p(y2)) Usupp(z) and (t,V) IFz € y1 Az & ys.
We set s = t|k, W; = V| (domy(p(y;)) U k) and ¢; = t|dom;(p(y;)) € U(y;). If we set
a; = dom; (p(y;) U k) it follows that (t| a;, V]a;) = (¢; U s, W;). Since supp(y;,z) C a;,
we see that (¢ Us, W1) IFz € yy and (ga U s, Ws) Ik z ¢ yo. Therefore, f(y1)(z,s) = 1
and f(3)(2,5) = 0.

Now PNé(x) € M[G] holds by Replacement. Again by Replacement we get an a € Reg

such that PV¢(x) C Ng,. Now being a subset of x is absolute for transitive models, and
Ng,, E ZF, so that PYe(z) = PNea(z) € Ng, C Ng follows. O
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