
Transformation of Service
Blueprints into the Business
Process Model and Notation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplomingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Matthias Winkelhofer, BSc
Matrikelnummer 00951553

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Inf. Dr.-Ing. Jürgen Dorn

Wien, 10. Juni 2018
Matthias Winkelhofer Jürgen Dorn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Transformation of Service
Blueprints into the Business
Process Model and Notation

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplomingenieur

in

Business Informatics

by

Matthias Winkelhofer, BSc
Registration Number 00951553

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Inf. Dr.-Ing. Jürgen Dorn

Vienna, 10th June, 2018
Matthias Winkelhofer Jürgen Dorn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Matthias Winkelhofer, BSc
Arnsteingasse 17/17 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Juni 2018
Matthias Winkelhofer

v

Danksagung

Ich möchte diesen Abschnitt nutzen um all jenen Menschen zu danken die mich auf dem
langen Weg zur Fertigstellung meiner Diplomarbeit begleitet und unterstützt haben.

Mein Dank gebührt Herrn Ao.Univ.Prof. Dipl.-Inf. Dr.-Ing. Jürgen Dorn der mir stets
mit Rat zur Seite gestanden ist und dessen wertvoller Input maßgeblich zum Ergebnis
dieser Arbeit beigetragen hat.

Auch möchte ich mich ganz herzlich bei den fachlichen Ansprechpartnerinnen und
Ansprechpartnern für meine Case Study bedanken die es mir ermöglicht haben auch
einen praktischen Einblick in das Thema Service Design zu erhalten.

Weiters bedanke ich mich bei meinen Eltern Margaretha und Gerhard sowie meinem
Bruder Bernhard die mich mit unermüdlichen Einsatz und Verständnis während meiner
Ausbildung unterstützt und gefördert haben.

Zu guter letzt gehört ein besonderer Dank meiner Partnerin Petra die für mich vor allem
emotional eine unbezahlbare Stütze war. Ohne dich hätte ich es nicht geschafft.

vii

Kurzfassung

Die vorliegende Diplomarbeit zählt zum Bereich Service Design und Modellierung. Be-
dingt durch die Relevanz und Bedeutung solcher immaterieller Leistungen für die aktuelle
Geschäftswelt und generell unser tägliches Leben, erfordert deren Entwicklung, Analyse,
Dokumentation und Kommunikation eine strukturierte Herangehensweise. Service Blue-
printing ist in diesem Zusammenhang ein grafisches Konzept welches den Standpunkt des
Kunden als zentrales Element betrachtet. Der eher abstrakte Charakter der Methodik
und die generellen Anforderungen des modernen Prozessmanagements können jedoch
erfordern, dass weitere, detailliertere Modellierungssprachen angewendet werden. Als
Antwort auf diese Gegebenheit befasst sich diese Diplomarbeit nun mit der Kombination
von Service Blueprinting und der Business Process Model and Notation (BPMN). Die
zugrunde liegende Idee besteht darin eine Repräsentation eines Services in Form eines
Blueprints systematisch einzulesen und automatisch ein entsprechendes BPMN-Modell zu
generieren. Nach der Behandlung der theoretischen Grundlagen bezüglich der involvierten
Elemente und Konzepte wurde eine Case Study zum Thema der emergency admission
of a patient at a surgical ward within an Austrian hospital entworfen und modelliert.
Die Entwicklung des theoretischen Transformationskonzepts bildet den nächsten Schritt.
Als Vorbedingung ist es jedoch erforderlich ein einheitliches Set an Funktionalitäten für
Service Blueprints zu definieren, welches auf Vorschlägen aus der Fachliteratur sowie
auf Erkenntnissen aus der Entwicklung der Case Study beruht. Um zu belegen, dass die
entworfene Transformation geeignet ist um Prozessmodelle aus Service Blueprints zu
gewinnen, ist der finale Teil der Diplomarbeit der Entwicklung eines Prototyps gewidmet.
Um in diesem Kontext die IT gestützte Erstellung eines Service Blueprints zu ermöglichen
wurde eine individualisierte Library für die Modellierungssoftware Draw.io entwickelt.
Die Durchführung zahlreicher Tests mit der neuen Implementierung hat gezeigt, dass die
geplante Kombination der beiden Modellierungssprachen tatsächlich möglich ist. Durch
die unterschiedlichen Abstraktionsebenen beider Seiten sollte das resultierende BPMN-
Modell noch zusätzlich erweitert bzw. verfeinert werden um auch alle Erfordernisse
abzudecken.

ix

Abstract

The master thesis at hand belongs to the area of service design and modeling. Due to the
influence and importance of this intangible phenomenon within the context of today’s
economy and daily life, there is the need to have a structured way for their development,
analysis, documentation, and communication. In this regard, Service Blueprinting is a
well known graphical modeling concept with a special focus on the customer’s point of
view. Because of its more abstract nature, in order to be able to satisfy the demands
imposed on modern workflow and process management, it might be necessary to use
finer grained and more structured approaches as well. Accordingly, the target of this
thesis is to examine the possibility to contribute to the overall topic while using the
well-known service modeling concept in combination with the Business Process Model
and Notation (BPMN). The basic idea is to use a given service representation illustrated
via the more abstract methodology and automatically generate the corresponding process
model in BPMN. After the elaboration of the general concepts and principals included
within the overall context, a case study targeting the emergency admission of a patient
at a surgical ward within an Austrian hospital is discussed. Within a next step, the
theoretical concept for the conversion of the specific notational elements is created. As a
prerequisite, due to the missing standardization of Service Blueprinting, it is necessary to
specify a functional tool-set under the consideration of several propositions made within
the literature and insights from the practical application. As evidence that the developed
transformation can be actually used to generate a valid BPMN model based on a given
Service Blueprint, the development of a prototypical implementation of the necessary
mechanism builds up the final part of this thesis. For this purpose, a customized library
for the modeling environment Draw.io is created which enables the usage of the defined
notational set for Service Blueprinting. Applying the newly designed functionality that
was implemented in Java on various test models and service representations that are a
result of the mentioned case study, it has been shown that it is, in fact, possible to use
BPMN as a complementary representation and automatically generate a corresponding
illustration. Due to the different granularity of the two methodologies, the result of the
transformation should be subject to further refinements to include all details that are
necessary from the organizational point of view.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 Basics and Related Work 7
2.1 What is a Service . 8
2.2 Designing Services . 12
2.3 Service Blueprints . 18
2.4 Business Process Model and Notation 40
2.5 Comparison of Service Blueprints and BPMN 53

3 The Case Study 63
3.1 Collecting the Information . 64
3.2 The Case Description . 64
3.3 Creating the Service Blueprint . 68

4 Development of the Transformation 71
4.1 Designing the Transformation . 72
4.2 The Recommendation . 101

5 The Prototypical Implementation 105
5.1 Purpose and initial Approach . 106
5.2 Technology . 107
5.3 Development Process of the Transformation Environment 117
5.4 Transformation of the Action and Communication Flow 119
5.5 Creating the graphical Model Representation 127
5.6 The final Architecture and Components of the Prototype 134
5.7 The Transformation Environment and Process in Detail 138

6 Conclusion 155

xiii

7 Future Developments 163

A Case Study: Emergency Admission of a Patient at a Surgical Ward
within an Austrian Hospital 167
A.1 Abstract Service Blueprint . 168
A.2 Transformation Result of the Abstract Model 173
A.3 Detailed Service Blueprint . 179

B Tutorial: Service Blueprinting with Draw.io 185

C Example: Simplified Hospital Admission 195

D XML File Examples 199
D.1 Service Blueprint created via the customized library in Draw.io 200
D.2 Simple Process Model as .bpmn . 202

List of Figures 205

Bibliography 207

CHAPTER 1
Introduction

Services are phenomena with an intangible nature that occur in many aspects throughout
our daily life [Bus18]. They are constantly present and used whether we are on our way to
work, doing some shopping, contacting the manufacturer of a broken dishwasher, seeking
medical assistance, or continuing one’s education. Over the past fifty years, the society
in industrialized countries has shown an evolution towards a service economy [Sho11].
Before that, the most important economic factors were related to the manufacturing area
where the focus lies on the creation of physical and tangible products. This has changed
and services are now at the heart of the global economy. Companies like Amazon, Google
or Apple were able to use very well developed and unique services and processes to
distinguish themselves from their competitors and gain a quite strong position on the
respective marked. Another example is the company Uber which provides an innovative
approach towards the issue of personal transportation. In fact, the offered service was
that well adopted by the potential customers, that a rapid international growth could be
achieved in a short amount of time [Dog17]. So it happened that what started out in
2009 in San Francisco is now a service that is available in 632 cities world wide [Ube17].
In contrast to regular taxis, Uber uses a smartphone app to link the customer to the
infrastructure. If you are in need of a transportation, the program displays the drivers
that are available near your location, information about the cars and how much it will
probably cost you. Furthermore, also the payment is performed electronically. Another
specialty lies in the fact that everyone who fulfills the requirements listed on the homepage
of Uber can register him- or herself to be a driver. As such you do not have a fixed
schedule but are free to drive whenever you want. Again the communication with the
customer works via the smartphone and no additional equipment like a taximeter is
required. Since very critical characteristics are the real-time communication and the ease
of use for all participants, the overall idea would probably not be possible without the
use of modern information technology. So looking at this example we can see that a
very important backbone of the service consists of the applied infrastructure (i.e. the

1

1. Introduction

app infrastructure linking the driver to the smartphone of the customer). However, this
observation can also be made when reviewing various other very innovative services
that currently reshape the way how we handle issues of our daily life. Take Amazon
for instance. Starting with the online sales of books, nowadays you can purchase nearly
everything via this platform. The subscription for the scheduled delivery of toilet paper
is just one example.

As a conclusion, we can say that along with the economic shift towards the service economy
and the impressive number of new technological opportunities that were invented during
the last century, the innovation potential that is inherited by the service area is also
vastly increasing. As a future outlook, Blake Morgan addresses in a Forbes article
the rather popular topic of the Internet of Things (IoT) where a growing number of
established daily life technology is linked to the communication potential introduced
by the networking capacity [Mor16]. These IoT devices then have the possibility to
automatically communicate with external sources and so have the potential to enhance
the overall service quality. An example would be a broken washing machine. Currently,
the owner has to contact the manufacturer (mostly via telephone) and organize the
appropriate steps. In many cases, as a regular customer, probably more detailed technical
knowledge is not available and only the symptoms (e.g. rattling noise, leakage of water)
can be described to the help desk. So the first step consists of a professional error analysis
on sight. Now let us assume that the washing machine has the capabilities to run some
self-diagnostics and is linked to the network. Not only could the device gather very
detailed information concerning the present issue (e.g. its nature, affected technical
module, the exact time of its first occurrence, circumstances of occurrence) on its own
and send it to the service center of the manufacturer, but also resolving instructions
could be returned automatically. In some cases, it is even thinkable that the machine
repairs itself using some implemented maintenance routines (e.g. descaling, increasing
the automatic service intervals).

Modern services that are considered as being valuable for all participants (e.g. customer,
vendor, supplying company), often rely on information technology as described above.
But there is one aspect that is a more basic requirement and at the same time a very
critical factor for the success of the service. The orchestration of the service flow and
the underlying processes has to provide a smooth transition between the individual
steps, meet the customer’s needs for a satisfying experience and still remain valuable
to the providing organization. So it is probably safe to say that currently, we live in
a time where the composition and the quality of business services and the underlying
processes are more important than ever and that the results are critical for successful
companies [Gui12]. It is not an easy undertaking to come up with offerings that meet
the requirements mentioned above. But even if such a service already exists, due to the
fast-changing nature of markets and environments, the need for continuous enhancements
and improvements is definitely given [Mor16].

To address this issues, and establish and maintain a service as an important unique selling
proposition (USP), an organization needs to think about a structured and formalized way

2

to plan and describe the overall structure as well as the details that contribute to the
experience. It shall be possible to support the design and development of new services,
the documentation of already existing ones and the analysis of possible weak points
and failures [BOM08] [BY05] [SDSB09]. According to Geke Van Dijk, Bas Raijmakers
and Luke Kelly there are several tools that can be applied during the lifecycle of a
service to support the intended purpose [DRK16]. A methodology that is probably
one of the most known and widely adopted approaches targeting this topic is called
Service Blueprinting. Originally it was developed in 1984 by the bank executive G. Lynn
Shostack who published an article in the Harvard Business Review called “Designing
Services That Deliver” [Sho84]. Service Blueprints are developed by scientists in the area
of service marketing and over the years different approaches and enhancements have been
introduced. Basically, it is a graphical modeling technique that is created while focusing
on the customer’s perspective of the interaction that should be captured. Despite the
fact that basically there is no universal standard (e.g. in contrast to UML), typically
some kind of flowchart notation is applied describing the actions and the tangible objects
that are subject to the service. A key aspect of the methodology consists of lanes that
organize the modeling canvas and classify the process steps according to the entity that
is responsible for its execution. Examples are the customer’s actions (e.g. calling a
restaurant), the actions performed by the organization that the customer is actually
able to whiteness (e.g. confirm reservation), the actions of the organization that the
customer cannot whiteness (e.g. key-in booking information into the system), as well as
other categories like physical evidence (e.g. receipt, employees) or managerial activities.
Service Blueprints are often applied in a collaborative way using a cross-functional team
including members that ideally represent every participant of the final workflow [DRK16].

As described above, the use of information technology is a key component when looking at
the implementation and execution of modern services and the corresponding processes. In
order to support this fact and in general the increasing requirements of successful services,
a detailed model of the planned undertaking is necessary. To enable the transformation
towards the underlying information technology, but also from the point of view of an
organizational quality management, it is important to capture the service in a more
coherent and standardized way. But due to the abstract nature of Service Blueprints and
of course the lack of consistency, the concept does not fulfill this requirement on its own.
However, a more standardized and finer grained modeling approach like the Business
Process Model and Notation (BPMN) might also not be the best method, since it is rather
difficult to use, especially without the required knowledge concerning notations or process
modeling in general. The reason for that lies simply within its inherent complexity that
is necessary to illustrate a process in all its details. Furthermore, BPMN might not be
the ideal solution to pitch an idea, particularly when it comes to a collaborative design
process [Bar11].

So, despite the importance of the design and maintenance of services within the context
of today’s business environment, the level of modeling support is not yet satisfying. A
possible solution could be the usage of both methodologies, but since they lack a common

3

1. Introduction

basis, a created Service Blueprint has to be manually translated into BPMN. This is not
just time-consuming but tends to be rather ambiguous since there is no clear formula
describing the transformation process itself.

To overcome these limitations and aid the creation, documentation, communication, and
analysis of services, a (semi) automatic transformation of Service Blueprints into the
BPMN could be introduced. Since it is already a characteristic of BPMN to support the
translation of the designed models into executable structures, it also should be a goal to
extend this automation towards the more abstract level of Service Blueprinting. As a
long-term vision, a fully automated transformation could be approached.

Considering a practical application of this constellation, it would, for instance, be possible
to first use a Blueprint to draft the service concept. This could happen in a collaborative
way as a joint undertaking of persons with very distinct views on the topic at hand, like
process or business experts as well as persons responsible for the development of the
organizational workflows. Only one member of this group is required to have the modeling
skill-set to apply Service Blueprints. Afterward, the automatic transformation generates
the corresponding BPMN model. This one can then be applied to add additional details
like exceptions, detours or links to other workflows.

Such a conceptualized mapping could overcome the mentioned inconsistencies, make
the overall service design process more efficient and, furthermore, constitute the initial
step towards the automation of service provision. For this purpose, the idea shall be
approached within the following chapters.

At first, the theoretical concepts of services, Service Blueprints, as well as the Business
Process Model and Notation, shall be discussed in detail. Due to the fact that during the
development of the transformation it is necessary to be able to rely on as much knowledge
as possible about the characteristics and mechanisms of both sides, this step is a rather
crucial one for the whole undertaking. Especially since Service Blueprints do not have one,
well-defined standard, different approaches towards this modeling technique that were
introduced during the last decades shall be reviewed. In addition to the method itself, also
enhancements and combinations with other concepts like Event-Driven Process Chains
(EPC) [MML10] shall be examined. The actual transformation constitutes the heart of
this work. To support the creation of the concepts, contribute to a better understanding
of the applied methods and simply to show how the automatic combination of Service
Blueprints and BPMN could work, a practical case shall be developed along the way.
It will be specified using a verbal description as well as the application of the service
design methodology. The subsequent chapters will introduce the actual linkage between
the two sides of the conversion. To do so, first of all, the differences and commonalities
will be analyzed and documented. Using this basis, several approaches towards the
solution of the underlying problem will be developed that differ in notation and nature of
their functionality. After the description of their inherent characteristic as well as their
advantages and disadvantages, a recommendation will be made, pointing out a single set
of transformation rules. It will then be used to develop a prototypical implementation
of the achieved mapping. When looking at the computerized creation of BPMN, one

4

can already find rather sophisticated tools that offer a wide range of notations and
characteristics included within the standard. The other side which consists of Service
Blueprints does not enjoy such a wide-ranging support. Nevertheless, the creation of a
whole new application from scratch does not seem the best way to approach this topic.
So to target the prototypical implementation, the first step will be dedicated to the
analysis and determination of possible solutions involving already existing and established
applications. Once an appropriate technical environment has been created, the previously
designed conversion rules will then be used to perform the transformation and serve as a
proof of concept.

The chosen approach of this work shall represent a contribution to the topic of service
creation as well as service maintenance and enhancement. Furthermore, the following
research questions will be answered along the way.

• What is the common basis of the concepts Service Blueprinting and BPMN (espe-
cially with respect to the linkage between both methodologies)?

• What are the limitations for the creation of a semi-automatic transformation
between the two sides?

• Is it necessary to introduce more formal characteristics or restrictions to Service
Blueprints to be able to aid the transformation and if yes, what are they on a
conceptual basis?

• When considering today’s business process modeling, are there any enhancements
that could be introduced to Service Blueprinting that might aid the overall devel-
opment?

5

CHAPTER 2
Basics and Related Work

This chapter is dedicated to the description of the concepts and characteristics of the basic
components that are relevant when considering the transformation of Service Blueprints
into the Business Process Model and Notation (BPMN) later on. This includes the
definition and nature of services, their development, and management, the modeling
technique Service Blueprinting as well as the basics of BPMN. As already described above,
this step builds up the foundation for the conceptual development of the transformation
that is the main purpose of the overall work. It is necessary to be able to rely on a
comprehensive theoretical basis that will positively contribute to the achieved results
when looking at the combination of the underlying concepts. The final component consists
within the side-by-side comparison between the two methodologies and can be considered
as the first step towards the desired transformation.

7

2. Basics and Related Work

2.1 What is a Service

The term service is very well known and probably everyone has somehow an understanding
of the phenomenon that is described while using this word. But as it is often the case
with such concepts, when asked what it is exactly, which characteristics are responsible
for the classification and where it ends and another begins, this issue is not so clear
anymore. However, since it is important for this work to have a clear and well-defined
perception of the basic idea, the following paragraphs will try to highlight the nature
and variants of services.

During the introduction of this thesis, the importance of services for our daily life as well
as for the economic systems in modern industrialized countries was emphasized. Already
when looking at the mentioned examples of Amazon and Uber, one can observe some
very basic but essential characteristics. First of all, a service is basically not static or
solid [BOM08]. It rather inherits dynamic properties and consists of several processes.
A classic example would be the treatment in a barbershop where a shave or haircut is
performed in exchange for a specified amount of money. It is obvious that the respective
treatment is not something that exists physically at any time. It is a procedure that is
carried out with the intent of a specific result, the agreed cut.

This finding entails another aspect that is a direct consequence. Every transition and
every process consumes an amount of time [FLM04], for example, the time that is
needed to wash someone’s car. The duration that is required to come to a result may
be pre-defined and fixed or be varying from case to case. This depends for once if
the performance heavily depends on human interaction, which is, of course, harder to
schedule and standardize than mechanical interaction [Sha10] [SDSB09]. Furthermore
the nature of the service has to be considered. For example, in general, the trimming of
one’s beard is not linked to a specific time frame but to the style and the treatments.
In contrast, when booking a massage one typically registers for a time slot (e.g. 30
minutes). Additionally to the fact that services consume time, the importance and value
of this phenomenon may be different due to the type. Using the examples above, when it
comes to a massage, the amount of time one receives the treatment can be considered as
a direct indicator for the overall value (i.e. a 50 minutes treatment is perceived more
valuable than 30 minutes). Looking at a classical haircut this is not the case since it is a
rather outcome-oriented process. But this does not necessarily have to be the case. For
example, it is thinkable that someone tries to increase the customer experience during
such an offering to a level where the actual time of execution gains in importance and
the value to the customer is more a combination of the outcome and the experience. So
it is possible to create services that distinguish themselves from comparable ones while
using an orchestration of its elements that is tailored to the specific customer’s needs.
This is also a reason why this area is so important for successful companies.

The next characteristic that was already implied above and can be observed when looking
at the provided examples, is the fact that a service always inherits some kind of interaction
between multiple sides [SS16] [ZBG06] [LW11]. The number of participants may vary

8

2.1. What is a Service

dramatically depending on the type and the exact nature of the used processes. Within
the example of the barbershop, we have the salon as the organization and the customer
as acting parties. The communication and the service provision is mostly executed in
real time and in a very personal way, typically using phone calls during the booking
phase and personal, on-site execution of the value generation. In contrast, the Amazon
marketplace is an example where three parties are involved in the sales process. The
retailer itself acts as a broker linking an external supplier indirectly to the customer using
their online platform. The supplier initially registers him- or herself at the platform of
Amazon submits the goods they want to sell and add additional information like the
preferred shipping method (e.g. shipment via Amazon). At this point, when the customer
browses the catalog on the homepage, the products of the external supplier are listed
as well and can be purchased [Ama17]. From the customer’s perspective, the overall
process does not seem too different from products sold solely by Amazon itself. Only
some additional information or confirmation messages show that the marketplace was
used. Looking at the channels, one can see that there is no personal interaction between
the three participants and everything is handled while using the internet’s networking
capabilities and automated processes including the payment.

As stated in the first paragraphs of this chapter, services have dynamic characteristics.
Of course, in many cases, they are linked to physical elements that are necessary for the
underlying processes or the resulting experience. In the barbershop, for instance, we have
the salon itself, the chairs, the equipment, but also a receipt at the end and, of course,
the new cut. In the area of Service Blueprinting, but also service design in general, these
elements are often called physical tangibles [Sho84]. They are a very important aspect
since they are a physical representation of the service, can be seen and used as evidence
of the service performance and contribute to the customer experience. The later one
could be especially relevant for a more traditional customer basis where expenses are
often justified with physical possessions. Younger generations may not be that fixated
on ownership and property and modern concepts like sharing and crowdsourcing gain in
importance [Art16]. Another characteristic linked to tangible elements within the context
of services is the ability to create an emotional attachment to rather simple objects.
An example would be a souvenir of a beautiful holiday that reminds the customer of
this experience. Even if it has no value on its own, the context implies an emotional
and sentimental value [Art00]. Due to these effects, the used tangibles, their quality,
the association to the service at hand, their volume and the circumstances during the
transition phase need to be very well planned and orchestrated. For instance, when
considering an educational diploma, it does make a great difference for the students and
their relatives if the document is simply handed over quietly in the office of the deanery
by the secretary or at a festive diploma ceremony. In fact, in this case, the circumstances
are that important to most of the students, that they pay an additional amount of money
only to take part in this supplementary process. The physical certificate can be seen as a
tangible object of the educational service. It is of course evidence for the completion of
the studies, but it is not the degree itself.

9

2. Basics and Related Work

But tangibles have also the potential to negatively influence the customer’s experience,
for example, if the objects are not perceived as complementary to the service or feature
a significant deviation of quality in comparison to the main performance [BOM08].
Furthermore, the provider of the service has to consider the possibility that one’s offering
does not necessarily result in a pleasant situation for the targeted audience. This could
happen in cases where something went wrong during the execution (i.e. error, failure) or
simply due to the nature of the service, as it is the case with the treatment at a dentist.
If so it is probably not the best idea to introduce some tangible evidence that is meant
to create emotional associations towards this negative experience. Another aspect within
this context concerns the fact that basically, it is not possible to compensate or even
justify services that inherit a generally bad design. As emphasized above, tangible objects
are a very important ingredient when it comes to the service orchestration, customer
satisfaction and the identity of the performance. They can be seen as an element of
proof and build up trust in ones offer, but they do not have the capability to even out
shortcomings of the overall concepts since, despite the fact that tangibles are a powerful
complement, in general, they are not at the center of the value composition.

In contrast to the physical components that were described above, services itself are of
an intangible nature [Bus18]. As a result, or for a reason, one cannot touch the processes,
they do not have stock levels and cannot be stored [Bha17]. There is no possibility to
duplicate a specific instance without repeating all the steps. Furthermore, it is not an
easy undertaking to measure a service or compare multiple ones [SS16]. It has to be noted
that in general there is not one correct way how such an offering should look like, how
the interactions are handled, what the tangible objects should be or to which extend the
customer shall participate at the service. All these points strongly depend on the purpose
of the undertaking, the targeted customers, the operational and social environment, as
well as the providing organization and its image. So it is not only important to know
your audience but also to know yourself and the environment both of you are in.

The last lines point out another interesting and rather unique characteristic of services.
The fact that the customer him or herself is a very important part of the concept and
is, in contrast to other areas, an active participant that has the potential to positively
or negatively influence the experience, the performance, and the outcome. Let’s take
one’s education as an example. Basically, the student is the customer and without him
or her the execution of the offering would not be possible since an essential part of
the value generation is missing. Additionally, the student can influence the efficiency
of the provided lectures. If he or she is not interested in learning and does not show
the effort that would be necessary to reach the intended level of knowledge, even the
best teachers and educational system do not stand a chance. The degree of customer
involvement depends of course on the nature of the service. In an article with the title An
Explication of three Service Business Process Modeling Approaches Yahya Kazemzadeh,
Simon K. Milton, and Lester W. Johnson chose the example of a pizza restaurant to
explain this issue in more detail [KMJ14]. They state that customer involvement basically
is necessary to achieve the intended customized experience. The higher the involvement

10

2.1. What is a Service

the bigger the customization. Using their example, for the restaurant it would be possible
to include the customer already during the assembling process of the pizza and so tailor
the product to their individual needs. This could potentially increase the customer
satisfaction depending of course on their initial expectations. The authors furthermore
state that there are twenty-five different ways to handle the two steps Assemble pizza
and Cook pizza within the overall process.

In general the degree of customer involvement is the major catalyzer for the service com-
plexity and, as a result, has the potential to reduce the efficiency of the processes [KMJ14].
According to Christopher Lovelock and Jochen Wirtz, the ultimate form of customer
involvement can be found in services that are designed to give the target audience almost
complete control over the execution of the service steps and concentrate more on the
provision of the necessary environment and infrastructure [LW11]. The use of these
so-called self-service technologies (SST) are more and more important and especially
when it comes to administrative tasks like airport check-ins, banking or government
agency issues (e.g. online tax declaration, e-government) this approach has great potential
and already made an impact in our daily lives. But these designs require a very good
system to support the execution of the individual steps. When it comes to information
technology people want it to be functional and they tend to get frustrated really fast if
there is an error (system or user inflicted) and are forced to contact the supplier to find
a workaround for their request [LW11].

As already implied above, the customer involvement is tightly linked to the critical
sections and processes that are part of the service orchestration [Sha10]. The reason
for this lies in the nature of human beings and in dealing with such. In contrast to the
interaction with machines like electrical systems, each human being is unique in one’s
values, attitudes, beliefs, fears, prejudices, and behaviors. Since the target of a service
is, to at least not inflict a negative experience, to some degree the characteristics of the
customers need to be taken under consideration and every person could require a different
treatment. Additionally, human communication may be subject to misunderstandings
and is potentially error prone [Woo97]. To be able to meet the specific customer needs
and to support a positive overall experience, these critical points must be meticulously
targeted during the design phases of the service. However, during the execution of the
individual process steps, human interaction requires time and flexibility, which results in
the fact that it remains potential critical for the efficiency of the service. But adequate
planning is a basic requirement to deal with possible errors and to come up with customer
friendly alternatives that minimize the occurring negative impacts. In general, one can
say that the way how and to which extend the service orchestration and the underlying
process flow is designed under consideration of potential failure points, detours, and
compensations, is a sign of service quality.

The description of services their definitions, characteristics, and specialties could be
examined on several hundreds of pages and even then there would still be some new
observations that could be taken into account. Since the purpose of this chapter was to
emphasize the subject at hand and to investigate its nature that needs to be considered

11

2. Basics and Related Work

during the targeted transformation, only a small introduction into this economic and
social phenomenon has been provided. The upcoming part shall focus on the question how
the literature proposes to approach the topic of service development and management.

2.2 Designing Services

The need for planning and designing of services and the documentation of their charac-
teristics, to be able to reevaluate the performance within the context of a changing future
environment has already been addressed during the previous chapters. Over the last
decades, along with the growing relevance of the service area for the economy and the
success of companies on the respective markets, authors from the academic area as well
as from the different areas of daily economics (e.g. strategists, marketers, designers) have
targeted the issue of the initial development and ongoing enhancement and management
of services. Due to their dynamic characteristics and the strong interconnection to the
various parties during the execution phases, the design process has the potential to
critically influence the outcome of the introduction of a new offering and can be directly
associated to the failure or success of such an undertaking. Additionally, when looking
at the focus of this work, that consists within the creation of a transformation from a
service modeling approach towards the more process-oriented world of BPMN and is
intended to support the development and management of services, the issue at hand and
the consideration of the approaches introduced in the literature, can be seen as equally
important as the definition of services and their characteristics. To approach this point,
after a small historical remark, the nature of a development process, the contained steps
as well as some tool-sets and methodologies that could provide support, will be described.

As stated in the introductory chapter, the dawn of the service economy dates back
approximately fifty years. Over the time not only there was an evolution when it comes
to the nature of services, but also when looking on the way how their development is
approached by the providing organizations. In an essay, Lucy Kimbell describes the topic
of service design from a marketing perspective which is an interrelated area that also
concentrates on the costumer’s requirements rather than the organization itself [Kim16].
She points out that with the broad availability of all products after the boom of the
world economy (i.e. the economy was no longer fixated on the scarcity of products),
the focus of the companies shifted towards understanding the human needs and how
to use this knowledge to distinguish themselves from the competition. As a result of
this situation, the customers have gained structural power and the ability to influence
the environment since the companies abandoned an approach where they dictated how
and what the audiences had to buy. New ways needed to be developed how to approach
end-user driven products and, especially since the 1970s, services.

Probably one of the most important insights concerning this topic that was captured
by the literature is the statement that a service process, that is tailored to the needs
of its target audience and inherits a sustainable over time development, needs to be
approached in an interdisciplinary way [BOM08]. That means that during the process of

12

2.2. Designing Services

designing and developing a new service or analyzing and enhancing an already existing one,
ideally multiple persons, with different professions and points of views, shall participate.
According to Geke Van Dijk, the participant of this joint undertaking should be a so-called
T-shaped individual. This term describes that each team member should provide a broad
general understanding of the whole topic and a very detailed knowledge when it comes to
his or her specialty [Dij16]. But it is not sufficient to only include marketers or designers.
One essential point is to gather information from all parties that interact with the service
later on. To do so, besides persons from different design and strategical areas, also
representatives from the customer’s side as well as service personnel and employees who
are responsible for the operational business later on (also called secondary users [Mie16])
should be integrated during the process.

At this point, one could probably ask the question how the service development team
should exactly look like besides the integration of customer representatives as well as
front- and backstage service staff and which organizational fields are responsible for the
development. According to Marc Stickdorn and Jakob Schneider, service designers can
be found within the areas of product design, graphic design, interaction design, social
design, strategic management, operational management and design ethnography [SS16].
The expertise that is actually required when it comes to a specific case, of course strongly
depends on the nature and the characteristics of the service at hand. But since services
are multidisciplinary and have the potential to link a multitude of organizational and
social aspects, some knowledge about the areas mentioned by Stickdorn and Schneider
will be necessary to consider and optimize all essential aspects of the intended offering.

However, due to the various dependencies and influences to other areas, service design
on its own cannot be considered as a stand-alone discipline [SS16]. When looking at the
definition of the process and its characteristics, Stickdorn summarizes five properties
that need to be taken into account and fulfilled when approaching the development
steps [Sti16a].

User-centricity is the first principle and emphasizes the importance of the people that
interact and work with the services during its execution. As mentioned before, of course,
the main actor at this point is the customer, but also the secondary users (i.e. the service
staff) have to be considered. Due to this demand, several approaches in this area (e.g.
also Service Blueprinting) try to view the planned offering from the customer’s point of
view. This way critical aspects and weak-points are detected more easily. Most of the
time design processes that are efficient for the own organization are not a big issue since
economic theory suggests various performance indicators that can be used. But when it
comes to the needs of end-users and their experience during the service, the evaluation
can be quite complicated.

Co-creativity describes the next principle and can help to overcome this issue. It is im-
portant to understand, that depending on the service topic, there can be various customer
types with very different values and needs. User representatives should participate during
the development process which will result in a more tailored and satisfying service. But
also in general, there is the necessity for the development process to be an interdisciplinary

13

2. Basics and Related Work

one as already described above. Besides the widened area of expertise, this contributes to
the fact that coming up with a new service and specifying its details, is also an issue of
creativity and innovation. A collaborative approach can positively influence the quality
of the final solution. In addition, according to Stickdorn, a co-operational approach
promotes a less error-prone execution phase and a strong customer integration facilitates
increased loyalty later on.

Sequencing is about the dynamic nature of services. They consist of multiple processes
that can be further divided into individual process steps which are then carried out
during the execution phase. Since the goal is to plan the offer as well as possible and to
apply optimizations and fine-tuning where ever it is possible, during the development
and the maintenance of services, these steps are identified and addressed individually.
This does not only concern the interaction points front stage, but also supportive and
managerial activities. However, one thing that should not be neglected is the fact that in
addition to its components, a service is also perceived as an entity on its own. Therefore
the overall orchestration is important as well.

Evidencing means that within the context of a service, even if it runs basically in the
background and remains mostly unnoticed by the customers, he or she should be aware of
the performance. Otherwise, there could be some surprises when it comes to the payment
of such. According to Stickdorn, some services are intentionally designed to be subtle
and unnoticed (e.g. housekeeping in a hotel). But even so, it is necessary to give some
evidence to the customer. The extent and the chosen method, of course, depends on the
nature of the offer itself. Such pieces of evidence have the potential to add value to the
performance and create an emotional association. In that case, it is possible that the
customer’s experience is prolonged even after the end of the actual execution phase. In
addition, tangible objects of services can be, and probably often are, used to support the
users during the process and especially when it comes to critical and more complicated
steps. One of the most important aspects of this area is the fact that the customer does
only accept the provided pieces of evidence if they are consistent with the characteristics
of the context. Only then it can be used to achieve the advantages described above.

Holistic describes the way how a service should be considered during the design and
management process. It emphasizes the viewpoint that it is important to address as many
aspects as possible and evaluate them under consideration of the customer’s experiences
and feedback. It is probably necessary to repeat specific development steps with a special
focus on certain points to facilitate the best outcome of the undertaking. One issue at
this point that needs to be addressed, is the implementations of fallbacks and detours in
case of an error. Only if these are already considered during the planning phase, it can
be guaranteed that the service remains valuable to the customer.

Due to the inherent feedback loops and the demands of the co-creativity, the service design
process has nonlinear properties. However, it would be incorrect to assume that this
makes it impossible to address this issue while using a structured development approach.
In fact when considering the creation of a new service (or the documentation and analysis
of an already existing one) the initial step should be the outlining of the iterative design

14

2.2. Designing Services

process itself. Of course, it is necessary to take the service into consideration and so to
come up with a more tailored resolution towards the problems and goals at hand [Sti16b].

According to Stickdorn, on a meta level, a very simple structure can consist of the steps
exploration, creation, reflection and implementation in an iterative way [Sti16b].

The first one, exploration is about the overall situation, the problem that should be
addressed and its environment. This includes reviewing the own organization and its
viewpoint concerning the main issues. But of course it is necessary to focus on the
customer while developing a new service and so to satisfy this demand, also this side of
the value exchange has to be considered at this point. This step is finalized with the
visualization of the results from the analytical processes and is all about the identification
of the fundamental problem that should be solved. All the subsequent steps only make
sense and have a chance to result in a well-designed service that is highly valuable and
desirable to all participants, if the goal and the underlying shortcomings are identified
and described in detail.

The next step, creation is as its name implies strongly focused on the generation of
comprehensive approaches targeting a solution of the problems that were identified before.
At this point, it is very important to apply the property of co-creativity to include all
the different values and demands of the individual stakeholders within the context of the
resulting service. Due to its creative and innovative nature, such a design process is not a
straight road without any detours or dead-ends. In contrast, it is of an exploratory nature
and therefore includes making errors. The important thing is to learn from the mistakes
and to incorporate the new information during the next iteration and so approximate
the final, efficient solution.

To do so, the subsequent part is called reflection and is of course tightly linked to
the creational aspect. During the whole design process, these two steps are performed
iteratively to increase the quality of the desired solution. The perceptions and the
individual service concepts that where a result of the preceding phase are tested and
evaluated. The generated insights are then passed on to the next iteration. According to
Stickdorn a major aspect at this point is connected to the intangible nature of services. To
conduct the necessary extensive evaluations, the generated concepts need to be analyzed
under somewhat realistic circumstances. It can be quite complex to create a plausible
prototype, that can be used to simulate the service steps during their execution phase and
include the concerned stakeholders, to be able to extract valuable feedback information.
Especially the service interaction points between the individual participants should be
somehow applied at this stage. In any case, similar to development processes in the
area of software engineering, the sooner an error can be identified and countermeasures
applied, the lower are the costs. A point of failure only results in minimal expenses
during the early stages of the design process, but when it comes to later stages, where
most of the process details are already fixed and communicated, it can cause a serious
development issue and delay the project’s schedule.

Probably after performing several iterations, it is time to implement the now satisfying

15

2. Basics and Related Work

service concept. This final step focuses on integrating the new offering into the operational
area of the organization. It is very important to include the employees that are responsible
for performing the value-adding process steps at this point. In general the aspects of
change management are very important to ensure an efficient transition towards the new
service.

Considering the demand that this topic shall be approached in a structured manner,
several methods and tools might be necessary to support the efforts of the responsible
project team. Within the literature different types and ways how to apply them can be
found. Due to its nature, the selection of the applied methodologies should be made
under consideration of the characteristics of the service, since not all tools are equally
suitable for the current problem. Another aspect that needs to be taken into account
when thinking about the toolset is of course the present know-how of the team members
as well as the culture of the organization [DRK16].

However, looking at the steps as described above, the chosen methods also may differ
depending on the current project phase [DRK16]. It might be necessary to include
multiple methodologies considering one project phase, experiment with their applicability
and discard it if it proofs that it does not contribute to the progress of the development.

Looking at the stage of exploration, the use of so-called Customer Journey Maps could
be a possible way to go. It is based on a structured visual modeling approach and is
used to start-up an idea and gather initial information. As it is quite common in the
domain of service design, it is all about the customer’s experiences. To retrieve the vital
insights, interviews could be performed. But also the active participation of the end-users
could be a viable approach that enables the team to harvest the experiences at first hand.
Once more it is recommended to try to integrate the customers during the design of the
individual project steps. To do so, the initial focus should lay on the identification and
linkage of the various touchpoints throughout the journey. Afterwards, it is possible
to go into more detail when it comes to specific critical steps. The visualization, as
shown on an example in Figure 2.1, displays the process flow on a meta level and
should be understandable by all service stakeholders. Target is to capture the customer’s
interactions, encounters, and tasks under consideration of his or her emotional state
during the overall journey.

When it comes to the iterative stages of creation and reflection as described by Stickdorn,
a method is needed that tries to incorporate more details of the service and provide a
basis for generating necessary feedback information. Using so-called Storyboards is a
possibility to capture not only the properties of the offer itself but also of its environment
and context. Once more it consists in a graphical visualization and focuses mainly on the
events that are directly perceived by the customer. This could be a comic strip, picturing
all important steps and situations of the service. But also photographs of actual or staged
situations could be used which probably makes it easier to create an image of real-life
events. The main target is to trigger discussions afterward and so generate valuable
insights into weak points, possible failures, critical sections, but also into opportunities
and potential enhancements.

16

2.2. Designing Services

Figure 2.1: Customer Journey Map Example [SS]

Considering the last step, the implementation, the well known and widely adopted
Business Model Canvas could be a part of the supporting set during this stage. It
is a method to generally document business models. Due to its ability to use it in a
collaborative way (e.g. sticky notes) it is also applicable within the domain of service
design and can be used to clarify the concept of the intended offer. Basically, it is
a fixed table containing sections for key partners, key activities, key resources, cost
structure, value proposition, customer relationships, channels, revenue streams and
customer segments [BCOR11]. The target is to use the provided categories to specify
the planned service or document an already existing one.

As mentioned above, of course, there is a multitude of different methodologies available
to aid during the specific development steps. For example, another tool that could be
applied within the context of the last phase is Service Blueprinting. Due to its importance
for the topic of this work, it shall be described in detail in the next chapter.

17

2. Basics and Related Work

2.3 Service Blueprints

Service Blueprinting is a methodology to support teams and organizations when it comes
to the invention of new services, the documentation and evaluation of already existing
ones and in general the communication of the underlying ideas and concepts. Looking
at the goal of this work, this tool is the first component of the intended transformation
between Service Blueprinting and the Business Process Model and Notation (BPMN).
Hence, due to its importance, the upcoming chapters will explain the characteristics in
detail. To do so, after some historical remarks explaining the origin of the methodology,
the design process of such models shall be discussed. Afterwards, the concepts applied
in Blueprints, as well as their graphical notation, have to be examined. Furthermore,
the benefits but also the shortcomings and weak-points are considered to emphasize the
applicability of the modeling language. The last section is focused on enhancements and
combinations with other methodologies that were suggested within the literature.

2.3.1 Historical Remarks

The origin of the methodology can be traced back to the year 1983. The bank executive
G. Lynn Shostack published an article in the January 1984 issue of the Harvard Business
Review with the title Designing Services That Deliver [Sho84]. At the very beginning of
this text, Shostack describes a situation that is valid until this day. It is all about a lack of
service quality as it can be observed while experiencing various services throughout one’s
daily life. She notes that although many shortcomings originate from human factors, a
very critical aspect consists within the underdevelopment of more structured approaches
towards the design of new service offerings (especially in the 1980s). Furthermore the
author criticizes that even if there are some kind quality controls in place, they only
focus on specific components of the overall concept and do not provide a more holistic
approach. In general, organizations often engage in trial and error approaches to set up
a new service, which may inherit some functional capabilities but do not result in an
offering that does satisfy the actual needs of the customers. Additionally when it comes
to the sustainability of already established services, without a more structured approach
it is easy to miss the need for future developments and enhancements. So what once was
a great idea could soon be obsolete. And even if there is the strive towards the creation
of an improved concept, without such a support during these critical phases within the
service lifecycle, it may be very hard to pin down the important aspects and align the
ideas with the actual requirements of the customers. In her article, Shostack describes
a service as a larger concept that consists of a multitude of individual components
(e.g. process steps, tangibles). It has to be considered in a more comprehensive way to
satisfy the need for a structured development of services that is worthy of the economic
importance of this topic.

Since visual modeling tools like simple flowcharting do not provide the customer-centric
focus that is necessary and neglect the special characteristics of services (e.g. intangible
nature, the importance of interaction points), the author proposed the development of

18

2.3. Service Blueprints

Figure 2.2: Portrait of G. Lynn Shostack [Pri]

a so-called Blueprint to overcome these issues. But, due to its precision, it should still
consist of a graphical approach. One of the most important requirements at this point,
Shostack mentions the demand to create a model of the intended offering from the point
of view of the end-user. Only then it is possible to identify weak-points and critical
sections that are responsible for potential dissatisfaction which may result in a failure
of the concept at hand. Since service design is also tightly linked to innovation and
has the potential to generate USPs that build up important strengths on the market,
the intended method has to support the creativity during the development process. In
addition, Shostack acknowledged the role and importance of tangible pieces of evidence
for the designed service and therefore the necessity to include this phenomenon into a
potential modeling approach. Another characteristic consists in the observation that only
a part of the individual steps during the execution phase is visible to the customer [Sho84].

As a result, the author proposes a graphical modeling technique and tries to incorporate
the aspects as described above. It consists in the use of a basic flowcharting notation in
combination with a fixed lattice separating the canvas in an area for the actions that are
actually visible to the customer and those that are not. This arrangement is called line
of visibility and is represented as a horizontal line. Furthermore, the concept of physical
pieces of evidence has been integrated and the components itself, as well as the linkage
to the corresponding activities, are visualized as graphical symbols. To capture the
dynamic nature of services and the possible uncertainty that is inherent by the individual
processes, especially at the execution phases where people are directly involved, also
fail-points, detours, and loops can be illustrated.

Although it seems that Shostack had very specific ideas and suggestions when it comes
to Service Blueprints, it was not intended as a fixed methodology or standard. Even the
usage of the flowchart notation as shown in the article can be understood as a suggestion.

19

2. Basics and Related Work

The way how it actually is applied may depend strongly on the specific case, the intent
or the circumstances of its creation.

So it happened that along with the popularity of this tool-set, over the last decades
and even within the more recent years, several authors have proposed enhancements,
distinct graphical notations and in general different approaches towards the concept
of Service Blueprints. One example is the developments of J. Kingman-Brundage
who wrote several articles and papers about this topic and named it service map-
ping [KB89] [KB91] [KB93] [KB95]. Furthermore authors like Marry Jo Bitner, Christo-
pher Lovelock, Jochen Wirtz and many more wrote papers, articles, books and other
contributions introduction their own viewpoints and concepts towards this methodology.

2.3.2 Creating a Service Blueprint

Considering the whole process of service design from the very first idea till the imple-
mentation and maintenance of the components during the service execution, Service
Blueprints may be used when it comes to several tasks along the way. As mentioned
during the introduction of this methodology, it basically can be used for new services,
but also for the enhancement of already existing ones. Due to its nature as a more or
less precise graphical representation, depending on the used notation and constraints, it
is suitable to communicate and document the intended service processes and underlying
ideas [BY05].

When looking at the development phases as explained by Stickdorn that were described
in a previous chapter, the method Service Blueprinting can be assigned to the phase
of implementation [Sti16b]. Within this context Geke Van Dijk, Bas Raijmakers and
Luke Kelly specify that the tool-set is typically applied in a collaborative way to create a
detailed layout of the planned offering which also has the potential to build up a shared
responsibility among the whole team [DRK16]. As main benefits, they mention the
possibility to capture all important actors, activities, pieces of evidence and the ability
to identify weak-points and critical sections.

The question at this point is how a Service Blueprint is actually created and what are
the steps that need to be executed to do so. The collaborative nature while using a
cross-functional team was once more mentioned above. Although the actual creation
of the graphical representation may be carried out by one individual person using a
computerized modeling tool or simply some sticky notes on a flip-chart, the stakeholders
connected to the offering as well as domain experts need to be integrated to be able to rely
on a more complete view on the topic at hand. Blueprinting itself emerged out of the need
for a more structured and comprehensive way to develop and implement services. But it
is not enough to introduce such a method to a design process and neglect the way how
the model is actually created. Therefore not only the graphical representation needs to be
considered but the steps that lead towards this result as well [Sho84] [ZBG06] [DRK16].

To address this issue, G. Lynn Shostack outlined a possible strategy in her initial article
from 1984 for designing a Service Blueprint [Sho84]:

20

2.3. Service Blueprints

1. Identify Processes - As a first step the processes that shall be combined to create
the service, have to be identified and captured using a graphical representation.
The extent of this step depends on the degree of complexity of the intended offering
and the steps that are necessary to carry it out. So the created models range from
very simple and small to quite comprehensive ones. In general, specific aspects
should be examined in more detail if they are of a more critical nature.

2. Isolating Fail Points - The customer’s satisfaction with ones service strongly
depends on the occurrence of fail-points and the way how they are handled by
the members of the organization. Since services comprise multiple individual
steps during their execution and are often related to several (human) actors, it is
impossible to create a scenario where nothing goes wrong. To build up a proposition
that is unique and valuable to the end user, it is necessary to know its weaknesses
and address them accordingly. So the second step is about using the material at
hand and to identify these critical sections. Afterwards the designers have to think
about some ways to treat them.

3. Establishing Time Frame - An important aspect of services is their dynamic
nature which is a logical conclusion of their composition. Similar to all procedures,
this means that a specific amount of time has to be consumed to generate the
desired output. Due to the relation to the costs incurred (e.g. wages of service
staff) and its importance for the customer satisfaction (e.g. waiting for a doctors
appointment) it is necessary to take this phenomenon already during the design
phases into account. Hence the target of this third step is the determination of
a standard execution time that is realistic as well as desirable by all participants.
When looking at the previous point, this standard time may not hold in certain
cases. Since these situations have the potential to negatively influence the perceived
satisfaction, it is equally important to specify time frames for alternative processes
flows and compensations.

4. Analyzing Profitability - The final step is tightly linked to the previous one (i.e.
time as cost factor) and addresses the profitability of the service. In general the
creation of a Service Blueprint has its focus on the customer’s viewpoint and the
satisfaction of his or her needs and requirements. At this final stage the idea that
fulfills these demands shall now be examined according to their sustainability from
the organization’s point of view.

Another approach towards a design process for Service Blueprints has been suggested
more recently by Valarie A. Zeithaml, Mary Jo Bitner, and Dwayne D. Gremler and
consists of the following steps [ZBG06]:

1. Specify the intended offering and the corresponding processes
2. Specify the characteristics and the nature of the customers
3. Design the interaction points between the different participants of the service

21

2. Basics and Related Work

4. Design the organizational front-stage actions in relation to the customer

5. Design the back-stage actions (e.g. support, managerial) and connect them to the
front-stage

6. Identify and capture tangible objects and there connection to the individual process
steps

Although basically, the two outlines share the same idea, when looking at the points
above one can observe several distinctions. First of all the customer focus of the overall
approach has been additionally increased within the suggestion of Valarie A. Zeithaml,
Mary Jo Bitner, and Dwayne D. Gremler. This is represented by the second step
which should answer the question who the customers actually are. Since it is crucial
to understand the specific needs of all customers (normally there is more than one and
they can be very distinct from each other) the additional highlighting of the end-users
seems quite appropriate. The next difference lies within the treatments of the interaction
points. Over the years there has been the insight that the activities and phases where
the customer directly interacts with the organization (e.g. service staff, self-service
technologies) have the highest potential to result in problems, delays, errors and, as a
consequence, dissatisfaction. As a countermeasure, it is necessary to plan and design
these interaction points very carefully. As a final observation, it can be noted that while
Shostack suggested a rather general outline, the second listing is more directly related
to the technique Service Blueprinting and its concepts, which will be explained in more
detail in the upcoming paragraphs.

2.3.3 The Concepts

Within the context of this work, various literature sources have been reviewed under
consideration of their distinct ideas. To explain the detailed concepts of Service Blueprints,
the following paragraphs shall constitute a summary of the most important characteristics
that have been observed during this examination. It shall be noted that the intended
transformation towards the Business Process Model an Notation (BPMN) was taken into
account and a special focus lies on concepts that may potentially contribute during the
development of the necessary mapping later on.

Service Blueprinting is a tool-set that aims to capture all actions that are necessary
for the value generation and occur during the execution of the service (e.g. customer’s
activities) or are related to its more general context (e.g. preparations, managerial
activities of the organization). To do so, a sequence of actions is illustrated using an
approach which is more or less similar to flow-charting and represents their dependencies
and logical order. Furthermore, the elements are assigned to different categories which
state the nature of their occurrence (e.g. customer or organizational activity) and inherent
characteristics (e.g. visible to the customer or not, customer induced or independent).
Using the applied classification, the interaction, as well as the communication between
the distinct participants of the service, are displayed [KMJ14].

22

2.3. Service Blueprints

Considering the graphical character of the modeling technique, probably the most abstract
components are the canvas and the applied notation. While the structure of the former
one is mostly fixed after the start of the modeling process, the latter is used dynamically
to capture one’s ideas. Despite the fact that this technique suggests specific components
and approaches, the elements are not compliant with a fixed standard as it is the case with
other modeling languages like UML [LW11] [BOM08]. So it is mostly up to the author
or the person who actually applies the method to choose what the exact components will
be.

The modeling area of a Blueprint is separated using multiple horizontal lines. According
to Mary Jo Bitner, Amy L. Ostrom and Felicia N. Morgan these are the line of interaction,
the line of visibility and the line of internal interaction [BOM08]. On top of these,
another separated area is used to capture the physical pieces of evidence (i.e. tangible
objects). Furthermore, Sabine Fließ and Michael Kleinaltenkamp reference the additional
separators line of order penetration and line of implementation which were also mentioned
by Jane Kingman-Brundage [FK04] [KB95]. Fließ and Kleinaltenkamp also stated that
basically when looking at a Service Blueprint, 2 dimensions can be observed. The
horizontal one defines the sequence of the actions (e.g. customer actions, actions of the
service staff) and the vertical one their area and nature [FK04]. The line separation as
described above is used to create a fixed lattice and introduces this second dimension.
The following points shall explain the concepts behind each area in more detail and
keep the intended sequence of elements on the modeling canvas as proposed within the
corresponding literature (see also Figure 2.3).

• Physical Evidence - Top area containing all relevant tangible objects (not actions)
that might be linked to the service provision and are perceived by the customer.
Due to their ability to influence the service flow as well as the end-users evaluation
of the value of the service, this aspect of Service Blueprinting is quite an important
one and should not be neglected during the development process [BOM08]. The
horizontal axis can be used to capture the sequential order of their occurrence
and associate them to the performed actions that define the context within the
orchestration.

• Line of Interaction - This line constitutes the first actual separation between
the different categorization of possible activities. It introduces the differentiation
between the actions performed by the customer (above the line) and the ones
performed by the offering organization (below the line). Directly beneath, actions
are located that are actually perceived by the end-user as being performed as a
contribution to the processes targeting the value generation. For example this
includes activities executed by the front-desk staff of a bank or a hotel, but also the
observable operations of a mechanical self service technology (e.g. e-governmental
systems).

• Line of Visibility - The line of visibility splits the whole modeling canvas into
two big areas. All activities that are located above are directly perceived by the

23

2. Basics and Related Work

Figure 2.3: Empty Service Blueprint Canvas (created with Realtime Board [Rea])

customer (e.g. the customer’s activities, actions performed at the service desk)
and the ones beneath are not (e.g. passing on a room service order to the kitchen,
preparing the food). Due to their nature, these areas are called front-stage and
back-stage [LW11].

• Line of Internal Interaction - The back-stage area is then additionally divided
using the line of internal interaction. It distinguishes between actions that are a
direct response to the specific service case at hand (i.e. a specific execution of the
service process; e.g. customer A wishes to have his beard trimmed) and activities
that inherit a supportive nature and are necessary to perform the service in the
first place [LW11].

• Line of Order Penetration - The support processes can then be further separated
when applying the line of order penetration [FK04]. All actions located above are
linked to the customer-oriented value generation (i.e. customer induced actions
like preparations; e.g. sharpening the razors, restocking shaving soap), while

24

2.3. Service Blueprints

actives below have more general characteristics and are therefore independent of
the customer [BY05].

• Line of Implementation - The last line that shall be explained in more detail
is called the line of implementation. It finally introduces a distinction between
the support activities as described above and management actions that are not
specific to the service execution [MML10]. This area is also called the management
zone and typically includes all managerial activities like planning, human resources,
controlling, etc [BY05].

At this point, it shall be noted that due to the fact that Service Blueprinting does not
follow a fixed standard, the selection and application of the desired lanes are basically
up to the creator of the model and can vary depending on the know-how of the project
team as well as the target of the undertaking. The lines as described above represent a
selection of the most common ones in the literature. But of course, there are alternatives,
respectively additional concepts as well. For example, Christopher Lovelock and Jochen
Wirtz suggest the usage of the so-called Line of Internal IT Interaction to be able to
illustrate the tight linkage of modern service processes to elements of the information
technology. It is located at the very bottom of the canvas and creates an area that
encapsulates IT elements (e.g. customer records within a database) [LW11].

Considering the horizontal line separation, one can observe that the modeling canvas is
now divided into distinct areas that inherit specific characteristics as described above.
When it comes to the identification and illustration of the actions that are necessary
for the service at hand, the designers have to assign these actions according to their
fit to the introduced classification. As a result, this vertical dimension expresses the
categorization of the specific actors (i.e. customer, front-stage, back-stage, ...) and their
actions [KMJ15]. The horizontal orientation on the other hand finally represents the
sequence and the dependencies of the activities within their corresponding area.

Additionally, it seems rather obvious that when it comes to the assessment of the individual
actions that are performed during the service execution, there needs to be some kind
of interaction between the customer, the organization and the organizational agents
among themselves. Furthermore, during the explanations targeting the characteristics of
services that were approached within a previous chapter, the importance of the introduced
interdependencies, the corresponding exchange of information and the resulting sequence
of actions was emphasized and marked as a critical aspect of the overall issue. To satisfy
this observation, of course, there is the need for Service Blueprints to capture these
interactions which, as a result, happen between the various areas of the canvas. Following
the outlined concept, the horizontal lines act as points of interaction between the different
categories of service participants (e.g. customer, front-stage staff, support staff) and can
be seen as interfaces [KMJ14]. Milton and Johnson refer to this interaction between the
areas and therefore between the different actors that participate in the service process,
as the communication flow [MJ12].

25

2. Basics and Related Work

To be able to specify the intended offering in more detail and to contribute to its success,
further concepts are the illustration of weak- and failpoints. These elements are of
importance due to the fact that when it comes to services, the experience and its inherent,
perceived value are potentially negatively influenced by a single aspect that does not
work as expected and result in dissatisfaction on the side of the customer. In their book
Services Marketing: People, Technology, Strategy Christopher Lovelock and Jochen Wirtz
use graphical markers to indicate positions within the sequence of activities that may be
subject to extensive waiting times (in comparison to the previously specified standard
time) and possible failpoints [LW11]. Depending on the chosen detail and extent of the
applied flow-chart notation, countermeasures and detours may be also captured within
the Blueprint.

As stated before, there is no predefined way how to capture one’s ideas within a Service
Blueprint and how to illustrate them. Nevertheless, the applied notation, especially of
the sequence of the activities, restricts the detail and the possibilities of the resulting
models. Furthermore, the complexity may also be influenced. Since the main goal of this
work is to use an existing model and transform it into BPMN the different possibilities
and elements of Service Blueprinting are of great importance. To continue to address
this topic, the upcoming paragraphs shall focus on the graphical representations of the
model and outline different suggestions of the corresponding literature.

2.3.4 Graphical Notations

Before one starts to apply Service Blueprinting on a specific case, a convention has to
be made, defining which graphical elements and representations are used to capture the
targeted service and its components. If this step is neglected before beginning with the
actual design process, the result may not be consistent within itself or in comparison to
other models that were already created in the past. As a consequence, the Blueprint may
lack quality and fail the intended purpose. In general, the used notation of a modeling
language has a vast impact on the concepts and cases that can be illustrated using the
chosen tool-set as well as the intended level of detail and complexity. To be able to create
a very comprehensive abstraction of reality that is comparable with other models of the
same language and be understood by people who possess the knowledge concerning the
used methodology, a multitude of distinct mechanisms have to be applied following an
agreed convention regulating and expressing their symbolic functionality and capabilities.
Due to this necessity, popular modeling languages, especially ones targeting a more
technical area of expertise or the representation of detailed process flows, often inherit
a fixed set of graphical notations and concepts that are regulated and developed via a
centralized standard (e.g. UML).

The term Service Blueprinting, on the other hand, describes a more general approach
towards the design of services and does not possess a unified convention. It suggests the
use of concepts, as explained in the previous chapter, but is not limited to those and
especially does not restrict the use of graphical notations [Sho84] [ZBG06] [DRK16]. For
the intended scope of this work it is necessary to examine the concepts and illustrations

26

2.3. Service Blueprints

as proposed within the literature to be able to rely on them later on when it comes to
the actual mapping and transformation to the Business Process Model and Notation. To
target this issue, the following paragraphs will describe some suggestions and display
their graphical representations.

When looking at the basic concepts of the methodology as explained within the previous
chapter, they can be summarized in the following list [MJ12] [KMJ15] [BOM08]. To
transfer their basic intentions into the model, a proper graphical representation has to
be applied.

• Modeling Canvas
• Line Separation
• Communication Flow
• Actions
• Action Flow
• Actor Categories
• Physical Evidence
• Additional Concepts

The first point describes the ground area of the final model and does not require a specific
notation. However, the initial aspect that has to be taken care of during the design
process, is the application of the horizontal separation of the canvas, since this part of the
model should be fixed until the illustration of the actual action flows. For this purpose,
typically solid, dotted or dashed lines are used. Furthermore, it is also possible to apply
a combination or doubled lines to emphasize the significance of the separation between
adjacent areas [MML10]. An important declaration is the naming of the corresponding
type of separator (e.g. line of interaction, line of visibility) which is commonly noted
beneath or above the corresponding line. As a result, a basic setup as shown in Figure
2.3 is created.

As a next step, the actions, the corresponding action flow, and the communication flow
carried out by the customer and the members of the providing organization, have to be
added to the model. At this point, the notation that was suggested within the various
literature sources varies to a great degree. In her fundamental article introducing the
basic concept of Service Blueprinting, Shostack uses simple quads to display the various
activities and solid arrows representing the action and the communication flow [Sho84].
The constellation as shown in Figure 2.4 is probably one of the most basic but, at the
same time, comprehensible ways to capture such a process flow. Especially for people
with an elementary understanding of modeling issues.

But depending on the intended purpose of the undertaking, a more complex or even a
simpler conceptual notation could be applied. One example for the latter one is shown

27

2. Basics and Related Work

Figure 2.4: Shostack’s Service Blueprint for a corner shoeshine [Sho84]

in Figure 2.5 which is an example introduced by Bitner, Ostrom, and Morgan in their
corresponding paper [BOM08]. In this model, the action flow within a specific area is
not represented explicitly using lines connecting the activities. It is illustrated in a more
simple way using only a single dimension of operations which do not inherit a more
complex routing like alternative paths or loops. The sequence of actions within an area
is derived from the horizontal orientation of the Blueprint. The communication flow, on
the other hand, cannot rely on such an implicit way of representation. Since the vertical
dimension of a Service Blueprint is used to display the different areas [BOM08], it cannot
be used for the illustration of sequential dependencies. For this reason, Bitner et al. used
solid arrows to indicate this concept. The direction as shown in the diagram indicates
the source and the target of a specific communication process.

Another simple approach that is in a way similar to the last one, is used by Christopher
Lovelock and Jochen Wirtz. Within their book, they also rely on the horizontal dimension
of the Blueprint to indicate the straightforward sequence of the actions within their
corresponding area [LW11]. To indicate the communication that occurs along the
interfacing segmentation, filled triangles are applied to the top and/or bottom side of
the activities. Again the direction illustrates the source and the target of the flow. This
approach is even simpler as the one applied by Bitner et al., since even for this part of the
model, traditional arrows are not applied. Only when it comes to the representation of the
IT infrastructure, additional lines are added to the diagram. As a result, the model looks
very organized and comprehensible. But naturally, this way of displaying a service has
some strong limitations and does not work for every purpose. If it is necessary to display
more complex sequences or show a more detailed service process, the chosen notation
may have to be extended as well. As it is probably with all graphical representations, to
a degree there might be a trade-off between the possibilities and the comprehensibility of
the created model.

An observation that has been made during the review of the literature is that of course

28

2.3. Service Blueprints

Figure 2.5: Service Blueprint for an overnight hotel stay [BOM08]

depending on the intended purpose of the displayed model, a simpler or more complex
notation has been chosen. As an example, again the work of Christopher Lovelock and
Jochen Wirtz can be mentioned. Along with their explanations targeting the general
concepts of Service Blueprints, they also addressed the topic of self-service technology
(SST). During their examinations they illustrated the processes of an e-banking service
using this modeling methodology as shown in Figure 2.6 [LW11]. At this point, it can
be seen that for the more complex use-case they applied a notation that is similar to a
classical flow-chart including start- and endpoints of the process as well as alternative
paths (i.e. customer decisions). Additionally, the authors used markers to indicate
potential waiting and fail points.

Another example of a more complex approach concerning the notation can be found
when looking at the article of Arash Shahin which was published in the year 2010 in
the Journal of Management Research [Sha10]. The author examined the method Service
Blueprinting to target critical service processes and also included a case study describing
a four-star hotel. During his examinations concerning the basic concepts and notational
representations, he came up with the suggestions as shown in Figure 2.7. Like other
authors, he recommends the use of start and end nodes with the intention to strictly
specify the initial and the final actions that are executed during one iteration. Looking
at the sequence itself, besides the common quads indicating the activities, he also lists
other graphical concepts that can be used within the specific areas. The first one on
the list is the Decision Point and enables the designer to incorporate alternative paths.
Additionally, the Input/Output node is used for actions where objects carrying information
vital for the service execution are exchanged between the agents. The last one on the

29

2. Basics and Related Work

Figure 2.6: Service Blueprint for a self-service internet-delivered banking process [LW11]

Figure 2.7: Suggestion for the notation of Service Blueprinting by Arash Shahin [Sha10]

list is called Documentation and Report and indicates activities that need to be carried
out during the process to either capture required data for the organization or pass on
information to other instances. In addition to these concepts, once more the use of failure
and waiting points are suggested.

Despite the extent and complexity of the chosen notational concepts, every Service
Blueprint illustrates the action and communication flow between the various parties
of the service execution [Sho84] [KMJ15] [BOM08]. The participants or agents inherit
specific roles and functions (e.g. customer, front-desk staff) within the overall process

30

2.3. Service Blueprints

orchestration. To be able to assign the actions corresponding to their affiliation to the
individual actors, the areas as a result of the line separation are used [KMJ15]. Their
description is typically indicated on one side of the canvas [BOM08] [Lov14].

Once the service process itself is properly represented by the designed Blueprint, it is time
to add the physical pieces of evidence that occur during the execution phase. Looking
again at the literature at hand, one can observe that tangible elements are typically
displayed as simple quads or similar objects assigned to their own area located on top of
the model canvas [Sho84] [BOM08]. When it comes to the more simpler representations
of process flows, the pieces of evidence are simply vertically aligned with the actions that
define the context of its occurrence [LW11] [KMJ15]. But when it comes down to more
complex orchestrations probably the use of additional graphical links using lines could
be applied [Sho84].

At this point, the core concepts common within the literature including their notation
were discussed. Of course, when the purpose of the modeling project demands additional
mechanisms, the basic methodology of Service Blueprinting may be extended as well
as their graphical representation. The upcoming chapter shall summarize the potential
benefits as well as the shortcomings that might occur while applying this tool-set.

2.3.5 Benefits and Shortcomings

During the previous sections of this chapter, the nature of the modeling technique Service
Blueprinting including the most common concepts and corresponding graphical notations
was discussed. This next part is dedicated to emphasize the reason why this methodology
is used in the first place. To do so the benefits for one’s organization while applying
the tool-set shall be examined. Additionally, there is also the need to have a look at
the shortcomings and weak-points that, after all, limit the applicability of the approach
in its basic constellation and may be opportunities for future improvements. These
observations shall conclude the section and form the bridge to possible enhancements
and combination of the observed concepts.

To begin with, it should be noted that Service Blueprinting is considered as one of
the most widely adopted development approaches when it comes to the area of Service
Design [KMJ14]. Besides the fact that it is rather simple to apply in its basic versions,
one of the most important reasons for its popularity is the strong customer focus of the
overall approach [Sho84] [KMJ14] [BOM08]. As already explained, the whole service
orchestration is designed and captured while taking the customer’s point of view of the
value generation. This characteristic encourages the persons involved in the model’s
creation to abstract from their traditional and organizational point of view and observe
the intended process and its context from the end-users perception.

In general Service Blueprints help the organization when it comes to the gathering of
initial ideas and the development while adding all necessary activities and operations
as well as the linked physical pieces of evidence that are perceived during the execution
phase of the service [BOM08]. Afterwards, the results of the design process may be

31

2. Basics and Related Work

used as artifacts subject to the documentation of the service. Furthermore, due to the
graphical nature of the methodology it also can serve the communication of the ideas
and constellation of activities [BY05].

When it comes to already existing services, the methodology can be used to analyze the
nature and characteristics of the offering and provide the designers with valuable insights
into the processes as they are executed in real life [SDSB09]. Again the customer’s point
of view is a critical aspect of the model’s value. Once a service is put in place and
applied over a longer period of time, it is often necessary to perform minor changes and
adapt the mechanisms to new circumstances and requirements (e.g. new law concerning
documentation, special demands of important customers) [Lov14]. In reality, these
amendments are often implemented without reviewing the whole service offering since
such an undertaking would result in extensive costs. But this also may promote situations
where a once well-designed process inherits characteristics that are not satisfying to
the customer anymore and therefore negatively influence the perceived value. To get
the undertaking back on track, Service Blueprinting can be applied to map the current
situation from the end-users perspective, identify the weak-points and critical sections in
general [BOM08].

Using this analysis as a starting point, Blueprinting can also be applied to determine
opportunities and therefore help to enhance the service at hand [Lov14]. Depending on
the nature of the detected flaws, new concepts, mechanisms, and technologies may be
applied to not only even out the negative aspects that were observed, but furthermore,
increase the perceived value and create innovative process constellations. Since one of the
most important things, when it comes to maintaining the organizations market position,
is to come up with unique ways of approaching the underlying topic, foreseeing changes
within the customer’s demands or at least timely align the chosen methods with these
requirements, this characteristic of Service Blueprints surely contributes to its success.

Typically, in comparison to other process-oriented areas, services design itself is not
well supported by structured modeling approaches [DRK16]. Due to the significance of
services for the success of a modern company, it is important to construct and conserve
the planned offering in a more structured and comprehensive way [Sho84]. The fact
that Blueprinting is a graphical representation of the concerned processes, makes it
suitable for this task. The use of a modeling approach consisting of a flow-chart notation
enables the designer to capture the whole execution phase of the service. Exactly this
characteristic, along with the fact that this kind of methodology is widely adopted
throughout various domains, makes the Blueprint to an important artifact when it comes
to the communication of one’s intentions. The freedom that is inherited by the approach
due to the lack of a fixed standardization contributes to its applicability within more
creative contexts.

The next advantage that shall be noted at this point was already addressed within the
chapter concerning the design process of a service and goes back to the 5 principles
mentioned by Stickdorn [Sti16a]. It describes the fact that service design and therefore
also Blueprinting strives towards a more complete illustration of the whole situation. Not

32

2.3. Service Blueprints

only the knowledge of one domain, but rather of all areas of expertise that are directly
involved or at least influence the value generation later on have to be integrated. Once
more the property that the customer’s point of view is a key aspect of the methodology,
contributes to the fulfillment of this demand since after all the end-user’s expectations
are vital to the success. Of course, to be able to meet this requirement, the knowledge of
the various participants and areas have to be gathered and integrated into the model.
Service Blueprinting supports this aspect because it allows its design process to be carried
out in a collaborative way [Sti16a]. An example would be the application using a set
of workshops where all the parties representing the specific groups within the domain
have the possibility to influence the final outcome. This way the used methodology also
facilitates the creativity of the new service offerings and its design process, which allows
Service Blueprinting to be regarded as a creativity method [BOM08].

The last benefit that shall be noted at this point concerns the complexity of the result of
the model itself. As stated in the sections discussing the concepts and their graphical
notation, the representation of the service offering can be conducted with a varying level
of detail. It is possible to use a rather simple illustration for more general purposes
like the communication of the underlying ideas towards other parties. On the other
hand, the methodology enables the designer to increase the complexity, add additional
functionalities and so create a more holistic model. Furthermore, this distinct levels of
abstractions also entail the possibility to use the more generalized illustration as a kind of
overview and then apply a drill-down to display the sub-processes in more detail [Lov14].
This way the benefits as mentioned above are maintained to a great deal and, at the
same time, quite complex service offerings can be created, documented and analyzed.

But of course no modeling approach is perfect and so Service Blueprints also inherit some
disadvantages and shortcomings that shall be discussed in the next paragraphs.

First of all, probably one of the most significant negative aspects that is of a particular
importance for this work and which was already mentioned on several occasions within
the previous sections, is the fact that for Service Blueprinting a standardization does not
exist [LW11] [BOM08]. As a result, at the beginning of each design process, there has to
be an agreement concerning the applied concepts and their graphical notation. But of
course, this influences the comparability and compatibility with Blueprints created by
other designers and within a different context.

The nature of the method as explained also induces another disadvantage. Although
the tool-set supports the application of varying levels of detail, especially when it comes
to the combination of services with very critical processes within an organization, the
concepts, and possibilities that can be included in a Blueprint may not be sufficient to
illustrate all necessary aspects like special cases, detours, delays, exceptions, or interfaces
to other parties [MML10]. After all, to display a process with a high complexity, a more
comprehensive approach like BPMN might be required.

Furthermore when looking at the actual creation of the model itself, one can see that in
comparison to other techniques like UML, up until now Blueprinting lacks a broad tool

33

2. Basics and Related Work

support for a computerized incorporation of services. This concerns the illustration of the
process orchestration itself as well as the automatic transformation of the concepts into
other compatible languages. To target this observation, within the context of this work,
a first step shall be created and a matching towards BPMN, that entails the automatic
transformation will be examined and discussed.

Considering the benefits and shortcomings that are mentioned above, over the past years,
several authors have suggested possible extensions and combinations with concepts of
other modeling areas. The following chapter shall provide a very brief introduction of
some of them.

2.3.6 Enhancements and Combinations

Service Blueprinting is a modeling technique that is applicable to services from very
different domains. It provides basic concepts and guidelines to create representations of the
underlying processes which may inherit a varying degree of abstraction. When considering
the more skeptical literature, one of the most significant flaws of this methodology is
that the common concepts and notations which are similar to traditional flowcharting
approaches may not be sufficient to capture all necessary details and mechanisms[AF15].
This shortcoming in mind, several authors have suggested extensions and combinations
with concepts known from other modeling techniques and areas. Besides enhancements
that are directly aligned with the classical elements of a Blueprint, like the Line of
Internal IT Interaction as discussed by Christopher Lovelock and Jochen Wirtz [LW11],
more extensive constellations where also addressed. This short section shall list some of
the more interesting ones that were encountered during the literature research of this
work.

Service Blueprints and Event Driven Process Chains

The first candidate that shall be presented at this point is the combination of Service
Blueprints with Event Driven Process Chains (EPC). It was mentioned and examined
as a possibility within a paper of Jochen Meis, Philipp Menschner, and Jan Marco
Leimeister[MML10].

EPC was developed in 1992 at the University of Saarland under the lead of August-
Wilhelm Scheer in cooperation with SAP and contributes to the ARIS concept (Ar-
chitektur Integrierter Informationssysteme) [ST05]. It is a tool-set designed to enable
the designers to illustrate business processes and the corresponding workflows [Com17].
To do so the modeling language uses the two main elements Activity and Event, which,
when connected to a diagram, form an alternate succession [Bau10]. Within a sequence,
an Event is directly followed by an Activity that is performed to respond to the Event.
Afterwards, as a result, a new Event occurs, which is then once more followed by an
Activity. Such an element can always have at most one incoming and one outgoing arrow,
connecting it to the next adjacent object of the opposing nature. To display different
flows, logical operators (e.g. AND, OR) can be used to split and join the distinct paths.

34

2.3. Service Blueprints

Figure 2.8: Example for the combination of Event Driven Process Chains and Service
Blueprinting [MML10]

To overcome the notational vagueness of Service Blueprinting and introduce a com-
prehensive way to model all sorts of process flows, Jochen Meis, Philipp Menschner
and Jan Marco Leimeister investigated the possibility to apply the methodology EPC
as a flow-chart notation to illustrate the action sequences in the distinct areas of the
Blueprint [MML10]. Within such a diagram as shown in Figure 2.8, the flow of the
actions as well as the communication via the interfacing line separators (e.g. Line of
Visibility, Line of Interaction) is captured using the connecting arrows of the Event
Driven Process Chain.

As a result of their examinations, the authors came to the conclusion, that the application
of this combination supports the ability of Service Blueprints to represent service offerings
and their underlying processes. Due to the fixed notation and the strict convention
concerning the applicability of its functions, the diagram is less ambiguous and inherits a
better comparability. But due to the nature of EPC, that every sequence is displayed
while using the alternate succession of its elements, such a model of a real-world scenario
tends to get very extensive and confusing. Furthermore, the authors noted the lack of
support for displaying computerized processes (in their case support within the area of
real estates) [MML10].

35

2. Basics and Related Work

As a final remark, they suggested looking for a more suitable process modeling language
to combine with Service Blueprinting, which leads to the next constellation that shall be
mentioned.

Business Service Blueprint Modeling

The next method within this context is called Business Service Blueprint Modeling
(BSBM) and was also suggested by Jochen Meis, Philipp Menschner, and Jan Marco
Leimeister [MML10]. It basically combines the methodology Service Blueprinting with
the Business Process Model and Notation (BPMN) to create a tool-set that is suitable for
the area of modern service design with a strong focus on processes that posses a strong
dependency towards the information technology (e.g. self-service technology).

BPMN is probably one of the most widely spread and adopted modeling techniques
within the process area. It constitutes a standardized graphical language that is available
in its version 2.0 since 2011 [OMG11]. To support designers from various domains, the
approach offers a comprehensive catalog of different concepts and the corresponding
notations [Ber15]. To illustrate a process, activities or groupings of activities are connected
using directed edges representing the sequence flow. Different gateways (e.g. parallel
gateway, inclusive gateway), events (e.g. error, messaging, timer), data objects and other
elements enable the designer to describe even very complex orchestrations. Furthermore,
BPMN provides two grouping concepts called pools and swimlanes which impose specific
restrictions and functionalities. Due to the importance of this language for the overall
purpose of this work, it will be discussed in more detail in an own chapter later on.

In their paper Jochen Meis, Philipp Menschner and Jan Marco Leimeister discuss the
possibilities to combine BPMN and Service Blueprinting. The basic idea is similar to the
combination with EPC and so BPMN shall be used as flow-chart notation illustrating
the action flow within their associated areas [MML10]. The authors point out three
different ways how to use the BPMN grouping mechanisms (i.e. pools and swimlanes) for
the representations of the line separation from Service Blueprinting. The first one uses
pools to display the areas for the customer and the organization and the subordinated
lanes for the specific lines of the Blueprint as shown in Figure 2.9 (e.g. line of internal
interaction). The second alternative only relies on the application of pools and every
horizontal separator constitutes an own BPMN pool. The last suggested variation is to
use only one pool which contains the whole diagram and capture each line using swimlanes.
Due to the different functionalities of the used BPMN concepts, each alternative results
in a distinct approach towards this topic. After their description, the authors examined
the specific characteristics and applied a set of criteria to rate the variants.

As a conclusion, Jochen Meis, Philipp Menschner, and Jan Marco Leimeister stated that
probably no alternative is suited for all kinds of services that could be modeled. Only
the third approach does not provide any significant benefit for a specific area [MML10].

According to the authors, Business Service Blueprint Modeling inherits the benefits from
Service Blueprinting as well as from the Business Process Model and Notation. Further-

36

2.3. Service Blueprints

Figure 2.9: Combination of BPMN and Service Blueprinting using one pool for the
customer and one for the organization [MML10]

more, due to the capabilities of BPMN, this new modeling approach has the potential to
contribute to a possible automatic processing of the modeled services [MML10].

The downside, on the other hand, might be introduced by the complexity of BPMN itself.
A big advantage of Service Blueprints is the applicability due to the simple concepts
and the enabled straightforward notation. Now if BPMN is used for this flow-chart
part, the advanced concepts and the associated restrictions impose the requirement that
the designer has to have solid knowledge of this modeling language. But also other
stakeholders who should interpret the model at the end, need to have at least a basic
understanding of BPMN itself.

Service Blueprints and the Failure Modes and Effects Analysis

Another combination with Service Blueprinting, that is of a different nature than the
approaches mentioned before, was suggested by Pao-Tiao Chuang in the year 2007 [Chu07].
His starting point was to target possible errors within offerings of an organization. When
it comes to services in general, each orchestration has potential failures and weak-
points that influence the customer’s experience and so the perceived value. With an
increasing number of touch points and interactions with the end-users, the numbers

37

2. Basics and Related Work

of errors that might occur and negatively influence the processes are also increasing.
This results in a higher complexity of the intended service [KMJ14]. To counteract this
observation and maintain and ensure the quality, every organization strives towards the
minimization of these negative influences. For this purpose, probably the best approach
is to integrate the consideration of critical sections concerning the workflows, interactions
and communications already during the initial design steps, but also when it comes to
the later phases of the project [Sha10]. As already mentioned during the explanations of
the nature of Service Blueprinting, the methodology has the potential to support the
creators of a new service to analyze the intended action and communication flows and
detect possible weak-points. Pao-Tiao Chuang now intends to use this characteristic and
combine it with the concepts of the so-called Failure Modes and Effects Analysis (FMEA)
to extend the potential effectiveness of dealing with these issues.

FMEA was originally developed for the suppliers of the US American military. The
breakthrough of the methodology can be traced back to the 1960s when the NASA
applied it within the context of their Apollo missions. Later on, especially industrial
and automotive companies starting with Ford have adopted the concepts to ensure and
improve the quality of their work. For this purpose, FMEA proposes mainly two distinct
groups of approaches. The first one focuses on the design of the products (e.g. cars) and
the second one on the characteristics of the organizational processes. When it comes to
services, the second category is more applicable. Looking at the development processes,
FMEA tries to address possible failures already at the very beginning of the concepts. It
follows the premise that the costs of occurring errors increase rapidly along the lifecycle
of the project and so the detection and prevention should be the main priority [BK].

The method itself consists within the application of a form sheet helping to answer
questions about where errors might occur, what the extent and the impact could be,
what the consequences are and why this could happen. This questionnaire should then
be answered by a group of experts [BK]. Furthermore, Pao-Tiao Chuang summarizes the
development process using the following points [Chu07]:

1. Identify potential failure modes
2. Evaluate their causes and impacts
3. Prioritize them
4. Develop appropriate counter measures

The combination as intended by the author uses Service Blueprinting to describe the
intended service and its underlying processes. This way the potential fail- and weak-points
shall be identified and brought to the awareness of the design team. Within a next step,
the Failure Modes and Effect Analysis is applied to evaluate these critical sections and
develop suitable measurements for the prevention and correction of errors [Chu07].

So in contrast to the combinations with the Event Driven Process Chains or the Business
Process Model and Notation as explained before, this concept is of a more additive nature

38

2.3. Service Blueprints

and does not have an impact on the creation and design of the Blueprint itself. Therefore
an additional combination with an integrative approach is still possible.

Gantt Charts for Service Blueprinting

Another very interesting approach using a combination of another modeling technique
was proposed by Sabine Fließ, Britta Lasshof, and Monika Meckel at the University of
Hagen [FLM04]. Their starting point was to focus on time as a critical factor for service
processes and to develop a representation that incorporates time as a quantity into the
displayed concepts. As a result of their paper, they suggested the application of Gantt
charts as notation illustrating the sequence flows within the corresponding areas of the
Service Blueprints.

Gantt diagrams are a very popular method to model time oriented sequences of activities.
They are often applied when it comes to project management or other organizational
planning and controlling tasks. When looking at the modeling canvas, typically the
different procedures that consume time during their execution phases are located on
the vertical dimension. The horizontal axis represents the quantified time itself. For
each activity, a quad is placed on the canvas. Its vertical positioning is, of course,
depending on its affiliation with the process context. It is common that operations that
are executed initially are also displayed first (i.e. in the upper left corner) within the
diagram which so imposes a sorting. The horizontal alignment is following the point
of time when the activity starts and the length of the graphical element represents the
duration of its processing. The resulting subsequent illustration is also applied to display
the dependencies between the specific tasks and their inherent duration [Wil02].

Sabine Fließ, Britta Lasshof, and Monika Meckel used the concepts as described above
and integrated them into a Service Blueprint [FLM04]. Within this context, the time-
consuming tasks that are part of the Gantt chart represent the necessary activities for
the service and are located within the corresponding areas of the Blueprint. Again the
horizontal dimension represents the time aspect of the model and now can be used to
explicitly display the duration of the actions. The sequence and communication flow of
the model are displayed using arrows as it is common for this kind of model. Within their
conclusion, the authors note that the applicability of this approach strongly depends on
the nature of the service and the purpose of the Blueprint.

Probably the main advantage of this combination lies within the fact that a critical and
therefore very important aspect of this overall topic, the time, is explicitly displayed
within the diagram. It is not only possible to illustrate the flows and the dependencies
between the distinct activities but also to include the required duration of the tasks. A
possible downside lies within the fact, that to be able to represent quite complex and
comprehensive processes, specific functions like alternative paths, loops or exceptions
need to be included. The application of a fixed timeline on the horizontal axis might not
be compatible with these requirements [MML10].

39

2. Basics and Related Work

Figure 2.10: Correlation between the aspects of Business Process Management [KLL09]

2.4 Business Process Model and Notation
This next chapter is dedicated to the other side of the intended transformation that
shall be introduced and discussed in the context of this work. The Business Process
Model and Notation (BPMN) is a well known and widely adopted modeling approach
when it comes to the creation and design of processes. It offers a comprehensive catalog
of concepts that can be used to illustrate very complex structures and workflows. To
approach this methodology, first of all, the general topic of Business Process Management
is discussed which should provide some insights into the motivation of BPMN. Afterwards,
the historical background, the concepts, the used notation as well as the benefits and
shortcomings will be addressed.

2.4.1 Business Process Management

To grasp the definition and nature of the modeling language BPMN, it might be a good
idea to briefly address the field that can be considered as superordinated. It is called
Business Process Management1 and according to the Gabler dictionary of economics, it
targets the creation and design of business processes with a special focus on efficiency and
its integration into the organization and its culture [Spr14]. It is not a specific technology
on its own, but rather a whole management discipline [HPN08].

The necessity for the organizations to focus their efforts on their business processes with
the intent to enhance the performance and value within the context of the overall goals is
a result of the global economic development during the more recent history [KLL09]. The
fast-changing nature of the customer’s demands, the integration of new technology into
the process chains and especially the participation in a global market with many potential
competitors, are only some of the possible reasons. The breakthrough of the information

1In the literature often abbreviated as BPM. But due to possible confusions with Business Process
Modeling, it is not used within the context of this work.

40

2.4. Business Process Model and Notation

Figure 2.11: The Business Process Management Lifecycle [KLL09]

technology has enabled the development of various methods and approaches to target
these new requirements. The results are often summarized with the term Business Process
Management Systems. Figure 2.10 represents an illustration by Ko et al. targeting the
correlation between Business Process Management theory, the corresponding standards
and specifications as well as the systems [KLL09].

During their introductory paragraphs, to define the overall field, the authors refer to the
Business Process Management Lifecycle which includes the steps Process design, System
configuration, Process enactment and Diagnosis [KLL09] [vdAtHW03] as shown in Figure
2.11. So the discipline starts with the design of the intended processes, using mostly
graphical standards, but also the implementation and analysis of the underlying systems.

In accordance with these phases, a categorization of the standards that can be found
throughout the literature was suggested [KLL09].

• Graphical standards

• Execution standards

• Interchange standards

• Diagnosis standards

Of course, the first aspect is especially important for the context of this work, since it
describes methodologies to capture, design and evaluate processes within an organization
and even across its borders. Along with other standards like the Unified Modeling
Language (UML), the Business Process Model and Notation (BPMN) is also associated
to this group an is considered to be one of the most expressive and applicable ones [KLL09].

2.4.2 Historical Remarks

Within the following paragraphs, a short summary concerning the historical origin and
the developments of BPMN shall be given.

41

2. Basics and Related Work

The need for a structured approach towards the design of the organizational processes as
a result of the economic changes that occurred during the last decades was emphasized
already within the previous chapter. Along with demands targeting the comprehensiveness
and compatibility of the intended approach, another important aspect is considered to
be the possibility to apply it to the communication of the concepts and ideas between
the various stakeholders that are directly or indirectly connected to the process [MJ12].

To address these new requirements, already existing modeling techniques, as well as
methodologies specifically created and dedicated to the area of business processes, were
applied. For many of those their origin that lies within the information technology
proved to be an issue when it comes to the integration into a more cross-functional
environment. Well known and widely adopted languages like UML (more precisely UML
activity diagrams) could not establish themselves because they were considered to be
too strongly related to the IT area and not comprehensible for business users of other
domains [Flo15].

To meet the expectations of the various participants of the design process and still be able
to fulfill the demands imposed by the problems that were highlighted before, in the year
2004 the Business Process Management Initiative used different aspects and concepts of
several modeling approaches and introduced the Business Process Modeling Notation.
In 2005 this organization was merged with the Object Management Group (e.g. also
managing UML) which since then is responsible for the maintenance and development of
the standard [BPM12].

Over the years the methodology was very well adopted within the academic area and by
various companies (e.g. IBM and SAP) [MJ12]. Many authors reviewed the proposed
concepts and the possibilities of their application. But of course no approach is perfect
and so several shortcomings and disadvantages were highlighted along the way. As
a countermeasure, the second version of BPMN was released in 2011 by the Object
Management Group. Among various other improvements, also the name was changed to
Business Process Model and Notation [OMG11].

BPMN 2.0 was created with the intent to enhance the methodology’s ability to be
interpreted by the various stakeholders. Furthermore, the new version should support
formal execution semantics out of the box and provide a standardized exchange format
for its models. Although new and more comprehensive functionalities were added to
the tool-set, models that were created while using the first version are still compatible.
Among others, the possibility to illustrate processes that stretch over a network of
multiple, distinct organizations and completely new ways to display task orchestrations
were added [Whi12]. Especially this last addition was meant to cover the requirements
that are a result of modern business relationships and organizational constellations.

This second version of BPMN including the proposed enhancements and extensions
targeting the design of the process flows have to be considered when looking at the
transformation from Service Blueprints to BPMN. To have a more detailed understanding
of the available concepts, the following chapter shall discuss some of the most important

42

2.4. Business Process Model and Notation

ones.

2.4.3 The Concept and Graphical Notation

Similar to the topic of Service Blueprinting, it is also necessary to consider the concepts
and possibilities that are proposed within the context of the Business Process Model
and Notation. Probably one of the major distinctions between the two methodologies
is the fact that, in contrast to the service-oriented language, BPMN constitutes a
fixed, standardized tool-set. This means that potential enhancements and additional
mechanisms are either only relevant for the specific circumstances of its application (e.g.
within an organization) or need to be approved, integrated and released by the governing
organization, the Object Management Group. Because of this characteristic of BPMN its
concepts and the corresponding notations will not be discussed within separate sections,
but in direct correlation in the following paragraphs. Since the standardization specifies a
strict graphical counterpart that illustrates a certain mechanism or aspect of the modeling
language, a separated examination should not be necessary.

To do so, after a short overview of the general aspects and nature of BPMN, the used
concepts shall be explained in more detail. At this point, it should be noted that due
to the extent of the methodology, this chapter will focus on elements, mechanisms, and
functionalities of the language that are considered as being relevant for the intended
transformation of this work. The Business Process Model and Notation within its current
version 2.0 that was released in 2011 will serve as a foundation for this purpose.

The basic idea of the modeling language can be traced back to the token flows introduced
within the context of Petri Nets [Hav05]. For BPMN, these were of course enhanced
to a great degree and embedded within a very comprehensive catalog of elements and
mechanisms. The core of BPMN is constituted by the techniques targeting the illustration
of processes inheriting a varying degree of complexity. As already mentioned before, with
version 2.0, it is also possible to design orchestrations including multiple organizations.
The elements embedded within the resulting diagrams reach from simple tasks executed
by human or mechanical actors to digital artifacts. Also a multitude of other functionali-
ties that allow the creation of complex process flows are included within the standard.
Another aspect that was introduced in 2011 as a member of the BPMN family is the
new diagram type Choreographies. These provide a different notational approach than
the Collaboration Diagrams and strongly focus on the sequence of interactions [Whi12].
Within the literature, also a distinction between a core set of functionalities and an
extended one has been made [KMJ14]. While the first one group’s elements and mecha-
nisms that should allow the methodology to be applied by regular users and business
analysts, the second one has its focus on the applicability within a more technical area
that requires a greater level of complexity. Another very important aspect of BPMN,
that was already a part of the earlier releases of the modeling language is its ability to be
transformed towards execution standards like the Business Process Execution Language
(BPEL) [Whi05]. The fundamental intention is to provide an automatic generation of
other structured representations of the designed processes. Although the compatibility

43

2. Basics and Related Work

Figure 2.12: BPMN Activities [Dra]

with BPEL has been criticized in the past [ODA+09], with BPMN 2.0 this aspect was
also reviewed and improved. As a technical enhancement, each model is stored within a
well-specified XML structure that enables the processing after its initial creation.

The next paragraphs will discuss the elements and mechanisms of BPMN Collaboration
Diagrams in more detail. This type of illustration comprises the counterpart of Service
Blueprints when it comes to the transformation intended by this work.

To begin with, for the purpose of designing complex processes, BPMN offers the superor-
dinated components Activities, Events, Gateways, Data Objects, Swimlanes and Pools.
These elements and their corresponding subcategories (if present) are combined and
connected to quite complex process structures [Ber15].

Activities

As its name implies, the first group Activities contains elements that describe the execution
of specific tasks (e.g. call the restaurant) that are displayed while using quads with
rounded corners. BPMN 2.0 specifies the subcategories Tasks, Transactions, Event
Sub-Processes and Call Activities. These elements inherit different functionalities and
are graphically distinguished using their type of border as shown in Figure 2.12. The
Task for example, is probably one of the most basic and at the same time important
concepts. In its simple form, it depicts a job (i.e. a unit of work) that is executed when
the corresponding path of the process flow is selected [Ber15] [OMG11].

Each Activity element can be augmented while using a so-called Activity Marker. It
describes a set of six different graphical symbols that are placed within the bottom
of an activity and indicate a changed behavior of the corresponding element. It is
possible to apply multiple Activity Markers at the same time. An example would be the
Sub-Process Marker that indicates that the element is an aggregated representation of a
more detailed process flow (i.e. consisting of several smaller steps) and may be illustrated
using a drill-down approach. Another example is the Loop Marker that adds a recurring
characteristic to the Activity (i.e. it may be triggered more than once) [OMG11].

Similar to the previous concept, it is possible to indicate so-called Task Types. Their
notation consists of a set of small symbols that are positioned within the upper left corner
of an element. In contrast to the Activity Marker, these concepts do not change the
execution characteristics of the element but add some information about its nature. An
example could be the declaration as an User Task, specifying that the job is executed by

44

2.4. Business Process Model and Notation

Figure 2.13: Example for a compensatory BPMN Service Task [Dra]

a human user, or a Send Task which says that at this point a message of some kind is
transmitted [OMG11]. Figure 2.13 illustrates a Task element that is marked as being a
compensation (marker at the bottom) for the case that the reservation at a restaurant
has to be canceled. Furthermore, it is indicated in the upper left corner that it is designed
as a Service Task which means that a kind of automatic process is used to perform this
task (e.g. cancellation via computerized workflow).

Events

The next major concept category that shall be explained at this point are Events. In
contrast to the Activities as described above, an element of this group is not something
that is performed, but rather something that occurs during the execution of a process.
As stated in the official documentation of the modeling language, such elements are
triggered by a certain aspect or have an impact on the subsequent flow and impose a
reaction [OMG11]. Typical representatives of this category are Start and End Events.
But BPMN in its version 2.0 also suggest more complex elements like Timers, Messageing
Events, Compensation Events, Error Events and more (for a complete list please refer to
the official documentation or the summarizing BPMN Poster [Ber15]).

Furthermore, BPMN differentiates these elements according to their position within the
overall diagram. Accordingly, an Event can occur at the beginning (i.e. start), at the end
or during the process flow (i.e. intermediate). Graphically, these concepts are represented
as circles that may contain a symbol indication their specific category (e.g. Message,
Timer, Error). Simple Start and End Events are illustrated as an empty circle. The
positioning within the diagram (i.e. start, intermediate, or end) is marked using different
line types for the border of the circle as shown in Figure 2.14 and the coloring of the
contained symbol specifies if it is of a catching or throwing nature [OMG11].

Not every event category can be applied to every chronological position within the
diagram. So, for example, it is not possible to have a Cancel Event at the very beginning
of the process flow. This fact is a result of the functional differences between these
three groups. Start Events constitute the first step within the diagram and do not have
incoming sequence flows. The overall process is only executed if this event is triggered.
The complete opposite, of course, are the End Events. They are meant to conclude the
flow and do not have outgoing connections towards further diagram parts. Intermediate
Events on the other hand do not indicate the start or end of the process and should,
therefore, have an incoming and outgoing sequence flow. But due to the general nature of

45

2. Basics and Related Work

Figure 2.14: BPMN Message Events [Dra]

an event, also this type inherits the ability to influence the course of actions. BPMN 2.0
further specifies the concepts of Start and Intermediate Events according to their semantic
nature and introduces several sub-elements. For example, there is a distinction between
an intermediate event that catches a message an one that transmits it (i.e. throwing
event). A complete list of the available elements including detailed descriptions about
their nature and applicability can be found within the official documentation [OMG11].

As a final remark targeting the concepts described above it shall be noted, that some
specific Events (e.g. Message, Error) may not be placed directly on the modeling canvas,
but on the border of an Activity. This enables the designer to specify if the Event may
occur during the execution of the corresponding Activity or afterwards [Gre13].

Gateways

Taking the elements described above and connecting them with a corresponding flow
notation would already result in a representation of a valid process. But due to missing
control objects that enable the illustration of more complex sequences like the parallel
execution or alternative paths, it would be a rather simple one. Of course, BPMN
provides quite comprehensive possibilities to capture even very enhanced process flows.

Within this context, these elements are called Gateways and further propagate the token
flow mechanisms known from Petri Nets. Similar to this traditional concept, there is
the possibility to split, merge and redirect tokens to introduce more variability to the
designed processes. BPMN distinguishes seven different types of Gateways where each of
them is displayed as a diamond-shaped object as known from other modeling languages.
The specific type is once more indicated while placing certain symbols at the center of
the shape as shown in Figure 2.15 [OMG11].

The first one, the Exclusive Gateway is rather straightforward and constitutes an alterna-
tive path. When a token that is directed along the process flow, arrives at this point,
only one direction can be taken. So no duplication of the token or parallel execution is
performed. Each outgoing path of the Exclusive Gateway is annotated using a distinct
condition. Optionally it is possible to indicate a default path (specific graphical flow
notation) that is selected if none of the other conditions is fulfilled [OMG11].

In contrast to the previous one, the Inclusive Gateway is treated functionally similar to
the logical disjunction. This means that now for each path condition that is true, the
token is duplicated and passed on. As a result, it is possible that only one, multiple

46

2.4. Business Process Model and Notation

Figure 2.15: BPMN Gateways [Dra]

or all subsequent flow alternatives are executed. An optional default path will only be
triggered if no other condition is true [OMG11].

The last member of the rather traditional routing mechanisms is the Parallel Gateway. It
corresponds to the logical conjunction and describes a parallel execution of all subsequent,
connected process flows. To do so, the corresponding token that enters the Gateway is
duplicated and passed on. If the element is used to synchronize and therefore merge
multiple incoming paths, it waits until a token arrives on each of them. Only if this is
the case, a single token is passed on to the further sequence flow [OMG11].

In addition to the basic catalog that was presented within the previous lines, BPMN offers
some more complex routing mechanisms that enable the designer to illustrate a multitude
of situations. The first that shall be mentioned at this point is called Event-Based
Gateway and provides a quite different functionality. It is a point of separation where the
selection of the outgoing path is not performed by checking any assigned conditions but
rather by the occurrence of specific events. Therefore each directly subsequent element
of the Gateway has to be of an event type. Now if a token arrives at the Event-Based
Gateway it waits until one of the following events occurs. If this is the case, the token is
passed on without any duplication. This means that the remaining paths and events are
no longer valid. Another version of this routing mechanism is called Parallel Event-Based
Gateway and prevents this characteristic. It enables multiple events to be triggered and
for each one, a new token is passed on. The assumption, in this case, is that during the
overall execution of the process, all these events will occur. These Gateways can also be
used to instantiate a process [OMG11].

The last element in this category is the Complex Gateway. It is used to address require-
ments concerning routing functionalities that are not covered by the other elements [Ber15]
and enables the application of a very enhanced synchronization mechanism. To do so
the details and circumstances regulating the incoming paths are characterized using an
expression. For the control of the outgoing flow of tokens, conditions are annotated
resulting in a behavior similar to the Inclusive Gateway [OMG11].

47

2. Basics and Related Work

Figure 2.16: BPMN Pool including Swimlanes [Dra]

Pools and Swimlanes

The next concept that shall be discussed in this chapter are the grouping mechanisms
Pools and Swimlanes. Again these concepts are very well known from the domain of
other modeling languages and inherit a kind of similar functionality.

In general, the need to have such organizational elements arises out of the situation that
for real-life processes, it is typically the case that there are multiple participants involved.
These may be whole organizations (e.g. companies), single departments, human agents or
automatic entities (e.g. systems). Additionally, the designer could introduce a grouping
according to functional affiliations between the individual tasks and so encapsulate
elements with a more theoretical coherence [OMG11].

For this purpose, BPMN offers the use of so-called Pools and Swimlanes. Considering the
dependencies, the first one can be seen as the superordinated element that may contain
a segmentation. When it comes to the graphical notation, Pools are displayed as quads
that are potentially partitioned using separating lines (i.e. Swimlanes) as shown in Figure
2.16. The name of each level is typically annotated on the left side [OMG11].

The way how the designer applies these two concepts within the diagram to correspond
to the purpose is basically up to him- or herself. Furthermore, this may depend on the
specific use-case, the intention of the undertaking and the focus of the model (e.g. general
illustration of the workflow or detailed sequence of the single tasks for automation).
So correlating on the situation, one and the same process may be approached in very
different ways.

At this point, it is important to note that despite their graphical commonalities, Pools and
Swimlanes inherit different functional characteristics and therefore influence the overall
process in different ways. Looking at the superordinated element, it is basically meant
to represent a specific participant of the model [OMG11]. Therefore it encapsulates a
whole process including its Start and End Events. This means that there is no sequence
flow that passes the border of a Pool. But of course, there needs to be the possibility for
the various parties to interact with each other. At this point BPMN offers the so-called
message flow, that is intended to symbolize the exchange of information between these

48

2.4. Business Process Model and Notation

actors. It is displayed as a dashed arrow and is either connected to the border of the
grouping or to a flow object (e.g. sending task) contained within. BPMN does not
support the flow of messages between elements of the same Pool. Furthermore, it is
not necessary for the grouping to contain any process modeling elements. In this case,
the corresponding participant is illustrated as a black box where only the exchanged
information can be observed or is relevant for the intention of the BPMN model [OMG11].

Swimlanes on the other hand, traditionally do not represent whole parties but rather
functional coherent process elements. So it is possible to capture for example all operations
that are executed by a specific department within an organization. In contrast to Pools,
this concept does not encapsulate a whole process but merely a part of it. Therefore the
sequence flow may expand over multiple Swimlanes [OMG11].

When it comes to the modeling process itself, it is up to the designer to decide which
aspect should be considered as an own participant and therefore illustrated as a Pool and
which not. So for the example of an organization, it is possible to have each department
as an own entity and only use the message flow to link them together or decide to have
them within separate Swimlanes. Again, the chosen constellation should correspond to
the intent of the overall undertaking and the focus of the model itself [OMG11].

Data Objects

As already mentioned in the introductory paragraphs targeting the modeling language
BMPN, one of its initial intentions was to create an approach that enables the cooperation
between business and technical users. To meet this requirement and keep the aspects of
modern organizations in mind, the language had also to address the characteristics of
computer aided processes.

One concept that is meant to approach this issue is the application of so-called Data
Objects. Within this context the standard supports the use of a single object, a Collection
Data Objects, a Data Input and a Data Output as shown in Figure 2.17. Furthermore,
it is also possible to illustrate the occurrence of complete Data Stores. These elements
can be connected to the process tasks via Data Associations which are displayed using
dotted arrows [OMG11].

Considering the complete tool-set of the Business Process Model and Notation in its
version 2.0, the explanations provided above only cover the general aspects of the language.
It is easily possible to provide a more detailed discussion and extend it over several
hundreds of pages. When looking at the official documentation of this standard which
has 538 pages, this was probably already done to a great degree. But for the basic
understanding of the concepts that are necessary for the intended transformation of
Service Blueprints, the explanations as provided above should suffice.

49

2. Basics and Related Work

Figure 2.17: BPMN Data Elements [Dra]

2.4.4 Benefits and Shortcomings

The previous chapter had its focus on the concepts and their graphical representations
that are suggested by the official standard. All these elements and approaches enable
the designer to create quite complex and comprehensive process models. The Business
Process Model and Notation itself is very well known and adopted by the economy as
well as the academic area. But there is still the question, why this is the case in the
first place. Looking at the characteristics of the modeling language, the benefits and the
shortcomings that can be observed might offer some possible explanations. Furthermore,
when considering the intention of this thesis, it is important to be aware of the positive
and negative aspects of BPMN to be able to grasp its role in the transformation later on.
Therefore the upcoming paragraphs shall emphasize and discuss these advantages and
disadvantages.

The first point that shall be mentioned is rather obvious and is a result of the popularity of
the language itself. The motivation to use BPMN for ones process modeling tasks instead
of another approach, is quite high also simply because of the fact that many people and
organizations are already using it [Pol13]. This makes it easier to find information how
to apply the given concepts and capture certain real-world situations. Furthermore when
talking to other parties or members of the own organization, the possibility that the
created model can be interpreted by the counterpart is considerably high.

In general, the ability of a BPMN model to be used as a medium to transmit ideas and
concepts is an important aspect of this language [KLL09]. Although quite profound
knowledge about the inherent functionalities and mechanisms is required to capture a
complex real-world process in more detail, it is also possible to apply only a smaller
subset of the provided tool-set to create an abstract view and so communicate the overall
idea [Jua16]. These simpler models might be far from complete but depending on the
case at hand and the purpose of the created model, it could be sufficient to graphically
underpin a planned undertaking. Additionally, for the reader, it might even be sufficient
to only have a basic understanding of flow-charting in general and not BPMN as a specific
case.

50

2.4. Business Process Model and Notation

But these last arguments for the use of BPMN would not be that relevant for this
discussion without considering the circumstances of the development and enhancement
of this language. As already mentioned a couple of times, BPMN is published and
maintained as a standardized modeling approach. This means that it is controlled via
a centralized organization, the Object Management Group [OMG11]. Therefore, if the
given constraints towards the used concepts and their graphical notations are not violated
during the design process of a specific model, it can be passed on to other parties that
have knowledge about these concepts on their own, without the need for additional
explanations of this case. Without this unified approach, it would not be possible to
create comprehensive models of real-world processes that can be interpreted by the
respective community.

Another benefit that can be observed is related to the circumstances how the pro-
cess models can be created. Over the time a respectable number of software devel-
opers have started producing their own tools that enable the computer-aided design
of BPMN [And12] [Wik18]. Up until now these applications do not only provide the
graphical modeling capabilities, but also support the functionalities and the imposed
restrictions that are described in the official documentation. Mechanisms like Cawemo
which enable a collaborative development process were also introduced [Cam17].

One interesting aspect that is linked to the point mentioned in the last paragraph has
emerged with the BPMN version 2.0 published in 2011. Since then the modeling language
proposes a standardized XML meta structure which describes the models created by the
users [OMG11]. This means that, if supported by the chosen tool, every model that was
designed using the software generates automatically the corresponding XML structure.
It can then be used to import the model into another application or to process it in
other ways (e.g. automation, transformation). This aspect also highly correlates with
the ability of BPMN to positively influence the communication between several parties.

In general, it is probably safe to say that BPMN is a powerful modeling approach
for processes. Especial when looking at the catalog of the version 2.0 one can find a
very comprehensive set of concepts that can be used to design complex workflows and
constellations. This also induces the versatility of the language which makes it possible
to apply it on various domains and areas. A characteristic that is especially interesting at
this point is the support of computer-aided processes. As discussed in the chapter covering
the concepts and notations, the designer has the possibility to connect data-oriented
objects including their flow directly to the diagram [OMG11]. Furthermore, it is possible
to indicate if a given task is executed by a human, manually or automatically via specific
service.

The last aspect that shall be mentioned at this point concerns the ability to reuse a
given model and to transform it towards another language, whether it also belongs to
a modeling domain or serves another purpose (e.g. the Business Process Execution
Language (BPEL)) [Whi05] [YS10]. Already before version 2.0, this was an intention of
BPMN. Since 2011 however, due to the unified background structure in XML, the next
step towards this possibility has been made. At this point it should be highlighted, that

51

2. Basics and Related Work

such a transformation or automation is not without challenges or problems [ODA+09].
But within this area, BPMN provides a solid foundation for such undertakings.

But of course, this modeling approach also inherits some shortcomings that have a
negative impact on its applicability.

As mentioned before, BPMN provides a very comprehensive catalog of concepts which are
captured and described in its official documentation that is 538 pages long. Under normal
circumstances, it is not necessary to internalize every aspect that is stated in this manual.
But nevertheless, the extent of this tool-set and the inherent possibilities may induce
some barriers to begin with [Flo15]. This means that to be able to use this methodology
and apply it under consideration of the imposed restrictions and functionalities of its
elements, profound knowledge concerning the language is necessary.

Furthermore, this aspect also results in the criticism that a correct and, to a degree,
complete BPMN model of a real-world situation can get extremely complex and confusing
very fast. Of course, this is especially the case since its version 2.0.

The next aspect that was highlighted in the literature concerning this topic, is the ability
of the users (i.e. the designers) to apply the concepts and methods without the support
of a corresponding software. Due to the precise definition of the graphical notation and
the fact that each tiny symbol and even the filling of the shapes and the line type of its
borders have very specific meanings and functionalities, it is very hard and inconvenient
to use the language to create diagrams by hand. If such an approach is preferred, another
tool-set like UML activity diagrams may be more fitting for the task [WvdAD+06].

In addition to this criticism, it was also emphasized, that this very comprehensive
but strict definition of its elements may also negatively influence the freedom of the
designer [KLL09]. BPMN itself is not that flexible when it comes to the application of
its elements targeting aspects and situations in a way that it was not intended for. In
combination with the lack of usability regarding modeling approaches without software
support, BPMN is probably not suitable for cases that require a certain degree of
creativity.

The last remark concerning the shortcomings within this context targets the transforma-
tion and automation capabilities of BPMN models that was also mentioned before. In
fact, this is not so much a disadvantage but nevertheless may impose an issue when using
this modeling language for such an undertaking. Despite the theoretic possibilities that
can be achieved especially while utilizing the standardized XML background structure
of version 2.0, in contrast to the expectations that one might get while reviewing the
suggestions made within the corresponding literature, such a processing of BPMN models
can be ambiguous and quite complex [ODA+09]. The respective developers have to
consider a multitude of characteristics and aspects to be able to create a transformation
that supports and correctly interprets the very comprehensive set of BPMN concepts.

52

2.5. Comparison of Service Blueprints and BPMN

2.5 Comparison of Service Blueprints and BPMN

This section is dedicated to the comparison of the modeling languages Service Blueprinting
and the Business Process Model and Notation. As they constitute the two sides during
the intended transformation, their concepts need to be considered in context to each
other with a focus on similarities and aspects that may impose a gap when it comes
to their applicability. The findings and insights that will be gathered in the upcoming
paragraphs shall constitute the starting point of the planed matching.

2.5.1 The Comparison within the Literature

During the literature research at the beginning of this thesis, especially two publications
of Lester W. Johnson and Simon K. Milton, respectively Yahya Kazemzadeh, Simon K.
Milton, and Lester W. Johnson were found to be very interesting and helpful regarding this
topic [MJ12] [KMJ15]. Both articles focus on the comparison of the mentioned modeling
approaches with the intent to highlight conceptual overlappings and the identification of
elements that do not have a comparable counterpart on the other side.

As a reason why the authors took on this topic in the first place, they state that the
design of business processes inherits a very high importance in the daily business. Looking
at this area, BPMN and Service Blueprinting are very popular modeling techniques.
As also described in previous chapters, both of them provide different concepts and
notations which are a result of the diverse demands of their respective field of application.
While BPMN has its focus on the design of detailed process orchestrations from the
organization’s point of view, as its name implies, Service Blueprinting has the intention
to illustrate a service offering emphasizing the customer’s experience during the execution
phase. Now, of course, due to its nature, services themselves are basically a composition of
at least one process and therefore may also be represented using BPMN. In fact, because
of its increasing importance for the success of a company which is accompanied by a high
complexity, it is also necessary to take the detailed sequence flows under consideration.
As a conclusion, the authors argue that to be able to apply both modeling approaches
during the development of one’s service offerings, not only an understanding of each
methodology on its own has to be present, but also the knowledge about the correlation
between those two [KMJ15].

Now to take care of this demand, within their article Service Blueprinting and Busi-
ness Process Modeling Notation (BPMN): A Conceptual Comparison written by Yahya
Kazemzadeh, Simon K. Milton, and Lester W. Johnson, they suggest and apply the
method of conceptual evaluation to compare each set of concepts introduced by the
modeling languages [KMJ15]. Since they do not assume a specific direction for a trans-
formation as it is the case for this work, for the matching two major issues need to
be considered. At first, the authors address the question of which concepts of Service
Blueprinting can be semantically reflected while using BPMN. Afterward the same is
done for the other way around. It can be compared to the usage of a left respectively
right outer join in SQL, where always one side of the linkage is represented with its

53

2. Basics and Related Work

full data set and for the other one only those lines are shown that find a corresponding
match [KMJ15].

In detail Kazemzadeh, Milton and Johnson list 5 steps that need to be executed to be
able to come to a conclusion [KMJ15].

1. Examine concepts of Service Blueprinting
2. Examine concepts of the Business Process Model and Notation
3. Match the concepts of Service Blueprinting against BPMN
4. Match the concepts of BPMN against Service Blueprinting
5. Summarize results and derive insights

The first two points form the necessary starting point and concentrate on the assessment
of the individual concepts available within each modeling approach separately. As a
result, a fundamental understanding about the given tool-sets as well as their semantics
and applicability should be acquired. Of course, this is a requisite for the upcoming
comparisons [KMJ15].

Afterward, as explained above, in point three and four each side is matched with the
other one. To do so, for example in step three, for each semantic element that is part of a
predefined version of Service Blueprinting (necessary due to the missing standardization)
a possible counterpart shall be identified. This can lead to three different results. First
of all, it is possible that a concept cannot be represented by the other modeling language.
If this is the case, a gap has already been detected. The best case, on the other hand, is
that a corresponding element which is semantically aligned is also present on the opposite
side of the equation. If so, it can be used to illustrate the same situations. But of course
it is not everything black or white and so a third category may be needed. It applies to
cases where a specific concept is only partially covered by the other modeling approach.
At this point, it shall be noted that for a full or partial coverage of a concept it is not
necessary that this is done by one specific semantic element of the counterpart. There is
also the possibility that this is true for a combination of several distinct ones. Within this
context, it is important that during the examinations concerning a potential match, it is
not enough to determine if such a counterpart can be found, but also to which degree it
is corresponding to the target. However if it comes to a situation that an aspect can be
covered with multiple different options, the one that requires a smaller set of components
should be preferred [KMJ15].

After the compassion of both sides is completed, the final step consists of the collection
and representation of the discovered results. At this point, not only the insights are
presented which are a direct result of the concept wise examinations, but also logical
inferences [KMJ15].

To address the intended matching as discussed above in a more theoretic manner, for a
specific concept Kazemzadeh, Milton and Johnson apply the notation <ai> and for a

54

2.5. Comparison of Service Blueprints and BPMN

Figure 2.18: Coverage of concept <ai> by supportive concept Si(B) [KMJ15]

combination of several aspects <ai+...+aj>. Furthermore, they use Si(B) to indicate
elements of a modeling language that can be utilized to cover a specific concept of the
methodology under observation. Within their paper, the authors also try to visualize
their approach as shown in Figure 2.18. In accordance with the classification of the
coverage as explained above, the elements on the left side represent a full, the one in the
middle a partial and the right side is without any coverage [KMJ15].

Using this kind of formalized approach, the authors examined each concept form every
side.

2.5.2 Comparison of Concepts

This section is intended to give a summary of the findings from Kazemzadeh, Milton,
and Johnson and to provide a deeper understanding of the correlation of the individual
concepts of both modeling languages. Along the way, the provided findings are discussed
and comments about the applicability for the context at hand are added. Furthermore, the
upcoming paragraphs constitute the first opportunity to derive ideas targeting extensions
and enhancements of the concepts. These insights should aid the development process of
the transformation later on.

Coverage of Service Blueprinting

In a first step, the authors focus on the more customer-oriented modeling technique
Service Blueprinting and discuss for each semantic element if a matching counterpart
can be found within the catalog of the Business Process Model and Notation.

But to follow this approach, initially, the methodology itself and its contained concepts
have to be specified. Again, this is especially important for Blueprints since there is a
lack of standardization and therefore no predefined set is available. In comparison to the
version that was applied within the chapter targeting the Case Study, during their paper
Kazemzadeh, Milton and Johnson use a simpler notational representation of a service
that is similar to the one suggested by Mary Jo Bitner, Amy L. Ostrom, and Felicia N.
Morgan in their corresponding paper (see also Figure 2.5) [BOM08]. Nevertheless, the
most important semantic elements are covered using this basis. Examples for missing
aspects would be the indication of waiting and failure points.

55

2. Basics and Related Work

Figure 2.19: Coverage of Service Blueprinting by BPMN [KMJ15]

As a starting point for their discussions, the authors list the concepts that were identified
as being a component of the method Service Blueprinting as shown within the left side
of Figure 2.19 [KMJ15]. For a detailed explanation of these elements, please have a look
at the chapter targeting the nature and characteristics of the modeling approach.

The findings of the step by step comparison performed by Kazemzadeh, Milton and
Johnson can be seen in Figure 2.19. In general, due to the rather distinct purposes
and intentions behind the two methodologies, one can say that Blueprinting, under
consideration of the tool-set as represented above, is probably the more abstract one.
BPMN in version 2.0, on the other hand, offers a very complex and diverse catalog of
possibilities. Therefore it is not surprising, that the majority of semantic components
can be illustrated while applying this more comprehensive approach [KMJ15].

Looking at the element <Action>, which constitutes a specific time-consuming operation
that is executed by a participant of the service in accordance with the corresponding
affiliation determined by the separating lines. While Blueprinting in the form as shown
above only suggests one concept at this point, BPMN offers several different variants
of the type <Activity> that inherit different semantic characteristics and can easily be
applied [OMG11].

In addition to the coverage of this core component of Service Blueprinting, the logical
order that is necessary to display the intentions behind the service, the <Action Flow>
respectively the <Communication Flow> can also be covered while applying BPMN.
Considering the set of concepts of the more abstract modeling approach, as discussed in
the article at hand, only a very simple sequence flow is illustrated without the usage of any
alternative or parallel paths. While comparing this version with the very comprehensive
process modeling language, it is not surprising that the authors came to the conclusion
that this point can be rated as fully covered [KMJ15]. Nevertheless within the literature
also more complex routing mechanisms including decision points were introduced to
Service Blueprinting and also applied during the creation of the previous case study.
But even these can easily be covered while applying the BPMN mechanisms like the
different <Gateways>. Therefore the assumption that the <Action Flow>, as well as

56

2.5. Comparison of Service Blueprints and BPMN

the <Communication Flow>, can be covered by the <Sequence Flow + Message Flow>
of BPMN still holds.

The next concept that was listed in Figure 2.19 are the <Actor Categories>. They are
used to distinguished the different participants that can be observed while considering a
specific service. In contrast to other modeling languages, within Service Blueprinting
these categories, are of a more general nature and more or less fixed. Throughout
the literature different suggestions have been made, but the most common ones are
customers, front-stage actors, back-stage actors, support, managerial actors and IT
systems [LW11] [ZBG06]. Within the model itself, the lane separation is applied dividing
the canvas into the corresponding areas. Coming back to the comparison as done by
Kazemzadeh, Milton, and Johnson, targeting this aspect of the methodology, they suggest
to use BPMN’s <Pools> and <Lanes> since they offer similar organizational possibilities.
According to the authors, this way a full coverage can be achieved.

A very interesting issue that probably also needs to be discussed in more detail when
it comes to the design of the actual transformation later on, concerns the topic of the
different separating lines. As also explained within the chapter concerning the nature of
Service Blueprinting, a main aspect of the methodology consists in the organization of
the actions and the corresponding sequence flows while applying separators. Each line
implies a specific semantic meaning for the areas that are created between them. BPMN
on the other side offers the two distinct notations <Pool> and <Lane> to structure the
illustrated process. The authors now suggest to use a combination of these elements
to cover the separating lines [KMJ15]. However, due to the more generic nature of the
BPMN elements, there are various ways how this can be accomplished. One exception at
his point is the concept <Line of Order Penetration>. Within the context of a service,
this conceptual element is used to distinguish between actions that contribute to the
customer-oriented value generation and those that do not [BY05]. Kazemzadeh, Milton,
and Johnson argue that BPMN simply does not offer an adequate possibility to address
this issue [KMJ15]. The reason for this could be a result of the purpose of the modeling
approach. Due to its process orientation without the customer-centric viewpoint that is
inherited by Service Blueprinting, up until now this was probably not necessary.

The second concept where a corresponding supportive counterpart could not be identified
by the authors as shown in Figure 2.19, concerns the tangible objects of a service
process [KMJ15]. Within the customer-oriented modeling approach, this is an important
component due to the impact it might have on the overall value of the offering and
the customer’s experience. This aspect was also discussed in more detail during the
chapter targeting services in general. Once more this shortcoming on the side of the
process-centric methodology can probably be traced back to its purpose. Although there
do exist notational elements in the language to capture more static parts of a process,
these are designed to illustrate aspects of information technology and therefore do not
correspond well to the physical nature that would be required for this context.

When looking at the methodology that was applied during the case study of this work,
one can see that the concepts <Decision Points>, <Failure Points> and <Waiting

57

2. Basics and Related Work

Points> were not part of the notational set suggested by Kazemzadeh, Milton, and
Johnson. Nevertheless, they tend to be considered as one of the more popular extensions
throughout the literature and therefore should be taken into account during the side by
side comparison [LW11].

The first element <Decision Points> is subject to the logical order of the different
<Actions> and was briefly addressed before. It enables the designer to integrate alternative
paths into the Blueprint. Looking at BPMN, the quite variable <Gateways> are more
than suitable to cover this aspect.

The <Failure Point> is the next semantic element that was not covered by Kazemzadeh,
Milton and Johnson and is meant to indicate positions within the overall service sequence
flow, where a failure might occur that possibly influences the overall execution phase
and has a negative impact on the customer’s experience and perception of the offering’s
quality [ZBG06]. Looking at the general concepts that are available within BPMN, due
to the characteristics of the <Failure Point> in Service Blueprinting as described above,
it should match the type <Event> of the process-oriented modeling language. While
reviewing the corresponding catalog, the so-called Error Events can be found. They are
applied to a diagram to indicate that the occurrence of a potential error might start or end
a specific process, or terminate a certain activity [OMG11]. Therefore this BPMN element
should be sufficient to capture the described additional aspect of Service Blueprinting
as represented within the literature and the case study of this work. However, there
might still be an issue while directly comparing the two sides with each other. Once
more it has to be noted that, due to its purpose and nature, in contrast to BPMN,
Service Blueprinting is not supposed to illustrate the underlying sequence flow with all
its details. This can also be assessed when looking at the treatment of errors. While the
service-oriented language settles for the indication of the specific situation within the
diagram, in BPMN the designer has also to specify what happens if the situation occurs.
Without illustrating the impact of the failure and possible resolving sub-processes, the
diagram would not be complete. Therefore the process modeling language is obligated
to capture the same situation with a greater level of detail. While this is not an issue
for the matching at this point, it will definitely be a topic that needs to be specifically
addressed when it comes to the design of the transformation itself.

The final conceptual element within this context is the <Waiting Point>. In a Service
Blueprint it is used to specify positions contained in the process flow that are subject
to potential extensive waiting times [LW11]. Of course, this always has to be assessed
under the consideration of the nature of the specific task. If the action does require a
long period of time to finish in general, it does not necessarily need to be marked with a
waiting point. Only if there is the possibility that it results in a delay that exceeds the
acceptable limitations and as a result has a negative impact on the customer’s service
experience, the corresponding point should be indicated while using this label. Looking
for a match on the side of BPMN, one might be tempted to choose an element of type
event, quite similar to the issue of the failure points. Like this marker, it is also intended
to illustrate implications for the customer which are not explicitly addressed within the

58

2.5. Comparison of Service Blueprints and BPMN

Figure 2.20: Coverage of BPMN by Service Blueprinting [KMJ15]

context of BPMN. However, there is a difference when it comes to the impact on the
sequence flow itself. While a failure obviously needs to be directly handled by the process
somehow, the occurrence of waiting time has not. Therefore this aspect does not inherit
a process relevant characteristic and can be considered as merely informative for the
designers. Due to the missing customer orientation of BPMN, despite the important role
within Service Blueprinting, a possible counterpart cannot be identified.

Coverage of the Business Process Model and Notation

As mentioned above, within their paper Kazemzadeh, Milton and Johnson also discuss
which elements that are part of the official standard of BPMN in its version 2.0 can be
covered while applying components of Service Blueprinting.

Again, before starting with the actual matching process, the concepts that shall be
addressed later on have to be specified. But in contrast to the service-oriented language,
for BPMN this is an easier task due to the presence of the well defined and official
standard. The authors summary of its content can be seen on the left side of Figure
2.20 [KMJ15].

As one can see, while looking at this direction of the comparison, the resulting degree
of overall coverage as displayed at this point is very different to the previous section.
However, this is probably not really surprising considering the distinct characteristics of
both model languages. While Service Blueprinting tries to illustrate the general sequence
flow and the most important aspects of the offering with a special focus on the customer’s
experience, BPMN, on the other hand, has the intention to describe a very detailed
representation of a process orchestration. Therefore the latter methodology naturally
needs to provide a wider variety of semantic components to capture quite comprehensive
situations.

Nevertheless, there are some components of BPMN that can be covered while applying

59

2. Basics and Related Work

Service Blueprints. The first example in Figure 2.20 is the <Activity>. It is the core
element in the process-oriented language to illustrate time-consuming operations executed
manually or automatically. It may be atomic or a composition of a finer-grained sequence
of further activities. The latter case is also called sub-process [OMG11]. According to
Kazemzadeh, Milton, and Johnson, because of the more general nature of the service
counterpart <Action>, also this varying level of abstraction can be captured. Therefore
they argue towards a complete coverage of the concept [KMJ15].

However, in version 2.0 of BPMN, there are also additional indicators which can be
applied to a task element to introduce additional semantic meaning to an activity. As
explained during the chapter targeting the concepts of BPMN, they can either influence
the execution behavior (i.e. activity markers) or specify the nature of the activities [Ber15].
Examples would be the loop marker or the send task. Considering the simpler concept
of Service Blueprinting, it seems not possible to match this semantic variety. Therefore
the full coverage as discussed by the authors is only valid for the simple task and the
sub-process.

The other two BPMN concepts that are subject to a full coverage as shown in Figure 2.20
are the <Sequence Flow> and the <Message Flow>. The first concept represents the
logical order of flow elements (i.e. activities, events, gateways) within a specific BPMN
pool. The second one captures the flow of messages between different pools. Looking at
Service Blueprinting, the sequence of the contained elements is introduced while applying
the <Action Flow> and the <Communication Flow>. But it is not possible to match
these concepts separately, due to the distinct ways how the process orchestrations are
displayed by the two modeling approaches. To overcome this issue, a combination is
applied which enables the coverage of the BPMN concepts [KMJ15].

In contrast to the <Message Flow>, its conceptual content the element <Message>, that
is transmitted along the communication between the different <Pools>, is not covered
by Service Blueprinting [KMJ15].

A very important control mechanism concerning the process flow within BPMN is the
<Gateway>. The standard of the Object Management Group (OMG) offers a set of
different versions that inherit specific routing semantics like the parallel gateway or the
exclusive gateway [OMG11]. Only when utilizing several of these options, it is possible
for the designer to capture very complex processes with a comprehensive level of detail.
Blueprinting, on the other hand, does not support such mechanisms. The very traditional
notational set as applied within the paper of Kazemzadeh, Milton and Johnson refrains
from any control object and so only allows the illustration of one possible sequence of
actions. This is also the reason why an explicit representation of the <Action Flow>
using lines and arrows is not necessary. In accordance with this observation, the authors
have marked this issue as not being covered by Service Blueprinting [KMJ15].

More complex sets presented within the literature and also the one that was applied
during the case study concerning the emergency admission, often suggest the use of
so-called decision points. Of course, these require an explicit representation of the flow

60

2.5. Comparison of Service Blueprints and BPMN

but enable the designers to display more complex services while introducing alternative
paths. This way the exclusive gateway of BPMN can also be covered. Furthermore, in
Service Blueprinting sometimes parallel sequences are illustrated using multiple in- and
outgoing paths while directly connecting the actions [Sha10]. By adding this concept,
additionally, the parallel gateway can be matched. But even with these extensions of the
base set of semantic elements, the overall topic <Gateway> cannot be fully covered.

At this point, one aspect that is part of the BPMN sequence flow is still missing. Within
the official standard, an <Event> marks a position in the process where a specific
situation occurs and has an impact on the execution. The three main categories are start-,
intermediate- and end-event determining the position within the diagram and impose a
certain semantic behavior (e.g. end-event is terminating). Additionally, it is possible that
an event is designed to throw or catch the corresponding information. Finally within
BPMN version 2.0 there are a number of different types describing the characteristics of
events which may occur in a real-world process (e.g. Error, Timer, Message) [OMG11].

Looking at the more traditional set, there is no corresponding counterpart on the side
of Service Blueprinting [KMJ15]. However, as explained during the matching of BPMN
against the service-oriented language, when the concept <Failure Point> is added to the
applied notations, for this previous matching direction the BPMN element Error Event
can be used to cover this aspect. But vice versa there are some complications imposed
by the semantic characteristics of the BPMN element. As mentioned above, an <Event>
naturally has an impact on the flow within the diagram. As a result, the model has
to provide additional paths to handle the occurring events. But a <Failure Point> as
applied within the context of Blueprinting, on the other hand, does not result in such a
model behavior. Therefore also the extended notational set does not even partially cover
the BPMN concept <Event>.

The next elements that shall be discussed at this point are <Pools> and <Lanes>.
In BPMN they are used to organize the process flows and the grouping of cohesive
tasks. While members of the first category encapsulate whole, concluded processes
that are linked with each other using the <Message Flow>, the latter one constitutes
compartmentalization within such a <Pool> [OMG11]. In general, they inherit a more
generic nature and it is up to the designer to decide which aspect of the intended
process should be captured while using these semantics (e.g. different groups within
an organization, different organizations). According to the authors of the article at
hand, this characteristic imposes a difficulty while looking for a coverage on the side
of Service Blueprints. Although it is basically possible to cover a BPMN segmentation
while utilizing the <Actor Categories>, this is only possible if <Pools> and <Lanes>
are designed to match the Blueprinting categories in the first place (e.g. customers,
front-stage agents, back-stage agents). But due to the versatility of the concepts of the
process language, only a partial matching can be identified [KMJ15].

When looking at Figure 2.20 provided by Kazemzadeh, Milton, and Johnson, the concepts
that were not discussed up until now are the <Data Object>, <Text Annotation>,
<Association Flow> and <Grouping>. According to the authors, all these elements share

61

2. Basics and Related Work

the same fate and a coverage (partial or full) is not possible while applying the concepts
of Service Blueprinting [KMJ15]. This statement does also hold when using the extended
set as applied during the case study. These elements are not a part of the actual sequence
flow within the process and therefore do not have any impact. Of course, they share
the same context and are associated to specific points or elements, but for the execution
itself, they do not impose any constraints.

Conclusion

After the application of the method of conceptual evaluation as done by Kazemzadeh,
Milton, and Johnson and discussed within this section, it is probably safe to say, that the
Business Process Model and Notation is more capable to cover the concepts as introduced
within Service Blueprinting in contrast to the other way around. The reason for this
observation can be found within the fact that BPMN (especially in version 2.0) simply
offers a wider variety of concepts that also inherit more generic characteristics (e.g. pools
and lanes) which allow them to be applied on very different process situations and under
distinct intentions. Service Blueprinting, on the other hand, is meant to create a graphical
illustration of a service offering under the consideration of the customer’s experience.
This very strict definition results within the limited notational variety throughout the
literature. The fact that the language is often applied within cross-functional teams that
also include business experts that do not possess profound modeling knowledge, supports
the usage of a simpler set of concepts.

Nevertheless, there is a gap while using BPMN to match the concepts of Service Blueprint-
ing. This can probably be traced back to the diverging purposes of the languages. As
mentioned above, while the service-oriented approach is utilized using the customer’s
point of view, BPMN has the intention to model processes considering the providing
organization including a special focus on information technology.

The insights that are a result of this conceptual comparison, provide the first possible
points of combination between the two domains in respect of the intended matching.
Within the upcoming chapters, this knowledge shall be used as a basis and further
developed towards possible transformations.

62

CHAPTER 3
The Case Study

A core aspect of this thesis consists within the examination of the applicability of the
intended transformation of Service Blueprints towards the Business Process Model and
Notation. Considering this goal and the scientific questions that were listed during the
introductory chapter, it is simply not enough to only review the characteristics and issues
on a merely theoretical basis. For the modeling area, as well as many other domains, it
is true that within this context, the connection to real-life challenges and the ability to
address those essentially contributes to the quality of an approach.

So to be able to target the transformation according to these demands, at this point a case
study shall be introduced. It will be used later on as a basis to create the matching of the
concepts provided by the two modeling languages. Furthermore, in the end, the designed
model shall serve as a proof of concept while applying the prototypical implementation.

For this purpose the process of the emergency admission of a patient at a surgical ward
within an Austrian hospital will be documented. Accordingly, the next chapter will focus
on the definition of the case and the way how the necessary information was gathered.
Afterward, the case itself shall be described in more detail. As a conclusion of this chapter
and basis for the upcoming tasks, a Service Blueprint illustrating the service process
shall be created.

63

3. The Case Study

3.1 Collecting the Information
While looking for a suitable case, due to the nature of the starting point of the transfor-
mation, it was clear that a service-oriented process is needed to accurately examine the
corresponding aspects of the modeling techniques. More precisely it should be a service
flow between various agents including the direct interaction with the customer.

As classical examples, within the literature often the processes of restaurants or hotels
are used, since most people can relate to such situations and so it is easier to understand
the cases in their basic form [LW11] [Lov14] [BOM08]. Nevertheless, for this work, the
intention was to capture a more specific service, that also provides a certain degree of
complexity. To meet this requirement, after some considerations, the decision has been
made to illustrate the emergency admission of a patient at a surgical ward within an
Austrian hospital.

The background knowledge which is required to properly illustrate the case with all
its facets was acquired in cooperation with members of the organizational team that
executes the process. To do so, several discussions have been held where at first more
abstract and later on, quite detailed information was gathered. After the initial session,
the retrieved data was used to draft the first rough Service Blueprint of the process.
This model was then applied as the basis for the subsequent talks and enhanced in a
collaborative approach. The final result can be seen in Appendix A.

To give the reader a better understanding of the observed service, the upcoming section
shall describe the individual steps that are necessary to process a patient within a surgical
ward when an urgent situation is determined.

3.2 The Case Description
The case itself describes a process in a hospital where a critical situation is detected that
requires a surgical response within a very limited time frame. In contrast to a planned
surgical procedure, the medical, as well as the administrative process steps, have to
be orchestrated under consideration of the emergency at hand. This means that it is
simply not possible to allow the overall sequence of actions to inherit dependencies and
characteristics that may result in longer waiting periods. Everything has to be aligned
and executed in a manner that allows the organization (i.e. the hospital) to treat the
patient in accordance with the urgency of the medical problem.

To begin with, it is necessary to explicitly define the start and the end of the process.
For the purpose of this work, the initial step consists of the situation that for a certain
patient a critical and urgent medical problem is observed. The concluding end of the
sequence flow, on the other hand, is marked by the transfer of the person in need of
medical attention to the actual surgical process. So the target of the intended model
is to capture the emergency admission of a patient on a surgical ward, which includes
the preparation of the procedure, the prior medical treatment, and the administrative
processing.

64

3.2. The Case Description

Looking at the overall service process, one can determine the following agents that
actively participate during the execution phase.

• Patient

• Nursing staff

• Surgeon

• Internist

• Ward physician

• Anesthetist

• Lab staff

• Transportation and administrative staff

• X-ray team

As described above, the assessment of a critical and acute medical problem that needs to
be treated in a surgical way defines the starting point of the sequence flow. At this point,
the patient is already present at a medical facility that performs the initial examinations.
It is not possible to enter the surgical ward directly without passing through at least the
ambulance of a hospital. In very extreme and rare cases, theoretically, a patient could be
directly forwarded by a medical doctor who runs his or her own medical practice.

Independent of the nature of the transferring institution, if a surgeon is not present
or directly available during the preliminary examinations, an external doctor has to
be consulted and informed about the case at hand. After a corresponding review of
the problem, it has to be determined if the patient takes blood-thinning medication
(i.e. hemodilution) which could lead to a life-threatening situation during the surgical
intervention (i.e. danger of bleeding out). If so, the ongoing process differs from the
nature of the compound. If it is not possible to antagonize its effect with another
medication, the surgery has to be postponed and the patient is moved to the general
ward. Otherwise, the surgical ward and the theatre are being notified about the new
case. If it is necessary that another surgeon is in charge of the task, later on, he or she is
also notified.

Now it is time to physically transfer the patient to the surgical ward. The medical report
that was the result of the preliminary examinations is passed on as well. At this point,
the process flow starts to split up since, due to the urgency of the situation, multiple tasks
have to be executed in parallel. Overall a general distinction between a path involving
the doctors and one for the nursing staff can be made.

For a better understanding of the process, the actions of the latter one will be described
first and when arriving at the concluding synchronization point, the first one shall be
explained as well.

65

3. The Case Study

After the arrival at the ward, the first step for the nursing staff is to physically assign a
bed and settle the patient in. As it is common for such medical facilities, due to its critical
characteristics, every patient is connected to monitors which are used to continuously
track his or her current situation (e.g. oxygen saturation, blood pressure, heart rate).
Along with the data that is gathered this way, also the condition that is expressed verbally
is used as a basis for the next steps. Another very important aspect within this context
is the determination of possible allergies. In fact, this inherits such a critical nature
that each member of the medical personnel that is involved (doctors and nursing staff)
asks the patient individually to minimize failures as a result of miscommunication or
misunderstandings. Afterward, the nursing staff has to decide if and which immediate
medical actions have to be performed to stabilize the patient until everything is ready
for the surgery. If there is the need for some treatment (e.g. patient is in pain), the next
step consists of the execution of the necessary steps. To administer the medication, an
intravenous cannula is used. Sometimes, if the patient gets forwarded by another hospital
ward, it is already present and can be used. Otherwise, the staff has to insert a new one.

After receiving the initial medical treatment, the patient has to be registered in the
hospital’s administrative systems. If it is the case that he or she was transferred by
another ward of the same institution, some of these steps may be omitted due to the
fact that the basic data is already present in the infrastructure. If not, the first step
is to enter the patient’s e-card. The ERP system extracts the person’s core data and
creates a new entry, which then must be completed manually. As a result, the patient’s
information is automatically transmitted to the ward’s organization system, where the
bed assignment is recorded. Afterward, a bar code corresponding to the individual can
be created. It is used to identify all upcoming documents or artifacts that will be part of
the further process steps (e.g. medical records, labeling of blood samples). As a final
task concerning this administrative work, the patient’s data and the already performed
treatment have to be entered in the wards documentation system.

At this point, the process flow continues directly at the bed of the patient, where he
or she receives a wristband featuring the previously generated barcode. The next step
depends on whether an intravenous cannula was already inserted previously to administer
pain medication or not. If the latter is the case, this task has to be performed now, to
allow the surgical team to rely on it later on. The determination if the cannula is already
present or not also influences the next activity that consists of the drawing of blood. If
it is still missing, the samples can be taken while inserting the new intravenous access.
If this is not the case, it has to be performed while using another method (i.e. winged
infusion set). The resulting vials are then sent to the lab for further examinations.

Once the samples arrive, they are subject to various tests depending on the instructions
given by the ward physician during a separate process flow that runs in parallel and will
be treated in this section later on. Examples would be the determination of the blood
clotting, amount of blood corpuscles and measurement of the electrolytes. So the activity
of examining the blood has dependencies to two distinct sequences. The results are then
sent back to the requesting station.

66

3.2. The Case Description

The next step consists of the reservation of the blood supply that is necessary to safely
perform the surgical intervention. This is only done if the internal approval has previously
been signed by the doctor and therefore the surgery is not canceled. The request is
originally submitted by the ward physician who is responsible for the initial examination
of the patient and is passed along with the blood samples. After the lab team is finished
with their tests, they prepare the blood units.

Afterward, the upcoming tasks that have to be executed, now depend on the condition
of the patient. If the case is highly acute (i.e. immediate danger to life), then the staff
directly proceeds with the last preparations for the surgery. Otherwise, there are still
some preliminary steps that have to be taken care of.

During the first one, the nursing team performs the anamnesis, where information
concerning the organizational situation is recorded. This includes questions like to which
degree the patient is autonomous and where he or she requires the support by the nursing
staff (e.g. washing). Furthermore, also more general data is gathered (e.g. contact
number of relatives). Then the patient (or his or her relatives) has to fill out some
administrative forms as a legal requirement (e.g. disclaimer of liability). Once this is
done, and an electrocardiogram (ECG) was not already taken before within the context
of the initial clinical record, this should be done now.

Afterward, the patient has to change into the surgical clothing and remove any jewelry,
prostheses (especially dental) and piercings. If the case at hand is highly acute, the next
step consists of filling out the checklist as a necessity for the upcoming surgery. If not,
the patient is given a sedative medication (e.g. Dormicum) as a preparation for the real
anesthesia that will be administered during the first phase of the surgery.

Now a point is reached, where the subsequent processes can only be executed if all pre-
ceding tasks are completed. As stated before after the patient was physically transferred
to the surgical ward, the actions performed by the doctors and the nursing staff run in
parallel. The latter ones were already explained above, but the other category is still
missing.

When the patient arrives at the ward, the internist checks if the initial clinical report is
up to date and sufficient. If not he or she organizes additional examinations like an x-ray
or blood tests. After all the results have been received, the decision has to be made if the
surgery should be performed or not. The reason for a cancellation could be that, with a
high probability, the patient would not survive the intended procedure. But if the doctor
decides in favor of the intervention, he or she has to sign the internal approval.

If during the initial examinations it came out, that the patient takes a blood-thinning
substance that needs to be antagonized, a corresponding medication is administered at
this point. Afterward, the sobriety is determined as a prerequisite for the safety of the
surgery. Another aspect within this context concerns again the identification of possible
allergies. As already noted above, this is a point that has to be performed by every
medical agent in the process, to approach this critical aspect as carefully as possible.

67

3. The Case Study

Another topic that has to be targeted, is the preparation for the anesthesia later on.
Therefore, the doctor in charge gathers and records the physical data like height and
weight. This is necessary to correctly adjust the medication. Now the patient has to be
informed about the upcoming anesthesia as well as the actual surgical intervention. As a
result and legal requirement, a written confirmation and allowance has to be signed (one
for each part).

At his point, all preceding processes should be completed and there is again the question
to which level the case is acute. In dangerous situations, the patient is directly transferred
to the surgical theatre for the intervention. Otherwise, depending on the sobriety of
the patient that was determined by the anesthetist, the surgery is set on hold until an
appropriate level is reached.

The last activity that constitutes a part of the overall service process is described by the
physical transportation of the patient into the operating room.

3.3 Creating the Service Blueprint

The case information as described above was used to capture the overall service flow
in a Service Blueprint. As previously indicated, the first model was created after an
initial talk and then extended to a great degree during ongoing discussions. Even during
the phase of writing this chapter, several additional aspects of the process seemed to
require further examinations and therefore were added later to the case description and
the corresponding model.

The first ideas for the model itself were captured simply using pen and paper. But of
course, this approach has some limits when it comes to action flows that have more than
a couple of tasks and need to be reworked a number of times. So for the further creational
steps, a computerized method was necessary to aid the design process. After looking
at several available tools, due to the provided freedom when it comes to the notational
diversity and the applicability of the software within the context of the prototypical
implementation which will be discussed later on, the diagramming platform Draw.io of
the equally named provider has been used[Dra]. In accordance with the fact that Service
Blueprints do not follow a fixed standardized set of concepts, the tool provides a very
high degree of variability during the creation of the model.

Nevertheless, of course, it was necessary to agree on a fixed notational approach at some
point. So to illustrate the service elements of the emergency admission of a patient at
a surgical ward within an Austrian hospital, the elements as shown in Figure 3.1 have
been applied. As one can see, the core elements Action, Decision point, Sequence flow,
Start point and End point are similar to the more classical flowcharting as presented
throughout the literature. The markers for the Failure point and Waiting point however
are represented as suggested by Christopher Lovelock and Jochen Wirtz [LW11], but
with the distinction, that each element is directly associated to a specific Action. This
should make it easier for the user to identify the corresponding positions in the model.

68

3.3. Creating the Service Blueprint

Figure 3.1: Graphical notation applied for the case study [Dra]

Another distinction to the more traditional Blueprints as presented in the literature is
the linkage of the Tangible Objects. Very often they are simply positioned within their
corresponding lane without any explicit association. This is fine for smaller Blueprints,
but in case of more comprehensive ones, the assignment without some kind of indication
is not so easy anymore.

When it comes to the lane separation, within the literature a number of different possible
lanes and resulting areas have been proposed [Sho84] [BOM08] [FK04]. As stated within
the chapter targeting the concepts of Service Blueprinting in general, depending on the
intention of the modeling approach, the situation at hand and the available knowledge of
the model designers, not every lane has to be applied. Therefore, for this case study, a
lane separation as has been introduced, dividing the canvas into the following areas.

• Physical Evidence
• Patient Actions
• Front-Stage Interactions
• Back-Stage Interactions
• Support Processes
• IT Elements

During the design of the chosen service case, two main diagrams have been created to
represent the required processes. Besides the detailed version, also a more abstract model
has been developed to be able to provide a simpler overview. The resulting Blueprints
illustrating the service process as described above can be seen in Appendix A, along
with the transformation result of the former one. The Service Blueprints will be used
as a conceptual basis for the upcoming discussions targeting a possible transformation
between the two methodologies.

69

CHAPTER 4
Development of the

Transformation

This chapter and the contained sections will form the core element of the thesis. After
the examinations of the two transformation sides, Service Blueprinting and the Business
Process Model and Notation (BPMN), it is now time to focus on their combination.

But of course, like everything else in life, this undertaking is definitely not a straight road
and distinct paths can be taken to reach the intended goal. That said, not every possible
way or solution provides the same utility. This means that to increase ones chances to be
able to come up with a satisfying resolution, its development has to be well planned and
elaborated.

For the context of this thesis, as an implication it is not enough to look upon each side
separately, but one has to consider also the commonalities and differences of the two
languages when compared with each other directly. The insights that were gathered this
way in combination with the basic information, may than be used to design a possible
approach. But this would entail the risk that one becomes fixated with the new solution
at hand and do not consider other possibilities that could overcome the limitations
that are imposed with a very high probability. So to prevent this issue, it might be
better to think about and consider several approaches and examined their characteristics,
advantages and disadvantages for the users as well as the created models. Doing so might
provide the necessary input to make out one solution that fits the intended purpose best.

In accordance with the demands as explained above, the next topic to be discussed is
the actual transformation while taking the insights that were gathered in Chapter 2
into account. Along the way, several different partial approaches shall be explained.
Afterward, their characteristics will be discussed and a recommendation for one single
overall solution shall be given.

71

4. Development of the Transformation

4.1 Designing the Transformation
Within this chapter, the process of transforming an existing Service Blueprint into a
corresponding model of the Business Process Model and Notation will be developed. To
do so, the chapters targeting the two methodologies individually as well as the comparison
between them that was discussed in the previous chapter shall serve as the theoretical
basis. To be able to relate the specific concepts that are drafted while addressing this
issue to the domain of its application, the model created within the context of the case
study will serve as a practical example.

After outlining the preconditions that are necessary to start with the conceptual de-
velopment, possible solutions and variants for the element-wise transformation will be
discussed.

4.1.1 Theoretical Considerations targeting the Area of Model
Engineering

Before the actual transformation will be targeted as the main subject of the ongoing
discussions, this section shall serve as a remark concerning the classification of the planned
undertaking within the domain of the scientific area of model engineering in general.

Theoretical Basis

First of all, a model can be considered as an abstract representation of a real-world
phenomenon. For example, this could be a specific object (e.g. a car), a mechanism (e.g.
automaton) or a dynamic system (e.g. service process). According to its nature, a model
can be categorized as being a static or dynamic representation. Overall, they are necessary
to cope with the vast complexity of reality and, as an implication, every aspect that can
be seen as an artifact of such (e.g. process flows within an organization) [BCW12].

Model engineering, as seen within the context of information technology and especially
software engineering, has the creation and processing of these abstractions as a main
objective. Among others, the core aspects are the fast technological progress within this
domain as well as its dissemination throughout our daily life that makes it necessary to
come up with concepts that enable a corresponding development. Along the way, an
important part concerns the validity of the assumptions made and, in general, the final
abstraction [BCW12].

One area in this field of study also targets the transformation of a specific model. Within
this regard, according to Marco Brambilla, Jordi Cabot, and Manuel Wimmer, the
following dimensions can be distinguished [BCW12].

• Horizontal vs. vertical
• Endogenous vs. exogenous
• Model-to-text vs. text-to-model vs. model-to-model

72

4.1. Designing the Transformation

Looking at the first aspect of this list, it should be noted that while reviewing a real-world
phenomenon using a model, the way how this is done is subject to a specific level of
abstraction. So, for example, it is possible to create a representation of an organizational
process with a different degree of fidelity which ranges from vague orchestrations of
rather general procedures to exact constellations including expected timings, possible
delays, and detours. In this regard, it is possible that the method that is applied to
create the different levels of abstraction is the same. However, this does not have to be
the case. Either way, if such representations with different natures should be created
(e.g. drill-down), a corresponding transformation that converts the corresponding models
between the layers seems advisable. Reasons for this are the maintainability of the
situation in general as well as the efficiency during the model’s creation. Concerning this
first point shown in the listing above, such a conversion corresponds to the category of a
vertical transformation. Thinking about a more practical example from the domain of
software engineering, this kind of operation is performed between the representations of
platform independent (i.e. neglecting the exact technical details) and platform-specific
models (i.e. including the technical details). Accordingly, a horizontal transformation is
the conversion of two model with a similar level of abstraction [BCW12] [Pol04].

The next issue is about the differentiation between endogenous and exogenous transfor-
mations. As indicated above, for a use case it is possible to apply very distinct tool-sets
and methodologies. When thinking about the way how a specific conversion could be
implemented, for a given source model, it is possible to target a result that is built up
while using the same language or a different one. Accordingly, the first option is called
endogenous and the second one exogenous. Going back to the last paragraph, the four
categories can be combined to classify a specific approach. So for example, considering
a vertical transformation there is the possibility to perform the conversion within the
domain of the same modeling language and so create a model similar to the source, but
with an increased level of detail. On the other hand, if a horizontal approach is chosen
while maintaining the given methodology, the result inherits the same level of abstraction
but may provide significant changes within its structure. A possible goal for this latter
approach could be the improvement of the model’s quality [SA16] [Men13].

The last category that was listed above, concerns the distinction of the transformations
according to the nature of the source and target structure. In general there are the
major classifications text and model. Whilst the model-to-model conversion describes
the creation of target model inheriting a different structure while taking another model
as a source, the model-to-text processing focuses on the generation of textual artifacts
like program code. The last remaining option in this regard represents the other way
around [BCW12].

However, these three dimensions are not the only base characteristics that can be
applied to categorize a given model transformation. According to Marco Brambilla,
Jordi Cabot, and Manuel Wimmer, the cardinality of the direction of the conversion
can be taken into account as well. Probably the most straightforward approach is
the 1-to-1 interpretation which takes exactly one source model and creates a single

73

4. Development of the Transformation

output representation. Additionally, it is possible to have a 1-to-N, N-to-1 or a N-to-M
transformation, which either uses the input as a basis for multiple targets, merges several
sources to generate one goal state or consists within a combination of both [BCW12].

The last grouping terminology that shall be mentioned in this context and also was elab-
orated by Marco Brambilla, Jordi Cabot and Manuel Wimmer targets the differentiation
between out-place and in-place transformation strategies. The basis for this character-
ization is the handling of the source model. Thinking about a processing mechanism
bound to the generation of a specific target, it is either possible to create a completely
new model that fits the requirements and leave the original one untouched or alter the
source accordingly. After the second alternative, the initial state of the transformation
input is no longer available. Of course, both strategies have different advantages and
disadvantages and the preference heavily depends on the actual case at hand. However,
going one step back to the dimensions that were listed above, the in-place transformation
should probably be considered mainly within an endogenous undertaking [BCW12].

Classification of the Transformation of Service Blueprinting towards BPMN

The previous paragraphs were focused on the discussion of the terminologies that enable
the theoretical classification of approaches targeting model transformations. The next
task is dedicated to the application of the corresponding aspects on the undertaking that
constitutes the core topic of the upcoming chapters. As a result, the intended concept
and mechanism will be classified with respect to the domain of model engineering and
the field of study that may benefit from the findings made within the context of this
work will be characterized.

To begin with, the first step shall consist of the application of the three dimensions listed
in the initial part of the last section. Targeting the differentiation between the horizontal
and vertical transformation, the planned conversion can be considered as a member of
the latter one. Although Service Blueprinting, but BPMN as well, can be applied on
cases with the intention to maintain different levels of abstraction, in general, due to the
smaller set of notational concepts of the service-oriented language, it tends to inherit fewer
details than the corresponding counterpart. Accordingly, the planned transformation
uses a model with a higher level of abstraction and generates a more detailed version
within another methodology that shall than be used to further specify the representation.
However, at this point, an aspect shall be considered that occurred during the actual
development of the prototypical implementation. While creating the graphical BPMN
representation of the target model, it was necessary to preprocess the Service Blueprint
source to be able to avoid conflicting situations afterward. For a detailed discussion
please have a look at the Sections 5.6.3 and 5.7.2. The goal of this step is to retrieve
a Service Blueprint representation conform to the determined notational concepts, but
with amended graphical components. Considering the current dimension, this step can be
considered as a horizontal transformation since the level of abstraction does not change
at this point.

74

4.1. Designing the Transformation

The next dimension focuses on the nature of the methodologies used for the source
and target models. This point is rather obvious for the main conversion and since the
intention is to transform a given Service Blueprint into a BPMN model, the undertaking
corresponds to an exogenous resolution. However, considering the preprocessing of the
source model, both sides of the mechanism refer to the same modeling language. Therefore
at this point, an endogenous approach can be assessed as well.

Moving on to the last point mentioned within the listing, the differentiation according
to the type of the source and the target, the transformation of Service Blueprints into
BPMN clearly belongs to the area of model-to-model conversions. Looking once more
onto the graphical preprocessing, this statement still holds.

As discussed above, besides these dimensions, there is also the possibility to take the
cardinality and the applied strategy into account while thinking about the classification.
Considering the first aspect, for the actual transformation as well as for the mentioned
additional processing step, the intention is to read in a specific source model and create
exactly on output representation. Accordingly, the planned transformation can be
considered to be a 1-to-1 conversion.

Moving on to the second aspect, the distinction between out-place and in-place trans-
formations. When applying this classification to the mechanism developed within this
thesis, once more there is a difference between the two modeling steps. First of all,
the graphical pre-processing consists within an amendment of the original source model
without creating a new one. Thinking about the definitions mentioned above, this
pre-processing can be seen as an in-place transformation. The core component, on the
other hand, creates a BPMN representation from scratch and does not alter the given
input. Therefore, this step belongs to the area of out-place conversions.

After this theoretical considerations, the upcoming chapters will focus on the actual
design and implementation of the prototypical transformation between Service Blueprints
and BPMN.

4.1.2 Starting Points

Looking at the target of this chapter, the general aspects, and components that shall be a
part of the final result need to be specified. Of course, the main methodologies are Service
Blueprinting and the Business Process Model and Notation. But as mentioned in previous
sections, the actual version respectively the contained set of semantic elements that is
used to illustrate the service processes at hand, may inherit room for interpretations.
However, to be able to carry out the upcoming steps in a structured and well-defined
way, the key elements need to be determined.

Considering this aspect, for the result of the transformation that will be displayed
using the process-oriented modeling language, basically several releases could be applied.
Within the context of this work, BPMN in its version 2.0 that was published in the year
2011 with its complete set of available concepts and notations shall be utilized. Of course,

75

4. Development of the Transformation

Figure 4.1: Direction of the transformation

due to the diverse level of abstraction between the two sides of the transformation, it
probably will not be necessary to apply each semantic element that was proposed within
the official standard. However, at this point, it shall be noted that for the version 2.0 no
restrictions are imposed.

For Service Blueprinting, on the other hand, this issue is different. Once more, due
to the missing standardization, no fixed tool-set can be applied, which results in the
situation that a specification has to be agreed upon before starting with the creation of
the transformation. For this purpose, it is probably a good idea to start with the best
practices and most common elements that were suggested and used in the literature.

In general the concepts Action, Action Flow, Communication Flow, Line Separation, Actor
categories and Physical Evidence need to be covered. Specifying this point, the Action
Flow and Communication Flow will not be considered within its more simple form as for
example applied by Kazemzadeh, Milton and Johnson during their comparison [KMJ15],
but in a more complex one like the process illustrated within the chapter targeting the
case study or as suggested by Arash Shahin [Sha10].

Concerning the Line Separation that is probably the most characteristic element of
Service Blueprinting, the set as discussed within the chapter targeting the concepts of the
customer-centric approach and as shown in Figure 2.3 shall be examined at this point.
As stated, these also represent the most common categorizations presented within the
literature.

Additionally, the concepts Failure Point and Waiting Point have proven to result in
valuable insights during the creation of a Service Blueprint and therefore shall also be
considered within the next steps.

Furthermore, if it seems helpful or necessary to add complementing concepts to the
overall set, of course, they shall also be addressed during the upcoming tasks.

4.1.3 Further Preconditions

Besides the definition of the applied base methodologies, another specification has to
be made as a precondition before considering the step by step transformation. As it is
probably the case for most undertakings, to be able to work towards the intended goal in
a more structured and efficient way, it is necessary to clearly specify the outcome.

In the case of this thesis, the target on a meta level consists of course within a process
model conform to BPMN version 2.0 that was automatically created out of an existing
Service Blueprint. However, up until now, besides the notational restrictions as suggested
above, no further definition describing the nature of the result has been made.

76

4.1. Designing the Transformation

Within this context, also the characteristics of the modeling language itself have to
be considered. For example is Service Blueprinting intended to provide a simpler and
customer oriented approach that shall enable the designers to focus on the overall service
flow and not so much on the details that are required to set up the actual process later
on. While considering the transformation towards BPMN, it is, of course, advisable to
take this intention into consideration. When thinking about the extension of the basic
set of concepts that could be introduced to achieve a higher rate of conformity towards
the semantic elements of BPMN, this might stand in conflict to the reasons why this
methodology was developed and is used in the first place.

On the other hand, following this demand results in the conclusion that the left side of the
transformation (i.e. Service Blueprinting) as shown in Figure 4.1 remains more abstract
than the target (i.e. right side). This means that, while applying the process on a practical
example, it might still be necessary to enhance and complete the resulting BPMN model.
Of course, if there is the possibility that a requirement of the process modeling language
can be satisfied while extending the conceptual set of Service Blueprinting with a simple
notation that does not stand in conflict with the methodologies nature, it should be
added.

While reviewing the chapter targeting the nature and especially the advantages of Service
Blueprinting, several characteristics have been identified that should be considered while
developing the final result. The first aspect within this context was already addressed in
the previous paragraphs and consists within the demand, that the approach shall still
provide a simpler notational set that enables the designers to concentrate on the actual
situation at hand. This also constitutes a condition for the next aspects that have been
observed. As mentioned in the literature, besides its function to support the designers
and the organization when it comes to the development of new services, a Blueprint may
also serve communication purposes [BY05]. This means that due to its graphical nature it
is theoretically suited to support entities while sharing these ideas and the corresponding
information. Of course, this is only possible if a conceptual set is preserved, that has
the potential to express the intended characteristics, but at the same time stay simple
enough to be understood by different individuals without requiring advanced modeling
knowledge about a specific language.

Additionally, Service Blueprinting also provides the possibility to use the created graphical
models to be used to document an idea or an already existing service process [BY05]. For
this purpose, a very important aspect consists of the conformity of the illustration towards
a common understanding of process modeling concepts and their usage. Only if this
requirement is satisfied it will be possible to a greater degree, that a model designed in the
past can also be interpreted the same way after some time. Looking at the undertaking
of this work, this means that when thinking about additional graphical elements or the
orchestration of already known ones, this should happen in a way that is conform to the
usage of similar concepts from other modeling approaches or areas. Due to the missing
standardization of the modeling language, concerning this aspect, a strive towards an
understanding in accordance with the best practice that can be observed throughout the

77

4. Development of the Transformation

literature could contribute at this point.

Another topic that entails quite similar requirements as the previous one, targets the
circumstances of the creation of a service as emphasized by Stickdorn [Sti16b]. It is
probably quite rare that within an average organization a specific service offering is
designed and developed by one person. Instead, a more collaborative approach is applied,
including agents from several distinct areas within the environment of the service. As a
result, it is the case that also persons participate in the creational process who inherit a
business expert role but do not possess fundamental modeling knowledge. Again, while
considering the result of the transformation later on, these circumstances need to be
taken into account and as a result, a methodology shall be maintained that continues to
support such an approach.

However, while considering the modeling language Service Blueprinting, also more
fundamental aspects need to be considered. As indicated above, the nature of the
methodology has should be taken into account while developing the transformation. Of
course, this is also valid for its core characteristics. Two of them, where there is the
potential risk that they are neglected while concentrating on the transformation are the
customer focus and the integration of the physical pieces of evidence. The reason for this
is, that when looking at BPMN, a deviation concerning these points can be observed as
discussed in the chapter targeting the comparison of the concepts of both tool-sets. Now
during the attempt of matching the two worlds, it shall be a part of the discussion to
decide if such a transformation is necessary to achieve the intended goal.

In contrast to Service Blueprinting, the process-oriented side of the transformation
may not face the same risks during the undertaking. The intention remains within the
generation of a valid BPMN model that can then be completed while adding the missing
details to be able to describe the service processes in a more comprehensive way. Due to
the existing and rather strict official standardization by the Object Management Group,
for this purpose it is required to keep the results within the boundaries of this specification.
If additional concepts and corresponding notational elements should seem necessary or
at least advisable to successfully transform a Service Blueprint, the conformity with the
standardization has to be taken into account.

4.1.4 Transforming the Concepts

Within this section, suggestions shall be made how the transformation from Service
Blueprinting towards the Business Process Model and Notation actually could be done.
For this purpose, it is now necessary to consider every aspect of the languages that shall
be a part of the process and examine the individual semantic elements and their potential
counterparts.

Within the previous paragraphs, the starting points and preconditions were specified that
will now be taken into consideration while approaching the step-by-step transformation
of the concepts. The final recommendation targeting the transformation shall be part of
discussions afterward.

78

4.1. Designing the Transformation

To be able to elaborate the individual parts in a more structured way, the case study that
was developed as explained in the corresponding chapter shall be utilized. But looking at
the resulting model as shown in Appendix A, as one can see, due to the real-life situation,
the overall sequence flow is rather comprehensive and complex and therefore probably
not that well suited for the development to begin with. To overcome this issue, several
partial components will be applied. Of course, to be able to cover all important aspects
of the modeling languages, it is necessary to choose subsets that provide the required
details. Along the way, these will range from simpler ones to be able to discuss the basic
elements of the modeling approach, to the combinations of several concepts allowing the
transformation of the more complex components.

The main part of this chapter shall be used to focus on the aspects that were identified as
already being a part of the tool-set of Service Blueprinting. For this purpose, the elements
suggested within the literature and especially the notations and semantics as applied
within the case study will serve as a basis. Along the way, also possible enhancements
and more complex approaches suggested within the literature shall be subject to the
ongoing examinations.

Action

The first element of the methodology Service Blueprint that has to be considered is the
Action. It represents the time-consuming performance of a specific operation carried
out by some participant of the sequence flow. Within the overall model, an Action can
be uniquely associated to a specific Actor Category that is a result of the applied Line
Separation which will be discussed later on. As presented previously, due to the varying
level of abstraction of the approach, an element of this category does not have to be
atomic in terms of process steps. Nevertheless, a drill-down functionality that allows the
designer to refine a certain point of the illustration within one model representation is, at
least within the tool-set as applied in the literature, not intended. If this has to be done,
another, finer-grained representation should be created. In contrast to other languages,
only one version of the element Action is available.

Looking at the target of the transformation, of course, the Business Process Model and
Notation offers a comparable element to capture operations executed during the process
flow. Activities are meant to illustrate operations whether they are performed manually,
automatically, by a user, or some kind of mechanism. Due to the more generic and
versatile nature of the modeling language, in contrast to Actions of Service Blueprinting,
there is the possibility to add more concrete semantic behavior to a default element using
Activity Markers and Task Types. Furthermore, the methodology enables the designer to
specify aggregated sets of Tasks as so-called Sub-Processes.

At this point, the coverage while considering the transformation, as shown in Figure
4.2, can be achieved without any problems and was also suggested by Kazemzadeh,
Milton and Johnson within their corresponding article [KMJ15]. The observation that
BPMN in general is more generic and able to support finer grained model representations

79

4. Development of the Transformation

Figure 4.2: Transformation of Actions

makes this aspect rather straightforward. However due to the simpler elements of the
service-oriented language, only the simplest form of the BPMN Activity can be supported
which is called Task. Furthermore, the Actions do not offer any additional indication of
semantics as offered by BPMN.

Action and Communcication Flow

The next concept of Service Blueprinting that shall be subject to the transformation is
the logical arrangement of the specific Actions. Within the context of this methodology,
two categories are distinguished. First of all, the sequence of operations within a specific
Actor Category is called Action Flow and can be illustrated implicitly (i.e. without
any notation), allowing only one possible path, or explicitly using arrows directing the
sequence. Additionally, the Communication Flow is used to illustrate the interaction
between the specific participants of the service. It is typically represented while applying
a standard sequence notation using arrows. If an explicit illustration is chosen for the
Action Flow, both concepts can be linked to a global arrangement of elements and so be
seen and treated as one unified flow across the diagram. Due to the resulting versatility
of this latter approach, it shall be the basis for the transformation.

BPMN on the other side also supports the explicit display of the sequence flow between
the different Tasks. With the application of Gateways, quite complex routing mechanisms
can be illustrated. In addition to this concept, also the so-called Message Flow is utilized
to display the exchange of information within a diagram. As discussed in the chapter
targeting the nature of BPMN in general, the difference between these two elements and
their applicability depends on the structure and setup of the whole diagram. While the
Sequence Flow links the elements of a specific process, possibly encapsulated within a
Pool, the Message Flow is used to transmit information between distinct processes (i.e.
different Pools).

For the overall undertaking this means that basically, it is possible to transform the Action
and Communication Flow of Service Blueprinting into the Sequence and Message Flow of
BPMN as shown in Figure 4.3. This was also suggested during the comparison of the
two concepts as discussed above [KMJ15]. However, this aspect is far from deterministic
due to the way how the different concepts of BPMN are applied depending on the
orchestration of the overall model. So in general it is possible, but strongly depends
on the way how the transformation is used to create Pools and Swimlanes in the end.
Looking at the chapter targeting the comparison, for this aspect the handling of the Line

80

4.1. Designing the Transformation

Figure 4.3: Transformation of the simple Action and Communication Flow

Separation and the resulting Actor Categories of Service Blueprinting will have a major
impact.

Decision Point

When discussing the logical sequence of the Actions as done above, one has to consider
the routing of the elements as well. As mentioned previously, if the implicit and therefore
simple Action Flow is applied, this aspect can be neglected. But when taking a version
as shown in the case study into account, at least some concepts targeting this issue need
to be addressed.

The Decision Point is one of them and represents the splitting of the path into two
or more branches. The performed selection is done similar to the logical Exclusive OR
which means that exactly one path is chosen. The conditions that trigger the respective
route are indicated at the outgoing flow notations (i.e. arrows) as it is common in
flowcharting languages. Of course, due to the creation of alternative paths, there is the
need for the illustration of synchronization points which are necessary to join the distinct
routes back together. In contrast to more structured and flow-oriented languages, Service
Blueprinting does not have the consideration of the token principle known from Petri
Nets at heart. Although the derived assumptions still hold in general, the methodology
is not built around the representation and satisfaction of each requirement. Therefore
the topic of the synchronization of alternative paths is not explicitly addressed. When
it comes to the graphical representation, this means that there is no special notation
for this point. Rather it is illustrated using multiple incoming arrows for the receiving
Action.

BPMN, on the other hand, supports quite complex routing mechanisms allowing the
designer to create very comprehensive systems. Within the context of this methodology,
the corresponding generic element is called Gateway and provides different semantic
possibilities, as explained in the chapter targeting the nature of the language in general.
One of them, the Exclusive Gateway is also intended to represent the logical XOR-
Operator. Similar to the suggestion for Service Blueprinting, the conditions for the
possible alternatives are indicated at the notation of the outgoing pathways. Looking
at the merging of the alternatives, due to the process orientation of BPMN, the official

81

4. Development of the Transformation

Figure 4.4: Transformation of Decision Points

standardization suggests the usage of an explicit notation [OMG11]. However, since only
one path is taken, no explicit synchronization mechanisms is executed in the background.

Considering the transformation of this concept, it seems to be appropriate to match the
Decision Point from Service Blueprinting with the Exclusive Gateway of BPMN as shown
in Figure 4.4. Both mechanisms describe a similar logical behavior, which leads to this
decision. One thing however that needs to be addressed, at the latest when thinking about
a technical implementation, is the differences while handling the merging points of the
alternative paths. While BPMN applies a specific notation to identify them, due to the
simpler graphical representation, Service Blueprinting only uses multiple incoming edges
for the next common Action. This may not look like a big issue, but when considering
the possibility to use other splitting mechanisms for the service-oriented language as it
was introduced within the literature [Sha10], it could be a problem. The reason for this
lies within the different semantic functionalists inherited by the synchronization points
depending on their nature. For example, there is a different process for joining paths of
a parallel execution and one for an alternative one with exclusive conditions. If a token
arrives at the synchronizing section, in the first case it waits until every other incoming
edge provides a token on their own. In the other case, this is not necessary since there
will never be a second token in this execution cycle.

Due to its practical implication, this topic shall be further discussed when it comes to
the creation of the prototype later on.

Parallel Path

The next concept that shall be discussed at this point also belongs to the context of
the routing mechanisms. As mentioned previously, besides allowing the creation of
alternative paths, also the parallel execution can be added to the conceptual set of Service
Blueprinting as done during the case study. Again, this allows the designer to create
sequence flows that are to a degree more complex and may be useful to develop service
models with a greater similarity to real-life situations.

While considering the notational set that was applied for the more abstract modeling
approach within this thesis, in contrast to the Decision Point as explained above, for this

82

4.1. Designing the Transformation

concept no explicit graphical representation is used. Instead, the splitting point within
the Action and Communication Flow is indicated using multiple outgoing edges of the
last common Action. However, the semantic behavior is quite similar to other modeling
languages and the token concept known from Petri Nets is applied. This means that when
the splitting point is reached, all outgoing paths are chosen and the contained subsequent
Actions are executed. When it comes to the synchronization of the paths, similar to the
Decision Point the next operation common to all Parallel Paths has multiple incoming
edges. Although Service Blueprinting basically does not determine the behavior of the
routing mechanisms to such a degree, this concept requires a quite clear specification at
this point. To target this issue, once more the functionality of other modeling languages
is used as a template and so when one token arrives at the synchronization point, it has
to wait until all other incoming paths are finished as well.

Looking at BPMN, due to the comprehensive set of routing mechanisms, it also inherits
the possibility to cope with the demand of parallel processing. Similar to the topic
of Decision Points, the corresponding concept is once more represented by an element
of the category Gateway. The so-called Parallel Gateway supports the same semantic
behavior as it was complementarily defined for Service Blueprinting, which means that
once arrived at the splitting point, all outgoing paths are executed. When it comes to the
graphical representation, within the official standard of BPMN an explicit illustration is
suggested using the diamond shapes known from general flowcharting in combination
with a contained plus-sign. This notation is applied for the splitting as well as for the
merging point. The functionality of the latter one is also quite similar to the systematics
as described above. When a token enters the merging Gateway, it has to wait until
further tokens arrive on all other incoming paths.

For the transformation of Decision Points from Service Blueprints to BPMN models,
the identified mechanisms of both sides as described above seem to be appropriate. The
transformation could be performed as shown in Figure 4.5. Considering the actual
splitting point, although there is a mismatch when it comes to the nature of the graphical
representation (explicit vs implicit), it should be possible to identify the corresponding
positions within the Blueprint since the way how those are handled in the service-oriented
language is only applied for these cases. But, as explained for the illustration of alternative
ways, the merging constitutes a potential issue for the prototypical implementation later
on. The concluding element of both concepts, Decision Point and Parallel Path consists of
the usage of multiple incoming edges for the next common Action. This situation prevents
the luxury that when such a point is identified in the model, it can be uniquely associated
with the corresponding concept and the inherited synchronization semantics. So to
overcome this issue, the synchronizing element has to be reviewed under consideration of
the nature of the splitting point. Depending on this insight, the fitting BPMN element
shall be selected.

The findings that will be made during the practical part of this thesis will show to which
degree this matching process can be put in place.

83

4. Development of the Transformation

Figure 4.5: Transformation of Parallel Paths

Start- and End-Point

The aspects that shall be discussed at this point, can be considered as the last elements
that are a direct representational part of the Action and Communication Flow of Service
Blueprinting. The Start-Point and End-Point are very well known concepts in the domain
of common flowcharting and are used to mark the beginning and the end of a specific
sequence flow. Within the area of the customer-oriented modeling language, in the case
of notational sets that are well suited for more abstract illustrations of services, among
other elements, these points are only represented in an implicit way, without the use of
corresponding symbols [LW11]. In these situations, it is simply assumed that the process
starts with the first Action assigned to the customer. If the general purpose of the created
model is targeting such a high-level representation (e.g. first drafts), this is an appropriate
way to design the situation at hand. However, when it comes to more detailed and finer
grained models, such an approach might not be enough and does not satisfy the demands
concerning the accuracy. To overcome this issue, within the literature, the use of explicit
Start- and End-Points has been suggested and applied within the case study of this
thesis [Sha10]. At this point, it is important to note, that along with other elements of
the flow notation as discussed above, these two concepts inherit semantic characteristics
already known from other modeling languages. This means that the Start-Point consists
within a graphical representation that has only outgoing and no incoming paths. Of
course for the End-Point it is the other way around.

Due to the intentions of the Business Process Model and Notation, the notational set
does suggest the use of an explicit indication of the beginning and the end of the process

84

4.1. Designing the Transformation

Figure 4.6: Transformation of Start- and End-Point

flow. The corresponding elements can be found within the category Event as explained
during the chapter targeting the concept in general. As such, these points occur while
considering the overall process flow and have an impact on the execution [OMG11].
Looking at the positioning of the elements which is relevant for the classification of
Events in BPMN, of course, the Start-Event and the End-Event constitute the most basic
representative of the start and end group.

For the transformation it should not be a big issue to match the Start- and End-Points
of Service Blueprinting to the basic Events of BPMN as shown in Figure 4.6. However,
a difficulty could lie in the handling of parallel paths in the service-oriented modeling
language. As explained above, there is no explicit graphical representation and the
splitting respectively the merging point is indicated while using multiple outgoing or
incoming paths for the corresponding elements. In general, due to the lean definition of
the Blueprinting approach, there is no restriction on which concepts it is allowed to apply
the specific routing mechanisms. As a result, it is entirely possible to use a Start-Point
to split the sequence flow into Parallel Paths using multiple outgoing edges. For BPMN
this is not possible since the language requires specific notational elements to indicate
these points in the diagram. So when it comes to the transformation, in such a case the
procedure will have to identify the nature of the concept and generate the appropriate
counterparts for the process model. An alternative approach would be to restrict the
usage of Parallel Paths to the Actions of the Blueprint. To provide the designers of the
models with as much freedom as possible during the phase of creation, of course, the
first variant should be preferred. However, if this appears to be a greater issue during
the prototypical implementation, the second solution could be applied.

Failure Points

Within the literature, the ability of Service Blueprinting to be used to analyze and evaluate
service processes was mentioned as a key aspect of the overall methodology [Sho84]. To
support this characteristic, the use of so-called Failure Points offers the possibility
to indicate positions within the overall diagram that may be subject to errors that
negatively influence the process execution and therefore the value as perceived by the
customer [ZBG06]. Considering the service-oriented modeling approach, these points do
not inherit any semantic characteristics and therefore do not influence the sequence flow
in any way. Instead, the basic intention of this notational element is to mark situations
that have to be addressed separately and constitute critical aspects when it comes to the

85

4. Development of the Transformation

evaluation of the offer.

Targeting this issue, for its illustration different graphical notations have been suggested
by various authors. For the purpose of the case study and in general for the context of
this thesis, an approach has been chosen that links the detected Failure Point directly
to the corresponding Action while placing a corresponding marker on the border of the
operational element.

During the discussion of the matching between the two modeling methodologies, on the
side of BPMN the so-called Error Events have been identified to serve a similar purpose
when it comes to the indication of possible failure points within the diagram. However,
possibly the biggest difference can be traced back to the observation that was already
mentioned within the first paragraph of this section, the fact that Failure Points do not
have an impact on the flow of the service itself. Due to the strong focus on the execution
phase of the process-oriented language, this does not hold for BPMN. As a result, Error
Events are elements that indicate positions within the overall diagram where an error
might occur and change the sequence flow. To satisfy the language’s demands concerning
completeness and consistency, it is not enough to use this element as it is done with
Failure Points in Service Blueprinting. To resolve such a situation it is necessary to either
use the Error Event as the end of the process or to integrate a corresponding additional
sequence of tasks.

When it comes to the core aspect of this thesis, of course, these aspects need to be taken
into account. There are several ways how to perform the transformation while applying
the insights as discussed above. First of all, considering a specific Failure Point a possible
solution could be to simply use a boundary interrupting Error Event that is fixated
on the boundary of the Activity which represents the corresponding context and is a
matching-result illustrating the Action of the underlying Service Blueprint. This way,
the BPMN model would also indicate the determined critical point within the process as
shown in Figure 4.7. However, looking at the completeness and validity of the overall
diagram, this would constitute a problem, since such an intermediate event needs to
refer to a subsequent process flow. Nevertheless, this could be a possible solution if one
considers the distinct levels of detail and abstraction of the two modeling concepts that
was also subject to previous examinations. A BPMN model that is created as a result of
such a transformation probably has to be reviewed and enhanced with more details to be
able to satisfy all demands that are imposed on a modern process model. During this
upcoming task, the responsible designer would have to think about how these situations
should be treated in case the error occurs. Due to the lack of semantic representativeness
of Service Blueprinting at this point and the fact that it might be necessary to create very
individual resolutions for different error situations, it is not possible to offer a complete
and satisfying result directly after the transformation.

But it might still be the intention to create a valid and at least a more syntactical
complete BPMN model as a result of the transformation. In this case, what needs to be
added during the revision afterward is the naming of the error case. The amendment of
the solution sequence itself, although still advisable, is more of an optional undertaking.

86

4.1. Designing the Transformation

Figure 4.7: Transformation of Failure Points (boundary interrupting Error Event)

Figure 4.8: Transformation of Failure Points (boundary interrupting Error Event with
process End Event)

At the same time, it should not result in a process orchestration consisting of a number
of BPMN elements which require some time to be changed into the actual resolution
of the critical point within the model. To do so, a possibility would be to connect the
boundary interrupting Error Event with a process End Event via a simple sequence flow
as shown in Figure 4.8. For the resulting process diagram this would mean, that in case
of the failure’s occurrence, the process has come to an end. If this does not correspond
to the intention of the designer, which is very likely, he or she has simply to exchange
the End Event with the actual resolution steps.

Another possible approach could be to design the default representation in a way that it
does not terminate the process in case the failure occurs. To do so, after the boundary
interrupting Error Event is triggered, the alternative process flow could be routed directly
to an Exclusive Gateway. This element is used to merge the regular sequence with
the exceptional one as shown in Figure 4.9. Of course, within this initial version, this
constellation would only catch the failing operation, but the execution of the ongoing
process would not be affected. Again, during the review of the transformation result, the
designer should extend these points according to the requirements of the organization.

An additional option how to implement a generic compensatory sequence flow could
be also to place the suggested merging Exclusive Gateway in front of the Task where
the error might occur, as shown in Figure 4.10. In that case, a loop is triggered which
causes the process to repeat this step until it concludes successfully. A possible downside
would be that, if the thrown error cannot be resolved without additional operations, the
execution is stuck in an endless loop.

87

4. Development of the Transformation

Figure 4.9: Transformation of Failure Points (boundary interrupting Error Event with
catching behaviour)

Figure 4.10: Transformation of Failure Points (boundary interrupting Error Event with
looping behaviour)

Waiting Points

As mentioned above, within the context of Service Blueprinting, a Waiting Point is used
to indicate a point in the service flow that may be subject to a frequent exceedance of
the operation’s time limit [LW11]. Within the context of the notational set as chosen
for the case study of this thesis, a marker similar to the one proposed by Christopher
Lovelock and Jochen Wirtz is placed on the border of a specific Action to be able to
create a direct relation [LW11].

During the chapter targeting the matching of BPMN and Service Blueprinting, the
observation was made that, due to the fact that the basic concept of Waiting Points
and the occurrence of such a situation does not have an impact on the execution of the
processes on its own, an appropriate BPMN counterpart cannot be identified.

As an implication for the intended transformation and because of the missing customer
focus of the process modeling language, it would be possible to simply neglect this point.
However, due to the importance of this aspect for the overall area of service design,
creation and maintenance, it should still be a part of the concept that has to be developed
at this point. Taking the informative nature of Waiting Points under consideration, the
flow components as suggested by BPMN like Events for example, do not constitute a
fitting match. One possibility however, could be to use BPMN Annotations to indicate
the corresponding positions within process diagram as shown in Figure 4.11. This way
the designer could decide to target such a critical aspect with additional compensatory

88

4.1. Designing the Transformation

Figure 4.11: Transformation of Waiting Points

process flows.

Line Separation

To distinguish the different areas of a Service Blueprint, a Line Separation as discussed
in the chapter targeting the conceptual set of the customer-centric modeling language is
applied. It is used to create the actor specific categories where the individual Actions
are allocated according to their nature. Additionally, it is used to differentiate between
the illustration of the Action and Communication Flow, the Physical Pieces of evidence
and IT elements. Each line is intended to represent certain characteristics that inherit
a special relevance for the overall service model under consideration of the end-users
demands.

With regard to this last statement, within their article targeting the comparison of
the concepts by Kazemzadeh, Milton, and Johnson, they argue that due to this fact,
it is necessary to consider each line and the resulting areas individually [KMJ15]. Of
course, it would be possible to transform the graphical representation as applied in
Service Blueprinting towards BPMN, but since the intention of this thesis is mainly to
concentrate on the conceptual meaning, this would not suffice. On the contrary, because
of the different characteristics, it might be necessary to use different concepts of BPMN
to be able to cover all aspects.

To satisfy this demand, the following concepts shall be subject to the upcoming discussions
targeting a possible transformation to the Business Process Model and Notation. Due to
their relevance for the overall topic, Tangible Objects will be examined later on.

• Line of interaction

• Line of visibility

• Line of internal interaction

• Line of order penetration

• Line of implementation

• Line of internal IT interaction

89

4. Development of the Transformation

BPMN, on the other hand, is of a more generic nature and hence does not offer such
predefined categorization of its elements. Nevertheless, to support the structuring of
created process models, the designer has the possibility to use Pools and Swimlanes
as separating mechanisms. As explained before, while the first concept is applied to
encapsulate different processes that exchange information via the BPMN Message Flow,
the second one organizes one specific instance while linking its elements via the Action
Flow.

To approach this issue, at the beginning it shall be discussed how the concepts of BPMN
can be utilized to capture the line separation in general. Afterward, the focus will be
on how the intended semantics of the different lines can be captured while using the
suggested variants.

Possible Variants
When it comes to the transformation of the models between the two languages, due to the
versatility and flexibility of the concepts of BPMN, there are several possibilities how the
necessary matching can be performed. At this point, the findings of Jochen Meis, Philipp
Menschner, and Jan Marco Leimeis are particularly interesting. As discussed within
the chapter targeting possible extensions of Service Blueprinting, the authors wrote
an article about how to use BPMN as a flowcharting notation for the service-oriented
language. During their examinations, they also came across this problem and identified
three variants of how the concepts Pools and Swimlanes can be used to reflect the Line
Separation of Service Blueprinting. As a result, they summarized their findings with the
following listing [MML10].

1. One Pool for the customer and one for the organization
2. One Pool per Blueprint area
3. Everything within one Pool

Looking at the first variant, the authors suggest to use two different Pools for the whole
diagram. The first one represents the customer and therefore encapsulates all Activities
and other flow elements that are directly executed or simply a part of his or her domain
(e.g. automated customer tasks). The second Pool is applied to represent the organization
and its corresponding process flows. To illustrate the Line Separation as a part of Service
Blueprinting, Swimlanes are used to further divide the two process areas. As a result, the
two major Actor Categories are explicitly captured while using two distinct processes. In
accordance with the semantic restrictions of BPMN, the Communication Flow between
them is reflected while applying the exchange of messages indicated either between the
borders of the Pools or the contained Activities. In addition the actual routing of the
processes displays the Action Flow [MML10].

Within the context of the second alternative, for each area that is the effect of the applied
Line Separation of Service Blueprinting, an individual BPMN Pool is created. Again, in
compliance with the corresponding semantic restrictions, this means that each logical

90

4.1. Designing the Transformation

subdivision inherits its own independent process flow. Accordingly, the service-oriented
Action Flow is exclusively represented while using the BPMN Sequence Flow and the
Communication Flow while using the Message Flow linking the individual processes.
This kind of illustration enables the designer to create a diagram with a strong focus
on the distinction between the different Line Separations. Additionally Swimlanes can
serve as organizational elements allowing the introduction of a complementary structure
which helps to reach a greater level of detail when it comes to the classification of the
contained tasks [MML10].

In contrast to the previous ones, for the third variant, the authors Meis, Menschner
and Leimeis suggest using only one large BPMN Pool that contains the whole diagram.
Swimlanes are then used to capture the Service Blueprint’s Line Separation. The graphical
display of the containing element is basically not necessary, although recommended for the
sake of a better understanding. Considering the Action and Communication Flow, due to
the illustration while only using Swimlanes, only one BPMN Sequence Flow is necessary.
At the same time, a corresponding Message Flow is not applicable. Targeting a finer
grained organization as discussed within the context of the second variant, it is possible to
utilize nested Swimlanes, but with the downside of a loss of comprehensibility [MML10].

As a conclusion, within the context of their article, the authors examined the three
versions under consideration of the overall case topic which is the computerized support
for services within the area of housing and living. They came to the result, that for
this domain of application especially the versions one and two are suitable. The third
one however was found to be inferior due to the missing capability to explicitly display
the classification of customer and author and the negligence of external and internal
interfaces [MML10].

In general, while reviewing and comparing the three variants as explained above, it
can be seen, that the usage of two distinct Pools, one for the customer and one for the
organization, probably provides the clearest distinction between the two major groups
of participants of a service. On the other hand, a downside exists in the characteristic
that, due to the structure, there is no explicit illustration of the communication within
the organization. On the contrary, every internal interaction between the participants is
captured while using the Sequence Flow of BPMN.

When looking at the second variant which suggests to only use Swimlanes to represent the
model structure, this strong grouping of tasks belonging to the domain of the customer
respectively the organization is no longer present. But now there is a striving towards a
more equal subdivision of the modeling canvas. Additionally, this allows to directly use
the BPMN Messages to capture the Communication Flow and the BPMN Sequence Flow
while targeting the Action Flow. Considering these observations, this second variant
seems to correspond very well to the more traditional Service Blueprinting concepts as
discussed in the literature.

The third and final version, that was outlined by Meis, Menschner, and Leimeis does
not overcome the loss of the ability to clearly distinguish between the customer and the

91

4. Development of the Transformation

organization to the degree as provided by version one. In addition, due to the missing
utilization of BPMN Pools the flow of communication and information is not explicitly
displayed within the resulting model at all. But despite these observations and although
the authors do not recommend the usage of this option when looking only on the graphical
representation, it probably constitutes the variant that is closest to a more flowchart
oriented Service Blueprint as it was applied by Arash Shahin [Sha10] and during the case
study of this work.

As stated above, to be able to further examine the characteristics as well as the advantages
and disadvantages of the suggested possibilities, the following paragraphs shall be used to
discuss the semantic nature of the individual lines that are a part of Service Blueprinting.

Line of interaction
The Line of interaction is used in Service Blueprinting to distinguish between the
customer’s Actions and the ones that are executed by the organization that provides
the service at hand [BOM08]. The operations that are allocated to the area directly
beneath this line are said to be front-stage activities and can be observed by the customer
during the execution phase. When thinking about the transformation, the resulting
model should be able to clearly represent the distinction when it comes to the association
of a specific, contained Action respectively Activity to the correct agent (i.e. customer
vs. organization). And in fact, while using BPMN Pools and Swimlanes, when applying
the correct naming for the generic elements, this can be supported. Thinking about
the desired clarity at this point, the version 1 as suggested by Meis, Menschner, and
Leimeis [MML10] probably offers the best match concerning this issue. But also the
other two options constitute valid representations. Another characteristic that has to
be reviewed at this point is the visibility of the front-stage tasks to the customer. In
Service Blueprinting this is indicated while assigning the corresponding Actions to the
respective area of the modeling canvas. This is also possible with BPMN. Additionally,
this relation can be illustrated while using the Message Flow to display the transmission
of the information directly to the customer. Due to this suggestion, when going back to
the three versions that were discussed above, option three is probably not the best choice
since there cannot be a Message Flow due to the missing application of the BPMN Pool
concept [MML10].

Line of visibility
Next on the list of separating lines is the Line of visibility. In Service Blueprinting it is
applied to distinguish between the organization’s Actions that are visible to the customer
and the ones that are not [BOM08]. In accordance with this definition, the area above
this line is called front-stage (or onstage) and the one directly below back-stage. Despite
the characteristic that the elements that belong to this second area are not directly visible
to the customer, they are executed as a direct response to the customer’s demands and
requirements during the specific situation. Again, during the transformation, it should be
sufficient to correctly allocate a specific area within BPMN and assign the respective flow
elements. Additionally, the semantic linkage as suggested for the front-stage tasks should
be applied. Hence, the absence of a direct relation between the elements of this domain

92

4.1. Designing the Transformation

and the customer’s area can be used to illustrate these circumstances. As suggested
above, the BPMN Message Flow could contribute to the validity of this aspect. So again,
the last version discussed by Meis, Menschner, and Leimeis does come with a drawback
concerning this point [MML10].

Line of internal interaction
The Line of internal interaction is used to further differentiate the organization’s Actions
within a Service Blueprint. The basic intention of this concept is to distinguish between
elements that are a response to the current service instance and those that are necessary
to be able to provide the intended offering in the first place [LW11]. So these Actions
are of a more supportive nature which is also a term often used to refer to the containing
area beneath the line. At this point, it is important to note that these elements have
a direct relation to the customer’s demands and therefore the current service case. If
one considers the general topic of the Line Separation as a hierarchical structure, these
elements also belong to the category of back-stage operations and are therefore not
directly visible to the customer. Due to this affiliation, basically the same semantic
requirements are applicable while considering the transformation. Additionally, it would
be a viable intention to strive towards the illustration of the independence of such tasks
within the overall modeling approach. For BPMN this would require decoupling the
corresponding sequence flows. When looking at the different versions as discussed above,
only the second option is able to cover this extended demand since mainly pools are used
to create its structural organization.

Line of order penetration
The area containing the supportive Actions can be further partitioned while applying the
so-called Line of order penetration. Using this kind of conceptual element, the designer
has the possibility to introduce an additional distinction depending on the impact of the
contained Actions. While the supportive elements above this line are contributing to the
service value as perceived by the customer (e.g. sharpening the razors) the ones beneath
the separator are of a more general nature (e.g. managerial activities). This causes the
situation that the latter ones are basically independent of the customer. Along with
this observation, these elements do not provide a strong relation to the other areas of
the Service Blueprint [FK04]. At this point Kazemzadeh, Milton and Johnson assess
that BPMN might lack the possibility to back the semantic characteristics of this area
beneath the Line of order penetration. And in fact, despite the possibility to simply
use a Pool or Swimlane to encapsulate the corresponding operations and sequence flows,
due to the inherited independence, there is not a clear, advisable approach to capture
the intentions behind this concept. One problem that could be a cause of this issue
is the possible distinction when it comes to the level of abstractions of the Actions
above and beneath this line. Since the elements below are of a more general nature,
they might not be captured with all the details as used for the rest of the service flow.
Additionally, at this point it should be mentioned that when thinking about an explicit
illustration of the Action and Communication Flow as shown within the case study and
the notational set that constitutes the basis for the intended transformation, the more

93

4. Development of the Transformation

general supportive Actions beneath the Line of order penetration should not be a part of
the sequence of operations that are directly linked to the value generation. Instead, the
contained elements should reflect their independent nature while standing separately and
only provide a linkage to the main elements to display them as potential preconditions.
To transform this concept towards the process-oriented language, because of the fact
that this kind of orchestration is not possible with BPMN, it could be an option to
decouple this area from the rest of the model and use a separate diagram representation.
Another attempt to capture this point in BPMN would be to simply use Annotations to
indicate those Activities within the diagram that need to have such supportive actions as
a general precondition. Of course this way the elements are not a direct component of
the diagram flow itself, but this might not be necessary since it already has more general
characteristics in the first place. This last statement can also be used to argue for the
negligence of this area beneath the line during the transformation. Due to the fact that
the contained Actions are not directly connected to the sequence flow, they can be seen
as not being a part of the core process that is responsible for the value generation and
should be captured using BPMN.

Line of implementation
The next line is called the Line of implementation and is used to further divide the
area located beneath the Line of order penetration. The Actions located above are
intended to be generally supportive operations that are executed as a preparation of
the processes responsible for the value generation [Wit04]. But due to their nature,
they are independent of the current execution of the service process itself and therefore
constitute a separate sequence flow. The Actions beneath this separator also inherit
the same characteristics, but with the distinction that they do not target the value
generation and are intended to constitute preceding managerial activities. Due to the
common basic properties, the Line of implementation also suffers the same fate as the
previous line when it comes to the transformation towards BPMN. Since the concepts are
independent of the execution of the actual service process, it is not possible to integrate
the elements into the corresponding process diagram targeting the value generation,
without violating the overall purpose of these areas. To approach this point, the way how
the Line of order penetration is handled during the transformation has to be taken into
account. If the solution is to use a separate BPMN diagram to capture the more general
supportive Actions, it can also be used to integrate the Line of implementation. To do
so, the three possibilities as discussed by by Meis, Menschner and Leimeis should be
considered [MML10]. Since there is not the necessity to model the customer as an actor
participating in these processes, the first and the third version would produce a similar
result where everything is contained in one BPMN Pool and the Blueprint areas are
illustrated using Swimlanes. However, this fact has no impact on the second version and
each Blueprint line that should be a part of this complementary diagram would represent
a separate process contained within a distinct Pool. Both variants constitute viable
solutions. In contrast to this suggestion, the use of BPMN Annotations was also discussed
as another possibility. But due to the situation that the target concept lacks scalability, it
might be difficult to capture multiple supportive areas in a structured way. Furthermore,

94

4.1. Designing the Transformation

depending on the number of the corresponding Activities, this might negatively influence
the comprehensibility of the resulting BPMN model. As a last possibility, of course, the
negligence of this line can also be a solution.

Line of internal IT interaction
The last separation that shall be considered while designing the possible transformation is
the Line of internal IT interaction. It was discussed by Christopher Lovelock and Jochen
Wirtz to be able to target the linkage of modern service orchestrations and the applied
information technology [LW11]. To do so, the area that is created at the bottom of the
Blueprinting canvas contains representations of the applied systems and IT components.
So in contrast to the line separations as mentioned above, at this point, not Actions are
modeled but more static elements. As a result, this issue is different from the other areas.
To target this topic, among others, BPMN offers the possibility to capture Data Stores
within the process diagram. They are represented by a specific notation and located
somewhere on the BPMN canvas. Herein it is not necessary for these elements to be
placed in a specific conceptual area (i.e. Pool or Swimlane) since it is possible for distinct
processes to access the same data collections. For the purpose of the transformation,
the systems contained within the area beneath the Line of internal IT interaction may
be represented while using these BPMN Data Stores. An additional Swimlane or Pool
should not be necessary.

Physical Evidence

The aspect that shall be discussed at this point is a very important part of a service
and as a result, also of Service Blueprinting. Physical Evidence is the conceptual and
notational representation of tangible elements and objects that are observable by the
customer during the execution phase of the service. Examples would be the received bill,
the waiting room of the dentist or a certificate of a training event. As mentioned in a
previous chapter, the importance is a consequence of their role in the overall offer and
the potential impact on the perceived value. When it comes to the creational process of
a Blueprint, the allocation and integration of Physical Evidence is one of the final steps.
It is represented using the top lane on the modeling canvas.

Looking at the work of Kazemzadeh, Milton and Johnson, during their conceptual
comparison the authors came to the conclusion, that for this aspect a process-oriented
counterpart from the Business Process Model and Notation cannot be found [KMJ15].

Now, when it comes to the transformation of Service Blueprinting towards BPMN, due
to the importance of this component for the topic of service design in general, a viable
solution could be relevant for the expressiveness of the result. But while attempting to
create a plausible representation, several critical aspects have to be discussed along the
way.

First of all, it has to be considered, that BPMN basically serves a quite different purpose
then Service Blueprinting and therefore has a distinct point of view at the processes
at hand. When it comes to the topic of Physical Evidence, for the service orientation

95

4. Development of the Transformation

Figure 4.12: Transformation of Tangible Objects

the corresponding elements are subject to the domain of the customer (i.e. perceived
by the customer) and therefore situated on top of the area representing the specific
Actions. When thinking about BPMN, the correct position within the overall process
has to be determined. Considering the representation using Service Blueprinting and the
notational set that was applied during the case study, for this purpose the relation to
the Actions defining the context of their occurrence has been indicated. But it might
also be interesting for the process illustration to indicate other steps that are related to
these aspects in general. This constitutes another point where a possible extension of the
resulting BPMN model has to be performed after the actual transformation.

Another issue within this context is, of course, the graphical representation of Physical
Evidence in the final process model. Since there seems to be no appropriate notation
available, some alternatives have to be developed. At this point there are two possibilities.
The first one was already suggested for other concepts and consists within the recycling
of present BPMN functionalities. Due to the strict specification of the process-oriented
language, only two existing elements can be taken into account. Once more, one way
could be to use simple text Annotations to indicate the corresponding tangible objects.
However, looking at the processability of the final model, there is the downside that such
elements are harder to identify. After all, among others, Annotations are used to place
notes and additional information on the canvas to improve the readability of the diagram.
Additionally, this BPMN concept was also a suggestion for other Blueprint components
where a counterpart could not be found. To support the applicability of this element, the
designer would have to think of a way to differentiate Annotations representing tangible
objects from other cases. One possibility how this could be done can be seen in Figure
4.12.

The second existing element of BPMN that could be used are Data Objects. Within
the modeling methodology itself, the notation is used to represent relevant data that
is generated and flows through the process [OMG11]. One similarity that supports the
usage is that like Physical Evidence, Data Objects inherit a more static and kind of
tangible nature. Although both concepts can be very important for the respective model,
considering the corresponding sequence flows they can be seen as an accompaniment.

96

4.1. Designing the Transformation

However, there are a few arguments against the usage of Data Objects to represent
Physical Evidence. First of all, probably the most obvious one is the fact that in contrast
to tangible objects as they are used for a Service Blueprint, the BPMN elements are
actually not of a physical nature. They are tightly linked to the aspects of the information
technology, that is necessary in order to perform the activities of the process. Furthermore,
in BPMN so-called Data Associations, represented as dotted arrows, are used to link
Data Objects to specific Activities and indicate if it is used as an input or an output.
This way, the designer has the possibility to illustrate the flow of the data. This level of
detail is not supported by Physical Evidence of Service Blueprints.

Considering these differences, if Data Objects are used to represent Physical Evidence
later on, the specification of BPMN as explained within the official standard targeting
these elements would not hold. As a conclusion, this matching cannot be recommended
for the transformation of the concepts. At his point, a potential resolution could be
found in an extension of the concepts currently present within BPMN version 2.0. A new
element would need to be introduced that reflects the static nature of Physical Evidence
and is linked to the Activity that describes the context of their occurrence within the
process. Due to the nature of tangible objects within the context of service design, a flow
similar to the one as applied for Data Objects would not be necessary.

Although this solution seems applicable it does come with a quite obvious, but great
disadvantage. As mentioned before, the Business Process Model and Notation is a very
well known and widely adopted approach towards the design of process orchestrations.
Over the time various software developers have created their own solutions to support the
modeling of new processes. The unified XML background structure that is part of BPMN
version 2.0 supports the general applicability of a model created with a tool following
this standard. Considering the transformation, thinking ahead to its potential result,
the outcome is probably represented using a BPMN conform XML file. If the official
standard is extended to be able to capture Physical Evidence, the generated diagram
cannot be interpreted by common BPMN editors supporting version 2.0 anymore. As a
consequence, the ability of the models to be easily communicated to other entities and
automatically interpreted using the corresponding software solutions is affected.

Further Enhancements

The last topic that shall be approached while discussing the possibilities for a transfor-
mation from Service Blueprinting towards the Business Process Model and Notation,
concerns potential enhancements that could be introduced to either side of the matching.

Within this context, of course, an enhancement consists within the addition of a new or
the amendment of an already existing concept. When looking at the service modeling
methodology, one might find it difficult to determine the actual set of basic components
and their exact implementation in the first place. Thinking about the simpler versions,
the conceptual catalog as used for the case study already provides several enhancements
which were also considered during the design of the transformation above. Examples are

97

4. Development of the Transformation

Figure 4.13: Transformation of the Data Flow

the explicit illustration of the Action and Communication Flow, more enhanced routing
mechanisms (i.e. Parallel Paths and Decision Points), the linkage of Failure and Waiting
Points to specific Actions, as well as the integration of additional layers like the Line of
internal IT interaction.

Nevertheless, there is always room for improvement or at least some aspects that could
be added to the methodology to be able to provide a more comprehensive way to
aid the overall undertaking. One example could be to strengthen the focus on the
information technology, which is a critical component of modern services. In addition
to the illustration of IT systems as suggested by Christopher Lovelock and Jochen
Wirtz [LW11], it could positively contribute to capturing not only these static elements
but also data objects similar to BPMN. Up until now, a more common extension in this
direction is to use tangible objects to represent such digital elements that are visible to
the customer. However, it could be a viable and useful extension to also illustrate data
artifacts that are of a more dynamic process nature (e.g. for internal processes) and, of
course, their flow through the service instance. Under consideration of the simplicity of
Service Blueprinting, the way how this additional information is stored in the diagram
has to be rather intuitive. The suggestion at this point is to simply use text annotations
directly associated with the Action and Communication Flow as shown in Figure 4.13.
The applied bracketing is used to identify the information artifact as being an instance
of the data flow throughout the model. When it comes to the transformation, the logical
counterpart consists, of course, within the usage of BPMN Data Objects in combination
with Data Associations illustrating the information flow in the process diagram. Thinking
about the usability of this aspect during the creation phase of a service, the application
of this additional concept should remain optional.

Another point where the conceptual set could be extended is the introduction of the
ability to further specify the involved Actions. Currently, there is only one basic element
which is then assigned to the context of its occurrence using the Line Separation. For
the expressiveness and the clarity of the model, it could be beneficial to apply different
elements of the category Action. Examples could be the indication of operations that
require a certain type of knowledge (e.g. IT tasks) or if it is a standardized task or one
that strongly depends on the customer and the situation at hand (i.e. reflecting the
degree of necessary customization).

98

4.1. Designing the Transformation

Figure 4.14: Transformation of the Evidence Category

Although it might be tempting to integrate this aspect into the conceptual set of
Service Blueprinting, one should not neglect the core purpose of the language and the
circumstances of its application. The methodology is intended to constitute a tool to be
used already during the early stages of a development process. As discussed in a previous
chapter, this does also require a certain creativity. In this context, the popularity of
Service Blueprinting can also be traced back to the simplicity of its concepts and, in
general, the inherent utility in these cases. Therefore, the usage of a broader selection of
different Actions cannot be recommended.

However, the basic idea as proposed above could also be applied to another concept,
where such a finer-grained distinction may positively contribute to the overall process.
In compliance with the demand to facilitate the integration of information technology
into the domain of Service Blueprinting, at this point, the extension of the concept
targeting tangible objects is suggested. Again, an additional imposed overhead regarding
the complexity of the modeling approach should be avoided. To do so, only the two
major groupings Physical and Virtual shall be optionally supported within this con-
text. Examples would be an actual tangible object like the hospital bed and a digital
confirmation message for an order. Thinking about the transformation, above three
different approaches have been suggested. When it comes to the usage of Data Objects
or Annotations it would be possible to indicate the group affiliation of the identified
elements with a simple lettering as shown in Figure 4.14 for Annotations.

One enhancement that imposes only a minor conceptual complication, but might be very
helpful to cope with the potential complexity of the overall case, could be the introduction
of a marker indicating critical Actions. These should be treated in a separate Blueprint
or more complex process diagram later on. In such a situation a drill-down could be
applied to be able to focus on these points without considering the rest of the service
flow all the time. Thinking about the transformation, as a possible counterpart, BPMN
Tasks containing the sub-process marker could be used as shown in Figure 4.15.

When looking at the main purpose of Service Blueprinting, another aspect could be
introduced to enhance the modeling capabilities within this context. Due to the strong
customer focus, it might be a good idea to explicitly address the end-user’s expectations

99

4. Development of the Transformation

Figure 4.15: Transformation of Specification Points

Figure 4.16: Transformation of Expectations and Satisfactions

and the final outcome of the diagram. Doing so would enable the designer to use this
information to check which imposed requirements can be satisfied and which potentially
result in deviations that negatively influence the offering’s value as perceived by the
customer. Considering the service-oriented language, the indication could be done by
applying a listing to the Start- and End-Point of the model as shown in Figure 4.16. The
interpretation of this information is, of course, completely up to the designer. Due to this
more informative nature of the elements, when it comes to the Business Process Model
and Notation, a logical counterpart would be the usage of Annotations. Once more it is
necessary to be able to identify these notes later on within the resulting model.

Looking at the other side of the transformation, in contrast to Service Blueprinting,
the Business Process Model and Notation does have a specific set of concepts. Due to
the purpose of the language, it offers quite comprehensive possibilities to capture the
structure and the flow of a specific process. Thinking about possible extensions and
enhancements, considering the topic of this thesis, possibly the greatest shortcoming
of the methodology is that it is not possible to increase the focus on the customer’s
perspective of the overall situation. This can also be observed when it comes to the
actual design of the transformation. One issue within this context that was already
mentioned above is the transformation and illustration of Physical Evidence. But as
discussed previously, the compatibility of the resulting models with other entities, other
models, and the available tool support, leads to the conclusion, that an extension of the
official standard is not advisable at this point.

100

4.2. The Recommendation

Summary

At this point, possible variants have been discussed how an existing Service Blueprint can
be transformed into the Business Process Model and Notation. To get a clear overview,
the individual approaches targeting the conceptual set of the service-oriented language
are shown in Table 4.1. These listed options also represent the basis for the upcoming
final decision and the prototypical implementation later on.

4.2 The Recommendation

This section is intended to constitute the conclusion of the conceptual work while
targeting the transformation. The goal is to come to a decision about the actual approach
while considering the different options displayed in Table 4.1. To do so, concerning the
conceptual elements of Service Blueprinting where multiple variants have been pointed
out, a clear recommendation towards the preferred approach will be made. Along the
way, of course, it is necessary to justify the motivation behind the result. Within this
context, also the requirements imposed by the starting point and the preconditions as
discussed at the beginning of the chapter have to be taken into account.

Looking at the provided overview in Table 4.1, for the conceptual elements Action, Action
and Communication Flow, Decision Point, Parallel Path, Start-Point, End-Point, Waiting
Point, Data Flow, Specification Point, Expectations and Satisfactions and the Line of
internal IT interaction a clear recommendation for the transformation has already been
made and discussed within the previous section.

The Failure Point on the other hand, is an element where several possibilities have been
identified that could be applied during the transformation. As a logical counterpart, the
BPMN boundary interrupting Error Event has been suggested. But this concept alone
does not satisfy the functional requirements of a BPMN model without an additional
compensatory sequence flow. The first suggestion was to simply neglect this aspect
and leave the specific implementation up to the model designer who is responsible for
the completion of the resulting BPMN diagram afterward. Although this has to be
done in any case, this option does come with the downside, that the generated BPMN
model is not valid. To overcome this issue the other three variants propose a generic
compensatory flow. The first one uses an end node to indicate that the process stops if
the corresponding error occurs. The remaining two approaches apply a combination with
a merging Exclusive Gateway, so that either the process flow continues even if the failure
occurs or the process step is repeated until it is successful. Of course, no option is best
suited for every case since the actual error handling has to be implemented depending on
the specific situation at hand. However, at this point, the usage of an End-Event shall
be suggested. As mentioned above, it overcomes the issue of a functional incomplete
solution. Furthermore, it seems not advisable to (automatically) create a model where
the occurrence of a defined error does not have an impact on the rest of the execution
phase (as it is the case with the catching behavior). Additionally, when considering

101

4. Development of the Transformation

the looping compensation, there is the risk that if the error cannot be resolved without
additional Tasks, the process flow would be stuck.

The next topic where multiple possible variants have been identified concerns the Line
Separation of Service Blueprinting in general. The decision that will be made does also
reflect on the implementation of all model areas that are in direct relation with the
service value as perceived by the customer (i.e. Line of interaction, Line of visibility
and Line of internal interaction). At this point, the findings of Jochen Meis, Philipp
Menschner, and Jan Marco Leimeis were considered which led to the suggestion of the
three variants One Pool for the customer and one for the organization, One Pool per
Blueprint area and Everything within one Pool [MML10]. Basically all approaches inherit
specific characteristics, advantages, and disadvantages and may be viable solutions for the
transformation. However, for the recommendation in this context, the first variant should
be preferred. The main motivation consists within the fact that this version supports the
clearest distinction between the customer’s area and the one of the organization. This
is an important aspect due to the specific focus of the service-oriented language, which
results in the situation that the model references these two major participants during the
execution phase.

In contrast to the Blueprinting areas directly responsible for the perceived value of the
service, the ones created while applying the Line of order penetration and the Line
of implementation have to be considered separately due to this very reason. During
the previous discussions, to handle these two concepts, again three variants have been
proposed. The first one consists within the transformation into a distinct BPMN diagram
which should reflect the independence of these aspects. Another approach is to use text
annotations that are applied to the Tasks contained within the main model to indicate
the dependencies towards the supportive operations. Last but not least, the negligence
of these concepts was also discussed since the contained elements are not part of the
process at hand and therefore are not directly related to the main sequence flow. As a
recommendation, the first variant shall be applied using one BPMN Pool with two Lanes
in accordance with the chosen approach for the overall Line Separation. In general, it
does not seem to be a good idea to omit details while thinking about a transformation
into a modeling environment which inherits a lower level of abstraction. To overcome the
issue concerning the differences in nature of the specific areas, the usage of Annotations
would also be a plausible solution. However, there are two arguments against it. First of
all, using the textual element in BPMN causes the diagram to lose the logical sequence
of the more general operations among each other (i.e. in BPMN there is no sequence
flow for Annotations) and their dependencies. Furthermore, this textual counterpart is
also a recommendation for other points of the transformation and it is not advisable to
exaggerate its use since would be prone to ambiguity afterward.

The last decision that has to be made at this point concerns the transformation of physical
evidence. Their impact on the overall topic of service design and the perceived value of a
service was already emphasized before. Now to process this aspect, it would be possible
to use Annotations, Data Objects or to simply neglect it since it does not correspond very

102

4.2. The Recommendation

well to the present concepts of the process-oriented modeling approach. But because of
the importance of this issue, it is not advisable to skip the transformation. However,
using Data Objects as suggested, has the downside that an existing BPMN concept is
applied to a context that does not hold while considering the specification contained
in the official standard provided by the Object Management Group. This may induce
misunderstandings when it comes to the sharing and communication of the model and in
the worst case to the invalidity of the result. These arguments lead to the decision to
use Annotations for the application of tangible objects in BPMN. Following up on this
suggestion, the indication of the proposed Evidence Category as shown in Figure 4.14
can be applied.

When applying the recommendations as suggested above, and highlighted in Table 4.1,
each element of the extended conceptual set of Service Blueprinting is allocated to a logical
counterpart on the side of the Business Process Model and Notation. This way it should
be possible to perform the transformation, with regard to the discussed requirements as
planned in the context of this thesis. Considering this theoretical approach, the next step
should consist of the attempt to prove that this undertaking can actually be done. To do
so, the next chapter will describe the prototypical implementation of the transformation
while using the conceptual mapping as shown in the provided table.

103

4. Development of the Transformation

Service Blueprint Standard BPMN v2.0

Action (simple) Task

Action and Communcication Flow Sequence and Message Flow

Decision Point Exclusive Gateway

Parallel Path Parallel Gateway

Start-Point Start-Event (untyped)

End-Point End-Event (untyped)

boundary interrupting Error Event

Failure Point

boundary interrupting Error Event
with process End-Event

boundary interrupting Error Event
with catching behaviour

boundary interrupting Error Event
with looping behaviour

Waiting Point Annotation

One Pool for the customer and one
for the organization

Line Separation (general) One Pool per Blueprint area

Everything within one Pool

Line of interaction see Line Separation (general)

Line of visibility see Line Separation (general)

Line of internal interaction see Line Separation (general)

separate BPMN diagram

Line of order penetration Annotation

No Transformation

Line of implementation see Line of order penetration

Line of internal IT interaction Data Stores

Annotation

Physical Evidence Data Objects

No Transformation

Data Flow Data Flow

Specification Point Sub-Process Marker

Expectations and Satisfactions Annotation

Table 4.1: Overview transformation possibilities

104

CHAPTER 5
The Prototypical Implementation

This chapter is dedicated to the description of the prototypical implementation which
was developed as proof that it is, in fact, possible to automatically transform an existing
Service Blueprint into the Business Process Model and Notation. For this purpose, the
suggested representational counterparts that were elaborated within the previous chapter
will be used as a basis and a guideline. Accordingly, the final output consists of a model
that is a direct result of the theoretical considerations that were discussed before.

After a brief statement summarizing the main motivation, the used technology including
their functionality shall be explained. Afterward, the overall development process, as
well as, the final architecture of the prototype will be discussed. As important aspects for
this topic, the issues concerning the transformation of the Action and Communication
Flow and the creation of the graphical model representation will be addressed separately.
In a final section, the actual transformation process shall be explained step-by-step.

105

5. The Prototypical Implementation

5.1 Purpose and initial Approach

The way how a transformation from Service Blueprinting towards BPMN could be
performed was the main subject of the previous chapter. As a result, a selection of
transformation rules as shown in Table 4.1 was presented and discussed. This constitutes
the theoretical basis that is necessary to approach the bridging between the distinct
modeling worlds. But despite the given reasoning, it cannot be considered as valid on its
own neither for the thesis, nor the general issue at hand.

The reason for this is simply the fact that such a hypothesis still needs to be examined in
accordance with its feasibility. Now to satisfy this demand, of course, there is a multitude
of different ways how this can be done depending on the topic. For the current context,
a suitable solution is to use the bundled transformation rules and build up a prototypical
implementation around them. The resulting piece of software should then be able to
interpret an existing Service Blueprint and automatically create a valid BPMN structure
representing the specific case. If this undertaking is successful, it has been shown that
the former theoretical proposition is viable.

Thinking about this suggestion, the basic components of the transformation environments
and therefore the abstract features of its architecture can be identified. Of course, first
of all there has to be some tool-set that enables the user to capture a service idea using
the Blueprinting mechanism in a structured way. This is a necessary prerequisite due to
the requirement that the result of this very first step has to be interpreted for further
processing.

Once this is done, the actual conversion mechanism has to read in the new model and
identify the core elements and structures. Afterward, while applying the transformation
rules, as discussed above, the designed service offering should be converted into a
corresponding BPMN model, which can then be written into a matching BPMN file
structure. The final goal should consist of a resulting template that can be further
processed while using other, complementary tool-sets and frameworks that are compliant
with the BPMN 2.0 methodology.

Summarizing this first layout, while developing the prototypical implementation the
following components have to be addressed and integrated into the final framework.
During the upcoming section, the respective details will be examined in more detail. This
shall then constitute the basis for the decision concerning the technologies used for the
actual implementation.

1. Service Blueprint Modeling Environment

2. Transformation Mechanism

3. Creation of BPMN Files

106

5.2. Technology

5.2 Technology
At this point, the three main components that are necessary for the final prototype have
been identified. But, of course, these aspects still inherit a very high level of abstraction
and therefore need to be analyzed in more detail and finally matched by choosing a
corresponding technology that satisfies the imposed demands. When thinking about the
upcoming elaboration, a logical initial approach is to move along the direction as required
by the transformation process itself, which is also illustrated in the listing above.

5.2.1 Service Blueprint Modeling Environment

So to begin with, the first functional element that needs to be considered is about the way
how the model representation of the service is created and stored for further treatment.
While taking the main goal into account, which describes the attempt to integrate the
modeling of services into an IT environment which enables the automated processing
of its results, it seems a logical conclusion to think about a computerized development
mechanism.

Now as it is often the case, facing such a situation, one has the decision to either create
the required tool support or look for already available alternatives. Of course, the first
option has the advantage that while developing a new solution, it can be tailored to
the specific needs. On the other hand, when using an already existing one, there is the
benefit that such a mechanism might be already accepted by some users and integrated
within different development environments. Furthermore, especially when it comes to
the domain of graphical modeling editors, the creation from scratch is not an easy task
to pull off. One has to take the main purpose of the planned undertaking into account
and decide if this is justifiable. But these considerations may be unnecessary if there
exists no suitable solution in the first place. So while targeting this aspect of the overall
architecture, the initial step was to look for some already available possibilities.

Realtime Board

During the corresponding research, the first application that was found is the Service
Blueprinting tool presented by Realtime Board [Rea]. It offers an easy-to-use model
editor that is completely accessible via their webpage. While applying several graphical
shapes that can also be individualized using different colors, the user has the possibility
to create simple Service Blueprints very fast. The explicit illustration of the Action
and Communication Flow as a demand stated during the previous sections can also be
integrated. Another feature that shall be mentioned at this point, is the possibility to
easily share created models with other participants and so introduce a more collaborative
working environment. However, a downside consists of the variety of the graphical elements
that can be combined to capture the service at hand. While it is theoretically possible to
assemble several shapes to form individual ones, it does not seem practicable. The tool’s
main purpose is rather to offer a modeling canvas for the creation of representations
inheriting a higher level of abstraction. A possible analogy is the consideration as a

107

5. The Prototypical Implementation

digital whiteboard. Despite the fact, that it feels very good to use for such a use-case
when thinking about the notational set that was chosen within the theoretical chapters of
this thesis, it does not support the required logical complexity. Furthermore, due to the
strong focus on the graphical representation, the functional dependencies between the
elements, are not supported to the degree that is necessary. Another aspect that is of a
rather vital interest for the overall undertaking is the possibility of the tool to export the
created models. Concerning this point, the environment offers several formats like PDF,
images, Jira attachments, or a CSV export. When considering the fact that it should be
possible to process the results in an automated fashion, only the last one seems to be
feasible in general. But, although the data format basically would be very convenient to
be interpreted as required, the details that are contained within the file are not sufficient.
It simply offers a listing of the element names placed on the Service Blueprint without
representing further logical or graphical details of the model in general.

Canvanizer

Another possibility that was identified while searching for an already existing tool
support targeting Service Blueprinting was the Service Blueprint Canvas available at
canvanizer.com [Can]. In general, they offer an online modeling area that is built upon the
extensive usage of predefined templates. Besides well-known ones like the Business Model
Canvas, some are specifically targeting the domain of service design like the Customer
Journey Canvas, the Feedback Canvas or the Service Blueprint Canvas. Of course, this
last one is especially interesting at this point. Due to the strong focus of the environment
on the usage of predefined templates, for this version, a given modeling canvas with
a fixed selection of Blueprinting Areas is presented. Additional ones cannot be added.
In general, the system has a more abstract approach when it comes to the modeling
process itself. In contrast to the tool that is offered by Realtime Board, the Canvanizer
does not allow the user to place elements by their own choosing. For each new Action a
predefined area exists within a specific lane which makes it rather easy for users without
any knowledge about modeling languages to create new Blueprints. But, of course, the
downside can be found within an inherent loss of the freedom to create customized service
flows that are necessary to capture more complex situations. The explicit illustration of
the Action and Communication Flow, along with the use of other shapes besides Actions
is not possible. Due to this strong limitation, this tool does not seem appropriate for the
planned undertaking.

Draw.io

At this point during the research targeting the aspects of the planned transformation
environment, once more the missing standardization of the general methodology Service
Blueprinting and the lack of an extensive tool support as a side effect is very evident.
Besides the two applications which where mentioned above, no comparable tool has been
identified. As mentioned within the introductory paragraphs, a next step would be to
develop a customized tool that fulfills the desired purpose. But before doing so, one

108

5.2. Technology

might also consider other already existing tools that do not support Service Blueprinting
on their own, but offer some kind of extensibility that might allow the creation of a
customized modeling setup.

Draw.io has been identified to be such a modeling tool, which enables the user to choose
from an extensive selection of different shapes (e.g. BMPN, UML, Entity Relation)
and even allows the definition of customized ones. The tool is a free to use modeling
environment that can be accessed in several ways. One can either visit the webpage
https://www.draw.io, download the offline clients available for ChromeOS, Windows,
Linux and macOS, use the existing Google Drive or OneDrive integration, install the
corresponding Google Chrome extension, or utilize the available Jira and Confluence
extension (payed version) [Dra].

The way how a user interacts with the system is more oriented on straight forward
modeling tools. The main area is of course the modeling canvas itself and is positioned
in the middle of the screen. The different graphical shapes are situated in the left-
side toolbar. Each element can be applied with drag and drop and linked while using
the connecting arrows that occur when hovering over a specific shape with the cursor.
Additionally, it is possible to add a new linkage similar to other shapes when selecting it
from the left side of the screen. If a graphical element is selected on the canvas, the right
side of the screen can be used to specify the style of the shape and the contained text as
well as attributes targeting the positioning of the element on the canvas (e.g. rotation,
size) [Dra].

Now the characteristic of the tool that makes it especially interesting for the problem
at hand, is the fact that it allows the user to combine every shape available and also
store individual collections of elements as customized libraries. In contrast to other more
purpose driven modeling tools like the Camunda Modeler for BPMN, in Draw.io there
are no functional restrictions governing the combination possibilities of the elements and
their context. This makes it possible to reuse concepts and notations from very different
domains and create sets tailored to special use cases [Dra].

However one essential feature is still missing that represents an important prerequisite for
the applicability of the tool within the environment of the modeling and transformation
of Service Blueprints. As examined for the previous tools, the possibility to export the
created representations has to be possible in a way that enables the automatic processing
afterwards. Looking at Draw.io in addition to formats like PDF, jpg and png the user
can also create a HTML and XML export. Especially the latter one is interesting since it
offers a typical structured representation that inherits the potential to be automatically
interpreted later on (in its uncompressed form) using a suitable application [Dra].

The characteristics described above are assessed to be sufficient to use Draw.io for the
first attempt to build up a prototypical modeling environment that is compatible to the
potential transformation towards BPMN. For this purpose the next section will discuss a
corresponding library that can be integrated into the modeling tool.

109

5. The Prototypical Implementation

Figure 5.1: Element grouping in Draw.io

Draw.io - Service Blueprinting Library

After analyzing the tool according to the high-level demands imposed on a Service
Blueprinting mechanism that shall be used within the context of the planned conversion,
the upcoming paragraphs will target a corresponding library including the resulting XML
export structure for Draw.io.

To begin with, the first step has to be the creation of the modeling concepts within the
chosen tool. To do so, as mentioned above, a new library has to be put in place to offer
a predefined set of available notational and functional concepts to the end users. But
before this can be done, a decision has to be made, which elements shall be a member of
this new environment. Of course, this issue was already discussed to some extent within
the chapter targeting the theoretical aspects of the transformation. As a result, the goal
at this point has to be the development of the modeling capacity to capture all concepts
subject to these preceding examinations within the framework of Draw.io. The left side
of Table 4.1 can be considered as an overview of all elements that need to be covered.

Some of the concepts for the intended Service Blueprinting, like Failure and Decision
Points consist of multiple different shapes. Instead of providing already finalized elements
for such cases, the individual components can be selected separately. After the correct
placement of the symbols, a grouping mechanism takes care of the functional coherence, as
shown in Figure 5.1. The palette can be combined to represent the concepts as illustrated
in Figure 5.2 and was also used for the model snippets presented within previous chapters.

A short guide how the library works with Draw.io can be found in Appendix B.

Draw.io - Service Blueprinting XML Export

Once the Service Blueprint is created, it needs to be extracted to be able to perform the
intended transformation. As mentioned previously, targeting this aspect Draw.io offers
an XML export functionality that has the potential to enable this conversion.

To do so, the export mechanism has to be triggered in its uncompressed version, which
then contains the complete graphical and logical information related to each element. For

110

5.2. Technology

Start point

Decision point

Sequence flow

Evidence linkage

System interaction

IT System or
database

Action

Action with waiting
point

W

Action with failure
point

F

[Data flow]
Sequence with data flow

Dependency

Virtual tangible object

Physical tangible
object

Action with
specification point

Expectations:
 - Alpha
 - Beta

End point

Satisfaction:
 - Alpha

Action with parallel
sequence flow

Action as merging
point for incoming

paths

Figure 5.2: Service Blueprint concepts in the customized Draw.io library

the model structure the mxGraph library that is based on Java Script is used [JGr18].
Herein each specific object is captured while using a <mxCell> tag that contains the
logical characteristics as attributes as well as the geometry data (i.e. width, height, X
coordinate, Y coordinate) represented using a <mxGeometry> tag as a child element. As
it is common for such structures, each instance has an assigned id attribute that is used
as a reference for the source and the target of model edges and for all other functional
relations. In accordance with this logic, the association of a specific shape to a parent
element as it is the case for Actions and the containing Areas, is stored while using the
id of the parent element within a corresponding attribute associated to the children.

At this point, another interesting feature of Draw.io can be used to aid the interpretation
of the resulting model structure afterward. The main question concerning this aspect is
of course how the information contained within the file can be correctly processed. This
means that there is the need to have some logic that allows an automated extraction
of the Service Blueprint components including their interdependencies. To handle this
issue, while assembling a new library, the tool offers the ability to edit the style attribute
of the resulting <mxCell> tag. This makes it possible to add new information to each
element that can then be used to identify the corresponding Service Blueprinting concept
within the XML file. For this purpose, each component of the library contains a specific
sbType element.

The following XML code shows the Service Blueprint representation of a simple Action
without additional information (i.e. Failure and Waiting Point). A more comprehensive
example can be found in Appendix D.
<mxCell id=" 2 fc9635e5d0fdac0 −8" parent=" 1 "

s t y l e=" sbType=area_front_stage_inte rac t i ons ; swimlane ; html=1;

111

5. The Prototypical Implementation

ho r i z on t a l =0; sw imlaneF i l lCo lo r=#CCFFCC; swimlaneLine=0;
a l i g n=cente r ; v e r t i c a lA l i g n=middle ; l a b e lP o s i t i o n=cente r ;
v e r t i c a l L ab e lPo s i t i o n=middle ; g l a s s =0; f i l l C o l o r=#99FF99 ;
rounded=0; comic=0; labelBackgroundColor=none ;
s t rokeCo lo r =#000000; strokeWidth=1; f on tS i z e =14;
fontCo lor=#000000; " va lue=" Front−Stage I n t e r a c t i o n s "
ver tex=" 1 ">
<mxGeometry as=" geometry " he ight=" 230 " width=" 720 "

x=" 10 " y=" 200 " />
</mxCell>
<mxCell connectab le=" 0 " id=" 2 fc9635e5d0fdac0 −9"

parent=" 2 fc9635e5d0fdac0 −8"
s t y l e=" sbType=act ion_conta iner ; shape=act ion_conta iner ;
s t rokeCo lo r=none ; f i l l C o l o r=none ; rounded=0; comic=0;
labelBackgroundColor=none ; f o n tS i z e =14; fontCo lor=#000000;
a l i g n=cente r ; html=1; " va lue=" " ver tex=" 1 ">

<mxGeometry as=" geometry " he ight=" 55 " width=" 120 "
x=" 210 " y=" 88 " />

</mxCell>
<mxCell id=" 2 fc9635e5d0fdac0 −10" parent=" 2 fc9635e5d0fdac0 −9"

s t y l e=" sbType=act i on ; shape=act i on ; rounded=0;html=1;
whiteSpace=wrap ; a l i g n=cente r ; labelBackgroundColor=none ;
s t rokeCo lo r =#000000; strokeWidth=1; f i l l C o l o r=#FFFFFF;
grad i entCo lo r=none ; f o n tS i z e =12; fontCo lor=#000000; comic=0; "
va lue=" prepare medicat ion " ver tex=" 1 ">
<mxGeometry as=" geometry " he ight=" 55 " width=" 120 " />

</mxCell>

The code segment contains three <mxCell> tag elements which means that it represents
as much different model components. Each of them has an assigned style attribute that
contains the mentioned sbType that is used to identify the corresponding role within
the Service Blueprint. Accordingly, the first component is of type area_front_stage
and therefore represents the Front-Stage Area of the Service Blueprint. The remaining
two both refer to a simple Action. While the element marked with sbType=action is
actually representing the core element including the contained textual description (i.e.
value="prepare medication"), the other one corresponds to the grouping mechanism that
is used to cohere the underlying Action with its possible parameters. The resulting
action_container can be considered as the top level element when it comes to this category
of flow element and therefore also contains the reference to the containing area with its
parent attribute and the graphical location on the canvas (i.e. x and y coordinates).

Using this modeling and export functionality of Draw.io as a starting point, the next
examinations can be made towards the technology that could be used to interpret the
generated files, transform them towards a structure conform to BPMN and write the
result into another XML file that follows the specification of the official BPMN 2.0
standard.

112

5.2. Technology

5.2.2 Transformation Mechanism

At this point, one can assume that it is possible to extract Service Blueprint XML files
from a computerized modeling environment, which have the potential to be processed
using additional mechanisms. The functionality that should be the main subject within
this context is, of course, the transformation towards BPMN.

The technology for accomplishing the previous step was chosen while relying on an
already existing tool that can be configured to fulfill the imposed task. However, a similar
approach at this point is futile simply due to the nature of the objective. Since there is
no comparable tool that provides the transformation of such a Service Blueprint XML
structure towards BPMN, the second available option has to be chosen, which consists
within the development of a customized systematic.

To do so, a programming language and an environment have to be selected that suits the
purpose. Java (in its current version 1.9) in combination with the Eclipse IDE (version
Oxygen) was assessed to be a sufficient basis for the intended development process.
Besides the fact that the language provides all necessary functional characteristics (e.g.
XML processing capacity), during the research targeting the general aspects of the
transformation mechanism, other third-party frameworks that operate within the context
of BPMN were found to be based on the same foundation. Examples are the well known
BPMN 2.0 platform Activiti [Sof18], the Camunda environment [Ser18b] and of course
the Eclipse BPMN Modeler [Fou17]. Although this might not contribute to the current
task, it has the potential to aid the generation of a valid BPMN 2.0 XML file during
the final step of the conversion and in general the compatibility of the resulting program
with other frameworks.

To be able to develop the necessary code segments in an appropriate way, the technical
setup is complemented by the use of Git via Bitbucket [Atl18] and Apache Maven [Fou18].
The first one is a version management system that allows the storage and synchronization
of different versions of the code and so enables the developer to work in a more efficient
way. The second one is a build tool that is used to take care of the dependencies towards
other, external libraries of the final program.

Following the assumption that the development environment which was outlined within
this subsection is sufficient to develop the core aspect of the prototype, the next consid-
erations can be made while targeting the last step towards a valid BPMN file.

5.2.3 Creation of BPMN Files

Until now, the technical basis was specified that shall provide a modeling environment
which enables the end-users to create a Service Blueprint while using a computerized
modeling mechanism, hand over the result to the conversion functionality, which then
shall transform the interpreted source model towards BPMN 2.0. What is still missing
concerns the necessary basis for the generation of .bpmn files conform to the definition
stated in the official documentation of the standard.

113

5. The Prototypical Implementation

The .bpmn File Structure

Looking at the target structure, after the initial definitions tag, there are three top-level
elements as shown within the following code snippet (based on an example file created
while using the Camunda Modeler) [Ser18a]. At this point, it shall be noted that the
following remarks are intended to provide a rough overview of the contained elements. A
more comprehensive example can be found in Appendix D. For a detailed explanation of
the file structure please have a look at the official documentation [OMG11].
<?xml version=" 1 .0 " encoding="UTF−8" ?>
<bpmn:definitions

xmlns:bpmn=" ht tp : //www. omg . org / spec /BPMN/20100524/MODEL"
xmlns:bpmndi=" h t tp : //www. omg . org / spec /BPMN/20100524/DI "
xmlns :d i=" h t tp : //www. omg . org / spec /DD/20100524/DI "
xmlns:dc=" h t tp : //www. omg . org / spec /DD/20100524/DC"
xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
id=" De f in i t i ons_1 "
targetNamespace=" h t tp : //bpmn . i o /schema/bpmn"
expor te r="Camunda Modeler "
expor te rVer s ion=" 1 . 1 1 . 3 ">
<bpmn:collaboration id=" Collaboration_1p6mp31 ">

<bpmn:participant id=" Partic ipant_1wrbcch "
name=" customer " proces sRe f=" Process_1 " />

. . .
</bpmn:collaboration>

<bpmn:process id=" Process_1 " >
<bpmn:startEvent id=" StartEvent_16q9z5y "

name=" ente r c l i n i c ">
<bpmn:outgoing>SequenceFlow_0nzim1q</bpmn:outgoing>

</bpmn:startEvent>
<bpmn:task id=" Task_1ts9d7s " name=" expre s s d i s comfo r t s ">

<bpmn:incoming>SequenceFlow_0nzim1q</bpmn:incoming>
<bpmn:outgoing>SequenceFlow_0w7iooi</bpmn:outgoing>

</bpmn:task>
<bpmn:sequenceFlow id=" SequenceFlow_0nzim1q "

sourceRef=" StartEvent_16q9z5y "
ta rge tRe f=" Task_1ts9d7s " />

. . .
</bpmn:process>
. . .

<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNShape id=" StartEvent_0ee7l0w_di "

bpmnElement=" StartEvent_16q9z5y ">
<dc:Bounds x=" 205 " y=" 581 " width=" 36 " he ight=" 36 " />
<bpmndi:BPMNLabel>

<dc:Bounds x=" 222 .0 " y=" 620 .0 " width=" 0 "
he ight=" 12 " />

</bpmndi:BPMNLabel>
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id=" SequenceFlow_0nzim1q_di "

bpmnElement=" SequenceFlow_0nzim1q ">

114

5.2. Technology

<di:waypoint x s i : t y p e=" dc :Po int " x=" 241 " y=" 599 " />
<di:waypoint x s i : t y p e=" dc :Po int " x=" 310 " y=" 599 " />
<bpmndi:BPMNLabel>

<dc:Bounds x=" 275 .5 " y=" 578 " width=" 0 "
he ight=" 12 " />

</bpmndi:BPMNLabel>
</bpmndi:BPMNEdge>
. . .

</bpmndi:BPMNDiagram>
</bpmn:definitions>

The first section is used to capture the participants of the model. For the situation at
hand which consists within the representation of a service offering, this tag contains
one child for the customer and one for the organization, since the decision was made
to illustrate them while using distinct processes. If it is the case that also Preparative
and/or Managerial Actions are a part of the source model, a third participant is added.
Furthermore, the grouping is used to encapsulate the interactions that occur between
the participants of the model (i.e. the BPMN message flow).

The next one, the process tag, of course, represents a specific process of the current
collaboration. As it is probably the case within the context of the intended transformation,
there are multiple participants and this tag may occur multiple times. Each participant
references to a specific process via the attribute processRef. Contained inside the process
tag, the assortment of XML elements referring to the logical structure of the current
process can be found. This includes information about the lane separation (if present)
as well as the typical flow components like Tasks, Events, Gateways and of course the
Sequence Flow. As shown within the given code snippet, in contrast to the XML structure
representing the Service Blueprint model, a connecting Sequence Flow with its source and
target is not only captured using the corresponding tag alone but also as child elements
associated to the linked elements.

The final top-level element concerns the assignment of the graphical details necessary
to render the BPMN diagram within a compatible model editor. For this purpose, each
object that needs to be a part of the final illustration is required to have an entry
mirroring the coordinates, the width, and the height. This includes all flow elements as
well as the participants and the lanes. For the interpreter to be able to correctly assign
the shape type (e.g. circle for events) during the recreation phase, each shape element is
linked to the corresponding logical counterpart contained within the process tags using
the bpmnElement attribute.

Generating .bpmn Files

Now in the context of this section, the objective is to come up with a base technology
that enables the final transformation environment to export the converted models into
the file definition that was outlined above.

115

5. The Prototypical Implementation

Once more, a possibility would be to develop a new mechanism from scratch and so have
a solution tailored to the specific needs of the problem statement. But naturally, due to
the strong dependency of this task on the widely adopted standardization of BPMN 2.0
and the current relation of existing frameworks (i.e. Activiti, Camunda) to the chosen
programming language Java, it might prove beneficial to look into already available
alternatives.

Very soon after starting the corresponding research, a solution was found within the Model-
API offered by Camunda [Ser15a]. It is a lightweight Java library that, once integrated,
offers the possibility to interpret existing .bpmn files and create a customized BPMN
structure as a Java object (org.camunda.bpm.model.bpmn.bpmnModelInstance) including
all necessary sub-elements and flow notations. As indicated within the corresponding
official documentation, up until now, not all concepts available in BPMN 2.0 are supported.
But after a short review, it was assessed that basically all necessary items needed within
the context of the transformation are already present and therefore, within this regard,
the extension should suffice.

But of course, the main issue at this point is to create the required .bpmn files. This
can be considered as one of the key features of the Camunda Model-API. It offers a
method that takes care of the whole XML processing part in accordance with the target
file structure. As a prerequisite a valid Java BPMN representation is necessary, which
either can be achieved by interpreting and amending an already existing .bpmn file or
creating a new one from scratch. Targeting the processability of the model that is passed
onto the XML creation, within the context of the Camunda framework and therefore
the Camunda Model-API as well, the environment offers a built-in validation mechanism
that can easily be applied as a part of one’s individual development. If so, this has to
be done shortly after the finalization of the Java BPMN object. The function uses the
BPMN 2.0 specification to control the conformity of the new model and throws exceptions
accordingly [Ser15b].

However, this kind of validation does not say anything about the correctness of the
resulting model in terms of representing the targeted service. Concerning this point,
basically there are two main possibilities. First of all, it does not seem advisable to do so
while reviewing the Java BPMN object structure since there are still some steps that need
to be performed until the final result is achieved. So it has to be the generated .bpmn
XML file. Now of course it would be possible to check the background structure, but,
although this might be not a bad idea to do so during the initial steps of the development
process, when it comes to more comprehensive service models, such a file can inherit a
considerable length and therefore would proof to be complicated and very time-consuming
to check. To overcome this limitation, a logical step would be to use a graphical editor
that is capable to read in the newly generated files. This is also a very relevant step
from a general point of view of the suggested transformation concept. Since the ultimate
target is to use a created Service Blueprint model to automatically generate a BPMN
template structure that can then be used to add more details and finalize the process
model, the development of the prototype should go as far as possible towards the step

116

5.3. Development Process of the Transformation Environment

where this final amendment will be done. Thinking about how people work within the
modeling domain in general, it would be practicable to do so in the most convenient way,
which probably is such a graphical editor.

For this purpose, to complete the topic concerning the base technology for the development,
also a graphical modeling environment should be selected that is capable of interpreting
the output diagrams afterward. For this purpose, another element of the Camunda
BPMN environment can be utilized. The Camunda Modeler is a rather straightforward
and easy-to-use BPMN editor which stores the created files within the discussed .bpmn
format [Ser15a]. Therefore it can theoretically also be used to interpret files that were
created while using other mechanisms like the intended transformation.

After this definition of the last elements that shall be a part of the final development
environment, the actual creation of the transformation mechanism and the complementary
functionalities can be initialized.

5.3 Development Process of the Transformation
Environment

The following paragraphs shall provide a brief overview of the performed development
process targeting the setup and creation of the transformation environment. Each step is
based on the technology that was outlined above and can be seen as being a part of the
rough outline that was suggested in the very first section of this chapter. An impression
of the actual layout concerning the final components of the transformation shall be given
within an upcoming section.

This last statement leads to the starting point of the actual work. Since, while considering
the intended mechanism, it can be observed that each subsequent step is heavily relying
on the previous one. For example, the transformation part towards BPMN can only be
designed effectively if a tested and validated form of the programmatic interpretation of
a Service Blueprint is already present. Since such a functionality does not already exist
within this context, this can only be the case if the development process is completed to a
significant degree. As a logical conclusion, the overall execution was chosen to be aligned
with the direction of the transformation. So the first step towards the final solution
has to be the consideration of the computerized creation of Service Blueprints using the
chosen technology, the Draw.io modeler.

To begin with, the target was to create a method within the boundaries of the chosen
environment that enables the computerized creation of Service Blueprint models. To do
so, as discussed in the previous chapter, a new model library for Draw.io was created
including all necessary conceptual elements that were also a part of the theoretical
elaborations. This functional set was developed and enhanced during the creation of a
number of test models as well as the diagrams illustrating the case study as shown within
Appendix A and discussed in the corresponding chapter. Of course, along the way of
the further development steps, frequent amendments have been made which results in

117

5. The Prototypical Implementation

the libraries final form as shown above. But for the time being, after the finalization of
the first test models, the next step, the interpretation of the exported Service Blueprint
XML files can be approached.

Taking the given structure as a starting point, the basic task is the one of straightforward
XML parsing1. For this purpose a Java DOM parser was used to read in the specific files
and store the identified Service Blueprint details within the corresponding Java objects.
Of course, the elements that are a part of this last aspect need to be created first and
so before the actual interpretation logic can be developed, the static Service Blueprint
Java representation has to be implemented. More details about the final layout can be
found in the chapter targeting the architecture of the prototype. Once this is finished,
the algorithm for reading Service Blueprint XML files can be set up. To begin with, a
simple functionality was put in place that can be used to recursively interpret each node
including its children. Along the way, subsequently more details and cases were added
which, in their final constellation, enable the interpretation and storage of all conceptual
elements and orchestrations that are offered and supported by the predefined Service
Blueprint Draw.io library.

At this point, the already available components enable the creation of a new Service
Blueprint while using Draw.io, the interpretation of the corresponding XML export and
the storage of the identified information within an appropriate Java object structure.
The next step has to be the processing of these created data elements and the conversion
into a format that can then be passed on to the creation of the BPMN files. As stated
during the elaboration of the technical components, the Java object structure for the
BPMN part is provided by the Camunda Model-API. So what has to be done next is the
development of the transformation steps between the customized Service Blueprint Java
objects and the Camunda BpmnModelInstance.

The official documentation of the Camunda Model-API provides a couple of very simple
code snippets that show how BPMN elements can be created while using Java and so
serves as a starting point [Ser15a]. Thinking back to the XML representation of the
.bpmn files, two major parts have to be considered when it comes to their creation.
First of all, a BPMN model needs to have a valid logical structure. This is sufficient
if the generated processes only have to be treated while using additional automated
functionalities. But when it comes to the interpretation with a graphical editor that
enables a more convenient way for the users to amend the transformation results, also
the diagram information has to be present within the file. Sadly no possibility has been
found that takes care of the creation of the complementary graphical information and
so while transforming an existing Service Blueprint model, at the same time the logical,
as well as the graphical details, have to be created and assigned to the BPMN Java
structure. This tends to make the overall process to a significant degree more complex
since when thinking about the transformation rules as discussed previously, a simple
one-on-one conversion is not possible and the resulting model will inherit a more complex

1a very good and comprehensible example can be found on the following website
https://www.mkyong.com/java/how-to-read-xml-file-in-java-dom-parser/

118

5.4. Transformation of the Action and Communication Flow

layout than the original Service Blueprint (i.e. BPMN does require more details and
more specific elements). Especially during the case wise transformation of the Action
and Communication Flow the development proved to be anything but an easy task. Due
to the complexity of this sub-topic, the details will be discussed in a separate chapter
later on.

To cope with this situation, at first, the development efforts were concentrated on the
creation of the logical file components. To be able to check the validity of the results,
in total about 70 different test models were created. This was done, not only by using
Draw.io for the Service Blueprinting part but also while utilizing the Camunda Modeler,
which made it possible to have a valid BPMN background structure fitting the specific
cases. This way a template was available that could be compared against the prototypical
results of the transformation. Of course, without the graphical details contained inside
the generated files, the provided editor could not be used for the validating steps. Instead,
at first for the smaller test cases, the background XML structure was compared to the
template that was created using the Camunda Modeler. It shall be noted that at this
point, due to the usage of the built-in validation mechanism provided by the Camunda
Model-API it has been ensured that the generated results were already compliant with
the BPMN 2.0 specification.

Once the creation of the logical structure was implemented and found to be tested to a
satisfying degree while using this first approach, the decision was made to go on to the
graphical counterpart. As discussed above, due to the different nature and level of detail
of the two modeling methodologies, this step inherits a great degree of complexity on its
own (accordingly it will be discussed in an upcoming section in more detail). Although
it would be theoretically sufficient to have a valid logical BPMN structure to show the
transformation capabilities, due to the implications it was found to be an important final
step to guarantee the validity and usability of the solution. So once implemented, the
newly generated file can be viewed when using a graphical editor capable to interpret
the .bpmn XML format. For testing purposes mainly the Camunda Modeler, but also the
Yaoqiang BPMN Editor2 has been used to carry out the final tests.

As indicated above, due to their importance and impact on the development process and
therefore the final form of the transformation mechanism, the handling of the Action and
Communication Flow, as well as the creation of the graphical elements, will be discussed
in more detail within the upcoming sections.

5.4 Transformation of the Action and Communication
Flow

The following paragraphs shall be used to elaborate the transformation of the Action and
Communication Flow of a Service Blueprint. This sub-topic is addressed separately since
it has great implications for the development as discussed within the previous section

2can be downloaded under https://sourceforge.net/projects/bpmn/

119

5. The Prototypical Implementation

and in general on the way how a given service model is transformed into the BPMN.
Furthermore, this chapter can also be seen as being complementary to the theoretical
transformation rules.

The starting point for this discussion can be found when looking at the decision made
concerning the transformation of the lane separations in general. During the theoretical
elaborations, the following three possibilities outlined by Jochen Meis, Philipp Men-
schner and Jan Marco Leimeis as presented in their article were listed as potential
solutions [MML10].

1. One Pool for the customer and one for the organization
2. One Pool per Blueprint area
3. Everything within one Pool

As indicated in the final recommendation, the first variant was chosen due to the clear
separation of the two main domains, which forms an important characteristic of Service
Blueprinting in general.

As a consequence of this decision, the resulting BPMN model inherits at least two
different processes. If Preparative or Managerial Actions are present within the source
model, a third one is added. However, while applying the agreed flow notations for
Service Blueprinting, in the initial diagram only one flow across the whole canvas is
illustrated. So the main goal within this context is to split this unified sequence and
create the correct representations inside the corresponding BPMN pools. Although this
basically sounds rather straightforward, it does have implications for various aspects of
the resulting model, which shall be discussed within the following sub-sections.

5.4.1 Simple Flow across different Processes

The first characteristic of this point targeting the transformation has to be the way how
a simple flow from the customer to the organization or vice versa is resolved when it
comes to the conversion towards BPMN.

Let us assume a very common situation where the Action and Communication Flow of
the Service Blueprint goes across the Line of Interaction between the customer and the
organization as shown in Figure 5.3.

Now when it comes to the representation while using BPMN, this cannot be done in the
same way since it is impossible for the BPMN Sequence Flow to cross the borders of
the pool that contains the current process. The concept that is offered by the official
standard to capture the communication between the participants of different domains is
the application of the Message Flow. However, this is not tightly linked to the Sequence
Flow on its own, but by an appropriate usage of Messaging Tasks or Messaging Events
that are applied to propagate the overall flow over the whole diagram and coordinate the
distinct processes.

120

5.4. Transformation of the Action and Communication Flow

C
us

to
m

er
 A

ct
io

ns
sign approval

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

explain procedure arrange further steps... ...

Figure 5.3: Simple service flow across different processes in Service Blueprinting

Figure 5.4: Simple service flow across different processes in BPMN

Looking at the transformation rules as applied for the prototype, the decision was made
to use Message Throw and Message Catch Events for this purpose since the best practice
for the usage of Tasks requires that they are primarily intended for the handling of the
message that is sent [Pol14]. However, this cannot be ensured for the elements resulting
out of the Actions of a Service Blueprint.

Applying this new rule on the example from Figure 5.3, for the BPMN representation
this would mean, that after the Task {explain procedure} there needs to be a Throw
Event that communicates the local progress to the remote process. On the other side,
the message is received using a Catch Event that, when the message arrives, triggers the
customer Task {sign approval}. Within this regard, the Catch Event stops the ongoing
Sequence Flow until the communication is performed and then initiates the further flow.
This way it is possible to synchronize the two processes. As a result, the BPMN segment
as shown in Figure 5.4 is created automatically via the transformation process.

121

5. The Prototypical Implementation

C
us

to
m

er
 A

ct
io

ns

patient enters
clinic

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

...examine patient

Figure 5.5: Initial service flow across different processes in Service Blueprinting

5.4.2 Implications for Start and End Events

The next topic that is related to the propagation of the unified Action and Communication
Flow across multiple Pools, is the handling of the Start and End Events of the process.
At this point it should be noted that within the context of this work, a Service Blueprint
is expected to have exactly one Start Point and at least one End Point.

This is sufficient to logically open and close a consistent diagram flow. But, due to
the nature of BPMN, within the target of the transformation, now there are multiple
distinct flows that are required to have their own Start and End Events. However, the
direct transformation of the Service Blueprint counterparts is only able to provide the
elements for very specific processes. For example, if the Service Blueprint Start Point is
present within the Customer Area, as an output it is possible to transform this point
into a corresponding Start Event within the customer process. But the one for the
organization is still missing. Due to this constellation, the transformation mechanism
needs to take care of the consistency of the generated solutions and add Start and End
Events accordingly.

As a small example, let us assume a situation where a service is initiated via a Start
Point on the customer’s side, as shown in Figure 5.5. Logically, the subsequent Action
and Communication Flow crosses the borders of the contained area at some point during
the execution phase and so the situation as outlined above has to be handled when it
comes to the transformation process. As a solution compliant to the general handling of
flow steps that have an impact on different processes as discussed above, the very first
Catch Event located within the remote Pool that does not contain the Start Point of the
Service Blueprint has to be a Message Receiving Start Event, as shown in Figure 5.6.

A special case that needs to be considered in this context concerns the treatment of
Service Blueprint Decision Points and Parallel Paths. It is possible to have a flow
constellation where the first activity that affects both parties is related to such a splitting

122

5.4. Transformation of the Action and Communication Flow

Figure 5.6: Initial service flow across different processes in BPMN

point. In these situations, it may be necessary to mirror the resulting Gateway in the
foreign process (this aspect will be discussed in more detail in an upcoming section).
If this is the case and a corresponding Start Event is not already present it has to be
created and linked to the foreign splitting point. Now this newly created Event is not
associated with a specific message, but to a general initiation of the respective process
flow.

Looking at the other end of the Sequence Flow, as a result of the transformation steps, it
is possible that some processes are not concluded via necessary End Events. To resolve
these situations, the transformation mechanism is simply designed to close loose ends by
adding the required End Events. The consideration of possible Message Flows can be
neglected at this point.

5.4.3 Treatment of Decision Points

As already briefly discussed above, another aspect that needs to be taken care of when
distributing the unified flow of the Service Blueprint across multiple distinct processes
concerns the handling of Decision Points.

Basically, a Decision Point is logically equivalent to the routing mechanism as imposed by
the Exclusive Gateway of BPMN, which is, as a consequence, used as a counterpart during
the transformation. Furthermore, there are three possibilities to conclude such a splitting
point within a modeling language in general. It could be the case that all outgoing,
alternative paths meet again while using some kind of merging point (or multiple shifted
ones), or each path stops on its own with a corresponding end node (e.g. Service Blueprint
End Point, BPMN End Event). The third possibility is, of course, a mixture.

When it comes to the transformation, this needs to be considered, since it might be
necessary to reflect the implications of a Decision Point within another process linked
via the Message Flow. But this only has to be done if the splitting point at hand actually
has an impact on the foreign process. During the transformation, this is detected by

123

5. The Prototypical Implementation

C
us

to
m

er
 A

ct
io

ns

sign approval ...

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

inform patient about
the treatmentGO ON

NOTHING

decide what
to do

send patient
home

...

Figure 5.7: Service flow with Decision Point in Service Blueprinting

checking for the subsequent steps whether they cross the borders of the current process
or not. To be able to correctly assess a specific point, the functionality has to be able
to determine if it is concluded via a corresponding merging point or the closing of all
outgoing paths.

An example can be seen in Figure 5.7. For this kind of splitting mechanism, it is
considered to be sufficient if at least one outgoing path crosses over to another process.
This is the case since the other participant needs to be informed about the ongoing
execution of the flow. For instance, if the Decision Point is not reflected and a local path
is chosen, the foreign process could not be completed due to the missing alternative.

Thinking about a proper way how to represent these situations using the notational
concepts offered by BPMN, a suitable solution was found in the application of Event-based
Gateways where each outgoing path is linked to a receiving Message Event. Once more,
for each subsequent linkage of the local Exclusive Gateway it is determined if it crosses
over to the foreign process. If this is not the case and the path is only locally relevant, the
next logical element is a throwing Message Event that is used to propagate the decision
that was made. Otherwise, along the path there will be a point where a message is
sent to the foreign process which is then caught again by a Message Event linked to the
Event-based Gateway, as shown in Figure 5.8.

5.4.4 Treatment of Parallel Paths

Another issue that needs to be addressed within this context is the handling of Parallel
Paths that are assessed to have an impact on other processes. Although this point seems
similar to the topic of Decision Points, which is true to a certain degree, especially when
thinking about the concluding characteristics, there are some aspects that require a
separate consideration.

The main reason for doing so lies within the very nature of the base mechanisms. Whereas

124

5.4. Transformation of the Action and Communication Flow

Figure 5.8: Service flow with Decision Point in BPMN

C
us

to
m

er
 A

ct
io

ns

sign approval ...

take medication ...

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

... assign bed

prepare medication

Figure 5.9: Service flow with Parallel Path in Service Blueprinting

for the Decision Point at least one outgoing path is taken, when it comes to the Parallel
Path all are processed. At this point, this is relevant since this behavior reflects on the
decision whether it is necessary to mirror the splitting functionality inside the foreign
process or not. Let us assume, that the Parallel Path is concluded without crossing the
borders of the current BPMN pool. In this case, as it is for Decision Points, a reflection
of the local situation is of course not possible. Thinking about a case where one path has
been identified to impose a foreign impact, in contrast to the previous topic, due to the
situation that all outgoing paths are processed anyway, there is no need to mirror the
Gateway. This is only required if two or more were identified. In such cases it is necessary,
but not to reflect some decision, but to enable the parallel handing that comes with the
nature of the underlying functionality, as shown in Figure 5.9. The corresponding BPMN
result can be seen in Figure 5.10.

125

5. The Prototypical Implementation

Figure 5.10: Service flow with Parallel Path in BPMN

5.4.5 Treatment of Preparative and Managerial Actions

The next topic that needs to be considered when thinking about the separation of the
Service Blueprint Action and Communication Flow are Preparative and/or Managerial
Actions. Looking at the service-oriented modeling language, these elements do not
directly participate during the execution phase but can be considered as providing the
representation of interdependencies with the environment of the organization’s offering.

As such they are only illustrated while using Actions that are decoupled from the common
flow notation and connected only using edges indicating the observed dependencies.
Following this description, the transformation towards BPMN can also rely on the same
principle as the previous topics, but for a different reason. Whereas conditioned by
the separation of concerns, using distinct customer and organizational processes results
within the division of the common Service Blueprinting flow, due to the loose coupling,
the current issue does not require such a functional transition. Therefore this aspect can
be seen as a more logical consequence of the situation already present within the source
model.

Nevertheless, if there are in fact Preparative and Managerial Actions present within the
Service Blueprint, the resulting BPMN model inherits a third process that needs to be
created. In contrast to the other two (customer and organization), the complexity of the
contained flow notation can be expected to be lesser. The corresponding Blueprint areas
are not intended to have Start and End Points and no logical relation of its elements
among each other. Since, of course, this is not possible within the domain of process
modeling, a generic Start and End Event has to be created within the respective Pool
structure. Furthermore, logically, due to possible missing relations between the source
elements, it basically cannot be determined which elements should be subsequent. This
problem can be dealt with while applying Parallel Gateways that initiate a parallel
execution of all components. If there is some linkage present within the source model, a

126

5.5. Creating the graphical Model Representation

corresponding orchestration is recreated within the context of the target notation.

A corresponding example can be found in Appendix C.

5.5 Creating the graphical Model Representation

This section is dedicated to the discussion targeting the creation of the graphical repre-
sentation within the target language BPMN. As indicated above, this step is especially
important for the usability of the final transformation and ensuring the validity of the
resulting models. To do so, the Java library Camunda Model-API is integrated within
the development environment. It offers the possibility to create the graphical counterpart
referencing to the logical structure of the target concept while setting the necessary
measures and coordinates.

5.5.1 The Representation in General

Due to the varying level of abstraction and detail between Service Blueprinting and
BPMN, the latter one requires a greater number of notational elements to capture a
specific situation. Furthermore, the fact that the Action and Communication Flow needs
to be divided and synchronized between two distinct processes, amplifies this situation.

While thinking about a way how the diagram part of the model could be created, one
idea was to reuse the graphical details that can be extracted out of the source model.
The main target was to generate a representation that is quite similar to the original
Service Blueprint and so helps the user while maintaining the different diagrams. The
following code snippet shows how the creation can be achieved while applying the
functionality provided by the library. One thing that should be noted at this point
concerns the different nature of the coordinates stored within the two different diagram
representations. Whereas Draw.io uses a relative positioning, which means that the
coordinates are valid within the context of the surrounding object (i.e. the containing
Area), the graphical part of the Camunda Model-API uses absolute ones (i.e. valid within
the context of the top-level modeling canvas). Thinking about the functional conversion,
this aspect needs to be considered.
// c r e a t e g r aph i c a l r ep r e s en t a t i on
BpmnShape shape = bpmnModel . newInstance (BpmnShape . c l a s s) ;
shape . setBpmnElement (bpmnNode) ;
proces sP lane . getDiagramElements () . add (shape) ;

// c r e a t e bounds f o r shape
Bounds bounds = bpmnModel . newInstance (Bounds . c l a s s) ;
bounds . s e tHe ight (he ight) ;
bounds . setWidth (width) ;
bounds . setX (x) ;
bounds . setY (y) ;
shape . setBounds (bounds) ;

127

5. The Prototypical Implementation

But of course, at this point, the observations that were stated in the previous sections
impose a complexity when applying the gathered graphical data.

First of all, one has to take under consideration, that at least due to the best practice
of BPMN, it is very advisable to reuse measurements for the applied elements as done
within the context of official documentations and common tool-sets (e.g. the Camunda
Modeler). Now it is theoretically possible to work with a graphical notation for Service
Blueprinting where the corresponding counterparts of the transformation do not inherit
similar measurements. If the specific element of the Service Blueprint is larger than the
one of BPMN this does not impose an issue. However, if it is the other way around, it is
theoretically possible that within the result of the transformation, the newly generated
graphical elements stand in conflict towards each other, which cannot be considered as a
desirable outcome.

To target this issue, a very straightforward and easy solution is to simply offer a graphical
set that is compatible with the BPMN counterpart. Since the Service Blueprint notation
and the corresponding Draw.io library was created within the context of this work and the
measurements as offered by the process-oriented language have proven to be applicable
and convenient for the intended modeling purposes, this has been considered as a viable
resolution.

5.5.2 Graphical Conflicts and their Resolution

What still remains, is the general observation, that the BPMN representation of a Service
Blueprint does, in fact, require more details to capture the situation at hand. However,
this does not automatically cause conflicts within the diagram part of the model, since
the result is related to the way the Service Blueprint is modeled. To be more precise, it
depends on the arrangement and especially on the density of its elements. As shown in
Figure 5.11 and Figure 5.12, it is possible that two elements are placed in a way that,
when transformed to BPMN, causes conflicts during the automatic positioning of the
additional elements. Furthermore, when thinking about the necessary representation
of a local Gateway within a foreign process (e.g. mirroring the local decision), the
complementary elements might stand in conflict towards the ones predefined by the
source model, as shown in Figure 5.13 and Figure 5.14.

By instinct, the main approach to resolve such situations would be to perform some
kind of graphical conflict management for the resulting model. However, there are some
issues that need to be considered in this regard. First of all, if this should be done,
it has to be at the same time as the creation of the logical and the diagram part of
the model. Basically, it could be a good idea, to first generate the model without any
amendments and perform the conflict resolution afterward. However, due to the fact
that each element is set via specific coordinates including the way-points of the model
edges, such an undertaking would probably require to dismantle and reassemble the
whole diagram after the actual transformation process is finished. So the more convenient
solution is to already think about the corresponding steps when converting the contained

128

5.5. Creating the graphical Model Representation

C
us

to
m

er
 A

ct
io

ns
sign approval

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

arrange further stepsexplain procedure End pointStart point

Figure 5.11: Simple service flow in Service Blueprinting that leads to graphical conflicts

Figure 5.12: Transformation result of Figure 5.11 without graphical processing steps

elements. For the task at hand, this is a possible solution due to the fact that with the
Service Blueprint model as a source, one has a template, a layout that can be used to
calculate possible conflicting situations. Furthermore, with the already partly existing
BPMN structure during transformation time, additional checks could be performed.

Model Density

However, when looking at conflicting model constellations and cases as the ones shown
in the illustrations mentioned above, the observation has been made, that such resolving

129

5. The Prototypical Implementation

C
us

to
m

er
 A

ct
io

ns

express problem patient is in
treatmentgive consent

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

send patient
home

examine patient
decide what

to do

NOTHING

GO ON

Figure 5.13: Decision Point in Service Blueprinting that leads to graphical conflicts

Figure 5.14: Transformation result of Figure 5.13 without graphical processing steps

steps might not only be very complex due to the vast amount of specific arrangement of
the corresponding model elements, it would not suffice to generate a final model that
does not inherit a conflicting diagram component. The reason for this lies within the
initial approach towards the creation of the underlying data structure. As indicated
above, the graphical coordinates applied for the BPMN diagram are extracted out of
the Service Blueprint, to be able to create a transformation result that does correspond
very well to its source structure. This however introduces the problem, that during the
creation phase for the Service Blueprint, the designers do not and, of course, should not
take care of the model’s density (i.e. how much elements are placed on the modeling
canvas outlined by the respective areas). This leads to the situation that it is extremely
difficult to resolve conflicting elements if the density is too high. However, the main
problem is, that this is also true for source models that do not seem very crowded but

130

5.5. Creating the graphical Model Representation

may be perceived as quite common within the domain of general flow modeling.

To tackle this topic, the approach is now to think about a way to handle this initial
situation, instead of trying to fix conflicts when they occur. As indicated above, during
the various test runs it has been observed, that the source model’s density is a main
cause of graphical conflicts afterward. So the main idea is to come up with a way, that
targets mainly this aspect and tries to decrease this indicator.

First of all, when talking about the model’s density, within this context it is not sufficient
to review this aspect from a subjective point of view. It is necessary to provide a
corresponding calculation to be able to use it as an objective basis for the treatment
afterward. A straightforward approach would be to use the available model space given
by the graphical properties of the containing areas and the number of notational objects.
However, one thing that has to be considered in this regard, is the fact that not every
Service Blueprint element and area is relevant for the transformation towards the flow
notation of BPMN. Neglecting this aspect would result in a skewed calculation and
therefore it is necessary to restrict the efforts only to the Customer, Front-Stage, Back-
Stage and Support Area and the flow elements contained within. The following formula is
the result of these considerations.

ServiceBlueprintDensity = NumberOfF lowElements

Area

However, when it comes to actual models the given method tends to result in very small
numbers. Since this indicator is only used in the context of this topic, the decision was
made to correct the calculated area by a factor 1000 which makes it easier to work with
the output afterward. As a result, in its final form, the formula looks the following way.

ServiceBlueprintDensity = NumberOfF lowElements

Area/1000

Now based on this calculation, the assessment is made, if the model at hand should be
subject to measurements bound to decrease this value.

Graphical Preprocessing

The next issue that has to be targeted is how such a preparative functionality could be
put in place. First of all, it is not sufficient to only aim bluntly towards the reduction
of the density indicator. The easiest way to do so consist within the enlargement of
the available area space. But, obviously, this does not prevent the conflicting situations
within the diagram part of the BPMN model. Although this step is basically necessary,
along the way each element contained within the corresponding areas has to be vertically
and horizontally re-positioned. For this purpose, the final solution implemented with Java
takes shifting factors for the X and Y coordinates as parameters and subsequently applies
the values on the geometric details of the flow nodes. Especially when it comes to the
horizontal dimension this requires a recursive algorithm that performs the reorganization

131

5. The Prototypical Implementation

#1 #2 #3 #4

Figure 5.15: Theoretical conflicting cases on the horizontal axis (i.e. the X coordinate)

while considering the previous elements of the sequence flow and takes care of Parallel
Paths and Decision Points.

After applying the overall mechanism, the result is a Service Blueprint model that is
resized according to the passed horizontal and vertical factors including a rearrangement
of the contained elements. After several test runs, this was found to be sufficient to
resolve a large number of graphical conflicts that were a result of the base models layout.

Conflict Management

Although this step does positively contribute to the graphical outcome of the transfor-
mation, one point that has to be dealt with separately consists within newly generated
elements that are necessary to be able to propagate Decision Points and Parallel Paths
across multiple processes as discussed in the previous section. Since these cases cannot
be handled the same way, the logical consequence would be to take care of the conflicting
situations when they occur. The corresponding resolution has to be an integral part of
the transformation mechanism itself.

To do so, when such an additional Gateway is necessary within a foreign process, the
first attempt is to place it horizontally aligned with the local one. A control mechanism
is used to determine whether a conflict is present or not. This is done while applying the
calculated X and Y coordinates and check if there is already an element present at the
given position, or that it can be expected that there will be one. For this purpose, two
distinct data structures are used. First of all, while creating the graphical representation
for new BPMN elements, every shape is kept within a corresponding store. This makes it
possible to look for conflicting situations with already positioned elements. The second
aspect concerns upcoming new elements that are not yet available when reviewing the
previously mentioned reference. The positioning of these objects can be estimated when
reviewing the set of flow elements stored in the Service Blueprint model. In detail, the
mechanism uses the conflict categories as displayed in Figure 5.15 to assess the situation.
The illustration shows the possibilities how two objects, grey and white, can stand in
conflict towards each other while considering the horizontal axis (i.e. the X coordinate).
The same cases can be applied on the vertical dimension if rotated by 90 degrees.

If a conflict is detected, an additional functionality looks for the next subsequent flow
element linked to the current, additional splitting point, that does have the smallest X
coordinate and use this new value to rearrange the necessary foreign Gateway.

During the ongoing test cycles performed within the context of the development process,

132

5.5. Creating the graphical Model Representation

Figure 5.16: Transformation result of Figure 5.11 with graphical processing steps

Figure 5.17: Transformation result of Figure 5.13 with graphical processing steps

the resolution steps as discussed in this section have been found to be sufficient to take
care of most conflicts. After all the result of the transformation is intended to be a
template that can then be applied by the user to finalize the desired BPMN representation
of the Service Blueprint model.

Applying the measurements for the graphical processing as discussed within this section,
the conflicting situations mentioned above can be corrected as shown within Figure 5.16
and Figure 5.17.

133

5. The Prototypical Implementation

Transformation of SB to BPMN (Main Components)

DrawIOServiceBlueprintXMLInterpreter.java

Service Blueprint Java Objects

Service_Blueprint.xml .BPMN File

ServiceBlueprintResizer.java

BPMNGenerator.java

org.camunda.bpm.model.bpmn
.BpmnModelInstance

TransformationEngine.java
using the camunda model api

BPMNProcessContainer.java

ServiceBlueprintIncomingEdgeComp.java

ServiceBlueprintOutgoingEdgeComp.java

CORE

re
ad

w
rite

Figure 5.18: Prototype architecture of the transformation from Service Blueprinting
towards the BPMN

5.6 The final Architecture and Components of the
Prototype

Up until now, the most important aspects and critical issues that occurred during the
development phase have been approached. As a result of the realization and testing
of the functional topics that were subject to the previous sections, at this point, an
overview of the final architecture and the contained components providing the mentioned
mechanisms shall be given. After looking at the general outline, the specific elements of
the overall layout including their inherent tasks will be discussed.

The architecture of the prototype targeting the transformation of Service Blueprints into
BPMN can be seen in Figure 5.18.

Basically, there are three top-level elements. The Service Blueprint modeling environment
provided by Draw.io in combination with the customized Service Blueprinting library,
the graphical modeling environment for BPMN in form of the Camunda Modeler and
the actual transformation component developed in Java. As one can imagine, the
general transformation flow starts with the XML export of the model created with
Draw.io. Afterward, the transformation component takes care of the interpretation and
the conversion of the model components. The transformation result is then exported as a
.bpmn file that can then be interpreted using the Camunda Modeler, or another modeling
environment that supports the corresponding format (e.g. Yaoqiang BPMN Editor).

134

5.6. The final Architecture and Components of the Prototype

The transformation component itself can be logically further divided into three parts.
The interpretation of the Service Blueprint XML files, the transformation core component
and the generation of the .bpmn files. The corresponding elements work together while
relying on a Service Blueprint Java representation that was developed within the context
of this work and the BPMN Java Object provided by the Camunda Model-API (i.e.
org.camunda.bpm.model.bpmn.bpmnModelInstance). This separation makes it possible
to use the core algorithm responsible for the transformation of the source model and
the generation of the .bpmn file within another context where a corresponding Service
Blueprint is created while using a different modeling environment than Draw.io. This
seemed advisable since the use of the mentioned tool-set was intended as a first step
towards the general computerization of the corresponding concepts targeting services.
Assuming the transformation environment should be set-up for real-life scenarios, it could
be the intention to rethink the provided tool support for the more abstract language.
If so, it would be sufficient to only develop a corresponding adapter that reads in the
respective files (not necessarily XML) and passes on the generated Java object.

The following paragraphs will briefly explain the functionality of the main components as
they are illustrated in Figure 5.18. The modeling environments Draw.io and the Camunda
Modeler including the corresponding file structure have already been discussed within
a previous section and will be neglected at this point. The more detailed functionality
shall be elaborated within a later chapter.

5.6.1 DrawIOServiceBlueprintXMLInterpreter.java

This component contains the algorithm implemented in Java that takes care of the
interpretation of the specified Service Blueprint XML file according to the specification
made above and the generation of the Service Blueprint Java object, which will be
discussed within the next section. For this purpose the Java class expects the path
to the corresponding file as an input parameter, which is then imported while using a
common Java file reader. The general XML processing is carried out via the standard
javax.xml.parser.DocumentBuilder [Mky08].

As a result, an object of the type org.w3c.dom.Document is created that offers a
org.w3c.dom.NodeList data structure that can be used to recursively iterate through the
XML nodes and their children. While doing so, along the way, each node is interpreted
according to the Service Blueprint XML specification and a corresponding Java entry
is created and added to the target data element. When finished, the method used to
start-up the core functionality returns a Service Blueprint Java Object representing the
source model that was drafted while using Draw.io. It is compliant with the structure
outlined in the following section.

5.6.2 Service Blueprint Java Object

The Service Blueprint Java Structure is generated as a result of the interpretation of
the corresponding Service Blueprint source file (e.g. created via Draw.io). It builds up

135

5. The Prototypical Implementation

the basis for the subsequent transformation steps including the corresponding graphical
preprocessing. Since the target of the overall undertaking is to capture as many aspects
as possible while using BPMN as the target language, it is necessary that the structure
at this point reflects all details present within the given Service Blueprint.

5.6.3 Transformation Core Component

The core component is responsible for all tasks related to the actual transformation
process. This also includes preparative steps as discussed targeting the graphical repre-
sentation of the final BPMN model. For this purpose the core environment expects a
Service Blueprint Java representation and generates a model object corresponding to
the org.camunda.bpm.model.bpmn.bpmnModelInstance as a component of the Camunda
Model-API.

The next paragraphs shall provide an overview of the base functionality of the main parts
of this core element.

ServiceBlueprintResizer.java

The first member of the main section of the prototypical transformation environment is
the Service Blueprint Resizer. As discussed within the chapter targeting the graphical
representation of the final BPMN model, due to the larger number of conceptual elements
that are necessary to capture the service within the process-oriented language compared
to Service Blueprinting, it is necessary to take preliminary steps regarding the conflict
resolution.

Within this context, as input parameters, the Java class expects an instance of the
Service Blueprint Java object, as well as factors for the horizontal and vertical resizing
of the given source model. As a result, if the calculated model density exceeds a specific
threshold, the functionality returns the same model but graphically augmented by the
recursive application of the given values to the model areas and the contained elements.
As discussed previously, this step is executed to reduce conflicts when it comes to the
positioning of the graphical elements by a significant amount.

TransformationEngine.java

The Transformation Engine is the heart of the transformation towards BPMN. It is
responsible for all steps directly related to the conversion between the two modeling
languages. Due to the inherent complexity of this task, the corresponding Java class is
the largest one in the whole environment with about 2800 lines of code in its final form.

Of course, as an input parameter, the functionality expects the preprocessed Service
Blueprint stored in the mentioned Java object structure. After the initiation of the
process, at first the main components like the BPMN model elements itself, the pro-
cesses, the participants and the lanes of the targeted model are created. Afterward, a
recursive mechanism goes through the Action and Communication Flow of the Service

136

5.6. The final Architecture and Components of the Prototype

Blueprint source and subsequently creates the required BPMN counterparts. To complete
the creation of the model content, the IT Elements and Preparative and Managerial
Actions contained inside the Service Blueprint are generated. The last step during the
transformation consists within the closure of loose ends that were created along the way.

As a result of the overall undertaking, the top level function of the Java class returns the
final BPMN model in form of the org.camunda.bpm.model.bpmn.bpmnModelInstance.

BPMNProcessContainer.java

The BPMN Process Container is a helper class used within the context of the Transfor-
mation Engine. The main purpose is to enable a convenient management of the necessary
BPMN processes with respect to their Start and End Events and a special focus on the
unfinished business (i.e. loose ends). Especially when it comes to the last step of the
overall transformation, each time a recursion comes to an end or in general when it seems
necessary (e.g. flow crosses over to another process), this data structure makes it possible
to correctly handle process elements that are not directly or indirectly linked to an End
Event via a corresponding continuous sequence flow.

ServiceBlueprintIncomingEdgeComp.java &
ServiceBlueprintOutgoingEdgeComp.java

While creating the graphical representation for the model (i.e. the BPMN diagram part)
during the transformation, thinking about an element with multiple incoming respectively
outgoing flow edges, the vertical order of the multiple predecessors or successors is not
naturally given. The logical order of the elements heavily depends on the sequence of the
specific tags within the source XML file. However, since it was necessary to determine
this aspect according to the vertical positioning, a Comparator (java.util.Comparator)
implementation was created that enables the sorting of the respective listings.

5.6.4 BPMNModelInstance.java

As mentioned on several occasions, the BPMNModelInstance is a Java element provided
by the Camunda Model-API and used as a target for the transformation process. For
further details concerning the complete structure of the library please have a look at the
official documentation [Ser18c].

5.6.5 BPMNGenerator.java

The last member of the actual transformation component implemented in Java is the
BPMN generator. It encapsulates the functionalities for the validation and storage of
the final BPMN file which are provided via the Camunda Model-API. For this purpose,
as an input parameter, the Java class expects the BPMNModelInstance that represents
the result of the transformation mechanisms processed within the context of the Trans-

137

5. The Prototypical Implementation

formation Engine. After the execution of the validation step, the final model is exported
into a .bpmn file using a given target directory [Ser15b].

After the current class completes its work, the result can be further processed using a
compatible functionality (i.e. automatic processing) or graphical editor (e.g. Camunda
Modeler, Yaoqiang BPMN Editor).

5.7 The Transformation Environment and Process in
Detail

The next sections shall be used to describe the prototype and the corresponding actual
transformation process in more detail. Up until now, a more abstract view was given
which will serve as a basis for the upcoming elaborations. For this purpose, after a small
remark targeting the complete structure of the implementation and its environment, a
step by step description of the conversion mechanism shall be provided.

5.7.1 The Environment

As mentioned in a previous chapter, the main implementation was done using the
programming language Java and Eclipse Oxygen as a developing environment. For the
management of the external dependencies Maven was applied and Git via Bitbucket
as a versioning mechanism. After the completion of all necessary steps, the project’s
structure consists of the components and packages as shown in Figure 5.19. Besides the
main elements that were already subject to corresponding discussions, also customized
exception classes have been added to be able to propagate failures during the run-time of
the conversion accordingly.

5.7.2 Transforming a Service Blueprint into BPMN

The purpose of this section is to provide a detailed illustration of the core transformation
process. To be able to give a more clear understanding of the corresponding program
parts, the model that can be found within the Appendix C will serve as a practical
example that guides through the mechanisms. It consists of the abstract representation
of the admission of a patient in a medical facility. Please note that this example is only
intended to support the purpose of this chapter and does not represent actual workflows.
As a starting point, it shall be assumed that the exported Service Blueprint was already
successfully interpreted and stored within the Service Blueprint Java structure, which
makes the graphical preprocessing the first step that will be discussed within the context
of this section.

Graphical Preprocessing

The logical component responsible for the graphical preprocessing is situated in the Java
class ServiceBlueprintResizer.java. Due to reasons that were already elaborated within a

138

5.7. The Transformation Environment and Process in Detail

exceptions

ServiceBlueprintInterpetationException.java

ServiceBlueprintTransformationException.java

modelprocessing

transformation

serviceblueprintcomponents

BPMNGenerator.java

DrawIOServiceBlueprintXMLInterpreter.java

BPMNProcessContainer.java

ServiceBlueprintIncomingEdgeComp.java

TransformationEngine.java

ServiceBlueprintOutgoingEdgeComp.java

ServiceBlueprintResizer.java

StartTransformation.java

Action.java

ActionFlowEdge.java

ActionParameter.java

DecisionPoint.java

EndPoint.java

EvidenceCategory.java

ExpectationSatisfaction.java

ExpectationSatisfactionType.java

GeneralBlueprintElement.java

GraphicElement.java

InnerFlowElement.java

ITSystemOrDatabase.java

ServiceBlueprint.java

ServiceBlueprintArea.java

ServiceBlueprintAreaType.java

ServiceBlueprintFlowElement.java

StartPoint.java

TangibleObject.java

Figure 5.19: Package structure of the prototype developed in Java

previous section, this mechanism is applied to increase the size of the overall modeling
canvas and rearrange all contained flow elements accordingly. This way the discussed
density of the Service Blueprint can be decreased.

For this purpose, the corresponding start-up functionality is triggered while passing on
the imported Service Blueprint (in form of the Service Blueprint Java object), as well
as the factors for the horizontal and vertical resizing (in pixel). The first step inside
the current class consists within the calculation of the density of the current model
while applying the formula discussed in a previous section. Looking at the exemplary
model, the indicator is set to 0.0127. This result is compared to the static value of 0.01,
which was set after running several test model and perceived as a good threshold for
determining whether a resizing is necessary or not. Of course, this value can be changed
if deemed necessary. As one can see, for the given model, the logical comparison returns
true and so the processing should continue.

The next step consists of the treatment of the Start Point of the Service Blueprint. After
the horizontal and vertical repositioning is done, the recursive processing of the target
nodes of all outgoing edges is triggered. As an additional input parameter, besides the
factors applied for the shifting, the sub-method takes a counter which is used to determine
for a specific node how far it is necessary to move the element on the horizontal axis. This
makes it possible to create a wider spacing between the different shapes which is required
to fit in helping notations like the Catching and Throwing Events of BPMN later on.
Instead of maintaining a global counter, the parameter is handed down along the recursion
to be able to keep the relative positioning of elements on different paths originating from

139

5. The Prototypical Implementation

the same splitting point. This way, elements that are positioned vertically aligned within
the Service Blueprint, will generally stay so even after the repositioning is completed.

Coming to the actual logical functionality of the current method, the first task is to check
for the node if it was already handled within this context, which is possible to the nature
of the mechanism. So for instance, looking at the model given within Appendix C, it will
be the case that the Action “administer medication” is visited twice when the resizing is
applied (one time for each outgoing path of the previous splitting point). The overall
target should be to apply the shift that leads to the maximum value of the X coordinate.
However, if the current step is the first visit of the node at hand, the next thing that has
to be determined is whether the current situation is a case where a merging gateway is
the direct successor of a splitting point or not. This is relevant since it has been observed
that if so, even more additional space between the elements is required. To do so, if the
current node has multiple incoming paths, for each corresponding source element it is
assessed if it is a splitting point. To be able to use this information later on, a Boolean
variable is set accordingly. When looking at the mentioned example, such a situation
cannot be found.

Now, before the actual shift can be executed, the original value of the X coordinate is
stored in a map using the element’s id as a key, which is done or the usage later on.
Afterward, the coordinates (i.e. X and Y) are amended while applying the factors and
the shift counter for the horizontal dimension. If the Boolean value that was set in the
last paragraph is true, the X coordinate is increased to a higher degree. The counter is
also modified accordingly.

Since the current node was now subject to the resizing, it is added to the set of elements
that are completed.

If the element was already treated within the context of another path through the model,
the functionality of the recursive sub-method as discussed so far is not applicable. At this
point, the shifting was concluded and the X and Y coordinates were altered. However,
for the first one, it is possible that the current path is logically longer than the one that
leads to the treatment before. In that case, another calculation would make it necessary
to shift the node even further along the axis. At this point, the original value of the X
coordinate that was stored previously is used to determine this new position. If it is
found to be larger than the current value of the element, it is changed accordingly.

In any case, the last step executed within the context of the sub-method consists of
the recursive method call for all targets of the outgoing paths of the current node. Of
course, the general recursion stops when the end of the Action and Communication Flow
is reached (i.e. the End Points).

What still remains is the amendment of the modeling canvas itself, which means the
resizing of the Service Blueprint Areas. Up until now, without the corresponding step, the
contained flow notation would exceed the borders of the surrounding modeling space. To
target this issue, a sorted list of all the contained Areas is iterated and for each one, the

140

5.7. The Transformation Environment and Process in Detail

height, the width, and the Y coordinate are adapted. For the latter one, the horizontal
positioning should be taken into account to avoid overlapping.

Once this final step is completed, the actual transformation can be initialized.

Transforming the Model

To be able to perform the main conversion, the previously resized Service Blueprint
represented via the discussed Java object structure is passed on to the class Transforma-
tionEngine.java which contains the logical core of the transformation process. In contrast
to the previous program part, the initialization of the corresponding functionality does
not require any additional parameters. As it is common for such components, after the
instantiation of the containing class, the procedure is initiated via a top-level method
call.

Targeting this mechanism, the following paragraphs represent a step-by-step walkthrough
of the respective Java program. For a better understanding, the detailed code is reviewed
while maintaining a higher level of abstraction which offers a clearer focus on the actual
functionality of the specific parts. Accordingly, not every command and sub-method
call is explicitly mentioned, but in case of the latter one, if such a segment shall be
discussed, a corresponding excursus is created to keep the logical sequence of the specific
components intact. In general, this concerns the creation of the logical as well as the
graphical elements of the model.

Creating the Top-Level Model Elements
The first step towards the desired output is the creation of the necessary elements
representing a blank BPMN model within the Java structure provided by the Camunda
Model-API [Ser18c]. Since, as discussed previously, it is not sufficient to only deal with
the logical framework of the target environment, within this step also an empty diagram
representation has to be put in place. Luckily, for this aspect, the mentioned library
offers the corresponding counterparts as well. As a final generic step, the process plane is
created (org.camunda.bpm.model.bpmn.instance.bpmndi.bpmnPlane) which will then be
used to add the generated graphical shapes to the diagram. At this point, the general
preparatory steps are concluded and all subsequent tasks are dedicated to the actual
representation of the source model.

Creating the main BPMN Structure
Next up, a sub-method is called that is responsible for the creation of the logical structure
as a result of the application of the transformation rules on the Areas contained within
the Service Blueprint. This includes the required, for now empty, processes as well as
the Pools and Lanes of the BPMN model. In detail, the provided functionality consists
within a top-level loop that iterates over the given Blueprint Areas and determines which
counterparts need to be generated and added to the BPMN output. Of course, this
concerns the logical as well as the graphical component of the diagram. To do so, three
major cases are distinguished in accordance with the necessary BPMN processes as a result
of the transformation concept. The code segment differentiates if the current Area belongs

141

5. The Prototypical Implementation

to the customer (i.e. Customer Actions), the direct actions of the organization (i.e. Front-
Stage Interactions, Back-Stage Interactions, or Support Processes) or the organization’s
preoperative operations (i.e. Preparative Processes, or Managerial Processes).

In each case, if not already present, the corresponding process representation is created
using the Java structure provided by the Camunda Model-API. For the customer’s
Area, nothing has to be added, since the corresponding process does only have one
section which is considered as default. For the other two participants, at this point, it
is necessary to create the Java objects for the logical and graphical part of the BPMN
Lanes. Considering the diagram component of the processes, for the one of the customer,
it is rather straightforward, since it is possible to directly apply the coordinates (X and
Y), as well as the width and the height extracted of the source element contained within
the Service Blueprint. However, when it comes to processes that have to incorporate
different Lanes, small code segments are necessary that calculate the correct width and
height. The first value is set to the maximum of all Service Blueprint Areas since within
the context of the more abstract modeling language there is no restriction that dictates a
unified length of the segments. The second one is of course calculated while summing up
the heights of the partitions. One additional aspect that needs to be taken care of, is the
incorporation of the label area of the BPMN structure elements positioned on the left
side. As a last step, looking at the coordinates of the process representation, once more,
due to the lack of a corresponding restriction, both values are set to the minimum of the
contained Areas.

Looking at the example model within Appendix C, at this point the processes representing
the customer, the organization as well as the Preparative and Managerial Actions were
created. Furthermore, the necessary BPMN Lanes for the Front-Stage Actions, Back-Stage
Actions, Support Processes and Preparative Processes were added.

Initializing the Transformation of the Action and Communication Flow
After the general layout of the BPMN model is created, the transformation rules can
be applied on the Action and Communication Flow. Similar to the execution of the
graphical preprocessing, the basic approach consists within a recursive method call that
is used to walk through each branch of the Service Blueprint and generate an appropriate
BPMN counterpart. The first step towards this goal is to deal with the Start Point of
the source model. Since for this work, it is expected that the starting element of a service
offering can be uniquely identified, the initiation of the ongoing functionality is done
via a simple call of the recursive main method while passing on the Java object of the
Service Blueprint Start Point as a parameter.

In general, the method takes two variables. The first one is the abstract Camunda
Model-API Java object for a BPMN Gateway, which is intended as a possibility to pass
on foreign splitting points that are additionally generated to propagate Decision Points
over multiple processes (for more information please have a look at the corresponding
discussion within Section 5.4.3). Since this is certainly not the case for every method call
and especially not for the very first, the value can be set to null. The second parameter,

142

5.7. The Transformation Environment and Process in Detail

on the other hand, references the current node that shall be subject to the transformation
and therefore needs to be present each time.

Looking at the contained program code, the first logical operation is used to determine
the specific, category of the current Service Blueprint flow element. On its top level, the
mechanism differentiates between the treatment of a Start Point and inner flow elements.
In a later step the second category is spitted further into Actions and Decision Points.
End Points are not a part of this distinction since they represent the end of a recursion
and do not require additional handling. When the method is called the first time and a
Start Point is detected, the logical next step is to create the actual BPMN counterpart.

Excursus: Centralized BPMN Flow-Node Creation
To handle each element’s creation properly, another sub-method is used which works
according to a get or create paradigm. This means that for a passed Service Blueprint
element, it is checked if the corresponding BPMN representation was already created
previously. If so, the method returns the result of the search. Otherwise, a new logical
and graphical element is generated, stored and then passed on. This way the management
of all actual flow objects has been centralized which makes maintaining and extending
the contained functionality more convenient. However, along the way of the direct
transformation of the flow elements, it is also necessary to take care of information
and details tightly linked to the source object. This includes the indication of Failure,
Waiting and Specification Points for Actions, as well as the handling of Expectations and
Satisfactions for Start respectively End Points. Furthermore, this helper method calls
another sub-method that takes care of the linked tangible objects. This code section is
outsourced since it was necessary to reuse the same mechanism at another point within
the overall program. Accordingly, it is possible, that a call of the get or create method
results within the creation of several BPMN concepts as a result of the transformation of
the given Service Blueprint element. Last but not least, the functionality also takes care
of the correct assignment to the specific process and Lane of the target methodology.

Thinking about the example model provided in Appendix C, the very first element that
is created in this regard is a new BPMN Start Event with the description {patient
enters clinic}. Since the source model contains a set of imposed Expectations, for this
counterpart a corresponding Annotation is created as well. Furthermore, looking at
the source model, the current flow node is linked to a tangible object. Accordingly, an
additional Annotation is added to represent this information.

Continuing the Transformation of the Action and Communication Flow
Coming back to the initial call of the recursive method used to transform the Action
and Communication Flow, at this point, the BPMN Start Event mirroring the current
Service Blueprinting node is created along with a BPMN Annotation illustrating potential
Expectations and linked tangible objects. But this is only the first part of the current
iteration of the functionality. As a next step, it has to be determined if the Start Point
serves as a point of origin for the initiation of parallel paths.

143

5. The Prototypical Implementation

Excursus: Handling Parallel Paths
Looking at the chosen notational concepts for the service-oriented methodology, such
a splitting point is present if the flow node has more than one outgoing edge. Within
the example provided in Appendix C the Action {arrange necessary steps} represents
such a case. To deal with these situations, the class TransformationEngine.java uses
a sub-method since this kind of functionality has to be applied for Actions as well as
the Start Point. As parameters this new method expects the foreign Gateway that was
passed to the recursive top-level method (but of course is null for Start Points), the
current Service Blueprint flow node (e.g. the Start Point) and the corresponding BPMN
representation (e.g. the Start Event).

When it comes to the contained program logic, the first step consists of the determination
whether or not the treatment of parallel paths is even necessary at this point. Looking
at the exemplary model, the mentioned Action is the only one which causes the method
to execute further operations. In this case, a new local Parallel Gateway is created (i.e.
positioned within the current process). Within this context, the propagation of the flow
notation across multiple processes comes into play. For this purpose, in accordance with
the considerations elaborated within Section 5.4.4, for the current splitting point, it is
determined how many outgoing paths cross the borders of the local process. This is done
by applying another recursive sub-method call that moves along the upcoming branches
and returns a set of edges that are identified to be relevant at this point. If the set is
empty or only contains one element, no foreign Gateway is necessary. So the graphical
representation of the Parallel Gateway is created and linked to the Start Event. In that
case, the method comes to an end.

However, if the set contains multiple edges, it is necessary to mirror the situation
within the foreign process. Note, that due to the fact that only the customer’s and
the organization’s process are participants relevant for the Action and Communication
Flow, the target at this point can be easily identified. Now, the next step within this
sub-section is the creation of the new foreign Parallel Gateway and the generation of the
graphical representation. Due to the conflict potential of this element, this is not an easy
task. The corresponding discussion can be found in Section 5.5.

Once the previous step is completed, another aspect that needs to be taken care of
concerns the first parameter that is passed on to the handling of the parallel paths. If a
foreign gateway is present in the remote process and is waiting to be connected to the
further sequence flow, it needs to be dealt with. If this BPMN node is the representation
of another local Parallel Gateway, it is simply connected to the new one, and the further
processing contained within the context of handling the parallel paths continues. If
not, it represents a local Exclusive Gateway (i.e. the logical counterpart of the Decision
Point), which makes it necessary to introduce an additional message flow between the
processes at this point. This is the case since the specific counterpart at this point is
an Event-based Gateway which requires being followed by an element of the type Event
(or Message Task). So this new message flow (i.e. a combination of local Throw Event,
message flow, and foreign Catch Event) indicates the propagation of the local decision

144

5.7. The Transformation Environment and Process in Detail

that was made in the past [OMG11].

In any case, at this point, the necessary foreign Gateway is created. The next step consists
of the treatment of the so-called unfinished business within the remote process. This term
describes flow elements that are not directly or indirectly connected to a corresponding
End Event and therefore are incomplete. As mentioned before, such elements are stored
within a specific list within the respective process container at the time of their creation.
If multiple elements have been identified to be relevant at this point, another Gateway has
to be created and linked, since in BPMN a Gateway should not have multiple incoming
and outgoing paths (i.e. it should not be used as a merging and a splitting point at the
same time).

As the last section of this program part, another special case has to be considered. It is
possible that the created foreign Gateway is the first element of the foreign process flow.
However, every BPMN Pool needs to start with a corresponding Start Event. If such an
element is missing, a generic default Event has to be created and linked to the brand
new Gateway.

With the treatment of these last issues linked to the handling of the parallel paths, this
step is completed and if a Parallel Gateway was necessary, it is used as new current
BPMN element for the remaining part of the iteration of the recursive method dedicated
to the transformation of the Action and Communication Flow.

Continuing the Transformation of the Action and Communication Flow
Within a valid Service Blueprint, for a Start Point there has to be at least one outgoing
edge leading to the subsequent element of the service flow. What has to be done next is the
treatment of these linkages and the corresponding target elements. Due to the possibility
that there are multiple edges present, this has to be done via a looping functionality.
Due to its relevance concerning the creation of the graphical representation, while doing
so, the default sorting of the edge lists, which is a result of the XML interpretation of
the source model, is not sufficient. Instead, implementations of the Java Comparator (i.e.
java.util.Comparator) are used to enable the reorganization of lists containing incoming
respective outgoing edges of a specific node according to the vertical positioning of the
source respective target element (i.e. Y coordinate). This way, for the current case, it can
be ensured that the first iteration of the loop takes care of the outgoing linkage to the
element that is graphically positioned above the other ones. Doing so makes it possible
to correctly position elements that are additionally necessary to create a valid BPMN
file as shown within the result of the transformation in Appendix C.

As a next step, to be able to take care of the linkage between the Start Event, respectively
the newly generated Parallel Gateway and the upcoming flow elements, the targets of the
edges have to be actually created within the context of the target model. Once more the
get or create methodology, as discussed above, is applied for the creation of the logical
and graphical component of the necessary BPMN elements.

Furthermore, at this point, the fact that each edge could be marked with additional
information needs to be considered. If such an annotation can be identified as being part

145

5. The Prototypical Implementation

of the Service Blueprint Data Flow as specified within the context of this work (i.e. [data
element]), a sub-method is called that resolves these situations.

Excursus: Handling the Data Flow
This functionality expects as parameters the textual content of the annotation, as well as
the BPMN elements describing the source and the target of the corresponding edge. In
general, it is a rather straightforward task, which creates the actual BPMN Data Object
including the corresponding associations linking it to the passed flow nodes. This concerns
the logical as well as the diagram components of the data flow. Due to the conflict
potential at this point, the generation of the graphical elements is the most complicated
part of this sub-method. At the end of the function call, the current annotation that was
identified as being a Data Flow is excluded for the further processing (i.e. is set to null).

Continuing the Transformation of the Action and Communication Flow
After the potential data flow was handled, for the current iteration through the list of
outgoing edges of the current Start Point, it is necessary to check whether the target
object serves as a merging point for multiple incoming edges or not. If this is the case,
the target of the BPMN sequence flow has to be a merging Gateway. For this purpose, a
global storage is used to look if for the current target element, a corresponding Gateway
was already created and can be reused. If such an object cannot be found, another
encapsulated sub-functionality is used that takes care of this issue. This is necessary
since it is important that not only a generic instance is created, but the right one.

Excursus: The Creation of merging Gateways
Within the context of the prototypical transformation, two categories are used to merge
multiple paths together. Depending on the corresponding splitting point, the logical
counterpart can be of type Parallel Gateway or Exclusive Gateway. The decision is made
by a recursive backtracking of all edges that need to be joined together.

Once the common source element of all incoming paths was found, its type is determined
and reused for the required decision at this point. However, if, due to some model
constellation it was not possible to retrieve the desired splitting point, a Complex
Gateway is created as a merging point, which has to be changed by the user when it
comes to the manual revision of the transformation output.

Continuing the Transformation of the Action and Communication Flow
To proceed with the linkage of the Start Event to the target of the current outgoing edge
if it is necessary to reuse the generated merging Gateway at a later point of the program,
it is added to the central storage that was mentioned above. After the corresponding
graphical representation is created, the actual sequence flow between the Gateway and
the BPMN element mirroring the target of the edge from the Service Blueprint is put in
place.

What is still missing to be able to conclude the current call of the recursive method is an
end-to-end BPMN sequence flow between the two sides of the Action and Communication
Flow. At this point, it is possible that the source element is either the Start Event or
a Parallel Gateway due to the fact that the Service Blueprint Start Point has multiple

146

5.7. The Transformation Environment and Process in Detail

outgoing edges. In the latter case, the linkage between the initial BPMN flow element
and the new splitting point was already created above. Furthermore, it is possible that
the target is either the direct result of the transformation of the Service Blueprint element
that is the target of the corresponding edge (e.g. an Exclusive Gateway representing a
Decision Point or a Task representing an Action), or it is a merging Gateway that was
necessary to join multiple incoming paths and was already connected to the upcoming
element.

Independent of the current constellation, the program code needs to take care of this
connecting step. Since this task is similar for many sections throughout the whole Java
class, it is advisable to do so contained within a reusable sub-method. Depending on
the situation at hand, the input parameters may vary from case to case. Accordingly,
the layout that was detected above while transforming the Start Point is reflected in the
method call.

Excursus: Creating the Action Flow Linkage
In general, the function createActionFlowLinkage takes the potential foreign Gateway, the
content of the edge’s annotation, the source, and target elements as well as an ordering
number which is used to calculate the graphical ordering as parameters. Depending on
the situation the first two may be set to null which prevents the corresponding code
segments from being executed.

The initial step towards the creation of this part of the BPMN sequence flow consists
within the determination whether the source resides within a different process than the
target. If this is not the case, the required linkage is created via a BPMN flow step using
a simple edge. However, if the two ends are not located within the same Pool, the current
task requires a resolution using the sequence as well as the message flow of the target
methodology. To begin with, a new Message Throw Event needs to be added to the local
process which is used to propagate the domestic progress to the other participant (i.e.
organization or customer). After the necessary notational element is created logically as
well as graphically, some special cases need to be considered. First of all, it has to be
checked if the ongoing path that spans over the whole BPMN diagram (i.e. including
sequence and message flow) comes back to the local process at some point. If this is
not the case, the newly generated Message Throw Event is the last element contained
within the Pool and therefore has to be linked to a corresponding End Event. Since there
is none present at this point, a new one has to be created. However, if the path does
come back to the local process later on, the next issue that is targeted within the current
sub-method is the question if it is necessary to create a new local merging point. This
might be the case to reflect an upcoming one that is present in the foreign process and
so needs to be put in place due to the alignment of both sequence flows. To determine if
such a resolution is required, another recursive helper method is used that moves along
the subsequent process elements and checks if such a foreign merging Gateway does exist.
If this is not the case, the current Message Throw Event can be added to the unfinished
business of the process which means that it is stored within a specific set to be resolved
at a later time during the overall transformation. Otherwise, it has to be checked if a

147

5. The Prototypical Implementation

corresponding local Gateway that is used to mirror the foreign one is already present.
If not, the logical and graphical details have to be generated and added to the output
model of the program. The positioning of the diagram part has to be aligned with the
one of the foreign counterpart. Therefore the ordering of the corresponding incoming
edges that are present in the other Pool needs to be taken into account. Afterward, the
merging point is linked to the Message Throw Event and, if not already present, added
to the unfinished business of the current process.

As a next step, the receiving constellation on the other side of the message flow has to
be created. Within the target process, the logical counterpart consists within a Message
Catch Event that is embedded inside the corresponding foreign sequence flow. Once
again, there might be the situation, that this new element represents the very first object
within its Pool and therefore cannot be linked to a required Start Event. If so, the newly
generated Event is declared as such and put in place without any incoming edges. The
calculation of the diagram information that will be used to generate the graphical element
heavily depends on the situation that is present at the targeted position (e.g. Gateway
present).

Afterward, the linkage of all the elements that are necessary to illustrate the current
layout of the diagram flow can be set up. First of all, the BPMN source element is
linked to the Message Throw Event. If an Annotation is present at this point, it is
assumed that it is a simple text content that is used to mark the outgoing edges within
the context of a Decision Point (respectively Exclusive Gateway). Note that a potential
Data Object would have been identified in an earlier stage of the transformation and
handled accordingly. Now the message flow between the Throw Event and the Catch
Event can be created, which results within the bridge between the two distinct processes.
As a last step directly related to the current exchange of information, the foreign Catch
Event is linked to the target of the overall flow.

However, the transformation is not yet complete since, due to occurring special cases and
loose ends as a result of prior process paths, there might be still some situations that need
to be resolved to be able to ensure a valid transition between the specific objects. So,
as a first step, the splitting Gateway that was potentially passed on to this sub-method
as a parameter needs to be integrated into the current flow. The correct placement for
the corresponding edge is between this element and the Catch Event within the remote
process. Finally, to conclude the transformation of the actual Action and Communication
Flow between the Service Blueprint source and target, the unfinished business present
within the participant containing the target object needs to be handled. Again there
might be a situation where a merging Gateway is necessary to be able to conclude the
transition accordingly.

Finalizing the first iteration of the Transformation
At this point, the BPMN concepts required to correctly represent the Service Blueprint
Start Point, the subsequent elements and the linkage between them were created. What
now remains to finish the current procedure are the recursive calls of this core method
using the target elements of the outgoing edges coming from the Start Point. Looking at

148

5.7. The Transformation Environment and Process in Detail

the example provided in Appendix C, the next element that has to be dealt with is the
Action {express problem}.

Next iteration of the Transformation with an Action as source Element
To begin with, once more, the recursive method has to determine whether the current
node is a Start Point or an inner flow element (i.e. Action or Decision Point). Now,
the current element belongs to the second category. After the get or create functionality
is used to retrieve the previously created element, it is assessed if the current BPMN
node and its subsequent paths were already subject to the transformation. This is done
via looking at the outgoing edges of the BPMN element. If there are none, this is not
the case and the method should proceed. Due to their different nature, Actions and
Decision Points should be treated separately and the functionality splits the contained
code segments even further.

As we are currently dealing with the first one, if multiple outgoing paths are detected
when looking at the corresponding Service Blueprint node, a parallel sequence flow should
be set up which requires the usage of a Parallel Gateway. To resolve this situation, the
same sub-functionality that was already used within the context of the Start Point is
applied. If such a splitting point was necessary it will be used as the current BPMN
node for the further transformation steps.

The treatment of the additional information related to Service Blueprint Actions was
already conducted during the item’s creation using the method as described above. So
what remains at this point is the handling of the outgoing edges of the current node.
This includes the creation of the logical and graphical component of the necessary BPMN
target-counterpart as well as the necessary flow linkage (i.e. sequence and message flow).
As it was the case for the Start Point, a list of the outgoing linkages that is sorted while
applying the vertical positioning via the customized Java Comparator implementation,
is used to iterate over its content.

Within the corresponding loop structure, the first task is to create the BPMN target
element using the already known sub-method that also takes care of any additional
information like linked tangible objects. Afterward, it is time to handle the potential
Data Flow for the current edge. As it was done for the first section of this part of the
program, the method handleDataFlow is invoked while passing on the annotation, as
well as the current and the next BPMN node.

Once this task is concluded, another special case has to be dealt with. It is theoretically
possible that the target of the current edge requires an Exclusive Gateway that has to be
mirrored within the remote process to be able to propagate the splitting point. This is
done via the application of an Event-based Gateway placed within the other process and
Message Catch Events to receive the decision made. This is basically fine for the most
situations except a case, where there is already another Event-based Gateway present
that is waiting to be linked to the required subsequent Events. If the transformation
proceeds without any additional steps, this would result in a direct linkage of the two
foreign splitting points. But, since this type of Gateway has to be followed by an Event

149

5. The Prototypical Implementation

(or Message Receiving Task), the model would not be valid [OMG11]. So, if this kind of
situation has been detected it needs to be handled accordingly. To do so, an additional
message flow constellation is put in place using a local Message Throw Event and a
foreign Message Catch Event.

Afterward, similar to the treatment of the Start Point it has to be checked whether a
merging Gateway is necessary on the target’s side or not. If so, it has to be created (or
simply retrieved if already present) and connected to the present elements.

The last two steps consist within the method call targeting the creation of the linkage
between the source and the target of the edge as discussed above and the recursive
invocation of the main transformation functionality using the target BPMN element as a
parameter.

Next iteration of the Transformation with a Decision Point as source Element
Coming back to the used example in Appendix C, the next Service Blueprint element is
also of type Action which means that the same program segment as discussed above would
be applicable. However, as one can see, the one after that is a Decision Point named
{decide what to do} which has two outgoing paths amended with the corresponding
decision. If this element is passed on to the recursive functionality after it was detected
that it is a member of the inner flow of the Service Blueprint, again it is checked whether
the node was already visited or not. If it still needs to be processed and the object is
identified as a Decision Point the last major code segment of the main transformation
functionality is invoked.

First of all, since this splitting point was not already dealt with, it is not clear if the
necessary local Gateway has to be reflected in the other process. So the first step is
intended to take care of this uncertainty and resolve it accordingly. To be able to assess
the situation correctly, a sub-method is used that recursively checks if the ongoing Action
and Communication Flow crosses the border of the current process. As a result, the
functionality returns a list of all Service Blueprint edges that were found to be subject
to this definition. If the collection contains at least one entry, a foreign Gateway is
necessary. Looking at the example in Appendix C, it can be observed that an outgoing
path crosses over to the customer process with the target Action {sign approval}. So
since the Decision Point does in fact have an impact on the other participant, it needs
to be reflected.

In this case, to begin with, the Event-based Gateway located within the remote process is
created. As it was discussed within the section targeting the generation of the graphical
elements, the calculation of the diagram part at this point is one of the most complex
due to the high potential to inflict conflicts with other model elements. However, once
a satisfying positioning has been found, it is necessary to think about the unfinished
business that might be present in the other process. If this is the case, it needs to be
linked to the newly created splitting point. Note, that at this point an additional Gateway
might be required to merge multiple incoming paths together. Along with the handling
of such elements, there is the chance that another foreign Gateway is present that is

150

5.7. The Transformation Environment and Process in Detail

waiting to be connected. If so, it needs to be taken care of at this point. A last special
case within this context is once more the situation that up until now, the other process
may not contain any element, which means that a corresponding Start Event is missing
and needs to be created and linked to the new Gateway.

At this point, the preparations targeting the current Service Blueprinting node, the
Decision Point, and the additionally required elements are completed and the next tasks
are focusing on the outgoing edges representing the specific decisions. Again, a list sorted
according to the vertical ordering of its target elements is used as a basis for the loop
behavior of this code segment.

The first step within this context is to create or retrieve the already present BPMN
representation of the target of the current edge. Afterward, another special case needs to
be handled, assuming that for the current situation a foreign Gateway is necessary to
reflect the local decision since an upcoming path is crossing over. As discussed above, as
a counterpart to the local Exclusive Gateway an Event-based Gateway in combination
with Message Catch Events is used. If the current edge is part of a path that in fact has
an impact on the other participant, we can expect that, at some point in the future, there
will be a message flow with a corresponding Catch Event that propagates the decision.
It will be created automatically while transforming the Action and Communication Flow
between the source and the target of the specific edge. However, as it is the case within
the shown example in Appendix C (decision NOTHING), there might be a path that
does not inherit such a behavior and comes to an end without affecting the other process.
This constitutes a problem since such situations would be missing in the foreign Pool,
which would result in an incomplete BPMN model.

To handle these cases, after it is detected via a recursive sub-functionality, a new message
flow combination using a local Message Throw Event and a remote Message Catch Event
is put in place and linked to the corresponding Gateways. Now, for the ongoing processing
at this point, there are three possibilities. First of all, it might be the case, that the
current path that only has local implications comes to an end without rejoining the other
ones. The second variant consists within the situation that it is in fact merged again and
continues afterward, but the general flow does not cross over to the foreign process. Last
but not least, the local path is joined together with the other ones and, after that, the
ongoing Action and Communication Flow has an impact on both participants.

Looking at these variants, for the first two, it is not necessary to create a merging point
within the foreign Pool. In contrast to that, for the last one, this is not applicable. So if
this case is detected, a Gateway is required within the other process that needs to be
linked to the newly created Message Catch Event. Depending on the sequence in which
the outgoing edges of the Decision Point are handled, this merging point might already
be present or needs to be set up within this context. If the current situation belongs to
the first or second category, the Catch Event is simply linked to a new End Event that
concludes the corresponding sequence flow.

Independent of the situation that was identified above, the further steps are quite similar

151

5. The Prototypical Implementation

to the closing tasks for Start Points and Actions. First, it has to be determined whether
a merging Gateway directly linked to the target element is necessary. If so and it
does not already exist, a new one is created. Afterward, in accordance to the overall
structure of the current point in the Service Blueprint, the sub-method responsible for
the proper transformation of the linkage between the source and the target of the current
edge is invoked. Once more, the final command consists within the call of the main
transformation method with the target element as a parameter.

Transforming the Preparative and Managerial Actions
The paragraphs above discuss the last sections of the recursive function which is respon-
sible for the transformation of the Action and Communication Flow including all the
contained elements and the linked additional data like tangible objects. After each call
has come to an end, looking at the example model, nearly every Blueprint Area including
its content was transformed into the BPMN methodology. However, still missing at this
point, are the Preparative and Managerial Actions, as well as the IT Elements.

To target this assessment, the first step is to take care of the missing, more general
Actions. As discussed previously, due their independence of the actual execution phase of
the service instance, a separate process is necessary. Accordingly, the task at this point
is to create a new BPMN participant and Pool and to construct a new sequence flow.
The dependencies that are reflected by the Service Blueprint are illustrated using the
message flow of the target language.

If Preparative and/or Managerial Actions are in fact present within the source model,
the first step consists of the iteration of the relevant Service Blueprint flow elements.
For each object, the main recursive transformation method that was discussed above
is invoked with the current node as a parameter. Since the functionality moves along
the pathways of the current diagram part, it is also sufficient to transform this aspect
of the source model. However, one amendment that had to be made to fit the current
situation concerns the handling of the unfinished business. Looking, at the example
model in Appendix C, it can be seen that the Areas concerning the Preparative and
Managerial Actions do not have a Start and End Point as well as an end-to-end Action
and Communication Flow. As a result, each inner flow node that was assessed as having
no incoming and/or outgoing edges has to be added to the set of unfinished business.
This way the linkage necessary for a valid BPMN structure can be added later on.

Once the corresponding Actions, the already available linkages, and the dependencies
are created within the target model, the opening and concluding elements have to be
added. For the model designer, it is not necessary to use both Areas within the Service
Blueprint. Therefore, the code section tries to place the Start and End Event within the
Lane representing the Preparative Actions. If this is not possible, the managerial part is
used.

Depending on the number of BPMN flow nodes that do not have any incoming respective
outgoing edges, it might be required to add splitting and merging Parallel Gateways
linked to the Start and End Event. Depending on the Lane selection for the placement

152

5.7. The Transformation Environment and Process in Detail

above, the Gateways are positioned in the same way. Looking at the provided example,
since there is only one Action present within this context, this is not necessary.

To complete this code section, at this point each element that is not part of a consistent
sequence flow is linked to the Start and End Event respectively the corresponding splitting
points.

Transforming the IT Elements
The second missing issue concerns the Area that can be found on the very bottom of
the example Blueprint and represents the IT Elements that are linked to the current
model instance. For this purpose, a corresponding sub-method iterates over a list
contained in the source diagram using a loop structure. For each contained element a
new BPMN Data Store is created and added to the logical component of the intended
output. However, the graphical counterpart concerning this concept is an issue that
occurred during the development. As indicated in the description of the Camunda
Model-API, not all mechanisms mentioned within the official standard of BPMN are yet
fully supported [Ser15a]. The diagram part necessary to represent IT Elements cannot
be generated up until now using the mentioned library. As a result, the output BPMN
model of the transformation is logically complete but does not show the objects created
within this section when opened within a graphical model editor. However, as soon as
the necessary aspects are published for the Camunda Model-API this point can be easily
fixed.

Concluding the Transformation
As a very last step during the transformation of the whole source model, a function is
invoked that looks for each detected process if there is still some unfinished business
present that was not handled at this point. For each loose end that is detected this way,
a new generic End Event is added and linked to the respective object.

With the execution of these final lines of code, the transformation should create a valid
BPMN model that can then be passed on to the creation of a corresponding .bpmn file.

Generating the BPMN File

The output of the Java class TransformationEngine.java consists within an instance of
the Camunda Model-API object structure representing a BPMN model. To be able to
receive a file that can then be imported into another environment (e.g, graphical modeling
tool like the Camunda Modeler) and further processed, a standardized file is necessary.

As mentioned before, within this context, the used library offers two very helpful func-
tionalities. First of all, it contains an easy to use validation mechanism that ensures the
user that the newly created model is compliant with the official specification of the target
methodology. The second aspect consists of a method call that writes the transformation
result into the desired .bpmn file. The Java class BPMNGenerator.java encapsulates
the call of these tools and is used to take care of this last step within the context of the
overall undertaking.

153

5. The Prototypical Implementation

Considering the example model that was used for the corresponding discussions within
this chapter, the result of the transformation can also be found in Appendix C.

At this point, the explanation of the actual transformation process is finished and
the BPMN output file was created. Accordingly, these paragraphs constitute the last
component of the chapter targeting the development of the prototypical implementation.
As a next topic, it is time to focus on the conclusion of the overall work.

154

CHAPTER 6
Conclusion

After the discussions and the development targeting the prototypical implementation of
the transformation between Service Blueprinting and BPMN, the last step contributing
to the core issue of this thesis which was meant to serve as a proof of concept has been
finalized. Now, as a closing statement, this chapter shall represent a conclusion summing
up the main findings that were made within the context of this thesis.

The idea of the transformation between Service Blueprinting and BPMN could contribute
to the modeling of services and facilitate the way how a corresponding process illustration
is created. The main intention is to use an existing Service Blueprint as a source for
the conversion process which then automatically generates a valid BPMN representation.
Based on the fact that when considering the direction of this mechanism, the starting
state inherits a higher level of abstraction than the target, if a comprehensive illustration
is required afterwards, the direct result of the transformation has to be amended with
some additional, finer grained details that were probably not a subject to the discussions
during the design phase. So, although the intention is to automatically receive a valid
BPMN model, there might still be the need to refine the output afterward.

This last statement also leads to an important requirement imposed on the result of
the conversion. Besides the fact that the process modeling standard is a very well
known and widely adopted tool-set maintained by the Object Management Group, one
main advantage consists within the XML-file representation available since its version
2.0 [OMG11]. This way it is possible to further process the results while using an
additional automatism or even a graphical editor that supports the given format.

Now, looking at the design process of the transformation that was the main aspect of
this thesis, each consideration was made while following the direction of the conversion
itself. Accordingly, the first major part concentrates on the examination of the source
methodology Service Blueprinting. Due to the missing standardization, at this point of the
overall work, the underlying literature research has been considered as a very important

155

6. Conclusion

task to be able to build up a solid foundation for the necessary definition concerning
the actual source of the transformation. In general, the top-level classification of the
service-oriented approach makes its distinction based on the illustration of the sequence
flow throughout the diagram. Basically, it is possible to do this in an implicit way, while
only using the graphical positioning of the contained elements on the canvas, or explicitly
via the application of model edges similar to classic flow notations. The big difference
between these two categories now consists within the ability to display more complex
logical layouts of the action and communication flow between the specific operations.
While the implicit approach only supports one dimensional and very simple service
orchestrations, its counterpart tends to be more flexible in this regard. Furthermore,
when combined with additional conceptional functionalities like decisions and parallel
paths, a broader spectrum of service offerings can be covered. However, one important
aspect of the source methodology is its comprehensibility, which is especially important
for the collaborative design process with business owners that do not have extensive
modeling skills. For this purpose its necessary to keep the palette that has to be applied
to successfully create a valid Service Blueprint on an appropriate level. After an extensive
research and the creation of several example models, the chosen set as discussed in
Chapter 4.1.4 and graphically summarized in Figure 5.2 has been fixed. To get a better
understanding of how to work with this modeling approach, during the corresponding
examinations also a case study was conducted targeting the Emergency Admission of a
Patient at a Surgical Ward within an Austrian Hospital. The results of the corresponding
design process that was carried out as a collaborative approach can be seen in Chapter 3
and Appendix A.

At this point, it is important to note that, although the shown concepts offer more
possibilities, most of them are merely optional and shall give the user the opportunity
to specify the situation at hand to a satisfying degree. Accordingly, it is possible to
create a valid Service Blueprint merely by applying a Start and End Point, at least one
Action and some edges linking the elements together. Concerning the Areas which are
a key aspect of the methodology, the application of the one for the customer and the
Front-Stage Interactions of the organisation are sufficient.

After the characterization of the concepts that shall be available to the model designer in
the domain of Service Blueprinting, since the notational set provided by the target of the
transformation is already very well specified and documented within the official standard,
the next logical step that had to be carried out was the design of the actual mapping
between the two sides. However, due to its complexity, this cannot be considered as a
straightforward task. To be able to come up with a viable solution for the conversion, one
has to identify and examine the commonalities and gaps. For this purpose two papers
of Simon K. Milton and Lester W. Johnson respectively Yahya Kazemzadeh, Simon K.
Milton and Lester W. Johnson that deal with this kind of comparison have been used
as a basis for the discussion [KMJ15] [MJ12]. Along the way, the potential coverage of
one side by the other has been a core aspect. As a result, besides the mismatch between
the available tool-sets (i.e. the available conceptual elements) and the accompanying

156

different levels of abstraction, the actual nature of the methodologies has been identified
as an issue at this point. While Service Blueprinting is a graphical approach to design an
organization’s service offering from the customer’s point of view with a strong focus on
the interaction points, BPMN is a process modeling language applied from the perspective
of the organization.

Now the transformation has the task to overcome this differences and so create a bridge
between the two worlds. At this point, it has to be mentioned that, of course, such an
undertaking likely does not have exactly one correct solution for the matching. Instead,
there are several possible ways which inherit specific advantages and disadvantages how
the converting step can be accomplished. The corresponding discussions were conducted
in Chapter 4.1.4 which concludes with a clear recommendation that is also illustrated
in Table 4.1 and applied for the remaining parts of this thesis. When it comes to the
transformation of one specific concept it has proven to be not sufficient to only focus on
the characteristic of this single point. Instead, it is also necessary to review the intended
matching within the overall context, since the interdependencies between the individual
rules have to be kept in mind as well. So for example, it has to be avoided to convert
multiple concepts in a similar way which would cause ambiguity within the output of the
mechanism afterward.

With the creation of the set of guidelines as shown in Table 4.1, the actual transformation
concept has been completed to a degree that was achievable from a merely theoretical
point of view. As mentioned already within the introductory chapter of this thesis,
to confirm these considerations a prototypical implementation should be applied that
provides the capability to read in an existing Service Blueprint and apply the given set
of rules to generate the BPMN output model.

To begin with, during the initial discussions within Chapter 5, three main components
have been identified that need to be a part of the planned environment. First of all, as a
starting point, there has to be some kind of automatically processable file representation
of the source methodology. After a functionality then takes care of its interpretation,
the core components should use the extracted information and create a new BPMN
model from scratch. As a final step, the task is to export the generated result within a
standardized format that can then be processed while using other tools and mechanisms.

To approach the detailed specification of this rough layout and begin with the actual
development, as a logical conclusion, the direction of the transformation has been kept
in mind while initiating the necessary work. So at this point, the way how a Service
Blueprint could be created and stored within a readable file structure has been examined.
In general, for this purpose, some kind of computerized tool has to be utilized. Sadly, up
until now, compared to well-structured languages like BPMN, the software support is not
that well developed for this aspect. Although, some applications have been found during
the corresponding research, as discussed within Section 5.2, they were not assessed to
fulfill the requirements that have to be met to be applicable as a part of the transformation
environment. To overcome this situation, basically there are two alternative approaches.
First of all, it could be a possibility to look for an already existing framework that can

157

6. Conclusion

be amended and configured accordingly. If this is not a viable option either, as a last
resort, a completely new tool designed for the creation of Service Blueprints could be
developed. After some digging, the easy-to-use modeling environment Draw.io has been
found. To satisfy the demands within this context, the tool enables the user to specify
customized libraries where it is possible to use individualized shapes to create a new
approach. Accordingly, the task was to introduce a new set of conceptual elements that
match the specification made within the theoretical part of this thesis. But, of course,
for the tool representing the source of the transformation, it is not enough to be able
to fulfill this role. There is also the need for a file export of the created model that can
then be interpreted afterward. For this purpose, Draw.io offers several different formats
including an uncompressed XML version. Additionally, while assembling one’s library,
the corresponding style element of the specific concepts can be amended which positively
influences the automatic interpretation of the model afterward.

The next aspect that has to be considered when looking at the technical set-up targets
the other side of the transformation. Within this context, it is not necessary to look for a
tool that creates the models since the conversion mechanism has to take care of this task.
But, as indicated above, there is the requirement to have a BPMN output file that can
be processed while applying additional tools. For this purpose since its version 2.0 the
official standard references an XML specification that can be used at this point. Every
tool that has the ability to read in such a .bpmn file can then be applied to edit the
results of the transformation. The Camunda Modeler has been found to be compatible
with this specification and was mainly used to test the generated outputs.

Considering the way how the prototype shall be actually created, what still is missing
is the corresponding development environment. To accomplish this task, the program-
ming language Java in combination with the Eclipse IDE, Git via Bitbucket as version
management and Maven for the dependency management have been applied.

However, before the actual transformation can be implemented, from a technical point
of view, it is necessary to consider the way how the desired file can be created. Within
this context, the Camunda Model-API has been found to be very helpful, since it offers
a predefined BPMN Java object structure and the possibility to export the resulting
orchestrations into the desired format. So what has to be done, is the creation of a
mechanism that interprets the customized Service Blueprint XML files provided by the
Draw.io export and convert the outcome into the given BPMN Java representation. After
that, the mentioned functionality that takes care of the required output generation can
be invoked.

Another general consideration that has to be taken care of is the important point of
the validation of the transformation results. Only if this aspect can be satisfied to a
reasonable degree, it can be assessed whether the implemented prototype serves its
purpose as a proof of concept or not. To target this demand, during the development
of the implementation, three different methods have been applied. First of all, once
more the integrated Camunda Model-API can be used to approach this topic. It offers a
method that validates the newly generated logical BPMN model present within the Java

158

structure mentioned above, against the BPMN 2.0 specification[Ser15b]. As a result,
every file that is successfully created via the transformation mechanism is compliant with
the official standard. But of course, this can only be considered as a top-level requirement
within this regard. What is still missing concerns the validity of the results when looking
at the proposed matching rules between the two methodologies. To resolve this situation,
during the earlier stages of the development, the focus was on the review of the generated
XML background structure (i.e. the .bpmn file structure). To be able to assess if the
output fulfills the requirements, the graphical editor Camunda Modeler has been applied
to create a template matching the current test case. However, although this might be
a practical approach to test smaller to medium sized test Blueprints when it comes to
larger ones, it is not that useful. To overcome this issue, again the well known BPMN
modeling tool has been used, but this time not for the generation of test samples, but
for the actual graphical interpretation of the conversion results. Once the corresponding
model has been successfully created and imported (i.e. without receiving error messages
provided by the embedded library and the editor itself), the graphical orchestration can
be used to check if the transformation rules were applied correctly. In total, about 70
different test models ranging from smaller to more comprehensive ones have been created
to aid the development and the validation of the results.

However, due to some difficulties concerning the graphical representation of the BPMN
model, the application of the Camunda Modeler to import the transformation output,
as proposed for the third validation approach, was only possible after the majority of
the core functionality has been implemented. In general, considering the corresponding
XML structure, a BPMN file consists of two major sections. The logical part represents
the conceptual elements and their functional dependencies and is basically sufficient to
outline a valid BPMN model. However, this way it is only an option to use automated
functionalities to process the results afterward. The usage of a graphical editor like the
Camunda Modeler is not possible. To overcome this limitation, the diagram component
needs to be created as well and linked to the first section of the model. Since a correspond-
ing, already existing library has not been found, this task had to be implemented from
scratch. In general, the processing of the graphical information while using a mechanism
like the intended prototype is not an easy task since a multitude of aspects has to be
considered like the conflict management. To cope with this complexity, the corresponding
development steps have been initialized after the core functionality targeting the logical
counterpart has been put in place.

But this was not the only critical aspect that has to be dealt with during the development
of the prototype. A major issue already occurred during the step-by-step implementation
of the transformation targeting the logical component of the resulting BPMN model.
Within the context of the theoretical concept, as discussed in Chapter 4.1.4, the way how
the areas as proposed by Service Blueprinting can be correctly transferred into the world
of BPMN has been a key point. As shown in Table 4.1, the decision has been made to
apply two main processes (i.e. Pools), one for the customer and one for the organization.
Lanes are then applied to convert the remaining separators. Additionally, if Preparative

159

6. Conclusion

and/or Managerial Actions are present in the source model, a third process is added.
This option has been chosen since it offers the best distinction between the two major
participants of the service situation. However, when following this assumption, it has
to be considered that the unified Action and Communication Flow as present within
the conceptual set of the source methodology, this cannot be the case for the target
environment. The usage of multiple Pools in BPMN requires that each process has an
encapsulated sequence flow (including start and end nodes) and it is only possible for the
participants to interact with each other while applying the provided message notation.
Accordingly, during the development of the transformation mechanism, it was necessary
to think about a way to split the given Action and Communication flow and distribute it
across multiple BPMN Pools. This is not an easy undertaking since, besides the necessary
synchronization of the contained flows, for some specific elements like Decision Points
and parallel paths a new flow constellation has to be created automatically to be able to
mirror the situation for all participants and so generate a valid BPMN structure that is
able to reflect the actual service situation at hand. Since this aspect has a strong impact
on the general applicability of the transformations rules, especially when considering
model constellations that include different combinations of such critical situations, this
issue was one of the major sources of complexity during the development of the prototype.

As indicated above, once the logical component had been dealt with to a satisfying degree,
the creation of the graphical elements was approached. To be able to provide a BPMN
diagram representation that inherits a similar look to the Service Blueprint and since
the corresponding coordinates and measures had to be calculated by the newly designed
mechanism, the graphical information that is a part of the XML export of Draw.io has
been reused. While doing so, already after the review of the first transformation results,
conflicting model constellations occurred. The reason for this can be traced back to the
very nature of the two methodologies. While Service Blueprinting is a more abstract
approach that tries to provide the user with a manageable core set of shapes, BPMN,
on the other hand, tries to capture the underlying processes with an extended level of
detail. Additionally, the requirement for the transformation to split the unified Action
and Communication Flow and capture the situation while using at least two distinct
sequence flows encapsulated within the corresponding Pools, has an impact on this point.
As a result, the target methodology requires more conceptual elements to be able to
represent the service, which of course, potentially stand in conflict to each other when
applying the graphical details extracted from the source model.

After some experimenting, two approaches have been implemented to overcome this issue.
The first logical step would be the introduction of some conflict resolution mechanisms.
However, as it has been observed after various test runs, the encountered problems could
not be solved to a satisfying degree. The reason for this lies within the basic cause of the
conflicts which is the different amount of conceptual elements required for the creation of
a valid model. Now since the transformation input is represented via Service Blueprinting
and it cannot be expected from the users to consider this aspect during the design phase,
the density of the source, which is indicated by the number of graphical elements that

160

are positioned inside the specific areas, proofs to be too high in most cases. Due to this
fact, when it comes to the placement of the additional shapes as required by BPMN
the target area tends to be too crowded to find a non-conflicting way even after the
application of simple resolution mechanisms. As a countermeasure, the main idea was
to use a preprocessing mechanism that reads in the Service Blueprint and decreases the
measurable density of the model. To do so, a corresponding component of the prototype
can be configured using two factors, one for each dimension, which is applied if the
calculated indicator exceeds a specific threshold. As a result, the source model inherits
enlarged areas with increased spacing between the contained elements. Now when it
comes to the graphical transformation towards BPMN, while executing this preliminary
mechanism, many potentially conflicting situations can be avoided. But nevertheless,
there is still the need to perform some resolving steps within the context of the main
transformation component to be able to take care of issues that occur despite the resizing
of the original source model. With the combination of both approaches, it was finally
possible to generate a satisfying graphical output of the mechanism.

At this point, the general concept of the transformation between Service Blueprints and
BPMN has been discussed from a theoretical as well as more practical point of view.
During the development of the proof of concept, the initial suggestion was extended with
complementary aspects like the splitting of the unified Action and Communication Flow.
Since the various test runs using the prototypical implementation led to results that have
been assessed as valid according to the integrated validation mechanism and the checks
for compliance against the set of designed rules, the conversion as proposed within the
context of this thesis has been confirmed.

However, what still remains to be addressed concerns the definition of the target that
was set in the introductory chapter. For the sake of a clear focus, when thinking about
the work contained in this thesis, the following scientific questions have been stressed at
the beginning.

• What is the common basis of the concepts Service Blueprinting and BPMN (espe-
cially with respect to the linkage between both methodologies)?

• What are the limitations for the creation of a semi-automatic transformation
between the two sides?

• Is it necessary to introduce more formal characteristics or restrictions to Service
Blueprints to be able to aid the transformation and if yes, what are they on a
conceptual basis?

• When considering today’s business process modeling, are there any enhancements
that could be introduced to Service Blueprinting that might aid the overall devel-
opment?

To target the first point, as an initial step, Chapter 2.5 concentrates on the related
literature and discusses the corresponding findings. Due to the very specific application

161

6. Conclusion

(i.e. combination) of the two methodologies, this section is completed via the subsequent
examination focusing on the additional aspects targeting the commonalities and differences
with respect to the given conceptual and notational sets that were determined beforehand.
In general, this part represents an important basis for the design of the transformation
concept.

Going on to the second question which is about the limitations that have to be introduced
to the environment to be able to successfully perform the planned conversion, the answers
are a core component of the discussions concerning the transformation concept and the
subsequent work targeting the proof of concept. Within this context, probably one of
the most important aspects is related to the different level of abstraction inherited by
the two modeling languages. Since the direction of the transformation can be considered
as top-down, it is simply not possible to generate every desired detail within BPMN. As
a result, the output of the mechanism may need some additional refinements to fulfill the
demands of the model designer in the end.

Another limitation that shall be mentioned at this point is also related to the third
scientific question and consists within the requirement that for Service Blueprinting it
is necessary to have some kind of fixed conceptual palette that is applied while using a
computerized tool for the creation of the models. Due to the missing standardization,
there are several approaches that could be taken into account. However, for the context of
this work, a specific set had to be applied. As mentioned above, a summarized overview
can be seen in Figure 5.2.

Coming to the last scientific question, besides the well known notational elements of
Service Blueprinting that were also present in the referenced literature, additional ones
have been included. Within this context, the decision whether a certain extension should
be introduced or not was based on shortcomings of the overall approach which were
mentioned within the literature, or it was perceived as having the potential to positively
contribute to the applicability of the language. As a result, the possibility to integrate
the flow of data artifacts throughout the service while applying annotations to the
flow edges is also a new part of the methodology’s palette as the usage of customer
expectations, satisfactions. Section 4.1.4 specifically focuses on these extensions and their
transformation towards BPMN.

With these last paragraphs summarizing the findings targeting the scientific questions
stated in the introductory chapter of this thesis, the general undertaking can be considered
as complete. While taking certain prerequisites and constraints into account, it has been
shown, that it is possible to perform the transformation between Service Blueprinting and
the Business Process Model and Notation. However, one thing that should be targeted
as a final part is the issue of potential further developments that could be introduced to
develop the concept even further.

162

CHAPTER 7
Future Developments

Having reached the end of the steps necessary for the development of the first transfor-
mation from Service Blueprinting towards BPMN, along the way several aspects have
been identified that could also contribute to the relevance and applicability of the overall
idea but did not fit the scope of this work. The following paragraphs shall be used to
discuss these points.

First of all, the work performed within the context of thesis had a strong focus on the
design of the conversion and the creation of proof that the approach is applicable while
using the intended prototype. Now that this undertaking can be considered as being
successful, within a further step it has to be examined if the proposed transformation
rules are also perceived as the best alternatives when it comes to other real-life situations
besides the one illustrated within the case study of this work. For this purpose, it is
advisable to select several service situations of different areas and with different levels of
customer interaction and customization and apply the designed modeling environment.

Another aspect that could be targeted as a further development concerns the level of
abstraction of the source methodology of the transformation process. Within the context
of this thesis, it was assessed, that it is necessary to take a very specific set of notational
elements into account that forms the basis for the transformation rules. While doing so,
the preference was more on a conceptual set that is based on well-known flow charting
approaches which makes it possible to integrate more details if necessary to designing en-
hanced service flow constellations. However when looking at the more classical approaches
of Service Blueprinting as proposed within the literature [LW11] [BOM08] [KMJ14], it
could be also interesting to add the possibility to interpret such an abstract conceptual
set to the conversion mechanism as well. As a result, the output BPMN model would
also inherit fewer details and require a greater effort of the model designer to finalize the
process representation afterward. Nevertheless, since there is no fixed standard for this
source language, the option to rely on different notational sets that can be used for the
transformation, could positively contribute to the versatility of the overall idea.

163

7. Future Developments

The next topic that shall be mentioned within this context concerns the way the source
model is actually created before it is passed on to the conversion mechanism. For the
context of this thesis, the free-to-use modeling tool Draw.io is extended with a customized
library that enables the creation of valid Service Blueprints. However, when compared to
more specialized software, like the Camunda Modeler, the application does not restrict
the user when it comes to the placement and linkage of the notational elements. As a
result, it offers a quite extensive freedom during the design phase which leaves it to the
interpretation component targeting the necessary input files to highlight potential errors
afterward. Thinking about the usability of the whole environment, and not just the
modeling tool, it could be a good idea to introduce some restrictions already during the
creation of the Service Blueprint. Thinking about the next steps, it has to be discussed
and investigated if this topic should be considered and to which degree. After all, one
aspect that can be seen as a source of the methodologies popularity directly refers to its
ability to be applied in collaborative and creative environments. A limitation that proves
to be too extreme might, therefore, stand in conflict to the general applicability.

Targeting this aspect of the general environment, another approach is theoretically
possible and could be subject to ongoing research. When it comes to the area of service
and process design, independent of the actual methodology that is applied, as a first
approach the utilization of whiteboards and sticky notes is very common [SS16]. Although
a next step often consists within the usage of some kind of modeling application, it could
be a convenient step to automatically transfer the information captured while using
such an analog method towards the digital counterpart. This could be accomplished via
image recognition software that interprets a picture of the corresponding service draft
and automatically generates a computerized model. Due to its nature, this approach can
be considered as preliminary to the actual transformation between Service Blueprinting
and BPMN.

Now, when considering the other side of the conversion, also for BPMN it is possible to
think about aspects that could be discussed and may contribute to the value of the overall
environment. Due to the fact that the process modeling language is strongly focused on
the illustration of given situations from the organizations perspective, it can be argued
that there is a shortcoming when it comes to the representation of characteristics critical
for the customer. In general this may not be a big issue for the methodology itself,
however when looking at the embedding within the discussed service design framework,
one could think about ways to extend the approach. Since BPMN is a fixed, official
standard, this might not be easy and have to be done with great care to ensure the
alignment of any additional concepts with the already existing ones.

The last remark that shall be noted within this context concerns the actual transformation
mechanism itself. As already mentioned in the introduction of this thesis, the intention
of this work was to develop a prototype that shall sever as a proof of concept. Although
the program itself was developed to fit most model constellations and also emphasize
extensibility and maintainability, if it comes to the introduction of the component into
a real-life application it could be a good idea to rethink some technical decisions made

164

along the way. One aspect that shall be stressed at this point concerns the way how
the actual transformation rules are handled directly within the code. Up until now, the
corresponding instructions are embedded within the very core element of the prototype.
Basically, it is possible to think of a way to elevate the rule definition on a higher level
which would make it easier to maintain the set in the long run. However, whether such a
solution is feasible with respect to the faced complexity concerning the transformation of
the Action and Communication Flow and the creation of the diagram part of the final
output or not has to be assessed first.

The discussion concerning the possible further steps that could be performed to extend
and enhance the combination of Service Blueprints and the Business Process Model and
Notation builds up the final component of this theses. This is now complete as well and
so this work comes to an end.

165

APPENDIX A
Case Study: Emergency

Admission of a Patient at a
Surgical Ward within an Austrian

Hospital

167

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

A.1 Abstract Service Blueprint

Physical Evidence

su
rg

ic
al

 w
ar

d
an

es
th

es
ia

 a
pp

ro
va

l
fo

rm
su

rg
ic

al
 c

lo
th

in
g

su
rg

er
y

ap
pr

ov
al

fo
rm

ad
m

in
is

tra
tiv

e
fo

rm
s

W
ris

tb
an

d
w

ith
 b

ar
co

de

Customer Actions

en
te

r c
lin

ic

ex
pr

es
s

po
ss

ib
le

di
sc

om
fo

rts
fil

l o
ut

 a
dm

in
is

tra
tiv

e
fo

rm
s

ch
an

ge
 in

to
 s

ur
gi

ca
l

cl
ot

hi
ng

si
gn

 a
pp

ro
va

l f
or

an
es

th
es

ia
si

gn
 a

pp
ro

va
l f

or
su

rg
er

y

re
m

ov
e

pr
os

th
es

es
,

je
w

el
er

y
an

d
pi

er
ci

ng
s

Front-Stage Interactions

ac
ut

e
m

ed
ic

al
si

tu
at

io
n

is
de

te
rm

in
ed

tra
ns

fe
r p

at
ie

nt
 to

su
rg

ic
al

 w
ar

d W

m
on

ito
r p

at
ie

nt
de

te
rm

in
e

al
er

gi
es

pe
rfo

rm
 in

iti
al

m
ed

ic
al

 o
n-

si
te

tre
at

m
en

t

ha
nd

 o
ve

r c
od

ed
w

ris
tb

an
d

to
 th

e
pa

tie
nt

ta
ke

 b
lo

od
 s

am
pl

es
vi

a
ca

nu
la

F
W

pe
rfo

rm
 n

ur
si

ng
an

am
ne

si
s

ta
ke

 E
C

G

F

pa
tie

nt
 in

 s
ur

ge
ry

de
te

rm
in

e
al

er
gi

es
in

fo
rm

 p
at

ie
nt

 a
bo

ut
th

e
an

es
th

es
ia

in
fo

rm
 p

at
ie

nt
 a

bo
ut

su
rg

er
y

ad
m

in
is

te
r s

ed
at

iv
e

m
ed

ic
at

io
n

tra
ns

fe
r p

at
ie

nt
 in

to
su

rg
ic

al
 th

ea
tre W

Back-Stage Interactions

in
fo

rm
 s

ur
gi

ca
l w

ar
d

pr
ep

ar
e

ne
ce

ss
ar

y
m

ed
ic

at
io

n
en

te
r p

at
ie

nt
 d

at
a

in
sy

st
em

s

se
nd

 b
lo

od
 s

am
pl

es
to

 la
b

ho
w

 a
cu

te
 is

th
e

ca
se

?

pr
ep

ar
e

su
rg

ic
al

cl
ot

hi
ng

 fo
r p

at
ie

nt
(e

.g
. t

hr
om

bo
si

s
st

oc
ki

ng
s)

po
st

po
ne

ad
m

in
is

tra
tiv

e
w

or
k

H
IG

H

ch
ec

k
cl

in
ic

al
 re

po
rt

ar
ra

ng
e

co
m

pe
ns

at
io

na
l

ex
am

in
at

io
ns

si
gn

 in
te

rn
al

 a
pp

ro
va

l

fil
l o

ut
 s

ur
gi

ca
l

ch
ec

kl
is

t

Support Processes

pe
rfo

rm
 te

st
s F

se
cu

re
 b

lo
od

 s
up

pl
y

W

IT Elements

cl
in

ic
al

 re
po

rt
da

ta
ba

se
w

ar
d

or
ga

ni
sa

tio
n

sy
st

em

M
IL

D
 o

r M
ED

IU
M

168

A.1. Abstract Service Blueprint
Ph

ys
ic

al
 E

vi
de

nc
e

surgical ward

C
us

to
m

er
 A

ct
io

ns

enter clinic

express possible
discomforts

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

acute medical
situation is
determined

transfer patient to
surgical ward

W

monitor patient

B
ac

k-
St

ag
e

In
te

ra
ct

io
ns

inform surgical ward

check clinical report

Su
pp

or
t P

ro
ce

ss
es

IT
 E

le
m

en
ts

clinical report
database

169

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

determine alergies

perform initial
medical on-site

treatment

determine alergies inform patient about
the anesthesia

prepare necessary
medication enter patient data in

systems

arrange
compensational

examinations
sign internal approval

ward organisation
system

170

A.1. Abstract Service Blueprint

anesthesia approval
form

surgery approval
form administrative formsWristband with bar

code

fill out administrative
forms

sign approval for
anesthesia

sign approval for
surgery

hand over coded
wristband to the

patient
take blood samples

via canula

F W

perform nursing
anamnesis take ECG

F

inform patient about
surgery

send blood samples
to lab

how acute is
the case?

postpone
administrative workHIGH

perform tests

F

secure blood supply

W

MILD or MEDIUM

171

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

surgical clothing

change into surgical
clothing

remove prostheses,
jewelery and

piercings

patient in surgery

administer sedative
medication

transfer patient into
surgical theatre

W

prepare surgical
clothing for patient
(e.g. thrombosis

stockings)

fill out surgical
checklist

172

A.2. Transformation Result of the Abstract Model

A.2 Transformation Result of the Abstract Model1

1Please note that the illustration was slightly manually edited to fit the layout of these pages

173

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

174

A.2. Transformation Result of the Abstract Model

175

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

176

A.2. Transformation Result of the Abstract Model

177

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

178

A.3. Detailed Service Blueprint

A.3 Detailed Service Blueprint

Physical Evidence

w
ris

tb
an

d
w

ith
 b

ar
co

de
su

rg
ic

al
 w

ar
d

ho
sp

ita
l r

oo
m

ho
sp

ita
l b

ed
an

es
th

es
ia

 a
pp

ro
va

l
fo

rm
su

rg
er

y
ap

pr
ov

al
fo

rm
ad

m
in

is
tra

tiv
e

fo
rm

s
su

rg
ic

al
 c

lo
th

in
g

in
fo

rm
at

iv
e

m
at

er
ia

l
do

ct
or

's
w

hi
te

 c
oa

t
do

ct
or

's
w

hi
te

 c
oa

t
m

ed
ic

al
 s

cr
ub

s
m

on
ito

rin
g

de
vi

ce
s

el
ec

tro
ca

rd
io

gr
ap

h
di

si
nf

ec
tin

g
ag

en
t

di
si

nf
ec

tin
g

ag
en

t
di

si
nf

ec
tin

g
ag

en
t

Patient Actions

en
te

r c
lin

ic

fil
l o

ut
 th

e
ad

m
in

is
st

ra
tiv

e
fo

rm
s

ch
an

ge
 in

to
 s

ur
gi

ca
l

cl
ot

hi
ng

re
m

ov
e

pr
ot

he
se

s,
je

w
el

er
y

an
d

pi
er

ci
ng

s

ta
ke

 s
ed

at
iv

e
m

ed
ic

at
io

n

si
gn

 a
pp

ro
va

l f
or

an
es

th
es

ia

si
gn

 a
pp

ro
va

l f
or

su
rg

er
y

ex
pr

es
s

po
ss

ib
le

di
sc

om
fo

rts

Front-Stage Interactions

as
si

gn
 b

ed
pe

rfo
rm

 n
ur

si
ng

an
am

ne
si

s

EC
G

 a
lre

ad
y

pe
rfo

rm
ed

?
N

O

de
te

rm
in

e
so

br
ie

ty
de

te
rm

in
e

al
er

gi
es

ga
th

er
 p

hy
si

ca
l d

at
a

fo
r a

ne
st

he
si

a

in
fo

rm
 p

at
ie

nt
 a

bo
ut

th
e

an
es

th
es

ia
in

fo
rm

 p
at

ie
nt

 a
bo

ut
th

e
su

rg
er

y

ho
w

 a
cu

te
 is

th

e
ca

se
?

is
 p

at
ie

nt

so
be

r?
M

IL
D

 o
r M

ED
IU

M
w

ai
t f

or
 s

ob
rie

ty
 o

f
pa

tie
nt

N
O

m
on

ito
r p

at
ie

nt

in
tra

ve
no

us
ca

nu
la

pr

es
en

t?

ad
m

in
is

te
r

m
ed

ic
at

io
n

im
m

ed
ia

te
m

ed
ic

al

ne
ed

s?

at
te

nd
 to

 p
at

ie
nt

s
m

ed
ic

al
 n

ee
ds

 (e
.g

.
pa

in
)

ho
w

 a
cu

te
 is

th

e
ca

se
?

is
 s

ur
ge

on
pr

es
en

t?

YE
S

pe
rfo

rm
 x

-ra
y W

YE
S

H
IG
H

pa
tie

nt
 in

 s
ur

ge
ry

tra
ns

fe
r p

at
ie

nt
 to

su
rg

ic
al

 w
ar

d W

in
se

rt
in

tra
ve

no
us

ca
nu

la

W

de
te

rm
in

e
al

er
gi

es

m
ed

ic
at

io
n

ag
ai

ns
t h

em
od

ilu
tio

n
ne

ce
ss

ar
y?

YE
S

N
O

ad
m

in
is

te
r

m
ed

ic
at

io
n

N
O YE

S

tra
ns

fe
r p

at
ie

nt
 in

to
su

rg
ic

al
 th

ea
tre W

in
se

rt
in

tra
ve

no
us

ca
nu

la
W

ac
ut

e
m

ed
ic

al
si

tu
at

io
n

is
de

te
m

in
ed

ta
ke

 b
lo

od
 s

am
pl

es
vi

a
w

in
ge

d
in

fu
si

on
se

t
W

F

ta
ke

 b
lo

od
 s

am
pl

es
vi

a
ca

nu
la
W

F

ta
ke

 E
C

G

F

w
el

co
m

e
pa

tie
nt

 a
nd

in
fo

rm
 a

bo
ut

pr
oc

ed
ur

e

Back-Stage Interactions

su
rg

eo
n

is
 c

on
su

lte
d

in
fo

rm
 s

ur
gi

ca
l w

ar
d

in
fo

rm
 p

er
fo

rm
in

g
su

rg
eo

n
ot

he
r s

ur
ge

on
ne

ce
ss

ar
y?

YE
S

do
cu

m
en

t t
he

 b
ed

as
si

gn
m

en
t i

n
th

e
sy

st
em

ho
w

 a
cu

te
 is

th

e
ca

se
?

pr
ep

ar
e

su
rg

ic
al

cl
ot

hi
ng

 fo
r p

at
ie

nt
(e

.g
. t

hr
om

bo
si

s
st

oc
ki

ng
s)

pr
ep

ar
e

se
da

tiv
e

m
ed

ic
at

io
n

fil
l o

ut
 s

ur
gi

ca
l

ch
ec

kl
is

t

cl
in

ic
al

 re
po

rt
up

 to
 d

at
e?

ar
ra

ng
e

co
m

pe
ns

at
io

na
l

ex
am

in
at

io
ns

si
gn

 in
te

rn
al

 a
pp

ro
va

l

pa
tie

nt
 a

lre
ad

y
in

 s
ys

te
m

?
en

te
r e

-c
ar

d
N

O
re

co
rd

 p
at

ie
nt

 in
 th

e
do

cu
m

en
ta

tio
n

sy
st

em

ge
ne

ra
te

 b
ar

 c
od

e

in
fo

rm
 th

ea
tre

N
O

YE
S

po
st

po
ne

ad
m

in
is

tra
tiv

e
w

or
k

H
IG

H
pr

oc
ee

d
w

ith
su

rg
er

y?
YE

S

se
nd

 b
lo

od
 s

am
pl

es
to

 la
b

W

as
se

m
bl

e
re

su
lts W

YE
S

he
m

od
ilu

tio
n

pr
es

en
t?

an
ta

go
ni

za
tio

n
po

ss
ib

le
?

N
O YE

S

YE
S

su
rg

er
y

ca
nc

el
ed

/m
ov

e
pa

tie
nt

as
se

ss
 re

co
rd

co
m

pl
et

e
pa

tie
nt

 d
at

a

W
F

Support Processes

pr
ov

id
e

m
ed

ic
al

re
po

rt
ex

am
in

e
bl

oo
d

sa
m

pl
es

W

se
cu

re
th

e
bl

oo
d

su
pp

ly W
su

rg
er

y
po

st
po

ne
d/

m
ov

e
pa

tie
nt

 to
 g

en
er

al
w

ar
d

su
rg

er
y

ca
nc

el
ed

?
N
O

IT Elements

ER
P

Sy
st

em
cl

in
ic

al
 re

po
rt

da
ta

ba
se

w
ar

d
or

ga
ni

sa
tio

n
sy

st
em

do
cu

m
en

ta
tio

n
sy

st
em

N
O

M
IL

D
 o

r M
ED

IU
M

YE
S

ha
nd

 o
ve

r c
od

ed
w

ris
tb

an
d

an
d

in
fo

rm
at

iv
e

m
at

er
ia

l

in
tra

ve
no

us
ca

nu
la

pr

es
en

t?
N

O

N
O

M
IL

D
 o

r M
ED

IU
M

H
IG

H

N
O

YE
S

YE
S N
O

YE
S

N
O

179

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

Ph
ys

ic
al

 E
vi

de
nc

e

surgical ward hospital roomhospital beddoctor's white coat medical scrubs

Pa
tie

nt
 A

ct
io

ns

enter clinic

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

assign bed

monitor patientis surgeon
present?

transfer patient to
surgical ward

W

acute medical
situation is
detemined

welcome patient and
inform about
procedure

B
ac

k-
St

ag
e

In
te

ra
ct

io
ns surgeon is consulted

inform surgical ward

inform performing
surgeon

other surgeon
necessary? YES

clinical report
up to date?

arrange
compensational

examinations

inform theatre

NO

YES

hemodilution
present?

antagonization
possible?

NO

YES

YES

Su
pp

or
t P

ro
ce

ss
es

surgery
postponed/move
patient to general

ward

IT
 E

le
m

en
ts

clinical report
database

NO
NO

YES

NO

180

A.3. Detailed Service Blueprint

monitoring devices disinfecting agent

express possible
discomforts

intravenous
canula

present?

administer
medication

immediate
medical
needs?

attend to patients
medical needs (e.g.

pain)
YES

perform x-ray

W

insert intravenous
canula

W

determine alergies

medication
against hemodilution

necessary?

YES

NO

NO

YES

document the bed
assignment in the

system

sign internal approval

patient already
in system?

enter e-cardNO

YES

proceed with
surgery? YESassemble results

W

assess record

complete patient data

WF

ERP System ward organisation
system

NO

NO

181

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

wristband with bar
code

anesthesia approval
forminformative material doctor's white coatdisinfecting agent disinfecting agent

sign approval for
anesthesia

perform nursing
anamnesis

determine sobriety determine alergies

gather physical data
for anesthesia

inform patient about
the anesthesia

administer
medication

insert intravenous
canula

W

take blood samples
via winged infusion

set
WF

take blood samples
via canula

WF

how acute is
the case?

record patient in the
documentation

system

generate bar code HIGH

send blood samples
to lab

W surgery
canceled/move

patient

provide medical
report

examine blood
samples

W

secure
the blood supply

W

surgery
canceled? NO

documentation
system

MILD or MEDIUM

hand over coded
wristband and

informative material

intravenous
canula

present?
NO

YES

YES

182

A.3. Detailed Service Blueprint

surgery approval
form administrative forms surgical clothingelectrocardiograph

fill out the
adminisstrative forms

change into surgical
clothing

remove protheses,
jewelery and

piercings

take sedative
medication

sign approval for
surgery

ECG already
performed? NO

inform patient about
the surgery

how acute is
the case?take ECG

F

prepare surgical
clothing for patient
(e.g. thrombosis

stockings)

prepare sedative
medication

postpone
administrative work

YES

MILD or MEDIUM

HIGH

183

A. Case Study: Emergency Admission of a Patient at a Surgical Ward within an
Austrian Hospital

how acute is
the case?

is patient
sober?

MILD or MEDIUM wait for sobriety of
patientNO

YESHIGH
patient in surgerytransfer patient into

surgical theatre

W

fill out surgical
checklist

184

APPENDIX B
Tutorial: Service Blueprinting

with Draw.io

185

B. Tutorial: Service Blueprinting with Draw.io

Service Blueprinting with draw.io
By Matthias Winkelhofer

Accessible via https://www.draw.io/

Or Google Drive

186

Service Blueprint draw.io Library

For the creation of Service Blueprints in draw.io the customized library Service_Blueprinting.xml can

be imported and used.

Note: The library was created for the development of a prototypical modeling environment and

therefore is not perfect ;).

Import
1. Create new diagram

2. Click File -> Open Library from and select XML-File

187

B. Tutorial: Service Blueprinting with Draw.io

3. Afterwards the corresponding elements can be selected from the toolbar on the left side of

the screen (drag&drop)

188

Selectable Elements
Note: For a better understanding of the applicability of the elements please have a look at the

provided example diagram (Example_Abstract_Hospital_Admission).

Note: In contrast to the usage of the static elements as shown above (i.e. actions, IT systems,

tangible objects, start and end points), the corresponding edges do not have to be selected from the

toolbar. It is ok to use the integrated linking option provided by draw.io as long as the specific

directions (i.e. the arrows) are maintained, as shown above.

189

B. Tutorial: Service Blueprinting with Draw.io

Note: Marker like the Waiting and Failure Point or the indication of tangible objects can be applied

by dropping the corresponding icon on the underlying element (e.g. Action).

If placed correctly, a wrapping container (blue edging) will take care of the cohesion if the base

element is moved on the canvas.

Note: In contrast to the other flow elements assigned to the main areas (i.e. customer actions,

front-stage, back-stage and supportive actions), tangible objects and IT Systems may only be placed

within the corresponding areas.

Note: Actions placed within the areas Preparative and Managerial Processes are not part of the

direct value generation of the service and therefore not a part of the main sequence flow. They are

only linked to depending actions to display additional interdependencies (see also

Example_Abstract_Hospital_Admission).

190

Service Blueprint areas

As it is custom for Service Blueprinting, the following order should be applied when it comes to the

specific areas. Of course, if a certain area is not necessary for the models purpose it can be omitted.

191

B. Tutorial: Service Blueprinting with Draw.io

Extract a Service Blueprint XML from draw.io

In order to use a created Service Blueprint for further processing (i.e. transformation towards BPMN)

a XML file has to be created.

1. In draw.io click File -> Export as -> XML...

2. Deselect compress (otherwise the XML structure cannot be interpreted)

192

3. Choose the destination or simply click Download

193

APPENDIX C
Example: Simplified Hospital

Admission

195

C. Example: Simplified Hospital Admission

Back-Stage

en
te

r p
at

ie
nt

 d
at

a
in

sy
st

em
s

Support

pr
ep

ar
e

m
ed

ic
at

io
n

Preparative

st
oc

k
m

ed
ic

at
io

n

Physical Evidence

ap
pr

ov
al

 fo
rm

m
ed

ic
al

 fa
ci

lit
y

Customer

pa
tie

nt
 e

nt
er

s
cl

in
ic

pa
tie

nt
 is

ad
m

itt
ed

Ex
pe

ct
at

io
ns

:
 -

fri
en

dl
y

st
af

f
 -

fa
st

 tr
ea

tm
en

t
 -

ef
fe

ct
iv

e
tre

at
m

en
t

 -
fu

ll
re

co
ve

ry

Sa
tis

fa
ct

io
n:

 -
be

st
 tr

ea
tm

en
t a

va
ila

bl
e

 -
co

m
pe

te
nt

 s
ta

ff
 -

as
 fa

st
 a

s
po

ss
ib

le

ex
pr

es
s

pr
ob

le
m

si
gn

 a
pp

ro
va

l

Front-Stage

de
ci

de
 w

ha
t

to
 d

o
G

O
 O

N

se
nd

 p
at

ie
nt

ho
m

e
N

O
TH

IN
G

Sa
tis

fa
ct

io
n:

 -
co

m
pe

te
nt

 s
ta

ff
 -

as
 fa

st
 a

s
po

ss
ib

le

ex
am

in
e

pa
tie

nt

ar
ra

ng
e

ne
ce

ss
ar

y
st

ep
s

F
W

in
fo

rm
 p

at
ie

nt
 a

bo
ut

th
e

tre
at

m
en

t
ad

m
in

is
te

r m
ed

ic
at

io
n

IT Elements

cl
in

ic
al

 re
po

rt
da

ta
ba

se
w

ar
d

m
an

ag
em

en
t

sy
st

em

Service Blueprint Simplified Hospital Admission created with Draw.io

196

BPMN Model Simplified Hospital Admission (result of the transformation)1

1Please note that the illustration was slightly manually edited to fit the layout of this page

197

APPENDIX D
XML File Examples

199

D. XML File Examples

D.1 Service Blueprint created via the customized library
in Draw.io

C
us

to
m

er
 A

ct
io

ns

enter clinic express problem

Fr
on

t-S
ta

ge
 In

te
ra

ct
io

ns

arrange further steps patient in
treatment

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<mxGraphModel dx=" 1426 " dy=" 748 " g r i d=" 1 " g r i d S i z e=" 10 " gu i de s=" 1 " t o o l t i p s=" 1 "
connect=" 1 " arrows=" 1 " f o l d=" 1 " page=" 1 " pageSca le=" 1 " pageWidth=" 1169 " pageHeight=" 826 "
background="# f f f f f f " math=" 0 " shadow=" 0 ">

<root>
<mxCell id=" 0 " />
<mxCell id=" 1 " parent=" 0 " />
<mxCell id=" 7453095 b2c57516d −1" value=" Customer Act ions "
s t y l e=" sbType=area_customer_actions ; swimlane ; html =1; h o r i z o n t a l =0;
s w i m l a n e F i l l C o l o r=#CCCCCC; swimlaneLine =0; a l i g n=c e n t e r ; v e r t i c a l A l i g n=middle ;
l a b e l P o s i t i o n=c e n t e r ; v e r t i c a l L a b e l P o s i t i o n=middle ; g l a s s =0; f i l l C o l o r =#999999;
s t r o k e C o l o r =#000000; rounded =0; comic =0; labelBackgroundColor=none ; f o n t S i z e =14;
f o n t C o l o r =#000000; " parent=" 1 " v e r t e x=" 1 ">

<mxGeometry x=" 120 " y=" 190 " width=" 760 " h e i g h t=" 190 " as=" geometry " />
</mxCell>
<mxCell id=" 60445726 eb1ce408 −5" s t y l e=" e d g e S t y l e=orthogonalEdgeSty le ; rounded =0;
html =1; entryX =0; entryY =0.5; j e t t y S i z e=auto ; orthogonalLoop =1; " edge=" 1 "
parent=" 7453095 b2c57516d −1" s ou r c e=" 4 c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3"
t a r g e t=" 60445726 eb1ce408 −4">

<mxGeometry r e l a t i v e=" 1 " as=" geometry " />
</mxCell>
<mxCell id=" 4 c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3" value=" e n t e r c l i n i c " s t y l e=" sbType=s t a r t _ p o i n t ;
shape=s t a r t _ p o i n t ; rounded =1; html =1; whiteSpace=wrap ; a l i g n=c e n t e r ;
g r a d i e n t C o l o r=none ; g l a s s =0;shadow=0; comic =0; labelBackgroundColor=none ;
s t r o k e C o l o r =#000000; strokeWidth =1; f o n t S i z e =12; f o n t C o l o r =#000000; a r c S i z e =50; "
parent=" 7453095 b2c57516d −1" v e r t e x=" 1 ">

<mxGeometry x=" 70 " y=" 67 .5 " width=" 100 " h e i g h t=" 55 " as=" geometry " />
</mxCell>
<mxCell id=" 60445726 eb1ce408 −3" value=" " s t y l e=" sbType=a c t i o n _ c o n t a i n e r ;
shape=a c t i o n _ c o n t a i n e r ; s t r o k e C o l o r=none ; f i l l C o l o r=none ; rounded =0; comic =0;
labelBackgroundColor=none ; f o n t S i z e =14; f o n t C o l o r =#000000; a l i g n=c e n t e r ; html =1; "
v e r t e x=" 1 " c onne cta b le=" 0 " parent=" 7453095 b2c57516d −1">

<mxGeometry x=" 230 " y=" 55 " width=" 120 " h e i g h t=" 80 " as=" geometry " />
</mxCell>
<mxCell id=" 60445726 eb1ce408 −4" value=" e x p r e s s problem " s t y l e=" sbType=a c t i o n ;
shape=a c t i o n ; rounded =0; html =1; whiteSpace=wrap ; a l i g n=c e n t e r ;
labelBackgroundColor=none ; s t r o k e C o l o r =#000000; strokeWidth =1; f i l l C o l o r=#FFFFFF;
g r a d i e n t C o l o r=none ; f o n t S i z e =12; f o n t C o l o r =#000000; comic =0; " v e r t e x=" 1 "
parent=" 60445726 eb1ce408 −3">

<mxGeometry width=" 120 " h e i g h t=" 80 " as=" geometry " />
</mxCell>
<mxCell id=" 7453095 b2c57516d −2" value=" Front−Stage I n t e r a c t i o n s "
s t y l e=" sbType=a r e a _ f r o n t _ s t a g e _ i n t e r a c t i o n s ; swimlane ; html =1; h o r i z o n t a l =0;
s w i m l a n e F i l l C o l o r=#CCFFCC; swimlaneLine =0; a l i g n=c e n t e r ; v e r t i c a l A l i g n=middle ;
l a b e l P o s i t i o n=c e n t e r ; v e r t i c a l L a b e l P o s i t i o n=middle ; g l a s s =0; f i l l C o l o r =#99FF99 ;
rounded =0; comic =0; labelBackgroundColor=none ; s t r o k e C o l o r =#000000; strokeWidth =1;
f o n t S i z e =14; f o n t C o l o r =#000000; " parent=" 1 " v e r t e x=" 1 ">

<mxGeometry x=" 120 " y=" 380 " width=" 760 " h e i g h t=" 230 " as=" geometry " />

200

D.1. Service Blueprint created via the customized library in Draw.io

</mxCell>
<mxCell id=" 7453095 b2c57516d −7" value=" " s t y l e=" sbType=a c t i o n _ c o n t a i n e r ;
shape=a c t i o n _ c o n t a i n e r ; s t r o k e C o l o r=none ; f i l l C o l o r=none ; rounded =0; comic =0;
labelBackgroundColor=none ; f o n t S i z e =14; f o n t C o l o r =#000000; a l i g n=c e n t e r ; html =1; "
parent=" 7453095 b2c57516d −2" v e r t e x=" 1 " c onne cta b le=" 0 ">

<mxGeometry x=" 404 .5 " y=" 70 " width=" 120 " h e i g h t=" 80 " as=" geometry " />
</mxCell>
<mxCell id=" 7453095 b2c57516d −8" value=" arrange f u r t h e r s t e p s "
s t y l e=" sbType=a c t i o n ; shape=a c t i o n ; rounded =0; html =1; whiteSpace=wrap ; a l i g n=c e n t e r ;
labelBackgroundColor=none ; s t r o k e C o l o r =#000000; strokeWidth =1; f i l l C o l o r=#FFFFFF;
g r a d i e n t C o l o r=none ; f o n t S i z e =12; f o n t C o l o r =#000000; comic =0; "
parent=" 7453095 b2c57516d −7" v e r t e x=" 1 ">

<mxGeometry width=" 120 " h e i g h t=" 80 " as=" geometry " />
</mxCell>
<mxCell id=" 7453095 b2c57516d −14" s t y l e=" e d g e S t y l e=orthogonalEdgeSty le ; rounded =0;
html =1; entryX =0; entryY =0.5; labelBackgroundColor=none ; startArrow=none ; s t a r t F i l l =0;
endArrow=c l a s s i c ; e n d F i l l =1; j e t t y S i z e=auto ; orthogonalLoop =1; strokeWidth =1;
f o n t S i z e =25; f o n t C o l o r =#000000; " parent=" 7453095 b2c57516d −2"
s ou r ce=" 7453095 b2c57516d −8" t a r g e t=" 4 c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2" edge=" 1 ">

<mxGeometry r e l a t i v e=" 1 " as=" geometry ">
<mxPoint x=" 560 " y=" 110 " as=" t a r g e t P o i n t " />

</mxGeometry>
</mxCell>
<mxCell id=" 4 c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2" value=" p a t i e n t in treatment "
s t y l e=" sbType=end_point ; shape=end_point ; rounded =1; html =1; whiteSpace=wrap ;
a l i g n=c e n t e r ; g r a d i e n t C o l o r=none ; g l a s s =0;shadow=0; comic =0;
labelBackgroundColor=none ; s t r o k e C o l o r =#000000; strokeWidth =1; f o n t S i z e =12;
f o n t C o l o r =#000000; a r c S i z e =50; f i l l C o l o r=#CCCCCC; " parent=" 7453095 b2c57516d −2"
v e r t e x=" 1 ">

<mxGeometry x=" 570 " y=" 82 . 5 " width=" 100 " h e i g h t=" 55 " as=" geometry " />
</mxCell>
<mxCell id=" 60445726 eb1ce408 −6" s t y l e=" e d g e S t y l e=orthogonalEdgeSty le ;
rounded =0; html =1; entryX =0.5; entryY =0; j e t t y S i z e=auto ; orthogonalLoop =1; "
edge=" 1 " parent=" 1 " s o ur c e=" 60445726 eb1ce408 −4" t a r g e t=" 7453095 b2c57516d −8">

<mxGeometry r e l a t i v e=" 1 " as=" geometry " />
</mxCell>

</root>
</mxGraphModel>

201

D. XML File Examples

D.2 Simple Process Model as .bpmn

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
<def init ions xmlns:bpmndi=" h t t p : //www. omg . org / spec /BPMN/20100524/DI "
xmlns:dc=" h t t p : //www. omg . org / spec /DD/20100524/DC"
xmlns :d i=" h t t p : //www. omg . org / spec /DD/20100524/DI "
xmlns=" h t t p : //www. omg . org / spec /BPMN/20100524/MODEL"
x m l n s : x s i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
id=" de f in i t ions_dd80ea6a −14f6 −47db−89ef −104 be4577c7e "
targetNamespace=" h t t p : //bpmn . i o /schema/bpmn" e x p o r t e r="Camunda Modeler "
e x p o r t e r V e r s i o n=" 1 . 1 1 . 3 ">

<collaboration id=" co l la bo rat io n_ dcb f1 c22 −0a9a−4d47−a000−2a 6 3 e e 0 f b 2 9 f ">
<participant id=" customer " name=" customer " p r o c e s s R e f=" customer−p r o c e s s " />
<participant id=" o r g a n i s a t i o n " name=" o r g a n i s a t i o n "
p r o c e s s R e f=" o r g a n i s a t i o n −p r o c e s s " />

<messageFlow id=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1−
startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2 "
sourceRef=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 "
t a r g e t R e f=" startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2 " />

</ collaboration>
<process id=" customer−p r o c e s s " i s E x e c u t a b l e=" f a l s e ">

<task id=" sb −60445726 eb1ce408 −4" name=" e x p r e s s problem ">
<incoming>sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3−sb −60445726 eb1ce408 −4</incoming>
<outgoing>sb −60445726 eb1ce408 −4−
intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1</outgoing>

</task>
<sequenceFlow id=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3−sb −60445726 eb1ce408 −4"
sourceRef=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3" t a r g e t R e f=" sb −60445726 eb1ce408 −4" />
<intermediateThrowEvent
id=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 ">

<incoming>sb −60445726 eb1ce408 −4−
intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1</incoming>
<outgoing>intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1−
endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb</outgoing>
<messageEventDefinition
id=" messageEventDefinit ion_95832a63 −0c08 −4685−86cd−a720da747a3d " />

</intermediateThrowEvent>
<endEvent id=" endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb " name="EE_3">

<incoming>intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1−
endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb</incoming>

</endEvent>
<sequenceFlow id=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1−
endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb "
sourceRef=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 "
t a r g e t R e f=" endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb " />

<sequenceFlow id=" sb −60445726 eb1ce408 −4−
intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 "
sourceRef=" sb −60445726 eb1ce408 −4"
t a r g e t R e f=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 " />

<startEvent id=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3" name=" e n t e r c l i n i c ">

202

D.2. Simple Process Model as .bpmn

<outgoing>sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3−sb −60445726 eb1ce408 −4</outgoing>
</startEvent>

</ process>
<process id=" o r g a n i s a t i o n −p r o c e s s " i s E x e c u t a b l e=" f a l s e ">

<laneSet id=" o r g a n i s a t i o n −l a n e s e t ">
<lane id=" sb −7453095 b2c57516d −2" name=" Front−Stage Actions ">

<flowNodeRef>sb −7453095 b2c57516d −8</flowNodeRef>
<flowNodeRef>startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2</flowNodeRef>
<flowNodeRef>sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2</flowNodeRef>

</ lane>
</ laneSet>
<task id=" sb −7453095 b2c57516d −8" name=" arrange f u r t h e r s t e p s ">

<incoming>startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2−
sb −7453095 b2c57516d −8</incoming>
<outgoing>sb −7453095 b2c57516d−8−sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2</outgoing>

</task>
<startEvent id=" startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2 " name="SE_3">

<outgoing>startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2−
sb −7453095 b2c57516d −8</outgoing>
<messageEventDefinition
id=" messageEventDefinit ion_66e929b0−e72c −4818−8991−7 c f f b e 4 7 c c d 6 " />

</startEvent>
<sequenceFlow id=" startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2−
sb −7453095 b2c57516d −8" sourceRef=" startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2 "
t a r g e t R e f=" sb −7453095 b2c57516d −8" />

<sequenceFlow id=" sb −7453095 b2c57516d−8−sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2"
sourceRef=" sb −7453095 b2c57516d −8" t a r g e t R e f=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2" />
<endEvent id=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2" name=" p a t i e n t in treatment ">

<incoming>sb −7453095 b2c57516d−8−sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2</incoming>
</endEvent>

</ process>
<bpmndi:BPMNDiagram id=" diagram ">

<bpmndi:BPMNPlane id=" p r o c e s s p l a n e "
bpmnElement=" co l l ab or at i on _dc bf 1c2 2 −0a9a−4d47−a000−2a 6 3 e e 0 f b 2 9 f ">

<bpmndi:BPMNShape id=" BPMNShape_dfbfede3−396a−4805−b624 −2376505 a7e70 "
bpmnElement=" customer ">

<dc:Bounds x=" 120 " y=" 190 " width=" 880 " h e i g h t=" 290 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id=" BPMNShape_faad355f−deef −451b−b0fa −83ce617ddc06 "
bpmnElement=" o r g a n i s a t i o n ">

<dc:Bounds x=" 120 " y=" 490 " width=" 870 " h e i g h t=" 330 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id=" BPMNShape_90a96ab5−dedb−40b5−bf39 −0ebded807ce0 "
bpmnElement=" sb −7453095 b2c57516d −2">

<dc:Bounds x=" 150 " y=" 490 " width=" 850 " h e i g h t=" 330 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id=" BPMNShape_6a4782a0−f61b −4997−bba2−d2ecef9686b0 "
bpmnElement=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3">

<dc:Bounds x=" 212 " y=" 300 " width=" 36 " h e i g h t=" 36 " />
<bpmndi:BPMNLabel>

<dc:Bounds x=" 202 " y=" 336 " width=" 56 " h e i g h t=" 12 " />
</bpmndi:BPMNLabel>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape id=" BPMNShape_fde745f3−13bd−4919−89dc−db05e36d44c4 "
bpmnElement=" sb −60445726 eb1ce408 −4">

<dc:Bounds x=" 350 " y=" 278 " width=" 100 " h e i g h t=" 80 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id=" BPMNEdge_75c6a367−02c0−4d89−b0f3 −47c3277a5226 "
bpmnElement=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −3−sb −60445726 eb1ce408 −4"
sourceElement=" BPMNShape_6a4782a0−f61b −4997−bba2−d2ecef9686b0 "
targetElement=" BPMNShape_fde745f3−13bd−4919−89dc−db05e36d44c4 ">

<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 248 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 299 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 299 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 350 " y=" 318 " />
<bpmndi:BPMNLabel>

<dc:Bounds x=" 269 " y=" 308 " width=" 90 " h e i g h t=" 20 " />
</bpmndi:BPMNLabel>

</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id=" BPMNShape_cf6bee69−00b2−475b−8489−58094 de63481 "
bpmnElement=" sb −7453095 b2c57516d −8">

<dc:Bounds x=" 569 .5 " y=" 593 " width=" 100 " h e i g h t=" 80 " />
</bpmndi:BPMNShape>

203

D. XML File Examples

<bpmndi:BPMNShape id=" BPMNShape_32605f6b−c7df −4c38−b75f −45cd028b6aa6 "
bpmnElement=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 ">

<dc:Bounds x=" 470 " y=" 300 " width=" 36 " h e i g h t=" 36 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNShape id=" BPMNShape_8467b476−5f31 −4ad3−9e78−0c670a02f0ae "
bpmnElement=" endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb ">

<dc:Bounds x=" 526 " y=" 300 " width=" 36 " h e i g h t=" 36 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id=" BPMNEdge_257aaee3−362c −433e−b929−4d7078aeabcc " bpmnElement=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1−
endEvent_44420c43−0d70−4bab−9df5 −464ea0320bbb "
sourceElement=" BPMNShape_32605f6b−c7df −4c38−b75f −45cd028b6aa6 "
targetElement=" BPMNShape_8467b476−5f31 −4ad3−9e78−0c670a02f0ae ">

<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 506 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 516 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 516 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 526 " y=" 318 " />

</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id=" BPMNShape_57ca7ece−b087−4f12 −92ab−7d7584564c7c " bpmnElement=" startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2 ">

<dc:Bounds x=" 513 .5 " y=" 615 " width=" 36 " h e i g h t=" 36 " />
</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="BPMNEdge_b8d222b5−407d−4795−83fd−e4539c74724c "
bpmnElement=" sb −60445726 eb1ce408 −4−
intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1 "
sourceElement=" BPMNShape_fde745f3−13bd−4919−89dc−db05e36d44c4 "
targetElement=" BPMNShape_32605f6b−c7df −4c38−b75f −45cd028b6aa6 ">

<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 450 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 460 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 460 " y=" 318 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 470 " y=" 318 " />

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id=" BPMNEdge_edfb5f46−7cc f −4603−8417−7557763eb21d "
bpmnElement=" intermediateThrowEvent_e436c246 −0a90 −4488−8ecd −265a9903dfd1−
startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2 "
sourceElement=" BPMNShape_32605f6b−c7df −4c38−b75f −45cd028b6aa6 "
targetElement=" BPMNShape_57ca7ece−b087−4f12 −92ab−7d7584564c7c ">

<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 488 " y=" 336 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 488 " y=" 475 .5 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 531 .5 " y=" 475 .5 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 531 .5 " y=" 615 " />

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_c34d3dca−fb5 f −4da5−8b10−ed0ea297b8f4 "
bpmnElement=" startEvent_648ec9e7 −5beb−4417−af70 −5f1b51a016d2−
sb −7453095 b2c57516d −8"
sourceElement=" BPMNShape_57ca7ece−b087−4f12 −92ab−7d7584564c7c "
targetElement=" BPMNShape_cf6bee69−00b2−475b−8489−58094 de63481 ">

<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 549 .5 " y=" 633 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 559 .5 " y=" 633 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 559 .5 " y=" 633 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 569 .5 " y=" 633 " />

</bpmndi:BPMNEdge>
<bpmndi:BPMNShape id=" BPMNShape_01c2cc35−754f −48e2−9c1d−c8 f9 f0c7b6ab "
bpmnElement=" sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2">

<dc:Bounds x=" 780 " y=" 615 " width=" 36 " h e i g h t=" 36 " />
<bpmndi:BPMNLabel>

<dc:Bounds x=" 774 " y=" 651 " width=" 49 " h e i g h t=" 24 " />
</bpmndi:BPMNLabel>

</bpmndi:BPMNShape>
<bpmndi:BPMNEdge id="BPMNEdge_b3930e09−9e52 −46be −978b−8f9930c22dcb "
bpmnElement=" sb −7453095 b2c57516d−8−sb−4c 8 f 3 9 9 5 2 0 f f c 3 5 1 −2"
sourceElement=" BPMNShape_cf6bee69−00b2−475b−8489−58094 de63481 "
targetElement=" BPMNShape_01c2cc35−754f −48e2−9c1d−c8 f9 f0c7b6ab ">

<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 670 " y=" 633 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 724.75 " y=" 633 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 724.75 " y=" 633 " />
<di:waypoint x s i : t y p e=" d c : P o i n t " x=" 780 " y=" 633 " />
<bpmndi:BPMNLabel>

<dc:Bounds x=" 694.75 " y=" 623 " width=" 90 " h e i g h t=" 20 " />
</bpmndi:BPMNLabel>

</bpmndi:BPMNEdge>
</bpmndi:BPMNPlane>

</bpmndi:BPMNDiagram>
</ def init ions>

204

List of Figures

2.1 Customer Journey Map Example [SS] . 17
2.2 Portrait of G. Lynn Shostack [Pri] . 19
2.3 Empty Service Blueprint Canvas (created with Realtime Board [Rea]) . . 24
2.4 Shostack’s Service Blueprint for a corner shoeshine [Sho84] 28
2.5 Service Blueprint for an overnight hotel stay [BOM08] 29
2.6 Service Blueprint for a self-service internet-delivered banking process [LW11] 30
2.7 Suggestion for the notation of Service Blueprinting by Arash Shahin [Sha10] 30
2.8 Example for the combination of Event Driven Process Chains and Service

Blueprinting [MML10] . 35
2.9 Combination of BPMN and Service Blueprinting using one pool for the

customer and one for the organization [MML10] 37
2.10 Correlation between the aspects of Business Process Management [KLL09] 40
2.11 The Business Process Management Lifecycle [KLL09] 41
2.12 BPMN Activities [Dra] . 44
2.13 Example for a compensatory BPMN Service Task [Dra] 45
2.14 BPMN Message Events [Dra] . 46
2.15 BPMN Gateways [Dra] . 47
2.16 BPMN Pool including Swimlanes [Dra] . 48
2.17 BPMN Data Elements [Dra] . 50
2.18 Coverage of concept <ai> by supportive concept Si(B) [KMJ15] 55
2.19 Coverage of Service Blueprinting by BPMN [KMJ15] 56
2.20 Coverage of BPMN by Service Blueprinting [KMJ15] 59

3.1 Graphical notation applied for the case study [Dra] 69

4.1 Direction of the transformation . 76
4.2 Transformation of Actions . 80
4.3 Transformation of the simple Action and Communication Flow 81
4.4 Transformation of Decision Points . 82
4.5 Transformation of Parallel Paths . 84
4.6 Transformation of Start- and End-Point 85
4.7 Transformation of Failure Points (boundary interrupting Error Event) . . 87

205

4.8 Transformation of Failure Points (boundary interrupting Error Event with
process End Event) . 87

4.9 Transformation of Failure Points (boundary interrupting Error Event with
catching behaviour) . 88

4.10 Transformation of Failure Points (boundary interrupting Error Event with
looping behaviour) . 88

4.11 Transformation of Waiting Points . 89
4.12 Transformation of Tangible Objects . 96
4.13 Transformation of the Data Flow . 98
4.14 Transformation of the Evidence Category 99
4.15 Transformation of Specification Points . 100
4.16 Transformation of Expectations and Satisfactions 100

5.1 Element grouping in Draw.io . 110
5.2 Service Blueprint concepts in the customized Draw.io library 111
5.3 Simple service flow across different processes in Service Blueprinting 121
5.4 Simple service flow across different processes in BPMN 121
5.5 Initial service flow across different processes in Service Blueprinting . . . 122
5.6 Initial service flow across different processes in BPMN 123
5.7 Service flow with Decision Point in Service Blueprinting 124
5.8 Service flow with Decision Point in BPMN 125
5.9 Service flow with Parallel Path in Service Blueprinting 125
5.10 Service flow with Parallel Path in BPMN 126
5.11 Simple service flow in Service Blueprinting that leads to graphical conflicts 129
5.12 Transformation result of Figure 5.11 without graphical processing steps . 129
5.13 Decision Point in Service Blueprinting that leads to graphical conflicts . . 130
5.14 Transformation result of Figure 5.13 without graphical processing steps . 130
5.15 Theoretical conflicting cases on the horizontal axis (i.e. the X coordinate) 132
5.16 Transformation result of Figure 5.11 with graphical processing steps . . . 133
5.17 Transformation result of Figure 5.13 with graphical processing steps . . . 133
5.18 Prototype architecture of the transformation from Service Blueprinting to-

wards the BPMN . 134
5.19 Package structure of the prototype developed in Java 139

206

Bibliography

[AF15] Sabah Al-Fedaghi. Alternative approach to service blueprinting. In
M. Surendra Prasad Babu and Li Wenzheng, editors, Proceedings of 2015
IEEE 6th International Conference on Software Engineering and Service
Science, pages 54–61. Piscataway, September 2015.

[Ama17] Amazon. The Amazon Marketplace. https://services.amazon.
de/programme/online-verkaufen/so-funktionierts-
pro.html?ld=SEATSOAADGog-Branded_amazon-marketplace_
p_213086498592_c, 2017. Accessed: 2018-05-06.

[And12] Andreas Naef. Übersicht BPMN Prozessmodellierungs-Tools.
http://prozessmanagement-blog.ch/post/32587959467/
uebersicht-bpmn-prozessmodellierungs-tools, September
2012. Accessed: 2018-05-06.

[Art00] William B. Arthur. Cognition: The Black Box of Economics. In David
Colander, editor, The Complexity Vision and the Teaching of Economics,
pages 51–57. Edward Elgar Publishing, 2000.

[Art16] Daniel Arthursson. How Millennials Are Defining the Sharing Econ-
omy. https://www.entrepreneur.com/article/275802, June
2016. Accessed: 2018-05-06.

[Atl18] Atlassian. Bitbucket. https://de.atlassian.com/software/
bitbucket/, 2018. Accessed: 2018-04-09.

[Bar11] Eric Barker. Does creativity require freedom or constraints?
http://www.businessinsider.com/does-creativity-
require-freedom-or-constraints-2011-8?IR=T, August
2011. Accessed: 2018-05-06.

[Bau10] Ramona Baureis. Basic rules of EPC modelling. http:
//www.ariscommunity.com/users/rbaureis/2010-03-22-
basic-rules-epc-modelling/, March 2010. Accessed: 2018-05-06.

207

https://services.amazon.de/programme/online-verkaufen/so-funktionierts-pro.html?ld=SEATSOAADGog-Branded_amazon-marketplace_p_213086498592_c
https://services.amazon.de/programme/online-verkaufen/so-funktionierts-pro.html?ld=SEATSOAADGog-Branded_amazon-marketplace_p_213086498592_c
https://services.amazon.de/programme/online-verkaufen/so-funktionierts-pro.html?ld=SEATSOAADGog-Branded_amazon-marketplace_p_213086498592_c
https://services.amazon.de/programme/online-verkaufen/so-funktionierts-pro.html?ld=SEATSOAADGog-Branded_amazon-marketplace_p_213086498592_c
http://prozessmanagement-blog.ch/post/32587959467/uebersicht-bpmn-prozessmodellierungs-tools
http://prozessmanagement-blog.ch/post/32587959467/uebersicht-bpmn-prozessmodellierungs-tools
https://www.entrepreneur.com/article/275802
https://de.atlassian.com/software/bitbucket/
https://de.atlassian.com/software/bitbucket/
http://www.businessinsider.com/does-creativity-require-freedom-or-constraints-2011-8?IR=T
http://www.businessinsider.com/does-creativity-require-freedom-or-constraints-2011-8?IR=T
http://www.ariscommunity.com/users/rbaureis/2010-03-22-basic-rules-epc-modelling/
http://www.ariscommunity.com/users/rbaureis/2010-03-22-basic-rules-epc-modelling/
http://www.ariscommunity.com/users/rbaureis/2010-03-22-basic-rules-epc-modelling/

[BCOR11] Ana P. B. Barquet, Vitor P. Cunha, Maicon G. Oliveira, and Henrique
Rozenfeld. Business model elements for product-service system. In Jürgen
Hesselbach and Christoph Herrmann, editors, Proceedings of the 3rd CIRP
International Conference on Industrial Product Service Systems, pages
332–337. Springer-Verlag, May 2011.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool Publishers, 1. edition,
2012.

[Ber15] BPM Offensive Berlin. BPMNPoster. http://www.bpmb.de/index.
php/BPMNPoster, 2015. Accessed: 2018-05-06.

[Bha17] Hitesh Bhasin. Intangibility of services. http://www.marketing91.
com/intangibility-in-services/, December 2017. Accessed:
2018-05-06.

[BK] Matthew Barsalou and Heinz G. Kehl. Grundlagen der
Fehlermöglichkeits- und Einfluss-Analyse. https://www.qz-
online.de/qualitaets-management/qm-basics/methoden/
fmea/artikel/grundlagen-der-fehlermoeglichkeits-und-
einfluss-analyse-903982.html/. Accessed: 2018-05-06.

[BOM08] Mary Jo Bitner, Amy L. Ostrom, and Felicia N. Morgan. Service Blueprint-
ing: A Practical Technique for Service Innovation. California Management
Review, 50(3):66–94, 2008.

[BPM12] BPMN Forum. What is the Business Process Modeling Notation (BPMN)?
http://bpmnforum.com/bpmn-faq/#What_is_BPMN, 2012. Ac-
cessed: 2018-05-06.

[Bus18] BusinessDictionary. Services Definition. http://www.
businessdictionary.com/definition/services.html, 2018.
Accessed: 2018-05-06.

[BY05] Nabil Boughnim and Bernard Yannou. Using Blueprinting Method for
Developing Product Service Systems. In Andrew Samuel and William Lewis,
editors, Proceedings of the 5th International Conference on Engineering
Design. Design Society, August 2005.

[Cam17] Camunda. Cawemo Features. https://cawemo.com/, 2017. Accessed:
2017-10-26.

[Can] Canvanizer. Service BLueprint Canvas. https://canvanizer.com/
new/service-blueprint-canvas. Accessed: 2018-05-06.

[Chu07] Pao-Tiao Chuang. Combining Service Blueprint and FMEA for Service
Design. The Service Industries Journal, 27(2):91–104, 2007.

208

http://www.bpmb.de/index.php/BPMNPoster
http://www.bpmb.de/index.php/BPMNPoster
http://www.marketing91.com/intangibility-in-services/
http://www.marketing91.com/intangibility-in-services/
https://www.qz-online.de/qualitaets-management/qm-basics/methoden/fmea/artikel/grundlagen-der-fehlermoeglichkeits-und-einfluss-analyse-903982.html/
https://www.qz-online.de/qualitaets-management/qm-basics/methoden/fmea/artikel/grundlagen-der-fehlermoeglichkeits-und-einfluss-analyse-903982.html/
https://www.qz-online.de/qualitaets-management/qm-basics/methoden/fmea/artikel/grundlagen-der-fehlermoeglichkeits-und-einfluss-analyse-903982.html/
https://www.qz-online.de/qualitaets-management/qm-basics/methoden/fmea/artikel/grundlagen-der-fehlermoeglichkeits-und-einfluss-analyse-903982.html/
http://bpmnforum.com/bpmn-faq/#What_is_BPMN
http://www.businessdictionary.com/definition/services.html
http://www.businessdictionary.com/definition/services.html
https://cawemo.com/
https://canvanizer.com/new/service-blueprint-canvas
https://canvanizer.com/new/service-blueprint-canvas

[Com17] Aris Community. Event-driven process chain (EPC). http://www.
ariscommunity.com/event-driven-process-chain/, 2017. Ac-
cessed: 2018-05-06.

[Dij16] Geke Van Dijk. Design Ethnography: Taking Inspiration from Everyday
Life. In Marc Stickdorn and Jakob Schneider, editors, This Is Service
Design Thinking, pages 108–115. BIS Publishing, 2016.

[Dog17] Artyom Dogtiev. Uber Revenue and Usage Statistics 2017. http://
www.businessofapps.com/data/uber-statistics/#3, Septem-
ber 2017. Accessed: 2018-05-06.

[Dra] Draw.io. Tool for online modeling. https://www.draw.io/. Accessed:
2018-05-06.

[DRK16] Geke Van Dijk, Bas Raijmakers, and Luke Kelly. What are the tools of
Service Design? In Marc Stickdorn and Jakob Schneider, editors, This Is
Service Design Thinking, pages 147–215. BIS Publishing, 2016.

[FK04] Sabine Fließ and Michael Kleinaltenkamp. Blueprinting the service com-
pany: Managing service processes efficiently. Journal of Business Research,
57(4):392–404, 2004.

[FLM04] Sabine Fließ, Britta Lasshof, and Monika Meckel. Möglichkeiten der
Integration eines Zeitmanagements in das Blueprinting von Dienstleis-
tungsprozessen. Diskussionspapier 362, FernUniversität in Hagen / Fach-
bereich Wirtschaftswissenschaft, June 2004.

[Flo15] Flokzu’s Team. What is BPM in plain English? Explained to Small
and Medium Enterprises. http://www.flokzu.com/blog/en/smes/
what-is-bpm/, April 2015. Accessed: 2017-10-18.

[Fou17] Eclipse Foundation. Eclipse BPMN Modeler. https://www.eclipse.
org/bpmn2-modeler/, 2017. Accessed: 2018-04-09.

[Fou18] The Apache Software Foundation. Apache Maven. https://maven.
apache.org/, 2018. Accessed: 2018-04-09.

[Gre13] Gregor Polančič. Common BPMN Modeling Mistakes and Best-Practices:
Basic Events. http://blog.goodelearning.com/bpmn/common-
bpmn-modeling-mistakes-best-practices-basic-events/,
February 2013. Accessed: 2018-05-06.

[Gui12] Management Study Guide. Services Marketing - Definition and
its Importance. http://managementstudyguide.com/services-
marketing.htm, 2012. Accessed: 2018-05-06.

209

http://www.ariscommunity.com/event-driven-process-chain/
http://www.ariscommunity.com/event-driven-process-chain/
http://www.businessofapps.com/data/uber-statistics/#3
http://www.businessofapps.com/data/uber-statistics/#3
https://www.draw.io/
http://www.flokzu.com/blog/en/smes/what-is-bpm/
http://www.flokzu.com/blog/en/smes/what-is-bpm/
https://www.eclipse.org/bpmn2-modeler/
https://www.eclipse.org/bpmn2-modeler/
https://maven.apache.org/
https://maven.apache.org/
http://blog.goodelearning.com/bpmn/common-bpmn-modeling-mistakes-best-practices-basic-events/
http://blog.goodelearning.com/bpmn/common-bpmn-modeling-mistakes-best-practices-basic-events/
http://managementstudyguide.com/services-marketing.htm
http://managementstudyguide.com/services-marketing.htm

[Hav05] Michael Havey. Essential business process modeling. O’Reilly, 1. edition,
2005.

[HPN08] Janelle B. Hill, Massimo Pezzini, and Yefim V. Natis. Findings: confusion
remains regarding BPM terminologies. Gartner Research, 501(G00155817),
2008.

[JGr18] JGraph. mxGraph 3.9.3. https://jgraph.github.io/mxgraph/,
March 2018. Accessed: 2018-05-06.

[Jua16] Juan J. Moreno. What are the strengths BPMN for a method for modeling
process and why is better than others methods? What are the weakness
of BPMN? https://www.quora.com/What-are-the-strengths-
BPMN-for-a-method-for-modeling-process-and-why-is-
better-than-others-methods-What-are-the-weakness-of-
BPMN, January 2016. Accessed: 2018-05-06.

[KB89] Jane Kingman-Brundage. The ABCs of service system blueprinting. In
Mary Jo Bitner, editor, Designing a winning service strategy, pages 30–33.
Amer Marketing Assn, 1989.

[KB91] Jane Kingman-Brundage. Technology, Design and Service Quality. Inter-
national Journal of Service Industry Management, 2(3):47–59, December
1991.

[KB93] Jane Kingman-Brundage. Service mapping: gaining a concrete perspec-
tive on service system design. In Eberhard E. Scheuing and William F.
Christopher, editors, The service quality handbook, page 148–163. Amacom,
1993.

[KB95] Jane Kingman-Brundage. Service mapping: back to basics. In William J.
Glynn and James G. Barnes, editors, Understanding Services Management:
Integrating Marketing, Organizational Behaviour, Operations and Human
Resource Management, page 119–142. John Wiley and Sons, 1995.

[Kim16] Lucy Kimbell. Narketing: Connecting with People, Creating Value. In
Marc Stickdorn and Jakob Schneider, editors, This Is Service Design
Thinking, pages 46–51. BIS Publishing, 2016.

[KLL09] Ryan K.L. Ko, Stephen S.G. Lee, and Eng W. Lee. Business process
management (BPM) standards: a survey. Business Process Management
Journal, 15(5):744–791, 2009.

[KMJ14] Yahya Kazemzadeh, Simon K. Milton, and Lester W. Johnson. An explica-
tion of three service business process modeling approaches. In Abu N. M.
Wahid and Carmen R. Amaro, editors, Proceedings: Australian Academy
of Business and Social Sciences Conference 2014, pages 40–53. Australian
Academy of Business and Social Science, August 2014.

210

https://jgraph.github.io/mxgraph/
https://www.quora.com/What-are-the-strengths-BPMN-for-a-method-for-modeling-process-and-why-is-better-than-others-methods-What-are-the-weakness-of-BPMN
https://www.quora.com/What-are-the-strengths-BPMN-for-a-method-for-modeling-process-and-why-is-better-than-others-methods-What-are-the-weakness-of-BPMN
https://www.quora.com/What-are-the-strengths-BPMN-for-a-method-for-modeling-process-and-why-is-better-than-others-methods-What-are-the-weakness-of-BPMN
https://www.quora.com/What-are-the-strengths-BPMN-for-a-method-for-modeling-process-and-why-is-better-than-others-methods-What-are-the-weakness-of-BPMN

[KMJ15] Yahya Kazemzadeh, Simon K. Milton, and Lester W. Johnson. Service
Blueprinting and Business Process Modeling Notation (BPMN): A Con-
ceptual Comparison. Asian Social Science, 11(12):307–319, 2015.

[Lov14] Christopher Lovelock. Services Marketing: An Asia-Pacific Perspective.
Pearson Australia, 6. edition, 2014.

[LW11] Christopher Lovelock and Jochen Wirtz. Services Marketing: People,
Technology, Strategy. Pearson Australia, 8. edition, 2011.

[Men13] Tom Mens. Model Transformation: A Survey of the State of the Art. In
Jean-Philippe Babau, Mireille Blay-Fornarino, Joël Champeau, Sylvain
Robert, and Antonio Sabetta, editors, Model-Driven Engineering for Dis-
tributed Real-Time Systems: MARTE Modeling, Model Transformations
and their Usages, pages 1–19. ISTE Ltd, 2013.

[Mie16] Satu Miettinen. Product Design: Developing Products with Service Appli-
cations. In Marc Stickdorn and Jakob Schneider, editors, This Is Service
Design Thinking, pages 56–67. BIS Publishing, 2016.

[MJ12] Simon K. Milton and Lester W. Johnson. Service blueprinting and BPMN:
a comparison. Managing Service Quality: An International Journal,
22(6):606–621, 2012.

[Mky08] Mkyong. How to read XML file in Java – (DOM Parser).
https://www.mkyong.com/java/how-to-read-xml-file-
in-java-dom-parser/, December 2008. Accessed: 2018-04-09.

[MML10] Jochen Meis, Philipp Menschner, and Jan M. Leimeister. Modellierung
von Dienstleistungen mittels Business Service Blueprinting Modeling. In
Oliver Thomas and Markus Nüttgens, editors, Dienstleistungsmodellierung
2010, pages 39–64. Physica-Verlag HD, 2010.

[Mor16] Blake Morgan. The Evolution Of Customer Service. https:
//www.forbes.com/sites/blakemorgan/2016/04/18/the-
evolution-of-customer-service/#ebda0c24428e, April 2016.
Accessed: 2018-05-06.

[ODA+09] Chun Ouyang, Marlon Dumas, Wil M. P. Van Der Aalst, Arthur H. M. Ter
Hofstede, and Jan Mendling. From Business Process Models to Process-
oriented Software Systems: The BPMN to BPEL Way. ACM transactions
on software engineering and methodology (TOSEM), 19(1):41–78, August
2009.

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0. Stan-
dard, Object Management Group (OMG), January 2011.

211

https://www.mkyong.com/java/how-to-read-xml-file-in-java-dom-parser/
https://www.mkyong.com/java/how-to-read-xml-file-in-java-dom-parser/
https://www.forbes.com/sites/blakemorgan/2016/04/18/the-evolution-of-customer-service/#ebda0c24428e
https://www.forbes.com/sites/blakemorgan/2016/04/18/the-evolution-of-customer-service/#ebda0c24428e
https://www.forbes.com/sites/blakemorgan/2016/04/18/the-evolution-of-customer-service/#ebda0c24428e

[Pol04] Przemyslaw Polak. Model-Driven Program Transformation of a Large
Avionics Framework. In Gabor Karsai and Eelco Visser, editors, Interna-
tional Conference on Generative Programming and Component Engineering,
pages 361–378. Springer-Verlag Berlin Heidelberg, October 2004.

[Pol13] Przemyslaw Polak. BPMN Impact on Process Modeling. In Marite Kirikova,
Gundega Lazdane, Janis Grabis, and Ksenija Lace, editors, Proceedings of
the 2nd International Business and Systems Conference BSC 2013, pages
26–32. Riga Technical University, November 2013.

[Pol14] Gregor Polančič. BPMN 2.0 Message Events Vs. Message Tasks. http:
//blog.goodelearning.com/subject-areas/bpmn/message-
events-vs-message-tasks/, May 2014. Accessed: 2018-04-09.

[Pri] Princeton University. Portrait of G. Lynn Shostack. https://news.
princeton.edu/uploads/243/image/Shostack_G%20Lynn.jpg.
Accessed: 2018-05-06.

[Rea] Realtime Board. Tool for Service Blueprinting. https://
realtimeboard.com/app/. Accessed: 2018-05-06.

[SA16] Daniel Strüber and Anthony Anjorin. Comparing Reuse Mechanisms for
Model Transformation Languages: Design for an Empirical Study. In
Harald Storrle, Michel R. V. Chaudron, Vasco Amaral, and Miguel Goulao,
editors, Second International Workshop on Human Factors in Modeling,
pages 27–32. ACM, October 2016.

[SDSB09] Maik Seyring, Utz Dornberger, Alfredo Suvelza, and Trevor Brynes. Service
Blueprinting Handbook. International SEPT Program, May 2009. Uni-
versität Leipzig, http://www.vgu.edu.vn/fileadmin/pictures/
studies/MBA/Handbook_Service_Blueprinting.pdf, Accessed:
2017-03-25.

[Ser15a] Camunda Services. Camunda Model-API. https://docs.camunda.
org/manual/7.8/user-guide/model-api/bpmn-model-api/,
2015. Accessed: 2018-04-09.

[Ser15b] Camunda Services. Create a Model. https://docs.camunda.
org/manual/7.8/user-guide/model-api/bpmn-model-
api/create-a-model/, 2015. Accessed: 2018-04-09.

[Ser18a] Camunda Services. Camunda Modeler. https://camunda.com/
products/modeler/, 2018. Accessed: 2018-04-09.

[Ser18b] Camunda Services. Camunda Products. https://camunda.com/
products/, 2018. Accessed: 2018-04-09.

212

http://blog.goodelearning.com/subject-areas/bpmn/message-events-vs-message-tasks/
http://blog.goodelearning.com/subject-areas/bpmn/message-events-vs-message-tasks/
http://blog.goodelearning.com/subject-areas/bpmn/message-events-vs-message-tasks/
https://news.princeton.edu/uploads/243/image/Shostack_G%20Lynn.jpg
https://news.princeton.edu/uploads/243/image/Shostack_G%20Lynn.jpg
https://realtimeboard.com/app/
https://realtimeboard.com/app/
http://www.vgu.edu.vn/fileadmin/pictures/studies/MBA/Handbook_Service_Blueprinting.pdf
http://www.vgu.edu.vn/fileadmin/pictures/studies/MBA/Handbook_Service_Blueprinting.pdf
https://docs.camunda.org/manual/7.8/user-guide/model-api/bpmn-model-api/
https://docs.camunda.org/manual/7.8/user-guide/model-api/bpmn-model-api/
https://docs.camunda.org/manual/7.8/user-guide/model-api/bpmn-model-api/create-a-model/
https://docs.camunda.org/manual/7.8/user-guide/model-api/bpmn-model-api/create-a-model/
https://docs.camunda.org/manual/7.8/user-guide/model-api/bpmn-model-api/create-a-model/
https://camunda.com/products/modeler/
https://camunda.com/products/modeler/
https://camunda.com/products/
https://camunda.com/products/

[Ser18c] Camunda Services. Package org.camunda.bpm.model.bpmn.instance.
https://docs.camunda.org/javadoc/camunda-bpm-
platform/7.8/?org/camunda/bpm/model/bpmn/instance/
package-summary.html/, 2018. Accessed: 2018-04-09.

[Sha10] Arash Shahin. Service Blueprinting: An Effective Approach for Targeting
Critical Service Processes – With a Case Study in a Four-Star International
Hotel. Journal of Management Research, 2(2):116–132, 2010.

[Sho84] G. Lynn Shostack. Designing Services That Deliver. Harvard Business
Review, 84115(1):132–139, 1984.

[Sho11] Doug Short. Charting The Incredible Shift From Manufacturing To Ser-
vices In America. http://www.businessinsider.com/charting-
the-incredible-shift-from-manufacturing-to-services-
in-america-2011-9?IR=T, September 2011. Accessed: 2018-05-06.

[Sof18] Alfresco Software. Quick Start Guide. https://www.activiti.org/
quick-start/, 2018. Accessed: 2018-04-09.

[Spr14] Springer Gabler Verlag. Geschäftsprozessmanagement.
https://wirtschaftslexikon.gabler.de/definition/
geschaeftsprozessmanagement-53196/version-184601, July
2014. Accessed: 2018-05-06.

[SS] Marc Stickdorn and Jakob Schneider. Customer Journey Map Exam-
ple. http://thetoolkitproject.webflow.io/tool/customer-
journey-canvas#sthash.PKfhSe62.dpbs. Accessed: 2018-05-06.

[SS16] Marc Stickdorn and Jakob Schneider. This Is Service Design Thinking.
BIS Publishing, 6. edition, 2016.

[ST05] August-Wilhelm Scheer and Oliver Thomas. Geschäftsprozessmodellierung
mit der ereignisgesteuerten Prozesskette. Das Wirtschaftsstudium, 34(8-
9):1069–1078, August 2005.

[Sti16a] Marc Stickdorn. 5 Principles of Service Design Thinking. In Marc Stickdorn
and Jakob Schneider, editors, This Is Service Design Thinking, pages 34–45.
BIS Publishing, 2016.

[Sti16b] Marc Stickdorn. The Iterative Process of Service Design Thinking. In Marc
Stickdorn and Jakob Schneider, editors, This Is Service Design Thinking,
pages 124–135. BIS Publishing, 2016.

[Ube17] Uber. Uber Service. https://www.uber.com, 2017. Accessed: 2017-
08-05.

213

https://docs.camunda.org/javadoc/camunda-bpm-platform/7.8/?org/camunda/bpm/model/bpmn/instance/package-summary.html/
https://docs.camunda.org/javadoc/camunda-bpm-platform/7.8/?org/camunda/bpm/model/bpmn/instance/package-summary.html/
https://docs.camunda.org/javadoc/camunda-bpm-platform/7.8/?org/camunda/bpm/model/bpmn/instance/package-summary.html/
http://www.businessinsider.com/charting-the-incredible-shift-from-manufacturing-to-services-in-america-2011-9?IR=T
http://www.businessinsider.com/charting-the-incredible-shift-from-manufacturing-to-services-in-america-2011-9?IR=T
http://www.businessinsider.com/charting-the-incredible-shift-from-manufacturing-to-services-in-america-2011-9?IR=T
https://www.activiti.org/quick-start/
https://www.activiti.org/quick-start/
https://wirtschaftslexikon.gabler.de/definition/geschaeftsprozessmanagement-53196/version-184601
https://wirtschaftslexikon.gabler.de/definition/geschaeftsprozessmanagement-53196/version-184601
http://thetoolkitproject.webflow.io/tool/customer-journey-canvas#sthash.PKfhSe62.dpbs
http://thetoolkitproject.webflow.io/tool/customer-journey-canvas#sthash.PKfhSe62.dpbs
https://www.uber.com

[vdAtHW03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske.
Business process management: A survey. In Wil M. P. van der Aalst,
Arthur H. M. ter Hofstede, and Mathias Weske, editors, Proceedings of
the 1st International Conference on Business Process Management, pages
1–12. Springer-Verlag, June 2003.

[Whi05] Stephen White. Using BPMN to model a BPEL process. BPTrends,
3(3):1–18, March 2005.

[Whi12] Stephen A. White. New Capabilities for Process and Interaction Modeling
in BPMN 2.0. In Layna Fischer, editor, BPMN 2.0 Handbook, pages 17–32.
Future Strategies, 2012.

[Wik18] Wikipedia. Comparison of Business Process Modeling Nota-
tion tools. https://en.wikipedia.org/wiki/Comparison_of_
Business_Process_Modeling_Notation_tools, April 2018. Ac-
cessed: 2018-05-06.

[Wil02] James M. Wilson. Gantt charts: A centenary appreciation. European
Journal of Operational Research, 149(2003):430–437, 2002.

[Wit04] Ole Wittko. Die konzeptionellen Grundlagen des ServiceBlueprint. Fer-
nUniverstät Hagen, 2004.

[Woo97] Julia T Wood. But I Thought You Meant...: Misunderstandings in Human
Communication. McGraw-Hill, 1. edition, 1997.

[WvdAD+06] Petia Wohed, Wil M. P. van der Aalst, Marlon Dumas, Arthur H. M. ter
Hofstede, and Nick Russell. On the Suitability of BPMN for Business
Process Modelling. In Schahram Dustdar, José Luiz Fiadeiro, and Amit P.
Sheth, editors, Proceedings of the 1st International Conference on Business
Process Management, pages 161–176. Springer-Verlag, September 2006.

[YS10] JianHong Ye and Wen Song. Transformation of BPMN Diagrams to YAWL
Nets. Journal of Software, 5(4):396–404, April 2010.

[ZBG06] Valarie A. Zeithaml, Mary Jo Bitner, and Dwayne D. Gremler. Services
Marketing: Integrating Customer Focus Across the Firm. McGraw-Hill, 4.
edition, 2006.

214

https://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools
https://en.wikipedia.org/wiki/Comparison_of_Business_Process_Modeling_Notation_tools

	Kurzfassung
	Abstract
	Contents
	Introduction
	Basics and Related Work
	What is a Service
	Designing Services
	Service Blueprints
	Business Process Model and Notation
	Comparison of Service Blueprints and BPMN

	The Case Study
	Collecting the Information
	The Case Description
	Creating the Service Blueprint

	Development of the Transformation
	Designing the Transformation
	The Recommendation

	The Prototypical Implementation
	Purpose and initial Approach
	Technology
	Development Process of the Transformation Environment
	Transformation of the Action and Communication Flow
	Creating the graphical Model Representation
	The final Architecture and Components of the Prototype
	The Transformation Environment and Process in Detail

	Conclusion
	Future Developments
	Case Study: Emergency Admission of a Patient at a Surgical Ward within an Austrian Hospital
	Abstract Service Blueprint
	Transformation Result of the Abstract Model
	Detailed Service Blueprint

	Tutorial: Service Blueprinting with Draw.io
	Example: Simplified Hospital Admission
	XML File Examples
	Service Blueprint created via the customized library in Draw.io
	Simple Process Model as .bpmn

	List of Figures
	Bibliography

