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Abstract 

In order to ensure high safety measures during perioperative stage, patients in intensive care 

units (ICU’s), operating theatres or recovery rooms are continuously monitored. Although the 

technologies and tools in use are constantly improving, perioperative organ injury, as cause 

of single- or multiple organ failure, is still a major risk for patients in this stage. Current 

monitoring set-ups in the perioperative setting provide basic parameters like 

electrocardiogram (ECG) or oxygen saturation (SpO2). While these signals are important for 

general health status tracking, they lack to offer a predictive value regarding cardiovascular 

complications. Studies have shown that changes in the heart rate variability (HRV) correlate 

strongly with a high risk in multiple organ failure making this parameter an early marker for 

diagnosis. In an effort to introduce HRV to perioperative monitoring, a new tool was 

developed within the frame of this work. “Vital-signs REal-time Analysis for Clinical 

Translation”, VREACT, is an easy-to-use tool that allows for acquisition and continuous 

recording of high resolution biosignals from standard monitoring equipment. For the purpose 

of improving mortality risk analysis and prediction, our tool was enhanced by so called 

“modules”, which are derived biosignals that can use data from the monitors in order to 

easily introduce novel clinical parameters to perioperative monitoring. A semi online peak 

detection algorithm was implemented and applied on the ECG data in order to allow for HRV 

analysis. Afterwards different established methods for HRV inspection in the time domain as 

well as in the frequency domain were added as modules. VREACT also provides a 

sophisticated feature called “PatientViewer”, which enables real-time visualization of 

available modules. Finally, a modified version of VREACT called “VREACTquick” was 

developed, with the aim of handling long-term recordings without requiring user interaction. 

For the practical part, the performance of our tool was tested during real conditions in the 

General Hospital of Vienna. VREACT succeeded in recording over 15 patients from 3 

different care units for over 2 hours. The PatientViewer managed to plot different modules 

correctly during 1 hour long tests for 5 randomly chosen patients. VREACTquick proved 

itself in an endurance test by collecting data from 2 different care units for over 3 days. For 

the future we expect our software to be used in various studies conducted in collaboration 

with the General Hospital of Vienna. Furthermore VREACT should constantly be improved 

by new modules and could also serve as a powerful acquisition tool in big data projects. In 

the course of this work one conference paper was submitted.   
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Kurzfassung 

Das kontinuierliche Überwachen von Vitalparametern gewährleistet die Sicherheit von 

Patienten aus Intensivstationen, Operationssälen oder Aufwachräumen, während der 

perioperativen Phase. Trotz ständiger Entwicklung der modernen Medizintechnik, bleiben 

durch Multiorganversagen versursachte perioperative Organschäden weiterhin ein großes 

Risiko. Aktuelle Überwachungssysteme stellen nur grundlegende Biosignale wie das 

Elektrokardiogram (EKG) oder die Sauerstoffsättigung (SpO2) dar. Diese Signale sind zwar 

wichtig um den generellen Gesundheitszustand festzustellen, erlauben jedoch keine 

Voraussagen zu kardiovaskulären Komplikationen. Diverse Studien haben gezeigt, dass die 

Herzratenvariabilität (HRV) ein verlässlicher Risikoindikator für die Diagnose von 

Multiorganversagen ist. Um die HRV in das perioperative Umfeld einzuführen, haben wir im 

Rahmen dieser Arbeit eine neue Software entwickelt. „Vital-signs REal-time Analysis for 

Clinical Translation“, kurz VREACT, ist ein intuitives Tool, das die kontinuierliche 

Erfassung und Verarbeitung von hoch aufgelösten Biosignalen aus Überwachungssystemen 

ermöglicht. Darüber hinaus wurde unser Programm mit sogenannten „Modulen“ erweitert. 

Module sind abgeleitete Parameter, die mittels Daten aus den Überwachungssystemen neue 

Biosignale in die perioperative Überwachung einführen. Mit Hilfe eines semi online R-

Zacken Detektionsalgorithmus, wurden aus EKG Daten kontinuierlich die Herzfrequenz 

berechnet um in weiterer Folge die HRV in der Zeit- und Frequenzdomäne zu analysieren. 

VREACT bietet zudem noch einen eigenen „PatientViewer“ der die Echtzeit-Darstellung der 

verfügbaren Module ermöglicht. Im Zuge der Entwicklung wurde eine modifizierte Version 

namens „VREACTquick“ veröffentlich. Diese Version erlaubt es Langzeitaufnahmen 

durchzuführen ohne dabei die Beaufsichtigung eines Benutzers zu benötigen. Für den 

praktischen Teil dieser Arbeit wurde die Software unter echten Bedingungen im Allgemeinen 

Krankenhaus (AKH) Wien getestet. VREACT bestand dabei erfolgreich eine 2 stündige 

Messung mit über 15 Patienten aus 3 verschiedenen Stationen. Der PatientViewer konnte die 

Daten verschiedener Module von 5 zufällig gewählten Patienten für jeweils über eine Stunde 

visualisieren. VREACTquick bestand einen Langzeittest in dem es Daten aus 2 

verschiedenen Stationen über 3 Tage lang aufnahm. Für die Zukunft hoffen wir, dass unsere 

Software in Studien in Kooperation mit dem AKH Wien verwendet wird. Darüber hinaus, 

könnte VREACT ständig mit neuen Modulen erweitert werden und in Big Data Projekten 

Verwendung finden. Im Zuge dieser Arbeit wurde ein Conference Paper eingereicht.   
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1. Introduction 

Continuous monitoring of physiological parameters is a standard procedure that is applied in 

ICUs and operating theatres of hospitals. It gives real – time information of the condition of a 

patient and can also deliver trend data to improve clinical decision making. Although 

anaesthesia and surgery related deaths have decreased in the last decade [1], perioperative 

organ injury, as cause of single- or multiple organ failure, is still one of the top causes for 

deaths in first world countries [2] [3]. Unfortunately, standard monitoring systems only allow 

the visualization of basic vital signs that are not sufficient for proactive reacting. A solution 

for this, is the monitoring of the HRV parameter, which is known to be an early marker for 

multiple organ failure [4] [5].  

In this work, we developed an easy-to-use tool, “Vital-signs REal-time Analysis for Clinical 

Translation”, VREACT, which allows for acquisition of high resolution biosignals obtained 

directly from Dräger Infinity Delta monitors [6], in the local network of a hospital. VREACT 

not only enables the simultaneous and continuous recording of signals coming from every 

patient that it is connected to, but also includes its own “PatientViewer” for real – time 

visualization. Furthermore VREACT has the capability to extend standard biosignals, 

delivered by the monitoring systems, by so called “modules” (derived biosignals). Therefore 

our software introduces novel clinical parameters (such as HRV) to perioperative monitoring. 

VREACT was developed by Mr. Jakub Matta, who was responsible for the main graphical 

user interface (GUI) and establishing and handling connections to the Dräger monitors in 

general, and me, responsible for the development of the modules, the PatientViewer and 

VREACTquick (a modified version of VREACT). 

1.1. Anatomical and physiological background 

In this chapter the anatomy and physiology of the human heart will be explained. 

Furthermore the role and functionality of the cardiovascular system will be discussed. 
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Figure 1: Anatomy of the human heart [7]. 

1.1.1. Cardiac anatomy 

The human heart is a muscular pump that collects and pumps blood through a system of veins 

and arteries. It lies in the thorax, where it is protected by the rib cage, posterior to the sternum 

and on the superior surface of the diaphragm. The heart is covered by the pericardium, which 

has outer and inner layers with a lubricant in between. This allows the inner layer to glide 

against the outer layer and therefore movement and expansion of the heart. As seen in Figure 

1, the heart consists of four separate chambers. The upper chambers, otherwise called atria, 

collect blood from veins whereas the lower ones, called ventricles, pump the blood out of the 

heart. The atrioventricular (AV) valves, which are called tricuspid (right side) and bicuspid 

(left side), maintain the one way direction of the blood flow between the atria and ventricles. 

The semilunar valves, named pulmonary valve and aortic valve, maintain the same for blood 

leaving the ventricles. The right atrium of this system collects blood from the body through 

the vena cava. The pressure in the atrium rises until the tricuspid valve opens and blood 

enters the right ventricle. Afterwards blood is pumped into the lungs through the pulmonary 

artery. On the left side the oxygenated blood is collected from the pulmonary vein and then 

pumped into the body through the aorta [8][9][7]. 
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Figure 2: Structure of a sarcomere. Actin and myosin are arranged in filaments with interaction that is the molecular basis of 

muscle contraction  [10].  

1.1.2. Cardiac physiology 

Sarcomeres 

Cardiac muscle cells contain bundles of myofibrils, which are organized into contractile 

functional units, called sarcomeres. In Figure 2 the structure of a sarcomere is shown. The 

borders of sarcomeres are built by a protein matrix called the Z line, which consists of the 

protein a – actinin. Each sarcomere has a lattice of thicker and thinner protein filaments. Thin 

filaments reach from the Z line towards the centre, are about 1µm long and are globular 

subunits of the protein actin. Thick filaments consist of the protein myosin and have myosin 

heads that extend from the filament. These heads connect to the thin filaments and give the 

ability shorten the muscle upon contraction. The contraction is initiated with an influx of 

calcium into the sarcoplasmic reticulum. This leads to an alteration in the angle of the myosin 

actin connections, which results in an overlap of these proteins and therefore in a shortening 

of sarcomere. The area of a sarcomere with thick filaments is called the A band and the area 

between two A bands is known as the I band  [9][10].  
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Figure 3: Ionic distribution for cardiac cells (A) and Ionic conductance changes during the ventricular cardiac action 

potential (B) [10]. 

Action potential 

There are two ways for cardiac cells to communicate with each other. The first way is 

through mechanical bonds formed by protein – protein associations at the membrane surfaces 

allowing the transmission of forces across the myocardium. The second way is through gap 

junctions that create electrical connections between cells [10]. 

 

In Figure 3A, the ionic composition inside and outside of a cell is shown. This specific 

distribution of ions is maintained by ion pumps, channel proteins and ion exchange proteins 

and is responsible for the cell membrane potential, which is about -90mV. A depolarization 

of the cell occurs through an increase in sodium permeability. As seen in Figure 3B, this 

process marks the beginning of a so called action potential. Phase 0 is the transition from the 

resting potential to depolarization. In phase 1 a repolarization occurs due to the closing of 

sodium channels. Now voltage – gated calcium and potassium channels are activated. The 

influx of calcium sustains the depolarized state and the efflux of potassium drives the 

membrane potential back to a negative membrane potential, which leads to a positive plateau 

in phase 2. As the calcium channels start to close, the potassium channels dominate and the 

cell repolarizes (phase 3 to phase 4) [9][10]. 

 

 

 

 

 

 



 

5 
 

 

Figure 4: The excito – conductive system of the heart [7]. 

Pacemaker cells 

The excito – conductive system of the heart consists of modified cardiac cells also called 

pacemaker cells. These cells are grouped in nodes and bundles and are able to generate and 

conduct electric stimulation. Due to leak channels, pacemaker cells have an unstable resting 

potential. This means their resting potential gradually rises until a depolarization is initiated.  

 

In Figure 4 the components of the excito – conductive system are shown. It consists of the 

sinoatrial (SA) node, the AV node, the Bundle of His with a right and a left bundle branch. 

The branches contain the Purkinje fibres that are connected with contractile myocytes. The 

SA node is the main pacemaker with a heart rate (fC) of about 70 per minute. fC is measured 

in beats per minute and is controlled by the autonomic nervous system (ANS). It generates 

action potentials which spread from the atria to the ventricles. It is important to note that the 

atria are electrically isolated from the ventricles in order to deny simultaneous contraction. 

Action potentials cross the AV node in the interatrial septum. This is the only conductive 

connection between the atria and the ventricles. Afterwards the electrical path passes the 

Bundle of His and finally separates into both ventricles via the Purkinje fibres. If for some 

reason the SA node stops working as a pacemaker, the AV node steps in as a secondary 

pacemaker with fC of about 50 per minute. Also the Bundle of His and Purkinje fibres can 

step in as tertiary pacemakers with a fC of about 30 per minute. As seen in Figure 3B the 

action potential duration is different for each pacemaker [9][7][10]. 
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Figure 5: Overview of the human cardiovascular system. It consists of the heart, blood vessels and blood. The systemic 

circulation refers to the blood flow from the left ventricle to the right atrium and the pulmonary circulation to the blood flow 

from the right ventricle to the left atrium. [11]. 

1.1.3. Cardiovascular system 

In Figure 5, a detailed picture of the cardiovascular system can be seen. This system consists 

of the heart, blood vessels and blood. Its functions are distribution of oxygen, water, nutrients 

and hormones, removal of carbon dioxide and waste products, contribution to the immune 

system and thermoregulation. Blood is supplied through the arteries to organs and body 

regions. The arteries divide into smaller arterioles where they converge into venules. The 

venules collect the deoxygenated blood from the exchange vessel and pass it to the right 

atrium of the heart. This circulation is called the systemic circulation. The second circulation 

is called the pulmonary circulation, in which the deoxygenated blood is pushed out of the 

right ventricle into the lungs, where gas exchange processes occur. Afterwards the 

oxygenated blood enters the left atrium of the heart [7][11]. 

 

Arterial walls consist of three layers. The inner layer contains endothelial cells and 

connective tissue with elastic fibres. The middle layer contains smooth muscles that are 

controlled by sympathetic nerve fibres. These nerve fibres are responsible for 

vasoconstriction (contraction of vessels) and vasodilation (relaxation of vessels), which are 

mechanisms that directly influence blood flow. Finally the outer layer consists of thick 

collagen fibres and elastic fibres. Venous walls also have three layers and their structure is 

similar to that of arteries. The inner layer consists of endothelial cells, the middle layer of 
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Figure 6: Schematic of a typical ECG recording [12]. 

 

smooth muscles and elastin and the outer layer of connective tissue. The blood flow through 

veins is maintained by skeletal muscles in the vicinity, by the respiratory pump and the 

smooth muscles in the venous walls [7][11]. 

1.2. Electrocardiogram 

As described in 1.1.2 the heart contracts due to electrical processes. A measurement of these 

electrical activities leads to a biosignal called the ECG.  

 

In Figure 6 the shape of a typical ECG signal for one heart cycle is shown. It consists of the 

following parts: 

 

 P – wave: depolarization of atria 

 PR – segment: electrical conduction between atria and ventricles 

 QRS – complex: depolarization of ventricles 

 T – wave: repolarization of ventricles 

 

The ECG is a widely used and an important clinical parameter for diagnosis of various 

cardiac conditions. It is a method that gives direct information about changes and 

abnormalities in the cardiac rhythm. A parameter that can be easily extracted from the ECG 

is the fC. It is calculated by measuring the time difference between two successive R – peaks 

[7][13][14]. 
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1.3. Heart rate variability 

HRV is the beat to beat variation in either heart rate or the time difference between two 

successive R – peaks [15]. In this section the regulation of HRV by the ANS will be 

explained. Furthermore different approaches for HRV analysis in the time and frequency 

domain will be introduced and discussed. 

1.3.1. Regulation by the autonomic nervous system 

The ANS has two main components, the sympathetic nervous system (SNS) and the 

parasympathetic nervous system (PNS). The PNS is the “rest” system that is concerned with 

promoting the conservation of energy. It is mediated by the release of acetylcholine by the 

vagus nerve toward the heart which slows down the diastolic depolarization, increases 

ventricular refractory period and therefore decreases fC. The SNS is the “fight or flight” 

system that responds to threatening situations. It intervenes by the release of hormones like 

adrenalin and is induced via splanchnic nerves, the neuronal activation of beta receptors in 

the heart (SA node and AV node), the acceleration of the slow diastolic depolarization and a 

decrease in cardiac refractory period, resulting in an increased fC [7][16]. The PNS and the 

SNS oppose and balance each other. As SNS begins to rise the fC, the PNS goes into action in 

order to tone it down again. Since the PNS innervates the SA node directly via the vagus 

nerve, it is able to respond much quicker than the SNS. This ability is very important since it 

enables the body to react to tachycardia very quickly. HRV constantly changes due to 

autonomic influences on the SA node. During inspiration the R – R intervals shorten (fC 

increases) and during expiration they get longer (fC decreases) [17]. This phenomenon is 

called respiratory sinus arrhythmia (RSA) and occurs due to following mechanism. During 

inspiration the filling of the right side of the heart increases (see respiratory pump in 1.1.3). 

Because of this the left ventricle is compressed and consequently a decrease in stroke volume 

(VS) occurs. The ANS makes up for the smaller VS by an increase in fC [7]. Overall HRV is 

mostly dependent on the circadian rhythm with a predominant sympathetic activity during 

day and vagal activity during night. A reduction of HRV is highly associated with an increase 

in cardiac mortality [18].  
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1.3.2. HRV analysis in the time domain 

In the time domain the standard deviation of all normal-to-normal R-R intervals (SDNN), the 

root mean square of the difference of successive RR intervals (RMSSD), the sum of all 

normal-to-normal (NN) intervals greater than 50ms (NN50) and NN50 divided by total 

number of n NN intervals (pNN50) are commonly used parameters [19]. Furthermore 

geometric techniques like Poincaré Plot (scatter plot) and sample density histograms are 

applied [20]. 

SDNN 

𝑁𝑁𝑚𝑒𝑎𝑛 =
1

𝑛
∑ 𝑁𝑁𝑖                                              (1)

𝑛

𝑖=1

 

𝑆𝐷𝑁𝑁 = √
1

𝑛 − 1
∑(𝑁𝑁𝑖 − 𝑁𝑁𝑚𝑒𝑎𝑛 )2

𝑛

𝑖=1

             (2) 

 

In Formula 2, the calculation for SDNN is shown. SDNN strongly depends on recording 

durations making comparisons on measurements of different lengths invalid. Generally it is 

reported that SDNN calculations on short term 5 minutes (includes short term HF 

components) and long term 24 hour (includes both short term HF components and long term 

LF components) recordings are appropriate [19][21]. Average value in healthy subjects is 

about 141 ± 39ms (mean ± standard deviation) for long term recordings [20]. 

RMSSD 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑛 − 1
∑(𝑁𝑁𝑖+1 − 𝑁𝑁𝑖)2

𝑛−1

𝑖=1

             (3) 

 

In Formula 3, the calculation for RMSSD is shown.  RMSSD is a parameter that is used for 

short term HRV measurements [19][20][22]. Since short term variability is purely controlled 

by the parasympathetic system, this parameter measures the parasympathetic modulation of 

heart rate. Average value in healthy subjects is about 27 ± 12ms [20]. 
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NN50 

As already mentioned, NN50 is a measure for number of normal-normal intervals that exceed 

50ms. NN50 is also a measure for short term HRV and highly correlates with RMSSD. In 

direct comparison, RMSSD has better immunity to ectopic beats and nicer statistical 

properties, which makes it the preferred parameter for short time measurements [19][20]. 

pNN50 

pNN50 is the fraction of NN50 intervals as a proportion of the total number of NN intervals. 

Since this parameter is directly derived from NN50, it naturally is a measure for short time 

HRV and also highly correlates with RMSSD [19][20].  

Poincaré plot 

The Poincaré plot (named after Henri Poincaré, a French scientist), in the context of HRV, is 

a scatter plot of RR or NN intervals against the following RR or NN interval [20]. 

 

As seen in Figure 7, the plot resembles a cloud along the line of identity (LOI) which is the 

line where RRn = RRn+1. The shape of this cloud gives valuable information about the HRV 

of a patient and can be measured as the dispersion of points perpendicular to the LOI (short 

term variability) and along the LOI (long term variability) [20]. 

 

In order to characterize the Poincaré plot mathematically, an ellipse – fitting technique is 

used. The major axis of the fitted ellipse is in alignment with the LOI (slope of 45°, see 

Formula 4) and the minor axis is perpendicular to the LOI (slope of 135°, see Formula 5) and 

passes through the centroid of the plot [20]. 

 

𝑅𝑅𝑛 = 𝑅𝑅𝑛+1             (4) 

𝑅𝑅𝑛 + 𝑅𝑅𝑛+1 = 2𝑹𝑹             (5) 

 

In Formula 5, RR represents the RR interval series used in Poincarè plot and 𝑹𝑹 the mean 

value of this series. The dispersion of points along the major axis is a measure for the length 

of the plot and the dispersion along the minor axis a measure for the width of the plot [20].  
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Figure 7: Poincaré plot of RR intervals in HRV data. An ellipse is fitted for SD1 and SD2 calculation [20]. 

 

 

Figure 8: Different HRV Poincaré plots collected from patients. Healthy patient with comet pattern (A), heart failure patient 

with torpedo pattern (B), heart failure patient with fan pattern (C) and heart failure patient with complex pattern (D). Figure 

adapted from Woo et al [23]. 

 

𝐷𝑖(min) =
𝑅𝑅𝑖  − 𝑅𝑅𝑖+1

√2
             (6) 

𝐷𝑖(maj) =
𝑅𝑅𝑖 + 𝑅𝑅𝑖+1 − 2𝑹𝑹

√2
             (7) 

𝑆𝐷1 = √
1

𝑁 − 1
∑ 𝐷𝑖(min)

2

𝑁−1

𝑖=1

             (8) 
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𝑆𝐷2 = √
1

𝑁 − 1
∑ 𝐷𝑖(maj)

2

𝑁−1

𝑖=1

             (9) 

Formulas 6 and 7 are distance measurements for points P(RRi,RRi+1) from the minor (6) and 

major axis (7). Finally, the short (8) and long term variabilities (9) of the plot are expressed in 

Formulas 8 and 9, with N being the total number of RR intervals [20]. 

 

In Figure 8 different possible patterns for Poincaré plots are shown. The pattern in Figure 8A 

is called a “comet” pattern. It represents the lengthening of RR intervals, which is an 

indication for increased HRV found in healthy subjects. In Figure 8B a “torpedo” pattern be 

seen. It indicates that changes between consecutive RR intervals are minimal. Figure 8C 

shows a “fan” pattern, meaning the data has a small increase in RR interval length. It is 

associated with greater dispersion in consecutive RR intervals. The last pattern, seen in 

Figure 8D, is called a “complex” pattern. It has clusters of points with distinct gaps in 

between. The RR intervals change stepwise and represent a lack of graded relationship 

between successive intervals (nonlinear behaviour) [23]. 

Histogram 

The histogram provides a visual overview of the density of RR intervals. Furthermore it can 

be used to extract the HRV triangular index (HTI) from it. For this, the total number of RR 

intervals (integral of the density curve) is divided by the most frequent RR interval length 

(height of the histogram). 5 minute epochs of HRV data can be used for HTI calculations and 

it is reported that HTI  > 20.42 is an indicator for arrhythmia [25][26]. 
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Figure 9: Typical HRV recording over a period of 15 minutes during resting conditions in a healthy subject. In (A) the 

original HRV waveform and the waveform after applying different filters can be seen. The filtering results in waveforms of 

the VLF, LF and HF band. In (B) the power spectra and in (C) the percentage of power in each band can be seen [24]. 

1.3.3. HRV analysis in the frequency domain 

Spectral analysis of HRV gives important information on the ANS. It is applied on short term 

and long term recordings. Fast Fourier Transformation (FFT) is used in order to split HRV 

into ultra low frequency (ULF), very low frequency (VLF), low frequency (LF) and high 

frequency (HF) components (see Figure 9) [19][20].  

Ultra low frequency band 

The ULF band (≤ 0.003Hz) can be inspected in recordings with a period of at least 24 hours. 

Although there is no consensus regarding the mechanisms that generate ULF power, 

circadian rhythm may be the primary driver [24]. It is assumed that core body temperature 

and metabolism could also be contributors [26]. 

Very low frequency band 

The VLF band (0.003Hz – 0.04Hz) requires a recording of at least 5 minutes, but is advised 

to be monitored over 24 hours. VLF power is greatly associated with all – cause mortality 

[27][28]. There is still uncertainty for activity within this band, since no known physiological 

rhythms show correlation [20][26]. 

 



 

14 
 

Low frequency band 

The LF band (0.04Hz – 0.15Hz) is recorded from HRV data with a period of at least 2 

minutes. This band mainly reflects baroreceptor activity (vasomotor oscillations) and is 

influenced by both the SNS and the PNS [20][26]. 

High frequency band 

The HF band (0.15Hz – 0.4Hz) is recorded over a minimum 1 minute period. It reflects PNS 

activity and corresponds to HRV related to the respiratory cycle (see RSA in 1.3) [20][26]. 

HF power is highly correlated with pNN50 and RMSSD [29]. 

LF/HF ratio 

Since LF power contains both SNS and PNS activity and HF power only contains PNS 

activity, the LF/HF ratio (sometimes used inversely) is a measure of 

parasympathetic/sympathetic balance [26]. 

1.4. Related work 

HRV was used in a wide range of studies for the purpose of health status and risk of mortality 

analysis. This section will give a brief overview of related publications that focused on the 

HRV parameter and also the development of similar biosignal acquisition tools. 

 

Many clinical studies of HRV analysis in the spectral domain were conducted. Winchell et al 

[30] developed an automated system for real – time spectral analysis of HRV data and used it 

to study mortality in a surgical ICU population. They calculated the total spectral power, 

which is a measure of overall autonomic activity, and HF/LF every 6 hours. After conducting 

7994 measurements in 742 patients, they concluded that both low total spectral power and 

high HF/LF indicate increased mortality.  

Bigger Jr. et al investigated spectral information of HRV in two different studies over the 

same population of 715 patients with acute myocardial infarction (AMI). In the first study 

[31], they inspected power in the ULF, VLF, LF and HF bands over a time period of 24 

hours. ULF and VLF power had stronger associations with all – cause mortality, cardiac 

death and arrhythmic death than power in LF and HF. In their second study [32], they tested 

the ability of shorter recordings in mortality predictions. For this, they compared the 

performance of their 24 hour predictions with predictions in shorter segments (2, 5, 10 and 15 



 

15 
 

minutes). They concluded that power spectral measures from shorter recordings were similar 

to those calculated from over 24 hours and can therefore be used to predict all – cause 

mortality and sudden cardiac death. 

 

Extensive studies on the effect of AMI on the SDNN were conducted. Kleiger et al [33] 

tested the hypothesis of HRV being a predictor in long – term survival after AMI with 808 

patients who survived AMI. They found that the risk of mortality was 5.3 times higher in the 

group with SDNN < 50ms than the group with SDNN > 100ms.  

La Rovere et al [34] carried out a study with 1284 patients with a recent (<28 days) AMI. 

During 21 months 44 of the patients died and 5 suffered a non – fatal cardiac arrest. Their 

conclusion was that a SDNN < 70ms is a significant factor for cardiac death.  

In another study, Erdogan et al [35] researched the significance of impaired HRV after AMI 

in patients in whom early reperfusion was attempted. For this they measured SDNN in 412 

patients treated with direct coronary angioplasty within 12 hours of symptom onset. They 

found a strong correlation between SDNN < 50ms and mortality but also noted that SDNN 

had a low positive predictive value.  

 

Thayer et al [36] performed a meta – analysis of neuroimaging studies on the relationship 

between HRV and regional cerebral blood flow. They identified several regions with 

significant associations and proposed that HRV may be an important marker for stress 

(defined as perception of threat) by linking it to activity in the amygdala. 

 

The “Vital Recorder” was developed and published by Lee and Jung [37]. Their lightweight 

tool offers high resolution recordings and a multi-functional UI for real time visualization, 

while having low CPU usage. Important features are the “track mode” which allows for 

tracking of all available signals and a timeline with sample history. Furthermore the user can 

enter events to given time stamps and make notes about administered medications. The 

second mode is called the “monitor mode” and basically mimics the display of a standard 

monitoring device by visualizing the most important vital data. Furthermore Vital Recorder 

can import and load data from the Physionet database, as it supports the .edf file format. 

Although this tool is compatible with more than 20 different monitoring devices, establishing 

connections to individual monitors takes effort and requires a higher technical skill level. The 

communication is maintained by the RS-232C serial port of the monitors. In addition analog-

to-digital converters may be required to obtain data from the analog port of a monitor and a 
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communication protocol needs to be set up. Finally, the Dräger Infinity Delta is not supported 

by Vital Recorder making this tool not applicable in the General Hospital of Vienna. 

 

An open source tool, named “Intensive Care Window” (ICW), was introduced by Stylianides 

et al [38]. Their project contains two main parts. The first part is the “ICW Bedside 

Controller Middleware”, which is an API that allows for communication with monitoring 

devices that based their communication protocols on the medical information bus standard. 

The second part is the “ICW Application”, which is a GUI that makes use of their own API in 

order to visualize signals in real time. This tool can read the internal settings of the 

monitoring device and import important information like alarm thresholds. Although ICW is 

able to perform post-processing, this function only allows for novel parameters after finishing 

a recording. This makes it unable to provide HRV data in real-time. Furthermore, like the 

already mentioned Vital Recorder, it also uses the RS-232C serial port for connections which 

makes it necessary to have the computer in the vicinity of a monitor while only allowing for 

recordings and visualization from one monitor at a time. 

1.5. Dräger Infinity Delta 

The Dräger Infinity Delta is a state-of-the-art monitoring device that is capable of displaying 

various vital parameters. In Figure 10, a picture of the monitoring device can be seen. The 

Infinity Delta series is designed to be portable, meaning patients in ICUs don’t have to be 

disconnected during relocation. Parameters like 3-, 5-, 6- and 12-lead ECG, respiration, ST 

segment analysis, etCO2 (the level of carbon dioxide released at the end of expiration), 

bispectral index (depth of anaesthesia), electroencephalogram (EEG) , multiple temperatures, 

invasive and non-invasive blood pressure and full arrhythmia can be continuously monitored 

[6]. 

 

The Infinity Delta monitors are connected to the so called Infinity Network. The Infinity 

Gateway is a client – server application that allows computers within the hospital network to 

access these monitors in order to view patient information. For this, the application is 

installed on a computer (client) that is part of the hospital network. The server portion runs on 

a computer that is connected directly both to the hospital network and to the Infinity network.  
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Figure 10: Dräger Infinity Delta. A state-of-the-art monitoring device [6]. 

 

 

Figure 11: User Interface of the Dräger Infinity Delta software. 

 

Unfortunately the user interface (UI) (Figure 11) of the included software is unnecessarily 

complicated and therefore unpleasant to use. Furthermore it only allows users to save the data 

recorded within the last 10 seconds.  
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1.6. Qt Framework 

The source code of the original Dräger Infinity Delta software was written in C++ using the 

Microsoft Visual Studio integrated development environment (IDE) [39]. The UI was 

developed using the Microsoft Foundation Class Library [40]. 

 

For this project we decided to use the Qt IDE and framework. Qt offers various tools and 

libraries for creating dynamic UI’s using the “signals & slots” mechanism [41]. In addition 

there are several options for creating and maintaining threads in the application.  We kept 

C++ as our programming language, since it allowed us to transfer and understand some of the 

existing code more easily. 

1.6.1. QObject 

The QObject class is a very important component of the Qt framework, because all other Qt 

objects derive from it. QObject provides functions like QObject::connect() and 

QObect::disconnect(), which are essential for the usage of signals & slots [42]. Furthermore, 

all classes that use signals & slots or QThread have to implement the Q_OBJECT macro. 

This macro will be translated into C++ source code by the Meta-Object Compiler. Finally, 

the translated code will be compiled and linked with the class’s implementation [43].  

1.6.2. Signals & Slots 

Qt offers the signals & slots mechanism as a central feature of their framework. It enables 

easy communication between different objects.  

 

In Figure 12, a schematic illustration of the signals & slots can be seen. A signal is emitted 

when a certain event occurs. Qt Widgets Modules provide a set of UI elements that have 

many predefined signals. A slot is defined as a function that is triggered by a signal it is 

connected to. Widgets also have many predefined slots, but it is always possible to create 

your own signals & slots. An example for this mechanism would be to click a button (signal) 

in order to change the background colour of a window (slot): 

 

connect(button, SIGNAL(clicked()), window, SLOT(changeColor())); 
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Figure 12: Signals and slots mechanism of the Qt framework. Different object communicate with each other by emitting 

signals that are connected to specific slots [41]. 

 

 

Figure 13: Threading in the Qt Framework. Objects always live in the thread they are created in and can’t be directly 

accessed from other threads  [44]. 

1.6.3. Threading 

Threads are an important tool for parallelizing tasks, meaning that different tasks can be 

executed at the same time. This is especially important for keeping GUIs responsive. As 

mentioned before, Qt offers different solutions for threading. In this section only the QThread 

class will be explained, since it was used in this project. Figure 13 pictures the principle of 

threading. Objects always live in the thread they are created in. You can’t delete or access 

them directly from other threads. GUIs always run in their own thread and therefore can’t be 

accessed from other threads. This is why signals & slots are very important for GUI 

applications. By creating connections, communication between the GUI and  objects from 

other thread can be established [44]. 

 

In order to use the QThread class for threading, the following steps are necessary: 

 

1) QThread myThread; 

2) this  moveToThread(&myThread); 

3) myThread.start(); 
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Figure 14: Structure of the project. It consists of data acquisition from the patient monitors followed by a processing 

step. Afterwards the data is stored and can be visualized by using the PatientViewer feature. 

 

In the first step the QThread object is created. In step two, the object that should be processed 

in the new thread (referenced by “this”), has to call its function “moveToThread” and pass 

the QThread object by reference. In the final step the thread has to be started. 

1.7. Project structure 

The project was split into different isolated tasks in order to allow for independent workflow. 

Figure 14 summarizes the project structure. My colleague, Mr. Jakub Matta, was responsible 

for establishing the communication between VREACT and the monitoring devices located in 

the local network of the hospital. Furthermore he implemented the logic that enables data 

acquisition and storage (hospital network and persistence sections in the figure). My part was 

to cover the processing and visualization of the acquired biosignals. This involved the 

creation of the so called BioSignal class that wraps the incoming information into processable 

objects and allows for novel clinical parameters (”modules”), and a dedicated PatientViewer 

that allows for real time visualization capable of different plot types (see VREACT section in 

the figure). In addition I was responsible for the implementation of several modules for HRV 

analysis. For this, I implemented an R – peak detection algorithm and various HRV 

parameters in the time and frequency domain. Apart from that, I developed a modified 

version called “VREACTquick” which is meant to be used for long term recordings and is 

capable of managing changes in bed assignments and encrypting patient information.  
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2. Software architecture 

In this chapter, the underlying architecture of our software is explained. The main goals were 

to keep it readable, reusable and extendable. As depicted in Figure 15, this was achieved by 

separating the application into three logically independent layers [45]: 

 

 The presentation layer is mainly composed of the main window, which allows the 

user to connect to beds, start/stop recordings and open the PatientViewer, and the 

PatientViewer itself, with selectable biosignals (or “modules”) and different widget 

components for visualization. 

 The business layer covers the classes responsible for the management of monitoring 

devices, structuring of clinical parameters like ECG or SpO2 and the modules that 

extend these parameters. 

 The data access layer utilizes the API of the Infinity Gateway in order to provide 

functions that establish and manage connections between the client side and the 

monitoring devices. In addition, this layer manages the recorded data via a filesystem. 

2.1. Model – View – Controller design pattern 

The Model – View – Controller (MVC) design pattern was used throughout development. 

The idea of this approach is to decouple components from each other in order to increase 

code reusability and readability. As seen in Figure 16, the MVC pattern is divided into 

following parts [46]:  

 

 The controller acts as the “brain” of this configuration. It accepts inputs from the user 

and can manipulate the view and/or the model.  

 The model contains the data and can send a signal when its content changes in order 

to update the view component accordingly.  

 The view is responsible for presenting the data of the model. 

 

MVC was used for every GUI in this application. This means both, the main UI as well as the 

PatientViewer have their own components that were necessary for keeping this design 

pattern. 

 



 

22 
 

 

Figure 15: Layer structure of the software. Data of the monitoring devices is acquired over the Infinity Network. The raw 

signals are further processed within specialized modules (e.g. HRV for ECG). Finally the user is able to store all the data 

locally or visualize them using the PatientViewer functionality [45]. 

 

 

Figure 16: Diagram of interactions within the MVC pattern [47]. 

2.2. Presentation layer 

There are differences in the presentation layer for VREACT and VREACTquick. Both 

versions have a main UI, with slightly different functionalities, that starts with the execution 

of the program. VREACT additionally offers the PatientViewer that allows for real – time 

visualization of biosignals. The version specific features will be explained in the Software 

implementation section. 
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Figure 17: Communication between the data access layer and the business layer. The business logic contains classes that 

maintain the monitoring devices and the data gathered from them. 

2.3. Business layer 

As mentioned before, the business layer contains classes for handling of monitoring devices 

and their respective biosignals. 

 

Figure 17 illustrates the communication between the data access and the business layer. The 

monitoring units are gathered in a list of bed entities. These entities contain meta information 

about the patient and the connection status. For each bed entity a loop manager is created. 

The purpose of the loop manager is to constantly ask the respective monitoring device for 

new physiological data and, if necessary, to create new biosignal objects. The biosignal class 

is the heart of the modular design and will be explained in detail in 2.3.3. 

2.3.1. BedEntity class 

The BedEntity class represents instances of real beds in a hospital. It contains information 

about the connection status and the following patient metadata: 

 

 Patient name 

 Patient ID 

 Bed label 

 Care unit 

 

The information listed above is sent by a monitor, is accessed via the Dräger API and is used 

in the UIs for patient identification. As seen in Figure 17, a BedEntity is created for every 
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monitoring unit that is registered. If a successful connection was established the BedEntity 

object will be provided with its own loop manager. 

2.3.2. LoopManager class 

Loop manager objects are assigned uniquely to instances of the BedEntity class and run in 

their own threads. Once a BedEntity has a successful connection status, meaning the 

monitoring device is communicating with the software, a timer signal starts triggering the 

slot_getSamples() function of the loop manager object every second. This slot works through 

the following steps sequentially: 

 

1. for each BioSignal in mapper do 

2.  if BioSignal has not received data in the last 30 seconds then 

3.   remove BioSignal 

4.  end if 

5. end for 

6. for each WaveForm signal requested via API call do 

7.  if WaveForm is already in the mapper then 

8.   append samples of WaveForm to its BioSignal object 

9.  else 

10.   instantiate new BioSignal object for the WaveForm signal 

11.  end if 

12.  call countDown function of BioSignal 

13. end for 

14. repeat steps 6 to 13 for VitalSign signals 

15. if record button was pushed then 

16.  start CSV export for received data 

2.3.3. BioSignal class 

The BioSignal class was introduced in order to maintain and extend the biosignals received 

from the monitoring devices. These devices can deliver two different biosignal types, the 

WaveForms and the VitalSigns. Biosignals of the WaveForm type are continuous signals 

with 200 Hz (e.g. ECG), 100 Hz and lower sampling rates. Pre – calculated parameters (e.g. 

HR or SpO2) are VitalSigns and have a sampling frequency (fs) of 1 Hz. 
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Constructors 

A BioSignal object can be created by using either one of two constructors. The first one is 

used for biosignals that are retrieved directly from a monitor: 

 

BioSignal(WvData* p_model, Type t, QStringList plotTypes, QString name, QString labelName, QString 

xLabel, QString yLabel, int samplingRate, QColor plotColor, QString numUnit, int bufferSize, int 

plotBufferSize) 

 

The second constructor is called in order to create derived signals: 

 

BioSignal(BioSignal* p_parentSig, QStringList plotTypes, bool plottable, bool exportable, int calcCounter, int 

bufferSize, int plotBufferSize) 

UML class diagram 

In order to give a good overview of the interactions between the BioSignal class and other 

classes, a “Unified Modelling Language” (UML) class diagram was created. The diagram in 

Figure 18 depicts the relations between objects created from the BioSignal, WvData and 

LoopManager classes. As already mentioned, the LoopManager is responsible for gathering 

of biosignal samples and appending them to their according buffers. For that, it recognizes if 

new signals arrive and appends them to a BioSignal list that can be found in the WvData 

object (model). Each LoopManager can hold one instance of a WvData object and vice versa. 

A WvData object holds multiple instances of BioSignals gathered in a list. Furthermore 

BioSignal objects hold a list of derived signals which explains the relation with itself. The 

signals and slots of the BioSignal class are hinted in the diagram and will be explained later 

in more detail. 
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Figure 18: UML class diagram for describing the BioSignal class and its interaction with other classes. The relations 

between the BioSignal, WvData and LoopManager class were visualized by arrows and numbers. The arrows give 

information about which class holds the instance in the relationship and the number on both sides depict the number of 

possible instance that can be generated. Furthermore a brief summary on the relation and its direction is displayed via text 

and an arrow. 

Buffer variables 

Every BioSignal object has its own buffer that it has to maintain. Every second the loop 

manager provides the object with new samples that have to be stored in the buffer. This 

buffer is limited by the variable bufferSize (in seconds). For example if the buffer for an ECG 

signal should be limited to 5 minutes, bufferSize is set to 300. By doing so a sample size 

depending on the fs is calculated and the buffer starts popping the oldest data points once it 

exceeds the limit. In addition a variable named plotBufferSize has to be set. This variable 

does the same as described above but for the buffer of the plots. These two buffers are treated 

separately, since the plots keep their own internal buffer. If the histogram and the scatter plot 

were activated, buffers for these plot types will be created and continuously filled.  

Parameter calculation 

Each derived BioSignal has a calcCounter variable that is subtracted by one after every 

second. Once this variable equals to 0, it is restored to its start value and the 

slot_calculateData() function is triggered. This slot function initiates the start of an algorithm 
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that is responsible for the calculation of new samples of a derived biosignal. As an example if 

the calcCounter variable is set to 5, after every 5 seconds the SDNN parameter will be 

calculated and stored in its buffer. We refer to these derived BioSignals as “modules” and 

they will be explained in 2.3.4 in more detail. 

Signals & slots 

As explained in 1.6.2, signals & slots are used for the communication between objects. In 

Table 1 signals of the BioSignal class will be listed and described. 

 

Signal Functionality 

signal_appendScatter 
Connects to a PlotController slot and triggers 

filling of the scatter plot data buffer. 

signal_appendHisto 
Connects to a PlotController slot and triggers 

filling of the histogram data buffer. 

signal_dataArrived 
Connects to a PatientViewer slot and triggers 

drawing of the wave plot. 

signal_peakArrived 
Connects to a PatientViewer slot and triggers 

.drawing of detected R – peaks. 

signal_scatterArrived 
Connects to a PatientViewer slot and triggers 

drawing of the scatter plot. 

signal_histoArrived 
Connects to a PatientViewer slot and triggers 

drawing of the histogram. 

signal_numArrived 
Connects to a PatientViewer slot and updates 

the displayed numeric value. 

 

Table 1: Signals of the BioSignal class. 

 

In Table 2 slots of the BioSignal class will be described. 

 

Slot Functionality 

slot_plotData 

This slot is used by WaveForm signals coming 

from the Dräger Monitor. It is triggered by the 

timeout signal of a timer and plots the biosignal 

slot_calculateData 

This slot is triggered by a signal that is emitted as 

soon as the calcCounter variable hits 0. In here the 

algorithms of derived biosignals calculate new 

samples. 

 

Table 2: Slots of the BioSignal class. 
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Figure 19: Modular encapsulation of derived biosignals. Whenever the connected monitor delivers new biosignals, the loop 

manager checks for compatible modules. 

2.3.4. Modules 

VREACT extends the capabilities of standard monitors by various algorithms that deliver 

novel clinical parameters. These parameters are encapsulated in so called “modules”, 

meaning they have their own class that inherits from the BioSignal class, and are instantiated 

by using the BioSignal constructor for derived signals (e.g. SDNN derived from HR).  

 

Figure 19 shows how biosignals received from the monitoring devices (VitalSigns or 

WaveForms) are processed by the loop manager. The loop manager checks if there are any 

compatible modules implemented that can derive from these signals. For example if there is a 

Hypoxemia module implemented that derives from the SpO2 VitalSign, the loop manager 

will filter this SpO2 signal from a list of signals and then pass its pointer to the constructor of 

the Hypoxemia module: 

 

1. for each VitalSign requested via API call do 

2.  if the label of the VitalSign is SpO2 then 

3.   instantiate a new Hypoxemia object and pass the pointer of the   

 SpO2 VitalSign to it 

4.  end if 

5. end for 

 

The Hypoxemia module object will be created using the BioSignal constructor for derived 

signals. Derived biosignals can be parents of further derived parameters and one signal can 
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have multiple instances of these child signals. If there are no modules for arriving 

WaveForms or VitalSigns, they will simply not be filtered out of the list and no modules will 

be instantiated 

 

Module Parent Children Functionality 

PeakTime ECG WaveForm HeartRate detects R – peaks 

HeartRate PeakTime 
SDNN, RMSSD, SD1, SD2 and 

HeartRateVariabilityInterpolation 
calculates fc 

SDNN HeartRate --- calculates SDNN 

RMSSD HeartRate --- calculates RMSSD 

SD1 HeartRate --- calculates SD1 

SD2 HeartRate --- calculates SD2 

HeartRateVariability

Interpolation 
HeartRate HeartRateVariabilityFFT interpolates fc 

HeartRateVariability

FFT 

HeartRateVariability

Interpolation 

HeartRateVariabilityVLF, 

HeartRateVariabilityLF and 

HeartRateVariabilityHF 

performs forward FFT  

HeartRateVariability

VLF 

HeartRateVariability

FFT 
--- 

calculates relative 

spectral power for VLF 

HeartRateVariability

LF 

HeartRateVariability

FFT 
--- 

calculates relative 

spectral power for LF 

HeartRateVariability

HF 

HeartRateVariability

FFT 
--- 

calculates relative 

spectral power for HF 

Hypoxemia SpO2 VitalSign --- 
counts cumulative time 

of hypoxemia 

 

Table 3: Overview of implemented modules. 

 

Table 3 gives an overview of all implemented modules. The software architecture was kept in 

a way to allow for easy implementation and integration of new modules. For doing so, the 

module needs a pointer to the signal it is derived from and the algorithm has to be 

implemented in the slot_calculateData function. After that, the calculation for the module 

will be triggered every time its calcCounter variable is decremented to 0. 

PeakTime 

The PeakTime module was implemented as a non plottable BioSignal. This means this 

module will not show up in the PatientViewer and therefore cannot be selected for plotting. 

Its purpose is to detect R – peaks from ECG WaveForms (parent signal) delivered by the 

monitors and then to forward the time stamps of the peaks to its child, the HeartRate module.  
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Figure 20: Input-output plot of the PeakTime module. It detects the R-peaks in an ECG signal and saves the time stamps. 

 

The R – peak detection algorithm was provided by Bachler M. and his team from the 

Austrian Institute of Technology. It detects R – peaks in real time by continuously monitoring 

the amplitude of the first derivative of the signal. In addition, statistical characteristics of the 

signal are processed in order to prevent the algorithm from detecting motion artefacts as 

peaks. If a peak was identified, a classification is initiated that distinguishes between 

premature ventricular contractions and normal QRS complexes. The provided algorithm can 

be used for semi online peak detection and has proven to be very robust [48]. 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pECG … pointer to ECG 

WaveForm (parent) 

1. if parent buffer has at least 10 seconds of ECG data 

do 

2.  check for peaks within the last 10 seconds using 

 the provided library 

3.  if new peaks are found do 

4.   add time stamps of the   

  peaks into the buffer 

5.  end if 

6. end if 

 

QStringList plotTypes {} … has no plot types 

bool plottable false … can’t be plotted 

bool exportable 
false … not exported to CSV 

file 

int calcCounter 1 … is calculated every second 

int bufferSize 
10 … buffer contains 10 

seconds of data 

int plotBufferSize 0 … has no plotbuffer 

 

Table 4: Constructor parameters of the PeakTime  

module. 

 

Figure 20 shows the input and output of the PeakTime module. As soon as the ECG signal 

has at least 10 seconds of data in its buffer, the algorithm will start to detect each R – peak. 
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Figure 21: Input-output plot of the HeartRate module. It calculates the heart rate by using the peak times located in the 

parent module. 

HeartRate 

The HeartRate module calculates the fC in beats per minute. The HeartRate module is the 

parent of following modules: SDNN, RMSSD, SD1, SD2 and 

HeartRateVariabilityInterpolation. 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pPT … pointer to PeakTime 

module (parent) 

1. if parent buffer has at least 2 samples do 

2.  calculate difference between the last two time 

 stamps: 

 𝑅𝑅[𝑠] =  𝑋𝑛 − 𝑋𝑛−1 

3.  convert the value to beats per minute: 

 𝐻𝑅[𝑏𝑝𝑚] =
60

𝑅𝑅
 

4.  append value to the buffer 

5. end if 

 

QStringList plotTypes 

{"wave","numeric","scatter"} 

… can be plotted as wave plot, 

numeric value or scatter plot 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 1 … is calculated every second 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 5: Constructor parameters of the HeartRate  

module. 

 

Figure 21 shows the input and output of the Heartrate module. It uses the detected peaks in 

order to calculate the RR - intervals in seconds and then converts them into bpm. 
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Figure 22: Input-output plot of the SDNN module. It calculates the SDNN from the heart rate data. 

SDNN 

This module calculates the SDNN parameter for the last 5 minutes of RR – interval data (see 

Figure 22). 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pHR … pointer to HeartRate 

module (parent) 

1. if parent buffer has at least 5 minutes of data do 

2.  calculate the mean value: 

 𝑁𝑁𝑚𝑒𝑎𝑛 [𝑠] =
1

𝑛
∑ 𝑁𝑁𝑖 

𝑛
𝑖=1  

3.  calculate the SDNN parameter: 

 𝑆𝐷𝑁𝑁 [𝑚𝑠] = √
1

𝑛−1
∑ (𝑁𝑁𝑖 − 𝑁𝑁𝑚𝑒𝑎𝑛 )

2𝑛
𝑖=1 ∗

       1000 

4.  append value to the buffer 

5. end if 

 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 6: Constructor parameters of the SDNN  

module. 
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Figure 23: Input-output plot of the RMSSD module. It calculates the RMSSD from the heart rate data. 

RMSSD 

This module calculates the RMSSD parameter for the last 5 minutes of RR – interval data 

(see Figure 23). 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pHR … pointer to HeartRate 

module (parent) 

1. if parent buffer has at least 5 minutes of data do 

2.  calculate the RMSSD parameter: 

 𝑅𝑀𝑆𝑆𝐷 [𝑚𝑠] = √
1

𝑛−1
∑ (𝑁𝑁𝑖+1 − 𝑁𝑁𝑖)

2𝑛−1
𝑖=1 ∗

      1000 

3.  append value to the buffer 

4. end if 

 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 7: Constructor parameters of the RMSSD  

module. 
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Figure 24: Input-output plot of the SD1 module. It calculates the SD1 from the heart rate data. 

SD1 

This module calculates the SD1 parameter for the last 5 minutes of RR – interval data (see 

Figure 24). 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pHR … pointer to HeartRate 

module (parent) 

1. if parent buffer has at least 5 minutes of data do 

2.  calculate the SD1 parameter: 

 𝑆𝐷1 [𝑚𝑠] = √ 1

𝑛−1
∑ (

𝑁𝑁𝑖 −𝑁𝑁𝑖+1

√2
)

2
𝑛−1
𝑖=1  ∗ 1000 

3.  append value to the buffer 

4. end if 

 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 8: Constructor parameters of the SD1  

module. 
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Figure 25: Input-output plot of the SD2 module. It calculates the SD2 from the heart rate data. 

SD2 

This module calculates the SD2 parameter for the last 5 minutes of RR – interval data (see 

Figure 25). 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pHR … pointer to HeartRate 

module (parent) 

1. if parent buffer has at least 5 minutes of data do 

2.  calculate the mean value: 

 𝑁𝑁𝑚𝑒𝑎𝑛 [𝑠] =
1

𝑛
∑ 𝑁𝑁𝑖 

𝑛
𝑖=1  

3.  calculate the SD2 parameter: 

 𝑆𝐷2 [𝑚𝑠] =

     √
1

𝑛−1
∑ (

𝑁𝑁𝑖+𝑁𝑁𝑖+1−2𝑁𝑁𝑚𝑒𝑎𝑛 

√2
)

2
𝑛−1
𝑖=1 ∗ 1000 

4.  append value to the buffer 

5. end if 

 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 9: Constructor parameters of the SD2 

module. 
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Figure 26: Input-output plot of the HeartRateVariabilityInterpolation module. It interpolates the HR data in order to allow 

for further FFT calculations. 

HeartRateVariabilityInterpolation 

The RR interval time series consists of non – uniformly spaced samples. In order to apply 

FFT on this series, the data needed to be interpolated (see Figure 26). A fs of 4Hz was 

proposed for a majority of cases and is appropriate for the study of HRV [49]. The 

HeartRateVariabilityInterpolation module is not plottable and not exportable. It is used as an 

intermediate module that provides interpolated data for the FFT analysis. Newton’s 

interpolation algorithm was used, which allowed for a continuous interpolation between the 

last two samples. This module is the parent of the HeartRateVariabilityFFT module. 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pHR … pointer to HeartRate 

module (parent) 

1. if parent buffer has at least 2 samples do 

2.  evaluate the first two coefficients of 

 Netwon’s interpolation polynomial:  

 𝑎0 = 𝑓(𝑥0) 

 𝑎1 =
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
  

3.  loop through time stamps between the last 

 sample in the interpolated buffer f(x0) and the 

 last sample in the parent buffer f(x1) in steps 

 of 0.25s ( 4Hz) 

4.  in each step calculate the interpolated 

 sample: 

 𝑓(𝑥) = 𝑎0 + 𝑎1 ∗ (𝑥 − 𝑥0) 

5.  append values to the buffer 

6. end if 

QStringList plotTypes {} … has no plot types 

bool plottable false … can’t be plotted 

bool exportable 
false … not exported to CSV 

file 

int calcCounter 1 … is calculated every second 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 0 … has no plotbuffer 

 

Table 10: Constructor parameters of the  

HeartRateVariabilityInterpolation module. 
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Figure 27: Input-output plot of the HeartRateVariabilityFFT module. FFT analysis is conducted on the interpolated HR data 

(marked with a red rectangle on the left) which results in a power distribution in the frequency bands. Image adapted from 

Shaffer et al [24]. 

HeartRateVariabilityFFT 

As described in 1.3.3, HRV can be analysed in the frequency domain. In order to achieve 

this, a Qt – based C++ library, named QRealFourier, was used. This library provides 

functions for forward and inverse FFTs [50]. 

 

The HeartRateVariabilityFFT module is not plottable and not exportable. As seen in Figure 

27, it performs FFT on the last 256 seconds of interpolated HR data. Afterwards it delivers 

the normalized power spectrum to its children modules HeartRateVariabilityVLF, 

HeartRateVariabilityLF and HeartRateVariabilityHF. 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 

pHRVI … pointer to 

HeartRateVariabilityInterpolati

on module (parent) 

1. if parent buffer has at least 1024 samples (256 

seconds of data) do 

2.  perform forward FFT on the last 1024 

 samples in the parent buffer using the 

 QRealFourier library 

3.  calculate the absolute value of each 

 sample 

4.  normalize power spectrum by dividing each 

 sample by the maxima 

5.  append normalized samples and according 

 frequencies to the buffer 

6. end if 

 

QStringList plotTypes {} … has no plot types 

bool plottable false … can’t be plotted 

bool exportable 
false … not exported to CSV 

file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 0 … has no plotbuffer 

 

Table 11: Constructor parameters of the  

HeartRateVariabilityFFT module. 
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Figure 28: Input-output plot of the HeartRateVariabilityVLF module. This module constantly calculates the relative power in 

the VLF band from the total power over all bands. Image partially adapted from Shaffer et al [24]. 

HeartRateVariabilityVLF 

This module calculates the relative power of the VLF band for the last 256 seconds of data. 

The output plot in Figure 28 shows that the power ratio is calculated relative to the total 

power found in the frequency band from 0Hz to 0.4Hz.  

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 

pHRVFFT … pointer to 

HeartRateVariabilityFFT 

module (parent) 

1. if parent buffer is not empty do 

2.  sum the normalized spectral power Sp for 

 frequencies 𝑓 ≤ 0.05Hz: 

 𝑃𝐴𝑅𝑇𝐼𝐴𝐿 = ∫ 𝑆𝑝(𝑓)
0.05𝐻𝑧

0𝐻𝑧
 

3.  sum the normalized spectral power Sp for 

 frequencies ≤ 0.4Hz: 

 𝑇𝑂𝑇𝐴𝐿 = ∫ 𝑆𝑝(𝑓)
0.4𝐻𝑧

0𝐻𝑧
 

4.  calculate relative power percentage: 

 𝑉𝐿𝐹 [𝑟𝑒𝑙. 𝑝𝑜𝑤𝑒𝑟] =
𝑃𝐴𝑅𝑇𝐼𝐴𝐿

𝑇𝑂𝑇𝐴𝐿
 

5.  append value to the buffer 

6. end if 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 12: Constructor parameters of the  

HeartRateVariabilityVLF module. 
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Figure 29: Input-output plot of the HeartRateVariabilityLF module. This module constantly calculates the relative power in 

the LF band from the total power over all bands. Image partially adapted from Shaffer et al [24]. 

HeartRateVariabilityLF 

This module calculates the relative power of the LF band for the last 256 seconds of data. 

The output plot in Figure 29 shows that the power ratio is calculated relative to the total 

power found in the frequency band from 0Hz to 0.4Hz.  

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 

pHRVFFT … pointer to 

HeartRateVariabilityFFT 

module (parent) 

1. if parent buffer is not empty do 

2.  sum the normalized spectral power Sp for 

 frequencies 0.05Hz < 𝑓 ≤ 0.15Hz: 

 𝑃𝐴𝑅𝑇𝐼𝐴𝐿 = ∫ 𝑆𝑝(𝑓)
0.15𝐻𝑧

0.05𝐻𝑧
 

3.  sum the normalized spectral power Sp for 

 frequencies ≤ 0.4Hz: 

 𝑇𝑂𝑇𝐴𝐿 = ∫ 𝑆𝑝(𝑓)
0.4𝐻𝑧

0𝐻𝑧
 

4.  calculate relative power percentage: 

 𝐿𝐹 [𝑟𝑒𝑙. 𝑝𝑜𝑤𝑒𝑟] =
𝑃𝐴𝑅𝑇𝐼𝐴𝐿

𝑇𝑂𝑇𝐴𝐿
 

5.  append value to the buffer 

6. end if 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 13: Constructor parameters of the  

HeartRateVariabilityLF module. 
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Figure 30: Input-output plot of the HeartRateVariabilityHF module. This module constantly calculates the relative power in 

the HF band from the total power over all bands. Image partially adapted from Shaffer et al [24]. 

HeartRateVariabilityHF 

This module calculates the relative power of the HF band for the last 256 seconds of data. 

The output plot in Figure 30 shows that the power ratio is calculated relative to the total 

power found in the frequency band from 0Hz to 0.4Hz.  

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 

pHRVFFT … pointer to 

HeartRateVariabilityFFT 

module (parent) 

1. if parent buffer is not empty do 

2.  sum the normalized spectral power Sp for 

 frequencies 0.15Hz < 𝑓 ≤ 0.4Hz: 

 𝑃𝐴𝑅𝑇𝐼𝐴𝐿 = ∫ 𝑆𝑝(𝑓)
0.4𝐻𝑧

0.15𝐻𝑧
 

3.  sum the normalized spectral power Sp for 

 frequencies ≤ 0.4Hz: 

 𝑇𝑂𝑇𝐴𝐿 = ∫ 𝑆𝑝(𝑓)
0.4𝐻𝑧

0𝐻𝑧
 

4.  calculate relative power percentage: 

 𝐻𝐹 [𝑟𝑒𝑙. 𝑝𝑜𝑤𝑒𝑟] =
𝑃𝐴𝑅𝑇𝐼𝐴𝐿

𝑇𝑂𝑇𝐴𝐿
 

5.  append value to the buffer 

6. end if 

QStringList plotTypes 

{ "wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 
5 … is calculated every 5 

seconds 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 14: Constructor parameters of the  

HeartRateVariabilityHF module. 
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Figure 31: Input-output plot of the Hypoxemia module. This module counts up the seconds in which the patient had SpO2 

samples below 90%.  

Hypoxemia 

The Hypoxemia module calculates the cumulative time of hypoxemia using the SpO2 

VitalSign (parent signal) coming directly from the monitor (see Figure 31). 

 

Constructor 

parameter 
Value Algorithm implementation 

BioSignal* p_parentSig 
pSPO … pointer to SpO2 

VitalSign (parent) 

1. if value of the last sample in the parent buffer is < 90 

do 

2.  append value to the buffer 

3. end if 

QStringList plotTypes 

{"wave","numeric"} … can be 

plotted as wave plot or numeric 

value 

bool plottable true … can be plotted 

bool exportable true … exported to CSV file 

int calcCounter 1 … is calculated every second 

int bufferSize 
300 … buffer contains 300 

seconds of data 

int plotBufferSize 
300 … plotbuffer contains 300 

seconds of data 

 

Table 15: Constructor parameters of the  

HeartRateVariabilityHF module. 
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2.4. Data access layer 

The data access layer was built using the Infinity Delta API. This API is provided in the form 

of a Dynamic Link Library (DLL), which is a file that contains a shared library of functions 

and resources. Due to dynamic linkage, different executables can call this information during 

runtime. The provided DLL is called WvAPI.dll and contains several functions for 

establishing connections to the monitoring devices and retrieving biosignal samples from 

them (as seen in Figure 17). 

 

Function Description 

WvStart Performs necessary initializations. 

WvStop Performs necessary clean up. 

WvListBeds 
Fills in a list of beds that are currently 

online at the Infinity Gateway. 

WvConnect Opens a connection to a bed. 

WvDisconnect Closes a connection to a bed. 

WvListConnections Lists beds that are currently connected. 

WvListWaveforms 
Fills in a list of waveforms that are 

currently being collected from the bed. 

WvDescribeWaveform 
Fills in a structure with data for a given 

waveform. 

WvGetWaveformSamples 
Fills a buffer with samples for the 

specified waveform. 

WvGetVitalSignsReport 
Creates a vital signs report for the 

specified device. 

 

Table 16: Important functions provided by WvAPI.dll. 

2.5. Integration into the Infinity Network 

In order to establish a connection, the measurement system had to be setup with Windows 

Server 2012 and MySQL Server. Furthermore several hardware address filters, firewall rules 

and Infinity Gateway settings had to be adjusted. Finally, a security dongle provided by 

Dräger had to be plugged in for unlocking the hardware API [42]. Since repeating these steps 

for each computer would be too cumbersome, we decided to clone the whole system and 

convert it into a VirtualBox environment [48]. By doing this, we not only created an easy 

solution for the distribution of the preconfigured system, but also a back-up for fast recovery. 
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Figure 32: Integration of VREACT into the Infinity Network. VREACT is able to establish connections to all available 

monitors within this network [45]. 

 

Figure 32 depicts the integration of VREACT into the Infinity Network. The secure local 

network of the hospital is used for data transfer of life critical information (e.g. vital signs for 

monitoring of patients) and health information traffic (e.g. metadata of patients). This 

integration allowed us to connect to Infinity Delta monitors within ICUs, operating theatres 

and recovery rooms. 
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3. Software implementation 

In order to overcome the problems mentioned in 1.5, we developed VREACT, a sophisticated 

tool that not only enables the continuous recording of biosignals provided by the monitors, 

but also includes a UI (“PatientViewer”) for visualizing them. Furthermore 

“VREACTquick”, a more compact version that excludes the PatientViewer, but includes 

additional features for long term recordings was released. 

3.1. VREACT 

VREACT is meant to be used for short term recordings (minutes to hours) and continuous 

and remote visualization of the vital signs of a patients. It allows for connections from single 

patients up to multiple care units simultaneously. In Figure 33 an illustration of the software 

structure for VREACT can be seen. Data is collected from beds within care units of the 

hospital network. Afterwards the raw signals are encapsulated in modules and used as parents 

of new derived signals. Algorithms are continuously calculating new samples of the derived 

modules. The final data can be visualized by the PatientViewer and/or can be recorded by 

saving the sample into a CSV file. Details of the specific parts in Figure 33 were covered in 

the Software architecture section.  

3.1.1. Main GUI 

Figure 34 depicts the main GUI of VREACT. It appears with starting of the executable and 

contains information about available care units, bed labels, patient IDs and patient names. 

The user is able select whole care units or just single patients by checking the boxes left to 

their labels. After making the selection, connections can be established by clicking the 

connect button. By doing so every checked bed that was not connected yet will be connected 

and every unchecked bed that was already connected will be disconnected. Furthermore the 

GUI allows for setting of the file directory of recordings and the button to start or stop them. 

If connections were established successfully, the PatientViewer symbol will be enabled and 

can be clicked in order to visualize all biosignals of a bed. 
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Figure 33: Structure of VREACT. Data of the monitoring devices is acquired over the Infinity Network. VREACT gathers 

all the available biosignals of a patient in a list. The raw signals are further processed within specialized modules (e.g. HRV 

for ECG). Finally the user is able to store all the data locally or visualize them using the PatientViewer functionality. 

 

 

Figure 34: Main GUI of VREACT. It displays every care unit and their respective beds found within the Infinity Network. If 

connection to a bed was successfully established, the user can click on the PatientViewer symbol in order to visualize the 

signals. The patient names were blurred. 

3.1.2. PatientViewer 

The PatientViewer extends VREACT with real time visualization capabilities. For this it is 

provided with data stored in the buffers of each plottable BioSignal object. On the left top 

side all available signals are listed. This list is updated as soon as new signals are detected or 

existing ones are removed. The user can select a signal simply by clicking on it. Derived 

signals are accessed by expanding the parent signal. Once a signal is selected, the available 

plots for this signal will be enabled. The PatientViewer was implemented using a slot  
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Figure 35: The PatientViewer allows for real time visualization of biosignals. Derived signals can be accessed by expanding 

the parent signals. In the available plots section the user can choose the type of data representation via drag & drop 

mechanism. Numeric values take up one slots and graphs take up to slots. The name of the patient was blurred. 

 

 

Figure 36: Detection of disconnected signals in the PatientViewer 

 

mechanism. This means that plots take up specific amount of empty slots. Whereas numeric 

values take up one slot, graphs, like waveforms, histograms or scatter plots, take up two slots. 

Plotting can be started by dragging and dropping an available plot into the desired slot. The 

colours of signals as well as their plot labels are set in the BioSignal constructor. Derived 

signals are assigned slightly lighter colours than their parents. Numeric values are represented 

by displaying the last value in the buffer of the signal. Their units are either directly set by the 

information delivered by the monitor or are within the constructor of a derived BioSignal. 

Wave plots have a buffer of up to 5 minutes. Once a signal exceeds this limit, the first 

samples in its buffer are removed and new samples are appended. This allows for smooth and 

continuous plotting. The drag & drop mechanism allows for overwriting of already taken 

slots. Doing so will close and clear the plot buffer of the former plot. In addition to that the 

user can close a plot by simply clicking on the X symbol on the right of the label name. 



 

47 
 

 

Figure 37: An ECG plotted by the PatientViewer. The y – axis shows the amplitude in mV and the x – axis contains time 

information. This plot type is called “Wave”.  

 

 

Figure 38: Flow diagram of the wave plots. After a sample arrives, the logic checks whether a plot is already active or not. If 

it was active already samples will simply be added to the plot and if not, a new plot will be created and filled with all recent 

samples. 

 

In Figure 36 the automatic detection of removed biosignals can be seen. As soon as a sensor 

stops delivering data for more than 5 minutes, it will be removed from the list of available 

data and all active plots related to it will display “DISCONNECTED”. 

Plot types 

As already mentioned, signals can be represented by different plot types. In this section each 

type will be explained in more detail. 

 

Wave plots 

The wave type is used for continuous plotting of signals and takes up two slots.  In Figure 37 

an ECG signal plotted as a wave type can be seen. The amount of visualized samples is 

defined by the plot buffer size. For ECG signals this size is set to 6 seconds. Figure 38 

describes the executed steps in the form of a flow diagram. 
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Figure 39: Numeric values displayed by the PatientViewer. Picture A shows the cumulative time of hypoxemia in minutes 

and picture B shows the diastolic blood pressure in mmHg. 

 

 

Figure 40: Histogram of heart rate samples visualized by the PatientViewer. The y – axis contains information about the 

frequency and the x – axis depicts the values. 

 

 

Figure 41: Flow diagram of numeric plots. After a sample arrives, the logic checks whether the value should be displayed in 

the time format or not. If it has time format, the value will be converted from seconds to minutes before being displayed. 

 

Numeric plots 

The numeric type is mainly used for VitalSign signals coming from the Dräger monitors. 

This type takes up one free slot and continuously displays the most recent value in the signal 

buffer.  Figure 39 shows the cumulative time of hypoxemia in minutes and the diastolic blood 

pressure in mmHg. Both parameters are visualized as numerics. Figure 41 describes the 

executed steps in the form of a flow diagram. 



 

49 
 

 

Figure 42: Flow diagram of histogram plots. After a sample arrives calculations are started in order to create bins and append 

samples based on the bin width.  

 

 

Figure 43: Flow diagram of the scatter plots. After a sample arrives, the logic checks whether a plot is already active or not. 

If it was active already samples will be added to the plot and if not, a new plot will be created and filled with all recent 

samples. 

 

 

Figure 44: Scatter plot (Poincaré plot) of heart rate samples visualized by the PatientViewer. The y – axis depicts RR+1 

intervals and the x – axis depicts RR intervals. 

 

Histogram 

The histogram plot visualizes the frequency of certain samples in real time and occupies two 

slots. Figure 40 pictures a histogram displayed by the PatientViewer. The distribution of the 
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histogram contains information about the HTI as explained in 1.3.2. Figure 42 describes the 

executed steps in the form of a flow diagram. 

 

Scatter plot 

The scatter plot contains information on the relation between successive RR intervals and it 

occupies two slots. Figure 44 shows a Poincaré plot displayed by the PatientViewer. As 

described in 1.3.2, the distribution of the sample cloud can help identifying cardiac diseases. 

Figure 43 describes the executed steps in the form of a flow diagram. 

Drag & drop mechanism 

In order to allow the user to choose between various plot types and the slots for visualizing 

them, a drag & drop mechanism was introduced. If no signals are selected the available plot 

types stay disabled. Once a user makes his selection, the types that are compatible become 

enabled. The plot symbols have to be dragged into the dedicated slots. If the cursor is not in 

the vicinity of a slot while dropping, no event will occur. If the symbol is dropped over an 

already active slot, the former plot will be replaced with the new one and its plot buffer will 

be cleared. 

3.1.3. Libraries 

QCustomPlot 

In order to implement customizable and dynamic plots, the QCustomPlot library was used 

[51]. This library is a Qt C++ widget that is well documented. By promoting Qt widgets in 

the UI creator to QCustomPlot objects, all the functionality within the library can be 

accessed. This enables creating sophisticated plots that can quickly adapt to changes in the 

dataset. 

3.1.4. Debugging 

Since VREACT establishes connections by using external libraries, the behaviour was 

sometimes very hard to understand. In order to gain more information, the software was 

debugged extensively. Debugging was mainly split in two different parts: under simulated 

conditions by establishing connections to a test monitor, and under real conditions in the 

network of the General Hospital of Vienna. 
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The simulated conditions mainly helped us to understand the behaviour of functions within 

the WvAPI library and the exception handling. We discovered that connections to beds were 

lost as soon as the communication timeout reached a certain threshold. On top of that, Dräger 

delivered new IDs for these beds afterwards. As a counter measure we repeatedly ask for 

connection details of each connected bed. This ensures that beds stay connected and keep 

their IDs throughout the execution of the software. 

 

Debugging under real conditions was mostly for identifying problems regarding performance 

and multi-threading. Here we saw that connecting to too many beds at the same time had 

impacts on the PatientViewer, since it was not able to keep up with updating the plots. 

Furthermore the log file caused a crash due to different threads trying to write into the file 

simultaneously. 

3.1.5. Test results 

VREACTs recording capabilities were tested by my colleague Mr. Jakub Matta, who 

successfully conducted a 2 hour recording from 3 different care units with a total of 15 

patients. The PatientViewer was tested during various conditions by me. Besides smaller UI 

tests that verified basic functionality and responsiveness, the viewer passed 1 hour long 

visualization tests of data from 5 different patients. During those tests different parameters 

were plotted and often times closed or replaced by other parameters. Although final tests 

were successful, the PatientViewers performance drops if VREACT is connected to multiple 

beds at the same time. The test protocol of VREACT can be found in the appendix. 

3.2. VREACTquick 

VREACTquick is a modified version of VREACT that offers handling of long term 

recordings and name encryption. In this version connections are only allowed to care units 

but not to single beds.  VREACTquick introduces handling of changes in the list of patients. 

For long term recordings it is crucial to identify new assignments of patients to beds. If a 

patient was disconnected for a while but returns to his bed, his data will be stored in the same 

folder as it was before. If the software recognizes that a new patient is assigned to a bed, it 

will clear all the memory that was allocated for the old patient and then will create a new 

BedEntity. By doing so, memory leaks are prevented. Furthermore if a new bed is added, it 
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will be instantly connected or recorded if its care unit was already connected or being 

recorded. The algorithm works through the following steps sequentially: 

 

1. if list of beds contains new bed then 

2.  if bed information is equal to that of an already existing bed then 

3.   delete the old BedEntity 

4.  end if 

5.  create a new BedEntity 

6.  if already existing bed was connected then 

7.   connect the new BedEntity 

8.  end if 

9. end if 

 

 Since the architecture is based on VREACT, this section will only cover the extra features. 

3.2.1. Main GUI 

The main GUI is structured similarly to VREACT. As seen in Figure 45, in this version 

patient names can be encrypted by checking the box above the connect button. The names are 

encrypted by using a SHA-1 function and are represented by 8 digits. In order to encrypt the 

names in recordings, the encryption box has to be checked before starting to record. 

Additionally, the VREACTquick GUI does not allow for connections to single beds. The user 

can only use the checkboxes left to the care unit labels. 

3.2.2. Libraries 

libHaru 

In order to allow for name decryption in the recordings, the libHaru library was used [52]. 

This library provides methods to create password protected PDF files. Each time a new file 

directory for a bed is created, VREACTquick will check if name encryption is enabled and if 

it is, a protected PDF file will be created. 
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Figure 45: Main GUI of VREACTquick. It extends the VREACT GUI by a new checkbox that enables name encryption of 

patients. Furthermore the user can only select whole care units. 

 

 

Figure 46: VREACTquick stops recording if there is not enough free disk space. 

3.2.3. Debugging 

Debugging VREACTquick was a difficult task. Since this tool had to pass long-term 

recording tests within the hospital, continuous tracking of events was necessary. For this, the 

logged events were reduced by a significant amount in order to avoid crashes due to multi-

threading. After a while memory leaks were recognizable. This issue was caused due to 

buffers that were filled for the PatientViewer, but since this feature was excluded, the data 

was never accessed and cleared. Apart from that, pointers to BedEntities were lost before the 

memory was cleared which again resulted in a memory leak. 

 

Another task was to ensure that the disk has enough free space for further recordings. In order 

to introduce a safety mechanism, the windows API was used to check the current free disk 

space on the chosen file directory. Figure 46 shows the warning message that pops up as soon 

as the free space reaches 5 gigabytes. This will also stop the ongoing recording. 
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3.2.4. Test results 

VREACTquick passed an endurance test that consisted of non-stop data recording from two 

different care units with over 20 patients. The recording was stopped after approximately 82 

hours and collected about 35 gigabyte of data.  The appendix section contains plots of 

different biosignals of one patient. These plots show that VREACTquick is capable of high 

resolution recordings (e.g. ECG signals with fs of 200Hz) as well as low resolution 

recordings (e.g. HR signals with fs of 1Hz or SDNN signals with fs of 0.2Hz). In addition, the 

tool succeeded in encrypting the patient names and detecting changes in the assignment of 

patients to beds in order to create new file directories. The test protocol of VREACTquick 

can be found in the appendix. 

Validation of the R - Peak detection algorithm 

In order to validate the performance and accuracy of the implemented R – Peak detection 

algorithm, the calculated fC was compared to the fC delivered by the Dräger monitors. For 

this, the agreement of the two datasets was examined using a Bland – Altman (BA) 

difference plot. It needs to be mentioned that the fC of the Dräger monitor is always an 

averaged value over a few seconds, which causes it to miss sudden spikes or drops. As a 

result of that both data sets needed to be averaged by a 5 minute window in order to make 

them more comparable. In addition the Dräger fC is usually delayed by a few seconds and 

therefore does not allow for direct comparison. Because of this, the data sets were 

synchronized as accurate as possible using cross-correlation. Figure 47 shows the BA plots 

for 4 different patients. The plots contain information about differences between samples (y – 

axis) and about the mean value of each of these difference pairs (x – axis). Furthermore the 

BA plots contain information about the bias ("Median of ∆" line) and the limits of agreement 

(LOA, “97.5 quantile” and “2.5 quantile” dashed lines) which include 95% of all data. The 

percentiles were used instead of SD since the data is not normally distributed. In general the 

LOA are rather small which means the differences between the samples are small. However, 

the datasets also contain bigger outliers. This was mainly due to ECG sensors being detached 

from the patient which affected the peak detection of the algorithm while the monitor seemed 

to be able to deliver correct values.  
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Figure 47: Bland – Altman plots of 4 different patients. On the y – axis the differences between the HR samples provided by 

the monitors and the HR samples calculated by the implemented algorithm (smonitor – salg) are displayed. The x – axis shows 

the mean value of each sample pair (smonitor + salg / 2). The bias (median of all ∆, solid line) and the limits of agreement (2.5 

quantil and 97.5 quantil, dashed lines) are also calculated and visualized. 

 

Patient A B C D 

Bias (median of ∆) -0.51 -0.51 -0.55 -0.69 

Upper LOA -0.28 -0.3 -0.2 -0.09 

Lower LOA -0.87 -0.91 -5.3 -2.2 

95% confidence interval 0.59 0.61 5.1 2.11 

Table 17: Bias (median of ∆), limits of agreement and the  

95% confidence interval of patients A, B, C and D. 

Table 17 lists the results of the BA analysis. Overall the bias in each dataset is negative 

meaning the fC samples of the algorithm are slightly higher than the fC samples of the 

monitor. This is due to the initial averaging behaviour of the monitors. By averaging the 

samples, sudden spikes are not registered leading to an overall lower fC signal. Whereas the 

95% confidence intervals for patients A and B are very small, for patients C and D they are 

bigger. As mentioned before, this was mainly due to disturbances on the patient bed side like 

motion artefacts and detachment of sensors.  
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4. Discussion 

The objective of this work was to develop software for recording and monitoring of 

biosignals through the safe hospital network. While the focus was on providing HRV related 

parameters, the software architecture was kept in a way that allows for implementation of 

new modules very easily. During the course of this thesis a modified version was released 

which solely focuses on long term recordings while encrypting personal patient information. 

 

The development process started in the facilities of TU Wien, where we had direct access to a 

Dräger monitor. During this period we were able to change and adjust the settings of the 

monitor and test the output of the Dräger API. After the basic functionality was implemented 

and all tests with one monitor succeeded, we transferred our setup to the General Hospital of 

Vienna where we had real conditions with several care units and beds.  

 

Throughout development we overcame several difficulties, some of them specific to the 

Dräger API. As an example, accessing the internal buffer of the Dräger monitors turned out 

to be rather complicated. We realized that the monitors will always release and clear the 

content of their whole buffer when data is requested.  This means the amount of returned 

samples depends on the time difference between two requests. In addition to that, a lower 

limit of 40 samples locks the buffer. This means if the monitor has not stored at least 40 

samples, it will not deliver anything. By adjusting the request frequency to 1 second, we were 

able to maintain a constant size (about 200 samples) of the internal Dräger buffer. 

 

Connections to beds were established by using functions provided by the Dräger API. In 

early development there were issues with keeping connections alive. After a successful 

connection, Dräger delivers a unique bed ID. If there is no communication to this bed for a 

certain amount of time, the connection is not maintained anymore. The big issue with this 

was that the monitor changed the bed ID when the list of beds was requested. Therefore we 

had to make sure to not allow the IDs to change. This was done by setting up a timer that 

would continuously exchange data with the connected bed. 

 

Since C++ does not offer a garbage collector, the code is usually very prone to memory leaks. 

It was important to track if derived signals would automatically be deleted if their parents are 
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deleted. This was tested successfully in various scenarios with multiple derived parameters 

and also non exportable signals. Moreover BedEntities and their dedicated LoopManagers 

had to be cleared if a certain bed was removed from the list. During the long-term test of 

VREACTquick a big memory leak was detected due to a buffer that was supposed to fill up 

plots and then clear itself. Since this version had no PatientViewer, the buffers were not 

cleared leading to a big memory leak that crashed the software after a few hours. In the end 

all detected memory leaks were fixed. 

 

Our software introduces HRV as a novel parameter to the perioperative environment. The 

user can record or visualize parameters like SDNN, RMSSD, SD1, SD2, VLF-, LF-, or HF – 

Power in real time. This enables healthcare professionals to make proactive decisions based 

on the information that VREACT offers them. Furthermore our tool can be used in studies in 

order to gather huge amount of data over long periods of time. Not only will it record basic 

vital signs delivered by the monitors, but also the data stored in the buffers of the derived 

parameters. Compared to other proposed tools, VREACT does not need a physical 

connection to the monitoring devices. The only requirement is a stable connection to the 

hospital network. Because of this, VREACT can connect to multiple monitors 

simultaneously.  

 

For testing under real conditions we cooperated with the General Hospital of Vienna. There 

we had access to multiple care units and many beds within the local network. VREACTquick 

was able to record data from two different care units simultaneously over a period of about 

82 hours. VREACT successfully recorded data from over 15 patients from 3 different care 

units for over 2 hours. Furthermore the PatientViewer passed one hour long plot tests for 5 

different patients. The implemented R – peak detection algorithm was validated by 

comparing the calculated fC to the monitor fC using the Bland – Altman analysis. The 

validation was done with the data of four different patients. Overall the vast majority of the 

samples (> 95%) were within the limits of agreement. Outliers occurred due to different 

approaches in the calculation of fC between the monitors (average values over a few seconds) 

and our algorithm (saves each RR – interval separately), and the detachment of ECG sensors 

which causes wrong peak detections of the algorithm for a short time. Another problem arises 

when a user connects to multiple beds simultaneously. By doing so, the PatientViewer starts 

to suffer from performance issues. The plots can’t update regularly anymore which in the 

worst case leads to empty plots. This issue depends on how many signals each bed has and 
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how many algorithms are actively calculating. In conclusion the functionality of our software 

is very satisfactory but there is still room for improvement. 

 

As of right now, VREACT is ready for usage in the perioperative environment. Our test 

protocols fulfil all the criteria that were set in the beginning of the project. Our group 

prepared a solid and extensible framework that future students and interested scientist can use 

and enhance. Therefore we hope that VREACT will continuously be extended by new 

modules. This is also important for making our tool more versatile and a valuable acquisition 

tool for future studies. Furthermore, the functionality of VREACTquick suits big data 

projects since it handles changes in the patient list automatically and can record data over 

long periods of time. The next step will be a handover of our tools to health care 

professionals in order to receive feedback from end users. 



 

59 
 

Appendix 

 

Test protocol of VREACT. The content and expected result of each test case is listed. On the right side the status of a test is 

documented 

 

Version 0.0.1

Date 27.04.2018

Id Description Expected result Status

T01 Connect to one bed Bed is connected and the PatientViewer symbol is enabled PASSED

T02 Visualize all parameters of a bed in the PatientViewer PatientViewer opens, list of available biosignals is displayed, drag & drop into slots works, visualization works PASSED

T03 Close and reopen the PatientViewer Viewer closes and opens again, all parameters can be visualized PASSED

T04 Connect to two  beds in the same care unit Both beds are connected and PatientViewer symbols are enabled PASSED

T05 Collect data from one beds Samples of all available parameters are saved in the .csv file PASSED

T06 Collect data from multiple beds Samples of all available parameters are saved in the .csv file FAILED

Version 0.0.1

Date 10.05.2018

Id Description Expected result Status

T06 Collect data from multiple beds Samples of all available parameters are saved in the .csv file PASSED

T07 Connect to two  beds in different care units Both beds are connected and PatientViewer symbols are enabled PASSED

T08 Connect to all available beds (should be more than 15) All beds are connected and PatientViewer symbols are enabled PASSED

T09 .csv files of a bed don't exceed 100mb New .csv file should be started as soon as file reaches 100mb in size PASSED

T10 .csv files of all beds don't exceed 100mb New .csv file should be started as soon as file reaches 100mb in size PASSED

T11 Disconnecting a bed automatically closes its PatientViewer PatientViewer should close automatically as soon as the respective bed is disconnected FAILED

Version 0.0.2

Date 17.05.2018

Id Description Expected result Status

T11 Disconnecting a bed automatically closes its PatientViewer PatientViewer should close automatically as soon as the respective bed is disconnected PASSED

T12 Disconnecting multiple beds automatically closes their PatientViewers PatientViewers should close automatically as soon as the respective beds are disconnected PASSED

T13 Each bed can only have one active PatientViewer If the PatientViewer of a bed is already active, reclicking the PatientViewer symbol should bring it to the front FAILED

T14 Licence HTML is displayed correctly Clicking on the "Info" button should open a window with licence information in it PASSED

Comment

S01 T01, T02, T03, T05 PASSED

S02 T04, T02, T03, T05, T06 PASSED

S03 T07, T02, T03, T05, T06 PASSED

S04 T08, T02, T03, T05, T06 Performance issues when connected to many beds and trying to use PatientViewer as well PASSED

Version 0.0.2

Date 24.05.2018

Id Description Expected result Status

T11 Disconnecting a bed automatically closes its PatientViewer PatientViewer should close automatically as soon as the respective bed is disconnected PASSED

T12 Disconnecting multiple beds automatically closes their PatientViewers PatientViewers should close automatically as soon as the respective beds are disconnected PASSED

T13 Each bed can only have one active PatientViewer If the PatientViewer of a bed is already active, reclicking the PatientViewer symbol should bring it to the front PASSED

T15 Importing .csv file into MATLAB works Data is imported into MATLAB and can be plotted correctly PASSED

T16 MATLAB processes seperators correctly Data is seperated correctly and the amount of created columns matches the available signals FAILED

Comment

S01 T01, T02, T03, T05 PASSED

S02 T04, T02, T03, T05, T06 PASSED

S03 T07, T02, T03, T05, T06 PASSED

S04 T08, T02, T03, T05, T06 Performance issues when connected to many beds and trying to use PatientViewer as well PASSED

S05 T08, T02, T13, T12 PASSED

Version 0.0.3

Date 21.06.2018

Id Description Expected result Status

T17 Disconnected sensors are removed from the model If a sensor is removed the respective biosignal and its derivatives are deleted PASSED

T18 Active plots are marked as disconnected if the respective sensor is removed Signals and its derivates are labeled as disconnected if the respective sensor is removed PASSED

Comment

S01 T01, T02, T03, T05 PASSED

S02 T04, T02, T03, T05, T06 PASSED

S03 T07, T02, T03, T05, T06 PASSED

S04 T08, T02, T03, T05, T06 Performance issues when connected to many beds and trying to use PatientViewer as well PASSED

S05 T08, T02, T13, T12 PASSED

Version 0.0.4

Date 12.07.2018

Id Description Expected result Status

T19 Changing patient name in the monitor updates the GUI The bed entity for the old patient is deleted and a new one is created PASSED

T20 Patient list is updated automatically Changes in the list of available monitors is automatically updated in the GUI PASSED

Comment

S01 T01, T02, T03, T05 PASSED

S02 T04, T02, T03, T05, T06 PASSED

S03 T07, T02, T03, T05, T06 PASSED

S04 T08, T02, T03, T05, T06 Performance issues when connected to many beds and trying to use PatientViewer as well PASSED

S05 T08, T02, T13, T12 PASSED

Testcases for VREACT

System tests

System tests

System tests

System tests
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Test protocol of VREACTquick. The content and expected result of each test case is listed. On the right side the status of a 

test is documented 

  

Version 0.0.1

Date 14.06.2018

Id Description Expected result Status

T01 PatientViewer is not available PatientViewer symbol should be removed for every bed PASSED

T02 Connecting to single beds is not possible Single beds can not be selected and connected to PASSED

T03 Connect to one care unit All beds in the care unit are connected PASSED

T04 Disconnect from one care unit All beds in the care unit are disconnected PASSED

T05 Collect data from one care unit Samples of all available parameters are saved in .csv files PASSED

T06 Root for recording paths should be the name of the care unit filepath should look like : "…/CareUnitLabel/BedLabel_Date_PatientName/Time_measurement.x.csv" PASSED

System tests Comment

S01 T03, T04, T03, T05 PASSED

Version 0.0.1

Date 16.06.2018

Id Description Expected result Status

T07 Changing patient name in the monitor updates the GUI The bed entity for the old patient is deleted and a new one is created FAILED

T08 New patient monitors are immediately connected if their respective care unit was connected already New patient is connected and data is gathered FAILED

T09 New patient monitors are immediately recorded if their respective care unit was being recorded already New patient is connected and data is gathered and recorded FAILED

T10 Patient list is updated automatically Changes in the list of available monitors is automatically updated in the GUI FAILED

System tests Comment

S01 T03, T04, T03, T05 PASSED

Version 0.0.1

Date 20.06.2018

Id Description Expected result Status

T07 Changing patient name in the monitor updates the GUI The bed entity for the old patient is deleted and a new one is created PASSED

T08 New patient monitors are immediately connected if their respective care unit was connected already New patient is connected and data is gathered PASSED

T09 New patient monitors are immediately recorded if their respective care unit was being recorded already New patient is connected and data is gathered and recorded PASSED

T10 Patient list is updated automatically Changes in the list of available monitors is automatically updated in the GUI PASSED

T11 Name encryption can be enabled Checking the encrypt name box hashes the patient name in the GUI and in the filepaths of recordings PASSED

T12 PDF file is created for name decryption If the names are encrypted, a password protected decryption PDF file will be created in each patient folder FAILED

System tests Comment

S01 T03, T04, T03, T05 PASSED

Version 0.0.2

Date 21.06.2018

Id Description Expected result Status

T12 PDF file is created for name decryption If the names are encrypted, a password protected decryption PDF file will be created in each patient folder PASSED

T13 PDF file contains correct decryption information The PDF file should contain a text like "d2hy341p - PatientName" FAILED

T14 Connect to multiple care units All beds in the care units are connected PASSED

T15 Disconnect from multiple care units All beds in the care units are disconnected PASSED

T16 Collect data from multiple care units Samples of all available parameters are saved in .csv files PASSED

System tests Comment

S01 T03, T04, T03, T05 PASSED

S02 T14, T15, T14, T16, PASSED

Version 0.0.2

Date 12.07.2018

Id Description Expected result Status

T13 PDF file contains correct decryption information The PDF file contains a text like "d2hy341p - PatientName" PASSED

T17 PDF file requests a password The PDF file opens after the user enters the correct password PASSED

T18 Long term recording (1 week) works for multiple care units (at least 3) Samples of all available parameters are saved in .csv files FAILED

System tests Comment

S01 T03, T04, T03, T05 PASSED

S02 T14, T15, T14, T16, PASSED

Version 0.0.2

Date 09.08.2018

Id Description Expected result Status

T18 Long term recording (1 week) works for multiple care units (at least 2) Samples of all available parameters are saved in .csv files PASSED

System tests Comment

S01 T03, T04, T03, T05 PASSED

S02 T14, T15, T14, T16, PASSED

Testcases for VREACTquick
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Visualization of data calculated and recorded by VREACTquick. This plot represents the relation between the ECG, HR, 

SDNN and RMSSD signals. On the right y-axis the HR in bpm and on the left y-axis the normalized amplitudes of the 

remaining signals can be seen. The x – axis shows the time stamps in seconds. 

 
Visualization of data calculated and recorded by VREACTquick. This plot represents the relation between the ECG, HR, 

SD1 and SD2 signals. On the right y-axis the HR in bpm and on the left y-axis the normalized amplitudes of the remaining 

signals can be seen. The x – axis shows the time stamps in seconds. 

 

Visualization of data calculated and recorded by VREACTquick. This plot represents the relation between the ECG, HR, 

VLF Power, LF Power and HF Power signals. On the right y-axis the HR in bpm and on the left y-axis the normalized 

amplitudes of the remaining signals can be seen. The x – axis shows the time stamps in seconds. 
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Visualization of a long-term HR signal calculated and recorded by VREACTquick. The signal was averaged by a 10 minute 

window. The y – axis depicts the HR in bpm and the x – axis shows the time in date format. The signal is discontinuous due 

to sporadic detachment of the ECG sensors. 

 

Visualization of a long-term SDNN signal calculated and recorded by VREACTquick. The signal was averaged by a 30 

minute window. The y – axis depicts amplitude in ms and the x – axis shows the time in date format. 

 

Visualization of a long-term RMSSD signal calculated and recorded by VREACTquick. The signal was averaged by a 30 

minute window. The y – axis depicts the amplitude in ms and the x – axis shows the time in date format. 
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Visualization of a long-term SD1 signal calculated and recorded by VREACTquick. The signal was averaged by a 30 minute 

window. The y – axis depicts the amplitude in ms and the x – axis shows the time in date format. 

 

Visualization of a long-term SD2 signal calculated and recorded by VREACTquick. The signal was averaged by a 30 minute 

window. The y – axis depicts the amplitude in ms and the x – axis shows the time in date format. 

 

Visualization of long-term spectral power measurements for VLF, LF and HF power calculated and recorded by 

VREACTquick. The signals were averaged by a 30 minute window. The y – axis depicts the normalized amplitude and the x 

– axis shows the time in date format.  
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